WorldWideScience

Sample records for nuclear medicine physicists

  1. Thirty year celebration of the contribution of nuclear medicine physicists in Australia

    International Nuclear Information System (INIS)

    Walker, B. M.

    2007-01-01

    Full text: The intention of this article is to describe the contributions of the many nuclear medicine physicists who in a large or small way have added to the ongoing development of nuclear medicine in Australia from the first years of the discipline in the late 1960s to the present time. Unlike our colleagues in radiation oncology physics, the nuclear medicine physicist fraternity has always been a very small group which unfortunately has not expanded greatly over the 30 years and beyond. This is emphasized in the survey by W.H.Round 1 which showed the bias towards older physicists being involved in the discipline. Because of the small numbers of nuclear medicine physicists in the public hospital system, mostly one or two per teaching hospital, most physicists are heavily involved in clinical duties to keep up the high standard of equipment and software performance required. Many nuclear medicine physicists also have the dual role of hospital radiation safety officers which is becoming more demanding as radiation legislation increases. For this reason much of the pure research has been confined to the hospitals with larger numbers of physicists. However a high proportion of nuclear medicine physicists across the country have contributed greatly to clinical research and development as part of their job. Unfortunately these cannot all be recognised in this article. Young physicists may not realise how much 'in house' research and development was carried out by physicists in the early years of nuclear medicine when equipment companies did not provide the software which is now available to purchase. Many of these innovative techniques and software, described in this article, are still in use today. Some of the 'big events' in the history of nuclear medicine in Australia in which physicists have played a leading role will also be highlighted. This will serve to emphasize how physicists have worked closely with clinicians and technologists in the ongoing development of

  2. Clinical Training of Medical Physicists Specializing in Nuclear Medicine

    International Nuclear Information System (INIS)

    2011-01-01

    The application of radiation in human health, for both diagnosis and treatment of disease, is an important component of the work of the IAEA. The responsibility for the increasingly technical aspects of this work is undertaken by the medical physicist. To ensure good practice in this vital area, structured clinical training programmes are required to complement academic learning. This publication is intended to be a guide to the practical implementation of such a programme for nuclear medicine. There is a general and growing awareness that radiation medicine is increasingly dependent on well trained medical physicists who are based in a clinical setting. However an analysis of the availability of medical physicists indicates a large shortfall of qualified and capable professionals. This is particularly evident in developing countries. While strategies to increase educational opportunities are critical to such countries, the need for guidance on structured clinical training was recognized by the members of the Regional Cooperative Agreement for Research, Development and Training related to Nuclear Science and Technology (RCA) for the Asia-Pacific region. Consequently, a technical cooperation regional project (RAS6038) under the RCA programme was formulated to address this need in this region by developing suitable material and establishing its viability. Development of a clinical training guide for medical physicists specialising in nuclear medicine was started in 2009 with the appointment of a core drafting committee of regional and international experts. The publication drew on the experience of clinical training in Australia, Croatia and Sweden and was moderated by physicists working in the Asian region. The present publication follows the approach of earlier IAEA publications in the Training Course Series, specifically Nos 37 and 47, Clinical Training of Medical Physicists Specializing in Radiation Oncology and Clinical Training of Medical Physicists

  3. Curriculum for education and training of Medical Physicists in Nuclear Medicine

    DEFF Research Database (Denmark)

    Del Guerra, Alberto; Bardies, Manuel; Belcari, Nicola

    2013-01-01

    and Competence approach along the lines recommended by the European Qualifications Framework. The minimum level expected in each topic in the theoretical knowledge and practical experience sections is intended to bring trainees up to the requirements expected of a Medical Physicist entering the field of Nuclear...... Medicine. CONCLUSIONS: This new joint EANM/EFOMP European guideline curriculum is a further step to harmonise specialist training of Medical Physicists in Nuclear Medicine within Europe. It provides a common framework for national Medical Physics societies to develop or benchmark their own curricula....... The responsibility for the implementation and accreditation of these standards and guidelines resides within national training and regulatory bodies....

  4. Clinical Training of Medical Physicists Specializing in Nuclear Medicine (Spanish Edition)

    International Nuclear Information System (INIS)

    2013-01-01

    The application of radiation in human health, for both diagnosis and treatment of disease, is an important component of the work of the IAEA. The responsibility for the increasingly technical aspects of this work is undertaken by the medical physicist. To ensure good practice in this vital area, structured clinical training programmes are required to complement academic learning. This publication is intended to be a guide to the practical implementation of such a programme for nuclear medicine. There is a general and growing awareness that radiation medicine is increasingly dependent on well trained medical physicists who are based in a clinical setting. However an analysis of the availability of medical physicists indicates a large shortfall of qualified and capable professionals. This is particularly evident in developing countries. While strategies to increase educational opportunities are critical to such countries, the need for guidance on structured clinical training was recognized by the members of the Regional Cooperative Agreement for Research, Development and Training related to Nuclear Science and Technology (RCA) for the Asia-Pacific region. Consequently, a technical cooperation regional project (RAS6038) under the RCA programme was formulated to address this need in this region by developing suitable material and establishing its viability. Development of a clinical training guide for medical physicists specialising in nuclear medicine was started in 2009 with the appointment of a core drafting committee of regional and international experts. The publication drew on the experience of clinical training in Australia, Croatia and Sweden and was moderated by physicists working in the Asian region. The present publication follows the approach of earlier IAEA publications in the Training Course Series, specifically Nos 37 and 47, Clinical Training of Medical Physicists Specializing in Radiation Oncology and Clinical Training of Medical Physicists

  5. Clinical Training of Medical Physicists Specializing in Nuclear Medicine (French Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    The application of radiation in human health, for both diagnosis and treatment of disease, is an important component of the work of the IAEA. The responsibility for the increasingly technical aspects of this work is undertaken by the medical physicist. To ensure good practice in this vital area, structured clinical training programmes are required to complement academic learning. This publication is intended to be a guide to the practical implementation of such a programme for nuclear medicine. There is a general and growing awareness that radiation medicine is increasingly dependent on well trained medical physicists who are based in a clinical setting. However an analysis of the availability of medical physicists indicates a large shortfall of qualified and capable professionals. This is particularly evident in developing countries. While strategies to increase educational opportunities are critical to such countries, the need for guidance on structured clinical training was recognized by the members of the Regional Cooperative Agreement for Research, Development and Training related to Nuclear Science and Technology (RCA) for the Asia-Pacific region. Consequently, a technical cooperation regional project (RAS6038) under the RCA programme was formulated to address this need in this region by developing suitable material and establishing its viability. Development of a clinical training guide for medical physicists specialising in nuclear medicine was started in 2009 with the appointment of a core drafting committee of regional and international experts. The publication drew on the experience of clinical training in Australia, Croatia and Sweden and was moderated by physicists working in the Asian region. The present publication follows the approach of earlier IAEA publications in the Training Course Series, specifically Nos 37 and 47, Clinical Training of Medical Physicists Specializing in Radiation Oncology and Clinical Training of Medical Physicists

  6. Clinical Training of Medical Physicists Specializing in Nuclear Medicine (Spanish Edition); Capacitacion clinica de fisicos medicos especialistas en medicina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-15

    The application of radiation in human health, for both diagnosis and treatment of disease, is an important component of the work of the IAEA. The responsibility for the increasingly technical aspects of this work is undertaken by the medical physicist. To ensure good practice in this vital area, structured clinical training programmes are required to complement academic learning. This publication is intended to be a guide to the practical implementation of such a programme for nuclear medicine. There is a general and growing awareness that radiation medicine is increasingly dependent on well trained medical physicists who are based in a clinical setting. However an analysis of the availability of medical physicists indicates a large shortfall of qualified and capable professionals. This is particularly evident in developing countries. While strategies to increase educational opportunities are critical to such countries, the need for guidance on structured clinical training was recognized by the members of the Regional Cooperative Agreement for Research, Development and Training related to Nuclear Science and Technology (RCA) for the Asia-Pacific region. Consequently, a technical cooperation regional project (RAS6038) under the RCA programme was formulated to address this need in this region by developing suitable material and establishing its viability. Development of a clinical training guide for medical physicists specialising in nuclear medicine was started in 2009 with the appointment of a core drafting committee of regional and international experts. The publication drew on the experience of clinical training in Australia, Croatia and Sweden and was moderated by physicists working in the Asian region. The present publication follows the approach of earlier IAEA publications in the Training Course Series, specifically Nos 37 and 47, Clinical Training of Medical Physicists Specializing in Radiation Oncology and Clinical Training of Medical Physicists

  7. The medical physicist in a nuclear medicine department

    International Nuclear Information System (INIS)

    Trujillo Z, F.E.; Gomez A, E.

    2007-01-01

    The diagnostic studies and therapeutic treatments carried out in a Nuclear Medicine department make use of radioactive material. For such a reason it becomes necessary to take a strict control in the reception, use and waste that are generated of the typical works inside the department. Also, work related with the quality control of the equipment dedicated to produce images and of those not image formers, need to carry out to guarantee its maximum performance; as well as quality of the diagnostic and of the therapy imparted in patients. Additionally its are needed to make originated works of the individual procedures to patient and of the acquisition of radioactive materials and removal of the waste or radioactive contaminations. Presently work the recommendations of the American College of Radiology (ACR), the European Federation of Organizations for Medical Physics (EFOMP) and of the Mexican Official Standards relating to the functions that should be observed in a Nuclear Medicine Department are exposed. The ACR and the EFOMP, conclude in their recommendations that the medical physicist fulfills with the suitable profile and likewise they describe in detail the actions and functions that he should supervise, to carry out, to document and to inform. (Author)

  8. Radionuclides for nuclear medicine: a nuclear physicists' view

    Czech Academy of Sciences Publication Activity Database

    Cantone, M.; Haddad, F.; Harissopoulos, S.; Jensen, M.; Jokinen, A.; Koster, U.; Lebeda, Ondřej; Ponsard, B.; Ratzinger, U.; Stora, T.; Tarkanyi, F.; Van Duppen, P.

    2013-01-01

    Roč. 40, 2 Supplement (2013), S257-S257 ISSN 1619-7070. [Annual Congress of the European Association of Nuclear Medicine (EANM). 19.10.2013-23.10.2013, Lyon] Institutional support: RVO:61389005 Keywords : nuclear physics for medicine * EANM * medical radionuclides Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders

  9. Proceedings of the 2. Brazilian Congress of Physicists on Medicine

    International Nuclear Information System (INIS)

    1987-01-01

    The works of the 2. Brazilian Congress of Physicists on Medicine are presented, including course of 'Tomography by Nuclear Magnetic Resonance' and 'New Techniques in the Physics of X Ray Diagnostic' and topics about radiotherapy, radiodiagnostic and dosimetry. (C.G.C.) [pt

  10. Nuclear Physicists in Finance

    Science.gov (United States)

    Mattoni, Carlo

    2017-01-01

    The financial services industry presents an interesting alternative career path for nuclear physicists. Careers in finance typically offer intellectual challenge, a fast pace, high caliber colleagues, merit-based compensation with substantial upside, and an opportunity to deploy skills learned as a physicist. Physicists are employed at a wide range of financial institutions on both the ``buy side'' (hedge fund managers, private equity managers, mutual fund managers, etc.) and the ``sell side'' (investment banks and brokerages). Historically, physicists in finance were primarily ``quants'' tasked with applying stochastic calculus to determine the price of financial derivatives. With the maturation of the field of derivative pricing, physicists in finance today find work in a variety of roles ranging from quantification and management of risk to investment analysis to development of sophisticated software used to price, trade, and risk manage securities. Only a small subset of today's finance careers for physicists require the use of advanced math and practically none provide an opportunity to tinker with an apparatus, yet most nevertheless draw on important skills honed during the training of a nuclear physicist. Intellectually rigorous critical thinking, sophisticated problem solving, an attention to minute detail and an ability to create and test hypotheses based on incomplete information are key to both disciplines.

  11. Radionuclides for nuclear medicine: a nuclear physicists' view

    DEFF Research Database (Denmark)

    Cantone, M.; Haddad, F.; Harissopoulos, S.

    2013-01-01

    NuPECC (the Nuclear Physics European Collaboration Committee, an expert committee of the European Science Foundation) has the mission to strengthen European Collaboration in nuclear science through the promotion of nuclear physics and its trans-disciplinary use and application. NuPECC is currently...... working on a report on “Nuclear Physics for Medicine” and has set up a working group to review the present status and prospects of radionuclides for nuclear medicine. An interim report will be presented to seek comments and constructive input from EANM members. In particular it is investigated how nuclear...... physics Methods and nuclear physics facilities are supporting the development and supply of medical radionuclides and how this support could be further strengthened in future. Aspects that will be addressed: •In recent years, the reactor-based supply chain of 99Mo/99mTc generators was repeatedly...

  12. Nuclear Medicine Physics: A Handbook for Teachers and Students. Endorsed by: American Association of Physicists in Medicine (AAPM), Asia–Oceania Federation of Organizations for Medical Physics (AFOMP), Australasian College of Physical Scientists and Engineers in Medicine (ACPSEM), European Federation of Organisations for Medical Physics (EFOMP), Federation of African Medical Physics Organisations (FAMPO), World Federation of Nuclear Medicine and Biology (WFNMB)

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, D. L.; Humm, J. L.; Todd-Pokropek, A.; Aswegen, A. van [eds.

    2014-12-15

    This publication provides the basis for the education of medical physicists initiating their university studies in the field of nuclear medicine. The handbook includes 20 chapters and covers topics relevant to nuclear medicine physics, including basic physics for nuclear medicine, radionuclide production, imaging and non-imaging detectors, quantitative nuclear medicine, internal dosimetry in clinical practice and radionuclide therapy. It provides, in the form of a syllabus, a comprehensive overview of the basic medical physics knowledge required for the practice of medical physics in modern nuclear medicine.

  13. The medical physicist in a nuclear medicine department; El fisico medico en un departamento de medicina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Trujillo Z, F.E.; Gomez A, E. [Instituto nacional de Cancerologia, 14000 Mexico D.F. (Mexico)

    2007-07-01

    The diagnostic studies and therapeutic treatments carried out in a Nuclear Medicine department make use of radioactive material. For such a reason it becomes necessary to take a strict control in the reception, use and waste that are generated of the typical works inside the department. Also, work related with the quality control of the equipment dedicated to produce images and of those not image formers, need to carry out to guarantee its maximum performance; as well as quality of the diagnostic and of the therapy imparted in patients. Additionally its are needed to make originated works of the individual procedures to patient and of the acquisition of radioactive materials and removal of the waste or radioactive contaminations. Presently work the recommendations of the American College of Radiology (ACR), the European Federation of Organizations for Medical Physics (EFOMP) and of the Mexican Official Standards relating to the functions that should be observed in a Nuclear Medicine Department are exposed. The ACR and the EFOMP, conclude in their recommendations that the medical physicist fulfills with the suitable profile and likewise they describe in detail the actions and functions that he should supervise, to carry out, to document and to inform. (Author)

  14. Nuclear medicine resources manual

    International Nuclear Information System (INIS)

    2006-02-01

    Over the past decade many IAEA programmes have significantly enhanced the capabilities of numerous Member States in the field of nuclear medicine. Functional imaging using nuclear medicine procedures has become an indispensable tool for the diagnosis, treatment planning and management of patients. However, due to the heterogeneous growth and development of nuclear medicine in the IAEA's Member States, the operating standards of practice vary considerably from country to country and region to region. This publication is the result of the work of over 30 international professionals who have assisted the IAEA in the process of standardization and harmonization. This manual sets out the prerequisites for the establishment of a nuclear medicine service, including basic infrastructure, suitable premises, reliable supply of electricity, maintenance of a steady temperature, dust exclusion for gamma cameras and radiopharmacy dispensaries. It offers clear guidance on human resources and training needs for medical doctors, technologists, radiopharmaceutical scientists, physicists and specialist nurses in the practice of nuclear medicine. The manual describes the requirements for safe preparation and quality control of radiopharmaceuticals. In addition, it contains essential requirements for maintenance of facilities and instruments, for radiation hygiene and for optimization of nuclear medicine operational performance with the use of working clinical protocols. The result is a comprehensive guide at an international level that contains practical suggestions based on the experience of professionals around the globe. This publication will be of interest to nuclear medicine physicians, radiologists, medical educationalists, diagnostic centre managers, medical physicists, medical technologists, radiopharmacists, specialist nurses, clinical scientists and those engaged in quality assurance and control systems in public health in both developed and developing countries

  15. Beijing nuclear medicine survey 2005: general information

    International Nuclear Information System (INIS)

    Geng Jianhua; Si Hongwei; Chen Shengzu

    2008-01-01

    Objective: To evaluate the status of nuclear medicine department in Beijing area. Methods: Staff, equipment and clinical applications of nuclear medicine departments in Beijing area during 2005 were evaluated by postal questionnaires. Results: Thirty nuclear medicine departments responded to our survey. In these departments, 321 staff, 141 doctors, 122 technicians, 7 physicists, 22 nurses and 29 other staff were employed; and 41 large imaging equipments, 37 SPECT, 3 PET, 1 PET-CT were equipped. During 2005, 88135 radionuclide imaging (84734 for SPECT, 3401 for PET), 462246 radioimmunoassay and 2228 radionuclide therapies (the most for Graves' disease, the second for thyroid cancer, the third for bone metastasis) were performed. For only 41.5% and 22.0% equipments the daily quality control (QC) and weekly QC were conducted. Conclusions Staff, equipments and activities of nuclear medicine department in Beijing were in a considerable scale, but did not balance among hospitals. Most departments should increase the number of physicists and the equipment QC procedures to improve the image quality. (authors)

  16. Ensuring the Safety and Accuracy of Radiation Medicine: The Role of Medical Physicists

    International Nuclear Information System (INIS)

    Dixit, Aabha

    2014-01-01

    In nuclear medicine and radiology, what are the risks of carrying out a procedure without the presence of a qualified medical physicist and without adequate guidelines? • The patient may receive an incorrect dose which can jeopardize the success of the medical treatment or the quality of diagnosis; • The medical staff and the public might be in danger of radiation exposure; • In extreme cases, the procedure could lead to a serious accident. Globally, over 10 000 hospitals use radioisotopes in medicine, with almost 90 per cent for diagnostic procedures. Nuclear medicine technologies, both for treatment and diagnostic imaging for diseases such as cancer or cardiovascular diseases, are being constantly developed and deployed globally in health care systems

  17. Thirty years from now: future physics contributions in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, Dale L [School of Physics and Faculty of Health Sciences, University of Sydney, Sydney, 2006 (Australia); Department of Nuclear Medicine, Royal North Shore Hospital, St. Leonards, NSW 2065 (Australia)

    2014-05-01

    This paper is the first in a series of invited perspectives by pioneers of nuclear medicine imaging and physics. A medical physicist and a nuclear medicine physician each take a backward and a forward look at the contributions of physics to nuclear medicine. Here, we provide a forward look from the medical physicist’s perspective. The author examines a number of developments in nuclear medicine and discusses the ways in which physics has contributed to these. Future developments are postulated in the context of an increasingly personalised approach to medical diagnostics and therapies. A skill set for the next generation of medical physicists in nuclear medicine is proposed in the context of the increasing complexity of ‘Molecular Imaging’ in the next three decades. The author sees a shift away from ‘traditional’ roles in instrumentation QA to more innovative approaches in understanding radiobiology and human disease.

  18. Thirty years from now: future physics contributions in nuclear medicine

    International Nuclear Information System (INIS)

    Bailey, Dale L

    2014-01-01

    This paper is the first in a series of invited perspectives by pioneers of nuclear medicine imaging and physics. A medical physicist and a nuclear medicine physician each take a backward and a forward look at the contributions of physics to nuclear medicine. Here, we provide a forward look from the medical physicist’s perspective. The author examines a number of developments in nuclear medicine and discusses the ways in which physics has contributed to these. Future developments are postulated in the context of an increasingly personalised approach to medical diagnostics and therapies. A skill set for the next generation of medical physicists in nuclear medicine is proposed in the context of the increasing complexity of ‘Molecular Imaging’ in the next three decades. The author sees a shift away from ‘traditional’ roles in instrumentation QA to more innovative approaches in understanding radiobiology and human disease.

  19. AAPM/SNMMI Joint Task Force: report on the current state of nuclear medicine physics training

    Science.gov (United States)

    Allison, Jerry D.; Clements, Jessica B.; Coffey, Charles W.; Fahey, Frederic H.; Gress, Dustin A.; Kinahan, Paul E.; Nickoloff, Edward L.; Mawlawi, Osama R.; MacDougall, Robert D.; Pizzuitello, Robert J.

    2015-01-01

    The American Association of Physicists in Medicine (AAPM) and the Society of Nuclear Medicine and Molecular Imaging (SNMMI) recognized the need for a review of the current state of nuclear medicine physics training and the need to explore pathways for improving nuclear medicine physics training opportunities. For these reasons, the two organizations formed a joint AAPM/SNMMI Ad Hoc Task Force on Nuclear Medicine Physics Training. The mission of this task force was to assemble a representative group of stakeholders to: Estimate the demand for board‐certified nuclear medicine physicists in the next 5–10 years,Identify the critical issues related to supplying an adequate number of physicists who have received the appropriate level of training in nuclear medicine physics, andIdentify approaches that may be considered to facilitate the training of nuclear medicine physicists. As a result, a task force was appointed and chaired by an active member of both organizations that included representation from the AAPM, SNMMI, the American Board of Radiology (ABR), the American Board of Science in Nuclear Medicine (ABSNM), and the Commission for the Accreditation of Medical Physics Educational Programs (CAMPEP). The Task Force first met at the AAPM Annual Meeting in Charlotte in July 2012 and has met regularly face‐to‐face, online, and by conference calls. This manuscript reports the findings of the Task Force, as well as recommendations to achieve the stated mission. PACS number: 01.40.G‐ PMID:26699325

  20. South African Association of Physicists in Medicine and Biology: 25. Anniversary Congress, 18-22 Mar 1985, Cape Town

    International Nuclear Information System (INIS)

    1985-01-01

    The twenty-fifth anniversary congress of the South African Association of Physicists in Medicine and Biology was held from 18-22 March 1985 in Cape Town. The tremendous growth of nuclear energy and radiation technology in South Africa led to an increasing need for biophysicists, especially health physicists, for the application of radioisotopes and radiation as well as nuclear power, including the uranium industry. Papers delivered on the conference covered subjects like medical physics, radiotherapy, radiopharmaceuticals, radiation protection, the calibration of radiation monitors, radiation detectors, radiation doses and dosimetry

  1. Protection of the patient in nuclear medicine

    International Nuclear Information System (INIS)

    1987-01-01

    In ICRP Publication 52, the 'Protection of the Patient in Nuclear Medicine', is concerned with exposures of patients resulting from the administration of radiopharmaceuticals for diagnostic, therapeutic and research purposes. The report includes guidelines for nuclear medicine physicians, radiologists, medical physicists and technologists on the factors that influence absorbed doses to patients from different types of nuclear medicine examinations. Other topics in the report include education and training, estimates of absorbed dose, design of facilities, instrumentation, quality assurance and control and preparation, quality assurance and control of radiopharmaceuticals. (U.K.)

  2. Quality assurance in nuclear medicine

    International Nuclear Information System (INIS)

    Paras, P.

    1978-01-01

    Quality assurance practices must be followed throughout the entire nuclear medicine process, from the initial decision to perform a particular procedure, through the interpretation and reporting of the results. The various parameters that can be defined and measured in each area must be monitored by quality control tests to assure the excellence of the total nuclear medicine process. The presentation will discuss each of the major areas of nuclear medicine quality control and their interaction as a part of the entire system. Quality control testing results and recommendations for measurements of radioactivity distribution will be described with emphasis on imaging equipment and dose calibrating instrumentation. The role of the health physicist in a quality assurance program will be stressed. (author)

  3. ENSDF: a nuclear structure data bank for nuclear physicists

    International Nuclear Information System (INIS)

    Blachot, J.

    1987-02-01

    Data Banks have tremendously grown these last years. All the nuclear Structure information are now in the ENSDF. This file is used for the Nuclear Data Sheets publication. The part which contains only Adopted Data could be used as a Data Bank for Nuclear Physicists. Examples of retrevial are given [fr

  4. The role of the health physicist in nuclear security.

    Science.gov (United States)

    Waller, Edward J; van Maanen, Jim

    2015-04-01

    Health physics is a recognized safety function in the holistic context of the protection of workers, members of the public, and the environment against the hazardous effects of ionizing radiation, often generically designated as radiation protection. The role of the health physicist as protector dates back to the Manhattan Project. Nuclear security is the prevention and detection of, and response to, criminal or intentional unauthorized acts involving or directed at nuclear material, other radioactive material, associated facilities, or associated activities. Its importance has become more visible and pronounced in the post 9/11 environment, and it has a shared purpose with health physics in the context of protection of workers, members of the public, and the environment. However, the duties and responsibilities of the health physicist in the nuclear security domain are neither clearly defined nor recognized, while a fundamental understanding of nuclear phenomena in general, nuclear or other radioactive material specifically, and the potential hazards related to them is required for threat assessment, protection, and risk management. Furthermore, given the unique skills and attributes of professional health physicists, it is argued that the role of the health physicist should encompass all aspects of nuclear security, ranging from input in the development to implementation and execution of an efficient and effective nuclear security regime. As such, health physicists should transcend their current typical role as consultants in nuclear security issues and become fully integrated and recognized experts in the nuclear security domain and decision making process. Issues regarding the security clearances of health physics personnel and the possibility of insider threats must be addressed in the same manner as for other trusted individuals; however, the net gain from recognizing and integrating health physics expertise in all levels of a nuclear security regime far

  5. Nuclear physicist, arms control advocate

    CERN Multimedia

    Chang, K

    2002-01-01

    Victor F. Weisskopf, a nuclear physicist who worked on the Manhattan Project to build the first atomic bomb in World War II and later became an ardent advocate of arms control, died Monday at his home in Newton, MA, USA. He was 93 (1 page).

  6. Draft report on the national seminar in nuclear medicine

    International Nuclear Information System (INIS)

    1977-01-01

    The proceedings of the seminar on nuclear medicine have been conducted in four main sessions. In the first session a review of the current status of clinical nuclear medicine in India is reviewed. The use of radioisotopes in thyroid function studies, central nervous systems, liver disorders, lung and bone imaging, renal function studies, dynamic function studies, gastroenterology haematology etc. are described. The existing facilities and the future needs for radioimmunoassay and radiotherapy are discussed. In Session 2, the existing facilities in nuclear medicine in different states in India are reviewed. In Session 3, the available resources in nuclear medicine are reviewed. Radiation protection procedures are outlined. Various nuclear instruments developed at the Bhabha Atomic Research Centre, (BARC), Bombay, for use in nuclear medicine are briefly described. A list of radiopharmaceuticals developed by BARC and in current use, is given. The roles of the physicist, pharmacist and the nuclear medicine technologist in the hospitals having nuclear medicine units, are stressed. The importance of training and education for personnel in nuclear medicine and medical physics is pointed out. (A.K.)

  7. Nuclear medicine quality assurance program in Argentina

    International Nuclear Information System (INIS)

    Levi de Cabrejas, Mariana; Arashiro, Jorge G.; Giannone, Carlos A.

    1999-01-01

    A two steps program has been implemented: the first one is the quality control of the equipment and the second one the development of standard procedures for clinical studies of patients. A training program for doctors and technicians of the nuclear medicine laboratories was carried out. Workshops on instrumentation and quality assurance in nuclear medicine have been organized in several parts of the country. A joint program of the CNEA and the University of Buenos Aires has trained medical physicists. A method has been established to evaluate the capability of the laboratories to produce high quality images and to follow up the implementation of the quality control program

  8. Postgraduate Course 'Physics Aspects of Nuclear Medicine'. Theoretical and practical intensive version. Preliminary results

    International Nuclear Information System (INIS)

    Lopez Diaz, A.; Gonzalez, G.J.; Torres, A.L.; Fraxedas, M.R.

    2007-01-01

    Full text: Using national and international recommendations about human resource in Nuclear Medicine, a group of experts organized a National Course for the education and training of physicist who work in Cuban hospitals, adapted to national condition and practice of Nuclear Medicine. The program was approved for National Authorities in Nuclear Security and University Schools in Medicine. The program contains two intensive theoretic and practical courses, to be completed over a period of 15 days of full time engagement, complemented with 4 month full attachment to a Nuclear Medicine Service monitored by accredited expert. The theoretical/practical intensive courses have final evaluation: combining practical exercise and a final test. When all docent activities finish the students should clear a final theoretical/practical evaluation by an examination board comprising of at least three accredited experts. The theoretical/practical courses were attended by 19 physicists working in hospitals in Cuba. The contents of the first course included, Introduction to Nuclear Medicine, Principle of NM equipment, Quality assurance and quality control of NM equipment, Radiation Protection and Licence Topics of NM Services. The second course had the following topics: Acquisition and Processing methods in Nuclear Medicine, Nuclear Medicine Techniques and Clinical Dosimetry for radiopharmaceutical therapy. With 100 point of maximum score and 60 point minimum to pass, the final test of this first course comprised of 2 types of questions: 1 Multiple choice questions and 2. long essay type questions. The average scores obtained by the participants was 87.02 points/ students (range 65- 100 points). The students pass the test with very good degree of comprehension: 10-Excellent (90-100 points), 5- Very good (80-89 points), 2-Good (70-79 point) and 2- satisfactory standard (60-69 point). The students evaluated 'satisfactory' the quality of the course (in anonymous poll), reporting like

  9. Nuclear methods in medicine

    International Nuclear Information System (INIS)

    Wolfe, D.M.

    1997-01-01

    Physicists have created remarkably sophisticated instruments for the performance of experiments. With variable phase lags many of these have become useful in technology. In the medical field NMD techniques have become commonplace under the rubric of Magnetic Resonance Imaging. Particle physics has developed sophisticated detectors for both charged and neutral particles. Many of these also have been adapted to medical uses. In both radiology and nuclear medicine, pixel detectors based on designs originating at large-scale colliders, are becoming highly useful in replacing film and NaI as the primary means of X-ray and (-ray detection. Coupled with high-speed work stations, these new techniques allow exciting new imagining modalities. Many of these are based on the handling of digital images originally developed for astronomy. Thus, once again, fundamental science is making large contributions to the development of technology. In this talk, various examples of developments in digital mammography and digital detectors for nuclear medicine will be given. The possibilities for telemedicine will be discussed. (author)

  10. A Physicist's Journey In The Nuclear Power World

    Science.gov (United States)

    Starr, Chauncey

    2000-03-01

    As a participant in the development of civilian nuclear power plants for the past half century, the author presents some of his insights to its history that may be of interest to today's applied physicists. Nuclear power development has involved a mixture of creative vision, science, engineering, and unusual technical, economic, and social obstacles. Nuclear power programs were initiated during the euphoric era of public support for new science immediately following World War II -- a support that lasted almost two decades. Subsequently, nuclear power has had to face a complex mix of public concerns and criticism. The author's involvment in some of these circumstances will be anecdotally described. Although the physics of fission and its byproducts remains at the heart of all nuclear reactor designs, its embodiment in practical energy sources has been shaped by the limitations of engineering primarily and economics secondarily. Very influential has been the continuing interplay with the military's weapons and propulsion programs, and the government's political policies. In this respect, nuclear power's history provides a learning experience that may be applicable to some of the large scale demonstration projects that physicists pursue today.

  11. Asian School of Nuclear Medicine

    International Nuclear Information System (INIS)

    Sundram, F.X.

    2007-01-01

    A number of organisations are involved in the field of nuclear medicine education. These include International Atomic Energy Agency (IAEA), World Federation of Nuclear Medicine and Biology (WFNMB), Asia-Oceania Federation of Nuclear Medicine and Biology (AOFNMB), Society of Nuclear Medicine (SNM in USA), European Association of Nuclear Medicine (EANM). Some Universities also have M.Sc courses in Nuclear Medicine. In the Asian Region, an Asian Regional Cooperative Council for Nuclear Medicine (ARCCNM) was formed in 2000, initiated by China, Japan and Korea, with the main aim of fostering the spread of Nuclear Medicine in Asia. The Asian School of Nuclear Medicine (ASNM) was formed in February 2003, with the ARCCNM as the parent body. The Aims of ASNM are: to foster Education in Nuclear Medicine among the Asian countries, particularly the less developed regions; to promote training of Nuclear Medicine Physicians in cooperation with government agencies, IAEA and universities and societies; to assist in national and regional training courses, award continuing medical education (CME) points and provide regional experts for advanced educational programmes; and to work towards awarding of diplomas or degrees in association with recognised universities by distance learning and practical attachments, with examinations. There are 10 to 12 teaching faculty members from each country comprising of physicists, radio pharmacists as well as nuclear medicine physicians. From this list of potential teaching experts, the Vice-Deans and Dean of ASNM would then decide on the 2 appropriate teaching faculty member for a given assignment or a course in a specific country. The educational scheme could be in conjunction with the ARCCNM or with the local participating countries and their nuclear medicine organisations, or it could be a one-off training course in a given country. This teaching faculty is purely voluntary with no major expenses paid by the ASNM; a token contribution could be

  12. Radiotherapy and Nuclear Medicine Project for an Integral Oncology Center at the Oaxaca High Specialization Regional Hospital

    International Nuclear Information System (INIS)

    De Jesus, M.; Trujillo-Zamudio, F. E.

    2010-01-01

    A building project of Radiotherapy and Nuclear Medicine services (diagnostic and therapy), within an Integral Oncology Center (IOC), requires interdisciplinary participation of architects, biomedical engineers, radiation oncologists and medical physicists. This report focus on the medical physicist role in designing, building and commissioning stages, for the final clinical use of an IOC at the Oaxaca High Specialization Regional Hospital (HRAEO). As a first step, during design stage, the medical physicist participates in discussions about radiation safety and regulatory requirements for the National Regulatory Agency (called CNSNS in Mexico). Medical physicists propose solutions to clinical needs and take decisions about installing medical equipment, in order to fulfill technical and medical requirements. As a second step, during the construction stage, medical physicists keep an eye on building materials and structural specifications. Meanwhile, regulatory documentation must be sent to CNSNS. This documentation compiles information about medical equipment, radioactivity facility, radiation workers and nuclear material data, in order to obtain the license for the linear accelerator, brachytherapy and nuclear medicine facilities. As a final step, after equipment installation, the commissioning stage takes place. As the conclusion, we show that medical physicists are essentials in order to fulfill with Mexican regulatory requirements in medical facilities.

  13. A century of nuclear science. Important contributions of early generation Chinese physicist to nuclear science

    International Nuclear Information System (INIS)

    Zheng Chunkai; Xu Furong

    2003-01-01

    The great discoveries and applications of nuclear science have had tremendous impact on the progress and development of mankind over the last 100 years. In the 1920's to 1940's, many young Chinese who yearned to save the country through science and education went to west Europe and north America to study science, including physics. Studying and working with famous physicists throughout the world, they made many important contributions and discoveries in the development of nuclear science. This paper describes the historical contributions of the older generation of Chinese physicists to nuclear science

  14. The design of diagnostic imaging and nuclear medicine facilities in a major new teaching hospital

    International Nuclear Information System (INIS)

    Causer, D.A.

    2010-01-01

    Full text: The design of the layout and radiation shielding for diagnostic imaging and nuclear medicine facilities in a modern teaching hospital requires the collaboration of persons from a number of professions including architects, engineers, radiologists, nuclear medicine physi cians, medical imaging technologists and medical physicists. This paper discusses the design of such facilities, including PET/CT and T-131 ablation therapy suites for a major new tertiary hospital in Perth. The importance of involving physicists on the planning team from the earliest stages of the design process is stressed, design plans presented, and some of the problems which may present themselves and their solutions are illustrated.

  15. Quality control in Department of Nuclear Medicine, Clinical Center Banja Luka, RS, Bosnia and Herzegovina

    International Nuclear Information System (INIS)

    Goran Vuleta

    2007-01-01

    Complete test of publication follows. The aim of this work is to give a review of situations in the Department of Nuclear Medicine in Banja Luka related to quality control. We must perform daily, weekly and monthly control of equipment in the Department of Nuclear Medicine, and we must keep records. In our Department we have equipment from different producers and different year of production: 3 gamma cameras (1973, 1989, 2000); 2 auto gamma counters (2000, 2006); 2 dose calibrators (1973, 2000); 1 thyroid uptake system (2000). Normally procedures for quality control are also different. The situation, according to results of quality control is good. All equipment is working normally and with good performance (except one gamma camera - a problem with hard drive), but we don't have a routine daily control and periodical control for others tests. Keeping a records is another problem. Why? 1. In Bosnia and Herzegovina we don't have Regulatory authority. That means that we don't have legislation, rules, inspection or any other regulatory instruments. 2. There is only school for nurses, we have no special school for medical technician. So, we need an education in that field. 3. Very small number of physicist in hospital, no education for medical and nuclear medicine physicist. Conclusion. Situation in Department of Nuclear Medicine in Banja Luka related to quality control is on the medium level. We are trying to put that on the higher level, but to accomplish that we need additional education for nurses (technicians) and physicist.

  16. Evaluation of radiation protection in nuclear medicine diagnostic procedures

    International Nuclear Information System (INIS)

    Mohammed, Ezzeldien Mohammed Nour

    2013-05-01

    This study conducted to evaluate the radiation protection in nuclear medicine diagnostic procedures in four nuclear medicine departments in Sudan. The evaluated procedures followed in these departments were in accordance with the standards, International Recommendations and code of practice for radiation protection in nuclear medicine. The evolution included the optimum design for diagnostic nuclear medicine departments, dealing with radioactive sources, quality assurance and quality control, training and responsibilities for radiation worker taking into account economic factors in Sudan. Evaluation of radiation protection procedures in diagnostic investigations was carried out by taken direct measurements of dose rate and the contamination level in some areas where radiation sources, radiation workers and public are involved. Designated questionnaires covered thirteen areas of radiation protection based on inspection check list for nuclear medicine prepared by the International Atomic Energy Agency (IAEA) and American Association of Physicist in Medicine (AAPM) were used in the evaluation. This questionnaire has been Filled by Radiation Protection Officer (RPO), nuclear medicine technologist, nuclear medicine specialist in the nuclear medicine departments. Four hospitals, two governmental hospital and two private hospitals, have been assisted, the assessment shows that although the diagnostic nuclear medicine department in Sudan are not applying a fully safety and radiation protection procedures, but the level of radiation dose and the contamination level were found within acceptable limits. The private hospital D scored the higher level of protection (85.25%) while the governmental hospital C scored the lower level of protection (59.02%). Finally, this study stated some recommendations that if implemented could improve the level of radiation protection in nuclear medicine department. One of the most important recommendations is that a proper radiation protection

  17. Quality control of nuclear medicine instrumentation

    International Nuclear Information System (INIS)

    Mould, R.F.

    1983-09-01

    The proceedings of a conference held by the Hospital Physicists' Association in London 1983 on the quality control of nuclear medicine instrumentation are presented. Section I deals with the performance of the Anger gamma camera including assessment during manufacture, acceptance testing, routine testing and long-term assessment of results. Section II covers interfaces, computers, the quality control problems of emission tomography and the quality of software. Section III deals with radionuclide measurement and impurity assessment and Section IV the presentation of images and the control of image quality. (U.K.)

  18. Therapeutic Applications of Monte Carlo Calculations in Nuclear Medicine

    CERN Document Server

    Sgouros, George

    2003-01-01

    This book examines the applications of Monte Carlo (MC) calculations in therapeutic nuclear medicine, from basic principles to computer implementations of software packages and their applications in radiation dosimetry and treatment planning. It is written for nuclear medicine physicists and physicians as well as radiation oncologists, and can serve as a supplementary text for medical imaging, radiation dosimetry and nuclear engineering graduate courses in science, medical and engineering faculties. With chapters is written by recognised authorities in that particular field, the book covers the entire range of MC applications in therapeutic medical and health physics, from its use in imaging prior to therapy to dose distribution modelling targeted radiotherapy. The contributions discuss the fundamental concepts of radiation dosimetry, radiobiological aspects of targeted radionuclide therapy and the various components and steps required for implementing a dose calculation and treatment planning methodology in ...

  19. Post-graduated course 'Basic aspects of medical physics in nuclear medicine': theoretical/practical intensive version: preliminary results

    International Nuclear Information System (INIS)

    Lopez, Adlin; Gonzalez, Joaquin; Torres, Leonel; Fraxedas, Roberto; Varela, Consuelo; Freixas, Vivian.

    2008-01-01

    Full text: Using national and international recommendation about human resource in nuclear medicine, a group of experts organized a national course for the education and training of physicist who works in Cuban hospital, adapted to national condition and practice of nuclear medicine. The program was approved for National Authorities in Nuclear Security and University School in Medicine and content three intensive theoretic and practical courses (15 days of full time duration each), complemented with 4 months full time in Nuclear Medicine Service monitored by accredited expert and 2 months at distance with practical task. The theoretical/practical intensive courses have final evaluation: combining practical exercise and write final test. When all docent activities finish the students should pass a final evaluation by a testing board composed for (at least) three accredited experts. The first theoretical/practical course included 19 physicists who work in hospital, the second 17 and the third 16 students. With 100 point of maximum score and 60 point minimum to pass, the partial final tests included: true or false choice (with 10 aspects to verify, 1 point/correct answer) and questions to write developed answer. The average result was 83.02 points/ students (range 65-100 points). The students evaluated satisfactory the quality of different courses (in anonymous poll), reporting like very good; the quality of conferences, excellent; the usefulness of different charters, very good; the support bibliography, and recommended the repetition of this kind of education and training in order to warranty the human resource, in the same way and content, and included others item in the future. Conclusion: the theoretical/practice intensive courses of this post-graduated course were successful and satisfied the objective of education and training of medical physicist in nuclear medicine. (author)

  20. The role of medical physicist in health care and radiation protection

    International Nuclear Information System (INIS)

    Mattsson, S.; Adliene, D.

    2004-01-01

    Medical physics is a part of physics that is associated with the practice of medicine dealing with a use of various types of ionizing and non-ionizing radiation for medical purposes as well as with the radiation protection of patients and personnel. The role, responsibilities and duties of medical physicists in the fields of radiation therapy, diagnostic imaging using X-rays and magnetic resonance methods, diagnostics and therapeutic nuclear medicine, radiation dosimetry and radiation protection are discussed in this paper. It is shown that, the medical physicists have the unique possibility to combine their knowledge in medical radiation physics with the recent achievements in medicine and technology and to apply this knowledge for the adequately safe treatment or diagnosis of patients during radiological procedures. (author)

  1. Quality management audits in nuclear medicine practices

    International Nuclear Information System (INIS)

    2008-12-01

    annual systematic audit process into the clinical arena. Each section is set out as a series of questions related to specific components of nuclear medicine services. The questions are not all-inclusive and professional judgement is essential to ensure that the questions are addressed adequately. It is not intended that all questions will be addressed. The QM audit methodology which is introduced in this publication is designed to be applied to a variety of economic circumstances. A key outcome should be a culture of reviewing essential elements of the clinical service for continuous improvement in nuclear medicine. This publication should be of interest to nuclear medicine physicians, radiologists, radiopharmacists, medical physicists, medical technologists and educationalists. It should also interest those dealing with QM and audit systems. The attached CD-ROM contains the checklists given in this publication for self-appraisal. They can also be used by multidisciplinary teams involved in annual QM checks and audits

  2. Nuclear Medicine

    Science.gov (United States)

    ... Parents/Teachers Resource Links for Students Glossary Nuclear Medicine What is nuclear medicine? What are radioactive tracers? ... funded researchers advancing nuclear medicine? What is nuclear medicine? Nuclear medicine is a medical specialty that uses ...

  3. South African Association of Physicists in Medicine and Biology: 26. annual congress

    International Nuclear Information System (INIS)

    1986-01-01

    The twenty-sixth annual congress of the South African Association of Physicists in Medicine and Biology was held from 18-21 March 1986 in Pretoria. Papers delivered on the conference covered subjects like medical physics, radiotherapy, radiation protection, calibration of radiation monitors, radiation detectors, radiation doses and dosimetry

  4. Evaluation of radiation doses received by the staff in nuclear medicine department of Rick

    International Nuclear Information System (INIS)

    Ali, Naemat Abdalla Mohamed

    2001-01-01

    Environmental monitoring in nuclear medicine rooms at Radiation and Isotopes Center Khartoum RICK were carried out using survey meter and thermoluminescent dosimetry. Staff bodies and hands doses measurements are being conducted using thermoluminescent dosimetry. The purpose of the study is to evaluate the radiation received by the staff work in the nuclear medicine department at RICK. Survey meter (RDS-120) and TLD clips of LiF. (Mg.Ti) were used to measure the environment leading of the staff. The associated annual doses have been determined to the staff bodies and hands. It was found that the dose-equivalent rates from bodies and hands of the staff obtained through this work using TLD clips are: nuclear medicine technologist body reading 6.75 mSv per year, physicist body reading 7.89 mSv per year, chemist body reading 6.1 mSv per year, and nurse body reading 8.1 mSv per year. On the other hand the nuclear medicine technologist hands reading 24.19 mSv per year, physicist hands reading 19.15 mSv per year, chemist hands reading 14.616 mSv per year, and nurse hands reading 277.96 mSv per year. All the staff reading in this study agree with the national regulations and international recommendations. It is clear that the dose of nurse hands is the highest one, this is because when they inject the patient with the Tc-99 m they use to spend relatively long time. (Author)

  5. Occupational exposure in nuclear medicine in Portugal in the 1999-2003 period

    International Nuclear Information System (INIS)

    Martins, M. B.; Alves, J. G.; Abrantes, J. N.; Roda, A. R.

    2007-01-01

    The annual doses received by the staff of nuclear medicine departments from public hospitals and private clinics and evaluated by the Individual Monitoring Service of the Radiological Protection and Nuclear Safety Dept. (DPRSN) of the Nuclear and Technological Inst. (ITN) in Portugal, in the 5 y period from 1999 to 2003, are analysed and presented in this paper. In the 1999-2003 period, ITN-DPRSN monitored on an average 462 workers from nuclear medicine departments, which represents 6% of the 8000 workers of the medical field (approximately). The medical sector represents 80-85% of all the monitored population in Portugal. The professions of the monitored workers at nuclear medicine departments were identified by the respective departments as administrative, auxiliary, medical doctor, nuclear medicine technician, nurse, pharmacist and physicist. This information was collected at the onset of the monitoring and was updated over the last 3 y. The annual whole-body doses evaluated in the period 1999-2003 were used to derive the distribution of workers by dose intervals for every profession. The respective annual average doses and annual collective doses, as well as, the total average and total collective doses for the nuclear medicine sector were also determined and are presented. Internal radiation hasn't been monitored. (authors)

  6. Nuclear medicine in Tunisia : current status and prospects

    International Nuclear Information System (INIS)

    Hammami, Hatem

    2013-01-01

    coordination and the patient sometimes moves from south to the capital in the north. Radioisotopes used in nuclear medicine in Tunisia are Tc-99m, I-131, I-123, In-111, Ga-67, Tl-201, Sm-153, Y-90, Re-186 and Er-196. The importation of these radioisotopes is possible due to their relatively long half lives. These radioisotopes can be produced by a reactor or a cyclotron. Short-lived radioisotopes as the fluorine F-18 requires a local infrastructure of production to be provided in time. The prospects are focused on infrastructure, human resources and overall quality "patient safety" approach. Regarding infrastructure, it is essential to upgrade (quality standards) existing centers and plan new centers for the future with equal geographical distribution and try to reach the public-private balance. Regarding the equipment needed for nuclear medicine, it is essential to prepare a health program, to acquire PET cameras and cyclotrons to provide different radioisotopes as well as radiopharmaceuticals products. For human resources, there is a lack of physicists in nuclear medicine departments and of course Tunisia does not have a radio-pharmacist in a nuclear medicine department except the Sahloul Sousse hospital. To conclude, we can mention the lack of conventional equipment, radiation bunkers chambers, physicists and radio-pharmacists in nuclear medicine services in Tunisia. The number of nuclear medicine services is insufficient in public sector. We reveal also a delay in the transition to PET despite requests for the acquisition of three PET in the public sector and the project of a new Public Service "ARIANA". (Author)

  7. Acceptability of a future phantoms bank for quality control in nuclear medicine

    International Nuclear Information System (INIS)

    Ferreira, Fernanda Carla Lima; Souza, Divanizia do Nascimento

    2011-01-01

    Objective: The present study was aimed at determining the acceptability of a national or regional phantoms bank to be deployed in Brazil for shared use in quality control activities by nuclear medicine centers. Materials and Methods: The authors analyzed the answers to a questionnaire applied to medical physicists and radioprotection supervisors in Brazilian nuclear medicine centers. Initially, the questionnaire was validated by professionals in the city of Aracaju, SE, which is located in the Northeast region. The present study sample was geographically distributed as follows: the Northeast region, with answers from 13 professionals of nuclear medicine centers; the North region, with 2 professionals; the South region, with 7 professionals; the Southeast region, with 43 professionals; and the Midwest region, with 2 professionals. Results: According to the data analyzed, 82% of the respondents consider that the implementation of a phantoms bank would be a suitable alternative for improving nuclear medicine quality control. The interest in sharing the bank was reported by 87% of the respondents. Conclusion: The present study demonstrated the motivation for a shared use of a future phantoms bank. (author)

  8. Acceptability of a future phantoms bank for quality control in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Fernanda Carla Lima; Souza, Divanizia do Nascimento, E-mail: fernacarlaluan@gmail.co [Universidade Federal de Sergipe (UFS), Sao Cristovao, SE (Brazil). Program of Post-Graduation in Physics

    2011-03-15

    Objective: The present study was aimed at determining the acceptability of a national or regional phantoms bank to be deployed in Brazil for shared use in quality control activities by nuclear medicine centers. Materials and Methods: The authors analyzed the answers to a questionnaire applied to medical physicists and radioprotection supervisors in Brazilian nuclear medicine centers. Initially, the questionnaire was validated by professionals in the city of Aracaju, SE, which is located in the Northeast region. The present study sample was geographically distributed as follows: the Northeast region, with answers from 13 professionals of nuclear medicine centers; the North region, with 2 professionals; the South region, with 7 professionals; the Southeast region, with 43 professionals; and the Midwest region, with 2 professionals. Results: According to the data analyzed, 82% of the respondents consider that the implementation of a phantoms bank would be a suitable alternative for improving nuclear medicine quality control. The interest in sharing the bank was reported by 87% of the respondents. Conclusion: The present study demonstrated the motivation for a shared use of a future phantoms bank. (author)

  9. Training and education in nuclear medicine at the Medical Faculty of the University of Zagreb

    International Nuclear Information System (INIS)

    Ivancevic, D.; Popovic, S.; Simonovic, I.; Vlatkovic, M.

    1986-01-01

    Training for specialization in nuclear medicine in Yugoslavia includes 12 months of training in departments of clinical medicine and 24 months of training in departments of nuclear medicine. Since 1974 many physicians have passed the specialist examination in Zagreb. A postgraduate study in nuclear medicine began at the Medical Faculty of the University of Zagreb in 1979. It includes four semesters of courses and research on a selected subject leading to the degree of Magister (Master of Science). Most of the training is conducted by the Institute of Nuclear Medicine at the University Hospital, Rebro, in Zagreb, which has the necessary teaching staff, equipment and space. Forty-four students have completed this postgraduate study. Nuclear medicine in a developing country faces several problems. Scarcity of expensive equipment and radiopharmaceuticals calls for modifications of methods, home made products and instrument maintenance. These, mostly economic, factors are given special emphasis during training. Nuclear power generation may solve some of the country's energy problems; therefore, specialists in nuclear medicine must obtain additional knowledge about the medical care and treatment of persons who might be subject to irradiation and contamination in nuclear power plants. Lower economic resources in developing countries require better trained personnel, stressing the need for organized training and education in nuclear medicine. With some support the Institute of Nuclear Medicine will be able to offer various forms of training and education in nuclear medicine for physicians, chemists, physicists, technologists and other personnel from developing countries. (author)

  10. General Nuclear Medicine

    Science.gov (United States)

    ... Resources Professions Site Index A-Z General Nuclear Medicine Nuclear medicine imaging uses small amounts of radioactive ... of General Nuclear Medicine? What is General Nuclear Medicine? Nuclear medicine is a branch of medical imaging ...

  11. Nuclear medicine

    International Nuclear Information System (INIS)

    Lentle, B.C.

    1986-01-01

    Several growth areas for nuclear medicine were defined. Among them were: cardiac nuclear medicine, neuro-psychiatric nuclear medicine, and cancer diagnosis through direct tumor imaging. A powerful new tool, Positron Emission Tomography (PET) was lauded as the impetus for new developments in nuclear medicine. The political environment (funding, degree of autonomy) was discussed, as were the economic and scientific environments

  12. MO-C-BRB-04: Observations of a Nuclear Radiologist on the Value of the Medical Physicist

    International Nuclear Information System (INIS)

    Greenspan, B.

    2016-01-01

    With the profound changes currently occurring in medicine, the role of the medical physicist cannot stagnate, but must evolve to meet the challenges and opportunities that are presented. Medical physicists must understand these changes and establish themselves not only as relevant but as leaders in this new environment. We must increase our presence in clinical settings such as tumor boards, patient rounds, and the development of new diagnosis, imaging, and treatment techniques. By establishing ourselves as competent scientists, we can and must participate in the development of technologies through research, teaching, and clinical implementation. As medical physicists we must define our roles and value to our physician colleagues, patients, referring physicians, and senior administrators. We cannot afford to be viewed solely as quality assurance technologists, but need to move forward in step with medical and practice advances, becoming recognized as having a leadership role in providing quality research, technological development, and quality patient care. In this session, four leaders in medical research and healthcare will discuss their observations on how medical physicists have contributed to advancements in healthcare and opportunities to continue leadership in providing quality medicine through the applications of physics to research, education, and clinical practice. Learning Objectives: Understand the changes in the healthcare environment and how medical physicists can contribute to improving patient care. Learn how medical physicists are currently leading research efforts to improve clinical imaging and diagnosis. Understand the role of medical physicists in developing new technology and leading its translation into clinical care.

  13. MO-C-BRB-04: Observations of a Nuclear Radiologist on the Value of the Medical Physicist

    Energy Technology Data Exchange (ETDEWEB)

    Greenspan, B. [Georgia Regents University (Georgia)

    2016-06-15

    With the profound changes currently occurring in medicine, the role of the medical physicist cannot stagnate, but must evolve to meet the challenges and opportunities that are presented. Medical physicists must understand these changes and establish themselves not only as relevant but as leaders in this new environment. We must increase our presence in clinical settings such as tumor boards, patient rounds, and the development of new diagnosis, imaging, and treatment techniques. By establishing ourselves as competent scientists, we can and must participate in the development of technologies through research, teaching, and clinical implementation. As medical physicists we must define our roles and value to our physician colleagues, patients, referring physicians, and senior administrators. We cannot afford to be viewed solely as quality assurance technologists, but need to move forward in step with medical and practice advances, becoming recognized as having a leadership role in providing quality research, technological development, and quality patient care. In this session, four leaders in medical research and healthcare will discuss their observations on how medical physicists have contributed to advancements in healthcare and opportunities to continue leadership in providing quality medicine through the applications of physics to research, education, and clinical practice. Learning Objectives: Understand the changes in the healthcare environment and how medical physicists can contribute to improving patient care. Learn how medical physicists are currently leading research efforts to improve clinical imaging and diagnosis. Understand the role of medical physicists in developing new technology and leading its translation into clinical care.

  14. Nuclear Medicine and Application of Nuclear Techniques in Medicine

    International Nuclear Information System (INIS)

    Wiharto, Kunto

    1996-01-01

    The use of nuclear techniques medicine covers not only nuclear medicine and radiology in strict sense but also determination of body mineral content by neutron activation analysis and x-ray fluorescence technique either in vitro or in vivo, application of radioisotopes as tracers in pharmacology and biochemistry, etc. This paper describes the ideal tracer in nuclear medicine, functional and morphological imaging, clinical aspect and radiation protection in nuclear medicine. Nuclear technique offers facilities and chances related to research activities and services in medicine. The development of diagnostic as well as therapeutic methods using monoclonal antibodies labeled with radioisotope will undoubtedly play an important role in the disease control

  15. Nuclear medicine

    International Nuclear Information System (INIS)

    Kand, Purushottam

    2012-01-01

    Nuclear medicine is a specialized area of radiology that uses very small amounts of radioactive materials to examine organ function and structure. Nuclear medicine is older than CT, ultrasound and MRI. It was first used in patients over 60-70 years ago. Today it is an established medical specialty and offers procedures that are essential in many medical specialities like nephrology, pediatrics, cardiology, psychiatry, endocrinology and oncology. Nuclear medicine refers to medicine (a pharmaceutical) that is attached to a small quantity of radioactive material (a radioisotope). This combination is called a radiopharmaceutical. There are many radiopharmaceuticals like DTPA, DMSA, HIDA, MIBI and MDP available to study different parts of the body like kidneys, heart and bones etc. Nuclear medicine uses radiation coming from inside a patient's body where as conventional radiology exposes patients to radiation from outside the body. Thus nuclear imaging study is a physiological imaging, whereas diagnostic radiology is anatomical imaging. It combines many different disciplines like chemistry, physics mathematics, computer technology, and medicine. It helps in diagnosis and to treat abnormalities very early in the progression of a disease. The information provides a quick and accurate diagnosis of wide range of conditions and diseases in a person of any age. These tests are painless and most scans expose patients to only minimal and safe amounts of radiation. The amount of radiation received from a nuclear medicine procedure is comparable to, or often many times less than, that of a diagnostic X-ray. Nuclear medicine provides an effective means of examining whether some tissues/organs are functioning properly. Therapy using nuclear medicine in an effective, safe and relatively inexpensive way of controlling and in some cases eliminating, conditions such as overactive thyroid, thyroid cancer and arthritis. Nuclear medicine imaging is unique because it provides doctors with

  16. Nuclear medicine

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    The area of nuclear medicine, the development of artificially produced radioactive isotopes for medical applications, is relatively recent. Among the subjects covered in a lengthy discussion are the following: history of development; impact of nuclear medicine; understanding the most effective use of radioisotopes; most significant uses of nuclear medicine radioimmunoassays; description of equipment designed for use in the field of nuclear medicine (counters, scanning system, display systems, gamma camera); description of radioisotopes used and their purposes; quality control. Numerous historical photographs are included. 52 refs

  17. Measurements Of Fingers Doses Of Staff Members In Nuclear Medicine Department

    International Nuclear Information System (INIS)

    AL LEHYANI, S.H.; SHOUSHA, H.A.; HASSAN, R.A.

    2009-01-01

    For some occupationally radiation exposed groups, the hands are more heavily exposed to ionizing radiation than the rest of the body. The Egyptian Atomic Energy Authority runs an extensive personal dosimetry service in Egypt, but finger doses have not been measured to a wide extent. In this study, the finger doses were measured for five different nuclear medicine staff occupational groups for which heavy irradiation of the hands was suspected. Finger doses were measured for nuclear medicine physicians, technologists, nurses and physicists. The nuclear medicine staff working with the radioactive materials wears two TLD dosimeters during the whole period, which lasted from 1 to 4 weeks. The staff performs their work on a regular basis throughout the month, and means annual doses were calculated for these groups. The doses to the fingers for the 99m Tc technologists and nurses of groups (2) and (3) were observed to be 30.24 ± 14.5 μSv/GBq (mean ± SD) and 30.37 ± 17.5 μSv/GBq, respectively. Similarly, the dose to the fingers for the 131 I technologists in group (5) was estimated to be 126.13 ± 38.2μSv/GBq. Finger doses for the physicians could not be calculated per unit of activity because they did not handle the radiopharmaceuticals directly but their doses were reported in millisieverts that accumulated in 1 week. The doses to the fingers of the physicist were 16.3±7.7 μSv/GBq. The maximum average finger dose in this study was found to be 2.8 mSv for the technologists handled therapeutic 131 I (group 5). It could be concluded that the maximum expected annual dose to the extremities appeared to be less than the annual limit (500 mSv/y).

  18. Children's (Pediatric) Nuclear Medicine

    Science.gov (United States)

    ... Professions Site Index A-Z Children's (Pediatric) Nuclear Medicine Children’s (pediatric) nuclear medicine imaging uses small amounts ... Children's Nuclear Medicine? What is Children's (Pediatric) Nuclear Medicine? Nuclear medicine is a branch of medical imaging ...

  19. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Professions Site Index A-Z Children's (Pediatric) Nuclear Medicine Children’s (pediatric) nuclear medicine imaging uses small amounts ... Children's Nuclear Medicine? What is Children's (Pediatric) Nuclear Medicine? Nuclear medicine is a branch of medical imaging ...

  20. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Physician Resources Professions Site Index A-Z Children's (Pediatric) Nuclear Medicine Children’s (pediatric) nuclear medicine imaging uses ... limitations of Children's Nuclear Medicine? What is Children's (Pediatric) Nuclear Medicine? Nuclear medicine is a branch of ...

  1. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z Children's (Pediatric) Nuclear Medicine Children’s (pediatric) nuclear medicine imaging ... the limitations of Children's Nuclear Medicine? What is Children's (Pediatric) Nuclear Medicine? Nuclear medicine is a branch ...

  2. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Resources Professions Site Index A-Z Children's (Pediatric) Nuclear Medicine Children’s (pediatric) nuclear medicine imaging uses small ... of Children's Nuclear Medicine? What is Children's (Pediatric) Nuclear Medicine? Nuclear medicine is a branch of medical ...

  3. A protocol to determine the situation of nuclear medicine in Venezuela, 1999-2000

    International Nuclear Information System (INIS)

    Carrizales, L.; Leandro, G.

    2001-01-01

    This paper presents preliminary results and the methodology followed for the implementation of a Protocol that included Radiological Protection and Quality Control at SPECT Systems in two important public hospitals at Republica Bolivariana de Venezuela. We found in these inspections that the main problems were the lack of medical physicist capacity in nuclear medicine that implemented programs of quality assurance as well as radiation protection in these departments. (author)

  4. A protocol to determine the situation of nuclear medicine in Venezuela, 1999-2000

    Energy Technology Data Exchange (ETDEWEB)

    Carrizales, L; Leandro, G [Laboratorio Secundario de Calibracion Dosimetrica, Unidad de Tecnologia Nuclear, Instituto Venezolano de Investigaciones Cientificas, Caracas (Venezuela)

    2001-03-01

    This paper presents preliminary results and the methodology followed for the implementation of a Protocol that included Radiological Protection and Quality Control at SPECT Systems in two important public hospitals at Republica Bolivariana de Venezuela. We found in these inspections that the main problems were the lack of medical physicist capacity in nuclear medicine that implemented programs of quality assurance as well as radiation protection in these departments. (author)

  5. Nuclear forces the making of the physicist Hans Bethe

    CERN Document Server

    Schweber, Silvan S

    2012-01-01

    On the fiftieth anniversary of Hiroshima, Nobel-winning physicist Hans Bethe called on his fellow scientists to stop working on weapons of mass destruction. What drove Bethe, the head of Theoretical Physics at Los Alamos during the Manhattan Project, to renounce the weaponry he had once worked so tirelessly to create? That is one of the questions answered by "Nuclear Forces", a riveting biography of Bethe's early life and development as both a scientist and a man of principle. As Silvan Schweber follows Bethe from his childhood in Germany, to laboratories in Italy and England, and on to Cornell University, he shows how these differing environments were reflected in the kind of physics Bethe produced. Many of the young quantum physicists in the 1930s, including Bethe, had Jewish roots, and Schweber considers how Liberal Judaism in Germany helps explain their remarkable contributions. A portrait emerges of a man whose strategy for staying on top of a deeply hierarchical field was to tackle only those problems h...

  6. Carl Friedrich von Weizsaecker - a physicist and philosopher in the shade of the nuclear bomb. A conversation on nuclear weapons and the responsibility of nuclear scientists

    International Nuclear Information System (INIS)

    Schaaf, M.

    1996-06-01

    The 50th anniversary of the first nuclear explosion (16th July 1945) prompted the editor of this collection to look again at the part played by German physicists in the nuclear weapons issue. Carl Friedrich von Weizsaecker, one of the last surviving witnesses of this period, kindly agreed to give a comprehensive interview on the German nuclear programme and the responsibility of physicists. The interview is published here for the first time and forms the central part of this brochure. It is complemented by two statements by Edward Teller and two historical letters. The author, in preparing this compilation, had in mind to contribute towards science-historical discussion and to give younger colleagues a graphic idea of the conflict surrounding nuclear research. (orig.) [de

  7. Nuclear medicine physics

    CERN Document Server

    De Lima, Joao Jose

    2011-01-01

    Edited by a renowned international expert in the field, Nuclear Medicine Physics offers an up-to-date, state-of-the-art account of the physics behind the theoretical foundation and applications of nuclear medicine. It covers important physical aspects of the methods and instruments involved in modern nuclear medicine, along with related biological topics. The book first discusses the physics of and machines for producing radioisotopes suitable for use in conventional nuclear medicine and PET. After focusing on positron physics and the applications of positrons in medicine and biology, it descr

  8. Frontiers in nuclear medicine symposium: Nuclear medicine & molecular biology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    This document contains the abstracts from the American College of Nuclear Physicians 1993 Fall Meeting entitled, `Frontiers in Nuclear Medicine Symposium: Nuclear Medicine and Molecular Biology`. This meeting was sponsored by the US DOE, Office of Health and Environmental Research, Office of Energy Research. The program chairman was Richard C. Reba, M.D.

  9. Quality control in nuclear medicine;Mise en oeuvre du controle de qualite en medecine nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Voyant, C. [Hopital de Castelluccio, unite de radiophysique, 20 - Ajaccio (France); Universite de Corse, CNRS UMR SPE 6134, 20 - Corte (France)

    2010-03-15

    Like in many nuclear medicine centers, the A.F.S.S.A.P.S. decision of November 25, 2008, has slightly changed our habits. The centers with medical physicist already made most of these controls, and this concept was not new for them. But what about the other centers? Sometimes, measures were made as expected, other times the manufacturers were expected to do them during the maintenance time, often nothing was formalized, and even in some cases nothing was done. Our experience in quality control in nuclear medicine is relatively recent, but we find interesting to raise some issues, including the duration for all these controls, the possible delegations, the means necessary to build them and difficulties in applying these controls. (author)

  10. Nuclear Medicine in Turkey

    International Nuclear Information System (INIS)

    Durak, H.

    2001-01-01

    Nuclear Medicine is a medical specialty that uses radionuclides for the diagnosis and treatment of diseases and it is one of the most important peaceful applications of nuclear sciences. Nuclear Medicine has a short history both in Turkey and in the world. The first use of I-131 for the treatment of thyrotoxicosis in Turkey was in 1958 at the Istanbul University Cerrahpasa Medical School. In 1962, Radiobiological Institute in Ankara University Medical School was established equipped with well-type counters, radiometers, scalers, external counters and a rectilinear scanner. In 1965, multi-probe external detection systems, color dot scanners and in 1967, anger scintillation camera had arrived. In 1962, wet lab procedures and organ scanning, in 1965 color dot scanning, dynamic studies (blood flow - renograms) and in 1967 analogue scintillation camera and dynamic camera studies have started. In 1974, nuclear medicine was established as independent medical specialty. Nuclear medicine departments have started to get established in 1978. In 1974, The Turkish Society of Nuclear Medicine (TSNM) was established with 10 members. The first president of TSNM was Prof. Dr. Yavuz Renda. Now, in the year 2000, TSNM has 349 members. Turkish Society of Nuclear Medicine is a member of European Association of Nuclear Medicine (EANM), World Federation of Nuclear Medicine and Biology (WFNMB) and WFNMB Asia-Oceania. Since 1974, TSNM has organized 13 national Nuclear Medicine congresses, 4 international Nuclear Oncology congresses and 13 nuclear medicine symposiums. In 1-5 October 2000, 'The VII th Asia and Oceania Congress of Nuclear Medicine and Biology' was held in Istanbul, Turkey. Since 1992, Turkish Journal of Nuclear Medicine is published quarterly and it is the official publication of TSNM. There are a total of 112 Nuclear Medicine centers in Turkey. There are 146 gamma cameras. (52 Siemens, 35 GE, 16 Elscint, 14 Toshiba, 10 Sopha, 12 MIE, 8 Philips, 9 Others) Two cyclotrons are

  11. Code of Ethics for the American Association of Physicists in Medicine: report of Task Group 109.

    Science.gov (United States)

    Serago, Christopher F; Adnani, Nabil; Bank, Morris I; BenComo, Jose A; Duan, Jun; Fairobent, Lynne; Freedman, D Jay; Halvorsen, Per H; Hendee, William R; Herman, Michael G; Morse, Richard K; Mower, Herbert W; Pfeiffer, Douglas E; Root, William J; Sherouse, George W; Vossler, Matthew K; Wallace, Robert E; Walters, Barbara

    2009-01-01

    A comprehensive Code of Ethics for the members of the American Association of Physicists in Medicine (AAPM) is presented as the report of Task Group 109 which consolidates previous AAPM ethics policies into a unified document. The membership of the AAPM is increasingly diverse. Prior existing AAPM ethics polices were applicable specifically to medical physicists, and did not encompass other types of members such as health physicists, regulators, corporate affiliates, physicians, scientists, engineers, those in training, or other health care professionals. Prior AAPM ethics policies did not specifically address research, education, or business ethics. The Ethics Guidelines of this new Code of Ethics have four major sections: professional conduct, research ethics, education ethics, and business ethics. Some elements of each major section may be duplicated in other sections, so that readers interested in a particular aspect of the code do not need to read the entire document for all relevant information. The prior Complaint Procedure has also been incorporated into this Code of Ethics. This Code of Ethics (PP 24-A) replaces the following AAPM policies: Ethical Guidelines for Vacating a Position (PP 4-B); Ethical Guidelines for Reviewing the Work of Another Physicist (PP 5-C); Guidelines for Ethical Practice for Medical Physicists (PP 8-D); and Ethics Complaint Procedure (PP 21-A). The AAPM Board of Directors approved this Code or Ethics on July 31, 2008.

  12. The role of medical physicist in radiation protection

    International Nuclear Information System (INIS)

    Nusslin, F.

    2010-01-01

    Ionizing Radiation is applied in Radiation Therapy, Nuclear medicine and Diagnostic Radiology. Radiation Protection in Medical Application of Ionizing Radiation requires specific Professional Competence in all relevant details of the radiation source instrumentation / equipment clinical dosimetry application procedures quality assurance medical risk-benefit assessment. Application in general include Justification of practices (sufficient benefit to the exposed individuals) Limitation of doses to individuals (occupational / public exposure) Optimization of Protection (magnitude and likelihood of exposures, and the number of individuals exposed will be ALARA. Competence of persons is normally assessed by the State by having a formal mechanism for registration, accreditation or certification of medical physicists in the various specialties (e.g. diagnostic radiology, radiation therapy, nuclear medicine). The patient safety in the use of medical radiation will be increased through: Consistent education and certification of medical team members, whose qualifications are recognized nationally, and who follow consensus practice guidelines that meet established national accrediting standards

  13. Fundamentals of nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Alazraki, N.P.; Mishkin, F.S.

    1984-01-01

    This guidebook for clinical nuclear medicine is written as a description of how nuclear medicine procedures should be used by clinicians in evaluating their patients. It is designed to assist medical students and physicians in becoming acquainted with nuclear medicine techniques for detecting and evaluating most common disorders. The material provides an introduction to, not a textbook of, nuclear medicine. Each chapter is devoted to a particular organ system or topic relevant to the risks and benefits involved in nuclear medicine studies. The emphasis is on presenting the rationales for ordering the various clinical imaging procedures performed in most nuclear medicine departments. Where appropriate, alternative imaging modalities including ultrasound, computed tomography imaging, and radiographic special procedures are discussed. Comparative data between nuclear medicine imaging and other modalities are presented to help guide the practicing clinician in the selection of the most appropriate procedure for a given problem.

  14. New recommendations from the IAEA for medical exposures: impact on nuclear medicine in Brazil

    International Nuclear Information System (INIS)

    Sa, Lidia Vasconcellos de; Kodlulovich, Simone

    2013-01-01

    An assessment of the current national standards was performed in order to verify compliance with the new recommendations, taking into account the number of available facilities and medical physicists to meet the requirements. It was found that compliance with the requirements of protocol optimization and individualization of doses, as well as the assignment of responsibility shared by all professionals involved were not disclosed. In Brazil, there is no reference levels established as also there is not a government program to obtain them. The functions and responsibilities of the medical physicist in conducting dosimetry individual patient, quality control and acceptance tests of equipment and also the calibration is not defined in the standard. Currently in Brazil there are 31 certified Medical Physicists in Medicine Nuclear power to meet approximately 390 facilities, representing only 8% required. As a member state of the IAEA, the Brazilian rules governed by CNEN is based on BSS-115, must come to terms with the GSR. The concern is now meeting the requirements, especially those relating to patients, since we have established benchmarks and individualized dosimetry. Beyond addition, the number of medical physicists are not enough to show the country's demand. (author)

  15. South African Association of Physicists in Medicine and Biology: 27. Annual congress, 11-13 Mar 1987, BLoemfontein

    International Nuclear Information System (INIS)

    1987-01-01

    The twenty-seventh annual congress of the South African Association of Physicists in Medicine and Biology was held from 11-13 March 1987, in Bloemfontein. Papers delivered at the conference covered subjects like medical physics, radiotherapy, computed tomography, scintigraphy, radiation doses and dosimetry and radioisotopes in diagnosis

  16. Role and responsibilities of medical physicists in radiological protection of patients

    International Nuclear Information System (INIS)

    Niroomand-Rad, A.

    2001-01-01

    The paper provides a brief history of the International Organization for Medical Physics (IOMP), followed by some general comments on the radiological protection of patients. The importance of establishing scientific guidelines and professional standards is emphasized, as is the need to ensure the protection of patients undergoing radiation therapy. The responsibility of qualified medical physicists in the protection of patients in nuclear medicine and in diagnostic and interventional radiology is also discussed. (author)

  17. Development of RadRob15, A Robot for Detecting Radioactive Contamination in Nuclear Medicine Departments

    Directory of Open Access Journals (Sweden)

    Shafe A.

    2016-09-01

    Full Text Available Accidental or intentional release of radioactive materials into the living or working environment may cause radioactive contamination. In nuclear medicine departments, radioactive contamination is usually due to radionuclides which emit high energy gamma photons and particles. These radionuclides have a broad range of energies and penetration capabilities. Rapid detection of radioactive contamination is very important for efficient removing of the contamination without spreading the radionuclides. A quick scan of the contaminated area helps health physicists locate the contaminated area and assess the level of activity. Studies performed in IR Iran shows that in some nuclear medicine departments, areas with relatively high levels of activity can be found. The highest contamination level was detected in corridors which are usually used by patients. To monitor radioactive contamination in nuclear medicine departments, RadRob15, a contamination detecting robot was developed in the Ionizing and Non-ionizing Radiation Protection Research Center (INIRPRC. The motor vehicle scanner and the gas radiation detector are the main components of this robot. The detection limit of this robot has enabled it to detect low levels of radioactive contamination. Our preliminary tests show that RadRob15 can be easily used in nuclear medicine departments as a device for quick surveys which identifies the presence or absence of radioactive contamination.

  18. MO-AB-207-03: ACR Update in Nuclear Medicine

    International Nuclear Information System (INIS)

    Harkness, B.

    2015-01-01

    A goal of an imaging accreditation program is to ensure adequate image quality, verify appropriate staff qualifications, and to assure patient and personnel safety. Currently, more than 35,000 facilities in 10 modalities have been accredited by the American College of Radiology (ACR), making the ACR program one of the most prolific accreditation options in the U.S. In addition, ACR is one of the accepted accreditations required by some state laws, CMS/MIPPA insurance and others. Familiarity with the ACR accreditation process is therefore essential to clinical diagnostic medical physicists. Maintaining sufficient knowledge of the ACR program must include keeping up-to-date as the various modality requirements are refined to better serve the goals of the program and to accommodate newer technologies and practices. This session consists of presentations from authorities in four ACR accreditation modality programs, including magnetic resonance imaging, computed tomography, nuclear medicine, and mammography. Each speaker will discuss the general components of the modality program and address any recent changes to the requirements. Learning Objectives: To understand the requirements of the ACR MR Accreditation program. The discussion will include accreditation of whole-body general purpose magnets, dedicated extremity systems well as breast MRI accreditation. Anticipated updates to the ACR MRI Quality Control Manual will also be reviewed. To understand the requirements of the ACR CT accreditation program, including updates to the QC manual as well as updates through the FAQ process. To understand the requirements of the ACR nuclear medicine accreditation program, and the role of the physicist in annual equipment surveys and the set up and supervision of the routine QC program. To understand the current ACR MAP Accreditation requirement and present the concepts and structure of the forthcoming ACR Digital Mammography QC Manual and Program

  19. MO-AB-207-03: ACR Update in Nuclear Medicine

    Energy Technology Data Exchange (ETDEWEB)

    Harkness, B. [Henry Ford Hospital System (United States)

    2015-06-15

    A goal of an imaging accreditation program is to ensure adequate image quality, verify appropriate staff qualifications, and to assure patient and personnel safety. Currently, more than 35,000 facilities in 10 modalities have been accredited by the American College of Radiology (ACR), making the ACR program one of the most prolific accreditation options in the U.S. In addition, ACR is one of the accepted accreditations required by some state laws, CMS/MIPPA insurance and others. Familiarity with the ACR accreditation process is therefore essential to clinical diagnostic medical physicists. Maintaining sufficient knowledge of the ACR program must include keeping up-to-date as the various modality requirements are refined to better serve the goals of the program and to accommodate newer technologies and practices. This session consists of presentations from authorities in four ACR accreditation modality programs, including magnetic resonance imaging, computed tomography, nuclear medicine, and mammography. Each speaker will discuss the general components of the modality program and address any recent changes to the requirements. Learning Objectives: To understand the requirements of the ACR MR Accreditation program. The discussion will include accreditation of whole-body general purpose magnets, dedicated extremity systems well as breast MRI accreditation. Anticipated updates to the ACR MRI Quality Control Manual will also be reviewed. To understand the requirements of the ACR CT accreditation program, including updates to the QC manual as well as updates through the FAQ process. To understand the requirements of the ACR nuclear medicine accreditation program, and the role of the physicist in annual equipment surveys and the set up and supervision of the routine QC program. To understand the current ACR MAP Accreditation requirement and present the concepts and structure of the forthcoming ACR Digital Mammography QC Manual and Program.

  20. Nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, S M [Bhabha Atomic Research Centre, Bombay (India). Radiation Medicine Centre

    1967-01-01

    The article deals with the growth of nuclear medicine in India. Radiopharmaceuticals both in elemental form and radiolabelled compounds became commercially available in India in 1961. Objectives and educational efforts of the Radiation Medicine Centre setup in Bombay are mentioned. In vivo tests of nuclear medicine such as imaging procedures, dynamic studies, dilution studies, thyroid function studies, renal function studies, linear function studies, blood flow, and absorption studies are reported. Techniques of radioimmunoassay are also mentioned.

  1. The applications of nuclear techniques in nuclear medicine

    International Nuclear Information System (INIS)

    Zhao Huiyang

    1986-01-01

    There are a great deal of advanced techniques in nuclear medicine imaging, because many recent achivements of nuclear techniques have been applied to medicine in recent years. This paper presents the effects of nuclear techniques in development of nuclear medicine imaging. The first part describes radiopharmaceuticals and nuclear medicine imaging including commonly used 99m Tc labeled agents and cyclotron produced radionuclides for organ imaging. The second part describes nuclear medicine instrucments, including PECT, SPECT, MRI ect.; and discussions on the advantages, disadvantages and present status

  2. PACS in nuclear medicine

    International Nuclear Information System (INIS)

    Kang, Keon Wook

    2000-01-01

    PACS (Picture Archiving and Communication System) is being rapidly spread and installed in many hospitals, but most of the system do not include nuclear medicine field. Although additional costs of hardware for nuclear medicine PACS is low, the complexity in developing viewing software and little market have made the nuclear medicine PACS not popular. Most PACS utilize DICOM 3.0 as standard format, but standard format in nuclear medicine has been Interfile. Interfile should be converted into DICOM format if nuclear images are to be stored and visualized in most PACS. Nowadays, many vendors supply the DICOM option in gamma camera and PET. Several hospitals in Korea have already installed nucler PACS with DICOM, but only the screen captured images are supplied. Software for visualizing pseudo-color with color lookup tables and expressing with volume view should be developed to fulfill the demand of referring physicians and nuclear medicine physicians. PACS is going to integrate not only radiologic images but also endoscopic and pathologic images. Web and PC based PACS is now a trend and is much compatible with nuclear medicine PACS. Most important barrier for nuclear medicine PACS that we encounter is not a technical problem, but indifference of investor such as administrator of hospital or PACS. Now it is time to support and invest for the development of nuclear medicine PACS

  3. Reflections at La Rabida: the responsibilities of the nuclear physicist for peace

    International Nuclear Information System (INIS)

    Hodgson, P.E.

    1988-01-01

    Atomic energy was first applied to war but it was successful in its aim of bringing about peace. Nuclear physicists have been responsible for many momentous changes in world history. Their continuing responsibility to see that the public debates on nuclear issues of both war and peace are conducted with due regard for the essential scientific facts. Attempts by nuclear scientists to influence political decisions, through Pugwash meetings and Non-Poliferation treaties are discussed in an historical context. It is concluded that the anti-nuclear activists have won the propaganda battle about nuclear power - scientists have lost the battle to convey the facts about nuclear physics and especially nuclear safety to the public. Risks from nuclear power are perceived as great whereas in fact they are very small. Wise decisions cannot be made until the facts are known. The media is saturated with false information. Those who know the facts are unable to make their voices heard. This is exceedingly dangerous for our society. (UK)

  4. Salary Information for Nuclear Engineers and Health Physicists, October 1995; FINAL

    International Nuclear Information System (INIS)

    Oak Ridge Institute for Science and Education

    1995-01-01

    Salary information was collected for October 1995 for personnel working as nuclear engineers and health physicists. The salary information includes personnel at the B.S., M.S., and Ph.D. levels with zero, one, and three years of professional work experience. Information is provided for utilities and non-utilities. Non-utilities include private sector organizations and U.S. Department of Energy contractor-operated facilities. Government agencies, the military, academic organizations, and medical facilities are excluded

  5. The nuclear shield in the 'thirty-year war' of physicists against ignorant criticism of modern physical theories

    International Nuclear Information System (INIS)

    Vizgin, Vladimir P

    1999-01-01

    This article deals with the almost 'thirty-year war' led by physicists against the authorities' incompetent philosophical and ideological interference with science. The 'war' is shown to have been related to the history of Soviet nuclear weapons. Theoretical milestones of 20th century physics, to wit, theory of relativity and quantum mechanics, suffered endless 'attacks on philosophical grounds'. The theories were proclaimed idealistic as well as unduly abstract and out of touch with practice; their authors and followers were labelled 'physical idealists', and later, in the 1940s and 1950s, even 'cosmopolitans without kith or kin'. Meanwhile, quantum and relativistic theories, as is widely known, had become the basis of nuclear physics and of the means of studying the atomic nucleus (charged particle accelerators, for instance). The two theories thus served, to a great extent, as a basis for both peaceful and military uses of nuclear energy, made possible by the discovery of uranium nuclear fission under the action of neutrons. In the first part, the article recounts how prominent physicists led the way to resisting philosophical and ideological pressure and standing up for relativity, quantum theories and nuclear physics, thus enabling the launch of the atomic project. The second part contains extensive material proving the point that physicists effectively used the 'nuclear shield' in the 1940s and 1950s against the 'philosophical-cosmopolitan' pressure, indeed saving physics from a tragic fate as that of biology at the Academy of Agricultural Sciences (VASKhNIL) session in 1948. (from the history of physics)

  6. Clinical Training of Medical Physicists Specializing in Radiation Oncology

    International Nuclear Information System (INIS)

    2009-01-01

    The application of radiation in human health, for both diagnosis and treatment of disease, is an important component of the work of the IAEA. The responsibility for the increasing technical aspects of this work is undertaken by the medical physicist. To ensure good practice in this vital area structured clinical training programmes are required to complement academic learning. This publication is intended to be a guide to the practical implementation of such a programme for radiation therapy. There is a general and growing awareness that radiation medicine is increasingly dependant on well trained medical physicists that are based in the clinical setting. However an analysis of the availability of medical physicists indicates a large shortfall of qualified and capable professionals. This is particularly evident in developing countries. While strategies to increase academic educational opportunities are critical to such countries, the need for guidance on structured clinical training was recognised by the members of the Regional Cooperative Agreement (RCA) for research, development and training related to nuclear sciences for Asia and the Pacific. Consequently a technical cooperation regional project (RAS6038) under the RCA programme was formulated to address this need in the Asia Pacific region by developing suitable material and establishing its viability. Development of a clinical training guide for medical physicists specialising in radiation therapy was started in 2005 with the appointment of a core drafting committee of regional and international experts. Since 2005 the IAEA has convened two additional consultant group meetings including additional experts to prepare the present publication. The publication drew heavily, particularly in the initial stages, from the experience and documents of the Clinical Training Programme for Radiation Oncology Medical Physicists as developed by the Australasian College of Physical Scientists and Engineers in Medicine. Their

  7. Application for internal dosimetry using biokinetic distribution of photons based on nuclear medicine images.

    Science.gov (United States)

    Leal Neto, Viriato; Vieira, José Wilson; Lima, Fernando Roberto de Andrade

    2014-01-01

    This article presents a way to obtain estimates of dose in patients submitted to radiotherapy with basis on the analysis of regions of interest on nuclear medicine images. A software called DoRadIo (Dosimetria das Radiações Ionizantes [Ionizing Radiation Dosimetry]) was developed to receive information about source organs and target organs, generating graphical and numerical results. The nuclear medicine images utilized in the present study were obtained from catalogs provided by medical physicists. The simulations were performed with computational exposure models consisting of voxel phantoms coupled with the Monte Carlo EGSnrc code. The software was developed with the Microsoft Visual Studio 2010 Service Pack and the project template Windows Presentation Foundation for C# programming language. With the mentioned tools, the authors obtained the file for optimization of Monte Carlo simulations using the EGSnrc; organization and compaction of dosimetry results with all radioactive sources; selection of regions of interest; evaluation of grayscale intensity in regions of interest; the file of weighted sources; and, finally, all the charts and numerical results. The user interface may be adapted for use in clinical nuclear medicine as a computer-aided tool to estimate the administered activity.

  8. General programs of specialized education of radiological physicists in the Czech Republic

    International Nuclear Information System (INIS)

    Dvorak, P.; Judas, L.; Richter, V.; Novak, L.

    2005-01-01

    Specialized Education of Czech radiological physicists in diagnostic radiology (DR), nuclear medicine (NM) or radiotherapy (RT) follows-up to regulated university master program. A form and content of Specialized Education which will be defined by General Programs must therefore reflect previous step. Graduates from Specialized Education will be fully competent clinical radiological physicists for DR, NM or RT according to their branch. Therefore, we strongly recommend that General Programs are made very carefully reflecting requirements of Specialized Education and current status of the field in the Czech Republic. Currently, CAMP works on its own version of General Program for each branch. CAMP is ready to collaborate closely with all other bodies included in preparation of General Programs and with the Czech Ministry of Health. (authors)

  9. Nuclear medicine and mathematics

    Energy Technology Data Exchange (ETDEWEB)

    Pedroso de Lima, J.J. [Dept. de Biofisica e Proc. de Imagem, IBILI - Faculdade de Medicina, Coimbra (Portugal)

    1996-06-01

    The purpose of this review is not to present a comprehensive description of all the mathematical tools used in nuclear medicine, but to emphasize the importance of the mathematical method in nuclear medicine and to elucidate some of the mathematical concepts currently used. We can distinguish three different areas in which mathematical support has been offered to nuclear medicine: Physiology, methodology and data processing. Nevertheless, the boundaries between these areas can be indistinct. It is impossible in a single article to give even an idea of the extent and complexity of the procedures currently usede in nuclear medicine, such as image processing, reconstruction from projections and artificial intelligence. These disciplines do not belong to nuclear medicine: They are already branches of engineering, and my interest will reside simply in revealing a little of the elegance and the fantastic potential of these new `allies` of nuclear medicine. In this review the mathematics of physiological interpretation and methodology are considered together in the same section. General aspects of data-processing methods, including image processing and artificial intelligence, are briefly analysed. The mathematical tools that are most often used to assist the interpretation of biological phenomena in nuclear medicine are considered; these include convolution and deconvolution methods, Fourier analysis, factorial analysis and neural networking. (orig.)

  10. Nuclear medicine and mathematics

    International Nuclear Information System (INIS)

    Pedroso de Lima, J.J.

    1996-01-01

    The purpose of this review is not to present a comprehensive description of all the mathematical tools used in nuclear medicine, but to emphasize the importance of the mathematical method in nuclear medicine and to elucidate some of the mathematical concepts currently used. We can distinguish three different areas in which mathematical support has been offered to nuclear medicine: Physiology, methodology and data processing. Nevertheless, the boundaries between these areas can be indistinct. It is impossible in a single article to give even an idea of the extent and complexity of the procedures currently usede in nuclear medicine, such as image processing, reconstruction from projections and artificial intelligence. These disciplines do not belong to nuclear medicine: They are already branches of engineering, and my interest will reside simply in revealing a little of the elegance and the fantastic potential of these new 'allies' of nuclear medicine. In this review the mathematics of physiological interpretation and methodology are considered together in the same section. General aspects of data-processing methods, including image processing and artificial intelligence, are briefly analysed. The mathematical tools that are most often used to assist the interpretation of biological phenomena in nuclear medicine are considered; these include convolution and deconvolution methods, Fourier analysis, factorial analysis and neural networking. (orig.)

  11. Integrating cardiology for nuclear medicine physicians. A guide to nuclear medicine physicians

    International Nuclear Information System (INIS)

    Movahed, Assad; Gnanasegaran, Gopinath; Buscombe, John R.; Hall, Margaret

    2009-01-01

    Nuclear cardiology is no longer a medical discipline residing solely in nuclear medicine. This is the first book to recognize this fact by integrating in-depth information from both the clinical cardiology and nuclear cardiology literature, and acknowledging cardiovascular medicine as the fundamental knowledge base needed for the practice of nuclear cardiology. The book is designed to increase the practitioner's knowledge of cardiovascular medicine, thereby enhancing the quality of interpretations through improved accuracy and clinical relevance.The text is divided into four sections covering all major topics in cardiology and nuclear cardiology: -Basic Sciences and Cardiovascular Diseases; -Conventional Diagnostic Modalities; -Nuclear Cardiology; -Management of Cardiovascular Diseases. (orig.)

  12. Nuclear medicine

    International Nuclear Information System (INIS)

    Chamberlain, M.J.

    1986-01-01

    Despite an aggressive, competitive diagnostic radiology department, the University Hospital, London, Ontario has seen a decline of 11% total (in vivo and in the laboratory) in the nuclear medicine workload between 1982 and 1985. The decline of in vivo work alone was 24%. This trend has already been noted in the U.S.. Nuclear medicine is no longer 'a large volume prosperous specialty of wide diagnostic application'

  13. Practical nuclear medicine

    CERN Document Server

    Gemmell, Howard G; Sharp, Peter F

    2006-01-01

    Nuclear medicine plays a crucial role in patient care, and this book is an essential guide for all practitioners to the many techniques that inform clinical management. The first part covers the scientific basis of nuclear medicine, the rest of the book deals with clinical applications. Diagnostic imaging has an increasingly important role in patient management and, despite advances in other modalities (functional MRI and spiral CT), nuclear medicine continues to make its unique contribution by its ability to demonstrate physiological function. This book is also expanded by covering areas of d

  14. Nuclear Medicine week in Colombia

    International Nuclear Information System (INIS)

    Padhy, A.K.

    2003-01-01

    During the week of 6-12 October 2003 the IAEA organized a Research Coordination Meeting on 'Relationship between lower Respiratory Tract Infection, Gastroesophageal reflux and bronchial Asthma in children' at Hospital San Ignacio in Bogota. Besides there were four workshops in Bogota; workshops on Bone infection and Bone scan in Pediatric ortopaedics at Hospital Militar and Fundacion CardioInfantil, a workshop for Nuclear Medicine Technologists and a workshop on Sentinel Lymph Node mapping and Surgical Gamma Probe Application at Institute of Oncology. A nuclear cardiology workshop was organized in Medellin, and finally crowning them all was the 9th Congress of the Colombian Association of Nuclear Medicine at Cali from 10-12 October, 2003; probably the largest and best Colombian nuclear medicine congress every held in the country. A workshop was also organized in Cali for nuclear medicine technologists in conjunction with the Annual Convention. It was a mix of IAEA's Technical Cooperation and Regular Budget activities along with the activities of Colombian Association of Nuclear Medicine, bringing in absolute synergy to galvanize the entire nuclear medicine community of the country. The week saw nuclear medicine scientists from more than 20 IAEA Member States converging on Colombia to spread the message of nuclear medicine, share knowledge and to foster International understanding and friendship among the nuclear medicine people of the world

  15. Physics and radiobiology of nuclear medicine

    CERN Document Server

    Saha, Gopal B

    2013-01-01

    The Fourth Edition of Dr. Gopal B. Saha’s Physics and Radiobiology of Nuclear Medicine was prompted by the need to provide up-to-date information to keep pace with the perpetual growth and improvement in the instrumentation and techniques employed in nuclear medicine since the last edition published in 2006. Like previous editions, the book is intended for radiology and nuclear medicine residents to prepare for the American Board of Nuclear Medicine, American Board of Radiology, and American Board of Science in Nuclear Medicine examinations, all of which require a strong physics background. Additionally, the book will serve as a textbook on nuclear medicine physics for nuclear medicine technologists taking the Nuclear Medicine Technology Certification Board examination.

  16. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... interventions. Children's (pediatric) nuclear medicine refers to imaging examinations done in babies, young children and teenagers. Nuclear ... nuclear medicine procedure work? With ordinary x-ray examinations, an image is made by passing x-rays ...

  17. Training and other conditioning factors in nuclear medicine in a developing country

    International Nuclear Information System (INIS)

    Touya, E.

    1986-01-01

    The aim of the paper is to discuss the validity of nuclear medicine in 1985, in a developing region, on the basis of certain knowledge of the area and with 20 years' experience of the problem in a small country belonging to that region. An attempt is made to identify the factors which have most significance and the action to take so as to arrive at proposals which would be useful in planning this special field. The effect of the difficult economic situation at the present time in the developing regions on health programmes and policies is discussed. The vital need for promoting and giving impetus to primary medical care is recognized and the obligation to provide secondary and tertiary medical care in the same manner in order to restore health standards is pointed out. It is understood that nuclear medicine may have an impact at the three levels of medical care, and that only those studies which strictly valorize the effectiveness and the cost/benefit and risk/benefit ratios should be encouraged. It is believed that criteria of centralization and critical mass should be met when organizing a nuclear medicine programme. The main items of multipurpose nuclear medicine equipment are determined and there is discussion of the problems involved in training for the nuclear physician, radiopharmacist, hospital physicist, electronics engineer, technician and nurse. Mention is made of the most critical aspects of equipment maintenance, availability of spares, supply of radioisotopes and radiopharmaceuticals, quality control and the individual effectiveness of each service. Reasons are given for the advantage of intervening mainly at the level on instruction and through continuous training courses so as to correct deviations and introduce new policies making for greater effectiveness in utilizing the limited economic resources available. (author)

  18. Nuclear Medicine Engineering

    International Nuclear Information System (INIS)

    Mateescu, Gheorghe; Craciunescu, Teddy

    2000-01-01

    'An image is more valuable than a thousand words' - this is the thought that underlies the authors' vision about the field of nuclear medicine. The monograph starts with a review of some theoretical and engineering notions that grounds the field of nuclear medicine: nuclear radiation, interaction of radiation with matter, radiation detection and measurement, numerical analysis. Products and methods needed for the implementation of diagnostic and research procedures in nuclear medicine are presented: radioisotopes and radiopharmaceuticals, equipment for in-vitro (radioimmunoassay, liquid scintillation counting) and in-vivo investigations (thyroid uptake, renography, dynamic studies, imaging). A special attention is focused on medical imaging theory and practice as a source of clinical information (morphological and functional). The large variety of parameters, components, biological structures and specific properties of live matter determines the practical use of three-dimensional tomographic techniques based on diverse physical principles: single-photon emission, positron emission, X-rays transmission, nuclear magnetic resonance, ultrasounds transmission and reflection, electrical impedance measurement. The fundamental reconstruction algorithms i.e., algorithms based on the projection theorem and Fourier filtering, algebraic reconstruction techniques and the algorithms based on statistical principles: maximum entropy, maximum likelihood, Monte Carlo algorithms, are depicted in details. A method based on the use of the measured point spread function is suggested. Some classical but often used techniques like linear scintigraphy and Anger gamma camera imaging are also presented together with some image enhancement techniques like Wiener filtering and blind deconvolution. The topic of the book is illustrated with some clinical samples obtained with nuclear medicine devices developed in the Nuclear Medicine Laboratory of the National Institute of Nuclear Physics and

  19. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... by Image/Video Gallery Your Radiologist Explains Nuclear Medicine Transcript Welcome to Radiology Info dot org Hello! ... d like to talk to you about nuclear medicine. Nuclear medicine offers the potential to identify disease ...

  20. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... Sponsored by Image/Video Gallery Your Radiologist Explains Nuclear Medicine Transcript Welcome to Radiology Info dot org ... I’d like to talk to you about nuclear medicine. Nuclear medicine offers the potential to identify ...

  1. Assessment of nuclear medicine capabilities in responding to a radiological terrorism event. Technical memorandum

    Energy Technology Data Exchange (ETDEWEB)

    Stodilka, R.Z. [Univ. of Western Ontario, Schulich School of Medicine, London, Ontario (Canada); Wilkinson, D

    2006-09-15

    Substantial effort has been placed into enhancing federal capabilities for responding to a Chemical, Biological, Radiological, or Nuclear (CBRN) terrorist attack. However, little emphasis has been placed on including the local-level medical responders in these efforts. In effecting response to a radiological incident, potentially useful resources to access are health care professionals with training in matters of ionizing radiation, namely: nuclear medicine physicians, radiologists, radiation oncologists, medical physicists, and technologists. In this report, we focus on Nuclear Medicine expertise in Canada, and place this expertise into the context of assisting with a radiological terrorist incident. Nuclear Medicine expertise, along with its supporting infrastructure has already been deployed in proportion to the distribution of the civilian population. Given the expectations that the civilian population places in these health care professionals, their immediate access to specialized equipment, and the delay between a radiological terrorist incident and the arrival of federal expert capabilities, it is likely that these health care professionals will play important roles in emergency response. These roles will likely be: identifying the nature of the incident, triage, decontamination, coordinating with First Responders, and communicating with the media. Acknowledging the potential value of these professionals in responding to a radiological terrorist incident, steps should be taken to enlist their support and integrate them into a coherent national strategy. (author)

  2. Assessment of nuclear medicine capabilities in responding to a radiological terrorism event. Technical memorandum

    International Nuclear Information System (INIS)

    Stodilka, R.Z.; Wilkinson, D.

    2006-09-01

    Substantial effort has been placed into enhancing federal capabilities for responding to a Chemical, Biological, Radiological, or Nuclear (CBRN) terrorist attack. However, little emphasis has been placed on including the local-level medical responders in these efforts. In effecting response to a radiological incident, potentially useful resources to access are health care professionals with training in matters of ionizing radiation, namely: nuclear medicine physicians, radiologists, radiation oncologists, medical physicists, and technologists. In this report, we focus on Nuclear Medicine expertise in Canada, and place this expertise into the context of assisting with a radiological terrorist incident. Nuclear Medicine expertise, along with its supporting infrastructure has already been deployed in proportion to the distribution of the civilian population. Given the expectations that the civilian population places in these health care professionals, their immediate access to specialized equipment, and the delay between a radiological terrorist incident and the arrival of federal expert capabilities, it is likely that these health care professionals will play important roles in emergency response. These roles will likely be: identifying the nature of the incident, triage, decontamination, coordinating with First Responders, and communicating with the media. Acknowledging the potential value of these professionals in responding to a radiological terrorist incident, steps should be taken to enlist their support and integrate them into a coherent national strategy. (author)

  3. Nuclear power in human medicine

    International Nuclear Information System (INIS)

    Kuczera, Bernhard

    2012-01-01

    The public widely associate nuclear power with the megawatt dimensions of nuclear power plants in which nuclear power is released and used for electricity production. While this use of nuclear power for electricity generation is rejected by part of the population adopting the polemic attitude of ''opting out of nuclear,'' the application of nuclear power in medicine is generally accepted. The appreciative, positive term used in this case is nuclear medicine. Both areas, nuclear medicine and environmentally friendly nuclear electricity production, can be traced back to one common origin, i.e. the ''Atoms for Peace'' speech by U.S. President Eisenhower to the U.N. Plenary Assembly on December 8, 1953. The methods of examination and treatment in nuclear medicine are illustrated in a few examples from the perspective of a nuclear engineer. Nuclear medicine is a medical discipline dealing with the use of radionuclides in humans for medical purposes. This is based on 2 principles, namely that the human organism is unable to distinguish among different isotopes in metabolic processes, and the radioactive substances are employed in amounts so small that metabolic processes will not be influenced. As in classical medicine, the application of these principles serves two complementary purposes: diagnosis and therapy. (orig.)

  4. Application for internal dosimetry using biokinetic distribution of photons based on nuclear medicine images*

    Science.gov (United States)

    Leal Neto, Viriato; Vieira, José Wilson; Lima, Fernando Roberto de Andrade

    2014-01-01

    Objective This article presents a way to obtain estimates of dose in patients submitted to radiotherapy with basis on the analysis of regions of interest on nuclear medicine images. Materials and Methods A software called DoRadIo (Dosimetria das Radiações Ionizantes [Ionizing Radiation Dosimetry]) was developed to receive information about source organs and target organs, generating graphical and numerical results. The nuclear medicine images utilized in the present study were obtained from catalogs provided by medical physicists. The simulations were performed with computational exposure models consisting of voxel phantoms coupled with the Monte Carlo EGSnrc code. The software was developed with the Microsoft Visual Studio 2010 Service Pack and the project template Windows Presentation Foundation for C# programming language. Results With the mentioned tools, the authors obtained the file for optimization of Monte Carlo simulations using the EGSnrc; organization and compaction of dosimetry results with all radioactive sources; selection of regions of interest; evaluation of grayscale intensity in regions of interest; the file of weighted sources; and, finally, all the charts and numerical results. Conclusion The user interface may be adapted for use in clinical nuclear medicine as a computer-aided tool to estimate the administered activity. PMID:25741101

  5. Application for internal dosimetry using biokinetic distribution of photons based on nuclear medicine images

    International Nuclear Information System (INIS)

    Leal Neto, Viriato; Vieira, Jose Wilson; Lima, Fernando Roberto de Andrade

    2014-01-01

    Objective: this article presents a way to obtain estimates of dose in patients submitted to radiotherapy with basis on the analysis of regions of interest on nuclear medicine images. Materials and methods: a software called DoRadIo (Dosimetria das Radiacoes Ionizantes [Ionizing Radiation Dosimetry]) was developed to receive information about source organs and target organs, generating graphical and numerical results. The nuclear medicine images utilized in the present study were obtained from catalogs provided by medical physicists. The simulations were performed with computational exposure models consisting of voxel phantoms coupled with the Monte Carlo EGSnrc code. The software was developed with the Microsoft Visual Studio 2010 Service Pack and the project template Windows Presentation Foundation for C ⧣ programming language. Results: with the mentioned tools, the authors obtained the file for optimization of Monte Carlo simulations using the EGSnrc; organization and compaction of dosimetry results with all radioactive sources; selection of regions of interest; evaluation of grayscale intensity in regions of interest; the file of weighted sources; and, finally, all the charts and numerical results. Conclusion: the user interface may be adapted for use in clinical nuclear medicine as a computer-aided tool to estimate the administered activity. (author)

  6. Application for internal dosimetry using biokinetic distribution of photons based on nuclear medicine images

    Energy Technology Data Exchange (ETDEWEB)

    Leal Neto, Viriato, E-mail: viriatoleal@yahoo.com.br [Instituto Federal de Educacao, Ciencia e Tecnologia de Pernambuco (IFPE), Recife, PE (Brazil); Vieira, Jose Wilson [Universidade Federal de Pernambuco (UPE), Recife, PE (Brazil); Lima, Fernando Roberto de Andrade [Centro Regional de Ciencias Nucleares (CRCN-NE/CNEN-PE), Recife, PE (Brazil)

    2014-09-15

    Objective: this article presents a way to obtain estimates of dose in patients submitted to radiotherapy with basis on the analysis of regions of interest on nuclear medicine images. Materials and methods: a software called DoRadIo (Dosimetria das Radiacoes Ionizantes [Ionizing Radiation Dosimetry]) was developed to receive information about source organs and target organs, generating graphical and numerical results. The nuclear medicine images utilized in the present study were obtained from catalogs provided by medical physicists. The simulations were performed with computational exposure models consisting of voxel phantoms coupled with the Monte Carlo EGSnrc code. The software was developed with the Microsoft Visual Studio 2010 Service Pack and the project template Windows Presentation Foundation for C ⧣ programming language. Results: with the mentioned tools, the authors obtained the file for optimization of Monte Carlo simulations using the EGSnrc; organization and compaction of dosimetry results with all radioactive sources; selection of regions of interest; evaluation of grayscale intensity in regions of interest; the file of weighted sources; and, finally, all the charts and numerical results. Conclusion: the user interface may be adapted for use in clinical nuclear medicine as a computer-aided tool to estimate the administered activity. (author)

  7. Nuclear medicine

    International Nuclear Information System (INIS)

    Blanquet, Paul; Blanc, Daniel.

    1976-01-01

    The applications of radioisotopes in medical diagnostics are briefly reviewed. Each organ system is considered and the Nuclear medicine procedures pertinent to that system are discussed. This includes, the principle of the test, the detector and the radiopharmaceutical used, the procedure followed and the clinical results obtained. The various types of radiation detectors presently employed in Nuclear Medicine are surveyed, including scanners, gamma cameras, positron cameras and procedures for obtaining tomographic presentation of radionuclide distributions [fr

  8. Radiation safety in nuclear medicine procedures

    International Nuclear Information System (INIS)

    Cho, Sang Geon; Kim, Ja Hae; Song, Ho Chun

    2017-01-01

    Since the nuclear disaster at the Fukushima Daiichi Nuclear Power Plant in 2011, radiation safety has become an important issue in nuclear medicine. Many structured guidelines or recommendations of various academic societies or international campaigns demonstrate important issues of radiation safety in nuclear medicine procedures. There are ongoing efforts to fulfill the basic principles of radiation protection in daily nuclear medicine practice. This article reviews important principles of radiation protection in nuclear medicine procedures. Useful references, important issues, future perspectives of the optimization of nuclear medicine procedures, and diagnostic reference level are also discussed

  9. Radiation safety in nuclear medicine procedures

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sang Geon; Kim, Ja Hae; Song, Ho Chun [Dept. of Nuclear Medicine, Medical Radiation Safety Research Center, Chonnam National University Hospital, Gwangju (Korea, Republic of)

    2017-03-15

    Since the nuclear disaster at the Fukushima Daiichi Nuclear Power Plant in 2011, radiation safety has become an important issue in nuclear medicine. Many structured guidelines or recommendations of various academic societies or international campaigns demonstrate important issues of radiation safety in nuclear medicine procedures. There are ongoing efforts to fulfill the basic principles of radiation protection in daily nuclear medicine practice. This article reviews important principles of radiation protection in nuclear medicine procedures. Useful references, important issues, future perspectives of the optimization of nuclear medicine procedures, and diagnostic reference level are also discussed.

  10. The medical physicist: Criteria and recommendations for their academic training, clinical training and certification in Latin America

    International Nuclear Information System (INIS)

    2010-01-01

    During the last decade, the International Atomic Energy Agency (IAEA) has promoted a considerable number of technical cooperation activities and regular program linked to the establishment of educational programs in radiophysical medicine in Latin America. Despite these efforts, the amount of medical physicists in the various areas of radiological medicine (radiotherapy, nuclear medicine, radiodiagnosis) remains insufficient. In addition, many medical physicists currently associated with hospitals have inadequate training, and professional conditions (situation, salary, etc.) are very far from those of their colleagues in industrialized countries. This will result in the profession of clinical medical physicist not sufficiently attractive in Latin America. The medium-term projections indicate that the continuous evolution toward a medical care based increasingly on high technology will require even more well-trained medical physicists, thereby exacerbating the current situation. In response to the problems exposed, and considering the keen interest of the Member States of the IAEA to find a consensus solution, and an effective cooperation that would enable them to solve this problem, the ARCAL project LXXXIII was launched in 2005, strengthening the performance of medical physicists in Latin America. As part of its activities is a group of experts with the task of evaluating the problem of medical physics in the region and to develop recommendations, which are contained in this document, for harmonizing training and professional recognition of medical physicists. For the Pan American Health Organization (PAHO), medical physics is an area of special attention. For many years it has been promoting safe and effective use of radiation in health and giving technical advice to the ministries of health of Latin America and Caribbean region, in this field. Taking, therefore, on account the common interest of the IAEA and PAHO by tackling this problem, the historic and

  11. Quality control in nuclear medicine

    International Nuclear Information System (INIS)

    Leme, P.R.

    1983-01-01

    The following topics are discussed: objectives of the quality control in nuclear medicine; the necessity of the quality control in nuclear medicine; guidelines and recommendations. An appendix is given concerning the guidelines for the quality control and instrumentation in nuclear medicine. (M.A.) [pt

  12. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... that are congenital (present at birth) or that develop during childhood. Physicians use nuclear medicine imaging to evaluate organ ... Nuclear medicine scans are typically used to ...

  13. Nuclear Medicine Practice in Kenya

    International Nuclear Information System (INIS)

    Ndirangu, T.D.

    2017-01-01

    Nuclear medicine is a medical specialty that relies on the use of nuclear technology in the diagnosis and treatment (therapy) of diseases. Nuclear medicine uses the principle that a certain radiopharmaceutical (tracer) will at a certain point in time have a preferential uptake by a particular body, tissue or cell. This uptake is then imaged by the use of detectors mounted in gamma cameras or PET (positron emission tomography) devices.. Unlike other radiation applications for medical use, nuclear medicine uses open (unsealed) sources of radiation. In a country with an estimated population of 48 million in 2017, Kenya has only two (2) nuclear medicine facilities (units). Being a relatively new medical discipline in Kenya, several measures have been taken by the clinical nuclear medicine team to create awareness at various levels

  14. Proceedings of the forty third annual conference of Society of Nuclear Medicine India: empowering modern medicine with molecular nuclear medicine

    International Nuclear Information System (INIS)

    2011-01-01

    Theme of the 43rd Annual Conference of the Society of Nuclear Medicine India is 'empowering modem medicine with molecular nuclear medicine'. Keeping the theme in mind, the scientific committee has arranged an attractive and comprehensive program for both physicians and scientists reflecting the multimodality background of Nuclear Medicine and Metabolic Imaging. During this meeting the present status and future prospects of Nuclear medicine are discussed at length by esteemed faculty in dedicated symposia and interesting featured sessions which are immensely facilitate in educating the participants. Nuclear Medicine has come a long way since the first applications of radioiodine in the diagnosis of thyroid disease. The specialty of nuclear medicine in India is growing very rapidly. Technology continues to push the field in new directions and open new pathways for providing optimal care to patients. It is indeed an exciting time in the world of imaging and in the field of nuclear medicine. Innovative techniques in hardware and software offer advantages for enhanced accuracy. New imaging agents, equipment, and software will provide us with new opportunities to improve current practices and to introduce new technology into the clinical protocols. Papers relevant to INIS are indexed separately

  15. Nuclear medicine technology study guide

    CERN Document Server

    Patel, Dee

    2011-01-01

    Nuclear Medicine Technology Study Guide presents a comprehensive review of nuclear medicine principles and concepts necessary for technologists to pass board examinations. The practice questions and content follow the guidelines of the Nuclear Medicine Technology Certification Board (NMTCB) and American Registry of Radiological Technologists (ARRT), allowing test takers to maximize their success in passing the examinations. The book is organized by sections of increasing difficulty, with over 600 multiple-choice questions covering all areas of nuclear medicine, including radiation safety; radi

  16. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Children's (Pediatric) Nuclear Medicine? What are some common uses of the procedure? How does the nuclear medicine procedure work? What does the equipment look like? How is ...

  17. A concise guide to nuclear medicine

    CERN Document Server

    Elgazzar, Abdelhamid H

    2011-01-01

    Nuclear medicine is an important component of modern medicine. This easy-to-use book is designed to acquaint readers with the basic principles of nuclear medicine, the instrumentation used, the gamut of procedures available, and the basis for selecting specific diagnostic or therapeutic procedures and interpreting results. After an introductory chapter on the history, technical basis, and scope of nuclear medicine, a series of chapters are devoted to the application of nuclear medicine techniques in the different body systems. In addition, the use of nuclear medicine methods within oncology is

  18. MO-E-213-02: Medical Physicist Involvement in Implementing Patient Protection Standards

    Energy Technology Data Exchange (ETDEWEB)

    Seibert, J. [UC Davis Medical Center (United States)

    2015-06-15

    The focus of work of medical physicists in 1980’s was on quality control and quality assurance. Radiation safety was important but was dominated by occupational radiation protection. A series of over exposures of patients in radiotherapy, nuclear medicine and observation of skin injuries among patients undergoing interventional procedures in 1990’s started creating the need for focus on patient protection. It gave medical physicists new directions to develop expertise in patient dosimetry and dose management. Publications creating awareness on cancer risks from CT in early part of the current century and over exposures in CT in 2008 brought radiation risks in public domain and created challenging situations for medical physicists. Increasing multiple exposures of individual patient and patient doses of few tens of mSv or exceeding 100 mSv are increasing the role of medical physicists. Expansion of usage of fluoroscopy in the hands of clinical professionals with hardly any training in radiation protection shall require further role for medical physicists. The increasing publications in journals, recent changes in Safety Standards, California law, all increase responsibilities of medical physicists in patient protection. Newer technological developments in dose efficiency and protective devices increase percentage of time devoted by medical physicists on radiation protection activities. Without radiation protection, the roles, responsibilities and day-to-day involvement of medical physicists in diagnostic radiology becomes questionable. In coming years either medical radiation protection may emerge as a specialty or medical physicists will have to keep major part of day-to-day work on radiation protection. Learning Objectives: To understand how radiation protection has been increasing its role in day-to-day activities of medical physicist To be aware about international safety Standards, national and State regulations that require higher attention to radiation

  19. MO-E-213-01: Increasing Role of Medical Physicist in Radiation Protection

    International Nuclear Information System (INIS)

    Rehani, M.

    2015-01-01

    The focus of work of medical physicists in 1980’s was on quality control and quality assurance. Radiation safety was important but was dominated by occupational radiation protection. A series of over exposures of patients in radiotherapy, nuclear medicine and observation of skin injuries among patients undergoing interventional procedures in 1990’s started creating the need for focus on patient protection. It gave medical physicists new directions to develop expertise in patient dosimetry and dose management. Publications creating awareness on cancer risks from CT in early part of the current century and over exposures in CT in 2008 brought radiation risks in public domain and created challenging situations for medical physicists. Increasing multiple exposures of individual patient and patient doses of few tens of mSv or exceeding 100 mSv are increasing the role of medical physicists. Expansion of usage of fluoroscopy in the hands of clinical professionals with hardly any training in radiation protection shall require further role for medical physicists. The increasing publications in journals, recent changes in Safety Standards, California law, all increase responsibilities of medical physicists in patient protection. Newer technological developments in dose efficiency and protective devices increase percentage of time devoted by medical physicists on radiation protection activities. Without radiation protection, the roles, responsibilities and day-to-day involvement of medical physicists in diagnostic radiology becomes questionable. In coming years either medical radiation protection may emerge as a specialty or medical physicists will have to keep major part of day-to-day work on radiation protection. Learning Objectives: To understand how radiation protection has been increasing its role in day-to-day activities of medical physicist To be aware about international safety Standards, national and State regulations that require higher attention to radiation

  20. MO-E-213-02: Medical Physicist Involvement in Implementing Patient Protection Standards

    International Nuclear Information System (INIS)

    Seibert, J.

    2015-01-01

    The focus of work of medical physicists in 1980’s was on quality control and quality assurance. Radiation safety was important but was dominated by occupational radiation protection. A series of over exposures of patients in radiotherapy, nuclear medicine and observation of skin injuries among patients undergoing interventional procedures in 1990’s started creating the need for focus on patient protection. It gave medical physicists new directions to develop expertise in patient dosimetry and dose management. Publications creating awareness on cancer risks from CT in early part of the current century and over exposures in CT in 2008 brought radiation risks in public domain and created challenging situations for medical physicists. Increasing multiple exposures of individual patient and patient doses of few tens of mSv or exceeding 100 mSv are increasing the role of medical physicists. Expansion of usage of fluoroscopy in the hands of clinical professionals with hardly any training in radiation protection shall require further role for medical physicists. The increasing publications in journals, recent changes in Safety Standards, California law, all increase responsibilities of medical physicists in patient protection. Newer technological developments in dose efficiency and protective devices increase percentage of time devoted by medical physicists on radiation protection activities. Without radiation protection, the roles, responsibilities and day-to-day involvement of medical physicists in diagnostic radiology becomes questionable. In coming years either medical radiation protection may emerge as a specialty or medical physicists will have to keep major part of day-to-day work on radiation protection. Learning Objectives: To understand how radiation protection has been increasing its role in day-to-day activities of medical physicist To be aware about international safety Standards, national and State regulations that require higher attention to radiation

  1. MO-E-213-01: Increasing Role of Medical Physicist in Radiation Protection

    Energy Technology Data Exchange (ETDEWEB)

    Rehani, M. [Massachusetts General Hospital (United States)

    2015-06-15

    The focus of work of medical physicists in 1980’s was on quality control and quality assurance. Radiation safety was important but was dominated by occupational radiation protection. A series of over exposures of patients in radiotherapy, nuclear medicine and observation of skin injuries among patients undergoing interventional procedures in 1990’s started creating the need for focus on patient protection. It gave medical physicists new directions to develop expertise in patient dosimetry and dose management. Publications creating awareness on cancer risks from CT in early part of the current century and over exposures in CT in 2008 brought radiation risks in public domain and created challenging situations for medical physicists. Increasing multiple exposures of individual patient and patient doses of few tens of mSv or exceeding 100 mSv are increasing the role of medical physicists. Expansion of usage of fluoroscopy in the hands of clinical professionals with hardly any training in radiation protection shall require further role for medical physicists. The increasing publications in journals, recent changes in Safety Standards, California law, all increase responsibilities of medical physicists in patient protection. Newer technological developments in dose efficiency and protective devices increase percentage of time devoted by medical physicists on radiation protection activities. Without radiation protection, the roles, responsibilities and day-to-day involvement of medical physicists in diagnostic radiology becomes questionable. In coming years either medical radiation protection may emerge as a specialty or medical physicists will have to keep major part of day-to-day work on radiation protection. Learning Objectives: To understand how radiation protection has been increasing its role in day-to-day activities of medical physicist To be aware about international safety Standards, national and State regulations that require higher attention to radiation

  2. White paper of nuclear medicine

    International Nuclear Information System (INIS)

    2012-10-01

    This document aims at proposing a synthetic presentation of nuclear medicine in France (definition, strengths and weaknesses, key figures about practices and the profession, stakes for years to come), a description of the corresponding education (speciality definition, abilities and responsibilities, diploma content, proposition by the European Society of Radiology and by the CNIPI, demography of the profession), and an overview of characteristics of nuclear medicine (radio-pharmacy, medical physics, paramedical personnel in nuclear medicine, hybrid imagery, therapy, relationships with industries of nuclear medicine, relationships with health authorities)

  3. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... are small, diagnostic nuclear medicine procedures result in low radiation exposure, acceptable for diagnostic exams. Thus, the radiation risk is very low compared with the potential benefits. Nuclear medicine diagnostic ...

  4. Fundamentals of nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Alazraki, N.P.; Mishkin, F.S.

    1988-01-01

    The book begins with basic science and statistics relevant to nuclear medicine, and specific organ systems are addressed in separate chapters. A section of the text also covers imaging of groups of disease processes (eg, trauma, cancer). The authors present a comparison between nuclear medicine techniques and other diagnostic imaging studies. A table is given which comments on sensitivities and specificities of common nuclear medicine studies. The sensitivities and specificities are categorized as very high, high, moderate, and so forth.

  5. Fundamentals of nuclear medicine

    International Nuclear Information System (INIS)

    Alazraki, N.P.; Mishkin, F.S.

    1988-01-01

    The book begins with basic science and statistics relevant to nuclear medicine, and specific organ systems are addressed in separate chapters. A section of the text also covers imaging of groups of disease processes (eg, trauma, cancer). The authors present a comparison between nuclear medicine techniques and other diagnostic imaging studies. A table is given which comments on sensitivities and specificities of common nuclear medicine studies. The sensitivities and specificities are categorized as very high, high, moderate, and so forth

  6. Clinical Training of Medical Physicists Specializing in Radiation Oncology (French Ed.)

    International Nuclear Information System (INIS)

    2012-01-01

    The application of radiation in human health, for both diagnosis and treatment of disease, is an important component of the work of the IAEA. The responsibility for the increasing technical aspects of this work is undertaken by the medical physicist. To ensure good practice in this vital area structured clinical training programmes are required to complement academic learning. This publication is intended to be a guide to the practical implementation of such a programme for radiation therapy. There is a general and growing awareness that radiation medicine is increasingly dependant on well trained medical physicists that are based in the clinical setting. However an analysis of the availability of medical physicists indicates a large shortfall of qualified and capable professionals. This is particularly evident in developing countries. While strategies to increase academic educational opportunities are critical to such countries, the need for guidance on structured clinical training was recognised by the members of the Regional Cooperative Agreement (RCA) for research, development and training related to nuclear sciences for Asia and the Pacific. Consequently a technical cooperation regional project (RAS6038) under the RCA programme was formulated to address this need in the Asia Pacific region by developing suitable material and establishing its viability. Development of a clinical training guide for medical physicists specialising in radiation therapy was started in 2005 with the appointment of a core drafting committee of regional and international experts. Since 2005 the IAEA has convened two additional consultant group meetings including additional experts to prepare the present publication. The publication drew heavily, particularly in the initial stages, from the experience and documents of the Clinical Training Programme for Radiation Oncology Medical Physicists as developed by the Australasian College of Physical Scientists and Engineers in Medicine. Their

  7. Clinical Training of Medical Physicists Specializing in Radiation Oncology (Spanish Ed.)

    International Nuclear Information System (INIS)

    2012-01-01

    The application of radiation in human health, for both diagnosis and treatment of disease, is an important component of the work of the IAEA. The responsibility for the increasing technical aspects of this work is undertaken by the medical physicist. To ensure good practice in this vital area structured clinical training programmes are required to complement academic learning. This publication is intended to be a guide to the practical implementation of such a programme for radiation therapy. There is a general and growing awareness that radiation medicine is increasingly dependant on well trained medical physicists that are based in the clinical setting. However an analysis of the availability of medical physicists indicates a large shortfall of qualified and capable professionals. This is particularly evident in developing countries. While strategies to increase academic educational opportunities are critical to such countries, the need for guidance on structured clinical training was recognised by the members of the Regional Cooperative Agreement (RCA) for research, development and training related to nuclear sciences for Asia and the Pacific. Consequently a technical cooperation regional project (RAS6038) under the RCA programme was formulated to address this need in the Asia Pacific region by developing suitable material and establishing its viability. Development of a clinical training guide for medical physicists specialising in radiation therapy was started in 2005 with the appointment of a core drafting committee of regional and international experts. Since 2005 the IAEA has convened two additional consultant group meetings including additional experts to prepare the present publication. The publication drew heavily, particularly in the initial stages, from the experience and documents of the Clinical Training Programme for Radiation Oncology Medical Physicists as developed by the Australasian College of Physical Scientists and Engineers in Medicine. Their

  8. Coordination compounds in nuclear medicine

    International Nuclear Information System (INIS)

    Jurisson, S.; Berning, D.; Wei Jia; Dangshe Ma

    1993-01-01

    Radiopharmaceuticals, drugs containing a radionuclide, are used routinely in nuclear medicine departments for the diagnosis of disease and are under investigation for use in the treatment of disease. Nuclear medicine takes advantage of both the nuclear properties of the radionuclide and the pharmacological properties of the radiopharmaceutical. Herein lies the real strength of nuclear medicine, the ability to monitor biochemical and physiological functions in vivo. This review discusses the coordination chemistry that forms the basis for nuclear medicine applications of the FDA-approved radiopharmaceuticals that are in clinical use, and of the most promising diagnostic and therapeutic radiopharmaceuticals that are in various stages of development. 232 refs

  9. Digital Nuclear Medicine

    International Nuclear Information System (INIS)

    Erickson, J.J.; Rollo, F.D.

    1982-01-01

    This book is meant ''to provide the most comprehensive presentation of the technical as well as clincial aspects of computerized nuclear medicine''. It covers basic applications, and advice on acquisition and quality control of nuclear medicine computer systems. The book evolved from a series of lectures given by the contributors during the computer preceptorship program at their institution, Vanderbilt University in Nashville

  10. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Because nuclear medicine procedures are able to pinpoint molecular activity within the body, they offer the potential ... or imaging device that produces pictures and provides molecular information. In many centers, nuclear medicine images can ...

  11. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... child is taking as well as vitamins and herbal supplements and if he or she has any ... What are the limitations of Children's (Pediatric) Nuclear Medicine? Nuclear medicine procedures can be time consuming. It ...

  12. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... MRI. top of page What are some common uses of the procedure? Children's (pediatric) nuclear medicine imaging ... at birth) or that develop during childhood. Physicians use nuclear medicine imaging to evaluate organ systems, including ...

  13. Handbooks in radiology: Nuclear medicine

    International Nuclear Information System (INIS)

    Datz, F.L.

    1988-01-01

    This series of handbooks covers the basic facts, major concepts and highlights in seven radiological subspecialties. ''Nuclear Medicine'' is a review of the principles, procedures and clinical applications that every radiology resident and practicing general radiologist should know about nuclear medicine. Presented in an outline format it covers all of the organ systems that are imaged by nuclear medicine

  14. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Tell your doctor about your child’s recent illnesses, medical conditions, medications and allergies. Depending on the type ... Nuclear Medicine? Nuclear medicine is a branch of medical imaging that uses small amounts of radioactive material ...

  15. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Nuclear Medicine Children’s (pediatric) nuclear medicine imaging uses small amounts of radioactive materials called radiotracers, a special ... is a branch of medical imaging that uses small amounts of radioactive material to diagnose and determine ...

  16. New recommendations from the IAEA for medical exposures: impact on nuclear medicine in Brazil; Novas recomendacoes da IAEA para exposicoes medicas: impacto em medicina nuclear no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Sa, Lidia Vasconcellos de; Kodlulovich, Simone, E-mail: lidia@ird.gov.br, E-mail: simone@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2013-10-01

    An assessment of the current national standards was performed in order to verify compliance with the new recommendations, taking into account the number of available facilities and medical physicists to meet the requirements. It was found that compliance with the requirements of protocol optimization and individualization of doses, as well as the assignment of responsibility shared by all professionals involved were not disclosed. In Brazil, there is no reference levels established as also there is not a government program to obtain them. The functions and responsibilities of the medical physicist in conducting dosimetry individual patient, quality control and acceptance tests of equipment and also the calibration is not defined in the standard. Currently in Brazil there are 31 certified Medical Physicists in Medicine Nuclear power to meet approximately 390 facilities, representing only 8% required. As a member state of the IAEA, the Brazilian rules governed by CNEN is based on BSS-115, must come to terms with the GSR. The concern is now meeting the requirements, especially those relating to patients, since we have established benchmarks and individualized dosimetry. Beyond addition, the number of medical physicists are not enough to show the country's demand. (author)

  17. Nuclear Medicine Annual, 1989

    International Nuclear Information System (INIS)

    Freeman, L.M.; Weissmann, H.S.

    1989-01-01

    Among the highlights of Nuclear Medicine Annual, 1989 are a status report on the thyroid scan in clinical practice, a review of functional and structural brain imaging in dementia, an update on radionuclide renal imaging in children, and an article outlining a quality assurance program for SPECT instrumentation. Also included are discussions on current concepts in osseous sports and stress injury scintigraphy and on correlative magnetic resonance and radionuclide imaging of bone. Other contributors assess the role of nuclear medicine in clinical decision making and examine medicolegal and regulatory aspects of nuclear medicine

  18. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Nuclear Medicine? Nuclear medicine is a branch of medical imaging that uses small amounts of radioactive material to ... a radiologist or other physician. To locate a medical imaging or radiation oncology provider in your community, you ...

  19. Nuclear medicine. 1 part. Manual

    International Nuclear Information System (INIS)

    Shlygina, O.E.; Borisenko, A.R.

    2006-01-01

    Current manual is urged to give wide-scale readers a submission on a key principles and methods of nuclear medicine, and it opportunities and restrictions in diagnostics and treatment of different diseases. Nuclear medicine is differing first of all by combination of diverse knowledge fields: special knowledge of a doctor, knowledge of physical processes bases, related with radiation, grounds of radiopharmaceutics, dosimetry. In the base of the book the 5th edition of 'Nuclear medicine' manual in 2 parts of German authors - Schicha, G.; Schober, O. is applied. In the book publishing the stuff of the Institute of Nuclear Physics of the National Nuclear Center of Republic of Kazakhstan has been worked. Modifications undergo practically all chapters: especially the second one, forth and sixth was enlarged. The 1 part of the book was published due to support of IAEA within the Technical cooperation project 'Implementation of Nuclear Medicine and Biophysics Center' (KAZ/6/007). The manual second part - devoted to applications of nuclear medicine methods for diagnostics and treatment - will be published in 2007

  20. Veterinary nuclear medicine

    International Nuclear Information System (INIS)

    Kallfelz, F.A.; Comar, C.L.; Wentworth, R.A.

    1974-01-01

    A brief review is presented of the expanding horizons of nuclear medicine, the equipment necessary for a nuclear medicine laboratory is listed, and the value of this relatively new field to the veterinary clinician is indicated. Although clinical applications to veterinary medicine have not kept pace with those of human medicine, many advances have been made, particularly in the use of in vitro techniques. Areas for expanded applications should include competitive protein binding and other in vitro procedures, particularly in connection with metabolic profile studies. Indicated also is more intensive application by the veterinarian of imaging procedures, which have been found to be of such great value to the physician. (U.S.)

  1. Radiation protection in nuclear medicine

    International Nuclear Information System (INIS)

    Corstens, F.

    1989-01-01

    Aspects of radiation protection in nuclear medicine and the role of the Dutch Society for Nuclear Medicine in these are discussed. With an effective dose-equivalence of averaged 3 mSv per year per nuclear medical examination and about 200.000 examinations per year in the Netherlands, nuclear medicine contributes only to a small degree to the total averaged radiation dose by medical treating. Nevertheless from the beginning, besides to protection of environment and personnel, much attention has been spent by nuclear physicians to dose reduction with patients. Replacing of relatively long living radionuclides like 131 I by short living radionuclides like 99m Tc is an example. In her education and acknowledgement policy the Dutch Society for Nuclear Medicine spends much attention to aspects of radiation reduction. (author). 3 tabs

  2. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... What are some common uses of the procedure? Children's (pediatric) nuclear medicine imaging is performed to help diagnose childhood disorders that are congenital (present at birth) or that develop during childhood. Physicians use nuclear medicine imaging to ...

  3. Nuclear energy and medicine

    International Nuclear Information System (INIS)

    1988-01-01

    The applications of nuclear energy on medicine, as well as the basic principles of these applications, are presented. The radiological diagnosis, the radiotherapy, the nuclear medicine, the radiological protection and the production of radioisotopes are studied. (M.A.C.) [pt

  4. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... referring physician. top of page What are the benefits vs. risks? Benefits The information provided by nuclear medicine examinations is ... risk is very low compared with the potential benefits. Nuclear medicine diagnostic procedures have been used for ...

  5. Radiological Protection of Patients in Nuclear Medicine

    International Nuclear Information System (INIS)

    Rojo, A.M.

    2011-01-01

    Full text: This lecture aims at presenting the state of the art of radiological protection of patients in nuclear medicine focusing on three aspects of interest where to achieve improvement. The hierarchy of the justification principle of the radiation protection is one of them. There seems for a change to be presented in the paradigm of the radiological protection of patients. The role of the physician who prescribes the medical practice becomes more relevant, together with the nuclear medicine specialist who should be co-responsible for the application of this justification principle. Regarding the doses optimization and the implementation of Dose Reference Level the involvement extends far beyond the physician and radioprotection officer. It is clear that the Medical Physicist is to play a very relevant role in the coordination of actions, as the nuclear medicine technician is to execute them. Another aspect to consider is patient specific dosimetry. It should become a routine practice through calculation of the absorbed dose based on biodistribution data. It should be assessed for each individual patient, as it depends on a number of patient-specific parameters, such as gender, size and the amount of fatty tissue in the body, as well as the extent and nature of the disease. In most cases, dosimetry calculations are not carried out and patients are administered standard levels of activity. There may be situations with a lack of knowledge on internal dosimetry as in many centers either none or only one or two medical physics experts are available. It shows that a formal training for experts in internal dosimetry at national level is required. However up to now, there has been no satisfactory correlation between absorbed dose estimates and patient response. Moreover, the radiation protection for the patient is not assured, as the dose values given are often numbers without connection to radiobiological and/or hematological findings. Pending tasks related to

  6. Clinical Training of Medical Physicists Specializing in Diagnostic Radiology

    International Nuclear Information System (INIS)

    2010-01-01

    The application of radiation in human health, for both diagnosis and treatment of disease, is an important component of the work of the IAEA. The responsibility for the increasing technical aspects of this work is undertaken by the medical physicist. To ensure good practice in this vital area, structured clinical training programmes are required to complement academic learning. This publication is intended to be a guide to the practical implementation of such a programme for diagnostic radiology. There is a general and growing awareness that radiation medicine is increasingly dependent on well trained medical physicists based in the clinical setting. However, an analysis of the availability of medical physicists indicates a large shortfall of qualified and capable professionals. This is particularly evident in developing countries. While strategies to increase academic educational opportunities are critical to such countries, the need for guidance on structured clinical training was recognized by the members of the Regional Cooperative Agreement (RCA) for Research, Development and Training related to Nuclear Sciences for Asia and the Pacific. Consequently, a technical cooperation regional project (RAS6038) under the RCA programme was formulated to address this need in the Asia-Pacific region by developing suitable material and establishing its viability. Development of a clinical training guide for medical physicists specializing in diagnostic radiology started in 2007 with the appointment of a core drafting committee of regional and international experts. The publication drew on the experiences of clinical training programmes in Australia and New Zealand, the UK and the USA, and was moderated by physicists working in the Asian region. This publication follows the approach of the IAEA publication Training Course Series No. 37, Clinical Training of Medical Physicists specializing in Radiation Oncology. This approach to clinical training has been successfully tested

  7. Radioisotopes in nuclear medicine

    International Nuclear Information System (INIS)

    Samuel, A.M.

    2002-01-01

    Full text: A number of advances in diverse fields of science and technology and the fruitful synchronization of many a new development to address the issues related to health care in terms of prognosis and diagnosis resulted in the availability of host of modern diagnostic tools in medicine. Nuclear medicine, a unique discipline in medicine is one such development, which during the last four decades has seen exponential growth. The unique contribution of this specialty is the ability to examine the dynamic state of every organ of the body with the help of radioactive tracers. This tracer application in nuclear medicine to monitor the biological molecules that participate in the dynamic state of body constituents has led to a whole new approach to biology and medicine. No other technique has the same level of sensitivity and specificity as obtained in radiotracer technique in the study of in-situ chemistry of body organs. As modem medicine becomes oriented towards molecules rather than organs, nuclear medicine will be in the forefront and will become an integral part of a curative process for regular and routine application. Advances in nuclear medicine will proceed along two principal lines: (i) the development of improved sensitive detectors of radiation, powerful and interpretable data processing, image analysis and display techniques, and (ii) the production of exotic and new but useful radiopharmaceuticals. All these aspects are dealt with in detail in this talk

  8. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... resume his/her normal activities after the nuclear medicine scan. If the child has been sedated, you will receive specific instructions ... usually mild. Nevertheless, you should inform the nuclear medicine personnel of any allergies your child may have or other problems that may have ...

  9. Survey on quality control measurements for nuclear medicine imaging equipment in Finland in 2006

    International Nuclear Information System (INIS)

    Korpela, Helinae; Niemelae, Jarkko

    2008-01-01

    Routine quality control (QC) is an essential requirement in nuclear medicine (NM) in order to ensure optimal functioning of equipment. To harmonise the routine QC of NM imaging equipment in Finnish hospital s (planar gamma cameras, SPECT, coincidence gamma cameras, PET), the Radiation and Nuclear Safety Authority (STUK) will publish guidelines on QC in collaboration with several hospital physicists. Recommendations will be provided on routine QC measurements and on the frequency of testing. It is also planned to provide recommendations for the acceptance criteria when assessing different performance parameters for NM imaging equipment. In order to determine what performance parameters of NM equipment are currently measured in hospitals, how frequently they are measured and what acceptance criteria are used, a survey was carried out on the QC of NM equipment in Finland during 2006. (author)

  10. Nuclear medicine in Ghana

    International Nuclear Information System (INIS)

    Affram, R.K.; Kyere, K.; Amuasi, J.

    1991-01-01

    The background to the introduction and application of radioisotopes in medicine culminating in the establishment of the nuclear Medicine Unit at the Korle Bu Teaching Hospital, Ghana, has been examined. The Unit has been involved in important clinical researches since early 1970s but routine application in patient management has not always been possible because of cost per test and lack of continuous availability of convertible currency for the purchase of radioisotopes which are not presently produced by the National Nuclear Research Institute at Kwabenya. The capabilities and potentials of the Unit are highlighted and a comparison of Nuclear Medicine techniques to other medical diagnostic and imaging methods have been made. There is no organised instruction in the principles of medical imaging and diagnostic methods at both undergraduate and postgraduate levels in Korle Bu Teaching Hospital which has not promoted the use of Nuclear Medicine techniques. The development of a comprehensive medical diagnostic and imaging services is urgently needed. (author). 18 refs., 3 tabs

  11. A New Approach for Education and Training of Medical Physicists in Cuba: From University to Clinical Training

    International Nuclear Information System (INIS)

    Alfonso-Laguardia, R.; Rivero Blanco, J.M.

    2016-01-01

    Full text: According to the international recommendations of IAEA and the International Organization for Medical Physics (IOMP), the education and training of clinically qualified medical physicists (CQMP) should include three main academic and professional elements: a university level education, a postgraduate education specific in medical physics (MP) and a supervised clinical training. In Cuba, most of the medical physicists working in radiation oncology (RO) or nuclear medicine (NM) services have graduated from nuclear related programmes of the High Institute on Applied Technologies and Sciences (InSTEC), who further perform a postgraduate study in medical physics (MP), at the level of a so-called Diploma course or a Master in Sciences. Nevertheless, the third level of education, namely the supervised clinical training has not yet been established, due to the lack of official recognition of the profession of MP by the health authorities. A new approach for comprehensive training of CQMP is presented, where, by maintaining the three elements of education, the process is optimized so that a medical physicist is prepared with the highest level of theoretical and clinical training, in agreement with the current demand of the advanced technologies put in service in Cuban hospitals. (author

  12. Extracts from IAEA's Resources Manual in Nuclear Medicine. Part-3: Establishing Nuclear Medicine Services

    International Nuclear Information System (INIS)

    2003-01-01

    In the past, consideration was given to the categories of nuclear medicine ranging from simple imaging or in-vitro laboratories, to more complex departments performing a full range of in-vitro and in-vivo procedures that are also involved in advanced clinical services, training programmes, research and development. In developing countries, nuclear medicine historically has often been an offshoot of pathology, radiology or radiotherapy services. These origins are currently changing as less radioimmunoassay is performed and fully-fledged, independent departments of nuclear medicine are being set up. The trend appears to be that all assays (radioassay or ELISA) are done in a biochemistry laboratory whereas nuclear medicine departments are involved largely in diagnostic procedures, radionuclide therapy and non-imaging in-vitro tests. The level of nuclear medicine services is categorized according to three levels of need: Level 1: Only one gamma camera is needed for imaging purposes. The radiopharmaceutical supply, physics and radiation protection services are contracted outside the centre. Other requirements include a receptionist and general secretarial assistance. A single imaging room connected to a shared reporting room should be sufficient, with a staff of one nuclear medicine physician and one technologist, with back-up. This level is appropriate for a small private practice. Level 2: This is suitable for a general hospital where there are multiple imaging rooms where in-vitro and other non-imaging studies would generally be performed as well as radionuclide therapy. Level 3: his is appropriate for an academic institution where there is a need for a comprehensive clinical nuclear medicine service, human resource development and research programmes. Radionuclide therapy for in-patients and outpatients is provided

  13. Radiation protection on nuclear medicine services

    International Nuclear Information System (INIS)

    Anon

    2000-01-01

    Nuclear medicine is a sector of the medicine that studies and applies radionuclide in diagnosis and therapy. Nuclear medicine is a very specific area of the medicine, making use of non-sealed radioactive sources which are prescribed to the patient orally or are injected. Special procedures in radiation protection are required in nuclear medicine to manipulate these kind of sources and to produce technetium-99m through molybdenum generator. The present paper addresses the them radiation protection in a Nuclear Medicine Department (NMD), showing the main requirements of the CNEN- National Commission of Nuclear Energy and the Public Health. Radiation protection procedures adopted in assembling a NMD, as well the daily techniques for monitoring and for individual dosimetry are discussed. Past and present analyses in a level of radiation protection are presented. (author)

  14. Developments in nuclear medicine

    International Nuclear Information System (INIS)

    Elias, H.

    1977-01-01

    The article reports on the first international meeting about radiopharmaceutical chemistry in the Brookhaven National Laboratory, Long Island/USA, from 21st to 24th September, 1976. The meeting report is preceded by the explanation of the terms 'radiopharmaceutical chemistry' and 'nuclear medicine' and a brief survey of the history. The interdisciplinary connection of the spheres of nuclear physics, nuclear chemistry, biochemistry, nuclear medicine, and data processing is also briefly shown. This is necessary before radiodiagnosis can be made for a patient. (RB) [de

  15. Nuclear medicine in developing nations

    International Nuclear Information System (INIS)

    Nofal, M.M.

    1985-01-01

    Agency activities in nuclear medicine are directed towards effectively applying techniques to the diagnosis and management of patients attending nuclear medicine units in about 60 developing countries. A corollary purpose is to use these techniques in investigations related to control of parasitic diseases distinctive to some of these countries. Through such efforts, the aim is to improve health standards through better diagnosis, and to achieve a better understanding of disease processes as well as their prevention and management. Among general trends observed for the region: Clinical nuclear medicine; Radiopharmaceuticals; Monoclonal antibodies; Radioimmunoassay (RIA); Nuclear imaging

  16. Radiation protection in nuclear medicine

    International Nuclear Information System (INIS)

    Chougule, Arun

    2014-01-01

    The branch of medical science that utilizes the nuclear properties of the radioactivity and stable nuclides to make diagnostic evaluation of anatomical and/or physiological conditions of the body and provide therapy with unsealed radioactive sources is called Nuclear Medicine (NM). The use of unsealed radionuclides in medicine is increasing throughout the world for diagnosis and treatment. As per UNSCEAR report more than 6 million nuclear medicine procedures are conducted in a year. However we know that radiation is double edged sword and if not used carefully will be harmful to patient as well as staff and therefore a nuclear medicine procedure should be undertaken only after proper justification and optimization. Nuclear medicine procedures are different than the X-ray diagnostic procedures as in NM, radioisotope is administered to patient and patient becomes radioactive. The NM staff is involved in unpacking radioactive material, activity measurements, storage of sources, internal transports of sources, preparation of radiopharmaceuticals, administration of radiopharmaceutical, examination of the patient, care of the radioactive patient, handling of radioactive waste and therefore receives radiation dose. This talk will discuss the various steps for radiation safety of patient, staff and public during Nuclear Medicine procedures so as to implementing the ALARA concept. (author)

  17. Nuclear Medicine Practice in Kenya

    International Nuclear Information System (INIS)

    Ndrirangu, T.T.

    2017-01-01

    Nuclear medicine is a medical specialty that relies on the use of nuclear technology in the diagnosis and treatment (therapy) of diseases. Nuclear medicine uses the principle that a certain radiopharmaceutical (tracer) will at a certain point in time have a preferential uptake by a particular body, tissue or cell. Unlike other radiation applications for medical use, nuclear medicine uses open (unsealed) sources of radiation. The tracer is introduced into the body of the patient through several routes (oral, intravenous, percutaneous, intradermally, inhalation, intracapsular etc) and s/he becomes the source of radiation. Early diagnosis of diseases coupled with associated timely therapeutic intervention will lead to better prognosis. In a country with an estimated population of 42 million in 2017, Kenya has only two (2) nuclear medicine facilities (units) that is Kenyatta National Hospital - Public facility and Aga Khan University Hospital which is a Private facility. Being a relatively new medical discipline in Kenya, several measures have been taken by the clinical nuclear medicine team to create awareness at various levels. Kenya does not manufacture radiopharmaceuticals. We therefore have to import them from abroad and this makes them quite expensive, and the process demanding. There is no local training in nuclear medicine and staff have to be sent abroad for training, making this quite expensive and cumbersome and the IAEA has been complimenting in this area. With concerted effort by all stakeholders at the individual, national and international level, it is possible for Kenya to effectively sustain clinical nuclear medicine service not only as a diagnostic tool in many disease entities, but also play an increasingly important role in therapy

  18. Nuclear medicine

    International Nuclear Information System (INIS)

    Reichelt, H.G.

    1980-01-01

    Nuclear medicine as a complex diagnostical method is used mainly to detect functional organic disorders, to locate disorders and for radioimmunologic assays (RIA) in vitro. In surgery, its indication range comprises the thyroid (in vivo and in vitro), liver and bile ducts, skeletal and joint diseases, disorders of the cerebro-spinal liquor system and the urologic disorders. In the early detection of tumors, the search for metastases and tumor after-care, scintiscanning and the tumor marcher method (CEA) can be of great practical advantage, but the value of myocardial sciritiscanning in cardiac respectively coronary disorders is restricted. The paper is also concerned with the radiation doses in nuclear medicine. (orig.) [de

  19. Estimation of Internal Radiation Dose to Nuclear Medicine Workers at Siriraj Hospital

    International Nuclear Information System (INIS)

    Asawarattanapakdee, J.; Sritongkul, N.; Chaudakshetrin, P.; Kanchanaphiboon, P.; Tuntawiroon, M.

    2012-01-01

    Every type of work performed in a nuclear medicine department will make a contribution to both external and internal exposure of the worker. The purpose of this study is to evaluate the potential risks of internal contamination to staff members during nuclear medicine practices and to conclude about the requirement of a routine internal monitoring. Following the method describes in the ICRP Publication 78 and the IAEA Safety Standard Series No. RS- G-1.2, in vivo thyroid bioassays using NaI(Tl) thyroid probe were performed to determine the intake estimates on 7 groups of nuclear medicine personnel working with I-131 and Tc-99m, based on working conditions and amount of radionuclides being handled. Frequency of measurements was between 7 and 14 days. These include (1) physicians and physicists, (2) radiochemists (3) technologists, (4) nurses and assistant nurses, (5) imaging room assistants, (6) hot lab workers and (7) hospital ward housekeepers/cleaners. Among all workers, the intake estimates of I-131 in the thyroid ranged from 0 to 76.7 kBq and of the technetium-99m from 0 to 35.4 MBq. The mean committed effective dose equivalent (CEDE) from both I-131 and Tc-99m were 0.63, 1.44 0.53, 0.57, 0.73, 0.98, and 1.36, mSv, for group 1 through group 7 respectively. However, the highest mean CEDE of 1.44 (max. 1.75) and 1.36 (max. 2.11) mSv observed in groups of radiochemists and hospital ward housekeepers were within the permissible level. Our results showed that CEDE for internal exposure in this study were less than investigate level of 5 mSv according to the ICRP Publication 78 and the IAEA Basic Safety Standards. However, the mean CEDE for radiochemists and hospital ward housekeepers were considered in exceed of the limits of recording level (1 mSv).The increasing use of I-131 and Tc-99m in nuclear medicine poses significant risks of internal exposure to the staff. This study suggests that a routine monitoring program for internal exposures should be implemented for

  20. TH-E-9A-01: Medical Physics 1.0 to 2.0, Session 4: Computed Tomography, Ultrasound and Nuclear Medicine

    International Nuclear Information System (INIS)

    Samei, E; Nelson, J; Hangiandreou, N

    2014-01-01

    communication, use optimization (dose and technique factors), automated analysis and data management (automated QC methods, protocol tracking, dose monitoring, issue tracking), and meaningful QC considerations. US 2.0: Ultrasound imaging is evolving at a rapid pace, adding new imaging functions and modes that continue to enhance its clinical utility and benefits to patients. The ultrasound talk will look ahead 10–15 years and consider how medical physicists can bring maximal value to the clinical ultrasound practices of the future. The roles of physics in accreditation and regulatory compliance, image quality and exam optimization, clinical innovation, and education of staff and trainees will all be considered. A detailed examination of expected technology evolution and impact on image quality metrics will be presented. Clinical implementation of comprehensive physics services will also be discussed. Nuclear Medicine 2.0: Although the basic science of nuclear imaging has remained relatively unchanged since its inception, advances in instrumentation continue to advance the field into new territories. With a great number of these advances occurring over the past decade, the role and testing strategies of clinical nuclear medicine physicists must evolve in parallel. The Nuclear Medicine 2.0 presentation is designed to highlight some of the recent advances from a clinical medical physicist perspective and provide ideas and motivation for designing better evaluation strategies. Topics include improvement of traditional physics metrics and analytics, testing implications of hybrid imaging and advanced detector technologies, and strategies for effective implementation into the clinic. Learning Objectives: Become familiar with new physics metrics and analytics in nuclear medicine, CT, and ultrasound. To become familiar with the major new developments of clinical physics support. To understand the physics testing implications of new technologies, hardware, software, and applications

  1. TH-E-9A-01: Medical Physics 1.0 to 2.0, Session 4: Computed Tomography, Ultrasound and Nuclear Medicine

    Energy Technology Data Exchange (ETDEWEB)

    Samei, E; Nelson, J [Duke University Medical Center, Durham, NC (United States); Hangiandreou, N [Mayo Clinic, Rochester, MN (United States)

    2014-06-15

    communication, use optimization (dose and technique factors), automated analysis and data management (automated QC methods, protocol tracking, dose monitoring, issue tracking), and meaningful QC considerations. US 2.0: Ultrasound imaging is evolving at a rapid pace, adding new imaging functions and modes that continue to enhance its clinical utility and benefits to patients. The ultrasound talk will look ahead 10–15 years and consider how medical physicists can bring maximal value to the clinical ultrasound practices of the future. The roles of physics in accreditation and regulatory compliance, image quality and exam optimization, clinical innovation, and education of staff and trainees will all be considered. A detailed examination of expected technology evolution and impact on image quality metrics will be presented. Clinical implementation of comprehensive physics services will also be discussed. Nuclear Medicine 2.0: Although the basic science of nuclear imaging has remained relatively unchanged since its inception, advances in instrumentation continue to advance the field into new territories. With a great number of these advances occurring over the past decade, the role and testing strategies of clinical nuclear medicine physicists must evolve in parallel. The Nuclear Medicine 2.0 presentation is designed to highlight some of the recent advances from a clinical medical physicist perspective and provide ideas and motivation for designing better evaluation strategies. Topics include improvement of traditional physics metrics and analytics, testing implications of hybrid imaging and advanced detector technologies, and strategies for effective implementation into the clinic. Learning Objectives: Become familiar with new physics metrics and analytics in nuclear medicine, CT, and ultrasound. To become familiar with the major new developments of clinical physics support. To understand the physics testing implications of new technologies, hardware, software, and applications

  2. Knowledge Management in Nuclear Medicine

    International Nuclear Information System (INIS)

    Abaza, A.

    2017-01-01

    The last two decades have seen a significant increase in the demand for medical radiation services following the introduction of new techniques and technologies that has led to major improvements in the diagnosis and treatment of human diseases. The diagnostic and therapeutic applications of nuclear medicine techniques play a pivotal role in the management of these diseases, improving the quality of life of patients by means of an early diagnosis allowing opportune and proper therapy. On the other hand, inappropriate or unskilled use of these technologies can result in potential health hazards for patients and staff. So, there is a need to control and minimize these health risks and to maximize the benefits of radiation in medicine. The present study aims to discuss the role of nuclear medicine technology knowledge and scales in improving the management of patients, and raising the awareness and knowledge of nuclear medicine staff regarding the use of nuclear medicine facilities. The practical experience knowledge of nuclear medicine staff in 50 medical centers was reviewed through normal visiting and compared with the IAEA Published documents information. This review shows that the nuclear medicine staff has good technology knowledge and scales during managing patients as compared to IAEA Published information regarding the radiation protection measures and regulation. The outcome of the study reveals that competent authority can improve radiation safety in medical settings by developing and facilitating the implementation of scientific evidence-based policies and recommendations covering nuclear medicine technology focusing in the public health aspects and considering the risks and benefits of the use of radiation in health care. It could be concluded that concerted and coordinated efforts are required to improve radiation safety, quality and sustain ability of health systems

  3. Handbook on care, handling and protection of nuclear medicine instruments

    International Nuclear Information System (INIS)

    2000-11-01

    Instruments are fundamental to successful nuclear medicine practice. They must be properly installed in an environment in which they can give accurate and uninterrupted service. They have to be properly and carefully operated and supported throughout their life by regular care and maintenance. If something is wrong with a key instrument all well trained staff members are idle and all purchased radiopharmaceuticals become useless. Overall responsibility for instrumentation rests with the directors of nuclear medicine centres. They should support their electronic engineers, medical physicists, technologists and physicians to plan and implement the care and protection of nuclear medicine instruments, see that they are properly maintained, and kept in optimum working condition by regular checks. Protection should be considered, and provided for, before installing any new instrument. The protective devices are part of the new installation and should be well maintained along with the instrument throughout its life. Thus protection needs careful planning, particularly at the beginning of a new instrumentation programme. It can affect selection, procurement, acceptance testing, and the design of quality control and maintenance routines. These activities should be considered as important in their own right. They should not be mixed in with other functions or left to take care of themselves in the daily rush to get through routine work. Experience suggests that more than half of all failures of electronic equipment are due to damage by external electrical disturbances. Section 2 of this handbook aims to help instrument users in nuclear medicine centres to understand the nature of the various types of disturbance, and to protect against them. Section 3 shows how air conditioning can help to protect instrumentation. Section 4 lists some practical tips to avoid accidental damage due to mishandling. A computer program for use with Personal Computers, ''EPC Expert'' is described

  4. MO-AB-207-00: ACR Update in MR, CT, Nuclear Medicine, and Mammography

    International Nuclear Information System (INIS)

    2015-01-01

    A goal of an imaging accreditation program is to ensure adequate image quality, verify appropriate staff qualifications, and to assure patient and personnel safety. Currently, more than 35,000 facilities in 10 modalities have been accredited by the American College of Radiology (ACR), making the ACR program one of the most prolific accreditation options in the U.S. In addition, ACR is one of the accepted accreditations required by some state laws, CMS/MIPPA insurance and others. Familiarity with the ACR accreditation process is therefore essential to clinical diagnostic medical physicists. Maintaining sufficient knowledge of the ACR program must include keeping up-to-date as the various modality requirements are refined to better serve the goals of the program and to accommodate newer technologies and practices. This session consists of presentations from authorities in four ACR accreditation modality programs, including magnetic resonance imaging, computed tomography, nuclear medicine, and mammography. Each speaker will discuss the general components of the modality program and address any recent changes to the requirements. Learning Objectives: To understand the requirements of the ACR MR Accreditation program. The discussion will include accreditation of whole-body general purpose magnets, dedicated extremity systems well as breast MRI accreditation. Anticipated updates to the ACR MRI Quality Control Manual will also be reviewed. To understand the requirements of the ACR CT accreditation program, including updates to the QC manual as well as updates through the FAQ process. To understand the requirements of the ACR nuclear medicine accreditation program, and the role of the physicist in annual equipment surveys and the set up and supervision of the routine QC program. To understand the current ACR MAP Accreditation requirement and present the concepts and structure of the forthcoming ACR Digital Mammography QC Manual and Program

  5. MO-AB-207-00: ACR Update in MR, CT, Nuclear Medicine, and Mammography

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    A goal of an imaging accreditation program is to ensure adequate image quality, verify appropriate staff qualifications, and to assure patient and personnel safety. Currently, more than 35,000 facilities in 10 modalities have been accredited by the American College of Radiology (ACR), making the ACR program one of the most prolific accreditation options in the U.S. In addition, ACR is one of the accepted accreditations required by some state laws, CMS/MIPPA insurance and others. Familiarity with the ACR accreditation process is therefore essential to clinical diagnostic medical physicists. Maintaining sufficient knowledge of the ACR program must include keeping up-to-date as the various modality requirements are refined to better serve the goals of the program and to accommodate newer technologies and practices. This session consists of presentations from authorities in four ACR accreditation modality programs, including magnetic resonance imaging, computed tomography, nuclear medicine, and mammography. Each speaker will discuss the general components of the modality program and address any recent changes to the requirements. Learning Objectives: To understand the requirements of the ACR MR Accreditation program. The discussion will include accreditation of whole-body general purpose magnets, dedicated extremity systems well as breast MRI accreditation. Anticipated updates to the ACR MRI Quality Control Manual will also be reviewed. To understand the requirements of the ACR CT accreditation program, including updates to the QC manual as well as updates through the FAQ process. To understand the requirements of the ACR nuclear medicine accreditation program, and the role of the physicist in annual equipment surveys and the set up and supervision of the routine QC program. To understand the current ACR MAP Accreditation requirement and present the concepts and structure of the forthcoming ACR Digital Mammography QC Manual and Program.

  6. The development of nuclear medicine in Slovenia and Ljubljana; half a century of nuclear medicine in Slovenia

    International Nuclear Information System (INIS)

    Slavec, Zvonka Zupanic; Gaberscek, Simona; Slavec, Ksenija

    2012-01-01

    Nuclear medicine began to be developed in the USA after 1938 when radionuclides were introduced into medicine and in Europe after radionuclides began to be produced at the Harwell reactor (England, 1947). Slovenia began its first investigations in the 1950s. This article describes the development of nuclear medicine in Slovenia and Ljubljana. The first nuclear medicine interventions were performed in Slovenia at the Internal Clinic in Ljubljana in the period 1954–1959. In 1954, Dr Jože Satler started using radioactive iodine for thyroid investigations. In the same year, Dr Bojan Varl, who is considered the pioneer of nuclear medicine in Slovenia, began systematically introducing nuclear medicine. The first radioisotope laboratories were established in January 1960 at the Institute of Oncology and at the Internal Clinic. Under the direction of Dr. Varl, the laboratory at the Internal Clinic developed gradually and in 1973 became the Clinic for Nuclear Medicine with departments for in vivo and in vitro diagnostics and for the treatment of inpatients and outpatients at the thyroid department. The Clinic for Nuclear Medicine became a teaching unit of the Medical Faculty and developed its own post-graduate programme – the first student enrolled in 1972. In the 1960s, radioisotope laboratories opened in the general hospitals of Slovenj Gradec and Celje, and in the 1970s also in Maribor, Izola and Šempeter pri Novi Gorici. Nowadays, nuclear medicine units are modernly equipped and the staff is trained in morphological, functional and laboratory diagnostics in clinical medicine. They also work on the treatment of cancer, increased thyroid function and other diseases

  7. Evolution of nuclear medicine: a historical perspective

    International Nuclear Information System (INIS)

    Ahmed, A.; Kamal, S.

    1996-01-01

    The field Nuclear Medicine has Completed its 100 yeas in 1996. Nuclear medicine began with physics, expanded into chemistry and instrumentation, and then greatly influenced various fields of medicine. The chronology of the events that formulated the present status of nuclear medicine involves some of the great pioneers of yesterday like Becquerel, Curie, Joliot, Hevesy, Anger, Berson and Yallow. The field of nuclear medicine has been regarded as the bridge builder between various aspects of health care and within next 20 years, nuclear medicine enters a new age of certainty, in which surgery, radiation and chemotherapy will only be used when a benefit in certain to result from the treatment. (author)

  8. Pediatric nuclear medicine

    International Nuclear Information System (INIS)

    1986-01-01

    This symposium presented the latest techniques and approaches to the proper medical application of radionuclides in pediatrics. An expert faculty, comprised of specialists in the field of pediatric nuclear medicine, discussed the major indications as well as the advantages and potential hazards of nuclear medicine procedures compared to other diagnostic modalities. In recent years, newer radiopharmaceuticals labeled with technetium-99m and other short-lived radionuclides with relatively favorable radiation characteristics have permitted a variety of diagnostic studies that are very useful clinically and carry a substantially lower radiation burden then many comparable X-ray studies. This new battery of nuclear medicine procedures is now widely available for diagnosis and management of pediatric patients. Many recent research studies in children have yielded data concerning the effacacy of these procedures, and current recommendations will be presented by those involved in conducting such studies. Individual papers are processed separately for the Energy Data Base

  9. Pediatric nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    This symposium presented the latest techniques and approaches to the proper medical application of radionuclides in pediatrics. An expert faculty, comprised of specialists in the field of pediatric nuclear medicine, discussed the major indications as well as the advantages and potential hazards of nuclear medicine procedures compared to other diagnostic modalities. In recent years, newer radiopharmaceuticals labeled with technetium-99m and other short-lived radionuclides with relatively favorable radiation characteristics have permitted a variety of diagnostic studies that are very useful clinically and carry a substantially lower radiation burden then many comparable X-ray studies. This new battery of nuclear medicine procedures is now widely available for diagnosis and management of pediatric patients. Many recent research studies in children have yielded data concerning the effacacy of these procedures, and current recommendations will be presented by those involved in conducting such studies. Individual papers are processed separately for the Energy Data Base.

  10. Nuclear medicine tomorrow

    International Nuclear Information System (INIS)

    Marko, A.M.

    1986-04-01

    The purpose of this Workshop was to discuss and promote future nuclear medicine applications. Atomic Energy of Canada Limited (AECL) is determined to assist in this role. A major aim of this gathering was to form an interface that was meaningful, representative of the two entities, and above all, on-going. In the opening address, given by Mr. J. Donnelly, President of AECL, this strong commitment was emphasized. In the individual sessions, AECL participants outlined R and D programs and unique expertise that promised to be of interest to members of the nuclear medicine community. The latter group, in turn, described what they saw as some problems and needs of nuclear medicine, especially in the near future. These Proceedings comprise the record of the formal presentations. Additionally, a system of reporting by rapporteurs insured a summary of informal discussions at the sessions and brought to focus pertinent conclusions of the workshop attendees

  11. Introductory physics of nuclear medicine. Third edition

    International Nuclear Information System (INIS)

    Chandra, R.

    1987-01-01

    The new third edition includes essential details and many examples and problems taken from the routine practice of nuclear medicine. Basic principles and underlying concepts are explained, although it is assumed that the reader has some current use as a bone densitometer. For resident physicians in nuclear medicine, residents in pathology, radiology, and internal medicine, and students of nuclear medicine technology, the third edition offers a simplified and reliable approach to the physics and basic sciences of nuclear medicine

  12. Physicists in the Wild

    Science.gov (United States)

    Miller, Michael L.

    2017-09-01

    Startups and large corporations are full of physicists, many hiding in plain sight. Why? I will discuss the strong parallels between basic research in nuclear/particle physics, founding teams at great startups, and leaders at some of the world's largest corporations. How big are these opportunities (mission and capital), and what can we do to help prepare more physicists for such roles? I will provide lessons learned from my winding career that began at the NSCL as a philosophy undergrad, proceeded through a PhD, postdoc and brief stint as faculty, and continued through the founding of an early cloud computing startup, a sale to IBM, and the founding of one of Silicon Valley's most active venture capital firms.

  13. Technetium in chemistry and nuclear medicine

    International Nuclear Information System (INIS)

    Deutsch, E.; Nicolini, M.; Wagner, H.N.

    1983-01-01

    This volume explores the potential of technetium radiopharmaceuticals in clinical nuclear medicine. The authors examine the capabilities of synthetic inorganic chemists to synthesize technetium radiopharmaceuticals and the specific requirements of the nuclear medicine practitioner. Sections cover the chemistry of technetium, the production of radiopharmaceuticals labeled with technetium, and the use of technetium radiopharmaceuticals in nuclear medicine

  14. Recent history of nuclear medicine

    International Nuclear Information System (INIS)

    Potchen, E.J.; Gift, D.A.

    1988-01-01

    Diagnostic nuclear medicine's recent history is characterized both by significant change and by growing participation in efforts to quantify the impact of nuclear medicine procedures on clinical judgment and patient management, as well as to develop methods for studying the efficacy of diagnostic procedures in general. The replacement of many nuclear medicine procedures that at one time were considered essential standards of clinical care by newer, more efficient and effective modalities has been complimented by the continued development of increasingly sophisticated applications of scintigraphic tracer methods

  15. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... you about nuclear medicine. Nuclear medicine offers the potential to identify disease in its earliest stage, often ... may be asked to wear a gown as well. Tell your doctor if there is any possibility ...

  16. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... Nuclear Medicine Transcript Welcome to Radiology Info dot org Hello! I’m Dr. Ramji Rajendran, a radiation ... more about nuclear medicine, visit Radiology Info dot org. Thank you for your time! Spotlight Recently posted: ...

  17. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... stage, often before symptoms occur or before abnormalities can be detected with other diagnostic tests. Nuclear medicine ... nuclear medicine exam, there are several things you can do to prepare. First, you may be asked ...

  18. Salary Information for Nuclear Engineers and Health Physicists, July 1996; FINAL

    International Nuclear Information System (INIS)

    Oak Ridge Institute for Science and Education

    1996-01-01

    Salary information was collected for July 1996 for personnel working as nuclear engineers and health physicists. The salary information includes personnel at the B.S., M.S., and Ph.D. levels with zero, one, three, four to seven, and eight to ten years of professional work experience. Information is provided for utilities and non-utilities. Non-utilities include private sector organizations and U.S. Department of Energy contractor-operated facilities. Government agencies, the military, academic organizations, and medical facilities are excluded. In previous years the salary data have been collected for October. In 1996, the data were collected for July; thus, some caution must be exercised in making annual salary trend comparisons

  19. Single-purpose nuclear medicine instruments

    International Nuclear Information System (INIS)

    Boucek, J.

    Nuclear medicine requires the most up-to-date specialized technical facilities. The paper underlines the factor of reliability in purpose-designed equipment used for basic examinations. The possibility is also discussed of the automation of standard nuclear medicine instruments

  20. Nuclear medicine

    International Nuclear Information System (INIS)

    Casier, Ph.; Lepage, B.

    1998-01-01

    Except for dedicated devices for mobile nuclear cardiology for instance, the market is set on variable angulation dual heads cameras. These cameras are suited for all general applications and their cost effectiveness is optimized. Now, all major companies have such a camera in their of products. But, the big question in nuclear medicine is about the future of coincidence imaging for the monitoring of treatments in oncology. Many companies are focused on WIP assessments to find out the right crustal thickness to perform both high energy FDG procedures and low energy Tc procedures, with the same SPECT camera. The classic thickness is 3/8''. Assessments are made with 1/2'', 5/8'' or 3/4'' crystals. If FDG procedures proved to be of great interest in oncology, it may lead to the design of a dedicated SPECT camera with a 1'' crustal. Due to the short half of FDG, it may be the dawning of slip ring technology. (e.g. Varicam from Elscint). The three small heads camera market seems to be depressed. Will the new three large heads camera unveiled by Picker, reverse that trend? The last important topic in nuclear medicine is the emergence of new flat digital detectors to get rid of the old bulky ones. Digirad is the first company to manufacture a commercial product based on that technology. Bichron, Siemens and General Electric are working on that development, too. But that technology is very expensive and the market for digital detection in nuclear medicine is not as large as the market in digital detection in radiology. (author)

  1. Cardiovascular nuclear medicine and MRI

    International Nuclear Information System (INIS)

    Reiber, J.H.C.; Wall, E.E. van der

    1992-01-01

    This book is based on a meeting of the Working Group on Nuclear Cardiology, which held March 22-23,1991 under the auspices of the European Society of Cardiology and the Interuniversity Cardiology Institute of the Netherlands, and on the Second International Symposium on Computer Applications in Nuclear Medicine and Cardiac Magnetic Resonance Imaging, which was held March 20-22,1991 in Rotterdam, the Netherlands. It covers almost every aspect of quantitative cardio-vascular nuclear medicine and magnetic resonance imaging. The main topics are: single photon emission computed tomography (technical aspects); new development in cardiovascular nuclear medicine; advances in cardiovascular imaging; cardiovascular clinical applications; and cardiac magnetic resonance imaging. (A.S.). refs.; figs.; tabs

  2. Quality policy at nuclear medicine services

    International Nuclear Information System (INIS)

    Gil Martinez, Eduardo Manuel; Jimenez, Tomas

    2007-01-01

    In the present text we comment about a Quality Policy model to establish in a Nuclear Medicine Service. The need for a strict control in every process that take place in a Nuclear Medicine Service, requires of an exact planification in terms of Quality Policy, specific to the real needs of every Service. Quality Policy must be a live Policy, with capability of changes and must be known for every workers in a Nuclear Medicine Service. Although the 'model' showed in this text is concret for a specific Service type, it must be extrapolated to any Nuclear Medicine Service with the necessary changes (au)

  3. Nuclear medicine applications: Summary of Panel 4

    International Nuclear Information System (INIS)

    Wolf, A.P.

    1988-01-01

    Nuclear medicine is currently facing a desperate shortage of organic and inorganic chemists and nuclear pharmacists who also have advanced training in nuclear and radiochemistry. Ironically, this shortfall is occurring in the face of rapid growth and technological advances which have made the practice of nuclear medicine an integral part of the modern health care system. This shortage threatens to limit the availability of radiopharmaceuticals required in routine hospital procedures and to impede the development of new diagnostic and therapeutic agents. To redress this need and prevent a similar shortfall in the future, this panel recommends immediate action and a long-term commitment to the following: educating the public on the benefits of nuclear medicine; informing undergraduate and graduate chemistry students about career opportunities in nuclear medicine; offering upper level courses in nuclear and radiochemistry (including laboratory) in universities; establishing training centers and fellowships at the postgraduate level for specialized education in the aspects of nuclear and radiochemistry required by the nuclear medicine profession. 1 tab

  4. Experience with Nuclear Medicine Information System

    Directory of Open Access Journals (Sweden)

    Bilge Volkan-Salanci

    2012-12-01

    Full Text Available Objective: Radiology information system (RIS is basically evolved for the need of radiologists and ignores the vital steps needed for a proper work flow of Nuclear Medicine Department. Moreover, CT/MRI oriented classical PACS systems are far from satisfying Nuclear Physicians like storing dynamic data for reprocessing and quantitative analysis of colored images. Our purpose was to develop a workflow based Nuclear Medicine Information System (NMIS that fulfills the needs of Nuclear Medicine Department and its integration to hospital PACS system. Material and Methods: Workflow in NMIS uses HL7 (health level seven and steps include, patient scheduling and retrieving information from HIS (hospital information system, radiopharmacy, acquisition, digital reporting and approval of the reports using Nuclear Medicine specific diagnostic codes. Images and dynamic data from cameras of are sent to and retrieved from PACS system (Corttex© for reprocessing and quantitative analysis. Results: NMIS has additional functions to the RIS such as radiopharmaceutical management program which includes stock recording of both radioactive and non-radioactive substances, calculation of the radiopharmaceutical dose for individual patient according to body weight and maximum permissible activity, and calculation of radioactivity left per unit volume for each radionuclide according their half lives. Patient scheduling and gamma camera patient work list settings were arranged according to specific Nuclear Medicine procedures. Nuclear Medicine images and reports can be retrieved and viewed from HIS. Conclusion: NMIS provides functionality to standard RIS and PACS system according to the needs of Nuclear Medicine. (MIRT 2012;21:97-102

  5. [Costing nuclear medicine diagnostic procedures].

    Science.gov (United States)

    Markou, Pavlos

    2005-01-01

    To the Editor: Referring to a recent special report about the cost analysis of twenty-nine nuclear medicine procedures, I would like to clarify some basic aspects for determining costs of nuclear medicine procedure with various costing methodologies. Activity Based Costing (ABC) method, is a new approach in imaging services costing that can provide the most accurate cost data, but is difficult to perform in nuclear medicine diagnostic procedures. That is because ABC requires determining and analyzing all direct and indirect costs of each procedure, according all its activities. Traditional costing methods, like those for estimating incomes and expenses per procedure or fixed and variable costs per procedure, which are widely used in break-even point analysis and the method of ratio-of-costs-to-charges per procedure may be easily performed in nuclear medicine departments, to evaluate the variability and differences between costs and reimbursement - charges.

  6. Nuclear medicine in China

    International Nuclear Information System (INIS)

    Wang, Shihchen; Liu, Xiujie

    1986-01-01

    Since China first applied isotopes to medical research in 1956, over 800 hospitals and research institutions with 4000 staff have taken up nuclear technology. So far, over 120 important biologically active materials have been measured by radioimmunoassay in China, and 44 types of RIA kit have been supplied commercially. More than 50,000 cases of hyperthyroidism have been treated satisfactorily with 131 I. Radionuclide imaging of practically all organs and systems of the human body has been performed, and adrenal imaging and nuclear cardiology have become routine clinical practice in several large hospitals. The thyroid iodine uptake test, renogram tracing and cardiac function studies with a cardiac probe are also commonly used in most Chinese hospitals. The active principles of more than 60 medicinal herbs have been labelled with isotopes in order to study the drug metabolism and mechanism of action. Through the use of labelled neurotransmitters or deoxyglucose, RIA, radioreceptor assay and autoradiography, Chinese researchers have made remarkable achievements in the study of the scientific basis of acupuncture analgesia. In 1980 the Chinese Society of Nuclear Medicine was founded, and since 1981 the Chinese Journal of Nuclear Medicine has been published. Although nuclear medicine in China has already made some progress, when compared with advanced countries, much progress is still to be made. It is hoped that international scientific exchange will be strengthened in the future. (author)

  7. First Central and Eastern European Workshop on Quality control, patient dosimetry and radiation protection in diagnostic and interventional radiology and nuclear medicine

    International Nuclear Information System (INIS)

    National Frederic Joliot-Curie Research Institute for Radiobiology and Radiohygiene

    2007-01-01

    First Central and Eastern European Workshop on Quality Control, Patient Dosimetry and Radiation Protection in Diagnostic and Interventional Radiology and Nuclear Medicine, scientifically supported and accredited as a CPD event for medical physicists by EFOMP, National 'Frederic Joliot-Curie' Research Institute for Radiobiology and Radiohygiene (NRIRR), Budapest, Hungary, April 25-28, 2007. Topics of the meeting included all areas of medical radiation physics except radiation therapy. A unique possibility was realized by inviting four European manufacturers of quality control instrumentation, not only for exhibiting but they also had 45 minutes individual presentations about each manufacturer's product scale and conception. Further sessions dealt with dosimetry, optimization, quality control and testing, radiation protection and standardization, computed tomography and nuclear medicine, in 29 oral presentations and 1 poster of the participants. (S.I.)

  8. Essentials of nuclear medicine imaging

    CERN Document Server

    Mettler, Fred A. Jr

    2012-01-01

    Essentials of Nuclear Medicine Imaging, by Drs. Fred A Mettler and Milton J Guiberteau, provides the practical and comprehensive guidance you need to master key nuclear imaging techniques. From physics, instrumentation, quality control, and legal requirements to hot topics such as sodium fluoride, radiopharmaceuticals, and recommended pediatric administered doses and guidelines, this sixth edition covers the fundamentals and recent developments in the practice of nuclear medicine.

  9. Nuclear Medicine in Surgical Oncology

    International Nuclear Information System (INIS)

    Ndirangu, D.T.

    2009-01-01

    Defines nuclear medicine as a branch that utilizes nuclear technology for diagnosis and treatment of diseases.The principles of nuclear medicine are; it uses the principle that a certain radiopharmaceutical (tracer) will at a certain point in time have a preferential uptake by a particular body or tissue. it is imaged by use the use of detectors mounted in gamma cameras or PET (Position emission tomography) devices

  10. Regulatory problems in nuclear medicine

    International Nuclear Information System (INIS)

    Vandergrift, J.F.

    1987-01-01

    Governmental involvement in the practice of medicine has increased sharply within the past few years. The impact on health care has, for the most part, been in terms of financial interactions between health care facilities and federally funded health services programs. One might say that this type of governmental involvement has indirect impact on the medical and/or technical decisions in the practice of nuclear medicine. In other areas, however, governmental policies and regulations have had a more direct and fundamental impact on nuclear medicine than on any other medical specialty. Without an understanding and acceptance of this situation, the practice of nuclear medicine can be very frustrating. This chapter is thus written in the hope that potential frustration can be reduced or eliminated

  11. Peptide radiopharmaceuticals in nuclear medicine

    International Nuclear Information System (INIS)

    Blok, D.; Vermeij, P.; Feitsma, R.I.J.; Pauwels, E.J.K.

    1999-01-01

    This article reviews the labelling of peptides that are recognised to be of interest for nuclear medicine or are the subject of ongoing nuclear medicine research. Applications and approaches to the labelling of peptide radiopharmaceuticals are discussed, and drawbacks in their development considered. (orig.)

  12. Development of molecular nuclear medicine

    International Nuclear Information System (INIS)

    Tang Ganghua

    2002-01-01

    The basic theory of molecular nuclear medicine is briefly introduced. The hot areas of molecular nuclear medicine including metabolic imaging and blood flow imaging, radioimmunoimaging and radioimmunotherapy, radioreceptor imaging and receptor-radioligand therapy, and imaging gene expression and gene radiation therapy are emphatically described

  13. Promoting nuclear medicine in developing countries

    International Nuclear Information System (INIS)

    Ganatra, R.; Nofal, M.

    1986-01-01

    After a short review of the applications of nuclear medicine in diagnosis and treatment of diseases or in medical research the ways and the means of IAEA's support in helping developing countries to set up nuclear medicine capabilities in their hospitals are described. Some trends and new directions in the field of nuclear medicine and the problems related to the implementation of these techniques in developing countries are presented

  14. Development of software for clinical protocols in nuclear medicine. Final report for the period 21 November 1994 - 21 November 1995

    International Nuclear Information System (INIS)

    Todd-Pokropek, A.

    1996-01-01

    After two technical contracts of IAEA, a portable image processing software (PIP) has been developed and some clinical protocols for nuclear medicine studies with IBM PCs which are connected to analogue gamma cameras. In addition, a suitable front end for driving some PC/gamma camera interface cards have been successfully tested and extended. The on-line help facilities and the user interface within PIP was remarkably improved, for medical physicists as developers as well as for technologists as users for routine studies

  15. TU-E-211-01: Establishing Multidisciplinary Collaboration as a Medical Physicist.

    Science.gov (United States)

    Xing, L; Fraass, B; Ford, E; Chang, S

    2012-06-01

    Many medical physicists are scientists at heart and their career fulfillment includes a balance of clinical service and research development. Multidisciplinary collaboration is a great way for the medical physicists to advance science and technology of our fields and the fields of our collaborators. Cross-pollination among scientists of different fields has been the key for some of the most significant breakthroughs in science and medicine and produced some of the most rewarding experiences for the individuals involved. However, medical physicists face unique challenges in establishing multidisciplinary collaboration because our time and resources for research are often quite limited compared to basic scientists. Yet we medical physicists are uniquely positioned and have a tremendous opportunity to create/contribute to multidisciplinary research: our fields are already multidisciplinary in nature and hospital environment is problem rich. How do we establish and carry out research collaboration with scientists of other fields? How to balance research with your higher priority clinical service? How do you find the right multidisciplinary collaboration in your own environment? We will discuss the challenges, provide real exemplary solutions to the above questions, and offer advise to medical physicists who are interested in starting or improving their multidisciplinary collaboration. There are different kinds of multidisciplinary collaborations a medical physicist can create and participate at different involvement levels. Multidisciplinary collaboration is not for every medical physicist but for those who seek and devote time to it, the experience can be truly rewarding and the impact can be enormous. 1. Learn the types of multidisciplinary collaboration medical physicists can created/participated 2. Learn the approaches and strategies to develop collaborations with scientists and professional of other fields3. Understand the challenges and different approaches to

  16. Radiation hazards in the nuclear medicine

    International Nuclear Information System (INIS)

    Roo, M.J.K. de

    1981-01-01

    After a survey of the actual situation of nuclear medicine in Belgium, the evolution of nuclear medicine is studied with regard to quantitative aspects (tracerquantities, number of radioisotopic explorations, number of certified doctors) and qualitative aspects (use of short living isotopes emitting low energy radiation, introduction of in vitro tests). Taking these data into consideration, the exposure of nuclear medicine staff by external or internal radiation is evaluated. From this study it appears that the radiation exposure of the personnel of nuclear medicine departments remains low if proper manipulation methods and simple protective devices are used and if there is an efficient collaboration with an active health physics department or radiation control organism. (author)

  17. Essentials of nuclear medicine physics and instrumentation

    CERN Document Server

    Powsner, Rachel A; Powsner, Edward R

    2013-01-01

    An excellent introduction to the basic concepts of nuclear medicine physics This Third Edition of Essentials of Nuclear Medicine Physics and Instrumentation expands the finely developed illustrated review and introductory guide to nuclear medicine physics and instrumentation. Along with simple, progressive, highly illustrated topics, the authors present nuclear medicine-related physics and engineering concepts clearly and concisely. Included in the text are introductory chapters on relevant atomic structure, methods of radionuclide production, and the interaction of radiation with matter. Fu

  18. Handbook of nuclear medicine practice in developing countries

    International Nuclear Information System (INIS)

    1992-01-01

    This ''Handbook of Nuclear Medicine Practices in the Developing Countries'' is meant primarily for those, who intend to install and practice nuclear medicine in a developing country. By and large, the conventional Textbooks of nuclear medicine do note cater to the special problems and needs of these countries. The Handbook is not trying to replace these textbooks, but supplement them with special information and guidance, necessary for making nuclear medicine cost-effective and useful in a hospital of a developing country. It is written mostly by those, who have made success in their careers in nuclear medicine, in one of these countries. One way to describe this Handbook will be that it represents the ways, in which, nuclear medicine is practised in the developing countries, described by those, who have a long and authentic experience of practising nuclear medicine in a developing country

  19. Proceedings of 2nd Korea-China Congress of Nuclear Medicine and the Korean Society Nuclear Medicine Spring Meeting 2000

    International Nuclear Information System (INIS)

    2000-01-01

    This proceedings contains articles of 2nd Korea-China Congress of Nuclear Medicine and 2000 spring meeting of the Korean Society Nuclear Medicine. It was held on May 17-19, 2000 in Seoul, Korean. This proceedings is comprised of 6 sessions. The subject titles of session are as follows: general nuclear medicine, neurology, oncology, radiopharmacy and biology, nuclear cardiology, nuclear cardiology: physics and instrumentation and so on. (Yi, J. H.)

  20. Nuclear medicine

    International Nuclear Information System (INIS)

    James, A.E. Jr.; Squire, L.F.

    1977-01-01

    The book presents a number of fundamental imaging principles in nuclear medicine. The fact that low radiation doses are sufficient for the study of normal and changed physiological functions of the body is an important advancement brought about by nuclear medicine. The possibility of quantitative investigations of organs and organ regions and of an assessment of their function as compared to normal values is a fascinating new diagnostic dimension. The possibility of comparing the findings with other pathological findings and of course control in the same patient lead to a dynamic continuity with many research possibilities not even recognized until now. The limits of nuclear scanning methods are presented by the imprecise structural information of the images. When scintiscans are compared with X-ray images or contrast angiography, the great difference in the imaging of anatomical details is clearly seen. But although the present pictures are not optimal, they are a great improvement on the pictures that were considered clinically valuable a few years ago. (orig./AJ) [de

  1. Clinical Training of Medical Physicists Specializing in Diagnostic Radiology (French Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    The application of radiation in human health, for both diagnosis and treatment of disease, is an important component of the work of the IAEA. The responsibility for the increasing technical aspects of this work is undertaken by the medical physicist. To ensure good practice in this vital area, structured clinical training programmes are required to complement academic learning. This publication is intended to be a guide to the practical implementation of such a programme for diagnostic radiology. There is a general and growing awareness that radiation medicine is increasingly dependent on well trained medical physicists based in the clinical setting. However, an analysis of the availability of medical physicists indicates a large shortfall of qualified and capable professionals. This is particularly evident in developing countries. While strategies to increase academic educational opportunities are critical to such countries, the need for guidance on structured clinical training was recognized by the members of the Regional Cooperative Agreement (RCA) for Research, Development and Training related to Nuclear Sciences for Asia and the Pacific. Consequently, a technical cooperation regional project (RAS6038) under the RCA programme was formulated to address this need in the Asia-Pacific region by developing suitable material and establishing its viability. Development of a clinical training guide for medical physicists specializing in diagnostic radiology started in 2007 with the appointment of a core drafting committee of regional and international experts. The publication drew on the experiences of clinical training programmes in Australia and New Zealand, the UK and the USA, and was moderated by physicists working in the Asian region. This publication follows the approach of the IAEA publication Training Course Series No. 37, Clinical Training of Medical Physicists specializing in Radiation Oncology. This approach to clinical training has been successfully tested

  2. Clinical Training of Medical Physicists Specializing in Diagnostic Radiology (Spanish Edition)

    International Nuclear Information System (INIS)

    2013-01-01

    The application of radiation in human health, for both diagnosis and treatment of disease, is an important component of the work of the IAEA. The responsibility for the increasing technical aspects of this work is undertaken by the medical physicist. To ensure good practice in this vital area, structured clinical training programmes are required to complement academic learning. This publication is intended to be a guide to the practical implementation of such a programme for diagnostic radiology. There is a general and growing awareness that radiation medicine is increasingly dependent on well trained medical physicists based in the clinical setting. However, an analysis of the availability of medical physicists indicates a large shortfall of qualified and capable professionals. This is particularly evident in developing countries. While strategies to increase academic educational opportunities are critical to such countries, the need for guidance on structured clinical training was recognized by the members of the Regional Cooperative Agreement (RCA) for Research, Development and Training related to Nuclear Sciences for Asia and the Pacific. Consequently, a technical cooperation regional project (RAS6038) under the RCA programme was formulated to address this need in the Asia-Pacific region by developing suitable material and establishing its viability. Development of a clinical training guide for medical physicists specializing in diagnostic radiology started in 2007 with the appointment of a core drafting committee of regional and international experts. The publication drew on the experiences of clinical training programmes in Australia and New Zealand, the UK and the USA, and was moderated by physicists working in the Asian region. This publication follows the approach of the IAEA publication Training Course Series No. 37, Clinical Training of Medical Physicists specializing in Radiation Oncology. This approach to clinical training has been successfully tested

  3. Handbook of nuclear medicine practice in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    This ``Handbook of Nuclear Medicine Practices in the Developing Countries`` is meant primarily for those, who intend to install and practice nuclear medicine in a developing country. By and large, the conventional Textbooks of nuclear medicine do note cater to the special problems and needs of these countries. The Handbook is not trying to replace these textbooks, but supplement them with special information and guidance, necessary for making nuclear medicine cost-effective and useful in a hospital of a developing country. It is written mostly by those, who have made success in their careers in nuclear medicine, in one of these countries. One way to describe this Handbook will be that it represents the ways, in which, nuclear medicine is practised in the developing countries, described by those, who have a long and authentic experience of practising nuclear medicine in a developing country Figs, tabs

  4. Links between nuclear medicine and radiopharmacy

    International Nuclear Information System (INIS)

    Pelegrin, M.; Francois-Joubert, A.; Chassel, M.L.; Desruet, M.D.; Bolot, C.; Lao, S.

    2010-01-01

    Radiopharmaceuticals are nowadays under the responsibility of the radio-pharmacist because of their medicinal product status. Radiopharmacy belongs to the hospital pharmacy department, nevertheless, interactions with nuclear medicine department are important: rooms are included or located near nuclear medicine departments in order to respect radiation protection rules, more over staff, a part of the material and some activities are shared between the two departments. Consequently, it seems essential to formalize links between the radiopharmacy and the nuclear medicine department, setting the goals to avoid conflicts and to ensure patients' security. Modalities chosen for this formalization will depend on the establishment's organization. (authors)

  5. MO-DE-201-03: This course presents a review of radiologic anatomy and physiology as it applies to projection radiography, fluoroscopy, CT, MRI, U/S, and nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Fahey, F.

    2015-06-15

    Fundamental knowledge of radiologic anatomy and physiology is critical for medical physicists. Many physicists are exposed to this topic only in graduate school, and knowledge is seldom formally evaluated or assessed after Part I of the ABR exam. Successful interactions with clinicians, including surgeons, radiologists, and oncologists requires that the medical physicist possess this knowledge. This course presents a review of radiologic anatomy and physiology as it applies to projection radiography, fluoroscopy, CT, MRI, U/S, and nuclear medicine. We will review structural anatomy, manipulation of tissue contrast, the marriage between anatomy and physiology, and explore how medical imaging exploits normal and pathological processes in the body to generate contrast. Learning Objectives: Review radiologic anatomy. Examine techniques to manipulate tissue contrast in radiology. Integrate anatomy and physiology in molecular imaging.

  6. MO-DE-201-03: This course presents a review of radiologic anatomy and physiology as it applies to projection radiography, fluoroscopy, CT, MRI, U/S, and nuclear medicine

    International Nuclear Information System (INIS)

    Fahey, F.

    2015-01-01

    Fundamental knowledge of radiologic anatomy and physiology is critical for medical physicists. Many physicists are exposed to this topic only in graduate school, and knowledge is seldom formally evaluated or assessed after Part I of the ABR exam. Successful interactions with clinicians, including surgeons, radiologists, and oncologists requires that the medical physicist possess this knowledge. This course presents a review of radiologic anatomy and physiology as it applies to projection radiography, fluoroscopy, CT, MRI, U/S, and nuclear medicine. We will review structural anatomy, manipulation of tissue contrast, the marriage between anatomy and physiology, and explore how medical imaging exploits normal and pathological processes in the body to generate contrast. Learning Objectives: Review radiologic anatomy. Examine techniques to manipulate tissue contrast in radiology. Integrate anatomy and physiology in molecular imaging

  7. Metabolic radiopharmaceutical therapy in nuclear medicine

    International Nuclear Information System (INIS)

    Reguera, L.; Lozano, M. L.; Alonso, J. C.

    2016-01-01

    In 1986 the National Board of Medical Specialties defined the specialty of nuclear medicine as a medical specialty that uses radioisotopes for prevention, diagnosis, therapy and medical research. Nowadays, treatment with radiopharmaceuticals has reached a major importance within of nuclear medicine. The ability to treat tumors with radiopharmaceutical, Radiation selective therapy has become a first line alternative. In this paper, the current situation of the different therapies that are sued in nuclear medicine, is reviewed. (Author)

  8. Nuclear Medicine in a developing country

    International Nuclear Information System (INIS)

    Wenzel, K.S. von; Rubow, S.M.; Ellmann, A.; Ghoorun, S.

    2002-01-01

    Namibia is a country with 1,8 million inhabitants, of whom the majority has limited access to first world facilities. Nevertheless, medical services of high standard are offered. A Nuclear Medicine Department was established at Windhoek Central Hospital in 1982. A nuclear physician, two nuclear medicine radiographers and a nursing sister staff the department. Equipment includes a Siemens Orbiter and an Elscint Apex SPX Helix gamma camera. Radiopharmaceuticals are obtained from suppliers in South Africa. Investigations performed include musculoskeletal, liver, hepatobiliary, thyroid, renal studies, ventilation perfusion lung scans as well as the following Nuclear Cardiology studies: Gated blood pool scans, Tc-99m pyrophosphate hot spot scans, Tl-201 myocardial perfusion studies, Tc-99m MIBI myocardial perfusion studies and Tl-201 rest-redistribution studies. Problems experienced at the Windhoek Nuclear Medicine department include: Lack of funding and high cost of equipment and radiopharmaceuticals, lack of understanding of Nuclear Medicine by the hospital management and health administrators, and difficulties in procuring short-lived radiopharmaceuticals. Furthermore, the absence of company representatives and spare parts in Namibia leads to loss of time whenever equipment needs to be repaired. Working as the only nuclear medicine physician in a country also poses major problems. Careful management of resources and information drives have helped to sustain the Nuclear Medicine service despite economic problems in the country. Installation of a tele-link between the department in Windhoek Hospital and Tygerberg Hospital in South Africa has greatly assisted to overcome the problem of isolation and lack of back up from fellow specialists. The IAEA has equipped both departments with Hermes workstations (Nuclear Diagnostics) and a tele-link is maintained via modem. The current software provided with the Hermes system is ideally suited to processing of data such as gated

  9. Physicist or computer specialist?

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, J S [University College Hospital, London (United Kingdom)

    1966-06-15

    Since to most clinicians physical and computer science are two of the great mysteries of the world, the physicist in a hospital is expected by clinicians to be fully conversant with, and competent to make profound pronouncements on, all methods of computing. specific computing problems, and the suitability of computing machinery ranging from desk calculators to Atlas. This is not surprising since the proportion of the syllabus devoted to physics and mathematics in an M. B. degree is indeed meagre, and the word 'computer' has been surrounded with an aura of mysticism which suggests that it is some fantastic piece of electronic gadgetry comprehensible only to a veritable genius. The clinician consequently turns to the only scientific colleague with whom he has direct contact - the medical physicist - and expects him to be an authority. The physicist is thus thrust, however unwillingly, into the forefront of the advance of computer assistance to scientific medicine. It is therefore essential for him to acquire sufficient knowledge of computing science to enable him to provide satisfactory answers for the clinicianst queries, to proffer more detailed advice as to programming convince clinicians that the computer is really a 'simpleton' which can only add and subtract and even that only under instruction.

  10. Course on internal dosimetry in nuclear medicine

    International Nuclear Information System (INIS)

    2004-01-01

    This documentation was distributed to the participants in the Course of Internal Dosimetry in Nuclear Medicine organised by the Nuclear Regulatory Authority (ARN) of Argentina and held in Buenos Aires, Argentina, August 9-13, 2004. The course was intended for people from IAEA Member States in the Latin American and Caribbean region, and for professionals and workers in medicine, related with the radiation protection. Spanish and English were the languages of the course. The following subjects were covered: radioprotection of the patient in nuclear medicine; injuries by ionizing radiations; MIRD methodology; radiation dose assessment in nuclear medicine; small scale and microdosimetry; bone and marrow dose modelling; medical internal dose calculations; SPECT and image reconstruction; principles of the gamma camera; scattering and attenuation correction in SPECT; tomography in nuclear medicine

  11. Where is high technology taking nuclear medicine

    International Nuclear Information System (INIS)

    Veall, N.

    1985-01-01

    The question is posed as to whether high technology in nuclear medicine might lead to the nuclear medicine practitioner possibly finishing up working for the machine rather than the improvement of health care in its widest sense. A brief examination of some pros and cons of high technology nuclear medicine is given. (U.K.)

  12. Nuclear medicine and its radiological protection in China

    International Nuclear Information System (INIS)

    Wu, J.

    2001-01-01

    The China Society of Nuclear Medicine was established on 27 May 1980. Since then, nuclear medicine in clinical diagnosis and therapy has been developed rapidly in China. So far there are more than 4000 members of the Society, and more than 350 sets of SPECT and 12 sets of PET have been installed and are busily running in clinic nowadays and about 1 million patients with different types of diseases have obtained nuclear medicine imaging examinations per year. Concerning the nuclear medicine therapy, a lot of patients with many types of diseases obtained benefit from radioisotope therapy. Accordingly, several Policies and Regulations have been enacted by the Government for the radiological protection. Furthermore, a special book titled 'Standardization in Diagnostic and Therapeutic Nuclear Medicine' has been promulgated in June, 1997 by the Health Administration of People's Republic of China, and this book is distributed to almost every nuclear medicine physician and technician in China for their reference in routine nuclear medicine work or research. In this book three parts of the contents are covered: Policies and Regulations for the radiological protection, basic knowledge and clinical nuclear medicine applications. (author)

  13. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... can be detected with other diagnostic tests. Nuclear medicine imaging procedures use small amounts of radioactive materials – called radiotracers – that ... outweighs any risk. To learn more about nuclear medicine, visit Radiology Info dot org. Thank you for your ... of Use | Links | Site Map Copyright © 2018 Radiological Society of ...

  14. American Association of Physicists in Medicine Task Group 263: Standardizing Nomenclatures in Radiation Oncology.

    Science.gov (United States)

    Mayo, Charles S; Moran, Jean M; Bosch, Walter; Xiao, Ying; McNutt, Todd; Popple, Richard; Michalski, Jeff; Feng, Mary; Marks, Lawrence B; Fuller, Clifton D; Yorke, Ellen; Palta, Jatinder; Gabriel, Peter E; Molineu, Andrea; Matuszak, Martha M; Covington, Elizabeth; Masi, Kathryn; Richardson, Susan L; Ritter, Timothy; Morgas, Tomasz; Flampouri, Stella; Santanam, Lakshmi; Moore, Joseph A; Purdie, Thomas G; Miller, Robert C; Hurkmans, Coen; Adams, Judy; Jackie Wu, Qing-Rong; Fox, Colleen J; Siochi, Ramon Alfredo; Brown, Norman L; Verbakel, Wilko; Archambault, Yves; Chmura, Steven J; Dekker, Andre L; Eagle, Don G; Fitzgerald, Thomas J; Hong, Theodore; Kapoor, Rishabh; Lansing, Beth; Jolly, Shruti; Napolitano, Mary E; Percy, James; Rose, Mark S; Siddiqui, Salim; Schadt, Christof; Simon, William E; Straube, William L; St James, Sara T; Ulin, Kenneth; Yom, Sue S; Yock, Torunn I

    2018-03-15

    A substantial barrier to the single- and multi-institutional aggregation of data to supporting clinical trials, practice quality improvement efforts, and development of big data analytics resource systems is the lack of standardized nomenclatures for expressing dosimetric data. To address this issue, the American Association of Physicists in Medicine (AAPM) Task Group 263 was charged with providing nomenclature guidelines and values in radiation oncology for use in clinical trials, data-pooling initiatives, population-based studies, and routine clinical care by standardizing: (1) structure names across image processing and treatment planning system platforms; (2) nomenclature for dosimetric data (eg, dose-volume histogram [DVH]-based metrics); (3) templates for clinical trial groups and users of an initial subset of software platforms to facilitate adoption of the standards; (4) formalism for nomenclature schema, which can accommodate the addition of other structures defined in the future. A multisociety, multidisciplinary, multinational group of 57 members representing stake holders ranging from large academic centers to community clinics and vendors was assembled, including physicists, physicians, dosimetrists, and vendors. The stakeholder groups represented in the membership included the AAPM, American Society for Radiation Oncology (ASTRO), NRG Oncology, European Society for Radiation Oncology (ESTRO), Radiation Therapy Oncology Group (RTOG), Children's Oncology Group (COG), Integrating Healthcare Enterprise in Radiation Oncology (IHE-RO), and Digital Imaging and Communications in Medicine working group (DICOM WG); A nomenclature system for target and organ at risk volumes and DVH nomenclature was developed and piloted to demonstrate viability across a range of clinics and within the framework of clinical trials. The final report was approved by AAPM in October 2017. The approval process included review by 8 AAPM committees, with additional review by ASTRO

  15. Nuclear medicine at the crossroads

    International Nuclear Information System (INIS)

    Strauss, H.W.

    1996-01-01

    Many nuclear medicine procedures, originally developed more than 20 years ago, are now performed with new radiopharmaceuticals or instruments; it is therefore apposite to reappraise what we are doing and why we are doing it. The clinical utility of nuclear medicine is discussed with reference, by way of example, to gated blood pools scans and myocardial perfusion imaging; the importance of the referred population for the outcome of studies is stressed. Attention is drawn to the likelohood that the detection of ischemia would be enhanced by the administration of nitroglycerin prior to rest thallium injection. Emphasis is also placed on the increasing acceptance of dual-tracer studies. The significance of expression of p-glycoprotein by some tumors for sestamibi imaging is discussed, and advances in respect of fluorodeoxyglucose imaging are reviewed. The final section covers issues relating to the development of new procedures, such as the value of nuclear medicine in the detection and characterization of tissue oxygen levels and the possible future role of nuclear medicine in the management of sleeping and eating disorders. (orig.)

  16. Nuclear medicine, a proven partnership

    International Nuclear Information System (INIS)

    Henderson, L. A.

    2009-01-01

    Full text:Ultrasonography is the modality of choice for demonstrating many cystic structures within the body. However nuclear medicine is often able to demonstrate functional disturbance where ultrasound and conventional radiography are unsuccessful. A case is presented in which a 16 day old male child presented to nuclear medicine with a right upper quadrant cyst found in ultrasound with exact location equivocal. Determining the location and nature of the cyst was essential to the treatment team for patient management. A hepatobiliary study was performed and evidence of a choledochal cyst was found. In partnership with ultrasound, nuclear medicine was able to identify a possibly malignant structure and consequently patient management was determined.

  17. Nuclear medicine: the Philippine Heart Center experience

    International Nuclear Information System (INIS)

    Cancino, E.L.

    1994-01-01

    The following is a report of a three (3) months on-the-job training in Nuclear Medicine at the Nuclear Medicine Department of the Philippine Heart Center. The hospital has current generation nuclear medicine instruments with data processor and is capable of a full range of in vivo and in vitro procedures. Gamma camera is the principal instrument for imaging in nuclear medicine used in the Philippine Heart Center. Thyroid scanning procedure is being performed with these instruments. Also the cardiovascular procedures, the pulmonary, skeletal, renal and hepatobiliary procedures were being performed with the use of gamma camera. Special emphasis is on nuclear cardiology since the PHC attends primarily to cardiovascular patients. (auth.)

  18. PET: the importance of physicists for the clinical arena

    CERN Multimedia

    2005-01-01

    David Townsend giving a seminar at CERN on 9 February. The past few years have seen significant advances in the development of instrumentation for Positron Emission Tomography (PET). The recent appearance of combined PET and Computed Tomography (CT) scanners that can simultaneously image both anatomy and function is of particular importance. This was the main subject of "Advances in PET imaging: from physics to physician", a seminar presented at CERN by David Townsend on Wednesday 9 February  and organized by the TT and PH groups. David Townsend, who started his career at CERN in the 1970s, is now Professor at the Department of Medicine, University of Tennessee Medical Center (Knoxville, TN). Recipient of the 2004 Clinical Scientist of the Year Award, he is an internationally renowned researcher and PET physicist, with over 25 years of experience in the field. His 1999 image of the year, an award from the Society of Nuclear Medicine in the US, was produced using a combined state-of-the art PET and a true d...

  19. Practice of nuclear medicine in a developing country

    International Nuclear Information System (INIS)

    Hasan, M.M.; Karim, M.A.; Nahar, N.; Haque, M.M.

    2002-01-01

    For more than a half a century nuclear medicine is contributing in the field of medicine. Still nuclear medicine is not widely available in many countries. Especially in developing countries due to many a reasons nuclear medicine could not flourish in that way. Availability of radioisotope, high cost of instrument and sophistication of the branch are the three main reasons behind. Even the countries where nuclear medicine is functioning for quite a long time, the facilities for proper function are still not adequate. Training of manpower, maintenance of instruments, regular supply of isotopes and kit and cost effectiveness are some of the major problems. We have seen some fast developments in nuclear medicine in last few decades. Development of gamma detecting systems with SPECT, positron emission detector (PET), supported computer technology and introduction of some newer radiopharmaceuticals for functional studies are few of the examples. The developing countries also have a problem to go on parallel with these rapid development of nuclear medicine in other part of the world. In last few decades we have also witnessed development of CT, MRI, Ultrasound and other imaging modalities as our competitor. Specially for developing countries these have posed as a major challenge for nuclear medicine. A better understanding between developed and developing nations is the key point of todays ultimate success in any sector. For real development of nuclear medicine and to give the majority of the people the benefit of nuclear medicine a better and more active co-operation is needed between all the countries. The paper presents the difficulties and some practical problems of practicing nuclear medicine in a developing country. And also appeals for global co-operation to solve the problems for better interest of the subject

  20. Nuclear medicine in the Philippines

    International Nuclear Information System (INIS)

    Villadolid, Leland.

    1978-01-01

    This article traces the history of nuclear medicine in the country from the time the first radioisotope laboratory was set up by the Philippine General Hospital about 1955, to the not too satisfactory present facilities acquired by hospitals for diagnosis, treatment and investigation of diseases. It is in research, the investigation of disease that is nuclear medicine's most important area. The Philippine Atomic Energy Commission (PAEC) has pioneered in the conducting of courses in the medical uses of radioisotopes. The local training of nuclear manpower has been continued and updated and foreign fellowships are availed of through the cooperation of IAEA. Quite a number are already trained also in the allied fields that support the practice of nuclear medicine. However the brain drain has seriously affected the number of trained staff of medical units. Discussed and presented is the growth of the medical use of radioisotopes which are locally produced by PAEC. In order to benefit from the full advantage that nuclear medicine can do to a majority of Filipinos, the government should extend its financial support in acquiring such facilities to equip strategic hospitals in the country and support training programs. The Philippine has the expertise to start the expansion but only with adequate provision of funds will our capacity turn into reality. (RTD)

  1. Quality assurance for radioactive measurement in nuclear medicine

    International Nuclear Information System (INIS)

    2006-01-01

    adopted to their greatest extent, the principles herein will provide the user with al l the information (including measurement procedures) necessary to carry out most tasks associated with routine radioactivity measurement, including maintaining the necessary documentation. The primary audience for this report includes radiopharmacists, nuclear medicine technologists, medical physicists, technicians in secondary standards radioactivity laboratories and managers responsible for the operation of such facilities

  2. Nuclear tele medicine; Telemedicina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, L.; Hernandez, F.; Fernandez, R. [Departamento de Medicina Nuclear, Imagenologia Diagnostica, Xalapa, Veracruz (Mexico)

    2005-07-01

    The great majority of the digital images of nuclear medicine are susceptible of being sent through internet. This has allowed that the work in diagnosis cabinets by image it can benefit of this modern technology. We have presented in previous congresses works related with tele medicine, however, due to the speed in the evolution of the computer programs and the internet, becomes necessary to make a current position in this modality of work. (Author)

  3. Nuclear medicine

    International Nuclear Information System (INIS)

    Sibille, L.; Nalda, E.; Collombier, L.; Kotzki, P.O.; Boudousq, V.

    2011-01-01

    Nuclear medicine is a medical specialty using the properties of radioactivity. Radioactive markers associated with vectors are used as a tracer or radiopharmaceutical for diagnostic purposes and/or therapy. Since its birth more than half a century ago, it has become essential in the care of many patients, particularly in oncology. After some definitions, this paper presents the main nuclear techniques - imaging for diagnostic, radiopharmaceuticals as therapeutic agents, intra-operative detection, technique of radioimmunoassay - and the future of this field. (authors)

  4. Experimental nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Dormehl, I C [Nuclear Development Corp. of South Africa (Pty.) Ltd., Pelindaba, Pretoria. Inst. of Life Sciences; Du Plessis, M; Jacobs, D J

    1983-07-01

    Exciting investigative research, widening the dimensions of conventional nuclear medicine, is being conducted in Pretoria where the development and evaluation of new radiopharmaceuticals in particular is attracting international attention. Additional to this, the development of new diagnostic techniques involving sophisticated data processing, is helping to place South Africa firmly in the front line of nuclear medical progress.

  5. Clinical training of medical physicists. IAEA experience in Asia

    International Nuclear Information System (INIS)

    McLean, D.

    2013-01-01

    Medical physicists make a major contribution to the safe and effective diagnosis and treatment of patients with cancer and other illnesses. The medical physicist's responsibilities include the major areas of dosimetry, treatment planning, quality assurance, image quality, optimization, equipment management, research, teaching, and radiation safety. With the increasing complexity of technological application to medicine the competence of trained physicists is critical to good patient care, with counter examples, sadly evident in the literature. The International Atomic Energy Agency (IAEA), in conjunction with international experts, including from Japan, has developed clinical training programmes that have been successfully implemented on a pilot basis in a number of countries in Asia. A new project is to begin in 2014 which will focus increasingly on the use of electronic teaching material and experiences, to assist medical physicists in clinical training increasingly in more remote locations in Asia. (author)

  6. Physics and radiobiology of nuclear medicine

    CERN Document Server

    Saha, Gopal B

    2010-01-01

    From a distinguished author comes this new edition for technologists, practitioners, residents, and students in radiology and nuclear medicine. Encompassing major topics in nuclear medicine from the basic physics of radioactive decay to instrumentation and radiobiology, it is an ideal review for Board and Registry examinations. The material is well organized and written with clarity. The book is supplemented with tables and illustrations throughout. It provides a quick reference book that is concise but comprehensive, and offers a complete discussion of topics for the nuclear medicine and radi

  7. Physics in nuclear medicine

    CERN Document Server

    Cherry, Simon R; Phelps, Michael E

    2012-01-01

    Physics in Nuclear Medicine - by Drs. Simon R. Cherry, James A. Sorenson, and Michael E. Phelps - provides current, comprehensive guidance on the physics underlying modern nuclear medicine and imaging using radioactively labeled tracers. This revised and updated fourth edition features a new full-color layout, as well as the latest information on instrumentation and technology. Stay current on crucial developments in hybrid imaging (PET/CT and SPECT/CT), and small animal imaging, and benefit from the new section on tracer kinetic modeling in neuroreceptor imaging.

  8. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... physician who has specialized training in nuclear medicine will interpret the images and send a report to your referring physician. top of page What are the benefits vs. risks? Benefits The information provided by nuclear ...

  9. Ninth Argentine congress on biology and nuclear medicine; fourth Southernmost sessions of ALASBIMN (Latin-American Association of Biology and Nuclear Medicine); first Spanish-Argentine congress on nuclear medicine; first Argentine sessions on nuclear cardiology

    International Nuclear Information System (INIS)

    1991-01-01

    This work deals with all the papers presented at the 9. Argentine congress on biology and nuclear medicine; IV Southernmost sessions of ALASBIMN; I Spanish-Argentine congress on nuclear medicine and I Sessions Argentine sessions on nuclear cardiology held in Buenos Aires, Argentina, from October 14 - 18, 1991

  10. Monte Carlo simulation in nuclear medicine

    International Nuclear Information System (INIS)

    Morel, Ch.

    2007-01-01

    The Monte Carlo method allows for simulating random processes by using series of pseudo-random numbers. It became an important tool in nuclear medicine to assist in the design of new medical imaging devices, optimise their use and analyse their data. Presently, the sophistication of the simulation tools allows the introduction of Monte Carlo predictions in data correction and image reconstruction processes. The availability to simulate time dependent processes opens up new horizons for Monte Carlo simulation in nuclear medicine. In a near future, these developments will allow to tackle simultaneously imaging and dosimetry issues and soon, case system Monte Carlo simulations may become part of the nuclear medicine diagnostic process. This paper describes some Monte Carlo method basics and the sampling methods that were developed for it. It gives a referenced list of different simulation software used in nuclear medicine and enumerates some of their present and prospective applications. (author)

  11. Physical bases of nuclear medicine

    International Nuclear Information System (INIS)

    Isabelle, D.B.; Ducassou, D.

    1975-01-01

    The physical bases of nuclear medicine are outlined in several chapters devoted successively to: atomic and nuclear structures; nuclear reactions; radioactiity laws; a study of different types of disintegration; the interactions of radiations with matter [fr

  12. Children in nuclear medicine

    International Nuclear Information System (INIS)

    Fischer, S.

    2002-01-01

    With each study in paediatric nuclear medicine one must try to reach a high quality standard with a minimum of radiation exposure to the child. This is true for the indication for the study and the interpretation of the results as well as the preparation, the image acquisition, the processing and the documentation. A continuous evaluation of all aspects is necessary to receive optimal, clinically relevant information. In addition it is important that the child keeps nuclear medicine in a good mind, especially when it has to come back for a control study. (orig.) [de

  13. Role of nuclear medicine in imaging companion animals

    International Nuclear Information System (INIS)

    Currie, Geoffrey M.; Wheat, Janelle M.

    2005-01-01

    The role of equine nuclear medicine in Australia has been previously described in this journal and more recently, Lyall et al. provided a general overview of demographics of veterinary nuclear medicine departments in Australia. Lyall et al. discuss the main clinical applications of nuclear medicine scintigraphy in companion animals; dogs and cats. The aim of this article is to discuss in brief the applications of commonly performed nuclear medicine procedures in humans with respect to veterinary applications. More detailed discussion will also be offered for investigation of pathologies unique to veterinary nuclear medicine or which are more common in animals than humans. Companion animals are living longer today due to advances in both veterinary and human medicine. The problem is, like humans, longevity brings higher incidence of old age morbidity. As a pet owner, one might be initially motivated to extend life expectancy which is followed by the realisation that one also demands quality of life for pets. Early detection through advanced diagnostic tools, like nuclear medicine scintigraphy, allows greater efficacy in veterinary disease. There are limited veterinary nuclear medicine facilities in Australia due to cost and demand. Not surprisingly then, the growth of veterinary nuclear medicine in Australia, and overseas, has been integrally coupled to evaluation of race horses. While these facilities are generally specifically designed for race horses, racing greyhounds, lame family horses and companion animals are being investigated more frequently. In the USA, the American College of Veterinary Radiology (ACVC) is very active clinically and in research. The ACVC journal, Journal of Veterinary Radiology and Ultrasound, is published quarterly and includes a Nuclear Medicine section. Within the ACVR is the Society of Veterinary Nuclear Medicine. Proliferation of veterinary nuclear medicine centres in the USA has been associated with insurance and lifestyle changes

  14. Nuclear medicine training and practice in Turkey.

    Science.gov (United States)

    Ozcan, Zehra; Bozkurt, M Fani; Erbas, Belkıs; Durak, Hatice

    2017-05-01

    Nuclear medicine applications in Turkey started in the early 1950s, grew as an independent medical discipline and finally were recognized by the Ministry of Health in 1973. Later on, the professional organization of nuclear medicine physicians and other related professionals including radiopharmacists and technologists under the Turkish Society of Nuclear Medicine were established in 1975. Recently after completing more than a half century in Turkey, nuclear medicine has proved to be a strong and evolving medical field with more than 600 physicians serving for the changing needs of clinical practice throughout these years. This article describes past and present facts in this field and attempts to provide insights into the future which hopefully will be brighter than before.

  15. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... radioactive energy that is emitted from the patient's body and converts it into an image. The gamma camera itself does not emit any ... bear denotes child-specific content. Related Articles and Media General Nuclear ... (Pediatric) Nuclear Medicine Videos related ...

  16. Nuclear medicine applications for the diabetic foot

    International Nuclear Information System (INIS)

    Hartshorne, M.F.; Peters, V.

    1987-01-01

    Although not frequently described in the podiatric literature, nuclear medicine imaging may be of great assistance to the clinical podiatrist. This report reviews in detail the use of modern nuclear medicine approaches to the diagnosis and management of the diabetic foot. Nuclear medicine techniques are helpful in evaluating possible osteomyelitis, in determining appropriate amputation levels, and in predicting response to conservative ulcer management. Specific indications for bone, gallium, and perfusion imaging are described

  17. Radiological protection and safety in medicine

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    Here is presented a book published by ICRP ( International Commission Radiological Protection) that exposes the base principles of radiation protection, especially in medical sector. The exposure to ionizing radiations in medicine concerns the persons that profit by a diagnosis or a treatment but also the medical personnel, the patients family and the public. This publication 'CIPR 73' is more particularly adapted to the physicists and physicians implied in radiotherapy, medical imaging, in nuclear medicine and dentistry. It is also useful for the hospital establishments managers and to concerned national authorities. (N.C.)

  18. Radioisotopes for nuclear medicine: the future

    International Nuclear Information System (INIS)

    Carr, S.W.

    1998-01-01

    Full text: Nuclear medicine occupies an important niche in the spectrum of medical capability. Since its initial application on a routine basis over 30 years ago its importance has continued to grow. For example, it is expected that over 430,000 Australians will have a nuclear medicine procedure in 1998. Current procedures using nuclear medicine are mainly concerned with diagnosis of oncology, cardiology and neurology. The main radioisotope used in nuclear medicine is Tc 99m, which is produced by a 'so called' Mo-Tc 99m generator. Other isotopes which currently find routine use are Ga-67, Th-201 and I-131. The selective uptakes by particular organs or structures is facilitated by the use of 'cold kits' which after the chemistry of the radioisotope many of the recent advances have been concerned with increasing the selectivity for a particular organ structure. Several of these new agents show increased selectivity using antibody a peptide recognition units

  19. Nuclear medicine training and practice in Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Ozcan, Zehra [Ege University School of Medicine, Department of Nuclear Medicine, Izmir (Turkey); Bozkurt, M. Fani; Erbas, Belkis [Hacettepe University School of Medicine, Department of Nuclear Medicine, Ankara (Turkey); Durak, Hatice [Dokuz Eyluel University School of Medicine, Department of Nuclear Medicine, Izmir (Turkey)

    2017-05-15

    Nuclear medicine applications in Turkey started in the early 1950s, grew as an independent medical discipline and finally were recognized by the Ministry of Health in 1973. Later on, the professional organization of nuclear medicine physicians and other related professionals including radiopharmacists and technologists under the Turkish Society of Nuclear Medicine were established in 1975. Recently after completing more than a half century in Turkey, nuclear medicine has proved to be a strong and evolving medical field with more than 600 physicians serving for the changing needs of clinical practice throughout these years. This article describes past and present facts in this field and attempts to provide insights into the future which hopefully will be brighter than before. (orig.)

  20. Nuclear medicine training and practice in Turkey

    International Nuclear Information System (INIS)

    Ozcan, Zehra; Bozkurt, M. Fani; Erbas, Belkis; Durak, Hatice

    2017-01-01

    Nuclear medicine applications in Turkey started in the early 1950s, grew as an independent medical discipline and finally were recognized by the Ministry of Health in 1973. Later on, the professional organization of nuclear medicine physicians and other related professionals including radiopharmacists and technologists under the Turkish Society of Nuclear Medicine were established in 1975. Recently after completing more than a half century in Turkey, nuclear medicine has proved to be a strong and evolving medical field with more than 600 physicians serving for the changing needs of clinical practice throughout these years. This article describes past and present facts in this field and attempts to provide insights into the future which hopefully will be brighter than before. (orig.)

  1. The situation of chinese nuclear medicine technologists and strategy in future

    International Nuclear Information System (INIS)

    Zhang Yongxue

    2001-01-01

    Nuclear medicine technologists is an important part of nuclear medicine professionals, and play an important role in the progress of nuclear medicine. The professional quality of nuclear medicine technologists must adapt to the development of nuclear medicine. There is a relatively great gap between China mainland and developed countries in the field of nuclear medicine. In future, it is urgent to improve the professional quality and the educational level of nuclear medicine technologists

  2. Nuclear medicine training and practice in the Czech Republic

    International Nuclear Information System (INIS)

    Kaminek, Milan; Koranda, Pavel

    2014-01-01

    Nuclear medicine in the Czech Republic is a full specialty with an exclusive practice. Since the training program was organized and structured in recent years, residents have had access to the specialty of nuclear medicine, starting with a two-year general internship (in internal medicine or radiology). At present, nuclear medicine services are provided in 45 departments. In total, 119 nuclear medicine specialists are currently registered. In order to obtain the title of Nuclear Medicine Specialist, five years of training are necessary; the first two years consist of a general internship in internal medicine or radiology. The remaining three years consist of training in the nuclear medicine specialty itself, but includes three months of practice in radiology. Twenty-one physicians are currently in nuclear medicine training and a mean of three specialists pass the final exam per year. The syllabus is very similar to that of the European Union of Medical Specialists (UEMS), namely concerning the minimum recommended numbers for diagnostic and therapeutic procedures. In principle, the Czech law requires continuous medical education for all practicing doctors. The Czech Medical Chamber has provided a continuing medical education (CME) system. Other national CMEs are not accepted in Czech Republic. (orig.)

  3. Nuclear medicine training and practice in the Czech Republic

    Energy Technology Data Exchange (ETDEWEB)

    Kaminek, Milan; Koranda, Pavel [University Hospital Olomouc, Department of Nuclear Medicine, Olomouc (Czech Republic)

    2014-08-15

    Nuclear medicine in the Czech Republic is a full specialty with an exclusive practice. Since the training program was organized and structured in recent years, residents have had access to the specialty of nuclear medicine, starting with a two-year general internship (in internal medicine or radiology). At present, nuclear medicine services are provided in 45 departments. In total, 119 nuclear medicine specialists are currently registered. In order to obtain the title of Nuclear Medicine Specialist, five years of training are necessary; the first two years consist of a general internship in internal medicine or radiology. The remaining three years consist of training in the nuclear medicine specialty itself, but includes three months of practice in radiology. Twenty-one physicians are currently in nuclear medicine training and a mean of three specialists pass the final exam per year. The syllabus is very similar to that of the European Union of Medical Specialists (UEMS), namely concerning the minimum recommended numbers for diagnostic and therapeutic procedures. In principle, the Czech law requires continuous medical education for all practicing doctors. The Czech Medical Chamber has provided a continuing medical education (CME) system. Other national CMEs are not accepted in Czech Republic. (orig.)

  4. Radiation physics for nuclear medicine

    CERN Document Server

    Hoeschen, Christoph

    2011-01-01

    The field of nuclear medicine is expanding rapidly, with the development of exciting new diagnostic methods and treatments. This growth is closely associated with significant advances in radiation physics. In this book, acknowledged experts explain the basic principles of radiation physics in relation to nuclear medicine and examine important novel approaches in the field. The first section is devoted to what might be termed the "building blocks" of nuclear medicine, including the mechanisms of interaction between radiation and matter and Monte Carlo codes. In subsequent sections, radiation sources for medical applications, radiopharmaceutical development and production, and radiation detectors are discussed in detail. New frontiers are then explored, including improved algorithms for image reconstruction, biokinetic models, and voxel phantoms for internal dosimetry. Both trainees and experienced practitioners and researchers will find this book to be an invaluable source of up-to-date information.

  5. Computers for use in nuclear medicine

    International Nuclear Information System (INIS)

    Surova, H.

    1991-01-01

    Brief information is presented on computers for nuclear medicine that are currently available on the market. The treatment is based on print material by various manufacturers and commercial organizations and on the publication ''Nuclear Medicine Computers - A Personal Comparison Chart'' of May 1991, issued by the Reilly Publishing Company. (Z.S.)

  6. Nuclear tele medicine

    International Nuclear Information System (INIS)

    Vargas, L.; Hernandez, F.; Fernandez, R.

    2005-01-01

    The great majority of the digital images of nuclear medicine are susceptible of being sent through internet. This has allowed that the work in diagnosis cabinets by image it can benefit of this modern technology. We have presented in previous congresses works related with tele medicine, however, due to the speed in the evolution of the computer programs and the internet, becomes necessary to make a current position in this modality of work. (Author)

  7. Current Status of The Korean Society of Nuclear Medicine

    International Nuclear Information System (INIS)

    Koh, Chang Soon

    1977-01-01

    As the application of nuclear medicine to clinics became generalized and it held an important position, the Korean Society of Nuclear Medicine was founded in 1961, and today it has become known as one of the oldest nuclear medicine societies not only to Asian nations but also to other advanced countries all over the world. Now it has 100 or so regular members composed of students of each medicine filed unlike other medical societies. Only nuclear medicine research workers are eligible for its membership. The Korean Society of Nuclear Medicine holds its regular general meeting and symposium twice per annom respectively in addition to occasional group gatherings and provincial lectures on nuclear medicine. With an eye to exchanging information on symposium, research and know-how, KSNM issued its initial magazine in 1967. Every year two editions are published. Year after year the contents of treatises are getting elevated with researches on each field including the early study on morphology-greatly improved both in quality and quantity. Of late, a minute and fixed quantity of various matters by dynamical research and radioimmunoassay of every kind has become visibly active. In particular, since KSNM, unlike other local societies, keeps close and frequent contact with the nuclear medicine researchers of world-wide fame, monographs by eminent scholars of the world are carried in its magazine now internationally and well received in foreign countries. Now the magazine has been improved to such an extent that foreign authors quote its contents. KSNM invited many a foreign scholar with a view to exchanging the knowledge of nuclear medicine. Sponsored by nuclear energy institute, the nuclear medicine symposium held in Seoul in October of 1966 was a success with Dr. Wagner participating, a great scholar of world wide fame: It was the first international symposium ever held in Korea, and the Korea Japan symposium held in Seoul 1971 was attended by all distinguished nuclear

  8. Digital filtering in nuclear medicine

    International Nuclear Information System (INIS)

    Miller, T.R.; Sampathkumaran, S.

    1982-01-01

    Digital filtering is a powerful mathematical technique in computer analysis of nuclear medicine studies. The basic concepts of object-domain and frequency-domain filtering are presented in simple, largely nonmathemaical terms. Computational methods are described using both the Fourier transform and convolution techniques. The frequency response is described and used to represent the behavior of several classes of filters. These concepts are illustrated with examples drawn from a variety of important applications in nuclear medicine

  9. Nuclear medicine. La medecine nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Blanquet, P; Blanc, D

    1976-01-01

    The applications of radioisotopes in medical diagnostics are briefly reviewed. Each organ system is considered and the Nuclear medicine procedures pertinent to that system are discussed. This includes, the principle of the test, the detector and the radiopharmaceutical used, the procedure followed and the clinical results obtained. The various types of radiation detectors presently employed in Nuclear Medicine are surveyed, including scanners, gamma cameras, positron cameras and procedures for obtaining tomographic presentation of radionuclide distributions.

  10. The state of the art of nuclear medicine in 1980

    International Nuclear Information System (INIS)

    Tamat, S.R.

    1982-01-01

    The second congress of World Federation of Nuclear Medicine and Biology proved that nuclear medicine is returning to physiology. Around 1951, when motorized detector was introduced and when GM tube was replaced by scintillation crystal detector, physiologic nuclear medicine moved to anatomic nuclear medicine. Since 1970, when research on cardiology developed, nuclear medicine has been returning to physiology. Since 1963 Kuhl has been doing research on quantitative tomography which develops to emission computerized tomography emphasizing the physiological aspects of medicine. The recent contribution of nuclear medicine to medical science is the concept that human body is a unity of dynamic structure consisting of millions of cubes moving physio-chemically. (RUW)

  11. Rice Physicist to direct $40M LHC Program

    CERN Multimedia

    2006-01-01

    "Rice Universty announced that physicist B. Paul Padley has been chosen to lead the scientific operations for one of the particle detector systems at the European Organization for Nuclear Research's Large Hadron Collider (LHC)."

  12. Human resource development in nuclear medicine in developing countries

    International Nuclear Information System (INIS)

    Gopinathan Nair, P.G.

    1998-01-01

    An organization, an enterprise or a movement is only as good as the people in it and these cannot be conceived without considering the people that make it, in other words its human resources (HR). The definition of HR includes the total knowledge, skills, creative abilities, talents and aptitudes of the work-force. Equally important it includes the values, attitudes and benefits of each of the individuals concerned. No development is possible without proper planning. HR planning is therefore a prerequisite for HRD in NM and no planning can be made without defining the objectives of Nuclear Medicine (NM) in developing countries (DC). It is also essential to forecast the future needs of NM in DC keeping in mind the stated objectives before laying out the strategies of the HRD. HRD in NM is best achieved when all the partners in the game play their part with commitment and sincerity of purpose. At the national level the partners are the government (ministries of health and education), professional bodies (national societies of NM) and academic bodies (colleges of NM physicians, physicists and technologists etc.). In the implementation of the HRD systems and processes, involvement of all the partners is essential for success. Creation of task forces to implement, monitor and evaluate HRD tools ensures the quality of these tools. The operation of some of these tools may have to be centralized, and others decentralized depending upon the exigencies of need, propriety and practicality. In summary, the aim of HRD should be to ensure the right people at the right time for the right job and in doing so nuclear medicine achieves its objectives and the individuals in the workforce realize their full potentials, and benefits in full

  13. The developments and applications of molecular nuclear medicine

    International Nuclear Information System (INIS)

    Fang Shengwei; Xi Wang; Zhang Hong

    2009-01-01

    Molecular nuclear medicine including PET and SPECT is one of the most important parts of the molecular imaging. The combinations of molecular unclear medicine with CT, MRI, ultrasound or optical imaging and synthesis of multimodality radiopharmaceuticals are the major trends of the development of nuclear medicine. Molecular nuclear medicine has more and more and more important value on the monitoring of response to biology involved gene therapy or stem cell therapy and the developments of new drug. (authors)

  14. Distribution of nuclear medicine service in Brazil

    International Nuclear Information System (INIS)

    Silva, Ana Carolina Costa da; Duarte, Alessandro; Santos, Bianca Maciel dos

    2011-01-01

    The Brazil does not posses a good distribution of nuclear medicine service por all his territory. This paper shows the difference among country regions as far the number of clinics of nuclear medicine as is concerning, and also doctors licensed in the area and radioprotection supervisors, both licensed by the Brazilian Nuclear Energy Commission (CNEN)

  15. Computers in nuclear medicine: introductory concepts

    International Nuclear Information System (INIS)

    Weber, D.A.

    1978-01-01

    Computers play an important role in image and data processing in nuclear medicine. Applications extend from relatively simple mathematical processing of in vitro specimen assays to more sophisticated image reconstruction procedures for emission tomography. The basic concepts and terminology associated with computer applications in image and data processing in nuclear medicine are presented here

  16. Informatics for the solution of health physics problems in nuclear medicine laboratories

    International Nuclear Information System (INIS)

    De Rossi, G.; Montesanti, M.I.

    1984-01-01

    As the use of 'in vitro' and 'in vivo' radioisotope studies spreads more and more, many organizational and management problems arise. Hence an exact evaluation of current contamination levels and protection standards is very important for radiation-protection purposes. Environmental and personnel contamination levels in Nuclear Medicine Laboratories were recorded for four years and the results were evaluated by a computer-assisted method which furnished parameters such as the maximum permissible level of radioactivity at different timeintervals. They allow the health physicist to assess laboratory contamination levels as well as to classify radiation workers and places. A continuous 'monitoring' of radiation safety is possible in order to modify worker and/or laboratory classification as soon as possible, in close connection with possible changes in radiation hazards. This computer program applies equally well to other fields involving radioisotope use, such as industry, agriculture, etc. (Author)

  17. Nuclear medicine imaging. An encyclopedic dictionary

    International Nuclear Information System (INIS)

    Thie, Joseph A.

    2012-01-01

    The rapidly growing and somewhat complex area of nuclear medicine imaging receives only limited attention in broad-based medical dictionaries. This encyclopedic dictionary is intended to fill the gap. More than 400 entries of between one and three paragraphs are included, defining and carefully explaining terms in an appropriate degree of detail. The dictionary encompasses concepts used in planar, SPECT, and PET imaging protocols and covers both scanner operations and popular data analysis approaches. In spite of the mathematical complexities in the acquisition and analysis of images, the explanations given are kept simple and easy to understand; in addition, many helpful concrete examples are provided. Nuclear Medicine Imaging: An Encyclopedic Dictionary will be ideal for those who wish to obtain a rapid grasp of a concept beyond a definition of a few words but do not want to resort to a time-consuming search of the reference literature. The almost tutorial-like style accommodates the needs of students, nuclear medicine technologists, and varieties of other medical professionals who interface with specialists within nuclear medicine.

  18. Quality control of nuclear medicine instruments, 1991

    International Nuclear Information System (INIS)

    1996-12-01

    This document gives detailed guidance on the quality control of various instruments used in nuclear medicine. A first preliminary document was drawn up in 1979. A revised and extended version, incorporating recommended procedures, test schedules and protocols was prepared in 1982. The first edition of 'Quality Control of Nuclear Medicine Instruments', IAEA-TECDOC-317, was printed in late 1984. Recent advances in the field of nuclear medicine imaging made it necessary to add a chapter on Camera-Computer Systems and another on SPECT Systems

  19. Quality control of nuclear medicine instruments 1991

    International Nuclear Information System (INIS)

    1991-05-01

    This document gives detailed guidance on the quality control of various instruments used in nuclear medicine. A first preliminary document was drawn up in 1979. A revised and extended version, incorporating recommended procedures, test schedules and protocols was prepared in 1982. The first edition of ''Quality Control of Nuclear Medicine Instruments'', IAEA-TECDOC-317, was printed in late 1984. Recent advances in the field of nuclear medicine imaging made it necessary to add a chapter on Camera-Computer Systems and another on SPECT Systems. Figs and tabs

  20. Radiopharmaceutical prescription in nuclear medicine departments

    International Nuclear Information System (INIS)

    Biechlin-Chassel, M.L.; Lao, S.; Bolot, C.; Francois-Joubert, A.

    2010-01-01

    In France, radiopharmaceutical prescription is often discussed depending to which juridical structure the nuclear medicine department is belonging. According to current regulation, this prescription is an obligation in a department linked to hospital with a pharmacy department inside. But situation remains unclear for independent nuclear medicine departments where physicians are not constrained to prescribe radiopharmaceuticals. However, as radiographers and nurses are only authorized to realize theirs acts in front of a medical prescription, one prescription must be realized. Nowadays, computerized prescription tools have been developed but only for radiopharmaceutical drugs and not for medical acts. In the aim to achieve a safer patient care, the prescription regulation may be applied whatever differences between nuclear medicines departments. (authors)

  1. 22. French language symposium on nuclear medicine

    International Nuclear Information System (INIS)

    1981-01-01

    The 80 papers presented in summary form at the Congress are given. These papers cover three main topics: broncho-pulmonary investigation with radioaerosols; role of nuclear medicine in pharmacokinetics; role of Nuclear Medicine in metabolic investigations [fr

  2. The 3rd Sino-Japan nuclear medicine conference

    International Nuclear Information System (INIS)

    1999-01-01

    The 3rd Sino-Japan Nuclear Medicine Conference was hold on May 11-13, 1999 in Xi'an of China by Chinese Society of Nuclear Medicine, Japanese Society of Nuclear Medicine, Chinese Medicine Association and Japan-China Medicine Association. 62 articles were published in the proceeding of the conference. The contents of the articles include development and application of the radioisotopes (such as Tc-99, I-125, I-131, F-18, In-111, Tl-201, Ga-67, Sm-153, Re-188) and its radiopharmaceuticals, but application also include radiotherapy and diagnosis in the oncology and pathology by SPECT and PET

  3. Report on the second Congress of the Russian nuclear medicine society and on International conference Current problems of nuclear medicine and radiopharmaceuticals

    International Nuclear Information System (INIS)

    Lishmanov, Yu.B.; Chernov, V.I.

    2001-01-01

    Information on the work of Second Congress of Russian Nuclear Medicine Society and International Conference - Current problems of nuclear medicine and radiopharmaceuticals, - held in Obninsk in October, 2000, is adduced. Reports presented in the conference are dedicated to various aspects of application of radionuclide methods to cardiology, angiology, oncology, surgery, hematology, endocrinology, pediatrics and neurology. Problems in the development of radiopharmaceutical, training and skill advancement of experts, dosimetry and radiation safety in nuclear medicine were discussed. Congress considered the organizational problems in Russian nuclear medicine [ru

  4. A DICOM based PACS for nuclear medicine

    International Nuclear Information System (INIS)

    Lassmann, M.; Reiners, C.

    2002-01-01

    The installation of a radiology information system (RIS) connected to a hospital information system (HIS) and a picture archiving and communications system (PACS) seems mandatory for a nuclear medicine department in order to guarantee a high patient throughput. With these systems a fast transmission of reports, images to the in- and out-patients' wards and private practitioners is realized. Therefore, since April 2000, at the department of nuclear medicine of the university of Wuerzburg a completely DICOM based PACS has been implemented in addition to the RIS. With this system a DICOM based workflow is realized throughout the department of nuclear medicine for reporting and archiving. The PACS is connected to six gamma-cameras, a PET scanner, a bone densitometry system and an ultrasound device. The volume of image data archived per month is 4 GByte. Patient demographics are provided to the modalities via DICOM-Worklist. With these PACS components a department specific archive purely based on DICOM can be realized. During the installation process problems occurred mainly because of the complex DICOM standard for nuclear medicine. Related to that is the problem that most of the software implementations still contain bugs or are not adapted to the needs of a nuclear medicine department (particularly for PET). A communication software for the distribution of nuclear medicine reports and images based on techniques used for the worldwide web is currently tested. (orig.) [de

  5. Computer applications in nuclear medicine

    International Nuclear Information System (INIS)

    Lancaster, J.L.; Lasher, J.C.; Blumhardt, R.

    1987-01-01

    Digital computers were introduced to nuclear medicine research as an imaging modality in the mid-1960s. Widespread use of imaging computers (scintigraphic computers) was not seen in nuclear medicine clinics until the mid-1970s. For the user, the ability to acquire scintigraphic images into the computer for quantitative purposes, with accurate selection of regions of interest (ROIs), promised almost endless computational capabilities. Investigators quickly developed many new methods for quantitating the distribution patterns of radiopharmaceuticals within the body both spatially and temporally. The computer was used to acquire data on practically every organ that could be imaged by means of gamma cameras or rectilinear scanners. Methods of image processing borrowed from other disciplines were applied to scintigraphic computer images in an attempt to improve image quality. Image processing in nuclear medicine has evolved into a relatively extensive set of tasks that can be called on by the user to provide additional clinical information rather than to improve image quality. Digital computers are utilized in nuclear medicine departments for nonimaging applications also, Patient scheduling, archiving, radiopharmaceutical inventory, radioimmunoassay (RIA), and health physics are just a few of the areas in which the digital computer has proven helpful. The computer is useful in any area in which a large quantity of data needs to be accurately managed, especially over a long period of time

  6. Pulmonary explorations in nuclear medicine

    International Nuclear Information System (INIS)

    Beck, C.

    1987-01-01

    Ten years ago specialists in Nuclear Medicine from the South of France formed an Association called ACOMEN. The objectives were to create a permanent exchange of ideas between members and a close collaboration with physicians. The group objectives have led to a combination of efforts on the behalf of each one to clarify our techniques for physicians having recourse to this speciality as well as the various categories of students passing through the Nuclear Medicine Departments. Different groups within the ACOMEN were assigned to specific subjects. Each group was in charge of building the framework of a certain topic, which was then illustrated by selected documents contributed by all members. A slide collection, complete with an explanatory booklet is the final result of this collaboration. Thus anyone concerned in any way, with nuclear medicine, is able to quickly become familiar with the techniques of the speciality, to be aware of its possibilities and its limitations and to update his hnowledge. One realizes that the first theme selected was not the easiest; pulmonary radionuclide explorations are, as everyone knows, variable and even personalized. However, the choice was deliberate. The difficulty should stimulate those responsible for the other themes as well as the people working with them. There is already a slide collection available to anyone who wishes to learn about the use of nuclear medicine in the diagnosis of respiratory diseases [fr

  7. Quality control in nuclear medicine

    International Nuclear Information System (INIS)

    Kostadinova, I.

    2007-01-01

    Nuclear medicine comprises diagnosis and therapy of the diseases with radiopharmaceuticals. The ambition of all specialists in our country is their activity to reach European standards. In this connection, a Commission for external audit was formed to evaluate the quality of work in the centers of nuclear medicine. This Commission create a long-lasting programme based on the objective European criteria and the national standard of nuclear medicine, having in mind to increase quality of the work and the expert evaluation of activity in every center. The program comprises measures for quality control of instrumentation, radiopharmaceuticals, performed investigations, obtained results and the whole organization from the receiving of the isotopes to the results of the patients. The ambition is most of the centers to fulfill the requirements. As a conclusion it could be said that not only the quality of everyday nuclear medicine work is enough to increase the prestige of the specialty. It is also necessary we to have understanding expert and financial support from corresponding institutions, incl. Ministry of health for a delivery of a new, contemporary instrumentation with new possibilities. Thus it would be possible Bulgarian patients to reach the high technology apparatuses for an early functional diagnosis of the diseases and optimal treatment, which possibility have the patients from the developed countries. (author)

  8. Radiation exposure of workers in nuclear medicine

    International Nuclear Information System (INIS)

    Bujnova, A.

    2008-01-01

    Nuclear medicine is an interdisciplinary department that deals with diagnosis and therapy using open sources. Therefore workers in nuclear medicine are in daily contact with ionizing radiation and thus it is essential to monitor a radiation load. Each work must therefore carry out monitoring of workers. It monitors compliance with the radiation limits set by law, allows an early detection of deviations from normal operation and to demonstrate whether the radiation protection at the workplace is optimized. This work describes the principles of monitoring of workers in nuclear medicine and monitoring methods for personal dosimetry. In the next section the author specifically deals with personal dosimetry at the Department of Nuclear Medicine St. Elizabeth Cancer Institute, Bratislava (KNM-Ba-OUSA). The main part of the work is to evaluate the results of a one-year monitoring of radiation workers KNM-Ba-OUSA. (author)

  9. Hand Dose in Nuclear Medicine Staff Members

    International Nuclear Information System (INIS)

    Taha, T.M.; Shahein, A.Y.; Hassan, R.

    2009-01-01

    Measurement of the hand dose during preparation and injection of radiopharmaceuticals is useful in the assessment of the extremity doses received by nuclear medicine personnel. Hand radiation doses to the occupational workers that handling 99m Tc-labeled compounds, 131 I for diagnostic in nuclear medicine were measured by thermoluminescence dosimetry. A convenient method is to use a TLD ring dosimeter for measuring doses of the diagnostic units of different nuclear medicine facilities . Their doses were reported in millisieverts that accumulated in 4 weeks. The radiation doses to the hands of nuclear medicine staff at the hospitals under study were measured. The maximum expected annual dose to the extremities appeared to be less than the annual limit (500 mSv/y) because all of these workers are on rotation and do not constantly handle radioactivity throughout the year

  10. Lessons from other areas of medical imaging - nuclear medicine

    International Nuclear Information System (INIS)

    McCready, V.R.

    1981-01-01

    Ultrasound and nuclear medicine are similar in that they both have been developed for clinical use in the past decade. Unlike X-ray techniques the success or failure of ultrasound and nuclear medicine depend more upon both the operator and the method of display. Since both ultrasound and nuclear medicine use relatively complicated methods of gathering and displaying information some of the lessons learnt during the development of nuclear medicine can be equally applied to ultrasound techniques. (Auth.)

  11. MO-A-218-01: CT Protocol Review - Practical Tips for Imaging Physicists.

    Science.gov (United States)

    Pizzutiello, R

    2012-06-01

    In the 1980's and 90's, when every mammography department had a wet film processor and a sundial to keep the schedule, medical physicists performing mammography surveys were primarily focused on measuring machine performance and image quality. As our professional experience matured, medical physicists began to learn that they were uniquely qualified to help to recommend technique factors that would balance dose and image quality. Technique charts using different kVp, target-filter combinations and AEC modes gradually became common and patients benefitted from our input. With the revolutionary change in CT Scanner technology and utilization, medical physicists have begun to contribute their expertise to developing and improving CT protocols. This presentation will present practical challenges and offer some directions for the practicing medical physicist who desires to participate in this critical and emerging aspect of imaging physics practice: CT Protocol Review. © 2012 American Association of Physicists in Medicine.

  12. Research and career opportunities for chemists in nuclear medicine

    International Nuclear Information System (INIS)

    Welch, M.J.

    1989-01-01

    Two recent publications [Training Requirements for Chemists in Nuclear Medicine, Nuclear Industry, and Related Areas: Report of a Workshop National Academy Press, Washington, D.C., 1988, and Report of the Society of Nuclear Medicine Manpower Committee, Journal of Nuclear Medicine, January, 1989] have emphasized the opportunities for Chemists in Nuclear Medicine. These opportunities exist in Medical Centers, the Radiopharmaceutical Drug Industry as well as the Ethical Drug Industry of particular importance of the need for organic and inorganic chemists with knowledge and experience in radiochemistry to develop and prepare the radiopharmaceuticals needed for the Nuclear Medicine community. The number of positions available at present and anticipated in the future will be compared and the number of training programs listed. Examples of the types of opportunities in this area will be given

  13. Radiation doses to patients from nuclear medicine examinations

    International Nuclear Information System (INIS)

    Boehm, K.; Boehmova, I.

    2014-01-01

    Public Health Authority of the Slovak Republic, Bratislava The exposure of the population to ionizing radiation is rising rapidly, nearly exclusively due to increasing medical use of radiation, including diagnostic methods of nuclear medicine. In 2012 Public health authority of the Slovak republic (PHA SR) performed a survey about the population exposure from nuclear medicine procedures. The primary objectives of this survey were to assess the frequency of different nuclear medicine procedures, determine the average activities administered by nuclear medicine procedures and compare them with the national diagnostic reference levels and determine the annual collective effective dose to the Slovak population from nuclear medicine. The effective dose calculation was based on the methodology of the ICRP32, ICRP80 and ICRP106. In Slovak republic are 11 nuclear medicine departments. The collected data of activities administered by different procedures correspond to 100 % of nuclear medicine departments. The total number of procedures included in the study was 36 250. The most commonly performed procedure was bone scintigraphy (35.9%), followed by lung perfusion and ventilation scintigraphy (17.0%), static and dynamic renal scintigraphy (13.0%), whole-body positron emission tomography of tumors with PET radiopharmaceuticals (11.6%), myocardial perfusion (8.8%), thyroid scintigraphy (6.2%), parathyroid scintigraphy (2.1%), scintigraphy of tumors (2.1%), scintigraphy of the liver and spleen (0.8%), brain perfusion (0.7%) and examination of the gastrointestinal system (0.3%). (authors)

  14. Radiological protection of patients in diagnostic and interventional radiology, nuclear medicine and radiotherapy. Contributed papers

    International Nuclear Information System (INIS)

    2001-01-01

    An International Conference on the Radiological Protection of Patients in Diagnostic and Interventional Radiology, Nuclear Medicine and Radiotherapy organized by the International Atomic Energy Agency and co-sponsored by the European Commission, the Pan American Health Organization and the World Health Organization was held in Malaga, Spain, from 26 to 30 March 2001. The Government of Spain hosted this Conference through the Ministerio de Sanidad y Consumo, the Consejo de Seguridad Nuclear, the Junta de Andalucia, the Universidad de Malaga and the Grupo de Investigacion en Proteccion Radiologica de la Universidad de Malaga (PRUMA). The Conference was organized in co-operation with the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), the International Commission on Radiological Protection (ICRP) and the following professional societies: International Organization of Medical Physicists (IOMP), International Radiation Protection Association (IRPA), International Society of Radiation Oncology (ISRO), International Society of Radiology (ISR), International Society of Radiographers and Radiological Technologists (ISRRT) and World Federation of Nuclear Medicine and Biology (WFNMB). This publication contains contributed papers submitted to the Conference Programme Committee. The papers are in one of the two working languages of this Conference, English and Spanish. The topics covered by the Conference are as follows: Radiological protection of patients in general diagnostic radiology (radiography), Radiological protection of patients in general diagnostic radiology (fluoroscopy), Radiological protection issues in specific uses of diagnostic radiology, such as mammography and computed tomography (with special consideration of the impact of digital techniques), Radiological protection in interventional radiology, including fluoroscopy not carried out by radiologists, Radiological protection of patients in nuclear medicine, Developing and

  15. Radiological protection of patients in diagnostic and interventional radiology, nuclear medicine and radiotherapy. Contributed papers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    An International Conference on the Radiological Protection of Patients in Diagnostic and Interventional Radiology, Nuclear Medicine and Radiotherapy organized by the International Atomic Energy Agency and co-sponsored by the European Commission, the Pan American Health Organization and the World Health Organization was held in Malaga, Spain, from 26 to 30 March 2001. The Government of Spain hosted this Conference through the Ministerio de Sanidad y Consumo, the Consejo de Seguridad Nuclear, the Junta de Andalucia, the Universidad de Malaga and the Grupo de Investigacion en Proteccion Radiologica de la Universidad de Malaga (PRUMA). The Conference was organized in co-operation with the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), the International Commission on Radiological Protection (ICRP) and the following professional societies: International Organization of Medical Physicists (IOMP), International Radiation Protection Association (IRPA), International Society of Radiation Oncology (ISRO), International Society of Radiology (ISR), International Society of Radiographers and Radiological Technologists (ISRRT) and World Federation of Nuclear Medicine and Biology (WFNMB). This publication contains contributed papers submitted to the Conference Programme Committee. The papers are in one of the two working languages of this Conference, English and Spanish. The topics covered by the Conference are as follows: Radiological protection of patients in general diagnostic radiology (radiography), Radiological protection of patients in general diagnostic radiology (fluoroscopy), Radiological protection issues in specific uses of diagnostic radiology, such as mammography and computed tomography (with special consideration of the impact of digital techniques), Radiological protection in interventional radiology, including fluoroscopy not carried out by radiologists, Radiological protection of patients in nuclear medicine, Developing and

  16. Nuclear Medicine on the net

    International Nuclear Information System (INIS)

    Graney, K.; Lin, P.C.; Chu, J.; Sathiakumur, C.

    2003-01-01

    Full text: To gain insight into Internet usage as a potential means of communicating with clinicians. Method: 200 clinicians within the South Western Sydney Health Area were surveyed by mail. Questionnaire details included Internet access, frequency of access, interest in department web site, suitability of content and interest in electronic bookings. The total response rate was 37% (74/200). General Practitioners comprised 46% of the respondents, and specialists 54%. All respondents had access to the Internet (44% from home only, 8% from work, 48% from both locations), with 57% accessing the Web daily. There was a high overall interest by respondents in accessing a Nuclear medicine web site, particularly for information and results, but a relative reluctance to consider electronic bookings. The following table outlines the respondents in detail. Our results indicate that a Nuclear Medicine web site has the potential to be an effective means of communicating with clinicians. Copyright (2003) The Australian and New Zealand Society of Nuclear Medicine Inc

  17. Interventional studies in nuclear medicine

    International Nuclear Information System (INIS)

    Saha, G.B.; Swanson, D.P.; Hladik, W.B. III

    1987-01-01

    Pharmacological interventions in nuclear medicine studies have been in practice for a long time. The triiodothyronine (T/sub 3/) suppression, Thyroid-stimulating hormone (TSH) stimulation, and perchlorate discharge tests are common examples of well-established diagnostic interventional studies. In recent years, pharmacologic and physiologic interventions in other nuclear medicine procedures have drawn considerable attention. The primary purpose of these interventions is to augment, complement or, more often, differentiate the information obtained from conventional nuclear medicine diagnostic studies. Pharmacologic interventions involve the administration of a specific drug before, during, or after the administration of radiopharmaceutical for a given study. The change in information due to intervention of the drug offers clues to differentiating various disease conditions. These changes can be brought about by physiologic interventions also, e.g., exercise in radionuclide ventriculography. In the latter interventions, the physiologic function of an organ is enhanced or decreased by physical maneuvers, and the changes observed can be used to differentiate various disease conditions

  18. Radiation protection in nuclear medicine

    International Nuclear Information System (INIS)

    Seeburrun, V.

    2013-04-01

    Radiation protection in nuclear medicine in this project is concerned with the reduction of doses to workers, patients and members of the public. Protection of workers is achieved by adopting good personal habits, good housekeeping, proper use of personal protective devices and equipment, attend training and have continuous education. Exposure to radiation of workers and the members of the public are minimised by proper management of radioactive waste and safe transport of radioactive material. The design and shielding of a nuclear medicine department shall further provide for the protection of the worker, the patient and the general public. Protection of patient is achieved by justifying the procedure, delivering the minimum radiation dose possible to the patient while obtaining the best image quality and applying guidance levels. Special considerations shall be given to pregnant and breast-feeding patients. Quality assurance programme through image quality, radiopharmaceutical quality and patient records on nuclear medicine procedures shall provide assurance to the patient. (au)

  19. Checklists for quality assurance and audit in nuclear medicine

    International Nuclear Information System (INIS)

    Williams, E.D.; Harding, L.K.; McKillop, J.H.

    1989-01-01

    A series of checklists are given which aim to provide some guidance to staff in determining whether their working procedures in nuclear medicine are likely to produce a good service and avoid mistakes. The checklists relate to the special equipment used in nuclear medicine departments, radiopharmaceuticals, nuclear medicine staff, services to medical and other hospital staff and finally the service to patients. The checklists are relevant to an average nuclear medicine department performing less than 2000 imaging studies per year. (U.K.)

  20. Highlights of articles published in annals of nuclear medicine 2016

    International Nuclear Information System (INIS)

    Jadvar, Hossein

    2017-01-01

    This article is the first installment of highlights of selected articles published during 2016 in the Annals of Nuclear Medicine, an official peer-reviewed journal of the Japanese Society of Nuclear Medicine. A companion article highlighting selected articles published during 2016 in the European Journal of Nuclear Medicine and Molecular Imaging, which is the official peer-reviewed journal of the European Association of Nuclear Medicine, will also appear in the Annals Nuclear Medicine. This new initiative by the respective journals will continue as an annual endeavor and is anticipated to not only enhance the scientific collaboration between Europe and Japan but also facilitate global partnership in the field of nuclear medicine and molecular imaging. (orig.)

  1. Highlights of articles published in annals of nuclear medicine 2016

    Energy Technology Data Exchange (ETDEWEB)

    Jadvar, Hossein [University of Southern California, Division of Nuclear Medicine, Department of Radiology, Keck School of Medicine, Los Angeles, CA (United States)

    2017-10-15

    This article is the first installment of highlights of selected articles published during 2016 in the Annals of Nuclear Medicine, an official peer-reviewed journal of the Japanese Society of Nuclear Medicine. A companion article highlighting selected articles published during 2016 in the European Journal of Nuclear Medicine and Molecular Imaging, which is the official peer-reviewed journal of the European Association of Nuclear Medicine, will also appear in the Annals Nuclear Medicine. This new initiative by the respective journals will continue as an annual endeavor and is anticipated to not only enhance the scientific collaboration between Europe and Japan but also facilitate global partnership in the field of nuclear medicine and molecular imaging. (orig.)

  2. Quality assurance of nuclear medicine instruments

    International Nuclear Information System (INIS)

    Soni, P.S.

    1998-01-01

    Quality assurance in nuclear medicine refers collectively to all aspects of a nuclear medicine programme that may contribute directly or indirectly to the quality of the results obtained. For examples, patients scheduling; preparation and dispensing of radiopharmaceutical; the protection of patients, staff and the general public against radiation hazards and accidents caused by faulty instruments; methodology, data interpretation and record keeping

  3. Mentoring and the Nuclear Medicine Technologist.

    Science.gov (United States)

    Burrell, Lance

    2018-06-08

    The goal of this article is to give an overview of mentoring for nuclear medicine technologists (NMT). Mentoring is an integral part of the training and practice in the field of nuclear medicine technology. There is a great need for NMTs to continue involvement in mentorship so that we can develop and maintain the talent and leadership that the field needs. In this article, definitions of mentorship will be provided. Then, how mentoring can work; including different methods and techniques will be covered. Next, the benefits of mentoring will be discussed. Finally, advice for improved application will be presented. Throughout, this article will discuss how mentoring applies to the NMT. Copyright © 2018 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  4. Nuclear techniques in medicine

    International Nuclear Information System (INIS)

    Basson, J.K.

    1984-01-01

    The use of nuclear techniques in medicine has, also in South Africa, increased enormously, especially as regards diagnosis and reseach. In 1983 in vivo tests with radioisotopes were carried out and also in vitro tests, mainly by radioimmunoassay. Therapy with open and sealed radioactive sources was concentrated mainly on cancer treatments. In 1983 NUCOR supported 83 research projects in the life sciences. Imaging of organs or tissues in the body with nuclear techniques has developed into the most important application of nuclear medicine, with the development of even more specific labelled compounds as the main objective. Radioimmunoassay is at an exciting watershed, now that labelled monoclonal antibodies with high specificity for early diagnosis (also in cancer) and even localised radiotherapy have become available. The establishment of the 200 MeV open-sector cyclotron by the National Accelerator Centre also for medical purposes will, in addition to the large-scale production of the protonrich isotopes, also make a substantial contribution to radiotherapy with nuclear particles such as neutrons, protons and helium-3

  5. Physics and medicine: ICTR-PHE 2016 opens abstract submission

    CERN Multimedia

    2015-01-01

    The third edition of the joint ICTR (International Conference on Transnational Research in Radiation Oncology) and PHE (Physics for Health in Europe) conference (see here) will take place from 15 to 19 February 2016 at the Geneva International Conference Centre (CICG). This biennial event, co-organised by CERN, has become a staple amongst the scientific communities involved in multidisciplinary research at the crossing of physics, medicine, and biology.   Abstract submission and registration are now open: detector physicists, radiochemists, nuclear-medicine physicians and physicists, biologists, software developers, accelerator experts, and oncologists are encouraged to “think outside the box” and make innovative proposals. Last year’s programme shows the breadth and diversity of subjects, which makes this conference a unique place to showcase your research, see how the same topic is approached by different disciplines, engage in stimulating discussions, ...

  6. Physics and medicine: ICTR-PHE 2016 opens abstract submission

    CERN Multimedia

    2015-01-01

    The third edition of the joint ICTR (International Conference on Transnational Research in Radiation Oncology) and PHE (Physics for Health in Europe) conference (see here) will take place from 15 to 19 February 2016 at the Geneva International Conference Centre (CICG). This biennial event, co-organised by CERN, has become a staple amongst the scientific communities involved in multidisciplinary research at the crossing of physics, medicine, and biology.   Abstract submission and registration are now open: detector physicists, radiochemists, nuclear-medicine physicians and physicists, biologists, software developers, accelerator experts, and oncologists are encouraged to “think outside the box” and make innovative proposals. Last year’s programme shows the breadth and diversity of subjects, which makes this conference a unique place to showcase your research, see how the same topic is approached by different disciplines, engage in stimulating discussions,...

  7. Nuclear Medicine Imaging Devices. Chapter 11

    Energy Technology Data Exchange (ETDEWEB)

    Lodge, M. A.; Frey, E. C. [Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, MD (United States)

    2014-12-15

    Imaging forms an important part of nuclear medicine and a number of different imaging devices have been developed. This chapter describes the principles and technological characteristics of the main imaging devices used in nuclear medicine. The two major categories are gamma camera systems and positron emission tomography (PET) systems. The former are used to image γ rays emitted by any nuclide, while the latter exploit the directional correlation between annihilation photons emitted by positron decay. The first section of this chapter discusses the principal components of gamma cameras and how they are used to form 2-D planar images as well as 3-D tomographic images (single photon emission computed tomography (SPECT)). The second section describes related instrumentation that has been optimized for PET data acquisition. A major advance in nuclear medicine was achieved with the introduction of multi-modality imaging systems including SPECT/computed tomography (CT) and PET/CT. In these systems, the CT images can be used to provide an anatomical context for the functional nuclear medicine images and allow for attenuation compensation. The third section in this chapter provides a discussion of the principles of these devices.

  8. 1. A brief history of nuclear medicine

    International Nuclear Information System (INIS)

    Dienstbier, Z.

    1989-01-01

    The milestones of history of nuclear medicine are dealt with. A brief account is given of the history of nuclear medicine abroad, and a more in-depth treatment is devoted to Czechoslovakia, where the beginning of this branch of science dates to 1951. (Z.S.)

  9. Quantitative Nuclear Medicine Imaging: Concepts, Requirements and Methods

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-01-15

    The absolute quantification of radionuclide distribution has been a goal since the early days of nuclear medicine. Nevertheless, the apparent complexity and sometimes limited accuracy of these methods have prevented them from being widely used in important applications such as targeted radionuclide therapy or kinetic analysis. The intricacy of the effects degrading nuclear medicine images and the lack of availability of adequate methods to compensate for these effects have frequently been seen as insurmountable obstacles in the use of quantitative nuclear medicine in clinical institutions. In the last few decades, several research groups have consistently devoted their efforts to the filling of these gaps. As a result, many efficient methods are now available that make quantification a clinical reality, provided appropriate compensation tools are used. Despite these efforts, many clinical institutions still lack the knowledge and tools to adequately measure and estimate the accumulated activities in the human body, thereby using potentially outdated protocols and procedures. The purpose of the present publication is to review the current state of the art of image quantification and to provide medical physicists and other related professionals facing quantification tasks with a solid background of tools and methods. It describes and analyses the physical effects that degrade image quality and affect the accuracy of quantification, and describes methods to compensate for them in planar, single photon emission computed tomography (SPECT) and positron emission tomography (PET) images. The fast paced development of the computational infrastructure, both hardware and software, has made drastic changes in the ways image quantification is now performed. The measuring equipment has evolved from the simple blind probes to planar and three dimensional imaging, supported by SPECT, PET and hybrid equipment. Methods of iterative reconstruction have been developed to allow for

  10. Nuclear medicine in the countries of Latin America

    International Nuclear Information System (INIS)

    Touya, Eh.

    1987-01-01

    The role of nuclear medicine in protection of health in Latin America states is shown. Nuclear medicine methods are applied in Latin America countries for diagnosis of coronary disease, cancer, malfunctioning of separate organs and transplants, kidney transplants in particular. The present situation in protection of health in the region is evaluated. It is emphasized that nuclear medicine should play its role in the course of public health improvement in those countries

  11. Case assessments for nuclear medicine registrars

    International Nuclear Information System (INIS)

    Farlow, D.

    1994-01-01

    Westmead Hospital set some of the recent nuclear medicine cases for registrar training. These case assessments have been completed by the registrars and he thought it might be interesting for the general nuclear medicine community to attempt the cases themselves and compare their answers with the model reports and patient follow-ups. Edited versions of two cases and model answers are presented. 35 refs

  12. Imaging in nuclear medicine

    International Nuclear Information System (INIS)

    Giussani, Augusto; Hoeschen, Christoph

    2013-01-01

    Presents the most recent developments in nuclear medicine imaging, with emphasis on the latest research findings. Considers the latest advances in imaging systems, image reconstruction, noise correction, and quality assurance. Discusses novel concepts, including those developed within the framework of the EURATOM FP7 MADEIRA project. Lists rules of thumb for imaging of use to both beginners and experienced researchers. This volume addresses a wide range of issues in the field of nuclear medicine imaging, with an emphasis on the latest research findings. Initial chapters set the scene by considering the role of imaging in nuclear medicine from the medical perspective and discussing the implications of novel agents and applications for imaging. The physics at the basis of the most modern imaging systems is described, and the reader is introduced to the latest advances in image reconstruction and noise correction. Various novel concepts are then discussed, including those developed within the framework of the EURATOM FP7 MADEIRA research project on the optimization of imaging procedures in order to permit a reduction in the radiation dose to healthy tissues. Advances in quality control and quality assurance are covered, and the book concludes by listing rules of thumb for imaging that will be of use to both beginners and experienced researchers.

  13. Imaging in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Giussani, Augusto [BfS - Federal Office for Radiation Protection, Oberschleissheim (Germany). Dept. of Radiation Protection and Health; Hoeschen, Christoph (eds.) [Helmholtz Zentrum Muenchen - German Research Center for Environmental Health, Neuherberg (Germany). Research Unit Medical Raditation Physics and Diagnostics

    2013-08-01

    Presents the most recent developments in nuclear medicine imaging, with emphasis on the latest research findings. Considers the latest advances in imaging systems, image reconstruction, noise correction, and quality assurance. Discusses novel concepts, including those developed within the framework of the EURATOM FP7 MADEIRA project. Lists rules of thumb for imaging of use to both beginners and experienced researchers. This volume addresses a wide range of issues in the field of nuclear medicine imaging, with an emphasis on the latest research findings. Initial chapters set the scene by considering the role of imaging in nuclear medicine from the medical perspective and discussing the implications of novel agents and applications for imaging. The physics at the basis of the most modern imaging systems is described, and the reader is introduced to the latest advances in image reconstruction and noise correction. Various novel concepts are then discussed, including those developed within the framework of the EURATOM FP7 MADEIRA research project on the optimization of imaging procedures in order to permit a reduction in the radiation dose to healthy tissues. Advances in quality control and quality assurance are covered, and the book concludes by listing rules of thumb for imaging that will be of use to both beginners and experienced researchers.

  14. Nuclear medicine statistics

    International Nuclear Information System (INIS)

    Martin, P.M.

    1977-01-01

    Numerical description of medical and biologic phenomena is proliferating. Laboratory studies on patients now yield measurements of at least a dozen indices, each with its own normal limits. Within nuclear medicine, numerical analysis as well as numerical measurement and the use of computers are becoming more common. While the digital computer has proved to be a valuable tool for measurment and analysis of imaging and radioimmunoassay data, it has created more work in that users now ask for more detailed calculations and for indices that measure the reliability of quantified observations. The following material is presented with the intention of providing a straight-forward methodology to determine values for some useful parameters and to estimate the errors involved. The process used is that of asking relevant questions and then providing answers by illustrations. It is hoped that this will help the reader avoid an error of the third kind, that is, the error of statistical misrepresentation or inadvertent deception. This occurs most frequently in cases where the right answer is found to the wrong question. The purposes of this chapter are: (1) to provide some relevant statistical theory, using a terminology suitable for the nuclear medicine field; (2) to demonstrate the application of a number of statistical methods to the kinds of data commonly encountered in nuclear medicine; (3) to provide a framework to assist the experimenter in choosing the method and the questions most suitable for the experiment at hand; and (4) to present a simple approach for a quantitative quality control program for scintillation cameras and other radiation detectors

  15. Computers. A perspective on their usefulness in nuclear medicine

    International Nuclear Information System (INIS)

    Loken, M.K.; Williams, L.E.; Ponto, R.A.; Ganatra, R.D.; Raikar, U.; Samuel, A.M.

    1977-01-01

    To date, many symposia have been held on computer applications in nuclear medicine. Despite all of these efforts, an appraisal of the true utility of computers in the day-to-day practice of nuclear medicine is yet to be achieved. Now that the technology of data storage and processing in nuclear medicine has reached a high degree of sophistication, as evidenced by many reports in the literature, the time has come to develop a perspective on the proper place of computers in nuclear medicine practice. The paper summarizes various uses of a dedicated computer (Nuclear Data Med II) at our two institutions and comments on its clinical utility. (author)

  16. Historic images in nuclear medicine

    DEFF Research Database (Denmark)

    Hess, Søren; Høilund-Carlsen, Poul Flemming; Alavi, Abass

    2014-01-01

    In 1976, 2 major molecular imaging events coincidentally took place: Clinical Nuclear Medicine was first published in June, and in August researchers at the Hospital of the University of Pennsylvania created the first images in humans with F-FDG. FDG was initially developed as part of an evolution...... set in motion by fundamental research studies with positron-emitting tracers in the 1950s by Michel Ter-Pegossian and coworkers at the Washington University. Today, Clinical Nuclear Medicine is a valued scientific contributor to the molecular imaging community, and FDG PET is considered the backbone...

  17. Basics of radiobiology and nuclear medicine

    International Nuclear Information System (INIS)

    Kostadinova, I.; Hadjidekova, V.; Georgieva, R.

    2002-01-01

    The authors successively reveal the topics of the biological impact of radiation (radiobiology) and the diagnostic and the therapeutic application of radiopharmaceuticals (nuclear medicine). Data on the influence of radiation on subcellular, cellular, tissue and organ level are given, on early and late radiation changes, as well. Indication for the application of the different radionuclide methods in the diagnosis of the diseases in the endocrinology, nephrology, cardiology, gastroenterology, haematology of lungs, bones, tumors are pointed out and the main trends of the growing therapeutical use of nuclear medicine are presented. The aim is to teach students the nuclear medicine methods in the complex investigation of the patients, his preliminary preparation and the biological impact of radiation and its risk. Self assessment test for students are proposed and a literature for further reading

  18. Course on internal dosimetry in nuclear medicine; Curso de dosimetria interna en medicina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This documentation was distributed to the participants in the Course of Internal Dosimetry in Nuclear Medicine organised by the Nuclear Regulatory Authority (ARN) of Argentina and held in Buenos Aires, Argentina, August 9-13, 2004. The course was intended for people from IAEA Member States in the Latin American and Caribbean region, and for professionals and workers in medicine, related with the radiation protection. Spanish and English were the languages of the course. The following subjects were covered: radioprotection of the patient in nuclear medicine; injuries by ionizing radiations; MIRD methodology; radiation dose assessment in nuclear medicine; small scale and microdosimetry; bone and marrow dose modelling; medical internal dose calculations; SPECT and image reconstruction; principles of the gamma camera; scattering and attenuation correction in SPECT; tomography in nuclear medicine.

  19. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... variety of diseases, including many types of cancers, heart disease, gastrointestinal, endocrine, neurological disorders and other abnormalities within the body. Because nuclear medicine procedures are ...

  20. Jerome Lewis Duggan: A Nuclear Physicist and a Well-Known, Six-Decade Accelerator Application Conference (CAARI) Organizer

    Science.gov (United States)

    Del McDaniel, Floyd; Doyle, Barney L.

    Jerry Duggan was an experimental MeV-accelerator-based nuclear and atomic physicist who, over the past few decades, played a key role in the important transition of this field from basic to applied physics. His fascination for and application of particle accelerators spanned almost 60 years, and led to important discoveries in the following fields: accelerator-based analysis (accelerator mass spectrometry, ion beam techniques, nuclear-based analysis, nuclear microprobes, neutron techniques); accelerator facilities, stewardship, and technology development; accelerator applications (industrial, medical, security and defense, and teaching with accelerators); applied research with accelerators (advanced synthesis and modification, radiation effects, nanosciences and technology); physics research (atomic and molecular physics, and nuclear physics); and many other areas and applications. Here we describe Jerry’s physics education at the University of North Texas (B. S. and M. S.) and Louisiana State University (Ph.D.). We also discuss his research at UNT, LSU, and Oak Ridge National Laboratory, his involvement with the industrial aspects of accelerators, and his impact on many graduate students, colleagues at UNT and other universities, national laboratories, and industry and acquaintances around the world. Along the way, we found it hard not to also talk about his love of family, sports, fishing, and other recreational activities. While these were significant accomplishments in his life, Jerry will be most remembered for his insight in starting and his industry in maintaining and growing what became one of the most diverse accelerator conferences in the world — the International Conference on the Application of Accelerators in Research and Industry, or what we all know as CAARI. Through this conference, which he ran almost single-handed for decades, Jerry came to know, and became well known by, literally thousands of atomic and nuclear physicists, accelerator

  1. Challenges for nuclear medicine in the 1990s

    International Nuclear Information System (INIS)

    Ell, P.J.

    1992-01-01

    This article discusses the problems facing nuclear medicine in the coming decade and outlines the areas in which new developments or expansion can be expected. The questions considered include legislative requirements, the need to educate the public and the medical profession on the strengths of nuclear medicine, approaches to cost-benefit analysis, and development of new technologies and new radiopharmaceuticals. There is also an evaluation of expansion in nuclear medicine using both existing methodology and new methodologies. (author)

  2. Half Life: The Divided Life of Bruno Pontecorvo, Physicist or Spy

    International Nuclear Information System (INIS)

    Close, Frank

    2016-01-01

    It was at the height of the Cold War, in the summer of 1950, when Bruno Pontecorvo mysteriously vanished behind the Iron Curtain. Who was he, and what caused him to disappear? Was he simply a physicist, or also a spy and communist radical? A protege of Enrico Fermi, Pontecorvo was one of the most promising nuclear physicists in the world. He spent years hunting for the Higgs boson of his day - the neutrino - a nearly massless particle thought to be essential to the process of particle decay. His work on the Manhattan Project helped to usher in the nuclear age, and confirmed his reputation as a brilliant physicist. Why, then, would he disappear as he stood on the cusp of true greatness, perhaps even the Nobel Prize? In this book, physicist and historian Frank Close offers a heretofore untold history of Pontecorvo's life, based on unprecedented access to Pontecorvo's friends and family and the Russian scientists with whom he would later work. Close takes a microscope to Pontecorvo's life, combining a thorough biography of one of the most important scientists of the twentieth century with the drama of Cold War espionage. With all the elements of a Cold War thriller - classified atomic research, an infamous double agent, a possible kidnapping by Soviet operatives - this book is a history of nuclear physics at perhaps its most powerful: when it created the bomb

  3. Quality assurance in nuclear medicine

    International Nuclear Information System (INIS)

    Kaul, A.

    1986-01-01

    'Quality Assurance in Nuclear Medicine' is the title of the English language original that has been translated into German. The manual very extensively deals with quality control of nuclear medical equipment. Tests are explained for checking radioactivity measuring devices, manual and automatic in-vitro sample measuring systems, in-vivo measuring systems with single or multiple detectors, rectlinear scanners, and gamma cameras, including the phantoms required for the methods. Other chapters discuss the quality control of radiopharmaceuticals, or the quality assurance in data recording and evaluation of results. Helpful comments on the organisation of quality assurance programms are given. The book is intended as a practical guide for introducing quality assurance principles in nuclear medicine in the Federal Republic of Germany. With 13 figs., 22 tabs [de

  4. The practice of nuclear medicine in the Philippines

    International Nuclear Information System (INIS)

    San Luis, T.O.L.

    1996-01-01

    The advent of nuclear medicine in the early 1940's came with the use of radioiodine in the study of thyroid physiology and eventual treatment of hyperthyroidism. Instrumentation to detect radionuclides introduced into the human body, and the production of various radiopharmaceuticals as tracers or as therapy agents provided the impetus for the rapid development of nuclear medicine as a distinct specialty. In the Philippines, nuclear medicine formally began in 1956 with the establishment of the Radioisotope Laboratory at the Philippine General Hospital. Acquisition of nuclear instrumentation by various institutions, training of medical staff and personnel, sourcing of radiopharmaceuticals proceeded thereafter

  5. Guidelines for patient information in nuclear medicine

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    This guide for patients information in nuclear medicine is organised in the following manner: what is a medical examination in nuclear medicine, the preparation and the duration of the examination, the possible risks and the radiation doses, pregnancy, delayed menstruation and nursing and what to do after the examination. (N.C.)

  6. Complementary alternative medicine and nuclear medicine

    International Nuclear Information System (INIS)

    Werneke, Ursula; McCready, V.Ralph

    2004-01-01

    Complementary alternative medicines (CAMs), including food supplements, are taken widely by patients, especially those with cancer. Others take CAMs hoping to improve fitness or prevent disease. Physicians (and patients) may not be aware of the potential side-effects and interactions of CAMs with conventional treatment. Likewise, their known physiological effects could interfere with radiopharmaceutical kinetics, producing abnormal treatment responses and diagnostic results. Nuclear medicine physicians are encouraged to question patients on their intake of CAMs when taking their history prior to radionuclide therapy or diagnosis. The potential effect of CAMs should be considered when unexpected therapeutic or diagnostic results are found. (orig.)

  7. Nuclear medicine and related radionuclide applications in developing countries

    International Nuclear Information System (INIS)

    1986-01-01

    The Symposium presentations were divided into sessions devoted to the following topics: Radioimmunoassay and related techniques (4 papers and 4 poster presentations); Radionuclide applications in the diagnosis of parasitic diseases (7 papers and 2 posters); Instrumentation (6 papers and 4 posters); Clinical nuclear medicine: liver, bones, thyroid, cardiovascular system, lungs, kidneys, brain (23 papers and 15 posters); Organization of nuclear medicine services in the developing countries (9 papers and 5 posters); Training in nuclear medicine (4 papers) and the panel discussion. Future of Nuclear Medicine in the developing countries. A separate abstract was prepared for each of these papers and posters

  8. Introduction to nuclear medicine

    International Nuclear Information System (INIS)

    Denhartog, P.; Wilmot, D.M.

    1987-01-01

    In this chapter, the fundamentals of nuclear medicine, the advantages and disadvantages of this modality (compared with radiography and ultrasound), and some of the areas in diagnosis and treatment in which it has found widest acceptance will be discussed. Nuclear medicine procedures can be broadly categorized into three groups: in vivo imaging, usually requiring the injection of an organ-specific radiopharmaceutical; in vitro procedures, in which the radioactive agent is mixed with the patient's blood in a test tube; and in vivo nonimaging procedures, in which the patient receives the radiopharmaceutical (intravenously or orally) after which a measurement of the amount appearing in a particular biological specimen (blood, urine, stool) is performed. In vivo imaging procedures will be the principal topics of this chapter

  9. Quality Management Audits in Nuclear Medicine Practices. 2. Ed

    International Nuclear Information System (INIS)

    2015-01-01

    Quality management systems are essential and should be maintained with the intent to continuously improve effectiveness and efficiency, enabling nuclear medicine to achieve the expectations of its quality policy, satisfy its customers and improve professionalism. The quality management (QM) audit methodology in nuclear medicine practice, introduced in this publication, is designed to be applied to a variety of economic circumstances. A key outcome is a culture of reviewing all processes of the clinical service for continuous improvement in nuclear medicine practice. Regular quality audits and assessments are vital for modern nuclear medicine services. More importantly, the entire QM and audit process has to be systematic, patient oriented and outcome based. The management of services should also take into account the diversity of nuclear medicine services around the world and multidisciplinary contributions. The latter include clinical, technical, radiopharmaceutical, medical physics and radiation safety procedures

  10. Patient preparation for nuclear medicine studies

    International Nuclear Information System (INIS)

    Stathis, V.J.; Cantrell, D.W.; Cantrell, T.J.

    1987-01-01

    In this chapter are described methods of patient preparation that can favorably affect the outcome of nuclear medicine studies in specific situations. Some of these practices may be considered essential to the success of the nuclear medicine procedure, whereas others may be thought of simply as a means of obtaining more valid or reliable information. Regardless of relative importance, each of the preparatory methods discussed can contribute to the quality of the respective study and can serve as a means of maximizing the value of nuclear medicine procedures. The specific patient preparation techniques discussed in this chapter may not be readily applicable to every practice setting or situation. These or similar procedures can be used or modified as necessary. It is important, however, that when new protocols are developed, the rationale and theoretical basis of each technique be considered

  11. SU-F-E-16: A Specific Training Package for Medical Physicists in Support to Nuclear and Radiological Emergency Situations

    International Nuclear Information System (INIS)

    Meghzifene, A; Berris, T

    2016-01-01

    Purpose: To provide the professional medical physicists with adequate competencies and skills in order to help them get prepared to support Nuclear or Radiological Emergency (NRE) situations. Methods: Although clinical medical physicists working have in-depth knowledge in radiation dosimetry, including dose reconstruction and dose measurements, they are usually not involved in NRE situations. However, in a few instances where medical physicists were involved in NREs, it appeared that many lacked specific knowledge and skills that are required in such situations. This lack of specific knowledge and skills is probably due to the fact that most current medical physics curricula do not include a specific module on this topic. As a response to this finding, the IAEA decided to initiate a project to develop a specific training package to help prepare medical physicists to support NRE situations. The training package was developed with the kind support of the Government of Japan and in collaboration with Fukushima Medical University (FMU) and the National Institute of Radiological Sciences (NIRS). Results: The first International Workshop to test the training package was held in Fukushima, Japan in June 2015. It consisted of lectures, demonstrations, simulation, role play, and practical sessions followed by discussions. The training was delivered through 14 modules which were prepared with the support of 12 lecturers. A knowledge assessment test was done before the workshop, followed by the same test done at the end of the Workshop, to assess the knowledge acquired during the training. Conclusion: The Workshop was successfully implemented. The overall rating of the workshop by the participants was excellent and all participants reported that they acquired a good understanding of the main issues that are relevant to medical physics support in case of NRE situations. They are expected to disseminate the knowledge to other medical physicists in their countries.

  12. SU-F-E-16: A Specific Training Package for Medical Physicists in Support to Nuclear and Radiological Emergency Situations

    Energy Technology Data Exchange (ETDEWEB)

    Meghzifene, A; Berris, T [International Atomic Energy Agency, Vienna, Vienna (Austria)

    2016-06-15

    Purpose: To provide the professional medical physicists with adequate competencies and skills in order to help them get prepared to support Nuclear or Radiological Emergency (NRE) situations. Methods: Although clinical medical physicists working have in-depth knowledge in radiation dosimetry, including dose reconstruction and dose measurements, they are usually not involved in NRE situations. However, in a few instances where medical physicists were involved in NREs, it appeared that many lacked specific knowledge and skills that are required in such situations. This lack of specific knowledge and skills is probably due to the fact that most current medical physics curricula do not include a specific module on this topic. As a response to this finding, the IAEA decided to initiate a project to develop a specific training package to help prepare medical physicists to support NRE situations. The training package was developed with the kind support of the Government of Japan and in collaboration with Fukushima Medical University (FMU) and the National Institute of Radiological Sciences (NIRS). Results: The first International Workshop to test the training package was held in Fukushima, Japan in June 2015. It consisted of lectures, demonstrations, simulation, role play, and practical sessions followed by discussions. The training was delivered through 14 modules which were prepared with the support of 12 lecturers. A knowledge assessment test was done before the workshop, followed by the same test done at the end of the Workshop, to assess the knowledge acquired during the training. Conclusion: The Workshop was successfully implemented. The overall rating of the workshop by the participants was excellent and all participants reported that they acquired a good understanding of the main issues that are relevant to medical physics support in case of NRE situations. They are expected to disseminate the knowledge to other medical physicists in their countries.

  13. Advances in nuclear medicine instrumentation: considerations in the design and selection of an imaging system

    International Nuclear Information System (INIS)

    Links, J.M.

    1998-01-01

    Nuclear medicine remains a vibrant and dynamic medical specialty because it so adeptly marries advances in basic science research, technology, and medical practice in attempting to solve patients' problems. As a physicist, it is my responsibility to identify or design new instrumentation and techniques, and to implement, validate, and help apply these new approaches in the practice of nuclear medicine. At Johns Hopkins, we are currently in the process of purchasing both a single-photon/coincidence tomographic imaging system and a dedicated positron emission tomography (PET) scanner. Given the exciting advances that have been made, but the conflicting opinions of manufacturers and colleagues alike regarding ''best'' choices, it seemed useful to review what is new now, and what is on the horizon, to help identify all of the important considerations in the design and selection of an imaging system. It is important to note that many of the ''advances'' described here are in an early stage of development, and may never make it to routine clinical practice. Further, not all of the advances are of equal importance, or have the same degree of general clinical applicability. Please also note that the references contained herein are for illustrative purposes and are not all-inclusive; no implication that those chosen are ''better'' than others not mentioned is intended. (orig.)

  14. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Because the doses of radiotracer administered are small, diagnostic nuclear medicine procedures result in low radiation exposure, acceptable for diagnostic exams. Thus, the radiation risk is very low ...

  15. The duty health physicist program at Byron Nuclear Power Station

    International Nuclear Information System (INIS)

    Goldsmith, D.G.; Carey, T.R.

    1987-01-01

    The Duty Health Physicist Program at Byron Station was established to deal with routine health physics tasks and provide an interface between frontline and upper radiation-chemistry management. The program consists of a weekly rotation of selected members of the health physics staff into the duty health physicist position to handle the assigned duty tasks. The tasks include, but are not limited to, daily isotopic and air sample review, effluent release package review, maximum permissible concentration calculations, dose approvals, as-low-as-reasonably-achievable action review of pending jobs, and general availability to answer questions and address problems in health-physics-related areas of plant operation. The daily attendance of the duty health physicist at the radiation-chemistry and station plan-of-the-day meetings has increased the overall presence and visibility of the health physics program to upper station management and other station departments. Since its inception in July of 1985, the Duty Health Physics Program has been a major contributor to the observed 50% reduction in reportable personnel errors in the radiation-chemistry department (based on personnel-error-related deviation reports and license event reports generated on the radiation-chemistry department at Byron Station). Although difficulty to quantify, other important benefits of this program are also discussed in this paper

  16. The state of the art in nuclear medicine

    International Nuclear Information System (INIS)

    Scott, A.M.

    1999-01-01

    Recent improvements in the understanding of the physiologic and biologic mechanisms of health and disease have led to an expansion of nuclear medicine applications both in clinical studies and research. Advances in radiopharmaceutical development, instrumentation and computer processing have resulted in the implementation of Positron Emission Tomography for clinical studies, and improved treatments with radiopharmaceuticals particularly in cancer patients. There has also been a dramatic increase in the techniques available with nuclear medicine to detect and measure cellular biologic events in-vivo, which have important implications in clinical and basic science research. Nuclear medicine studies provide unique information on human physiology and remain an integral part of clinical medicine practice

  17. Metabolic radiopharmaceutical therapy in nuclear medicine; Terapia metabolica mediante radiofarmacos en medicina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Reguera, L.; Lozano, M. L.; Alonso, J. C.

    2016-08-01

    In 1986 the National Board of Medical Specialties defined the specialty of nuclear medicine as a medical specialty that uses radioisotopes for prevention, diagnosis, therapy and medical research. Nowadays, treatment with radiopharmaceuticals has reached a major importance within of nuclear medicine. The ability to treat tumors with radiopharmaceutical, Radiation selective therapy has become a first line alternative. In this paper, the current situation of the different therapies that are sued in nuclear medicine, is reviewed. (Author)

  18. Nuclear radiation and its role in general nuclear medicine

    International Nuclear Information System (INIS)

    Kempaiah, A.; Ravi, C.

    2012-01-01

    Radiation is really nothing more than the emission of energy through space, as well as through physical objects. Nuclear radiations are emitted due to decay of nuclei of radioactive materials and damage cells and the DNA inside them through its ionizing effect. That causes melanoma and other cancers. Nuclear radiation has a number of beneficial uses especially in medical field with low levels of radioactive compounds, better than X-rays. There are some 440 nuclear reactors worldwide, people around will be under the effect of radiation. In nuclear medicine (medical imaging) small amount of radioactive materials were used to diagnose and determine the severity of or treat a variety of disease, including many types of cancers, heart disease, gastrointestinal, endocrine, neurological disorders and other abnormalities within the body it is painless and cost-effective techniques and provides information about both structure and function. Nuclear medicine diagnostic procedures called Gamma camera, single photon emission computed tomography (SPECT) and positron emission tomography (PET) were discussed in this paper. (author)

  19. Nuclear medicine research: an evaluation of the ERDA program

    International Nuclear Information System (INIS)

    1976-08-01

    Legislation which established the Energy Research and Development Administration (ERDA) January 19, 1975, stipulated that this new agency should be responsible for all activities previously assigned to the Atomic Energy Commission (AEC) and not specifically assigned to other agencies. Such activities included the nuclear medicine research program of the AEC Division of Biomedical and Environmental Research (DBER). To determine whether continuation of this program under the broader ERDA mission of energy-related research was in fact appropriate, a special task force was appointed in January 1975 by Dr. James L. Liverman, the director of DBER. This task force, comprised of established scientists knowledgeable about issues related to nuclear medicine either currently or in the past, was charged specifically to assess the historical impact of the AEC/ERDA nuclear medicine program on the development of nuclear medicine, the current status of this program, and its future role within the structure of ERDA. The specific recommendations, in brief form, are as follows: the federal government should continue to support the medical application of nuclear technology; ERDA should retain primary responsibility for support and management of federal nuclear medicine research programs; and management and emphasis of the ERDA nuclear medicine program require modification in certain areas, which are set forth

  20. Proceedings of the Korean Society Nuclear Medicine Autumn Meeting 2001

    International Nuclear Information System (INIS)

    2001-01-01

    This proceedings contains articles of 2001 autumn meeting of the Korean Society Nuclear Medicine. It was held on November 16-17, 2001 in Seoul, Korea. This proceedings is comprised of 6 sessions. The subject titles of session are as follows: Cancer, Physics of nuclear medicine, Neurology, Radiopharmacy and biology, Nuclear cardiology, General nuclear medicine. (Yi, J. H.)

  1. XXIVth days of nuclear medicine

    International Nuclear Information System (INIS)

    1986-01-01

    Abstracts are presented of papers submitted to the 24th Days of Nuclear Medicine held in Opava, Czechoslovakia between Oct 9 and 11, 1985. The conference proceeded in three sessions, namely nuclear pediatrics, miscellaneous and technicians' session. The publication also contains abstracts of posters. (L.O.)

  2. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... endocrine, neurological disorders and other abnormalities within the body. Because nuclear medicine procedures are able to pinpoint molecular activity within the body, they offer the potential to identify disease in ...

  3. The role of general nuclear medicine in breast cancer

    International Nuclear Information System (INIS)

    Greene, Lacey R; Wilkinson, Deborah

    2015-01-01

    The rising incidence of breast cancer worldwide has prompted many improvements to current care. Routine nuclear medicine is a major contributor to a full gamut of clinical studies such as early lesion detection and stratification; guiding, monitoring, and predicting response to therapy; and monitoring progression, recurrence or metastases. Developments in instrumentation such as the high-resolution dedicated breast device coupled with the diagnostic versatility of conventional cameras have reinserted nuclear medicine as a valuable tool in the broader clinical setting. This review outlines the role of general nuclear medicine, concluding that targeted radiopharmaceuticals and versatile instrumentation position nuclear medicine as a powerful modality for patients with breast cancer

  4. Roles and Responsibilities, and Education and Training Requirements for Clinically Qualified Medical Physicists

    International Nuclear Information System (INIS)

    2013-01-01

    The IAEA technical cooperation project Strengthening Medical Physics in Radiation Medicine was approved by the IAEA Board of Governors for the period 2009-2013 with the aim of ensuring the safe and effective diagnosis and treatment of patients. The IAEA, together with the World Health Organization and stakeholders from numerous medical physics professional societies worldwide, including the International Organization for Medical Physics (IOMP), the European Federation of Organisations for Medical Physics, the American Association of Physicists in Medicine (AAPM), the Latin American Medical Physics Association, the Asia-Oceania Federation of Organizations for Medical Physics, the European Society for Radiotherapy and Oncology, the European Commission and the International Radiation Protection Association, as well as regional counterparts from Africa, Asia, Europe and Latin America, met in Vienna in May 2009 to plan and coordinate the new project. A shortage of clinically qualified medical physicists (CQMPs), insufficient education and training (especially properly organized and coordinated clinical training), and lack of professional recognition were identified as the main problems to be addressed under this project. This publication was developed under the project framework in response to these findings. It aims, first, at defining appropriately and unequivocally the roles and responsibilities of a CQMP in specialties of medical physics related to the use of ionizing radiation, such as radiation therapy, nuclear medicine, and diagnostic and interventional radiology. Important, non-ionizing radiation imaging specialties, such as magnetic resonance and ultrasound, are also considered for completeness. On the basis of these tasks, this book provides recommended minimum requirements for the academic education and clinical training of CQMPs, including recommendations for their accreditation, certification and registration, along with continuing professional development

  5. Roles and Responsibilities, and Education and Training Requirements for Clinically Qualified Medical Physicists

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    The IAEA technical cooperation project Strengthening Medical Physics in Radiation Medicine was approved by the IAEA Board of Governors for the period 2009-2013 with the aim of ensuring the safe and effective diagnosis and treatment of patients. The IAEA, together with the World Health Organization and stakeholders from numerous medical physics professional societies worldwide, including the International Organization for Medical Physics (IOMP), the European Federation of Organisations for Medical Physics, the American Association of Physicists in Medicine (AAPM), the Latin American Medical Physics Association, the Asia-Oceania Federation of Organizations for Medical Physics, the European Society for Radiotherapy and Oncology, the European Commission and the International Radiation Protection Association, as well as regional counterparts from Africa, Asia, Europe and Latin America, met in Vienna in May 2009 to plan and coordinate the new project. A shortage of clinically qualified medical physicists (CQMPs), insufficient education and training (especially properly organized and coordinated clinical training), and lack of professional recognition were identified as the main problems to be addressed under this project. This publication was developed under the project framework in response to these findings. It aims, first, at defining appropriately and unequivocally the roles and responsibilities of a CQMP in specialties of medical physics related to the use of ionizing radiation, such as radiation therapy, nuclear medicine, and diagnostic and interventional radiology. Important, non-ionizing radiation imaging specialties, such as magnetic resonance and ultrasound, are also considered for completeness. On the basis of these tasks, this book provides recommended minimum requirements for the academic education and clinical training of CQMPs, including recommendations for their accreditation, certification and registration, along with continuing professional development

  6. Introduction of nuclear medicine research in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Inubushi, Masayuki [Kawasaki Medical School, Division of Nuclear Medicine, Department of Radiology, Kurashiki, Okayama (Japan); Higashi, Tatsuya [National Institutes of Quantum and Radiological Science and Technology, National Institute of Radiological Sciences, Chiba, Chiba (Japan); Kuji, Ichiei [Saitama Medical University International Medical Center, Department of Nuclear Medicine, Hidaka-shi, Saitama (Japan); Sakamoto, Setsu [Dokkyo University School of Medicine, PET Center, Mibu, Tochigi (Japan); Tashiro, Manabu [Tohoku University, Division of Cyclotron Nuclear Medicine, Cyclotron and Radioisotope Center, Sendai, Miyagi (Japan); Momose, Mitsuru [Tokyo Women' s Medical University, Department of Diagnostic Imaging and Nuclear Medicine, Tokyo (Japan)

    2016-12-15

    There were many interesting presentations of unique studies at the Annual Meeting of the Japanese Society of Nuclear Medicine, although there were fewer attendees from Europe than expected. These presentations included research on diseases that are more frequent in Japan and Asia than in Europe, synthesis of original radiopharmaceuticals, and development of imaging devices and methods with novel ideas especially by Japanese manufacturers. In this review, we introduce recent nuclear medicine research conducted in Japan in the five categories of Oncology, Neurology, Cardiology, Radiopharmaceuticals and Technology. It is our hope that this article will encourage the participation of researchers from all over the world, in particular from Europe, in scientific meetings on nuclear medicine held in Japan. (orig.)

  7. Nanotechnology and nuclear medicine; research and preclinical applications.

    Science.gov (United States)

    Assadi, Majid; Afrasiabi, Kolsoom; Nabipour, Iraj; Seyedabadi, Mohammad

    2011-01-01

    The birth of nanotechnology in human society was around 2000 years ago and soon found applications in various fields. In this article, we highlight the current status of research and preclinical applications and also future prospects of nanotechnology in medicine and in nuclear medicine. The most important field is cancer. A regular nanotechnology training program for nuclear medicine physicians may be welcome.

  8. The Uranium Recovery Industry and the Current Nuclear Renaissance — A Health Physicists Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Brown, S.H., E-mail: sbrown@senes.ca [SENES, Englewood, CO (United States)

    2014-05-15

    Concurrent with the recognition that nuclear generated electricity must play an increasing role in worldwide energy supply and in consideration of the new nuclear power plants ordered or planned, the demand for uranium needed to fuel these reactors has already outpaced supplies. Accordingly, the price of uranium (typically expressed as US$ per pound U{sub 3}O{sub 8} equivalent) had increased significantly in recent years. As a result, numerous new and reconstituted uranium recovery projects are being developed in the United States and in other countries that possess considerable uranium ore reserves (e.g., Canada, Australia, Kazakhstan, Mongolia, Namibia, and others). It should be noted that in the United States, the current reactor fleet of 104 operating units, which generate 20 percent of the US’s base-load electricity, requires approximately 55 million pounds of U{sub 3}O{sub 8} per year, but only about 4–5 million pounds per year is produced domestically. That is, over 90 percent of current demand, ignoring anticipated increase in requirements in the near future as new plants come online, must come from foreign sources. Domestic uranium production over the last 10 years reached a low of about two million pounds in 2003 and has been increasing steadily since then. Uranium recovery as defined in this paper encompasses conventional uranium mining and milling as well as in situ recovery techniques and the recovery of uranium as a byproduct from other processes, such as phosphoric acid production. Following a brief history of uranium recovery in the US, the paper describes the basic methods and technologies associated with conventional uranium mining, conventional uranium milling and In Situ Recovery (ISR). The “health physicists perspective” is introduced into these discussions by providing summaries of the various radiological environmental monitoring and operational health physics programs that are required for these facilities. Applicable regulatory

  9. Regulation and quality in nuclear medicine 2 october 1998

    International Nuclear Information System (INIS)

    Kouchner, B.; Huriet, C.; Le Deaut, J.Y.

    1999-01-01

    The aim of this meeting is to examine how the regulations are liable to decrease the patient taking charge. The problem of the public information and opinion in the nuclear medicine domain is also presented. The nineteen presentations are proposed in 2 sessions. The first one deals with the state of the art of the nuclear medicine in France (techniques and regulations). The second one deals with the environment of the nuclear medicine (irradiation limits, public opinion, doctors and medicine quality). (A.L.B.)

  10. Neutron use in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Guidez, J.; May, R.; Moss, R. [HFR-Unit, European Commission, IAM, Petten (Netherlands); Askienazy, S. [Departement Central de Medicine Nucleaire et Biophysique, Saint Antoine Hospital, Paris (France); Hildebrand, J. [Neurology Department, Erasmus Hospital, Brussels (Belgium)

    1999-07-01

    Neutrons produced by research reactors are being used in nuclear medicine and other medical applications in several ways. The High Flux Reactor (HFR) based in Petten (The Netherlands), owned by the European Commission, has been working increasingly in this field of health care for the European citizen. On the basis of this experience, a survey has been carried out on the main possibilities of neutrons used in nuclear medicine. The most important and most well known is the production of radioisotopes for diagnosis and therapy. Ten million patients receive nuclear medicine in Europe each year, with more than 8 million made with the products issued from research reactors. The survey of the market and the techniques (cyclotron, PET) shows that this market will continue to increase in the future. The direct use of reactors in medicine is actually made by the Boron Neutron capture Therapy (BNCT) for the treatment of glioblastoma, which kills about 15.000 people in Europe each year. For this promising technique, HFR is the most advanced for experimental possibilities and treatment studies. Medical research is also made in other promising fields: the use beam tubes for characterizing of prostheses and bio-medical materials, alpha-immuno therapy products, new types of radioisotopes, new types of illness to be treated by BNCT, etc. (author)

  11. Neutron use in nuclear medicine

    International Nuclear Information System (INIS)

    Guidez, J.; May, R.; Moss, R.; Askienazy, S.; Hildebrand, J.

    1999-01-01

    Neutrons produced by research reactors are being used in nuclear medicine and other medical applications in several ways. The High Flux Reactor (HFR) based in Petten (The Netherlands), owned by the European Commission, has been working increasingly in this field of health care for the European citizen. On the basis of this experience, a survey has been carried out on the main possibilities of neutrons used in nuclear medicine. The most important and most well known is the production of radioisotopes for diagnosis and therapy. Ten million patients receive nuclear medicine in Europe each year, with more than 8 million made with the products issued from research reactors. The survey of the market and the techniques (cyclotron, PET) shows that this market will continue to increase in the future. The direct use of reactors in medicine is actually made by the Boron Neutron capture Therapy (BNCT) for the treatment of glioblastoma, which kills about 15.000 people in Europe each year. For this promising technique, HFR is the most advanced for experimental possibilities and treatment studies. Medical research is also made in other promising fields: the use beam tubes for characterizing of prostheses and bio-medical materials, alpha-immuno therapy products, new types of radioisotopes, new types of illness to be treated by BNCT, etc. (author)

  12. TU-G-213-03: IEC Subcommittee 62C (Equipment for Radiotherapy, Nuclear Medicine and Radiation Dosimetry): Recent and Active Projects

    Energy Technology Data Exchange (ETDEWEB)

    Culberson, W. [University of Wisconsin - Madison (United States)

    2015-06-15

    The International Electrotechnical Commission (IEC) writes standards that manufacturers of electrical equipment must comply with. Medical electrical equipment, such as medical imaging, radiation therapy, and radiation dosimetry devices, fall under Technical Committee 62. Of particular interest to medical physicists are the standards developed within Subcommittees (SC) 62B, which addresses diagnostic radiological imaging equipment, and 62C, which addresses equipment for radiation therapy, nuclear medicine and dosimetry. For example, a Working Group of SC 62B is responsible for safety and quality assurance standards for CT scanners and a Working Group of SC 62C is responsible for standards that set requirements for dosimetric safety and accuracy of linacs and proton accelerators. IEC standards thus have an impact on every aspect of a medical physicist’s job, including equipment testing, shielding design, room layout, and workflow. Consequently, it is imperative that US medical physicists know about existing standards, as well as have input on those under development or undergoing revision. The structure of the IEC and current standards development work will be described in detail. The presentation will explain how US medical physicists can learn about IEC standards and contribute to their development. Learning Objectives: Learn about the structure of the IEC and the influence that IEC standards have on the design of equipment for radiology and radiation therapy. Learn about the mechanisms by which the US participates in the development and revision of standards. Understand the specific requirements of several standards having direct relevance to diagnostic and radiation therapy physicists.

  13. Radiation dose assessment in nuclear medicine

    International Nuclear Information System (INIS)

    Stabin, M.G.

    2002-01-01

    In any application involving the use of ionizing radiation in humans, risks and benefits must be properly evaluated and balanced. Radionuclides are used in nuclear medicine in a variety of diagnostic and therapeutic procedures. Recently, interest has grown in therapeutic agents for a number of applications in nuclear medicine, particularly in the treatment of hematologic and non-hematologic malignancies. This has heightened interest in the need for radiation dose calculations and challenged the scientific community to develop more patient-specific and relevant dose models. Consideration of radiation dose in such studies is central to efforts to maximize dose to tumor while sparing normal tissues. In many applications, a significant absorbed dose may be received by some radiosensitive organs, particularly the active marrow. This talk will review the methods and models used in internal dosimetry in nuclear medicine, and discuss some current trends and challenges in this field

  14. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... the procedure? How does the nuclear medicine procedure work? What does the equipment look like? How is the procedure performed? What will my child experience during and after the procedure? How should ...

  15. In vivo diagnostic nuclear medicine. Pediatric experience

    International Nuclear Information System (INIS)

    Goetz, W.A.; Hendee, W.R.; Gilday, D.L.

    1983-01-01

    The use of radiopharmaceuticals for diagnostic tests in children is increasing and interest in these is evidenced by the addition of scientific sessions devoted to pediatric medicine at annual meetings of The Society of Nuclear Medicine and by the increase in the literature on pediatric dosimetry. Data presented in this paper describe the actual pediatric nuclear medicine experience from 26 nationally representative U.S. hospitals and provide an overview of the pediatric procedures being performed the types of radiopharmaceuticals being used, and the activity levels being administered

  16. Nuclear Medicine in Pediatric Cardiology.

    Science.gov (United States)

    Milanesi, Ornella; Stellin, Giovanni; Zucchetta, Pietro

    2017-03-01

    Accurate cardiovascular imaging is essential for the successful management of patients with congenital heart disease (CHD). Echocardiography and angiography have been for long time the most important imaging modalities in pediatric cardiology, but nuclear medicine has contributed in many situations to the comprehension of physiological consequences of CHD, quantifying pulmonary blood flow symmetry or right-to-left shunting. In recent times, remarkable improvements in imaging equipments, particularly in multidetector computed tomography and magnetic resonance imaging, have led to the progressive integration of high resolution modalities in the clinical workup of children affected by CHD, reducing the role of diagnostic angiography. Technology has seen a parallel evolution in the field of nuclear medicine, with the advent of hybrid machines, as SPECT/CT and PET/CT scanners. Improved detectors, hugely increased computing power, and new reconstruction algorithms allow for a significant reduction of the injected dose, with a parallel relevant decrease in radiation exposure. Nuclear medicine retains its distinctive capability of exploring at the tissue level many functional aspects of CHD in a safe and reproducible way. The lack of invasiveness, the limited need for sedation, the low radiation burden, and the insensitivity to body habitus variations make nuclear medicine an ideal complement of echocardiography. This is particularly true during the follow-up of patients with CHD, whose increasing survival represent a great medical success and a challenge for the health system in the next decades. Metabolic imaging using 18 FDG PET/CT has expanded its role in the management of infection and inflammation in adult patients, particularly in cardiology. The same expansion is observed in pediatric cardiology, with an increasing rate of studies on the use of FDG PET for the evaluation of children with vasculitis, suspected valvular infection or infected prosthetic devices. The

  17. Mongolia and nuclear medicine development

    International Nuclear Information System (INIS)

    Onkhuudai, P.; Gonchigsuren, D.

    2007-01-01

    Full text: Mongolia is a large, landlocked and sparsely populated country in the northern part of Central Asia, located between Russia on the north and China on east, south and west. Its total land area of 1.5 millions square kilometers is about the size if India or large than Alaska, but contains only 2.3 million population or 1.3 person per square kilometer. It is 2400 kilometers long from east to west maximum of 1260 kilometers from north to south.The priority problems in health.Democratic political reforms since 1990 saw a major transformation process, which is aimed at changing the centrally planned economy to one based on market orient principles. Mongolia is in a gradual epidemiological transition from preponderance of infectious diseases towards non-communicable and degenerative diseases. Mean features of this transition are sharp decrease in mortality from infectious and parasitic diseases and sharp increase in mortality from diseases of the circulatory system and neoplasms. Life expectancy at birth was 65.7 year in 1997. Cardiovascular diseases and cancer are among the leading causes of death in Mongolia.Nuclear Medicine in Mongolia-1975-1981 Beginning First Medical Application of radioisotopes in 1972. First Rectilinear scanner. Single and dual scintillation detectors system, Thyroid Uptake Test; 1982-1999 Settlement, IAEA TC Project since 1982, Thematic Program on Health Care (RAS) since 1997, First Gamma Camera since 1997, Radioimmunological Laboratory and first Radioiodine treatment since 1982, Mongolian Society of Nuclear Medicine since 1982, Member of World and Federation of Nuclear Medicine and Biology since 1994, Member of Asia and Oceania Radionuclide Therapy Council , 2000 Development, First SPECT and Quantitative Measurement in 2000 Second Gamma Camera, New Thyroid Uptake System-Atomlab 950 PC Spectrometer Radioimmunological Laboratory replacement, Myocardial Perfusion Scintigraphy, Liver Cancer Treatment with Re-188, Radiosynovectomy with Re

  18. Basic science of nuclear medicine the bare bone essentials

    CERN Document Server

    Lee, Kai H

    2015-01-01

    Through concise, straightforward explanations and supporting graphics that bring abstract concepts to life, the new Basic Science of Nuclear Medicine—the Bare Bone Essentials is an ideal tool for nuclear medicine technologist students and nuclear cardiology fellows looking for an introduction to the fundamentals of the physics and technologies of modern day nuclear medicine.

  19. Asian School of Nuclear Medicine

    International Nuclear Information System (INIS)

    Sundram, Felix X.

    2004-01-01

    The Asian School of Nuclear Medicine (ASNM) was formed in February 2003, with the ARCCNM as the parent body. Aims of ASNM: 1. To foster Education in Nuclear Medicine among the Asian countries, particularly the less developed ones. 2. To promote training of Nuclear Medicine Physicians in cooperation with government agencies, IAEA and universities and societies. 3. To assist in national and regional training courses, award continuing medical education (CME) points and provide regional experts for advanced educational programmes. 4. To work towards awarding of diplomas or degrees in association with recognized universities by distance learning and practical attachments, with examinations. The ASNM works toward a formal training courses leading to the award of a certificate in the long term. The most fundamental job of the ASNM remains the transfer of knowledge from the more developed countries to the less developed ones in the Asian region. The ASNM could award credit hours to the participants of training courses conducted in the various countries and conduct electronic courses and examinations. CME programmes may also be conducted as part of the regular ARCCNM meetings and the ASNM will award CME credit points for such activities

  20. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician Resources Professions Site Index A-Z Children's (Pediatric) Nuclear Medicine ...

  1. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... kidneys and bladder. bones. liver and gallbladder. gastrointestinal tract. heart. lungs. brain. thyroid. Nuclear medicine scans are typically used to help diagnose and evaluate: urinary blockage in the kidney. backflow of urine from ...

  2. Tomography in nuclear medicine

    International Nuclear Information System (INIS)

    Levi de Cabrejas, Mariana

    1999-01-01

    This book is a contribution to the training and diffusion of the tomography method image diagnosis in nuclear medicine, which principal purpose is the information to professionals and technical personnel, specially for the spanish speaking staff

  3. Molecular methods in nuclear medicine therapy

    International Nuclear Information System (INIS)

    Lee, Kyung Han

    2001-01-01

    Nuclear medicine has traditionally contributed to molecular oncology by allowing noninvasive monitoring of tumor metabolism, growth and genetic changes, thereby providing a basis for appropriate biology-based treatment planning. However, NM techniques are now being applied as an active therapeutic tool in novel molecular approaches for cancer treatment. Such areas include research on cancer therapy with radiolabeled ligands or oligonucleotides, and utilization of synergism between NM radiotherapy and gene transfer techniques. Here we will focus on novel aspects of nuclear medicine therapy

  4. Roles and Responsibilities, and Education and Training Requirements for Clinically Qualified Medical Physicists (Russian Edition)

    International Nuclear Information System (INIS)

    2014-01-01

    This publication addresses the shortfall of well trained and clinically qualified medical physicists working in radiation medicine. The roles, responsibilities and clinical training requirements of medical physicists have not always been well defined or well understood by health care professionals, health authorities and regulatory agencies. To fill this gap, this publication provides recommendations for the academic education and clinical training of clinically qualified medical physicists, including recommendations for their accreditation certification and registration, along with continuous professional development. The goal is to establish criteria that support the harmonization of education and clinical training worldwide

  5. Radiochemistry and its application to nuclear medicine

    International Nuclear Information System (INIS)

    Welch, J.J.

    1990-01-01

    The role of the radiochemist in Nuclear Medicine has increased since the early 1960's. At that time the first medical 99 Mo/ 99m /Tc generator was developed at Brookhaven National Laboratory and the first hospital based cyclotron installed at Washington University. Radiochemists have been involved in both the development and application of generator and accelerator based radiopharmaceuticals. The development of oxygen-15, nitrogen 13, carbon-11 and fluorine-18 simple compound and synthetic precursors will be discussed. In recent years new high current accelerators have been proposed from Nuclear Medicine isotope production. Generator produced radiopharmaceuticals continue to play a major role in Nuclear Medicine. Problems in the development of targetry to produce parent nuclides as well as challenges in generator development will be described

  6. Czechoslovak nuclear medicine, development and present state

    Energy Technology Data Exchange (ETDEWEB)

    Hupka, S [Ustav Klinickej Onkologie, Bratislava (Czechoslovakia)

    1981-01-01

    The growth is described of nuclear medicine departments and units in Czechoslovakia in the past 25 years of the existence of the Czechoslovak Society for Nuclear Medicine and Radiation Hygiene, the numbers of personnel and their qualifications. While only three nuclear medicine units were involved in the use of radioisotopes for diagnostic and therapeutic purposes in the 1950's, 29 specialized departments and 15 laboratories are now in existence with a staff of 299 medical doctors and other university graduates and 365 technicians and nurses. They operate all possible instruments, from simple detector devices via gamma cameras to computer tomographs. Briefly, the involvement of the Society is described in coordinated research programs, both with institutions in the country and with the other CMEA countries and IAEA.

  7. Nuclear Medical Science Officers: Army Health Physicists Serving and Defending Their Country Around the Globe

    Science.gov (United States)

    Melanson, Mark; Bosley, William; Santiago, Jodi; Hamilton, Daniel

    2010-02-01

    Tracing their distinguished history back to the Manhattan Project that developed the world's first atomic bomb, the Nuclear Medical Science Officers are the Army's experts on radiation and its health effects. Serving around the globe, these commissioned Army officers serve as military health physicists that ensure the protection of Soldiers and those they defend against all sources of radiation, military and civilian. This poster will highlight the various roles and responsibilities that Nuclear Medical Science Officers fill in defense of the Nation. Areas where these officers serve include medical health physics, deployment health physics, homeland defense, emergency response, radiation dosimetry, radiation research and training, along with support to the Army's corporate radiation safety program and international collaborations. The poster will also share some of the unique military sources of radiation such as depleted uranium, which is used as an anti-armor munition and in armor plating because of its unique metallurgic properties. )

  8. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... leaving the nuclear medicine facility. Through the natural process of radioactive decay, the small amount of radiotracer ... possible charges you will incur. Web page review process: This Web page is reviewed regularly by a ...

  9. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... diagnoses. In addition, manufacturers are now making single photon emission computed tomography/computed tomography (SPECT/CT) and ... nuclear medicine include the gamma camera and single-photon emission-computed tomography (SPECT). The gamma camera, also ...

  10. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... top of page What are the benefits vs. risks? Benefits The information provided by nuclear medicine examinations ... diagnosis or to determine appropriate treatment, if any. Risks Because the doses of radiotracer administered are small, ...

  11. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... of page How does the nuclear medicine procedure work? With ordinary x-ray examinations, an image is ... result, imaging may be done immediately, a few hours later, or even a few days after your ...

  12. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... including many types of cancers, heart disease, gastrointestinal, endocrine, neurological disorders and other abnormalities within the body. ... Physicians use nuclear medicine imaging to evaluate organ systems, including the: kidneys and bladder. bones. liver and ...

  13. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... beforehand, especially if sedation is to be used. Most nuclear medicine exams will involve an injection in ... PET/CT, SPECT/CT and PET/MR) are most often used in children with cancer, epilepsy and ...

  14. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... small amount of energy in the form of gamma rays. Special cameras detect this energy, and with ... imaging techniques used in nuclear medicine include the gamma camera and single-photon emission-computed tomography (SPECT). ...

  15. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... both imaging exams at the same time. An emerging imaging technology, but not readily available at this ... often unattainable using other imaging procedures. For many diseases, nuclear medicine scans yield the most useful information ...

  16. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... of page How does the nuclear medicine procedure work? With ordinary x-ray examinations, an image is ... and other metallic accessories should be left at home if possible, or removed prior to the exam ...

  17. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... exams at the same time. An emerging imaging technology, but not readily available at this time is ... leaving the nuclear medicine facility. Through the natural process of radioactive decay, the small amount of radiotracer ...

  18. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... the most useful information needed to make a diagnosis or to determine appropriate treatment, if any. Risks Because the doses of radiotracer administered are small, diagnostic nuclear medicine procedures result in low radiation exposure, ...

  19. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... molecular information. In many centers, nuclear medicine images can be superimposed with computed tomography (CT) or magnetic ... small hand-held device resembling a microphone that can detect and measure the amount of the radiotracer ...

  20. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... nuclear medicine images can be superimposed with computed tomography (CT) or magnetic resonance imaging (MRI) to produce ... manufacturers are now making single photon emission computed tomography/computed tomography (SPECT/CT) and positron emission tomography/ ...

  1. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... bones. liver and gallbladder. gastrointestinal tract. heart. lungs. brain. thyroid. Nuclear medicine scans are typically used to ... differently than when breathing room air or holding his or her breath. With some exams, a catheter ...

  2. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... MRI. top of page What are some common uses of the procedure? Children's (pediatric) nuclear medicine imaging ... community, you can search the ACR-accredited facilities database . This website does not provide cost information. The ...

  3. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... variety of diseases, including many types of cancers, heart disease, gastrointestinal, endocrine, neurological disorders and other abnormalities ... and bladder. bones. liver and gallbladder. gastrointestinal tract. heart. lungs. brain. thyroid. Nuclear medicine scans are typically ...

  4. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... computer, create pictures offering details on both the structure and function of organs and tissues in your ... substantially shorten the procedure time. The resolution of structures of the body with nuclear medicine may not ...

  5. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... exams at the same time. An emerging imaging technology, but not readily available at this time is ... bones. liver and gallbladder. gastrointestinal tract. heart. lungs. brain. thyroid. Nuclear medicine scans are typically used to ...

  6. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... of page How does the nuclear medicine procedure work? With ordinary x-ray examinations, an image is ... than five decades, and there are no known long-term adverse effects from such low-dose exposure. ...

  7. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... performed to help diagnose childhood disorders that are congenital (present at birth) or that develop during childhood. ... often unattainable using other imaging procedures. For many diseases, nuclear medicine scans yield the most useful information ...

  8. The Present Status of Nuclear Medicine in Korea

    International Nuclear Information System (INIS)

    Lee, Mun Ho

    1968-01-01

    It is my privilege to give you a brief history on the status of nuclear medicine in Korea. There is nothing much to mention, as the history of the peaceful use of atomic energy is rather short and the RI facilities are limited in the number. It is my sincere hope, however, that you may understand what steps nuclear medicine in the developing countries did take and how it has been developed, seeing the present status of nuclear medicine in Korea, as one of the models. In our country, the peaceful use of atomic energy was actualized since the Law of Atomic Energy had been enacted in March 1959, and the Office of Atomic Energy and the Atomic Energy Research Institute had been established. The Korea Society of Nuclear Medicine was organized in 1961, which i think is one of the older in the Far East area. The Society now held about 170 members and the annual meetings in addition to the quarterly meeting have been held. The 6th general scientific meeting for 1967 is scheduled to be held in 25 November. The society publishes the Korean Journal of Nuclear Medicine twice a year, and the second issue appeared Oct. 1967. The instruments used in nuclear medicine are mostly expensive, therefore, the hospitals equipped with such instruments are inevitably limited in number and the after-service or repair of such instruments are technically not easy. Some of these difficulties, i hope, shall be overcome in the near future.

  9. Exposure from diagnostic nuclear medicine procedures

    International Nuclear Information System (INIS)

    Iacob, O.; Diaconescu, C.; Isac, R.

    2002-01-01

    According to our last national study on population exposures from natural and artificial sources of ionizing radiation, 16% of overall annual collective effective dose represent the contribution of diagnostic medical exposures. Of this value, 92% is due to diagnostic X-ray examinations and only 8% arise from diagnostic nuclear medicine procedures. This small contribution to collective dose is mainly the result of their lower frequency compared to that of the X-ray examinations, doses delivered to patients being, on average, ten times higher. The purpose of this review was to reassess the population exposure from in vivo diagnostic nuclear medicine procedures and to evaluate the temporal trends of diagnostic usage of radiopharmaceuticals in Romania. The current survey is the third one conducted in the last decade. As in the previous ones (1990 and 1995), the contribution of the Radiation Hygiene Laboratories Network of the Ministry of Health and Family in collecting data from nuclear medicine departments in hospitals was very important

  10. Report from Uruguay: Nuclear medicine in Latin America

    International Nuclear Information System (INIS)

    Touya, E.

    1987-01-01

    The paper presents some historical aspects concerning the development of nuclear medicine in Latin American countries. The role and the impact of nuclear medicine on health care is analysed and the present needs for the further development of these techniques in developing countries are presented

  11. Nuclear medicine in South Africa : current status

    International Nuclear Information System (INIS)

    Vangu, M.D.T.H.W.

    2004-01-01

    Full text: Nuclear medicine in South Africa has been a full specialty on its own since 1987. It is practiced in almost all teaching hospitals and within the private sector in larger cities. Most of the routine radiopharmaceuticals are domestically manufactured and the main isotope can be obtained from locally produced technetium generators. All the radionuclide imaging devices used in the country are imported. The main vendors are GE, Siemens and Phillips. The majority of radionuclide imaging comprises work from nuclear cardiology and nuclear oncology. Almost all the routine clinical nuclear medicine procedures are performed and some in vitro work is also done, however. Principal therapeutic agents used in the country include radioactive iodine, radioactive iodine MIBG and yttrium. The country still lacks experience in receptors imaging and radioimmunology work and no PET scanner has been purchased yet. The academic institutions are active with participation in national and international congresses and also with publications. Although much remains to be done, the future of nuclear medicine in South Africa does not appear gloomy. (author)

  12. Nuclear medicine in gynecologic oncology: Recent practice

    International Nuclear Information System (INIS)

    Lamki, L.M.

    1987-01-01

    Nuclear medicine tests tell more about the physiological function of an organ that about its anatomy. This is in contrast to several other modalities in current use in the field of diagnostic imaging. Some of these newer modalities, such as computerized tomography (CT), offer a better resolution of the anatomy of the organ being examined. This has caused physicians to drift away from certain nuclear medicine tests, specifically those that focus primarily on the anatomy. When CT scanning is available, for instance, it is no longer advisable to perform a scintigraphic brain scan in search of metastasis;CT scanning is more accurate overall and more likely than a nuclear study to result in a specific diagnosis. In certain cases of diffuse cortical infections like herpes encephalitis, however, a scintiscan is still superior to a CT scan. Today's practice of nuclear medicine in gynecologic oncology may be divided into the three categories - (1) time-tested function-oriented scintiscans, (2) innovations of established nuclear tests, and (3) newer pathophysiological scintistudies. The author discusses here, briefly, each of these categories, giving three examples of each

  13. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... to be followed after leaving the nuclear medicine facility. Through the natural process of radioactive decay, the ... Please note RadiologyInfo.org is not a medical facility. Please contact your physician with specific medical questions ...

  14. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... and are rarely associated with significant discomfort or side effects. If the radiotracer is given intravenously, your child ... techniques for a variety of indications, and the functional information gained from nuclear medicine exams is often ...

  15. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... to Children's (Pediatric) Nuclear Medicine Sponsored by Please note RadiologyInfo.org is not a medical facility. Please ... is further reviewed by committees from the American College of Radiology (ACR) and the Radiological Society of ...

  16. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... exams at the same time. An emerging imaging technology, but not readily available at this time is PET/MRI. top of page What are some common uses of the procedure? Children's (pediatric) nuclear medicine imaging ...

  17. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... of page How does the nuclear medicine procedure work? With ordinary x-ray examinations, an image is ... The exception to this is if the child’s mother is pregnant. When the examination is completed, your ...

  18. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... also very helpful. Often, a monitor with children's programming and/or children’s DVDs are available in the ... techniques for a variety of indications, and the functional information gained from nuclear medicine exams is often ...

  19. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... The teddy bear denotes child-specific content. Related Articles and Media General Nuclear Medicine Children's (Pediatric) CT ( ... About Us | Contact Us | FAQ | Privacy | Terms of Use | Links | Site Map Copyright © 2018 Radiological Society of ...

  20. Application of nuclear irradiation to traditional chinese medicine

    International Nuclear Information System (INIS)

    Liang Jianping; Li Xuehu; Lu Xihong; Tao Lei; Wang Shuyang

    2010-01-01

    The application of nuclear irradiation in the field of traditional Chinese medicine has received much attention. In this paper we reviewed the application of nuclear radiation on the cultivation, breeding and disinfection of traditional Chinese medicine, and pointed out that the combination of radiation-induced mutagenesis and biological technology would promise broad prospects for increasing the cellular mutation rate and speeding up the genetic improvement of traditional Chinese medicine. (authors)

  1. Assessment of knowledge of general practitioners about nuclear medicine

    International Nuclear Information System (INIS)

    Zakavi, R.; Derakhshan, A.; Pourzadeh, Z.

    2002-01-01

    Nuclear medicine is an important department in most of scientific hospitals in the world. Rapid improvement in the filed of nuclear medicine needs continuing education of medical students. We tried to evaluate the knowledge of general practitioners in the flied of nuclear medicine, hoping that this study help mangers in accurate planning of teaching programs. Methods and materials: We prepared a questionnaire with 14 questions regarding applications of nuclear medicine techniques in different specialities of medicine. We selected questions as simple as possible with considering the most common techniques and best imaging modality in some disease. One question in nuclear cardiology, one in lung disease, two questions in thyroid therapy, another two in gastrointestinal system, two in genitourinary system and the last two in nuclear oncology. Also 4 questions were about general aspects of nuclear medicine. We have another 4 questions regarding the necessity of having a nuclear medicine subject during medical study, the best method of teaching of nuclear medicine and the preferred method of continuing education. Also age, sex, graduation date and university of education of all subjects were recorded. Results: One hundred (General practitioners) were studied. including, 58 male and 42 female with age range of 27-45 years did . About 60% of cases were 27-30 years old and 40 cases were older than 40. Seventy two cases were graduated in the last 5 years. Mashad University was the main university of education 52 cases with Tehran University (16 cases) and Tabriz University (6 cases) in the next ranks. Also 26 cases were graduated from other universities. From four questions in the field of general nuclear nedione 27% were correctly answered to all questions, 37% correctly answered two questions and 10% had correct answered only one question. No correct answer was noted in 26% . correct answer was noted in 80% the held of nuclear cardiology and in 72% in the field of lung

  2. Proceedings of the Korean Society Nuclear Medicine Autumn Meeting 2002

    International Nuclear Information System (INIS)

    2002-01-01

    This proceedings contains articles of 2002 autumn meeting of the Korean Society Nuclear Medicine. It was held on November 15-16, 2002 in Seoul, Korea. This proceedings is comprised of 5 sessions. The subject titles of session are as follows: Cancer, Physics of nuclear medicine, Neurology, Radiopharmacy and biology, General nuclear medicine. (Yi, J. H.)

  3. Quality control in paediatric nuclear medicine

    International Nuclear Information System (INIS)

    Fischer, S.; Hahn, K.

    1997-01-01

    Nuclear medicine examinations in children require a maximum in quality. This is true for the preparation of the child and parents, the imaging procedure, processing and documentation. It is necessary that quality control through all steps is performed regularly. The aim must be that the children receive a minimum radiation dose, while there needs to be a high quality in imaging and clinical information from the study. Furthermore the child should not be too much psychologically affected by the nuclear medicine examination. (orig.) [de

  4. The last universal physicist

    Energy Technology Data Exchange (ETDEWEB)

    Coccia, Eugenio [Gran Sasso National Laboratory, University of Rome ' Tor Vergata' (Italy)]. E-mail coccia@lngs.infn.it

    2005-04-01

    Born in Rome in 1901, Fermi was the last universal physicist - the most extraordinary of his century. He was at home in the workshop, the laboratory and among theoretical physicists. For the theorists he was a great theorist, and for the experimentalists he was a great experimentalist. What made Fermi so special as a physicist was his universality and versatility; what made him so special as a person was his modesty, realism and frugal lifestyle. This book, which describes Fermi's contributions to physics and the US period of his life, originated from a symposium that was held in Chicago in 2001 to commemorate the centenary of his birth. But it is not merely a volume of reminiscences. It combines essays, specially commissioned articles, as well as private material from Fermi's research notebooks, correspondence and speeches. Together the material highlights the breadth of his impact on physics. A classic biographical introduction by Emilio Segre is followed by an article in which Frank Wilczek, who shared the Nobel Prize for Physics last year, puts into perspective Fermi's huge contributions to physics. The list of his achievements is impressive. They include the introduction of Fermi statistics for half-integer-spin particles (1925) - now called fermions - that led to the concept of the 'Fermi surface' in condensed-matter and nuclear physics; the vector-coupling theory for beta-decay (1933), which formulated the proper structure of the weak interaction where the 'Fermi constant' measures the strength of the coupling; and the introduction, with his Rome group, of neutron-induced radioactivity and the study of slow-neutron interactions (1934). As a researcher and a teacher, Fermi inspired two generations and two continents - a man whose charismatic nature attracted many talented scientists and students to Chicago. What emerges from this book is the gratitude of so many extraordinary physicists to their master, who instilled in them

  5. International conference on clinical PET and molecular nuclear medicine (IPET 2007). Book of abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    conference will have the following objectives: - To evaluate the current status of clinical PE T, molecular nuclear medicine and related radiopharmacology globally; - To reflect on challenges of establishing PET in emerging countries; - To deliver supporting 'know how' via CME (Continuing Medical Education) programmes in the field of rapidly growing molecular imaging; - To interact with the user group (physicians, radiologists, radiopharmacists, radiochemists, medical physicists, pharmacologists and other scientists working in all aspects of molecular nuclear medicine) and bring them the most important information in the field; - To exchange information on the current advances in the field among leading clinical scientists from developed and developing countries; - To identify future challenges and directions.

  6. International conference on clinical PET and molecular nuclear medicine (IPET 2007). Book of abstracts

    International Nuclear Information System (INIS)

    2007-01-01

    conference will have the following objectives: - To evaluate the current status of clinical PE T, molecular nuclear medicine and related radiopharmacology globally; - To reflect on challenges of establishing PET in emerging countries; - To deliver supporting 'know how' via CME (Continuing Medical Education) programmes in the field of rapidly growing molecular imaging; - To interact with the user group (physicians, radiologists, radiopharmacists, radiochemists, medical physicists, pharmacologists and other scientists working in all aspects of molecular nuclear medicine) and bring them the most important information in the field; - To exchange information on the current advances in the field among leading clinical scientists from developed and developing countries; - To identify future challenges and directions

  7. Involvement of WHO in the improvement of nuclear medicine in developing countries

    International Nuclear Information System (INIS)

    Souchkevitch, G.N.

    1986-01-01

    The World Health Organization's programme on nuclear medicine deals with the organization of nuclear medicine services, the training of personnel, the efficacy and efficiency of nuclear medicine, and quality assurance in nuclear medicine, instrumentation and radiopharmaceuticals. An analysis of the present situation in diagnostic imaging shows that new techniques and especially ultrasonography (US) may successfully compete with nuclear medicine. WHO is therefore concerned to stimulate objective evaluations of the appropriate role of each diagnostic imaging technology and to make relevant recommendations. In diagnostic nuclear medicine, the following main objectives are included in the WHO strategy: to restrict diagnostic nuclear medicine to those diseases where it cannot be substituted by other less costly and complicated methods; to decrease the cost of diagnostic procedures; and to prevent radiation hazard to patients, personnel and the public from the expanded use of radiopharmaceuticals. In the developing world this strategy may be carried out in two stages: (1) implementation of US in diagnostic services and the initiation of a comparative study of the diagnostic value of US and nuclear medicine imaging techniques in common diseases; (2) working out appropriate recommendations on a rational approach in imaging diagnostics and substitution of nuclear medicine by US in appropriate areas. The Intercomparison Study on Quality Performance of Nuclear Medicine Imaging Devices, established by WHO jointly with the International Atomic Energy Agency, and the organization of training workshops are examples of a successful approach to quality improvement in nuclear medicine in developing countries. (author)

  8. Nuclear physics group annual report

    International Nuclear Information System (INIS)

    1984-01-01

    The experimental activities of the nuclear physics group at the University of Oslo have in 1983 as in the previous years mainly been centered around the SCANDITRONIX MC-35 cyclotron. The cyclotron has been in extensive use during the year for low-energy nuclear physics experiments. In addition it has been used for production of radionuclides for nuclear medicine, for experiments in nuclear chemistry and for corrosion and wear studies. After four years of operation, the cyclotron is still the newest nuclear accelerator in Scandinavia. The available beam energies (protons and alpha-particles up to 35 MeV and *sp3*He-particles up to 48 MeV, makes it a good tool for studies of highly excited low-spin states. The well developed on-line computer system has added to its usefulness. Most of the nuclear experiments during the year have been connected with the study of nuclear structure at high temperature. Experimens with the *sp3*He beam have given very interesting results. Theoretical studies have continued in the same field, and there has been a fruitful cooperation between experimental and theoretical physicists. Most of the experiments are performd as joint projects where physicists from two or three Nordic universities take part. (RF)

  9. The applications of nanomaterials in nuclear medicine

    International Nuclear Information System (INIS)

    Liu Jinjian; Liu Jianfeng

    2010-01-01

    Over the last decade, nanotechnology and nanomaterials have gained rapid development in medical application, especially in targeted drug delivery and gene transfer vector domain, and nano-materials are also beginning to applied in nuclear medicine. This paper is to make a view of the application research of several types of nanomaterials in nuclear medicine, and discuss some problems and the main direction of future development. (authors)

  10. Medical Imaging Informatics in Nuclear Medicine

    NARCIS (Netherlands)

    van Ooijen, Peter; Glaudemans, Andor W.J.M.; Medema, Jitze; van Zanten, Annie K.; Dierckx, Rudi A.J.O.; Ahaus, C.T.B. (Kees)

    2016-01-01

    Medical imaging informatics is gaining importance in medicine both in clinical practice and in scientific research. Besides radiology, nuclear medicine is also a major stakeholder in medical imaging informatics because of the variety of available imaging modalities and the imaging-oriented operation

  11. Converting energy to medical progress [nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-04-01

    For over 50 years the Office of Biological and Environmental Research (BER) of the United States Department of Energy (DOE) has been investing to advance environmental and biomedical knowledge connected to energy. The BER Medical Sciences program fosters research to develop beneficial applications of nuclear technologies for medical diagnosis and treatment of many diseases. Today, nuclear medicine helps millions of patients annually in the United States. Nearly every nuclear medicine scan or test used today was made possible by past BER-funded research on radiotracers, radiation detection devices, gamma cameras, PET and SPECT scanners, and computer science. The heart of biological research within BER has always been the pursuit of improved human health. The nuclear medicine of tomorrow will depend greatly on today's BER-supported research, particularly in the discovery of radiopharmaceuticals that seek specific molecular and genetic targets, the design of advanced scanners needed to create meaningful images with these future radiotracers, and the promise of new radiopharmaceutical treatments for cancers and genetic diseases.

  12. Converting energy to medical progress [nuclear medicine

    International Nuclear Information System (INIS)

    2001-01-01

    For over 50 years the Office of Biological and Environmental Research (BER) of the United States Department of Energy (DOE) has been investing to advance environmental and biomedical knowledge connected to energy. The BER Medical Sciences program fosters research to develop beneficial applications of nuclear technologies for medical diagnosis and treatment of many diseases. Today, nuclear medicine helps millions of patients annually in the United States. Nearly every nuclear medicine scan or test used today was made possible by past BER-funded research on radiotracers, radiation detection devices, gamma cameras, PET and SPECT scanners, and computer science. The heart of biological research within BER has always been the pursuit of improved human health. The nuclear medicine of tomorrow will depend greatly on today's BER-supported research, particularly in the discovery of radiopharmaceuticals that seek specific molecular and genetic targets, the design of advanced scanners needed to create meaningful images with these future radiotracers, and the promise of new radiopharmaceutical treatments for cancers and genetic diseases

  13. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Pediatric) Nuclear Medicine Sponsored by Please note RadiologyInfo.org is not a medical facility. Please contact your ... links: For the convenience of our users, RadiologyInfo .org provides links to relevant websites. RadiologyInfo.org , ACR ...

  14. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... nuclear medicine images can be superimposed with computed tomography (CT) or magnetic resonance imaging (MRI) to produce special ... now making single photon emission computed tomography/computed tomography (SPECT/CT) and positron emission tomography/computed tomography (PET/CT) ...

  15. Avoidable challenges of a nuclear medicine facility in a developing nation

    International Nuclear Information System (INIS)

    Adedapo, Kayode Solomon; Onimode, Yetunde Ajoke; Ejeh, John Enyi; Adepoju, Adewale Oluwaseun

    2013-01-01

    The role of nuclear medicine in disease management in a developing nation is as impactful as it is in other regions of the world. However, in the developing world, the practice of nuclear medicine is faced with a myriad of challenges, which can be easily avoided. In this review, we examine the many avoidable challenges to the practice of nuclear medicine in a developing nation. The review is largely based on personal experiences of the authors who are the pioneers and current practitioners of nuclear medicine in a typical developing nation. If the challenges examined in this review are avoided, the practice of nuclear medicine in such a nation will be more effective and practitioners will be more efficient in service delivery. Hence, the huge benefits of nuclear medicine will be made available to patients in such a developing nation

  16. Some aspects of the development of nuclear medicine in the USSR

    International Nuclear Information System (INIS)

    Kasatkin, Yu.N.

    1989-01-01

    Principle directions of the development of nuclear medicine in the USSR are presented.Some problems, which solution affects the state of nuclear medicine in the country are discussed. Problems of technical equipment of nuclear-diagnostic investigations are considered. Measures, directed to improvement of proffesional traing of specialists dealing with nuclear medicine are planned

  17. Radiation Protection Programme in Nuclear Medicine Practice

    International Nuclear Information System (INIS)

    Alarfaj, Abd-I.M.

    2003-01-01

    This paper specifies the main elements of the radiation protection programma (RPP) that should be estabished for each practice, which involves radiation exposure. Practices of nuclear medicine have been considered as an example, since among the 245 installations which are conducting different practices with radiation sources in the Kingdom of Saudi Arabia, there are 78 installations dealing with nuclear medicine practices. Reviewing the RPP in these nuclear medicine installations, it may be easily concluded that the RPPs for the majority of these installations do not respond to the requirements of the regulatory body of the Kingdom, which is King Abdulaziz City for Science and Technology (KACST). This may be attributed to a set of different reasons, such as shortage in understanding the main elements of the RPP as well as in applying methodologies

  18. Programmatic activities of IAEA in nuclear medicine

    International Nuclear Information System (INIS)

    Padhy, A.K.

    2004-01-01

    Nuclear medicine is high-tech medicine. Nevertheless, it is essential for addressing important health problems of people living in developing countries also. Not only is it sometimes expensive to start with, it also involves a lot of technical know-how, requiring transfer of technology from developed to the developing countries. The rapid development of nuclear medicine, of sophisticated instrumentation and radiopharmaceuticals has resulted in an enormous increase in costs and in the need for maintaining quality. These constitute a challenge and a venture when promoting nuclear medicine globally and particularly in developing countries. No other international organization except IAEA has any specific mandate for application of nuclear energy in the area of human health. WHO has no specific programin nuclear medicine, hence the importance of IAEA's involvement. The IAEA has, ever since its inception, given high priority to enhancing the awareness and capabilities of developing member states to employ nuclear technology for health care and medical research. Much of the Agency promoted research in nuclear medicine is delivered through the so called co-ordinated research projects (CRPs). The CRPs are normally organised as multi-center, prospective studies so that large volume of scientific data could be generated in a short period of 18-24 months. The research is normally done within an operational frame work, established and co-ordinated by the IAEA. The reason for this is that the results can be compared despite site or country specific differences. The methods and materials used for such studies usually conform to a predetermined standard. The protocols for various investigations, criteria for patient selection, mode of arriving at a final diagnosis and analysis of data from these multi-center studies are normally agreed upon by the Chief Scientific Investigators from each participating institution and the IAEA prior to the start of the actual work programme. The

  19. Nuclear medicine in bone diagnostics

    International Nuclear Information System (INIS)

    Feine, U.; Mueller-Schauenburg, W.

    1985-01-01

    This book on nuclear medicine in bone diagnostics and other complementary imaging methods is composed out of the 51 presentations of the 2nd Tuebinger bone symposium held on the 11th and 12th January 1985; it gives an overview of newer methods of nuclear medicine and other imaging methods such as magnetic-resonance tomography and sonography. While the 1st Tuebinger Symposium in January 1981 dealt with the clinical application of classical bone scintigraphy and the possibilities of the results of differential diagnosis, the present book is concerned with indications, alternative radiopharmaceuticals for skeleton scintigraphy and other techniques. The intention is to give a survey of the developments made over the last few years. (orig./MG) [de

  20. Nuclear magnetic resonance and medicine. Present applications

    International Nuclear Information System (INIS)

    1984-01-01

    At the workshop on nuclear magnetic resonance and medicine held at Saclay, the following topics were presented: physical principles of NMR; NMR spectroscopy signal to noise ratio; principles of NMR imaging; methods of NMR imaging; image options in NMR; biological significance of contrast in proton NMR imaging; measurement and significance of relaxation times in cancers; NMR contrast agents; NMR for in-vivo biochemistry; potential effects and hazards of NMR applications in Medicine; difficulties of NMR implantation in Hospitals; NMR imaging of brain tumors and diseases of the spinal cord; NMR and Nuclear Medicine in brain diseases [fr

  1. Medical application of nuclear science: nuclear medicine and production of radiopharmaceuticals

    International Nuclear Information System (INIS)

    Cornet, L.

    1997-01-01

    Nuclear science in attendance on medicine or from Radium to Radiopharmaceuticals. By a brief historical reminder of the evolution of the radioactivity and development of nuclear science, we could see a very early interest and application of the radioactivity in the medical field. Main steps: Detection of natural radioactivity/Discovery of artificial radioactivity/First treatment of leukaemia and thyroid/First nuclear reactor/First radioisotope laboratory in hospital/First scintigraphy/First radiopharmaceutical/First cyclotron and cyclotron products/First immunoscintigraphy/Biotechnology and radioisotope/Evolution of technics [equipment for diagnosis (imaging, scintigraphy) and therapy]/Evolution of production technics and concept of products (generators of Technetium) and machines, reactor, cyclotron/Evolution of importance and interest of nuclear medicine/Creation of international association of nuclear medicine and producers (example ARPR)/Evolution of safety and pharmaceuticals regulation. After the sixties, period extremely rich in invention of products, characterized by a high fertility specially due to a non-restrictive regulation in terms of safety and pharmaceutical consideration, the evolution of technics, the importance of costs (investment, research, healthcare and the evolution of the regulations) have smoothly but continuously transformed the contexts and different actors. Consequences and facts: Rationalization and standardization of the catalogues, total integration of radiopharmaceuticals into the pharmaceutical laws, stop of nuclear research reactors, increase of number of cyclotrons, transformation of size and role of the producers and nuclear centers, risk in supply of some raw materials like Molybdenum, medical nuclear application as a worldwide business

  2. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... exams at the same time. An emerging imaging technology, but not readily available at this time is PET/MRI. top of page What are some common uses of the procedure? Children's (pediatric) nuclear medicine imaging is performed to help ...

  3. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... The special camera and imaging techniques used in nuclear medicine include the gamma camera and single-photon emission-computed tomography (SPECT). The gamma camera, also called a scintillation camera, detects radioactive energy that is emitted from the patient's body and ...

  4. Annual congress of the European Association of Nuclear Medicine. EANM'14. Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-10-15

    The proceedings of the annual congress of the European Association of Nuclear Medicine EANM'14 contain abstracts on the following issues: nuclear cardiology practices, PET in lymphoma, advances in nuclear cardiology, dosimetry for intra-arterial treatment in the liver, pediatric nuclear medicine, therapeutic nuclear medicine, SPECT/CT, prostate cancer, extended competencies for nuclear medicine technologists, neurosciences - neurodegeneration and neuroinflammation, radionuclide therapy and dosimetry - preclinical studies, physics and instrumentation, clinical molecular imaging, conventional and specialized nuclear medicine.

  5. The state of the art in diagnostic nuclear medicine

    International Nuclear Information System (INIS)

    Scott, A.M.; University of Melbourne, VIC

    2001-01-01

    Recent improvements in the understanding of the physiologic and biologic mechanisms of health and disease have led to an expansion of nuclear medicine applications both in clinical studies and research. Advances in radiopharmaceutical development, instrumentation and computer processing have resulted in the implementation of Positron Emission Tomography for clinical studies, and improved treatments with radiopharmaceuticals particularly in cancer patients. There has also been an dramatic increase in the techniques available with nuclear medicine to detect and measure cellular biologic events in-vivo, which have important implications in clinical and basic science research. Nuclear medicine studies provide unique information on human physiology and remain an integral part of clinical medicine practice

  6. Prospects in nuclear medicine

    International Nuclear Information System (INIS)

    Pink, V.; Johannsen, B.; Muenze, R.

    1990-01-01

    In nuclear medicine, a sequence of revolutioning research up to the simple and efficient application in routine has always then taken place when in an interdisciplinary teamwork new radiochemical tracers and/or new instrumentation had become available. At present we are at the beginning of a phase that means to be in-vivo-biochemistry, the targets of which are molecular interactions in the form of enzymatic reactions, ligand-receptor interactions or immunological reactions. The possibility to use positron-emitting radionuclides of bioelements in biomolecules or drugs to measure their distribution in the living organism by positron-emission tomography (PET) is gaining admittance into the pretentious themes of main directions of medical research. Diagnostic routine application of biochemically oriented nuclear medicine methods are predominantly expected from the transmission of knowledge in PET research to the larger appliable emission tomography with gamma-emitting tracers (SPECT). (author)

  7. Imaging in nuclear medicine

    CERN Document Server

    Hoeschen, Christoph

    2013-01-01

    This volume addresses a wide range of issues in the field of nuclear medicine imaging, with an emphasis on the latest research findings. Initial chapters set the scene by considering the role of imaging in nuclear medicine from the medical perspective and discussing the implications of novel agents and applications for imaging. The physics at the basis of the most modern imaging systems is described, and the reader is introduced to the latest advances in image reconstruction and noise correction. Various novel concepts are then discussed, including those developed within the framework of the EURATOM FP7 MADEIRA research project on the optimization of imaging procedures in order to permit a reduction in the radiation dose to healthy tissues. Advances in quality control and quality assurance are covered, and the book concludes by listing rules of thumb for imaging that will be of use to both beginners and experienced researchers.

  8. The health physicist abroad

    International Nuclear Information System (INIS)

    Stewart, N.G.

    1980-01-01

    As health physics research teams at Harwell found adequate solutions to some of the problems in radiological protection and other spheres of nuclear technology, a mixed research programme consisting of both nuclear and non-nuclear research was undertaken by the health physics research teams since 1968 at Harwell with the aim of retaining radiological research experience. This policy widened the scope and interests of the health physicists and subsequently it was observed that particularly in the field of environment and toxicology, the division between nuclear and non-nuclear research is an artificial one. For example, the techniques developed and skills acquired to study the uptake and metabolism of radioactive aerosols were employed to study inhalation toxicology of lead aerosols from motor vehicles and their deposition on the plant and soil surfaces, influence of particle size on deposition and uptake of lead by man and plants. These techniques and skills were redeployed on new radiological problems as they arose, for example, to study the deposition and resuspension of plutonium from land and water surfaces to provide data appropriate to European conditions. Some such more examples from the work of the Environmental and Medical Sciences Division at Harwell are given. (M.G.B.)

  9. Great Physicists - The Life and Times of Leading Physicists from Galileo to Hawking

    International Nuclear Information System (INIS)

    Cropper, William H

    2002-01-01

    The author, a former American chemistry professor, has organized his book into nine parts with 29 chapters, covering, in a fairly historical sequence and systematic conceptual progression, all fundamentals of today's physics: i.e., mechanics, thermodynamics, electromagnetism, statistical mechanics, relativity, quantum mechanics, nuclear physics, particle physics, astronomy-astrophysics-cosmology. Obviously, the 20th century (when about 90% of professional physicists of all time worked) assumes with five topics the dominant role in this enterprise. For each topic, a small number (ranging from one to eight) of leading personalities is selected and the biographies of these 29 physicists, including two women (Marie Curie and Lise Meitner), are presented in some detail together with their achievements in the particular topic. Important relevant contributions of other scholars to each topic are also discussed. In addition, Cropper provides each of the topics with a short 'historical synopsis' justifying his selection of key persons. One may argue that concentrating on leading physicists constitutes an old-fashioned approach to displaying the history and contents of fundamental topics in physics. However, the mixture of biographies and explanation of leading contributions given here will certainly serve for a larger public, not just professional physicists and scientists, as a guide through the exciting development of physical ideas and discoveries. In general, the presentation of the material is quite satisfactory (with only few slips, e.g., in the Meitner story, where the author follows too closely a new biography) and gives the essence of the great advances in physics since the 15th century. One notices perhaps the limitation of the author in cases where no biography in English is available - this would also explain the omission of some of the main contributors to atomic and particle physics, such as Arnold Sommerfeld and Hideki Yukawa, or that French or Russian

  10. VIIth international symposium on nuclear medicine

    International Nuclear Information System (INIS)

    1983-01-01

    The conference proceedings contain abstracts of 100 presented papers, mainly dealing with radioimmunoassays, radiopharmaceuticals, scintiscanning, computer tomography, radionuclide lymphography, ventriculography, angiography, nuclear cardiology, liquid scintillator techniques, radioisotope generators, radiospirometry and various uses of labelled compounds and tracer techniques in nuclear medicine. (M.D.)

  11. A literature review of the cost-effectiveness of nuclear medicine

    International Nuclear Information System (INIS)

    Carter, J.

    1995-01-01

    Nuclear medicine is a medical speciality that uses tiny quantities of radioactivity to produce diagnostic images. It also has a role in therapy for some thyroid diseases and certain tumours. Surveys have shown that nuclear medicine procedures are used significantly less in the UK than in many other countries in Europe. One reason may be that there is inadequate information about the clinical utility of these techniques, particularly their cost-effectiveness in clinical management. To establish what evidence was currently available about the cost-effectiveness of nuclear medicine, the British Nuclear Medicine Society commissioned a worldwide literature review in diseases of the heart, kidney, lung, bone, brain, bowel and thyroid. This volume summarises the findings of the independent study and gives details of the background, clinical utility and limitations of the different nuclear medicine procedures used in the diagnosis and treatment of each disease reviewed. (author)

  12. Do we need a universal 'code of ethics' in nuclear medicine?

    Science.gov (United States)

    Ramesh, Chandakacharla N; Vinjamuri, Sobhan

    2010-06-01

    Recent years have seen huge advances in medicine and the science of medicine. Nuclear medicine has been no exception and there has been rapid acceptance of new concepts, new technologies and newer ways of working. Ethical principles have been traditionally considered as generic skills applicable to wide groups of scientists and doctors, with only token refinement at specialty level. Specialist bodies across the world representing wide groups of practitioners frequently have subgroups dealing exclusively with ethical issues. It could easily be argued that the basic principles of ethical practice adopted by specialist bodies closest to nuclear medicine practice, such as radiology and oncology, will also be applicable to nuclear medicine and that time and effort need not be spent on specifying a separate code for nuclear medicine. It could also be argued that nuclear medicine is an independent specialty and some (if not most) practitioners will not be aware of the guidelines adopted by other specialist societies, and that there is a need for re-iteration of ethical principles at the specialty level and on a worldwide scale.In this article we would like to present a brief history of medical ethics, discuss some of the advances in nuclear medicine and their associated ethical aspects, as well as list a framework of principles for consideration, should a specialist body deem it suitable to establish a 'code of ethics' for nuclear medicine.

  13. A manual of nuclear medicine procedures

    International Nuclear Information System (INIS)

    Das, B.K.; Noreen Norfaraheen Lee Abdullah

    2012-01-01

    Nuclear medicine is a fast growing specialty. The procedures provide quantitative parameters of organ functions required for modern practice of medicine. With the development of new machines and increased application of computer software, the procedures are under continuous change. Some procedures have become outdated or redundant while new methods have been introduced to enhance the quality of information obtained from a particular application. Although there are a few books published abroad to inform doctors and technical staff about the procedures, a comprehensive source to give quick information about how different test are performed, particularly the new developments and the expected outcome both in normal and abnormal cases has been a long felt need. The physician ordering a Nuclear Medicine test also needs to know what patient preparations are required for optimal results, how to satisfy the queries of the patient particularly in respect of radiation exposure which sometimes can be a major concern of the patient. This manual has been prepared not only to describe technical details of various procedures that are currently practiced in Nuclear Medicine, but also to provide quick information for the doctors and health care personnel on how to inform the patients about the investigation for which they are being referred and how to interpret the results. Since there is no such comprehensive book published yet in Asia including South-East Asia, it is likely to be in great demand in the region. All students of Master Degree, M.D., DRM, DMRIT, M.Sc. (Nuclear Medicine) and technologists already working in various diagnostic centers will likely buy this book. General practitioners and specialists who refer patients for different radioisotope investigations may find this book useful for quick reference. (author)

  14. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... measure the amount of the radiotracer in a small area of your child's body. top of page How is the procedure performed? Nuclear medicine imaging is usually performed on an ... Intravenous: a small needle is used to inject the radiotracer. The ...

  15. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... pictures and provides molecular information. In many centers, nuclear medicine images can be superimposed with computed tomography (CT) or magnetic resonance imaging (MRI) to produce special views, a practice known as image fusion or co-registration. These views allow the information ...

  16. Nuclear medicine in sports

    International Nuclear Information System (INIS)

    Sharma, Anshu Rajnish

    2010-01-01

    Nuclear medicine can synergistically contribute to the sports medicine field, in the management of sports-related stress injures. Bone scintigraphy is commonly requested for evaluation of athletes with pain. Three-Phase 99m Tc MDP Bone Scan has emerged as the imaging reference standard for diagnosing such injuries. The inherently high-contrast resolution of the bone scan allows early detection of bone trauma and becomes positive within six to seventy-two hours after the onset of symptoms. The bone scan is able to demonstrate stress injuries days to weeks before the radiograph

  17. The Current Status and Future Perspectives of Nuclear Medicine in Korea

    International Nuclear Information System (INIS)

    Lee, Myung Chul; Oh, So Won; Chung, June Key; Lee, Dong Soo

    2010-01-01

    Since the introduction of nuclear medicine in 1959, Korea accomplished a brilliant development in terms of both clinical practice and research activities, which was mainly due to the dedication of nuclear medicine specialists, consisting of physicians, technicians, and scientists, and strong support from the Korean Government. Now, Korea has 150 medical institutes, performing approximately 561,000 nuclear imaging procedures and 11.6 million in vitro studies in 2008, and ranked fourth in the number of presentations at the Annual Meeting of the Society of Nuclear Medicine (SNM) in 2008. The successful progress in this field has allowed Korea to focus on the international promotion of nuclear medicine, especially in the developing and underdeveloped countries. In consequence, the Asian Regional Cooperative Council for Nuclear Medicine (ARCCNM) was established in 2001, and Seoul hosted the 9th Congress of the World Federation of Nuclear Medicine and Biology (WFNMB) in 2006. In the future, Korea will strive to sustain its rate of advancement in the field and make every effort to share its progress and promote the exchange of scientific information at the international level.

  18. A glance at the history of nuclear medicine

    International Nuclear Information System (INIS)

    Carlsson, S.

    1995-01-01

    The development of nuclear medicine has resulted in several effective routine methods in diagnosis and therapy. There is an ongoing discussion about the future of the activity based on the fast development of ultrasound, CT and MR. In such discussions, it is often forgotten that nuclear medicine is also a dynamic diagnostic tool under continuous progress. As seen from this historical review, nuclear medicine has grown from quite simple in vitro tests to very advanced methods to image organ function. This is the result of the development of radiopharmaceuticals and instrumentation. Today, development is moving towards what is called receptor scintigraphy, i.e., the use of radiopharmaceuticals which are very specific to certain diseases, for instance, tumours. Even at present there is no other method to determine the regional myocardial blood flow both at stress and at rest, than myocardial scintigraphy. Nuclear medicine will remain an important diagnostic tool as long as it employs people with engagement and interest. Such people will also guarantee that the hospital management will supply the activity with funds for the necessary investments. (orig.)

  19. Official Program and Abstracts of the 15. Meeting of the Latin-American Association of Biology and Nuclear Medicine Societies (ALASBIMN 97); Iberoamerican Congress of Nuclear Medicine

    International Nuclear Information System (INIS)

    1997-01-01

    This issue contains 117 abstracts of lectures and poster sessions of the 15th Meeting of the Latin-American Association of Biology and Nuclear Medicine Societies (ALASBIMN 97) and Iberoamerican Congress of Nuclear Medicine, held in Lima, Peru, from 26 to 30 October 1997. The key subjects addressed are nuclear medicine and diagnostic techniques on brain, liver, lungs, heart, osteo-articular, cardiology, oncology, endocrinology, radiopharmaceuticals, medical physics, SPECT and their applications in diagnostic medicine. (APC)

  20. Radiation protection in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Volodin, V; Hanson, G P

    1993-12-31

    The goal of this Chapter is to give a general outline of the essential principles and procedures for radiation protection in a nuclear medicine department where radionuclides are used for diagnosis and therapy. More detailed recommendations regarding radiation protection in nuclear medicine are given in the publications of the International Commission on Radiation Protection (ICRP, publications 25, 57, 60) and in ILO/IAEA/WHO Manual on Radiation Protection in Hospitals and General Practice (Volume 2: Unsealed Sources, WHO, Geneva, 1975), on which this Chapter is based. This chapter is not intended to replace the above-mentioned international recommendations on radiation protection, as well as existing national regulations on this subject, but intended only to provide guidance for implementing these recommendations in clinical practice

  1. Radiation protection in nuclear medicine

    International Nuclear Information System (INIS)

    Volodin, V.; Hanson, G.P.

    1992-01-01

    The goal of this Chapter is to give a general outline of the essential principles and procedures for radiation protection in a nuclear medicine department where radionuclides are used for diagnosis and therapy. More detailed recommendations regarding radiation protection in nuclear medicine are given in the publications of the International Commission on Radiation Protection (ICRP, publications 25, 57, 60) and in ILO/IAEA/WHO Manual on Radiation Protection in Hospitals and General Practice (Volume 2: Unsealed Sources, WHO, Geneva, 1975), on which this Chapter is based. This chapter is not intended to replace the above-mentioned international recommendations on radiation protection, as well as existing national regulations on this subject, but intended only to provide guidance for implementing these recommendations in clinical practice

  2. Present situation and proposal for nuclear medicine development

    International Nuclear Information System (INIS)

    Oliva Gonzalez, Juan P.

    2003-01-01

    In the present paper, the current situation of the Cuban nuclear medicine, after its introduction in the country in the 40s of the 20 th century and its expansion since 1962 and, particularly, from the installation of the first gamma camera in 1980, is analyzed. Nowadays, there is a total 14 Nuclear Medicine Departments or Services in our country within the National Oncology Networks and national Health System (SNS), which provide medical attention to the population depending on the nuclear equipment available A Program for the medical and technical personnel's training is proposed, as well as for gradual development of nuclear medicine department's (including the installation of gamma cameras, divided into two stages: 2003-2004 and 2005-2006). The prospective results of the proposed program are analyzed, as well as the impact on the populations health

  3. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... both imaging exams at the same time. An emerging imaging technology, but not readily available at this time is PET/MRI. top of page What are some common uses of the procedure? Children's (pediatric) nuclear medicine imaging is performed to help diagnose childhood disorders ...

  4. More about ... Nuclear medicine

    African Journals Online (AJOL)

    Thyroid scintigraphy. In neonates with hypothyroidism detected on neonatal screening and confirmed by subsequent testing, a radionuclide thyroid scan should be performed as soon as possible. It must be undertaken in all nuclear medicine departments as a matter of urgency. Any delay in treatment should be avoided.

  5. Occupational exposure of nuclear medicine personnel

    International Nuclear Information System (INIS)

    Roessler, M.

    1982-01-01

    The results are given of measurements of the radiation burden of personnel in departments of nuclear medicine in the years 1979 to 1981 using film dosemeters and ring thermoluminescence dosemeters evaluated by the national personnel dosemeter service. The relations are examined of the exposure of hands and the preparation of radiopharmaceuticals and especially their use for examinations. Certain organizational measures are indicated for reducina radiation burden in a laboratory for the preparation of radiopharmaceuticals. The results of measurements and evaluations of radiation burden of personnel of nuclear medicine departments are confronted with conclusions published in the literature. (author)

  6. Basic requirements of nuclear medicine services

    Energy Technology Data Exchange (ETDEWEB)

    Belcher, E H

    1993-12-31

    Technological progress in nuclear medicine continues, not always to the immediate advantage of the developing world. The capital expense, operational demands and maintenance requirements of ever more complex equipment, the consequent need for highly trained staff, the necessity to assure regular supplies of costly radioactive materials, all present problems to which compromise or alternative solutions must often be sought. This chapter constitutes an attempt to define the basic requirements for thr practice of nuclear medicine with respect to staff, equipment, accommodation, supplies and supporting services with particular reference to the needs of institutions in developing countries

  7. Basic requirements of nuclear medicine services

    International Nuclear Information System (INIS)

    Belcher, E.H.

    1992-01-01

    Technological progress in nuclear medicine continues, not always to the immediate advantage of the developing world. The capital expense, operational demands and maintenance requirements of ever more complex equipment, the consequent need for highly trained staff, the necessity to assure regular supplies of costly radioactive materials, all present problems to which compromise or alternative solutions must often be sought. This chapter constitutes an attempt to define the basic requirements for thr practice of nuclear medicine with respect to staff, equipment, accommodation, supplies and supporting services with particular reference to the needs of institutions in developing countries

  8. Nuclear Medicine National Headquarter System

    Data.gov (United States)

    Department of Veterans Affairs — The Nuclear Medicine National HQ System database is a series of MS Excel spreadsheets and Access Database Tables by fiscal year. They consist of information from all...

  9. Roles and Responsibilities, and Education and Training Requirements for Clinically Qualified Medical Physicists (Spanish Edition)

    International Nuclear Information System (INIS)

    2014-01-01

    The IAEA technical cooperation project Strengthening Medical Physics in Radiation Medicine was approved by the IAEA Board of Governors for the period 2009-2013 with the aim of ensuring the safe and effective diagnosis and treatment of patients. The IAEA, together with the World Health Organization and stakeholders from numerous medical physics professional societies worldwide, including the International Organization for Medical Physics (IOMP), the European Federation of Organisations for Medical Physics, the American Association of Physicists in Medicine (AAPM), the Latin American Medical Physics Association, the Asia-Oceania Federation of Organizations for Medical Physics, the European Society for Radiotherapy and Oncology, the European Commission and the International Radiation Protection Association, as well as regional counterparts from Africa, Asia, Europe and Latin America, met in Vienna in May 2009 to plan and coordinate the new project. A shortage of clinically qualified medical physicists (CQMPs), insufficient education and training (especially properly organized and coordinated clinical training), and lack of professional recognition were identified as the main problems to be addressed under this project. This publication was developed under the project framework in response to these findings. It aims, first, at defining appropriately and unequivocally the roles and responsibilities of a CQMP in specialties of medical physics related to the use of ionizing radiation, such as radiation therapy, nuclear medicine, and diagnostic and interventional radiology. Important, non-ionizing radiation imaging specialties, such as magnetic resonance and ultrasound, are also considered for completeness. On the basis of these tasks, this book provides recommended minimum requirements for the academic education and clinical training of CQMPs, including recommendations for their accreditation, certification and registration, along with continuing professional development

  10. Past and present of measuring apparatus for nuclear medicine

    International Nuclear Information System (INIS)

    Murayama, Hideo

    2013-01-01

    The history of advancement of measuring apparatus for nuclear medicine is looked back. It is presented that Japanese contribution to these advancement has been in no small quantities. The future view carrying the measuring apparatus for nuclear medicine is also described. (M.H.)

  11. Current trends in nuclear medicine in Pakistan

    International Nuclear Information System (INIS)

    Kamal, S.; Ahmed, S.

    1990-01-01

    This volume is a compilation of dissertations on research projects submitted by the fellows of M. Sc. (Nuclear Medicine) who undertook a two-year intensive course initiated in 1989 by the Centre for Nuclear Studies, PINSTECH, Islamabad. The project covered major aspects of nuclear medicine including the cardiovascular, endocrine, haematopoietic, hepatobiliary, immune and skeletal systems. The results obtained proved interesting and of significant clinical relevance. Majority of essays addressed some new aspects of the problems and the resultants information should prove interesting for both local and foreign enthusiasts. This book proves a reflection of the high quality of work done by the faculty and the fellows. (orig./A.B.)

  12. TU-G-213-00: The International Electrotechnical Commission (IEC): What Is It and Why Should Medical Physicists Care?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    The International Electrotechnical Commission (IEC) writes standards that manufacturers of electrical equipment must comply with. Medical electrical equipment, such as medical imaging, radiation therapy, and radiation dosimetry devices, fall under Technical Committee 62. Of particular interest to medical physicists are the standards developed within Subcommittees (SC) 62B, which addresses diagnostic radiological imaging equipment, and 62C, which addresses equipment for radiation therapy, nuclear medicine and dosimetry. For example, a Working Group of SC 62B is responsible for safety and quality assurance standards for CT scanners and a Working Group of SC 62C is responsible for standards that set requirements for dosimetric safety and accuracy of linacs and proton accelerators. IEC standards thus have an impact on every aspect of a medical physicist’s job, including equipment testing, shielding design, room layout, and workflow. Consequently, it is imperative that US medical physicists know about existing standards, as well as have input on those under development or undergoing revision. The structure of the IEC and current standards development work will be described in detail. The presentation will explain how US medical physicists can learn about IEC standards and contribute to their development. Learning Objectives: Learn about the structure of the IEC and the influence that IEC standards have on the design of equipment for radiology and radiation therapy. Learn about the mechanisms by which the US participates in the development and revision of standards. Understand the specific requirements of several standards having direct relevance to diagnostic and radiation therapy physicists.

  13. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... drink before the exam, especially if your physician plans to use sedation for the procedure. top of page Who interprets the results and how do we get them? A radiologist or other physician who has specialized training in nuclear medicine will interpret the images and ...

  14. The teaching of nuclear medicine

    International Nuclear Information System (INIS)

    Bok, B.; Ducassou, D.

    1984-01-01

    Having first recalled the need of a specialized teaching in the field of nuclear medicine, the authors describe the training programmes now available in this sector for doctors, chemists and hospital-attendants [fr

  15. Teaching of nuclear medicine at medical faculties

    International Nuclear Information System (INIS)

    Dienstbier, Z.

    1987-01-01

    The teaching of nuclear medicine at medical faculties in the CSSR is analyzed. It is shown that the teaching conditions are different at the individual faculties of medicine and the respective conditions are exemplified. (author). 4 tabs

  16. Diagnosis of liver lesions in nuclear medicine

    International Nuclear Information System (INIS)

    Krause, T.; Juengling, F.

    2003-01-01

    With the introduction of new imaging protocols for ultrasound, computed tomography (CT) and magnetic resonance imaging (MRI), the importance of conventional nuclear medicine diagnostic procedures has changed fundamentally. With the introduction of positron emission tomography (PET) into routine diagnostics, the assessment of tissue-specific function adds on to the modern, morphological imaging procedures and in principle allows for differentiating benign from malignant lesions. The actual clinical value of nuclear medicine procedures for the diagnostic workup of focal liver lesions is discussed. (orig.) [de

  17. Medical imaging. From nuclear medicine to neuro-sciences

    International Nuclear Information System (INIS)

    2003-03-01

    Nuclear medicine and functional imaging were born of the CEA's ambition to promote and develop nuclear applications in the fields of biology and health. Nuclear medicine is based on the use of radioactive isotopes for diagnostic and therapeutic purposes. It could never have developed so rapidly without the progress made in atomic and nuclear physics. One major breakthrough was the discovery of artificial radioelements by Irene and Frederic Joliot in 1934, when a short-lived radioactive isotope was created for the first time ever. Whether natural or synthetic, isotopes possess the same chemical properties as their non-radioactive counterparts. The only difference is that they are unstable and this instability causes disintegration, leading to radiation emission. All we need are suitable detection tools to keep track of them. 'The discovery of artificial radioelements is at the root of the most advanced medical imaging techniques'. The notion of tracer dates back to 1913. Invented by George de Hevesy, it lies at the root of nuclear medicine. By discovering how to produce radioactive isotopes, Irene and Frederic Joliot provided biology researchers with nuclear tools of unrivalled efficiency. Today, nuclear medicine and functional imaging are the only techniques capable of giving us extremely precise information about living organisms in a non-traumatic manner and without upsetting their balance. Positron emission tomography (PET) and nuclear magnetic resonance imaging (MRI) are the main imaging techniques used at the CEA in its neuro-imaging research activities. These techniques are now developing rapidly and becoming increasingly important not only in the neuroscience world, but also for innovative therapies and cancer treatment. (authors)

  18. Basic science of nuclear medicine

    International Nuclear Information System (INIS)

    Parker, R.P.; Taylor, D.M.; Smith, P.H.S.

    1978-01-01

    A book has been written presenting those aspects of physics, chemistry and related sciences which are essential to a clear understanding of the scientific basis of nuclear medicine. Part I covers the basic physics of radiation and radioactivity. Part II deals with radiation dosimetry, the biological effects of radiation and the principles of tracer techniques. The measurement of radioactivity and the principal aspects of modern instrumentation are presented in Part III. Those aspects of chemistry relevant to the preparation and use of radiopharmaceuticals are discussed in Part IV. The final section is concerned with the production of radionuclides and radiopharmaceuticals and with the practical aspects of laboratory practice, facilities and safety. The book serves as a general introductory text for physicians, scientists, radiographers and technicians who are entering nuclear medicine. (U.K.)

  19. Extract from IAEA's Resources Manual in Nuclear Medicine - Part 2. - Human Resources Development

    International Nuclear Information System (INIS)

    2003-01-01

    The Nuclear Medicine Section of the International Atomic Energy Agency is now engaged in finalizing a reference manual in nuclear medicine, entitled, 'Resources Manual in Nuclear Medicine'. Several renowned professionals from all over the world, from virtually all fields of nuclear medicine have contributed to this manual. The World Journal of Nuclear Medicine will publish a series of extracts from this manual as previews. This is the second extract from the Resources Manual, Part-2 of the chapter on Human Resources Development. (author)

  20. Justification of the hybrid nuclear medicine examinations

    International Nuclear Information System (INIS)

    Garcheva-Tsacheva, Marina B.

    2015-01-01

    The annual frequency of nuclear medicine examinations is increasing worldwide. This is partly a consequence of the recently introduced single photon emission tomography, combined with computed tomography, and positron emission tomography, combined with computed tomography, techniques, which combine functional, metabolic and morphological information important for the diagnosis of many diseases. However, since the effective radiation dose is the sum of the dose of two components, the hybrid examinations result in increased patient exposure. Accordingly, their justification becomes mandatory. It starts with their clinical importance-the opportunity to resolve a clinical problem decisive for patients' management. Knowledge of the indications, contraindications and the examinations' limitations is the responsibility of the nuclear medicine physician, as well as the choice of the most adequate examination and protocol. In conclusion, the cost and the accessibility of the examinations should not be the principal consideration as opposed to the diagnostic value and the exposure. Flexible protocols and algorithms should be used for hybrid nuclear medicine examinations. (authors)

  1. Nuclear medicine and the pregnant patient

    International Nuclear Information System (INIS)

    Collins, L.

    1988-01-01

    Estimates of the risks of exposing an embryo or fetus to radiation are discussed. Recommendations are made about the policies a nuclear medicine department should develop for handling cases of accidental irradiation of an embryo or fetus. The choices available where a known pregnancy is involved and diagnostic radiology is required are outlined. Only necessary examinations should be performed and care taken to avoid or minimise irradiation of the fetus. The nuclear medicine physician must be prepared to make (and defend if necessary) an informed decision on whether to proceed with an examination and must also be in a position to discuss the risks with anxious parents

  2. Calibration of nuclear medicine gamma counters

    International Nuclear Information System (INIS)

    Orlic, M.; Spasic-Jokic, V.; Jovanovic, M.; Vranjes, S. . E-mail address of corresponding author: morlic@vin.bg.ac.yu; Orlic, M.)

    2005-01-01

    In this paper the practical problem of nuclear medicine gamma counters calibration has been solved by using dose calibrators CRC-15R with standard error ±5%. The samples from technetium generators have been measured both by dose calibrators CRC-15R and gamma counter ICN Gamma 3.33 taking into account decay correction. Only the linear part of the curve has practical meaning. The advantage of this procedure satisfies the requirements from international standards: the calibration of sources used for medical exposure be traceable to a standard dosimetry laboratory and radiopharmaceuticals for nuclear medicine procedures be calibrated in terms of activity of the radiopharmaceutical to be administered. (author)

  3. An internet-based teaching file on clinical nuclear medicine

    International Nuclear Information System (INIS)

    Jiang Zhong; Wu Jinchang

    2001-01-01

    Objective: The goal of this project was to develop an internet-based interactive digital teaching file on nuclide imaging in clinical nuclear medicine, with the capability of access to internet. Methods: On the basis of academic teaching contents in nuclear medicine textbook for undergraduates who major in nuclear medicine, Frontpage 2000, HTML language, and JavaScript language in some parts of the contents, were utilized in the internet-based teaching file developed in this study. Results: A practical and comprehensive teaching file was accomplished and may get access with acceptable speed to internet. Besides basic teaching contents of nuclide imagings, a large number of typical and rare clinical cases, questionnaire with answers and update data in the field of nuclear medicine were included in the file. Conclusion: This teaching file meets its goal of providing an easy-to-use and internet-based digital teaching file, characteristically with the contents instant and enriched, and with the modes diversified and colorful

  4. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... Disorders Video: The Basketball Game: An MRI Story Radiology and You Sponsored by Image/Video Gallery Your Radiologist Explains Nuclear Medicine Transcript Welcome to Radiology Info dot org Hello! I’m Dr. Ramji ...

  5. Considerations regarding nuclear medicine terminology

    International Nuclear Information System (INIS)

    Als, C.

    2008-01-01

    This article through some examples shows us all the interest of the use of terminology in nuclear medicine. Each would find in it its interest, from the patient to the doctors in different disciplines. (N.C.)

  6. Basic Physics for Nuclear Medicine. Chapter 1

    Energy Technology Data Exchange (ETDEWEB)

    Podgorsak, E. B. [Department of Medical Physics, McGill University, Montreal (Canada); Kesner, A. L. [Division of Human Health, International Atomic Energy Agency, Vienna (Austria); Soni, P. S. [Medical Cyclotron Facility, Board of Radiation and Isotope Technology, Bhabha Atomic Research Centre, Mumbai (India)

    2014-12-15

    The technologies used in nuclear medicine for diagnostic imaging have evolved over the last century, starting with Röntgen’s discovery of X rays and Becquerel’s discovery of natural radioactivity. Each decade has brought innovation in the form of new equipment, techniques, radiopharmaceuticals, advances in radionuclide production and, ultimately, better patient care. All such technologies have been developed and can only be practised safely with a clear understanding of the behaviour and principles of radiation sources and radiation detection. These central concepts of basic radiation physics and nuclear physics are described in this chapter and should provide the requisite knowledge for a more in depth understanding of the modern nuclear medicine technology discussed in subsequent chapters.

  7. Information for nuclear medicine researchers and practitioners

    International Nuclear Information System (INIS)

    Bartlett, W.

    1987-01-01

    The Australian Nuclear Science and Technology Organisation (ANSTO) has a major research program in nuclear medicine; this article describes the information support given to the program by the Lucas Heights Research Laboratories (LHRL) Library. The INIS database is a prime indicator of the information held at LHRL Library, however, other databases also cover nuclear medicine. As part of the Australian library system the ANSTO Library's resources are accessed by subscription. The ANSTO Library staff can also search INIS for a fee for external enquiries but the other databases can presently only be searched for LHRL staff and affiliates. Even so, most major library and information services can provide access to these databases

  8. Pulmonary nuclear medicine: Techniques in diagnosis of lung disease

    International Nuclear Information System (INIS)

    Atkins, H.L.

    1984-01-01

    This book presents papers on the application of nuclear medicine to the diagnosis of lung diseases. Topics considered include lung physiology and anatomy, radiopharmaceuticals in pulmonary medicine, pulmonary embolism, obstructive pulmonary disease, diffuse infiltrative lung disease, pneumoconioses, tumor localization scans in primary lung tumors, the interactions of heart diseases and lung diseases on radionuclide tests of lung anatomy and function, radionuclide imaging in pediatric lung diseases, and future possibilities in pulmonary nuclear medicine

  9. Radiation exposure of nuclear medicine procedures in Germany

    International Nuclear Information System (INIS)

    Hacker, M.

    2005-01-01

    Nuclear Medicine procedures offer the possibility to detect abnormalities on the basis of physiological and metabolic changes and to treat a growing number of diseases in human beings. However, the use of radiopharmaceuticals for nuclear medicine examinations causes a significant component of the total radiation exposure of populations. In Germany it is an essential task of the Federal Office for Radiation Protection to determinate and assess radiation exposure of the population due to nuclear medicine diagnostics and therapy. An important input for this task is the frequency of nuclear-medical examinations with application of ionising radiation and the radiation exposure of patients related to the various procedures. Additional implementation of age- and gender-specific data today allows more exact risk stratification in focusing on different subgroups of patients. Moreover, the collective effective dose as well as the per caput effective dose of the German population may be estimated and compared with earlier collected data or foreign countries. These data reveal where the indication should be questioned particularly critically and if the dose for the various examinations can be reduced and, thus, contribute to the definition of diagnostic reference levels for nuclear medicine procedures in Germany with the aim of both a sufficient image quality and a minimum of radiation exposure. Exceeding the high- as well as the low-values requires documentation and explanation. (orig.)

  10. Physics and nuclear power

    International Nuclear Information System (INIS)

    Buttery, N E

    2008-01-01

    Nuclear power owes its origin to physicists. Fission was demonstrated by physicists and chemists and the first nuclear reactor project was led by physicists. However as nuclear power was harnessed to produce electricity the role of the engineer became stronger. Modern nuclear power reactors bring together the skills of physicists, chemists, chemical engineers, electrical engineers, mechanical engineers and civil engineers. The paper illustrates this by considering the Sizewell B project and the role played by physicists in this. This covers not only the roles in design and analysis but in problem solving during the commissioning of first of a kind plant. Looking forward to the challenges to provide sustainable and environmentally acceptable energy sources for the future illustrates the need for a continuing synergy between physics and engineering. This will be discussed in the context of the challenges posed by Generation IV reactors

  11. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... An MRI Story Radiology and You Sponsored by Image/Video Gallery Your Radiologist Explains Nuclear Medicine Transcript ... by a special camera and computer to create images of the inside of your body. If you’ ...

  12. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... or before abnormalities can be detected with other diagnostic tests. Nuclear medicine imaging procedures use small amounts ... relatively low and the benefit of an accurate diagnosis far outweighs any risk. To learn more about ...

  13. Nuclear medicine therapy

    CERN Document Server

    Eary, Janet F

    2013-01-01

    One in three of the 30 million Americans who are hospitalized are diagnosed or treated with nuclear medicine techniques. This text provides a succinct overview and detailed set of procedures and considerations for patient therapy with unsealed radioactivity sources.  Serving as a complete literature reference for therapy with radiopharmaceuticals currently utilized in practice, this source covers the role of the physician in radionuclide therapy, and essential procedures and protocols required by health care personnel.

  14. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... you have any allergies. You may have some concerns about nuclear medicine. However, because the amount of ... You Sponsored by About Us | Contact Us | FAQ | Privacy | Terms of Use | Links | Site Map Copyright © 2018 ...

  15. Neuroimaging in nuclear medicine: drug addicted brain

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Yong-An; Kim, Dae-Jin [The Catholic University of Korea, Seoul (Korea, Republic of)

    2006-02-15

    Addiction to illicit drugs in one of today's most important social issues. Most addictive drugs lead to irreversible parenchymal changes in the human brain. Neuroimaging data bring to light the pharmacodynamics and pharmacokinetics of the abused drugs, and demonstrate that addiction is a disease of the brain. Continuous researches better illustrate the neurochemical alterations in brain function, and attempt to discover the links to consequent behavioral changes. Newer hypotheses and theories follow the numerous results, and more rational methods of approaching therapy are being developed. Substance abuse is on the rise in Korea, and social interest in the matter as well. On the other hand, diagnosis and treatment of drug addiction is still very difficult, because how the abused substance acts in the brain, or how it leads to behavioral problems in not widely known. Therefore, understanding the mechanism of drug addiction can improve the process of diagnosing addict patients, planning therapy, and predicting the prognosis . Neuroimaging approaches by nuclear medicine methods are expected to objectively judge behavioral and neurochemical changes, and response to treatment. In addition, as genes associated with addictive behavior are discovered, functional nuclear medicine images will aid in the assessment of individuals. Reviewing published literature on neuroimaging regarding nuclear medicine is expected to be of assistance to the management of drug addict patients. What's more, means of applying nuclear medicine to the care of drug addict patients should be investigated further.

  16. Neuroimaging in nuclear medicine: drug addicted brain

    International Nuclear Information System (INIS)

    Chung, Yong-An; Kim, Dae-Jin

    2006-01-01

    Addiction to illicit drugs in one of today's most important social issues. Most addictive drugs lead to irreversible parenchymal changes in the human brain. Neuroimaging data bring to light the pharmacodynamics and pharmacokinetics of the abused drugs, and demonstrate that addiction is a disease of the brain. Continuous researches better illustrate the neurochemical alterations in brain function, and attempt to discover the links to consequent behavioral changes. Newer hypotheses and theories follow the numerous results, and more rational methods of approaching therapy are being developed. Substance abuse is on the rise in Korea, and social interest in the matter as well. On the other hand, diagnosis and treatment of drug addiction is still very difficult, because how the abused substance acts in the brain, or how it leads to behavioral problems in not widely known. Therefore, understanding the mechanism of drug addiction can improve the process of diagnosing addict patients, planning therapy, and predicting the prognosis . Neuroimaging approaches by nuclear medicine methods are expected to objectively judge behavioral and neurochemical changes, and response to treatment. In addition, as genes associated with addictive behavior are discovered, functional nuclear medicine images will aid in the assessment of individuals. Reviewing published literature on neuroimaging regarding nuclear medicine is expected to be of assistance to the management of drug addict patients. What's more, means of applying nuclear medicine to the care of drug addict patients should be investigated further

  17. Proceedings of the Korean Society Nuclear Medicine Autumn Meeting 1998

    International Nuclear Information System (INIS)

    1998-01-01

    This proceedings contains articles of 1998 Autumn meeting of the Korean Society Nuclear Medicine. It was held on November 13-14, 1998 in Seoul, Korea. This proceedings is comprised of 5 sessions. The subject titles of session are as follows: general nuclear medicine, neurology, radiopharmacy and biology, nuclear cardiology, physics and instrumentation. (Yi, J. H.)

  18. Proceedings of the Korean Society Nuclear Medicine Autumn Meeting 1997

    International Nuclear Information System (INIS)

    1997-01-01

    This proceedings contains articles of 1997 autumn meeting of the Korean Society Nuclear Medicine. It was held on November 21, 1997 in Kwangju, Korea. This proceedings is comprised of 5 sessions. The subject titles of session are as follows: general nuclear medicine, neurology, radiopharmacy and biology, nuclear cardiology, physics and instrumentation. (Yi, J. H.)

  19. Nuclear medicine and AIDS

    International Nuclear Information System (INIS)

    O'Doherty, M.J.; Kent and Canterbury Hospital, Canterbury; Nunan, T.O.

    1993-01-01

    The human immunodeficiency virus (HIV) infection and its associated illnesses in a relatively young population of patients provides an expanding role for nuclear medicine. The disease enforces a review of each department's infection control procedures. It has also resulted in an increase in the number of patients presenting with diseases such as Pneumocystis carinii pneumonia, Kaposi's sarcoma etc. which prior to the HIV epidemic were extremely rare. Thus in high risk patients the interpretation of abnormalities in nuclear medicine scans needs to include the spectrum of opportunistic infections and unusual tumours. The presence of opportunistic infections in the severely immunocompromised patient has led to the development of techniques not normally used, i.e. lung 99 Tc m -diethylenetriamine pentaacetate (DTPA) transfer/clearance, donor leukocyte scanning to allow rapid diagnosis of an abnormality. Radionuclide techniques are also used to monitor the effect of therapy directed at the HIV itself or against opportunistic infections. This review covers aspects of infection control as well as the use of radionuclides to investigate specific problems related to HIV infection and therapy of the associated disease processes. (author)

  20. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... other diagnostic tests. Nuclear medicine imaging procedures use small amounts of radioactive materials – called radiotracers – that are ... However, because the amount of radiotracer used is small, the level of radiation exposure is relatively low ...

  1. What is a medical physicist?

    International Nuclear Information System (INIS)

    Endo, Masahiro

    2011-01-01

    The modern radiotherapy requires a medical physicist who optimizes treatment plans, assures delivered dose equal to prescription, and performs QA (quality assurance) of radiotherapy equipments. However, medical physicist has not been established as a medical profession in Japan mainly because importance of radiotherapy was not sufficiently recognized until recently. Between 2000 and 2004, several accidents of radiotherapy including hundreds of patients were found and these accidents were mainly caused by lack of QA. The necessity and importance of medical physicist were recognized by these accidents as well as by the advent of high-precision radiotherapy such as IMRT (intensity modulation radiation therapy). JRS (Japan Radiological Society) that certified medical physicists with the help of JSMP (Japan Society of Medical Physics), decided to extend eligibility in order to increase certified medical physicists rapidly in 2003. After the decision certified medical physicists were rapidly increased in number. The government supports this tendency to enact that certified medical physicists is necessary to reimbursement for high-precision therapy. It also started to supply grants for medical physics training in physical and health science graduate schools. In this program several universities have started medical physics course in their graduate schools. If these movements continue, medical physicist will be established as a medical profession in the near future. (author)

  2. Hospital Intranet and Extranet in nuclear medicine

    International Nuclear Information System (INIS)

    Gambini, D.J.; Baum, T.P.; Spector, M.; Dumas, F.; Elgard, M.C.; Collington, M.A.; Barritault, L.

    1997-01-01

    Since two years ago nuclear medicine service of Laennec Hospital has implemented transmission and distribution networks of scintigraphic images. A new stage was reached at present by developing an Intranet and Extranet system for nursing units and other services of nuclear medicine. The Intranet link to the services of Laennec Hospital and AP HP is based on a image server connected to the service gamma camera and, after a possible post-processing, the images are transmitted in PCX format by e-mail, attached to the medical record. For communication between nuclear medicine services, a heavier procedure making use of a program for image processing under inter-file standards has been implemented. To achieve the Extranet link with services and physicians of town, exterior to AP HP, a procedure was installed which allows reaching any nursing unit or town physicians having at their disposal e-mail on a secured network. This procedure will be generalized when the Health secured network, linking the medical bodies to Health insurance institutions, will be operational. The interactive tele-medicine will be achieved by means of a procedure based on Internet cooperative tools (wild cards, video- and vision-conferences) which will permits in all situations an interactive work on all the transmitted patient files

  3. Quality assurance and harmonisation of nuclear medicine investigations in Europe

    International Nuclear Information System (INIS)

    Bergmann, H.; Busemann-Sokole, E.; Horton, P.W.

    1995-01-01

    A survey of all member societies of the European Association of Nuclear Medicine has shown that a satisfactory degree of harmonisation exists for the quality assurance of the preparation and handling of radiopharmaceuticals and the performance of nuclear medicine instrumentation. However, variations were found in acquisition protocols, data analysis and the interpretation and presentation of clinical results. Harmonisation of these areas of a nuclear medicine investigation would help ensure the overall quality. A European initiative is proposed to collect and collate procedures in these areas in order to produce a reference framework of good practice for the acquisition, analysis and interpretation of nuclear medicine investigations. This would involve collaboration between national societies and exchange of information with and support from European organisations, taking into account relevant international activities. The reference framework should be compatible with quality management guidelines. (orig.)

  4. The importance of HIFAR to nuclear medicine

    International Nuclear Information System (INIS)

    Wood, N.R.

    1997-01-01

    Since its official opening on 26 January 1960, the HIFAR research reactor operated by the Australian Nuclear Science and Technology Organisation (ANSTO) at Lucas Heights near Sydney has been used to support an expanding nuclear medicine market. HIFAR has characteristics which make it very suitable for this role and the effect has been to make ANSTO the dominant supplier of reactor-based radiopharmaceuticals in Australia and a significant exporter. While HIFAR has capacity to support limited increased production, its future requires government decisions. The author concluded that the absence of an operational research reactor in Australia and the lack of another local source of neutrons could directly affect the practice of nuclear medicine in the country and the level of presently increasing exports

  5. BOOK REVIEW: Great Physicists - The Life and Times of Leading Physicists from Galileo to Hawking

    Science.gov (United States)

    Cropper, William H.

    2002-11-01

    The author, a former American chemistry professor, has organized his book into nine parts with 29 chapters, covering, in a fairly historical sequence and systemtic conceptual progression, all fundamentals of today's physics: i.e., mechanics, thermodynamics, electromagnetism, statistical mechanics, relativity, quantum mechanics, nuclear physics, particle physics, astronomy-astrophysics-cosmology. Obviously, the 20th century (when about 90% of professional physicists of all time worked) assumes with five topics the dominant role in this enterprise. For each topic, a small number (ranging from one to eight) of leading personalities is selected and the biographies of these 29 physicists, including two women (Marie Curie and Lise Meitner), are presented in some detail together with their achievements in the particular topic. Important relevant contributions of other scholars to each topic are also discussed. In addition, Cropper provides each of the topics with a short 'historical synopsis' justifying his selection of key persons. One may argue that concentrating on leading physicists constitutes an old-fashioned approach to displaying the history and contents of fundamental topics in physics. However, the mixture of biographies and explanation of leading contributions given here will certainly serve for a larger public, not just professional physicists and scientists, as a guide through the exciting development of physical ideas and discoveries. In general, the presentation of the material is quite satisfactory (with only few slips, e.g., in the Meitner story, where the author follows too closely a new biography) and gives the essence of the great advances in physics since the 15th century. One notices perhaps the limitation of the author in cases where no biography in English is available - this would also explain the omission of some of the main contributors to atomic and particle physics, such as Arnold Sommerfeld and Hideki Yukawa, or that French or Russian readers

  6. Internal Contamination by 131I in nuclear medicine department

    International Nuclear Information System (INIS)

    Chahed, N.; Mtimet, S.; Hammami, H.; Mhiri, A.

    1998-01-01

    Therapeutic applications in nuclear medicine use high activities of 131 I in sodium iodine liquid from which is volatile at ambient temperature. Besides external exposure there is, for the nuclear medicine personnel, an internal exposure risk induced by 131 iodine inhalation. So we tried to assess this risk among the personnel in a nuclear medicine department. We used direct method for measuring 131 radioactivity in vivo by external counting. Gamma ray detector with a Nal ( TI ) probe positioned near the thyroid gland allows investigation of 131 radioactivity. We realised 34 measurements among the personnel, two times at an interval of one month. The results indicate that an 131 iodine internal contamination is found. Estimated thyroid activities were ranging from 35 to 132 Bq. The highest activities has been found in the thyroid of the technicians involved in the administration of 131 iodine therapy. Therefore this values are lower than norms. This study must lead to the implementation control of the 131 iodine internal contamination in order to optimise the personnel protection in nuclear medicine departments (author)

  7. Fourth congress of the South African Society of Nuclear Medicine

    International Nuclear Information System (INIS)

    1990-01-01

    This seminar contains 68 papers. Sixty three papers were indexed. Five papers were considered out of scope for INIS. The implementation of nuclear medicine in the following fields were discussed: neurology, cardiology, monoclonal antibodies, endocrinology, nuclear medicine physics, and radiopharmacy

  8. Clinical Training of Medical Physicists Specializing in Diagnostic Radiology (Spanish Edition); Capacitacion clinica de fisicos medicos especialistas en radiodiagnostico

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-01-15

    The application of radiation in human health, for both diagnosis and treatment of disease, is an important component of the work of the IAEA. The responsibility for the increasing technical aspects of this work is undertaken by the medical physicist. To ensure good practice in this vital area, structured clinical training programmes are required to complement academic learning. This publication is intended to be a guide to the practical implementation of such a programme for diagnostic radiology. There is a general and growing awareness that radiation medicine is increasingly dependent on well trained medical physicists based in the clinical setting. However, an analysis of the availability of medical physicists indicates a large shortfall of qualified and capable professionals. This is particularly evident in developing countries. While strategies to increase academic educational opportunities are critical to such countries, the need for guidance on structured clinical training was recognized by the members of the Regional Cooperative Agreement (RCA) for Research, Development and Training related to Nuclear Sciences for Asia and the Pacific. Consequently, a technical cooperation regional project (RAS6038) under the RCA programme was formulated to address this need in the Asia-Pacific region by developing suitable material and establishing its viability. Development of a clinical training guide for medical physicists specializing in diagnostic radiology started in 2007 with the appointment of a core drafting committee of regional and international experts. The publication drew on the experiences of clinical training programmes in Australia and New Zealand, the UK and the USA, and was moderated by physicists working in the Asian region. This publication follows the approach of the IAEA publication Training Course Series No. 37, Clinical Training of Medical Physicists specializing in Radiation Oncology. This approach to clinical training has been successfully tested

  9. Routine dosimetry in a nuclear medicine department

    International Nuclear Information System (INIS)

    Dreuille, O. de; Carbonieres, H. de; Briand-Champlong, J.; Foehrenbach, H.; Guevel, E.; Maserlin, P.; Gaillard, J.F.; Treguier, J.Y.

    2002-01-01

    The nuclear medicine department of the Val de Grace Hospital, in cooperation with the Radiological Protection Army Service, has performed an evaluation of the staff's radio-exposure based on routine dosimetry for six months. The most exposed people are the technicians (2.6 mSv/yr) and the nurse (1.7 mS/yr). The nuclear medicine physicians (0.6 mSv/yr) and the secretaries (0.07 mSv/yr) are far less exposed. The most irradiant occupations are the preparation and the injection of the radiopharmaceuticals (18 mSv/dy) and the realization of the Positron Emission Tomography examinations (19 mSv/dy). The increasing number of PET exams and the development of new tomographs, requiring higher activities, will still increase the exposition level of this working post. This study demonstrates that the exposition doses in nuclear medicine are low compared to the regular limits. Based on these results, only the technicians and the nurse are relevant to the A class. However, these dose levels cannot be neglected for particular positions such as the injection and the PET management. (author)

  10. Radiochemistry in nuclear medicine. Radiopharmaceuticals

    International Nuclear Information System (INIS)

    Samochocka, K.

    1999-01-01

    Radionuclides and radiopharmaceuticals play a kay role in nuclear medicine, both in diagnostics and therapy. Incorporation of radionuclides into biomolecules, and syntheses of radiolabelled compounds of high biological selectivity are a task for radiochemists working in the multidisciplinary field of radiopharmaceutical chemistry. The most commonly used radionuclide, 99m Tc, owes this popularity to its both nearly ideal nuclear properties in respect to medical imaging, and availability from inexpensive radionuclide generators. Also numerous other radionuclides are widely used for medical imaging and therapy. Labelling of biomolecules with radioiodine and various positron emitters is getting increasingly important. This review describes some chemical and radiochemical problems we meet while synthesizing and using 99m Tc-radiopharmaceuticals and radioiodine-labelled biomolecules. Also represented are the recent developments in the design and use of the second generation radiopharmaceuticals based on bifunctional radiochelates. Several principal routes of fast chemical synthesis concerning incorporation of short-lived positron emitters into biomolecules are outlined as well. The search for chemical structures of high biological selectivity, which would be activated by slow neutrons, is related to the method of Neutron Capture Therapy, an interesting option in nuclear medicine. (author)

  11. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician ... before abnormalities can be detected with other diagnostic tests. Nuclear medicine imaging procedures use small amounts of ...

  12. Quantitative Analysis in Nuclear Medicine Imaging

    CERN Document Server

    2006-01-01

    This book provides a review of image analysis techniques as they are applied in the field of diagnostic and therapeutic nuclear medicine. Driven in part by the remarkable increase in computing power and its ready and inexpensive availability, this is a relatively new yet rapidly expanding field. Likewise, although the use of radionuclides for diagnosis and therapy has origins dating back almost to the discovery of natural radioactivity itself, radionuclide therapy and, in particular, targeted radionuclide therapy has only recently emerged as a promising approach for therapy of cancer and, to a lesser extent, other diseases. As effort has, therefore, been made to place the reviews provided in this book in a broader context. The effort to do this is reflected by the inclusion of introductory chapters that address basic principles of nuclear medicine imaging, followed by overview of issues that are closely related to quantitative nuclear imaging and its potential role in diagnostic and therapeutic applications. ...

  13. Radioactive waste management of the nuclear medicine services

    International Nuclear Information System (INIS)

    Barboza, Alex

    2009-01-01

    Radioisotope applications in nuclear medicine services, for diagnosis and therapy, generate radioactive wastes. The general characteristics and the amount of wastes that are generated in each facility are function of the number of patients treated, the procedures adopted, and the radioisotopes used. The management of these wastes embraces every technical and administrative activity necessary to handle the wastes, from the moment of their generation, till their final disposal, must be planned before the nuclear medicine facility is commissioned, and aims at assuring people safety and environmental protection. The regulatory framework was established in 1985, when the National Commission on Nuclear Energy issued the regulation CNEN-NE-6.05 'Radioactive waste management in radioactive facilities'. Although the objective of that regulation was to set up the rules for the operation of a radioactive waste management system, many requirements were broadly or vaguely defined making it difficult to ascertain compliance in specific facilities. The objective of the present dissertation is to describe the radioactive waste management system in a nuclear medicine facility and provide guidance on how to comply with regulatory requirements. (author)

  14. Bibliography on nuclear medicine. Volumes 28--30

    International Nuclear Information System (INIS)

    1975-07-01

    References to 3177 publications related to nuclear medicine announced in Nuclear Science Abstracts (NSA) volumes 28(July-Dec. 1973), 29(Jan-June 1974), and 30(July-Dec. 1974) are contained in this bibliography. Subject, report number, and personal author indexes are included. (U.S.)

  15. Procedures, activities and doses in nuclear medicine cycle in Brazil

    International Nuclear Information System (INIS)

    Oliveira, Silvia Maria Velasques de

    2005-01-01

    With the aim of characterizing nuclear medicine procedures performed in Brazil, activities of radiopharmaceuticals used and effective doses to patients, data was collected from nuclear medicine institutions in three regions of the country, namely the Southeast, the Northeast and the South regions, representing public hospitals, university hospitals, private and philanthropic institutions with low, medium and high levels of consumption of radiopharmaceuticals. The three chosen regions are responsible for 92% of radiopharmaceutical consumption and imaging equipment in the country. Accordingly, it was requested of some participating institutions to fulfill manually from individual patients data, to record gender, age, weight, height and activities used, for each type of exam as well as the equipment used. In others, the researcher collected data personally. Per institution, nuclear medicine diagnostic procedures ranged from 700 to 13,000 per year, most of which are myocardial and bone imaging procedures, and imaging equipment ranged, from 1 to 8 machines, one or two head SPECT's (hybrid or not). 26.782 patients protocols were analysed, 24.371 adults and 2.411 children and teenagers. For adult patients, differences were observed in the amount of activities used in diagnostic procedures between public and private institutions, with lower average activities used in public institutions. Activities administered to children and their effective doses were difficult to evaluate due to the incompleteness of individual records. Appropriate individual patient records could be adopted without affecting hospitals routine and contributing for a comprehensive evaluation of the radiation protection of nuclear medicine patients. Data from 8.881 workers were analysed, 346 working at nuclear medicine institutions. For monitored workers and measurably exposed workers in nuclear medicine, the values 2.3 mSv and 5.4 mSv, respectively, for effective annual doses are greater than data

  16. Aplications of Nuclear Medicine in endocrinology

    International Nuclear Information System (INIS)

    Jales, R.L.C.

    1981-01-01

    A scanning of thyroid has been undertaked by using radioactive isotopes. Clinical procedures performed in the nuclear medicine field were cited along with its principles and interpretation. (Author) [pt

  17. Veterinary nuclear medicine

    International Nuclear Information System (INIS)

    Krzeminski, M.; Lass, P.; Teodorczyk, J.; Krajka, J.

    2004-01-01

    The veterinary use of radionuclide techniques dates back to the mid-sixties, but its more extensive use dates back to the past two decades. Veterinary nuclear medicine is focused mainly on four major issues: bone scintigraphy - with the majority of applications in horses, veterinary endocrinology - dealing mainly with the problems of hyperthyreosis in cats and hyperthyreosis in dogs, portosystemic shunts in small animals and veterinary oncology, however, most radionuclide techniques applied to humans can be applied to most animals. (author)

  18. Nuclear medicine. The management of patients coming out of a nuclear medicine department - Radiation protection sheet ED 4242

    International Nuclear Information System (INIS)

    2006-03-01

    This sheet aims at providing elements for the preparation of the management of a patient by a department or unit other than a nuclear medicine department after this patient has been submitted to an examination or treatment involving the use of radionuclides in unsealed sources, as this exposure may result in an internal or external exposure risk for the personnel, other persons and relatives. It briefly describes the modalities of performance of nuclear medicine act, the modalities of information of patients and of their relatives, indicates instructions to departments hosting the patient (instruction regarding the patient and wastes), and instructions for pregnant or breast feeding women

  19. Nuclear medicine. Clinical value of the medicine methods. Nuklearmedizin. Klinische Bedeutung nuklearmedizinischer Diagnostik und Therapie

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, H A.E. [Evangelisches Krankenhaus Bethesda Gemeinnuetzige G.m.b.H., Duisburg (Germany, F.R.). Nuklearmedizinische Klinik und Poliklinik; Ortiz Berrocal, J [Universidad Autonoma de Madrid (Spain). Dept. of Nuclear Medicine; eds.

    1979-01-01

    This proceedings volume of the 16th International Annual Meeting of the Gesellschaft fuer Nuklearmedizin, which took place in Madrid on October 24-27, 1978, contains 183 compacts on the following subjects: Metrology and data processing, cyclotron products and radiopharmaceuticals, nuclear medicine as compared with computerized tomography and sonography, radioimmunoassay, haematology, thyreology, osteology, pulmonology, cardiology, angiology, nephrology, gastroenterology and hepatology, oncology, nuclear therapy methods and some free lectures and thus give a good picture of the state of the art in nuclear medicine at the time.

  20. Nuclear medicine environmental discharge measurement. Final report

    International Nuclear Information System (INIS)

    Gesell, T.F.; Prichard, H.M.; Davis, E.M.; Pirtle, O.L.; DiPietro, W.

    1975-06-01

    The discharge of most man-made radioactive materials to the environment is controlled by Federal, State or local regulatory agencies. Exceptions to this control include the radioactive wastes eliminated by individuals who have undergone diagnostic or therapeutic nuclear medicine procedures. The purpose of this study is to estimate the amount of radioactivity released to the environment via the nuclear medicine pathway for a single sewage drainage basin and to measure the amounts discharged to the environment. The report is organized into a review of previous studies, scope of work, facility data, environmental measurements and estimates of population exposure

  1. Education in nuclear physics, medical physics and radiation protection in medicine and veterinary medicine

    International Nuclear Information System (INIS)

    Popovic, D.; Djuric, G.; Andric, S.

    2001-01-01

    Education in Nuclear Physics, Medical Physics and Radiation Protection in medicine and veterinary medicine studies on Belgrade University is an integral part of the curriculum, incorporated in different courses of graduate and post-graduate studies. During graduate studies students get basic elements of Nuclear Physics through Physics and/or Biophysics courses in the 1 st year, while basic knowledge in Medical Physics and Radiation Protection is implemented in the courses of Radiology, Physical Therapy, Radiation Hygiene, Diagnostic Radiology and Radiation Therapy in the 4 th or 5 th year. Postgraduate studies offer MSc degree in Radiology, Physical Therapy, while courses in Nuclear Physics, Nuclear Instrumentation, Radiation Protection and Radiology are core or optional. On the Faculty of Veterinary Medicine graduated students may continue their professional education and obtain specialization degree in Radiology, Physical Therapy or Radiation Protection. On the Faculty of Medicine there are specialization degrees in Medical Nuclear Physics. Still, a closer analysis reveals a number of problems both from methodological and cognitive point of view. They are related mostly to graduate students ability to apply their knowledge in practise and with the qualifications of the educators, as those engaged in graduate studies lack basic knowledge in biological and medical sciences, while those engaged in post graduate studies mostly lack basic education in physics. Therefore, a reformed curricula resulting from much closer collaboration among educators, universities and professional societies at the national level should be considered. (author)

  2. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... other diagnostic tests. Nuclear medicine imaging procedures use small amounts of radioactive materials – called radiotracers – that are typically injected into the bloodstream, inhaled or swallowed. The radiotracer travels through the area being examined and gives off energy in the ...

  3. OrdoCMN: a communication tool for nuclear medicine

    International Nuclear Information System (INIS)

    Lamy, P.; Bizollon, C.; Damien, J.; Itti, R.

    1997-01-01

    OrdoCMN is a computer software which offers an easy solution for the management of a nuclear medicine department. It has been developed using a data management tool: 4. Dimension. This network based software acts mainly as a communication tool between the various parts of the nuclear medicine department. It provides time saving and optimisation for the interdependent operations which are necessary when performing a scintigraphy study. In addition, it has all the functionalities which are needed to manage the data concerning a scintigraphy examination: study planing, patient files, radiopharmaceuticals prescription edition, labels and report printing, and radiopharmaceuticals management. Centered around the patient's file, it guaranties the confidentiality and security of the informations through several levels of security: passwords, data coding, etc. Since further evolution is specially easy, thanks to its modular structure, it may be adapted to the specific needs of any nuclear medicine department. (authors)

  4. Report: dosimetry of diagnostic exams in nuclear medicine

    International Nuclear Information System (INIS)

    Touzery, C.; Aubert, B.; Caselles, O.; Gardin, I.; Guilhem, M.Th.; Laffont, S.; Lisbona, A.

    2002-01-01

    A compilation about dosimetry of diagnosis explorations in nuclear medicine is presented in this issue. Dosimetry tables of the different radiopharmaceuticals used in nuclear medicine give indications on absorbed and efficient doses according the patients age from one year to adult age. The doses received by a fetus during a lung scintigraphy realized for the pregnant woman susceptible to suffer of pulmonary emboli is presented. A table of efficient doses for the infants until the age of six months for the principal scintigraphy explorations realized in nuclear medicine are given. A chapter of theoretical headlines is devoted to dosimetry and the calculations methods of absorbed and efficient doses in function of patients age. A short chapter concerns the recommendations to explore nursing mothers by scintigraphy. A last chapter treats the efficient doses received during explorations using ionizing radiations in radiology and their place in annual natural irradiation scale. (N.C.)

  5. New developments in nuclear medicine technology

    International Nuclear Information System (INIS)

    Ziegler, S.I.; Pichler, B.J.

    2000-01-01

    During the past few years, there have been new impulses in the development of a number of technologies employed in Nuclear Medicine imaging. These include new scintillation materials, the way of detecting the scintillation light, and completely novel methods to detect gamma rays by means of semiconductor detectors. In addition to combined instrumentation that can be used for SPECT and PET, already in clinical use, combined scintigraphic and anatomic imaging devices are now becoming available, for example SPECT/CT or PET/CT. This review article describes the most important of the new components, part of which have already entered product development and part of which are still in the research phase. The review focus on the employment of modern semiconductor detectors in Nuclear Medicine. (orig.) [de

  6. Examining Quality Management Audits in Nuclear Medicine Practice as a lifelong learning process: opportunities and challenges to the nuclear medicine professional and beyond.

    Science.gov (United States)

    Pascual, Thomas N B

    2016-08-01

    This essay will explore the critical issues and challenges surrounding lifelong learning for professionals, initially exploring within the profession and organizational context of nuclear medicine practice. It will critically examine how the peer-review process called Quality Management Audits in Nuclear Medicine Practice (QUANUM) of the International Atomic Energy Agency (IAEA) can be considered a lifelong learning opportunity to instill a culture of quality to improve patient care and elevate the status of the nuclear medicine profession and practice within the demands of social changes, policy, and globalization. This will be explored initially by providing contextual background to the identity of the IAEA as an organization responsible for nuclear medicine professionals, followed by the benefits that QUANUM can offer. Further key debates surrounding lifelong learning, such as compulsification of lifelong learning and impact on professional change, will then be weaved through the discussion using theoretical grounding through a qualitative review of the literature. Keeping in mind that there is very limited literature focusing on the implications of QUANUM as a lifelong learning process for nuclear medicine professionals, this essay uses select narratives and observations of QUANUM as a lifelong learning process from an auditor's perspective and will further provide a comparative perspective of QUANUM on the basis of other lifelong learning opportunities such as continuing professional development activities and observe parallelisms on its benefits and challenges that it will offer to other professionals in other medical speciality fields and in the teaching profession.

  7. Proceedings of the 1. National Forum of Science and Technology on Health; 13. Brazilian Congress on Biomedical Engineering; 4. Brazilian Congress of Physicists on Medicine; Brazilian Meeting on Biology and Nuclear Medicine; Brazilian Meeting on Radiological Protection

    International Nuclear Information System (INIS)

    Costa, E.T.; Martins, H.L.; Muehlen, S.S.; Rockman, T.M.B.

    1992-01-01

    This 1. National Forum of Science and Technology on Health presents works of several scientific institutions, including topics on bioengineering; modelling and simulation; sensors and transducers; ultrasonic on medicine; instrumentation processing of signs and medical images; biomedical informatics and clinical software; engineering of rehabilitation; bio-materials and bio-mechanical; clinical engineering; in vivo and in vitro nuclear medicine; radioisotope production and utilization; radiology; radiology protection and dosimetry; radiotherapy; evaluation of technology on health and education. (C.G.C.)

  8. The past and the present status of nuclear medicine

    International Nuclear Information System (INIS)

    Koh, C.S.

    1979-01-01

    Various aspects of nuclear medicine in Korea such as a short history, personnels and medical establishments of using radioisotopes, the trend and pattern of radioisotopes usage, amount of medically applying radioisotopes, and the amount of home production of primary radioisotopes and labelled compounds in Korea are summarized as well as an introduction of research activities of the Korean Society of Nuclear Medicine. (Author)

  9. Nuclear medicine in the nephrourinary tract

    International Nuclear Information System (INIS)

    Jofre M, M.Josefina; Sierralta C, Paulina

    2002-01-01

    Nuclear medicine images play an important role in the evaluation of urinary tract pathologies. Radionuclide imaging studies (DMSA scan, DTPA/MAG3 renography, radionuclide cistography) are reviewed, analyzing their indications (au)

  10. Systematic thinks of nuclear medicine diagnosis

    International Nuclear Information System (INIS)

    Wang Jing

    2002-01-01

    For proper diagnosis using nuclear medicine techniques, an integrated man-machine system should be the starting point; the best choice should be the essential purpose and modeling is the necessary method

  11. Dynamic functional studies in nuclear medicine in developing countries

    International Nuclear Information System (INIS)

    1989-01-01

    The Proceedings document some of the trials and tribulations involved in setting up nuclear medicine facilities in general and specifically as regards nuclear medicine applications for the diagnosis of the diseases prevalent in the less developed countries. Most of the 51 papers deal with various clinical applications of dynamic functional studies. However, there was also a session on quality control of the equipment used, and a panel discussion critically looked at the problems and potential of dynamic studies in developing countries. This book will be of interest and use not only to those practising nuclear medicine in the developing countries, but it may also bring home to users in developed countries how ''more can be done with less''. Refs, figs and tabs

  12. Nuclear medicine in psychiatry

    International Nuclear Information System (INIS)

    Lass, P.; Slawek, P.

    2007-01-01

    In the same way that the symptoms between different diseases in psychiatry overlap, functional brain research frequently shows the same pattern of changes across diagnostic borders; on the other hand, many the other tests, e.g. psychological tests, present the same problem as mentioned above; therefore: The psychiatrist seldom applies to an NM specialist to obtain a diagnosis; instead, a nuclear medicine report will rather confirm, or less frequently exclude, the psychiatrist's diagnosis. Ideally, psychiatric patients should be rescanned after the treatment, and changes in perfusion and/or metabolism discussed between psychiatrist and NM specialist. As shown above, there are few practical applications of nuclear medicine due to low specificity and low spatial resolution, although in the aspect of functional imaging it is still superior to CT/MRI, even in their functional modalities. On the other hand, its investigational potential is still growing, as there is no imaging technique in sight which could replace metabolic and receptor studies, and also because the scope of functional imaging in psychiatric diseases is spreading from its traditional applications, like dementia or depression, towards many poorly investigated fields e.g. hypnosis, suicidal behaviour or sleep disorders. (author)

  13. 32. Days of the Nuclear Medicine: Summaries of the lectures and posters

    International Nuclear Information System (INIS)

    1995-09-01

    The publication has been set up as a abstracts of the conference dealing with nuclear medicine problems. The book consists of the sections: (1) Introduction lectures; (2) Radionuclide diagnostic methods in the oncology; (3) Miscellaneous; (4) Device techniques and physical problems in nuclear medicine; (5) The problems of radiation protection in nuclear medicine; (6) Special programme of the SZP; (7) Poster section

  14. Nuclear medicine : occupational health issues

    International Nuclear Information System (INIS)

    Rossleigh, M.

    1988-01-01

    The occupational health aspects of nuclear medicine are discussed. There is a lack of demonstrable biological effects from low level radiation. The radiation protection measures that are applied to ensure that staff are exposed to as low a level of radiation as is possible are outlined

  15. Introduction to hardware for nuclear medicine data systems

    International Nuclear Information System (INIS)

    Erickson, J.J.

    1976-01-01

    Hardware included in a computer-based data system for nuclear medicine imaging studies is discussed. The report is written for the newcomer to computer collection and analysis. Emphasis is placed on the effect of the various portions of the system on the final application in the nuclear medicine clinic. While an attempt is made to familiarize the user with some of the terms he will encounter, no attempt is made to make him a computer expert. 1 figure, 2 tables

  16. Code of practice for radiation protection in nuclear medicine

    International Nuclear Information System (INIS)

    Hamed, M. I.

    2010-05-01

    In aim of this study was to develop a draft for a new code practice for radiation protection in nuclear medicine that meets the current relevant international recommendation. The draft includes the following main fields: methods of radiation protection for workers, patients and public. Also, the principles of safe design of nuclear medicine departments, quality assurance program, proper manipulation of radiation sources including radioactive waste and emergency preparedness and response. The practical part of this study includes inspections of three nuclear medicine departments available in Sudan so as to assess the degree of compliance of those departments with what is stated in this code. The inspection missions have been conducted using a checklist that addresses all items that may affect radiation raincoat issues in addition to per formin area radiation monitoring around the installation of the radioactive sources. The results of this revealed that most of the departments do not have effective radiation protection program which in turn could lead to unnecessary exposure to patients, public and workers. Finally, some recommendations are given that - if implemented - could improve the status of radiation protection in nuclear medicine department. (Author)

  17. The application of nuclear-medicine methods in veterinary medicine

    International Nuclear Information System (INIS)

    Simpraga, M.; Kraljevic, P.; Dodig, D.

    1996-01-01

    X-radiography and ultrasound imaging are well established and widely used in veterinary practice, but it is not the same situation with radioisotope imaging. In veterinary practice the above mentioned methods of nuclear medicine are developed only in two countries in Europe. That is not doubt due, so bar, to the difficulties in obtaining satisfactory supply of radioisotopes and to the relatively high cost of scanning equipment. However, in collaboration with the Department of Radiation Protection and Nuclear Medicine of the Medical Faculty in Zagreb, Croatia, we have chance to develop the use of those methods in clinical veterinary practice in Zagreb. That is way in this paper an overview of the application of radioisotopes imaging in veterinary medicine is given. In small animals skeletal changes, lung perusions, brain lesions, space occupying lesions in the liver and its function and hearth function can be usefully searched by a gamma camera and its associated computer. In equine practice scintigraphy of bones, liver, hearth, pulmonary circulation and ventilation is described. The largest amount of radioactive material is used during gamma camera scanning of the skeletons of horses. In this cases the radiation dose 1-2 m from the animal is approximately 3 μSv/h. That is why the protection of personal involved in radioisotope scanning in veterinary medicine must be also regulated by low of radiation protection. Also, the animals should be confined to a controlled area for 2-3 days after scanning before being returned to their owners. After this period the area must be cleaned. (author)

  18. 8th Asia oceania congress of nuclear medicine and biology final program abstracts

    International Nuclear Information System (INIS)

    2004-01-01

    The eighth Asia and Oceania congress of nuclear medicine and biology was held in Beijing, China, October 9-13 2004. The congress also held satellite meeting in Hong Kong SAR, China October 16-17 2004 and in Shanghai, China October 15 2005 respectively. The congress was sponsored by Chinese Society of Nuclear Medicine and organized by Asia and Oceania Federation of Nuclear Medicine and Biology. The final program includes 379 pieces abstracts, whose contents contain nuclear medicine diagnosis and therapy and biology

  19. The effects of the Brazilian regulatory inspection programme on nuclear medicine facilities

    Energy Technology Data Exchange (ETDEWEB)

    Alves, C E G R; Azevedo, E M; Mendes, L C G; Franca, W F L; Gutterres, R F; Goncalves, M [Comissao Nacional de Energia Nuclear-CGMI/CNEN, Rua General Severiano 90, 22290-901, Rio de Janeiro (Brazil); De Sa, L V; Da Rosa, L A R [Instituto de Radioprotecao e Dosimetria-IRD/CNEN, Avenida Salvador Allende s/n, 22780-160, Rio de Janeiro (Brazil)], E-mail: telo@xexeu.org

    2009-12-01

    This paper aims to demonstrate the importance of the regulatory inspections carried out by the Brazilian regulatory body in the area of nuclear medicine. The main aspects observed during the inspections are presented as well as the time evolution of the non-compliances, according to their occurrence by type. We also evaluate factors concerning the working of the nuclear medicine facility responsible for solving the non-compliances. The results suggest a decrease of occurrence of non-compliances with time that can be related to the strictness of the inspections and the awareness of the personnel in the nuclear medicine facilities. An analysis of radiation dose exposure levels for the professionals involved in nuclear medicine was carried out; although dose values are below regulatory dose limits, their occurrence is not decreasing satisfactorily. Results indicate the need for staff training and commitment of the responsible nuclear medicine facility staff to the radiological protection procedures. Our results also emphasise the importance of continuous coercive actions to improve the level of radiological protection in nuclear medicine facilities in compliance with the standards established by the national regulatory authority and international recommendations.

  20. Overview of radiation protection programme in nuclear medicine facility for diagnostic procedures

    International Nuclear Information System (INIS)

    Ahmed, Ezzeldein Mohammed Nour Mohammed

    2015-02-01

    This project was conducted to review Radiation Protection Program in Nuclear Medicine facility for diagnostic procedures which will provide guide for meeting the standard and regulatory requirements in diagnostic nuclear medicine. The main objective of this project is to keep dose to staff, patient and public as low as reasonably achievable (ALARA). The specific objectives were to review the Radiation Protection Program (RPP) in diagnostic nuclear medicine and to make some recommendation for improving the level of radiation protection in diagnostic nuclear medicine that will help to control normal exposure and prevent or mitigate potential exposure. The methodology used is review of various documents. The review showed that if the Radiation Protection Program is inadequate it leads to unjustified exposure to radiation. Finally, this study stated some recommendations that if implemented could improve the level of radiation protection in nuclear medicine department. One of the most important recommendations is that a qualified Radiation Protection Officer (RPO) should be appointed to lay down and oversee a radiation protection in the nuclear medicine department. The RPO must be given the full authority and the adequate time to enable him to perform his duties effectively. (au)