WorldWideScience

Sample records for nuclear methods quantification

  1. Quantification of organic acids in beer by nuclear magnetic resonance (NMR)-based methods

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, J.E.A. [CICECO-Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal); Erny, G.L. [CESAM - Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal); Barros, A.S. [QOPNAA-Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal); Esteves, V.I. [CESAM - Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal); Brandao, T.; Ferreira, A.A. [UNICER, Bebidas de Portugal, Leca do Balio, 4466-955 S. Mamede de Infesta (Portugal); Cabrita, E. [Department of Chemistry, New University of Lisbon, 2825-114 Caparica (Portugal); Gil, A.M., E-mail: agil@ua.pt [CICECO-Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal)

    2010-08-03

    The organic acids present in beer provide important information on the product's quality and history, determining organoleptic properties and being useful indicators of fermentation performance. NMR spectroscopy may be used for rapid quantification of organic acids in beer and different NMR-based methodologies are hereby compared for the six main acids found in beer (acetic, citric, lactic, malic, pyruvic and succinic). The use of partial least squares (PLS) regression enables faster quantification, compared to traditional integration methods, and the performance of PLS models built using different reference methods (capillary electrophoresis (CE), both with direct and indirect UV detection, and enzymatic essays) was investigated. The best multivariate models were obtained using CE/indirect detection and enzymatic essays as reference and their response was compared with NMR integration, either using an internal reference or an electrical reference signal (Electronic REference To access In vivo Concentrations, ERETIC). NMR integration results generally agree with those obtained by PLS, with some overestimation for malic and pyruvic acids, probably due to peak overlap and subsequent integral errors, and an apparent relative underestimation for citric acid. Overall, these results make the PLS-NMR method an interesting choice for organic acid quantification in beer.

  2. LORD-Q: a long-run real-time PCR-based DNA-damage quantification method for nuclear and mitochondrial genome analysis

    Science.gov (United States)

    Lehle, Simon; Hildebrand, Dominic G.; Merz, Britta; Malak, Peter N.; Becker, Michael S.; Schmezer, Peter; Essmann, Frank; Schulze-Osthoff, Klaus; Rothfuss, Oliver

    2014-01-01

    DNA damage is tightly associated with various biological and pathological processes, such as aging and tumorigenesis. Although detection of DNA damage is attracting increasing attention, only a limited number of methods are available to quantify DNA lesions, and these techniques are tedious or only detect global DNA damage. In this study, we present a high-sensitivity long-run real-time PCR technique for DNA-damage quantification (LORD-Q) in both the mitochondrial and nuclear genome. While most conventional methods are of low-sensitivity or restricted to abundant mitochondrial DNA samples, we established a protocol that enables the accurate sequence-specific quantification of DNA damage in >3-kb probes for any mitochondrial or nuclear DNA sequence. In order to validate the sensitivity of this method, we compared LORD-Q with a previously published qPCR-based method and the standard single-cell gel electrophoresis assay, demonstrating a superior performance of LORD-Q. Exemplarily, we monitored induction of DNA damage and repair processes in human induced pluripotent stem cells and isogenic fibroblasts. Our results suggest that LORD-Q provides a sequence-specific and precise method to quantify DNA damage, thereby allowing the high-throughput assessment of DNA repair, genotoxicity screening and various other processes for a wide range of life science applications. PMID:24371283

  3. Quantification of caffeine in human saliva by Nuclear Magnetic Resonance as an alternative method for cytochrome CYP1A2 phenotyping.

    Science.gov (United States)

    Schievano, Elisabetta; Finotello, Claudia; Navarini, Luciano; Mammi, Stefano

    2015-08-01

    The first step in caffeine metabolism is mediated for over 95% by the CYP1A2 isoform of cytochrome P450. Therefore, CYP1A2 activity is most conveniently measured through the determination of caffeine clearance. The HPLC quantification of caffeine is fully validated and is the most widely used method. It can be performed on saliva, which is gaining importance as a diagnostic biofluid and permits easy and low invasive sampling. Here, we present a quantitative (1)H nuclear magnetic resonance (NMR) method to determine caffeine in human saliva. The procedure is simple because it involves only an ultra-filtration step and a direct extraction in a deuterated solvent, yielding a matrix that is then analyzed. The reliability of this NMR method was demonstrated in terms of linearity, accuracy, recovery, and limits of detection (LoD). Good precision (relative standard deviation, RSD 95% and LoD of 6.8·10(-7) mol L(-1) were obtained. The method was applied to samples collected from different volunteers over 24h following a single oral dose of about 100mg of caffeine administered with either coffee beverage or a capsule. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Image cytometry: nuclear and chromosomal DNA quantification.

    Science.gov (United States)

    Carvalho, Carlos Roberto; Clarindo, Wellington Ronildo; Abreu, Isabella Santiago

    2011-01-01

    Image cytometry (ICM) associates microscopy, digital image and software technologies, and has been particularly useful in spatial and densitometric cytological analyses, such as DNA ploidy and DNA content measurements. Basically, ICM integrates methodologies of optical microscopy calibration, standard density filters, digital CCD camera, and image analysis softwares for quantitative applications. Apart from all system calibration and setup, cytological protocols must provide good slide preparations for efficient and reliable ICM analysis. In this chapter, procedures for ICM applications employed in our laboratory are described. Protocols shown here for human DNA ploidy determination and quantification of nuclear and chromosomal DNA content in plants could be used as described, or adapted for other studies.

  5. Analytical method development and validation for quantification of uranium in compounds of the nuclear fuel cycle by Fourier Transform Infrared (FTIR) Spectroscopy

    International Nuclear Information System (INIS)

    Pereira, Elaine

    2016-01-01

    This work presents a low cost, simple and new methodology for direct quantification of uranium in compounds of the nuclear fuel cycle, based on Fourier Transform Infrared (FTIR) spectroscopy using KBr pressed discs technique. Uranium in different matrices were used to development and validation: UO 2 (NO 3 )2.2TBP complex (TBP uranyl nitrate complex) in organic phase and uranyl nitrate (UO 2 (NO 3 ) 2 ) in aqueous phase. The parameters used in the validation process were: linearity, selectivity, accuracy, limits of detection (LD) and quantitation (LQ), precision (repeatability and intermediate precision) and robustness. The method for uranium in organic phase (UO 2 (NO 3 )2.2TBP complex in hexane/embedded in KBr) was linear (r = 0.9980) over the range of 0.20% 2.85% U/ KBr disc, LD 0.02% and LQ 0.03%, accurate (recoveries were over 101.0%), robust and precise (RSD < 1.6%). The method for uranium aqueous phase (UO 2 (NO 3 ) 2 /embedded in KBr) was linear (r = 0.9900) over the range of 0.14% 1.29% U/KBr disc, LD 0.01% and LQ 0.02%, accurate (recoveries were over 99.4%), robust and precise (RSD < 1.6%). Some process samples were analyzed in FTIR and compared with gravimetric and X-ray fluorescence (XRF) analyses showing similar results in all three methods. The statistical tests (t-Student and Fischer) showed that the techniques are equivalent. The validated method can be successfully employed for routine quality control analysis for nuclear compounds. (author)

  6. Nuclear and mitochondrial DNA quantification of various forensic materials.

    Science.gov (United States)

    Andréasson, H; Nilsson, M; Budowle, B; Lundberg, H; Allen, M

    2006-12-01

    Due to the different types and quality of forensic evidence materials, their DNA content can vary substantially, and particularly low quantities can impact the results in an identification analysis. In this study, the quantity of mitochondrial and nuclear DNA was determined in a variety of materials using a previously described real-time PCR method. DNA quantification in the roots and distal sections of plucked and shed head hairs revealed large variations in DNA content particularly between the root and the shaft of plucked hairs. Also large intra- and inter-individual variations were found among hairs. In addition, DNA content was estimated in samples collected from fingerprints and accessories. The quantification of DNA on various items also displayed large variations, with some materials containing large amounts of nuclear DNA while no detectable nuclear DNA and only limited amounts of mitochondrial DNA were seen in others. Using this sensitive real-time PCR quantification assay, a better understanding was obtained regarding DNA content and variation in commonly analysed forensic evidence materials and this may guide the forensic scientist as to the best molecular biology approach for analysing various forensic evidence materials.

  7. Quantification practices in the nuclear industry

    International Nuclear Information System (INIS)

    1986-01-01

    In this chapter the quantification of risk practices adopted by the nuclear industries in Germany, Britain and France are examined as representative of the practices adopted throughout Europe. From this examination a number of conclusions are drawn about the common features of the practices adopted. In making this survey, the views expressed in the report of the Task Force on Safety Goals/Objectives appointed by the Commission of the European Communities, are taken into account. For each country considered, the legal requirements for presentation of quantified risk assessment as part of the licensing procedure are examined, and the way in which the requirements have been developed for practical application are then examined. (author)

  8. Comparison of five DNA quantification methods

    DEFF Research Database (Denmark)

    Nielsen, Karsten; Mogensen, Helle Smidt; Hedman, Johannes

    2008-01-01

    Six commercial preparations of human genomic DNA were quantified using five quantification methods: UV spectrometry, SYBR-Green dye staining, slot blot hybridization with the probe D17Z1, Quantifiler Human DNA Quantification kit and RB1 rt-PCR. All methods measured higher DNA concentrations than...... Quantification kit in two experiments. The measured DNA concentrations with Quantifiler were 125 and 160% higher than expected based on the manufacturers' information. When the Quantifiler human DNA standard (Raji cell line) was replaced by the commercial human DNA preparation G147A (Promega) to generate the DNA...... standard curve in the Quantifiler Human DNA Quantification kit, the DNA quantification results of the human DNA preparations were 31% higher than expected based on the manufacturers' information. The results indicate a calibration problem with the Quantifiler human DNA standard for its use...

  9. Multiscale Modeling and Uncertainty Quantification for Nuclear Fuel Performance

    Energy Technology Data Exchange (ETDEWEB)

    Estep, Donald [Colorado State Univ., Fort Collins, CO (United States); El-Azab, Anter [Florida State Univ., Tallahassee, FL (United States); Pernice, Michael [Idaho National Lab. (INL), Idaho Falls, ID (United States); Peterson, John W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Polyakov, Peter [Univ. of Wyoming, Laramie, WY (United States); Tavener, Simon [Colorado State Univ., Fort Collins, CO (United States); Xiu, Dongbin [Purdue Univ., West Lafayette, IN (United States); Univ. of Utah, Salt Lake City, UT (United States)

    2017-03-23

    In this project, we will address the challenges associated with constructing high fidelity multiscale models of nuclear fuel performance. We (*) propose a novel approach for coupling mesoscale and macroscale models, (*) devise efficient numerical methods for simulating the coupled system, and (*) devise and analyze effective numerical approaches for error and uncertainty quantification for the coupled multiscale system. As an integral part of the project, we will carry out analysis of the effects of upscaling and downscaling, investigate efficient methods for stochastic sensitivity analysis of the individual macroscale and mesoscale models, and carry out a posteriori error analysis for computed results. We will pursue development and implementation of solutions in software used at Idaho National Laboratories on models of interest to the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program.

  10. Dimensionality reduction for uncertainty quantification of nuclear engineering models.

    Energy Technology Data Exchange (ETDEWEB)

    Roderick, O.; Wang, Z.; Anitescu, M. (Mathematics and Computer Science)

    2011-01-01

    The task of uncertainty quantification consists of relating the available information on uncertainties in the model setup to the resulting variation in the outputs of the model. Uncertainty quantification plays an important role in complex simulation models of nuclear engineering, where better understanding of uncertainty results in greater confidence in the model and in the improved safety and efficiency of engineering projects. In our previous work, we have shown that the effect of uncertainty can be approximated by polynomial regression with derivatives (PRD): a hybrid regression method that uses first-order derivatives of the model output as additional fitting conditions for a polynomial expansion. Numerical experiments have demonstrated the advantage of this approach over classical methods of uncertainty analysis: in precision, computational efficiency, or both. To obtain derivatives, we used automatic differentiation (AD) on the simulation code; hand-coded derivatives are acceptable for simpler models. We now present improvements on the method. We use a tuned version of the method of snapshots, a technique based on proper orthogonal decomposition (POD), to set up the reduced order representation of essential information on uncertainty in the model inputs. The automatically obtained sensitivity information is required to set up the method. Dimensionality reduction in combination with PRD allows analysis on a larger dimension of the uncertainty space (>100), at modest computational cost.

  11. Quantification of aquifer properties with surface nuclear magnetic resonance in the Platte River valley, central Nebraska, using a novel inversion method

    Science.gov (United States)

    Irons, Trevor P.; Hobza, Christopher M.; Steele, Gregory V.; Abraham, Jared D.; Cannia, James C.; Woodward, Duane D.

    2012-01-01

    Surface nuclear magnetic resonance, a noninvasive geophysical method, measures a signal directly related to the amount of water in the subsurface. This allows for low-cost quantitative estimates of hydraulic parameters. In practice, however, additional factors influence the signal, complicating interpretation. The U.S. Geological Survey, in cooperation with the Central Platte Natural Resources District, evaluated whether hydraulic parameters derived from surface nuclear magnetic resonance data could provide valuable input into groundwater models used for evaluating water-management practices. Two calibration sites in Dawson County, Nebraska, were chosen based on previous detailed hydrogeologic and geophysical investigations. At both sites, surface nuclear magnetic resonance data were collected, and derived parameters were compared with results from four constant-discharge aquifer tests previously conducted at those same sites. Additionally, borehole electromagnetic-induction flowmeter data were analyzed as a less-expensive surrogate for traditional aquifer tests. Building on recent work, a novel surface nuclear magnetic resonance modeling and inversion method was developed that incorporates electrical conductivity and effects due to magnetic-field inhomogeneities, both of which can have a substantial impact on the data. After comparing surface nuclear magnetic resonance inversions at the two calibration sites, the nuclear magnetic-resonance-derived parameters were compared with previously performed aquifer tests in the Central Platte Natural Resources District. This comparison served as a blind test for the developed method. The nuclear magnetic-resonance-derived aquifer parameters were in agreement with results of aquifer tests where the environmental noise allowed data collection and the aquifer test zones overlapped with the surface nuclear magnetic resonance testing. In some cases, the previously performed aquifer tests were not designed fully to characterize

  12. Accuracy and Precision of Radioactivity Quantification in Nuclear Medicine Images

    Science.gov (United States)

    Frey, Eric C.; Humm, John L.; Ljungberg, Michael

    2012-01-01

    The ability to reliably quantify activity in nuclear medicine has a number of increasingly important applications. Dosimetry for targeted therapy treatment planning or for approval of new imaging agents requires accurate estimation of the activity in organs, tumors, or voxels at several imaging time points. Another important application is the use of quantitative metrics derived from images, such as the standard uptake value commonly used in positron emission tomography (PET), to diagnose and follow treatment of tumors. These measures require quantification of organ or tumor activities in nuclear medicine images. However, there are a number of physical, patient, and technical factors that limit the quantitative reliability of nuclear medicine images. There have been a large number of improvements in instrumentation, including the development of hybrid single-photon emission computed tomography/computed tomography and PET/computed tomography systems, and reconstruction methods, including the use of statistical iterative reconstruction methods, which have substantially improved the ability to obtain reliable quantitative information from planar, single-photon emission computed tomography, and PET images. PMID:22475429

  13. Model Uncertainty Quantification Methods In Data Assimilation

    Science.gov (United States)

    Pathiraja, S. D.; Marshall, L. A.; Sharma, A.; Moradkhani, H.

    2017-12-01

    Data Assimilation involves utilising observations to improve model predictions in a seamless and statistically optimal fashion. Its applications are wide-ranging; from improving weather forecasts to tracking targets such as in the Apollo 11 mission. The use of Data Assimilation methods in high dimensional complex geophysical systems is an active area of research, where there exists many opportunities to enhance existing methodologies. One of the central challenges is in model uncertainty quantification; the outcome of any Data Assimilation study is strongly dependent on the uncertainties assigned to both observations and models. I focus on developing improved model uncertainty quantification methods that are applicable to challenging real world scenarios. These include developing methods for cases where the system states are only partially observed, where there is little prior knowledge of the model errors, and where the model error statistics are likely to be highly non-Gaussian.

  14. Quantification of ion or atom transfer phenomena in materials implanted by nuclear methods; Quantification de phenomenes de transferts ioniques ou atomiques dans des materiaux implantes par la mise en oeuvre de methodes nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Oudadesse, Hassane [Clermont-Ferrand-2 Univ., 63 - Aubiere (France)

    1998-05-18

    Knowledge of transfer of the constituents of a system from regions of higher to lower concentration is of interest for implanted bio-materials. It allows determining the rate at which this material is integrated in a living material. To evaluate the ossification kinetics and to study the bio-functionality in corals of Ca and Sr, irradiations with a 10{sup 13} n.cm{sup -2}.s{sup -1} was performed, followed by the examination of changes in the localization of these elements. By using PIXE analysis method the distribution of Ca, P, Sr, Zn and Fe in the implant, bone and bone-implant interfaces were determined. Thus, it was shown that resorption of coral in sheep is achieved in 5 months after implantation and is identical to the cortical tissues 4 months after implantation in animals as for instance in hares. We have analyzed the tissues from around the prostheses extracted from patients. The samples were calcined and reduced to powder weighting some milligrams. We have adopted for this study the PIXE analysis method. The samples were irradiated by a proton beam of 3 MeV and about 400 {mu}m diameter. The results show the presence of the elements Ti, Fe, Cr, Ni or Zn according to the type of the implanted prosthesis. This dispersal of the metallic ions and atoms contaminate the tissues. The transfer factors translate the exchanges between bone and the implanted material. The solvatation phenomenon and the electric charge equilibrium explain the transfer order of cations Mg{sup 2+}, Ca{sup 2+} and Sr{sup 2+} and of the anion PO{sub 4}{sup 3-}. We have also determined these factors for the elements Ti, Cr and Ni. An original technique to study the bone bio-functionality was used. Use of phosphate derivatives labelled by {sup 99m}Tc allows obtaining information about the fixation of radioactive tracer. It was found that only after the eighth month at the implantation the neo-formed bone fixes the MDP (methyl diphosphate) labelled by {sup 99m}Tc in a similar way as in the

  15. Uncertainty Quantification for Safety Verification Applications in Nuclear Power Plants

    Science.gov (United States)

    Boafo, Emmanuel

    There is an increasing interest in computational reactor safety analysis to systematically replace the conservative calculations by best estimate calculations augmented by quantitative uncertainty analysis methods. This has been necessitated by recent regulatory requirements that have permitted the use of such methods in reactor safety analysis. Stochastic uncertainty quantification methods have shown great promise, as they are better suited to capture the complexities in real engineering problems. This study proposes a framework for performing uncertainty quantification based on the stochastic approach, which can be applied to enhance safety analysis. (Abstract shortened by ProQuest.).

  16. Quantification of Squalene in Olive Oil Using 13C Nuclear Magnetic Resonance Spectroscopy

    Directory of Open Access Journals (Sweden)

    Anne-Marie Nam

    2017-11-01

    Full Text Available In the course of our ongoing work on the chemical characterization of Corsican olive oil, we have developed and validated a method for direct quantification of squalene using 13C Nuclear Magnetic Resonance (NMR spectroscopy without saponification, extraction, or fractionation of the investigated samples. Good accuracy, linearity, and precision of the measurements have been observed. The experimental procedure was applied to the quantification of squalene in 24 olive oil samples from Corsica. Squalene accounted for 0.35–0.83% of the whole composition.

  17. Nuclear methods monitor nutrition

    International Nuclear Information System (INIS)

    Allen, B.J.

    1988-01-01

    Neutron activation of nitrogen and hydrogen in the body, the isotope dilution technique and the measurement of naturally radioactive potassium in the body are among the new nuclear methods, now under collaborative development by the Australian Nuclear Scientific and Technology Organization and medical specialists from several Sydney hospitals. These methods allow medical specialists to monitor the patient's response to various diets and dietary treatments in cases of cystic fibrosis, anorexia nervosa, long-term surgical trauma, renal diseases and AIDS. ills

  18. Standardless quantification methods in electron probe microanalysis

    Energy Technology Data Exchange (ETDEWEB)

    Trincavelli, Jorge, E-mail: trincavelli@famaf.unc.edu.ar [Facultad de Matemática, Astronomía y Física, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba (Argentina); Instituto de Física Enrique Gaviola, Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina, Medina Allende s/n, Ciudad Universitaria, 5000 Córdoba (Argentina); Limandri, Silvina, E-mail: s.limandri@conicet.gov.ar [Facultad de Matemática, Astronomía y Física, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba (Argentina); Instituto de Física Enrique Gaviola, Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina, Medina Allende s/n, Ciudad Universitaria, 5000 Córdoba (Argentina); Bonetto, Rita, E-mail: bonetto@quimica.unlp.edu.ar [Centro de Investigación y Desarrollo en Ciencias Aplicadas Dr. Jorge Ronco, Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina, Facultad de Ciencias Exactas, de la Universidad Nacional de La Plata, Calle 47 N° 257, 1900 La Plata (Argentina)

    2014-11-01

    The elemental composition of a solid sample can be determined by electron probe microanalysis with or without the use of standards. The standardless algorithms are quite faster than the methods that require standards; they are useful when a suitable set of standards is not available or for rough samples, and also they help to solve the problem of current variation, for example, in equipments with cold field emission gun. Due to significant advances in the accuracy achieved during the last years, product of the successive efforts made to improve the description of generation, absorption and detection of X-rays, the standardless methods have increasingly become an interesting option for the user. Nevertheless, up to now, algorithms that use standards are still more precise than standardless methods. It is important to remark, that care must be taken with results provided by standardless methods that normalize the calculated concentration values to 100%, unless an estimate of the errors is reported. In this work, a comprehensive discussion of the key features of the main standardless quantification methods, as well as the level of accuracy achieved by them is presented. - Highlights: • Standardless methods are a good alternative when no suitable standards are available. • Their accuracy reaches 10% for 95% of the analyses when traces are excluded. • Some of them are suitable for the analysis of rough samples.

  19. Accurate quantification of mouse mitochondrial DNA without co-amplification of nuclear mitochondrial insertion sequences.

    Science.gov (United States)

    Malik, Afshan N; Czajka, Anna; Cunningham, Phil

    2016-07-01

    Mitochondria contain an extra-nuclear genome in the form of mitochondrial DNA (MtDNA), damage to which can lead to inflammation and bioenergetic deficit. Changes in MtDNA levels are increasingly used as a biomarker of mitochondrial dysfunction. We previously reported that in humans, fragments in the nuclear genome known as nuclear mitochondrial insertion sequences (NumtS) affect accurate quantification of MtDNA. In the current paper our aim was to determine whether mouse NumtS affect the quantification of MtDNA and to establish a method designed to avoid this. The existence of NumtS in the mouse genome was confirmed using blast N, unique MtDNA regions were identified using FASTA, and MtDNA primers which do not co-amplify NumtS were designed and tested. MtDNA copy numbers were determined in a range of mouse tissues as the ratio of the mitochondrial and nuclear genome using real time qPCR and absolute quantification. Approximately 95% of mouse MtDNA was duplicated in the nuclear genome as NumtS which were located in 15 out of 21 chromosomes. A unique region was identified and primers flanking this region were used. MtDNA levels differed significantly in mouse tissues being the highest in the heart, with levels in descending order (highest to lowest) in kidney, liver, blood, brain, islets and lung. The presence of NumtS in the nuclear genome of mouse could lead to erroneous data when studying MtDNA content or mutation. The unique primers described here will allow accurate quantification of MtDNA content in mouse models without co-amplification of NumtS. Copyright © 2016 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  20. Rapid and novel discrimination and quantification of oleanolic and ursolic acids in complex plant extracts using two-dimensional nuclear magnetic resonance spectroscopy-Comparison with HPLC methods

    International Nuclear Information System (INIS)

    Kontogianni, Vassiliki G.; Exarchou, Vassiliki; Troganis, Anastassios; Gerothanassis, Ioannis P.

    2009-01-01

    A novel strategy for NMR analysis of mixtures of oleanolic and ursolic acids that occur in natural products is described. These important phytochemicals have similar structure and their discrimination and quantification is rather difficult. We report herein the combined use of proton-carbon heteronuclear single-quantum coherence ( 1 H- 13 C HSQC) and proton-carbon heteronuclear multiple-bond correlation ( 1 H- 13 C HMBC) NMR spectroscopy, in the identification and quantitation of oleanolic acid (OA) and ursolic acid (UA)in plant extracts of the Lamiaceae and Oleaceae family. The combination of 1 H- 13 C HSQC and 1 H- 13 C HMBC techniques allows the connection of the proton and carbon-13 spins across the molecular backbone resulting in the identification and, thus, discrimination of oleanolic and ursolic acid without resorting to physicochemical separation of the components. The quantitative results provided by 2D 1 H- 13 C HSQC NMR data were obtained within a short period of time (∼14 min) and are in excellent agreement with those obtained by HPLC, which support the efficiency of the suggested methodology

  1. Rapid and novel discrimination and quantification of oleanolic and ursolic acids in complex plant extracts using two-dimensional nuclear magnetic resonance spectroscopy-Comparison with HPLC methods

    Energy Technology Data Exchange (ETDEWEB)

    Kontogianni, Vassiliki G. [Section of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, Ioannina GR-45110 (Greece); Exarchou, Vassiliki [NMR Center, University of Ioannina, Ioannina GR-45110 (Greece); Troganis, Anastassios [Department of Biological Applications and Technology, University of Ioannina, Ioannina GR-45110 (Greece); Gerothanassis, Ioannis P. [Section of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, Ioannina GR-45110 (Greece)], E-mail: igeroth@cc.uoi.gr

    2009-03-09

    A novel strategy for NMR analysis of mixtures of oleanolic and ursolic acids that occur in natural products is described. These important phytochemicals have similar structure and their discrimination and quantification is rather difficult. We report herein the combined use of proton-carbon heteronuclear single-quantum coherence ({sup 1}H-{sup 13}C HSQC) and proton-carbon heteronuclear multiple-bond correlation ({sup 1}H-{sup 13}C HMBC) NMR spectroscopy, in the identification and quantitation of oleanolic acid (OA) and ursolic acid (UA)in plant extracts of the Lamiaceae and Oleaceae family. The combination of {sup 1}H-{sup 13}C HSQC and {sup 1}H-{sup 13}C HMBC techniques allows the connection of the proton and carbon-13 spins across the molecular backbone resulting in the identification and, thus, discrimination of oleanolic and ursolic acid without resorting to physicochemical separation of the components. The quantitative results provided by 2D {sup 1}H-{sup 13}C HSQC NMR data were obtained within a short period of time ({approx}14 min) and are in excellent agreement with those obtained by HPLC, which support the efficiency of the suggested methodology.

  2. Sampling-based nuclear data uncertainty quantification for continuous energy Monte-Carlo codes

    International Nuclear Information System (INIS)

    Zhu, T.

    2015-01-01

    Research on the uncertainty of nuclear data is motivated by practical necessity. Nuclear data uncertainties can propagate through nuclear system simulations into operation and safety related parameters. The tolerance for uncertainties in nuclear reactor design and operation can affect the economic efficiency of nuclear power, and essentially its sustainability. The goal of the present PhD research is to establish a methodology of nuclear data uncertainty quantification (NDUQ) for MCNPX, the continuous-energy Monte-Carlo (M-C) code. The high fidelity (continuous-energy treatment and flexible geometry modelling) of MCNPX makes it the choice of routine criticality safety calculations at PSI/LRS, but also raises challenges for NDUQ by conventional sensitivity/uncertainty (S/U) methods. For example, only recently in 2011, the capability of calculating continuous energy κ eff sensitivity to nuclear data was demonstrated in certain M-C codes by using the method of iterated fission probability. The methodology developed during this PhD research is fundamentally different from the conventional S/U approach: nuclear data are treated as random variables and sampled in accordance to presumed probability distributions. When sampled nuclear data are used in repeated model calculations, the output variance is attributed to the collective uncertainties of nuclear data. The NUSS (Nuclear data Uncertainty Stochastic Sampling) tool is based on this sampling approach and implemented to work with MCNPX’s ACE format of nuclear data, which also gives NUSS compatibility with MCNP and SERPENT M-C codes. In contrast, multigroup uncertainties are used for the sampling of ACE-formatted pointwise-energy nuclear data in a groupwise manner due to the more limited quantity and quality of nuclear data uncertainties. Conveniently, the usage of multigroup nuclear data uncertainties allows consistent comparison between NUSS and other methods (both S/U and sampling-based) that employ the same

  3. Comparative analysis of experimental methods for quantification of small amounts of oil in water

    DEFF Research Database (Denmark)

    Katika, Konstantina; Ahkami, Mehrdad; Fosbøl, Philip Loldrup

    2016-01-01

    ) and the quantification of oil is then difficult. In this study, we compare four approaches to determine the volume of the collected oil fraction in core flooding effluents. The four methods are: Image analysis, UV/visible spectroscopy, liquid scintillation counting, and low-field nuclear magnetic resonance (NMR......) spectrometry. The procedure followed to determine the oil fraction and a summary of advantages and disadvantages of each method are given. Our results show that all four methods are reproducible with high accuracy. The NMR method was capable of direct quantification of both oil and water fractions, without...

  4. Interactive image quantification tools in nuclear material forensics

    Energy Technology Data Exchange (ETDEWEB)

    Porter, Reid B [Los Alamos National Laboratory; Ruggiero, Christy [Los Alamos National Laboratory; Hush, Don [Los Alamos National Laboratory; Harvey, Neal [Los Alamos National Laboratory; Kelly, Pat [Los Alamos National Laboratory; Scoggins, Wayne [Los Alamos National Laboratory; Tandon, Lav [Los Alamos National Laboratory

    2011-01-03

    Morphological and microstructural features visible in microscopy images of nuclear materials can give information about the processing history of a nuclear material. Extraction of these attributes currently requires a subject matter expert in both microscopy and nuclear material production processes, and is a time consuming, and at least partially manual task, often involving multiple software applications. One of the primary goals of computer vision is to find ways to extract and encode domain knowledge associated with imagery so that parts of this process can be automated. In this paper we describe a user-in-the-loop approach to the problem which attempts to both improve the efficiency of domain experts during image quantification as well as capture their domain knowledge over time. This is accomplished through a sophisticated user-monitoring system that accumulates user-computer interactions as users exploit their imagery. We provide a detailed discussion of the interactive feature extraction and segmentation tools we have developed and describe our initial results in exploiting the recorded user-computer interactions to improve user productivity over time.

  5. Application of Fuzzy Comprehensive Evaluation Method in Trust Quantification

    Directory of Open Access Journals (Sweden)

    Shunan Ma

    2011-10-01

    Full Text Available Trust can play an important role for the sharing of resources and information in open network environments. Trust quantification is thus an important issue in dynamic trust management. By considering the fuzziness and uncertainty of trust, in this paper, we propose a fuzzy comprehensive evaluation method to quantify trust along with a trust quantification algorithm. Simulation results show that the trust quantification algorithm that we propose can effectively quantify trust and the quantified value of an entity's trust is consistent with the behavior of the entity.

  6. A quick colorimetric method for total lipid quantification in microalgae.

    Science.gov (United States)

    Byreddy, Avinesh R; Gupta, Adarsha; Barrow, Colin J; Puri, Munish

    2016-06-01

    Discovering microalgae with high lipid productivity are among the key milestones for achieving sustainable biodiesel production. Current methods of lipid quantification are time intensive and costly. A rapid colorimetric method based on sulfo-phospho-vanillin (SPV) reaction was developed for the quantification of microbial lipids to facilitate screening for lipid producing microalgae. This method was successfully tested on marine thraustochytrid strains and vegetable oils. The colorimetric method results correlated well with gravimetric method estimates. The new method was less time consuming than gravimetric analysis and is quantitative for lipid determination, even in the presence of carbohydrates, proteins and glycerol. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Comparison of Calibration of Sensors Used for the Quantification of Nuclear Energy Rate Deposition

    International Nuclear Information System (INIS)

    Brun, J.; Reynard-Carette, C.; Tarchalski, M.; Pytel, K.; Lyoussi, A.; Fourmentel, D.; Villard, J.F.; Jagielski, J.

    2015-01-01

    This present work deals with a collaborative program called GAMMA-MAJOR 'Development and qualification of a deterministic scheme for the evaluation of GAMMA heating in MTR reactors with exploitation as example MARIA reactor and Jules Horowitz Reactor' between the National Centre for Nuclear Research of Poland, the French Atomic Energy and Alternative Energies Commission and Aix Marseille University. One of main objectives of this program is to optimize the nuclear heating quantification thanks to calculation validated from experimental measurements of radiation energy deposition carried out in irradiation reactors. The quantification of the nuclear heating is a key data especially for the thermal, mechanical design and sizing of irradiation experimental devices in specific irradiated conditions and locations. The determination of this data is usually performed by differential calorimeters and gamma thermometers such as used in the experimental multi-sensors device called CARMEN 'Calorimetric en Reacteur et Mesures des Emissions Nucleaires'. In the framework of the GAMMA-MAJOR program a new calorimeter was designed for the nuclear energy deposition quantification. It corresponds to a single-cell calorimeter and it is called KAROLINA. This calorimeter was recently tested during an irradiation campaign inside MARIA reactor in Poland. This new single-cell calorimeter differs from previous CALMOS or CARMEN type differential calorimeters according to three main points: its geometry, its preliminary out-of-pile calibration, and its in-pile measurement method. The differential calorimeter, which is made of two identical cells containing heaters, has a calibration method based on the use of steady thermal states reached by simulating the nuclear energy deposition into the calorimeter sample by Joule effect; whereas the single-cell calorimeter, which has no heater, is calibrated by using the transient thermal response of the sensor (heating and cooling

  8. Comparison of Calibration of Sensors Used for the Quantification of Nuclear Energy Rate Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Brun, J.; Reynard-Carette, C. [Aix Marseille Universite, CNRS, Universite de Toulon, IM2NP UMR 7334, 13397, Marseille (France); Tarchalski, M.; Pytel, K. [National Centre for Nuclear Research A. Soltana 7, 05-400 Swierk (Poland); Lyoussi, A.; Fourmentel, D.; Villard, J.F. [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St-Paul-Lez-Durance (France); Jagielski, J. [National Centre for Nuclear Research A. Soltana 7, 05-400 Swierk (Poland); Institute of Electronic Materials Technolgy, Wolczynska 133, 01-919 Warszawa (Poland)

    2015-07-01

    This present work deals with a collaborative program called GAMMA-MAJOR 'Development and qualification of a deterministic scheme for the evaluation of GAMMA heating in MTR reactors with exploitation as example MARIA reactor and Jules Horowitz Reactor' between the National Centre for Nuclear Research of Poland, the French Atomic Energy and Alternative Energies Commission and Aix Marseille University. One of main objectives of this program is to optimize the nuclear heating quantification thanks to calculation validated from experimental measurements of radiation energy deposition carried out in irradiation reactors. The quantification of the nuclear heating is a key data especially for the thermal, mechanical design and sizing of irradiation experimental devices in specific irradiated conditions and locations. The determination of this data is usually performed by differential calorimeters and gamma thermometers such as used in the experimental multi-sensors device called CARMEN 'Calorimetric en Reacteur et Mesures des Emissions Nucleaires'. In the framework of the GAMMA-MAJOR program a new calorimeter was designed for the nuclear energy deposition quantification. It corresponds to a single-cell calorimeter and it is called KAROLINA. This calorimeter was recently tested during an irradiation campaign inside MARIA reactor in Poland. This new single-cell calorimeter differs from previous CALMOS or CARMEN type differential calorimeters according to three main points: its geometry, its preliminary out-of-pile calibration, and its in-pile measurement method. The differential calorimeter, which is made of two identical cells containing heaters, has a calibration method based on the use of steady thermal states reached by simulating the nuclear energy deposition into the calorimeter sample by Joule effect; whereas the single-cell calorimeter, which has no heater, is calibrated by using the transient thermal response of the sensor (heating and cooling

  9. The Method of Manufactured Universes for validating uncertainty quantification methods

    KAUST Repository

    Stripling, H.F.

    2011-09-01

    The Method of Manufactured Universes is presented as a validation framework for uncertainty quantification (UQ) methodologies and as a tool for exploring the effects of statistical and modeling assumptions embedded in these methods. The framework calls for a manufactured reality from which experimental data are created (possibly with experimental error), an imperfect model (with uncertain inputs) from which simulation results are created (possibly with numerical error), the application of a system for quantifying uncertainties in model predictions, and an assessment of how accurately those uncertainties are quantified. The application presented in this paper manufactures a particle-transport universe, models it using diffusion theory with uncertain material parameters, and applies both Gaussian process and Bayesian MARS algorithms to make quantitative predictions about new experiments within the manufactured reality. The results of this preliminary study indicate that, even in a simple problem, the improper application of a specific UQ method or unrealized effects of a modeling assumption may produce inaccurate predictions. We conclude that the validation framework presented in this paper is a powerful and flexible tool for the investigation and understanding of UQ methodologies. © 2011 Elsevier Ltd. All rights reserved.

  10. SPECT quantification: a review of the different correction methods with compton scatter, attenuation and spatial deterioration effects

    International Nuclear Information System (INIS)

    Groiselle, C.; Rocchisani, J.M.; Moretti, J.L.; Dreuille, O. de; Gaillard, J.F.; Bendriem, B.

    1997-01-01

    SPECT quantification: a review of the different correction methods with Compton scatter attenuation and spatial deterioration effects. The improvement of gamma-cameras, acquisition and reconstruction software opens new perspectives in term of image quantification in nuclear medicine. In order to meet the challenge, numerous works have been undertaken in recent years to correct for the different physical phenomena that prevent an exact estimation of the radioactivity distribution. The main phenomena that have to betaken into account are scatter, attenuation and resolution. In this work, authors present the physical basis of each issue, its consequences on quantification and the main methods proposed to correct them. (authors)

  11. Nuclear methods for tribology

    International Nuclear Information System (INIS)

    Racolta, P.M.

    1994-01-01

    The tribological field of activity is mainly concerned with the relative movement of different machine components, friction and wear phenomena and their dependence upon lubrication. Tribological studies on friction and wear processes are important because they lead to significant parameter-improvements of engineering tools and machinery components. A review of fundamental aspects of both friction and wear phenomena is presented. A number of radioindicator-based methods have been known for almost four decades, differing mainly with respect to the mode of introducing the radio-indicators into the machine part to be studied. All these methods briefly presented in this paper are based on the measurement of the activity of wear products and therefore require high activity levels of the part. For this reason, such determinations can be carried out only in special laboratories and under conditions which do not usually agree with the conditions of actual use. What is required is a sensitive, fast method allowing the determination of wear under any operating conditions, without the necessity of stopping and disassembling the machine. The above mentioned requirements are the features that have made the Thin Layer Activation technique (TLA) the most widely used method applied in wear and corrosion studies in the last two decades. The TLA principle, taking in account that wear and corrosion processes are characterised by a loss of material, consists in an ion beam irradiation of a well defined volume of a machine part subjected to wear. The radioactivity level changes can usually be measured by gamma-ray spectroscopy methods. A review of both main TLA fields of application in major laboratories abroad and of those performed at the U-120 cyclotron of I.P.N.E.-Bucharest together with the existing trends to extend other nuclear analytical methods to tribological studies is presented as well. (author). 25 refs., 6 figs., 2 tabs

  12. A novel quantification method for low-density gel dosimeter.

    Science.gov (United States)

    Nedaie, Hasan Ali; Pak, Farideh; Vaezzadeh, Vahid; Eqlimi, Ehsan; Takavar, Abas; Saligheh Rad, Hamid Reza; Mosleh Shirazi, Mohammad Amin; Mirheydari, Mona

    2018-01-01

    Low signal-to-noise ratio (SNR) images of lung-like (low-density [LD]) gel dosimeters, compared to unit-density (UD) gels, necessitate the use of different quantification methods. In this study, a new method is introduced based on noise correction and exponential (NCEXP) fitting. The feasibility of NCEXP method for quantifying dose absorption in LD gels is evaluated. Sensitivity, dose resolution, detectable dynamic range, and correlation of the calibration curve for both UD and LD gel dosimeters are the parameters, which we analyze to investigate the consequences of new method. Results of NCEXP method are compared to maximum likelihood estimation of rician distribution (MLE-R) and variable echo number (VAREC) quantification methods. Dose response of LD gel dosimeter shows wider detectable dynamic range as compared to UD gel. Using NCEXP method for both LD and UD dosimeter gels, a more sensitive calibration curve with a superior dose resolution is obtained. The advantage of new quantification method is more significant for LD dosimeter gel analysis, where SNR decreases as a result of higher absorbed doses (≥10 Gy). Despite the inverse effect of the VAREC method on detectable dose range of UD gel, no specific changes are observed in dynamic dose range of LD gel dosimeter with different quantification methods. The correlations obtained with different methods were approximately of the same order for UD and LD gels. NCEXP method seems to be more effective than the MLE-R and VAREC methods for quantification of LD dosimeter gel, especially where high-dose absorption and steep-dose gradients exist such as those in intensity-modulated radiation therapy and stereotactic radiosurgery.

  13. Methods for external event screening quantification: Risk Methods Integration and Evaluation Program (RMIEP) methods development

    International Nuclear Information System (INIS)

    Ravindra, M.K.; Banon, H.

    1992-07-01

    In this report, the scoping quantification procedures for external events in probabilistic risk assessments of nuclear power plants are described. External event analysis in a PRA has three important goals; (1) the analysis should be complete in that all events are considered; (2) by following some selected screening criteria, the more significant events are identified for detailed analysis; (3) the selected events are analyzed in depth by taking into account the unique features of the events: hazard, fragility of structures and equipment, external-event initiated accident sequences, etc. Based on the above goals, external event analysis may be considered as a three-stage process: Stage I: Identification and Initial Screening of External Events; Stage II: Bounding Analysis; Stage III: Detailed Risk Analysis. In the present report, first, a review of published PRAs is given to focus on the significance and treatment of external events in full-scope PRAs. Except for seismic, flooding, fire, and extreme wind events, the contributions of other external events to plant risk have been found to be negligible. Second, scoping methods for external events not covered in detail in the NRC's PRA Procedures Guide are provided. For this purpose, bounding analyses for transportation accidents, extreme winds and tornadoes, aircraft impacts, turbine missiles, and chemical release are described

  14. Technology Credit Scoring Based on a Quantification Method

    Directory of Open Access Journals (Sweden)

    Yonghan Ju

    2017-06-01

    Full Text Available Credit scoring models are usually formulated by fitting the probability of loan default as a function of individual evaluation attributes. Typically, these attributes are measured using a Likert-type scale, but are treated as interval scale explanatory variables to predict loan defaults. Existing models also do not distinguish between types of default, although they vary: default by an insolvent company and default by an insolvent debtor. This practice can bias the results. In this paper, we applied Quantification Method II, a categorical version of canonical correlation analysis, to determine the relationship between two sets of categorical variables: a set of default types and a set of evaluation attributes. We distinguished between two types of loan default patterns based on quantification scores. In the first set of quantification scores, we found knowledge management, new technology development, and venture registration as important predictors of default from non-default status. Based on the second quantification score, we found that the technology and profitability factors influence loan defaults due to an insolvent company. Finally, we proposed a credit-risk rating model based on the quantification score.

  15. Uncertainty quantification for discrimination of nuclear events as violations of the comprehensive nuclear-test-ban treaty

    International Nuclear Information System (INIS)

    Sloan, Jamison; Sun, Yunwei; Carrigan, Charles

    2016-01-01

    Enforcement of the Comprehensive Nuclear Test Ban Treaty (CTBT) will involve monitoring for radiologic indicators of underground nuclear explosions (UNEs). A UNE produces a variety of radioisotopes which then decay through connected radionuclide chains. A particular species of interest is xenon, namely the four isotopes 131m Xe, 133m Xe, 133 Xe, and 135 Xe. Due to their half lives, some of these isotopes can exist in the subsurface for more than 100 days. This convenient timescale, combined with modern detection capabilities, makes the xenon family a desirable candidate for UNE detection. Ratios of these isotopes as a function of time have been studied in the past for distinguishing nuclear explosions from civilian nuclear applications. However, the initial yields from UNEs have been treated as fixed values. In reality, these independent yields are uncertain to a large degree. This study quantifies the uncertainty in xenon ratios as a result of these uncertain initial conditions to better bound the values that xenon ratios can assume. We have successfully used a combination of analytical and sampling based statistical methods to reliably bound xenon isotopic ratios. We have also conducted a sensitivity analysis and found that xenon isotopic ratios are primarily sensitive to only a few of many uncertain initial conditions. - Highlights: • Analytical solutions of radioxenon radioactivities and their uncertainties from complex chain reactions. • A generalized method for uncertainty quantification for isotopic ratios in user-defined nuclear decay chains. • Global sensitivity analysis for identifying influential independent yields to xenon isotopic ratios. • Probabilistic discrimination of nuclear explosions from civilian applications

  16. Current Stereological Methods and Tools for Simple Quantification ...

    African Journals Online (AJOL)

    Current Stereological Methods and Tools for Simple Quantification of Biological Structure: A short Review. ... are estimated using sampling probe has random position and whenever appropriate, random orientation, recent design-based stereology enjoys the advantage of being unbiased that is without systematic error.

  17. Enhancement of Electroluminescence (EL) image measurements for failure quantification methods

    DEFF Research Database (Denmark)

    Parikh, Harsh; Spataru, Sergiu; Sera, Dezso

    2018-01-01

    Enhanced quality images are necessary for EL image analysis and failure quantification. A method is proposed which determines image quality in terms of more accurate failure detection of solar panels through electroluminescence (EL) imaging technique. The goal of the paper is to determine the most...

  18. Comparison of DNA Quantification Methods for Next Generation Sequencing.

    Science.gov (United States)

    Robin, Jérôme D; Ludlow, Andrew T; LaRanger, Ryan; Wright, Woodring E; Shay, Jerry W

    2016-04-06

    Next Generation Sequencing (NGS) is a powerful tool that depends on loading a precise amount of DNA onto a flowcell. NGS strategies have expanded our ability to investigate genomic phenomena by referencing mutations in cancer and diseases through large-scale genotyping, developing methods to map rare chromatin interactions (4C; 5C and Hi-C) and identifying chromatin features associated with regulatory elements (ChIP-seq, Bis-Seq, ChiA-PET). While many methods are available for DNA library quantification, there is no unambiguous gold standard. Most techniques use PCR to amplify DNA libraries to obtain sufficient quantities for optical density measurement. However, increased PCR cycles can distort the library's heterogeneity and prevent the detection of rare variants. In this analysis, we compared new digital PCR technologies (droplet digital PCR; ddPCR, ddPCR-Tail) with standard methods for the titration of NGS libraries. DdPCR-Tail is comparable to qPCR and fluorometry (QuBit) and allows sensitive quantification by analysis of barcode repartition after sequencing of multiplexed samples. This study provides a direct comparison between quantification methods throughout a complete sequencing experiment and provides the impetus to use ddPCR-based quantification for improvement of NGS quality.

  19. Nuclear Magnetic Resonance: new applications in the quantification and assessment of polysaccharide-based vaccine intermediates

    International Nuclear Information System (INIS)

    Garrido, Raine; Velez, Herman; Verez, Vicente

    2013-01-01

    Nuclear Magnetic Resonance has become the choice for structural studies, identity assays and simultaneous quantification of active pharmaceutical ingredient of different polysaccharide-based vaccine. In the last two decades, the application of quantitative Nuclear Magnetic Resonance had an increasing impact to support several quantification necessities. The technique involves experiments with several modified parameters in order to obtain spectra with quantifiable signals. The present review is supported by some recent relevant reports and it discusses several applications of NMR in carbohydrate-based vaccines. Moreover, it emphasizes and describes several parameters and applications of quantitative Nuclear Magnetic Resonance

  20. Nuclear methods in environmental and energy research

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, J. R. [ed.

    1977-01-01

    The topics considered in the seven sessions were nuclear methods in atmospheric research; nuclear and atomic methodology; nuclear methods in tracer applications; energy exploration, production, and utilization; nuclear methods in environmental monitoring; nuclear methods in water research; and nuclear methods in biological research. Individual abstracts were prepared for each paper. (JSR)

  1. Spectrophotometric method for quantification of soil microbial ...

    African Journals Online (AJOL)

    It was found that molecular absorption spectrophotometry was an efficient tool for the determination of soil microbial biomass carbon, allowing replacement of the titrimetric method. There were significant differences in the levels of SMB-C determined spectrophotometrically in relation to those determined by titration.

  2. Analytical Methods for the Quantification of Histamine and Histamine Metabolites.

    Science.gov (United States)

    Bähre, Heike; Kaever, Volkhard

    2017-01-01

    The endogenous metabolite histamine (HA) is synthesized in various mammalian cells but can also be ingested from exogenous sources. It is involved in a plethora of physiological and pathophysiological processes. So far, four different HA receptors (H 1 R-H 4 R) have been described and numerous HAR antagonists have been developed. Contemporary investigations regarding the various roles of HA and its main metabolites have been hampered by the lack of highly specific and sensitive analytic methods for all of these analytes. Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) is the method of choice for identification and sensitive quantification of many low-molecular weight endogenous metabolites. In this chapter, different methodological aspects of HA quantification as well as recommendations for LC-MS/MS methods suitable for analysis of HA and its main metabolites are summarized.

  3. Collaborative framework for PIV uncertainty quantification: comparative assessment of methods

    International Nuclear Information System (INIS)

    Sciacchitano, Andrea; Scarano, Fulvio; Neal, Douglas R; Smith, Barton L; Warner, Scott O; Vlachos, Pavlos P; Wieneke, Bernhard

    2015-01-01

    A posteriori uncertainty quantification of particle image velocimetry (PIV) data is essential to obtain accurate estimates of the uncertainty associated with a given experiment. This is particularly relevant when measurements are used to validate computational models or in design and decision processes. In spite of the importance of the subject, the first PIV uncertainty quantification (PIV-UQ) methods have been developed only in the last three years. The present work is a comparative assessment of four approaches recently proposed in the literature: the uncertainty surface method (Timmins et al 2012), the particle disparity approach (Sciacchitano et al 2013), the peak ratio criterion (Charonko and Vlachos 2013) and the correlation statistics method (Wieneke 2015). The analysis is based upon experiments conducted for this specific purpose, where several measurement techniques are employed simultaneously. The performances of the above approaches are surveyed across different measurement conditions and flow regimes. (paper)

  4. DICOM image quantification secondary capture (DICOM IQSC) integrated with numeric results, regions, and curves: implementation and applications in nuclear medicine

    Science.gov (United States)

    Cao, Xinhua; Xu, Xiaoyin; Voss, Stephan

    2017-03-01

    In this paper, we describe an enhanced DICOM Secondary Capture (SC) that integrates Image Quantification (IQ) results, Regions of Interest (ROIs), and Time Activity Curves (TACs) with screen shots by embedding extra medical imaging information into a standard DICOM header. A software toolkit of DICOM IQSC has been developed to implement the SC-centered information integration of quantitative analysis for routine practice of nuclear medicine. Primary experiments show that the DICOM IQSC method is simple and easy to implement seamlessly integrating post-processing workstations with PACS for archiving and retrieving IQ information. Additional DICOM IQSC applications in routine nuclear medicine and clinic research are also discussed.

  5. Improved Method for PD-Quantification in Power Cables

    DEFF Research Database (Denmark)

    Holbøll, Joachim T.; Villefrance, Rasmus; Henriksen, Mogens

    1999-01-01

    n this paper, a method is described for improved quantification of partial discharges(PD) in power cables. The method is suitable for PD-detection and location systems in the MHz-range, where pulse attenuation and distortion along the cable cannot be neglected. The system transfer function...... was calculated and measured in order to form basis for magnitude calculation after each measurements. --- Limitations and capabilities of the method will be discussed and related to relevant field applications of high frequent PD-measurements. --- Methods for increased signal/noise ratio are easily implemented...

  6. Nuclear methods in environmental and energy research

    International Nuclear Information System (INIS)

    Vogt, J.R.

    1980-01-01

    A total of 75 papers were presented on nuclear methods for analysis of environmental and biological samples. Sessions were devoted to software and mathematical methods; nuclear methods in atmospheric and water research; nuclear and atomic methodology; nuclear methods in biology and medicine; and nuclear methods in energy research

  7. Nuclear methods in environmental and energy research

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, J R [ed.

    1980-01-01

    A total of 75 papers were presented on nuclear methods for analysis of environmental and biological samples. Sessions were devoted to software and mathematical methods; nuclear methods in atmospheric and water research; nuclear and atomic methodology; nuclear methods in biology and medicine; and nuclear methods in energy research.

  8. Indirect methods in nuclear astrophysics

    International Nuclear Information System (INIS)

    Bertulani, C.A.; Shubhchintak; Mukhamedzhanov, A.; Kadyrov, A. S.; Kruppa, A.; Pang, D. Y.

    2016-01-01

    We discuss recent developments in indirect methods used in nuclear astrophysics to determine the capture cross sections and subsequent rates of various stellar burning processes, when it is difficult to perform the corresponding direct measurements. We discuss in brief, the basic concepts of Asymptotic Normalization Coefficients, the Trojan Horse Method, the Coulomb Dissociation Method, (d,p), and charge-exchange reactions. (paper)

  9. OR14-V-Uncertainty-PD2La Uncertainty Quantification for Nuclear Safeguards and Nondestructive Assay Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Nicholson, Andrew D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Croft, Stephen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); McElroy, Robert Dennis [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    The various methods of nondestructive assay (NDA) of special nuclear material (SNM) have applications in nuclear nonproliferation, including detection and identification of illicit SNM at border crossings and quantifying SNM at nuclear facilities for safeguards. No assay method is complete without “error bars,” which provide one way of expressing confidence in the assay result. Consequently, NDA specialists typically provide error bars and also partition total uncertainty into “random” and “systematic” components so that, for example, an error bar can be developed for the total mass estimate in multiple items. Uncertainty Quantification (UQ) for NDA has always been important, but it is recognized that greater rigor is needed and achievable using modern statistical methods.

  10. Nuclear methods in national development

    International Nuclear Information System (INIS)

    1993-01-01

    This volume of the proceedings of the First National Conference on Nuclear Methods held at Kongo Conference Hotel Zaria from 2-4 September 1993, contains the full text of about 30 technical papers and speeches of invited dignitaries presented at the conference. The technical papers are original or review articles containing results and experiences in nuclear and related analytical techniques. Topics treated include neutron generator operation and control, nuclear data, application of nuclear techniques in environment, geochemistry, medicine, biology, agriculture, material science and industries. General topics in nuclear laboratory organization and research experiences were also covered. The papers were fully discussed during the conference and authors were requested to make changes in the manuscripts where necessary. However, they were further edited. The organizing committee wishes to thank all authors for their presentation and cooperation in submitting their manuscripts promptly and the participants for their excellent contribution during the conference

  11. Methods of quantification by means of spectroscopy of nuclear magnetic resonance and gas chromatography of the active principles of Justice pectoralis Jacq. Acanthaceae and Lippia alba (Mill.) N.E.Brownw ex Brit and Wils Verbenaceae

    International Nuclear Information System (INIS)

    Medina Lopez, Ligia de los Angeles

    2008-01-01

    The quality control of the vegetable material, presence and concentration of the active principles of Justice pectoralis and Lippia alba were studied for the use and marketing as herbal products. The method of analysis of the Justice pectoralis and Lippia alba was carried out by means of proton nuclear magnetic resonance spectroscopy and the gas chromatography. Coumarin and essential oils were determinate in the plants extracts. Different samples were collected throughout one year to evaluate the variation of concentration of the active principles of the plant and there was evaluated a method of extraction of solvents [es

  12. Uncertainty quantification for nuclear density functional theory and information content of new measurements

    Energy Technology Data Exchange (ETDEWEB)

    McDonnell, J. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Schunck, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Higdon, D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sarich, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Wild, S. M. [Argonne National Lab. (ANL), Argonne, IL (United States); Nazarewicz, W. [Michigan State Univ., East Lansing, MI (United States); Oak Ridge National Lab., Oak Ridge, TN (United States); Univ. of Warsaw, Warsaw (Poland)

    2015-03-24

    Statistical tools of uncertainty quantification can be used to assess the information content of measured observables with respect to present-day theoretical models, to estimate model errors and thereby improve predictive capability, to extrapolate beyond the regions reached by experiment, and to provide meaningful input to applications and planned measurements. To showcase new opportunities offered by such tools, we make a rigorous analysis of theoretical statistical uncertainties in nuclear density functional theory using Bayesian inference methods. By considering the recent mass measurements from the Canadian Penning Trap at Argonne National Laboratory, we demonstrate how the Bayesian analysis and a direct least-squares optimization, combined with high-performance computing, can be used to assess the information content of the new data with respect to a model based on the Skyrme energy density functional approach. Employing the posterior probability distribution computed with a Gaussian process emulator, we apply the Bayesian framework to propagate theoretical statistical uncertainties in predictions of nuclear masses, two-neutron dripline, and fission barriers. Overall, we find that the new mass measurements do not impose a constraint that is strong enough to lead to significant changes in the model parameters. As a result, the example discussed in this study sets the stage for quantifying and maximizing the impact of new measurements with respect to current modeling and guiding future experimental efforts, thus enhancing the experiment-theory cycle in the scientific method.

  13. Uncertainty quantification for nuclear density functional theory and information content of new measurements.

    Science.gov (United States)

    McDonnell, J D; Schunck, N; Higdon, D; Sarich, J; Wild, S M; Nazarewicz, W

    2015-03-27

    Statistical tools of uncertainty quantification can be used to assess the information content of measured observables with respect to present-day theoretical models, to estimate model errors and thereby improve predictive capability, to extrapolate beyond the regions reached by experiment, and to provide meaningful input to applications and planned measurements. To showcase new opportunities offered by such tools, we make a rigorous analysis of theoretical statistical uncertainties in nuclear density functional theory using Bayesian inference methods. By considering the recent mass measurements from the Canadian Penning Trap at Argonne National Laboratory, we demonstrate how the Bayesian analysis and a direct least-squares optimization, combined with high-performance computing, can be used to assess the information content of the new data with respect to a model based on the Skyrme energy density functional approach. Employing the posterior probability distribution computed with a Gaussian process emulator, we apply the Bayesian framework to propagate theoretical statistical uncertainties in predictions of nuclear masses, two-neutron dripline, and fission barriers. Overall, we find that the new mass measurements do not impose a constraint that is strong enough to lead to significant changes in the model parameters. The example discussed in this study sets the stage for quantifying and maximizing the impact of new measurements with respect to current modeling and guiding future experimental efforts, thus enhancing the experiment-theory cycle in the scientific method.

  14. Nuclear safety and probabilistic methods

    International Nuclear Information System (INIS)

    Tanguy, Pierre

    1976-01-01

    Having first recalled the principles of conventional methodology concerning nuclear safety, the probabilistic approach is defined, as it has been elaborated by Dr Farmer. The basic rules which determined the elaboration of the Rasmussen report as well as the main conclusions of this report are commented. Definition of the evolution prospects - possible and advisable - of the probabilistic method as concerns nuclear safety are defined [fr

  15. HUMAN ERROR QUANTIFICATION USING PERFORMANCE SHAPING FACTORS IN THE SPAR-H METHOD

    Energy Technology Data Exchange (ETDEWEB)

    Harold S. Blackman; David I. Gertman; Ronald L. Boring

    2008-09-01

    This paper describes a cognitively based human reliability analysis (HRA) quantification technique for estimating the human error probabilities (HEPs) associated with operator and crew actions at nuclear power plants. The method described here, Standardized Plant Analysis Risk-Human Reliability Analysis (SPAR-H) method, was developed to aid in characterizing and quantifying human performance at nuclear power plants. The intent was to develop a defensible method that would consider all factors that may influence performance. In the SPAR-H approach, calculation of HEP rates is especially straightforward, starting with pre-defined nominal error rates for cognitive vs. action-oriented tasks, and incorporating performance shaping factor multipliers upon those nominal error rates.

  16. Quantification of effluents in the production of nuclear fuel

    International Nuclear Information System (INIS)

    Sakai, Mayara C.C.B.; Riella, Humberto G.; Carvalho, Elita F.U. de

    2017-01-01

    At the Instituto de Pesquisa Energéticas e Nucleares (IPEN), the Centro de Combustível Nuclear (CCN), Sao Paulo, SP, Brazil, is responsible for manufacturing fuels for the IEA-R1 reactor and, possibly, the multipurpose reactor fuels. In order to meet the demand for both reactors, the CCN developed a new plant. The production process of the fuel generates several types of effluents - containing uranium or not - being solid, liquid and gaseous with varied physical and chemical characteristics. The objective of this work is to follow the nuclear fuel production process and to identify, quantify and characterize the effluents, especially the liquid ones, to later elaborate a plan of management of these and eventually dispose in a responsible way in the environment. (author)

  17. Uncertainty quantification in lattice QCD calculations for nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Beane, Silas R. [Univ. of Washington, Seattle, WA (United States); Detmold, William [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Orginos, Kostas [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Savage, Martin J. [Institute for Nuclear Theory, Seattle, WA (United States)

    2015-02-05

    The numerical technique of Lattice QCD holds the promise of connecting the nuclear forces, nuclei, the spectrum and structure of hadrons, and the properties of matter under extreme conditions with the underlying theory of the strong interactions, quantum chromodynamics. A distinguishing, and thus far unique, feature of this formulation is that all of the associated uncertainties, both statistical and systematic can, in principle, be systematically reduced to any desired precision with sufficient computational and human resources. As a result, we review the sources of uncertainty inherent in Lattice QCD calculations for nuclear physics, and discuss how each is quantified in current efforts.

  18. Quantification methods of emissions in atmosphere; Methodes de quantification des emissions dans l`air

    Energy Technology Data Exchange (ETDEWEB)

    Fontelle, J.P. [Centre Interprofessionnel Technique d`Etudes de la Pollution Atmospherique (CITEPA), 75 - Paris (France)

    1998-07-01

    For the determination of emissions in atmosphere, four methods are usable, each has advantages, disadvantages and limits. the four methods are: the measurement, the accounting, the correlation and the emission factor. (N.C.)

  19. Reliability and discriminatory power of methods for dental plaque quantification

    Directory of Open Access Journals (Sweden)

    Daniela Prócida Raggio

    2010-04-01

    Full Text Available OBJECTIVE: This in situ study evaluated the discriminatory power and reliability of methods of dental plaque quantification and the relationship between visual indices (VI and fluorescence camera (FC to detect plaque. MATERIAL AND METHODS: Six volunteers used palatal appliances with six bovine enamel blocks presenting different stages of plaque accumulation. The presence of plaque with and without disclosing was assessed using VI. Images were obtained with FC and digital camera in both conditions. The area covered by plaque was assessed. Examinations were done by two independent examiners. Data were analyzed by Kruskal-Wallis and Kappa tests to compare different conditions of samples and to assess the inter-examiner reproducibility. RESULTS: Some methods presented adequate reproducibility. The Turesky index and the assessment of area covered by disclosed plaque in the FC images presented the highest discriminatory powers. CONCLUSION: The Turesky index and images with FC with disclosing present good reliability and discriminatory power in quantifying dental plaque.

  20. A nuclear DNA-based species determination and DNA quantification assay for common poultry species.

    Science.gov (United States)

    Ng, J; Satkoski, J; Premasuthan, A; Kanthaswamy, S

    2014-12-01

    DNA testing for food authentication and quality control requires sensitive species-specific quantification of nuclear DNA from complex and unknown biological sources. We have developed a multiplex assay based on TaqMan® real-time quantitative PCR (qPCR) for species-specific detection and quantification of chicken (Gallus gallus), duck (Anas platyrhynchos), and turkey (Meleagris gallopavo) nuclear DNA. The multiplex assay is able to accurately detect very low quantities of species-specific DNA from single or multispecies sample mixtures; its minimum effective quantification range is 5 to 50 pg of starting DNA material. In addition to its use in food fraudulence cases, we have validated the assay using simulated forensic sample conditions to demonstrate its utility in forensic investigations. Despite treatment with potent inhibitors such as hematin and humic acid, and degradation of template DNA by DNase, the assay was still able to robustly detect and quantify DNA from each of the three poultry species in mixed samples. The efficient species determination and accurate DNA quantification will help reduce fraudulent food labeling and facilitate downstream DNA analysis for genetic identification and traceability.

  1. Concentration of bioaerosols in composting plants using different quantification methods.

    Science.gov (United States)

    van Kampen, Vera; Sander, Ingrid; Liebers, Verena; Deckert, Anja; Neumann, Heinz-Dieter; Buxtrup, Martin; Willer, Eckart; Felten, Christian; Jäckel, Udo; Klug, Kerstin; Brüning, Thomas; Raulf, Monika; Bünger, Jürgen

    2014-07-01

    Bioaerosols (organic dusts) containing viable and non-viable microorganisms and their metabolic products can lead to adverse health effects in exposed workers. Standard quantification methods of airborne microorganisms are mainly based on cultivation, which often underestimates the microbial burden. The aim of the study was to determine the microbial load in German composting plants with different, mainly cultivation-independent, methods. Second purpose was to evaluate which working areas are associated with higher or lower bioaerosol concentrations. A total of 124 inhalable dust samples were collected at different workplaces in 31 composting plants. Besides the determination of inhalable dust, particles, and total cell numbers, antigen quantification for moulds (Aspergillus fumigatus, Aspergillus versicolor, Penicillium chrysogenum, and Cladosporium spp.) and mites was performed. Concentrations of β-glucans as well as endotoxin and pyrogenic activities were also measured. The number of colony forming units (cfu) was determined by cultivation of moulds and actinomycetes in 36 additional dust samples. With the exception of particle numbers, concentrations of all determined parameters showed significant correlations (P parameters were measured highest in dusty working areas like next to the shredder and during processing with the exception of Cladosporium antigens that were found in the highest concentrations in the delivery area. The lowest concentrations of dust, particles, antigens, and pyrogenic activity were determined in wheel loader cabins (WLCs), which were equipped with an air filtration system. It was possible to assess the microbial load of air in composting plants with different quantification methods. Since allergic and toxic reactions may be also caused by nonliving microorganisms, cultivation-independent methods may provide additional information about bioaerosol composition. In general, air filtration reduced the bioaerosol exposure shown in WLCs

  2. Statistical methods in nuclear theory

    International Nuclear Information System (INIS)

    Shubin, Yu.N.

    1974-01-01

    The paper outlines statistical methods which are widely used for describing properties of excited states of nuclei and nuclear reactions. It discusses physical assumptions lying at the basis of known distributions between levels (Wigner, Poisson distributions) and of widths of highly excited states (Porter-Thomas distribution, as well as assumptions used in the statistical theory of nuclear reactions and in the fluctuation analysis. The author considers the random matrix method, which consists in replacing the matrix elements of a residual interaction by random variables with a simple statistical distribution. Experimental data are compared with results of calculations using the statistical model. The superfluid nucleus model is considered with regard to superconducting-type pair correlations

  3. Current analytical methods for plant auxin quantification--A review.

    Science.gov (United States)

    Porfírio, Sara; Gomes da Silva, Marco D R; Peixe, Augusto; Cabrita, Maria J; Azadi, Parastoo

    2016-01-01

    Plant hormones, and especially auxins, are low molecular weight compounds highly involved in the control of plant growth and development. Auxins are also broadly used in horticulture, as part of vegetative plant propagation protocols, allowing the cloning of genotypes of interest. Over the years, large efforts have been put in the development of more sensitive and precise methods of analysis and quantification of plant hormone levels in plant tissues. Although analytical techniques have evolved, and new methods have been implemented, sample preparation is still the limiting step of auxin analysis. In this review, the current methods of auxin analysis are discussed. Sample preparation procedures, including extraction, purification and derivatization, are reviewed and compared. The different analytical techniques, ranging from chromatographic and mass spectrometry methods to immunoassays and electrokinetic methods, as well as other types of detection are also discussed. Considering that auxin analysis mirrors the evolution in analytical chemistry, the number of publications describing new and/or improved methods is always increasing and we considered appropriate to update the available information. For that reason, this article aims to review the current advances in auxin analysis, and thus only reports from the past 15 years will be covered. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Study on quantification method based on Monte Carlo sampling for multiunit probabilistic safety assessment models

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Kye Min [KHNP Central Research Institute, Daejeon (Korea, Republic of); Han, Sang Hoon; Park, Jin Hee; Lim, Ho Gon; Yang, Joon Yang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Heo, Gyun Young [Kyung Hee University, Yongin (Korea, Republic of)

    2017-06-15

    In Korea, many nuclear power plants operate at a single site based on geographical characteristics, but the population density near the sites is higher than that in other countries. Thus, multiunit accidents are a more important consideration than in other countries and should be addressed appropriately. Currently, there are many issues related to a multiunit probabilistic safety assessment (PSA). One of them is the quantification of a multiunit PSA model. A traditional PSA uses a Boolean manipulation of the fault tree in terms of the minimal cut set. However, such methods have some limitations when rare event approximations cannot be used effectively or a very small truncation limit should be applied to identify accident sequence combinations for a multiunit site. In particular, it is well known that seismic risk in terms of core damage frequency can be overestimated because there are many events that have a high failure probability. In this study, we propose a quantification method based on a Monte Carlo approach for a multiunit PSA model. This method can consider all possible accident sequence combinations in a multiunit site and calculate a more exact value for events that have a high failure probability. An example model for six identical units at a site was also developed and quantified to confirm the applicability of the proposed method.

  5. Short overview of PSA quantification methods, pitfalls on the road from approximate to exact results

    International Nuclear Information System (INIS)

    Banov, Reni; Simic, Zdenko; Sterc, Davor

    2014-01-01

    Over time the Probabilistic Safety Assessment (PSA) models have become an invaluable companion in the identification and understanding of key nuclear power plant (NPP) vulnerabilities. PSA is an effective tool for this purpose as it assists plant management to target resources where the largest benefit for plant safety can be obtained. PSA has quickly become an established technique to numerically quantify risk measures in nuclear power plants. As complexity of PSA models increases, the computational approaches become more or less feasible. The various computational approaches can be basically classified in two major groups: approximate and exact (BDD based) methods. In recent time modern commercially available PSA tools started to provide both methods for PSA model quantification. Besides availability of both methods in proven PSA tools the usage must still be taken carefully since there are many pitfalls which can drive to wrong conclusions and prevent efficient usage of PSA tool. For example, typical pitfalls involve the usage of higher precision approximation methods and getting a less precise result, or mixing minimal cuts and prime implicants in the exact computation method. The exact methods are sensitive to selected computational paths in which case a simple human assisted rearrangement may help and even switch from computationally non-feasible to feasible methods. Further improvements to exact method are possible and desirable which opens space for a new research. In this paper we will show how these pitfalls may be detected and how carefully actions must be done especially when working with large PSA models. (authors)

  6. Costing methods for nuclear desalination

    International Nuclear Information System (INIS)

    1966-01-01

    The question of the methods used for costing desalination plants has been recognized as very important in the economic choice of a plant and its optimization. The fifth meeting of the Panel on the Use of Nuclear Energy in Saline Water Conversion, convened by the International Atomic Energy Agency in April 1965, noted this fact and recommended the preparation of a report on suitable methods for costing and evaluating nuclear desalination schemes. The Agency has therefore prepared this document, which was reviewed by an international panel of experts that met in Vienna from 18 to 22 April, 1966. The report contains a review of the underlying principles for costing desalination plants and of the various methods that have been proposed for allocating costs in dual-purpose plants. The effect of the different allocation methods on the water and power costs is shown at the end of the report. No attempt is made to recommend any particular method, but the possible limitations of each are indicated. It is hoped that this report will help those involved in the various phases of desalination projects

  7. Quantification of the clustering properties of nuclear states

    International Nuclear Information System (INIS)

    Beck, R.; Dickmann, F.

    1985-05-01

    The amount of particular type of clustering in a nuclear state is defined in this paper as the norm square of the projection of the wave function onto the particular cluster model subspace. It is pointed out that, although the clusters can not be localized in space by measurement, the amount of clustering characterizes the cluster formation in close analogy with a quantum mechanical probability. The cluster model component of the wave function is proved to have a variational property. This facilitates the computation of the amount of clustering. The model dependence of the amounts of various clusterings and their relationship to the corresponding spectroscopic factors are studied via numerical examples for two models of sup(6)Li. It is concluded that, in a relative sense, the spectroscopic factor, which is more directly related to experiment, is also characteristic of the clustering contents of different states of the same nucleus, but it can not be used for comparisons between different nuclei or clusterings. (author)

  8. Nuclear methods in entomological investigations

    International Nuclear Information System (INIS)

    Sethi, G.R.; Bhatia, Parvathy

    1979-01-01

    Insect pests of crops are responsible for immense crop losses in agriculture. Ever since the release of high yielding varieties and improved crop husbandry practices the problems posed by insect pests have been accentuated, as these conditions provide ideal environment for their development. Effective control of insect pests can help greatly in achieving a breakthrough in agricultural production. In order to sustain production and reduce crop losses entomologists all over the world have continued their efforts to devise and develop methods of pest control taking full advantage of the advances made in other branches of science. Consequently, avenues opened by the developments in the field of nuclear energy have also been fully exploited in investigating various pest problems. This communication briefly highlights the various areas of research in which nuclear toots have been fruitfutty used in investigating problems posed by insect pests. (auth.)

  9. Quantification methods of Black Carbon: Comparison of Rock-Eval analysis with traditional methods

    NARCIS (Netherlands)

    Poot, A.; Quik, J.T.K.; Veld, H.; Koelmans, A.A.

    2009-01-01

    Black Carbon (BC) quantification methods are reviewed, including new Rock-Eval 6 data on BC reference materials. BC has been reported to have major impacts on climate, human health and environmental quality. Especially for risk assessment of persistent organic pollutants (POPs) it is important to

  10. Nuclear analytical methods for platinum group elements

    International Nuclear Information System (INIS)

    2005-04-01

    Platinum group elements (PGE) are of special interest for analytical research due to their economic importance like chemical peculiarities as catalysts, medical applications as anticancer drugs, and possible environmental detrimental impact as exhaust from automobile catalyzers. Natural levels of PGE are so low in concentration that most of the current analytical techniques approach their limit of detection capacity. In addition, Ru, Rh, Pd, Re, Os, Ir, and Pt analyses still constitute a challenge in accuracy and precision of quantification in natural matrices. Nuclear analytical techniques, such as neutron activation analysis, X ray fluorescence, or proton-induced X ray emission (PIXE), which are generally considered as reference methods for many analytical problems, are useful as well. However, due to methodological restrictions, they can, in most cases, only be applied after pre-concentration and under special irradiation conditions. This report was prepared following a coordinated research project and a consultants meeting addressing the subject from different viewpoints. The experts involved suggested to discuss the issue according to the (1) application, hence, the concentration levels encountered, and (2) method applied for analysis. Each of the different fields of application needs special consideration for sample preparation, PGE pre-concentration, and determination. Additionally, each analytical method requires special attention regarding the sensitivity and sample type. Quality assurance/quality control aspects are considered towards the end of the report. It is intended to provide the reader of this publication with state-of-the-art information on the various aspects of PGE analysis and to advise which technique might be most suitable for a particular analytical problem related to platinum group elements. In particular, many case studies described in detail from the authors' laboratory experience might help to decide which way to go. As in many cases

  11. Broyden's method in nuclear structure calculations

    International Nuclear Information System (INIS)

    Baran, Andrzej; Bulgac, Aurel; Forbes, Michael McNeil; Hagen, Gaute; Nazarewicz, Witold; Schunck, Nicolas; Stoitsov, Mario V.

    2008-01-01

    Broyden's method, widely used in quantum chemistry electronic-structure calculations for the numerical solution of nonlinear equations in many variables, is applied in the context of the nuclear many-body problem. Examples include the unitary gas problem, the nuclear density functional theory with Skyrme functionals, and the nuclear coupled-cluster theory. The stability of the method, its ease of use, and its rapid convergence rates make Broyden's method a tool of choice for large-scale nuclear structure calculations

  12. In vivo cell tracking and quantification method in adult zebrafish

    Science.gov (United States)

    Zhang, Li; Alt, Clemens; Li, Pulin; White, Richard M.; Zon, Leonard I.; Wei, Xunbin; Lin, Charles P.

    2012-03-01

    Zebrafish have become a powerful vertebrate model organism for drug discovery, cancer and stem cell research. A recently developed transparent adult zebrafish using double pigmentation mutant, called casper, provide unparalleled imaging power in in vivo longitudinal analysis of biological processes at an anatomic resolution not readily achievable in murine or other systems. In this paper we introduce an optical method for simultaneous visualization and cell quantification, which combines the laser scanning confocal microscopy (LSCM) and the in vivo flow cytometry (IVFC). The system is designed specifically for non-invasive tracking of both stationary and circulating cells in adult zebrafish casper, under physiological conditions in the same fish over time. The confocal imaging part in this system serves the dual purposes of imaging fish tissue microstructure and a 3D navigation tool to locate a suitable vessel for circulating cell counting. The multi-color, multi-channel instrument allows the detection of multiple cell populations or different tissues or organs simultaneously. We demonstrate initial testing of this novel instrument by imaging vasculature and tracking circulating cells in CD41: GFP/Gata1: DsRed transgenic casper fish whose thrombocytes/erythrocytes express the green and red fluorescent proteins. Circulating fluorescent cell incidents were recorded and counted repeatedly over time and in different types of vessels. Great application opportunities in cancer and stem cell researches are discussed.

  13. Nuclear methods in medical physics

    International Nuclear Information System (INIS)

    Jeraj, R.

    2003-01-01

    A common ground for both, reactor and medical physics is a demand for high accuracy of particle transport calculations. In reactor physics, safe operation of nuclear power plants has been asking for high accuracy of calculation methods. Similarly, dose calculation in radiation therapy for cancer has been requesting high accuracy of transport methods to ensure adequate dosimetry. Common to both problems has always been a compromise between achievable accuracy and available computer power leading into a variety of calculation methods developed over the decades. On the other hand, differences of subjects (nuclear reactor vs. humans) and radiation types (neutron/photon vs. photon/electron or ions) are calling for very field-specific approach. Nevertheless, it is not uncommon to see drift of researches from one field to another. Several examples from both fields will be given with the aim to compare the problems, indicating their similarities and discussing their differences. As examples of reactor physics applications, both deterministic and Monte Carlo calculations will be presented for flux distributions of the VENUS and TRIGA Mark II benchmark. These problems will be paralleled to medical physics applications in linear accelerator radiation field determination and dose distribution calculations. Applicability of the adjoint/forward transport will be discussed in the light of both transport problems. Boron neutron capture therapy (BNCT) as an example of the close collaboration between the fields will be presented. At last, several other examples from medical physics, which can and cannot find corresponding problems in reactor physics, will be discussed (e.g., beam optimisation in inverse treatment planning, imaging applications). (author)

  14. Statistical methods for nuclear material management

    International Nuclear Information System (INIS)

    Bowen, W.M.; Bennett, C.A.

    1988-12-01

    This book is intended as a reference manual of statistical methodology for nuclear material management practitioners. It describes statistical methods currently or potentially important in nuclear material management, explains the choice of methods for specific applications, and provides examples of practical applications to nuclear material management problems. Together with the accompanying training manual, which contains fully worked out problems keyed to each chapter, this book can also be used as a textbook for courses in statistical methods for nuclear material management. It should provide increased understanding and guidance to help improve the application of statistical methods to nuclear material management problems

  15. Statistical methods for nuclear material management

    Energy Technology Data Exchange (ETDEWEB)

    Bowen W.M.; Bennett, C.A. (eds.)

    1988-12-01

    This book is intended as a reference manual of statistical methodology for nuclear material management practitioners. It describes statistical methods currently or potentially important in nuclear material management, explains the choice of methods for specific applications, and provides examples of practical applications to nuclear material management problems. Together with the accompanying training manual, which contains fully worked out problems keyed to each chapter, this book can also be used as a textbook for courses in statistical methods for nuclear material management. It should provide increased understanding and guidance to help improve the application of statistical methods to nuclear material management problems.

  16. Sulfathiazole: analytical methods for quantification in seawater and macroalgae.

    Science.gov (United States)

    Leston, Sara; Nebot, Carolina; Nunes, Margarida; Cepeda, Alberto; Pardal, Miguel Ângelo; Ramos, Fernando

    2015-01-01

    The awareness of the interconnection between pharmaceutical residues, human health, and aquaculture has highlighted the concern with the potential harmful effects it can induce. Furthermore, to better understand the consequences more research is needed and to achieve that new methodologies on the detection and quantification of pharmaceuticals are necessary. Antibiotics are a major class of drugs included in the designation of emerging contaminants, representing a high risk to natural ecosystems. Among the most prescribed are sulfonamides, with sulfathiazole being the selected compound to be investigated in this study. In the environment, macroalgae are an important group of producers, continuously exposed to contaminants, with a significant role in the trophic web. Due to these characteristics are already under scope for the possibility of being used as bioindicators. The present study describes two new methodologies based on liquid chromatography for the determination of sulfathiazole in seawater and in the green macroalgae Ulva lactuca. Results show both methods were validated according to international standards, with MS/MS detection showing more sensitivity as expected with LODs of 2.79ng/g and 1.40ng/mL for algae and seawater, respectively. As for UV detection the values presented were respectively 2.83μg/g and 2.88μg/mL, making it more suitable for samples originated in more contaminated sites. The methods were also applied to experimental data with success with results showing macroalgae have potential use as indicators of contamination. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. A SIMPLE METHOD FOR THE EXTRACTION AND QUANTIFICATION OF PHOTOPIGMENTS FROM SYMBIODINIUM SPP.

    Science.gov (United States)

    John E. Rogers and Dragoslav Marcovich. Submitted. Simple Method for the Extraction and Quantification of Photopigments from Symbiodinium spp.. Limnol. Oceanogr. Methods. 19 p. (ERL,GB 1192). We have developed a simple, mild extraction procedure using methanol which, when...

  18. Uncertainty Quantification Techniques for Sensor Calibration Monitoring in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Ramuhalli, Pradeep; Lin, Guang; Crawford, Susan L.; Konomi, Bledar A.; Coble, Jamie B.; Shumaker, Brent; Hashemian, Hash

    2014-04-30

    This report describes research towards the development of advanced algorithms for online calibration monitoring. The objective of this research is to develop the next generation of online monitoring technologies for sensor calibration interval extension and signal validation in operating and new reactors. These advances are expected to improve the safety and reliability of current and planned nuclear power systems as a result of higher accuracies and increased reliability of sensors used to monitor key parameters. The focus of this report is on documenting the outcomes of the first phase of R&D under this project, which addressed approaches to uncertainty quantification (UQ) in online monitoring that are data-driven, and can therefore adjust estimates of uncertainty as measurement conditions change. Such data-driven approaches to UQ are necessary to address changing plant conditions, for example, as nuclear power plants experience transients, or as next-generation small modular reactors (SMR) operate in load-following conditions.

  19. Uncertainty Quantification Techniques for Sensor Calibration Monitoring in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Ramuhalli, Pradeep; Lin, Guang; Crawford, Susan L.; Konomi, Bledar A.; Braatz, Brett G.; Coble, Jamie B.; Shumaker, Brent; Hashemian, Hash

    2013-09-01

    This report describes the status of ongoing research towards the development of advanced algorithms for online calibration monitoring. The objective of this research is to develop the next generation of online monitoring technologies for sensor calibration interval extension and signal validation in operating and new reactors. These advances are expected to improve the safety and reliability of current and planned nuclear power systems as a result of higher accuracies and increased reliability of sensors used to monitor key parameters. The focus of this report is on documenting the outcomes of the first phase of R&D under this project, which addressed approaches to uncertainty quantification (UQ) in online monitoring that are data-driven, and can therefore adjust estimates of uncertainty as measurement conditions change. Such data-driven approaches to UQ are necessary to address changing plant conditions, for example, as nuclear power plants experience transients, or as next-generation small modular reactors (SMR) operate in load-following conditions.

  20. Application of radioanalytical methods in the quantification of solute transport in plants

    International Nuclear Information System (INIS)

    Hornik, M.

    2016-01-01

    The present habilitation thesis is elaborated as a compilation of published scientific papers supplemented with a commentary. The primary objective of the work was to bring the results and knowledge applicable to the further development of application possibilities of nuclear analytical chemistry, especially in the field of radioindication methods and application of positron emitters in connection with the positron emission tomography (PET) as well. In the work, these methods and techniques are developed mainly in the context of the solution of environmental issues related to the analysis and remediation of contaminated or degraded environment (water and soil), but also partially in the field of plant production or plant research. In terms of the achieved results and knowledge, the work is divided into three separated sections. The first part is dedicated to the application of radioindication methods, as well as others, non-radioanalytical methods and approaches in the characterization of plant biomass (biomass of terrestrial and aquatic mosses, and waste plant biomass) as alternative sorbents served to the separation and removal of (radio)toxic metals from contaminated or waste waters, as well as in the quantification and description of the sorption processes proceed under conditions of batch or continuous flow systems. The second part describes the results concerning on the quantification and visual description of the processes of (radio)toxic metals and microelements uptake and translocation in plant tissues using radioisotopes (β- and γ-emitters) of these metals and application of the methods of direct gamma spectrometry and autoradiography as well. The main aim of these experiments was to evaluate the possibilities of utilization of selected plant species in phytoremediation of contaminated soils and waters, as well as the possibilities affecting the effectiveness of uptake and translocation of these metals in the plant tissues mainly in dependence on their

  1. Radiochemistry and nuclear methods of analysis

    International Nuclear Information System (INIS)

    Ehmann, W.D.; Vance, D.

    1991-01-01

    This book provides both the fundamentals of radiochemistry as well as specific applications of nuclear techniques to analytical chemistry. It includes such areas of application as radioimmunoassay and activation techniques using very short-lined indicator radionuclides. It emphasizes the current nuclear methods of analysis such as neutron activation PIXE, nuclear reaction analysis, Rutherford backscattering, isotope dilution analysis and others

  2. Reproducibility of Two 3-D Ultrasound Carotid Plaque Quantification Methods

    DEFF Research Database (Denmark)

    Graebe, Martin; Entrekin, Robert; Collet-Billon, Antoine

    2014-01-01

    Compared with single 2-D images, emerging 3-D ultrasound technologies hold the promise of reducing variability and increasing sensitivity in the quantification of carotid plaques for individual cardiovascular risk stratification. Inter- and intra-observer agreement between a manual, cross-section...

  3. Compositions and methods for treating nuclear fuel

    Science.gov (United States)

    Soderquist, Chuck Z; Johnsen, Amanda M; McNamara, Bruce K; Hanson, Brady D; Smith, Steven C; Peper, Shane M

    2013-08-13

    Compositions are provided that include nuclear fuel. Methods for treating nuclear fuel are provided which can include exposing the fuel to a carbonate-peroxide solution. Methods can also include exposing the fuel to an ammonium solution. Methods for acquiring molybdenum from a uranium comprising material are provided.

  4. Comparison of Suitability of the Most Common Ancient DNA Quantification Methods.

    Science.gov (United States)

    Brzobohatá, Kristýna; Drozdová, Eva; Smutný, Jiří; Zeman, Tomáš; Beňuš, Radoslav

    2017-04-01

    Ancient DNA (aDNA) extracted from historical bones is damaged and fragmented into short segments, present in low quantity, and usually copurified with microbial DNA. A wide range of DNA quantification methods are available. The aim of this study was to compare the five most common DNA quantification methods for aDNA. Quantification methods were tested on DNA extracted from skeletal material originating from an early medieval burial site. The tested methods included ultraviolet (UV) absorbance, real-time quantitative polymerase chain reaction (qPCR) based on SYBR ® green detection, real-time qPCR based on a forensic kit, quantification via fluorescent dyes bonded to DNA, and fragmentary analysis. Differences between groups were tested using a paired t-test. Methods that measure total DNA present in the sample (NanoDrop ™ UV spectrophotometer and Qubit ® fluorometer) showed the highest concentrations. Methods based on real-time qPCR underestimated the quantity of aDNA. The most accurate method of aDNA quantification was fragmentary analysis, which also allows DNA quantification of the desired length and is not affected by PCR inhibitors. Methods based on the quantification of the total amount of DNA in samples are unsuitable for ancient samples as they overestimate the amount of DNA presumably due to the presence of microbial DNA. Real-time qPCR methods give undervalued results due to DNA damage and the presence of PCR inhibitors. DNA quantification methods based on fragment analysis show not only the quantity of DNA but also fragment length.

  5. Internal event analysis for Laguna Verde Unit 1 Nuclear Power Plant. Accident sequence quantification and results

    International Nuclear Information System (INIS)

    Huerta B, A.; Aguilar T, O.; Nunez C, A.; Lopez M, R.

    1994-01-01

    The Level 1 results of Laguna Verde Nuclear Power Plant PRA are presented in the I nternal Event Analysis for Laguna Verde Unit 1 Nuclear Power Plant, CNSNS-TR 004, in five volumes. The reports are organized as follows: CNSNS-TR 004 Volume 1: Introduction and Methodology. CNSNS-TR4 Volume 2: Initiating Event and Accident Sequences. CNSNS-TR 004 Volume 3: System Analysis. CNSNS-TR 004 Volume 4: Accident Sequence Quantification and Results. CNSNS-TR 005 Volume 5: Appendices A, B and C. This volume presents the development of the dependent failure analysis, the treatment of the support system dependencies, the identification of the shared-components dependencies, and the treatment of the common cause failure. It is also presented the identification of the main human actions considered along with the possible recovery actions included. The development of the data base and the assumptions and limitations in the data base are also described in this volume. The accident sequences quantification process and the resolution of the core vulnerable sequences are presented. In this volume, the source and treatment of uncertainties associated with failure rates, component unavailabilities, initiating event frequencies, and human error probabilities are also presented. Finally, the main results and conclusions for the Internal Event Analysis for Laguna Verde Nuclear Power Plant are presented. The total core damage frequency calculated is 9.03x 10-5 per year for internal events. The most dominant accident sequences found are the transients involving the loss of offsite power, the station blackout accidents, and the anticipated transients without SCRAM (ATWS). (Author)

  6. Survey of Nuclear Methods in Chemical Technology

    International Nuclear Information System (INIS)

    Broda, E.

    1966-01-01

    An attempt is made to classify nuclear methods on a logical basis to facilitate assimilation by the technologist. The three main groups are: (I) Tracer methods, (II) Methods based on the influence of absorbers on radiations to be measured, and (III) Radiation chemical methods. The variants of the first two groups are discussed in some detail, and typical examples are given. Group I can be subdivided into (1) Indicator methods, (2) Emanation methods, (3) Radioreagent methods, and (4) Isotope dilution methods, Group II into (5) Activation methods, (6) Absorption methods, (7) Induced Nuclear Reaction methods, (8) Scattering methods, and (9) Fluorescence methods. While the economic benefits due to nuclear methods already run into hundreds of millions of dollars annually, owing to radiation protection problems radiochemical methods in the strict sense are not widely used in actual production. It is suggested that more use should be made of pilot plant tracer studies of chemical processes as used in industry. (author)

  7. Method for Indirect Quantification of CH4 Production via H2O Production Using Hydrogenotrophic Methanogens.

    Science.gov (United States)

    Taubner, Ruth-Sophie; Rittmann, Simon K-M R

    2016-01-01

    Hydrogenotrophic methanogens are an intriguing group of microorganisms from the domain Archaea. Methanogens exhibit extraordinary ecological, biochemical, and physiological characteristics and possess a huge biotechnological potential. Yet, the only possibility to assess the methane (CH4) production potential of hydrogenotrophic methanogens is to apply gas chromatographic quantification of CH4. In order to be able to effectively screen pure cultures of hydrogenotrophic methanogens regarding their CH4 production potential we developed a novel method for indirect quantification of the volumetric CH4 production rate by measuring the volumetric water production rate. This method was established in serum bottles for cultivation of methanogens in closed batch cultivation mode. Water production was estimated by determining the difference in mass increase in a quasi-isobaric setting. This novel CH4 quantification method is an accurate and precise analytical technique, which can be used to rapidly screen pure cultures of methanogens regarding their volumetric CH4 evolution rate. It is a cost effective alternative determining CH4 production of methanogens over CH4 quantification by using gas chromatography, especially if applied as a high throughput quantification method. Eventually, the method can be universally applied for quantification of CH4 production from psychrophilic, thermophilic and hyperthermophilic hydrogenotrophic methanogens.

  8. Method for indirect quantification of CH4 production via H2O production using hydrogenotrophic methanogens

    Directory of Open Access Journals (Sweden)

    Ruth-Sophie eTaubner

    2016-04-01

    Full Text Available ydrogenotrophic methanogens are an intriguing group of microorganisms from the domain Archaea. They exhibit extraordinary ecological, biochemical, physiological characteristics colorbox{yellow}{and have a huge biotechnological potential}. Yet, the only possibility to assess the methane (CH$_4$ production potential of hydrogenotrophic methanogens is to apply gas chromatographic quantification of CH$_4$.In order to be able to effectively screen pure cultures of hydrogenotrophic methanogens regarding their CH$_4$ production potential we developed a novel method for indirect quantification of colorbox{yellow}{the} volumetric CH$_4$ production rate by measuring colorbox{yellow}{the} volumetric water production rate. This colorbox{yellow}{ } method was established in serum bottles for cultivation of methanogens in closed batch cultivation mode. Water production was colorbox{yellow}{estimated} by determining the difference in mass increase in an isobaric setting.This novel CH$_4$ quantification method is an accurate and precise analytical technique, colorbox{yellow}{which can be used} to rapidly screen pure cultures of methanogens regarding colorbox{yellow}{their} volumetric CH$_{4}$ evolution rate. colorbox{yellow}{It} is a cost effective alternative colorbox{yellow}{determining} CH$_4$ production of methanogens over CH$_4$ quantification by using gas chromatography, especially if colorbox{yellow}{ } applied as a high throughput quantification method. colorbox{yellow}{Eventually, the} method can be universally applied for quantification of CH$_4$ production from psychrophilic, thermophilic and hyperthermophilic hydrogenotrophic methanogens.

  9. Quantification of massively parallel sequencing libraries - a comparative study of eight methods

    DEFF Research Database (Denmark)

    Hussing, Christian; Kampmann, Marie-Louise; Mogensen, Helle Smidt

    2018-01-01

    of libraries exists. We assessed eight methods of quantification of libraries by quantifying 54 amplicon, six capture, and six shotgun fragment libraries. Chemically synthesized double-stranded DNA was also quantified. Light spectrophotometry, i.e. NanoDrop, was found to give the highest concentration......Quantification of massively parallel sequencing libraries is important for acquisition of monoclonal beads or clusters prior to clonal amplification and to avoid large variations in library coverage when multiple samples are included in one sequencing analysis. No gold standard for quantification...

  10. Nuclear data evaluation method and evaluation system

    International Nuclear Information System (INIS)

    Liu Tingjin

    1995-01-01

    The evaluation methods and Nuclear Data Evaluation System have been developed in China. A new version of the system has been established on Micro-VAX2 computer, which is supported by IAEA under the technology assistance program. The flow chart of Chinese Nuclear Data Evaluation System is shown out. For last ten years, the main efforts have been put on the double differential cross section, covariance data and evaluated data library validation. The developed evaluation method and Chinese Nuclear Data Evaluation System have been widely used at CNDC and in Chinese Nuclear Data Network for CENDL. (1 tab., 15 figs.)

  11. Method of manufacturing nuclear fuel pellet

    International Nuclear Information System (INIS)

    Oguma, Masaomi; Masuda, Hiroshi; Hirai, Mutsumi; Tanabe, Isami; Yuda, Ryoichi.

    1989-01-01

    In a method of manufacturing nuclear fuel pellets by compression molding an oxide powder of nuclear fuel material followed by sintering, a metal nuclear material is mixed with an oxide powder of the nuclear fuel material. As the metal nuclear fuel material, whisker or wire-like fine wire or granules of metal uranium can be used effectively. As a result, a fuel pellet in which the metal nuclear fuel is disposed in a network-like manner can be obtained. The pellet shows a great effect of preventing thermal stress destruction of pellets upon increase of fuel rod power as compared with conventional pellets. Further, the metal nuclear fuel material acts as an oxygen getter to suppress the increase of O/M ratio of the pellets. Further, it is possible to reduce the swelling of pellet at high burn-up degree. (T.M.)

  12. Real-time PCR quantification of arbuscular mycorrhizal fungi: does the use of nuclear or mitochondrial markers make a difference?

    Czech Academy of Sciences Publication Activity Database

    Voříšková, A.; Jansa, J.; Püschel, D.; Krüger, Manuela; Cajthaml, T.; Vosátka, M.; Janoušková, M.

    2017-01-01

    Roč. 27, č. 6 (2017), s. 577-585 ISSN 0940-6360 Institutional support: RVO:61389030 Keywords : Arbuscular mycorrhizal fungi * Isolate discrimination * Microsymbiont screening * Mitochondrial DNA * Molecular genetic quantification * Nuclear ribosomal DNA * plfa * Real-time PCR Subject RIV: EA - Cell Biology OBOR OECD: Cell biology Impact factor: 3.047, year: 2016

  13. Techniques and methods in nuclear materials traceability

    International Nuclear Information System (INIS)

    Persiani, P.J.

    1996-01-01

    The nonproliferation community is currently addressing concerns that the access to special nuclear materials may increase the illicit trafficking in weapons-usable materials from civil and/or weapons material stores and/or fuel cycles systems. Illicit nuclear traffic usually involves reduced quantities of nuclear materials perhaps as samplings of a potential protracted diversionary flow from sources to users. To counter illicit nuclear transactions requires the development of techniques and methods in nuclear material traceability as an important phase of a broad forensic analysis capability. This report discusses how isotopic signatures and correlation methods were applied to determine the origins of Highly Enriched Uranium (HEU) and Plutonium samples reported as illicit trafficking in nuclear materials

  14. Prospective comparison of liver stiffness measurements between two point wave elastography methods: Virtual ouch quantification and elastography point quantification

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Hyun Suk; Lee, Jeong Min; Yoon, Jeong Hee; Lee, Dong Ho; Chang, Won; Han, Joon Koo [Seoul National University Hospital, Seoul (Korea, Republic of)

    2016-09-15

    To prospectively compare technical success rate and reliable measurements of virtual touch quantification (VTQ) elastography and elastography point quantification (ElastPQ), and to correlate liver stiffness (LS) measurements obtained by the two elastography techniques. Our study included 85 patients, 80 of whom were previously diagnosed with chronic liver disease. The technical success rate and reliable measurements of the two kinds of point shear wave elastography (pSWE) techniques were compared by χ{sup 2} analysis. LS values measured using the two techniques were compared and correlated via Wilcoxon signed-rank test, Spearman correlation coefficient, and 95% Bland-Altman limit of agreement. The intraobserver reproducibility of ElastPQ was determined by 95% Bland-Altman limit of agreement and intraclass correlation coefficient (ICC). The two pSWE techniques showed similar technical success rate (98.8% for VTQ vs. 95.3% for ElastPQ, p = 0.823) and reliable LS measurements (95.3% for VTQ vs. 90.6% for ElastPQ, p = 0.509). The mean LS measurements obtained by VTQ (1.71 ± 0.47 m/s) and ElastPQ (1.66 ± 0.41 m/s) were not significantly different (p = 0.209). The LS measurements obtained by the two techniques showed strong correlation (r = 0.820); in addition, the 95% limit of agreement of the two methods was 27.5% of the mean. Finally, the ICC of repeat ElastPQ measurements was 0.991. Virtual touch quantification and ElastPQ showed similar technical success rate and reliable measurements, with strongly correlated LS measurements. However, the two methods are not interchangeable due to the large limit of agreement.

  15. Accuracy in the quantification of chemical exchange saturation transfer (CEST) and relayed nuclear Overhauser enhancement (rNOE) saturation transfer effects.

    Science.gov (United States)

    Zhang, Xiao-Yong; Wang, Feng; Li, Hua; Xu, Junzhong; Gochberg, Daniel F; Gore, John C; Zu, Zhongliang

    2017-07-01

    Accurate quantification of chemical exchange saturation transfer (CEST) effects, including dipole-dipole mediated relayed nuclear Overhauser enhancement (rNOE) saturation transfer, is important for applications and studies of molecular concentration and transfer rate (and thereby pH or temperature). Although several quantification methods, such as Lorentzian difference (LD) analysis, multiple-pool Lorentzian fits, and the three-point method, have been extensively used in several preclinical and clinical applications, the accuracy of these methods has not been evaluated. Here we simulated multiple-pool Z spectra containing the pools that contribute to the main CEST and rNOE saturation transfer signals in the brain, numerically fit them using the different methods, and then compared their derived CEST metrics with the known solute concentrations and exchange rates. Our results show that the LD analysis overestimates contributions from amide proton transfer (APT) and intermediate exchanging amine protons; the three-point method significantly underestimates both APT and rNOE saturation transfer at -3.5 ppm (NOE(-3.5)). The multiple-pool Lorentzian fit is more accurate than the other two methods, but only at lower irradiation powers (≤1 μT at 9.4 T) within the range of our simulations. At higher irradiation powers, this method is also inaccurate because of the presence of a fast exchanging CEST signal that has a non-Lorentzian lineshape. Quantitative parameters derived from in vivo images of rodent brain tumor obtained using an irradiation power of 1 μT were also compared. Our results demonstrate that all three quantification methods show similar contrasts between tumor and contralateral normal tissue for both APT and the NOE(-3.5). However, the quantified values of the three methods are significantly different. Our work provides insight into the fitting accuracy obtainable in a complex tissue model and provides guidelines for evaluating other newly developed

  16. Continuous improvement methods in the nuclear industry

    International Nuclear Information System (INIS)

    Heising, Carolyn D.

    1995-01-01

    The purpose of this paper is to investigate management methods for improved safety in the nuclear power industry. Process improvement management, methods of business process reengineering, total quality management, and continued process improvement (KAIZEN) are explored. The anticipated advantages of extensive use of improved process oriented management methods in the nuclear industry are increased effectiveness and efficiency in virtually all tasks of plant operation and maintenance. Important spin off include increased plant safety and economy. (author). 6 refs., 1 fig

  17. Quantification of miRNAs by a simple and specific qPCR method

    DEFF Research Database (Denmark)

    Cirera Salicio, Susanna; Busk, Peter K.

    2014-01-01

    RNA expression levels in different systems. In this chapter we describe a PCR method for quantification of miRNAs based on a single reverse transcription reaction for all miRNAs combined with real-time PCR with two miRNA-specific DNA primers. This method quantifies synthetic templates over eight orders...... of magnitude and successfully discriminates miRNAs that differ by one single nucleotide. Due to the usage of DNA primers this method allows higher amplification efficiencies than a similar method based on locked nucleic acid-spiked primers. The high efficiency translates into higher sensitivity and precision...... in miRNA quantification. Furthermore, the method is easy to perform with common laboratory reagents, which allows miRNA quantification at low cost....

  18. Nuclear astrophysics with indirect methods

    International Nuclear Information System (INIS)

    Shubhchintak

    2016-01-01

    In the area of astrophysics, it is well known that several different type of nuclear reactions are involved in the production of elements and for energy generation in stars. The knowledge of rates and cross section of these reactions is necessary in order to understand the origin of elements in the universe. Particularly, interests are there in the processes like pp-chain, CNO cycle, r-process and s-process, which are responsible for the formation of majority of the nuclei via various reactions like (p, γ), (n, γ), (α, γ) etc

  19. RNAontheBENCH: computational and empirical resources for benchmarking RNAseq quantification and differential expression methods

    KAUST Repository

    Germain, Pierre-Luc

    2016-06-20

    RNA sequencing (RNAseq) has become the method of choice for transcriptome analysis, yet no consensus exists as to the most appropriate pipeline for its analysis, with current benchmarks suffering important limitations. Here, we address these challenges through a rich benchmarking resource harnessing (i) two RNAseq datasets including ERCC ExFold spike-ins; (ii) Nanostring measurements of a panel of 150 genes on the same samples; (iii) a set of internal, genetically-determined controls; (iv) a reanalysis of the SEQC dataset; and (v) a focus on relative quantification (i.e. across-samples). We use this resource to compare different approaches to each step of RNAseq analysis, from alignment to differential expression testing. We show that methods providing the best absolute quantification do not necessarily provide good relative quantification across samples, that count-based methods are superior for gene-level relative quantification, and that the new generation of pseudo-alignment-based software performs as well as established methods, at a fraction of the computing time. We also assess the impact of library type and size on quantification and differential expression analysis. Finally, we have created a R package and a web platform to enable the simple and streamlined application of this resource to the benchmarking of future methods.

  20. Quantification of Training and Competition Loads in Endurance Sports: Methods and Applications.

    Science.gov (United States)

    Mujika, Iñigo

    2017-04-01

    Training quantification is basic to evaluate an endurance athlete's responses to training loads, ensure adequate stress/recovery balance, and determine the relationship between training and performance. Quantifying both external and internal workload is important, because external workload does not measure the biological stress imposed by the exercise sessions. Generally used quantification methods include retrospective questionnaires, diaries, direct observation, and physiological monitoring, often based on the measurement of oxygen uptake, heart rate, and blood lactate concentration. Other methods in use in endurance sports include speed measurement and the measurement of power output, made possible by recent technological advances such as power meters in cycling and triathlon. Among subjective methods of quantification, rating of perceived exertion stands out because of its wide use. Concurrent assessments of the various quantification methods allow researchers and practitioners to evaluate stress/recovery balance, adjust individual training programs, and determine the relationships between external load, internal load, and athletes' performance. This brief review summarizes the most relevant external- and internal-workload-quantification methods in endurance sports and provides practical examples of their implementation to adjust the training programs of elite athletes in accordance with their individualized stress/recovery balance.

  1. Nuclear physics methods in materials research

    International Nuclear Information System (INIS)

    Bethge, K.; Baumann, H.; Jex, H.; Rauch, F.

    1980-01-01

    Proceedings of the seventh divisional conference of the Nuclear Physics Division held at Darmstadt, Germany, from 23rd through 26th of September, 1980. The scope of this conference was defined as follows: i) to inform solid state physicists and materials scientists about the application of nuclear physics methods; ii) to show to nuclear physicists open questions and problems in solid state physics and materials science to which their methods can be applied. According to the intentions of the conference, the various nuclear physics methods utilized in solid state physics and materials science and especially new developments were reviewed by invited speakers. Detailed aspects of the methods and typical examples extending over a wide range of applications were presented as contributions in poster sessions. The Proceedings contain all the invited papers and about 90% of the contributed papers. (orig./RW)

  2. Nuclear fuel pellet manufacturing method

    International Nuclear Information System (INIS)

    Matsuda, Tetsushi.

    1995-01-01

    An uranium oxide powder is compression-molded to form a compressed powder product, and the compressed powder product is sintered to form a ceramic nuclear fuel pellet. In this case, the uranium oxide powder to be supplied to a press hole for compression molding is exposed to an atmosphere of one of vapors of benzene, hexane, acetone, acetic acid, ethanol or water, or an atmosphere of a vapor mixture of several kinds of them. Thereafter, uranium oxide powder is compression molded in the same vapor atmosphere. Since the vapor atmosphere is used as an aid for a molding adjuvant or a substitute thereof, lowering of pellet density due to residual molding adjuvant can be prevented. In addition, the vapor atmosphere is penetrated uniformly between the uranium oxide powder to suppress density fluctuation of the compressed powder material thereby enabling to unify the shrinking rate. (I.N.)

  3. A method for simultaneous quantification of phospholipid species by routine 31P NMR

    DEFF Research Database (Denmark)

    Brinkmann-Trettenes, Ulla; Stein, Paul C.; Klösgen, Beate Maria

    2012-01-01

    We report a 31P NMR assay for quantification of aqueous phospholipid samples. Using a capillary with trimethylphosphate as internal standard, the limit of quantification is 1.30mM. Comparison of the 31P NMR quantification method in aqueous buffer and in organic solvent revealed that the two methods...... are equal within experimental error. Changing the pH of the buffer enables peak separation for different phospholipid species. This is an advantage compared to the commercial enzyme assay based on phospholipase D and choline oxidase. The reported method, using routine 31P NMR equipment, is suitable when...... fast results of a limited number of samples are requested. © 2012 Elsevier B.V.....

  4. Towards a new method for the quantification of metabolites in the biological sample

    International Nuclear Information System (INIS)

    Neugnot, B.

    2005-03-01

    The quantification of metabolites is a key step in drug development. The aim of this Ph.D. work was to study the feasibility of a new method for this quantification, in the biological sample, without the drawbacks (cost, time, ethics) of the classical quantification methods based on metabolites synthesis or administration to man of the radiolabelled drug. Our strategy consists in determining the response factor, in mass spectrometry, of the metabolites. This approach is based on tritium labelling of the metabolites, ex vivo, by isotopic exchange. The labelling step was studied with deuterium. Metabolites of a model drug, recovered from in vitro or urinary samples, were labelled by three ways (Crab tree's catalyst ID2, deuterated trifluoroacetic acid or rhodium chloride ID20). Then, the transposition to tritium labelling was studied and the first results are very promising for the ultimate validation of the method. (author)

  5. An external standard method for quantification of human cytomegalovirus by PCR

    International Nuclear Information System (INIS)

    Rongsen, Shen; Liren, Ma; Fengqi, Zhou; Qingliang, Luo

    1997-01-01

    An external standard method for PCR quantification of HCMV was reported. [α- 32 P]dATP was used as a tracer. 32 P-labelled specific amplification product was separated by agarose gel electrophoresis. A gel piece containing the specific product band was excised and counted in a plastic scintillation counter. Distribution of [α- 32 P]dATP in the electrophoretic gel plate and effect of separation between the 32 P-labelled specific product and free [α- 32 P]dATP were observed. A standard curve for quantification of HCMV by PCR was established and detective results of quality control templets were presented. The external standard method and the electrophoresis separation effect were appraised. The results showed that the method could be used for relative quantification of HCMV. (author)

  6. Comparison of nuclear analytical methods with competitive methods

    International Nuclear Information System (INIS)

    1987-10-01

    The use of nuclear analytical techniques, especially neutron activation analysis, already have a 50 year old history. Today several sensitive and accurate, non-nuclear trace element analytical techniques are available and new methods are continuously developed. The IAEA is supporting the development of nuclear analytical laboratories in its Member States. In order to be able to advise the developing countries which methods to use in different applications, it is important to know the present status and development trends of nuclear analytical methods, what are their benefits, drawbacks and recommended fields of application, compared with other, non-nuclear techniques. In order to get an answer to these questions the IAEA convened this Advisory Group Meeting. This volume is the outcome of the presentations and discussions of the meeting. A separate abstract was prepared for each of the 21 papers. Refs, figs, tabs

  7. Uncertainty analysis methods for quantification of source terms using a large computer code

    International Nuclear Information System (INIS)

    Han, Seok Jung

    1997-02-01

    Quantification of uncertainties in the source term estimations by a large computer code, such as MELCOR and MAAP, is an essential process of the current probabilistic safety assessments (PSAs). The main objectives of the present study are (1) to investigate the applicability of a combined procedure of the response surface method (RSM) based on input determined from a statistical design and the Latin hypercube sampling (LHS) technique for the uncertainty analysis of CsI release fractions under a hypothetical severe accident sequence of a station blackout at Young-Gwang nuclear power plant using MAAP3.0B code as a benchmark problem; and (2) to propose a new measure of uncertainty importance based on the distributional sensitivity analysis. On the basis of the results obtained in the present work, the RSM is recommended to be used as a principal tool for an overall uncertainty analysis in source term quantifications, while using the LHS in the calculations of standardized regression coefficients (SRC) and standardized rank regression coefficients (SRRC) to determine the subset of the most important input parameters in the final screening step and to check the cumulative distribution functions (cdfs) obtained by RSM. Verification of the response surface model for its sufficient accuracy is a prerequisite for the reliability of the final results obtained by the combined procedure proposed in the present work. In the present study a new measure has been developed to utilize the metric distance obtained from cumulative distribution functions (cdfs). The measure has been evaluated for three different cases of distributions in order to assess the characteristics of the measure: The first case and the second are when the distribution is known as analytical distributions and the other case is when the distribution is unknown. The first case is given by symmetry analytical distributions. The second case consists of two asymmetry distributions of which the skewness is non zero

  8. Methods for quantification of soil-transmitted helminths in environmental media: current techniques and recent advances

    Science.gov (United States)

    Collender, Philip A.; Kirby, Amy E.; Addiss, David G.; Freeman, Matthew C.; Remais, Justin V.

    2015-01-01

    Limiting the environmental transmission of soil-transmitted helminths (STH), which infect 1.5 billion people worldwide, will require sensitive, reliable, and cost effective methods to detect and quantify STH in the environment. We review the state of the art of STH quantification in soil, biosolids, water, produce, and vegetation with respect to four major methodological issues: environmental sampling; recovery of STH from environmental matrices; quantification of recovered STH; and viability assessment of STH ova. We conclude that methods for sampling and recovering STH require substantial advances to provide reliable measurements for STH control. Recent innovations in the use of automated image identification and developments in molecular genetic assays offer considerable promise for improving quantification and viability assessment. PMID:26440788

  9. Pore REconstruction and Segmentation (PORES) method for improved porosity quantification of nanoporous materials

    Energy Technology Data Exchange (ETDEWEB)

    Van Eyndhoven, G., E-mail: geert.vaneyndhoven@uantwerpen.be [iMinds-Vision Lab, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk (Belgium); Kurttepeli, M. [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Van Oers, C.J.; Cool, P. [Laboratory of Adsorption and Catalysis, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk (Belgium); Bals, S. [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Batenburg, K.J. [iMinds-Vision Lab, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk (Belgium); Centrum Wiskunde and Informatica, Science Park 123, NL-1090 GB Amsterdam (Netherlands); Mathematical Institute, Universiteit Leiden, Niels Bohrweg 1, NL-2333 CA Leiden (Netherlands); Sijbers, J. [iMinds-Vision Lab, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk (Belgium)

    2015-01-15

    Electron tomography is currently a versatile tool to investigate the connection between the structure and properties of nanomaterials. However, a quantitative interpretation of electron tomography results is still far from straightforward. Especially accurate quantification of pore-space is hampered by artifacts introduced in all steps of the processing chain, i.e., acquisition, reconstruction, segmentation and quantification. Furthermore, most common approaches require subjective manual user input. In this paper, the PORES algorithm “POre REconstruction and Segmentation” is introduced; it is a tailor-made, integral approach, for the reconstruction, segmentation, and quantification of porous nanomaterials. The PORES processing chain starts by calculating a reconstruction with a nanoporous-specific reconstruction algorithm: the Simultaneous Update of Pore Pixels by iterative REconstruction and Simple Segmentation algorithm (SUPPRESS). It classifies the interior region to the pores during reconstruction, while reconstructing the remaining region by reducing the error with respect to the acquired electron microscopy data. The SUPPRESS reconstruction can be directly plugged into the remaining processing chain of the PORES algorithm, resulting in accurate individual pore quantification and full sample pore statistics. The proposed approach was extensively validated on both simulated and experimental data, indicating its ability to generate accurate statistics of nanoporous materials. - Highlights: • An electron tomography reconstruction/segmentation method for nanoporous materials. • The method exploits the porous nature of the scanned material. • Validated extensively on both simulation and real data experiments. • Results in increased image resolution and improved porosity quantification.

  10. Nuclear analysis methods. Rudiments of radiation protection

    International Nuclear Information System (INIS)

    Roth, E.

    1998-01-01

    The nuclear analysis methods are generally used to analyse radioactive elements but they can be used also for chemical analysis, with fields such analysis and characterization of traces. The principles of radiation protection are explained (ALARA), the biological effects of ionizing radiations are given, elements and units used in radiation protection are reminded in tables. A part of this article is devoted to how to use radiation protection in a nuclear analysis laboratory. (N.C.)

  11. Methods in relativistic nuclear physics

    International Nuclear Information System (INIS)

    Danos, M.; Gillet, V.; Cauvin, M.

    1984-01-01

    This book is intended to provide the methods and tools for performing actual calculations for finite many-body systems of bound relativistic constituent particles. The aim is to cover thoroughly the methodological aspects of the relativistic many-body problem for bound states while avoiding the presentation of specific models. The many examples contained in the later part of the work are meant to give concrete illustrations of how to actually apply the methods which are given in the first part. The basic framework of the approach is the lagrangian field theory solved in the time-independent Schroedinger picture. (Auth.)

  12. Methods in nuclear reactors calculations

    International Nuclear Information System (INIS)

    Velarde, G.

    1966-01-01

    Studies are made of the neutron transport equation corresponding to the the real and virtual reactors, as well as the starting hypotheses. Methods are developed to solve the transport equation in slab geometry, and P l ; B l ; M l ; S n and discrete ordinates approximations. (Author)

  13. Comparison of extraction and quantification methods of perfluorinated compounds in human plasma, serum, and whole blood

    Energy Technology Data Exchange (ETDEWEB)

    Reagen, William K. [3M Environmental Laboratory, 3M Center, Building 0260-05-N-17, St. Paul, MN 55144-1000 (United States)], E-mail: wkreagen@mmm.com; Ellefson, Mark E. [3M Environmental Laboratory, 3M Center, Building 0260-05-N-17, St. Paul, MN 55144-1000 (United States); Kannan, Kurunthachalam [Wadsworth Center, New York State Department of Health and Department of Environmental Health Sciences (United States); State University of New York at Albany, NY 12201-0509 (United States); Giesy, John P. [Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK (Canada); Department of Biology and Chemistry, Center for Coastal Pollution and Conservation, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Zoology Department, National Food Safety and Toxicology Center, Center for Integrative Toxicology, Michigan State University, E. Lansing, MI (United States); School of Environment, Nanjing University, Nanjing (China)

    2008-11-03

    Perfluorinated compounds are ubiquitous in the environment and have been reported to occur in human blood. Accurate risk assessments require accurate measurements of exposures, but identification and quantification of PFCs in biological matrices can be affected by both ion suppression and enhancement in liquid chromatography-tandem mass spectrometry techniques (LC/MS-MS). A study was conducted to quantify potential biases in LC/MS-MS quantification methods. Using isotopically labeled perfluorooctanoic acid ([{sup 13}C{sub 2}]-PFOA), perfluorononanoic acid ([{sup 13}C{sub 2}]-PFNA), and ammonium perfluorooctanesulfonate ([{sup 18}O{sub 2}]-PFOS) spiked tissues, ion-pairing extraction, solid-phase extraction, and protein precipitation sample preparation techniques were compared. Analytical accuracy was assessed using both solvent calibration and matrix-matched calibration for quantification. Data accuracy and precision of 100 {+-} 15% was demonstrated in both human sera and plasma for all three sample preparation techniques when matrix-matched calibration was used in quantification. In contrast, quantification of ion-pairing extraction data using solvent calibration in combination with a surrogate internal standard resulted in significant analytical biases for all target analytes. The accuracy of results, based on solvent calibration was highly variable and dependent on the serum and plasma matrices, the specific target analyte [{sup 13}C{sub 2}]-PFOA, [{sup 13}C{sub 2}]-PFNA, or [{sup 18}O{sub 2}]-PFOS, the target analyte concentration, the LC/MS-MS instrumentation used in data generation, and the specific surrogate internal standard used in quantification. These results suggest that concentrations of PFCs reported for human blood using surrogate internal standards in combination with external solvent calibration can be inaccurate unless biases are accounted for in data quantification.

  14. Assessment of nuclear power plant siting methods

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, M.D.; Hobbs, B.F.; Pierce, B.L.; Meier, P.M.

    1979-11-01

    Several different methods have been developed for selecting sites for nuclear power plants. This report summarizes the basic assumptions and formal requirements of each method and evaluates conditions under which each is correctly applied to power plant siting problems. It also describes conditions under which different siting methods can produce different results. Included are criteria for evaluating the skill with which site-selection methods have been applied.

  15. Optical methods for the quantification of the fibrillation degree of bleached MFC materials.

    Science.gov (United States)

    Chinga-Carrasco, Gary

    2013-05-01

    In this study, the suitability of optical devices for quantification of the fibrillation degree of bleached microfibrillated cellulose (MFC) materials has been assessed. The techniques for optical assessment include optical scanner, UV-vis spectrophotometry, turbidity, quantification of the fiber fraction and a camera system for dynamic measurements. The results show that the assessed optical devices are most adequate for quantification of the light transmittance of bleached MFC materials. Such quantification yields an estimation of the fibrillation degree. Films made of poorly fibrillated materials are opaque, while films made of highly fibrillated materials containing a major fraction of nanofibrils are translucent, with light transmittance larger than 90%. Finally, the concept of using images acquired with a CCD camera system, for estimating the fibrillation degree in dynamic conditions was exemplified. Such systems are most interesting as this will widen the applicability of optical methods for quantification of fibrillation degree online in production lines, which is expected to appear in the years to come. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. A study on value assessment of nuclear energy and quantification model development

    International Nuclear Information System (INIS)

    Jun, Eun Ju

    2009-02-01

    Studies quantifying the contributions of nuclear energy to the countries that operate them are scant. The aim of this study, therefore, is to investigate both qualitatively and quantitatively these benefits, which have proven to be significant. We present estimates of the value of nuclear energy in terms of economics, the environment, security, and social issues, specifically for nuclear energy used in Korea. This study also suggests an approach to quantitatively measure and compare the value of energy ultimately for the generation of electricity from different energy sources Input-Output analysis was used to find out the economic contribution of energy sources. Nuclear energy contributes a similar amount of electricity that coal power plants do but, surprisingly, its value added GDP contribution is almost twice that of coal. Coal, oil, liquefied natural gas (LNG), and nuclear contribute 0.47%, 0.05%, 0.23%, and 0.92% to the value added GDP, respectively. While this may seem small, the four major industries in Korea - primary iron and steel products, semiconductors and related devices, motor vehicles, and petroleum refinery products - contributed 1.3%, 2.1%, 2.2%, and 2.9% to GDP in that same year, respectively. To measure the environmental effect, a carbon-tax scenario was used. Considering both health effects and the carbon-tax scenario, nuclear had the lowest environmental cost at 0.29 won/kWh. Coal had the highest at 24.47 won/kWh, followed by oil at 19.52 won/kWh, and LNG at 12.98 won/kWh. Therefore, if the carbon-tax (or some constraint) is imposed for future and current environmental concerns, nuclear energy's competitiveness will only increase. In spite of the importance of nuclear energy for electricity generation in Korea, the public's attitude towards nuclear energy is not favorable. This negative social perception was defined as the social cost of nuclear energy. To estimate it, a Contingent Valuation Method (CVM) was utilized. This method estimates the

  17. Simulation methods for nuclear production scheduling

    International Nuclear Information System (INIS)

    Miles, W.T.; Markel, L.C.

    1975-01-01

    Recent developments and applications of simulation methods for use in nuclear production scheduling and fuel management are reviewed. The unique characteristics of the nuclear fuel cycle as they relate to the overall optimization of a mixed nuclear-fossil system in both the short-and mid-range time frame are described. Emphasis is placed on the various formulations and approaches to the mid-range planning problem, whose objective is the determination of an optimal (least cost) system operation strategy over a multi-year planning horizon. The decomposition of the mid-range problem into power system simulation, reactor core simulation and nuclear fuel management optimization, and system integration models is discussed. Present utility practices, requirements, and research trends are described. 37 references

  18. A simple and fast method for extraction and quantification of cryptophyte phycoerythrin

    DEFF Research Database (Denmark)

    Thoisen, Christina Vinum; Hansen, Benni Winding; Nielsen, Søren Laurentius

    2017-01-01

    The microalgal pigment phycoerythrin (PE) is of commercial interest as natural colorant in food and cosmetics, as well as fluoroprobes for laboratory analysis. Several methods for extraction and quantification of PE are available but they comprise typically various extraction buffers, repetitive...

  19. Critical assessment of three high performance liquid chromatography analytical methods for food carotenoid quantification

    NARCIS (Netherlands)

    Dias, M.G.; Oliveira, L.; Camoes, M.F.G.F.C.; Nunes, B.; Versloot, P.; Hulshof, P.J.M.

    2010-01-01

    Three sets of extraction/saponification/HPLC conditions for food carotenoid quantification were technically and economically compared. Samples were analysed for carotenoids a-carotene, ß-carotene, ß-cryptoxanthin, lutein, lycopene, and zeaxanthin. All methods demonstrated good performance in the

  20. Development of an indirect method of microalgal lipid quantification ...

    African Journals Online (AJOL)

    Lipid content was determined gravimetrically and the fluorescence of the extract was measured using the microemulsion method at emission and excitation wavelengths of 540 and 617 nm. The equivalent oil content of the extracted lipid was correlated to the fluorescence of pure olive oil using the microemulsion method.

  1. Mass Spectrometry Method for Quantification of Telmisartan in Hum

    African Journals Online (AJOL)

    The reported HPLC methods used column switching or tedious and expensive solid phase extraction methods or longer run time. UPLC is a new category of separation science which builds upon well-established principles of liquid chromatography, using sub-2 µm porous particles. These particles operate at elevated.

  2. Quantification of geopolymers production by chemical methods- A short review

    Science.gov (United States)

    Siyal, Ahmer Ali; Azizli, Khairun Azizi; Ismail, Lukman; Man, Zakaria; Khan, Muhammad Irfan

    2015-07-01

    Inorganic polymers are the aluminosilicate materials possessing properties superior than ordinary Portland cement. In this review paper the chemical techniques used for determining degree of reaction of fly ash or the quantity of geopolymer material produced have been discussed. These methods determine the amount of product formed in percentages. The methods include HCl method, salicylic acid method, and picric acid method. These methods are not only used for fly ash but they are being used for determining the degree of reactions of metakaolin and other pozzolanic materials. The picric acid is an explosive material and its transportation in high concentration is dangerous. During its use in laboratory there is also the risk of fire associated with it. According to the microscopic analysis results the picric acid attack dissolves small amount of fine unreacted fly ash particles also. The salicylic acid is easily available but the residue from its treatment contains unreacted fly ash particles, hydration phases, and certain parts of unreacted OPC. The residue from HCl and salicylic acid attack contains MgO particles which is the part of the hydration product. The HCl method is mostly used due to simple process and lower standard deviation.

  3. An Optimized Method for Quantification of Pathogenic Leptospira in Environmental Water Samples

    OpenAIRE

    Riediger, Irina N.; Hoffmaster, Alex R.; Casanovas-Massana, Arnau; Biondo, Alexander W.; Ko, Albert I.; Stoddard, Robyn A.

    2016-01-01

    Leptospirosis is a zoonotic disease usually acquired by contact with water contaminated with urine of infected animals. However, few molecular methods have been used to monitor or quantify pathogenic Leptospira in environmental water samples. Here we optimized a DNA extraction method for the quantification of leptospires using a previously described Taqman-based qPCR method targeting lipL32, a gene unique to and highly conserved in pathogenic Leptospira. QIAamp DNA mini, MO BIO PowerWater DNA...

  4. "Other" indirect methods for nuclear astrophysics

    Science.gov (United States)

    Trache, Livius

    2018-01-01

    In the house of Trojan Horse Method (THM), I will say a few words about "other" indirect methods we use in Nuclear Physics for Astrophysics. In particular those using Rare Ion Beams that can be used to evaluate radiative proton capture reactions. I add words about work done with the Professore we celebrate today. With a proposal, and some results with TECSA, for a simple method to produce and use isomeric beam of 26mAl.

  5. Performance of spectral fitting methods for vegetation fluorescence quantification

    NARCIS (Netherlands)

    Meroni, M.; Busetto, D.; Colombo, R.; Guanter, L.; Moreno, J.; Verhoef, W.

    2010-01-01

    The Fraunhofer Line Discriminator (FLD) principle has long been considered as the reference method to quantify solar-induced chlorophyll fluorescence (F) from passive remote sensing measurements. Recently, alternative retrieval algorithms based on the spectral fitting of hyperspectral radiance

  6. High sensitivity boron quantification in bulk silicon using the {sup 11}B(p,{alpha}{sub 0}){sup 8}Be nuclear reaction

    Energy Technology Data Exchange (ETDEWEB)

    Moro, Marcos V.; Silva, Tiago F. da; Added, Nemitala; Rizutto, Marcia A.; Tabacniks, Manfredo H. [Instituto de Fisica da Universidade de Sao Paulo, C.P. 66318, 05315-970 Sao Paulo, SP (Brazil); Neira, John B.; Neto, Joao B. F. [Institute of Research Tecnology, Cidade Universitaria, SP, 05508-091 (Brazil)

    2013-05-06

    There is a great need to quantify sub-ppm levels of boron in bulk silicon. There are several methods to analyze B in Si: Nuclear Reaction Analysis using the {sup 11}B(p,{alpha}{sub 0}){sup 8}Be reaction exhibits a quantification limit of some hundreds ppm of B in Si. Heavy Ion Elastic Recoil Detection Analysis offers a detection limit of 5 to 10 at. ppm. Secondary Ion Mass Spectrometry is the method of choice of the semiconductor industry for the analysis of B in Si. This work verifies the use of NRA to quantify B in Si, and the corresponding detection limits. Proton beam with 1.6 up to 2.6 MeV was used to obtain the cross-section of the {sup 11}B(p,{alpha}{sub 0}){sup 8}Be nuclear reaction at 170 Degree-Sign scattering angle. The results show good agreementwith literature indicating that the quantification of boron in silicon can be achieved at 100 ppm level (high sensitivity) at LAMFI-IFUSP with about 16% uncertainty. Increasing the detection solid angle and the collected beam charge, can reduce the detection limit to less than 100 ppm meeting present technological needs.

  7. Nuclear and nuclear related analytical methods applied in environmental research

    International Nuclear Information System (INIS)

    Popescu, Ion V.; Gheboianu, Anca; Bancuta, Iulian; Cimpoca, G. V; Stihi, Claudia; Radulescu, Cristiana; Oros Calin; Frontasyeva, Marina; Petre, Marian; Dulama, Ioana; Vlaicu, G.

    2010-01-01

    Nuclear Analytical Methods can be used for research activities on environmental studies like water quality assessment, pesticide residues, global climatic change (transboundary), pollution and remediation. Heavy metal pollution is a problem associated with areas of intensive industrial activity. In this work the moss bio monitoring technique was employed to study the atmospheric deposition in Dambovita County Romania. Also, there were used complementary nuclear and atomic analytical methods: Neutron Activation Analysis (NAA), Atomic Absorption Spectrometry (AAS) and Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES). These high sensitivity analysis methods were used to determine the chemical composition of some samples of mosses placed in different areas with different pollution industrial sources. The concentrations of Cr, Fe, Mn, Ni and Zn were determined. The concentration of Fe from the same samples was determined using all these methods and we obtained a very good agreement, in statistical limits, which demonstrate the capability of these analytical methods to be applied on a large spectrum of environmental samples with the same results. (authors)

  8. Validated RP-HPLC Method for Quantification of Phenolic ...

    African Journals Online (AJOL)

    Purpose: To evaluate the total phenolic content and antioxidant potential of the methanol extracts of aerial parts and roots of Thymus sipyleus Boiss and also to determine some phenolic compounds using a newly developed and validated reversed phase high performance liquid chromatography (RP-HPLC) method.

  9. Condensed matter studies by nuclear methods

    International Nuclear Information System (INIS)

    Krolas, K.; Tomala, K.

    1988-01-01

    The separate abstract was prepared for 1 of the papers in this volume. The remaining 13 papers dealing with the use but not with advances in the use of nuclear methods in studies of condensed matter, were considered outside the subject scope of INIS. (M.F.W.)

  10. Noninvasive quantification of myocardial perfusion heterogeneity by Markovian analysis in SPECT nuclear imaging

    International Nuclear Information System (INIS)

    Pons, G.

    2011-01-01

    Cardiovascular diseases are the leading cause of mortality worldwide, and third of these deaths are caused by coronary artery disease and rupture of vulnerable atherosclerotic plaques. The heterogeneous alteration of the coronary microcirculation is an early phenomenon associated with many cardiovascular risk factors that can strongly predict the subsequent development of coronary artery disease, and lead to the appearance of myocardial perfusion heterogeneity. Nuclear medicine allows the study of myocardial perfusion in clinical routine through scintigraphic scans performed after injection of a radioactive tracer of coronary blood flow. Analysis of scintigraphic perfusion images currently allows the detection of myocardial ischemia, but the ability of the technique to measure the perfusion heterogeneity in apparently normally perfused areas is unknown. The first part of this thesis focuses on a retrospective clinical study to determine the feasibility of myocardial perfusion heterogeneity quantification measured by Thallium-201 single photon emission computed tomography (SPECT) in diabetic patients compared with healthy subjects. The clinical study has demonstrated the ability of routine thallium-201 SPECT imaging to quantify greater myocardial perfusion heterogeneity in diabetic patients compared with normal subjects. The second part of this thesis tests the hypothesis that the myocardial perfusion heterogeneity could be quantified in small animal SPECT imaging by Thallium-201 and/or Technetium-99m-MIBI in an experimental study using two animal models of diabetes, and is correlated with histological changes. The lack of difference in myocardial perfusion heterogeneity between control and diabetic animals suggests that animal models are poorly suited, or that the technology currently available does not seem satisfactory to obtain similar results as the clinical study. (author)

  11. Critical points of DNA quantification by real-time PCR – effects of DNA extraction method and sample matrix on quantification of genetically modified organisms

    Science.gov (United States)

    Cankar, Katarina; Štebih, Dejan; Dreo, Tanja; Žel, Jana; Gruden, Kristina

    2006-01-01

    Background Real-time PCR is the technique of choice for nucleic acid quantification. In the field of detection of genetically modified organisms (GMOs) quantification of biotech products may be required to fulfil legislative requirements. However, successful quantification depends crucially on the quality of the sample DNA analyzed. Methods for GMO detection are generally validated on certified reference materials that are in the form of powdered grain material, while detection in routine laboratories must be performed on a wide variety of sample matrixes. Due to food processing, the DNA in sample matrixes can be present in low amounts and also degraded. In addition, molecules of plant origin or from other sources that affect PCR amplification of samples will influence the reliability of the quantification. Further, the wide variety of sample matrixes presents a challenge for detection laboratories. The extraction method must ensure high yield and quality of the DNA obtained and must be carefully selected, since even components of DNA extraction solutions can influence PCR reactions. GMO quantification is based on a standard curve, therefore similarity of PCR efficiency for the sample and standard reference material is a prerequisite for exact quantification. Little information on the performance of real-time PCR on samples of different matrixes is available. Results Five commonly used DNA extraction techniques were compared and their suitability for quantitative analysis was assessed. The effect of sample matrix on nucleic acid quantification was assessed by comparing 4 maize and 4 soybean matrixes. In addition 205 maize and soybean samples from routine analysis were analyzed for PCR efficiency to assess variability of PCR performance within each sample matrix. Together with the amount of DNA needed for reliable quantification, PCR efficiency is the crucial parameter determining the reliability of quantitative results, therefore it was chosen as the primary

  12. Critical points of DNA quantification by real-time PCR--effects of DNA extraction method and sample matrix on quantification of genetically modified organisms.

    Science.gov (United States)

    Cankar, Katarina; Stebih, Dejan; Dreo, Tanja; Zel, Jana; Gruden, Kristina

    2006-08-14

    Real-time PCR is the technique of choice for nucleic acid quantification. In the field of detection of genetically modified organisms (GMOs) quantification of biotech products may be required to fulfil legislative requirements. However, successful quantification depends crucially on the quality of the sample DNA analyzed. Methods for GMO detection are generally validated on certified reference materials that are in the form of powdered grain material, while detection in routine laboratories must be performed on a wide variety of sample matrixes. Due to food processing, the DNA in sample matrixes can be present in low amounts and also degraded. In addition, molecules of plant origin or from other sources that affect PCR amplification of samples will influence the reliability of the quantification. Further, the wide variety of sample matrixes presents a challenge for detection laboratories. The extraction method must ensure high yield and quality of the DNA obtained and must be carefully selected, since even components of DNA extraction solutions can influence PCR reactions. GMO quantification is based on a standard curve, therefore similarity of PCR efficiency for the sample and standard reference material is a prerequisite for exact quantification. Little information on the performance of real-time PCR on samples of different matrixes is available. Five commonly used DNA extraction techniques were compared and their suitability for quantitative analysis was assessed. The effect of sample matrix on nucleic acid quantification was assessed by comparing 4 maize and 4 soybean matrixes. In addition 205 maize and soybean samples from routine analysis were analyzed for PCR efficiency to assess variability of PCR performance within each sample matrix. Together with the amount of DNA needed for reliable quantification, PCR efficiency is the crucial parameter determining the reliability of quantitative results, therefore it was chosen as the primary criterion by which to

  13. Critical points of DNA quantification by real-time PCR – effects of DNA extraction method and sample matrix on quantification of genetically modified organisms

    Directory of Open Access Journals (Sweden)

    Žel Jana

    2006-08-01

    Full Text Available Abstract Background Real-time PCR is the technique of choice for nucleic acid quantification. In the field of detection of genetically modified organisms (GMOs quantification of biotech products may be required to fulfil legislative requirements. However, successful quantification depends crucially on the quality of the sample DNA analyzed. Methods for GMO detection are generally validated on certified reference materials that are in the form of powdered grain material, while detection in routine laboratories must be performed on a wide variety of sample matrixes. Due to food processing, the DNA in sample matrixes can be present in low amounts and also degraded. In addition, molecules of plant origin or from other sources that affect PCR amplification of samples will influence the reliability of the quantification. Further, the wide variety of sample matrixes presents a challenge for detection laboratories. The extraction method must ensure high yield and quality of the DNA obtained and must be carefully selected, since even components of DNA extraction solutions can influence PCR reactions. GMO quantification is based on a standard curve, therefore similarity of PCR efficiency for the sample and standard reference material is a prerequisite for exact quantification. Little information on the performance of real-time PCR on samples of different matrixes is available. Results Five commonly used DNA extraction techniques were compared and their suitability for quantitative analysis was assessed. The effect of sample matrix on nucleic acid quantification was assessed by comparing 4 maize and 4 soybean matrixes. In addition 205 maize and soybean samples from routine analysis were analyzed for PCR efficiency to assess variability of PCR performance within each sample matrix. Together with the amount of DNA needed for reliable quantification, PCR efficiency is the crucial parameter determining the reliability of quantitative results, therefore it was

  14. Direct infusion-SIM as fast and robust method for absolute protein quantification in complex samples

    Directory of Open Access Journals (Sweden)

    Christina Looße

    2015-06-01

    Full Text Available Relative and absolute quantification of proteins in biological and clinical samples are common approaches in proteomics. Until now, targeted protein quantification is mainly performed using a combination of HPLC-based peptide separation and selected reaction monitoring on triple quadrupole mass spectrometers. Here, we show for the first time the potential of absolute quantification using a direct infusion strategy combined with single ion monitoring (SIM on a Q Exactive mass spectrometer. By using complex membrane fractions of Escherichia coli, we absolutely quantified the recombinant expressed heterologous human cytochrome P450 monooxygenase 3A4 (CYP3A4 comparing direct infusion-SIM with conventional HPLC-SIM. Direct-infusion SIM revealed only 14.7% (±4.1 (s.e.m. deviation on average, compared to HPLC-SIM and a decreased processing and analysis time of 4.5 min (that could be further decreased to 30 s for a single sample in contrast to 65 min by the LC–MS method. Summarized, our simplified workflow using direct infusion-SIM provides a fast and robust method for quantification of proteins in complex protein mixtures.

  15. Diclofenac quantification: analytical attributes of a spectrophotometric method

    OpenAIRE

    Monzón, Celina M.; Delfino, Mario R.; Sarno, María del C.; Delfino, Mario R. (h)

    2011-01-01

    An spectrophotometric UV-visible technique used to quantify diclofenac and its application to pharmaceutical preparations is described, based on diclofenac oxidation by Fe(III) in the presence of ophenanthroline. The formation of tris (o-phenanthroline)-Fe(II) complex (ferroin) upon diclofenac reaction was investigated. Absorbance of ferroin complex was measured at 506 nm. This method was tested on 50 mg tablets. Operating with placebos, it was found that excipients do not interfere with the ...

  16. Alternative method for quantification of alfa-amylase activity

    Directory of Open Access Journals (Sweden)

    DF. Farias

    Full Text Available A modification of the sensitive agar diffusion method was developed for macro-scale determination of alfa-amylase. The proposed modifications lower costs with the utilisation of starch as substrate and agar as supporting medium. Thus, a standard curve was built using alfa-amylase solution from Aspergillus oryzae, with concentrations ranging from 2.4 to 7,500 U.mL-1. Clear radial diffusion zones were measured after 4 hours of incubation at 20 °C. A linear relationship between the logarithm of enzyme activities and the area of clear zones was obtained. The method was validated by testing α-amylase from barley at the concentrations of 2.4; 60; 300 and 1,500 U.mL-1. The proposed method turned out to be simpler, faster, less expensive and able to determine on a macro-scale α-amylase over a wide range (2.4 to 7,500 U.mL-1 in scientific investigation as well as in teaching laboratory activities.

  17. Rationalization of thermal injury quantification methods: application to skin burns.

    Science.gov (United States)

    Viglianti, Benjamin L; Dewhirst, Mark W; Abraham, John P; Gorman, John M; Sparrow, Eph M

    2014-08-01

    Classification of thermal injury is typically accomplished either through the use of an equivalent dosimetry method (equivalent minutes at 43 °C, CEM43 °C) or through a thermal-injury-damage metric (the Arrhenius method). For lower-temperature levels, the equivalent dosimetry approach is typically employed while higher-temperature applications are most often categorized by injury-damage calculations. The two methods derive from common thermodynamic/physical chemistry origins. To facilitate the development of the interrelationships between the two metrics, application is made to the case of skin burns. This thermal insult has been quantified by numerical simulation, and the extracted time-temperature results served for the evaluation of the respective characterizations. The simulations were performed for skin-surface exposure temperatures ranging from 60 to 90 °C, where each surface temperature was held constant for durations extending from 10 to 110 s. It was demonstrated that values of CEM43 at the basal layer of the skin were highly correlated with the depth of injury calculated from a thermal injury integral. Local values of CEM43 were connected to the local cell survival rate, and a correlating equation was developed relating CEM43 with the decrease in cell survival from 90% to 10%. Finally, it was shown that the cell survival/CEM43 relationship for the cases investigated here most closely aligns with isothermal exposure of tissue to temperatures of ~50 °C. Copyright © 2013 Elsevier Ltd and ISBI. All rights reserved.

  18. A simple and fast method for extraction and quantification of cryptophyte phycoerythrin

    OpenAIRE

    Thoisen, Christina; Hansen, Benni Winding; Nielsen, S?ren Laurentius

    2017-01-01

    The microalgal pigment phycoerythrin (PE) is of commercial interest as natural colorant in food and cosmetics, as well as fluoroprobes for laboratory analysis. Several methods for extraction and quantification of PE are available but they comprise typically various extraction buffers, repetitive freeze-thaw cycles and liquid nitrogen, making extraction procedures more complicated. A simple method for extraction of PE from cryptophytes is described using standard laboratory materials and equip...

  19. Quantification of diatoms in biofilms: Standardisation of methods

    Digital Repository Service at National Institute of Oceanography (India)

    Patil, J.S.; Anil, A.C.

    of diatoms during biofilm removal by both the techni- ques but maximum loss was encountered with ceramic scraping compared to nylon brushing (see Figure 2). The percentage loss using the latter decreased with the increase in diatom abundance in the biofilm, i...:319–335. MacLulich JH. 1986. Experimental evaluation of methods for sampling and assaying intertidal epilithic microalgae. Mar Ecol Prog Ser 34:275–280. Mayack LA, Sorraco RJ, Wilde EW, Pope DH. 1984. Compara- tive effectiveness of chlorine and chlorine dioxide...

  20. Standardless quantification approach of TXRF analysis using fundamental parameter method

    International Nuclear Information System (INIS)

    Szaloki, I.; Taniguchi, K.

    2000-01-01

    New standardless evaluation procedure based on the fundamental parameter method (FPM) has been developed for TXRF analysis. The theoretical calculation describes the relationship between characteristic intensities and the geometrical parameters of the excitation, detection system and the specimen parameters: size, thickness, angle of the excitation beam to the surface and the optical properties of the specimen holder. Most of the TXRF methods apply empirical calibration, which requires the application of special preparation technique. However, the characteristic lines of the specimen holder (Si Kα,β) present information from the local excitation and geometrical conditions on the substrate surface. On the basis of the theoretically calculation of the substrate characteristic intensity the excitation beam flux can be approximated. Taking into consideration the elements are in the specimen material a system of non-linear equation can be given involving the unknown concentration values and the geometrical and detection parameters. In order to solve this mathematical problem PASCAL software was written, which calculates the sample composition and the average sample thickness by gradient algorithm. Therefore, this quantitative estimation of the specimen composition requires neither external nor internal standard sample. For verification of the theoretical calculation and the numerical procedure, several experiments were carried out using mixed standard solution containing elements of K, Sc, V, Mn, Co and Cu in 0.1 - 10 ppm concentration range. (author)

  1. Quantification of emissions from knapsack sprayers: 'the weight method

    Science.gov (United States)

    Garcia-Santos, Glenda; Binder, Claudia R.

    2010-05-01

    Misuse of pesticides kill or seriously sicken thousands of people every year and poison the natural environment. Investigations of occupational and environmental risk have received considerable interest over the last decades. And yet, lack of staff and analytical equipments as well the costs of chemical analyses make difficult, if not impossible, the control of the pesticide contamination and residues in humans, air, water, and soils in developing countries. To assess emissions of pesticides (transport and deposition) during spray application and the risk for the human health and the environment, tracers can be useful tools. Uranine was used to quantify drift airborne and later deposition on the neighbouring field and clothes of the applicator after spraying with a knapsack sprayer in one of the biggest areas of potato production in Colombia. Keeping the same setup the amount of wet drift was measured by difference in the weight of high absorbent papers used to collect the tracer. Surprisingly this weight method (Weight-HAP) was able to explain 71% of the drift variance measured with the tracer. Therefore the weight method is presented as a suitable rapid low cost screening tool, complementary to toxicological tests, to assess air pollution, occupational and environmental exposure generated by the emissions from knapsack sprayers during pesticide application. This technique might be important in places were there is lack of analytical instruments.

  2. On interval methods applied to robot reliability quantification

    International Nuclear Information System (INIS)

    Carreras, C.; Walker, I.D.

    2000-01-01

    Interval methods have recently been successfully applied to obtain significantly improved robot reliability estimates via fault trees for the case of uncertain and time-varying input reliability data. These initial studies generated output distributions of failure probabilities by extending standard interval arithmetic with new abstractions called interval grids which can be parameterized to control the complexity and accuracy of the estimation process. In this paper different parameterization strategies are evaluated in order to gain a more complete understanding of the potential benefits of the approach. A canonical example of a robot manipulator system is used to show that an appropriate selection of parameters is a key issue for the successful application of such novel interval-based methodologies

  3. Quantification of detergent using colorimetric methods in membrane protein crystallography.

    Science.gov (United States)

    Prince, Chelsy; Jia, Zongchao

    2015-01-01

    Membrane protein crystallography has the potential to greatly aid our understanding of membrane protein biology. Yet, membrane protein crystals remain challenging to produce. Although robust methods for the expression and purification of membrane proteins continue to be developed, the detergent component of membrane protein samples is equally important to crystallization efforts. This chapter describes the development of three colorimetric assays for the quantitation of detergent in membrane protein samples and provides detailed protocols. All of these techniques use small sample volumes and have potential applications in crystallography. The application of these techniques in crystallization prescreening, detergent concentration modification, and detergent exchange experiments is demonstrated. It has been observed that the concentration of detergent in a membrane protein sample can be just as important as the protein concentration when attempting to reproduce crystallization lead conditions. © 2015 Elsevier Inc. All rights reserved.

  4. Burnup measuring method for nuclear fuel substances

    International Nuclear Information System (INIS)

    Kobayashi, Iwao.

    1979-01-01

    Purpose: To enable non-destructive measurement for the amounts of fissile nucleides contained in nuclear fuel substances by the use of the difference in neutron spectra. Method: Neutrons generated from a neutron source are irradiated to a nuclear fuel substance, the neutrons generated from the nuclear fission reactions in the nuclear fuel substance are identified as epithermal neutrons and the neutrons from the neutron source as thermal neutrons and only the epithermal neutrons are detected to thereby measure the amounts of fissile neucleides in the nuclear fuel substances. For example, a neutron source is provided movably on one side of fuel assemblies placed in water and a neutron detector is situated on the other side by way of gamma-ray shield made of lead. The neutron detector is covered with a thermal neutron-absorbing substance such as cadmium and boron at the outer circumference so that only the epithermal neutrons can permeate therethrough. A high sensitivity detector for thermal neutron are used for improving the detecting efficiency, and the epithermal neutrons are introduced into hydrogen-containing substances such as paraffins to be detected as thermal neutrons. (Kawakami, Y.)

  5. Effective Methods of Nuclear Power Technology Transfer

    International Nuclear Information System (INIS)

    Shave, D. F.; Kent, G. F.; Giambusso, A.

    1987-01-01

    An effective technology transfer program is a necessary and significant step towards independence in nuclear power technology. Attaining success in the conduct of such a program is a result of a) the donor and recipient jointly understanding the fundamental concepts of the learning process, b) sharing a mutual philosophy involving a partnership relationship, c) joint and careful planning, d) rigorous adherence to proven project management techniques, and e) presence of adequate feedback to assure continuing success as the program proceeds. Several years ago, KEPCO President Park, Jung-KI presented a paper on technology in which he stated, 'Nuclear technology is an integration of many unit disciplines, and thus requires extensive investment and training in order to establish the base for efficient absorption of transferred technology.' This paper addresses President Park's observations by discussing the philosophy, approach, and mechanisms that are necessary to support an efficient and effective process of nuclear power technology transfer. All technical content and presentation methods discussed are based on a technology transfer program developed by Stone and Webster, as an Engineer/Constructor for nuclear power plants, and are designed and implemented to promote the primary program goal - the ability of the trainees and the organization to perform specific nuclear power related multi-discipline function independently and competitively

  6. Density control method for nuclear fuel pellet

    International Nuclear Information System (INIS)

    Wataumi, Kazutoshi.

    1993-01-01

    In a density control for nuclear fuel pellets produced from a raw material powder containing dioxides of uranium or plutonium and oxides of rare earth elements, trimetal octoxides formed from dioxides or the raw material powder not undergoing thermal hysteresis at higher than 1,000degC are added to the raw material powder. Further, trimetal octoxides obtained by calcining a sintering product of the raw material powder is added in addition the trimetal octoxides of the elements. Furthermore, the density of the nuclear fuel pellet is controlled by two kinds of trimetal octoxides obtained by calcining the sintering products of the dioxides, the raw material powder or the nuclear fuel sintering materials at 350 to 800degC. Since trimetal octoxides powder derived from the raw material powder is used as a density increasing additive for the nuclear fuel pellets, it is advantageous in view of stable operation, different from a conventional method of controlling molding condition and sintering condition, and since the trimetal octoxides powder derived from the sintering product is also used, various kinds of density control for nuclear fuel pellets can be conducted. (N.H.)

  7. A simple and fast method for extraction and quantification of cryptophyte phycoerythrin.

    Science.gov (United States)

    Thoisen, Christina; Hansen, Benni Winding; Nielsen, Søren Laurentius

    2017-01-01

    The microalgal pigment phycoerythrin (PE) is of commercial interest as natural colorant in food and cosmetics, as well as fluoroprobes for laboratory analysis. Several methods for extraction and quantification of PE are available but they comprise typically various extraction buffers, repetitive freeze-thaw cycles and liquid nitrogen, making extraction procedures more complicated. A simple method for extraction of PE from cryptophytes is described using standard laboratory materials and equipment. The cryptophyte cells on the filters were disrupted at -80 °C and added phosphate buffer for extraction at 4 °C followed by absorbance measurement. The cryptophyte Rhodomonas salina was used as a model organism. •Simple method for extraction and quantification of phycoerythrin from cryptophytes.•Minimal usage of equipment and chemicals, and low labor costs.•Applicable for industrial and biological purposes.

  8. Mathematical methods for quantification and comparison of dissolution testing data.

    Science.gov (United States)

    Vranić, Edina; Mehmedagić, Aida; Hadzović, Sabira

    2002-12-01

    In recent years, drug release/dissolution from solid dosage forms has been the subject of intense and profitable scientific developments. Whenever a new solid dosage form is developed or produced, it is necessary to ensure that drug dissolution occurs in an appropriate manner. The pharmaceutical industry and the registration authorities do focus, nowadays, on drug dissolution studies. The quantitative analysis of the values obtained in dissolution/release tests is easier when mathematical formulas that express the dissolution results as a function of some of the dosage forms characteristics are used. This work discusses the analysis of data obtained for dissolution profiles under different media pH conditions using mathematical methods of analysis described by Moore and Flanner. These authors have described difference factor (f1) and similarity factor (f2), which can be used to characterise drug dissolution/release profiles. In this work we have used these formulas for evaluation of dissolution profiles of the conventional tablets in different pH of dissolution medium (range of physiological variations).

  9. Quantification of total phosphorothioate in bacterial DNA by a bromoimane-based fluorescent method.

    Science.gov (United States)

    Xiao, Lu; Xiang, Yu

    2016-06-01

    The discovery of phosphorothioate (PT) modifications in bacterial DNA has challenged our understanding of conserved phosphodiester backbone structure of cellular DNA. This exclusive DNA modification in bacteria is not found in animal cells yet, and its biological function in bacteria is still poorly understood. Quantitative information about the bacterial PT modifications is thus important for the investigation of their possible biological functions. In this study, we have developed a simple fluorescence method for selective quantification of total PTs in bacterial DNA, based on fluorescent labeling of PTs and subsequent release of the labeled fluorophores for absolute quantification. The method was highly selective to PTs and not interfered by the presence of reactive small molecules or proteins. The quantification of PTs in an E. coli DNA sample was successfully achieved using our method and gave a result of about 455 PTs per million DNA nucleotides, while almost no detectable PTs were found in a mammalian calf thymus DNA. With this new method, the content of phosphorothioate in bacterial DNA could be successfully quantified, serving as a simple method suitable for routine use in biological phosphorothioate related studies. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. A Comparison of Anti-Nuclear Antibody Quantification Using Automated Enzyme Immunoassays and Immunofluorescence Assays

    DEFF Research Database (Denmark)

    Baronaite, Renata; Engelhart, Merete; Mørk Hansen, Troels

    2014-01-01

    using IFA and automated EIA techniques. The IFA results generated by two independent laboratories were compared with the EIA results from antibodies against double-stranded DNA (dsDNA), from ANA screening, and from tests of the seven included subantigens. The final IFA and EIA results for 386 unique......, with Cohen's kappa value of 0.30 (95% confidence interval (CI) = 0.14-0.46), which decreased to 0.23 (95% CI = 0.06-0.40) when the results for dsDNA were omitted. The EIA method was less reliable for assessing nuclear and speckled reactivity patterns, whereas the IFA method presented difficulties detecting...... dsDNA and Ro activity. The automated EIA method was performed in a similar way to the conventional IFA method using HEp-2 cells; thus, automated EIA may be used as a screening test....

  11. QUANTIFICATION AND BIOREMEDIATION OF ENVIRONMENTAL SAMPLES BY DEVELOPING A NOVEL AND EFFICIENT METHOD

    Directory of Open Access Journals (Sweden)

    Mohammad Osama

    2014-06-01

    Full Text Available Pleurotus ostreatus, a white rot fungus, is capable of bioremediating a wide range of organic contaminants including Polycyclic Aromatic Hydrocarbons (PAHs. Ergosterol is produced by living fungal biomass and used as a measure of fungal biomass. The first part of this work deals with the extraction and quantification of PAHs from contaminated sediments by Lipid Extraction Method (LEM. The second part consists of the development of a novel extraction method (Ergosterol Extraction Method (EEM, quantification and bioremediation. The novelty of this method is the simultaneously extraction and quantification of two different types of compounds, sterol (ergosterol and PAHs and is more efficient than LEM. EEM has been successful in extracting ergosterol from the fungus grown on barley in the concentrations of 17.5-39.94 µg g-1 ergosterol and the PAHs are much more quantified in numbers and amounts as compared to LEM. In addition, cholesterol usually found in animals, has also been detected in the fungus, P. ostreatus at easily detectable levels.

  12. Comparison of MR-less PiB SUVR quantification methods.

    Science.gov (United States)

    Bourgeat, Pierrick; Villemagne, Victor L; Dore, Vincent; Brown, Belinda; Macaulay, S Lance; Martins, Ralph; Masters, Colin L; Ames, David; Ellis, Kathryn; Rowe, Christopher C; Salvado, Olivier; Fripp, Jurgen

    2015-01-01

    (11)C-Pittsburgh compound B (PiB) is a positron emission tomography (PET) tracer designed to bind to amyloid-β (Aβ) plaques, one of the hallmarks of Alzheimer's disease (AD). The potential of PiB as an early marker of AD led to the increasing use of PiB in clinical research studies and development of several F-18-labeled Aβ radiotracers. Automatic quantification of PiB images requires an accurate parcellation of the brain's gray matter (GM). Typically, this relies on a coregistered magnetic resonance imaging (MRI) to extract the cerebellar GM, compute the standardized uptake value ratio (SUVR), and provide parcellation and segmentation for quantification of regional and global SUVR. However, not all subjects can undergo MRI, in which case, an MR-less method is desirable. In this study, we assess 3 PET-only quantification methods: a mean atlas, an adaptive atlas, and a multi-atlas approaches on a database of 237 subjects having been imaged with both PiB PET and MRI. The PET-only methods were compared against MR-based SUVR quantification and evaluated in terms of correlation, average error, and performance in classifying subjects with low and high Aβ deposition. The mean atlas method suffered from a significant bias between the estimated neocortical SUVR and the PiB status, resulting in an overall error of 5.6% (R(2) = 0.98), compared with the adaptive and multi-atlas approaches that had errors of 3.06% and 2.74%, respectively (R(2) = 0.98), and no significant bias. In classifying PiB-negative from PiB-positive subjects, the mean atlas had 10 misclassified subjects compared with 0 for the adaptive and 1 for the multi-atlas approach. Overall, the adaptive and the multi-atlas approaches performed similarly well against the MR-based quantification and would be a suitable replacements for PiB quantification when no MRI is available. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Proceedings of the 2013 International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering - M and C 2013

    International Nuclear Information System (INIS)

    2013-01-01

    The Mathematics and Computation Division of the American Nuclear (ANS) and the Idaho Section of the ANS hosted the 2013 International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M and C 2013). This proceedings contains over 250 full papers with topics ranging from reactor physics; radiation transport; materials science; nuclear fuels; core performance and optimization; reactor systems and safety; fluid dynamics; medical applications; analytical and numerical methods; algorithms for advanced architectures; and validation verification, and uncertainty quantification

  14. Comparison of biofilm cell quantification methods for drinking water distribution systems.

    Science.gov (United States)

    Waller, Sharon A; Packman, Aaron I; Hausner, Martina

    2018-01-01

    Drinking water quality typically degrades after treatment during conveyance through the distribution system. Potential causes include biofilm growth in distribution pipes which may result in pathogen retention, inhibited disinfectant diffusion, and proliferation of bad tastes and odors. However, there is no standard method for direct measurement of biofilms or quantification of biofilm cells in drinking water distribution systems. Three methods are compared here for quantification of biofilm cells grown in pipe loops samplers: biofilm heterotrophic plate count (HPC), biofilm biovolume by confocal laser scanning microscopy (CLSM) and biofilm total cell count by flow cytometry (FCM) paired with Syto 9. Both biofilm biovolume by CLSM and biofilm total cell count by FCM were evaluated for quantification of the whole biofilms (including non-viable cells and viable but not culturable cells). Signal-to-background ratios and overall performance of biofilm biovolume by CLSM and biofilm total cell count by FCM were found to vary with the pipe material. Biofilm total cell count by FCM had a low signal-to-background ratio on all materials, indicating that further development is recommended before application in drinking water environments. Biofilm biovolume by CLSM showed the highest signal-to-background ratio for cement and cast iron, which suggests promise for wider application in full-scale systems. Biofilm biovolume by CLSM and Syto 9 staining allowed in-situ biofilm cell quantification thus elimination variable associated with cell detachment for quantification but had limitations associated with non-specific staining of cement and, to a lesser degree, auto-fluorescence of both cement and polyvinyl chloride materials. Due to variability in results obtained from each method, multiple methods are recommended to assess biofilm growth in drinking water distribution systems. Of the methods investigated here, HPC and CLSM and recommended for further development towards

  15. Indirect scaling methods applied to the identification and quantification of auditory attributes

    DEFF Research Database (Denmark)

    Wickelmaier, Florian

    Auditory attributes, like for example loudness, pitch, sharpness, or tonal prominence, reflect how human listeners perceive their acoustical environment. The identification and of relevant auditory attributes and their quantification are therefore of major concern for different applications...... or the representation of the attributes are derived from modeling the listeners' judgments. The applicability of the developed methods was investigated in a series of experiments which aimed at identifying and quantifying auditory attributes of home-audio reproduction formats (mono, stereo, and multichannel formats...

  16. Comparison of different quantification methods of late gadolinium enhancement in patients with hypertrophic cardiomyopathy

    Energy Technology Data Exchange (ETDEWEB)

    Spiewak, Mateusz, E-mail: mspiewak@ikard.p [First Department of Coronary Artery Disease, Magnetic Resonance Unit, Institute of Cardiology, ul. Alpejska 42, 04-628 Warsaw (Poland); Malek, Lukasz A., E-mail: lmalek@ikard.p [First Department of Coronary Artery Disease, Magnetic Resonance Unit, Institute of Cardiology, ul. Alpejska 42, 04-628 Warsaw (Poland); Misko, Jolanta, E-mail: jmisko@wp.p [Magnetic Resonance Unit, Institute of Cardiology, ul. Alpejska 42, 04-628 Warsaw (Poland); Chojnowska, Lidia, E-mail: lchojnowska@ikard.p [First Department of Coronary Artery Disease, Institute of Cardiology, ul. Alpejska 42, 04-628 Warsaw (Poland); Milosz, Barbara, E-mail: barbara-milosz@tlen.p [Magnetic Resonance Unit, Institute of Cardiology, ul. Alpejska 42, 04-628 Warsaw (Poland); Klopotowski, Mariusz, E-mail: mklopotowski@hotmail.co [First Department of Coronary Artery Disease, Institute of Cardiology, ul. Alpejska 42, 04-628 Warsaw (Poland); Petryka, Joanna, E-mail: joannapetryka@hotmail.co [First Department of Coronary Artery Disease, Magnetic Resonance Unit, Institute of Cardiology, ul. Alpejska 42, 04-628 Warsaw (Poland); Dabrowski, Maciej, E-mail: macidabro@yahoo.co [First Department of Coronary Artery Disease, Institute of Cardiology, ul. Alpejska 42, 04-628 Warsaw (Poland); Kepka, Cezary, E-mail: ckepka@ikard.p [First Department of Coronary Artery Disease, Magnetic Resonance Unit, Institute of Cardiology, ul. Alpejska 42, 04-628 Warsaw (Poland); Ruzyllo, Witold, E-mail: w.ruzyllo@ikard.p [First Department of Coronary Artery Disease, Institute of Cardiology, ul. Alpejska 42, 04-628 Warsaw (Poland)

    2010-06-15

    Aim: There is no consensus regarding the technique of quantification of late gadolinium enhancement (LGE). The aim of the study was to compare different methods of LGE quantification in patients with hypertrophic cardiomyopathy (HCM). Methods: Cardiac magnetic resonance was performed in 33 patients with HCM. First, LGE was quantified by visual assessment by the team of experienced readers and compared with different thresholding techniques: from 1SD to 6SD above mean signal intensity (SI) of remote myocardium, above 50% of maximal SI of the enhanced area (full-width at half maximum, FWHM) and above peak SI of remote myocardium. Results: LGE was present in 25 (78%) of patients. The median mass of LGE varied greatly depending on the quantification method used and was highest with the utilization of 1SD threshold [75.5 g, interquartile range (IQR): 63.3-112.3 g] and lowest for FWHM method (8.4 g, IQR: 4.3-13.3 g). There was no difference in mass of LGE as assessed with 6SD threshold and FWHM when compared to visual assessment (p = 0.19 and p = 0.1, respectively); all other thresholding techniques provided significant differences in the median LGE size when compared to visual analysis. Results for all thresholds, except FWHM were significantly correlated with visual assessment with the strongest correlation for 6SD (rho = 0.956, p < 0.0001). Conclusions: LGE quantification with the use of a threshold of 6SD above the mean SI of the remote myocardium provided the best agreement with visual assessment in patients with HCM.

  17. Helium leak testing methods in nuclear applications

    International Nuclear Information System (INIS)

    Ahmad, Anis

    2004-01-01

    Helium mass-spectrometer leak test is the most sensitive leak test method. It gives very reliable and sensitive test results. In last few years application of helium leak testing has gained more importance due to increased public awareness of safety and environment pollution caused by number of growing chemical and other such industries. Helium leak testing is carried out and specified in most of the critical area applications like nuclear, space, chemical and petrochemical industries

  18. OXIDATION KINETICS AND QUANTIFICATION METHOD OF CHOLESTEROL USING CHOLESTEROL OXIDASE ENZYME CATALYST

    Directory of Open Access Journals (Sweden)

    Iip Izul Falah

    2010-06-01

    Full Text Available In view of health, cholesterol is believed as one of many sources can raise several diseases. Hence, both of research in quantification and developing simple, rapid and accurate analysis method of cholesterol in a sample is very important. Aim of this research was to investigate cholesterol oxidation kinetics and its quantification method based on oxidation of cholesterol and formation complex compound of hexathiocyanato ferat(III, {Fe(SCN6}-3. The kinetics analysis and quantification, involved cholesterol oxidation in 0.1 M and pH 7.0 phosphate buffer solution to produce cholest-4-en-3-one and hydrogen peroxide, in the presence of cholesterol oxidase enzyme. The formed hydrogen peroxide was used to oxidize iron(II ion, which was reacted furthermore with thiocyanate ion to raise the red-brown complex compound. Results of the study showed that the complex was stable at 10-120 min since the reaction was started, with maximum wavelength of 530-540 nm. While the kinetics analysis gave first order oxidation reaction with a reaction rate constant, kapp = 5.22 x 10-2 min-1. Based on this kinetics data, cholesterol analysis method could be developed i.e. by oxidizing cholesterol within 1.5 h using cholesterol oxidase as a catalyst, and then reacted with Fe2+, in a solution containing thiocyanate ion. Absorbencies of solutions of the complex compound, measured at wavelength of 535 nm, were linearly proportional to their cholesterol concentrations, in the range of 50-450 ppm.   Keywords: cholesterol, quantification, kinetics, hexathiocyanato ferat(III

  19. Quantification of the spatial organization of the nuclear lamina as a tool for cell classification

    NARCIS (Netherlands)

    Righolt, C.H.; Zatreanu, D.A.; Raz, V.

    2013-01-01

    The nuclear lamina is the structural scaffold of the nuclear envelope that plays multiple regulatory roles in chromatin organization and gene expression as well as a structural role in nuclear stability. The lamina proteins, also referred to as lamins, determine nuclear lamina organization and

  20. Human factors methods in DOE nuclear facilities

    International Nuclear Information System (INIS)

    Bennett, C.T.; Banks, W.W.; Waters, R.J.

    1993-01-01

    The US Department of Energy (DOE) is in the process of developing a series of guidelines for the use of human factors standards, procedures, and methods to be used in nuclear facilities. This paper discusses the philosophy and process being used to develop a DOE human factors methods handbook to be used during the design cycle. The following sections will discuss: (1) basic justification for the project; (2) human factors design objectives and goals; and (3) role of human factors engineering (HFE) in the design cycle

  1. Applied mathematical methods in nuclear thermal hydraulics

    International Nuclear Information System (INIS)

    Ransom, V.H.; Trapp, J.A.

    1983-01-01

    Applied mathematical methods are used extensively in modeling of nuclear reactor thermal-hydraulic behavior. This application has required significant extension to the state-of-the-art. The problems encountered in modeling of two-phase fluid transients and the development of associated numerical solution methods are reviewed and quantified using results from a numerical study of an analogous linear system of differential equations. In particular, some possible approaches for formulating a well-posed numerical problem for an ill-posed differential model are investigated and discussed. The need for closer attention to numerical fidelity is indicated

  2. Quantification of minerals from ATR-FTIR spectra with spectral interferences using the MRC method

    Science.gov (United States)

    Bosch-Reig, Francisco; Gimeno-Adelantado, José Vicente; Bosch-Mossi, Francisco; Doménech-Carbó, Antonio

    2017-06-01

    A method for quantifying the individual components of mineral samples based on attenuated total reflectance - Fourier transform infrared spectroscopy (ATR-FTIR) is described, extending the constant ratio (CR) method to analytes absorbing in a common range of wavenumbers. Absorbance values in the spectral region where the analytes absorb relative to the absorbance of an internal standard absorbing at a wavenumber where the analytes do not absorb, permits the quantification of N analytes using measurements at N fixed wavenumbers. The method was tested for mixtures of albite, orthoclase, kaolin and quartz.

  3. Comparison of manual and automated quantification methods of 123I-ADAM

    International Nuclear Information System (INIS)

    Kauppinen, T.; Keski-Rahkonen, A.; Sihvola, E.; Helsinki Univ. Central Hospital

    2005-01-01

    123 I-ADAM is a novel radioligand for imaging of the brain serotonin transporters (SERTs). Traditionally, the analysis of brain receptor studies has been based on observer-dependent manual region of interest definitions and visual interpretation. Our aim was to create a template for automated image registrations and volume of interest (VOI) quantification and to show that an automated quantification method of 123 I-ADAM is more repeatable than the manual method. Patients, methods: A template and a predefined VOI map was created from 123 I-ADAM scans done for healthy volunteers (n=15). Scans of another group of healthy persons (HS, n=12) and patients with bulimia nervosa (BN, n=10) were automatically fitted to the template and specific binding ratios (SBRs) were calculated by using the VOI map. Manual VOI definitions were done for the HS and BN groups by both one and two observers. The repeatability of the automated method was evaluated by using the BN group. Results: For the manual method, the interobserver coefficient of repeatability was 0.61 for the HS group and 1.00 for the BN group. The intra-observer coefficient of repeatability for the BN group was 0.70. For the automated method, the coefficient of repeatability was 0.13 for SBRs in midbrain. Conclusion: An automated quantification gives valuable information in addition to visual interpretation decreasing also the total image handling time and giving clear advantages for research work. An automated method for analysing 123 I-ADAM binding to the brain SERT gives repeatable results for fitting the studies to the template and for calculating SBRs, and could therefore replace manual methods. (orig.)

  4. Comparison of manual and automated quantification methods of {sup 123}I-ADAM

    Energy Technology Data Exchange (ETDEWEB)

    Kauppinen, T. [Helsinki Univ. Central Hospital (Finland). HUS Helsinki Medical Imaging Center; Helsinki Univ. Central Hospital (Finland). Division of Nuclear Medicine; Koskela, A.; Ahonen, A. [Helsinki Univ. Central Hospital (Finland). Division of Nuclear Medicine; Diemling, M. [Hermes Medical Solutions, Stockholm (Sweden); Keski-Rahkonen, A.; Sihvola, E. [Helsinki Univ. (Finland). Dept. of Public Health; Helsinki Univ. Central Hospital (Finland). Dept. of Psychiatry

    2005-07-01

    {sup 123}I-ADAM is a novel radioligand for imaging of the brain serotonin transporters (SERTs). Traditionally, the analysis of brain receptor studies has been based on observer-dependent manual region of interest definitions and visual interpretation. Our aim was to create a template for automated image registrations and volume of interest (VOI) quantification and to show that an automated quantification method of {sup 123}I-ADAM is more repeatable than the manual method. Patients, methods: A template and a predefined VOI map was created from {sup 123}I-ADAM scans done for healthy volunteers (n=15). Scans of another group of healthy persons (HS, n=12) and patients with bulimia nervosa (BN, n=10) were automatically fitted to the template and specific binding ratios (SBRs) were calculated by using the VOI map. Manual VOI definitions were done for the HS and BN groups by both one and two observers. The repeatability of the automated method was evaluated by using the BN group. Results: For the manual method, the interobserver coefficient of repeatability was 0.61 for the HS group and 1.00 for the BN group. The intra-observer coefficient of repeatability for the BN group was 0.70. For the automated method, the coefficient of repeatability was 0.13 for SBRs in midbrain. Conclusion: An automated quantification gives valuable information in addition to visual interpretation decreasing also the total image handling time and giving clear advantages for research work. An automated method for analysing {sup 123}I-ADAM binding to the brain SERT gives repeatable results for fitting the studies to the template and for calculating SBRs, and could therefore replace manual methods. (orig.)

  5. Determination of elements by nuclear analytical methods.

    Science.gov (United States)

    Weise, H P; Görner, W; Hedrich, M

    2001-01-01

    The working principle of nuclear analytical methods (NAMs) is not influenced by the chemical bond. Consequently, they are independent counterparts to the well-known chemical procedures. NAMs obey fundamental laws or can be described and understood thoroughly. This qualifies them as candidates for reference methods. Although following similar nuclear reaction schemes, they comprise bulk analyzing capability (neutron and photon activation analysis) as well as detection power in surface near regions of solids (ion beam techniques). Prominent features of NAMs are sensitivity, selectivity, multielement determination and linearity of the calibration function covering a concentration range of several orders of magnitude. Moreover, ion beam techniques allow depth profiling with nm-resolution in several cases while the ion microprobe additionally offers a lateral resolution in the micron-scale. As NAMs require expensive apparatus (nuclear reactor, accelerator in radioactive control areas) their availability is restricted to a small number of suitably equipped institutes. However, they are able to solve complex analytical tasks, take part in key comparisons and play an essential role in the certification of reference materials.

  6. Nuclear Medicine Technology Undergraduate Research Methods.

    Science.gov (United States)

    Nielsen, Cybil J

    2017-12-22

    Introduction: The purpose of this article is to introduce nuclear medicine technology (NMT) educators to a method of incorporating research methodologies into the curriculum. Methods: The research methodology in the NMT program at Indiana University (IU) is taught in five steps (1. Introduction to research articles and statistics 2. Mock project and individual project design 3. Data collection 4. Writing the research paper 5. Presenting the abstract and mentoring new students). These steps could be combined for programs of shorter length or with credit hour restrictions. Results: All IU NMT students (100%) presented their research abstracts as part of a continuing education program for technologists. Seventeen of twenty-five (68%) presented their abstracts at a regional professional meeting. Six of twenty-five (24%) presented their research abstracts at a national professional meeting. Three of those six (50%) received travel grants. Two students submitted their research for publication and one was successful. Conclusion: The goal of incorporating a research methodology program into the nuclear medicine program should be to introduce undergraduates to the research process and instill excitement for new technologists to continue participation in research throughout their career. Copyright © 2017 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  7. A simple method to improve the quantification accuracy of energy-dispersive X-ray microanalysis

    International Nuclear Information System (INIS)

    Walther, T

    2008-01-01

    Energy-dispersive X-ray spectroscopy in a transmission electron microscope is a standard tool for chemical microanalysis and routinely provides qualitative information on the presence of all major elements above Z=5 (boron) in a sample. Spectrum quantification relies on suitable corrections for absorption and fluorescence, in particular for thick samples and soft X-rays. A brief presentation is given of an easy way to improve quantification accuracy by evaluating the intensity ratio of two measurements acquired at different detector take-off angles. As the take-off angle determines the effective sample thickness seen by the detector this method corresponds to taking two measurements from the same position at two different thicknesses, which allows to correct absorption and fluorescence more reliably. An analytical solution for determining the depth of a feature embedded in the specimen foil is also provided.

  8. A Quantification Method for Breast Tissue Thickness and Iodine Concentration Using Photon-Counting Detector.

    Science.gov (United States)

    Han, Seokmin

    2015-10-01

    The purpose of contrast-enhanced digital mammography (CEDM) is to facilitate detection and characterization of the lesions in the breast using intravenous injection of an iodinated contrast agent. CEDM produces iodine images with gray levels proportional to iodine concentration at each pixel, which can be considered as quantification of iodine. While dual-energy CEDM requires an accurate knowledge of the thickness of compressed breast for the quantification, it is known that the accuracy of the built-in thickness measurement is not satisfactory. Triple-energy CEDM, which can provide a third image, can alleviate the limitation of dual-energy CEDM. If triple exposure technique is applied, it can lead to increased risk of motion artifact. An energy-resolving photon-counting detector (PCD) that can acquire multispectral X-ray images can reduce the risk of motion artifact. In this research, an easily implementable method for iodine quantification in breast imaging was suggested, and it was applied to the images of breast phantom with various iodine concentrations. The iodine concentrations in breast phantom simulate lesions filled with different iodine concentrations in the breast. The result shows that the proposed method can quantify the iodine concentrations in breast phantom accurately.

  9. Dietary Sugars Analysis: Quantification of Fructooligossacharides during Fermentation by HPLC-RI Method.

    Science.gov (United States)

    Correia, Daniela M; Dias, Luís G; Veloso, Ana C A; Dias, Teresa; Rocha, Isabel; Rodrigues, Lígia R; Peres, António M

    2014-01-01

    In this work, a simple chromatographic method is proposed and in-house validated for the quantification of total and individual fructooligossacharides (e.g., 1-kestose, nystose, and 1(F)-fructofuranosylnystose). It was shown that a high-performance liquid chromatography with refractive index detector could be used to monitor the dynamic of fructooligossacharides production via sucrose fermentation using Aspergillus aculeatus. This analytical technique may be easily implemented at laboratorial or industrial scale for fructooligossacharides mass-production monitoring allowing also controlling the main substrate (sucrose) and the secondary by-products (glucose and fructose). The proposed chromatographic method had a satisfactory intra- and inter-day variability (in general, with a relative standard deviation lower than 5%), high sensitivity for each sugar (usually, with a relative error lower than 5%), and low detection (lower than 0.06 ± 0.04 g/L) and quantification (lower than 0.2 ± 0.1 g/L) limits. The correct quantification of fructooligossacharides in fermentative media may allow a more precise nutritional formulation of new functional foods, since it is reported that different fructooligossacharides exhibit different biological activities and effects.

  10. Nuclear Astrophysics with the Trojan Horse Method

    Science.gov (United States)

    Spitaleri, Claudio

    2015-04-01

    In stars nuclear reactions take place at physical conditions that make very hard their measurements in terrestrial laboratories. Indeed in astrophysical environments nuclear reactions between charged nuclei occur at energies much lower than the Coulomb barrier and the corresponding cross section values lie in the nano or picobarn regime, that makes their experimental determination extremely difficult. This is due to the very small barrier Coulomb penetration factor, which produces an exponential fall off of the cross section as a function of energy. Additionally, the presence of the electron screening needs to be properly taken into account when dealing with cross section measurements at low-energies. The Trojan Horse Method (THM) represents an independent experimental technique, allowing one to measure astrophysical S(E)-factor bared from both Coulomb penetration and electron screening effects. The main advantages and the most recent results are here shown and discussed.

  11. Mathematical and computational methods in nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Dehesa, J.S.; Gomez, J.M.G.; Polls, A.

    1983-01-01

    The lectures, covering various aspects of the many-body problem in nuclei, review present knowledge and include some unpublished material as well. Bohigas and Giannoni discuss the fluctuation properties of spectra of many-body systems by means of random matrix theories, and the attempts to search for quantum mechanical manifestations of classical chaotic motion. The role of spectral distributions (expressed as explicit functions of the microscopic matrix elements of the Hamiltonian) in the statistical spectroscopy of nuclear systems is analyzed by French. Zucker, after a brief review of the theoretical basis of the shell model, discusses a reformulation of the theory of effective interactions and gives a survey of the linked cluster theory. Goeke's lectures center on the mean-field methods, particularly TDHF, used in the investigation of the large-amplitude nuclear collective motion, pointing out both the successes and failures of the theory.

  12. The application of nuclear geophysics method to evaluate the geological environment of nuclear waste repository

    International Nuclear Information System (INIS)

    Fang, Fang; Xiaoqin, Wang; Kuanliang, Li; Xinsheng, Hou; Jingliang, Zhu; Binxin, Hu

    2002-01-01

    'Cleanly land should be given back ground.' This is a task while nuclear engineering have to be retired. We applied the nuclear geophysics methods and combined with geology, hydrology, geochemistry, and other methods, to evaluate the environment of nuclear waste repository. It is the important work to renovate environment and prepare technology before ex-service of the nuclear engineering

  13. New methods in nuclear reaction theory

    International Nuclear Information System (INIS)

    Redish, E.F.

    1979-01-01

    Standard nuclear reaction methods are limited to treating problems that generalize two-body scattering. These are problems with only one continuous (vector) degree of freedom (CDOF). The difficulty in extending these methods to cases with two or more CDOFs is not just the additional numerical complexity: the mathematical problem is usually not well-posed. It is hard to guarantee that the proper boundary conditions (BCs) are satisfied. Since this is not generally known, the discussion is begun by considering the physics of this problem in the context of coupled-channel calculations. In practice, the difficulties are usually swept under the rug by the use of a highly developed phenomenology (or worse, by the failure to test a calculation for convergence). This approach limits the kind of reactions that can be handled to ones occurring on the surface of where a second CDOF can be treated perturbatively. In the past twenty years, the work of Faddeev, the quantum three-body problem has been solved. Many techniques (and codes) are now available for solving problems with two CDOFs. A method for using these techniques in the nuclear N-body problem is presented. A set of well-posed (connected kernal) equations for physical scattering operators is taken. Then it is shown how approximation schemes can be developed for a wide range of reaction mechanisms. The resulting general framework for a reaction theory can be applied to a number of nuclear problems. One result is a rigorous treatment of multistep transfer reactions with the possibility of systematically generating corrections. The application of the method to resonance reactions and knock-out is discussed. 12 figures

  14. Comparison of three methods for accurate quantification of hydrogen sulfide during fermentation

    International Nuclear Information System (INIS)

    Ugliano, Maurizio; Henschke, Paul A.

    2010-01-01

    Two analytical approaches for the rapid measurement of hydrogen sulfide (H 2 S) have been compared to a reference method for their potential application as a rapid procedure for the quantification of H 2 S formed during alcoholic fermentations. In one case, silver nitrate, lead acetate, and mercuric chloride selective detector tubes for the analysis of H 2 S in air were investigated. In the other case, a commercially available kit for the diagnosis of nitrogen starvation in wine fermentations, which is based on the detection of H 2 S, was investigated. Both methods exhibited excellent linearity of response, but the mercuric chloride tube was found to suffer from interferences due to the concomitant presence of mercaptans, which resulted in erroneous H 2 S quantification. A comparative study between the two methods studied and the cadmium hydroxide/methylene blue reference method commonly used to monitor H 2 S indicate that the two new methods displayed better recoveries at low H 2 S concentrations, besides being more rapid and economical. The two new methods were successfully used to quantify production of H 2 S in different grape juice fermentations. The suitability of each method for the study of specific aspects of H 2 S production during fermentation is discussed.

  15. Comparison of three methods for accurate quantification of hydrogen sulfide during fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Ugliano, Maurizio, E-mail: maurizio.ugliano@awri.com.au [Australian Wine Research Institute, PO Box 197, Glen Osmond, SA 5064 (Australia); Henschke, Paul A. [Australian Wine Research Institute, PO Box 197, Glen Osmond, SA 5064 (Australia)

    2010-02-15

    Two analytical approaches for the rapid measurement of hydrogen sulfide (H{sub 2}S) have been compared to a reference method for their potential application as a rapid procedure for the quantification of H{sub 2}S formed during alcoholic fermentations. In one case, silver nitrate, lead acetate, and mercuric chloride selective detector tubes for the analysis of H{sub 2}S in air were investigated. In the other case, a commercially available kit for the diagnosis of nitrogen starvation in wine fermentations, which is based on the detection of H{sub 2}S, was investigated. Both methods exhibited excellent linearity of response, but the mercuric chloride tube was found to suffer from interferences due to the concomitant presence of mercaptans, which resulted in erroneous H{sub 2}S quantification. A comparative study between the two methods studied and the cadmium hydroxide/methylene blue reference method commonly used to monitor H{sub 2}S indicate that the two new methods displayed better recoveries at low H{sub 2}S concentrations, besides being more rapid and economical. The two new methods were successfully used to quantify production of H{sub 2}S in different grape juice fermentations. The suitability of each method for the study of specific aspects of H{sub 2}S production during fermentation is discussed.

  16. Isotope-dilution TurboFlow-LC-MS/MS method for simultaneous quantification of ten steroid metabolites in serum

    DEFF Research Database (Denmark)

    Søeborg, Tue; Frederiksen, Hanne; Johannsen, Trine Holm

    2017-01-01

    An isotope-dilution TurboFlow-LC-MS/MS method for simultaneous quantification of the ten steroid metabolites dehydroepiandrosterone sulfate (DHEAS), progesterone, 17α-hydroxyprogesterone (17-OHP), Δ4-androstenedione (Adione), corticosterone, 11-deoxycortisol, cortisol, cortisone, testosterone (T...

  17. Quantification and differentiation of nuclear tracks in SSNTD by simulation of their diffraction pattern

    International Nuclear Information System (INIS)

    Palacios, D.; Palacios, F.; Vitoria, T.

    2001-01-01

    An alternative method to count and differentiate nuclear tracks in SSNTD is described. The method is based on the simulation and analysis of Fraunhofer diffraction pattern formed when coherent light passes through tracks of an etched detector. Transformation of the optical system was carried out by a digital procedure of Fourier Transform. Spectral analysis of the radial intensity distribution facilitated to quantify and differentiate tracks for its diameters. The formalism outlined is also applicable to elliptic tracks. Different components of the developed software (TRACKS) are shown. Results obtained by simulation and by the theoretical model gave satisfactory concordance. With the purpose of optimizing the proposed method, technical variants of optic microscopy are discussed. A model that considers the correction for track overlapping was developed and applied. Count error is small when track distribution changes in the field of view. The proposed method can differentiate genuine tracks from defects and anomalies of the detector. Analyzing the influence of illumination conditions and focus of the microscope on track counting and discrimination, the preliminary treatment of images obtained by the CCD camera was established. The proposed method allows, with low cost and operation simplicity, guaranteeing high speed in the obtaining of results, to calculate with good approximation track density in CR-39 detectors and to differentiate the energy of incident ions by track diameters with satisfactory accuracy and precision

  18. Validation of an HPLC method for quantification of total quercetin in Calendula officinalis extracts

    International Nuclear Information System (INIS)

    Muñoz Muñoz, John Alexander; Morgan Machado, Jorge Enrique; Trujillo González, Mary

    2015-01-01

    Introduction: calendula officinalis extracts are used as natural raw material in a wide range of pharmaceutical and cosmetic preparations; however, there are no official methods for quality control of these extracts. Objective: to validate an HPLC-based analytical method for quantification total quercetin in glycolic and hydroalcoholic extracts of Calendula officinalis. Methods: to quantify total quercetin content in the matrices, it was necessary to hydrolyze flavonoid glycosides under optimal conditions. The chromatographic separation was performed on a C-18 SiliaChrom 4.6x150 mm 5 µm column, adapted to a SiliaChrom 5 um C-18 4.6x10 mm precolumn, with UV detection at 370 nm. The gradient elution was performed with a mobile phase consisting of methanol (MeOH) and phosphoric acid (H 3 PO 4 ) (0.08 % w/v). The quantification was performed through the external standard method and comparison with quercetin reference standard. Results: the studied method selectivity against extract components and degradation products under acid/basic hydrolysis, oxidation and light exposure conditions showed no signals that interfere with the quercetin quantification. It was statistically proved that the method is linear from 1.0 to 5.0 mg/mL. Intermediate precision expressed as a variation coefficient was 1.8 and 1.74 % and the recovery percentage was 102.15 and 101.32 %, for glycolic and hydroalcoholic extracts, respectively. Conclusions: the suggested methodology meets the quality parameters required for quantifying total quercetin, which makes it a useful tool for quality control of C. officinalis extracts. (author)

  19. MS Western, a Method of Multiplexed Absolute Protein Quantification is a Practical Alternative to Western Blotting.

    Science.gov (United States)

    Kumar, Mukesh; Joseph, Shai R; Augsburg, Martina; Bogdanova, Aliona; Drechsel, David; Vastenhouw, Nadine L; Buchholz, Frank; Gentzel, Marc; Shevchenko, Andrej

    2018-02-01

    Absolute quantification of proteins elucidates the molecular composition, regulation and dynamics of multiprotein assemblies and networks. Here we report on a method termed MS Western that accurately determines the molar abundance of dozens of user-selected proteins at the subfemtomole level in whole cell or tissue lysates without metabolic or chemical labeling and without using specific antibodies. MS Western relies on GeLC-MS/MS and quantifies proteins by in-gel codigestion with an isotopically labeled QconCAT protein chimera composed of concatenated proteotypic peptides. It requires no purification of the chimera and relates the molar abundance of all proteotypic peptides to a single reference protein. In comparative experiments, MS Western outperformed immunofluorescence Western blotting by the protein detection specificity, linear dynamic range and sensitivity of protein quantification. To validate MS Western in an in vivo experiment, we quantified the molar content of zebrafish core histones H2A, H2B, H3 and H4 during ten stages of early embryogenesis. Accurate quantification (CV<10%) corroborated the anticipated histones equimolar stoichiometry and revealed an unexpected trend in their total abundance. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Validity and reliability of autofluorescence-based quantification method of dental plaque.

    Science.gov (United States)

    Han, Sun-Young; Kim, Bo-Ra; Ko, Hae-Youn; Kwon, Ho-Keun; Kim, Baek-Il

    2015-12-01

    The aim of this study was to evaluate validity and reliability of autofluorescence-based plaque quantification (APQ) method. The facial surfaces of 600 sound anterior teeth of 50 subjects were examined. The subjects received dental plaque examination using Turesky modified Quigley Hein plaque index (QHI) and Silness & Löe plaque index (SLI). The autofluorescence images were taken before the plaque examination with Quantitative Light-induced Fluorescence-Digital, and plaque percent index (PPI) was calculated. Correlation between two existing plaque indices and the PPI of the APQ method was evaluated to find which level of plaque redness on tooth (ΔR) by the APQ method shows the highest correlation. The area under the ROC curve (AUC) analysis and intra- and inter-examiner reliability tests were performed. The PPIΔR20 of the APQ method showed a moderate correlation with two existing plaque indices (rho of QHI=0.48, SLI=0.51). This methodology fell in the fair category and it had an excellent reliability. The APQ method also showed possibility to detect heavy plaque with fair validity. The APQ method demonstrated excellent reliability, and fair validity, compared with 2 conventional indices. The plaque quantification described has the potential to be used in clinical evaluation of oral hygiene procedures. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. MPQ-cytometry: a magnetism-based method for quantification of nanoparticle-cell interactions.

    Science.gov (United States)

    Shipunova, V O; Nikitin, M P; Nikitin, P I; Deyev, S M

    2016-07-07

    Precise quantification of interactions between nanoparticles and living cells is among the imperative tasks for research in nanobiotechnology, nanotoxicology and biomedicine. To meet the challenge, a rapid method called MPQ-cytometry is developed, which measures the integral non-linear response produced by magnetically labeled nanoparticles in a cell sample with an original magnetic particle quantification (MPQ) technique. MPQ-cytometry provides a sensitivity limit 0.33 ng of nanoparticles and is devoid of a background signal present in many label-based assays. Each measurement takes only a few seconds, and no complicated sample preparation or data processing is required. The capabilities of the method have been demonstrated by quantification of interactions of iron oxide nanoparticles with eukaryotic cells. The total amount of targeted nanoparticles that specifically recognized the HER2/neu oncomarker on the human cancer cell surface was successfully measured, the specificity of interaction permitting the detection of HER2/neu positive cells in a cell mixture. Moreover, it has been shown that MPQ-cytometry analysis of a HER2/neu-specific iron oxide nanoparticle interaction with six cell lines of different tissue origins quantitatively reflects the HER2/neu status of the cells. High correlation of MPQ-cytometry data with those obtained by three other commonly used in molecular and cell biology methods supports consideration of this method as a prospective alternative for both quantifying cell-bound nanoparticles and estimating the expression level of cell surface antigens. The proposed method does not require expensive sophisticated equipment or highly skilled personnel and it can be easily applied for rapid diagnostics, especially under field conditions.

  2. Computational methods for nuclear criticality safety analysis

    International Nuclear Information System (INIS)

    Maragni, M.G.

    1992-01-01

    Nuclear criticality safety analyses require the utilization of methods which have been tested and verified against benchmarks results. In this work, criticality calculations based on the KENO-IV and MCNP codes are studied aiming the qualification of these methods at the IPEN-CNEN/SP and COPESP. The utilization of variance reduction techniques is important to reduce the computer execution time, and several of them are analysed. As practical example of the above methods, a criticality safety analysis for the storage tubes for irradiated fuel elements from the IEA-R1 research has been carried out. This analysis showed that the MCNP code is more adequate for problems with complex geometries, and the KENO-IV code shows conservative results when it is not used the generalized geometry option. (author)

  3. Feedback of reactor operating data to nuclear methods development

    International Nuclear Information System (INIS)

    Crowther, R.L.; Kang, C.M.; Parkos, G.R.; Wolters, R.A.

    1978-01-01

    The problems in obtaining power reactor data for reliable nuclear methods development and the major sources of power reactor data for this purpose are reviewed. Specific examples of the use of power reactor data in nuclear methods development are discussed. The paper concludes with recommendations on the key elements of an effective program to use power reactor data in nuclear methods development

  4. Uncertainty Quantification for Nuclear Safeguards and Non-Destructive Assay - Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    Croft, Stephen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Nicholson, Andrew D [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-04-01

    UQ is the scientific art of generating confidence statements. Without defensible UQ physical measurements and calculations have no meaning. The UQ team performed a series of case studies with the following results: minimum detectable activity of a Tomographic Gamma-Ray Scanning system was determined using the Currie formalism. Bootstrapping method was used to generate fluorescence yield parameters and uncertainties. For Hybrid K-Edge Densitometry (HKED) measurements, these parameters can be used to predict the concentration of plutonium and quantify uncertainty in HKED models for nuclear safeguards measurements. Detection efficiency was determined for a coincidence counter using covariance data. The use of covariance information drastically reduced the total uncertainty in the average detection efficiency.

  5. High-performance liquid chromatographic quantification of rifampicin in human plasma: method for Therapecutic drug monitoring

    International Nuclear Information System (INIS)

    Sameh, T.; Hanene, E.; Jebali, N.

    2013-01-01

    A high performance liquid chromatography (HPLC) method has been developed that allows quantification of Rifampicin in human plasma. The method is based on the precipitation of proteins in human plasma with methanol. Optimal assay conditions were found with a C18 column and a simple mobile phase consisting of 0.05 M dipotassic hydrogen phosphate buffer and acetonitrile (53/47, V/V) with 0.086 % diethylamin, pH = 4.46. The flow-rate was 0.6 ml /mm and the drug was monitored at 340 nm. Results from the HPLC analyses showed that the assay method is linear in the concentration range of 1-40 micro g/ml, (r2 >0.99). The limit of quantification and limit of detection of Rifampicin were 0.632 micro g/ml and 0.208 micro g/ml, respectively. Intraday and interday coefficient of variation and bias were below 10% for all samples, suggesting good precision and accuracy of the method. Recoveries were greater than 90% in a plasma sample volume of 100 micro l. The method is being successfully applied to therapeutic drug monitoring of Rifapicin in plasma samples of tuberculosis and staphylococcal infections patients. (author)

  6. Evaluation of two autoinducer-2 quantification methods for application in marine environments

    KAUST Repository

    Wang, Tian-Nyu

    2018-02-11

    This study evaluated two methods, namely high performance liquid chromatography with fluorescence detection (HPLC-FLD) and Vibrio harveyi BB170 bioassay, for autoinducer-2 (AI-2) quantification in marine samples. Using both methods, the study also investigated the stability of AI-2 in varying pH, temperature and media, as well as quantified the amount of AI-2 signals in marine samples.HPLC-FLD method showed a higher level of reproducibility and precision compared to V. harveyi BB170 bioassay. Alkaline pH > 8 and high temperature (> 37°C) increased the instability of AI-2. The AI-2 concentrations in seawater were low, ca. 3.2-27.6 pmol l-1 whereas 8- week old marine biofilm grew on an 18.8 cm2 substratum accumulated ca. 0.207 nmol of AI-2.Both methods have pros and cons for AI-2 quantification in marine samples. Regardless, both methods reported a ubiquitous presence of AI-2 in both planktonic and biomass fractions of seawater, as well as in marine biofilm.In this study, AI-2 signals were for the first time enumerated in marine samples to reveal the ubiquitous presence of AI-2 in this environment. The findings suggest a possible role of AI-2 in biofilm formation in marine environment, and the contribution of AI-2 in biofilm-associated problems such as biofouling and biocorrosion. This article is protected by copyright. All rights reserved.

  7. Efficient preparation of incensole and incensole acetate, and quantification of these bioactive diterpenes in Boswellia papyrifera by a RP-DAD-HPLC method.

    Science.gov (United States)

    Paul, Michael; Jauch, Johann

    2012-03-01

    Incensole and incensole acetate, found in incense, are encouraging potent bioactive diterpenic cembrenoids, inhibiting Nuclear Factor-kappaB activation. Furthermore, incensole acetate elicits psycho-activity in mice by activating the TRPV3 channels in the brain. Starting from crude extracts of the incense species Boswellia papyrifera Hochst., a convenient procedure for the efficient large-scale synthesis of incensole and its acetate is presented. Additionally, a reversed-phase, diode-array-detection, high-performance liquid chromatography (RP-DAD-HPLC) method for the quantification of incensole and incensole acetate is reported, indicating that these two compounds are typical biomarkers for B. papyrifera.

  8. Modification of the fast fourier transform-based method by signal mirroring for accuracy quantification of thermal-hydraulic system code

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Tae Wook; Jeong, Jae Jun [School of Mechanical Engineering, Pusan National University, Busan (Korea, Republic of); Choi, Ki Yong [Korea Atomic Energy Research Institute (KAERI), Daejeon (Korea, Republic of)

    2017-08-15

    A thermal–hydraulic system code is an essential tool for the design and safety analysis of a nuclear power plant, and its accuracy quantification is very important for the code assessment and applications. The fast Fourier transform-based method (FFTBM) by signal mirroring (FFTBM-SM) has been used to quantify the accuracy of a system code by using a comparison of the experimental data and the calculated results. The method is an improved version of the FFTBM, and it is known that the FFTBM-SM judges the code accuracy in a more consistent and unbiased way. However, in some applications, unrealistic results have been obtained. In this study, it was found that accuracy quantification by FFTBM-SM is dependent on the frequency spectrum of the fast Fourier transform of experimental and error signals. The primary objective of this study is to reduce the frequency dependency of FFTBM-SM evaluation. For this, it was proposed to reduce the cut off frequency, which was introduced to cut off spurious contributions, in FFTBM-SM. A method to determine an appropriate cut off frequency was also proposed. The FFTBM-SM with the modified cut off frequency showed a significant improvement of the accuracy quantification.

  9. Multiscale Methods for Nuclear Reactor Analysis

    Science.gov (United States)

    Collins, Benjamin S.

    The ability to accurately predict local pin powers in nuclear reactors is necessary to understand the mechanisms that cause fuel pin failure during steady state and transient operation. In the research presented here, methods are developed to improve the local solution using high order methods with boundary conditions from a low order global solution. Several different core configurations were tested to determine the improvement in the local pin powers compared to the standard techniques, that use diffusion theory and pin power reconstruction (PPR). Two different multiscale methods were developed and analyzed; the post-refinement multiscale method and the embedded multiscale method. The post-refinement multiscale methods use the global solution to determine boundary conditions for the local solution. The local solution is solved using either a fixed boundary source or an albedo boundary condition; this solution is "post-refinement" and thus has no impact on the global solution. The embedded multiscale method allows the local solver to change the global solution to provide an improved global and local solution. The post-refinement multiscale method is assessed using three core designs. When the local solution has more energy groups, the fixed source method has some difficulties near the interface: however the albedo method works well for all cases. In order to remedy the issue with boundary condition errors for the fixed source method, a buffer region is used to act as a filter, which decreases the sensitivity of the solution to the boundary condition. Both the albedo and fixed source methods benefit from the use of a buffer region. Unlike the post-refinement method, the embedded multiscale method alters the global solution. The ability to change the global solution allows for refinement in areas where the errors in the few group nodal diffusion are typically large. The embedded method is shown to improve the global solution when it is applied to a MOX/LEU assembly

  10. New method for quantification of dye sorption using SBA mesoporous silica as a target sorbent.

    Science.gov (United States)

    Nesic, Aleksandra R; Kokunesoski, Maja J; Volkov-Husovic, Tatjana D; Velickovic, Sava J

    2016-03-01

    In this work, a new method for the quantification of methyl violet cationic dye sorption onto SBA-15 mesoporous silica was developed. This method related the intensity of coloration of SBA-15 samples (after reached equilibrium sorption) within dye concentration in aqueous solution using Image-Pro Plus software. The sorption process of methyl violet dye onto SBA-15 was analyzed varying different initial parameters (dye concentration, mass of sorbent, pH of dye solution, and contact sorption time). SBA-15 proved as efficient sorbent for removal of methyl violet dye in contact time of 5 min, with maximum percentage of dye removal 99% at pH 8. The results obtained from Image-Pro Plus showed to be in good agreement with the sorption parameters obtained by UV/Vis spectroscopy, which has been the most commonly used instrument for quantification of dye sorption. The image analysis method proved well prediction of dye concentrations with maximum relative error of 1.83%. The advantages of this method are low cost and reliable quantitative evaluation with minimum of time.

  11. Methods for the physical characterization and quantification of extracellular vesicles in biological samples.

    Science.gov (United States)

    Rupert, Déborah L M; Claudio, Virginia; Lässer, Cecilia; Bally, Marta

    2017-01-01

    Our body fluids contain a multitude of cell-derived vesicles, secreted by most cell types, commonly referred to as extracellular vesicles. They have attracted considerable attention for their function as intercellular communication vehicles in a broad range of physiological processes and pathological conditions. Extracellular vesicles and especially the smallest type, exosomes, have also generated a lot of excitement in view of their potential as disease biomarkers or as carriers for drug delivery. In this context, state-of-the-art techniques capable of comprehensively characterizing vesicles in biological fluids are urgently needed. This review presents the arsenal of techniques available for quantification and characterization of physical properties of extracellular vesicles, summarizes their working principles, discusses their advantages and limitations and further illustrates their implementation in extracellular vesicle research. The small size and physicochemical heterogeneity of extracellular vesicles make their physical characterization and quantification an extremely challenging task. Currently, structure, size, buoyant density, optical properties and zeta potential have most commonly been studied. The concentration of vesicles in suspension can be expressed in terms of biomolecular or particle content depending on the method at hand. In addition, common quantification methods may either provide a direct quantitative measurement of vesicle concentration or solely allow for relative comparison between samples. The combination of complementary methods capable of detecting, characterizing and quantifying extracellular vesicles at a single particle level promises to provide new exciting insights into their modes of action and to reveal the existence of vesicle subpopulations fulfilling key biological tasks. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Quantification of tomography images for dose calculation for diagnosis and therapy in nuclear medicine

    International Nuclear Information System (INIS)

    Massicano, Felipe

    2010-01-01

    The nuclear medicine area has an increasing slope in the therapy of diseases, particularly in the treatment of radiosensitive tumors. Due to the high dose levels in radionuclide therapy, it is very important the accurate quantify of the dose distribution to avoid deleterious effects on healthy tissues. In Brazil, the internal dosimetry system used is the MIRD (Medical Internal Radiation Dose) based on a reference model that does not have adequate patient data to obtain a dose accurate assessment in therapy. However, in recent years, internal radionuclide dosimetry evaluates the spatial dose distribution base ad on information obtained from CT and SPECT or PET images together with the using of Monte Carlo codes. Those systems are called patient-specific dosimetry systems. In the Nuclear Engineering Center at IPEN, this methodology is in development. When the CT images are inserted into the Monte Carlo code MCNP5 through of use of a interface software called SCMS the dosimetry can be accomplished using patient-specific data, resulting in a more accurate energy deposition in organs of interest. This work aim to contribute with the development of part of that patient-specific dosimetry for therapy. To achieve this goal we have proposed three specific objectives: (1) Development of a software to convert images from Computed Tomography (CT) in the tissue parameters (ρ, ω(ι)); (2) Development of a software to perform attenuation correction in nuclear medicine tomographic images (SPECT or PET) and to provide the map of relative activity and (3) Provide data to the SCMS code by these two software. The software developed for the rst specific objective was the Image Converter Computed Tomography (ICCT), which obtained a good accuracy to determine the density and the tissue composition; the elements that had high variation were carbon and oxygen. Fortunately, this variation for the energy range used in radionuclide therapy is not detrimental to the dose distribution. A

  13. Quantification of Iodine-123-FP-CIT SPECT with a resolution-independent method

    International Nuclear Information System (INIS)

    Dobbeleir, A.A.; Ham, H.R.; Hambye, A.E.; Vervaet, A.M.

    2005-01-01

    Accurate quantification of small-sized objects by SPECT is hampered by the partial volume effect. The present work evaluates the magnitude of this phenomenon with Iodine- 123 in phantom studies, and presents a resolution- independent method to quantify striatal I-123 FP-CIT uptake in patients. At first five syringes with internal diameters varying between 9 and 29mm and an anthropomorphic striatal phantom were filled with known concentrations of Iodine-123 and imaged by SPECT using different collimators and radii of rotation. Data were processed with and without scatter correction. From the measured activities, calibration factors were calculated for each specific collimator. Then a resolution-independent method for FP-CIT quantification using large regions of interest was developed and validated in 34 human studies (controls and patients) acquired in 2 different hospitals, by comparing its results to those obtained by a semi- quantitative striatal-to-occipital analysis. Taking the injected activity and decay into account, the measured counts/volume could be converted into absolute tracer concentrations. For the fan-beam, high resolution and medium energy collimators, the measured maximum activity in comparison to the 29 mm-diameter syringe was respectively 38%, 16% and 9% for the 9 mm-diameter syringe and 82%, 80% and 30% for the 16 mm syringe, and not significantly modified after scatter correction. For the anthropomorphic phantom, the error in measurement in % of the true concentration ranged between 0.3-9.5% and was collimator dependent. Medium energy collimators yielded the most homogeneous results. In the human studies, inter- observer variability was 11.4% for the striatal-to-occipital ratio and 3.1% for the resolution-independent method, with correlation coefficients >0.8 between both. The resolution- independent method was 89%-sensitive and 100%-specific to separate the patients without and with abnormal FP-CIT uptake (accuracy: 94%). Also the

  14. Quantification of Representative Ciguatoxins in the Pacific Using Quantitative Nuclear Magnetic Resonance Spectroscopy

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Kato

    2017-10-01

    Full Text Available The absolute quantification of five toxins involved in ciguatera fish poisoning (CFP in the Pacific was carried out by quantitative 1H-NMR. The targeted toxins were ciguatoxin-1B (CTX1B, 52-epi-54-deoxyciguatoxin-1B (epideoxyCTX1B, ciguatoxin-3C (CTX3C, 51-hydroxyciguatoxin-3C (51OHCTX3C, and ciguatoxin-4A (CTX4A. We first calibrated the residual protons of pyridine-d5 using certified reference material, 1,4-BTMSB-d4, prepared the toxin solutions with the calibrated pyridin-d5, measured the 1H-NMR spectra, and quantified the toxin using the calibrated residual protons as the internal standard. The absolute quantification was carried out by comparing the signal intensities between the selected protons of the target toxin and the residual protons of the calibrated pyridine-d5. The proton signals residing on the ciguatoxins (CTXs to be used for quantification were carefully selected for those that were well separated from adjacent signals including impurities and that exhibited an effective intensity. To quantify CTX1B and its congeners, the olefin protons in the side chain were judged appropriate for use. The quantification was achievable with nano-molar solutions. The probable errors for uncertainty, calculated on respective toxins, ranged between 3% and 16%. The contamination of the precious toxins with nonvolatile internal standards was thus avoided. After the evaporation of pyridine-d5, the calibrated CTXs were ready for use as the reference standard in the quantitative analysis of ciguatoxins by LC/MS.

  15. Quantification of Representative Ciguatoxins in the Pacific Using Quantitative Nuclear Magnetic Resonance Spectroscopy.

    Science.gov (United States)

    Kato, Tsuyoshi; Yasumoto, Takeshi

    2017-10-12

    The absolute quantification of five toxins involved in ciguatera fish poisoning (CFP) in the Pacific was carried out by quantitative ¹H-NMR. The targeted toxins were ciguatoxin-1B (CTX1B), 52-epi-54-deoxyciguatoxin-1B (epideoxyCTX1B), ciguatoxin-3C (CTX3C), 51-hydroxyciguatoxin-3C (51OHCTX3C), and ciguatoxin-4A (CTX4A). We first calibrated the residual protons of pyridine- d ₅ using certified reference material, 1,4-BTMSB- d ₄, prepared the toxin solutions with the calibrated pyridin- d ₅, measured the ¹H-NMR spectra, and quantified the toxin using the calibrated residual protons as the internal standard. The absolute quantification was carried out by comparing the signal intensities between the selected protons of the target toxin and the residual protons of the calibrated pyridine- d ₅. The proton signals residing on the ciguatoxins (CTXs) to be used for quantification were carefully selected for those that were well separated from adjacent signals including impurities and that exhibited an effective intensity. To quantify CTX1B and its congeners, the olefin protons in the side chain were judged appropriate for use. The quantification was achievable with nano-molar solutions. The probable errors for uncertainty, calculated on respective toxins, ranged between 3% and 16%. The contamination of the precious toxins with nonvolatile internal standards was thus avoided. After the evaporation of pyridine- d ₅, the calibrated CTXs were ready for use as the reference standard in the quantitative analysis of ciguatoxins by LC/MS.

  16. Nondestructive assay methods for irradiated nuclear fuels

    Energy Technology Data Exchange (ETDEWEB)

    Hsue, S.T.; Crane, T.W.; Talbert, W.L. Jr.; Lee, J.C.

    1978-01-01

    This report is a review of the status of nondestructive assay (NDA) methods used to determine burnup and fissile content of irradiated nuclear fuels. The gamma-spectroscopy method measures gamma activities of certain fission products that are proportional to the burnup. Problems associated with this method are migration of the fission products and gamma-ray attenuation through the relatively dense fuel material. The attenuation correction is complicated by generally unknown activity distributions within the assemblies. The neutron methods, which usually involve active interrogation and prompt or delayed signal counting, are designed to assay the fissile content of the spent-fuel elements. Systems to assay highly enriched spent-fuel assemblies have been tested extensively. Feasibility studies have been reported of systems to assay light-water reactor spent-fuel assemblies. The slowing-down spectrometer and neutron resonance absorption methods can distinguish between the uranium and plutonium fissile contents, but they are limited to the assay of individual rods. We have summarized the status of NDA techniques for spent-fuel assay and present some subjects in need of further investigation. Accuracy of the burnup calculations for power reactors is also reviewed.

  17. A review of the evolution of human reliability analysis methods at nuclear industry

    International Nuclear Information System (INIS)

    Oliveira, Lécio N. de; Santos, Isaac José A. Luquetti dos; Carvalho, Paulo V.R.

    2017-01-01

    This paper reviews the status of researches on the application of human reliability analysis methods at nuclear industry and its evolution along the years. Human reliability analysis (HRA) is one of the elements used in Probabilistic Safety Analysis (PSA) and is performed as part of PSAs to quantify the likelihood that people will fail to take action, such as errors of omission and errors of commission. Although HRA may be used at lots of areas, the focus of this paper is to review the applicability of HRA methods along the years at nuclear industry, especially in Nuclear Power Plants (NPP). An electronic search on CAPES Portal of Journals (A bibliographic database) was performed. This literature review covers original papers published since the first generation of HRA methods until the ones published on March 2017. A total of 94 papers were retrieved by the initial search and 13 were selected to be fully reviewed and for data extraction after the application of inclusion and exclusion criteria, quality and suitability evaluation according to applicability at nuclear industry. Results point out that the methods from first generation are more used in practice than methods from second generation. This occurs because it is more concentrated towards quantification, in terms of success or failure of human action what make them useful for quantitative risk assessment to PSA. Although the second generation considers context and error of commission in human error prediction, they are not wider used in practice at nuclear industry to PSA. (author)

  18. A review of the evolution of human reliability analysis methods at nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Lécio N. de; Santos, Isaac José A. Luquetti dos; Carvalho, Paulo V.R., E-mail: lecionoliveira@gmail.com, E-mail: luquetti@ien.gov.br, E-mail: paulov@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2017-11-01

    This paper reviews the status of researches on the application of human reliability analysis methods at nuclear industry and its evolution along the years. Human reliability analysis (HRA) is one of the elements used in Probabilistic Safety Analysis (PSA) and is performed as part of PSAs to quantify the likelihood that people will fail to take action, such as errors of omission and errors of commission. Although HRA may be used at lots of areas, the focus of this paper is to review the applicability of HRA methods along the years at nuclear industry, especially in Nuclear Power Plants (NPP). An electronic search on CAPES Portal of Journals (A bibliographic database) was performed. This literature review covers original papers published since the first generation of HRA methods until the ones published on March 2017. A total of 94 papers were retrieved by the initial search and 13 were selected to be fully reviewed and for data extraction after the application of inclusion and exclusion criteria, quality and suitability evaluation according to applicability at nuclear industry. Results point out that the methods from first generation are more used in practice than methods from second generation. This occurs because it is more concentrated towards quantification, in terms of success or failure of human action what make them useful for quantitative risk assessment to PSA. Although the second generation considers context and error of commission in human error prediction, they are not wider used in practice at nuclear industry to PSA. (author)

  19. Immunonephelometric quantification of specific urinary proteins versus a simple electrophoretic method for characterizing proteinuria.

    Science.gov (United States)

    Wolff, Fleur; Willems, Dominique

    2008-04-01

    The quantification of urinary proteins presenting different molecular sizes is useful in characterizing a proteinuria. We assessed the performance of an electrophoretic system, the Hydragel Urine Profile, which allows firstly the identification of proteinuria and secondly a qualitative detection of monoclonal free light chains (FLC). Initially, the proteinuria was characterized on 127 pathological urines by quantifying albumin, a1microglobulin, immunoglobulins G by immunonephelometric quantification technique and the results were compared with the protein pattern obtained by the electrophoretic method. Secondly, we assessed the sensitivity and specificity of this electrophoretic test for the detection and characterization of Bence Jones proteins. FLC were analyzed quantitatively by an immunonephelometric assay and qualitatively by the electrophoretic test in 150 urines. The agreement between the two methods was good with a percentage of homology for characterizing the proteinuria of 89%. For detecting a monoclonal FLC, the electrophoretic method demonstrated a lesser sensitivity but a higher specificity compared to the immunoassay. The Urine Profile kit is a reliable assay that can be used as a screening test to differentiate the type of proteinuria.

  20. Evaluation of the TLC quantification method and occurrence of deoxynivalenol in wheat flour of southern Brazil.

    Science.gov (United States)

    Rocha, Denise Felippin de Lima; Oliveira, Melissa Dos Santos; Furlong, Eliana Badiale; Junges, Alexander; Paroul, Natalia; Valduga, Eunice; Backes, Geciane Toniazzo; Zeni, Jamile; Cansian, Rogério Luis

    2017-12-01

    The study evaluated a QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) extraction method for use with a TLC quantification procedure for deoxynivalenol (DON). It also surveyed DON occurrence in wheat flour from the southern region of Brazil. Forty-eight wheat flour samples were analysed, divided into 2 different harvest lots, each consisting of 24 different brands. The detection and quantification limits of the method were 30 and 100 ng of DON on the TLC plate. The various concentrations of DON presented high linearity (R 2  = 0.99). A negative matrix effect (-28%) of the wheat flour was verified, with suppression of the chromatographic signal of DON, and 80.2-105.4% recovery. The TLC method was reliable for DON evaluation, with a coefficient of variation of less than 10%. High-performance liquid chromatography of lot 2 samples confirmed the presence of DON in all samples identified DON-positive by the TLC technique. Of the 48 wheat flour samples in lots 1 and 2 analysed by TLC, 33.3 and 45.8% of the samples respectively were above the Brazilian legislation limit. Correlations were observed between the water activity and DON content, and between the fungal count and moisture content of the wheat flours.

  1. Simultaneous Quantification of Antidiabetic Agents in Human Plasma by a UPLC-QToF-MS Method.

    Directory of Open Access Journals (Sweden)

    Mariana Millan Fachi

    Full Text Available An ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry method for the simultaneous quantification of chlorpropamide, glibenclamide, gliclazide, glimepiride, metformin, nateglinide, pioglitazone, rosiglitazone, and vildagliptin in human plasma was developed and validated, using isoniazid and sulfaquinoxaline as internal standards. Following plasma protein precipitation using acetonitrile with 1% formic acid, chromatographic separation was performed on a cyano column using gradient elution with water and acetonitrile, both containing 0.1% formic acid. Detection was performed in a quadrupole time-of-flight analyzer, using electrospray ionization operated in the positive mode. Data from validation studies demonstrated that the new method is highly sensitive, selective, precise (RSD 0.99, free of matrix and has no residual effects. The developed method was successfully applied to volunteers' plasma samples. Hence, this method was demonstrated to be appropriate for clinical monitoring of antidiabetic agents.

  2. Method Development for Extraction and Quantification of Glycosides in Leaves of Stevia Rebaudiana

    International Nuclear Information System (INIS)

    Salmah Moosa; Hazlina Ahmad Hassali; Norazlina Noordin

    2015-01-01

    A solid-liquid extraction and an UHPLC method for determination of glycosides from the leave parts of Stevia rebaudiana were developed. Steviol glycosides found in the leaves of Stevia are natural sweetener and commercially sold as sugar substitutes. Extraction of the glycosides consisted of solvent extraction of leaf powder using various solvents followed by its concentration using rotary evaporator and analysis using Ultra High Performance Liquid Chromatography (UHPLC). Existing analytical methods are mainly focused on the quantification of either rebaudioside A or stevioside, whereas other glycosides, such as rebaudioside B and rebaudioside D present in the leaves also contribute to sweetness or its biological activity. Therefore, we developed an improved method by changing the UHPLC conditions to enable a rapid and reliable determination of four steviol glycosides rather than just two using an isocratic UHPLC method. (author)

  3. A comparison of conventional methods for the quantification of bacterial cells after exposure to metal oxide nanoparticles.

    Science.gov (United States)

    Pan, Hongmiao; Zhang, Yongbin; He, Gui-Xin; Katagori, Namrata; Chen, Huizhong

    2014-08-21

    Due to potential interference of nanoparticles on bacterial quantification, there is a challenge to develop a fast, accurate and reproducible method for bacterial quantification. Currently various bacterial quantification methods are used by researchers performing nanoparticles study, but there has been no efficacy evaluation of these methods. Here we study interference of nanoparticles on three most commonly used conventional bacterial quantification methods, including colony counting to determine the colony-forming units (CFU), spectrophotometer method of optical density (OD) measurement, and flow cytometry (FCM). Three oxide nanoparticles including ZnO, TiO2, and SiO2 and four bacterial species including Salmonella enterica serovar Newport, Staphylococcus epidermidis, Enterococcus faecalis, and Escherichia coli were included in the test. Results showed that there is no apparent interference of the oxide nanoparticles on quantifications of all four bacterial species by FCM measurement; CFU counting is time consuming, less accurate and not suitable for automation; and the spectrophotometer method using OD measurement was the most unreliable method to quantify and detect the bacteria in the presence of the nanoparticles. In summary, FCM measurement proved to be the best method, which is suitable for rapid, accurate and automatic detection of bacteria in the presence of the nanoparticles.

  4. Detecting transitions in protein dynamics using a recurrence quantification analysis based bootstrap method.

    Science.gov (United States)

    Karain, Wael I

    2017-11-28

    Proteins undergo conformational transitions over different time scales. These transitions are closely intertwined with the protein's function. Numerous standard techniques such as principal component analysis are used to detect these transitions in molecular dynamics simulations. In this work, we add a new method that has the ability to detect transitions in dynamics based on the recurrences in the dynamical system. It combines bootstrapping and recurrence quantification analysis. We start from the assumption that a protein has a "baseline" recurrence structure over a given period of time. Any statistically significant deviation from this recurrence structure, as inferred from complexity measures provided by recurrence quantification analysis, is considered a transition in the dynamics of the protein. We apply this technique to a 132 ns long molecular dynamics simulation of the β-Lactamase Inhibitory Protein BLIP. We are able to detect conformational transitions in the nanosecond range in the recurrence dynamics of the BLIP protein during the simulation. The results compare favorably to those extracted using the principal component analysis technique. The recurrence quantification analysis based bootstrap technique is able to detect transitions between different dynamics states for a protein over different time scales. It is not limited to linear dynamics regimes, and can be generalized to any time scale. It also has the potential to be used to cluster frames in molecular dynamics trajectories according to the nature of their recurrence dynamics. One shortcoming for this method is the need to have large enough time windows to insure good statistical quality for the recurrence complexity measures needed to detect the transitions.

  5. Method of dismantling a nuclear reactor

    International Nuclear Information System (INIS)

    Shirai, Masato; Hashimoto, Osamu.

    1984-01-01

    Purpose: To enable rapid and simple positioning for a plasma arc torch disposed to the inside of a nuclear reactor main body. Method: After removing the upper semi-spherical portion, fuel portion and control rod portion of a nuclear reactor, a rotary type girder is placed on the upper edge of a cylindrical portion remained after the removal of the upper semi-spherical portion. Then, the upper portion of a supporting rod provided with a swing arm having a plasma arc torch at the top end is situated at the center of the reactor main body. Then, the top end of the support rod is inserted to fix in the housing of control rod drives. Then, the swing arm is actuated to situate the plasma arc torch to a desired position to be cut, whereafter cutting is initiated while rotating the rotary type girder. Thus, plasma arc torch is moved horizontally along an arcuate trace, whereby pipeways, accessories or the likes disposed to the inside of the main body are at first cut and then the cylindrical portion constituting the main body is cut to dismantle the reactor. (Moriyama, K.)

  6. Quantification of {sup 18}F-florbetapir PET: comparison of two analysis methods

    Energy Technology Data Exchange (ETDEWEB)

    Hutton, Chloe; Declerck, Jerome [Siemens Molecular Imaging, Oxford (United Kingdom); Mintun, Mark A.; Pontecorvo, Michael J.; Devous, Michael D.; Joshi, Abhinay D. [Avid Radiopharmaceuticals a wholly owned subsidiary of Eli Lilly and Company, Philadelphia, PA (United States); Collaboration: for the Alzheimer' s Disease Neuroimaging Initiative

    2015-04-01

    {sup 18}F-Florbetapir positron emission tomography (PET) can be used to image amyloid burden in the human brain. A previously developed research method has been shown to have a high test-retest reliability and good correlation between standardized uptake value ratio (SUVR) and amyloid burden at autopsy. The goal of this study was to determine how well SUVRs computed using the research method could be reproduced using an automatic quantification method, developed for clinical use. Two methods for the quantitative analysis of {sup 18}F-florbetapir PET were compared in a diverse clinical population of 604 subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and in a group of 74 younger healthy controls (YHC). Cortex to cerebellum SUVRs were calculated using the research method, which is based on SPM, yielding 'research SUVRs', and using syngo.PET Amyloid Plaque, yielding 'sPAP SUVRs'. Mean cortical SUVRs calculated using the two methods for the 678 subjects were correlated (r = 0.99). Linear regression of sPAP SUVRs on research SUVRs was used to convert the research method SUVR threshold for florbetapir positivity of 1.10 to a corresponding threshold of 1.12 for sPAP. Using the corresponding thresholds, categorization of SUVR values were in agreement between research and sPAP SUVRs for 96.3 % of the ADNI images. SUVRs for all YHC were below the corresponding thresholds. Automatic florbetapir PET quantification using sPAP yielded cortex to cerebellum SUVRs which were correlated and in good agreement with the well-established research method. The research SUVR threshold for florbetapir positivity was reliably converted to a corresponding threshold for sPAP SUVRs. (orig.)

  7. Quantification of 18F-florbetapir PET: comparison of two analysis methods

    International Nuclear Information System (INIS)

    Hutton, Chloe; Declerck, Jerome; Mintun, Mark A.; Pontecorvo, Michael J.; Devous, Michael D.; Joshi, Abhinay D.

    2015-01-01

    18 F-Florbetapir positron emission tomography (PET) can be used to image amyloid burden in the human brain. A previously developed research method has been shown to have a high test-retest reliability and good correlation between standardized uptake value ratio (SUVR) and amyloid burden at autopsy. The goal of this study was to determine how well SUVRs computed using the research method could be reproduced using an automatic quantification method, developed for clinical use. Two methods for the quantitative analysis of 18 F-florbetapir PET were compared in a diverse clinical population of 604 subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and in a group of 74 younger healthy controls (YHC). Cortex to cerebellum SUVRs were calculated using the research method, which is based on SPM, yielding 'research SUVRs', and using syngo.PET Amyloid Plaque, yielding 'sPAP SUVRs'. Mean cortical SUVRs calculated using the two methods for the 678 subjects were correlated (r = 0.99). Linear regression of sPAP SUVRs on research SUVRs was used to convert the research method SUVR threshold for florbetapir positivity of 1.10 to a corresponding threshold of 1.12 for sPAP. Using the corresponding thresholds, categorization of SUVR values were in agreement between research and sPAP SUVRs for 96.3 % of the ADNI images. SUVRs for all YHC were below the corresponding thresholds. Automatic florbetapir PET quantification using sPAP yielded cortex to cerebellum SUVRs which were correlated and in good agreement with the well-established research method. The research SUVR threshold for florbetapir positivity was reliably converted to a corresponding threshold for sPAP SUVRs. (orig.)

  8. Development of analysis methods for seismically isolated nuclear structures

    International Nuclear Information System (INIS)

    Yoo, Bong; Lee, Jae-Han; Koo, Gyeng-Hoi

    2002-01-01

    KAERI's contributions to the project entitled Development of Analysis Methods for Seismically Isolated Nuclear Structures under IAEA CRP of the intercomparison of analysis methods for predicting the behaviour of seismically isolated nuclear structures during 1996-1999 in effort to develop the numerical analysis methods and to compare the analysis results with the benchmark test results of seismic isolation bearings and isolated nuclear structures provided by participating countries are briefly described. Certain progress in the analysis procedures for isolation bearings and isolated nuclear structures has been made throughout the IAEA CRPs and the analysis methods developed can be improved for future nuclear facility applications. (author)

  9. Nuclear magnetic logging method and system

    International Nuclear Information System (INIS)

    1979-01-01

    A nuclear magnetism logging system and method is disclosed in which a surface unit provides power to, control of, and signal reception from a downhole sonde. The surface unit comprises a source of alternating current power and switching circuit means for applying a sequence of alternating current waveforms from the alternating current power source to a surface transformer, each waveform in the sequence starting and stopping with substantially zero amplitude. A rectifier circuit is connected to a polarizing-receiving coil during the polarizing time of the polarizing-receive cycle. A receiving amplifier is connected to the polarizing-receiving coil during the receiving time of the polarizing-receive cycle. Receiver and recording circuits in the surface unit receive and record the downhole signals from the receiving amplifier. Timing circuitry controls a downhole switching circuit means for alternating the connection of the polarizing-receive coil to the rectifier and the receiving amplifier. (Auth.)

  10. The parallel reaction monitoring method contributes to a highly sensitive polyubiquitin chain quantification

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, Hikaru; Tanaka, Keiji, E-mail: tanaka-kj@igakuken.or.jp; Saeki, Yasushi, E-mail: saeki-ys@igakuken.or.jp

    2013-06-28

    Highlights: •The parallel reaction monitoring method was applied to ubiquitin quantification. •The ubiquitin PRM method is highly sensitive even in biological samples. •Using the method, we revealed that Ufd4 assembles the K29-linked ubiquitin chain. -- Abstract: Ubiquitylation is an essential posttranslational protein modification that is implicated in a diverse array of cellular functions. Although cells contain eight structurally distinct types of polyubiquitin chains, detailed function of several chain types including K29-linked chains has remained largely unclear. Current mass spectrometry (MS)-based quantification methods are highly inefficient for low abundant atypical chains, such as K29- and M1-linked chains, in complex mixtures that typically contain highly abundant proteins. In this study, we applied parallel reaction monitoring (PRM), a quantitative, high-resolution MS method, to quantify ubiquitin chains. The ubiquitin PRM method allows us to quantify 100 attomole amounts of all possible ubiquitin chains in cell extracts. Furthermore, we quantified ubiquitylation levels of ubiquitin-proline-β-galactosidase (Ub-P-βgal), a historically known model substrate of the ubiquitin fusion degradation (UFD) pathway. In wild-type cells, Ub-P-βgal is modified with ubiquitin chains consisting of 21% K29- and 78% K48-linked chains. In contrast, K29-linked chains are not detected in UFD4 knockout cells, suggesting that Ufd4 assembles the K29-linked ubiquitin chain(s) on Ub-P-βgal in vivo. Thus, the ubiquitin PRM is a novel, useful, quantitative method for analyzing the highly complicated ubiquitin system.

  11. Stereological quantification of tumor volume, mean nuclear volume and total number of melanoma cells correlated with morbidity and mortality

    DEFF Research Database (Denmark)

    Bønnelykke-Behrndtz, Marie Louise; Sørensen, Flemming Brandt; Damsgaard, Tine Engberg

    2008-01-01

    potential indicators of prognosis. Sixty patients who underwent surgery at the Department of Plastic Surgery, Aarhus University Hospital, from 1991 to 1994 were included in the study. Total tumor volume was estimated by the Cavalieri technique, total number of tumor cells by the optical dissector principle...... showed a significant impact on both disease-free survival (p=0.001) and mortality (p=0.009). In conclusion, tumor volume and total number of cancer cells were highly reproducible but did not add additional, independent prognostic information regarding the study population.......Stereological quantification of tumor volume, total number of tumor cells and mean nuclear volume provides unbiased data, regardless of the three-dimensional shape of the melanocytic lesion. The aim of the present study was to investigate whether these variables are reproducible and may represent...

  12. A RP-HPLC method for quantification of diclofenac sodium released from biological macromolecules.

    Science.gov (United States)

    Bhattacharya, Shiv Sankar; Banerjee, Subham; Ghosh, Ashoke Kumar; Chattopadhyay, Pronobesh; Verma, Anurag; Ghosh, Amitava

    2013-07-01

    Interpenetrating network (IPN) microbeads of sodium carboxymethyl locust bean gum (SCMLBG) and sodium carboxymethyl cellulose (SCMC) containing diclofenac sodium (DS), a nonsteroidal anti-inflammatory drug, were prepared by single water-in-water (w/w) emulsion gelation process using AlCl3 as cross-linking agent in a complete aqueous environment. Pharmacokinetic study of these IPN microbeads was then carried out by a simple and feasible high-performance liquid chromatographic method with UV detection which was developed and validated for the quantification of diclofenac sodium in rabbit plasma. The chromatographic separation was carried out in a Hypersil BDS, C18 column (250 mm × 4.6 mm; 5 m). The mobile phase was a mixture of acetonitrile and methanol (70:30, v/v) at a flow rate of 1.0 ml/min. The UV detection was set at 276 nm. The extraction recovery of diclofenac sodium in plasma of three quality control (QC) samples was ranged from 81.52% to 95.29%. The calibration curve was linear in the concentration range of 20-1000 ng/ml with the correlation coefficient (r(2)) above 0.9951. The method was specific and sensitive with the limit of quantification of 20 ng/ml. In stability tests, diclofenac sodium in rabbit plasma was stable during storage and assay procedure. Copyright © 2013. Published by Elsevier B.V.

  13. Methods for modeling and quantification in functional imaging by positron emissions tomography and magnetic resonance imaging

    International Nuclear Information System (INIS)

    Costes, Nicolas

    2017-01-01

    This report presents experiences and researches in the field of in vivo medical imaging by positron emission tomography (PET) and magnetic resonance imaging (MRI). In particular, advances in terms of reconstruction, quantification and modeling in PET are described. The validation of processing and analysis methods is supported by the creation of data by simulation of the imaging process in PET. The recent advances of combined PET/MRI clinical cameras, allowing simultaneous acquisition of molecular/metabolic PET information, and functional/structural MRI information opens the door to unique methodological innovations, exploiting spatial alignment and simultaneity of the PET and MRI signals. It will lead to an increase in accuracy and sensitivity in the measurement of biological phenomena. In this context, the developed projects address new methodological issues related to quantification, and to the respective contributions of MRI or PET information for a reciprocal improvement of the signals of the two modalities. They open perspectives for combined analysis of the two imaging techniques, allowing optimal use of synchronous, anatomical, molecular and functional information for brain imaging. These innovative concepts, as well as data correction and analysis methods, will be easily translated into other areas of investigation using combined PET/MRI. (author) [fr

  14. Simulation studies for quantification of solid waste during decommissioning of nuclear reactors

    International Nuclear Information System (INIS)

    Sobhan Babu, K.; Gopalakrishnan, R.K.; Gupta, P.C.

    2007-01-01

    Decommissioning is the final phase in the lifecycle of a nuclear installation and in the area of occupational radiation protection, decommissioning constitute a challenge mainly due to the huge and complex radioactive waste generation. In the context of management and disposal of waste and reuse/recycle of usable materials during decommissioning of reactors, clearance levels for relevant radionuclides are of vital importance. During the process of decommissioning radionuclide-specific clearance levels allow the release of a major quantity of materials to the environment, without regulatory considerations. These levels may also be used to declare the usable materials for reuse or recycle. Assessment of activity concentration in huge quantities of material, for the purpose of clearance, is a challenge in decommissioning process. This paper describes the simulation studies being carried out for the design of a monitoring system for the estimation of activity concentration of the decommissioned materials, especially rubbles/concrete, using mathematical models. Several designs were studied using simulation and it was observed that for the estimation of very low levels of activity concentration, to satisfy the conditions of unrestricted releases, detection system using the principle of Emission Computed Tomography (ECT) is the best suitable method. (author)

  15. Quantification of cost of margin associated with in-core nuclear fuel management for a PWR

    International Nuclear Information System (INIS)

    Kropaczek, D.J.; Turinsky, P.J.

    1989-01-01

    The problem of in-core nuclear fuel management optimization is discussed. The problem is to determine the location of core material, such as the fuel and burnable poisons, so as to minimize (maximize) a stated objective within engineering constraints. Typical objectives include maximization of cycle energy production or discharged fuel exposure, and minimization of power peaking factor or reactor vessel fluence. Constraints include discharge burnup limits and one or more of the possible objectives if not selected as the objective. The optimization problem can be characterized as a large combinatorial problem with nonlinear objective function and constraints, which are likely to be active. The authors have elected to employ the integer Monte Carlo programming method to address this optimization problem because of the just-noted problem characteristics. To evaluate the core physics characteristics as a function of fuel loading pattern, second-order accurate perturbation theory is employed with successive application to improve estimates of the optimum loading pattern. No constraints on fuel movement other than requiring quarter-core symmetry were imposed. In this paper the authors employed this methodology to address a related problem. The problem being addressed can be stated as What is the cost associated with margin? Specifically, they wish to assign some financial value in terms of increased levelized fuel cycle cost associated with an increase in core margin of some type, such as power peaking factor

  16. A machine learning approach for efficient uncertainty quantification using multiscale methods

    Science.gov (United States)

    Chan, Shing; Elsheikh, Ahmed H.

    2018-02-01

    Several multiscale methods account for sub-grid scale features using coarse scale basis functions. For example, in the Multiscale Finite Volume method the coarse scale basis functions are obtained by solving a set of local problems over dual-grid cells. We introduce a data-driven approach for the estimation of these coarse scale basis functions. Specifically, we employ a neural network predictor fitted using a set of solution samples from which it learns to generate subsequent basis functions at a lower computational cost than solving the local problems. The computational advantage of this approach is realized for uncertainty quantification tasks where a large number of realizations has to be evaluated. We attribute the ability to learn these basis functions to the modularity of the local problems and the redundancy of the permeability patches between samples. The proposed method is evaluated on elliptic problems yielding very promising results.

  17. Application of Photothermal Methods for Quantification of Carotenoids in Apricot Jams

    Science.gov (United States)

    Dóka, O.; Bicanic, D.; Stéger-Máté, M.; Végvári, Gy.

    2015-09-01

    Carotenes, found in a diversity of fruit-containing foods, are important sources of antioxidants; a good example is apricot jam. In the study described in this paper, both the total carotenoid content ( TCC) as well as the content of \\upbeta -carotene in six different apricot jams were quantified using traditional (UV-VIS) spectrophotometry (SP), high-performance liquid chromatography (HPLC), laser photoacoustic spectroscopy (LPAS), and the optothermal window (OW) method. Unlike SP and HPLC, LPAS and the OW methods require the minimum of sample preparation and only a one time calibration step which enables practically direct quantification of the TCC. Results were verified versus data obtained with SP as the reference technique. It was shown that LPAS and the OW method (at 473 nm) provide satisfactory results with R2=0.9884 and 0.9766 for LPAS and OW, respectively.

  18. Comparison of methods for the quantification of the different carbon fractions in atmospheric aerosol samples

    Science.gov (United States)

    Nunes, Teresa; Mirante, Fátima; Almeida, Elza; Pio, Casimiro

    2010-05-01

    Atmospheric carbon consists of: organic carbon (OC, including various organic compounds), elemental carbon (EC, or black carbon [BC]/soot, a non-volatile/light-absorbing carbon), and a small quantity of carbonate carbon. Thermal/optical methods (TOM) have been widely used for quantifying total carbon (TC), OC, and EC in ambient and source particulate samples. Unfortunately, the different thermal evolution protocols in use can result in a wide elemental carbon-to-total carbon variation. Temperature evolution in thermal carbon analysis is critical to the allocation of carbon fractions. Another critical point in OC and EC quantification by TOM is the interference of carbonate carbon (CC) that could be present in the particulate samples, mainly in the coarse fraction of atmospheric aerosol. One of the methods used to minimize this interference consists on the use of a sample pre-treatment with acid to eliminate CC prior to thermal analysis (Chow et al., 2001; Pio et al., 1994). In Europe, there is currently no standard procedure for determining the carbonaceous aerosol fraction, which implies that data from different laboratories at various sites are of unknown accuracy and cannot be considered comparable. In the framework of the EU-project EUSAAR, a comprehensive study has been carried out to identify the causes of differences in the EC measured using different thermal evolution protocols. From this study an optimised protocol, the EUSAAR-2 protocol, was defined (Cavali et al., 2009). During the last two decades thousands of aerosol samples have been taken over quartz filters at urban, industrial, rural and background sites, and also from plume forest fires and biomass burning in a domestic closed stove. These samples were analysed for OC and EC, by a TOM, similar to that in use in the IMPROVE network (Pio et al., 2007). More recently we reduced the number of steps in thermal evolution protocols, without significant repercussions in the OC/EC quantifications. In order

  19. Accurate and precise DNA quantification in the presence of different amplification efficiencies using an improved Cy0 method.

    Science.gov (United States)

    Guescini, Michele; Sisti, Davide; Rocchi, Marco B L; Panebianco, Renato; Tibollo, Pasquale; Stocchi, Vilberto

    2013-01-01

    Quantitative real-time PCR represents a highly sensitive and powerful technology for the quantification of DNA. Although real-time PCR is well accepted as the gold standard in nucleic acid quantification, there is a largely unexplored area of experimental conditions that limit the application of the Ct method. As an alternative, our research team has recently proposed the Cy0 method, which can compensate for small amplification variations among the samples being compared. However, when there is a marked decrease in amplification efficiency, the Cy0 is impaired, hence determining reaction efficiency is essential to achieve a reliable quantification. The proposed improvement in Cy0 is based on the use of the kinetic parameters calculated in the curve inflection point to compensate for efficiency variations. Three experimental models were used: inhibition of primer extension, non-optimal primer annealing and a very small biological sample. In all these models, the improved Cy0 method increased quantification accuracy up to about 500% without affecting precision. Furthermore, the stability of this procedure was enhanced integrating it with the SOD method. In short, the improved Cy0 method represents a simple yet powerful approach for reliable DNA quantification even in the presence of marked efficiency variations.

  20. Fail-safe reactivity compensation method for a nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nygaard, Erik T.; Angelo, Peter L.; Aase, Scott B.

    2018-01-23

    The present invention relates generally to the field of compensation methods for nuclear reactors and, in particular to a method for fail-safe reactivity compensation in solution-type nuclear reactors. In one embodiment, the fail-safe reactivity compensation method of the present invention augments other control methods for a nuclear reactor. In still another embodiment, the fail-safe reactivity compensation method of the present invention permits one to control a nuclear reaction in a nuclear reactor through a method that does not rely on moving components into or out of a reactor core, nor does the method of the present invention rely on the constant repositioning of control rods within a nuclear reactor in order to maintain a critical state.

  1. A mesoscale quantification method of cavitation in semicrystalline polymers using X-ray microtomography

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, E. [IFP Energies nouvelles, 1 et 4 avenue de Bois Preau, 92852 Rueil-Malmaison Cedex (France); Brusselle-Dupend, N., E-mail: nadege.brusselle@ifpen.fr [IFP Energies nouvelles, 1 et 4 avenue de Bois Preau, 92852 Rueil-Malmaison Cedex (France); Epsztein, T. [TECHNIP, rue Jean Hure, 76580 Le Trait (France)

    2011-08-15

    Highlights: {yields} X-ray microtomography to quantify cavitation in strained semicrystalline polymers. {yields} Method based on correlation of the linear attenuation coefficient with 3-D porosity. {yields} Validation of the mesoscale quantification method. {yields} Application: cavitation process investigation in PVF2 from unloaded specimens. {yields} Effect of the triaxiality ratio and of the stretching degree on cavitation process. - Abstract: The ability of X-ray microtomography to quantify the cavitation in highly strained semicrystalline polymers is investigated on polyvinylidene fluoride. The cavitation phenomenon is studied on Circumferentially Notched Round Bars tested in tension. The tensile deformation induces void formation as attested by the whitening of the notch and SEM observations. The aim of this paper is to highlight the interest of a non destructive method based on X-ray microtomography in order to quantify the developed porosity in the cavited area and to follow step by step after relaxation, or continuously the evolution of the porosity during a tensile test. As voids may have a submicrometric size, as attested by SEM images in PVF2, the X-ray microtomography does not intend to image all the voids but to quantify them as a whole, including the non resolved voids. The method is designed to be used either with a laboratory microtomograph or with a synchrotron microtomography device. The quantification uses the correlation between the attenuation coefficient of the material and the porosity developed in the material. The measure is first validated on synchrotron images. Then the method is adapted to the laboratory microtomography prone to beam hardening artefacts. The results obtained with both devices are compared to each other and compared to the results obtained from local SEM analysis. Finally, the analysis of notched tensile specimens with varying notch root radius is investigated after interrupted tests. The analyses of the in situ tensile

  2. Comparison of different methods for total lipid quantification in meat and meat products.

    Science.gov (United States)

    Pérez-Palacios, T; Ruiz, J; Martín, D; Muriel, E; Antequera, T

    2008-10-15

    This study was aimed to evaluate the efficiency of six extraction methods for the quantification of total lipid content in meat and meat products: standard Soxhlet method (with and without previous acid hydrolysis), continuous Soxhlet method (with and without previous acid hydrolysis), and those methods based in the use of a mixture of chloroform and methanol, and described by Folch, Less, and Sloane (1957) and Bligh and Dyer (1959). Lipid content was determined in nine different meat products with different fat contents and physico-chemical features: cooked turkey breast, fresh pork loin, cooked ham, dry-cured ham, mortadella, beef burger, fresh sausage, dry-cured sausage and salami. The most effective methods for determining fat content in the studied meat products were the method described by Folch et al. (1957) and the Soxhlet with previous acid hydrolysis method. The Soxhlet method without previous acid hydrolysis adequately extracted lipids only in those meat products with very high fat content. The use of the method described by Bligh and Dyer (1959) gave rise to the lowest lipid contents in all the studied meat products. Copyright © 2008 Elsevier Ltd. All rights reserved.

  3. Method of controlling nuclear power plant

    International Nuclear Information System (INIS)

    Tamano, Toyomi; Iwashita, Tsuyoshi

    1990-01-01

    The present invention provides a method of controlling capable of greatly suppressing the temperature fluctuations at the exit of a heat exchanger (IHX) resulting upon power change of a FBR type nuclear power plant as compared with the prior art. That is, a control system for controlling the flow rate in the secondary coolant circuit (secondary flow rate) is constituted as a control mechanism connected in cascade. It is defined that the primary control amount as the primary exit temperature of IHX, and the secondary control amount as the secondary flow rate. The aimed value of the secondary flow rate is defined as a function of the measured value for the primary inlet temperature of IHX. Thus, a transient imbalance between the secondary flow rate and the temperature at the primary and the secondary inlets of IHX is reduced. In this way, since the heat transportation delay to the primary and the secondary inlets of IHX is compensated upon power change of the plant in the controlling method according to the present invention, the transient imbalance between the secondary flow rate and the primary and the secondary inlet temperatures of IHX can be reduced thereby suppressing the temperature fluctuations at the exit of the heat exchanger. (I.S.)

  4. Radiation dose determines the method for quantification of DNA double strand breaks

    Energy Technology Data Exchange (ETDEWEB)

    Bulat, Tanja; Keta, Olitija; Korićanac, Lela; Žakula, Jelena; Petrović, Ivan; Ristić-Fira, Aleksandra [University of Belgrade, Vinča Institute of Nuclear Sciences, Belgrade (Serbia); Todorović, Danijela, E-mail: dtodorovic@medf.kg.ac.rs [University of Kragujevac, Faculty of Medical Sciences, Kragujevac (Serbia)

    2016-03-15

    Ionizing radiation induces DNA double strand breaks (DSBs) that trigger phosphorylation of the histone protein H2AX (γH2AX). Immunofluorescent staining visualizes formation of γH2AX foci, allowing their quantification. This method, as opposed to Western blot assay and Flow cytometry, provides more accurate analysis, by showing exact position and intensity of fluorescent signal in each single cell. In practice there are problems in quantification of γH2AX. This paper is based on two issues: the determination of which technique should be applied concerning the radiation dose, and how to analyze fluorescent microscopy images obtained by different microscopes. HTB140 melanoma cells were exposed to γ-rays, in the dose range from 1 to 16 Gy. Radiation effects on the DNA level were analyzed at different time intervals after irradiation by Western blot analysis and immunofluorescence microscopy. Immunochemically stained cells were visualized with two types of microscopes: AxioVision (Zeiss, Germany) microscope, comprising an ApoTome software, and AxioImagerA1 microscope (Zeiss, Germany). Obtained results show that the level of γH2AX is time and dose dependent. Immunofluorescence microscopy provided better detection of DSBs for lower irradiation doses, while Western blot analysis was more reliable for higher irradiation doses. AxioVision microscope containing ApoTome software was more suitable for the detection of γH2AX foci. (author)

  5. Radiation dose determines the method for quantification of DNA double strand breaks

    International Nuclear Information System (INIS)

    Bulat, Tanja; Keta, Olitija; Korićanac, Lela; Žakula, Jelena; Petrović, Ivan; Ristić-Fira, Aleksandra; Todorović, Danijela

    2016-01-01

    Ionizing radiation induces DNA double strand breaks (DSBs) that trigger phosphorylation of the histone protein H2AX (γH2AX). Immunofluorescent staining visualizes formation of γH2AX foci, allowing their quantification. This method, as opposed to Western blot assay and Flow cytometry, provides more accurate analysis, by showing exact position and intensity of fluorescent signal in each single cell. In practice there are problems in quantification of γH2AX. This paper is based on two issues: the determination of which technique should be applied concerning the radiation dose, and how to analyze fluorescent microscopy images obtained by different microscopes. HTB140 melanoma cells were exposed to γ-rays, in the dose range from 1 to 16 Gy. Radiation effects on the DNA level were analyzed at different time intervals after irradiation by Western blot analysis and immunofluorescence microscopy. Immunochemically stained cells were visualized with two types of microscopes: AxioVision (Zeiss, Germany) microscope, comprising an ApoTome software, and AxioImagerA1 microscope (Zeiss, Germany). Obtained results show that the level of γH2AX is time and dose dependent. Immunofluorescence microscopy provided better detection of DSBs for lower irradiation doses, while Western blot analysis was more reliable for higher irradiation doses. AxioVision microscope containing ApoTome software was more suitable for the detection of γH2AX foci. (author)

  6. Radiation dose determines the method for quantification of DNA double strand breaks.

    Science.gov (United States)

    Bulat, Tanja; Keta, Otilija; Korićanac, Lela; Žakula, Jelena; Petrović, Ivan; Ristić-Fira, Aleksandra; Todorović, Danijela

    2016-03-01

    Ionizing radiation induces DNA double strand breaks (DSBs) that trigger phosphorylation of the histone protein H2AX (γH2AX). Immunofluorescent staining visualizes formation of γH2AX foci, allowing their quantification. This method, as opposed to Western blot assay and Flow cytometry, provides more accurate analysis, by showing exact position and intensity of fluorescent signal in each single cell. In practice there are problems in quantification of γH2AX. This paper is based on two issues: the determination of which technique should be applied concerning the radiation dose, and how to analyze fluorescent microscopy images obtained by different microscopes. HTB140 melanoma cells were exposed to γ-rays, in the dose range from 1 to 16 Gy. Radiation effects on the DNA level were analyzed at different time intervals after irradiation by Western blot analysis and immunofluorescence microscopy. Immunochemically stained cells were visualized with two types of microscopes: AxioVision (Zeiss, Germany) microscope, comprising an ApoTome software, and AxioImagerA1 microscope (Zeiss, Germany). Obtained results show that the level of γH2AX is time and dose dependent. Immunofluorescence microscopy provided better detection of DSBs for lower irradiation doses, while Western blot analysis was more reliable for higher irradiation doses. AxioVision microscope containing ApoTome software was more suitable for the detection of γH2AX foci.

  7. Radiation dose determines the method for quantification of DNA double strand breaks

    Directory of Open Access Journals (Sweden)

    TANJA BULAT

    2016-03-01

    Full Text Available ABSTRACT Ionizing radiation induces DNA double strand breaks (DSBs that trigger phosphorylation of the histone protein H2AX (γH2AX. Immunofluorescent staining visualizes formation of γH2AX foci, allowing their quantification. This method, as opposed to Western blot assay and Flow cytometry, provides more accurate analysis, by showing exact position and intensity of fluorescent signal in each single cell. In practice there are problems in quantification of γH2AX. This paper is based on two issues: the determination of which technique should be applied concerning the radiation dose, and how to analyze fluorescent microscopy images obtained by different microscopes. HTB140 melanoma cells were exposed to γ-rays, in the dose range from 1 to 16 Gy. Radiation effects on the DNA level were analyzed at different time intervals after irradiation by Western blot analysis and immunofluorescence microscopy. Immunochemically stained cells were visualized with two types of microscopes: AxioVision (Zeiss, Germany microscope, comprising an ApoTome software, and AxioImagerA1 microscope (Zeiss, Germany. Obtained results show that the level of γH2AX is time and dose dependent. Immunofluorescence microscopy provided better detection of DSBs for lower irradiation doses, while Western blot analysis was more reliable for higher irradiation doses. AxioVision microscope containing ApoTome software was more suitable for the detection of γH2AX foci.

  8. Preliminary method for direct quantification of colistin methanesulfonate by attenuated total reflectance Fourier transform infrared spectroscopy.

    Science.gov (United States)

    Niece, Krista L; Akers, Kevin S

    2015-09-01

    Colistin use has increased in response to the advent of infections caused by multidrug-resistant organisms. It is administered parenterally as an inactive prodrug, colistin methanesulfonate (CMS). Various formulations of CMS and labeling conventions can lead to confusion about colistin dosing, and questions remain about the pharmacokinetics of CMS. Since CMS does not have strong UV absorbance, current methods employ a laborious process of chemical conversion to colistin followed by precolumn derivatization to detect formed colistin by high-performance liquid chromatography. Here, we report a method for direct quantification of colistin methanesulfonate by attenuated total reflectance Fourier transform infrared spectroscopy (ATR FTIR). Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. Eigenvalue sensitivity analysis and uncertainty quantification in SCALE6.2.1 using continuous-energy Monte Carlo Method

    Energy Technology Data Exchange (ETDEWEB)

    Labarile, A.; Barrachina, T.; Miró, R.; Verdú, G., E-mail: alabarile@iqn.upv.es, E-mail: tbarrachina@iqn.upv.es, E-mail: rmiro@iqn.upv.es, E-mail: gverdu@iqn.upv.es [Institute for Industrial, Radiophysical and Environmental Safety - ISIRYM, Valencia (Spain); Pereira, C., E-mail: claubia@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear

    2017-07-01

    The use of Best-Estimate computer codes is one of the greatest concerns in the nuclear industry especially for licensing analysis. Of paramount importance is the estimation of the uncertainties of the whole system to establish the safety margins based on highly reliable results. The estimation of these uncertainties should be performed by applying a methodology to propagate the uncertainties from the input parameters and the models implemented in the code to the output parameters. This study employs two different approaches for the Sensitivity Analysis (SA) and Uncertainty Quantification (UQ), the adjoint-based perturbation theory of TSUNAMI-3D, and the stochastic sampling technique of SAMPLER/KENO. The cases studied are two models of Light Water Reactors in the framework of the OECD/NEA UAM-LWR benchmark, a Boiling Water Reactor (BWR) and a Pressurized Water Reactor (PWR). Both of them at Hot Full Power (HFP) and Hot Zero Power (HZP) conditions, with and without control rod. This work presents the results of k{sub eff} from different simulation, and discuss the comparison of the two methods employed. In particular, a list of the major contributors to the uncertainty of k{sub eff} in terms of microscopic cross sections; their sensitivity coefficients; a comparison between the results of the two modules and with reference values; statistical information from the stochastic approach, and the probability and statistical confidence reached in the simulations. The reader will find all these information discussed in this paper. (author)

  10. Molecular biology-based methods for quantification of bacteria in mixed culture: perspectives and limitations.

    Science.gov (United States)

    Nagarajan, Karthiga; Loh, Kai-Chee

    2014-08-01

    Species-specific enumeration of mixed community is invaluable as it facilitates a better understanding of the significance of the individual strains, their interactions, and the underlying mechanisms of community dynamics. Mixed microbial community has been characterized by microbiological, biochemical, or molecular biology-based methods. While microbiological and biochemical techniques do not provide adequate quantitative information of the members of the consortia and require additional techniques for a more comprehensive analysis, molecular biology-based methods analyze the microbial consortium based on specific DNA sequences and do not require isolation and culturing of bacteria for quantitative analysis. These methods outshine conventional culture-based techniques in terms of better sensitivity, reproducibility, and reliability. Quantitative molecular biology methods have been classified as PCR-based and probe hybridization methods. The PCR-based methods includes quantitative real-time PCR and terminal restriction fragment length polymorphism, while fluorescent in situ hybridization and DNA microarrays fall under probe hybridization methods. The workflow, the quantification methods, and their potential applications are discussed in this review by highlighting their advantages and possible limitations.

  11. A simple method for simultaneous quantification of total arabinoxylans and fructans in wheat flour.

    Science.gov (United States)

    Liu, Zhiqian; Rochfort, Simone

    2014-08-20

    Current methods for measuring fructan and arabinoxylan concentrations in wheat flour are time-consuming, and each type of the polymers requires a separate method. Here, we report the development of a new method that allows simultaneous determination of arabinoxylan and fructan contents in wheat flour. The new method is based on a single hydrolysis procedure for both arabinoxylans and fructans and an optimized separation technique for all monomers released. Owing to the use of milder hydrolysis conditions that afforded higher recovery of pentoses, the level of arabinoxylans in wheat flour determined by this new method is slightly higher than that measured with the widely used hydrolysis protocol. On the basis of the finding that, for a given flour sample, the total fructose concentration after hydrolysis is highly correlated with its total fructan concentration, the fructan content of a wheat flour sample can thus be estimated directly by the total fructose content. By simplifying and combining the two separate methods used for arabonoxylan and fructan analysis, this new method enables the quantification of arabinoxylans and fructans in wheat flour using a single acid hydrolysis step and a single high-performance liquid chromatography run.

  12. Leak Rate Quantification Method for Gas Pressure Seals with Controlled Pressure Differential

    Science.gov (United States)

    Daniels, Christopher C.; Braun, Minel J.; Oravec, Heather A.; Mather, Janice L.; Taylor, Shawn C.

    2015-01-01

    An enhancement to the pressure decay leak rate method with mass point analysis solved deficiencies in the standard method. By adding a control system, a constant gas pressure differential across the test article was maintained. As a result, the desired pressure condition was met at the onset of the test, and the mass leak rate and measurement uncertainty were computed in real-time. The data acquisition and control system were programmed to automatically stop when specified criteria were met. Typically, the test was stopped when a specified level of measurement uncertainty was attained. Using silicone O-ring test articles, the new method was compared with the standard method that permitted the downstream pressure to be non-constant atmospheric pressure. The two methods recorded comparable leak rates, but the new method recorded leak rates with significantly lower measurement uncertainty, statistical variance, and test duration. Utilizing this new method in leak rate quantification, projects will reduce cost and schedule, improve test results, and ease interpretation between data sets.

  13. Research on psychological evaluation method for nuclear power plant operators

    International Nuclear Information System (INIS)

    Fang Xiang; He Xuhong; Zhao Bingquan

    2007-01-01

    The qualitative and quantitative psychology evaluation methods to the nuclear power plant operators were analyzed and discussed in the paper. The comparison analysis to the scope and result of application was carried out between method of outline figure fitted and method of fuzzy synthetic evaluation. The research results can be referenced to the evaluation of nuclear power plant operators. (authors)

  14. A liquid biopsy-based method for the detection and quantification of circulating tumor cells in surgical osteosarcoma patients

    NARCIS (Netherlands)

    Zhang, Haoqiang; Gao, Peng; Xiao, Xin; Heger, Michal; Geng, Lei; Fan, Bo; Yuan, Yulin; Huang, Chen; Chen, Guojing; Liu, Yao; Hu, Yongchen; Yu, Xiuchun; Wu, Sujia; Wang, Ling; Wang, Zhen

    2017-01-01

    A method for the enumeration and quantification of osteosarcoma (OS) circulating tumor cells (CTCs) is currently not available. A correlation between the number of CTCs and progression-free survival (PFS) has been established for other cancers, but not for OS CTCs. A method was therefore developed

  15. 76 FR 29752 - Nomination of In Vitro Test Methods for Detection and Quantification of Botulinum Neurotoxins and...

    Science.gov (United States)

    2011-05-23

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Nomination of In Vitro Test Methods for Detection and Quantification of Botulinum Neurotoxins and Detection of Non-Endotoxin Pyrogens; Data Request for Substances... detecting and quantifying botulinum neurotoxin (BoNT), and (2) an in vitro test method proposed for...

  16. Development of an analytical method usefull for the quantification of L-Glu & GlutaMAX during fermentation

    OpenAIRE

    Mayor, Mathieu; Kalman, Franka

    2014-01-01

    The objectives of this work are to establish time and cost-efficient methods for the quantification of L-Glutamine and GlutamaxTM in different mediums containing serums. These methods have to be easy to perform and based on a purpose of daily basis analysis of mammalian cells cultures.

  17. Diagnosing method for nuclear power plant

    International Nuclear Information System (INIS)

    Sonoda, Yukio.

    1991-01-01

    When an abnormality occurs in a nuclear power plant, the abnormality is diagnosed, at present, graphic waveforms obtained by applying signal processing such as high speed Fourier transformation, etc. to fluctuation ingredients (noises) of process signals such as neutron fluxes, and plotting a power spectral density relative to a frequency. However, expert technical knowledges are required for interpreting the waveforms and it is difficult for field operators and persons for maintenance to judge them. Then, in the present invention, patterns of the power spectral density are inputted for pattern recognition by using a neural net so that any of patterns experienced in the past can be identified. If an unknown pattern appears, it is automatically studied for identification in subsequent cases. Then, the known abnormality of the plant can be monitored and causes thereof can be identified in an early stage, as well as it is possible to diagnose unknown abnormalities in subsequent situation. This method is effective for monitoring and maintaining the integrity, and can avoid unnecessary scram to improve plant operation factor. (N.H.)

  18. Quantification of ovarian follicles in bluefin tuna Thunnus thynnus by two stereological methods.

    Science.gov (United States)

    Aragón, L; Aranda, G; Santos, A; Medina, A

    2010-08-01

    The numbers of different types of ovarian follicles (developing, degenerating and postovulatory follicles) were estimated in bluefin tuna Thunnus thynnus using two stereological procedures: the model-based method of Weibel & Gomez, which has become a tool of broad application in the quantification of oocytes in fishes, and the assumption-free 'disector' (sic) method of Sterio. The estimates of developing follicles (follicles containing lipid-stage, vitellogenic and migratory-nucleus oocytes) made by the model-based method tended to be lower than those obtained with the disector, though significant differences were not observed except for vitellogenic follicles. Counts of atretic follicles by the model-based method were higher than those made using the disector, the differences being remarkable between both techniques, particularly in the case of beta-atresia, where the statistical analysis indicated significantly unequal estimations with the two methods. In contrast, the amount of postovulatory follicles estimated by the disector, which would stand for the realized batch fecundity, was somewhat larger than that calculated with the model-based method.

  19. A local flexibility method for vibration-based damage localization and quantification

    Science.gov (United States)

    Reynders, Edwin; De Roeck, Guido

    2010-06-01

    A method for vibration-based damage localization and quantification, based on quasi-static flexibility, is presented. The experimentally determined flexibility matrix is combined with a virtual load that causes nonzero stresses in a small part of the structure, where a possible local stiffness change is investigated. It is shown that, if the strain-stress relationship for the load is proportional, the ratio of some combination of deformations before and after a stiffness change has occurred, equals the inverse local stiffness ratio. The method is therefore called local flexibility (LF) method. Since the quasi-static flexibility matrix can be composed directly from modal parameters, the LF method allows to determine local stiffness variations directly from measured modal parameters, even if they are determined from output-only data. Although the LF method is in principle generally applicable, the emphasis in this paper is on beam structures. The method is validated with simulation examples of damaged isostatic and hyperstatic beams, and experiments involving a reinforced concrete free-free beam and a three-span prestressed concrete bridge, that are both subjected to a progressive damage test.

  20. Immunohistochemistry quantification by a digital computer-assisted method compared to semiquantitative analysis.

    Science.gov (United States)

    Matos, Leandro Luongo de; Stabenow, Elaine; Tavares, Marcos Roberto; Ferraz, Alberto Rosseti; Capelozzi, Vera Luiza; Pinhal, Maria Aparecida da Silva

    2006-10-01

    To compare immunostaining quantification obtained by a digital computer-assisted method with the well-established semiquantitative analysis. Cytoplasmic staining of galectin-3 was obtained by standard immunohistochemical reactions in 25 cases of well-differentiated thyroid carcinoma. The expression index that associates the conventional area fraction of labeled cells with the immunostaining intensity score based on visual qualitative observation was used as the semiquantitative analysis. A digital computer-assisted method is described based on the use of an image processing program (ImageLab). Three parameters were obtained: (1) percentage of labeled cells; (2) digital immunostaining intensity, and (3) digital expression index. The proposed method allows numerical analysis of the immunostaining intensity. There was a strong correlation between the immunostaining intensity obtained by the two methods (Pearson correlation coefficient, r = 0.71, P = 0.0001). The same was observed between expression indexes (Pearson correlation coefficient, r = 0.66, P = 0.0001). Results obtained with our proposed digital computer-assisted method for immunoexpression analysis were concordant with the semiquantitative analysis. In addition, digital values can also resolve disagreement among different observers about the quality of staining intensity because the digital method does not classify the results into groups, but rather provides a numerical value for each individual case; thus, it increases the diagnostic and, more importantly, the prognostic sensitivity of the immunohistochemical analysis.

  1. Automated quantification of budding Saccharomyces cerevisiae using a novel image cytometry method.

    Science.gov (United States)

    Laverty, Daniel J; Kury, Alexandria L; Kuksin, Dmitry; Pirani, Alnoor; Flanagan, Kevin; Chan, Leo Li-Ying

    2013-06-01

    The measurements of concentration, viability, and budding percentages of Saccharomyces cerevisiae are performed on a routine basis in the brewing and biofuel industries. Generation of these parameters is of great importance in a manufacturing setting, where they can aid in the estimation of product quality, quantity, and fermentation time of the manufacturing process. Specifically, budding percentages can be used to estimate the reproduction rate of yeast populations, which directly correlates with metabolism of polysaccharides and bioethanol production, and can be monitored to maximize production of bioethanol during fermentation. The traditional method involves manual counting using a hemacytometer, but this is time-consuming and prone to human error. In this study, we developed a novel automated method for the quantification of yeast budding percentages using Cellometer image cytometry. The automated method utilizes a dual-fluorescent nucleic acid dye to specifically stain live cells for imaging analysis of unique morphological characteristics of budding yeast. In addition, cell cycle analysis is performed as an alternative method for budding analysis. We were able to show comparable yeast budding percentages between manual and automated counting, as well as cell cycle analysis. The automated image cytometry method is used to analyze and characterize corn mash samples directly from fermenters during standard fermentation. Since concentration, viability, and budding percentages can be obtained simultaneously, the automated method can be integrated into the fermentation quality assurance protocol, which may improve the quality and efficiency of beer and bioethanol production processes.

  2. A Method for Quantification of Epithelium Colonization Capacity by Pathogenic Bacteria

    DEFF Research Database (Denmark)

    Micha Pedersen, Rune; Grønnemose, Rasmus Birkholm; Stærk, Kristian

    2018-01-01

    the bloodstream, effective dissemination again requires that bacteria in the blood, reestablish contact to distant endothelium sites and form secondary site foci. The infectious potential of bacteria is therefore closely linked to their ability to adhere to, colonize, and invade epithelial and endothelial...... of retained bacteria by agar plating. This approach is fast and straightforward, but yields only a rough estimate of the adhesive properties of the bacteria upon contact, and little information on the ability of the bacterium to colonize these surfaces under relevant physiological conditions. Here, we present...... a method in which epithelia/endothelia are simulated by flow chamber-grown human cell layers, and infection is induced by seeding of pathogenic bacteria on these surfaces under conditions that simulate the physiological microenvironment. Quantification of bacterial adhesion and colonization of the cell...

  3. Development of Uncertainty Quantification Method for MIR-PIV Measurement using BOS Technique

    International Nuclear Information System (INIS)

    Seong, Jee Hyun; Song, Min Seop; Kim, Eung Soo

    2014-01-01

    Matching Index of Refraction (MIR) is frequently used for obtaining high quality PIV measurement data. ven small distortion by unmatched refraction index of test section can result in uncertainty problems. In this context, it is desirable to construct new concept for checking errors of MIR and following uncertainty of PIV measurement. This paper proposes a couple of experimental concept and relative results. This study developed an MIR uncertainty quantification method for PIV measurement using SBOS technique. From the reference data of the BOS, the reliable SBOS experiment procedure was constructed. Then with the combination of SBOS technique with MIR-PIV technique, velocity vector and refraction displacement vector field was measured simultaneously. MIR errors are calculated through mathematical equation, in which PIV and SBOS data are put. These errors are also verified by another BOS experiment. Finally, with the applying of calculated MIR-PIV uncertainty, correct velocity vector field can be obtained regardless of MIR errors

  4. Comparison between PET template-based method and MRI-based method for cortical quantification of florbetapir (AV-45) uptake in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Saint-Aubert, L.; Nemmi, F.; Peran, P. [Inserm, Imagerie Cerebrale et Handicaps neurologiques UMR 825, Centre Hospitalier Universitaire de Toulouse, Toulouse (France); Centre Hospitalier Universitaire de Toulouse, Universite de Toulouse, UPS, Imagerie Cerebrale et Handicaps Neurologiques UMR 825, Toulouse (France); Barbeau, E.J. [Universite de Toulouse, UPS, Centre de Recherche Cerveau et Cognition, France, CNRS, CerCo, Toulouse (France); Service de Neurologie, Pole Neurosciences, Centre Hospitalier Universitaire de Toulouse, Toulouse (France); Payoux, P. [Inserm, Imagerie Cerebrale et Handicaps neurologiques UMR 825, Centre Hospitalier Universitaire de Toulouse, Toulouse (France); Centre Hospitalier Universitaire de Toulouse, Universite de Toulouse, UPS, Imagerie Cerebrale et Handicaps Neurologiques UMR 825, Toulouse (France); Service de Medecine Nucleaire, Pole Imagerie, Centre Hospitalier Universitaire de Toulouse, Toulouse (France); Chollet, F.; Pariente, J. [Inserm, Imagerie Cerebrale et Handicaps neurologiques UMR 825, Centre Hospitalier Universitaire de Toulouse, Toulouse (France); Centre Hospitalier Universitaire de Toulouse, Universite de Toulouse, UPS, Imagerie Cerebrale et Handicaps Neurologiques UMR 825, Toulouse (France); Service de Neurologie, Pole Neurosciences, Centre Hospitalier Universitaire de Toulouse, Toulouse (France)

    2014-05-15

    Florbetapir (AV-45) has been shown to be a reliable tool for assessing in vivo amyloid load in patients with Alzheimer's disease from the early stages. However, nonspecific white matter binding has been reported in healthy subjects as well as in patients with Alzheimer's disease. To avoid this issue, cortical quantification might increase the reliability of AV-45 PET analyses. In this study, we compared two quantification methods for AV-45 binding, a classical method relying on PET template registration (route 1), and a MRI-based method (route 2) for cortical quantification. We recruited 22 patients at the prodromal stage of Alzheimer's disease and 17 matched controls. AV-45 binding was assessed using both methods, and target-to-cerebellum mean global standard uptake values (SUVr) were obtained for each of them, together with SUVr in specific regions of interest. Quantification using the two routes was compared between the clinical groups (intragroup comparison), and between groups for each route (intergroup comparison). Discriminant analysis was performed. In the intragroup comparison, differences in uptake values were observed between route 1 and route 2 in both groups. In the intergroup comparison, AV-45 uptake was higher in patients than controls in all regions of interest using both methods, but the effect size of this difference was larger using route 2. In the discriminant analysis, route 2 showed a higher specificity (94.1 % versus 70.6 %), despite a lower sensitivity (77.3 % versus 86.4 %), and D-prime values were higher for route 2. These findings suggest that, although both quantification methods enabled patients at early stages of Alzheimer's disease to be well discriminated from controls, PET template-based quantification seems adequate for clinical use, while the MRI-based cortical quantification method led to greater intergroup differences and may be more suitable for use in current clinical research. (orig.)

  5. COMPARISON OF TOTAL LEUKOCYTE QUANTIFICATION METHODS IN FREE-LIVING GALAPAGOS TORTOISES (CHELONOIDIS SPP.).

    Science.gov (United States)

    Sheldon, Julie D; Stacy, Nicole I; Blake, Stephen; Cabrera, Fredy; Deem, Sharon L

    2016-03-01

    Reptile hematologic data provide important health information for conservation efforts of vulnerable wildlife species such as the Galapagos tortoise (Chelonoidis spp.). Given the reported discrepancies between manual leukocyte counts for nonmammalian species, two manual leukocyte quantification methods, the Natt and Herrick's (NH) and the Eopette (EO), were compared to white blood cell (WBC) estimates from blood films of 42 free-living, clinically healthy, adult female Galapagos tortoises. To investigate the effects of delay in sample processing, estimated WBC counts and leukocyte differentials were compared for blood films prepared at time of collection under field conditions (T0) to blood films prepared from samples that were stored for 18-23 hr at 4°C in the laboratory (T1). Passing-Bablok regression analysis revealed no constant or proportional error between the NH and WBC estimates (T0 and T1) with slopes of 1.1 and 0.9, respectively. However both constant and proportional errors were present between EO and WBC estimates (T0 and T1) with slopes of 3.1 and 2.7, respectively. Bland Altman plots also showed agreement between the NH and WBC estimates where the points fell within the confidence-interval limit lines and were evenly distributed about the mean. In contrast, the EO and WBC estimate comparisons showed numerous points above the upper limit line, especially at higher concentrations. WBC estimates obtained from T0 and T1 films were in agreement, whereas heterophil and monocyte percentages based on differentials were not. Cell morphology and preservation were superior in T0 blood films because thrombocytes exhibited swelling after storage, becoming difficult to differentiate from lymphocytes. In this study, the highest quality and most reliable hematologic data in Galapagos tortoises were obtained by combining immediate blood film preparation with the NH leukocyte quantification method and a confirmatory WBC estimate from the blood film.

  6. A Method for Quantification of Epithelium Colonization Capacity by Pathogenic Bacteria

    Directory of Open Access Journals (Sweden)

    Rune M. Pedersen

    2018-02-01

    Full Text Available Most bacterial infections initiate at the mucosal epithelium lining the gastrointestinal, respiratory, and urogenital tracts. At these sites, bacterial pathogens must adhere and increase in numbers to effectively breach the outer barrier and invade the host. If the bacterium succeeds in reaching the bloodstream, effective dissemination again requires that bacteria in the blood, reestablish contact to distant endothelium sites and form secondary site foci. The infectious potential of bacteria is therefore closely linked to their ability to adhere to, colonize, and invade epithelial and endothelial surfaces. Measurement of bacterial adhesion to epithelial cells is therefore standard procedure in studies of bacterial virulence. Traditionally, such measurements have been conducted with microtiter plate cell cultures to which bacteria are added, followed by washing procedures and final quantification of retained bacteria by agar plating. This approach is fast and straightforward, but yields only a rough estimate of the adhesive properties of the bacteria upon contact, and little information on the ability of the bacterium to colonize these surfaces under relevant physiological conditions. Here, we present a method in which epithelia/endothelia are simulated by flow chamber-grown human cell layers, and infection is induced by seeding of pathogenic bacteria on these surfaces under conditions that simulate the physiological microenvironment. Quantification of bacterial adhesion and colonization of the cell layers is then performed by in situ time-lapse fluorescence microscopy and automatic detection of bacterial surface coverage. The method is demonstrated in three different infection models, simulating Staphylococcus aureus endothelial infection and Escherichia coli intestinal- and uroepithelial infection. The approach yields valuable information on the fitness of the bacterium to successfully adhere to and colonize epithelial surfaces and can be used

  7. Quantification of lipoprotein profiles by nuclear magnetic resonance spectroscopy and multivariate data analysis

    DEFF Research Database (Denmark)

    Aru, Violetta; Lam, Chloie; Khakimov, Bekzod

    2017-01-01

    Lipoproteins and their subfraction profiles have been associated to diverse diseases including Cardio Vascular Disease (CVD). There is thus a great demand for measuring and quantifying the lipoprotein profile in an efficient and accurate manner. Nuclear Magnetic Resonance (NMR) spectroscopy is un...

  8. Methods of assessing nuclear power plant risks

    International Nuclear Information System (INIS)

    Skvarka, P.; Kovacz, Z.

    1985-01-01

    The concept of safety evalution is based on safety criteria -standards or set qualitative values of parameters and indices used in designing nuclear power plants, incorporating demands on the quality of equipment and operation of the plant, its siting and technical means for achieving nuclear safety. The concepts are presented of basic and optimal risk values. Factors are summed up indispensable for the evaluation of the nuclear power plant risk and the present world trend of evaluation based on probability is discussed. (J.C.)

  9. Quantification of organ motion based on an adaptive image-based scale invariant feature method

    Energy Technology Data Exchange (ETDEWEB)

    Paganelli, Chiara [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, piazza L. Da Vinci 32, Milano 20133 (Italy); Peroni, Marta [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, piazza L. Da Vinci 32, Milano 20133, Italy and Paul Scherrer Institut, Zentrum für Protonentherapie, WMSA/C15, CH-5232 Villigen PSI (Italy); Baroni, Guido; Riboldi, Marco [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, piazza L. Da Vinci 32, Milano 20133, Italy and Bioengineering Unit, Centro Nazionale di Adroterapia Oncologica, strada Campeggi 53, Pavia 27100 (Italy)

    2013-11-15

    Purpose: The availability of corresponding landmarks in IGRT image series allows quantifying the inter and intrafractional motion of internal organs. In this study, an approach for the automatic localization of anatomical landmarks is presented, with the aim of describing the nonrigid motion of anatomo-pathological structures in radiotherapy treatments according to local image contrast.Methods: An adaptive scale invariant feature transform (SIFT) was developed from the integration of a standard 3D SIFT approach with a local image-based contrast definition. The robustness and invariance of the proposed method to shape-preserving and deformable transforms were analyzed in a CT phantom study. The application of contrast transforms to the phantom images was also tested, in order to verify the variation of the local adaptive measure in relation to the modification of image contrast. The method was also applied to a lung 4D CT dataset, relying on manual feature identification by an expert user as ground truth. The 3D residual distance between matches obtained in adaptive-SIFT was then computed to verify the internal motion quantification with respect to the expert user. Extracted corresponding features in the lungs were used as regularization landmarks in a multistage deformable image registration (DIR) mapping the inhale vs exhale phase. The residual distances between the warped manual landmarks and their reference position in the inhale phase were evaluated, in order to provide a quantitative indication of the registration performed with the three different point sets.Results: The phantom study confirmed the method invariance and robustness properties to shape-preserving and deformable transforms, showing residual matching errors below the voxel dimension. The adapted SIFT algorithm on the 4D CT dataset provided automated and accurate motion detection of peak to peak breathing motion. The proposed method resulted in reduced residual errors with respect to standard SIFT

  10. Quantification of viral DNA during HIV-1 infection: A review of relevant clinical uses and laboratory methods.

    Science.gov (United States)

    Alidjinou, E K; Bocket, L; Hober, D

    2015-02-01

    Effective antiretroviral therapy usually leads to undetectable HIV-1 RNA in the plasma. However, the virus persists in some cells of infected patients as various DNA forms, both integrated and unintegrated. This reservoir represents the greatest challenge to the complete cure of HIV-1 infection and its characteristics highly impact the course of the disease. The quantification of HIV-1 DNA in blood samples constitutes currently the most practical approach to measure this residual infection. Real-time quantitative PCR (qPCR) is the most common method used for HIV-DNA quantification and many strategies have been developed to measure the different forms of HIV-1 DNA. In the literature, several "in-house" PCR methods have been used and there is a need for standardization to have comparable results. In addition, qPCR is limited for the precise quantification of low levels by background noise. Among new assays in development, digital PCR was shown to allow an accurate quantification of HIV-1 DNA. Total HIV-1 DNA is most commonly measured in clinical routine. The absolute quantification of proviruses and unintegrated forms is more often used for research purposes. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  11. Improved Methods of Carnivore Faecal Sample Preservation, DNA Extraction and Quantification for Accurate Genotyping of Wild Tigers

    Science.gov (United States)

    Harika, Katakam; Mahla, Ranjeet Singh; Shivaji, Sisinthy

    2012-01-01

    Background Non-invasively collected samples allow a variety of genetic studies on endangered and elusive species. However due to low amplification success and high genotyping error rates fewer samples can be identified up to the individual level. Number of PCRs needed to obtain reliable genotypes also noticeably increase. Methods We developed a quantitative PCR assay to measure and grade amplifiable nuclear DNA in feline faecal extracts. We determined DNA degradation in experimentally aged faecal samples and tested a suite of pre-PCR protocols to considerably improve DNA retrieval. Results Average DNA concentrations of Grade I, II and III extracts were 982pg/µl, 9.5pg/µl and 0.4pg/µl respectively. Nearly 10% of extracts had no amplifiable DNA. Microsatellite PCR success and allelic dropout rates were 92% and 1.5% in Grade I, 79% and 5% in Grade II, and 54% and 16% in Grade III respectively. Our results on experimentally aged faecal samples showed that ageing has a significant effect on quantity and quality of amplifiable DNA (pDNA degradation occurs within 3 days of exposure to direct sunlight. DNA concentrations of Day 1 samples stored by ethanol and silica methods for a month varied significantly from fresh Day 1 extracts (p0.05). DNA concentrations of fresh tiger and leopard faecal extracts without addition of carrier RNA were 816.5pg/µl (±115.5) and 690.1pg/µl (±207.1), while concentrations with addition of carrier RNA were 49414.5pg/µl (±9370.6) and 20982.7pg/µl (±6835.8) respectively. Conclusions Our results indicate that carnivore faecal samples should be collected as freshly as possible, are better preserved by two-step method and should be extracted with addition of carrier RNA. We recommend quantification of template DNA as this facilitates several downstream protocols. PMID:23071624

  12. A method for uncertainty quantification in the life prediction of gas turbine components

    Energy Technology Data Exchange (ETDEWEB)

    Lodeby, K.; Isaksson, O.; Jaervstraat, N. [Volvo Aero Corporation, Trolhaettan (Sweden)

    1998-12-31

    A failure in an aircraft jet engine can have severe consequences which cannot be accepted and high requirements are therefore raised on engine reliability. Consequently, assessment of the reliability of life predictions used in design and maintenance are important. To assess the validity of the predicted life a method to quantify the contribution to the total uncertainty in the life prediction from different uncertainty sources is developed. The method is a structured approach for uncertainty quantification that uses a generic description of the life prediction process. It is based on an approximate error propagation theory combined with a unified treatment of random and systematic errors. The result is an approximate statistical distribution for the predicted life. The method is applied on life predictions for three different jet engine components. The total uncertainty became of reasonable order of magnitude and a good qualitative picture of the distribution of the uncertainty contribution from the different sources was obtained. The relative importance of the uncertainty sources differs between the three components. It is also highly dependent on the methods and assumptions used in the life prediction. Advantages and disadvantages of this method is discussed. (orig.) 11 refs.

  13. Development and validation of a method for the quantification of fructooligosaccharides in a prebiotic ice cream

    Directory of Open Access Journals (Sweden)

    Claudia L. González-Aguirre

    2018-02-01

    Full Text Available Context: Fructooligosaccharides (FOS are known as oligofructanes, oligosaccharides or oligofructose, which fall within the concept of prebiotics. One of the methods most commonly used in the industry for quantification and quality control nutraceutical substances classification is the method of high performance liquid chromatography (HPLC. Aims: To develop a procedure for the determination of FOS by HPLC in raw materials and a prebiotic ice cream. Methods: For the chromatographic separation, an HPLC was used with a refractive index detector (IR. The separation was performed using two columns coupled Sugar-pak I™ using an isocratic procedure with water type 1 at 0.35 mL/min. Kestose (GF2, nistose (GF3 and fructofuranosylnystose (GF4 were used as standards. Robustness was assessed by applying the Youden and Steiner test. Results: Good linear correlations were obtained (y = 14191.4470 x + 285684.2, r2 = 0.9904 within the concentration range of 8.0-12.0 mg/mL. The FOS recoveries were 99.5% with the intra-day and inter-day relative standard deviation (RSD less than 0.8%. The robustness test showed that the temperature parameters of the column and flow velocity are critical factors in the method. Conclusions: This reliable, simple and cost-effective method could be applied to the routine monitoring of FOS (GF2, GF3, and GF4 in raw materials and prebiotic ice creams.

  14. Critical assessment of three high performance liquid chromatography analytical methods for food carotenoid quantification.

    Science.gov (United States)

    Dias, M Graça; Oliveira, Luísa; Camões, M Filomena G F C; Nunes, Baltazar; Versloot, Pieter; Hulshof, Paul J M

    2010-05-21

    Three sets of extraction/saponification/HPLC conditions for food carotenoid quantification were technically and economically compared. Samples were analysed for carotenoids alpha-carotene, beta-carotene, beta-cryptoxanthin, lutein, lycopene, and zeaxanthin. All methods demonstrated good performance in the analysis of a composite food standard reference material for the analytes they are applicable to. Methods using two serial connected C(18) columns and a mobile phase based on acetonitrile, achieved a better carotenoid separation than the method using a mobile phase based on methanol and one C(18)-column. Carotenoids from leafy green vegetable matrices appeared to be better extracted with a mixture of methanol and tetrahydrofuran than with tetrahydrofuran alone. Costs of carotenoid determination in foods were lower for the method with mobile phase based on methanol. However for some food matrices and in the case of E-Z isomer separations, this was not technically satisfactory. Food extraction with methanol and tetrahydrofuran with direct evaporation of these solvents, and saponification (when needed) using pyrogallol as antioxidant, combined with a HPLC system using a slight gradient mobile phase based on acetonitrile and a stationary phase composed by two serial connected C(18) columns was the most technically and economically favourable method. 2010. Published by Elsevier B.V.

  15. European Society of Nuclear Methods in Agriculture. Proceedings

    International Nuclear Information System (INIS)

    The conference proceedings reported include papers on the Czechoslovak nuclear programme in the field of agriculture and food industry, the application of stable isotopes in agriculture, the applications of radioanalytical methods in agriculture, the use of waste heat from nuclear power plants, food irradiation, waste processing by irradiation, radiation-induced stimulation effects in plants, tracer techniques in animal science, radiation analysis, the use of nuclear techniques in the study of soil-plant relationships, applied mutagenesis, environmental pollution, genetic methods of pest control, the applications of radioisotopes in insect ecology, and the application of nuclear methods in plant physiology. (J.B.)

  16. Molecular methods in nuclear medicine therapy

    International Nuclear Information System (INIS)

    Lee, Kyung Han

    2001-01-01

    Nuclear medicine has traditionally contributed to molecular oncology by allowing noninvasive monitoring of tumor metabolism, growth and genetic changes, thereby providing a basis for appropriate biology-based treatment planning. However, NM techniques are now being applied as an active therapeutic tool in novel molecular approaches for cancer treatment. Such areas include research on cancer therapy with radiolabeled ligands or oligonucleotides, and utilization of synergism between NM radiotherapy and gene transfer techniques. Here we will focus on novel aspects of nuclear medicine therapy

  17. A method of simulating and visualizing nuclear reactions

    International Nuclear Information System (INIS)

    Atwood, C.H.; Paul, K.M.

    1994-01-01

    Teaching nuclear reactions to students is difficult because the mechanisms are complex and directly visualizing them is impossible. As a teaching tool, the authors have developed a method of simulating nuclear reactions using colliding water droplets. Videotaping of the collisions, taken with a high shutter speed camera and run frame-by-frame, shows details of the collisions that are analogous to nuclear reactions. The method for colliding the water drops and videotaping the collisions are shown

  18. Solution of reverse problems in nuclear geophysics (equivalent field method)

    Energy Technology Data Exchange (ETDEWEB)

    Barenbaum, A.A.; Polyachenko, A.L.; Yakubson, K.I.

    1982-06-01

    The approach to the solution of reverse problems in nuclear geophysics based on special integration of two nuclear methods of near similar physical nature is theoretically substantiated. Taking into account the required accuracy of the reverse problem solution such an approach substantially simplifies the interpretation algorithm. The effectiveness of the approach is illustrated by numerical calculations on the example of several complexes of nuclear methods.

  19. An Effective Method For Nuclear Technology Transfer

    International Nuclear Information System (INIS)

    Jeon, Jan Pung

    1987-01-01

    Three basic entities involved in the implementation of nuclear projects are the Owner, Regulatory Authority and Nuclear Industry. Their ultimate objective is to secure the safe, reliable and economical nuclear energy. For s successful nuclear power program, the owner should maintain a good relationship with the other entities and pursue an optimization of the objectives. On the other hand, he should manage projects along the well - planned paths in order to effectively learn the nuclear technology. One of the problems in the nuclear projects of developing countries was the absence of long - term technology development program, a limited local participation and the technical incapability. For the effective technology transfer, a motivation of the technology supplier and a readiness of the recipient to accommodate such technologies are required. Advanced technology is usually developed at considerable expense with the expectation that the developer will use it in furthering his own business. Therefore, he tends to be reluctant to transfer it to the others, particularly, to the potential competitors. There is a disinclination against further technology transfer beyond the minimum contractual obligation or the requirements by Government Regulatory. So, an additional commercial incentive must be provided to the developer

  20. Survey and analysis of deep water mineral deposits using nuclear methods

    International Nuclear Information System (INIS)

    Staehle, C.M.; Noakes, J.E.; Spaulding, J.

    1991-01-01

    Present knowledge of the location, quality, quantity and recoverability of sea floor minerals is severely limited, particularly in the abyssal depths and deep water within the 200 mile Exclusion Economic Zone (EEZ) surrounding the U.S. Pacific Islands. To improve this understanding and permit exploitation of these mineral reserves much additional data is needed. This paper will discuss a sponsored program for extending existing proven nuclear survey methods currently used on the shallow continental margins of the Atlantic and Gulf of Mexico into the deeper waters of the Pacific. This nuclear technology can be readily integrated and extended to depths of 2000 m using the existing RCV-150 remotely operated vehicle (ROV) and the PISCESE V manned deep submersible vehicle (DSV) operated by The University of Hawaii's, Hawaii Underseas Research Laboratory (HURL). Previous papers by the authors have also proposed incorporating these nuclear analytical methods for survey of the deep ocean through the use of Autonomous Underwater Vehicle (AUX). Such a vehicle could extend the use of passive nuclear instrument operation, in addition to conventional analytical methods, into the abyssal depths and do so with speed and economy not otherwise possible. The natural radioactivity associated with manganese nodules and crustal deposits is sufficiently above normal background levels to allow discrimination and quantification in near real time

  1. Crack Imaging and Quantification in Aluminum Plates with Guided Wave Wavenumber Analysis Methods

    Science.gov (United States)

    Yu, Lingyu; Tian, Zhenhua; Leckey, Cara A. C.

    2015-01-01

    Guided wavefield analysis methods for detection and quantification of crack damage in an aluminum plate are presented in this paper. New wavenumber components created by abrupt wave changes at the structural discontinuity are identified in the frequency-wavenumber spectra. It is shown that the new wavenumbers can be used to detect and characterize the crack dimensions. Two imaging based approaches, filter reconstructed imaging and spatial wavenumber imaging, are used to demonstrate how the cracks can be evaluated with wavenumber analysis. The filter reconstructed imaging is shown to be a rapid method to map the plate and any existing damage, but with less precision in estimating crack dimensions; while the spatial wavenumber imaging provides an intensity image of spatial wavenumber values with enhanced resolution of crack dimensions. These techniques are applied to simulated wavefield data, and the simulation based studies show that spatial wavenumber imaging method is able to distinguish cracks of different severities. Laboratory experimental validation is performed for a single crack case to confirm the methods' capabilities for imaging cracks in plates.

  2. Quantification of self pollution from two diesel school buses using three independent methods

    Science.gov (United States)

    Sally Liu, L.-J.; Phuleria, Harish C.; Webber, Whitney; Davey, Mark; Lawson, Douglas R.; Ireson, Robert G.; Zielinska, Barbara; Ondov, John M.; Weaver, Christopher S.; Lapin, Charles A.; Easter, Michael; Hesterberg, Thomas W.; Larson, Timothy

    2010-09-01

    We monitored two Seattle school buses to quantify the buses' self pollution using the dual tracers (DT), lead vehicle (LV), and chemical mass balance (CMB) methods. Each bus drove along a residential route simulating stops, with windows closed or open. Particulate matter (PM) and its constituents were monitored in the bus and from a LV. We collected source samples from the tailpipe and crankcase emissions using an on-board dilution tunnel. Concentrations of PM 1, ultrafine particle counts, elemental and organic carbon (EC/OC) were higher on the bus than the LV. The DT method estimated that the tailpipe and the crankcase emissions contributed 1.1 and 6.8 μg m -3 of PM 2.5 inside the bus, respectively, with significantly higher crankcase self pollution (SP) when windows were closed. Approximately two-thirds of in-cabin PM 2.5 originated from background sources. Using the LV approach, SP estimates from the EC and the active personal DataRAM (pDR) measurements correlated well with the DT estimates for tailpipe and crankcase emissions, respectively, although both measurements need further calibration for accurate quantification. CMB results overestimated SP from the DT method but confirmed crankcase emissions as the major SP source. We confirmed buses' SP using three independent methods and quantified crankcase emissions as the dominant contributor.

  3. Manufacturing method for nuclear fuel pellet

    International Nuclear Information System (INIS)

    Komono, Akira

    1998-01-01

    Upon molding of nuclear fuel pellets, the supply of nuclear fuel powder to a dice is divided to a plurality of stages, and a nuclear fuel powder having higher moldability is supplied to a portion where the density of the powder in the molded product is lower. As a result, the density of the powder of the molded product after molding can be made substantially uniform even in a portion where the molding pressure is low and the density of the powder of the molded product is low. Accordingly, difference of the diameter caused depending on the portion of the pellet after sintering is prevented, so that pellets having substantially uniform diameter can be formed, and the specification of the design can be satisfied. If dice agreed with the aimed diameter is selected based on the degree of shrinkage, a grinding step for making the diameter uniform can be eliminated to attain cost down. (N.H.)

  4. Volatile organic silicon compounds in biogases: development of sampling and analytical methods for total silicon quantification by ICP-OES.

    Science.gov (United States)

    Chottier, Claire; Chatain, Vincent; Julien, Jennifer; Dumont, Nathalie; Lebouil, David; Germain, Patrick

    2014-01-01

    Current waste management policies favor biogases (digester gases (DGs) and landfill gases (LFGs)) valorization as it becomes a way for energy politics. However, volatile organic silicon compounds (VOSiCs) contained into DGs/LFGs severely damage combustion engines and endanger the conversion into electricity by power plants, resulting in a high purification level requirement. Assessing treatment efficiency is still difficult. No consensus has been reached to provide a standardized sampling and quantification of VOSiCs into gases because of their diversity, their physicochemical properties, and the omnipresence of silicon in analytical chains. Usually, samplings are done by adsorption or absorption and quantification made by gas chromatography-mass spectrometry (GC-MS) or inductively coupled plasma-optical emission spectrometry (ICP-OES). In this objective, this paper presents and discusses the optimization of a patented method consisting in VOSiCs sampling by absorption of 100% ethanol and quantification of total Si by ICP-OES.

  5. Optimized, fast through-put UHPLC-DAD based method for carotenoid quantification in spinach, serum, chylomicrons and faeces

    DEFF Research Database (Denmark)

    Eriksen, Jane Nygaard; Madsen, Pia Lisbeth; Dragsted, Lars Ove

    2017-01-01

    An improved UHPLC-DAD based method was developed and validated for quantification of major carotenoids present in spinach, serum, chylomicrons and faeces. Separation was achieved with gradient elution within 12.5 min for 6 dietary carotenoids and the internal standard, echinenone. The proposed me...

  6. Absolute quantification method and validation of airborne snow crab allergen tropomyosin using tandem mass spectrometry.

    Science.gov (United States)

    Abdel Rahman, Anas M; Lopata, Andreas L; Randell, Edward W; Helleur, Robert J

    2010-11-29

    Measuring the levels of the major airborne allergens of snow crab in the workplace is very important in studying the prevalence of crab asthma in workers. Previously, snow crab tropomyosin (SCTM) was identified as the major aeroallergen in crab plants and a unique signature peptide was identified for this protein. The present study advances our knowledge on aeroallergens by developing a method of quantification of airborne SCTM by using isotope dilution mass spectrometry. Liquid chromatography tandem mass spectrometry was developed for separation and analysis of the signature peptides. The tryptic digestion conditions were optimized to accomplish complete digestion. The validity of the method was studied using international conference on harmonization protocol, Where 2-9% for CV (precision) and 101-110% for accuracy, at three different levels of quality control. Recovery of the spiked protein from PTFE and TopTip filters was measured to be 99% and 96%, respectively. To further demonstrate the applicability and the validity of the method for real samples, 45 kg of whole snow crab were processed in an enclosed (simulated) crab processing line and air samples were collected. The levels of SCTM ranged between 0.36-3.92 μg m(-3) and 1.70-2.31 μg m(-3) for butchering and cooking stations, respectively. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.

  7. An innovative method for obtaining consistent images and quantification of histochemically stained specimens.

    Science.gov (United States)

    Linden, Michael A; Sedgewick, Gerald J; Ericson, Marna

    2015-04-01

    Obtaining digital images of color brightfield microscopy is an important aspect of biomedical research and the clinical practice of diagnostic pathology. Although the field of digital pathology has had tremendous advances in whole-slide imaging systems, little effort has been directed toward standardizing color brightfield digital imaging to maintain image-to-image consistency and tonal linearity. Using a single camera and microscope to obtain digital images of three stains, we show that microscope and camera systems inherently produce image-to-image variation. Moreover, we demonstrate that post-processing with a widely used raster graphics editor software program does not completely correct for session-to-session inconsistency. We introduce a reliable method for creating consistent images with a hardware/software solution (ChromaCal™; Datacolor Inc., NJ) along with its features for creating color standardization, preserving linear tonal levels, providing automated white balancing and setting automated brightness to consistent levels. The resulting image consistency using this method will also streamline mean density and morphometry measurements, as images are easily segmented and single thresholds can be used. We suggest that this is a superior method for color brightfield imaging, which can be used for quantification and can be readily incorporated into workflows. © The Author(s) 2015.

  8. A neutral pH thermal hydrolysis method for quantification of structured RNAs

    Science.gov (United States)

    Wilson, Stephen C.; Cohen, Daniel T.; Wang, Xin C.; Hammond, Ming C.

    2014-01-01

    Riboswitch aptamers adopt diverse and complex tertiary structural folds that contain both single-stranded and double-stranded regions. We observe that this high degree of secondary structure leads to an appreciable hypochromicity that is not accounted for in the standard method to calculate extinction coefficients using nearest-neighbor effects, which results in a systematic underestimation of RNA concentrations. Here we present a practical method for quantifying riboswitch RNAs using thermal hydrolysis to generate the corresponding pool of mononucleotides, for which precise extinction coefficients have been measured. Thermal hydrolysis can be performed at neutral pH without reaction quenching, avoids the use of nucleases or expensive fluorescent dyes, and does not require generation of calibration curves. The accuracy of this method for determining RNA concentrations has been validated using quantitative 31P-NMR calibrated to an external standard. We expect that this simple procedure will be generally useful for the accurate quantification of any sequence-defined RNA sample, which is often a critical parameter for in vitro binding and kinetic assays. PMID:24860014

  9. Factors affecting intake by grazing ruminants and related quantification methods: a review

    Directory of Open Access Journals (Sweden)

    Stilmant D.

    2009-01-01

    Full Text Available The aim of this review is to discuss the factors affecting intake of grazing ruminants and its main quantification methods. Level of intake depends on many factors linked, for instance to the gut capacity, to the animal’s requirements covering, or to the forage quality. The post-ingestive feedback of the intake, the morphological characteristics of grazed plants and the environment such as climate, characteristics of feed resources, are also factors of interest to explain some intake variations. Intake is a multi-factorial phenomenon. There are few studies on the estimation of that parameter. Methods and techniques developed to measure intake are often laborious and expensive, sometimes unrepresentative of the true grazing conditions and often lacking of accuracy. Currently, the n-alkanes, natural markers presents in the plants, appear as one of the best way to predict at the same time intake and digestibility of ingested diet. However, the method remains hard to apply for long periods and in free ranging schemes. If sufficiently robust databases and calibrations are developed, Near Infrared Spectroscopy (NIRS appears as an interesting technique to predict rapidly intake and digestibility of grazed grass. Particularly, NIRS applied to faeces appears promising as related in recent studies. It could be considered as a good alternative for assessing the diet, in quantity and in quality, of grazing or ranging ruminants.

  10. AO–MW–PLS method applied to rapid quantification of teicoplanin with near-infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    Jiemei Chen

    2017-01-01

    Full Text Available Teicoplanin (TCP is an important lipoglycopeptide antibiotic produced by fermenting Actinoplanes teichomyceticus. The change in TCP concentration is important to measure in the fermentation process. In this study, a reagent-free and rapid quantification method for TCP in the TCP–Tris–HCl mixture samples was developed using near-infrared (NIR spectroscopy by focusing our attention on the fermentation process for TCP. The absorbance optimization (AO partial least squares (PLS was proposed and integrated with the moving window (MW PLS, which is called AO–MW–PLS method, to select appropriate wavebands. A model set that includes various wavebands that were equivalent to the optimal AO–MW–PLS waveband was proposed based on statistical considerations. The public region of all equivalent wavebands was just one of the equivalent wavebands. The obtained public regions were 1540–1868nm for TCP and 1114–1310nm for Tris. The root-mean-square error and correlation coefficient for leave-one-out cross validation were 0.046mg mL−1 and 0.9998mg mL−1 for TCP, and 0.235mg mL−1 and 0.9986mg mL−1 for Tris, respectively. All the models achieved highly accurate prediction effects, and the selected wavebands provided valuable references for designing specialized spectrometers. This study provided a valuable reference for further application of the proposed methods to TCP fermentation broth and to other spectroscopic analysis fields.

  11. A simple and efficient method for poly-3-hydroxybutyrate quantification in diazotrophic bacteria within 5 minutes using flow cytometry

    Directory of Open Access Journals (Sweden)

    L.P.S. Alves

    Full Text Available The conventional method for quantification of polyhydroxyalkanoates based on whole-cell methanolysis and gas chromatography (GC is laborious and time-consuming. In this work, a method based on flow cytometry of Nile red stained bacterial cells was established to quantify poly-3-hydroxybutyrate (PHB production by the diazotrophic and plant-associated bacteria, Herbaspirillum seropedicae and Azospirillum brasilense. The method consists of three steps: i cell permeabilization, ii Nile red staining, and iii analysis by flow cytometry. The method was optimized step-by-step and can be carried out in less than 5 min. The final results indicated a high correlation coefficient (R2=0.99 compared to a standard method based on methanolysis and GC. This method was successfully applied to the quantification of PHB in epiphytic bacteria isolated from rice roots.

  12. A simple and efficient method for poly-3-hydroxybutyrate quantification in diazotrophic bacteria within 5 minutes using flow cytometry

    Science.gov (United States)

    Alves, L.P.S.; Almeida, A.T.; Cruz, L.M.; Pedrosa, F.O.; de Souza, E.M.; Chubatsu, L.S.; Müller-Santos, M.; Valdameri, G.

    2017-01-01

    The conventional method for quantification of polyhydroxyalkanoates based on whole-cell methanolysis and gas chromatography (GC) is laborious and time-consuming. In this work, a method based on flow cytometry of Nile red stained bacterial cells was established to quantify poly-3-hydroxybutyrate (PHB) production by the diazotrophic and plant-associated bacteria, Herbaspirillum seropedicae and Azospirillum brasilense. The method consists of three steps: i) cell permeabilization, ii) Nile red staining, and iii) analysis by flow cytometry. The method was optimized step-by-step and can be carried out in less than 5 min. The final results indicated a high correlation coefficient (R2=0.99) compared to a standard method based on methanolysis and GC. This method was successfully applied to the quantification of PHB in epiphytic bacteria isolated from rice roots. PMID:28099582

  13. Quality factors quantification/assurance for software related to safety in nuclear power plants

    International Nuclear Information System (INIS)

    Nunez McLeod, J.E.; Rivera, S.S.

    1997-01-01

    Quality assurance plan is needed to guarantee the software quality. The use of such a plan involves activities that should take place all along the life cycle, and which can be evaluated using the so called quality factors. This is due to the fact that the quality itself cannot be measured, but some of its manifestations can be used for this purpose. In the present work, a methodology to quantify a set of quality factors is proposed, for software based systems to be used in safety related areas in nuclear power plants. (author) [es

  14. Study of nuclear ecology problems with nuclear track methods

    International Nuclear Information System (INIS)

    Tretyakova, S. P.

    1999-01-01

    We present a review of the application of radiography track method for determination composition, concentration, behaviour and spatial distribution of ecologically dangerous isotopes in soil, air, plants and various materials using their natural or induced radioactivity. The nondestructive methods of determination of activity, dimensions, forms, spatial distribution and migration of 'hot' particles are considered. With the aim to study the influence of the radioactive isotopes on human lung cancer we present a method of determination of their activity and spatial distribution in the thin slices of lung tissue using alpha -particle and neutron radiography

  15. Applications of nuclear methods in the automotive industry

    International Nuclear Information System (INIS)

    Schneider, E.W.; Yusuf, S.O.

    1996-01-01

    Over the years nuclear methods have proved to be a valuable asset to industry in general and to the automotive industry in particular. This paper summarizes some of the most important recent contributions of nuclear technology to the development of vehicles having high quality and long-term durability. Radiotracer methods are used to measure engine oil consumption and the wear rates of inaccessible components. Radiographic and tomographic methods are used to image fluids and structures in engines and accessory components. Tracers are used to understand combustion chemistry and quantify fluid flow. Gauging methods are used for inspection and process control. Nuclear analytical methods are used routinely for materials characterization and problem solving. Although nuclear methods are usually considered as the means of last resort, they can often be applied more easily and quickly than conventional methods when those in industrial engineering and R and D are aware of their unique capabilities. (author). 51 refs., 5 figs

  16. Technical Note: Clinical translation of the Rapid-Steady-State-T1 MRI method for direct cerebral blood volume quantification.

    Science.gov (United States)

    Perles-Barbacaru, Teodora-Adriana; Tropres, Irene; Sarraf, Michel G; Chechin, David; Zaccaria, Affif; Grand, Sylvie; Le Bas, Jean-François; Berger, François; Lahrech, Hana

    2015-11-01

    In preclinical studies, the Rapid-Steady-State-T1 (RSST1) MRI method has advantages over conventional MRI methods for blood volume fraction (BVf) mapping, since after contrast agent administration, the BVf is directly quantifiable from the signal amplitude corresponding to the vascular equilibrium magnetization. This study focuses on its clinical implementation and feasibility. Following sequence implementation on clinical Philips Achieva scanners, the RSST1-method is assessed at 1.5 and 3 T in the follow-up examination of neurooncological patients receiving 0.1-0.2 mmol/kg Gd-DOTA to determine the threshold dose needed for cerebral BVf quantification. Confounding effects on BVf quantification such as transendothelial water exchange, transverse relaxation, and contrast agent extravasation are evaluated. For a dose≥0.13 mmol/kg at 1.5 T and ≥0.16 mmol/kg at 3 T, the RSST1-signal time course in macrovessels and brain tissue with Gd-DOTA impermeable vasculature reaches a steady state at maximum amplitude for about 8 s. In macrovessels, a BVf of 100% was obtained validating cerebral microvascular BVf quantification (3.5%-4.5% in gray matter and 1.5%-2.0% in white matter). In tumor tissue, a continuously increasing signal is detected, necessitating signal modeling for tumor BVf calculation. Using approved doses of Gd-DOTA, the steady state RSST1-signal in brain tissue is reached during the first pass and corresponds to the BVf. The first-pass duration is sufficient to allow accurate BVf quantification. The RSST1-method is appropriate for serial clinical studies since it allows fast and straightforward BVf quantification without arterial input function determination. This quantitative MRI method is particularly useful to assess the efficacy of antiangiogenic agents.

  17. Nuclear medicine methods used in diagnosing diseases of the gastrointestinal tract

    International Nuclear Information System (INIS)

    Kostadinova, I.

    2001-01-01

    Using physiologic tracer scintigraphy may give unique information on gastrointestinal (GI) motility and function, supplementing the findings of rather invasive methods. Conventional barium-contrast x-ray studies of the GI tract, computed tomography, ultrasonography and magnetic resonance imaging afford high resolution images of the GI anatomy, but have a serious shortcoming - hardly lending themselves to quantification. As shown by the results functional scintigraphy is a sensitive, quantitative and noninvasive procedure. The potential of nuclear medicine methods to diagnose successfully diseases of the salivary glands, esophagus, stomach and visualization of GI bleeding and hepatobiliary system are comprehensively discussed. The advantages and drawbacks of radionuclide techniques are outlined, and compared with other methods of visualization. (author)

  18. Nuclear incineration method for long life radioactive wastes

    International Nuclear Information System (INIS)

    Matsumoto, Takaaki; Uematsu, Kunihiko.

    1987-01-01

    Nuclear incineration method is the method of converting the long life radioactive nuclides in wastes to short life or stable nuclides by utilizing the nuclear reaction caused by radiation, unlike usual chemical incineration. By the nuclear incineration, the radioactivity of wastes increases in a short period, but the problems at the time of the disposal are reduced because of the decrease of long life radioactive nuclides. As the radiation used for the nuclear incineration, the neutron beam from fission and fusion reactors and accelerators, the proton beam and gamma ray from accelerators have been studied. The object of the nuclear incineration is actinide, Sr-90, Cs-137, I-129 and Tc-99. In particular, waste actinide emits alpha ray, and is strongly toxic, accordingly, the motive of attempting the nuclear incineration is strong. In Japan, about 24t of waste actinide will accumulate by 2000. The principle of the nuclear incineration, and the nuclear incineration using nuclear fission and fusion reactors and accelerators are described. The nuclear incineration using fission reactors was examined for the first time in 1972 in USA. It is most promising because it is feasible by the present technology without particular research and development. (Kako, I.)

  19. Sensitive liquid chromatography-tandem mass spectrometry method for quantification of hydrochlorothiazide in human plasma.

    Science.gov (United States)

    Ramakrishna, N V S; Vishwottam, K N; Manoj, S; Koteshwara, M; Wishu, S; Varma, D P

    2005-12-01

    A simple, rapid, sensitive and specific liquid chromatography-tandem mass spectrometry method was developed and validated for quantification of hydrochlorothiazide (I), a common diuretic and anti-hypertensive agent. The analyte and internal standard, tamsulosin (II) were extracted by liquid-liquid extraction with diethyl ether-dichloromethane (70:30, v/v) using a Glas-Col Multi-Pulse Vortexer. The chromatographic separation was performed on a reversed-phase column (Waters symmetry C18) with a mobile phase of 10 mm ammonium acetate-methanol (15:85, v/v). The protonated analyte was quantitated in negative ionization by multiple reaction monitoring with a mass spectrometer. The mass transitions m/z 296.1 solidus in circle 205.0 and m/z 407.2 solidus in circle 184.9 were used to measure I and II, respectively. The assay exhibited a linear dynamic range of 0.5-200 ng/mL for hydrochlorothiazide in human plasma. The lower limit of quantitation was 500 pg/mL, with a relative standard deviation of less than 9%. Acceptable precision and accuracy were obtained for concentrations over the standard curve ranges. A run time of 2.5 min for each sample made it possible to analyze a throughput of more than 400 human plasma samples per day. The validated method has been successfully used to analyze human plasma samples for application in pharmacokinetic, bioavailability or bioequivalence studies. (c) 2005 John Wiley & Sons, Ltd.

  20. Development of a reliable extraction and quantification method for glucosinolates in Moringa oleifera.

    Science.gov (United States)

    Förster, Nadja; Ulrichs, Christian; Schreiner, Monika; Müller, Carsten T; Mewis, Inga

    2015-01-01

    Glucosinolates are the characteristic secondary metabolites of plants in the order Brassicales. To date the common DIN extraction 'desulfo glucosinolates' method remains the common procedure for determination and quantification of glucosinolates. However, the desulfation step in the extraction of glucosinolates from Moringa oleifera leaves resulted in complete conversion and degradation of the naturally occurring glucosinolates in this plant. Therefore, a method for extraction of intact Moringa glucosinolates was developed and no conversion and degradation of the different rhamnopyranosyloxy-benzyl glucosinolates was found. Buffered eluents (0.1 M ammonium acetate) were necessary to stabilize 4-α-rhamnopyranosyloxy-benzyl glucosinolate (Rhamno-Benzyl-GS) and acetyl-4-α-rhamnopyranosyloxy-benzyl glucosinolate isomers (Ac-Isomers-GS) during HPLC analysis. Due to the instability of intact Moringa glucosinolates at room temperature and during the purification process of single glucosinolates, influences of different storage (room temperature, frozen, thawing and refreezing) and buffer conditions on glucosinolate conversion were analysed. Conversion and degradations processes were especially determined for the Ac-Isomers-GS III. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. A simple and rapid method for optical visualization and quantification of bacteria on textiles

    Science.gov (United States)

    Stiefel, Philipp; Schneider, Jana; Amberg, Caroline; Maniura-Weber, Katharina; Ren, Qun

    2016-01-01

    To prevent bacterial contamination on textiles and the associated undesired effects different biocidal coatings have been investigated and applied. However, due to health and environmental concerns anti-adhesive coatings preventing the binding of bacteria would be favored. To develop such anti-adhesive coatings simple assays for reliable and fast screening are beneficial. Here an easy-to-handle, robust and rapid assay to assess bacteria on textiles utilizing a tetrazolium salt was reported. The assay allowed direct eye visualization of the color change of the textiles containing bacteria, facilitating fast screening. Quantification of the adhered bacteria could be done by generating standard curves which correlate the staining intensity to cell numbers. An additional advantage of the described assay is that with the same detection method anti-adhesive and biocidal effects can be investigated. The method was applied to different coatings, using Pseudomonas aeruginosa and Staphylococcus aureus as model organisms. The detection limit was found to be between 2.5 * 106 and 9.4 * 108 for P. aeruginosa and between 1 * 106 and 3.3 * 108 for S. aureus. The anti-adhesive coating PLUMA was demonstrated to reduce bacterial adhesion without killing them, whereas the biocidal coating TH22-27 caused a clear reduction in the number of viable cells. PMID:28004762

  2. An Optimized Method for Quantification of Pathogenic Leptospira in Environmental Water Samples.

    Science.gov (United States)

    Riediger, Irina N; Hoffmaster, Alex R; Casanovas-Massana, Arnau; Biondo, Alexander W; Ko, Albert I; Stoddard, Robyn A

    2016-01-01

    Leptospirosis is a zoonotic disease usually acquired by contact with water contaminated with urine of infected animals. However, few molecular methods have been used to monitor or quantify pathogenic Leptospira in environmental water samples. Here we optimized a DNA extraction method for the quantification of leptospires using a previously described Taqman-based qPCR method targeting lipL32, a gene unique to and highly conserved in pathogenic Leptospira. QIAamp DNA mini, MO BIO PowerWater DNA and PowerSoil DNA Isolation kits were evaluated to extract DNA from sewage, pond, river and ultrapure water samples spiked with leptospires. Performance of each kit varied with sample type. Sample processing methods were further evaluated and optimized using the PowerSoil DNA kit due to its performance on turbid water samples and reproducibility. Centrifugation speeds, water volumes and use of Escherichia coli as a carrier were compared to improve DNA recovery. All matrices showed a strong linearity in a range of concentrations from 106 to 10° leptospires/mL and lower limits of detection ranging from Leptospira in environmental waters (river, pond and sewage) which consists of the concentration of 40 mL samples by centrifugation at 15,000×g for 20 minutes at 4°C, followed by DNA extraction with the PowerSoil DNA Isolation kit. Although the method described herein needs to be validated in environmental studies, it potentially provides the opportunity for effective, timely and sensitive assessment of environmental leptospiral burden.

  3. Improved methods of carnivore faecal sample preservation, DNA extraction and quantification for accurate genotyping of wild tigers.

    Science.gov (United States)

    Reddy, Patlolla Anuradha; Bhavanishankar, Maradani; Bhagavatula, Jyotsna; Harika, Katakam; Mahla, Ranjeet Singh; Shivaji, Sisinthy

    2012-01-01

    Non-invasively collected samples allow a variety of genetic studies on endangered and elusive species. However due to low amplification success and high genotyping error rates fewer samples can be identified up to the individual level. Number of PCRs needed to obtain reliable genotypes also noticeably increase. We developed a quantitative PCR assay to measure and grade amplifiable nuclear DNA in feline faecal extracts. We determined DNA degradation in experimentally aged faecal samples and tested a suite of pre-PCR protocols to considerably improve DNA retrieval. Average DNA concentrations of Grade I, II and III extracts were 982pg/µl, 9.5pg/µl and 0.4pg/µl respectively. Nearly 10% of extracts had no amplifiable DNA. Microsatellite PCR success and allelic dropout rates were 92% and 1.5% in Grade I, 79% and 5% in Grade II, and 54% and 16% in Grade III respectively. Our results on experimentally aged faecal samples showed that ageing has a significant effect on quantity and quality of amplifiable DNA (p0.05). DNA concentrations of fresh tiger and leopard faecal extracts without addition of carrier RNA were 816.5pg/µl (±115.5) and 690.1pg/µl (±207.1), while concentrations with addition of carrier RNA were 49414.5pg/µl (±9370.6) and 20982.7pg/µl (±6835.8) respectively. Our results indicate that carnivore faecal samples should be collected as freshly as possible, are better preserved by two-step method and should be extracted with addition of carrier RNA. We recommend quantification of template DNA as this facilitates several downstream protocols.

  4. A novel method for quantification of beam's-eye-view tumor tracking performance.

    Science.gov (United States)

    Hu, Yue-Houng; Myronakis, Marios; Rottmann, Joerg; Wang, Adam; Morf, Daniel; Shedlock, Daniel; Baturin, Paul; Star-Lack, Josh; Berbeco, Ross

    2017-11-01

    In-treatment imaging using an electronic portal imaging device (EPID) can be used to confirm patient and tumor positioning. Real-time tumor tracking performance using current digital megavolt (MV) imagers is hindered by poor image quality. Novel EPID designs may help to improve quantum noise response, while also preserving the high spatial resolution of the current clinical detector. Recently investigated EPID design improvements include but are not limited to multi-layer imager (MLI) architecture, thick crystalline and amorphous scintillators, and phosphor pixilation and focusing. The goal of the present study was to provide a method of quantitating improvement in tracking performance as well as to reveal the physical underpinnings of detector design that impact tracking quality. The study employs a generalizable ideal observer methodology for the quantification of tumor tracking performance. The analysis is applied to study both the effect of increasing scintillator thickness on a standard, single-layer imager (SLI) design as well as the effect of MLI architecture on tracking performance. The present study uses the ideal observer signal-to-noise ratio (d') as a surrogate for tracking performance. We employ functions which model clinically relevant tasks and generalized frequency-domain imaging metrics to connect image quality with tumor tracking. A detection task for relevant Cartesian shapes (i.e., spheres and cylinders) was used to quantitate trackability of cases employing fiducial markers. Automated lung tumor tracking algorithms often leverage the differences in benign and malignant lung tissue textures. These types of algorithms (e.g., soft-tissue localization - STiL) were simulated by designing a discrimination task, which quantifies the differentiation of tissue textures, measured experimentally and fit as a power-law in trend (with exponent β) using a cohort of MV images of patient lungs. The modeled MTF and NPS were used to investigate the effect of

  5. [Novel software-based and validated evaluation method for objective quantification of bone regeneration in experimental bone defects].

    Science.gov (United States)

    Schönberger, T; Kasten, P; Fechner, K; Südkamp, N P; Pearce, S; Niemeyer, P

    2010-01-01

    The quantification of newly formed bone in experimental defect models is a problem in various experimental set-ups. Several methods have been described to evaluate and quantify the regeneration of newly formed bone in various animal models. Most methods only describe the amount of regenerated tissue on a semi-quantitative level, the results significantly depend on the subjective rating of the observer and such evaluation methods have not been validated in terms of objectivity and reliability. The aim of the present study was to introduce a novel evaluation method for the accurate quantification of bone regeneration on digital X-ray images using a freely available digital image software analysis programme (GIMP, GNU General Public Licence). The method introduced here contains 5 steps: standardisation of size and colour, determination of range of interest (ROI), defining different qualities of mineralisation, pixel analysis with histogram function, similar to the Hondsfield index, and quantification. In order to evaluate the objectivity and reliability, the quantification method was compared to semi-quantitative scores described by Mosheiff and Werntz for inter- and intraobserver variability. Six observers were asked to determine bone regeneration in 16 X-ray images of 2 different animal models. In order to describe intraobserver variability, the evaluation was repeated after a period of 4 weeks. Statistical analysis including determination of intra- and interobserver variability (Bland-Altman coefficient of reproduction) was performed using SAS software. For both experimental set-ups analysed in this project (rabbit and sheep bone defects), the objectivity was significantly higher in the GIMP-based evaluation compared to the evaluation according to Mosheiff and Werntz using the Bland-Altman coefficient (rabbit: GIMP: 0.095, Mosheiff: 0.272, Werntz: 0.283; sheep: GIMP: 0.098, Mosheiff: 0.658, Werntz: 0.668). Analogous results were obtained for reliability (rabbit

  6. Validation of an HPLC-UV method for the identification and quantification of bioactive amines in chicken meat

    Directory of Open Access Journals (Sweden)

    D.C.S. Assis

    2016-06-01

    Full Text Available ABSTRACT A high-performance liquid chromatography with ultraviolet detection (HPLC-UV method was validated for the study of bioactive amines in chicken meat. A gradient elution system with an ultraviolet detector was used after extraction with trichloroacetic acid and pre-column derivatization with dansyl chloride. Putrescine, cadaverine, histamine, tyramine, spermidine, and spermine standards were used for the evaluation of the following performance parameters: selectivity, linearity, precision, recovery, limits of detection, limits of quantification and ruggedness. The results indicated excellent selectivity, separation of all amines, a coefficient of determination greater than 0.99 and recovery from 92.25 to 102.25% at the concentration of 47.2mg.kg-1, with a limit of detection at 0.3mg.kg-1 and a limit of quantification at 0.9mg.kg-1 for all amines, with the exception of histamine, which exhibited the limit of quantification, of 1mg.kg-1. In conclusion, the performance parameters demonstrated adequacy of the method for the detection and quantification of bioactive amines in chicken meat.

  7. Solid state nuclear track detection principles, methods and applications

    CERN Document Server

    Durrani, S A; ter Haar, D

    1987-01-01

    Solid State Nuclear Track Detection: Principles, Methods and Applications is the second book written by the authors after Nuclear Tracks in Solids: Principles and Applications. The book is meant as an introduction to the subject solid state of nuclear track detection. The text covers the interactions of charged particles with matter; the nature of the charged-particle track; the methodology and geometry of track etching; thermal fading of latent damage trails on tracks; the use of dielectric track recorders in particle identification; radiation dossimetry; and solid state nuclear track detecti

  8. Quantification of methane and nitrous oxide emissions from various waste treatment facilities by tracer dilution method

    Science.gov (United States)

    Mønster, Jacob; Rella, Chris; Jacobson, Gloria; Kjeldsen, Peter; Scheutz, Charlotte

    2013-04-01

    Urban activities generate solid and liquid waste, and the handling and aftercare of the waste results in the emission of various compounds into the surrounding environment. Some of these compounds are emitted as gasses into the atmosphere, including methane and nitrous oxide. Methane and nitrous oxide are strong greenhouse gases and are considered to have 25 and 298 times the greenhouse gas potential of carbon dioxide on a hundred years term (Solomon et al. 2007). Global observations of both gasses have shown increasing concentrations that significantly contribute to the greenhouse gas effect. Methane and nitrous oxide are emitted from both natural and anthropogenic sources and inventories of source specific fugitive emissions from the anthropogenic sources of methane and nitrous oxide of are often estimated on the basis of modeling and mass balance. Though these methods are well-developed, actual measurements for quantification of the emissions is a very useful tool for verifying the modeling and mass balance as well as for validation initiatives done for lowering the emissions of methane and nitrous oxide. One approach to performing such measurements is the tracer dilution method (Galle et al. 2001, Scheutz et al. 2011), where the exact location of the source is located and a tracer gas is released at this source location at a known flow. The ratio of downwind concentrations of the tracer gas and the methane and nitrous oxide gives the emissions rates of the greenhouse gases. This tracer dilution method can be performed using both stationary and mobile measurements and in both cases, real-time measurements of both tracer and quantified gas are required, placing high demands on the analytical detection method. To perform the methane and nitrous oxide measurements, two robust instruments capable of real-time measurements were used, based on cavity ring-down spectroscopy and operating in the near-infrared spectral region. One instrument measured the methane and

  9. Quantification of tannin content in Phyllanthus emblica using radiolabeled BSA by precipitation method

    International Nuclear Information System (INIS)

    Jyothi, K.S.; Rai, Ashitha; Rasmi, R.R.; Somashekarappa, H.M.; Shenoy, K.B.

    2013-01-01

    Phyllanthus emblica, commonly referred to as 'Indian gooseberry' or 'Amla' is used both as medicine and astonic to build up vitality and vigor. It is one of the constituent of a popular Ayurvedic formulation Triphala churna. Literature shows that there is increasing interest in exploring drugs obtained from plants with a high content of tannins. Tannins, polyphenolic compounds of various molecular weights are found abundantly in nature and have the ability to precipitate proteins. The study aims at quantification of the tannin content of Phyllanthus emblica by radiolabeled Bovine Serum Albumin (BSA) method and to study the antioxidant activity of the crude fruit extract and of the tannin precipitated with BSA from the extract. The fruit was extracted with methanol in the soxhlet apparatus. Precipitation methods like sensitive radiolabeled BSA in which tannins in the plant fruit extract complex with BSA which is quantified by gamma counter along with the reference standards like tannic and gallic acid. Other precipitation method is the radial diffusion assay in which tannin molecules migrate through agarose gel which is impregnated with the protein, BSA. The tannin-protein complex is formed in the gel which appears as a ring. The diameter of the ring is a measure of protein precipitation/binding capacity of tannins. Another method involves precipitation of tannins by polyvinyl poly pyrrolidone (PVPP) and then the total phenol in the supernatant. The difference in the total phenol and that of the supernatant gives the total amount of tannin present in the extract. Antioxidant activity of the crude fruit extract and the tannin present in the extract was assessed by 2,2-diphenyl-1-picrylhydrazyl (DPPH), Hydrogen peroxide scavenging assay. Results show that the total phenol content of the plant was found to be 0.135% in dry matter. The tannin content as shown by the PVPP precipitation method was 12.588 mg while that of Radiolabeled BSA method gave around 10 mg which is

  10. Modification of polymer films by the nuclear track method

    International Nuclear Information System (INIS)

    Akap'ev, G.N.; Apel', P.Yu.; Vorob'ev, E.D.

    1989-01-01

    Some possibilities of the nuclear track method are shown: for example, the nuclear membranes with biporous structure in a monolithic polymer film. The permeability of this membranes is 2-5 times higher compared with the conventional nuclear membranes. The nuclear membranes with conical or funnel-shaped pores allow to increase the permeability of membranes (∼30-50%) for certain ratios between the pore radii on the two sides of the membrane (r 1 /r 2 =1.5-4.0). The composite nuclear membrane consisting of a thin selective layer and of a high porosity support allow one to solve the problem of increasing the permeability of the nuclear membranes. 6 refs.; 3 figs

  11. An HPLC-DAD method to quantification of main phenolic compounds from leaves of Cecropia species

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Geison M.; Ortmann, Caroline F.; Schenkel, Eloir P.; Reginatto, Flavio H., E-mail: freginatto@hotmail.co [Universidade Federal de Santa Catarina (UFSC), Florianopolis (Brazil). Centro de Ciencias da Saude. Dept. de Ciencias Farmaceuticas

    2011-07-01

    An efficient and reproducible HPLC-DAD method was developed and validated for the simultaneous quantification of major compounds (chlorogenic acid, isoorientin, orientin and isovitexin) present in the leaves of two Cecropia species, C. glaziovii and C. pachystachya. From the leaves of C. glaziovii and C. pachystachya were isolated the C-glycosylflavones isoorientin and isovitexin and identified on both species chlorogenic acid (3-O-caffeoylquinic acid) and the O-glycosylflavonol isoquercitrin. The C-glycosylflavone orientin was isolated only from C. pachystachya. Chlorogenic acid was the major compound in both species (11.1 mg g{sup -1} of extract of C. glaziovii and 27.2 mg g{sup -1} of extract of C. pachystachya) and for the flavonoids quantified, isovitexin was the main C-glycosylflavonoid for C. glaziovii (4.6 mg g{sup -1} of extract) and isoorientin the main one for C. pachystachya (17.3 mg g{sup -1} of extract). (author)

  12. Measuring ipsilateral silent period: Effects of muscle contraction levels and quantification methods.

    Science.gov (United States)

    Kuo, Yi-Ling; Dubuc, Tobin; Boufadel, Danielle F; Fisher, Beth E

    2017-11-01

    Ipsilateral silent period (iSP) is a frequently measured index of interhemispheric inhibition. However, the methodology used across studies has been inconsistent and variable. We investigated the optimal contraction level and quantification methods for achieving iSP measurement consistency. Twenty-five healthy adults performed right isometric thumb abduction under three conditions (30%, 50%, and 100% of maximal voluntary contraction) while transcranial magnetic stimulation was applied over the primary motor cortex representational area of the abductor pollicis brevis. iSP was quantified by: iSP duration, iSP area and normalized iSP. Measurement consistency was determined by the homogeneity of variance test and by the coefficient of variation. iSP was consistent across all contraction levels when measured by iSP duration and normalized iSP. Normalized iSP showed the least measurement variability. We propose that future investigations examining interhemispheric inhibition use normalized iSP for measurement consistency and the ability to compare results across studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Digital quantification of fibrosis in liver biopsy sections: description of a new method by Photoshop software.

    Science.gov (United States)

    Dahab, Gamal M; Kheriza, Mohamed M; El-Beltagi, Hussien M; Fouda, Abdel-Motaal M; El-Din, Osama A Sharaf

    2004-01-01

    The precise quantification of fibrous tissue in liver biopsy sections is extremely important in the classification, diagnosis and grading of chronic liver disease, as well as in evaluating the response to antifibrotic therapy. Because the recently described methods of digital image analysis of fibrosis in liver biopsy sections have major flaws, including the use of out-dated techniques in image processing, inadequate precision and inability to detect and quantify perisinusoidal fibrosis, we developed a new technique in computerized image analysis of liver biopsy sections based on Adobe Photoshop software. We prepared an experimental model of liver fibrosis involving treatment of rats with oral CCl4 for 6 weeks. After staining liver sections with Masson's trichrome, a series of computer operations were performed including (i) reconstitution of seamless widefield images from a number of acquired fields of liver sections; (ii) image size and solution adjustment; (iii) color correction; (iv) digital selection of a specified color range representing all fibrous tissue in the image and; (v) extraction and calculation. This technique is fully computerized with no manual interference at any step, and thus could be very reliable for objectively quantifying any pattern of fibrosis in liver biopsy sections and in assessing the response to antifibrotic therapy. It could also be a valuable tool in the precise assessment of antifibrotic therapy to other tissue regardless of the pattern of tissue or fibrosis.

  14. Automated gas bubble imaging at sea floor - a new method of in situ gas flux quantification

    Science.gov (United States)

    Thomanek, K.; Zielinski, O.; Sahling, H.; Bohrmann, G.

    2010-06-01

    Photo-optical systems are common in marine sciences and have been extensively used in coastal and deep-sea research. However, due to technical limitations in the past photo images had to be processed manually or semi-automatically. Recent advances in technology have rapidly improved image recording, storage and processing capabilities which are used in a new concept of automated in situ gas quantification by photo-optical detection. The design for an in situ high-speed image acquisition and automated data processing system is reported ("Bubblemeter"). New strategies have been followed with regards to back-light illumination, bubble extraction, automated image processing and data management. This paper presents the design of the novel method, its validation procedures and calibration experiments. The system will be positioned and recovered from the sea floor using a remotely operated vehicle (ROV). It is able to measure bubble flux rates up to 10 L/min with a maximum error of 33% for worst case conditions. The Bubblemeter has been successfully deployed at a water depth of 1023 m at the Makran accretionary prism offshore Pakistan during a research expedition with R/V Meteor in November 2007.

  15. Validation of a photostability indicating method for quantification of furanocoumarins from Brosimum gaudichaudii soft extract

    Directory of Open Access Journals (Sweden)

    Mariana Cristina de Morais

    Full Text Available ABSTRACT A validation study of a reverse-phase high-performance liquid chromatographic assay for the quantification of two furanocoumarins (psoralen and bergapten in soft extract obtained from Brosimum gaudichaudii Trécul, Moraceae, roots was conducted. The developed method was sensitive, rapid, reproducible, easy and precise, and showed linearity (r > 0.99 in the range of 10–64 µg/ml for psoralen, and 9–56 µg/ml for bergapten. It also showed a good efficiency for the photodegradation analysis of psoralen and bergapten in the soft extract. The photostability results showed that the Higuchi model presented the best fitting to the obtained data. Both chemical markers showed stability over 2.6 days, suggesting potential applications of the extract in obtaining intermediate products from this plant material. Furanocoumarins take around 30 min to be activated by UV light, reaching the maximum biological potential. Thus, the results obtained to the Higuchi model, corresponding to 2.6 days of stability, shows feasibility with future applications of these chemical markers.

  16. Quantification of camalexin, a phytoalexin from Arabidopsis thaliana: a comparison of five analytical methods.

    Science.gov (United States)

    Beets, Caryn; Dubery, Ian

    2011-12-15

    Camalexin is a phytoalexin of Arabidopsis thaliana and an important component of inducible defenses. Accurate quantification of low concentrations suffers from interference by structurally related metabolites. A. thaliana plants were induced with silver nitrate and camalexin was extracted using methanol and identified and quantified by (i) TLC as a blue fluorescent band, (ii) microtiter plate-based fluorescence spectroscopy, (iii) GC on a midpolar column coupled to flame ionization detection, (iv) C(18) HPLC coupled to a photodiode detector, and (v) UPLC coupled to a mass spectrometer detector. Standard curves over the range of 0.1-15 μg ml(-1) gave R(2) values from 0.996 to 0.999. The different methods were compared and evaluated for their ability to detect and quantify increasing concentrations (camalexin. Each of the techniques presented advantages and disadvantages with regard to accuracy, precision, interference, analytical sensitivity, and limits of detection. TLC is a good qualitative technique for the identification of camalexin and fluorescence spectroscopy is subject to quenching when performed on crude extracts. Comparable results were obtained with GC-FID, HPLC-PDA, and UPLC-MS, with UPLC-MS having the added advantage of short analysis times and detection based on accurate mass. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Study on Meshfree Hermite Radial Point Interpolation Method for Flexural Wave Propagation Modeling and Damage Quantification

    Directory of Open Access Journals (Sweden)

    Hosein Ghaffarzadeh

    Full Text Available Abstract This paper investigates the numerical modeling of the flexural wave propagation in Euler-Bernoulli beams using the Hermite-type radial point interpolation method (HRPIM under the damage quantification approach. HRPIM employs radial basis functions (RBFs and their derivatives for shape function construction as a meshfree technique. The performance of Multiquadric(MQ RBF to the assessment of the reflection ratio was evaluated. HRPIM signals were compared with the theoretical and finite element responses. Results represent that MQ is a suitable RBF for HRPIM and wave propagation. However, the range of the proper shape parameters is notable. The number of field nodes is the main parameter for accurate wave propagation modeling using HRPIM. The size of support domain should be less thanan upper bound in order to prevent high error. With regard to the number of quadrature points, providing the minimum numbers of points are adequate for the stable solution, but the existence of more points in damage region does not leads to necessarily the accurate responses. It is concluded that the pure HRPIM, without any polynomial terms, is acceptable but considering a few terms will improve the accuracy; even though more terms make the problem unstable and inaccurate.

  18. Method and apparatus using selected superparamagnetic labels for rapid quantification of immunochromatographic tests

    Directory of Open Access Journals (Sweden)

    Mika PA Laitinen

    2009-04-01

    Full Text Available Mika PA Laitinen1, Jari Salmela2, Leona Gilbert1, Risto Kaivola1, Topi Tikkala2, Christian Oker-Blom1, Jukka Pekola3, Matti Vuento11Department of Biological and Environmental Science; 2Department of Physics, University of Jyväskylä, Jyväskylä, Finland; 3Low Temperature Laboratory, Helsinki University of Technology, Helsinki, FinlandAbstract: A rapid method and instrumentation for quantification of immunochromatographic tests (ICT are described. The principle and performance of the method was demonstrated by measuring the levels of human chorionic gonadotropin (hCG present in urine. The test format was a sandwich assay using two distinct monoclonal antibodies directed against hCG. The first anti-hCG antibody was labeled with superparamagnetic particles whereas the second was immobilized as a narrow detection zone on a porous membrane. The human urine sample was mixed with superparamagnetic particles coated with the first anti-hCG antibody, and the mixture was allowed to migrate past the detection zone containing the second anti-hCG antibody. Capillary forces facilitated migration of the immune complexes along the porous membrane. The amount of superparamagnetic particle-labelled monoclonal anti-hCG bound to the detection zone was directly proportional to the amount of hCG present in the sample as detected by measuring magnetization in the detector coil. The method had a practical detection limit of 20 U/l (54 nM of hCG per 5 μl of human urine and a linear range of three decades from 20 U/l to 10 000 U/l. In addition, the analysis was completed within less than 10 minutes. Thus, the test format should be suitable for fast detection and monitoring of a large variety of clinically important parameters and analytes.Keywords: affinity, biosensor, hCG, immunochromatography, magnetization, superparamagnetic

  19. ID-SERS Based Reference Method for Quantification of Large Biomolecules on a Single Chip

    Science.gov (United States)

    Yaghobian, Fatemeh; Stosch, Rainer; Henrion, André; Güttler, Bernd

    2010-08-01

    Accuracy and precision of quantitative SERS results have been significantly increased by applying a method based on the so-called isotope-dilution (ID) principle. In this ID-SERS approach, an isotopically labeled analogue of the target molecule (isotopologue) is spiked to the sample at a known concentration. Due to the slight difference in their molar masses, some Raman bands of the heavier isotopologue are red-shifted with respect to the same signals resulting from the unlabelled compound. As a result, spectra evaluation is reduced to the determination of intensity ratios rather than absolute intensities, and the unknown quantity of the analyte can be calculated from the known quantity of the standard. This procedure is of particular interest in the development of highly accurate reference procedures for metrology in chemistry. Because the sample is spiked prior to any further treatment, potential loss of material or matrix effects would equally affect both isotopologues, without influencing the final result. The method has been successfully applied for quantifying small diagnostic marker molecules like creatinine at their relevant serum concentration levels using silver colloids as SERS substrates. Now, the ID-SERS approach has been realized as a "one-chip" approach using "Bio-chips" made of intrinsically grown spherical silver nanoparticles with gaps less than 10 nm in between (Fig. 1). In addition, the scope of the method has been extended to larger biomolecules like peptides which will be shown using the example of the human growth-hormone (hGH) peptide T12 at physiologically relevant serum concentration levels (Fig. 2). Further developments towards the quantification of full proteins will also be reported.

  20. A convenient method for simultaneous quantification of multiple phytohormones and metabolites: application in study of rice-bacterium interaction

    Directory of Open Access Journals (Sweden)

    Liu Hongbo

    2012-01-01

    Full Text Available Abstract Background Simultaneous analysis of multiple functional-related phytohormones and their metabolites will improve our understanding of interactions among different hormones in the same biologic process. Results A method was developed for simultaneous quantification of multiple phytohormones, abscisic acid, indole-3-acetic acid (IAA, jasmonic acid (JA, and salicylic acid, hormone conjugates, IAA-aspartic acid, JA-isoleucine, and methyl JA, and phytoalexins, momilactone A, naringenin, and sakuranetin. This method combines a convenient procedure for preparing filtrated crude extracted samples and a sensitive quantification assay using ultra fast liquid chromatography-electrospray ionization tandem mass spectrometry (UFLC-ESI-MS. With this method, we determined the dynamic profiles of defense-related phytohormones, hormone metabolites, and phytoalexins in the interaction of rice with Xanthomonas oryzae pv. oryzae (Xoo, which causes bacterial blight, one of the most devastating diseases of rice worldwide. Conclusion This UFLC-ESI-MS method is convenient, sensitive, reliable, and inexpensive for quantification of multiple phytohormones and metabolites compared to current methods. The results obtained by application of this method in studying rice-bacterial interaction provide a basis for understanding the molecular mechanisms of rice defense responses.

  1. Method and apparatus for stopping nuclear reactor

    International Nuclear Information System (INIS)

    Sakurai, Mikio.

    1974-01-01

    Object: To safely attain shut-down of a nuclear reactor even when control rods are not inserted into the core of the reactor and the shut-down of the reactor is incomplete. Structure: After operating the control rods in accordance with a scramble signal, the signal from an output detector is discriminated by an output discriminator, and a passage for a liquid poison is opened to allow the liquid poison to be poured from a liquid poison container through the passage into the core of the reactor when the output of the reactor exceeds the predetermined value. (Kamimura, M.)

  2. Nuclear analysis methods in monitoring occupational health

    International Nuclear Information System (INIS)

    Clayton, E.

    1985-01-01

    With the increasing industrialisation of the world has come an increase in exposure to hazardous chemicals. Their effect on the body depends upon the concentration of the element in the work environment; its chemical form; the possible different routes of intake; and the individual's biological response to the chemical. Nuclear techniques of analysis such as neutron activation analysis (NAA) and proton induced X-ray emission analysis (PIXE), have played an important role in understanding the effects hazardous chemicals can have on occupationally exposed workers. In this review, examples of their application, mainly in monitoring exposure to heavy metals is discussed

  3. Review of analytical methods for the quantification of iodine in complex matrices

    Energy Technology Data Exchange (ETDEWEB)

    Shelor, C. Phillip [Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX 76019-0065 (United States); Dasgupta, Purnendu K., E-mail: Dasgupta@uta.edu [Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX 76019-0065 (United States)

    2011-09-19

    Highlights: {yields} We focus on iodine in biological samples, notably urine and milk. {yields} Sample preparation and the Sandell-Kolthoff method are extensively discussed. - Abstract: Iodine is an essential element of human nutrition. Nearly a third of the global population has insufficient iodine intake and is at risk of developing Iodine Deficiency Disorders (IDD). Most countries have iodine supplementation and monitoring programs. Urinary iodide (UI) is the biomarker used for epidemiological studies; only a few methods are currently used routinely for analysis. These methods either require expensive instrumentation with qualified personnel (inductively coupled plasma-mass spectrometry, instrumental nuclear activation analysis) or oxidative sample digestion to remove potential interferences prior to analysis by a kinetic colorimetric method originally introduced by Sandell and Kolthoff {approx}75 years ago. The Sandell-Kolthoff (S-K) method is based on the catalytic effect of iodide on the reaction between Ce{sup 4+} and As{sup 3+}. No available technique fully fits the needs of developing countries; research into inexpensive reliable methods and instrumentation are needed. There have been multiple reviews of methods used for epidemiological studies and specific techniques. However, a general review of iodine determination on a wide-ranging set of complex matrices is not available. While this review is not comprehensive, we cover the principal developments since the original development of the S-K method.

  4. Methods for tornado frequency calculation of nuclear power plant

    International Nuclear Information System (INIS)

    Liu Haibin; Li Lin

    2012-01-01

    In order to take probabilistic safety assessment of nuclear power plant tornado attack event, a method to calculate tornado frequency of nuclear power plant is introduced based on HAD 101/10 and NUREG/CR-4839 references. This method can consider history tornado frequency of the plant area, construction dimension, intensity various along with tornado path and area distribution and so on and calculate the frequency of different scale tornado. (authors)

  5. Optimization of a liquid chromatography-tandem mass spectrometry method for quantification of the plant lignans secoisolariciresinol, matairesinol, lariciresinol and pinoresinol in foods

    NARCIS (Netherlands)

    Milder, I.E.J.; Arts, I.C.W.; Venema, D.P.; Lasaroms, J.J.P.; Wähälä, K.; Hollman, P.C.H.

    2004-01-01

    A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed for the quantification of the four major enterolignan precursors [secoisolariciresinol, matairesinol, lariciresinol, and pinoresinol] in foods. The method consists of alkaline methanolic extraction, followed by

  6. Review of analytical methods for the quantification of iodine in complex matrices.

    Science.gov (United States)

    Shelor, C Phillip; Dasgupta, Purnendu K

    2011-09-19

    Iodine is an essential element of human nutrition. Nearly a third of the global population has insufficient iodine intake and is at risk of developing Iodine Deficiency Disorders (IDD). Most countries have iodine supplementation and monitoring programs. Urinary iodide (UI) is the biomarker used for epidemiological studies; only a few methods are currently used routinely for analysis. These methods either require expensive instrumentation with qualified personnel (inductively coupled plasma-mass spectrometry, instrumental nuclear activation analysis) or oxidative sample digestion to remove potential interferences prior to analysis by a kinetic colorimetric method originally introduced by Sandell and Kolthoff ~75 years ago. The Sandell-Kolthoff (S-K) method is based on the catalytic effect of iodide on the reaction between Ce(4+) and As(3+). No available technique fully fits the needs of developing countries; research into inexpensive reliable methods and instrumentation are needed. There have been multiple reviews of methods used for epidemiological studies and specific techniques. However, a general review of iodine determination on a wide-ranging set of complex matrices is not available. While this review is not comprehensive, we cover the principal developments since the original development of the S-K method. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Quantitative real-time PCR (qPCR) assay for human-dog-cat species identification and nuclear DNA quantification.

    Science.gov (United States)

    Kanthaswamy, S; Premasuthan, A; Ng, J; Satkoski, J; Goyal, V

    2012-03-01

    In the United States, human forensic evidence collected from crime scenes is usually comingled with biomaterial of canine and feline origins. Knowledge of the concentration of nuclear DNA extracted from a crime scene biological sample and the species from which the sample originated is essential for DNA profiling. The ability to accurately detect and quantify target DNA in mixed-species samples is crucial when target DNA may be overwhelmed by non-target DNA. We have designed and evaluated a species-specific (human, dog and cat) nuclear DNA identification assay based on the TaqMan(®) quantitative real-time PCR (qPCR) technology that can simultaneously detect and measure minute quantities of DNA specific to either humans, dogs and/or cats. The fluorogenic triplex assay employs primers and hydrolysis probes that target the human TH01 locus as well as the dog and cat Melanocortin 1 Receptor (MC1R) sequences in a species-specific manner. We also demonstrate that the assay is a highly sensitive, reliable and robust method for identifying and quantifying mixed-species templates of human-dog-cat origin with as little as 0.4 pg of human and cat nuclear DNA, respectively, and 4.0 pg of dog nuclear DNA. Published by Elsevier Ireland Ltd.

  8. Application of the homology method for quantification of low-attenuation lung region in patients with and without COPD

    Directory of Open Access Journals (Sweden)

    Nishio M

    2016-09-01

    Full Text Available Mizuho Nishio,1 Kazuaki Nakane,2 Yutaka Tanaka3 1Clinical PET Center, Institute of Biomedical Research and Innovation, Hyogo, Japan; 2Department of Molecular Pathology, Osaka University Graduate School of Medicine and Health Science, Osaka, Japan; 3Department of Radiology, Chibune General Hospital, Osaka, Japan Background: Homology is a mathematical concept that can be used to quantify degree of contact. Recently, image processing with the homology method has been proposed. In this study, we used the homology method and computed tomography images to quantify emphysema.Methods: This study included 112 patients who had undergone computed tomography and pulmonary function test. Low-attenuation lung regions were evaluated by the homology method, and homology-based emphysema quantification (b0, b1, nb0, nb1, and R was performed. For comparison, the percentage of low-attenuation lung area (LAA% was also obtained. Relationships between emphysema quantification and pulmonary function test results were evaluated by Pearson’s correlation coefficients. In addition to the correlation, the patients were divided into the following three groups based on guidelines of the Global initiative for chronic Obstructive Lung Disease: Group A, nonsmokers; Group B, smokers without COPD, mild COPD, and moderate COPD; Group C, severe COPD and very severe COPD. The homology-based emphysema quantification and LAA% were compared among these groups.Results: For forced expiratory volume in 1 second/forced vital capacity, the correlation coefficients were as follows: LAA%, -0.603; b0, -0.460; b1, -0.500; nb0, -0.449; nb1, -0.524; and R, -0.574. For forced expiratory volume in 1 second, the coefficients were as follows: LAA%, -0.461; b0, -0.173; b1, -0.314; nb0, -0.191; nb1, -0.329; and R, -0.409. Between Groups A and B, difference in nb0 was significant (P-value = 0.00858, and those in the other types of quantification were not significant.Conclusion: Feasibility of the

  9. Seismic noise suppression using weighted nuclear norm minimization method

    Science.gov (United States)

    Li, Juan; Wang, Daixiang; Ji, Shuo; Li, Yue; Qian, Zhihong

    2017-11-01

    The weighted nuclear norm minimization method as an extension of nuclear-norm minimization was applied to image denoising originally. It is a kind of low rank matrix approximation method that can estimate the noiseless matrix from its noise version. The effective structures of image have a certain degree of repeatability and the weighted nuclear norm minimization method just utilizes this property to construct an approximate low rank matrix. Taking into account the spatial characteristics of seismic data and the redundancies of valid information, we propose to adopt the weighted nuclear norm minimization method to suppress seismic random noise. In this method the block matching algorithm is helpful for the recovery of seismic events because the texture blocks sharing the same reflection events are the most similar. Even when the signal to noise ratio is - 10 dB, this novel method still be able to clearly recover signals. Experiments on both synthetic and real seismic data show that the weighted nuclear norm minimization method can not only suppress the random noise but also better preserves the valid information of seismic signal when compared to the common seismic denoising methods such as the Wavelet and Time Frequency Peak Filter.

  10. Quantification of viral and prokaryotic production rates in benthic ecosystems: a methods comparison

    Directory of Open Access Journals (Sweden)

    Eugenio Rastelli

    2016-09-01

    Full Text Available Viruses profoundly influence benthic marine ecosystems by infecting and subsequently killing their prokaryotic hosts, thereby impacting the cycling of carbon and nutrients. Previously conducted studies, based on different methodologies, have provided widely differing estimates of the relevance of viruses on benthic prokaryotes. There has been no attempt so far to compare these independent approaches, including contextual comparisons among different approaches for sample manipulation (i.e., dilution or not of the sediments during incubations, between methods based on epifluorescence microscopy (EFM or radiotracers, and between the use of different radiotracers. Therefore, it has been difficult to identify the most suitable methodologies and protocols to be used as standard approaches for the quantification of viral infections of prokaryotes. Here, we compared for the first time different methods for determining viral and prokaryotic production rates in marine sediments collected at two benthic sites, differing in depth and environmental conditions. We used a highly replicated experimental design, testing the potential biases associated to the incubation of sediments as diluted or undiluted. In parallel, we also compared EFM counts with the 3H-thymidine incubations for the determination of viral production rates, and the use of 3H-thymidine versus 3H-leucine radiotracers for the determination of prokaryotic production. We show here that, independent from sediment dilution, EFM-based values of viral production ranged from 1.4 to 4.6 × 107 viruses g-1 h-1, and were similar but overall less variable compared to those obtained by the 3H-thymidine method (0.3 to 9.0 × 107 viruses g-1h-1. In addition, the prokaryotic production rates were not affected by sediment dilution, and the use of different radiotracers provided very consistent estimates (10.3-35.1 and 9.3-34.6 ngC g-1h-1 using the 3H-thymidine or 3H-leucine method, respectively. These results

  11. Quantification of Viral and Prokaryotic Production Rates in Benthic Ecosystems: A Methods Comparison.

    Science.gov (United States)

    Rastelli, Eugenio; Dell'Anno, Antonio; Corinaldesi, Cinzia; Middelboe, Mathias; Noble, Rachel T; Danovaro, Roberto

    2016-01-01

    Viruses profoundly influence benthic marine ecosystems by infecting and subsequently killing their prokaryotic hosts, thereby impacting the cycling of carbon and nutrients. Previously conducted studies, based on different methodologies, have provided widely differing estimates of the relevance of viruses on benthic prokaryotes. There has been no attempt so far to compare these independent approaches, including contextual comparisons among different approaches for sample manipulation (i.e., dilution or not of the sediments during incubations), between methods based on epifluorescence microscopy (EFM) or radiotracers, and between the use of different radiotracers. Therefore, it has been difficult to identify the most suitable methodologies and protocols to be used as standard approaches for the quantification of viral infections of prokaryotes. Here, we compared for the first time different methods for determining viral and prokaryotic production rates in marine sediments collected at two benthic sites, differing in depth and environmental conditions. We used a highly replicated experimental design, testing the potential biases associated to the incubation of sediments as diluted or undiluted. In parallel, we also compared EFM counts with the 3 H-thymidine incubations for the determination of viral production rates, and the use of 3 H-thymidine versus 3 H-leucine radiotracers for the determination of prokaryotic production. We show here that, independent from sediment dilution, EFM-based values of viral production ranged from 1.4 to 4.6 × 10 7 viruses g -1 h -1 , and were similar but overall less variable compared to those obtained by the 3 H-thymidine method (0.3 to 9.0 × 10 7 viruses g -1 h -1 ). In addition, the prokaryotic production rates were not affected by sediment dilution, and the use of different radiotracers provided very consistent estimates (10.3-35.1 and 9.3-34.6 ngC g -1 h -1 using the 3 H-thymidine or 3 H-leucine method, respectively). These

  12. Multivariate methods in nuclear waste remediation: Needs and applications

    International Nuclear Information System (INIS)

    Pulsipher, B.A.

    1992-05-01

    The United States Department of Energy (DOE) has developed a strategy for nuclear waste remediation and environmental restoration at several major sites across the country. Nuclear and hazardous wastes are found in underground storage tanks, containment drums, soils, and facilities. Due to the many possible contaminants and complexities of sampling and analysis, multivariate methods are directly applicable. However, effective application of multivariate methods will require greater ability to communicate methods and results to a non-statistician community. Moreover, more flexible multivariate methods may be required to accommodate inherent sampling and analysis limitations. This paper outlines multivariate applications in the context of select DOE environmental restoration activities and identifies several perceived needs

  13. Method for inspecting nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Jabsen, F.S.

    1979-01-01

    A technique for disassembling a nuclear reactor fuel element without destroying the individual fuel pins and other structural components from which the element is assembled is described. A traveling bridge and trolley span a water-filled spent fuel storage pool and support a strongback. The strongback is under water and provides a working surface on which the spent fuel element is placed for inspection and for the manipulation that is associated with disassembly and assembly. To remove, in a non-destructive manner, the grids that hold the fuel pins in the proper relative positions within the element, bars are inserted through apertures in the grids with the aid of special tools. These bars are rotated to flex the adjacent grid walls and, in this way relax the physical engagement between protruding portions of the grid walls and the associated fuel pins. With the grid structure so flexed to relax the physical grip on the individual fuel pins, these pins can be withdrawn for inspection or replacement as necessary without imposing a need to destroy fuel element components

  14. Furan quantification in bread crust: development of a simple and sensitive method using headspace-trap GC-MS.

    Science.gov (United States)

    Huault, Lucie; Descharles, Nicolas; Rega, Barbara; Bistac, Sophie; Bosc, Véronique; Giampaoli, Pierre

    2016-01-01

    To study reactivity in bread crust during the baking process in the pan, we followed furan mainly resulting from Maillard and caramelisation reactions in cereal products. Furan quantification is commonly performed with automatic HS-static GC-MS. However, we showed that the automatic HS-trap GC-MS method can improve the sensitivity of the furan quantification. Indeed, this method allowed the LOD to be decreased from 0.3 ng g(-1) with HS-static mode to 0.03 ng g(-1) with HS-trap mode under these conditions. After validation of this method for furan quantification in bread crust, a difference between the crust extracted from the bottom and from the sides of the bread was evident. The quantity of furan in the bottom crust was five times lower than in the side crust, revealing less reactivity on the bottom than on the sides of the bread during the baking process in the pan. Differences in water content may explain these variations in reactivity.

  15. Development of Wall-Thinning Evaluation Procedure for Nuclear Power Plant Piping—Part 1: Quantification of Thickness Measurement Deviation

    Directory of Open Access Journals (Sweden)

    Hun Yun

    2016-06-01

    Full Text Available Pipe wall thinning by flow-accelerated corrosion and various types of erosion is a significant and costly damage phenomenon in secondary piping systems of nuclear power plants (NPPs. Most NPPs have management programs to ensure pipe integrity due to wall thinning that includes periodic measurements for pipe wall thicknesses using nondestructive evaluation techniques. Numerous measurements using ultrasonic tests (UTs; one of the nondestructive evaluation technologies have been performed during scheduled outages in NPPs. Using the thickness measurement data, wall thinning rates of each component are determined conservatively according to several evaluation methods developed by the United States Electric Power Research Institute. However, little is known about the conservativeness or reliability of the evaluation methods because of a lack of understanding of the measurement error. In this study, quantitative models for UT thickness measurement deviations of nuclear pipes and fittings were developed as the first step for establishing an optimized thinning evaluation procedure considering measurement error. In order to understand the characteristics of UT thickness measurement errors of nuclear pipes and fittings, round robin test results, which were obtained by previous researchers under laboratory conditions, were analyzed. Then, based on a large dataset of actual plant data from four NPPs, a quantitative model for UT thickness measurement deviation is proposed for plant conditions.

  16. On statistical methods for analysing the geographical distribution of cancer cases near nuclear installations

    International Nuclear Information System (INIS)

    Bithell, J.F.; Stone, R.A.

    1989-01-01

    This paper sets out to show that epidemiological methods most commonly used can be improved. When analysing geographical data it is necessary to consider location. The most obvious quantification of location is ranked distance, though other measures which may be more meaningful in relation to aetiology may be substituted. A test based on distance ranks, the ''Poisson maximum test'', depends on the maximum of observed relative risk in regions of increasing size, but with significance level adjusted for selection. Applying this test to data from Sellafield and Sizewell shows that the excess of leukaemia incidence observed at Seascale, near Sellafield, is not an artefact due to data selection by region, and that the excess probably results from a genuine, if as yet unidentified cause (there being little evidence of any other locational association once the Seascale cases have been removed). So far as Sizewell is concerned, geographical proximity to the nuclear power station does not seen particularly important. (author)

  17. A validated liquid chromatography tandem mass spectrometry method for quantification of erlotinib, OSI-420 and didesmethyl erlotinib and semi-quantification of erlotinib metabolites in human plasma.

    Science.gov (United States)

    Svedberg, Anna; Gréen, Henrik; Vikström, Anders; Lundeberg, Joakim; Vikingsson, Svante

    2015-03-25

    A liquid chromatography tandem mass spectrometry method was developed and validated for quantification of erlotinib and its metabolites in human plasma. The method is suitable for therapeutic drug monitoring and pharmacokinetic studies. The substances were extracted using protein precipitation, separated on a BEH XBridge C18 column (100 ×2.1 mm, 1.7 μm) by gradient elution at 0.7 mL/min of acetonitrile and 5 mM ammonium acetate. The concentration was determined using a Waters Xevo triple quadrupole mass spectrometer in a multi reaction monitoring mode. The total run time was 7 min. Deuterated erlotinib and OSI-597 were used as internal standard for erlotinib and its metabolites, respectively. Erlotinib, OSI-420 and didesmethyl erlotinib were quantified in the concentration range 25-5000 ng/mL, 0.5-500 ng/mL and 0.15-10 ng/mL, respectively. Precision and accuracy was OSI-420 at LLOQ (17%). Extraction recovery was above 89%, 99% and 89% for erlotinib, OSI-420 and didesmethyl erlotinib, respectively. The human liver microsomes generated 14 metabolites, three of them not previously reported. Twelve metabolites were measured semi-quantitatively and validated with respect to selectivity, precision and stability. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Quantification of fibronectin as a method to assess ex vivo extracellular matrix remodeling

    DEFF Research Database (Denmark)

    Bager, Cecilie Liv; Gudmann, N.; Willumsen, N.

    2016-01-01

    -terminus of fibronectin was developed (FBN-C). The assay was evaluated in relation to specificity, technical performance and as a marker for quantification of fibronectin in cartilage and cancer ex vivo models. The ELISA was specific and technically stable. Cleavage of tumor tissue with MMP-2 released significantly...

  19. An overview of quantification methods in energy-dispersive X-ray ...

    Indian Academy of Sciences (India)

    Author Affiliations. A Markowicz1. Department of Nuclear Sciences and Applications, Division of Physical and Chemical Sciences, Nuclear Spectrometry & Applications Laboratory, International Atomic Energy Agency, P.O. Box 100, Wagramer Strasse 5, 1400 Vienna, Austria ...

  20. A simplified method for rapid quantification of intracellular nucleoside triphosphates by one-dimensional thin-layer chromatography

    DEFF Research Database (Denmark)

    Jendresen, Christian Bille; Kilstrup, Mogens; Martinussen, Jan

    2011-01-01

    -pyrophosphate (PRPP), and inorganic pyrophosphate (PPi) in cell extracts. The method uses one-dimensional thin-layer chromatography (TLC) and radiolabeled biological samples. Nucleotides are resolved at the level of ionic charge in an optimized acidic ammonium formate and chloride solvent, permitting...... quantification of NTPs. The method is significantly simpler and faster than both current two-dimensional methods and high-performance liquid chromatography (HPLC)-based procedures, allowing a higher throughput while common sources of inaccuracies and technical problems are avoided. For determination of PPi...

  1. Energy spectra of fast neutrons by nuclear emulsion method

    International Nuclear Information System (INIS)

    Quaresma, A.A.

    1977-01-01

    An experimental method which uses nuclear emulsion plates to determine the energy spectrum of fission neutrons is described. By using this technique, we have obtained the energy distribution of neutrons from spontaneous fission of Cf 2 5 2 . The results are in good agreement with whose obtained previously by others authors who have used different detection techniques, and they are consistent with a Maxwellian distribution as expected by Weisskopf's nuclear evaporation theory. (author)

  2. Method discussion of the performance evaluation on nuclear plant cable

    International Nuclear Information System (INIS)

    Lu Yongfang; Zhong Weixia; Sun Jiansheng; Liu Jingping

    2014-01-01

    A stock cable, which is same as the nuclear plant cable in service, was treated by thermal aging. After that, the mechanical property, the flame retardant property, the anti-oxidation were measured, and relationships between them due to the thermal aging were established. By those analysis, evaluating the in-service cable performance in nuclear plant and calculating its remaining life. Furthermore, the feasibility of this method was disscussed. (authors)

  3. Itô-SDE MCMC method for Bayesian characterization of errors associated with data limitations in stochastic expansion methods for uncertainty quantification

    Science.gov (United States)

    Arnst, M.; Abello Álvarez, B.; Ponthot, J.-P.; Boman, R.

    2017-11-01

    This paper is concerned with the characterization and the propagation of errors associated with data limitations in polynomial-chaos-based stochastic methods for uncertainty quantification. Such an issue can arise in uncertainty quantification when only a limited amount of data is available. When the available information does not suffice to accurately determine the probability distributions that must be assigned to the uncertain variables, the Bayesian method for assigning these probability distributions becomes attractive because it allows the stochastic model to account explicitly for insufficiency of the available information. In previous work, such applications of the Bayesian method had already been implemented by using the Metropolis-Hastings and Gibbs Markov Chain Monte Carlo (MCMC) methods. In this paper, we present an alternative implementation, which uses an alternative MCMC method built around an Itô stochastic differential equation (SDE) that is ergodic for the Bayesian posterior. We draw together from the mathematics literature a number of formal properties of this Itô SDE that lend support to its use in the implementation of the Bayesian method, and we describe its discretization, including the choice of the free parameters, by using the implicit Euler method. We demonstrate the proposed methodology on a problem of uncertainty quantification in a complex nonlinear engineering application relevant to metal forming.

  4. The Collective Vector method in nuclear and atomic physics

    Energy Technology Data Exchange (ETDEWEB)

    Bloom, S.D.

    1989-12-01

    We present a brief review of the method of the Collective Vector (CV) and its use in conjunction with the Lanczos algorithm (LA). The combination of these two ideas produces a method for contracting super-large hamiltonians (up to 10{sup 6} {times} 10{sup 6}) by factors of 1000 or more. The contracted hamiltonians, which we call quasi-hamiltonians, typically have dimensions of the order of 10{sup 2} {times} 10{sup 2} and produce corresponding quasi-spectra with associated quasi-eigenfunctions which reproduce the features of the full microscopic spectrum thru the conservation of the spectral moments. Examples of applications to both nuclear and atomic physics are given demonstrating the convergence properties of the method. The application of the LA/CV approach to the problem of modelling nuclear level densities is described and finally we discuss the possibility of conjoining new collective models of nuclear structure with the LA/CV method. 13 refs., 4 figs.

  5. The Trojan Horse Method in nuclear astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Spitaleri, C.; Cherubini, S.; Del Zoppo, A.; Di Pietrob, A.; Figuerab, P.; Gulino, M.; Lattuadab, M.; Miljanic, Dstroke; Musumarra, A.; Pellegriti, M.G.; Pizzone, R.G.; Rolfs, C.; Romano, S.; Tudisco, S.; Tumino, A

    2003-05-19

    The basic features of the Trojan Horse Method are discussed together with a review of recent applications, aimed to extract the bare astrophysical S(E)-factor for several two-body processes. In this framework information on electron screening potential U{sub e} was obtained from the comparison with direct experiments.

  6. The Trojan Horse Method in nuclear astrophysics

    Science.gov (United States)

    Spitaleri, C.; Cherubini, S.; del Zoppo, A.; di Pietrob, A.; Figuerab, P.; Gulino, M.; Lattuadab, M.; Miljanić, D.; Musumarra, A.; Pellegriti, M. G.; Pizzone, R. G.; Rolfs, C.; Romano, S.; Tudisco, S.; Tumino, A.

    2003-05-01

    The basic features of the Trojan Horse Method are discussed together with a review of recent applications, aimed to extract the bare astrophysical S(E)-factor for several two-body processes. In this framework information on electron screening potential Ue was obtained from the comparison with direct experiments.

  7. The Trojan Horse Method in nuclear astrophysics

    International Nuclear Information System (INIS)

    Spitaleri, C.; Cherubini, S.; Del Zoppo, A.; Di Pietrob, A.; Figuerab, P.; Gulino, M.; Lattuadab, M.; Miljanic, Dstroke; Musumarra, A.; Pellegriti, M.G.; Pizzone, R.G.; Rolfs, C.; Romano, S.; Tudisco, S.; Tumino, A.

    2003-01-01

    The basic features of the Trojan Horse Method are discussed together with a review of recent applications, aimed to extract the bare astrophysical S(E)-factor for several two-body processes. In this framework information on electron screening potential U e was obtained from the comparison with direct experiments

  8. Numerical methods in nuclear engineering. Part 1

    International Nuclear Information System (INIS)

    Phillips, G.J.

    1983-08-01

    These proceedings, published in two parts contain the full text of 56 papers and summaries of six papers presented at the conference. They cover the use of numerical methods in thermal hydraulics, reactor physics, neutron diffusion, subchannel analysis, risk assessment, transport theory, and fuel behaviour

  9. Handbook of nuclear safeguards measurement methods

    International Nuclear Information System (INIS)

    Rogers, D.R.

    1983-09-01

    This handbook is intended to be a guide to the selection of methods for meeting specific measurement requirements. The information was compiled from a survey of production facilities, the literature, and current exchange programs. The survey included bulk measurements, chemical assay, sampling techniques, isotopic measurements, passive NDA, and active NDA

  10. T2 corrected quantification method of L-p-boronophenylalanine using proton magnetic resonance spectroscopy for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Yamamoto, Yohei; Isobe, Tomonori; Yamamoto, Tetsuya; Shibata, Yasushi; Anno, Izumi; Nakai, Kei; Shirakawa, Makoto; Matsushita, Akira; Sato, Eisuke; Matsumura, Akira

    2009-01-01

    In the present study, we aimed to evaluate a T2 corrected quantification method of L-p-boronophenylalanine (BPA) concentration using proton magnetic resonance spectroscopy (MRS). We used five phantoms containing BPA (1.5, 3.0, 5.0, 7.5, and 10 mmol/kg=15, 30, 50, 75, and 100 μg 10 B/g), N-acetyl-aspartic acid (NAA: 3.0 mmol/kg), creatine (Cr: 5.0 mmol/kg), and choline (Cho: 3.0 mmol/kg). The signal intensities of BPA and internal water were corrected by T2 relaxation time. The absolute concentrations of BPA were calculated by proton MRS using an internal water signal as a standard. The major BPA peaks were detected between 7.1 and 7.6 ppm. Mean T2 relaxation time was 314.3±10.8 ms in BPA, 885.1±39.7 ms in internal water. The calculated BPA concentrations were almost same as the actual concentration of BPA and the correlation coefficient was 0.99. Our BPA quantification method was very simple and non-invasive, also it had high accuracy. Therefore, our results indicate that proton MRS can be potentially useful technique for in vivo BPA quantification in boron neutron capture therapy (BNCT).

  11. Simultaneous Assessment of Cardiomyocyte DNA Synthesis and Ploidy: A Method to Assist Quantification of Cardiomyocyte Regeneration and Turnover.

    Science.gov (United States)

    Richardson, Gavin D

    2016-05-23

    Although it is accepted that the heart has a limited potential to regenerate cardiomyocytes following injury and that low levels of cardiomyocyte turnover occur during normal ageing, quantification of these events remains challenging. This is in part due to the rarity of the process and the fact that multiple cellular sources contribute to myocardial maintenance. Furthermore, DNA duplication within cardiomyocytes often leads to a polyploid cardiomyocyte and only rarely leads to new cardiomyocytes by cellular division. In order to accurately quantify cardiomyocyte turnover discrimination between these processes is essential. The protocol described here employs long term nucleoside labeling in order to label all nuclei which have arisen as a result of DNA replication and cardiomyocyte nuclei identified by utilizing nuclei isolation and subsequent PCM1 immunolabeling. Together this allows the accurate and sensitive identification of the nucleoside labeling of the cardiomyocyte nuclei population. Furthermore, 4',6-diamidino-2-phenylindole labeling and analysis of nuclei ploidy, enables the discrimination of neo-cardiomyocyte nuclei from nuclei which have incorporated nucleoside during polyploidization. Although this method cannot control for cardiomyocyte binucleation, it allows a rapid and robust quantification of neo-cardiomyocyte nuclei while accounting for polyploidization. This method has a number of downstream applications including assessing the potential therapeutics to enhance cardiomyocyte regeneration or investigating the effects of cardiac disease on cardiomyocyte turnover and ploidy. This technique is also compatible with additional downstream immunohistological techniques, allowing quantification of nucleoside incorporation in all cardiac cell types.

  12. Method for treating a nuclear process off-gas stream

    International Nuclear Information System (INIS)

    Pence, D.T.; Chou, C.-C.

    1981-01-01

    A method is described for selectively removing and recovering the noble gas and other gaseous components typically emitted during nuclear process operations. The method is useful for treating dissolver off-gas effluents released during reprocessing of spent nuclear fuels to permit radioactive contaminant recovery prior to releasing the remaining off-gases to the atmosphere. The method involves a sequence of adsorption and desorption steps which are specified. Particular reference is made to the separation of xenon and krypton from the off-gas stream, and to the use of silver-exchanged mordenite as the adsorbent. (U.K.)

  13. Accuracy of Rhenium-188 SPECT/CT activity quantification for applications in radionuclide therapy using clinical reconstruction methods

    Science.gov (United States)

    Esquinas, Pedro L.; Uribe, Carlos F.; Gonzalez, M.; Rodríguez-Rodríguez, Cristina; Häfeli, Urs O.; Celler, Anna

    2017-08-01

    The main applications of 188Re in radionuclide therapies include trans-arterial liver radioembolization and palliation of painful bone-metastases. In order to optimize 188Re therapies, the accurate determination of radiation dose delivered to tumors and organs at risk is required. Single photon emission computed tomography (SPECT) can be used to perform such dosimetry calculations. However, the accuracy of dosimetry estimates strongly depends on the accuracy of activity quantification in 188Re images. In this study, we performed a series of phantom experiments aiming to investigate the accuracy of activity quantification for 188Re SPECT using high-energy and medium-energy collimators. Objects of different shapes and sizes were scanned in Air, non-radioactive water (Cold-water) and water with activity (Hot-water). The ordered subset expectation maximization algorithm with clinically available corrections (CT-based attenuation, triple-energy window (TEW) scatter and resolution recovery was used). For high activities, the dead-time corrections were applied. The accuracy of activity quantification was evaluated using the ratio of the reconstructed activity in each object to this object’s true activity. Each object’s activity was determined with three segmentation methods: a 1% fixed threshold (for cold background), a 40% fixed threshold and a CT-based segmentation. Additionally, the activity recovered in the entire phantom, as well as the average activity concentration of the phantom background were compared to their true values. Finally, Monte-Carlo simulations of a commercial γ -camera were performed to investigate the accuracy of the TEW method. Good quantification accuracy (errors  15%), mostly due to partial-volume effects. The Monte-Carlo simulations confirmed that TEW-scatter correction applied to 188Re, although practical, yields only approximate estimates of the true scatter.

  14. Accuracy of Rhenium-188 SPECT/CT activity quantification for applications in radionuclide therapy using clinical reconstruction methods.

    Science.gov (United States)

    Esquinas, Pedro L; Uribe, Carlos F; Gonzalez, M; Rodríguez-Rodríguez, Cristina; Häfeli, Urs O; Celler, Anna

    2017-07-20

    The main applications of 188 Re in radionuclide therapies include trans-arterial liver radioembolization and palliation of painful bone-metastases. In order to optimize 188 Re therapies, the accurate determination of radiation dose delivered to tumors and organs at risk is required. Single photon emission computed tomography (SPECT) can be used to perform such dosimetry calculations. However, the accuracy of dosimetry estimates strongly depends on the accuracy of activity quantification in 188 Re images. In this study, we performed a series of phantom experiments aiming to investigate the accuracy of activity quantification for 188 Re SPECT using high-energy and medium-energy collimators. Objects of different shapes and sizes were scanned in Air, non-radioactive water (Cold-water) and water with activity (Hot-water). The ordered subset expectation maximization algorithm with clinically available corrections (CT-based attenuation, triple-energy window (TEW) scatter and resolution recovery was used). For high activities, the dead-time corrections were applied. The accuracy of activity quantification was evaluated using the ratio of the reconstructed activity in each object to this object's true activity. Each object's activity was determined with three segmentation methods: a 1% fixed threshold (for cold background), a 40% fixed threshold and a CT-based segmentation. Additionally, the activity recovered in the entire phantom, as well as the average activity concentration of the phantom background were compared to their true values. Finally, Monte-Carlo simulations of a commercial [Formula: see text]-camera were performed to investigate the accuracy of the TEW method. Good quantification accuracy (errors  15%), mostly due to partial-volume effects. The Monte-Carlo simulations confirmed that TEW-scatter correction applied to 188 Re, although practical, yields only approximate estimates of the true scatter.

  15. Methods and techniques of nuclear in-core fuel management

    International Nuclear Information System (INIS)

    Jong, A.J. de.

    1992-04-01

    Review of methods of nuclear in-core fuel management (the minimal critical mass problem, minimal power peaking) and calculational techniques: reactorphysical calculations (point reactivity models, continuous refueling, empirical methods, depletion perturbation theory, nodal computer programs); optimization techniques (stochastic search, linear programming, heuristic parameter optimization). (orig./HP)

  16. A direct qPCR method for residual DNA quantification in monoclonal antibody drugs produced in CHO cells.

    Science.gov (United States)

    Hussain, Musaddeq

    2015-11-10

    Chinese hamster ovary (CHO) cells are the host cell of choice for manufacturing of monoclonal antibody (mAb) drugs in the biopharmaceutical industry. Host cell DNA is an impurity of such manufacturing process and must be controlled and monitored in order to ensure drug purity and safety. A conventional method for quantification of host residual DNA in drug requires extraction of DNA from the mAb drug substance with subsequent quantification of the extracted DNA using real-time PCR (qPCR). Here we report a method where the DNA extraction step is eliminated prior to qPCR. In this method, which we have named 'direct resDNA qPCR', the mAb drug substance is digested with a protease called KAPA in a 96-well PCR plate, the protease in the digest is then denatured at high temperature, qPCR reagents are added to the resultant reaction wells in the plate along with standards and controls in other wells of the same plate, and the plate subjected to qPCR for analysis of residual host DNA in the samples. This direct resDNA qPCR method for CHO is sensitive to 5.0fg of DNA with high precision and accuracy and has a wide linear range of determination. The method has been successfully tested with four mAbs drug, two IgG1 and two IgG4. Both the purified drug substance as well as a number of process intermediate samples, e.g., bioreactor harvest, Protein A column eluate and ion-exchange column eluates were tested. This method simplifies the residual DNA quantification protocol, reduces time of analysis and leads to increased assay sensitivity and development of automated high-throughput methods. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Advanced methods for the quantification of trabecular bone structure and density in micro computed tomography images

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Jing

    2011-07-01

    . The implementation of structural parameters was validated with two digital models and with histological sections. The segmentation of the trabeculae was validated with a simulated {mu}CT scan of a simulated phantom and {mu}CT scans of excised mouse tibiae with different voxel sizes (9-20 {mu}m). Intra- and inter-observer analysis reproducibility was validated with five {mu}CT scans by three operators. The impact of different analysis VOIs on structural parameters was investigated. {mu}CT scans of four mouse vertebra samples were also compared with digitized histological sections. Results: With respect to calibration and TMD assessment the following results were obtained: (1) Cone beam reconstruction artifacts can be neglected. (2) To avoid an influence of the material inhomogeneity of the phantom inserts on the calibration, measured HU values inside the inserts should be averaged over their full length. (3) Epoxy resin-based plastic is not water-equivalent for voltages between 40 and 60 kV, which causes a constant offset of the TMD assessment compared to a water equivalent phantom material. (4) The quantification error caused by beam hardening was up to 5.7% at the kV settings used, which should be corrected. (5) A simultaneous scan of the bone sample and the calibration phantom is recommended. The validation confirmed that the structural parameters were correctly implemented. The simulations (simulated {mu}CT acquisition of a rods phantom) showed that the LAT segmentation gave more accurate results in particular for trabecular thickness than the global threshold method. Moreover, the LAT method is also robust to variations of spatial resolution. Decreasing the resolution by about a factor of 2 changed bone volume fraction (BV/TV) by only 3.4%. Intra and inter observer precision errors (%CVRMS) were smaller than 1.2%. The results further demonstrated that position and size of the analysis VOI had a great influence on BV/TV (up to 24.3% in 2D sections and 38.1% in {mu

  18. Monitoring methods for nuclear fuel waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R.B.; Barnard, J.W.; Bird, G.A. [and others

    1997-11-01

    This report examines a variety of monitoring activities that would likely be involved in a nuclear fuel waste disposal project, during the various stages of its implementation. These activities would include geosphere, environmental, vault performance, radiological, safeguards, security and community socioeconomic and health monitoring. Geosphere monitoring would begin in the siting stage and would continue at least until the closure stage. It would include monitoring of regional and local seismic activity, and monitoring of physical, chemical and microbiological properties of groundwater in rock and overburden around and in the vault. Environmental monitoring would also begin in the siting stage, focusing initially on baseline studies of plants, animals, soil and meteorology, and later concentrating on monitoring for changes from these benchmarks in subsequent stages. Sampling designs would be developed to detect changes in levels of contaminants in biota, water and air, soil and sediments at and around the disposal facility. Vault performance monitoring would include monitoring of stress and deformation in the rock hosting the disposal vault, with particular emphasis on fracture propagation and dilation in the zone of damaged rock surrounding excavations. A vault component test area would allow long-term observation of containers in an environment similar to the working vault, providing information on container corrosion mechanisms and rates, and the physical, chemical and thermal performance of the surrounding sealing materials and rock. During the operation stage, radiological monitoring would focus on protecting workers from radiation fields and loose contamination, which could be inhaled or ingested. Operational zones would be established to delineate specific hazards to workers, and movement of personnel and materials between zones would be monitored with radiation detectors. External exposures to radiation fields would be monitored with dosimeters worn by

  19. Comparison of fatty liver index with noninvasive methods for steatosis detection and quantification

    Science.gov (United States)

    Zelber-Sagi, Shira; Webb, Muriel; Assy, Nimer; Blendis, Laurie; Yeshua, Hanny; Leshno, Moshe; Ratziu, Vlad; Halpern, Zamir; Oren, Ran; Santo, Erwin

    2013-01-01

    AIM: To compare noninvasive methods presently used for steatosis detection and quantification in nonalcoholic fatty liver disease (NAFLD). METHODS: Cross-sectional study of subjects from the general population, a subgroup from the First Israeli National Health Survey, without excessive alcohol consumption or viral hepatitis. All subjects underwent anthropometric measurements and fasting blood tests. Evaluation of liver fat was performed using four noninvasive methods: the SteatoTest; the fatty liver index (FLI); regular abdominal ultrasound (AUS); and the hepatorenal ultrasound index (HRI). Two of the noninvasive methods have been validated vs liver biopsy and were considered as the reference methods: the HRI, the ratio between the median brightness level of the liver and right kidney cortex; and the SteatoTest, a biochemical surrogate marker of liver steatosis. The FLI is calculated by an algorithm based on triglycerides, body mass index, γ-glutamyl-transpeptidase and waist circumference, that has been validated only vs AUS. FLI fatty liver. RESULTS: Three hundred and thirty-eight volunteers met the inclusion and exclusion criteria and had valid tests. The prevalence rate of NAFLD was 31.1% according to AUS. The FLI was very strongly correlated with SteatoTest (r = 0.91, P fatty liver by SteatoTest (≥ S2) and by FLI (≥ 60) was 0.74, which represented good agreement. The sensitivity of FLI vs SteatoTest was 85.5%, specificity 92.6%, positive predictive value (PPV) 74.7%, and negative predictive value (NPV) 96.1%. Most subjects (84.2%) with FLI fatty liver by HRI (≥ 1.5) and by FLI (≥ 60) was 0.43, which represented only moderate agreement. The sensitivity of FLI vs HRI was 56.3%, specificity 86.5%, PPV 57.0%, and NPV 86.1%. The diagnostic accuracy of FLI for steatosis > 5%, as predicted by SteatoTest, yielded an area under the receiver operating characteristic curve (AUROC) of 0.97 (95% CI: 0.95-0.98). The diagnostic accuracy of FLI for steatosis > 5%, as

  20. Method of operating nuclear power plant

    International Nuclear Information System (INIS)

    Kodama, Tasuku.

    1991-01-01

    The present invention concerns a method of operating a plant in which the inside of a reactor container is filled with inert gases. That is, the pressure at the inside of the pressure vessel is controlled based on the values sent from an absolute pressure gage and a pressure low gage during usual operation. A pressure high alarm and a pressure high scram signal are generated from a pressure high detector and a scram pressure detector. With such a constitution, since the pressure at the inside of the reactor is always kept at a slightly positive level relative to the surrounding atmospheric pressure even when high atmospheric pressure approaches to the plant site, air does not flow into the reactor container. Accordingly, the oxygen concentration is not increased. When a low atmospheric pressure approaches, the control operation for the pressure at the inside of the container is not necessary. The amount of the inert gases consumed and the amount of radioactive materials released to the atmosphere are decreased. The method of the present invention improves the safety and the reliability of the reactor operation. (N.H.)

  1. Characterisation and optimisation of a method for the detection and quantification of atmospherically relevant carbonyl compounds in aqueous medium

    Science.gov (United States)

    Rodigast, M.; Mutzel, A.; Iinuma, Y.; Haferkorn, S.; Herrmann, H.

    2015-01-01

    Carbonyl compounds are ubiquitous in the atmosphere and either emitted primarily from anthropogenic and biogenic sources or they are produced secondarily from the oxidation of volatile organic compounds (VOC). Despite a number of studies about the quantification of carbonyl compounds a comprehensive description of optimised methods is scarce for the quantification of atmospherically relevant carbonyl compounds. Thus a method was systematically characterised and improved to quantify carbonyl compounds. Quantification with the present method can be carried out for each carbonyl compound sampled in the aqueous phase regardless of their source. The method optimisation was conducted for seven atmospherically relevant carbonyl compounds including acrolein, benzaldehyde, glyoxal, methyl glyoxal, methacrolein, methyl vinyl ketone and 2,3-butanedione. O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride (PFBHA) was used as derivatisation reagent and the formed oximes were detected by gas chromatography/mass spectrometry (GC/MS). The main advantage of the improved method presented in this study is the low detection limit in the range of 0.01 and 0.17 μmol L-1 depending on carbonyl compounds. Furthermore best results were found for extraction with dichloromethane for 30 min followed by derivatisation with PFBHA for 24 h with 0.43 mg mL-1 PFBHA at a pH value of 3. The optimised method was evaluated in the present study by the OH radical initiated oxidation of 3-methylbutanone in the aqueous phase. Methyl glyoxal and 2,3-butanedione were found to be oxidation products in the samples with a yield of 2% for methyl glyoxal and 14% for 2,3-butanedione.

  2. A nuclear method to authenticate Buddha images

    Science.gov (United States)

    Khaweerat, S.; Ratanatongchai, W.; Channuie, J.; Wonglee, S.; Picha, R.; Promping, J.; Silva, K.; Liamsuwan, T.

    2015-05-01

    The value of Buddha images in Thailand varies dramatically depending on authentication and provenance. In general, people use their individual skills to make the justification which frequently leads to obscurity, deception and illegal activities. Here, we propose two non-destructive techniques of neutron radiography (NR) and neutron activation autoradiography (NAAR) to reveal respectively structural and elemental profiles of small Buddha images. For NR, a thermal neutron flux of 105 n cm-2s-1 was applied. NAAR needed a higher neutron flux of 1012 n cm-2 s-1 to activate the samples. Results from NR and NAAR revealed unique characteristic of the samples. Similarity of the profile played a key role in the classification of the samples. The results provided visual evidence to enhance the reliability of authenticity approval. The method can be further developed for routine practice which impact thousands of customers in Thailand.

  3. Method of manufacturing sintered nuclear fuel

    International Nuclear Information System (INIS)

    Watarumi, Kazutoshi.

    1984-01-01

    Purpose: To obtain composite pellets with an improved strength. Method: A core mainly composed of fuel materials is previously prepared, embedded into the central portion of a pellet, silted therearound with cladding material, and then pressmolded and sintered. For instance, a rugby-ball like core body with the maximum outer diameter of 6 mm and the height of 6 mm is made by compressive molding with uranium dioxide powder, then coating material comprising the same powder incorporated with 0.1 % by weight of SiC fibers is filled around the core body, which is molded into a composite pellet by means of pressing and then sintered at 1600 0 C, to obtain a sintered pellet of 93.5 % theoretical density. As the result of the compression test for the pellet, it showed a strength greater by 15 % than that of the similar mono-layer pellet. (Kamimura, M.)

  4. A nuclear method to authenticate Buddha images

    International Nuclear Information System (INIS)

    Khaweerat, S; Ratanatongchai, W; Channuie, J; Wonglee, S; Picha, R; Promping, J; Silva, K; Liamsuwan, T

    2015-01-01

    The value of Buddha images in Thailand varies dramatically depending on authentication and provenance. In general, people use their individual skills to make the justification which frequently leads to obscurity, deception and illegal activities. Here, we propose two non-destructive techniques of neutron radiography (NR) and neutron activation autoradiography (NAAR) to reveal respectively structural and elemental profiles of small Buddha images. For NR, a thermal neutron flux of 10 5 n cm -2 s -1 was applied. NAAR needed a higher neutron flux of 10 12 n cm -2 s -1 to activate the samples. Results from NR and NAAR revealed unique characteristic of the samples. Similarity of the profile played a key role in the classification of the samples. The results provided visual evidence to enhance the reliability of authenticity approval. The method can be further developed for routine practice which impact thousands of customers in Thailand. (paper)

  5. Detection method for nuclear reactor material

    International Nuclear Information System (INIS)

    Isobe, Yusuke; Hashimoto, Motoyuki.

    1995-01-01

    A fine state of a test piece taken out of a reactor core is analyzed upon periodical inspection, and a new test piece previously reproducing the state described above at the outside of the reactor is disposed to the reactor core upon completion of the periodical inspection. Further, a fine state of the material at a time preceding to the operation time at a certain periodical inspection is forecast, and a test piece reproducing the state at the outside of the reactor is disposed to the reactor core upon the completion of the periodical inspection. Since a test piece previously reproducing the change of the state up to a certain periodical inspection by a method other than irradiation of neutrons is newly disposed, radiation of the test piece is not extremely increased even after an extremely long period of summed up reactor operation time, to provide substantially constant radiation level on every test piece. (T.M.)

  6. Development of a Robust Method for Simultaneous Quantification of Polymer (HPMC) and Surfactant (Dodecyl β-D-Maltoside) in Nanosuspensions.

    Science.gov (United States)

    Patel, Salin Gupta; Bummer, Paul M

    2016-10-01

    This report describes the development of a chromatographic method for the simultaneous quantification of a polymer, hydroxypropyl methylcellulose (HPMC), and a surfactant, dodecyl β-D-maltoside (DM), that are commonly used in the physical stabilization of pharmaceutical formulations such as nanosuspensions and solid dispersions. These excipients are often challenging to quantify due to the lack of chromophores. A reverse phase size exclusion chromatography (SEC) with evaporative light scattering detector (ELSD) technique was utilized to develop an accurate and robust assay for the simultaneous quantification of HPMC and DM in a nanosuspension formulation. The statistical design of experiments was used to determine the influence of critical ELSD variables including temperature, pressure, and gain on accuracy, precision, and sensitivity of the assay. A robust design space was identified where it was determined that an increase in the temperature of the drift tube and gain of the instrument increased the accuracy and precision of the assay and a decrease in the nebulizer pressure value increased the sensitivity of the assay. In the optimized design space, response data showed that the assay could quantify HPMC and DM simultaneously with good accuracy, precision, and reproducibility. Overall, SEC-ELSD proved to be a powerful technique for the simultaneous quantification of HPMC and DM. This technique can be used to quantify the amount of HPMC and DM in nanosuspensions, which is critical to understanding their effects on the physical stability of nanosuspensions.

  7. Simultaneous quantification of carotenoids, retinol, and tocopherols in forage, bovine plasma, and milk: validation of a novel UPLC method

    Energy Technology Data Exchange (ETDEWEB)

    Chauveau-Duriot, B.; Doreau, M.; Noziere, P.; Graulet, B. [UR1213 Research Unit on Herbivores, INRA, Saint Genes Champanelle (France)

    2010-05-15

    Simultaneous quantification of various liposoluble micronutrients is not a new area of interest since these compounds participate in the nutritional quality of feeds that is largely explored in human, and also in animal diet. However, the development of related methods is still under concern, especially when the carotenoid composition is complex such as in forage given to ruminants or in lipid-rich matrices like milk. In this paper, an original method for simultaneous extraction and quantification of all carotenoids, vitamins E, and A in milk was proposed. Moreover, a new UPLC method allowing simultaneous determination of carotenoids and vitamins A and E in forage, plasma and milk, and separation of 23 peaks of carotenoids in forage was described. This UPLC method using a HSS T3 column and a gradient solvent system was compared to a previously published reverse-phase HPLC using two C18 columns in series and an isocratic solvent system. The UPLC method gave similar concentrations of carotenoids and vitamins A and E than the HPLC method. Moreover, UPLC allowed a better resolution for xanthophylls, especially lutein and zeaxanthin, for the three isomers of {beta}-carotene (all-E-, 9Z- and 13Z-) and for vitamins A, an equal or better sensitivity according to gradient, and a better reproducibility of peak areas and retention times, but did not reduce the time required for analysis. (orig.)

  8. Simultaneous quantification of carotenoids, retinol, and tocopherols in forages, bovine plasma, and milk: validation of a novel UPLC method.

    Science.gov (United States)

    Chauveau-Duriot, B; Doreau, M; Nozière, P; Graulet, B

    2010-05-01

    Simultaneous quantification of various liposoluble micronutrients is not a new area of interest since these compounds participate in the nutritional quality of feeds that is largely explored in human, and also in animal diet. However, the development of related methods is still under concern, especially when the carotenoid composition is complex such as in forages given to ruminants or in lipid-rich matrices like milk. In this paper, an original method for simultaneous extraction and quantification of all carotenoids, vitamins E, and A in milk was proposed. Moreover, a new UPLC method allowing simultaneous determination of carotenoids and vitamins A and E in forage, plasma and milk, and separation of 23 peaks of carotenoids in forages was described. This UPLC method using a HSS T3 column and a gradient solvent system was compared to a previously published reverse-phase HPLC using two C18 columns in series and an isocratic solvent system. The UPLC method gave similar concentrations of carotenoids and vitamins A and E than the HPLC method. Moreover, UPLC allowed a better resolution for xanthophylls, especially lutein and zeaxanthin, for the three isomers of beta-carotene (all-E-, 9Z- and 13Z-) and for vitamins A, an equal or better sensitivity according to gradient, and a better reproducibility of peak areas and retention times, but did not reduce the time required for analysis.

  9. Method and procedure of fatigue analysis for nuclear equipment

    International Nuclear Information System (INIS)

    Wen Jing; Fang Yonggang; Lu Yan; Zhang Yue; Sun Zaozhan; Zou Mingzhong

    2014-01-01

    As an example, the fatigue analysis for the upper head of the pressurizer in one NPP was carried out by using ANSYS, a finite element method analysis software. According to RCC-M code, only two kinds of typical transients of temperature and pressure were considered in the fatigue analysis. Meanwhile, the influence of earthquake was taken into account. The method and procedure of fatigue analysis for nuclear safety equipment were described in detail. This paper provides a reference for fatigue analysis and assessment of nuclear safety grade equipment and pipe. (authors)

  10. Statistical methods of spin assignment in compound nuclear reactions

    International Nuclear Information System (INIS)

    Mach, H.; Johns, M.W.

    1984-01-01

    Spin assignment to nuclear levels can be obtained from standard in-beam gamma-ray spectroscopy techniques and in the case of compound nuclear reactions can be complemented by statistical methods. These are based on a correlation pattern between level spin and gamma-ray intensities feeding low-lying levels. Three types of intensity and level spin correlations are found suitable for spin assignment: shapes of the excitation functions, ratio of intensity at two beam energies or populated in two different reactions, and feeding distributions. Various empirical attempts are examined and the range of applicability of these methods as well as the limitations associated with them are given. 12 references

  11. Statistical methods of spin assignment in compound nuclear reactions

    International Nuclear Information System (INIS)

    Mach, H.; Johns, M.W.

    1985-01-01

    Spin assignment to nuclear levels can be obtained from standard in-beam gamma-ray spectroscopy techniques and in the case of compound nuclear reactions can be complemented by statistical methods. These are based on a correlation pattern between level spin and gamma-ray intensities feeding low-lying levels. Three types of intensity and level spin correlations are found suitable for spin assignment: shapes of the excitation functions, ratio of intensity at two beam energies or populated in two different reactions, and feeding distributions. Various empirical attempts are examined and the range of applicability of these methods as well as the limitations associated with them are given

  12. Using nuclear methods for analyzing materials and determining concentration gradients

    International Nuclear Information System (INIS)

    Darras, R.

    After reviewing the various type of nuclear chemical analysis methods, the possibilities of analysis by activation and direct observation of nuclear reactions are specifically described. These methods make it possible to effect analyses of trace-elements or impurities, even as traces, in materials, with selectivity, accuracy and great sensitivity. This latter property makes them advantageous too for determining major elements in small quantities of available matter. Furthermore, they lend themselves to carrying out superficial analyses and the determination of concentration gradients, given the careful choice of the nature and energy of the incident particles. The paper is illustrated with typical examples of analyses on steels, pure iron, refractory metals, etc [fr

  13. A discrete optimization method for nuclear fuel management

    International Nuclear Information System (INIS)

    Argaud, J.P.

    1993-04-01

    Nuclear loading pattern elaboration can be seen as a combinational optimization problem of tremendous size and with non-linear cost-functions, and search are always numerically expensive. After a brief introduction of the main aspects of nuclear fuel management, this paper presents a new idea to treat the combinational problem by using informations included in the gradient of a cost function. The method is to choose, by direct observation of the gradient, the more interesting changes in fuel loading patterns. An example is then developed to illustrate an operating mode of the method, and finally, connections with simulated annealing and genetic algorithms are described as an attempt to improve search processes

  14. Nuclear methods: applications to Earth sciences

    International Nuclear Information System (INIS)

    Segovia, N.

    1994-01-01

    The discovery of radioactivity phenomenon occurred almost 100 years ago, in 1896, and constituted the base for new perspectives in many disciplines, including the Earth sciences. The initial works in this field, during the first quarter of the Century, established that the series of radioactive decay of long lifetime Uranium 238, Uranium 235 and Thorium 232 present radioactive isotopes of several elements which are physically and chemically different. The chemical differentiation of the Earth during its evolution has concentrated in the crust the major part of the radioactive materials. The application of radioactive in balance which occur as a consequence of chemical and physical differences, has evolve quickly, and the utilization of natural radioactive isotopes can be detach in two major headings: geologic clocks and tracers. The applications cover a wide spectra of geological, oceanographical, volcanic, hydrological, paleoclimatic and archaeological problems. In this paper, a description of radioactive phenomenon is presented, as well as the chemical and physical properties of the natural radioactive elements, the measurement methods and, finally, some examples of the uses in chronology and as radioactive tracers will be presented, doing an emphasis of some results obtained in Mexico. (Author)

  15. “Other” indirect methods for nuclear astrophysics

    Directory of Open Access Journals (Sweden)

    Trache Livius

    2017-01-01

    Full Text Available In the house of Trojan Horse Method (THM, I will say a few words about “other” indirect methods we use in Nuclear Physics for Astrophysics. In particular those using Rare Ion Beams that can be used to evaluate radiative proton capture reactions. I add words about work done with the Professore we celebrate today. With a proposal, and some results with TECSA, for a simple method to produce and use isomeric beam of 26mAl.

  16. Radial densities of nuclear matter and charge via moment methods

    International Nuclear Information System (INIS)

    Dalton, B.J.

    1980-01-01

    In this report I will discuss some initial efforts in our program to describe radial densities of nuclear matter and charge with the use of moment methods. A brief introduction to trace reduction formulas and computation problems along with proposed methods to overcome them will be given. This will be followed by a general discussion on computation of expectation values using moment methods with particular emphasis on formulation for the radial density applications

  17. Direct Quantification of Campylobacter jejuni in Chicken Fecal Samples Using Real-Time PCR: Evaluation of Six Rapid DNA Extraction Methods

    DEFF Research Database (Denmark)

    Garcia Clavero, Ana Belén; Kamara, Judy N.; Vigre, Håkan

    2013-01-01

    Direct and accurate quantification of Campylobacter in poultry is crucial for the assessment of public health risks and the evaluation of the effectiveness of control measures against Campylobacter in poultry. The aim of this study was to assess several rapid DNA extraction methods...... DNA extraction methods were compared based on their limit of detection, efficiency, reproducibility, and precision. Standard curves were designed for all the methods tested in order to assess their performance on the direct quantification of C. jejuni in chicken fecal samples. As a result...... for their effectiveness for the direct quantification (without enrichment) of Campylobacter jejuni in chicken fecal samples using real-time PCR. The presence of inhibitory substances in chicken fecal samples may reduce or even completely impede the PCR amplification process making quantification very difficult. Six rapid...

  18. Development of a methodology for the detection of Ra226 in large volumes of water by gamma spectrometry; modification and validation of the method for detection and quantification of Ra226 in small volumes of water by alpha spectrometry, used by the Centro de Investigacion en Ciencias Atomicas, Nucleares y Moleculares (CICANUM, UCR)

    International Nuclear Information System (INIS)

    Molina Porras, Arnold

    2011-01-01

    The test method has been validated for quantifying the specific activity of Ra 226 in water alpha spectrometry. The CICANUM has used this method as part of the proposed harmonization of methods ARCAL (IAEA). The method is based on a first separation and preconcentration of Ra 226 by coprecipitation and subsequent MnO 2 micro precipitation as Ba (Ra) SO 4 . Samples were prepared and then was performed the counting by alpha spectrometry. A methodology of radio sampling for large volumes of water was tested in parallel, using acrylic fibers impregnated with manganese oxide (IV) to determine the amount of Ra 226 present by gamma spectrometry. Small-scale tests, have determined that the best way to prepare the fiber is the reference method found in the literature and using the oven at 60 degrees Celsius. (author) [es

  19. Methods for manufacturing porous nuclear fuel elements for high-temperature gas-cooled nuclear reactors

    Science.gov (United States)

    Youchison, Dennis L [Albuquerque, NM; Williams, Brian E [Pocoima, CA; Benander, Robert E [Pacoima, CA

    2010-02-23

    Methods for manufacturing porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's). Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, a thin coating of nuclear fuel may be deposited inside of a highly porous skeletal structure made, for example, of reticulated vitreous carbon foam.

  20. FT-IR Method for the Quantification of Isoflavonol Glycosides in Nutritional Supplements of Soy (Glycine max (L.) MERR.).

    Science.gov (United States)

    Mulsow, Katharina; Eidenschink, Juliane; Melzig, Matthias F

    2015-01-01

    Due to increasing health consciousness, a lot of food supplements are sold and used. Dietary supplements of Glycine max (L.) MERR. are used as an alternative treatment for menopausal complaints such as hot flashes. Thereby, the effective soy compounds are the isoflavones daidzin, genistin, and glycitin. However, only the total soy extract content of the nutritional supplements is indicated. The aim of this study is to introduce a fast, efficient, and economic Fourier transformation infrared (FT-IR) spectroscopy method to quantify the active ingredients in the complex matrix of soy-based supplements. Five different nutritional supplements of Glycine max (L.) MERR. were purchased from a German pharmacy and were extracted with 80% aqueous methanol. A high-performance liquid chromatography (HPLC) method was used for the separation. The samples were concentrated and measured with infrared spectroscopy. An FT-IR method was established to quantify the active ingredients in the complex matrix of soy-based nutritional supplements. The partial least-squares algorithm was used to develop the method, which enabled the estimation of the content of particular isoflavones (daidzin R(2) = 0.86, glycitin R(2) = 0.94, genistin R(2) = 0.96) and the quantification of the total isoflavone content (R(2) = 0.92) despite peak overlap in the infrared (IR) spectra. The method for the quantification of the isoflavonol glycosides is precise with the standard error of prediction being 13.54%.

  1. MERCURY QUANTIFICATION IN SOILS USING THERMAL DESORPTION AND ATOMIC ABSORPTION SPECTROMETRY: PROPOSAL FOR AN ALTERNATIVE METHOD OF ANALYSIS

    Directory of Open Access Journals (Sweden)

    Liliane Catone Soares

    2015-08-01

    Full Text Available Despite the considerable environmental importance of mercury (Hg, given its high toxicity and ability to contaminate large areas via atmospheric deposition, little is known about its activity in soils, especially tropical soils, in comparison with other heavy metals. This lack of information about Hg arises because analytical methods for determination of Hg are more laborious and expensive compared to methods for other heavy metals. The situation is even more precarious regarding speciation of Hg in soils since sequential extraction methods are also inefficient for this metal. The aim of this paper is to present a technique of thermal desorption associated with atomic absorption spectrometry, TDAAS, as an efficient tool for quantitative determination of Hg in soils. The method consists of the release of Hg by heating, followed by its quantification by atomic absorption spectrometry. It was developed by constructing calibration curves in different soil samples based on increasing volumes of standard Hg2+ solutions. Performance, accuracy, precision, and quantification and detection limit parameters were evaluated. No matrix interference was detected. Certified reference samples and comparison with a Direct Mercury Analyzer, DMA (another highly recognized technique, were used in validation of the method, which proved to be accurate and precise.

  2. Reliability methods in nuclear power plant ageing management

    International Nuclear Information System (INIS)

    Simola, K.

    1999-01-01

    The aim of nuclear power plant ageing management is to maintain an adequate safety level throughout the lifetime of the plant. In ageing studies, the reliability of components, systems and structures is evaluated taking into account the possible time-dependent degradation. The phases of ageing analyses are generally the identification of critical components, identification and evaluation of ageing effects, and development of mitigation methods. This thesis focuses on the use of reliability methods and analyses of plant- specific operating experience in nuclear power plant ageing studies. The presented applications and method development have been related to nuclear power plants, but many of the approaches can also be applied outside the nuclear industry. The thesis consists of a summary and seven publications. The summary provides an overview of ageing management and discusses the role of reliability methods in ageing analyses. In the publications, practical applications and method development are described in more detail. The application areas at component and system level are motor-operated valves and protection automation systems, for which experience-based ageing analyses have been demonstrated. Furthermore, Bayesian ageing models for repairable components have been developed, and the management of ageing by improving maintenance practices is discussed. Recommendations for improvement of plant information management in order to facilitate ageing analyses are also given. The evaluation and mitigation of ageing effects on structural components is addressed by promoting the use of probabilistic modelling of crack growth, and developing models for evaluation of the reliability of inspection results. (orig.)

  3. Reliability methods in nuclear power plant ageing management

    Energy Technology Data Exchange (ETDEWEB)

    Simola, K. [VTT Automation, Espoo (Finland). Industrial Automation

    1999-07-01

    The aim of nuclear power plant ageing management is to maintain an adequate safety level throughout the lifetime of the plant. In ageing studies, the reliability of components, systems and structures is evaluated taking into account the possible time-dependent degradation. The phases of ageing analyses are generally the identification of critical components, identification and evaluation of ageing effects, and development of mitigation methods. This thesis focuses on the use of reliability methods and analyses of plant- specific operating experience in nuclear power plant ageing studies. The presented applications and method development have been related to nuclear power plants, but many of the approaches can also be applied outside the nuclear industry. The thesis consists of a summary and seven publications. The summary provides an overview of ageing management and discusses the role of reliability methods in ageing analyses. In the publications, practical applications and method development are described in more detail. The application areas at component and system level are motor-operated valves and protection automation systems, for which experience-based ageing analyses have been demonstrated. Furthermore, Bayesian ageing models for repairable components have been developed, and the management of ageing by improving maintenance practices is discussed. Recommendations for improvement of plant information management in order to facilitate ageing analyses are also given. The evaluation and mitigation of ageing effects on structural components is addressed by promoting the use of probabilistic modelling of crack growth, and developing models for evaluation of the reliability of inspection results. (orig.)

  4. Practical methods for radiation survey in nuclear installations

    International Nuclear Information System (INIS)

    Shweikani, R.

    2001-12-01

    This study is placed to those who are responsible to perform radiation survey in the nuclear installations, especially the beginners. Therefore, it gives a comprehensive view to all-important aspects related to their work starting from the structure of atoms to the practical steps for radiation survey works. So, it clarify how to perform personal monitoring, methods for monitoring surface contamination, methods for measuring radioactivity of gases and radioactive aerosols in air, monitoring radiation doses, measuring radiation influences in workplaces and finally measuring internal exposure of radiation workers in nuclear installations. Finally, The study shows some cases of breaches of radiation protection rules in some American nuclear installations and describes the final results of these breaches. The aim of this is to assure that any breach or ignore to radiation protection principles may produce bad results, and there is no leniency in implementing environmental radiation protection principles. (author)

  5. Method for assigning sites to projected generic nuclear power plants

    International Nuclear Information System (INIS)

    Holter, G.M.; Purcell, W.L.; Shutz, M.E.; Young, J.R.

    1986-07-01

    Pacific Northwest Laboratory developed a method for forecasting potential locations and startup sequences of nuclear power plants that will be required in the future but have not yet been specifically identified by electric utilities. Use of the method results in numerical ratings for potential nuclear power plant sites located in each of the 10 federal energy regions. The rating for each potential site is obtained from numerical factors assigned to each of 5 primary siting characteristics: (1) cooling water availability, (2) site land area, (3) power transmission land area, (4) proximity to metropolitan areas, and (5) utility plans for the site. The sequence of plant startups in each federal energy region is obtained by use of the numerical ratings and the forecasts of generic nuclear power plant startups obtained from the EIA Middle Case electricity forecast. Sites are assigned to generic plants in chronological order according to startup date

  6. Verification methods for treaties limiting and banning nuclear tests

    International Nuclear Information System (INIS)

    Voloshin, N.P.

    1998-01-01

    Treaty on limitation of underground nuclear weapon tests and treaty on world banning of nuclear tests contribute to and accompany the process of nuclear disarmament. Test ban in three (Moscow treaty of 1963) as well as the Threshold Test Ban up to 1991 was controlled only with national means. But since 1991 nuclear test threshold of 150 kt has been measured with hydrodynamic and tele seismic methods and checked by the inspection. Distinctive feature of this control is that control is that it is bilateral. This conforms to Treaty on limitation of underground nuclear weapon tests signed by two countries - USA and USSR. The inspection at the place of tests requires monitoring of the test site of the party conducting a test and geological information of rock in the area of explosion. In the treaty of the World Nuclear Test Ban the following ways of international control are provided for: - seismologic measurements; - radionuclide measurements; - hydro-acoustics measurements; - infra-sound measurements; - inspection at the place of the tests conduction

  7. Advancing Inverse Sensitivity/Uncertainty Methods for Nuclear Fuel Cycle Applications

    Energy Technology Data Exchange (ETDEWEB)

    Arbanas, Goran [ORNL; Williams, Mark L [ORNL; Leal, Luiz C [ORNL; Dunn, Michael E [ORNL; Khuwaileh, Bassam A. [North Carolina State University; Wang, C [North Carolina State University; Abdel-Khalik, Hany [North Carolina State University

    2015-01-01

    The inverse sensitivity/uncertainty quantification (IS/UQ) method has recently been implemented in the Inverse Sensitivity/UnceRtainty Estimiator (INSURE) module of the AMPX system [1]. The IS/UQ method aims to quantify and prioritize the cross section measurements along with uncertainties needed to yield a given nuclear application(s) target response uncertainty, and doing this at a minimum cost. Since in some cases the extant uncertainties of the differential cross section data are already near the limits of the present-day state-of-the-art measurements, requiring significantly smaller uncertainties may be unrealistic. Therefore we have incorporated integral benchmark experiments (IBEs) data into the IS/UQ method using the generalized linear least-squares method, and have implemented it in the INSURE module. We show how the IS/UQ method could be applied to systematic and statistical uncertainties in a self-consistent way. We show how the IS/UQ method could be used to optimize uncertainties of IBEs and differential cross section data simultaneously.

  8. Estimating Population Turnover Rates by Relative Quantification Methods Reveals Microbial Dynamics in Marine Sediment.

    Science.gov (United States)

    Kevorkian, Richard; Bird, Jordan T; Shumaker, Alexander; Lloyd, Karen G

    2018-01-01

    The difficulty involved in quantifying biogeochemically significant microbes in marine sediments limits our ability to assess interspecific interactions, population turnover times, and niches of uncultured taxa. We incubated surface sediments from Cape Lookout Bight, North Carolina, USA, anoxically at 21°C for 122 days. Sulfate decreased until day 68, after which methane increased, with hydrogen concentrations consistent with the predicted values of an electron donor exerting thermodynamic control. We measured turnover times using two relative quantification methods, quantitative PCR (qPCR) and the product of 16S gene read abundance and total cell abundance (FRAxC, which stands for "fraction of read abundance times cells"), to estimate the population turnover rates of uncultured clades. Most 16S rRNA reads were from deeply branching uncultured groups, and ∼98% of 16S rRNA genes did not abruptly shift in relative abundance when sulfate reduction gave way to methanogenesis. Uncultured Methanomicrobiales and Methanosarcinales increased at the onset of methanogenesis with population turnover times estimated from qPCR at 9.7 ± 3.9 and 12.6 ± 4.1 days, respectively. These were consistent with FRAxC turnover times of 9.4 ± 5.8 and 9.2 ± 3.5 days, respectively. Uncultured Syntrophaceae , which are possibly fermentative syntrophs of methanogens, and uncultured Kazan-3A-21 archaea also increased at the onset of methanogenesis, with FRAxC turnover times of 14.7 ± 6.9 and 10.6 ± 3.6 days. Kazan-3A-21 may therefore either perform methanogenesis or form a fermentative syntrophy with methanogens. Three genera of sulfate-reducing bacteria, Desulfovibrio , Desulfobacter , and Desulfobacterium , increased in the first 19 days before declining rapidly during sulfate reduction. We conclude that population turnover times on the order of days can be measured robustly in organic-rich marine sediment, and the transition from sulfate-reducing to methanogenic conditions stimulates

  9. Development of Indirect Spectrophotometric Method for Quantification of Cephalexin in Pure Form and Commercial Formulation Using Complexation Reaction

    Directory of Open Access Journals (Sweden)

    Muhammad Naeem Khan

    2016-12-01

    Full Text Available A simple, accurate and indirect spectrophotometric method was developed for the quantification of cephalexin in pure form and pharmaceutical products using complexation reaction. The developed method is based on the oxidation of the cephalexin with Fe3+ in acidic medium. Then 1, 10-phenanthroline reacts with Fe2+ and a red colored complex was formed. The absorbance of the complex was measured at 510 nm by spectrophotometer. Different experimental parameters affecting the complexation reactions were studied and optimized. Beer’s law was obeyed in the concentration range 0.4 -10 µgmL-1 with a good correlation of 0.992. The limit of detection and limit of quantification were found to be 0.065 µgmL-1 and 0.218 µgmL-1, respectively. The method have good reproducibility with a relative standard deviation of 6.26 % (n = 6. The method was successfully applied for the determination of cephalexin in bulk powder and commercial formulation. Percent recoveries were found to range from 95.47 to 103.87 % for the pure form and 98.62 to 103.35 % for commercial formulations.

  10. Determination and Quantification of the Vinblastine Content in Purple, Red, and White Catharanthus Roseus Leaves Using RP-HPLC Method

    Directory of Open Access Journals (Sweden)

    Rohanizah Abdul Rahim

    2018-03-01

    Full Text Available Purpose: To determine and quantify vinblastine in different varieties of Catharanthus roseus using reversed-phase HPLC method. Methods: The liquid chromatographic separation was performed using a reversed phase C18, Microsorb - MV column (250 mm x 4.6 mm, 5 µm at room temperature and eluted with a mobile phase containing methanol – phosphate buffer (5 mM, pH 6.0 – acetonitrile with different proportion gradient elution at a flow rate of 2.0 mL min-1 and detection at 254 nm. Results: The HPLC method was utilized for the quantification of vinblastine in purple, red and white varieties of Catharanthus roseus leaves. The separation was achieved in less than 8 min. The peak confirmation was done based on the retention times and UV spectra of the reference substance. The method was validated with respect to linearity, precision, recovery, limit of detection and quantification. Results showed that the purple variety gives 1.2 and 1.5 times more vinblastine concentration compared to the white and pink varieties, respectively. Conclusion: The obtained results from different varieties are thus useful for the purpose of vinblastine production from Catharanthus roseus plant.

  11. Formic acid hydrolysis/liquid chromatography isotope dilution mass spectrometry: An accurate method for large DNA quantification.

    Science.gov (United States)

    Shibayama, Sachie; Fujii, Shin-Ichiro; Inagaki, Kazumi; Yamazaki, Taichi; Takatsu, Akiko

    2016-10-14

    Liquid chromatography-isotope dilution mass spectrometry (LC-IDMS) with formic acid hydrolysis was established for the accurate quantification of λDNA. The over-decomposition of nucleobases in formic acid hydrolysis was restricted by optimizing the reaction temperature and the reaction time, and accurately corrected by using deoxynucleotides (dNMPs) and isotope-labeled dNMPs as the calibrator and the internal standard, respectively. The present method could quantify λDNA with an expanded uncertainty of 4.6% using 10fmol of λDNA. The analytical results obtained with the present method were validated by comparing with the results of phosphate-base quantification by inductively coupled plasma-mass spectrometry (ICP-MS). The results showed good agreement with each other. We conclude that the formic acid hydrolysis/LC-IDMS method can quantify λDNA accurately and is promising as the primary method for the certification of DNA as reference material. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Contribution to the development of an absolute quantification method in Single Photon Emission Tomography of the brain

    International Nuclear Information System (INIS)

    Dinis-De-Almeida, Pedro-Miguel

    1999-01-01

    Recent technical advances in SPECT have focused on the use of transmission imaging and on the development of new iterative algorithms for attenuation correction. These new tools can be coupled to approaches which compensate for scattering and spatial resolution, in order to quantify the radioactive concentration values in vivo. The main objective of this work was to investigate a quantification method of radioactivity uptake in small cerebral structures using SPECT. This method was based on the correction of attenuation using transmission data. Compton events were estimated and subtracted by positioning a lower energy window. Spatial resolution effects have been corrected using Fourier deconvolution. The radiation dose received by patients during transmission scans was evaluated using anthropomorphic phantoms and suitable dosimeters. A preliminary evaluation of the quantification method was carried out using an anthropomorphic head phantom. In a second phase, in vivo acquisitions were performed in baboon. The values of the percent injected doses per millilitre of tissue in baboon striata were compared under similar experimental conditions using SPECT and PET radiotracers specific for the D2 dopamine receptors. Experiments carried with anthropomorphic phantoms have indicated that the clinical use of transmission scans in SPECT is not limited by radiation doses. Measurements have demonstrated that attenuation dramatically affects quantification in brain SPECT. This effect can be corrected using a map of linear attenuation coefficients obtained through transmission scans and an iterative reconstruction algorithm. After correcting for attenuation, scatter and spatial resolution effects, the accuracy of activity concentration values measurement in the 'striata' of phantom is greatly improved. Results obtained in vivo show that the percent injected doses per millilitre of tissue can be measured with errors similar to those found in PET. This work demonstrates

  13. HPLC MS/MS method for quantification of meprobamate in human plasma: application to 24/7 clinical toxicology.

    Science.gov (United States)

    Delavenne, Xavier; Gay-Montchamp, Jean Pierre; Basset, Thierry

    2011-01-15

    We described the development and full validation of rapid and accurate liquid chromatography method, coupled with tandem mass spectrometry detection, for quantification of meprobamate in human plasma with [(13)C-(2)H(3)]-meprobamate as internal standard. Plasma pretreatment involved a one-step protein precipitation with acetonitrile. Separation was performed by reversed-phase chromatography on a Luna MercuryMS C18 (20 mm×4 mm×3 μm) column using a gradient elution mode. The mobile phase was a mix of distilled water containing 0.1% formic acid and acetonitrile containing 0.1% formic acid. The selected reaction monitoring transitions, in electrospray positive ionization, used for quantification were 219.2→158.2 m/z and 223.1→161.1m/z for meprobamate and internal standard, respectively. Qualification transitions were 219.2→97.0 and 223.1→101.1 m/z for meprobamate and internal standard, respectively. The method was linear over the concentration range of 1-300 mg/L. The intra- and inter-day precision values were below 6.4% and accuracy was within 95.3% and 103.6% for all QC levels (5, 75 and 200 mg/L). The lower limit of quantification was 1 mg/L. Total analysis time was reduced to 6 min including sample preparation. The present method is successfully applied to 24/7 clinical toxicology and demonstrated its usefulness to detect meprobamate poisoning. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Phytochemical analysis of Vernonanthura tweedieana and a validated UPLC-PDA method for the quantification of eriodictyol

    Directory of Open Access Journals (Sweden)

    Layzon Antonio Lemos da Silva

    Full Text Available AbstractVernonanthura tweedieana (Baker H. Rob., Asteraceae, is used in the Brazilian folk medicine for the treatment of respiratory diseases. In this work the phytochemical investigation of its ethanol extracts as well as the development and validation of an UPLC-PDA method for the quantification of the eriodictyol from the leaves were performed. The phytochemical study for this species lead to the identification of ethyl caffeate, naringenin and chrysoeriol in mixture, eriodictyol from leaves, and the mixture of 3-hydroxy-1-(4-hydroxy-3,5-dimethoxyphenyl-propan-1-one and evofolin B, apigenin, the mixture of caffeic and protocatechuic acid and luteolin from stems with roots, being reported for the first time for V. tweedieana, except for eriodictyol. The structural elucidation of all isolated compounds was achieved by 1H and 2D NMR spectroscopy, and in comparison with published data. An UPLC-PDA method for quantification of the eriodictyol in leaves of V. tweedieana was developed and validated for specificity, linearity, precision (repeatability and intermediate precision, limit of detection (LOD and limit of quantification (LOQ, accuracy and robustness. In this study, an excellent linearity was obtained (r2 = 0.9999, good precision (repeatability RSD = 2% and intermediate precision RSD = 8% and accuracy (average recovery from 98.6% to 99.7%. The content of eriodictyol in the extract of leaves of V. tweedieana was 41.40 ± 0.13 mg/g. Thus, this study allowed the optimization of a simple, fast and validated UPLC-PDA method which can be used to support the quality assessment of this herbal material.

  15. Cost estimation method for decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Tomii, Hiroyuki; Matsuo, Kiyoshi; Shiraishi, Kunio; Watabe, Kozou

    2005-01-01

    Japanese Government decided that Japan Atomic Energy Research Institute (JAERI) and Japan Nuclear Cycle Development Institute (JNC) shall be consolidated to a New Organization as of October 2005, which organization would be an institute for comprehensive research and development for atomic energy. Through the preparation for unification, JAERI and JNC have been developing the decommissioning program for own facilities, estimating decommissioning cost and the amount of waste from the decommissioning, and developing management program. With planning the decommissioning program, it is important to estimate decommissioning cost effectively, because JAERI and JNC retain approximate 230 nuclear facilities which are reactors, fuel cycle and research facilities. Then a decommissioning cost estimation method has been developed based on several dismantling and replacement experiences. This method adopted more estimation formulae for decommissioning various works than ever, so as to be more reliable. And decommissioning cost for the facilities has been estimated under the common condition. This method should be improved, reflecting future nuclear facilities dismantling and replacement events. This paper shows the cost estimation method for nuclear facilities and the cost evaluation result for approximate 230 facilities of both JAERI and JNC. (author)

  16. A digital method for period measurements in a nuclear reactor

    International Nuclear Information System (INIS)

    Mundim, Sergio Gorretta

    1971-02-01

    The present paper begins by giving a theoretical treatment for the nuclear reactor period. The conventional method of measuring the period is analysed and some previously developed digital methods are described. The paper criticises the latter, pointing out some deficiencies which the proposed process is able to eliminate. All errors connected with this process are also analysed. The paper presents suitable solutions to reduce them to a minimum. The total error is found to he less than the error presented by the other methods described. A digital period meter is designed with memory resources and an automatic scaler changer. Integrated circuits specifications are used in it. Real time experiments with nuclear reactors were made in order to check te validity of the method. The data acquired were applied to a simulated digital period meter implemented in a general purpose computer. The nuclear part of the work was developed at the 'Comissao Nacional de Energia Nuclear' and the simulation work was dane at the 'Departamento de Calculo Cientifico' of COPPE, which also advised the author in the completion of this thesis. (author)

  17. Characterization of heterogeneous reservoirs: sentinels method and quantification of uncertainties; Caracterisation des reservoirs heterogenes: methode des sentinelles et quantification des incertitudes

    Energy Technology Data Exchange (ETDEWEB)

    Mezghani, M.

    1999-02-11

    The aim of this thesis is to propose a new inversion method to allow both an improved reservoir characterization and a management of uncertainties. In this approach, the identification of the permeability distribution is conducted using the sentinel method in order to match the pressure data. This approach, based on optimal control theory, can be seen as an alternative of least-squares method. Here, we prove the existence of exact sentinels under regularity hypothesis. From a numerical point of view, we consider regularized sentinels. We suggest a novel approach to update the penalization coefficient in order to improve numerical robustness. Moreover, the flexibility of the sentinel method enables to develop a way to treat noisy pressure data. To deal with geostatistical modelling of permeability distribution, we propose to link the pilot point method with sentinels to reach the identification of permeability. We particularly focus on the optimal location of pilot points. Finally, we present an original method, based on adjoint state computations, to quantify the dynamic data contribution to the characterisation of a calibrated geostatistical model. (author) 67 refs.

  18. Real-time PCR quantification of arbuscular mycorrhizal fungi: does the use of nuclear or mitochondrial markers make a difference?

    Czech Academy of Sciences Publication Activity Database

    Voříšková, Alena; Jansa, J.; Püschel, David; Krüger, Manuela; Cajthaml, T.; Vosátka, Miroslav; Janoušková, Martina

    2017-01-01

    Roč. 27, č. 6 (2017), s. 577-585 ISSN 0940-6360 R&D Projects: GA ČR GA15-05466S Institutional support: RVO:67985939 Keywords : real-time PCR * quantification * arbuscular mycorrhizal fungi Subject RIV: EF - Botanics OBOR OECD: Plant sciences, botany Impact factor: 3.047, year: 2016

  19. Comparison among the Quantification of Bacterial Pathogens by qPCR, dPCR, and Cultural Methods

    Directory of Open Access Journals (Sweden)

    Matteo Ricchi

    2017-06-01

    Full Text Available The demand for rapid methods for the quantification of pathogens is increasing. Among these methods, those based on nucleic acids amplification (quantitative PCRs are the most widespread worldwide. Together with the qPCR, a new approach named digital PCR (dPCR, has rapidly gained importance. The aim of our study was to compare the results obtained using two different dPCR systems and one qPCR in the quantification of three different bacterial pathogens: Listeria monocytogenes, Francisella tularensis, and Mycobacterium avium subsp. paratuberculosis. For this purpose, three pre-existing qPCRs were used, while the same primers and probes, as well as PCR conditions, were transferred to two different dPCR systems: the QX200 (Bio-Rad and the Quant Studio 3D (Applied Biosystems. The limits of detection and limits of quantification for all pathogens, and all PCR approaches applied, were determined using genomic pure DNAs. The quantification of unknown decimal suspensions of the three bacteria obtained by the three different PCR approaches was compared through the Linear Regression and Bland and Altman analyses. Our results suggest that, both dPCRs are able to quantify the same amount of bacteria, while the comparison among dPCRs and qPCRs, showed both over and under-estimation of the bacteria present in the unknown suspensions. Our results showed qPCR over-estimated the amount of M. avium subsp. paratuberculosis and F. tularensis cells. On the contrary, qPCR, compared to QX200 dPCR, under-estimated the amount of L. monocytogenes cells. However, the maximum difference among PCRs approaches was <0.5 Log10, while cultural methods underestimated the number of bacteria by one to two Log10 for Francisella tularensis and Mycobacterium avium subsp. paratuberculosis. On the other hand, cultural and PCRs methods quantified the same amount of bacteria for L. monocytogenes, suggesting for this last pathogen, PCRs approaches can be considered as a valid alternative

  20. Use of scientometrics to assess nuclear and other analytical methods

    Energy Technology Data Exchange (ETDEWEB)

    Lyon, W.S.

    1986-01-01

    Scientometrics involves the use of quantitative methods to investigate science viewed as an information process. Scientometric studies can be useful in ascertaining which methods have been most employed for various analytical determinations as well as for predicting which methods will continue to be used in the immediate future and which appear to be losing favor with the analytical community. Published papers in the technical literature are the primary source materials for scientometric studies; statistical methods and computer techniques are the tools. Recent studies have included growth and trends in prompt nuclear analysis impact of research published in a technical journal, and institutional and national representation, speakers and topics at several IAEA conferences, at modern trends in activation analysis conferences, and at other non-nuclear oriented conferences. Attempts have also been made to predict future growth of various topics and techniques. 13 refs., 4 figs., 17 tabs.

  1. Use of scientometrics to assess nuclear and other analytical methods

    International Nuclear Information System (INIS)

    Lyon, W.S.

    1986-01-01

    Scientometrics involves the use of quantitative methods to investigate science viewed as an information process. Scientometric studies can be useful in ascertaining which methods have been most employed for various analytical determinations as well as for predicting which methods will continue to be used in the immediate future and which appear to be losing favor with the analytical community. Published papers in the technical literature are the primary source materials for scientometric studies; statistical methods and computer techniques are the tools. Recent studies have included growth and trends in prompt nuclear analysis impact of research published in a technical journal, and institutional and national representation, speakers and topics at several IAEA conferences, at modern trends in activation analysis conferences, and at other non-nuclear oriented conferences. Attempts have also been made to predict future growth of various topics and techniques. 13 refs., 4 figs., 17 tabs

  2. Method and device of producing spherical particles of nuclear fuel or nuclear source material

    International Nuclear Information System (INIS)

    Yamagishi, Shigeru; Takahashi, Yoshihisa; Shiba, Koreyuki.

    1984-01-01

    Purpose: To obtain nuclear fuel particles with satisfactory sphericalness. Method: In the crust-gelling process for producing nuclear fuel particles, the following three kinds of solution are used (1) organic solvent (carbon tetrachloride) as a medium for forming droplets and crust gelification, (2) starting gelifying solution containing nuclear fuel material (for example, a sol of solution mixture of thorium nitrate - uranyl nitrate adjusted to pH 3.0 by the addition of ammonia), (3) an aqueous ammonia solution for the completion of gelification and recovery of gelled spheres, with the density of the solutions being increased in the recited order. The apparatus for practicing the method comprises an intermediate portion connected to a starting liquid container and filled with an ammoniac organic solvent for to gelification, a gelification column for completion of gelification, gelled sphere-organic solvent separating portion and a gelified sphere recovery containeer. (Seki, T.)

  3. A Short Review of FDTD-Based Methods for Uncertainty Quantification in Computational Electromagnetics

    Directory of Open Access Journals (Sweden)

    Theodoros T. Zygiridis

    2017-01-01

    Full Text Available We provide a review of selected computational methodologies that are based on the deterministic finite-difference time-domain algorithm and are suitable for the investigation of electromagnetic problems involving uncertainties. As it will become apparent, several alternatives capable of performing uncertainty quantification in a variety of cases exist, each one exhibiting different qualities and ranges of applicability, which we intend to point out here. Given the numerous available approaches, the purpose of this paper is to clarify the main strengths and weaknesses of the described methodologies and help the potential readers to safely select the most suitable approach for their problem under consideration.

  4. Review of training methods employed in nuclear fuel fabrication plants

    International Nuclear Information System (INIS)

    Box, W.D.; Browder, F.N.

    1975-01-01

    A search of the literature through the Nuclear Safety Information Center revealed that 86 percent of the incidents that have occurred in fuel fabrication plants can be traced directly or indirectly to insufficient operator training. In view of these findings, a review was made of the training programs now employed by the nuclear fuel fabrication industry. Most companies give the new employee approximately 20 hours of orientation courses, followed by 60 to 80 hours of on-the-job training. It was concluded that these training programs should be expanded in both scope and depth. A proposed program is outlined to offer guidance in improving the basic methods currently in use

  5. Monte Carlo methods and applications in nuclear physics

    International Nuclear Information System (INIS)

    Carlson, J.

    1990-01-01

    Monte Carlo methods for studying few- and many-body quantum systems are introduced, with special emphasis given to their applications in nuclear physics. Variational and Green's function Monte Carlo methods are presented in some detail. The status of calculations of light nuclei is reviewed, including discussions of the three-nucleon-interaction, charge and magnetic form factors, the coulomb sum rule, and studies of low-energy radiative transitions. 58 refs., 12 figs

  6. Monte Carlo methods and applications in nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, J.

    1990-01-01

    Monte Carlo methods for studying few- and many-body quantum systems are introduced, with special emphasis given to their applications in nuclear physics. Variational and Green's function Monte Carlo methods are presented in some detail. The status of calculations of light nuclei is reviewed, including discussions of the three-nucleon-interaction, charge and magnetic form factors, the coulomb sum rule, and studies of low-energy radiative transitions. 58 refs., 12 figs.

  7. Metrological evaluation of characterization methods applied to nuclear fuels

    International Nuclear Information System (INIS)

    Faeda, Kelly Cristina Martins; Lameiras, Fernando Soares; Camarano, Denise das Merces; Ferreira, Ricardo Alberto Neto; Migliorini, Fabricio Lima; Carneiro, Luciana Capanema Silva; Silva, Egonn Hendrigo Carvalho

    2010-01-01

    In manufacturing the nuclear fuel, characterizations are performed in order to assure the minimization of harmful effects. The uranium dioxide is the most used substance as nuclear reactor fuel because of many advantages, such as: high stability even when it is in contact with water at high temperatures, high fusion point, and high capacity to retain fission products. Several methods are used for characterization of nuclear fuels, such as thermogravimetric analysis for the ratio O / U, penetration-immersion method, helium pycnometer and mercury porosimetry for the density and porosity, BET method for the specific surface, chemical analyses for relevant impurities, and the laser flash method for thermophysical properties. Specific tools are needed to control the diameter and the sphericity of the microspheres and the properties of the coating layers (thickness, density, and degree of anisotropy). Other methods can also give information, such as scanning and transmission electron microscopy, X-ray diffraction, microanalysis, and mass spectroscopy of secondary ions for chemical analysis. The accuracy of measurement and level of uncertainty of the resulting data are important. This work describes a general metrological characterization of some techniques applied to the characterization of nuclear fuel. Sources of measurement uncertainty were analyzed. The purpose is to summarize selected properties of UO 2 that have been studied by CDTN in a program of fuel development for Pressurized Water Reactors (PWR). The selected properties are crucial for thermalhydraulic codes to study basic design accidents. The thermal characterization (thermal diffusivity and thermal conductivity) and the penetration immersion method (density and open porosity) of UO 2 samples were focused. The thermal characterization of UO 2 samples was determined by the laser flash method between room temperature and 448 K. The adaptive Monte Carlo Method was used to obtain the endpoints of the

  8. Probabilistic safety analysis : a new nuclear power plants licensing method

    International Nuclear Information System (INIS)

    Oliveira, L.F.S. de.

    1982-04-01

    After a brief retrospect of the application of Probabilistic Safety Analysis in the nuclear field, the basic differences between the deterministic licensing method, currently in use, and the probabilistic method are explained. Next, the two main proposals (by the AIF and the ACRS) concerning the establishment of the so-called quantitative safety goals (or simply 'safety goals') are separately presented and afterwards compared in their most fundamental aspects. Finally, some recent applications and future possibilities are discussed. (Author) [pt

  9. Capillary electrophoresis coupled with inductively coupled mass spectrometry as an alternative to cloud point extraction based methods for rapid quantification of silver ions and surface coated silver nanoparticles

    OpenAIRE

    Qu, Haiou; Mudalige, Thilak K.; Linder, Sean W.

    2015-01-01

    Speciation and accurate quantification of ionic silver and metallic silver nanoparticles are critical to investigate silver toxicity and to determine the shelf-life of products that contain nano silver under various storage conditions. We developed a rapid method for quantification of silver ions and silver nanoparticles using capillary electrophoresis (CE) interfaced with inductively-coupled plasma mass spectrometry (ICPMS). The addition of 2-mercaptopropionylglycine (tiopronin) to the backg...

  10. Standard test methods for chemical, mass spectrometric, spectrochemical, nuclear, and radiochemical analysis of nuclear-grade plutonium metal

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2004-01-01

    1.1 These test methods cover procedures for the chemical, mass spectrometric, spectrochemical, nuclear, and radiochemical analysis of nuclear-grade plutonium metal to determine compliance with specifications.

  11. Development and validation of an RP-HPLC method for quantification of trans-resveratrol in the plant extracts

    Directory of Open Access Journals (Sweden)

    Cvetković Žika S.

    2015-01-01

    Full Text Available New, simple, cost effective, accurate and reproducible RP-HPLC method was developed and validated for the quantification of trans-resveratrol in the extracts of grape exocarp and seeds. The method has proved to be simpler and faster than available methods. Methanol was used as a mobile phase with a flow rate of 1.0 cm3 min-1, while the quantification was effected at 306 nm. The separation was performed at 35°C using a C18 column. The results showed that the peak area response was linear in the concentration range of 1-40 μg cm-3. The values of LOD and LOQ were found to be 0.125 and 0.413 μg cm-3, respectively. The antioxidant activity of the extracts was determined using DPPH assay. The ability of DPPH radicals inhibition decreases in the following order: the extract of grape exocarp > trans-resveratrol standard > the extract of grape seeds. [Projekat Ministarstva nauke Republike Srbije, br. TRp-34012

  12. Quantification and differentiation of Campylobacter jejuni and Campylobacter coli in raw chicken meats using a real-time PCR method.

    Science.gov (United States)

    Hong, Joonbae; Jung, Woo Kyung; Kim, Jun Man; Kim, So Hyun; Koo, Hye Cheong; Ser, Junghee; Park, Yong Ho

    2007-09-01

    Campylobacter species are one of the most common causes of bacterial diarrhea in humans worldwide. The consumption of foods contaminated with two Campylobacter species, C. jejuni and C. coli, is usually associated with most of the infections in humans. In this study, a rapid, reliable, and sensitive multiplex real-time quantitative PCR was developed for the simultaneous detection, identification, and quantification of C. jejuni and C. coli. In addition, the developed method was applied to the 50 samples of raw chicken meat collected from retail stores in Korea. C. jejuni and C. coli were detected in 88 and 86% of the samples by real-time quantitative PCR and the conventional microbiological method, respectively. The specificity of the primer and probe sets was confirmed with 30 C. jejuni, 20 C. coli, and 35 strains of other microbial species. C. jejuni and C. coli could be detected with high specificity in less than 4 h, with a detection limit of 1 log CFU/ml by the developed real-time PCR. The average counts (log CFU per milliliter) of C. jejuni or C. coli obtained by the conventional methods and by the real-time PCR assay were statistically correlated with a correlation coefficient (R2) between 0.73 and 0.78. The real-time PCR assay developed in this study is useful for screening for the presence and simultaneous differential quantification of C. jejuni and C. coli.

  13. Design of nuclear power generation plants adopting model engineering method

    International Nuclear Information System (INIS)

    Waki, Masato

    1983-01-01

    The utilization of model engineering as the method of design has begun about ten years ago in nuclear power generation plants. By this method, the result of design can be confirmed three-dimensionally before actual production, and it is the quick and sure method to meet the various needs in design promptly. The adoption of models aims mainly at the improvement of the quality of design since the high safety is required for nuclear power plants in spite of the complex structure. The layout of nuclear power plants and piping design require the model engineering to arrange rationally enormous quantity of things in a limited period. As the method of model engineering, there are the use of check models and of design models, and recently, the latter method has been mainly taken. The procedure of manufacturing models and engineering is explained. After model engineering has been completed, the model information must be expressed in drawings, and the automation of this process has been attempted by various methods. The computer processing of design is in progress, and its role is explained (CAD system). (Kako, I.)

  14. Simultaneous Quantification of Dexpanthenol and Resorcinol from Hair Care Formulation Using Liquid Chromatography: Method Development and Validation

    Directory of Open Access Journals (Sweden)

    Amit Kumar De

    2016-01-01

    Full Text Available The current study presents the simultaneous quantification of dexpanthenol and resorcinol from marketed hair care formulation. Dexpanthenol is often present as an active ingredient in personal care products for its beautifying and invigorating properties and restorative and smoothing properties. On the other hand resorcinol is mainly prescribed for the treatment of seborrheic dermatitis of scalp. The toxic side effects of resorcinol limit its use in dermatological preparations. Therefore an accurate quantification technique for the simultaneous estimation of these two components can be helpful for the formulation industries for the accurate analysis of their product quality. In the current study a high performance liquid chromatographic technique has been developed using a C18 column and a mobile phase consisting of phosphate buffer of pH = 2.8 following a gradient elution. The mobile phase flow rate was 0.6 mL per minute and the detection wavelength was 210 nm for dexpanthenol and 280 nm for resorcinol. The linearity study was carried out using five solutions having concentrations ranging between 10.34 μg·mL−1 and 82.69 μg·mL−1 (r2=0.999 for resorcinol and 10.44 μg·mL−1 and 83.50 μg·mL−1 (r2=0.998 for dexpanthenol. The method has been validated as per ICH Q2(R1 guidelines. The ease of single step sample preparation, accuracy, and precision (intraday and interday study presents the method suitable for the simultaneous quantification of dexpanthenol and resorcinol from any personal care product and dermatological preparations containing these two ingredients.

  15. Simultaneous Quantification of Dexpanthenol and Resorcinol from Hair Care Formulation Using Liquid Chromatography: Method Development and Validation.

    Science.gov (United States)

    De, Amit Kumar; Chowdhury, Partha Pratim; Chattapadhyay, Shyamaprasad

    2016-01-01

    The current study presents the simultaneous quantification of dexpanthenol and resorcinol from marketed hair care formulation. Dexpanthenol is often present as an active ingredient in personal care products for its beautifying and invigorating properties and restorative and smoothing properties. On the other hand resorcinol is mainly prescribed for the treatment of seborrheic dermatitis of scalp. The toxic side effects of resorcinol limit its use in dermatological preparations. Therefore an accurate quantification technique for the simultaneous estimation of these two components can be helpful for the formulation industries for the accurate analysis of their product quality. In the current study a high performance liquid chromatographic technique has been developed using a C18 column and a mobile phase consisting of phosphate buffer of pH = 2.8 following a gradient elution. The mobile phase flow rate was 0.6 mL per minute and the detection wavelength was 210 nm for dexpanthenol and 280 nm for resorcinol. The linearity study was carried out using five solutions having concentrations ranging between 10.34 μg·mL(-1) and 82.69 μg·mL(-1) (r (2) = 0.999) for resorcinol and 10.44 μg·mL(-1) and 83.50 μg·mL(-1) (r (2) = 0.998) for dexpanthenol. The method has been validated as per ICH Q2(R1) guidelines. The ease of single step sample preparation, accuracy, and precision (intraday and interday) study presents the method suitable for the simultaneous quantification of dexpanthenol and resorcinol from any personal care product and dermatological preparations containing these two ingredients.

  16. Highly Effective DNA Extraction Method for Nuclear Short Tandem Repeat Testing of Skeletal Remains from Mass Graves

    Science.gov (United States)

    Davoren, Jon; Vanek, Daniel; Konjhodzić, Rijad; Crews, John; Huffine, Edwin; Parsons, Thomas J.

    2007-01-01

    Aim To quantitatively compare a silica extraction method with a commonly used phenol/chloroform extraction method for DNA analysis of specimens exhumed from mass graves. Methods DNA was extracted from twenty randomly chosen femur samples, using the International Commission on Missing Persons (ICMP) silica method, based on Qiagen Blood Maxi Kit, and compared with the DNA extracted by the standard phenol/chloroform-based method. The efficacy of extraction methods was compared by real time polymerase chain reaction (PCR) to measure DNA quantity and the presence of inhibitors and by amplification with the PowerPlex 16 (PP16) multiplex nuclear short tandem repeat (STR) kit. Results DNA quantification results showed that the silica-based method extracted on average 1.94 ng of DNA per gram of bone (range 0.25-9.58 ng/g), compared with only 0.68 ng/g by the organic method extracted (range 0.0016-4.4880 ng/g). Inhibition tests showed that there were on average significantly lower levels of PCR inhibitors in DNA isolated by the organic method. When amplified with PP16, all samples extracted by silica-based method produced 16 full loci profiles, while only 75% of the DNA extracts obtained by organic technique amplified 16 loci profiles. Conclusions The silica-based extraction method showed better results in nuclear STR typing from degraded bone samples than a commonly used phenol/chloroform method. PMID:17696302

  17. Methods for sharing tacit nuclear knowledge and expertise

    International Nuclear Information System (INIS)

    Rintala, N.; Hyttinen, L.

    2006-01-01

    The ageing of workforce, the lack of training programmes and recruitments, and the decline in R and D activities have prompted discussions about the need to preserve nuclear knowledge by transferring it from retiring experts to new recruits. Studies conducted in the nuclear and power industries have found that challenges lie especially in transferring tacit knowledge, which the experts have accumulated over the course of long careers and various experiences in professional settings. This paper examines methods by which tacit knowledge is transferred at the Finnish nuclear power plants. The aim of this paper is to provide empirical knowledge of the current state of practices for sharing tacit knowledge that could be utilised at NPPs more generally. (author)

  18. Methods for sharing tacit nuclear knowledge and expertise

    International Nuclear Information System (INIS)

    Hyttinen, L.; Rintala, N.

    2004-01-01

    The ageing of workforce, the lack of training programs and recruits, and the decline in R and D activities have evoked discussion about the need to preserve nuclear knowledge by transferring it from retiring experts to new recruits. Studies conducted in the nuclear and power industries have found that challenges lie especially in transferring tacit knowledge, which the experts have accumulated through long careers and various experiences in professional settings. This paper examines methods with which tacit knowledge is transferred at the Finnish nuclear power plants. The aim of this paper is to provide empirical knowledge of the current state of practices for sharing tacit knowledge that could be utilized at NPPs more generally. (author)

  19. Analytical Methods for Quantification of Vitamin D and Implications for Research and Clinical Practice.

    Science.gov (United States)

    Stokes, Caroline S; Lammert, Frank; Volmer, Dietrich A

    2018-02-01

    A plethora of contradictory research surrounds vitamin D and its influence on health and disease. This may, in part, result from analytical difficulties with regard to measuring vitamin D metabolites in serum. Indeed, variation exists between analytical techniques and assays used for the determination of serum 25-hydroxyvitamin D. Research studies into the effects of vitamin D on clinical endpoints rely heavily on the accurate assessment of vitamin D status. This has important implications, as findings from vitamin D-related studies to date may potentially have been hampered by the quantification techniques used. Likewise, healthcare professionals are increasingly incorporating vitamin D testing and supplementation regimens into their practice, and measurement errors may be also confounding the clinical decisions. Importantly, the Vitamin D Standardisation Programme is an initiative that aims to standardise the measurement of vitamin D metabolites. Such a programme is anticipated to eliminate the inaccuracies surrounding vitamin D quantification. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  20. Dakota Uncertainty Quantification Methods Applied to the CFD code Nek5000

    Energy Technology Data Exchange (ETDEWEB)

    Delchini, Marc-Olivier [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Popov, Emilian L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Pointer, William David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division

    2016-04-29

    This report presents the state of advancement of a Nuclear Energy Advanced Modeling and Simulation (NEAMS) project to characterize the uncertainty of the computational fluid dynamics (CFD) code Nek5000 using the Dakota package for flows encountered in the nuclear engineering industry. Nek5000 is a high-order spectral element CFD code developed at Argonne National Laboratory for high-resolution spectral-filtered large eddy simulations (LESs) and unsteady Reynolds-averaged Navier-Stokes (URANS) simulations.

  1. Multivariable control in nuclear power stations -survey of design methods

    International Nuclear Information System (INIS)

    Mcmorran, P.D.

    1979-12-01

    The development of larger nuclear generating stations increases the importance of dynamic interaction between controllers, because each control action may affect several plant outputs. Multivariable control provides the techniques to design controllers which perform well under these conditions. This report is a foundation for further work on the application of multivariable control in AECL. It covers the requirements of control and the fundamental mathematics used, then reviews the most important linear methods, based on both state-space and frequency-response concepts. State-space methods are derived from analysis of the system differential equations, while frequency-response methods use the input-output transfer function. State-space methods covered include linear-quadratic optimal control, pole shifting, and the theory of state observers and estimators. Frequency-response methods include the inverse Nyquist array method, and classical non-interactive techniques. Transfer-function methods are particularly emphasized since they can incorporate ill-defined design criteria. The underlying concepts, and the application strengths and weaknesses of each design method are presented. A review of significant applications is also given. It is concluded that the inverse Nyquist array method, a frequency-response technique based on inverse transfer-function matrices, is preferred for the design of multivariable controllers for nuclear power plants. This method may be supplemented by information obtained from a modal analysis of the plant model. (auth)

  2. A single-beam titration method for the quantification of open-path Fourier transform infrared spectroscopy

    International Nuclear Information System (INIS)

    Sung, Lung-Yu; Lu, Chia-Jung

    2014-01-01

    This study introduced a quantitative method that can be used to measure the concentration of analytes directly from a single-beam spectrum of open-path Fourier Transform Infrared Spectroscopy (OP-FTIR). The peak shapes of the analytes in a single-beam spectrum were gradually canceled (i.e., “titrated”) by dividing an aliquot of a standard transmittance spectrum with a known concentration, and the sum of the squared differential synthetic spectrum was calculated as an indicator for the end point of this titration. The quantity of a standard transmittance spectrum that is needed to reach the end point can be used to calculate the concentrations of the analytes. A NIST traceable gas standard containing six known compounds was used to compare the quantitative accuracy of both this titration method and that of a classic least square (CLS) using a closed-cell FTIR spectrum. The continuous FTIR analysis of industrial exhausting stack showed that concentration trends were consistent between the CLS and titration methods. The titration method allowed the quantification to be performed without the need of a clean single-beam background spectrum, which was beneficial for the field measurement of OP-FTIR. Persistent constituents of the atmosphere, such as NH 3 , CH 4 and CO, were successfully quantified using the single-beam titration method with OP-FTIR data that is normally inaccurate when using the CLS method due to the lack of a suitable background spectrum. Also, the synthetic spectrum at the titration end point contained virtually no peaks of analytes, but it did contain the remaining information needed to provide an alternative means of obtaining an ideal single-beam background for OP-FTIR. - Highlights: • Establish single beam titration quantification method for OP-FTIR. • Define the indicator for the end-point of spectrum titration. • An ideal background spectrum can be obtained using single beam titration. • Compare the quantification between titration

  3. A novel LC-MS/MS method for the simultaneous quantification of topiramate and its main metabolites in human plasma.

    Science.gov (United States)

    Milosheska, Daniela; Roškar, Robert

    2017-05-10

    The aim of the present report was to develop and validate simple, sensitive and reliable LC-MS/MS method for quantification of topiramate (TPM) and its main metabolites: 2,3-desisopropylidene TPM, 4,5-desisopropylidene TPM, 10-OH TPM and 9-OH TPM in human plasma samples. The most abundant metabolite 2,3-desisopropylidene TPM was isolated from patients urine, characterized and afterwards used as an authentic standard for method development and validation. Sample preparation method employs 100μL of plasma sample and liquid-liquid extraction with a mixture of ethyl acetate and diethyl ether as extraction solvent. Chromatographic separation was achieved on a 1290 Infinity UHPLC coupled to 6460 Triple Quad Mass Spectrometer operated in negative MRM mode using Kinetex C18 column (50×2.1mm, 2.6μm) by gradient elution using water and methanol as a mobile phase and stable isotope labeled TPM as internal standard. The method showed to be selective, accurate, precise and linear over the concentration ranges of 0.10-20μg/mL for TPM, 0.01-2.0μg/mL for 2,3-desisopropylidene TPM, and 0.001-0.200μg/mL for 4,5-desisopropylidene TPM, 10-OH TPM and 9-OH TPM. The described method is the first fully validated method capable of simultaneous determination of TPM and its main metabolites in plasma over the selected analytical range. The suitability of the method was successfully demonstrated by the quantification of all analytes in plasma samples of patients with epilepsy and can be considered as reliable analytical tool for future investigations of the TPM metabolism. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Development and validation of an analytical method for the extraction and quantification of soluble sulfates in red clay

    Directory of Open Access Journals (Sweden)

    V. I. Cáceres

    2015-09-01

    Full Text Available AbstractIn this work a fast and environmentally friendly method for the extraction and quantification of soluble sulphates in red clay using microwave assisted extraction (MAE and determination by turbidimetry was developed and validated. The favorable conditions for the extraction of soluble sulphates in red clay by MAE were: 1 g of sample, with particle size of 63μm, dissolved in 50 mL of distilled water, it was extracted using a microwave oven with 70% of power during 5 min, later the sample was centrifuged during 5 min and then filtered. The soluble sulphates in red clays were quantified at 420 nm. The procedure proposed showed linear behaviour in the tested rank (5-7000 mg SO42-/kg of clay with R2 0.9993. The limits of detection and quantification were 4.30 and 14.33 mg/kg, respectively, with a variation coefficient of 1.41%. The method proposed in this work allows to determine soluble sulphates in red clay with a recovery of 94%.

  5. Sensitive and selective liquid chromatography-tandem mass spectrometry method for the quantification of aniracetam in human plasma.

    Science.gov (United States)

    Zhang, Jingjing; Liang, Jiabi; Tian, Yuan; Zhang, Zunjian; Chen, Yun

    2007-10-15

    A rapid, sensitive and selective LC-MS/MS method was developed and validated for the quantification of aniracetam in human plasma using estazolam as internal standard (IS). Following liquid-liquid extraction, the analytes were separated using a mobile phase of methanol-water (60:40, v/v) on a reverse phase C18 column and analyzed by a triple-quadrupole mass spectrometer in the selected reaction monitoring (SRM) mode using the respective [M+H]+ ions, m/z 220-->135 for aniracetam and m/z 295-->205 for the IS. The assay exhibited a linear dynamic range of 0.2-100 ng/mL for aniracetam in human plasma. The lower limit of quantification (LLOQ) was 0.2 ng/mL with a relative standard deviation of less than 15%. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. The validated LC-MS/MS method has been successfully applied to study the pharmacokinetics of aniracetam in healthy male Chinese volunteers.

  6. Introduction to the methods of estimating nuclear power generating costs

    International Nuclear Information System (INIS)

    1961-01-01

    The present report prepared by the Agency with the guidance and assistance of a panel of experts from Member States, the names of whom will be found at the end of this report, represents the first step in the methods of cost evaluation. The main objectives of the report are: (1) The preparation of a full list of the cost items likely to be encountered so that the preliminary estimates for a given nuclear power system can be relied upon in deciding on its economic merits. (2) A survey of the methods currently used for the estimation of the generating costs of the power produced by a nuclear station. The survey is intended for a wide audience ranging from engineers to public officials with an interest in the prospects of nuclear power. An attempt has therefore been made to refrain from detailed technical discussions in order to make the presentation easily understandable to readers with only a very general knowledge of the principles of nuclear engineering. 3 figs, tabs

  7. Multilevel and quasi-Monte Carlo methods for uncertainty quantification in particle travel times through random heterogeneous porous media.

    Science.gov (United States)

    Crevillén-García, D; Power, H

    2017-08-01

    In this study, we apply four Monte Carlo simulation methods, namely, Monte Carlo, quasi-Monte Carlo, multilevel Monte Carlo and multilevel quasi-Monte Carlo to the problem of uncertainty quantification in the estimation of the average travel time during the transport of particles through random heterogeneous porous media. We apply the four methodologies to a model problem where the only input parameter, the hydraulic conductivity, is modelled as a log-Gaussian random field by using direct Karhunen-Loéve decompositions. The random terms in such expansions represent the coefficients in the equations. Numerical calculations demonstrating the effectiveness of each of the methods are presented. A comparison of the computational cost incurred by each of the methods for three different tolerances is provided. The accuracy of the approaches is quantified via the mean square error.

  8. Advantages of a validated UPLC-MS/MS standard addition method for the quantification of A-type dimeric and trimeric proanthocyanidins in cranberry extracts in comparison with well-known quantification methods.

    Science.gov (United States)

    van Dooren, Ines; Foubert, Kenn; Theunis, Mart; Naessens, Tania; Pieters, Luc; Apers, Sandra

    2018-01-30

    The berries of Vaccinium macrocarpon, cranberry, are widely used for the prevention of urinary tract infections. This species contains A-type proanthocyanidins (PACs), which intervene in the initial phase of the development of urinary tract infections by preventing the adherence of Escherichia coli by their P-type fimbriae to uroepithelial cells. Unfortunately, the existing clinical studies used different cranberry preparations, which were poorly standardized. Because of this, the results were hard to compare, which led sometimes to conflicting results. Currently, PACs are quantified using the rather non-specific spectrophotometric 4-dimethylaminocinnamaldehyde (DMAC) method. In addition, a normal phase HPTLC-densitometric method, a HPLC-UV method and three LC-MS/MS methods for quantification of procyanidin A2 were recently published. All these methods contain some shortcomings and errors. Hence, the development and validation of a fast and sensitive standard addition LC-MS/MS method for the simultaneous quantification of A-type dimers and trimers in a cranberry dry extract was carried out. A linear calibration model could be adopted for dimers and, after logaritmic transformation, for trimers. The maximal interday and interconcentration precision was found to be 4.86% and 4.28% for procyanidin A2, and 5.61% and 7.65% for trimeric PACs, which are all acceptable values for an analytical method using LC-MS/MS. In addition, twelve different cranberry extracts were analyzed by means of the newly validated method and other widely used methods. There appeared to be an enormous variation in dimeric and trimeric PAC content. Comparison of these results with LC-MS/MS analysis without standard addition showed the presence of matrix effects for some of the extracts and proved the necessity of standard addition. A comparison of the well-known and widely used DMAC method, the butanol-HCl assay and this newly developed LC-MS/MS method clearly indicated the need for a reliable

  9. Complexity Quantification for Overhead Transmission Line Emergency Repair Scheme via a Graph Entropy Method Improved with Petri Net and AHP Weighting Method

    Directory of Open Access Journals (Sweden)

    Jing Zhou

    2014-01-01

    Full Text Available According to the characteristics of emergency repair in overhead transmission line accidents, a complexity quantification method for emergency repair scheme is proposed based on the entropy method in software engineering, which is improved by using group AHP (analytical hierarchical process method and Petri net. Firstly, information structure chart model and process control flowchart model could be built by Petri net. Then impact factors on complexity of emergency repair scheme could be quantified into corresponding entropy values, respectively. Finally, by using group AHP method, weight coefficient of each entropy value would be given before calculating the overall entropy value for the whole emergency repair scheme. By comparing group AHP weighting method with average weighting method, experiment results for the former showed a stronger correlation between quantified entropy values of complexity and the actual consumed time in repair, which indicates that this new method is more valid.

  10. Novel methods of automated quantification of gap junction distribution and interstitial collagen quantity from animal and human atrial tissue sections.

    Directory of Open Access Journals (Sweden)

    Jiajie Yan

    Full Text Available Gap junctions (GJs are the principal membrane structures that conduct electrical impulses between cardiac myocytes while interstitial collagen (IC can physically separate adjacent myocytes and limit cell-cell communication. Emerging evidence suggests that both GJ and interstitial structural remodeling are linked to cardiac arrhythmia development. However, automated quantitative identification of GJ distribution and IC deposition from microscopic histological images has proven to be challenging. Such quantification is required to improve the understanding of functional consequences of GJ and structural remodeling in cardiac electrophysiology studies.Separate approaches were employed for GJ and IC identification in images from histologically stained tissue sections obtained from rabbit and human atria. For GJ identification, we recognized N-Cadherin (N-Cad as part of the gap junction connexin 43 (Cx43 molecular complex. Because N-Cad anchors Cx43 on intercalated discs (ID to form functional GJ channels on cell membranes, we computationally dilated N-Cad pixels to create N-Cad units that covered all ID-associated Cx43 pixels on Cx43/N-Cad double immunostained confocal images. This approach allowed segmentation between ID-associated and non-ID-associated Cx43. Additionally, use of N-Cad as a unique internal reference with Z-stack layer-by-layer confocal images potentially limits sample processing related artifacts in Cx43 quantification. For IC quantification, color map thresholding of Masson's Trichrome blue stained sections allowed straightforward and automated segmentation of collagen from non-collagen pixels. Our results strongly demonstrate that the two novel image-processing approaches can minimize potential overestimation or underestimation of gap junction and structural remodeling in healthy and pathological hearts. The results of using the two novel methods will significantly improve our understanding of the molecular and structural

  11. Cell-fusion method to visualize interphase nuclear pore formation.

    Science.gov (United States)

    Maeshima, Kazuhiro; Funakoshi, Tomoko; Imamoto, Naoko

    2014-01-01

    In eukaryotic cells, the nucleus is a complex and sophisticated organelle that organizes genomic DNA to support essential cellular functions. The nuclear surface contains many nuclear pore complexes (NPCs), channels for macromolecular transport between the cytoplasm and nucleus. It is well known that the number of NPCs almost doubles during interphase in cycling cells. However, the mechanism of NPC formation is poorly understood, presumably because a practical system for analysis does not exist. The most difficult obstacle in the visualization of interphase NPC formation is that NPCs already exist after nuclear envelope formation, and these existing NPCs interfere with the observation of nascent NPCs. To overcome this obstacle, we developed a novel system using the cell-fusion technique (heterokaryon method), previously also used to analyze the shuttling of macromolecules between the cytoplasm and the nucleus, to visualize the newly synthesized interphase NPCs. In addition, we used a photobleaching approach that validated the cell-fusion method. We recently used these methods to demonstrate the role of cyclin-dependent protein kinases and of Pom121 in interphase NPC formation in cycling human cells. Here, we describe the details of the cell-fusion approach and compare the system with other NPC formation visualization methods. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Greenhouse gas emission quantification from wastewater treatment plants, using a tracer gas dispersion method

    DEFF Research Database (Denmark)

    Delre, Antonio; Mønster, Jacob; Scheutz, Charlotte

    2017-01-01

    Plant-integrated methane (CH4) and nitrous oxide (N2O) emission quantifications were performed at five Scandinavian wastewater treatment plants, using a ground-based remote sensing approach that combines a controlled release of tracer gas from the plant with downwind concentration measurements. CH4...... emission factors were between 1 and 21% of CH4 production, and between 0.2 and 3.2% of COD influent. The main CH4 emitting sources at the five plants were sludge treatment and energy production units. The lowest CH4 emission factors were obtained at plants with enclosed sludge treatment and storage units....... N2O emission factors ranged from general, measurement-based, site-specific CH4 and N2O emission factors for the five studied plants were in the upper range of the literature values and default emission factors applied...

  13. Direct and simultaneous quantification of ATP, ADP and AMP by (1)H and (31)P Nuclear Magnetic Resonance spectroscopy.

    Science.gov (United States)

    Lian, Yakun; Jiang, Hua; Feng, Jinzhou; Wang, Xiaoyan; Hou, Xiandeng; Deng, Pengchi

    2016-04-01

    ATP, ADP and AMP are energy substances with vital biological significance. Based on the structural differences, a simple, rapid and comprehensive method has been established by (1)H and (31)P Nuclear Magnetic Resonance ((1)H-NMR and (31)P-NMR) spectroscopies. Sodium 3-(trimethylsilyl) propionate-2,2,3,3-d4 (TMSP) and anhydrous disodium hydrogen phosphate (Na2HPO4) were selected as internal standards for (1)H-NMR and (31)P-NMR, respectively. Those three compounds and corresponding internal standards can be easily distinguished both by (1)H-NMR and (31)P-NMR. In addition, they all have perfect linearity in a certain range: 0.1-100mM for (1)H-NMR and 1-75 mM for (31)P-NMR. To validate the precision of this method, mixed samples of different concentrations were measured. Recovery experiments were conducted in serum (91-113% by (1)H-NMR and 89-113% by (31)P-NMR). Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Windowed direct exponential curve resolution quantification of nuclear magnetic resonance spectroscopy with applications to amniotic fluid metabonomics

    International Nuclear Information System (INIS)

    Botros, L.L.

    2007-01-01

    This thesis presents a quantitative protocol of proton nuclear magnetic resonance ( 1 H NMR) that allows the determination of human amniotic fluid metabolite concentrations, which are then used in a metabonomic study to establish patient health during gestation. 1 H NMR free inductive decays (FIDs) of 258 human amniotic fluid samples from a 500MHz spectrometer are acquired. Quantitative analyses methods in both the frequency- and time-domain are carried out and compared. Frequency-domain analysis is accomplished by integration of the metabolite peaks before and after the inclusion of a known standard addition of alanine. Time-domain analysis is accomplished by the direct exponential curve resolution algorithm (DECRA). Both techniques are assessed by applications to calibration biological solutions and a simulated data set. The DECRA method proves to be a more accurate and precise route for quantitative analysis, and is included in the developed protocol. Well-defined peaks of various components are visible in the frequency-domain 1 H NMR spectra, including lactate, alanine, acetate, citrate, choline, glycine, and glucose. All are quantified with the proposed protocol. Statistical t-test and notched box and whisker plots are used to compare means of metabolite concentrations for diabetic and normal patients. Glucose, glycine, and choline are all found to correlate with gestational diabetes mellitus early in gestation. With further development, time-domain quantitative 1 H NMR has potential to become a robust diagnostic tool for gestational health. (author)

  15. Windowed direct exponential curve resolution quantification of nuclear magnetic resonance spectroscopy with applications to amniotic fluid metabonomics

    Energy Technology Data Exchange (ETDEWEB)

    Botros, L.L

    2007-07-01

    This thesis presents a quantitative protocol of proton nuclear magnetic resonance ({sup 1}H NMR) that allows the determination of human amniotic fluid metabolite concentrations, which are then used in a metabonomic study to establish patient health during gestation. {sup 1}H NMR free inductive decays (FIDs) of 258 human amniotic fluid samples from a 500MHz spectrometer are acquired. Quantitative analyses methods in both the frequency- and time-domain are carried out and compared. Frequency-domain analysis is accomplished by integration of the metabolite peaks before and after the inclusion of a known standard addition of alanine. Time-domain analysis is accomplished by the direct exponential curve resolution algorithm (DECRA). Both techniques are assessed by applications to calibration biological solutions and a simulated data set. The DECRA method proves to be a more accurate and precise route for quantitative analysis, and is included in the developed protocol. Well-defined peaks of various components are visible in the frequency-domain {sup 1}H NMR spectra, including lactate, alanine, acetate, citrate, choline, glycine, and glucose. All are quantified with the proposed protocol. Statistical t-test and notched box and whisker plots are used to compare means of metabolite concentrations for diabetic and normal patients. Glucose, glycine, and choline are all found to correlate with gestational diabetes mellitus early in gestation. With further development, time-domain quantitative {sup 1}H NMR has potential to become a robust diagnostic tool for gestational health. (author)

  16. Real stabilization method for nuclear single-particle resonances

    International Nuclear Information System (INIS)

    Zhang Li; Zhou Shangui; Meng Jie; Zhao Enguang

    2008-01-01

    We develop the real stabilization method within the framework of the relativistic mean-field (RMF) model. With the self-consistent nuclear potentials from the RMF model, the real stabilization method is used to study single-particle resonant states in spherical nuclei. As examples, the energies, widths, and wave functions of low-lying neutron resonant states in 120 Sn are obtained. These results are compared with those from the scattering phase-shift method and the analytic continuation in the coupling constant approach and satisfactory agreements are found

  17. Nuclear methods - an integral part of the NBS certification program

    International Nuclear Information System (INIS)

    Gills, T.E.

    1984-01-01

    Within the past twenty years, new techniques and methods have emerged in response to new technologies that are based upon the performance of high-purity and well-characterized materials. The National Bureau of Standards, through its Standard Reference Materials (SRM's) Program, provides standards in the form of many of these materials to ensure accuracy and the compatibility of measurements throughout the US and the world. These standards, defined by the National Bureau of Standards as Standard Reference Materials (SRMs), are developed by using state-of-the-art methods and procedures for both preparation and analysis. Nuclear methods-activation analysis constitute an integral part of that analysis process

  18. European Society of Nuclear Methods in Agriculture. XXIst annual meeting

    International Nuclear Information System (INIS)

    1990-09-01

    The publication contains 148 submitted abstracts of contributions to be presented at the meeting in the following working groups: 1. food irradiation; 2. radiation-induced stimulation, effects in living organisms; 3/4. tracer techniques in animal sciences, physical methods; 5. soil-plant relationship; 6. applied mutagenesis; 7. environmental pollution; 8. energy in agriculture; 9/10. genetic methods in pest control, radionuclides in insect ecology; 11. nuclear methods in plant physiology; 12. waste irradiation. A list of participants is also included. (P.A.)

  19. Nuclear power reactor analysis, methods, algorithms and computer programs

    International Nuclear Information System (INIS)

    Matausek, M.V

    1981-01-01

    Full text: For a developing country buying its first nuclear power plants from a foreign supplier, disregarding the type and scope of the contract, there is a certain number of activities which have to be performed by local stuff and domestic organizations. This particularly applies to the choice of the nuclear fuel cycle strategy and the choice of the type and size of the reactors, to bid parameters specification, bid evaluation and final safety analysis report evaluation, as well as to in-core fuel management activities. In the Nuclear Engineering Department of the Boris Kidric Institute of Nuclear Sciences (NET IBK) the continual work is going on, related to the following topics: cross section and resonance integral calculations, spectrum calculations, generation of group constants, lattice and cell problems, criticality and global power distribution search, fuel burnup analysis, in-core fuel management procedures, cost analysis and power plant economics, safety and accident analysis, shielding problems and environmental impact studies, etc. The present paper gives the details of the methods developed and the results achieved, with the particular emphasis on the NET IBK computer program package for the needs of planning, construction and operation of nuclear power plants. The main problems encountered so far were related to small working team, lack of large and powerful computers, absence of reliable basic nuclear data and shortage of experimental and empirical results for testing theoretical models. Some of these difficulties have been overcome thanks to bilateral and multilateral cooperation with developed countries, mostly through IAEA. It is the authors opinion, however, that mutual cooperation of developing countries, having similar problems and similar goals, could lead to significant results. Some activities of this kind are suggested and discussed. (author)

  20. Optimum strategies for nuclear energy system development (method of synthesis)

    International Nuclear Information System (INIS)

    Belenky, V.Z.

    1983-01-01

    The problem of optimum long-term development of the nuclear energy system is considered. The optimum strategies (i.e. minimum total uranium consumption) for the transition phase leading to a stationary regime of development are found. For this purpose the author has elaborated a new method of solving linear problems of optimal control which can include jumps in trajectories. The method gives a possibility to fulfil a total synthesis of optimum strategies. A key characteristic of the problem is the productivity function of the nuclear energy system which connects technological system parameters with its growth rate. There are only two types of optimum strategies, according to an increasing or decreasing productivity function. Both cases are illustrated with numerical examples. (orig.) [de

  1. Research on neutron source multiplication method in nuclear critical safety

    International Nuclear Information System (INIS)

    Zhu Qingfu; Shi Yongqian; Hu Dingsheng

    2005-01-01

    The paper concerns in the neutron source multiplication method research in nuclear critical safety. Based on the neutron diffusion equation with external neutron source the effective sub-critical multiplication factor k s is deduced, and k s is different to the effective neutron multiplication factor k eff in the case of sub-critical system with external neutron source. The verification experiment on the sub-critical system indicates that the parameter measured with neutron source multiplication method is k s , and k s is related to the external neutron source position in sub-critical system and external neutron source spectrum. The relation between k s and k eff and the effect of them on nuclear critical safety is discussed. (author)

  2. A discrete optimization method for nuclear fuel management

    International Nuclear Information System (INIS)

    Argaud, J.P.

    1993-04-01

    Nuclear loading pattern elaboration can be seen as a combinational optimization problem, of tremendous size and with non-linear cost-functions, and search are always numerically expensive. After a brief introduction of the main aspects of nuclear fuel management, this note presents a new idea to treat the combinational problem by using informations included in the gradient of a cost function. The method is to choose, by direct observation of the gradient, the more interesting changes in fuel loading patterns. An example is then developed to illustrate an operating mode of the method, and finally, connections with simulated annealing and genetic algorithms are described as an attempt to improve search processes. (author). 1 fig., 16 refs

  3. Combinatorial nuclear level density by a Monte Carlo method

    International Nuclear Information System (INIS)

    Cerf, N.

    1994-01-01

    We present a new combinatorial method for the calculation of the nuclear level density. It is based on a Monte Carlo technique, in order to avoid a direct counting procedure which is generally impracticable for high-A nuclei. The Monte Carlo simulation, making use of the Metropolis sampling scheme, allows a computationally fast estimate of the level density for many fermion systems in large shell model spaces. We emphasize the advantages of this Monte Carlo approach, particularly concerning the prediction of the spin and parity distributions of the excited states,and compare our results with those derived from a traditional combinatorial or a statistical method. Such a Monte Carlo technique seems very promising to determine accurate level densities in a large energy range for nuclear reaction calculations

  4. Method of quantification of bone scintigraphy using technetium labelled stannous pyrophosphate. Results concerning 882 whole-body scintigraphy

    International Nuclear Information System (INIS)

    Chedeville, Rene.

    1976-01-01

    Considerable progress was made in isotope bone imaging with strontium 85 after the principle of quantification was introduced by Rosenthall in 1965. In 1971, Subramanian and McAffee reported that excellent visualization could be obtained with polyphosphates labelled with sup(99m)Tc. In the present study, imaging was performed 4 hours after injection of sup(99m)Tc pyrophosphate. An Elscint dual head wole body scanner and a VDP 2 off-line calculator were used. Counts were collected over selected regions of interest, each measuring 4.5 x 3.5 cm, and over the whole body. After checking reproducibility by double counting (SD of the mean = 15%), two methods of quantification were studied, the counts being expressed as: the ratio of the number of counts in the bone segment to the number of counts in the knee, the ratio of the number of counts in the bone segment/the number of counts in the whole body. In these operations, the whole body count was multiplied by 2.10 -3 in order to have a ratio whole body count.2.10 -3 /knee = 1. The ratios calculated from the different bone diseases under study were then compared [fr

  5. [Models for quantification of fluid saturation in two-phase flow system by light transmission method and its application].

    Science.gov (United States)

    Zhang, Yan-Hong; Ye, Shu-Jun; Wu, Ji-Chun

    2014-06-01

    Based on light transmission method in quantification of liquid saturation and its application in two-phase flow system, two groups of sandbox experiments were set up to study the migration of gas or Dense Non-Aqueous Phase Liquids (DNAPLs) in water saturated porous media. The migration of gas or DNAPL was monitored in the study. Two modified Light Intensity-Saturation (LIS) models for water/gas two-phase system were applied and verified by the experiment data. Moreover two new LIS models for NAPL/water system were developed and applied to simulate the DNAPL infiltration experiment data. The gas injection experiment showed that gas moved upward to the top of the sandbox in the form of 'fingering' and finally formed continuous distribution. The results of DNAPL infiltration experiment showed that TCE mainly moved downward as the result of its gravity, eventually formed irregular plume and accumulated at the bottom of the sandbox. The outcomes of two LIS models for water/gas system (WG-A and WG-B) were consistent to the measured data. The results of two LIS models for NAPL/water system (NW-A and NW-B) fit well with the observations, and Model NW-A based on assumption of individual drainage gave better results. It could be a useful reference for quantification of NAPL/water saturation in porous media system.

  6. High-performance ion chromatography method for separation and quantification of inositol phosphates in diets and digesta

    DEFF Research Database (Denmark)

    Blaabjerg, Karoline; Hansen-Møller, Jens; Poulsen, Hanne Damgaard

    2010-01-01

    A gradient high-performance ion chromatographic method for separation and quantification of inositol phosphates (InsP2-InsP6) in feedstuffs, diets, gastric and ileal digesta from pigs was developed and validated. The InsP2-InsP6 were separated on a Dionex CarboPacTM PA1 column using a gradient...... is not as aggressive as HCl. Twenty-three of the 27 separated inositol phosphate isomers were isolated. ICP-MS was used for quantification of phosphorus in the isolated isomers and used for calculation of correction factors for each isomer allowing InsP6 to be used as calibration standard. The detection limits for Ins......P2-InsP6 were in the range of 0.9-4.4 mg phosphorus L-1. The recovery of the major part of the inositol phosphates was 80-100%, and the CV for repeatability and reproducibility were 1-17% and 1-14%, respectively....

  7. Optimal threshold of subtraction method for quantification of air-trapping on coregistered CT in COPD patients

    International Nuclear Information System (INIS)

    Lee, Sang Min; Seo, Joon Beom; Lee, Sang Min; Kim, Namkug; Oh, Sang Young; Oh, Yeon-Mok

    2016-01-01

    To investigate the optimal threshold of subtraction method for quantification of air trapping on co-registered CT in COPD patients in correlation with pulmonary function parameters. From June 2005 to October 2010, 174 patients were included in our study. Inspiration and expiration CT were performed followed by non-rigid registration using in-house software. The subtraction value per voxel between inspiration and registered expiration CT was obtained, and volume fraction of air trapping (air trapping index, ATI), using variable thresholds was calculated. ATI, expiration/inspiration ratio of mean lung density (E/I MLD) and the percentage of lung voxels below -856 HU on expiration CT (Exp -856 ) were correlated with FEF 25-75% and RV/TLC. The highest correlation coefficient with FEF 25-75% was -0.656, using the threshold of 80 HU. As for RV/TLC, the highest correlation coefficient was 0.664, using the threshold of 30 HU. When plotting the relationship between subtraction thresholds and FEF 25-75% and RV/TLC, the threshold of 60 HU was most suitable (r = -0.649 and 0.651). Those correlation coefficients were comparable to the results with E/I MLD (r = -0.670 and 0.657) and Exp -856 (r = -0.604 and 0.565). The optimal threshold for quantification of air trapping was 60 HU and showed comparable correlations with pulmonary function parameters. (orig.)

  8. A reliable method of quantification of trace copper in beverages with and without alcohol by spectrophotometry after cloud point extraction

    Directory of Open Access Journals (Sweden)

    Ramazan Gürkan

    2013-01-01

    Full Text Available A new cloud point extraction (CPE method was developed for the separation and preconcentration of copper (II prior to spectrophotometric analysis. For this purpose, 1-(2,4-dimethylphenyl azonapthalen-2-ol (Sudan II was used as a chelating agent and the solution pH was adjusted to 10.0 with borate buffer. Polyethylene glycol tert-octylphenyl ether (Triton X-114 was used as an extracting agent in the presence of sodium dodecylsulphate (SDS. After phase separation, based on the cloud point of the mixture, the surfactant-rich phase was diluted with acetone, and the enriched analyte was spectrophotometrically determined at 537 nm. The variables affecting CPE efficiency were optimized. The calibration curve was linear within the range 0.285-20 µg L-1 with a detection limit of 0.085 µg L-1. The method was successfully applied to the quantification of copper in different beverage samples.

  9. Methods to determine limit of detection and limit of quantification in quantitative real-time PCR (qPCR

    Directory of Open Access Journals (Sweden)

    Amin Forootan

    2017-06-01

    Full Text Available Quantitative Real-Time Polymerase Chain Reaction, better known as qPCR, is the most sensitive and specific technique we have for the detection of nucleic acids. Even though it has been around for more than 30 years and is preferred in research applications, it has yet to win broad acceptance in routine practice. This requires a means to unambiguously assess the performance of specific qPCR analyses. Here we present methods to determine the limit of detection (LoD and the limit of quantification (LoQ as applicable to qPCR. These are based on standard statistical methods as recommended by regulatory bodies adapted to qPCR and complemented with a novel approach to estimate the precision of LoD.

  10. Methods and apparatuses for the development of microstructured nuclear fuels

    Science.gov (United States)

    Jarvinen, Gordon D [Los Alamos, NM; Carroll, David W [Los Alamos, NM; Devlin, David J [Santa Fe, NM

    2009-04-21

    Microstructured nuclear fuel adapted for nuclear power system use includes fissile material structures of micrometer-scale dimension dispersed in a matrix material. In one method of production, fissile material particles are processed in a chemical vapor deposition (CVD) fluidized-bed reactor including a gas inlet for providing controlled gas flow into a particle coating chamber, a lower bed hot zone region to contain powder, and an upper bed region to enable powder expansion. At least one pneumatic or electric vibrator is operationally coupled to the particle coating chamber for causing vibration of the particle coater to promote uniform powder coating within the particle coater during fuel processing. An exhaust associated with the particle coating chamber and can provide a port for placement and removal of particles and powder. During use of the fuel in a nuclear power reactor, fission products escape from the fissile material structures and come to rest in the matrix material. After a period of use in a nuclear power reactor and subsequent cooling, separation of the fissile material from the matrix containing the embedded fission products will provide an efficient partitioning of the bulk of the fissile material from the fission products. The fissile material can be reused by incorporating it into new microstructured fuel. The fission products and matrix material can be incorporated into a waste form for disposal or processed to separate valuable components from the fission products mixture.

  11. Quantification of colour Doppler activity in the wrist in patients with rheumatoid arthritis--the reliability of different methods for image selection and evaluation

    DEFF Research Database (Denmark)

    Ellegaard, K; Torp-Pedersen, S; Lund, Hans

    2008-01-01

    measurements in the wrist of patients with rheumatoid arthritis (RA) using different selection and quantification methods. MATERIALS AND METHODS: 14 patients with RA had their wrist scanned twice by the same investigator with an interval of 30 minutes. The images for analysis were selected either......PURPOSE: The amount of colour Doppler activity in the inflamed synovium is used to quantify inflammatory activity. The measurements may vary due to image selection, quantification method, and point in cardiac cycle. This study investigated the test-retest reliability of ultrasound colour Doppler...

  12. Quantification of colour Doppler activity in the wrist in patients with rheumatoid arthritis - the reliability of different methods for image selection and evaluation

    DEFF Research Database (Denmark)

    Ellegaard, K.; Torp-Pedersen, S.; Lund, H.

    2008-01-01

    measurements in the wrist of patients with rheumatoid arthritis (RA) using different selection and quantification methods. Materials and Methods: 14 patients with RA had their wrist scanned twice by the same investigator with an interval of 30 Minutes, The images for analysis were selected either......Purpose: The amount Of colour Doppler activity in the inflamed synovium is used to quantity inflammatory activity. The measurements may vary due to image selection, quantification method, and point in cardiac cycle. This study investigated the test-retest reliability Of ultrasound colour Doppler...

  13. BATMAN--an R package for the automated quantification of metabolites from nuclear magnetic resonance spectra using a Bayesian model.

    Science.gov (United States)

    Hao, Jie; Astle, William; De Iorio, Maria; Ebbels, Timothy M D

    2012-08-01

    Nuclear Magnetic Resonance (NMR) spectra are widely used in metabolomics to obtain metabolite profiles in complex biological mixtures. Common methods used to assign and estimate concentrations of metabolites involve either an expert manual peak fitting or extra pre-processing steps, such as peak alignment and binning. Peak fitting is very time consuming and is subject to human error. Conversely, alignment and binning can introduce artefacts and limit immediate biological interpretation of models. We present the Bayesian automated metabolite analyser for NMR spectra (BATMAN), an R package that deconvolutes peaks from one-dimensional NMR spectra, automatically assigns them to specific metabolites from a target list and obtains concentration estimates. The Bayesian model incorporates information on characteristic peak patterns of metabolites and is able to account for shifts in the position of peaks commonly seen in NMR spectra of biological samples. It applies a Markov chain Monte Carlo algorithm to sample from a joint posterior distribution of the model parameters and obtains concentration estimates with reduced error compared with conventional numerical integration and comparable to manual deconvolution by experienced spectroscopists. http://www1.imperial.ac.uk/medicine/people/t.ebbels/ t.ebbels@imperial.ac.uk.

  14. Phase-function method for Coulomb-distorted nuclear scattering

    Energy Technology Data Exchange (ETDEWEB)

    Sett, G.C.; Laha, U.; Talukdar, B.

    1988-09-21

    The phase-function method is very effective in treating quantum mechanical scattering problems for short-range local potentials. We adapt the phase method to deal with Coulomb plus Graz non-local separable potentials and derive a closed-form expression for the scattering phase shift. Our approach to the problem circumvents in a rather natural way the typical difficulties of incorporating the Coulomb interaction in a nuclear phase-shift calculation. We demonstrate the usefulness of our constructed expression by means of a model calculation.

  15. An economical method of maintenance for nuclear power plants

    International Nuclear Information System (INIS)

    Zhang Mengyi; Wu Liming; Zhong Zhimin

    2014-01-01

    A new method of enhancing operation economy without loss any reliability method is called Proactive Ageing Management (PAM in short). PAM can be used for generic and specific plant in almost all situations that concern reliability and economy problem. PAM 2.0 software, which is a professional software during PAM process application, plays an important role to help analysts evaluate all strategies showed above and also provides decision advises to nuclear power plant manager using Net Present Values (NPV) criteria. Additionally, one case was taken as an example to illustrate PAM process, the role of software and explain the results for use. (authors)

  16. Simultaneous flow cytometric quantification of plant nuclear DNA contents over the full range of described angiosperm 2C values.

    Science.gov (United States)

    Galbraith, David W

    2009-08-01

    Flow cytometry provides a rapid, accurate, and simple means to determine nuclear DNA contents (C-value) within plant homogenates. This parameter is extremely useful in a number of applications in basic and applied plant biology; for example, it provides an important starting point for projects involving whole genome sequencing, it facilitates characterization of plant species within natural and agricultural settings, it allows facile identification of engineered plants that are euploid or that represent desired ploidy classes, it points toward studies concerning the role of C-value in plant growth and development and in response to the environment and in terms of evolutionary fitness, and, in uncovering new and unexpected phenomena (for example endoreduplication), it uncovers new avenues of scientific enquiry. Despite the ease of the method, C-values have been determined for only around 2% of the described angiosperm (flowering plant) species. Within this small subset, one of the most remarkable observations is the range of 2C values, which spans at least two orders of magnitude. In determining C-values for new species, technical issues are encountered which relate both to requirement for a method that can provide accurate measurements across this extended dynamic range, and that can accommodate the large amounts of debris which accompanies flow measurements of plant homogenates. In this study, the use of the Accuri C6 flow cytometer for the analysis of plant C-values is described. This work indicates that the unusually large dynamic range of the C6, a design feature, coupled to the linearity of fluorescence emission conferred by staining of nuclei using propidium iodide, allows simultaneous analysis of species whose C-values span that of almost the entire described angiosperms. Copyright 2009 International Society for Advancement of Cytometry.

  17. Rapid, cost-effective and accurate quantification of Yucca schidigera Roezl. steroidal saponins using HPLC-ELSD method.

    Science.gov (United States)

    Tenon, Mathieu; Feuillère, Nicolas; Roller, Marc; Birtić, Simona

    2017-04-15

    Yucca GRAS-labelled saponins have been and are increasingly used in food/feed, pharmaceutical or cosmetic industries. Existing techniques presently used for Yucca steroidal saponin quantification remain either inaccurate and misleading or accurate but time consuming and cost prohibitive. The method reported here addresses all of the above challenges. HPLC/ELSD technique is an accurate and reliable method that yields results of appropriate repeatability and reproducibility. This method does not over- or under-estimate levels of steroidal saponins. HPLC/ELSD method does not require each and every pure standard of saponins, to quantify the group of steroidal saponins. The method is a time- and cost-effective technique that is suitable for routine industrial analyses. HPLC/ELSD methods yield a saponin fingerprints specific to the plant species. As the method is capable of distinguishing saponin profiles from taxonomically distant species, it can unravel plant adulteration issues. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  18. Rapid detection and quantification of Cryptosporidium baileyi oocysts in feces and organs of chickens using a microscopic slide flotation method.

    Science.gov (United States)

    Abbassi, H; Wyers, M; Cabaret, J; Naciri, M

    2000-03-01

    A simple semiquantitative microscopic slide flotation (MSF) method using modified Sheather's sugar solution (MSSS) is presented for the rapid detection and quantification of Cryptosporidium baileyi oocysts in the feces and mucosal and/or organ scrapings of chickens. Oocyst shedding was evaluated by examination of the surface of coverslips, and the average quantitative score (0-5) recorded for 10 microscopic fields (magnification x250) is reported. The equivalence between these scores and the actual number of oocysts counted per gram of feces was assessed (rs = 0.89; P < 0.001). The applicability of this method was tested by comparison of the kinetics of oocyst shedding in feces of inoculated chickens with those reported by other authors working under similar conditions. In organs the MSF method was compared to histology. Fewer false-negative results were obtained using MSF versus the histology method. The MSF method was particularly more efficient in tracheae with low levels of infection and in the lungs, regardless of the level of infection. The MSF method was also very efficient in detecting oocysts in air sacs from chickens with aerosacculitis. It provides a specific and sufficiently sensitive, simple, rapid, reliable, and low-cost means of diagnosing C. baileyi in the feces and organs of chickens. This method can be used in the routine diagnosis of cryptosporidia in chickens, and it could be extended to other avian species and used in epidemiology studies to evaluate the prevalence of cryptosporidiosis in fowl.

  19. Mathematical and computational methods in nuclear physics. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Dehesa, J.S.; Gomez, J.M.G.; Polls, A.

    1984-01-01

    The present proceedings contain the talks given at the Sixth International Granada Workshop on ''Mathematical and Computational Methods in Nuclear Physics'', held in Granada (Spain), October 3rd-8th, 1983. The lectures covering various aspects of the many-body problem in nuclei, review present knowledge and include some unpublished material as well. Bohigas and Giannoni discuss the fluctuation properties of spectra of many-body systems by means of random matrix theories, and the attempts to search for quantum mechanical manifestations of classical chaotic motion. The role of spectral distributions (expressed as explicit functions of the microscopic matrix elements of the Hamiltonian) in the statistical spectroscopy of nuclear systems is analyzed by French. Zuker, after a brief review of the theoretical basis of the shell model, discusses a reformulation of the theory of effective interactions and gives a survey of the linked cluster theory. Goeke's lectures center on the mean-field methods, particularly TDHF, used in the investigation of the large-amplitude nuclear collective motion, pointing out both the successes and failures of the theory. In addition the present volume also contains the seminars on related topics.

  20. A study on quantification of the information flow and effectiveness of information aids for diagnosis tasks in nuclear power plants

    International Nuclear Information System (INIS)

    Kim, Jong Hyun

    2004-02-01

    Diagnosis is one of the most complex and mental resource-demanding tasks in nuclear power plants (NPPs), especially, to main control room (MCR) operators. Diagnosis is a crucial part of disturbance control in NPPs, since it is a prerequisite task for initiating operating procedures. In order to design a control room feature for NPPs, three elements need to be considered: 1) the operational tasks that must be performed, 2) a model of human performance for these tasks, and 3) a model of how control room features are intended to support performance. The operational tasks define the classes of performance that must be considered. A model of human performance makes more explicit the requirements for accurate and efficient performance and reveals potential sources of error. Finally, the model of support allows the generation of specific hypotheses about how performance is facilitated in the control room. The model of support needs to be developed based on the human performance model. This paper proposes three approaches for the system design of operator support systems to aid MCR operators' diagnosis tasks in NPPs, considering the above three elements. This paper presents 1) a quantitative approach to modeling the information flow of diagnosis tasks, 2) strategy-based evaluation of information aids for diagnosis tasks, and 3) quantitative evaluation of NPP decision support systems. As an analysis of diagnosis tasks, this paper presents a method to quantify the cognitive information flow of diagnosis tasks, integrating a stage model (a qualitative approach) with information theory (a quantitative approach). The method includes: 1) constructing the information flow model, which consists of four stages based on operating procedures of NPPs: and 2) quantifying the information flow using Conant's model, a kind of information theory. Then, three experiments were conducted to evaluate the effectiveness of the proposed approach to predicting human performances

  1. Discrimination symbol applying method for sintered nuclear fuel product

    International Nuclear Information System (INIS)

    Ishizaki, Jin

    1998-01-01

    The present invention provides a symbol applying method for applying discrimination information such as an enrichment degree on the end face of a sintered nuclear product. Namely, discrimination symbols of information of powders are applied by a sintering aid to the end face of a molded member formed by molding nuclear fuel powders under pressure. Then, the molded product is sintered. The sintering aid comprises aluminum oxide, a mixture of aluminum oxide and silicon dioxide, aluminum hydride or aluminum stearate alone or in admixture. As an applying means of the sintering aid, discrimination symbols of information of powders are drawn by an isostearic acid on the end face of the molded product, and the sintering aid is sprayed thereto, or the sintering aid is applied directly, or the sintering aid is suspended in isostearic acid, and the suspension is applied with a brush. As a result, visible discrimination information can be applied to the sintered member easily. (N.H.)

  2. Apparatus and method for controlling a nuclear reactor

    International Nuclear Information System (INIS)

    Musick, C.R.

    1978-01-01

    A control system and method for a nuclear steam supply system for calculating the appropriate operating limits of the system based on the system's design limits are described. The control system monitors the appropriate parameters of the nuclear steam supply system, modifies one of the parameters, and calculates the desired operating limit on the basis of the unmodified and modified parameters. The parameter selected to be modified is adjusted in such a way as to account for the possible occurrence of all anticipated operational occurrences. The degree of adjustment encompasses the factors of the possibility of the occurrence of a worst case accident; axial power distribution; and the delay times of the protection system which include sensing, calculating, and activation time delays. The operating limit thus generated includes a margin which allows sufficient time for the termination of operation or for control of the system such that the design limits are not violated

  3. Review of training methods employed in nuclear fuel fabrication plants

    International Nuclear Information System (INIS)

    Box, W.D.; Browder, F.N.

    A search of the literature through the Nuclear Safety Information Center revealed that approximately 86 percent of the incidents that have occurred in fuel fabrication plants can be traced directly or indirectly to insufficient operator training. In view of these findings, a review was made of the training programs now employed by the nuclear fuel fabrication industry. Most companies give the new employee approximately 20 h of orientation courses, followed by 60 to 80 h of on-the-job training. It was concluded that these training programs should be expanded in both scope and depth. A proposed program is outlined to offer guidance in improving the basic methods currently in use. (U.S.)

  4. Development of an HPLC Method for Absolute Quantification and QAMS of Flavonoids Components in Psoralea corylifolia L.

    Directory of Open Access Journals (Sweden)

    Cuiping Yan

    2015-01-01

    Full Text Available The seeds of Psoralea corylifolia L. (Fabaceae are a commonly used medicinal herb in eastern Asia with many beneficial effects in clinical therapies. In this study, a simple, sensitive, precise, and specific reverse phase high-performance liquid chromatography (HPLC method was established for quantification of 9 flavonoids in P. corylifolia, including isobavachin, neobavaisoflavone, bavachin, corylin, bavachalcone, bavachinin, isobavachalcone, corylifol A, and 4′-O-methylbavachalcone. Based on this method, a quantitative analysis of multicomponents by single marker (QAMS was carried out, and the relative correction factors (RCFs were calculated for determining the contents of other flavonoids. The accuracy of QAMS method was verified by comparing with the results of external standard method, as well as the feasibility and adaptability of the method applied on quality control of P. corylifolia. The 9 compounds were baseline separated in 60 min with a good linearity of regression coefficient (R2 over 0.9991. The accuracies of QAMS were between 92.89% and 109.5%. The RSD values of f in different injection volume were between 2.3% and 3.6%. The results obtained from QAMS suggested that it was a convenient and accurate method to determine multicomponents especially when some authentic standard substances were unavailable. It can be used to control the quality of P. corylifolia.

  5. Validation of a fast and accurate chromatographic method for detailed quantification of vitamin E in green leafy vegetables.

    Science.gov (United States)

    Cruz, Rebeca; Casal, Susana

    2013-11-15

    Vitamin E analysis in green vegetables is performed by an array of different methods, making it difficult to compare published data or choosing the adequate one for a particular sample. Aiming to achieve a consistent method with wide applicability, the current study reports the development and validation of a fast micro-method for quantification of vitamin E in green leafy vegetables. The methodology uses solid-liquid extraction based on the Folch method, with tocol as internal standard, and normal-phase HPLC with fluorescence detection. A large linear working range was confirmed, being highly reproducible, with inter-day precisions below 5% (RSD). Method sensitivity was established (below 0.02 μg/g fresh weight), and accuracy was assessed by recovery tests (>96%). The method was tested in different green leafy vegetables, evidencing diverse tocochromanol profiles, with variable ratios and amounts of α- and γ-tocopherol, and other minor compounds. The methodology is adequate for routine analyses, with a reduced chromatographic run (<7 min) and organic solvent consumption, and requires only standard chromatographic equipment available in most laboratories. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Quantification of Hydrogen Concentrations in Surface and Interface Layers and Bulk Materials through Depth Profiling with Nuclear Reaction Analysis.

    Science.gov (United States)

    Wilde, Markus; Ohno, Satoshi; Ogura, Shohei; Fukutani, Katsuyuki; Matsuzaki, Hiroyuki

    2016-03-29

    Nuclear reaction analysis (NRA) via the resonant (1)H((15)N,αγ)(12)C reaction is a highly effective method of depth profiling that quantitatively and non-destructively reveals the hydrogen density distribution at surfaces, at interfaces, and in the volume of solid materials with high depth resolution. The technique applies a (15)N ion beam of 6.385 MeV provided by an electrostatic accelerator and specifically detects the (1)H isotope in depths up to about 2 μm from the target surface. Surface H coverages are measured with a sensitivity in the order of ~10(13) cm(-2) (~1% of a typical atomic monolayer density) and H volume concentrations with a detection limit of ~10(18) cm(-3) (~100 at. ppm). The near-surface depth resolution is 2-5 nm for surface-normal (15)N ion incidence onto the target and can be enhanced to values below 1 nm for very flat targets by adopting a surface-grazing incidence geometry. The method is versatile and readily applied to any high vacuum compatible homogeneous material with a smooth surface (no pores). Electrically conductive targets usually tolerate the ion beam irradiation with negligible degradation. Hydrogen quantitation and correct depth analysis require knowledge of the elementary composition (besides hydrogen) and mass density of the target material. Especially in combination with ultra-high vacuum methods for in-situ target preparation and characterization, (1)H((15)N,αγ)(12)C NRA is ideally suited for hydrogen analysis at atomically controlled surfaces and nanostructured interfaces. We exemplarily demonstrate here the application of (15)N NRA at the MALT Tandem accelerator facility of the University of Tokyo to (1) quantitatively measure the surface coverage and the bulk concentration of hydrogen in the near-surface region of a H2 exposed Pd(110) single crystal, and (2) to determine the depth location and layer density of hydrogen near the interfaces of thin SiO2 films on Si(100).

  7. Limitations of amorphous content quantification by isothermal calorimetry using saturated salt solutions to control relative humidity: alternative methods.

    Science.gov (United States)

    Khalef, Nawel; Pinal, Rodolfo; Bakri, Aziz

    2010-04-01

    Despite the high sensitivity of isothermal calorimetry (IC), reported measurements of amorphous content by this technique show significant variability even for the same compound. An investigation into the reasons behind such variability is presented using amorphous lactose and salbutamol sulfate as model compounds. An analysis was carried out on the heat evolved as a result of the exchange of water vapor between the solid sample during crystallization and the saline solution reservoir. The use of saturated salt solutions as means of control of the vapor pressure of water within sealed ampoules bears inherent limitations that lead in turn to the variability associated with the IC technique. We present an alternative IC method, based on an open cell configuration that effectively addresses the limitations encountered with the sealed ampoule system. The proposed approach yields an integral whose value is proportional to the amorphous content in the sample, thus enabling reliable and consistent quantifications. 2009 Wiley-Liss, Inc. and the American Pharmacists Association

  8. An electron microscopy based method for the detection and quantification of nanomaterial number concentration in environmentally relevant media

    International Nuclear Information System (INIS)

    Prasad, A.; Lead, J.R.; Baalousha, M.

    2015-01-01

    Improved detection and characterization of nanomaterials (NMs) in complex environmental media requires the development of novel sampling approaches to improve the detection limit to be close to environmentally realistic concentrations. Transmission electron microscopy (TEM) is an indispensable metrological tool in nanotechnology and environmental nanoscience due to its high spatial resolution and analytical capabilities when coupled to spectroscopic techniques. However, these capabilities are hampered by the conventional sample preparation methods, which suffer from low NM recovery. The current work presents a validated, fully quantitative sampling technique for TEM that overcomes conventional sample preparation shortcomings, and thus enables the use of TEM for measurement of particle number concentration and their detection in complex media at environmentally realistic concentrations. This sampling method is based on ultracentrifugation of NMs from suspension onto a poly-L-lysine (PLL) functionalized TEM grid, using active deposition (by ultracentrifugation) and retention (by PLL interactions with NM surface) of NMs on the substrate, enabling fully quantitative analysis. Similar analysis with AFM was satisfactory in simple media but the lack of chemical-selectivity of AFM limits its applicability for the detection of NMs in complex environmental samples. The sampling approach was validated using both citrate- and PVP-coated AuNMs in pure water, which demonstrated an even distribution of NM on the TEM grid and high NM recovery (80–100%) at environmentally relevant NM concentrations (ca. 0.20–100 μg L −1 ). The applicability of the sampling method to complex environmental samples was demonstrated by the quantification of particle number concentration of AuNMs in EPA soft water (with and without Suwannee River fulvic acid) and lake water. This sample preparation approach is also applicable to other types of NMs with some modifications (e.g. centrifugation

  9. An electron microscopy based method for the detection and quantification of nanomaterial number concentration in environmentally relevant media

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, A. [School of Geography, Earth and Environmental Sciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Lead, J.R., E-mail: jlead@mailbox.sc.edu [School of Geography, Earth and Environmental Sciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences, Arnold School of Public Health, University South Carolina, Columbia 29208, SC (United States); Baalousha, M., E-mail: mbaalous@mailbox.sc.edu [Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences, Arnold School of Public Health, University South Carolina, Columbia 29208, SC (United States)

    2015-12-15

    Improved detection and characterization of nanomaterials (NMs) in complex environmental media requires the development of novel sampling approaches to improve the detection limit to be close to environmentally realistic concentrations. Transmission electron microscopy (TEM) is an indispensable metrological tool in nanotechnology and environmental nanoscience due to its high spatial resolution and analytical capabilities when coupled to spectroscopic techniques. However, these capabilities are hampered by the conventional sample preparation methods, which suffer from low NM recovery. The current work presents a validated, fully quantitative sampling technique for TEM that overcomes conventional sample preparation shortcomings, and thus enables the use of TEM for measurement of particle number concentration and their detection in complex media at environmentally realistic concentrations. This sampling method is based on ultracentrifugation of NMs from suspension onto a poly-L-lysine (PLL) functionalized TEM grid, using active deposition (by ultracentrifugation) and retention (by PLL interactions with NM surface) of NMs on the substrate, enabling fully quantitative analysis. Similar analysis with AFM was satisfactory in simple media but the lack of chemical-selectivity of AFM limits its applicability for the detection of NMs in complex environmental samples. The sampling approach was validated using both citrate- and PVP-coated AuNMs in pure water, which demonstrated an even distribution of NM on the TEM grid and high NM recovery (80–100%) at environmentally relevant NM concentrations (ca. 0.20–100 μg L{sup −1}). The applicability of the sampling method to complex environmental samples was demonstrated by the quantification of particle number concentration of AuNMs in EPA soft water (with and without Suwannee River fulvic acid) and lake water. This sample preparation approach is also applicable to other types of NMs with some modifications (e.g. centrifugation

  10. A proactive method for safety management in nuclear facilities

    International Nuclear Information System (INIS)

    Grecco, Claudio Henrique dos Santos; Carvalho, Paulo Victor Rodrigues de; Santos, Isaac Antonio Luquetti dos

    2014-01-01

    Due to the modern approach to address the safety of nuclear facilities which highlights that these organizations must be able to assess and proactively manage their activities becomes increasingly important the need for instruments to evaluate working conditions. In this context, this work presents a proactive method of managing organizational safety, which has three innovative features: 1) the use of predictive indicators that provide current information on the performance of activities, allowing preventive actions and not just reactive in safety management, different from safety indicators traditionally used (reactive indicators) that are obtained after the occurrence of undesired events; 2) the adoption of resilience engineering approach in the development of indicators - indicators are based on six principles of resilience engineering: top management commitment, learning, flexibility, awareness, culture of justice and preparation for the problems; 3) the adoption of the concepts and properties of fuzzy set theory to deal with subjectivity and consistency of human trials in the evaluation of the indicators. The fuzzy theory is used primarily to map qualitative models of decision-making, and inaccurate representation methods. The results of this study aim an improvement in performance and safety in organizations. The method was applied in a radiopharmaceutical shipping sector of a nuclear facility. The results showed that the method is a good monitoring tool objectively and proactively of the working conditions of an organizational domain

  11. Rapid Development and Validation of Improved Reversed-Phase High-performance Liquid Chromatography Method for the Quantification of Mangiferin, a Polyphenol Xanthone Glycoside in Mangifera indica

    Science.gov (United States)

    Naveen, P.; Lingaraju, H. B.; Prasad, K. Shyam

    2017-01-01

    Mangiferin, a polyphenolic xanthone glycoside from Mangifera indica, is used as traditional medicine for the treatment of numerous diseases. The present study was aimed to develop and validate a reversed-phase high-performance liquid chromatography (RP-HPLC) method for the quantification of mangiferin from the bark extract of M. indica. RP-HPLC analysis was performed by isocratic elution with a low-pressure gradient using 0.1% formic acid: acetonitrile (87:13) as a mobile phase with a flow rate of 1.5 ml/min. The separation was done at 26°C using a Kinetex XB-C18 column as stationary phase and the detection wavelength at 256 nm. The proposed method was validated for linearity, precision, accuracy, limit of detection, limit of quantification, and robustness by the International Conference on Harmonisation guidelines. In linearity, the excellent correlation coefficient more than 0.999 indicated good fitting of the curve and also good linearity. The intra- and inter-day precision showed indica. SUMMARY The present study was intended to develop and validate an RP-HPLC method for the quantification of mangiferin from the bark extract of M. indica. The developed method was validated for linearity, precision, accuracy, limit of detection, limit of quantification and robustness by International Conference on Harmonization guidelines. This study proved that the developed assay by HPLC method is a simple, rapid and reliable for the quantification of the mangiferin from M. indica. Abbreviations Used: M. indica: Mangifera indica, RP-HPLC: Reversed-phase high-performance liquid chromatography, M/Z: Mass to charge ratio, ICH: International conference on harmonization, % RSD: Percentage of relative standard deviation, ppm: Parts per million, LOD: Limit of detection, LOQ: Limit of quantification. PMID:28539748

  12. Rapid Development and Validation of Improved Reversed-Phase High-performance Liquid Chromatography Method for the Quantification of Mangiferin, a Polyphenol Xanthone Glycoside inMangifera indica.

    Science.gov (United States)

    Naveen, P; Lingaraju, H B; Prasad, K Shyam

    2017-01-01

    Mangiferin, a polyphenolic xanthone glycoside from Mangifera indica , is used as traditional medicine for the treatment of numerous diseases. The present study was aimed to develop and validate a reversed-phase high-performance liquid chromatography (RP-HPLC) method for the quantification of mangiferin from the bark extract of M. indica . RP-HPLC analysis was performed by isocratic elution with a low-pressure gradient using 0.1% formic acid: acetonitrile (87:13) as a mobile phase with a flow rate of 1.5 ml/min. The separation was done at 26°C using a Kinetex XB-C18 column as stationary phase and the detection wavelength at 256 nm. The proposed method was validated for linearity, precision, accuracy, limit of detection, limit of quantification, and robustness by the International Conference on Harmonisation guidelines. In linearity, the excellent correlation coefficient more than 0.999 indicated good fitting of the curve and also good linearity. The intra- and inter-day precision showed indica . The present study was intended to develop and validate an RP-HPLC method for the quantification of mangiferin from the bark extract of M. indica . The developed method was validated for linearity, precision, accuracy, limit of detection, limit of quantification and robustness by International Conference on Harmonization guidelines. This study proved that the developed assay by HPLC method is a simple, rapid and reliable for the quantification of the mangiferin from M. indica . Abbreviations Used: M. indica : Mangifera indica , RP-HPLC: Reversed-phase high-performance liquid chromatography, M/Z: Mass to charge ratio, ICH: International conference on harmonization, % RSD: Percentage of relative standard deviation, ppm: Parts per million, LOD: Limit of detection, LOQ: Limit of quantification.

  13. Normalized Tritium Quantification Approach (NoTQA) a Method for Quantifying Tritium Contaminated Trash and Debris at LLNL

    International Nuclear Information System (INIS)

    Dominick, J.L.; Rasmussen, C.L.

    2008-01-01

    Several facilities and many projects at LLNL work exclusively with tritium. These operations have the potential to generate large quantities of Low-Level Radioactive Waste (LLW) with the same or similar radiological characteristics. A standardized documented approach to characterizing these waste materials for disposal as radioactive waste will enhance the ability of the Laboratory to manage them in an efficient and timely manner while ensuring compliance with all applicable regulatory requirements. This standardized characterization approach couples documented process knowledge with analytical verification and is very conservative, overestimating the radioactivity concentration of the waste. The characterization approach documented here is the Normalized Tritium Quantification Approach (NoTQA). This document will serve as a Technical Basis Document which can be referenced in radioactive waste characterization documentation packages such as the Information Gathering Document. In general, radiological characterization of waste consists of both developing an isotopic breakdown (distribution) of radionuclides contaminating the waste and using an appropriate method to quantify the radionuclides in the waste. Characterization approaches require varying degrees of rigor depending upon the radionuclides contaminating the waste and the concentration of the radionuclide contaminants as related to regulatory thresholds. Generally, as activity levels in the waste approach a regulatory or disposal facility threshold the degree of required precision and accuracy, and therefore the level of rigor, increases. In the case of tritium, thresholds of concern for control, contamination, transportation, and waste acceptance are relatively high. Due to the benign nature of tritium and the resulting higher regulatory thresholds, this less rigorous yet conservative characterization approach is appropriate. The scope of this document is to define an appropriate and acceptable

  14. Nuclear power plant monitoring method by neural network and its application to actual nuclear reactor

    International Nuclear Information System (INIS)

    Nabeshima, Kunihiko; Suzuki, Katsuo; Shinohara, Yoshikuni; Tuerkcan, E.

    1995-11-01

    In this paper, the anomaly detection method for nuclear power plant monitoring and its program are described by using a neural network approach, which is based on the deviation between measured signals and output signals of neural network model. The neural network used in this study has three layered auto-associative network with 12 input/output, and backpropagation algorithm is adopted for learning. Furthermore, to obtain better dynamical model of the reactor plant, a new learning technique was developed in which the learning process of the present neural network is divided into initial and adaptive learning modes. The test results at the actual nuclear reactor shows that the neural network plant monitoring system is successfull in detecting in real-time the symptom of small anomaly over a wide power range including reactor start-up, shut-down and stationary operation. (author)

  15. Biotransformation of lignan glycoside to its aglycone by Woodfordia fruticosa flowers: quantification of compounds using a validated HPTLC method.

    Science.gov (United States)

    Mishra, Shikha; Aeri, Vidhu

    2017-12-01

    Saraca asoca Linn. (Caesalpiniaceae) is an important traditional remedy for gynaecological disorders and it contains lyoniside, an aryl tetralin lignan glycoside. The aglycone of lyoniside, lyoniresinol possesses structural similarity to enterolignan precursors which are established phytoestrogens. This work illustrates biotransformation of lyoniside to lyoniresinol using Woodfordia fruticosa Kurz. (Lythraceae) flowers and simultaneous quantification of lyoniside and lyoniresinol using a validated HPTLC method. The aqueous extract prepared from S. asoca bark was fermented using W. fruticosa flowers. The substrate and fermented product both were simultaneously analyzed using solvent system:toluene:ethyl acetate:formic acid (4:3:0.4) at 254 nm. The method was validated for specificity, accuracy, precision, linearity, sensitivity and robustness as per ICH guidelines. The substrate showed the presence of lyoniside, however, it decreased as the fermentation proceeded. On 3rd day, lyoniresinol starts appearing in the medium. In 8 days duration most of the lyoniside converted to lyoniresinol. The developed method was specific for lyoniside and lyoniresinol. Lyoniside and lyoniresinol showed linearity in the range of 250-3000 and 500-2500 ng. The method was accurate as resulted in 99.84% and 99.83% recovery, respectively, for lyoniside and lyoniresinol. Aryl tetralin lignan glycoside, lyoniside was successfully transformed into lyoniresinol using W. fruticosa flowers and their contents were simultaneously analyzed using developed validated HPTLC method.

  16. Quantification of Newly Discovered Anti-Cancer Drug Enzalutamide in Bulk and Synthetic Mixture by Stability Indicating TLC method.

    Science.gov (United States)

    Chhalotiya, Usmangani K; Prajapati, Dharmendra J; Prajapati, Minesh D; Patel, Jalpa U; Desai, Jaineel

    2017-10-27

    Objective A impressionable, discriminatory and precise stability indicating high performance thin layer chromatographic method has been developed and validated for the estimation of of Enzalutamide in bulk and synthetic mixture. Method The method engaged HPTLC aluminium plates pre-coated with silica gel 60F-254 as the stationary phase while the solvent system was ethyl acetate: toluene (4.5:5.5, v/v). The Rf value of enzalutamide was detected to be 0. 39 ± 0. 005 and the densitometric analysis were carried out in absorbance mode at 246 nm. The linear regression analysis data for the calibration plots presented a virtuous linear relationship for enzalutamide over a concentration range of 20 - 1000ng/band. Results The limit of detection and limit of quantification for enzalutamide was found to be 9.05 and 27.43ng/band. Enzalutamide was imperilled to acid and alkali hydrolysis, chemical oxidation, dry heat degradation and photolytic degradation. The degraded product peaks were well resolved from the pure drug peak with substantial difference in their Rf values. Conclusion Stressed samples were assayed using developed TLC technique. Suggested method was validated with respect to linearity, accuracy, precision and robustness. The method was successfully applied to the estimation of enzalutamide in synthetic mixture. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. On time monitoring method for nuclear power plant

    International Nuclear Information System (INIS)

    Nabeshima, Kunihiko; Suzuki, Katsuo; Tuerkcan, E.; Ciftcioglu, O.

    1997-01-01

    The present invention provides a method of modeling a nuclear power plant by using a neural network thereby rapidly monitoring a slight symptom of abnormality on time through the entire operation time period from the start-up to the shut down of the nuclear power plant. Namely, measured data (signals) of at least two plant parameters among neutron flux, temperature, pressure, quantity of water and electric power obtained from the nuclear power plant are compared with estimated data obtained by utilizing the neural network comprising an initial leaning and application learning. When the difference between both of them exceeds a threshold value, the power plant is judged to be abnormal. According to this invention, since a plant model is constituted by a neural network different from a one-dimensional physical model by using major plant parameters of the reactor, and the difference between the actually measured data (signals) and estimated values by using the model is monitored, accordingly, slight symptom of abnormality can be monitored with less erroneous operation on time over a wide range from the start-up to the shut down in an early stage. (I.S.)

  18. Advanced scientific computational methods and their applications to nuclear technologies. (3) Introduction of continuum simulation methods and their applications (3)

    International Nuclear Information System (INIS)

    Satake, Shin-ichi; Kunugi, Tomoaki

    2006-01-01

    Scientific computational methods have advanced remarkably with the progress of nuclear development. They have played the role of weft connecting each realm of nuclear engineering and then an introductory course of advanced scientific computational methods and their applications to nuclear technologies were prepared in serial form. This is the third issue showing the introduction of continuum simulation methods and their applications. Spectral methods and multi-interface calculation methods in fluid dynamics are reviewed. (T. Tanaka)

  19. Nuclear data for specific problems. Part 1: Methods

    International Nuclear Information System (INIS)

    Leszczynski, Francisco

    1999-01-01

    The growing volume of basic nuclear data, methods and codes for processing these data, and the wide variety of problems where these data and codes are required, oblige to have an efficient system for managing all this information. In this work we present a new methodology for nuclear data processing, applied to neutron and photon transport calculations for specific problems. The base of the new methodology is the analysis of the requirements, following the chain: Problem-Components-Materials-Elements-Isotopes-Process-Tests-Final product (a library with processed data). This order is the inverse of the normal order followed up to date where, for performing a specific calculation, the first step is the choice of an existing data library for general purposes, without the previous steps of pre-processing data, and tests of the final library. Then, the used data are limited to the isotope content of this library, and the adaptation of material compositions and components to the data availability is necessary , performing finally the required calculations in a rather approximated form, depending on the available data. An interactive computer program for PC , is developed, for managing all the information generated by nuclear data processing, with the additional advantage of having a help tool for performing the needed analysis, before processing data calculations for specific applications. These analyses are based on the particular characteristics of each application, and the processed information of previous cases, is stored in conveniently designed data bases for an easy inspection of its contents. By means of an example of application of the new method, in this paper the methods of analysis and calculations and the tools used (computer programs, data bases and documents) are describes. (author)

  20. Regularization methods for inferential sensing in nuclear power plants

    International Nuclear Information System (INIS)

    Hines, J.W.; Gribok, A.V.; Attieh, I.; Uhrig, R.E.

    2000-01-01

    Inferential sensing is the use of information related to a plant parameter to infer its actual value. The most common method of inferential sensing uses a mathematical model to infer a parameter value from correlated sensor values. Collinearity in the predictor variables leads to an ill-posed problem that causes inconsistent results when data based models such as linear regression and neural networks are used. This chapter presents several linear and non-linear inferential sensing methods including linear regression and neural networks. Both of these methods can be modified from their original form to solve ill-posed problems and produce more consistent results. We will compare these techniques using data from Florida Power Corporation's Crystal River Nuclear Power Plant to predict the drift in a feedwater flow sensor. According to a report entitled 'Feedwater Flow Measurement in U.S. Nuclear Power Generation Stations' that was commissioned by the Electric Power Research Institute, venturi meter fouling is 'the single most frequent cause' for derating in Pressurized Water Reactors. This chapter presents several viable solutions to this problem. (orig.)

  1. OLP embedment design method research for AP1000 nuclear plant

    International Nuclear Information System (INIS)

    Li Cheng; Li Shaoping; Liu Jianwei

    2013-01-01

    Background: One of the most advanced nuclear power technology, the first AP1000 reactor is under construction in China. Modularization is one of the main characteristics for AP1000 nuclear plant building. Module wall with steel face plate is used instead of reinforced concrete structure wall. A number of OLP embedments need to be installed into the module wall to connect other structures such as pipes, equipment, operation platforms and any other component attached to the module wall. Therefore, the design of embedment is very important in AP1000 structural design. Purpose: A finite element analysis method and tool for embedment design is needed for convenience. Methods: This paper applies the self-developed GTStrudl command template and VBA macro program for embedment capacity calculation and evaluation based on Microsoft Excel to the embedment design. Results: A Microsoft Excel template for embedment design is developed. Conclusions: The analysis method and template brings reasonable results and may provide some help and use for reference for the engineering practice. (authors)

  2. Application of probabilistic methods in the field of nuclear safety

    International Nuclear Information System (INIS)

    Carnino, Annick

    1976-01-01

    Beyond the determination of the risks of accident to the reactors (Rasmussen Report), the probabilistic methods have other fields of application insofar as nuclear safety is concerned. These different fields of application are studied, i.e.: analysis of the accidents and of system performance, research for solutions to obtain an improved reliability, determination of the operating rules of the plants and drawing up of the regulations. In order to illustrate the work tending to improve the reliability, the studies concerning the design of the emergency shutdown system of the Super-Phenix are presented as an example [fr

  3. Investigation of Corrosion Inhibitors by Nuclear Quadrupole Resonance Relaxometry Method

    Directory of Open Access Journals (Sweden)

    Nikolay Sinyavsky

    2015-12-01

    Full Text Available The changes taking place with the corrosion-resistant coating, but not the state of the surface subjected to corrosion are investigated in this paper in contrast to traditional approaches. We used the method of nitrogen relaxometry NQR and multi-exponential inversion of decay of longitudinal and transverse components of the nuclear magnetization is applied for the first time for this purpose. The results of experimental studies of changes in the distributions of spin-spin and spin-lattice relaxation of crystallite powder of sodium nitrite and urotropin, the mixture of which is used as a corrosion inhibitor of ferrous metals are considered.

  4. Method of fabricating self-powered nuclear radiation detector assemblies

    International Nuclear Information System (INIS)

    Playfoot, K.; Bauer, R.F.; Sekella, Y.M.

    1982-01-01

    In a method of fabricating a self-powered nuclear radiation detector assembly an emitter electrode wire and signal cable center wire are connected and disposed within the collector electrode tubular sheath with compressible insulating means disposed between the wires and the tubular sheath. The above assembly is reduced in diameter while elongating the tubular sheath and the emitter wire and signal cable wire. The emitter wire is reduced to a predetermined desired diameter, and is trimmed to a predetermined length. An end cap is hermetically sealed to the tubular sheath at the extending end of the emitter with insulating means between the emitter end and the end cap. (author)

  5. A SOFTWARE RELIABILITY ESTIMATION METHOD TO NUCLEAR SAFETY SOFTWARE

    Directory of Open Access Journals (Sweden)

    GEE-YONG PARK

    2014-02-01

    Full Text Available A method for estimating software reliability for nuclear safety software is proposed in this paper. This method is based on the software reliability growth model (SRGM, where the behavior of software failure is assumed to follow a non-homogeneous Poisson process. Two types of modeling schemes based on a particular underlying method are proposed in order to more precisely estimate and predict the number of software defects based on very rare software failure data. The Bayesian statistical inference is employed to estimate the model parameters by incorporating software test cases as a covariate into the model. It was identified that these models are capable of reasonably estimating the remaining number of software defects which directly affects the reactor trip functions. The software reliability might be estimated from these modeling equations, and one approach of obtaining software reliability value is proposed in this paper.

  6. Nuclear Structure Calculations with Coupled Cluster Methods from Quantum Chemistry

    CERN Document Server

    Dean, D.J.; Hagen, G.; Hjorth-Jensen, M.; Kowalski, K.; Papenbrock, T.; Piecuch, P.; Wloch, M.

    2005-01-01

    We present several coupled-cluster calculations of ground and excited states of 4He and 16O employing methods from quantum chemistry. A comparison of coupled cluster results with the results of exact diagonalization of the hamiltonian in the same model space and other truncated shell-model calculations shows that the quantum chemistry inspired coupled cluster approximations provide an excellent description of ground and excited states of nuclei, with much less computational effort than traditional large-scale shell-model approaches. Unless truncations are made, for nuclei like 16O, full-fledged shell-model calculations with four or more major shells are not possible. However, these and even larger systems can be studied with the coupled cluster methods due to the polynomial rather than factorial scaling inherent in standard shell-model studies. This makes the coupled cluster approaches, developed in quantum chemistry, viable methods for describing weakly bound systems of interest for future nuclear facilities...

  7. Analysis of future nuclear power plants competitiveness with stochastic methods

    International Nuclear Information System (INIS)

    Feretic, D.; Tomsic, Z.

    2004-01-01

    To satisfy the increased demand it is necessary to build new electrical power plants, which could in an optimal way meet, the imposed acceptability criteria. The main criteria are potential to supply the required energy, to supply this energy with minimal (or at least acceptable) costs, to satisfy licensing requirements and be acceptable to public. The main competitors for unlimited electricity production in next few decades are fossil power plants (coal and gas) and nuclear power plants. New renewable power plants (solar, wind, biomass) are also important but due to limited energy supply potential and high costs can be only supplement to the main generating units. Large hydropower plans would be competitive under condition of existence of suitable sites for construction of such plants. The paper describes the application of a stochastic method for comparing economic parameters of future electrical power generating systems including conventional and nuclear power plants. The method is applied to establish competitive specific investment costs of future nuclear power plants when compared with combined cycle gas fired units combined with wind electricity generators using best estimated and optimistic input data. The bases for economic comparison of potential options are plant life time levelized electricity generating costs. The purpose is to assess the uncertainty of several key performance and cost of electricity produced in coal fired power plant, gas fired power plant and nuclear power plant developing probability distribution of levelized price of electricity from different Power Plants, cumulative probability of levelized price of electricity for each technology and probability distribution of cost difference between the technologies. The key parameters evaluated include: levelized electrical energy cost USD/kWh,, discount rate, interest rate for credit repayment, rate of expected increase of fuel cost, plant investment cost , fuel cost , constant annual

  8. Influence of DNA extraction methods, PCR inhibitors and quantification methods on real-time PCR assay of biotechnology-derived traits.

    Science.gov (United States)

    Demeke, Tigst; Jenkins, G Ronald

    2010-03-01

    Biotechnology-derived varieties of canola, cotton, corn and soybean are being grown in the USA, Canada and other predominantly grain exporting countries. Although the amount of farmland devoted to production of biotechnology-derived crops continues to increase, lingering concerns that unintended consequences may occur provide the EU and most grain-importing countries with justification to regulate these crops. Legislation in the EU requires traceability of grains/oilseeds, food and feed products, and labelling, when a threshold level of 0.9% w/w of genetically engineered trait is demonstrated to be present in an analytical sample. The GE content is routinely determined by quantitative PCR (qPCR) and plant genomic DNA provides the template for the initial steps in this process. A plethora of DNA extraction methods exist for qPCR applications. Implementing standardized methods for detection of genetically engineered traits is necessary to facilitate grain marketing. The International Organization for Standardization draft standard 21571 identifies detergent-based methods and commercially available kits that are widely used for DNA extraction, but also indicates that adaptations may be necessary depending upon the sample matrix. This review assesses advantages and disadvantages of various commercially available DNA extraction kits, as well as modifications to published cetyltrimethylammonium bromide methods. Inhibitors are a major obstacle for efficient amplification in qPCR. The types of PCR inhibitors and techniques to minimize inhibition are discussed. Finally, accurate quantification of DNA for applications in qPCR is not trivial. Many confounders contribute to differences in analytical measurements when a particular DNA quantification method is applied and different methods do not always provide concordant results on the same DNA sample. How these differences impact measurement uncertainty in qPCR is considered.

  9. New Sample Preparation Method for Quantification of Phenolic Compounds of Tea (Camellia sinensis L. Kuntze: A Polyphenol Rich Plant

    Directory of Open Access Journals (Sweden)

    P. A. Nimal Punyasiri

    2015-01-01

    Full Text Available Chemical analysis of the Sri Lankan tea (Camellia sinensis, L. germplasm would immensely contribute to the success of the tea breeding programme. However, the polyphenols, particularly catechins (flavan-3-ols, are readily prone to oxidation in the conventional method of sample preparation. Therefore, optimization of the present sample preparation methodology for the profiling of metabolites is much important. Two sample preparation methodologies were compared, fresh leaves (as in the conventional procedures and freeze-dried leaves (a new procedure, for quantification of major metabolites by employing two cultivars, one is known to be high quality black tea and the other low quality black tea. The amounts of major metabolites such as catechins, caffeine, gallic acid, and theobromine, recorded in the new sampling procedure via freeze-dried leaves, were significantly higher than those recorded in the conventional sample preparation procedure. Additionally new method required less amount of leaf sample for analysis of major metabolites and facilitates storage of samples until analysis. The freeze-dried method would be useful for high throughput analysis of large number of samples in shorter period without chemical deterioration starting from the point of harvest until usage. Hence, this method is more suitable for metabolite profiling of tea as well as other phenol rich plants.

  10. A novel high-performance thin layer chromatography method for quantification of long chain aliphatic hydrocarbons from Cissus quadrangularis

    Directory of Open Access Journals (Sweden)

    Vandana Jain

    2016-08-01

    Full Text Available Context: A high-performance thin layer chromatography (HPTLC is an analytical technique, which can be used for the determination of constituents or marker components in various parts of the plants. Earlier studies have estimated phytoconstituents from the stem and other aerial plant parts of Cissus quadrangularis Linn. Estimation of hydrocarbons can also be successfully done using HPTLC technique using suitable derivatization. Aims: To develop and validate a simple and rapid method for the estimation of long chain aliphatic hydrocarbons from the leaves of C. quadrangularis using HPTLC technique. Methods: Precoated silica gel 60 F254 plates were used as stationary phase. The mobile phase used was hexane (100 %. The detection of spots was carried out using berberine sulphate as detecting reagent. Results: The method was validated in terms of linearity, sensitivity, accuracy, and precision. Linearity range was found to be 2-10 µg/mL, limit of detection 0.127 µg/mL, and limit of quantification 0.384 µg/mL. Conclusions: A novel, simple, accurate, precise and sensitive HPTLC method has been developed and validated for the estimation of long chain aliphatic hydrocarbons obtained from the leaves of C. quadrangularis Linn.

  11. Veterinary immunology as colonial science: method and quantification in the investigation of horsesickness in South Africa, C. 1905-1945.

    Science.gov (United States)

    Gilfoyle, Daniel

    2006-01-01

    This article examines the practice of veterinary immunology in South Africa during the first half of the twentieth century through an analysis of research into a horsesickness vaccine at the Onderstepoort Veterinary Institute. From the early 1900s, Arnold Theiler prioritized research into horsesickness, by then defined as an insect-borne disease caused by an ultravisible virus. He succeeded in devising a means of prophylaxis using a simultaneous injection of infective blood and immune serum, but he discovered antigenically different strains of the virus, which could overcome the immunity produced by his treatment. The practical value of Theiler's methods was further limited by difficulties in standardizing the biological material used in immunization, the results of which remained too erratic for application on a large scale. No further advances were made until the 1930s, by which time Onderstepoort had been drawn more closely into international scientific networks. Using techniques derived from research into yellow fever in America and canine distemper in Britain, the Onderstepoort scientist Raymond Alexander invented a method of immunization that utilized the propagation of the horsesickness virus in the brains of mice. Alexander's methods, which were characterized by successful technical adaptation and innovation, depended upon methods of quantification first developed by Paul Ehrlich to standardize diphtheria antitoxin during the 1890s. During the 1940s, vaccination expanded rapidly in South Africa, and Onderstepoort later exported the vaccine and associated technology to other countries affected by horsesickness.

  12. Stability-indicating liquid chromatographic and UV spectrophotometric methods for the quantification of ciprofibrate in capsules and tablets

    Directory of Open Access Journals (Sweden)

    Fernanda Macke Hellwig

    2015-03-01

    Full Text Available This study describes the development and evaluation of stability-indicating liquid chromatographic (LC and UV spectrophotometric methods for the quantification of ciprofibrate (CPF in tablets and capsules. Isocratic LC separation was achieved on a RP18 column using a mobile phase of o-phosphoric acid (0.1% v/v, adjusted to pH 3.0 with triethylamine (10% v/v and acetonitrile (35:65 v/v, with a flow rate of 1.0 mL min-1. Detection was achieved with a photodiode array detector at 233 nm. For the spectrophotometric analysis, ethanol and water were used as the solvent and a wavelength of 233 nm was selected for the detection. The methods were validated according to International Conference on Harmonization (ICH guidelines for validating analytical procedures. Statistical analysis showed no significant difference between the results obtained by the two methods. The proposed methods were successfully applied to the CPF quality-control analysis of tablets and capsules.

  13. LINEARIZATION OF THE BRADFORD PROTEIN ASSAY TO APPLICATION IN COW MILK PROTEINS QUANTIFICATION BY UV-Vis SPECTROPHOTOMETRY METHOD

    Directory of Open Access Journals (Sweden)

    Alessa Siqueira de Oliveira dos Santos

    2015-01-01

    Full Text Available Reliable methods for determination and quantification of total protein in food are essential information to ensure quality and safety of food trade. The objective of this study was to evaluate the linearity of calibration curves obtained from different proteins (blood serum albumin-BSA, α-LA, β-LG, caseins (CN: αs, β and κ-CAS with the reagent of Bradford. Comercial UHT skimmed bovine milk was analyzed for the determination of total protein using the Bradford method by reading at 595 nm. The determination of the concentrations of total milk protein was achieved by linear regression. The Bradford method showed a high sensitivity for the determination of total proteins in bovine milk dilution 1:25 to values closer to those obtained by the Kjeldahl method. The results showed that the calibration curve of standard proteins β-CN and BSA obtained better linearity with less variation in the absorbance measurements for the determination of total protein of milk.

  14. Two Validated HPLC Methods for the Quantification of Alizarin and other Anthraquinones in Rubia tinctorum Cultivars

    NARCIS (Netherlands)

    Derksen, G.C.H.; Lelyveld, G.P.; Beek, van T.A.; Capelle, A.; Groot, de Æ.

    2004-01-01

    Direct and indirect HPLC-UV methods for the quantitative determination of anthraquinones in dried madder root have been developed, validated and compared. In the direct method, madder root was extracted twice with refluxing ethanol-water. This method allowed the determination of the two major native

  15. An Evaluation of Statistical Methods for Analyzing Follow-Up Gaussian Laboratory Data with a Lower Quantification Limit

    NARCIS (Netherlands)

    Karon, John M.; Wiegand, Ryan E.; van de Wijgert, Janneke H.; Kilmarx, Peter H.

    2015-01-01

    Laboratory data with a lower quantification limit (censored data) are sometimes analyzed by replacing non-quantifiable values with a single value equal to or less than the quantification limit, yielding possibly biased point estimates and variance estimates that are too small. Motivated by a

  16. 237 Np analytical method using 239 Np tracers and application to a contaminated nuclear disposal facility

    Energy Technology Data Exchange (ETDEWEB)

    Snow, Mathew S.; Morrison, Samuel S.; Clark, Sue B.; Olson, John E.; Watrous, Matthew G.

    2017-06-01

    Environmental 237Np analyses are challenged by low 237Np concentrations and lack of an available yield tracer; we report a rapid, inexpensive 237Np analytical approach employing the short lived 239Np (t1/2 = 2.3 days) as a chemical yield tracer followed by 237Np quantification using inductively coupled plasma-mass spectrometry. 239Np tracer is obtained via separation from a 243Am stock solution and standardized using gamma spectrometry immediately prior to sample processing. Rapid digestions using a commercial, 900 watt “Walmart” microwave and Parr microwave vessels result in 99.8 ± 0.1% digestion yields, while chromatographic separations enable Np/U separation factors on the order of 106 and total Np yields of 95 ± 4% (2σ). Application of this method to legacy soil samples surrounding a radioactive disposal facility (the Subsurface Disposal Area at Idaho National Laboratory) reveal the presence of low level 237Np contamination within 600 meters of this site, with maximum 237Np concentrations on the order of 103 times greater than nuclear weapons testing fallout levels.

  17. Methods for seismic analysis of nuclear power plants

    International Nuclear Information System (INIS)

    Gantenbein, F.

    1990-01-01

    The seismic analysis of a complex structure, such as a nuclear power plant, is done in various steps. An overview of the methods, used in each of these steps will be given in the following chapters: Seismic analysis of the buildings taking into account structures with important mass or stiffness. The input to the building analysis, called ground motion, is described by an accelerogram or a response spectra. In this step, soil structure interaction has to be taken into account. Various methods are available: Impedance, finite element. The response of the structure can be calculated by spectral method or by time history analysis; advantages and limitations of each method will be shown. Calculation of floor response spectrum which are the data for the equipment analysis. Methods to calculate this spectrum will be described. Seismic analysis of the equipments. Presentation of the methods for both monosupported and multisupported equipment will be given. In addition methods to analyse equipments which present non-linearities associated to the boundary conditions such as impacts, sliding will be presented. (author). 30 refs, 15 figs

  18. Comparison between Manual and Automated Methods for Ki-67 Immunoexpression Quantification in Ameloblastomas

    Directory of Open Access Journals (Sweden)

    Rogelio González-González

    2016-01-01

    Full Text Available Ameloblastoma is a common and unpredictable odontogenic tumor with high relapse rates. Several studies assessing the proliferative capacity of these neoplasms have been published, mainly using the protein Ki-67. Cell counts must be completed to determine the cell proliferation rate. Multiple methods have been developed for this purpose. The most widely used method is the labeling index, which has undergone changes over time to better facilitate cell counting. Here, we compared manual cell counting methods with automated cell counting (ImmunoRatio to determine the relative effectiveness of these methods. The results suggest that ImmunoRatio, a free software tool, may be highly advantageous and provide results similar to manual cell counting methods when used with the appropriate calibration. However, ImmunoRatio has flaws that may affect the labeling index results. Therefore, this automated cell counting method must be supplemented with manual cell counting methods.

  19. Near-infrared microscopic methods for the detection and quantification of processed by-products of animal origin

    Science.gov (United States)

    Abbas, O.; Fernández Pierna, J. A.; Dardenne, P.; Baeten, V.

    2010-04-01

    Since the BSE crisis, researches concern mainly the detection, identification, and quantification of meat and bone meal with an important focus on the development of new analytical methods. Microscopic based spectroscopy methods (NIR microscopy - NIRM or/and NIR hyperspectral imaging) have been proposed as complementary methods to the official method; the optical microscopy. NIR spectroscopy offers the advantage of being rapid, accurate and independent of human analyst skills. The combination of an NIR detector and a microscope or a camera allows the collection of high quality spectra for small feed particles having a size larger than 50 μm. Several studies undertaken have demonstrated the clear potential of NIR microscopic methods for the detection of animal particles in both raw and sediment fractions. Samples are sieved and only the gross fraction (superior than 250 μm) is investigated. Proposed methodologies have been developed to assure, with an acceptable level of confidence (95%), the detection of at least one animal particle when a feed sample is adulterated at a level of 0.1%. NIRM and NIR hyperspectral imaging are running under accreditation ISO 17025 since 2005 at CRA-W. A quantitative NIRM approach has been developed in order to fulfill the new requirements of the European commission policies. The capacities of NIRM method have been improved; only the raw fraction is analyzed, both the gross and the fine fractions of the samples are considered, and the acquisition parameters are optimized (the aperture, the gap, and the composition of the animal feed). A mapping method for a faster collection of spectra is also developed. The aim of this work is to show the new advances in the analytical methods developed in the frame of the feed ban applied in Europe.

  20. Development of a real-time PCR method coupled with a selective pre-enrichment step for quantification of Morganella morganii and Morganella psychrotolerans in fish products

    DEFF Research Database (Denmark)

    Podeur, Gaetan; Dalgaard, Paw; Leroi, Francoise

    2015-01-01

    purified DNA from 23 other histamine producing bacteria and 26 isolates with no or limited histamine production. The efficiency of the qPCR reactions on artificially contaminated fish samples were 100.8% and 96.3% respectively. The limit of quantification (LOQ) without enrichment was 4 log CFU......PCR) methods for quantification of M. morganii and M. psychrotolerans have been developed. Selective primers amplified a 110 bp region of the vasD gene for M. psychrotolerans and a 171 bp region of the galactokinase gene for M. morganii. These primer-sets showed high specificity as demonstrated by using...

  1. Applications of Nuclear Analytical Methods for High Tech Industry

    International Nuclear Information System (INIS)

    Hossain, T.

    2013-01-01

    Silicon based semiconductor chip manufacturing is a worldwide high technology industry with numerous measurement issues. One of the major concerns in the semiconductor manufacturing is contamination such as the trace metal impurities. This concern is vividly illustrated by the fact that the manufacturing in this industry is done in ultra clean environment where the entire manufacturing facility or “Fab” is a clean room facility or each and every manufacturing tool is enclosed in a mini-environment Although semiconductor devices are fabricated on the surface of the Si wafers contamination in the bulk material is a major concern. Nuclear methods of analysis are uniquely suited for the contamination analysis in such a matrix. Many opportunities in the semiconductor manufacturing field exist for the nuclear methods to provide support services. Contamination analysis by NAA, depth profiles by NDP and prompt gamma analysis of H in thin films are a few examples. These needs are on-going and require commitment from the lab so that a manufacturing operation can rely on the delivery of these services when required

  2. Nuclear fuel elements and method of making same

    Science.gov (United States)

    Schweitzer, Donald G.

    1992-01-01

    A nuclear fuel element for a high temperature gas nuclear reactor that has an average operating temperature in excess of 2000.degree. C., and a method of making such a fuel element. The fuel element is characterized by having fissionable fuel material localized and stabilized within pores of a carbon or graphite member by melting the fissionable material to cause it to chemically react with the carbon walls of the pores. The fissionable fuel material is further stabilized and localized within the pores of the graphite member by providing one or more coatings of pyrolytic carbon or diamond surrounding the porous graphite member so that each layer defines a successive barrier against migration of the fissionable fuel from the pores, and so that the outermost layer of pyrolytic carbon or diamond forms a barrier between the fissionable material and the moderating gases used in an associated high temperature gas reactor. The method of the invention provides for making such new elements either as generally spherically elements, or as flexible filaments, or as other relatively small-sized fuel elements that are particularly suited for use in high temperature gas reactors.

  3. Influence of the esterification method on the quantification of olive oil fatty acids

    Directory of Open Access Journals (Sweden)

    Maria Cristina Milinsk

    2011-09-01

    Full Text Available To analyze fatty acids by gas chromatography, it is necessary to apply esterification procedures to convert fatty acids into more volatile compounds, such as fatty acid methyl esters (FAME. Esterification methods are usually subdivided into two categories: acidic catalysis and basic catalysis. Due to the possibility of obtaining different concentrations of fatty acids for the same sample as a function of the esterification method used, the efficiency of eight different esterification methods that involve acidic and basic catalysis in the quantitative determination of FAME in olive oil was verified. The selected methods were described by Metcalfe, 1966 (MET; Bannon, 1982 (BAN; Joseph and Ackman, 1992 (JAC; Hartman and Lago, 1973 (HLA; Jham, 1982 (JHA; ISO 5509, 1978 (ISO; Bannon, 1982 (BBA and Schuchardt and Lopes, 1988 (SLO. The results showed the efficiency of the esterification methods for the main saturated fatty acids that were present in the olive oil analyzed. The most efficient methods for the esterification of unsaturated fatty acids in the oils analyzed were JAC, ISO, and BBA. Nevertheless, the reagent BF3 in methanol, used in the JAC method, is extremely toxic. Thus, when the oil to be analyzed has low acidity, the basic catalysis methods ISO and BBA can be used instead, since they use inexpensive reagents of low toxicity. The results obtained showed that the choice of a method for the analysis of fatty acids also depends on the composition of the oil to be studied.

  4. Quantification of Staphylococcus aureus and Staphylococcus epidermidis on the hands of health-care workers using a real-time polymerase chain reaction method

    DEFF Research Database (Denmark)

    Horn, P; Schouenborg, P Øland; Brandslund, I

    2007-01-01

    OBJECTIVE: The objective of this study was to test a polymerase chain reaction (PCR) assay intended as a tool for monitoring hand hygiene in hospital wards. METHODS: The hands of 20 health-care workers were sampled for 10 days using real-time PCR for quantification of Staphylococcus aureus and S...

  5. Label-free hyperspectral imaging and quantification methods for surgical margin assessment of tissue specimens of cancer patients.

    Science.gov (United States)

    Fei, Baowei; Guolan Lu; Halicek, Martin T; Wang, Xu; Zhang, Hongzheng; Little, James V; Magliocca, Kelly R; Patel, Mihir; Griffith, Christopher C; El-Deiry, Mark W; Chen, Amy Y

    2017-07-01

    Hyperspectral imaging (HSI) is a relatively new modality in medicine and can have many potential applications. In this study, we developed label-free hyperspectral imaging for tumor margin assessment. HSI data, hypercube (x,y,λ), consists of a series of images of the same field of view that are acquired at different wavelengths. Every pixel in the hypercube has an optical spectrum. We collected surgical tissue specimens from 16 human subjects who underwent head and neck (H&N) cancer surgery. We acquired both HSI, autofluorescence images, and fluorescence images with 2-NBDG and proflavine from the specimens. Digitized histologic slides were examined by an H&N pathologist. We developed image preprocessing and classification methods for HSI data and differentiate cancer from benign tissue. The hyperspectral imaging and classification method was able to distinguish between cancer and normal tissue from oral cavity with an average accuracy of 90±8%, sensitivity of 89±9%, and specificity of 91±6%. This study suggests that label-free hyperspectral imaging has great potential for surgical margin assessment in tissue specimens of H&N cancer patients. Further development of the imaging technology and quantification methods is warranted for its application in image-guided surgery.

  6. A Method for Manufacturing Oncological Phantoms for the Quantification of 18F-FDG PET and DW-MRI Studies

    Directory of Open Access Journals (Sweden)

    Francesca Gallivanone

    2017-01-01

    Full Text Available The aim of this work was to develop a method to manufacture oncological phantoms for quantitation purposes in 18F-FDG PET and DW-MRI studies. Radioactive and diffusion materials were prepared using a mixture of agarose and sucrose radioactive gels. T2 relaxation and diffusion properties of gels at different sucrose concentrations were evaluated. Realistic oncological lesions were created using 3D-printed plastic molds filled with the gel mixture. Once solidified, gels were extracted from molds and immersed in a low-radioactivity gel simulating normal background tissue. A breast cancer phantom was manufactured using the proposed method as an exploratory feasibility study, including several realistic oncological configurations in terms of both radioactivity and diffusion. The phantom was acquired in PET with 18F-FDG, immediately after solidification, and in DW-MRI the following day. Functional volumes characterizing the simulated BC lesions were segmented from PET and DW-MRI images. Measured radioactive uptake and ADC values were compared with gold standards. Phantom preparation was straightforward, and the time schedule was compatible with both PET and MRI measurements. Lesions appeared on 18F-FDG PET and DW-MRI images as expected, without visible artifacts. Lesion functional parameters revealed the phantom’s potential for validating quantification methods, in particular for new generation hybrid PET-MRI systems.

  7. Performance review of a fast HPLC-UV method for the quantification of chlorogenic acids in green coffee bean extracts.

    Science.gov (United States)

    Craig, Ana Paula; Fields, Christine; Liang, Ningjian; Kitts, David; Erickson, Aron

    2016-07-01

    The aim of this study was to test the performance of a HPLC method, designated for rapid quantification of chlorogenic acids (CGA) in green coffee extract (GCE). The precision statistics associated with the method were assessed using three independent laboratories with five samples analyzed in triplicate. Seven main CGA isomers (3-CQA, 5-CQA, 4-CQA, 5-FQA, 3,4-diCQA, 3,5-diCQA and 4,5-diCQA) were quantified. The concentration of total CGA in the samples varied from 32.24% to 52.65% w/w. The repeatability and reproducibility standard deviations for the determination of individual isomers varied, respectively, from 0.01 to 0.28 and 0.05-1.59. The repeatability and reproducibility standard deviations of the calculated total CGA, corresponding to the sum of the seven main CGA isomers, varied respectively, from 0.17 to 0.58 and 0.55-2.01. The fast HPLC method evaluated in this study was considered precise and appropriate for the determination of CGA in GCE. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Quantification of the level of fat-soluble vitamins in feed based on the novel microemulsion electrokinetic chromatography (MEEKC) method.

    Science.gov (United States)

    Olędzka, Ilona; Kowalski, Piotr; Bałuch, Alicja; Bączek, Tomasz; Paradziej-Łukowicz, Jolanta; Taciak, Marcin; Pastuszewska, Barbara

    2014-02-01

    Simultaneous quantification of liposoluble vitamins is not a new area of interest, since these compounds co-determine the nutritional quality of food and feed, a field widely explored in the human and animal diet. However, the development of appropriate methods is still a matter of concern, especially when the vitamin composition is highly complex, as is the case with feed designated for laboratory animals, representing a higher health and microbiological status. A method combining microemulsion electrokinetic chromatography (MEEKC) with liquid-liquid extraction was developed for the determination of four fat-soluble vitamins in animal feed. A separation medium consisting of 25 mmol L⁻¹ phosphate buffer (pH 2.5), 2-propanol, 1-butanol, sodium dodecyl sulfate and octane allowed the simultaneous determination of vitamins A, D, E and K within a reasonable time of 25 min. The polarity of the separation voltage was reversed in view of the strongly suppressed electro-osmotic flow, and the applied voltage was set at 12 kV. The fat-soluble vitamins were separated in the order of decreasing hydrophobicity. It was proved that the proposed MEEKC method was sufficiently specific and sensitive for screening fat-soluble vitamins in animal feed samples after their sterilization. © 2013 Society of Chemical Industry.

  9. Study on nuclear analysis method for high temperature gas-cooled reactor and its nuclear design (Thesis)

    International Nuclear Information System (INIS)

    Goto, Minoru

    2015-03-01

    An appropriate configuration of fuel and reactivity control equipment in a nuclear reactor core, which allows the design of the nuclear reactor core for low cost and high performance, is performed by nuclear design with high accuracy. The accuracy of nuclear design depends on a nuclear data library and a nuclear analysis method. Additionally, it is one of the most important issues for the nuclear design of a High Temperature Gas-cooled Reactor (HTGR) that an insertion depth of control rods into the reactor core should be retained shallow by reducing excess reactivity with a different method to keep fuel temperature below its limitation thorough a burn-up period. In this study, using experimental data of the High Temperature engineering Test Reactor (HTTR), which is a Japan's HTGR with 30 MW of thermal power, the following issues were investigated: applicability of nuclear data libraries to nuclear analysis for HTGRs; applicability of the improved nuclear analysis method for HTGRs; and effectiveness of a rod-type burnable poison on HTGR reactivity control. A nuclear design of a small-sized HTGR with 50 MW of thermal power (HTR50S) was performed using these results. In the nuclear design of the HTR50S, we challenged to decrease the kinds of the fuel enrichments and to increase the power density compared with the HTTR. As a result, the nuclear design was completed successfully by reducing the kinds of the fuel enrichment to only three from twelve of the HTTR and increasing the power density by 1.4 times as much as that of the HTTR. (author)

  10. Developing a method for quantification of Ascaris eggs on hands

    DEFF Research Database (Denmark)

    Jeandron, Aurelie; Ensink, Jeroen J. H.; Thamsborg, Stig Milan

    was to develop a method to assess the number of Ascaris eggs on hands and determine the egg recovery rate of the method. Under laboratory conditions, hands were contaminated with app. 1000 Ascaris eggs, air dried and washed in a plastic bag retaining the washing water, in order to determine recovery rates...

  11. Detection and quantification limits of the EPA Enterococcus qPCR method

    Science.gov (United States)

    The U.S. EPA will be recommending a quantitative polymerase chain reaction (qPCR) method targeting Enterococcus spp. as an option for monitoring recreational beach water quality in 2013 and has published preliminary proposed water quality criteria guidelines for the method. An im...

  12. Noninvasive quantification of myocardial perfusion heterogeneity by Markovian analysis in SPECT nuclear imaging; Quantification non invasive de l'heterogeneite de la perfusion du myocarde par analyse markovienne en imageries nucleaire SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Pons, G.

    2011-04-28

    Cardiovascular diseases are the leading cause of mortality worldwide, and third of these deaths are caused by coronary artery disease and rupture of vulnerable atherosclerotic plaques. The heterogeneous alteration of the coronary microcirculation is an early phenomenon associated with many cardiovascular risk factors that can strongly predict the subsequent development of coronary artery disease, and lead to the appearance of myocardial perfusion heterogeneity. Nuclear medicine allows the study of myocardial perfusion in clinical routine through scintigraphic scans performed after injection of a radioactive tracer of coronary blood flow. Analysis of scintigraphic perfusion images currently allows the detection of myocardial ischemia, but the ability of the technique to measure the perfusion heterogeneity in apparently normally perfused areas is unknown. The first part of this thesis focuses on a retrospective clinical study to determine the feasibility of myocardial perfusion heterogeneity quantification measured by Thallium-201 single photon emission computed tomography (SPECT) in diabetic patients compared with healthy subjects. The clinical study has demonstrated the ability of routine thallium-201 SPECT imaging to quantify greater myocardial perfusion heterogeneity in diabetic patients compared with normal subjects. The second part of this thesis tests the hypothesis that the myocardial perfusion heterogeneity could be quantified in small animal SPECT imaging by Thallium-201 and/or Technetium-99m-MIBI in an experimental study using two animal models of diabetes, and is correlated with histological changes. The lack of difference in myocardial perfusion heterogeneity between control and diabetic animals suggests that animal models are poorly suited, or that the technology currently available does not seem satisfactory to obtain similar results as the clinical study. (author)

  13. New numerical methods for nuclear cross section processing

    International Nuclear Information System (INIS)

    Ferran, Ghislain

    2014-01-01

    Nuclear data allow to describe how a particle interacts with matter. These data are therefore at the basis of neutron transport and reactor physics calculations. Once measured and evaluated, they are given in libraries as a list of parameters. Before they can be used in neutron transport calculations, processing is required which includes taking into account several physical phenomena. This can be done by several softwares, such as NJOY, which all have the drawback to use old numerical methods derived from the same algorithms. For nuclear safety applications, it is important to rely on independent methods, to have a comparison point and to isolate the effects of the treatment on the final results. Moreover, it is important to properly master processing accuracy during its different steps. The objective of this PhD is then to develop independent numerical methods that can guarantee nuclear data processing within a given precision and to implement them practically, with the creation of the GAIA software. Our first step was the reconstruction of cross sections from the parameters given in libraries, with different approximations of the R-matrix theory. Reconstruction using the general formalism, without any approximation, has also been implemented, which has required the development of a new method to calculate the R-matrix. Tests have been performed on all existing formalisms, including the newest one. They have shown a good agreement between GAIA and NJOY. Reconstruction of angular differential cross sections directly from R-matrix parameters, using the Blatt-Biedenharn formula, has also been implemented and tested. The cross sections we have obtained at this point correspond to a target nucleus at absolute zero temperature. Because of thermal agitation, these cross sections are subject to a Doppler effect that is taken into account by integrating them with Solbrig's kernel. Our second step was then to calculate this integral. First, we have elaborated and

  14. Semi-automated method for brain hematoma and edema quantification using computed tomography.

    Science.gov (United States)

    Bardera, A; Boada, I; Feixas, M; Remollo, S; Blasco, G; Silva, Y; Pedraza, S

    2009-06-01

    In this paper, a semi-automated method for brain hematoma and edema segmentation, and volume measurement using computed tomography imaging is presented. This method combines a region growing approach to segment the hematoma and a level set segmentation technique to segment the edema. The main novelty of this method is the strategy applied to define the propagation function required by the level set approach. To evaluate the method, 18 patients with brain hematoma and edema of different size, shape and location were selected. The obtained results demonstrate that the proposed approach provides objective and reproducible segmentations that are similar to the manually obtained results. Moreover, the processing time of the proposed method is about 4 min compared to the 10 min required for manual segmentation.

  15. QUANTIFICATION OF LISTERIA MONOCYTOGENES IN MILK BY MPN-PCR AND MPN-CULTURE METHODS

    Directory of Open Access Journals (Sweden)

    Mahzad Hosseini

    2014-10-01

    Full Text Available The aim of this study was to compare the MPN-PCR (Most Probable Number- Polymerase Chain Reaction and MPN-Culture methods in enumerating of Listeria monocytogenes in milk. In order to compare the accuracy of th