WorldWideScience

Sample records for nuclear medicine patient

  1. Protection of the patient in nuclear medicine

    International Nuclear Information System (INIS)

    1987-01-01

    In ICRP Publication 52, the 'Protection of the Patient in Nuclear Medicine', is concerned with exposures of patients resulting from the administration of radiopharmaceuticals for diagnostic, therapeutic and research purposes. The report includes guidelines for nuclear medicine physicians, radiologists, medical physicists and technologists on the factors that influence absorbed doses to patients from different types of nuclear medicine examinations. Other topics in the report include education and training, estimates of absorbed dose, design of facilities, instrumentation, quality assurance and control and preparation, quality assurance and control of radiopharmaceuticals. (U.K.)

  2. Patient preparation for nuclear medicine studies

    International Nuclear Information System (INIS)

    Stathis, V.J.; Cantrell, D.W.; Cantrell, T.J.

    1987-01-01

    In this chapter are described methods of patient preparation that can favorably affect the outcome of nuclear medicine studies in specific situations. Some of these practices may be considered essential to the success of the nuclear medicine procedure, whereas others may be thought of simply as a means of obtaining more valid or reliable information. Regardless of relative importance, each of the preparatory methods discussed can contribute to the quality of the respective study and can serve as a means of maximizing the value of nuclear medicine procedures. The specific patient preparation techniques discussed in this chapter may not be readily applicable to every practice setting or situation. These or similar procedures can be used or modified as necessary. It is important, however, that when new protocols are developed, the rationale and theoretical basis of each technique be considered

  3. Guidelines for patient information in nuclear medicine

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    This guide for patients information in nuclear medicine is organised in the following manner: what is a medical examination in nuclear medicine, the preparation and the duration of the examination, the possible risks and the radiation doses, pregnancy, delayed menstruation and nursing and what to do after the examination. (N.C.)

  4. Nuclear medicine

    International Nuclear Information System (INIS)

    Kand, Purushottam

    2012-01-01

    Nuclear medicine is a specialized area of radiology that uses very small amounts of radioactive materials to examine organ function and structure. Nuclear medicine is older than CT, ultrasound and MRI. It was first used in patients over 60-70 years ago. Today it is an established medical specialty and offers procedures that are essential in many medical specialities like nephrology, pediatrics, cardiology, psychiatry, endocrinology and oncology. Nuclear medicine refers to medicine (a pharmaceutical) that is attached to a small quantity of radioactive material (a radioisotope). This combination is called a radiopharmaceutical. There are many radiopharmaceuticals like DTPA, DMSA, HIDA, MIBI and MDP available to study different parts of the body like kidneys, heart and bones etc. Nuclear medicine uses radiation coming from inside a patient's body where as conventional radiology exposes patients to radiation from outside the body. Thus nuclear imaging study is a physiological imaging, whereas diagnostic radiology is anatomical imaging. It combines many different disciplines like chemistry, physics mathematics, computer technology, and medicine. It helps in diagnosis and to treat abnormalities very early in the progression of a disease. The information provides a quick and accurate diagnosis of wide range of conditions and diseases in a person of any age. These tests are painless and most scans expose patients to only minimal and safe amounts of radiation. The amount of radiation received from a nuclear medicine procedure is comparable to, or often many times less than, that of a diagnostic X-ray. Nuclear medicine provides an effective means of examining whether some tissues/organs are functioning properly. Therapy using nuclear medicine in an effective, safe and relatively inexpensive way of controlling and in some cases eliminating, conditions such as overactive thyroid, thyroid cancer and arthritis. Nuclear medicine imaging is unique because it provides doctors with

  5. Nuclear medicine. The management of patients coming out of a nuclear medicine department - Radiation protection sheet ED 4242

    International Nuclear Information System (INIS)

    2006-03-01

    This sheet aims at providing elements for the preparation of the management of a patient by a department or unit other than a nuclear medicine department after this patient has been submitted to an examination or treatment involving the use of radionuclides in unsealed sources, as this exposure may result in an internal or external exposure risk for the personnel, other persons and relatives. It briefly describes the modalities of performance of nuclear medicine act, the modalities of information of patients and of their relatives, indicates instructions to departments hosting the patient (instruction regarding the patient and wastes), and instructions for pregnant or breast feeding women

  6. Computed tomography (CT), nuclear medicine (NM), and ultrasound (US) in oncology patients

    International Nuclear Information System (INIS)

    McNeil, B.J.

    1982-01-01

    This review will summarize the effectiveness of computed tomography, ultrasound, and nuclear medicine imaging procedures in several different disease processes. The results indicate: (1) CT is clearly better than ultrasound for diseases of the adrenal gland and pancreas; (2) for patients with gynecologic malignancies, CT and ultrasound are approximately equivalent in their ability to define treatment options effectively; (3) in the liver, the differences among the three modalities are less marked and are disease specific. For example, for patients with colon cancer the increased effectiveness of CT relative to ultrasound or nuclear medicine is small. For patients with breast cancer, the difference is greater; (4) for patients suspected to have a focal source of sepsis, CT is slightly better than ultrasound or nuclear medicine. In these patients, however, when nuclear medicine images are obtained on a rectilinear scanner, the results are significantly worse compared to nuclear medicine images on a LFOV gamma camera or to ultrasound. As a result of the above studies and concommitant statistical analyses, several conclusions can be drawn about optimum experimental design and statistical approaches for comparing imaging modalities

  7. Radiological Protection of Patients in Nuclear Medicine

    International Nuclear Information System (INIS)

    Rojo, A.M.

    2011-01-01

    Full text: This lecture aims at presenting the state of the art of radiological protection of patients in nuclear medicine focusing on three aspects of interest where to achieve improvement. The hierarchy of the justification principle of the radiation protection is one of them. There seems for a change to be presented in the paradigm of the radiological protection of patients. The role of the physician who prescribes the medical practice becomes more relevant, together with the nuclear medicine specialist who should be co-responsible for the application of this justification principle. Regarding the doses optimization and the implementation of Dose Reference Level the involvement extends far beyond the physician and radioprotection officer. It is clear that the Medical Physicist is to play a very relevant role in the coordination of actions, as the nuclear medicine technician is to execute them. Another aspect to consider is patient specific dosimetry. It should become a routine practice through calculation of the absorbed dose based on biodistribution data. It should be assessed for each individual patient, as it depends on a number of patient-specific parameters, such as gender, size and the amount of fatty tissue in the body, as well as the extent and nature of the disease. In most cases, dosimetry calculations are not carried out and patients are administered standard levels of activity. There may be situations with a lack of knowledge on internal dosimetry as in many centers either none or only one or two medical physics experts are available. It shows that a formal training for experts in internal dosimetry at national level is required. However up to now, there has been no satisfactory correlation between absorbed dose estimates and patient response. Moreover, the radiation protection for the patient is not assured, as the dose values given are often numbers without connection to radiobiological and/or hematological findings. Pending tasks related to

  8. Practical nuclear medicine

    CERN Document Server

    Gemmell, Howard G; Sharp, Peter F

    2006-01-01

    Nuclear medicine plays a crucial role in patient care, and this book is an essential guide for all practitioners to the many techniques that inform clinical management. The first part covers the scientific basis of nuclear medicine, the rest of the book deals with clinical applications. Diagnostic imaging has an increasingly important role in patient management and, despite advances in other modalities (functional MRI and spiral CT), nuclear medicine continues to make its unique contribution by its ability to demonstrate physiological function. This book is also expanded by covering areas of d

  9. Exposure of ionizing radiation to non-radiation workers from nuclear medicine patients

    International Nuclear Information System (INIS)

    Janssen, J.; Smart, R.C.; McKay, E.

    1999-01-01

    Full text: Occasionally, patients are required to have several tests in one day. They may be injected with radio-isotopes in the morning, have other investigations during the absorption period and then return to nuclear medicine for imaging later in the day. Recently, the NSW Department of Health issued a circular concerning exposure to sonographers from ionizing radiation emitted from nuclear medicine patients. The object of this study is to establish a model of emissions from nuclear medicine patients and to measure the exposure to other health workers who may be in close contact with these patients. Dose rate measurements were acquired for patients injected with 99 Tc m and 67 Ga for the following studies: heart, thyroid, lung, bone, biliary and lymphoma. Measurements were taken at 10 cm increments to 1 m and at time intervals of 0,1,2 and 24 h post-injection. In addition, 5 sonographers were issued with TLDs to be worn on the waist and fingers for a period of 3 months. The dose limit for a non-radiation worker is 1000 μSv (ICRP 60). The external dose rate measurements indicate that, assuming a sonographer is seated approximately 30 cm from a patient injected with 800 MBq 99 Tc m -HDP for a bone scan, 1 h post-injection, the sonographer would receive a dose of 11 μSv for a 30 min ultrasound scan. In practice, only 4 nuclear medicine patients were scanned in the ultrasound department during the 5 week monitoring period and the sonographers' TLDs recorded no radiation dose. In conclusion, the average exposure to sonographers from nuclear medicine patients is well within the limits recommended by the ICRP. However, in accordance with the ALARA principle where practicable, any ultrasound examination should be performed prior to nuclear medicine studies

  10. Radiation exposure and dosimetry in transplant patients due to Nuclear Medicine studies

    International Nuclear Information System (INIS)

    El-Maghraby, T. A. F.; Cairo Univ., Cairo; Camps, J. A. J.; Geleyns, J.; Pauwels, E. K. J.

    2000-01-01

    Organ transplantation is now an accepted method of therapy for treating patients with end stage failure of kidneys, liver, heart or lung. Nuclear Medicine may provide functional data and semi-quantitative parameters. However, one serious factor that hampers the use of nuclear medicine procedures in transplant patients is the general clinical concern about radiation exposure to the patient. This lead the researcher to discuss the effective doses and radiation dosimetry associated with radionuclide procedures used in the management and follow-up of transplant patients. A simple way to place the risk associated with Nuclear Medicine studies in an appropriate context is to compare the dose with that received from more familiar source of exposure such as from a diagnostic X-ray procedure. The radiation dose for the different radiopharmaceuticals used to study transplant organ function ranges between 0.1 and 5.3 mSv which is comparable to X-ray procedures with the exception of 201 Tl and 111 In-antimyosin. Thus Nuclear Medicine studies do not bear a higher radiation risk than the often used X-ray studies in transplant patients

  11. Radiological protection of patients in nuclear medicine

    International Nuclear Information System (INIS)

    Harding, L.K.

    2001-01-01

    The key factor in medical exposure is justification, that is ensuring that the benefit exceeds the risk. Nuclear medicine studies are comparable in cost to more sophisticated radiological tests such as ultrasound, computed tomography or magnetic resonance. Radiation doses are similar from X ray and nuclear medicine procedures. Having justified exposures the next step is optimization, namely using a radiation dose as low as is reasonably practicable. Diagnostic reference levels may be set nationally or locally such that the balance of diagnostic quality and radiation burden is optimized. In therapy the aim is to achieve a therapeutic dose while keeping the dose to non-target tissues as low as reasonably practicable. Variations in activities may be required for overweight patients, those in severe pain, those with certain conditions and in the case of tomography. Any woman who has missed a period should be assumed to be pregnant; there should be notices to patients emphasizing this. Following the administration of longer lived pharmaceuticals it is important to avoid pregnancy for a time such that the dose to a foetus will not exceed 1 mGy. A similar situation applies to a child who is being breastfed when a mother receives a radiopharmaceutical. In the case of children undergoing investigations the activity needs to be reduced to maintain the same count density as in adults. With the administration of an incorrect pharmaceutical an attempt should be made to enhance excretion, and the referring doctor and the patient should be informed. Extravasation usually requires no action. Positron emission tomography results in higher doses both to staff and patients. Research should use subjects over the age of 50, and avoid anyone who is pregnant or is a child. Nuclear medicine procedures result in a very small loss in life expectancy compared with other common risks. (author)

  12. Radiation protection in nuclear medicine

    International Nuclear Information System (INIS)

    Chougule, Arun

    2014-01-01

    The branch of medical science that utilizes the nuclear properties of the radioactivity and stable nuclides to make diagnostic evaluation of anatomical and/or physiological conditions of the body and provide therapy with unsealed radioactive sources is called Nuclear Medicine (NM). The use of unsealed radionuclides in medicine is increasing throughout the world for diagnosis and treatment. As per UNSCEAR report more than 6 million nuclear medicine procedures are conducted in a year. However we know that radiation is double edged sword and if not used carefully will be harmful to patient as well as staff and therefore a nuclear medicine procedure should be undertaken only after proper justification and optimization. Nuclear medicine procedures are different than the X-ray diagnostic procedures as in NM, radioisotope is administered to patient and patient becomes radioactive. The NM staff is involved in unpacking radioactive material, activity measurements, storage of sources, internal transports of sources, preparation of radiopharmaceuticals, administration of radiopharmaceutical, examination of the patient, care of the radioactive patient, handling of radioactive waste and therefore receives radiation dose. This talk will discuss the various steps for radiation safety of patient, staff and public during Nuclear Medicine procedures so as to implementing the ALARA concept. (author)

  13. Fundamentals of nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Alazraki, N.P.; Mishkin, F.S.

    1984-01-01

    This guidebook for clinical nuclear medicine is written as a description of how nuclear medicine procedures should be used by clinicians in evaluating their patients. It is designed to assist medical students and physicians in becoming acquainted with nuclear medicine techniques for detecting and evaluating most common disorders. The material provides an introduction to, not a textbook of, nuclear medicine. Each chapter is devoted to a particular organ system or topic relevant to the risks and benefits involved in nuclear medicine studies. The emphasis is on presenting the rationales for ordering the various clinical imaging procedures performed in most nuclear medicine departments. Where appropriate, alternative imaging modalities including ultrasound, computed tomography imaging, and radiographic special procedures are discussed. Comparative data between nuclear medicine imaging and other modalities are presented to help guide the practicing clinician in the selection of the most appropriate procedure for a given problem.

  14. Nuclear medicine in the management of the AIDS patient

    International Nuclear Information System (INIS)

    Kramer, E.L.; Sanger, J.J.

    1990-01-01

    For the medical diagnostic imaging specialist in general, and for the nuclear medicine physician specifically, the AIDS epidemic has generated an enormous demand to develop a means of making early diagnoses of the complications of AIDS. For the most part this has meant the early detection, and when possible, the characterization of the opportunistic infections and neoplasms that are a major source of morbidity and mortality for the AIDS patient. Detection of opportunistic infections has been helpful in reclassifying HIV-seropositive patients as having AIDS. This paper reports on nuclear medicine used to evaluate the efficacy and the complications of treatment in human immunodeficiency virus infection. Most recently, functional brain imaging has been used for the diagnosis and follow-up of the AIDS dementia complex

  15. Nuclear medicine in the management of the aids patient

    International Nuclear Information System (INIS)

    Kramer, E.L.; Sanger, J.J.

    1995-01-01

    For the medical diagnostic imaging specialist in general, and for the nuclear medicine physician specifically, the AIDS epidemic has generated an enormous demand to develop a means of making early diagnoses of the complications of AIDS. For the most part this has meant the early detection, and when possible, the characterization of the opportunistic infections and neoplasms that are a major source of morbidity and mortality for the AIDS patient. Detection of opportunistic infections has been helpful in reclassifying HIV-seropositive patients as having AIDS. This paper reports on nuclear medicine used to evaluate the efficacy and the complications of treatment in human immunodeficiency virus infection. Most recently, functional brain imaging has been used for the diagnosis and follow-up of the AIDS dementia complex. (author). 77 refs., 8 figs

  16. Knowledge Management in Nuclear Medicine

    International Nuclear Information System (INIS)

    Abaza, A.

    2017-01-01

    The last two decades have seen a significant increase in the demand for medical radiation services following the introduction of new techniques and technologies that has led to major improvements in the diagnosis and treatment of human diseases. The diagnostic and therapeutic applications of nuclear medicine techniques play a pivotal role in the management of these diseases, improving the quality of life of patients by means of an early diagnosis allowing opportune and proper therapy. On the other hand, inappropriate or unskilled use of these technologies can result in potential health hazards for patients and staff. So, there is a need to control and minimize these health risks and to maximize the benefits of radiation in medicine. The present study aims to discuss the role of nuclear medicine technology knowledge and scales in improving the management of patients, and raising the awareness and knowledge of nuclear medicine staff regarding the use of nuclear medicine facilities. The practical experience knowledge of nuclear medicine staff in 50 medical centers was reviewed through normal visiting and compared with the IAEA Published documents information. This review shows that the nuclear medicine staff has good technology knowledge and scales during managing patients as compared to IAEA Published information regarding the radiation protection measures and regulation. The outcome of the study reveals that competent authority can improve radiation safety in medical settings by developing and facilitating the implementation of scientific evidence-based policies and recommendations covering nuclear medicine technology focusing in the public health aspects and considering the risks and benefits of the use of radiation in health care. It could be concluded that concerted and coordinated efforts are required to improve radiation safety, quality and sustain ability of health systems

  17. Nuclear Medicine

    Science.gov (United States)

    ... Parents/Teachers Resource Links for Students Glossary Nuclear Medicine What is nuclear medicine? What are radioactive tracers? ... funded researchers advancing nuclear medicine? What is nuclear medicine? Nuclear medicine is a medical specialty that uses ...

  18. Patient absorbed dose and radiation risk in nuclear medicine

    International Nuclear Information System (INIS)

    Hetherington, E.; Cochrane, P.

    1992-01-01

    Since the introduction of technetium-99m labelled radiopharmaceuticals used as imaging agents in the nuclear medicine departments of Australian hospitals, patients have voiced concern about the effect of having radioactive materials injected into their bodies. The danger of X-ray exposure is widely known and well accepted, as is exposure to ultrasound, computed tomography scans and other imaging techniques. However, radioactivity is an unknown, and fear of the unknown can occasionally lead to patients refusing to undergo a nuclear medicine procedure. The authors emphasised that the radiation dose to a patient from a typical procedure would depend on the patient's medical history and treatment; the average dose being approximately 50 times the exposure received from the natural environmental background radiation. Furthermore, over an extended period the body can repair most minor damage caused by radiation, just as the body can repair the damage caused by sunburn resulting from too much exposure to sunlight. The risk of genetic effects as a result of a medical radiation dose is than very small

  19. Experience with Nuclear Medicine Information System

    Directory of Open Access Journals (Sweden)

    Bilge Volkan-Salanci

    2012-12-01

    Full Text Available Objective: Radiology information system (RIS is basically evolved for the need of radiologists and ignores the vital steps needed for a proper work flow of Nuclear Medicine Department. Moreover, CT/MRI oriented classical PACS systems are far from satisfying Nuclear Physicians like storing dynamic data for reprocessing and quantitative analysis of colored images. Our purpose was to develop a workflow based Nuclear Medicine Information System (NMIS that fulfills the needs of Nuclear Medicine Department and its integration to hospital PACS system. Material and Methods: Workflow in NMIS uses HL7 (health level seven and steps include, patient scheduling and retrieving information from HIS (hospital information system, radiopharmacy, acquisition, digital reporting and approval of the reports using Nuclear Medicine specific diagnostic codes. Images and dynamic data from cameras of are sent to and retrieved from PACS system (Corttex© for reprocessing and quantitative analysis. Results: NMIS has additional functions to the RIS such as radiopharmaceutical management program which includes stock recording of both radioactive and non-radioactive substances, calculation of the radiopharmaceutical dose for individual patient according to body weight and maximum permissible activity, and calculation of radioactivity left per unit volume for each radionuclide according their half lives. Patient scheduling and gamma camera patient work list settings were arranged according to specific Nuclear Medicine procedures. Nuclear Medicine images and reports can be retrieved and viewed from HIS. Conclusion: NMIS provides functionality to standard RIS and PACS system according to the needs of Nuclear Medicine. (MIRT 2012;21:97-102

  20. Radiation doses to patients from nuclear medicine examinations

    International Nuclear Information System (INIS)

    Boehm, K.; Boehmova, I.

    2014-01-01

    Public Health Authority of the Slovak Republic, Bratislava The exposure of the population to ionizing radiation is rising rapidly, nearly exclusively due to increasing medical use of radiation, including diagnostic methods of nuclear medicine. In 2012 Public health authority of the Slovak republic (PHA SR) performed a survey about the population exposure from nuclear medicine procedures. The primary objectives of this survey were to assess the frequency of different nuclear medicine procedures, determine the average activities administered by nuclear medicine procedures and compare them with the national diagnostic reference levels and determine the annual collective effective dose to the Slovak population from nuclear medicine. The effective dose calculation was based on the methodology of the ICRP32, ICRP80 and ICRP106. In Slovak republic are 11 nuclear medicine departments. The collected data of activities administered by different procedures correspond to 100 % of nuclear medicine departments. The total number of procedures included in the study was 36 250. The most commonly performed procedure was bone scintigraphy (35.9%), followed by lung perfusion and ventilation scintigraphy (17.0%), static and dynamic renal scintigraphy (13.0%), whole-body positron emission tomography of tumors with PET radiopharmaceuticals (11.6%), myocardial perfusion (8.8%), thyroid scintigraphy (6.2%), parathyroid scintigraphy (2.1%), scintigraphy of tumors (2.1%), scintigraphy of the liver and spleen (0.8%), brain perfusion (0.7%) and examination of the gastrointestinal system (0.3%). (authors)

  1. Management of the pediatric nuclear medicine patient (or children are not small adults)

    International Nuclear Information System (INIS)

    Kieffer, C.T.; Suto, P.A.

    1983-01-01

    The first of a four-part continuing education series on pediatric nuclear medicine is presented. Included are: (1) clinical indications for performing nuclear medicine studies in children; (2) comparison of nuclear medicine procedures for adult and pedicatric patients; (3) appropriate radiopharmaceuticals for performing pediatric studies; (4) radiation protection techniques (5) the principles of pediatric radiopharmaceutical dose calculation and common calculation methods; (6) possible injection sites and administration methods (7) radiopharmaceutical clearance times and imaging times in adults and children; (8) the collimators of choice for most procedures performed in children; (9) certain behaviors exhibited by children according to their stage of emotional development and children's response to the hospital setting; and (10) patient immobilization techniques and advantages of physical restraint over sedation

  2. Guidelines for patient information in nuclear medicine;Guide pour l'information des patients en medecine nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2010-02-15

    This guide for patients information in nuclear medicine is organised in the following manner: what is a medical examination in nuclear medicine, the preparation and the duration of the examination, the possible risks and the radiation doses, pregnancy, delayed menstruation and nursing and what to do after the examination. (N.C.)

  3. Radiation protection in nuclear medicine

    International Nuclear Information System (INIS)

    Seeburrun, V.

    2013-04-01

    Radiation protection in nuclear medicine in this project is concerned with the reduction of doses to workers, patients and members of the public. Protection of workers is achieved by adopting good personal habits, good housekeeping, proper use of personal protective devices and equipment, attend training and have continuous education. Exposure to radiation of workers and the members of the public are minimised by proper management of radioactive waste and safe transport of radioactive material. The design and shielding of a nuclear medicine department shall further provide for the protection of the worker, the patient and the general public. Protection of patient is achieved by justifying the procedure, delivering the minimum radiation dose possible to the patient while obtaining the best image quality and applying guidance levels. Special considerations shall be given to pregnant and breast-feeding patients. Quality assurance programme through image quality, radiopharmaceutical quality and patient records on nuclear medicine procedures shall provide assurance to the patient. (au)

  4. Developments in nuclear medicine

    International Nuclear Information System (INIS)

    Elias, H.

    1977-01-01

    The article reports on the first international meeting about radiopharmaceutical chemistry in the Brookhaven National Laboratory, Long Island/USA, from 21st to 24th September, 1976. The meeting report is preceded by the explanation of the terms 'radiopharmaceutical chemistry' and 'nuclear medicine' and a brief survey of the history. The interdisciplinary connection of the spheres of nuclear physics, nuclear chemistry, biochemistry, nuclear medicine, and data processing is also briefly shown. This is necessary before radiodiagnosis can be made for a patient. (RB) [de

  5. Nuclear medicine in developing nations

    International Nuclear Information System (INIS)

    Nofal, M.M.

    1985-01-01

    Agency activities in nuclear medicine are directed towards effectively applying techniques to the diagnosis and management of patients attending nuclear medicine units in about 60 developing countries. A corollary purpose is to use these techniques in investigations related to control of parasitic diseases distinctive to some of these countries. Through such efforts, the aim is to improve health standards through better diagnosis, and to achieve a better understanding of disease processes as well as their prevention and management. Among general trends observed for the region: Clinical nuclear medicine; Radiopharmaceuticals; Monoclonal antibodies; Radioimmunoassay (RIA); Nuclear imaging

  6. Staff and patient absorbed doses due to diagnostic nuclear medicine procedures

    International Nuclear Information System (INIS)

    Tabei, F.; Neshandar Asli, I.; Aghamiri, S.M.; Arbabi, K.

    2004-01-01

    Background: annual patient effective dose equivalent can be considered as a quantitative physical parameter describing the activities performed in each nuclear medicine department. annual staff dose equivalent could be also considered as a parameter describing the amount of radiation risk for performing the activities. We calculated the staff to patient dose equivalent ratio to be used as a physical parameter for quantification of ALARA law in nuclear medicine department. Materials and methods: as a part of nationwide study, this paper reports the staff and patient absorbed dose equivalents from diagnostic nuclear medicine examinations performed in four nuclear medicine department during 1999-2002. The type and frequency of examinations in each department were determined directly from hospital medical reports. Staff absorbed doses equivalents were calculated from regular personal dosimeter reports. Results: the total number of examinations increased by 16.7 % during these years. Annual patient collective dose equivalent increased about 13.0 % and the mean effective dose equivalent per exam was 3.61 ± 0.07 mSv. Annual total staff absorbed dose equivalent (total of 24 radiation workers) in four departments increased from 40.45 mSv to 47.81 mSv during four years that indicates an increase of about 20.6 %. The average of annual ratios of staff to patient effective dose equivalents in four departments were 1.83 x 10 -3 , 1.04 x 10 -3 , 3.28 x 10 -3 and 3.24 x 10 -3 , respectively, within a range of 0.9 x 10 -3 - 4.17 x 10 -3 . The mean value of ratios in four years was about 2.24 x 10 -3 ± 1.09 x 10 -3 that indicates the staff dose of about two 1000 th of patient dose. Conclusion: The mean value of ratios in four years was about 1.89 x 10 -3 ± 0.95 x 10 -3 indicating the staff dose of about one 1000 th of the patient dose. The staff to patient absorbed dose equivalent ratio could be used as a quantitative parameter for describing ALARA law in radiation protection and

  7. Radiation protection in nuclear medicine

    International Nuclear Information System (INIS)

    Corstens, F.

    1989-01-01

    Aspects of radiation protection in nuclear medicine and the role of the Dutch Society for Nuclear Medicine in these are discussed. With an effective dose-equivalence of averaged 3 mSv per year per nuclear medical examination and about 200.000 examinations per year in the Netherlands, nuclear medicine contributes only to a small degree to the total averaged radiation dose by medical treating. Nevertheless from the beginning, besides to protection of environment and personnel, much attention has been spent by nuclear physicians to dose reduction with patients. Replacing of relatively long living radionuclides like 131 I by short living radionuclides like 99m Tc is an example. In her education and acknowledgement policy the Dutch Society for Nuclear Medicine spends much attention to aspects of radiation reduction. (author). 3 tabs

  8. Nuclear medicine, a proven partnership

    International Nuclear Information System (INIS)

    Henderson, L. A.

    2009-01-01

    Full text:Ultrasonography is the modality of choice for demonstrating many cystic structures within the body. However nuclear medicine is often able to demonstrate functional disturbance where ultrasound and conventional radiography are unsuccessful. A case is presented in which a 16 day old male child presented to nuclear medicine with a right upper quadrant cyst found in ultrasound with exact location equivocal. Determining the location and nature of the cyst was essential to the treatment team for patient management. A hepatobiliary study was performed and evidence of a choledochal cyst was found. In partnership with ultrasound, nuclear medicine was able to identify a possibly malignant structure and consequently patient management was determined.

  9. Proceedings of the forty third annual conference of Society of Nuclear Medicine India: empowering modern medicine with molecular nuclear medicine

    International Nuclear Information System (INIS)

    2011-01-01

    Theme of the 43rd Annual Conference of the Society of Nuclear Medicine India is 'empowering modem medicine with molecular nuclear medicine'. Keeping the theme in mind, the scientific committee has arranged an attractive and comprehensive program for both physicians and scientists reflecting the multimodality background of Nuclear Medicine and Metabolic Imaging. During this meeting the present status and future prospects of Nuclear medicine are discussed at length by esteemed faculty in dedicated symposia and interesting featured sessions which are immensely facilitate in educating the participants. Nuclear Medicine has come a long way since the first applications of radioiodine in the diagnosis of thyroid disease. The specialty of nuclear medicine in India is growing very rapidly. Technology continues to push the field in new directions and open new pathways for providing optimal care to patients. It is indeed an exciting time in the world of imaging and in the field of nuclear medicine. Innovative techniques in hardware and software offer advantages for enhanced accuracy. New imaging agents, equipment, and software will provide us with new opportunities to improve current practices and to introduce new technology into the clinical protocols. Papers relevant to INIS are indexed separately

  10. General Nuclear Medicine

    Science.gov (United States)

    ... Resources Professions Site Index A-Z General Nuclear Medicine Nuclear medicine imaging uses small amounts of radioactive ... of General Nuclear Medicine? What is General Nuclear Medicine? Nuclear medicine is a branch of medical imaging ...

  11. Assessment of Patient Exposure in Nuclear Medicine (invited paper)

    International Nuclear Information System (INIS)

    Reiners, C.; Lassmann, M.

    1998-01-01

    The radiation exposure of a patient in diagnostic nuclear medicine is influenced by different factors, which may be separated into direct and indirect determinants of exposure. The radiation burden is directly related to the radionuclide used (beta, gamma radiation, energy of radiation, physical half-life) and the activity used. In addition, the radiation exposure is strongly influenced by the type of radiolabelled compound (radiopharmaceutical) and its metabolic behaviour. The metabolism of a radio-pharmaceutical, however, depends not only on the general principles of its biodistribution but also on individual parameters of its biokinetics (i.e. patient's age, sex, weight, organ uptake and excretion). Optimisation in radiation protection requires a careful selection of activity, radionuclide and radiopharmaceutical compound for a patient. The radiation exposure of a patient may be influenced considerably by disturbance factors which can be controlled by means of quality assurance measures. Concerning the radiopharmaceutical, radiochemical and chemical impurities have to be ruled out before administration. Activity meters and gamma cameras must be checked by appropriate quality control procedures. The check of the gamma cameras includes background, efficiency, uniformity, linearity and resolution and has to be an integral part of a routine quality control programme in a nuclear medicine department. (author)

  12. Recent history of nuclear medicine

    International Nuclear Information System (INIS)

    Potchen, E.J.; Gift, D.A.

    1988-01-01

    Diagnostic nuclear medicine's recent history is characterized both by significant change and by growing participation in efforts to quantify the impact of nuclear medicine procedures on clinical judgment and patient management, as well as to develop methods for studying the efficacy of diagnostic procedures in general. The replacement of many nuclear medicine procedures that at one time were considered essential standards of clinical care by newer, more efficient and effective modalities has been complimented by the continued development of increasingly sophisticated applications of scintigraphic tracer methods

  13. Nuclear medicine

    International Nuclear Information System (INIS)

    Lentle, B.C.

    1986-01-01

    Several growth areas for nuclear medicine were defined. Among them were: cardiac nuclear medicine, neuro-psychiatric nuclear medicine, and cancer diagnosis through direct tumor imaging. A powerful new tool, Positron Emission Tomography (PET) was lauded as the impetus for new developments in nuclear medicine. The political environment (funding, degree of autonomy) was discussed, as were the economic and scientific environments

  14. Radiation protection on nuclear medicine services

    International Nuclear Information System (INIS)

    Anon

    2000-01-01

    Nuclear medicine is a sector of the medicine that studies and applies radionuclide in diagnosis and therapy. Nuclear medicine is a very specific area of the medicine, making use of non-sealed radioactive sources which are prescribed to the patient orally or are injected. Special procedures in radiation protection are required in nuclear medicine to manipulate these kind of sources and to produce technetium-99m through molybdenum generator. The present paper addresses the them radiation protection in a Nuclear Medicine Department (NMD), showing the main requirements of the CNEN- National Commission of Nuclear Energy and the Public Health. Radiation protection procedures adopted in assembling a NMD, as well the daily techniques for monitoring and for individual dosimetry are discussed. Past and present analyses in a level of radiation protection are presented. (author)

  15. Radiation risk to patients from nuclear medicine procedures in Cuba

    International Nuclear Information System (INIS)

    Brigido, O.; Montalván, A.; Barreras, A.; Hernández, J.

    2015-01-01

    Man-made radiation exposure to the Cuban population predominantly results from the medical use of ionizing radiation. It was therefore the aim of the present study, to provide public health information concerning diagnostic nuclear medicine procedures carried out in Camagüey and Ciego de Ávila provinces between 2000 and 2005. Population radiation dose estimation due to administration of radiopharmaceuticals in Camagüey and Ciego de Ávila provinces was carried out using Medical Internal Radiation Dose scheme (MIRD). Data were gathered on the type of radiopharmaceuticals used, the administered activity, the numbers of each kind of examination, and the age and sex of the patients involved during the period 2000 – 2005. The average annual frequency of examinations was estimated to be 3.34 per 1000 population. The results show that imaging nuclear medicine techniques of thyroid and bone explorations with 13.3 and 12.9%, respectively and iodide uptake with 50% are the main techniques implicated in the relative contribution to the total annual effective collective dose which averaged 95 man⋅Sv for the studied period. Radiation risks for the Camagüey-Ciego de Avila population caused by nuclear medicine examinations in the period studied were calculated: the total number of fatal and non-fatal cancers was 34.2 and the number of serious hereditary disturbance was 7.4 as a result of 24139 nuclear medicine procedures, corresponding a total detriment of 1.72 per 1000 examination. (authors)

  16. Quality assurance of nuclear medicine instruments

    International Nuclear Information System (INIS)

    Soni, P.S.

    1998-01-01

    Quality assurance in nuclear medicine refers collectively to all aspects of a nuclear medicine programme that may contribute directly or indirectly to the quality of the results obtained. For examples, patients scheduling; preparation and dispensing of radiopharmaceutical; the protection of patients, staff and the general public against radiation hazards and accidents caused by faulty instruments; methodology, data interpretation and record keeping

  17. Nuclear medicine in Ghana

    International Nuclear Information System (INIS)

    Affram, R.K.; Kyere, K.; Amuasi, J.

    1991-01-01

    The background to the introduction and application of radioisotopes in medicine culminating in the establishment of the nuclear Medicine Unit at the Korle Bu Teaching Hospital, Ghana, has been examined. The Unit has been involved in important clinical researches since early 1970s but routine application in patient management has not always been possible because of cost per test and lack of continuous availability of convertible currency for the purchase of radioisotopes which are not presently produced by the National Nuclear Research Institute at Kwabenya. The capabilities and potentials of the Unit are highlighted and a comparison of Nuclear Medicine techniques to other medical diagnostic and imaging methods have been made. There is no organised instruction in the principles of medical imaging and diagnostic methods at both undergraduate and postgraduate levels in Korle Bu Teaching Hospital which has not promoted the use of Nuclear Medicine techniques. The development of a comprehensive medical diagnostic and imaging services is urgently needed. (author). 18 refs., 3 tabs

  18. Nuclear medicine and the pregnant patient

    International Nuclear Information System (INIS)

    Collins, L.

    1988-01-01

    Estimates of the risks of exposing an embryo or fetus to radiation are discussed. Recommendations are made about the policies a nuclear medicine department should develop for handling cases of accidental irradiation of an embryo or fetus. The choices available where a known pregnancy is involved and diagnostic radiology is required are outlined. Only necessary examinations should be performed and care taken to avoid or minimise irradiation of the fetus. The nuclear medicine physician must be prepared to make (and defend if necessary) an informed decision on whether to proceed with an examination and must also be in a position to discuss the risks with anxious parents

  19. Nuclear medicine and its radiological protection in China

    International Nuclear Information System (INIS)

    Wu, J.

    2001-01-01

    The China Society of Nuclear Medicine was established on 27 May 1980. Since then, nuclear medicine in clinical diagnosis and therapy has been developed rapidly in China. So far there are more than 4000 members of the Society, and more than 350 sets of SPECT and 12 sets of PET have been installed and are busily running in clinic nowadays and about 1 million patients with different types of diseases have obtained nuclear medicine imaging examinations per year. Concerning the nuclear medicine therapy, a lot of patients with many types of diseases obtained benefit from radioisotope therapy. Accordingly, several Policies and Regulations have been enacted by the Government for the radiological protection. Furthermore, a special book titled 'Standardization in Diagnostic and Therapeutic Nuclear Medicine' has been promulgated in June, 1997 by the Health Administration of People's Republic of China, and this book is distributed to almost every nuclear medicine physician and technician in China for their reference in routine nuclear medicine work or research. In this book three parts of the contents are covered: Policies and Regulations for the radiological protection, basic knowledge and clinical nuclear medicine applications. (author)

  20. Radioactivity appearing at landfills in household trash of nuclear medicine patients: much ado about nothing?

    Science.gov (United States)

    Siegel, Jeffry A; Sparks, Richard B

    2002-03-01

    The U.S. NRC in 1997 removed its arbitrary 1.11 GBq (30 mCi) rule, which had been in existence for almost 50 y, and now many more patients receiving radionuclide therapy in nuclear medicine can be treated as outpatients. However, another problem has the potential to limit the short-lived reality of outpatient treatment unless nuclear medicine practitioners and the health physics community gets involved. Radioactive articles in the household trash of nuclear medicine patients are appearing at solid waste landfills that have installed radiation monitors to prevent the entry of any detectable radioactivity, and alarms are going off around the country. These monitors are set to alarm at extremely low activity levels. Some states may actually hold licensees responsible if a patient's radioactive household trash is discovered in a solid waste stream; this is another major reason [along with continued use of the 1.11 GBq (30 mCi) rule] why many licensees are still not releasing their radionuclide therapy patients. This is in spite of the fact that the radioactivity contained in released nuclear medicine therapy patients, let alone the much lower activity level contained in their potentially radioactive household wastes, poses a minimal hazard to the public health and safety or to the environment. Currently, there are no regulations governing the disposal of low-activity, rapidly-decaying radioactive materials found in the household trash of nuclear medicine patients, the performance of landfill radiation monitors, or the necessity of spectrometry equipment. Resources are, therefore, being unnecessarily expended by regulators and licensees in responding to radiation monitor alarms that are caused by these unregulated short-lived materials that may be mixed with municipal trash. Recommendations are presented that would have the effect of modifying the existing landfill regulations and practices so as to allow the immediate disposal of such wastes.

  1. Nuclear Medicine and Application of Nuclear Techniques in Medicine

    International Nuclear Information System (INIS)

    Wiharto, Kunto

    1996-01-01

    The use of nuclear techniques medicine covers not only nuclear medicine and radiology in strict sense but also determination of body mineral content by neutron activation analysis and x-ray fluorescence technique either in vitro or in vivo, application of radioisotopes as tracers in pharmacology and biochemistry, etc. This paper describes the ideal tracer in nuclear medicine, functional and morphological imaging, clinical aspect and radiation protection in nuclear medicine. Nuclear technique offers facilities and chances related to research activities and services in medicine. The development of diagnostic as well as therapeutic methods using monoclonal antibodies labeled with radioisotope will undoubtedly play an important role in the disease control

  2. Complementary alternative medicine and nuclear medicine

    International Nuclear Information System (INIS)

    Werneke, Ursula; McCready, V.Ralph

    2004-01-01

    Complementary alternative medicines (CAMs), including food supplements, are taken widely by patients, especially those with cancer. Others take CAMs hoping to improve fitness or prevent disease. Physicians (and patients) may not be aware of the potential side-effects and interactions of CAMs with conventional treatment. Likewise, their known physiological effects could interfere with radiopharmaceutical kinetics, producing abnormal treatment responses and diagnostic results. Nuclear medicine physicians are encouraged to question patients on their intake of CAMs when taking their history prior to radionuclide therapy or diagnosis. The potential effect of CAMs should be considered when unexpected therapeutic or diagnostic results are found. (orig.)

  3. Nuclear medicine resources manual

    International Nuclear Information System (INIS)

    2006-02-01

    Over the past decade many IAEA programmes have significantly enhanced the capabilities of numerous Member States in the field of nuclear medicine. Functional imaging using nuclear medicine procedures has become an indispensable tool for the diagnosis, treatment planning and management of patients. However, due to the heterogeneous growth and development of nuclear medicine in the IAEA's Member States, the operating standards of practice vary considerably from country to country and region to region. This publication is the result of the work of over 30 international professionals who have assisted the IAEA in the process of standardization and harmonization. This manual sets out the prerequisites for the establishment of a nuclear medicine service, including basic infrastructure, suitable premises, reliable supply of electricity, maintenance of a steady temperature, dust exclusion for gamma cameras and radiopharmacy dispensaries. It offers clear guidance on human resources and training needs for medical doctors, technologists, radiopharmaceutical scientists, physicists and specialist nurses in the practice of nuclear medicine. The manual describes the requirements for safe preparation and quality control of radiopharmaceuticals. In addition, it contains essential requirements for maintenance of facilities and instruments, for radiation hygiene and for optimization of nuclear medicine operational performance with the use of working clinical protocols. The result is a comprehensive guide at an international level that contains practical suggestions based on the experience of professionals around the globe. This publication will be of interest to nuclear medicine physicians, radiologists, medical educationalists, diagnostic centre managers, medical physicists, medical technologists, radiopharmacists, specialist nurses, clinical scientists and those engaged in quality assurance and control systems in public health in both developed and developing countries

  4. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... radioactive energy that is emitted from the patient's body and converts it into an image. The gamma camera itself does not emit any ... bear denotes child-specific content. Related Articles and Media General Nuclear ... (Pediatric) Nuclear Medicine Videos related ...

  5. General comments on radiological patient protection in nuclear medicine

    International Nuclear Information System (INIS)

    Tellez de Cepeda, M.; Plaza, R.; Corredoira, E.; Martin Curto, L.M.

    2001-01-01

    In this paper an observation series about different aspects of the radiological protection of the patient in nuclear medicine is provided. It includes: The specific legislation contribution, the justification and, especially, optimization, as a fundamental base of the quality guarantee program, the importance of the fulfillment of the program and the importance of getting done the corresponding internal audits of the pursuit, the communication between the different groups of professionals implicated and between these and the patient, the volunteers who collaborate in the patient's care and the people in the patient's environment, knowing that the patient is a source of external radiation and contamination. (author) [es

  6. Nuclear medicine

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    The area of nuclear medicine, the development of artificially produced radioactive isotopes for medical applications, is relatively recent. Among the subjects covered in a lengthy discussion are the following: history of development; impact of nuclear medicine; understanding the most effective use of radioisotopes; most significant uses of nuclear medicine radioimmunoassays; description of equipment designed for use in the field of nuclear medicine (counters, scanning system, display systems, gamma camera); description of radioisotopes used and their purposes; quality control. Numerous historical photographs are included. 52 refs

  7. Pediatric nuclear medicine

    International Nuclear Information System (INIS)

    1986-01-01

    This symposium presented the latest techniques and approaches to the proper medical application of radionuclides in pediatrics. An expert faculty, comprised of specialists in the field of pediatric nuclear medicine, discussed the major indications as well as the advantages and potential hazards of nuclear medicine procedures compared to other diagnostic modalities. In recent years, newer radiopharmaceuticals labeled with technetium-99m and other short-lived radionuclides with relatively favorable radiation characteristics have permitted a variety of diagnostic studies that are very useful clinically and carry a substantially lower radiation burden then many comparable X-ray studies. This new battery of nuclear medicine procedures is now widely available for diagnosis and management of pediatric patients. Many recent research studies in children have yielded data concerning the effacacy of these procedures, and current recommendations will be presented by those involved in conducting such studies. Individual papers are processed separately for the Energy Data Base

  8. Pediatric nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    This symposium presented the latest techniques and approaches to the proper medical application of radionuclides in pediatrics. An expert faculty, comprised of specialists in the field of pediatric nuclear medicine, discussed the major indications as well as the advantages and potential hazards of nuclear medicine procedures compared to other diagnostic modalities. In recent years, newer radiopharmaceuticals labeled with technetium-99m and other short-lived radionuclides with relatively favorable radiation characteristics have permitted a variety of diagnostic studies that are very useful clinically and carry a substantially lower radiation burden then many comparable X-ray studies. This new battery of nuclear medicine procedures is now widely available for diagnosis and management of pediatric patients. Many recent research studies in children have yielded data concerning the effacacy of these procedures, and current recommendations will be presented by those involved in conducting such studies. Individual papers are processed separately for the Energy Data Base.

  9. Links between nuclear medicine and radiopharmacy

    International Nuclear Information System (INIS)

    Pelegrin, M.; Francois-Joubert, A.; Chassel, M.L.; Desruet, M.D.; Bolot, C.; Lao, S.

    2010-01-01

    Radiopharmaceuticals are nowadays under the responsibility of the radio-pharmacist because of their medicinal product status. Radiopharmacy belongs to the hospital pharmacy department, nevertheless, interactions with nuclear medicine department are important: rooms are included or located near nuclear medicine departments in order to respect radiation protection rules, more over staff, a part of the material and some activities are shared between the two departments. Consequently, it seems essential to formalize links between the radiopharmacy and the nuclear medicine department, setting the goals to avoid conflicts and to ensure patients' security. Modalities chosen for this formalization will depend on the establishment's organization. (authors)

  10. Implantation of a data bank of nuclear medicine patients (DOSIMED)

    International Nuclear Information System (INIS)

    Krempser, Alexandre R.; Oliveira, Silvia M. Velasques de; Silva, Tadeu A.A.

    2009-01-01

    This paper develops a institutional data bank for internal dosimetry and radiological protection of nuclear medicine patents. The data are originating from projects in progress performed by the Group for Research in Internal Dosimetry in Nuclear Medicine of the IRD, Brazil. The DOSIMED data bank was developed on the Linux computer operation system, under PHP and SQL languages, using the Script Case software. Since the investigation is due to medical applications, the data entry is done by projects, after their approval by a committee of local ethics. Projects are associated with equipment used and with studied patients. Patients are associated to and/or appropriated therapeutic protocols. The patient internal dosimetry data are generated by three types of monitoring: image quantification, bio analysis in vitro and external exposure for the patient injected with radioisotope. For the guarantee of data quality, the collected data are imported fro the original documents for the DOSIMED, and the comparison can be done after the final study for data evaluation. Up to the present, the screens for the data entry were developed and the respective consistence data are in progress. The DOSIMED will be available at the IRD intra net for the director and the investigators involved in each project

  11. Quality control in nuclear medicine

    International Nuclear Information System (INIS)

    Kostadinova, I.

    2007-01-01

    Nuclear medicine comprises diagnosis and therapy of the diseases with radiopharmaceuticals. The ambition of all specialists in our country is their activity to reach European standards. In this connection, a Commission for external audit was formed to evaluate the quality of work in the centers of nuclear medicine. This Commission create a long-lasting programme based on the objective European criteria and the national standard of nuclear medicine, having in mind to increase quality of the work and the expert evaluation of activity in every center. The program comprises measures for quality control of instrumentation, radiopharmaceuticals, performed investigations, obtained results and the whole organization from the receiving of the isotopes to the results of the patients. The ambition is most of the centers to fulfill the requirements. As a conclusion it could be said that not only the quality of everyday nuclear medicine work is enough to increase the prestige of the specialty. It is also necessary we to have understanding expert and financial support from corresponding institutions, incl. Ministry of health for a delivery of a new, contemporary instrumentation with new possibilities. Thus it would be possible Bulgarian patients to reach the high technology apparatuses for an early functional diagnosis of the diseases and optimal treatment, which possibility have the patients from the developed countries. (author)

  12. Nuclear medicine

    International Nuclear Information System (INIS)

    Sibille, L.; Nalda, E.; Collombier, L.; Kotzki, P.O.; Boudousq, V.

    2011-01-01

    Nuclear medicine is a medical specialty using the properties of radioactivity. Radioactive markers associated with vectors are used as a tracer or radiopharmaceutical for diagnostic purposes and/or therapy. Since its birth more than half a century ago, it has become essential in the care of many patients, particularly in oncology. After some definitions, this paper presents the main nuclear techniques - imaging for diagnostic, radiopharmaceuticals as therapeutic agents, intra-operative detection, technique of radioimmunoassay - and the future of this field. (authors)

  13. Children's (Pediatric) Nuclear Medicine

    Science.gov (United States)

    ... Professions Site Index A-Z Children's (Pediatric) Nuclear Medicine Children’s (pediatric) nuclear medicine imaging uses small amounts ... Children's Nuclear Medicine? What is Children's (Pediatric) Nuclear Medicine? Nuclear medicine is a branch of medical imaging ...

  14. A DICOM based PACS for nuclear medicine

    International Nuclear Information System (INIS)

    Lassmann, M.; Reiners, C.

    2002-01-01

    The installation of a radiology information system (RIS) connected to a hospital information system (HIS) and a picture archiving and communications system (PACS) seems mandatory for a nuclear medicine department in order to guarantee a high patient throughput. With these systems a fast transmission of reports, images to the in- and out-patients' wards and private practitioners is realized. Therefore, since April 2000, at the department of nuclear medicine of the university of Wuerzburg a completely DICOM based PACS has been implemented in addition to the RIS. With this system a DICOM based workflow is realized throughout the department of nuclear medicine for reporting and archiving. The PACS is connected to six gamma-cameras, a PET scanner, a bone densitometry system and an ultrasound device. The volume of image data archived per month is 4 GByte. Patient demographics are provided to the modalities via DICOM-Worklist. With these PACS components a department specific archive purely based on DICOM can be realized. During the installation process problems occurred mainly because of the complex DICOM standard for nuclear medicine. Related to that is the problem that most of the software implementations still contain bugs or are not adapted to the needs of a nuclear medicine department (particularly for PET). A communication software for the distribution of nuclear medicine reports and images based on techniques used for the worldwide web is currently tested. (orig.) [de

  15. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Professions Site Index A-Z Children's (Pediatric) Nuclear Medicine Children’s (pediatric) nuclear medicine imaging uses small amounts ... Children's Nuclear Medicine? What is Children's (Pediatric) Nuclear Medicine? Nuclear medicine is a branch of medical imaging ...

  16. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Physician Resources Professions Site Index A-Z Children's (Pediatric) Nuclear Medicine Children’s (pediatric) nuclear medicine imaging uses ... limitations of Children's Nuclear Medicine? What is Children's (Pediatric) Nuclear Medicine? Nuclear medicine is a branch of ...

  17. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z Children's (Pediatric) Nuclear Medicine Children’s (pediatric) nuclear medicine imaging ... the limitations of Children's Nuclear Medicine? What is Children's (Pediatric) Nuclear Medicine? Nuclear medicine is a branch ...

  18. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Resources Professions Site Index A-Z Children's (Pediatric) Nuclear Medicine Children’s (pediatric) nuclear medicine imaging uses small ... of Children's Nuclear Medicine? What is Children's (Pediatric) Nuclear Medicine? Nuclear medicine is a branch of medical ...

  19. Estimation dose in patients of nuclear medicine. Implementation of a calculi program and methodology

    International Nuclear Information System (INIS)

    Prieto, C.; Espana, M.L.; Tomasi, L.; Lopez Franco, P.

    1998-01-01

    Our hospital is developing a nuclear medicine quality assurance program in order to comply with medical exposure Directive 97/43 EURATOM and the legal requirements established in our legislation. This program includes the quality control of equipment and, in addition, the dose estimation in patients undergoing nuclear medicine examinations. This paper is focused in the second aspect, and presents a new computer program, developed in our Department, in order to estimate the absorbed dose in different organs and the effective dose to the patients, based upon the data from the ICRP publication 53 and its addendum. (Author) 16 refs

  20. Quality management audits in nuclear medicine practices

    International Nuclear Information System (INIS)

    2008-12-01

    An effective management system that integrates quality management (QM) is essential in modern nuclear medicine departments in Member States. The IAEA, in its Safety Standards Series, has published a Safety Requirement (GS-R-3) and a Safety Guide (GS-G-3.1) on management systems for all facilities. These publications address the application of an integrated management system approach that is applicable to nuclear medicine organizations as well. Quality management systems are maintained with the intent to continuously improve effectiveness and efficiency, enabling nuclear medicine to achieve the expectations of its quality policy, and to satisfy its customers. The IAEA has a long history of providing assistance in the field of nuclear medicine to its Member States. Regular quality audits and assessments are essential for modern nuclear medicine departments. More importantly, the entire QM and audit process has to be systematic, patient oriented and outcome based. The management of services should also take into account the diversity of nuclear medicine services around the world and multidisciplinary contributions. The latter include clinical, technical, radiopharmaceutical and medical physics procedures. Aspects of radiation safety and patient protection should also be integral to the process. Such an approach ensures consistency in providing safe, quality and superior services to patients. Increasingly standardized clinical protocol and evidence based medicine is used in nuclear medicine services, and some of these are recommended in numerous IAEA publications, for example, the Nuclear Medicine Resources Manual. Reference should also be made to other IAEA publications such as the IAEA Safety Standards Series, which include the regulations for the safe transport of nuclear material and on waste management as all of these have an impact on the provision of nuclear medicine services. The main objective of this publication is to introduce a routine of conducting an

  1. Current trends on internal dosimetry for patient protection in nuclear medicine

    International Nuclear Information System (INIS)

    Rojo, A.M.; Gisone, P.A.; Kunst, J.J.

    2001-01-01

    The associated risk-benefit analyses in nuclear medicine implicitly performed by the clinician have been straightforward. Relatively low administered activity activities yield important diagnostic information, the benefit of which far outweigh any potential risk associated with the attendant normal tissue radiation doses. Such small risk to benefit ratios have been very forgiving of possible inaccuracies in dose estimates. With the ongoing development of new radiopharmaceutical and the increasing therapeutic application of internal radionuclides, radiation dosimetry in nuclear medicine continues to evolve from population- and organ-average to patient-specific dose estimation. Patient-specific dosimetry refers to the estimation of radiation dose to tissues of a specific-patients based on their individual body and measured biokinetics rather than an average anthropomorphic model and hypothetic kinetic. The importance of dosimetry specific-patient considers to avoid the risk of an unsuitable treatment and/or with probability of damage to the patient. This is illustrated by the dosimetric approaches to radioiodine treatment of hyperthyroidism. The most common prescription algorithm to fix the activity administered to a hyperthyroid patient does not consider individual parameters that are highly variable (thyroid uptake, biological half-life, thyroid mass). Its arbitrary approach doesn't permit individually optimized therapy and it may be inappropriate and even hazardous. (author)

  2. Metrological aspects in estimating of radiation dose in patients of nuclear medicine

    International Nuclear Information System (INIS)

    Ruzzarin, Anelise

    2015-01-01

    In order to investigate the performance of routine measurements in nuclear medicine services, LNMRI/IRD has been conducting, since 1998, a comparison program of activity measurements of radiopharmaceuticals administered to patients in nuclear medicine. Correction factors are determined from the result of performance analysis in order to determine with better accuracy the activity to be administered to the patients. The present study shows how the correction factor is determined by the ratio between the measurement of the activity at the nuclear medicine center and the activity determined by the LNMRI, which is adopted as reference. It is essential that the dose calibrator be calibrated with standards traceable to national metrology laboratories, so that the activity administered to the patient is neither greater nor smaller than the appropriate value. The corrected values of the activities can be used to calculate with greater accuracy the effective doses received by the patients as well as the risk of cancer. Information related to radiopharmaceuticals and administered activities, type of exams and patient data of three Brazilian hospitals were collected for 1496 adults and 134 children submitted to diagnostic exams employing 99m Tc and 131 I. Results showed up to a considerable difference between the administered activity and the corrected activity until 30% and 13% above the reference value, respectively, for the 131 I and 99m Tc was detected. The consequences of these differences were not very critical in this study since the activity measured in dose calibrator before administration was lower than the corrected activity, thus causing a lower effective dose in patients. However, this reduction in activity may result in problems in obtaining the image and consequently, failure diagnosis, delaying correct diagnosis. On the other hand, the overestimation would be worse, mainly in therapeutic applications, because an unnecessarily high absorbed dose would be

  3. Is lead dust within nuclear medicine departments a hazard to pediatric patients?

    Science.gov (United States)

    Hulbert, Shannon M; Carlson, Katherine A

    2009-09-01

    Because of the penetrating ability of the radiation used in nuclear medicine, metallic lead is widely used as radiation shielding. However, this shielding may present an insidious health hazard because of the dust that is readily removed from the surfaces of lead objects. The lead dust may become airborne, contaminate floors and other nearby surfaces, and be inadvertently inhaled or ingested by patients. We determined if the quantity of lead dust encountered within nuclear medicine departments exceeded Environmental Protection Agency (EPA) standards. For lead dust quantification, professional lead test kits were used to sample fifteen 1-ft(2) sections of different surfaces within the department. Four samples were collected once per week from each site. The samples were then submitted to a National Lead Laboratory-accredited program for a total lead measurement. Lead contamination (mug/ft(2)) for each of the 60 samples was compared with the EPA standards for lead dust. Lead contamination was present at 6 of the 15 sites, and of 60 samples, 18 exceeded the EPA standard of 50 mug/ft(2). Lead contamination is present within nuclear medicine departments, and corrective measures should be considered when dealing with pediatric patients. A larger series needs to be conducted to confirm these findings.

  4. Nuclear medicine: the Philippine Heart Center experience

    International Nuclear Information System (INIS)

    Cancino, E.L.

    1994-01-01

    The following is a report of a three (3) months on-the-job training in Nuclear Medicine at the Nuclear Medicine Department of the Philippine Heart Center. The hospital has current generation nuclear medicine instruments with data processor and is capable of a full range of in vivo and in vitro procedures. Gamma camera is the principal instrument for imaging in nuclear medicine used in the Philippine Heart Center. Thyroid scanning procedure is being performed with these instruments. Also the cardiovascular procedures, the pulmonary, skeletal, renal and hepatobiliary procedures were being performed with the use of gamma camera. Special emphasis is on nuclear cardiology since the PHC attends primarily to cardiovascular patients. (auth.)

  5. Extracts from IAEA's Resources Manual in Nuclear Medicine. Part-3: Establishing Nuclear Medicine Services

    International Nuclear Information System (INIS)

    2003-01-01

    In the past, consideration was given to the categories of nuclear medicine ranging from simple imaging or in-vitro laboratories, to more complex departments performing a full range of in-vitro and in-vivo procedures that are also involved in advanced clinical services, training programmes, research and development. In developing countries, nuclear medicine historically has often been an offshoot of pathology, radiology or radiotherapy services. These origins are currently changing as less radioimmunoassay is performed and fully-fledged, independent departments of nuclear medicine are being set up. The trend appears to be that all assays (radioassay or ELISA) are done in a biochemistry laboratory whereas nuclear medicine departments are involved largely in diagnostic procedures, radionuclide therapy and non-imaging in-vitro tests. The level of nuclear medicine services is categorized according to three levels of need: Level 1: Only one gamma camera is needed for imaging purposes. The radiopharmaceutical supply, physics and radiation protection services are contracted outside the centre. Other requirements include a receptionist and general secretarial assistance. A single imaging room connected to a shared reporting room should be sufficient, with a staff of one nuclear medicine physician and one technologist, with back-up. This level is appropriate for a small private practice. Level 2: This is suitable for a general hospital where there are multiple imaging rooms where in-vitro and other non-imaging studies would generally be performed as well as radionuclide therapy. Level 3: his is appropriate for an academic institution where there is a need for a comprehensive clinical nuclear medicine service, human resource development and research programmes. Radionuclide therapy for in-patients and outpatients is provided

  6. Course on internal dosimetry in nuclear medicine

    International Nuclear Information System (INIS)

    2004-01-01

    This documentation was distributed to the participants in the Course of Internal Dosimetry in Nuclear Medicine organised by the Nuclear Regulatory Authority (ARN) of Argentina and held in Buenos Aires, Argentina, August 9-13, 2004. The course was intended for people from IAEA Member States in the Latin American and Caribbean region, and for professionals and workers in medicine, related with the radiation protection. Spanish and English were the languages of the course. The following subjects were covered: radioprotection of the patient in nuclear medicine; injuries by ionizing radiations; MIRD methodology; radiation dose assessment in nuclear medicine; small scale and microdosimetry; bone and marrow dose modelling; medical internal dose calculations; SPECT and image reconstruction; principles of the gamma camera; scattering and attenuation correction in SPECT; tomography in nuclear medicine

  7. Nuclear Medicine Practice in Kenya

    International Nuclear Information System (INIS)

    Ndrirangu, T.T.

    2017-01-01

    Nuclear medicine is a medical specialty that relies on the use of nuclear technology in the diagnosis and treatment (therapy) of diseases. Nuclear medicine uses the principle that a certain radiopharmaceutical (tracer) will at a certain point in time have a preferential uptake by a particular body, tissue or cell. Unlike other radiation applications for medical use, nuclear medicine uses open (unsealed) sources of radiation. The tracer is introduced into the body of the patient through several routes (oral, intravenous, percutaneous, intradermally, inhalation, intracapsular etc) and s/he becomes the source of radiation. Early diagnosis of diseases coupled with associated timely therapeutic intervention will lead to better prognosis. In a country with an estimated population of 42 million in 2017, Kenya has only two (2) nuclear medicine facilities (units) that is Kenyatta National Hospital - Public facility and Aga Khan University Hospital which is a Private facility. Being a relatively new medical discipline in Kenya, several measures have been taken by the clinical nuclear medicine team to create awareness at various levels. Kenya does not manufacture radiopharmaceuticals. We therefore have to import them from abroad and this makes them quite expensive, and the process demanding. There is no local training in nuclear medicine and staff have to be sent abroad for training, making this quite expensive and cumbersome and the IAEA has been complimenting in this area. With concerted effort by all stakeholders at the individual, national and international level, it is possible for Kenya to effectively sustain clinical nuclear medicine service not only as a diagnostic tool in many disease entities, but also play an increasingly important role in therapy

  8. Triggering radiation alarm at security checks. Patients should be informed even after diagnostic nuclear medicine procedures.

    Science.gov (United States)

    Palumbo, Barbara; Neumann, Irmgard; Havlik, Ernst; Palumbo, Renato; Sinzinger, Helmut

    2009-01-01

    During the last few years an increasing number of nuclear medicine patients in various countries evoked a radiation alarm after therapeutic or diagnostic procedures, and even after passive exposure. A prospective calculation of activity retention in the patient's body is difficult due to extremely high variation of uptake and kinetics. Furthermore, different sensitivities and distances of the detectors make a prospective calculation even more difficult. In this article a number of cases are being reported, related problems are discussed and the surprisingly very limited literature reviewed. In order to minimize problems after eventually triggering alarms, we strongly recommend that each patient receives a certificate providing personal data, tracer, dose, half-life of the radionuclide, type and date of procedure applied as well as the nuclear medicine unit to contact for further information. Furthermore, a closer cooperation and exchange of information between the authorities and local nuclear medicine societies, would be welcome.

  9. Radiological protection of patients in diagnostic and interventional radiology, nuclear medicine and radiotherapy. Contributed papers

    International Nuclear Information System (INIS)

    2001-01-01

    An International Conference on the Radiological Protection of Patients in Diagnostic and Interventional Radiology, Nuclear Medicine and Radiotherapy organized by the International Atomic Energy Agency and co-sponsored by the European Commission, the Pan American Health Organization and the World Health Organization was held in Malaga, Spain, from 26 to 30 March 2001. The Government of Spain hosted this Conference through the Ministerio de Sanidad y Consumo, the Consejo de Seguridad Nuclear, the Junta de Andalucia, the Universidad de Malaga and the Grupo de Investigacion en Proteccion Radiologica de la Universidad de Malaga (PRUMA). The Conference was organized in co-operation with the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), the International Commission on Radiological Protection (ICRP) and the following professional societies: International Organization of Medical Physicists (IOMP), International Radiation Protection Association (IRPA), International Society of Radiation Oncology (ISRO), International Society of Radiology (ISR), International Society of Radiographers and Radiological Technologists (ISRRT) and World Federation of Nuclear Medicine and Biology (WFNMB). This publication contains contributed papers submitted to the Conference Programme Committee. The papers are in one of the two working languages of this Conference, English and Spanish. The topics covered by the Conference are as follows: Radiological protection of patients in general diagnostic radiology (radiography), Radiological protection of patients in general diagnostic radiology (fluoroscopy), Radiological protection issues in specific uses of diagnostic radiology, such as mammography and computed tomography (with special consideration of the impact of digital techniques), Radiological protection in interventional radiology, including fluoroscopy not carried out by radiologists, Radiological protection of patients in nuclear medicine, Developing and

  10. Radiological protection of patients in diagnostic and interventional radiology, nuclear medicine and radiotherapy. Contributed papers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    An International Conference on the Radiological Protection of Patients in Diagnostic and Interventional Radiology, Nuclear Medicine and Radiotherapy organized by the International Atomic Energy Agency and co-sponsored by the European Commission, the Pan American Health Organization and the World Health Organization was held in Malaga, Spain, from 26 to 30 March 2001. The Government of Spain hosted this Conference through the Ministerio de Sanidad y Consumo, the Consejo de Seguridad Nuclear, the Junta de Andalucia, the Universidad de Malaga and the Grupo de Investigacion en Proteccion Radiologica de la Universidad de Malaga (PRUMA). The Conference was organized in co-operation with the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), the International Commission on Radiological Protection (ICRP) and the following professional societies: International Organization of Medical Physicists (IOMP), International Radiation Protection Association (IRPA), International Society of Radiation Oncology (ISRO), International Society of Radiology (ISR), International Society of Radiographers and Radiological Technologists (ISRRT) and World Federation of Nuclear Medicine and Biology (WFNMB). This publication contains contributed papers submitted to the Conference Programme Committee. The papers are in one of the two working languages of this Conference, English and Spanish. The topics covered by the Conference are as follows: Radiological protection of patients in general diagnostic radiology (radiography), Radiological protection of patients in general diagnostic radiology (fluoroscopy), Radiological protection issues in specific uses of diagnostic radiology, such as mammography and computed tomography (with special consideration of the impact of digital techniques), Radiological protection in interventional radiology, including fluoroscopy not carried out by radiologists, Radiological protection of patients in nuclear medicine, Developing and

  11. Introduction to nuclear medicine

    International Nuclear Information System (INIS)

    Denhartog, P.; Wilmot, D.M.

    1987-01-01

    In this chapter, the fundamentals of nuclear medicine, the advantages and disadvantages of this modality (compared with radiography and ultrasound), and some of the areas in diagnosis and treatment in which it has found widest acceptance will be discussed. Nuclear medicine procedures can be broadly categorized into three groups: in vivo imaging, usually requiring the injection of an organ-specific radiopharmaceutical; in vitro procedures, in which the radioactive agent is mixed with the patient's blood in a test tube; and in vivo nonimaging procedures, in which the patient receives the radiopharmaceutical (intravenously or orally) after which a measurement of the amount appearing in a particular biological specimen (blood, urine, stool) is performed. In vivo imaging procedures will be the principal topics of this chapter

  12. Nuclear medicine

    International Nuclear Information System (INIS)

    James, A.E. Jr.; Squire, L.F.

    1977-01-01

    The book presents a number of fundamental imaging principles in nuclear medicine. The fact that low radiation doses are sufficient for the study of normal and changed physiological functions of the body is an important advancement brought about by nuclear medicine. The possibility of quantitative investigations of organs and organ regions and of an assessment of their function as compared to normal values is a fascinating new diagnostic dimension. The possibility of comparing the findings with other pathological findings and of course control in the same patient lead to a dynamic continuity with many research possibilities not even recognized until now. The limits of nuclear scanning methods are presented by the imprecise structural information of the images. When scintiscans are compared with X-ray images or contrast angiography, the great difference in the imaging of anatomical details is clearly seen. But although the present pictures are not optimal, they are a great improvement on the pictures that were considered clinically valuable a few years ago. (orig./AJ) [de

  13. Nuclear medicine physics

    CERN Document Server

    De Lima, Joao Jose

    2011-01-01

    Edited by a renowned international expert in the field, Nuclear Medicine Physics offers an up-to-date, state-of-the-art account of the physics behind the theoretical foundation and applications of nuclear medicine. It covers important physical aspects of the methods and instruments involved in modern nuclear medicine, along with related biological topics. The book first discusses the physics of and machines for producing radioisotopes suitable for use in conventional nuclear medicine and PET. After focusing on positron physics and the applications of positrons in medicine and biology, it descr

  14. Radiological impact of diagnostic nuclear medicine technology on the Quebec population (patients and workers) in 1989

    International Nuclear Information System (INIS)

    Renaud, L.; Blanchette, J.

    1992-01-01

    Using the results of a six month survey on the doses received by non-monitored hospital workers from diagnostic nuclear medicine patients (DNMP) in three hospitals and published statistics on Quebec's workers and hospitals, an evaluation of the radiological impact of DNMP has been calculated on the Quebec's population. In 1989, diagnostic nuclear medicine gave an average of 6.4 mSv/act or a total of 2,800 sv-man. The diagnostic nuclear medicine technologists' community received 0.4 Sv-man and the non-monitored hospital workers 1.7 Sv-man from the DNMP in the same year. (author)

  15. Analysis of radiation doses to patients from diagnostic department of nuclear medicine

    International Nuclear Information System (INIS)

    Lepej, L.; Messingerova, M.

    1995-01-01

    In this paper the values of mean effective dose equivalents per unit activity (H E/1Bq ) were used for the calculation of mean effective dose equivalents for one examination (H E ). The collective effective dose equivalents for each radiopharmaceutical and type of examination (S ER ) and global collective effective dose equivalent for department for all radiopharmaceuticals (S E ) during evaluated period were defined. The data for years from 1992 to 1994 were evaluated and compared with results in literature. The evaluation of radiation doses in nuclear medicine department is useful parameter for internal quality control. Using this method, the radiation dose in this laboratory was changed to minimum (under mean value of Slovak Republic). Unfortunately, the real data of patients radiation doses are different from the calculated one. Due to different kinetic of radiopharmaceuticals in individual patients (influenced by pathology, age, etc.) the evaluation of radiation burden to nuclear medicine patients is problematic. But this approach enable the relative comparison of the changes in values of H E and S E during the observed period. The evaluation of individual (minimal) effective dose equivalent - (H min ) which represents dose calculated under physiologic conditions can be useful for indication of diagnostic examination by physicians. Therefore the systematic registration of H min from all examinations - patient's radiation history. This is specially important in the case of children and young people. The importance of the proposed method, is in regulation of radiation dose from nuclear medicine diagnostic examinations, not only be the control of number and type of examinations, but also by selection of used radiopharmaceuticals and by the way how to use them. (J.K.) 1 fig., 2 refs

  16. Analysis of radiation doses to patients from diagnostic department of nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Lepej, L; Messingerova, M [F.D. Rosvelt Hospital, Banska Bystrica (Slovakia). Dept. of Nuclear Medicine; Ftacnikova, S [Inst. of Preventive and Clinical Medicine, Bratislava (Slovakia)

    1996-12-31

    In this paper the values of mean effective dose equivalents per unit activity (H{sub E/1Bq}) were used for the calculation of mean effective dose equivalents for one examination (H{sub E}). The collective effective dose equivalents for each radiopharmaceutical and type of examination (S{sub ER}) and global collective effective dose equivalent for department for all radiopharmaceuticals (S{sub E}) during evaluated period were defined. The data for years from 1992 to 1994 were evaluated and compared with results in literature. The evaluation of radiation doses in nuclear medicine department is useful parameter for internal quality control. Using this method, the radiation dose in this laboratory was changed to minimum (under mean value of Slovak Republic). Unfortunately, the real data of patients radiation doses are different from the calculated one. Due to different kinetic of radiopharmaceuticals in individual patients (influenced by pathology, age, etc.) the evaluation of radiation burden to nuclear medicine patients is problematic. But this approach enable the relative comparison of the changes in values of H{sub E} and S{sub E} during the observed period. The evaluation of individual (minimal) effective dose equivalent - (H{sub min}) which represents dose calculated under physiologic conditions can be useful for indication of diagnostic examination by physicians. Therefore the systematic registration of H{sub min} from all examinations - patient`s radiation history. This is specially important in the case of children and young people. The importance of the proposed method, is in regulation of radiation dose from nuclear medicine diagnostic examinations, not only be the control of number and type of examinations, but also by selection of used radiopharmaceuticals and by the way how to use them. (J.K.) 1 fig., 2 refs.

  17. Patient and population exposure from clinic nuclear medicine in China

    International Nuclear Information System (INIS)

    Zhang Liangan; Chang Hexin; Zhang Wenyi; Sun Kai

    1993-01-01

    In the work, a method of epidemiological stratified sampling was adopted. The sampling covers 200 hospitals throughout 24 provinces. The patient doses were estimated by MIRD method. The survey data were statistic analysis by a computer, and main results of the annual frequencies, patient dose and collective dose were reported. The annual frequency of clinic nuclear medicine in China was 0.62 cases per 1000 inhabitant. The highest frequency was found in thyroid uptake procedure, it is 0.26 cases per 1000 population. The patient dose per examination is changed with various radiopharmaceuticals administered mainly. In nuclear medical examination, the highest effective dose per examination was found in the procedure of thyroid scintigraphy, it is about 93.8 mGy lexam with 131 I, and this is 312 times as that with 99m Tc. In hyperthyroidism, the patient dose is very high, the effective dose is 2.6 Gy lexam, the thyroid dose is 86.0 Gy lexam. (5 tabs.)

  18. A manual of nuclear medicine procedures

    International Nuclear Information System (INIS)

    Das, B.K.; Noreen Norfaraheen Lee Abdullah

    2012-01-01

    Nuclear medicine is a fast growing specialty. The procedures provide quantitative parameters of organ functions required for modern practice of medicine. With the development of new machines and increased application of computer software, the procedures are under continuous change. Some procedures have become outdated or redundant while new methods have been introduced to enhance the quality of information obtained from a particular application. Although there are a few books published abroad to inform doctors and technical staff about the procedures, a comprehensive source to give quick information about how different test are performed, particularly the new developments and the expected outcome both in normal and abnormal cases has been a long felt need. The physician ordering a Nuclear Medicine test also needs to know what patient preparations are required for optimal results, how to satisfy the queries of the patient particularly in respect of radiation exposure which sometimes can be a major concern of the patient. This manual has been prepared not only to describe technical details of various procedures that are currently practiced in Nuclear Medicine, but also to provide quick information for the doctors and health care personnel on how to inform the patients about the investigation for which they are being referred and how to interpret the results. Since there is no such comprehensive book published yet in Asia including South-East Asia, it is likely to be in great demand in the region. All students of Master Degree, M.D., DRM, DMRIT, M.Sc. (Nuclear Medicine) and technologists already working in various diagnostic centers will likely buy this book. General practitioners and specialists who refer patients for different radioisotope investigations may find this book useful for quick reference. (author)

  19. Case assessments for nuclear medicine registrars

    International Nuclear Information System (INIS)

    Farlow, D.

    1994-01-01

    Westmead Hospital set some of the recent nuclear medicine cases for registrar training. These case assessments have been completed by the registrars and he thought it might be interesting for the general nuclear medicine community to attempt the cases themselves and compare their answers with the model reports and patient follow-ups. Edited versions of two cases and model answers are presented. 35 refs

  20. Absorbed Doses to Patients in Nuclear Medicine; Doskatalogen foer nukleaermedicin

    Energy Technology Data Exchange (ETDEWEB)

    Leide-Svegborn, Sigrid; Mattsson, Soeren; Nosslin, Bertil [Universitetssjukhuset MAS, Malmoe (Sweden). Avd. foer radiofysik; Johansson, Lennart [Norrlands Universitetssjukhus, Umeaa (Sweden). Avd. foer radiofysik

    2004-09-01

    The work with a Swedish catalogue of radiation absorbed doses to patients undergoing nuclear medicine investigations has continued. After the previous report in 1999, biokinetic data and dose estimates (mean absorbed dose to various organs and tissues and effective dose) have been produced for a number of substances: {sup 11}C- acetate, {sup 11}C- methionine, {sup 18}F-DOPA, whole antibody labelled with either {sup 99m}Tc, {sup 111}In, {sup 123}I or {sup 131}I, fragment of antibody, F(ab'){sub 2} labelled with either {sup 99m}Tc, {sup 111}In, {sup 123}I or {sup 131}I and fragment of antibody, Fab' labelled with either {sup 99m}Tc, {sup 111}In, {sup 123}I or {sup 131}I. The absorbed dose estimates for these substances have been made from published biokinetic information. For other substances of interest, e.g. {sup 14}C-urea (children age 3-6 years), {sup 14}C-glycocholic acid, {sup 14}C-xylose and {sup 14}C-triolein, sufficient literature data have not been available. Therefore, a large number of measurements on patients and volunteers have been carried out, in order to determine the biokinetics and dosimetry for these substances. Samples of breast milk from 50 mothers, who had been subject to nuclear medicine investigations, have been collected at various times after administration of the radiopharmaceutical to the mother. The activity concentration in the breast milk samples has been measured. The absorbed dose to various organs and tissues and the effective dose to the child who ingests the milk have been determined for 17 different radiopharmaceuticals. Based on these results revised recommendations for interruption of breast-feeding after nuclear medicine investigations are suggested.

  1. Evaluation of maximum absorbed dose for accompanying patients in nuclear medicine establishments; Avaliacao da dose maxima absorvida por acompanhantes de pacientes em servicos de medicina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Cabral, Geovanna; Amaral, Ademir; Hazin, Clivis A. [Pernambuco Univ., Recife, PE (Brazil). Dept. de Energia Nuclear; Lima, Ricardo A.; Nogueira, Maria S. [Centro Regional de Ciencias Nucleares (CRCN), Recife, PE (Brazil); Lopes, Ferdinand [Centro de Medicina Nuclear de Pernambuco (CEMUPE), Recife, PE (Brazil); Guimaraes, Maria Ines C.C. [Sao Paulo Univ., SP (Brazil). Centro de Medicina Nuclear

    2001-07-01

    In nuclear medicine, radioisotopes are bound to various pharmaceuticals for use in diagnostic and therapeutic applications. These unsealed sources are administered in various forms to patients, who remain radioactive for hours or days, and represent a source of potential radiation exposure for others. Thus, in nuclear medicine departments, radiation protection of workers and members of the public (especially persons accompanying patients) must consider this exposure. In this study, thermoluminescent dosimeters were given to various persons who were accompanying patients in two nuclear medicine departments in Recife, Pernambuco State, Brazil. Exposure results are given, and issues regarding exposure conditions and times for members of the public in these departments are discussed. (author)

  2. Checklists for quality assurance and audit in nuclear medicine

    International Nuclear Information System (INIS)

    Williams, E.D.; Harding, L.K.; McKillop, J.H.

    1989-01-01

    A series of checklists are given which aim to provide some guidance to staff in determining whether their working procedures in nuclear medicine are likely to produce a good service and avoid mistakes. The checklists relate to the special equipment used in nuclear medicine departments, radiopharmaceuticals, nuclear medicine staff, services to medical and other hospital staff and finally the service to patients. The checklists are relevant to an average nuclear medicine department performing less than 2000 imaging studies per year. (U.K.)

  3. Frontiers in nuclear medicine symposium: Nuclear medicine & molecular biology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    This document contains the abstracts from the American College of Nuclear Physicians 1993 Fall Meeting entitled, `Frontiers in Nuclear Medicine Symposium: Nuclear Medicine and Molecular Biology`. This meeting was sponsored by the US DOE, Office of Health and Environmental Research, Office of Energy Research. The program chairman was Richard C. Reba, M.D.

  4. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician Resources Professions Site Index A-Z Children's (Pediatric) Nuclear Medicine ...

  5. Nuclear Medicine in Turkey

    International Nuclear Information System (INIS)

    Durak, H.

    2001-01-01

    Nuclear Medicine is a medical specialty that uses radionuclides for the diagnosis and treatment of diseases and it is one of the most important peaceful applications of nuclear sciences. Nuclear Medicine has a short history both in Turkey and in the world. The first use of I-131 for the treatment of thyrotoxicosis in Turkey was in 1958 at the Istanbul University Cerrahpasa Medical School. In 1962, Radiobiological Institute in Ankara University Medical School was established equipped with well-type counters, radiometers, scalers, external counters and a rectilinear scanner. In 1965, multi-probe external detection systems, color dot scanners and in 1967, anger scintillation camera had arrived. In 1962, wet lab procedures and organ scanning, in 1965 color dot scanning, dynamic studies (blood flow - renograms) and in 1967 analogue scintillation camera and dynamic camera studies have started. In 1974, nuclear medicine was established as independent medical specialty. Nuclear medicine departments have started to get established in 1978. In 1974, The Turkish Society of Nuclear Medicine (TSNM) was established with 10 members. The first president of TSNM was Prof. Dr. Yavuz Renda. Now, in the year 2000, TSNM has 349 members. Turkish Society of Nuclear Medicine is a member of European Association of Nuclear Medicine (EANM), World Federation of Nuclear Medicine and Biology (WFNMB) and WFNMB Asia-Oceania. Since 1974, TSNM has organized 13 national Nuclear Medicine congresses, 4 international Nuclear Oncology congresses and 13 nuclear medicine symposiums. In 1-5 October 2000, 'The VII th Asia and Oceania Congress of Nuclear Medicine and Biology' was held in Istanbul, Turkey. Since 1992, Turkish Journal of Nuclear Medicine is published quarterly and it is the official publication of TSNM. There are a total of 112 Nuclear Medicine centers in Turkey. There are 146 gamma cameras. (52 Siemens, 35 GE, 16 Elscint, 14 Toshiba, 10 Sopha, 12 MIE, 8 Philips, 9 Others) Two cyclotrons are

  6. The value of an information leaflet for patients having nuclear medicine investigations

    International Nuclear Information System (INIS)

    Ahmed, Susan Mohamed; Mohammed, Nada Yousif; Elhasseen, Amna Elnour

    2001-01-01

    This research aimed at design an information leaflet about nuclear medicine investigations usually done at the radiation and isotopes centre of Khartoum (RICK). The objectives are: to confirm lack of knowledge among patients attending hospital, to find out kind of information required and to improve service quality

  7. Estimation of internal exposure to 99Mo in nuclear medicine patients

    International Nuclear Information System (INIS)

    Dantas, B.M.; Silva, C.O.A. da; Dantas, A.L.A.; Lucena, E.A.; Souza, W.O.

    2008-01-01

    99m Tc is the most widely used radionuclide in nuclear medicine. It is obtained by elution of 99 Mo- 99m Tc generators. Depending on the quality of the generator and its integrity, 99 Mo might be extracted from the column during the elution process, becoming a radionuclidic impurity in the 99m Tc eluate. This fact would impart an undesired dose to the patients submitted to diagnostic procedures using 99m Tc. The aims of this work are: to evaluate the incorporation of 99 Mo as a radionuclidic impurity using in vivo and in vitro techniques; to estimate the internal effective doses in nuclear medicine patients and; to provide additional information about the metabolic behavior of molybdenum in humans. A methodology based on in vivo measurements and urine sampling was developed to determine retention and excretion patterns of molybdenum in the human body. In vivo measurements were performed in IRD whole body counter using a NaI(Tl) 8”x4” scintillation detector. The detector is located inside a shielded room with internal dimensions of 2.5 x 2.5 x 2.65 meters. In vitro analysis was based on the collection of urine samples from the patients and was performed in IRD bioassay laboratory using a High Purity Germanium (HPGe) detection system. Four patients have been monitored by in vivo and in vitro measurements showing detectable activities of 99 Mo in whole body and urine samples. Bioassay results were interpreted by using AIDE software version 6. Estimated values of 99 Mo incorporation were compared to predicted values based on the standard metabolic model of molybdenum established by the International Commission of Radiological Protection (ICRP). Internal effective doses were estimated in the order of micro sieverts per examination. Based on the data obtained in this work it is suggested to implement a routine quality control program of radionuclidic impurity of 99 Mo in 99m Tc eluates to be conducted by radiopharmacy laboratories of nuclear medicine centers. (author)

  8. Radiation dose rates from adult patients undergoing nuclear medicine investigations

    International Nuclear Information System (INIS)

    Mountford, P.J.; O'Doherty, M.J.; Forge, N.I.; Jeffries, A.; Coakley, A.J.

    1991-01-01

    Adult patients undergoing nuclear medicine investigations may subsequently come into close contact with members of the public and hospital staff. In order to expand the available dosimetry and derive appropriate recommendations, dose rates were measured at 0.1, 0.5 and 1.0 m from 80 adult patients just before they left the nuclear medicine department after undergoing one of eight 99 Tc m studies, an 123 I thyroid, an 111 In leucocyte or a 201 Tl cardiac scan. The maximum departure dose rates at these distances of 150, 30 and 7.3 μSv h -1 were greater than those found in similar published studies of adult and paediatric patients. To limit the dose to an infant to less than 1 mSv, an 111 In leucocyte scan is the only investigation for which it may be necessary to restrict close contact between the infant and a radioactive parent, depending on the dose rate near the surface of the patient, the parent's habits and how fretful is the infant. It is unlikely that a ward nurse will receive a dose of 60 μSv in a working day if caring for just one radioactive adult patient, unless the patient is classified as totally helpless and had undergone a 99 Tc m marrow, bone or brain scan. The data and revised calculations of effective exposure times based on a total close contact time of 9 h in every 24 h period should allow worst case estimates of radiation dose to be made and recommendations to be formulated for other circumstances, including any future legislative changes in dose limits or derived levels. (author)

  9. Radiopharmaceutical prescription in nuclear medicine departments

    International Nuclear Information System (INIS)

    Biechlin-Chassel, M.L.; Lao, S.; Bolot, C.; Francois-Joubert, A.

    2010-01-01

    In France, radiopharmaceutical prescription is often discussed depending to which juridical structure the nuclear medicine department is belonging. According to current regulation, this prescription is an obligation in a department linked to hospital with a pharmacy department inside. But situation remains unclear for independent nuclear medicine departments where physicians are not constrained to prescribe radiopharmaceuticals. However, as radiographers and nurses are only authorized to realize theirs acts in front of a medical prescription, one prescription must be realized. Nowadays, computerized prescription tools have been developed but only for radiopharmaceutical drugs and not for medical acts. In the aim to achieve a safer patient care, the prescription regulation may be applied whatever differences between nuclear medicines departments. (authors)

  10. Nuclear medicine and AIDS

    International Nuclear Information System (INIS)

    O'Doherty, M.J.; Kent and Canterbury Hospital, Canterbury; Nunan, T.O.

    1993-01-01

    The human immunodeficiency virus (HIV) infection and its associated illnesses in a relatively young population of patients provides an expanding role for nuclear medicine. The disease enforces a review of each department's infection control procedures. It has also resulted in an increase in the number of patients presenting with diseases such as Pneumocystis carinii pneumonia, Kaposi's sarcoma etc. which prior to the HIV epidemic were extremely rare. Thus in high risk patients the interpretation of abnormalities in nuclear medicine scans needs to include the spectrum of opportunistic infections and unusual tumours. The presence of opportunistic infections in the severely immunocompromised patient has led to the development of techniques not normally used, i.e. lung 99 Tc m -diethylenetriamine pentaacetate (DTPA) transfer/clearance, donor leukocyte scanning to allow rapid diagnosis of an abnormality. Radionuclide techniques are also used to monitor the effect of therapy directed at the HIV itself or against opportunistic infections. This review covers aspects of infection control as well as the use of radionuclides to investigate specific problems related to HIV infection and therapy of the associated disease processes. (author)

  11. Pediatric radiation exposure from diagnostic nuclear medicine examinations in Tehran

    International Nuclear Information System (INIS)

    Neshandar Asli, I.; Tabeie, F.

    2005-01-01

    As a part of a nationwide survey to estimate population exposure to radiation from diagnostic nuclear medicine in Iran, this paper presents the pediatric population radiation exposure due to nuclear medicine examinations in Tehran. Patients and methods: the effective dose equivalent, H E , was used to calculate the collective effective dose in pediatric patients undergoing nuclear medicine procedures, and the corresponding data were obtained from thirty out of thirty seven active nuclear medicine departments in Tehran. Results: annually about 5.26% of nuclear medicine examinations were performed on patients under 15 years of age in Tehran. The most frequent was renal examinations (38.2%), followed y thyroid (27.4%) and bone (26.7%). The annual collective H E for patients under 15 was 19.03 human-Sv, which contributed 3.96% to the collective H E for all patients. The contribution of renal, bone and thyroid examinations to the pediatric collective H E were 24.6% 48.8% and 13.5% respectively. The mean effective dose equivalent per pediatric patient was 3.75 mSv.Conclusion: Among the three most frequent examinations, the bone with a relative frequency of 27.4% constituted 48.8% of the collective H E , which was the highest absorbed dose per examination. The mean effective dose per examination for patients younger than 15 years was 67.9% of the adults

  12. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... The special camera and imaging techniques used in nuclear medicine include the gamma camera and single-photon emission-computed tomography (SPECT). The gamma camera, also called a scintillation camera, detects radioactive energy that is emitted from the patient's body and ...

  13. Nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, S M [Bhabha Atomic Research Centre, Bombay (India). Radiation Medicine Centre

    1967-01-01

    The article deals with the growth of nuclear medicine in India. Radiopharmaceuticals both in elemental form and radiolabelled compounds became commercially available in India in 1961. Objectives and educational efforts of the Radiation Medicine Centre setup in Bombay are mentioned. In vivo tests of nuclear medicine such as imaging procedures, dynamic studies, dilution studies, thyroid function studies, renal function studies, linear function studies, blood flow, and absorption studies are reported. Techniques of radioimmunoassay are also mentioned.

  14. The applications of nuclear techniques in nuclear medicine

    International Nuclear Information System (INIS)

    Zhao Huiyang

    1986-01-01

    There are a great deal of advanced techniques in nuclear medicine imaging, because many recent achivements of nuclear techniques have been applied to medicine in recent years. This paper presents the effects of nuclear techniques in development of nuclear medicine imaging. The first part describes radiopharmaceuticals and nuclear medicine imaging including commonly used 99m Tc labeled agents and cyclotron produced radionuclides for organ imaging. The second part describes nuclear medicine instrucments, including PECT, SPECT, MRI ect.; and discussions on the advantages, disadvantages and present status

  15. PACS in nuclear medicine

    International Nuclear Information System (INIS)

    Kang, Keon Wook

    2000-01-01

    PACS (Picture Archiving and Communication System) is being rapidly spread and installed in many hospitals, but most of the system do not include nuclear medicine field. Although additional costs of hardware for nuclear medicine PACS is low, the complexity in developing viewing software and little market have made the nuclear medicine PACS not popular. Most PACS utilize DICOM 3.0 as standard format, but standard format in nuclear medicine has been Interfile. Interfile should be converted into DICOM format if nuclear images are to be stored and visualized in most PACS. Nowadays, many vendors supply the DICOM option in gamma camera and PET. Several hospitals in Korea have already installed nucler PACS with DICOM, but only the screen captured images are supplied. Software for visualizing pseudo-color with color lookup tables and expressing with volume view should be developed to fulfill the demand of referring physicians and nuclear medicine physicians. PACS is going to integrate not only radiologic images but also endoscopic and pathologic images. Web and PC based PACS is now a trend and is much compatible with nuclear medicine PACS. Most important barrier for nuclear medicine PACS that we encounter is not a technical problem, but indifference of investor such as administrator of hospital or PACS. Now it is time to support and invest for the development of nuclear medicine PACS

  16. Nuclear Medicine in Pediatric Cardiology.

    Science.gov (United States)

    Milanesi, Ornella; Stellin, Giovanni; Zucchetta, Pietro

    2017-03-01

    Accurate cardiovascular imaging is essential for the successful management of patients with congenital heart disease (CHD). Echocardiography and angiography have been for long time the most important imaging modalities in pediatric cardiology, but nuclear medicine has contributed in many situations to the comprehension of physiological consequences of CHD, quantifying pulmonary blood flow symmetry or right-to-left shunting. In recent times, remarkable improvements in imaging equipments, particularly in multidetector computed tomography and magnetic resonance imaging, have led to the progressive integration of high resolution modalities in the clinical workup of children affected by CHD, reducing the role of diagnostic angiography. Technology has seen a parallel evolution in the field of nuclear medicine, with the advent of hybrid machines, as SPECT/CT and PET/CT scanners. Improved detectors, hugely increased computing power, and new reconstruction algorithms allow for a significant reduction of the injected dose, with a parallel relevant decrease in radiation exposure. Nuclear medicine retains its distinctive capability of exploring at the tissue level many functional aspects of CHD in a safe and reproducible way. The lack of invasiveness, the limited need for sedation, the low radiation burden, and the insensitivity to body habitus variations make nuclear medicine an ideal complement of echocardiography. This is particularly true during the follow-up of patients with CHD, whose increasing survival represent a great medical success and a challenge for the health system in the next decades. Metabolic imaging using 18 FDG PET/CT has expanded its role in the management of infection and inflammation in adult patients, particularly in cardiology. The same expansion is observed in pediatric cardiology, with an increasing rate of studies on the use of FDG PET for the evaluation of children with vasculitis, suspected valvular infection or infected prosthetic devices. The

  17. Regulation and quality in nuclear medicine 2 october 1998

    International Nuclear Information System (INIS)

    Kouchner, B.; Huriet, C.; Le Deaut, J.Y.

    1999-01-01

    The aim of this meeting is to examine how the regulations are liable to decrease the patient taking charge. The problem of the public information and opinion in the nuclear medicine domain is also presented. The nineteen presentations are proposed in 2 sessions. The first one deals with the state of the art of the nuclear medicine in France (techniques and regulations). The second one deals with the environment of the nuclear medicine (irradiation limits, public opinion, doctors and medicine quality). (A.L.B.)

  18. Exposing exposure: enhancing patient safety through automated data mining of nuclear medicine reports for quality assurance and organ dose monitoring.

    Science.gov (United States)

    Ikuta, Ichiro; Sodickson, Aaron; Wasser, Elliot J; Warden, Graham I; Gerbaudo, Victor H; Khorasani, Ramin

    2012-08-01

    To develop and validate an open-source informatics toolkit capable of creating a radiation exposure data repository from existing nuclear medicine report archives and to demonstrate potential applications of such data for quality assurance and longitudinal patient-specific radiation dose monitoring. This study was institutional review board approved and HIPAA compliant. Informed consent was waived. An open-source toolkit designed to automate the extraction of data on radiopharmaceuticals and administered activities from nuclear medicine reports was developed. After iterative code training, manual validation was performed on 2359 nuclear medicine reports randomly selected from September 17, 1985, to February 28, 2011. Recall (sensitivity) and precision (positive predictive value) were calculated with 95% binomial confidence intervals. From the resultant institutional data repository, examples of usage in quality assurance efforts and patient-specific longitudinal radiation dose monitoring obtained by calculating organ doses from the administered activity and radiopharmaceutical of each examination were provided. Validation statistics yielded a combined recall of 97.6% ± 0.7 (95% confidence interval) and precision of 98.7% ± 0.5. Histograms of administered activity for fluorine 18 fluorodeoxyglucose and iodine 131 sodium iodide were generated. An organ dose heatmap which displays a sample patient's dose accumulation from multiple nuclear medicine examinations was created. Large-scale repositories of radiation exposure data can be extracted from institutional nuclear medicine report archives with high recall and precision. Such repositories enable new approaches in radiation exposure patient safety initiatives and patient-specific radiation dose monitoring.

  19. General comments on radiological patient protection in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Tellez de Cepeda, M; Plaza, R; Corredoira, E [Servicio de Radiofisica y Radioproteccion, Hospital Universitario La Paz, Madrid (Spain); Martin Curto, L M [Servicio de Medicina Nuclear, Hospital Universitario La Paz, Madrid (Spain)

    2001-03-01

    In this paper an observation series about different aspects of the radiological protection of the patient in nuclear medicine is provided. It includes: The specific legislation contribution, the justification and, especially, optimization, as a fundamental base of the quality guarantee program, the importance of the fulfillment of the program and the importance of getting done the corresponding internal audits of the pursuit, the communication between the different groups of professionals implicated and between these and the patient, the volunteers who collaborate in the patient's care and the people in the patient's environment, knowing that the patient is a source of external radiation and contamination. (author) [Spanish] Se resumen en este trabajo, una serie de observaciones sobre distintos aspectos de la proteccion radiologica del paciente en Medicina Nuclear que incluyen: El aporte de la legislacion especifica, los principios de justificacion y optimizacion (en especial este ultimo) como base fundamental del programa de garantia de calidad asi como la importancia de que dicho programa se cumpla y se lleven a cabo las correspondientes auditorias internas de seguimiento, la comunicacion tanto entre los diferentes grupos de profesionales implicados como entre estos y el paciente, los voluntarios que colaboran en su cuidado y las personas de su entorno, teniendo en cuenta que el paciente es una fuente de radiacion externa y contaminacion. (author)

  20. Procedures, activities and doses in nuclear medicine cycle in Brazil

    International Nuclear Information System (INIS)

    Oliveira, Silvia Maria Velasques de

    2005-01-01

    With the aim of characterizing nuclear medicine procedures performed in Brazil, activities of radiopharmaceuticals used and effective doses to patients, data was collected from nuclear medicine institutions in three regions of the country, namely the Southeast, the Northeast and the South regions, representing public hospitals, university hospitals, private and philanthropic institutions with low, medium and high levels of consumption of radiopharmaceuticals. The three chosen regions are responsible for 92% of radiopharmaceutical consumption and imaging equipment in the country. Accordingly, it was requested of some participating institutions to fulfill manually from individual patients data, to record gender, age, weight, height and activities used, for each type of exam as well as the equipment used. In others, the researcher collected data personally. Per institution, nuclear medicine diagnostic procedures ranged from 700 to 13,000 per year, most of which are myocardial and bone imaging procedures, and imaging equipment ranged, from 1 to 8 machines, one or two head SPECT's (hybrid or not). 26.782 patients protocols were analysed, 24.371 adults and 2.411 children and teenagers. For adult patients, differences were observed in the amount of activities used in diagnostic procedures between public and private institutions, with lower average activities used in public institutions. Activities administered to children and their effective doses were difficult to evaluate due to the incompleteness of individual records. Appropriate individual patient records could be adopted without affecting hospitals routine and contributing for a comprehensive evaluation of the radiation protection of nuclear medicine patients. Data from 8.881 workers were analysed, 346 working at nuclear medicine institutions. For monitored workers and measurably exposed workers in nuclear medicine, the values 2.3 mSv and 5.4 mSv, respectively, for effective annual doses are greater than data

  1. The state of the art in nuclear medicine

    International Nuclear Information System (INIS)

    Scott, A.M.

    1999-01-01

    Recent improvements in the understanding of the physiologic and biologic mechanisms of health and disease have led to an expansion of nuclear medicine applications both in clinical studies and research. Advances in radiopharmaceutical development, instrumentation and computer processing have resulted in the implementation of Positron Emission Tomography for clinical studies, and improved treatments with radiopharmaceuticals particularly in cancer patients. There has also been a dramatic increase in the techniques available with nuclear medicine to detect and measure cellular biologic events in-vivo, which have important implications in clinical and basic science research. Nuclear medicine studies provide unique information on human physiology and remain an integral part of clinical medicine practice

  2. Basics of radiobiology and nuclear medicine

    International Nuclear Information System (INIS)

    Kostadinova, I.; Hadjidekova, V.; Georgieva, R.

    2002-01-01

    The authors successively reveal the topics of the biological impact of radiation (radiobiology) and the diagnostic and the therapeutic application of radiopharmaceuticals (nuclear medicine). Data on the influence of radiation on subcellular, cellular, tissue and organ level are given, on early and late radiation changes, as well. Indication for the application of the different radionuclide methods in the diagnosis of the diseases in the endocrinology, nephrology, cardiology, gastroenterology, haematology of lungs, bones, tumors are pointed out and the main trends of the growing therapeutical use of nuclear medicine are presented. The aim is to teach students the nuclear medicine methods in the complex investigation of the patients, his preliminary preparation and the biological impact of radiation and its risk. Self assessment test for students are proposed and a literature for further reading

  3. Course on internal dosimetry in nuclear medicine; Curso de dosimetria interna en medicina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This documentation was distributed to the participants in the Course of Internal Dosimetry in Nuclear Medicine organised by the Nuclear Regulatory Authority (ARN) of Argentina and held in Buenos Aires, Argentina, August 9-13, 2004. The course was intended for people from IAEA Member States in the Latin American and Caribbean region, and for professionals and workers in medicine, related with the radiation protection. Spanish and English were the languages of the course. The following subjects were covered: radioprotection of the patient in nuclear medicine; injuries by ionizing radiations; MIRD methodology; radiation dose assessment in nuclear medicine; small scale and microdosimetry; bone and marrow dose modelling; medical internal dose calculations; SPECT and image reconstruction; principles of the gamma camera; scattering and attenuation correction in SPECT; tomography in nuclear medicine.

  4. Radiation Dose Measurements with Direction and from Patients Undergoing Nuclear Medicine Investigations

    International Nuclear Information System (INIS)

    AL-Shakhrah, I.

    2003-01-01

    Rdiologists and technologists are occasionally concerned about the radiation exposure that they may receive during the performance of routine diagnostic radiologic studies, that require close proximity to a patient who has recently had a radionuclide imaging procedure. This also impacts on other medical personnel including porters, nurses, pathologists, etc. This study was conducted in order to calculate the radiation exposure that one may anticipate receiving from a patient who has recently had a nuclear midicine procedure. Radiation dose rate (μSv/hr) was measured in 34 patients for four commonly performed nuclear medicine procedures (bone, liver/spleen, renal and thyroid) at the skin surface, 10,30,60,100, and at 150 cm from the patient, within 3 and 1hr ( 3 hrs for bone scan patients and 1 hr for the other three procedures ) postinjection, with a digital survey meter. The measurements were performed also for different sides of the patients ( anterior, posterior, left and right). For bone scans, a dose of 714.1 ± 96.2 MBq ( 19.3 ± 2.6mCi ) of technetium-99m-MDP ( 99 m Tc-MDP) resulted in a radiation exposure ( from posterior side of the patient )of ( 195±41) μSv/hr at the skin surface, (110±27) μSv/hr at 10cm, (51±10) μSv/hr at 30cm, (21±5) μSv/hr at 60cm, (10±2) μSv/hr at 1m, and (6±2) μSv/hr at 1.5m. Also for the bone, the radiation dose rate measurements obtained (from left side of the patient ) were 144±30) μSv/hr at the skin surface, ( 90±21) μSv/hr at 10cm, ( 36±8)μSv/hr at30cm, (15±3)μSv/hr at 60cm, (8±2)μSv/hr at 1 m,and ( 4±1)μSv/hr at 1.5m. It has been found that the variations in percentage (%) between posterior and left side mean measurments were 28.2, 18.2, 29.4, 25.0, 20.0 and 33.3 at the skin, 10cm,30cm,60cm, 100cm and 150 cm respectively. When we search for ''conservative'' values and concepts, concerning the radiation safety in nuclear medicine department , we believe that anterior and posterior sides values must be

  5. The role of general nuclear medicine in breast cancer

    International Nuclear Information System (INIS)

    Greene, Lacey R; Wilkinson, Deborah

    2015-01-01

    The rising incidence of breast cancer worldwide has prompted many improvements to current care. Routine nuclear medicine is a major contributor to a full gamut of clinical studies such as early lesion detection and stratification; guiding, monitoring, and predicting response to therapy; and monitoring progression, recurrence or metastases. Developments in instrumentation such as the high-resolution dedicated breast device coupled with the diagnostic versatility of conventional cameras have reinserted nuclear medicine as a valuable tool in the broader clinical setting. This review outlines the role of general nuclear medicine, concluding that targeted radiopharmaceuticals and versatile instrumentation position nuclear medicine as a powerful modality for patients with breast cancer

  6. Considerations regarding nuclear medicine terminology

    International Nuclear Information System (INIS)

    Als, C.

    2008-01-01

    This article through some examples shows us all the interest of the use of terminology in nuclear medicine. Each would find in it its interest, from the patient to the doctors in different disciplines. (N.C.)

  7. Highlights of the Annual Congress of the European Association of Nuclear Medicine, Istanbul, 2005: the incremental value of nuclear medicine for patient management and care

    Energy Technology Data Exchange (ETDEWEB)

    Cuocolo, Alberto; Acampa, Wanda; Varrone, Andrea; Salvatore, Marco [University of Naples Federico II, Department of Biomorphological and Functional Sciences, Napoli (Italy); Institute of Biostructures and Bioimages of the National Council of Research, Naples (Italy)

    2006-03-15

    The 2005 Annual Congress of the European Association of Nuclear Medicine (EANM) took place in Istanbul on October 15-19, under the chairmanship of Professor Hatice Durak. The programme was of excellent quality and represented a further step towards the achievement of a standardized EANM congress structure. A large industrial exhibition demonstrated the latest technological innovations and developments within the field. The congress was a great success: there were more than 4,000 participants, and 1,670 abstracts were received. Of these, 1,399 were accepted for oral or poster presentations, with a rejection rate of 16.2%. The original investigations presented were related to different areas of nuclear medicine, and addressed particularly advances in instrumentation and data processing, progress in radiochemistry and pharmacy, novel diagnostics and therapeutics, and new insights in well-established areas of clinical application, such as oncology, cardiology, neurology, psychiatry, endocrinology, paediatrics, nephrology, and infection and inflammation. It is noteworthy that a number of studies presented at this congress focussed on the quantitative interpretation of the imaging data and on pragmatic endpoints, such as adverse outcomes, and identified when nuclear medicine procedures achieved clinical effectiveness for patient care and management. These and many other studies presented at the congress demonstrate once more the crucial role that nuclear medicine has to play in contemporary medicine. This highlights lecture is only a brief summary of the large amount of data presented and discussed, which can be found in much greater detail in the congress proceedings book, published as volume 32, supplement 1 of the Eur J Nucl Med Mol Imaging in September 2005. (orig.)

  8. Nuclear medicine and mathematics

    Energy Technology Data Exchange (ETDEWEB)

    Pedroso de Lima, J.J. [Dept. de Biofisica e Proc. de Imagem, IBILI - Faculdade de Medicina, Coimbra (Portugal)

    1996-06-01

    The purpose of this review is not to present a comprehensive description of all the mathematical tools used in nuclear medicine, but to emphasize the importance of the mathematical method in nuclear medicine and to elucidate some of the mathematical concepts currently used. We can distinguish three different areas in which mathematical support has been offered to nuclear medicine: Physiology, methodology and data processing. Nevertheless, the boundaries between these areas can be indistinct. It is impossible in a single article to give even an idea of the extent and complexity of the procedures currently usede in nuclear medicine, such as image processing, reconstruction from projections and artificial intelligence. These disciplines do not belong to nuclear medicine: They are already branches of engineering, and my interest will reside simply in revealing a little of the elegance and the fantastic potential of these new `allies` of nuclear medicine. In this review the mathematics of physiological interpretation and methodology are considered together in the same section. General aspects of data-processing methods, including image processing and artificial intelligence, are briefly analysed. The mathematical tools that are most often used to assist the interpretation of biological phenomena in nuclear medicine are considered; these include convolution and deconvolution methods, Fourier analysis, factorial analysis and neural networking. (orig.)

  9. Nuclear medicine and mathematics

    International Nuclear Information System (INIS)

    Pedroso de Lima, J.J.

    1996-01-01

    The purpose of this review is not to present a comprehensive description of all the mathematical tools used in nuclear medicine, but to emphasize the importance of the mathematical method in nuclear medicine and to elucidate some of the mathematical concepts currently used. We can distinguish three different areas in which mathematical support has been offered to nuclear medicine: Physiology, methodology and data processing. Nevertheless, the boundaries between these areas can be indistinct. It is impossible in a single article to give even an idea of the extent and complexity of the procedures currently usede in nuclear medicine, such as image processing, reconstruction from projections and artificial intelligence. These disciplines do not belong to nuclear medicine: They are already branches of engineering, and my interest will reside simply in revealing a little of the elegance and the fantastic potential of these new 'allies' of nuclear medicine. In this review the mathematics of physiological interpretation and methodology are considered together in the same section. General aspects of data-processing methods, including image processing and artificial intelligence, are briefly analysed. The mathematical tools that are most often used to assist the interpretation of biological phenomena in nuclear medicine are considered; these include convolution and deconvolution methods, Fourier analysis, factorial analysis and neural networking. (orig.)

  10. Integrating cardiology for nuclear medicine physicians. A guide to nuclear medicine physicians

    International Nuclear Information System (INIS)

    Movahed, Assad; Gnanasegaran, Gopinath; Buscombe, John R.; Hall, Margaret

    2009-01-01

    Nuclear cardiology is no longer a medical discipline residing solely in nuclear medicine. This is the first book to recognize this fact by integrating in-depth information from both the clinical cardiology and nuclear cardiology literature, and acknowledging cardiovascular medicine as the fundamental knowledge base needed for the practice of nuclear cardiology. The book is designed to increase the practitioner's knowledge of cardiovascular medicine, thereby enhancing the quality of interpretations through improved accuracy and clinical relevance.The text is divided into four sections covering all major topics in cardiology and nuclear cardiology: -Basic Sciences and Cardiovascular Diseases; -Conventional Diagnostic Modalities; -Nuclear Cardiology; -Management of Cardiovascular Diseases. (orig.)

  11. Quality Management Audits in Nuclear Medicine Practices. 2. Ed

    International Nuclear Information System (INIS)

    2015-01-01

    Quality management systems are essential and should be maintained with the intent to continuously improve effectiveness and efficiency, enabling nuclear medicine to achieve the expectations of its quality policy, satisfy its customers and improve professionalism. The quality management (QM) audit methodology in nuclear medicine practice, introduced in this publication, is designed to be applied to a variety of economic circumstances. A key outcome is a culture of reviewing all processes of the clinical service for continuous improvement in nuclear medicine practice. Regular quality audits and assessments are vital for modern nuclear medicine services. More importantly, the entire QM and audit process has to be systematic, patient oriented and outcome based. The management of services should also take into account the diversity of nuclear medicine services around the world and multidisciplinary contributions. The latter include clinical, technical, radiopharmaceutical, medical physics and radiation safety procedures

  12. Justification of the hybrid nuclear medicine examinations

    International Nuclear Information System (INIS)

    Garcheva-Tsacheva, Marina B.

    2015-01-01

    The annual frequency of nuclear medicine examinations is increasing worldwide. This is partly a consequence of the recently introduced single photon emission tomography, combined with computed tomography, and positron emission tomography, combined with computed tomography, techniques, which combine functional, metabolic and morphological information important for the diagnosis of many diseases. However, since the effective radiation dose is the sum of the dose of two components, the hybrid examinations result in increased patient exposure. Accordingly, their justification becomes mandatory. It starts with their clinical importance-the opportunity to resolve a clinical problem decisive for patients' management. Knowledge of the indications, contraindications and the examinations' limitations is the responsibility of the nuclear medicine physician, as well as the choice of the most adequate examination and protocol. In conclusion, the cost and the accessibility of the examinations should not be the principal consideration as opposed to the diagnostic value and the exposure. Flexible protocols and algorithms should be used for hybrid nuclear medicine examinations. (authors)

  13. Neuroimaging in nuclear medicine: drug addicted brain

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Yong-An; Kim, Dae-Jin [The Catholic University of Korea, Seoul (Korea, Republic of)

    2006-02-15

    Addiction to illicit drugs in one of today's most important social issues. Most addictive drugs lead to irreversible parenchymal changes in the human brain. Neuroimaging data bring to light the pharmacodynamics and pharmacokinetics of the abused drugs, and demonstrate that addiction is a disease of the brain. Continuous researches better illustrate the neurochemical alterations in brain function, and attempt to discover the links to consequent behavioral changes. Newer hypotheses and theories follow the numerous results, and more rational methods of approaching therapy are being developed. Substance abuse is on the rise in Korea, and social interest in the matter as well. On the other hand, diagnosis and treatment of drug addiction is still very difficult, because how the abused substance acts in the brain, or how it leads to behavioral problems in not widely known. Therefore, understanding the mechanism of drug addiction can improve the process of diagnosing addict patients, planning therapy, and predicting the prognosis . Neuroimaging approaches by nuclear medicine methods are expected to objectively judge behavioral and neurochemical changes, and response to treatment. In addition, as genes associated with addictive behavior are discovered, functional nuclear medicine images will aid in the assessment of individuals. Reviewing published literature on neuroimaging regarding nuclear medicine is expected to be of assistance to the management of drug addict patients. What's more, means of applying nuclear medicine to the care of drug addict patients should be investigated further.

  14. Neuroimaging in nuclear medicine: drug addicted brain

    International Nuclear Information System (INIS)

    Chung, Yong-An; Kim, Dae-Jin

    2006-01-01

    Addiction to illicit drugs in one of today's most important social issues. Most addictive drugs lead to irreversible parenchymal changes in the human brain. Neuroimaging data bring to light the pharmacodynamics and pharmacokinetics of the abused drugs, and demonstrate that addiction is a disease of the brain. Continuous researches better illustrate the neurochemical alterations in brain function, and attempt to discover the links to consequent behavioral changes. Newer hypotheses and theories follow the numerous results, and more rational methods of approaching therapy are being developed. Substance abuse is on the rise in Korea, and social interest in the matter as well. On the other hand, diagnosis and treatment of drug addiction is still very difficult, because how the abused substance acts in the brain, or how it leads to behavioral problems in not widely known. Therefore, understanding the mechanism of drug addiction can improve the process of diagnosing addict patients, planning therapy, and predicting the prognosis . Neuroimaging approaches by nuclear medicine methods are expected to objectively judge behavioral and neurochemical changes, and response to treatment. In addition, as genes associated with addictive behavior are discovered, functional nuclear medicine images will aid in the assessment of individuals. Reviewing published literature on neuroimaging regarding nuclear medicine is expected to be of assistance to the management of drug addict patients. What's more, means of applying nuclear medicine to the care of drug addict patients should be investigated further

  15. Nuclear medicine

    International Nuclear Information System (INIS)

    Chamberlain, M.J.

    1986-01-01

    Despite an aggressive, competitive diagnostic radiology department, the University Hospital, London, Ontario has seen a decline of 11% total (in vivo and in the laboratory) in the nuclear medicine workload between 1982 and 1985. The decline of in vivo work alone was 24%. This trend has already been noted in the U.S.. Nuclear medicine is no longer 'a large volume prosperous specialty of wide diagnostic application'

  16. Nuclear Medicine week in Colombia

    International Nuclear Information System (INIS)

    Padhy, A.K.

    2003-01-01

    During the week of 6-12 October 2003 the IAEA organized a Research Coordination Meeting on 'Relationship between lower Respiratory Tract Infection, Gastroesophageal reflux and bronchial Asthma in children' at Hospital San Ignacio in Bogota. Besides there were four workshops in Bogota; workshops on Bone infection and Bone scan in Pediatric ortopaedics at Hospital Militar and Fundacion CardioInfantil, a workshop for Nuclear Medicine Technologists and a workshop on Sentinel Lymph Node mapping and Surgical Gamma Probe Application at Institute of Oncology. A nuclear cardiology workshop was organized in Medellin, and finally crowning them all was the 9th Congress of the Colombian Association of Nuclear Medicine at Cali from 10-12 October, 2003; probably the largest and best Colombian nuclear medicine congress every held in the country. A workshop was also organized in Cali for nuclear medicine technologists in conjunction with the Annual Convention. It was a mix of IAEA's Technical Cooperation and Regular Budget activities along with the activities of Colombian Association of Nuclear Medicine, bringing in absolute synergy to galvanize the entire nuclear medicine community of the country. The week saw nuclear medicine scientists from more than 20 IAEA Member States converging on Colombia to spread the message of nuclear medicine, share knowledge and to foster International understanding and friendship among the nuclear medicine people of the world

  17. Physics and radiobiology of nuclear medicine

    CERN Document Server

    Saha, Gopal B

    2013-01-01

    The Fourth Edition of Dr. Gopal B. Saha’s Physics and Radiobiology of Nuclear Medicine was prompted by the need to provide up-to-date information to keep pace with the perpetual growth and improvement in the instrumentation and techniques employed in nuclear medicine since the last edition published in 2006. Like previous editions, the book is intended for radiology and nuclear medicine residents to prepare for the American Board of Nuclear Medicine, American Board of Radiology, and American Board of Science in Nuclear Medicine examinations, all of which require a strong physics background. Additionally, the book will serve as a textbook on nuclear medicine physics for nuclear medicine technologists taking the Nuclear Medicine Technology Certification Board examination.

  18. Computer applications in nuclear medicine

    International Nuclear Information System (INIS)

    Lancaster, J.L.; Lasher, J.C.; Blumhardt, R.

    1987-01-01

    Digital computers were introduced to nuclear medicine research as an imaging modality in the mid-1960s. Widespread use of imaging computers (scintigraphic computers) was not seen in nuclear medicine clinics until the mid-1970s. For the user, the ability to acquire scintigraphic images into the computer for quantitative purposes, with accurate selection of regions of interest (ROIs), promised almost endless computational capabilities. Investigators quickly developed many new methods for quantitating the distribution patterns of radiopharmaceuticals within the body both spatially and temporally. The computer was used to acquire data on practically every organ that could be imaged by means of gamma cameras or rectilinear scanners. Methods of image processing borrowed from other disciplines were applied to scintigraphic computer images in an attempt to improve image quality. Image processing in nuclear medicine has evolved into a relatively extensive set of tasks that can be called on by the user to provide additional clinical information rather than to improve image quality. Digital computers are utilized in nuclear medicine departments for nonimaging applications also, Patient scheduling, archiving, radiopharmaceutical inventory, radioimmunoassay (RIA), and health physics are just a few of the areas in which the digital computer has proven helpful. The computer is useful in any area in which a large quantity of data needs to be accurately managed, especially over a long period of time

  19. Assessment of knowledge of general practitioners about nuclear medicine

    International Nuclear Information System (INIS)

    Zakavi, R.; Derakhshan, A.; Pourzadeh, Z.

    2002-01-01

    . Two questions of urogenital system was correctly answered in 23 cases, and 43 cases had incorrect answers to both. Thirty three cases answered correctly two questions of thyroid therapy and 41 cases answered only one of questions correctly. In nuclear oncology correct answers was noted 24%. One correct answer was noted in 37% and 39% cases had no correct answer the pathology, only 3% correctly answered all questions, 41 cases had one correct answer and 56 cases than 7 patients and 30% get 7-8 points. Also 9-10 points was noted in 26%. Ten patients had scores of 11-12 and two patients had 13-14 points. 80% of cases agree with classic study of nuclear medicine as a subject or credit during study of general medicine. Also 90% of cases like to have more information in the field, 65% of them prefer educational pamphlets

  20. Management of radioactive waste generated in nuclear medicine; Gestion de los residuos radiactivos generados en medicina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz Perez, P.

    2015-07-01

    Nuclear medicine is a clinical specialty in which radioactive material is used in non-encapsulated form, for the diagnosis and treatment of patients. Nuclear medicine involves administering to a patient a radioactive substance, usually liquid, both diagnostic and therapeutic purposes. This process generates solid radioactive waste (syringes, vials, gloves) and liquid (mainly the patient's urine). (Author)

  1. Value measurement of nuclear medicine procedures

    International Nuclear Information System (INIS)

    Potchen, E.J.; Harris, G.I.; Schonbein, W.R.; Rashford, N.J.

    1977-01-01

    The difficulty in measuring the benefit component for cost/benefit analysis of diagnostic procedures in medicine is portrayed as a complex issue relating the objective of intent to a classification of types of decisions a physician must make in evaluating a patient's problem. Ultimately, it seems desirable to develop measuring instruments such as attitude measurement tools by which the relative value of alternative diagnostic procedures could be measured in terms of what they contribute to diminishing the patient's personal perception of disease. Even without this idealized objective, it is reasonable to assume that diagnostic tests which do not contain information, defined as a change in the randomness of a state of knowledge, could not be expected to ultimately benefit the patient. Thus diagnostic information should provide a rational direction for the physician to modify the course of the patient's illness. Since information can be measured as a change in randomness of a knowledge state, we can determine the information content of a specific nuclear medicine procedure when faced with an array of diagnostic problems. These measurements remain to be made for clinical nuclear medicine procedures and are currently under study

  2. Radiation Monitoring in a Newly Established Nuclear Medicine Facility

    International Nuclear Information System (INIS)

    Afroj, Kamila; Anwar-Ul-Azim, Md.; Nath, Khokon Kumar; Khan, Md. Rezaul Karim

    2010-05-01

    A study of area monitoring in a nuclear medicine department's new physical facility was performed for 3 months to ascertain the level of radiation protection of the staff working in nuclear medicine and that of the patients and patient's attendants. Exposure to nuclear medicine personnel is considered as occupational exposure, while exposure to patients is considered medical exposure and exposure to patients' attendants is considered public exposure. The areas for the sources of radiation considered were the hot laboratory, where unsealed isotopes, radionuclides, generators are stored and dosages are prepared, the patients' waiting room, where the radioactive nuclides are administered orally and intravenously for diagnosis and treatment and the SPECT rooms, where the patients' acquisition are taken. The monitoring process was performed using the TLD supplied and measured by the Health Physics Division of Bangladesh Atomic Energy Commission. The result shows no over-exposure of radiation from any of the working areas. The environment of the department is safe for work and free from unnecessary radiation exposure risk. (author)

  3. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... interventions. Children's (pediatric) nuclear medicine refers to imaging examinations done in babies, young children and teenagers. Nuclear ... nuclear medicine procedure work? With ordinary x-ray examinations, an image is made by passing x-rays ...

  4. Radiation dose assessment in nuclear medicine

    International Nuclear Information System (INIS)

    Stabin, M.G.

    2002-01-01

    In any application involving the use of ionizing radiation in humans, risks and benefits must be properly evaluated and balanced. Radionuclides are used in nuclear medicine in a variety of diagnostic and therapeutic procedures. Recently, interest has grown in therapeutic agents for a number of applications in nuclear medicine, particularly in the treatment of hematologic and non-hematologic malignancies. This has heightened interest in the need for radiation dose calculations and challenged the scientific community to develop more patient-specific and relevant dose models. Consideration of radiation dose in such studies is central to efforts to maximize dose to tumor while sparing normal tissues. In many applications, a significant absorbed dose may be received by some radiosensitive organs, particularly the active marrow. This talk will review the methods and models used in internal dosimetry in nuclear medicine, and discuss some current trends and challenges in this field

  5. Poster - 03: How to manage a nuclear medicine PET-CT for radiation oncology patients

    Energy Technology Data Exchange (ETDEWEB)

    Hinse, Martin; Létourneau, Étienne; Duplan, Danny; Piché, Émilie; Rivière, Rose Nerla; Bouchard, Guillaume [Centre Intégré de Cancérologie de Laval (Canada)

    2016-08-15

    Purpose: Development of an adapted multidisciplinary procedure designed to optimize the clinical workflow between radiation therapy (RT) and nuclear medicine (NM) for a PET-CT located in the NM department. Methods : The radiation oncologist (RO) prescribes the PET-CT exam and the clinical RT therapist gives all the necessary information to the patient prior to the exam. The immobilization accessories are prepared in the RT department. The RT and NM therapists work together for radiotracer injection, patient positioning and scan acquisition. The nuclear medicine physician (NMP) will study the images, draw Biological Target Volumes (BTVs) and produce a full exam report. Results : All tasks related to a planning PET-CT are done within 48 hours from the request by the RO to the reception of the images with the NMP contours and report. Conclusions : By developing a complete procedure collectively between the RT and NM departments, the patient benefits of a quick access to a RT planning PET-CT exam including the active involvement of every medical practitioners in these fields.

  6. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician ... before abnormalities can be detected with other diagnostic tests. Nuclear medicine imaging procedures use small amounts of ...

  7. The state of the art in diagnostic nuclear medicine

    International Nuclear Information System (INIS)

    Scott, A.M.; University of Melbourne, VIC

    2001-01-01

    Recent improvements in the understanding of the physiologic and biologic mechanisms of health and disease have led to an expansion of nuclear medicine applications both in clinical studies and research. Advances in radiopharmaceutical development, instrumentation and computer processing have resulted in the implementation of Positron Emission Tomography for clinical studies, and improved treatments with radiopharmaceuticals particularly in cancer patients. There has also been an dramatic increase in the techniques available with nuclear medicine to detect and measure cellular biologic events in-vivo, which have important implications in clinical and basic science research. Nuclear medicine studies provide unique information on human physiology and remain an integral part of clinical medicine practice

  8. Nuclear Medicine Engineering

    International Nuclear Information System (INIS)

    Mateescu, Gheorghe; Craciunescu, Teddy

    2000-01-01

    'An image is more valuable than a thousand words' - this is the thought that underlies the authors' vision about the field of nuclear medicine. The monograph starts with a review of some theoretical and engineering notions that grounds the field of nuclear medicine: nuclear radiation, interaction of radiation with matter, radiation detection and measurement, numerical analysis. Products and methods needed for the implementation of diagnostic and research procedures in nuclear medicine are presented: radioisotopes and radiopharmaceuticals, equipment for in-vitro (radioimmunoassay, liquid scintillation counting) and in-vivo investigations (thyroid uptake, renography, dynamic studies, imaging). A special attention is focused on medical imaging theory and practice as a source of clinical information (morphological and functional). The large variety of parameters, components, biological structures and specific properties of live matter determines the practical use of three-dimensional tomographic techniques based on diverse physical principles: single-photon emission, positron emission, X-rays transmission, nuclear magnetic resonance, ultrasounds transmission and reflection, electrical impedance measurement. The fundamental reconstruction algorithms i.e., algorithms based on the projection theorem and Fourier filtering, algebraic reconstruction techniques and the algorithms based on statistical principles: maximum entropy, maximum likelihood, Monte Carlo algorithms, are depicted in details. A method based on the use of the measured point spread function is suggested. Some classical but often used techniques like linear scintigraphy and Anger gamma camera imaging are also presented together with some image enhancement techniques like Wiener filtering and blind deconvolution. The topic of the book is illustrated with some clinical samples obtained with nuclear medicine devices developed in the Nuclear Medicine Laboratory of the National Institute of Nuclear Physics and

  9. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... by Image/Video Gallery Your Radiologist Explains Nuclear Medicine Transcript Welcome to Radiology Info dot org Hello! ... d like to talk to you about nuclear medicine. Nuclear medicine offers the potential to identify disease ...

  10. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... Sponsored by Image/Video Gallery Your Radiologist Explains Nuclear Medicine Transcript Welcome to Radiology Info dot org ... I’d like to talk to you about nuclear medicine. Nuclear medicine offers the potential to identify ...

  11. Development of nuclear medicine techniques - radiation protection issues for patients; Evolution des techniques en medecine nucleaire - Enjeux de radioprotection pour les patients

    Energy Technology Data Exchange (ETDEWEB)

    Marchandise, Xavier [Faculte de Medecine de Lille, F-59045 Lille Cedex (France)

    2011-07-15

    Nuclear medicine uses radioactive isotopes for diagnostic or therapeutic purposes. The radiation protection culture is now well-anchored in the training of nuclear medicine specialists in France and must remain at the highest possible level. However, practices change and the immediate medical - or even media - interest in new equipment and new tracers must not obscure the fundamentals of patient radiation protection. Particular vigilance is today required with regard to two aspects: - children; - the corresponding computed tomography. (author)

  12. Nuclear power in human medicine

    International Nuclear Information System (INIS)

    Kuczera, Bernhard

    2012-01-01

    The public widely associate nuclear power with the megawatt dimensions of nuclear power plants in which nuclear power is released and used for electricity production. While this use of nuclear power for electricity generation is rejected by part of the population adopting the polemic attitude of ''opting out of nuclear,'' the application of nuclear power in medicine is generally accepted. The appreciative, positive term used in this case is nuclear medicine. Both areas, nuclear medicine and environmentally friendly nuclear electricity production, can be traced back to one common origin, i.e. the ''Atoms for Peace'' speech by U.S. President Eisenhower to the U.N. Plenary Assembly on December 8, 1953. The methods of examination and treatment in nuclear medicine are illustrated in a few examples from the perspective of a nuclear engineer. Nuclear medicine is a medical discipline dealing with the use of radionuclides in humans for medical purposes. This is based on 2 principles, namely that the human organism is unable to distinguish among different isotopes in metabolic processes, and the radioactive substances are employed in amounts so small that metabolic processes will not be influenced. As in classical medicine, the application of these principles serves two complementary purposes: diagnosis and therapy. (orig.)

  13. OrdoCMN: a communication tool for nuclear medicine

    International Nuclear Information System (INIS)

    Lamy, P.; Bizollon, C.; Damien, J.; Itti, R.

    1997-01-01

    OrdoCMN is a computer software which offers an easy solution for the management of a nuclear medicine department. It has been developed using a data management tool: 4. Dimension. This network based software acts mainly as a communication tool between the various parts of the nuclear medicine department. It provides time saving and optimisation for the interdependent operations which are necessary when performing a scintigraphy study. In addition, it has all the functionalities which are needed to manage the data concerning a scintigraphy examination: study planing, patient files, radiopharmaceuticals prescription edition, labels and report printing, and radiopharmaceuticals management. Centered around the patient's file, it guaranties the confidentiality and security of the informations through several levels of security: passwords, data coding, etc. Since further evolution is specially easy, thanks to its modular structure, it may be adapted to the specific needs of any nuclear medicine department. (authors)

  14. Report: dosimetry of diagnostic exams in nuclear medicine

    International Nuclear Information System (INIS)

    Touzery, C.; Aubert, B.; Caselles, O.; Gardin, I.; Guilhem, M.Th.; Laffont, S.; Lisbona, A.

    2002-01-01

    A compilation about dosimetry of diagnosis explorations in nuclear medicine is presented in this issue. Dosimetry tables of the different radiopharmaceuticals used in nuclear medicine give indications on absorbed and efficient doses according the patients age from one year to adult age. The doses received by a fetus during a lung scintigraphy realized for the pregnant woman susceptible to suffer of pulmonary emboli is presented. A table of efficient doses for the infants until the age of six months for the principal scintigraphy explorations realized in nuclear medicine are given. A chapter of theoretical headlines is devoted to dosimetry and the calculations methods of absorbed and efficient doses in function of patients age. A short chapter concerns the recommendations to explore nursing mothers by scintigraphy. A last chapter treats the efficient doses received during explorations using ionizing radiations in radiology and their place in annual natural irradiation scale. (N.C.)

  15. Veterinary nuclear medicine again - commentary and remarks on: Krzeminski M., et al. Veterinary nuclear medicine - a review. NMR 2004;7: 177 - 182

    International Nuclear Information System (INIS)

    Balogh, L.; Mathe, D.; Andocs, G.; Polyak, A.; Kiraly, R.; Janoki, G.A.; Szilagyi, J.; Thuroczy, J.; Chaudhari, P.

    2005-01-01

    Veterinary nuclear medicine is somehow similar to its roots, Human Nuclear Medicine, but certainly there are a few basic differences. Patients sent by veterinary clinicians could be members of exotic species (birds, reptiles, rodents) and even the most often treated dog, cat, and horse patients vary in a pretty wide scale in weight, size and anatomical, physiological features. As there are no veterinary radiopharmaceuticals in the market, vets use human registered products, therefore applied radioactive doses are often calculated on an empirical manner. As opposed to humans, animal subjects almost always need to be sedated or anaesthetised for scintigraphical protocols. We vets, frequently perform bone and thyroid scintigraphy in the everyday clinical routine and oncological applications are more and more common in the veterinary field as well. But in contrast with human practice, our animal patients suffer very rarely from cardiovascular diseases, so heart and brain perfusion studies are less frequently performed at veterinary clinics. (author)Veterinary nuclear medicine is somehow similar to its roots,

  16. Nuclear medicine

    International Nuclear Information System (INIS)

    Blanquet, Paul; Blanc, Daniel.

    1976-01-01

    The applications of radioisotopes in medical diagnostics are briefly reviewed. Each organ system is considered and the Nuclear medicine procedures pertinent to that system are discussed. This includes, the principle of the test, the detector and the radiopharmaceutical used, the procedure followed and the clinical results obtained. The various types of radiation detectors presently employed in Nuclear Medicine are surveyed, including scanners, gamma cameras, positron cameras and procedures for obtaining tomographic presentation of radionuclide distributions [fr

  17. Nuclear medicine therapy

    CERN Document Server

    Eary, Janet F

    2013-01-01

    One in three of the 30 million Americans who are hospitalized are diagnosed or treated with nuclear medicine techniques. This text provides a succinct overview and detailed set of procedures and considerations for patient therapy with unsealed radioactivity sources.  Serving as a complete literature reference for therapy with radiopharmaceuticals currently utilized in practice, this source covers the role of the physician in radionuclide therapy, and essential procedures and protocols required by health care personnel.

  18. Radiation safety in nuclear medicine procedures

    International Nuclear Information System (INIS)

    Cho, Sang Geon; Kim, Ja Hae; Song, Ho Chun

    2017-01-01

    Since the nuclear disaster at the Fukushima Daiichi Nuclear Power Plant in 2011, radiation safety has become an important issue in nuclear medicine. Many structured guidelines or recommendations of various academic societies or international campaigns demonstrate important issues of radiation safety in nuclear medicine procedures. There are ongoing efforts to fulfill the basic principles of radiation protection in daily nuclear medicine practice. This article reviews important principles of radiation protection in nuclear medicine procedures. Useful references, important issues, future perspectives of the optimization of nuclear medicine procedures, and diagnostic reference level are also discussed

  19. Radiation safety in nuclear medicine procedures

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sang Geon; Kim, Ja Hae; Song, Ho Chun [Dept. of Nuclear Medicine, Medical Radiation Safety Research Center, Chonnam National University Hospital, Gwangju (Korea, Republic of)

    2017-03-15

    Since the nuclear disaster at the Fukushima Daiichi Nuclear Power Plant in 2011, radiation safety has become an important issue in nuclear medicine. Many structured guidelines or recommendations of various academic societies or international campaigns demonstrate important issues of radiation safety in nuclear medicine procedures. There are ongoing efforts to fulfill the basic principles of radiation protection in daily nuclear medicine practice. This article reviews important principles of radiation protection in nuclear medicine procedures. Useful references, important issues, future perspectives of the optimization of nuclear medicine procedures, and diagnostic reference level are also discussed.

  20. Exposure from diagnostic nuclear medicine procedures

    International Nuclear Information System (INIS)

    Iacob, O.; Diaconescu, C.; Isac, R.

    2002-01-01

    According to our last national study on population exposures from natural and artificial sources of ionizing radiation, 16% of overall annual collective effective dose represent the contribution of diagnostic medical exposures. Of this value, 92% is due to diagnostic X-ray examinations and only 8% arise from diagnostic nuclear medicine procedures. This small contribution to collective dose is mainly the result of their lower frequency compared to that of the X-ray examinations, doses delivered to patients being, on average, ten times higher. The purpose of this review was to reassess the population exposure from in vivo diagnostic nuclear medicine procedures and to evaluate the temporal trends of diagnostic usage of radiopharmaceuticals in Romania. The current survey is the third one conducted in the last decade. As in the previous ones (1990 and 1995), the contribution of the Radiation Hygiene Laboratories Network of the Ministry of Health and Family in collecting data from nuclear medicine departments in hospitals was very important

  1. Avoidable challenges of a nuclear medicine facility in a developing nation

    International Nuclear Information System (INIS)

    Adedapo, Kayode Solomon; Onimode, Yetunde Ajoke; Ejeh, John Enyi; Adepoju, Adewale Oluwaseun

    2013-01-01

    The role of nuclear medicine in disease management in a developing nation is as impactful as it is in other regions of the world. However, in the developing world, the practice of nuclear medicine is faced with a myriad of challenges, which can be easily avoided. In this review, we examine the many avoidable challenges to the practice of nuclear medicine in a developing nation. The review is largely based on personal experiences of the authors who are the pioneers and current practitioners of nuclear medicine in a typical developing nation. If the challenges examined in this review are avoided, the practice of nuclear medicine in such a nation will be more effective and practitioners will be more efficient in service delivery. Hence, the huge benefits of nuclear medicine will be made available to patients in such a developing nation

  2. Radiation exposure of nuclear medicine procedures in Germany

    International Nuclear Information System (INIS)

    Hacker, M.

    2005-01-01

    Nuclear Medicine procedures offer the possibility to detect abnormalities on the basis of physiological and metabolic changes and to treat a growing number of diseases in human beings. However, the use of radiopharmaceuticals for nuclear medicine examinations causes a significant component of the total radiation exposure of populations. In Germany it is an essential task of the Federal Office for Radiation Protection to determinate and assess radiation exposure of the population due to nuclear medicine diagnostics and therapy. An important input for this task is the frequency of nuclear-medical examinations with application of ionising radiation and the radiation exposure of patients related to the various procedures. Additional implementation of age- and gender-specific data today allows more exact risk stratification in focusing on different subgroups of patients. Moreover, the collective effective dose as well as the per caput effective dose of the German population may be estimated and compared with earlier collected data or foreign countries. These data reveal where the indication should be questioned particularly critically and if the dose for the various examinations can be reduced and, thus, contribute to the definition of diagnostic reference levels for nuclear medicine procedures in Germany with the aim of both a sufficient image quality and a minimum of radiation exposure. Exceeding the high- as well as the low-values requires documentation and explanation. (orig.)

  3. Quality control in nuclear medicine

    International Nuclear Information System (INIS)

    Leme, P.R.

    1983-01-01

    The following topics are discussed: objectives of the quality control in nuclear medicine; the necessity of the quality control in nuclear medicine; guidelines and recommendations. An appendix is given concerning the guidelines for the quality control and instrumentation in nuclear medicine. (M.A.) [pt

  4. Internal dosimetry in nuclear medicine procedures

    International Nuclear Information System (INIS)

    Carrera Magarino, F.; Salgado Garcia, C.; Ruiz Manzano, P.; Rivas Ballarin, M. A.; Jimenez Hefernan, A.; Sanchez Segovia, J.

    2011-01-01

    The Department of Radio Physics and Radiation Protection, University Hospital Lozano Blesa Zaragoza presented a calculus textbook to estimate patient doses in diagnostic nuclear medicine. In this paper present an updated referred Book of calculation.

  5. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... that are congenital (present at birth) or that develop during childhood. Physicians use nuclear medicine imaging to evaluate organ ... Nuclear medicine scans are typically used to ...

  6. Nuclear Medicine Practice in Kenya

    International Nuclear Information System (INIS)

    Ndirangu, T.D.

    2017-01-01

    Nuclear medicine is a medical specialty that relies on the use of nuclear technology in the diagnosis and treatment (therapy) of diseases. Nuclear medicine uses the principle that a certain radiopharmaceutical (tracer) will at a certain point in time have a preferential uptake by a particular body, tissue or cell. This uptake is then imaged by the use of detectors mounted in gamma cameras or PET (positron emission tomography) devices.. Unlike other radiation applications for medical use, nuclear medicine uses open (unsealed) sources of radiation. In a country with an estimated population of 48 million in 2017, Kenya has only two (2) nuclear medicine facilities (units). Being a relatively new medical discipline in Kenya, several measures have been taken by the clinical nuclear medicine team to create awareness at various levels

  7. Nuclear medicine technology study guide

    CERN Document Server

    Patel, Dee

    2011-01-01

    Nuclear Medicine Technology Study Guide presents a comprehensive review of nuclear medicine principles and concepts necessary for technologists to pass board examinations. The practice questions and content follow the guidelines of the Nuclear Medicine Technology Certification Board (NMTCB) and American Registry of Radiological Technologists (ARRT), allowing test takers to maximize their success in passing the examinations. The book is organized by sections of increasing difficulty, with over 600 multiple-choice questions covering all areas of nuclear medicine, including radiation safety; radi

  8. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Children's (Pediatric) Nuclear Medicine? What are some common uses of the procedure? How does the nuclear medicine procedure work? What does the equipment look like? How is ...

  9. A concise guide to nuclear medicine

    CERN Document Server

    Elgazzar, Abdelhamid H

    2011-01-01

    Nuclear medicine is an important component of modern medicine. This easy-to-use book is designed to acquaint readers with the basic principles of nuclear medicine, the instrumentation used, the gamut of procedures available, and the basis for selecting specific diagnostic or therapeutic procedures and interpreting results. After an introductory chapter on the history, technical basis, and scope of nuclear medicine, a series of chapters are devoted to the application of nuclear medicine techniques in the different body systems. In addition, the use of nuclear medicine methods within oncology is

  10. Nuclear medicine statistics

    International Nuclear Information System (INIS)

    Martin, P.M.

    1977-01-01

    Numerical description of medical and biologic phenomena is proliferating. Laboratory studies on patients now yield measurements of at least a dozen indices, each with its own normal limits. Within nuclear medicine, numerical analysis as well as numerical measurement and the use of computers are becoming more common. While the digital computer has proved to be a valuable tool for measurment and analysis of imaging and radioimmunoassay data, it has created more work in that users now ask for more detailed calculations and for indices that measure the reliability of quantified observations. The following material is presented with the intention of providing a straight-forward methodology to determine values for some useful parameters and to estimate the errors involved. The process used is that of asking relevant questions and then providing answers by illustrations. It is hoped that this will help the reader avoid an error of the third kind, that is, the error of statistical misrepresentation or inadvertent deception. This occurs most frequently in cases where the right answer is found to the wrong question. The purposes of this chapter are: (1) to provide some relevant statistical theory, using a terminology suitable for the nuclear medicine field; (2) to demonstrate the application of a number of statistical methods to the kinds of data commonly encountered in nuclear medicine; (3) to provide a framework to assist the experimenter in choosing the method and the questions most suitable for the experiment at hand; and (4) to present a simple approach for a quantitative quality control program for scintillation cameras and other radiation detectors

  11. Converting energy to medical progress [nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-04-01

    For over 50 years the Office of Biological and Environmental Research (BER) of the United States Department of Energy (DOE) has been investing to advance environmental and biomedical knowledge connected to energy. The BER Medical Sciences program fosters research to develop beneficial applications of nuclear technologies for medical diagnosis and treatment of many diseases. Today, nuclear medicine helps millions of patients annually in the United States. Nearly every nuclear medicine scan or test used today was made possible by past BER-funded research on radiotracers, radiation detection devices, gamma cameras, PET and SPECT scanners, and computer science. The heart of biological research within BER has always been the pursuit of improved human health. The nuclear medicine of tomorrow will depend greatly on today's BER-supported research, particularly in the discovery of radiopharmaceuticals that seek specific molecular and genetic targets, the design of advanced scanners needed to create meaningful images with these future radiotracers, and the promise of new radiopharmaceutical treatments for cancers and genetic diseases.

  12. Converting energy to medical progress [nuclear medicine

    International Nuclear Information System (INIS)

    2001-01-01

    For over 50 years the Office of Biological and Environmental Research (BER) of the United States Department of Energy (DOE) has been investing to advance environmental and biomedical knowledge connected to energy. The BER Medical Sciences program fosters research to develop beneficial applications of nuclear technologies for medical diagnosis and treatment of many diseases. Today, nuclear medicine helps millions of patients annually in the United States. Nearly every nuclear medicine scan or test used today was made possible by past BER-funded research on radiotracers, radiation detection devices, gamma cameras, PET and SPECT scanners, and computer science. The heart of biological research within BER has always been the pursuit of improved human health. The nuclear medicine of tomorrow will depend greatly on today's BER-supported research, particularly in the discovery of radiopharmaceuticals that seek specific molecular and genetic targets, the design of advanced scanners needed to create meaningful images with these future radiotracers, and the promise of new radiopharmaceutical treatments for cancers and genetic diseases

  13. White paper of nuclear medicine

    International Nuclear Information System (INIS)

    2012-10-01

    This document aims at proposing a synthetic presentation of nuclear medicine in France (definition, strengths and weaknesses, key figures about practices and the profession, stakes for years to come), a description of the corresponding education (speciality definition, abilities and responsibilities, diploma content, proposition by the European Society of Radiology and by the CNIPI, demography of the profession), and an overview of characteristics of nuclear medicine (radio-pharmacy, medical physics, paramedical personnel in nuclear medicine, hybrid imagery, therapy, relationships with industries of nuclear medicine, relationships with health authorities)

  14. Asian School of Nuclear Medicine

    International Nuclear Information System (INIS)

    Sundram, F.X.

    2007-01-01

    A number of organisations are involved in the field of nuclear medicine education. These include International Atomic Energy Agency (IAEA), World Federation of Nuclear Medicine and Biology (WFNMB), Asia-Oceania Federation of Nuclear Medicine and Biology (AOFNMB), Society of Nuclear Medicine (SNM in USA), European Association of Nuclear Medicine (EANM). Some Universities also have M.Sc courses in Nuclear Medicine. In the Asian Region, an Asian Regional Cooperative Council for Nuclear Medicine (ARCCNM) was formed in 2000, initiated by China, Japan and Korea, with the main aim of fostering the spread of Nuclear Medicine in Asia. The Asian School of Nuclear Medicine (ASNM) was formed in February 2003, with the ARCCNM as the parent body. The Aims of ASNM are: to foster Education in Nuclear Medicine among the Asian countries, particularly the less developed regions; to promote training of Nuclear Medicine Physicians in cooperation with government agencies, IAEA and universities and societies; to assist in national and regional training courses, award continuing medical education (CME) points and provide regional experts for advanced educational programmes; and to work towards awarding of diplomas or degrees in association with recognised universities by distance learning and practical attachments, with examinations. There are 10 to 12 teaching faculty members from each country comprising of physicists, radio pharmacists as well as nuclear medicine physicians. From this list of potential teaching experts, the Vice-Deans and Dean of ASNM would then decide on the 2 appropriate teaching faculty member for a given assignment or a course in a specific country. The educational scheme could be in conjunction with the ARCCNM or with the local participating countries and their nuclear medicine organisations, or it could be a one-off training course in a given country. This teaching faculty is purely voluntary with no major expenses paid by the ASNM; a token contribution could be

  15. Nuclear medicine radiation dosimetry

    CERN Document Server

    McParland, Brian J

    2010-01-01

    Complexities of the requirements for accurate radiation dosimetry evaluation in both diagnostic and therapeutic nuclear medicine (including PET) have grown over the past decade. This is due primarily to four factors: growing consideration of accurate patient-specific treatment planning for radionuclide therapy as a means of improving the therapeutic benefit, development of more realistic anthropomorphic phantoms and their use in estimating radiation transport and dosimetry in patients, design and use of advanced Monte Carlo algorithms in calculating the above-mentioned radiation transport and

  16. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... are small, diagnostic nuclear medicine procedures result in low radiation exposure, acceptable for diagnostic exams. Thus, the radiation risk is very low compared with the potential benefits. Nuclear medicine diagnostic ...

  17. Fundamentals of nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Alazraki, N.P.; Mishkin, F.S.

    1988-01-01

    The book begins with basic science and statistics relevant to nuclear medicine, and specific organ systems are addressed in separate chapters. A section of the text also covers imaging of groups of disease processes (eg, trauma, cancer). The authors present a comparison between nuclear medicine techniques and other diagnostic imaging studies. A table is given which comments on sensitivities and specificities of common nuclear medicine studies. The sensitivities and specificities are categorized as very high, high, moderate, and so forth.

  18. Fundamentals of nuclear medicine

    International Nuclear Information System (INIS)

    Alazraki, N.P.; Mishkin, F.S.

    1988-01-01

    The book begins with basic science and statistics relevant to nuclear medicine, and specific organ systems are addressed in separate chapters. A section of the text also covers imaging of groups of disease processes (eg, trauma, cancer). The authors present a comparison between nuclear medicine techniques and other diagnostic imaging studies. A table is given which comments on sensitivities and specificities of common nuclear medicine studies. The sensitivities and specificities are categorized as very high, high, moderate, and so forth

  19. Coordination compounds in nuclear medicine

    International Nuclear Information System (INIS)

    Jurisson, S.; Berning, D.; Wei Jia; Dangshe Ma

    1993-01-01

    Radiopharmaceuticals, drugs containing a radionuclide, are used routinely in nuclear medicine departments for the diagnosis of disease and are under investigation for use in the treatment of disease. Nuclear medicine takes advantage of both the nuclear properties of the radionuclide and the pharmacological properties of the radiopharmaceutical. Herein lies the real strength of nuclear medicine, the ability to monitor biochemical and physiological functions in vivo. This review discusses the coordination chemistry that forms the basis for nuclear medicine applications of the FDA-approved radiopharmaceuticals that are in clinical use, and of the most promising diagnostic and therapeutic radiopharmaceuticals that are in various stages of development. 232 refs

  20. Neutron use in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Guidez, J.; May, R.; Moss, R. [HFR-Unit, European Commission, IAM, Petten (Netherlands); Askienazy, S. [Departement Central de Medicine Nucleaire et Biophysique, Saint Antoine Hospital, Paris (France); Hildebrand, J. [Neurology Department, Erasmus Hospital, Brussels (Belgium)

    1999-07-01

    Neutrons produced by research reactors are being used in nuclear medicine and other medical applications in several ways. The High Flux Reactor (HFR) based in Petten (The Netherlands), owned by the European Commission, has been working increasingly in this field of health care for the European citizen. On the basis of this experience, a survey has been carried out on the main possibilities of neutrons used in nuclear medicine. The most important and most well known is the production of radioisotopes for diagnosis and therapy. Ten million patients receive nuclear medicine in Europe each year, with more than 8 million made with the products issued from research reactors. The survey of the market and the techniques (cyclotron, PET) shows that this market will continue to increase in the future. The direct use of reactors in medicine is actually made by the Boron Neutron capture Therapy (BNCT) for the treatment of glioblastoma, which kills about 15.000 people in Europe each year. For this promising technique, HFR is the most advanced for experimental possibilities and treatment studies. Medical research is also made in other promising fields: the use beam tubes for characterizing of prostheses and bio-medical materials, alpha-immuno therapy products, new types of radioisotopes, new types of illness to be treated by BNCT, etc. (author)

  1. Neutron use in nuclear medicine

    International Nuclear Information System (INIS)

    Guidez, J.; May, R.; Moss, R.; Askienazy, S.; Hildebrand, J.

    1999-01-01

    Neutrons produced by research reactors are being used in nuclear medicine and other medical applications in several ways. The High Flux Reactor (HFR) based in Petten (The Netherlands), owned by the European Commission, has been working increasingly in this field of health care for the European citizen. On the basis of this experience, a survey has been carried out on the main possibilities of neutrons used in nuclear medicine. The most important and most well known is the production of radioisotopes for diagnosis and therapy. Ten million patients receive nuclear medicine in Europe each year, with more than 8 million made with the products issued from research reactors. The survey of the market and the techniques (cyclotron, PET) shows that this market will continue to increase in the future. The direct use of reactors in medicine is actually made by the Boron Neutron capture Therapy (BNCT) for the treatment of glioblastoma, which kills about 15.000 people in Europe each year. For this promising technique, HFR is the most advanced for experimental possibilities and treatment studies. Medical research is also made in other promising fields: the use beam tubes for characterizing of prostheses and bio-medical materials, alpha-immuno therapy products, new types of radioisotopes, new types of illness to be treated by BNCT, etc. (author)

  2. Code of practice for radiation protection in nuclear medicine

    International Nuclear Information System (INIS)

    Hamed, M. I.

    2010-05-01

    In aim of this study was to develop a draft for a new code practice for radiation protection in nuclear medicine that meets the current relevant international recommendation. The draft includes the following main fields: methods of radiation protection for workers, patients and public. Also, the principles of safe design of nuclear medicine departments, quality assurance program, proper manipulation of radiation sources including radioactive waste and emergency preparedness and response. The practical part of this study includes inspections of three nuclear medicine departments available in Sudan so as to assess the degree of compliance of those departments with what is stated in this code. The inspection missions have been conducted using a checklist that addresses all items that may affect radiation raincoat issues in addition to per formin area radiation monitoring around the installation of the radioactive sources. The results of this revealed that most of the departments do not have effective radiation protection program which in turn could lead to unnecessary exposure to patients, public and workers. Finally, some recommendations are given that - if implemented - could improve the status of radiation protection in nuclear medicine department. (Author)

  3. Digital Nuclear Medicine

    International Nuclear Information System (INIS)

    Erickson, J.J.; Rollo, F.D.

    1982-01-01

    This book is meant ''to provide the most comprehensive presentation of the technical as well as clincial aspects of computerized nuclear medicine''. It covers basic applications, and advice on acquisition and quality control of nuclear medicine computer systems. The book evolved from a series of lectures given by the contributors during the computer preceptorship program at their institution, Vanderbilt University in Nashville

  4. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Because nuclear medicine procedures are able to pinpoint molecular activity within the body, they offer the potential ... or imaging device that produces pictures and provides molecular information. In many centers, nuclear medicine images can ...

  5. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... child is taking as well as vitamins and herbal supplements and if he or she has any ... What are the limitations of Children's (Pediatric) Nuclear Medicine? Nuclear medicine procedures can be time consuming. It ...

  6. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... MRI. top of page What are some common uses of the procedure? Children's (pediatric) nuclear medicine imaging ... at birth) or that develop during childhood. Physicians use nuclear medicine imaging to evaluate organ systems, including ...

  7. Patient protection in nuclear medicine due to optimization of the administered activity

    International Nuclear Information System (INIS)

    Perez Diaz, M.; Diaz Rizo, O.; Khouri, H. J.

    2011-01-01

    The possibility of a radiological risk reduction in Nuclear Medicine patients is studied through the reduced absorbed doses in organs and tissues, and whole-body effective dose due to optimization of the administered radionuclide activities. Activity values, optimized for equipments and radiopharmaceuticals available in Cuba, are compared with the IAEA recommended values and with the routinary activities in medical practice. All doses were calculated using MIRDOSE 3.0 code for each activity and medical assay. The activity optimization permits to reduce in a 50% the doses administered to patients of the major part of studied medical assays. (Author)

  8. In vivo mutagenicity and clastogenicity of ionizing radiation in nuclear medicine

    International Nuclear Information System (INIS)

    Kelsey, K.T.

    1991-01-01

    The overall goal of our research was to investigate the mutagenic and clastogenic effects of exposure to low levels of ionizing radiation to human lymphocytes. Principally, we studied hospital patients referred to a nuclear medicine department for diagnostic cardiac imaging and nuclear medicine technologists who administer radionuclides. Emphasis in the first year, as described in the first progress report, was on optimization of the hprt mutation assay, measurement of mutant frequencies in patients imaged with thallium-201, and measurement of mutant frequencies in controls. Emphasis in the second and third years was on measurements of: (1) chromosome aberrations in patients imaged with thallium-201; (2) mutant frequencies in patients imaged with technetium-99; (3) mutant frequencies in nuclear medicine technicians and physical therapists; and (4) mutant frequencies in patients treated for Hodgkins disease with radiotherapy. The completed work has been published and is described below in more detail

  9. Patient dose assessment in different diagnostic procedures in nuclear medicine

    International Nuclear Information System (INIS)

    Sena, E. de; Bejar, M.J.; Berenguer, R.; Ruano, R.; Tamayo, P.

    2001-01-01

    Effective doses have been estimated for 314 patients under diagnostic procedures in a Nuclear Medicine Department using data reported in ICRP-80 and RIDIC (Radiation Internal Dose Information Center). Data on administered activity, radiopharmaceutical and administration route, age and sex of the patients have been collected. Doses in the most exposed critical organ for every protocol, doses in uterus, doses in fetus versus the stage of pregnancy (in case the female patient was pregnant) and doses for nursing infants have been also estimated. Ga-67 studies give the highest effective doses per protocol followed by cardiac SPECT procedures using Tl-201 chloride. Ga-67 studies also give the highest absorbed doses in uterus. Due to not administering different activities, depending on height and weight of adults, women receive doses about 20% higher than men. This would be a practice to modify in the future in order to optimise doses. (author)

  10. Patient dose assessment in different diagnostic procedures in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Sena, E de; Bejar, M J; Berenguer, R [Servicio de Radiofisica y Proteccion Radiologica, Salamanca (Spain); Ruano, R; Tamayo, P [Servicio de Medicina Nuclear, Hospital Universitario de Salamanca (Spain)

    2001-03-01

    Effective doses have been estimated for 314 patients under diagnostic procedures in a Nuclear Medicine Department using data reported in ICRP-80 and RIDIC (Radiation Internal Dose Information Center). Data on administered activity, radiopharmaceutical and administration route, age and sex of the patients have been collected. Doses in the most exposed critical organ for every protocol, doses in uterus, doses in fetus versus the stage of pregnancy (in case the female patient was pregnant) and doses for nursing infants have been also estimated. Ga-67 studies give the highest effective doses per protocol followed by cardiac SPECT procedures using Tl-201 chloride. Ga-67 studies also give the highest absorbed doses in uterus. Due to not administering different activities, depending on height and weight of adults, women receive doses about 20% higher than men. This would be a practice to modify in the future in order to optimise doses. (author)

  11. Handbooks in radiology: Nuclear medicine

    International Nuclear Information System (INIS)

    Datz, F.L.

    1988-01-01

    This series of handbooks covers the basic facts, major concepts and highlights in seven radiological subspecialties. ''Nuclear Medicine'' is a review of the principles, procedures and clinical applications that every radiology resident and practicing general radiologist should know about nuclear medicine. Presented in an outline format it covers all of the organ systems that are imaged by nuclear medicine

  12. Basic Physics for Nuclear Medicine. Chapter 1

    Energy Technology Data Exchange (ETDEWEB)

    Podgorsak, E. B. [Department of Medical Physics, McGill University, Montreal (Canada); Kesner, A. L. [Division of Human Health, International Atomic Energy Agency, Vienna (Austria); Soni, P. S. [Medical Cyclotron Facility, Board of Radiation and Isotope Technology, Bhabha Atomic Research Centre, Mumbai (India)

    2014-12-15

    The technologies used in nuclear medicine for diagnostic imaging have evolved over the last century, starting with Röntgen’s discovery of X rays and Becquerel’s discovery of natural radioactivity. Each decade has brought innovation in the form of new equipment, techniques, radiopharmaceuticals, advances in radionuclide production and, ultimately, better patient care. All such technologies have been developed and can only be practised safely with a clear understanding of the behaviour and principles of radiation sources and radiation detection. These central concepts of basic radiation physics and nuclear physics are described in this chapter and should provide the requisite knowledge for a more in depth understanding of the modern nuclear medicine technology discussed in subsequent chapters.

  13. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Tell your doctor about your child’s recent illnesses, medical conditions, medications and allergies. Depending on the type ... Nuclear Medicine? Nuclear medicine is a branch of medical imaging that uses small amounts of radioactive material ...

  14. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Nuclear Medicine Children’s (pediatric) nuclear medicine imaging uses small amounts of radioactive materials called radiotracers, a special ... is a branch of medical imaging that uses small amounts of radioactive material to diagnose and determine ...

  15. Radiation doses for pediatric nuclear medicine studies: comparing the North American consensus guidelines and the pediatric dosage card of the European Association of Nuclear Medicine.

    Science.gov (United States)

    Grant, Frederick D; Gelfand, Michael J; Drubach, Laura A; Treves, S Ted; Fahey, Frederic H

    2015-04-01

    Estimated radiation dose is important for assessing and communicating the risks and benefits of pediatric nuclear medicine studies. Radiation dose depends on the radiopharmaceutical, the administered activity, and patient factors such as age and size. Most radiation dose estimates for pediatric nuclear medicine have not been based on administered activities of radiopharmaceuticals recommended by established practice guidelines. The dosage card of the European Association of Nuclear Medicine (EANM) and the North American consensus guidelines each provide recommendations of administered activities of radiopharmaceuticals in children, but there are substantial differences between these two guidelines. For 12 commonly performed pediatric nuclear medicine studies, two established pediatric radiopharmaceutical administration guidelines were used to calculate updated radiation dose estimates and to compare the radiation exposure resulting from the recommendations of each of the guidelines. Estimated radiation doses were calculated for 12 common procedures in pediatric nuclear medicine using administered activities recommended by the dosage card of the EANM (version 1.5.2008) and the 2010 North American consensus guidelines for radiopharmaceutical administered activities in pediatrics. Based on standard models and nominal age-based weights, radiation dose was estimated for typical patients at ages 1, 5, 10 and 15 years and adult. The resulting effective doses were compared, with differences greater than 20% considered significant. Following either the EANM dosage card or the 2010 North American guidelines, the highest effective doses occur with radiopharmaceuticals labeled with fluorine-18 and iodine-123. In 24% of cases, following the North American consensus guidelines would result in a substantially higher radiation dose. The guidelines of the EANM dosage card would lead to a substantially higher radiation dose in 39% of all cases, and in 62% of cases in which patients

  16. Radiation doses for pediatric nuclear medicine studies: comparing the North American consensus guidelines and the pediatric dosage card of the European Association of Nuclear Medicine

    International Nuclear Information System (INIS)

    Grant, Frederick D.; Drubach, Laura A.; Treves, S. Ted; Fahey, Frederic H.; Gelfand, Michael J.

    2015-01-01

    Estimated radiation dose is important for assessing and communicating the risks and benefits of pediatric nuclear medicine studies. Radiation dose depends on the radiopharmaceutical, the administered activity, and patient factors such as age and size. Most radiation dose estimates for pediatric nuclear medicine have not been based on administered activities of radiopharmaceuticals recommended by established practice guidelines. The dosage card of the European Association of Nuclear Medicine (EANM) and the North American consensus guidelines each provide recommendations of administered activities of radiopharmaceuticals in children, but there are substantial differences between these two guidelines. For 12 commonly performed pediatric nuclear medicine studies, two established pediatric radiopharmaceutical administration guidelines were used to calculate updated radiation dose estimates and to compare the radiation exposure resulting from the recommendations of each of the guidelines. Estimated radiation doses were calculated for 12 common procedures in pediatric nuclear medicine using administered activities recommended by the dosage card of the EANM (version 1.5.2008) and the 2010 North American consensus guidelines for radiopharmaceutical administered activities in pediatrics. Based on standard models and nominal age-based weights, radiation dose was estimated for typical patients at ages 1, 5, 10 and 15 years and adult. The resulting effective doses were compared, with differences greater than 20% considered significant. Following either the EANM dosage card or the 2010 North American guidelines, the highest effective doses occur with radiopharmaceuticals labeled with fluorine-18 and iodine-123. In 24% of cases, following the North American consensus guidelines would result in a substantially higher radiation dose. The guidelines of the EANM dosage card would lead to a substantially higher radiation dose in 39% of all cases, and in 62% of cases in which patients

  17. Nuclear Medicine Annual, 1989

    International Nuclear Information System (INIS)

    Freeman, L.M.; Weissmann, H.S.

    1989-01-01

    Among the highlights of Nuclear Medicine Annual, 1989 are a status report on the thyroid scan in clinical practice, a review of functional and structural brain imaging in dementia, an update on radionuclide renal imaging in children, and an article outlining a quality assurance program for SPECT instrumentation. Also included are discussions on current concepts in osseous sports and stress injury scintigraphy and on correlative magnetic resonance and radionuclide imaging of bone. Other contributors assess the role of nuclear medicine in clinical decision making and examine medicolegal and regulatory aspects of nuclear medicine

  18. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Nuclear Medicine? Nuclear medicine is a branch of medical imaging that uses small amounts of radioactive material to ... a radiologist or other physician. To locate a medical imaging or radiation oncology provider in your community, you ...

  19. Radiation Dose to Patients and Medical Staff in Different Procedures of Nuclear Medicine

    International Nuclear Information System (INIS)

    Dimcheva, M.; Sergieva, S.

    2015-01-01

    The aim of this study is to provide information on developing technologies and clinical techniques for Hybrid SPECT/CT imaging using ionizing radiation and their associated radiation dose to patients and medical staff. A thermoluminescent dosimeters (TLD) was used in this study to analyze the historic records of the external radiation doses to staff members working in our nuclear medicine department in 7 procedures, including elution of 99mTc from "9"9"mMo/"9"9"mTc generators, syringe preparation, radiopharmacy kit preparation, injection, accompanying patients, SPECT/CT scan, oral "1"3"1I preparation. These dosimeters was worn by the staff members at the level of the chest on the front part of the body. A retrospective review of 110 clinical studies of various nuclear medicine procedures ("9"9"mTc–MIBI–Tetrofosmin, "9"9"mTc–MDP bone scan, "9"9"mTc–Tektrotyd, "9"9"mTc–Thyroid imaging, "9"9"mTc–Nanocoll, "1"3"1I–Nal (diagnostic application 185 MBq) obtained on hybrid SPECT/CT systems was performed to calculate the effective radiation dose to patients. The results from this study showed that annual effective radiation doses to nuclear medicine department staff members were within permissible levels. The contribution of total effective radiation dose from SPECT component were calculated using the activity of the injected radiopharmaceutical and dose tables published by the conversion factors listed in ICRP 53 and ICRP 80. The radiation dose for CT was calculated by Dose Length Product method. According to the results of this study the dose in each procedure depends on different factors such as the education and experience of the staff members, usage of shielding and taking the radiation protection requirements into consideration. When SPECT–CT is being performed, all measures should be taken to reduce both the radiopharmaceutical dose and the CT effective dose following the ALARA principle. (author)

  20. Nuclear medicine. 1 part. Manual

    International Nuclear Information System (INIS)

    Shlygina, O.E.; Borisenko, A.R.

    2006-01-01

    Current manual is urged to give wide-scale readers a submission on a key principles and methods of nuclear medicine, and it opportunities and restrictions in diagnostics and treatment of different diseases. Nuclear medicine is differing first of all by combination of diverse knowledge fields: special knowledge of a doctor, knowledge of physical processes bases, related with radiation, grounds of radiopharmaceutics, dosimetry. In the base of the book the 5th edition of 'Nuclear medicine' manual in 2 parts of German authors - Schicha, G.; Schober, O. is applied. In the book publishing the stuff of the Institute of Nuclear Physics of the National Nuclear Center of Republic of Kazakhstan has been worked. Modifications undergo practically all chapters: especially the second one, forth and sixth was enlarged. The 1 part of the book was published due to support of IAEA within the Technical cooperation project 'Implementation of Nuclear Medicine and Biophysics Center' (KAZ/6/007). The manual second part - devoted to applications of nuclear medicine methods for diagnostics and treatment - will be published in 2007

  1. Veterinary nuclear medicine

    International Nuclear Information System (INIS)

    Kallfelz, F.A.; Comar, C.L.; Wentworth, R.A.

    1974-01-01

    A brief review is presented of the expanding horizons of nuclear medicine, the equipment necessary for a nuclear medicine laboratory is listed, and the value of this relatively new field to the veterinary clinician is indicated. Although clinical applications to veterinary medicine have not kept pace with those of human medicine, many advances have been made, particularly in the use of in vitro techniques. Areas for expanded applications should include competitive protein binding and other in vitro procedures, particularly in connection with metabolic profile studies. Indicated also is more intensive application by the veterinarian of imaging procedures, which have been found to be of such great value to the physician. (U.S.)

  2. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... What are some common uses of the procedure? Children's (pediatric) nuclear medicine imaging is performed to help diagnose childhood disorders that are congenital (present at birth) or that develop during childhood. Physicians use nuclear medicine imaging to ...

  3. Nuclear energy and medicine

    International Nuclear Information System (INIS)

    1988-01-01

    The applications of nuclear energy on medicine, as well as the basic principles of these applications, are presented. The radiological diagnosis, the radiotherapy, the nuclear medicine, the radiological protection and the production of radioisotopes are studied. (M.A.C.) [pt

  4. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... referring physician. top of page What are the benefits vs. risks? Benefits The information provided by nuclear medicine examinations is ... risk is very low compared with the potential benefits. Nuclear medicine diagnostic procedures have been used for ...

  5. Radiosanitary control in nuclear medicine

    International Nuclear Information System (INIS)

    Degrossi, O.J.

    1987-01-01

    Nuclear Medicine has recently modified radiosanitary control standards for the three sectors involved: patients, personnel and general population. Nuclear Medicine does not constitute an important source of radiation, including patients and population, compared with radiology. The basic problems of radiosanitary controls are: the absorbed dose and the patient. Low risk deferred stochastic effects may appear with correct use of these controls. On the other hand, risk of stochastic consequences and non stochastic complications appear with incorrect applications. The following aspects should be considered for correct uses: A-1- The critical organ, which is not always the one under study. 2-The rest of the organism, specially the more sensitive organs. B- The radiopharmaceutical used, considering the following periods: physical, biological and effective. C-Technical and human resources that include quality control for the equipment. Radiosanitary control aims at a common objetive: dose limitation to the patient, personnel and general population. For this, it is necessary to accomplish the training programme for proffesional and technical personnel about quality control and to stablish basic standards for the equipment. Current law and regulations assign to the National Atomic Energy Comission the responsibility for controlling the use of radioisotopes and radiations in order to safeguard the health and life of the population. (M.E.L.) [es

  6. [In vivo mutagenicity and clastogenicity of ionizing radiation in nuclear medicine

    International Nuclear Information System (INIS)

    1989-01-01

    The overall goals of our research remains to investigate the mutagenic and clastogenic effects of exposure to low levels of ionizing radiation in human lymphocytes. We are studying hospital patients referred to a nuclear medicine department for diagnostic cardiac imaging and nuclear medicine technologists who administer radionuclides

  7. Radiation dosimetry in nuclear medicine

    International Nuclear Information System (INIS)

    Stabin, M.G.; Tagesson, M.; Ljungberg, M.; Strand, S.E.; Thomas, S.R.

    1999-01-01

    Radionuclides are used in nuclear medicine in a variety of diagnostic and therapeutic procedures. A knowledge of the radiation dose received by different organs in the body is essential to an evaluation of the risks and benefits of any procedure. In this paper, current methods for internal dosimetry are reviewed, as they are applied in nuclear medicine. Particularly, the Medical Internal Radiation Dose (MIRD) system for dosimetry is explained, and many of its published resources discussed. Available models representing individuals of different age and gender, including those representing the pregnant woman are described; current trends in establishing models for individual patients are also evaluated. The proper design of kinetic studies for establishing radiation doses for radiopharmaceuticals is discussed. An overview of how to use information obtained in a dosimetry study, including that of the effective dose equivalent (ICRP 30) and effective dose (ICRP 60), is given. Current trends and issues in internal dosimetry, including the calculation of patient-specific doses and in the use of small scale and microdosimetry techniques, are also reviewed

  8. Comprehensive Auditing in Nuclear Medicine Through the International Atomic Energy Agency Quality Management Audits in Nuclear Medicine (QUANUM) Program. Part 1: the QUANUM Program and Methodology.

    Science.gov (United States)

    Dondi, Maurizio; Torres, Leonel; Marengo, Mario; Massardo, Teresa; Mishani, Eyal; Van Zyl Ellmann, Annare; Solanki, Kishor; Bischof Delaloye, Angelika; Lobato, Enrique Estrada; Miller, Rodolfo Nunez; Paez, Diana; Pascual, Thomas

    2017-11-01

    An effective management system that integrates quality management is essential for a modern nuclear medicine practice. The Nuclear Medicine and Diagnostic Imaging Section of the International Atomic Energy Agency (IAEA) has the mission of supporting nuclear medicine practice in low- and middle-income countries and of helping them introduce it in their health-care system, when not yet present. The experience gathered over several years has shown diversified levels of development and varying degrees of quality of practice, among others because of limited professional networking and limited or no opportunities for exchange of experiences. Those findings triggered the development of a program named Quality Management Audits in Nuclear Medicine (QUANUM), aimed at improving the standards of NM practice in low- and middle-income countries to internationally accepted standards through the introduction of a culture of quality management and systematic auditing programs. QUANUM takes into account the diversity of nuclear medicine services around the world and multidisciplinary contributions to the practice. Those contributions include clinical, technical, radiopharmaceutical, and medical physics procedures. Aspects of radiation safety and patient protection are also integral to the process. Such an approach ensures consistency in providing safe services of superior quality to patients. The level of conformance is assessed using standards based on publications of the IAEA and the International Commission on Radiological Protection, and guidelines from scientific societies such as Society of Nuclear Medicine and Molecular Imaging (SNMMI) and European Association of Nuclear Medicine (EANM). Following QUANUM guidelines and by means of a specific assessment tool developed by the IAEA, auditors, both internal and external, will be able to evaluate the level of conformance. Nonconformances will then be prioritized and recommendations will be provided during an exit briefing. The

  9. Radioisotopes in nuclear medicine

    International Nuclear Information System (INIS)

    Samuel, A.M.

    2002-01-01

    Full text: A number of advances in diverse fields of science and technology and the fruitful synchronization of many a new development to address the issues related to health care in terms of prognosis and diagnosis resulted in the availability of host of modern diagnostic tools in medicine. Nuclear medicine, a unique discipline in medicine is one such development, which during the last four decades has seen exponential growth. The unique contribution of this specialty is the ability to examine the dynamic state of every organ of the body with the help of radioactive tracers. This tracer application in nuclear medicine to monitor the biological molecules that participate in the dynamic state of body constituents has led to a whole new approach to biology and medicine. No other technique has the same level of sensitivity and specificity as obtained in radiotracer technique in the study of in-situ chemistry of body organs. As modem medicine becomes oriented towards molecules rather than organs, nuclear medicine will be in the forefront and will become an integral part of a curative process for regular and routine application. Advances in nuclear medicine will proceed along two principal lines: (i) the development of improved sensitive detectors of radiation, powerful and interpretable data processing, image analysis and display techniques, and (ii) the production of exotic and new but useful radiopharmaceuticals. All these aspects are dealt with in detail in this talk

  10. Involvement of WHO in the improvement of nuclear medicine in developing countries

    International Nuclear Information System (INIS)

    Souchkevitch, G.N.

    1986-01-01

    The World Health Organization's programme on nuclear medicine deals with the organization of nuclear medicine services, the training of personnel, the efficacy and efficiency of nuclear medicine, and quality assurance in nuclear medicine, instrumentation and radiopharmaceuticals. An analysis of the present situation in diagnostic imaging shows that new techniques and especially ultrasonography (US) may successfully compete with nuclear medicine. WHO is therefore concerned to stimulate objective evaluations of the appropriate role of each diagnostic imaging technology and to make relevant recommendations. In diagnostic nuclear medicine, the following main objectives are included in the WHO strategy: to restrict diagnostic nuclear medicine to those diseases where it cannot be substituted by other less costly and complicated methods; to decrease the cost of diagnostic procedures; and to prevent radiation hazard to patients, personnel and the public from the expanded use of radiopharmaceuticals. In the developing world this strategy may be carried out in two stages: (1) implementation of US in diagnostic services and the initiation of a comparative study of the diagnostic value of US and nuclear medicine imaging techniques in common diseases; (2) working out appropriate recommendations on a rational approach in imaging diagnostics and substitution of nuclear medicine by US in appropriate areas. The Intercomparison Study on Quality Performance of Nuclear Medicine Imaging Devices, established by WHO jointly with the International Atomic Energy Agency, and the organization of training workshops are examples of a successful approach to quality improvement in nuclear medicine in developing countries. (author)

  11. Patient and staff dose optimisation in nuclear medicine diagnosis methods

    International Nuclear Information System (INIS)

    Marta Wasilewska-Radwanska; Katarzyna Natkaniec

    2007-01-01

    Complete test of publication follows. The implementation of the Basic Safety Standards (BSS) Directive 96/29 on the protection of workers and general population against the danger arising from ionising radiation and the Directive 97/43 on health protection of individuals against dangers of ionising radiation in relation to medical exposure, known as the Medical Exposure Directive (MED), they started in Poland some years ago with the Polish Atomic Law and executive orders published by the Polish Government and Polish Health Minister. Poland's Government has applied for several years transitory period to complete implementation of the Directive 97/43/Euratom because of the technical, organising and economical problems related with this procedure. The most important task has arisen to prepare procedures according with the current state of knowledge in the area of Quality Assurance (QA) and Quality Control (QC) of medical equipment using ionising radiation in diagnosis. QA and QC in X-ray diagnosis equipment started to be introduced since several years ago and nowadays they are put in common practice in almost each X-ray laboratory in Poland. As result, the nuclear medicine departments must follows the new legislation which has imposed also obligatory necessity of regular Quality Assurance and Quality Control of equipment and procedures for preparing and using radiopharmaceuticals. Documentation for QA system in nuclear medicine includes, among others, quality book, general procedures applied in diagnosis, description of specific procedures prepared in accordance with the rules in current legislation. The physical parameters of equipment (gamma camera, SPECT) undergo the basic tests and some special ones. The basic tests are carried out by staff of the nuclear medicine department. Units with accreditation perform special tests annually. The basic test for planar gamma camera includes: measurement of radioactivity, measurement of background, estimation of photons energy

  12. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... resume his/her normal activities after the nuclear medicine scan. If the child has been sedated, you will receive specific instructions ... usually mild. Nevertheless, you should inform the nuclear medicine personnel of any allergies your child may have or other problems that may have ...

  13. Nuclear medicine in Tunisia : current status and prospects

    International Nuclear Information System (INIS)

    Hammami, Hatem

    2013-01-01

    Nuclear medicine is concerned with the utilisation of radioactivity in vivo or in vitro for diagnostic or therapeutic purposes. In Tunisia, there are four public departments of nuclear medicine and seven private clinics. 50% of the population is localized in the north, which justifies the existence of 7 public and private departments of nuclear medicine with nine gamma cameras in this region. In the south, there are 30 pour cent of the population that goes to Sfax and 20 pour cent to Sousse where we count two departments with gamma cameras in public services and one in the private sector. The nuclear medicine services in the public sector have 4 SPECT / CT. Siemens is the leading provider of gamma cameras and occupies 73 pour cent of market share, subsequently ranks SMV (13 pour cent) and (GE and GAEDE) have the same proportion of the market share (7 pour cent). For radio-protected rooms, there is a single center with a single chamber from four public services. On the other hand, there are 2/7 private centers that are equipped with five radio-protected electrically rooms. Concerning the human resources, there are 26 doctors and 24 technicians in the public sector. The private sector has 6 doctors and 12 technicians. In 2012, there has been 22000 examinations (diagnostic and therapeutic procedures) in which 14,600 in nuclear medicine departments of public hospitals. Bone scintigraphy ranks first, with a relative frequency of 40-80 pour cent thereafter ranks renal scintigraphy (10-15 pour cent) and then the thyroid scintigraphy (8-12 pour cent). The waiting period is a major problem, especially in the public sector. Taking as an example, for the therapy of thyroid, injection of 100 mCi of I-131 requires a period of waiting more than six months and waiting more than three months for the bone scan. The second problem for patient with cancer is the distance, there are 11 centers concentrated in 3 coastal cities and none in the inner areas of the country, no regional

  14. Automatization of the radiotherapy treatment at Nuclear Medicine Center

    International Nuclear Information System (INIS)

    Anjak, O.; Al'Bahra, E.; Kharita, M.H.

    2007-01-01

    NMC Program for Automatization of the radiotherapy treatment at Nuclear Medicine Center. The program NMC written in Delphi 6. This program can be run under Windows XP as single and multi users. Program makes all necessary and required calculations for treatment time for patient who is under radiotherapy treatment in Nuclear Medicine Center by using Co-60 units. Also this program is perform statistical study for patients according to tumor type, Syrian City, sex, and age. Data is stored on disk files and then whenever should be displayed. Statistical data is displayed on the screen or printed in reports. (author)

  15. Radionuclides for nuclear medicine: a nuclear physicists' view

    Czech Academy of Sciences Publication Activity Database

    Cantone, M.; Haddad, F.; Harissopoulos, S.; Jensen, M.; Jokinen, A.; Koster, U.; Lebeda, Ondřej; Ponsard, B.; Ratzinger, U.; Stora, T.; Tarkanyi, F.; Van Duppen, P.

    2013-01-01

    Roč. 40, 2 Supplement (2013), S257-S257 ISSN 1619-7070. [Annual Congress of the European Association of Nuclear Medicine (EANM). 19.10.2013-23.10.2013, Lyon] Institutional support: RVO:61389005 Keywords : nuclear physics for medicine * EANM * medical radionuclides Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders

  16. Electronics Related to Nuclear Medicine Imaging Devices. Chapter 7

    Energy Technology Data Exchange (ETDEWEB)

    Ott, R. J. [Joint Department of Physics, Royal Marsden Hospital and Institute of Cancer Research, Surrey (United Kingdom); Stephenson, R. [Rutherford Appleton Laboratory, Oxfordshire (United Kingdom)

    2014-12-15

    Nuclear medicine imaging is generally based on the detection of X rays and γ rays emitted by radionuclides injected into a patient. In the previous chapter, the methods used to detect these photons were described, based most commonly on a scintillation counter although there are imaging devices that use either gas filled ionization detectors or semiconductors. Whatever device is used, nuclear medicine images are produced from a very limited number of photons, due mainly to the level of radioactivity that can be safely injected into a patient. Hence, nuclear medicine images are usually made from many orders of magnitude fewer photons than X ray computed tomography (CT) images, for example. However, as the information produced is essentially functional in nature compared to the anatomical detail of CT, the apparently poorer image quality is overcome by the nature of the information produced. The low levels of photons detected in nuclear medicine means that photon counting can be performed. Here each photon is detected and analysed individually, which is especially valuable, for example, in enabling scattered photons to be rejected. This is in contrast to X ray imaging where images are produced by integrating the flux entering the detectors. Photon counting, however, places a heavy burden on the electronics used for nuclear medicine imaging in terms of electronic noise and stability. This chapter will discuss how the signals produced in the primary photon detection process can be converted into pulses providing spatial, energy and timing information, and how this information is used to produce both qualitative and quantitative images.

  17. Nuclear medicine

    International Nuclear Information System (INIS)

    Reichelt, H.G.

    1980-01-01

    Nuclear medicine as a complex diagnostical method is used mainly to detect functional organic disorders, to locate disorders and for radioimmunologic assays (RIA) in vitro. In surgery, its indication range comprises the thyroid (in vivo and in vitro), liver and bile ducts, skeletal and joint diseases, disorders of the cerebro-spinal liquor system and the urologic disorders. In the early detection of tumors, the search for metastases and tumor after-care, scintiscanning and the tumor marcher method (CEA) can be of great practical advantage, but the value of myocardial sciritiscanning in cardiac respectively coronary disorders is restricted. The paper is also concerned with the radiation doses in nuclear medicine. (orig.) [de

  18. Misconceptions and misunderstandings about nuclear medicine; are we selling our wares properly (abstract)

    International Nuclear Information System (INIS)

    Durre-e-Sabih

    1998-01-01

    Nuclear Medicine is a powerful but unfamiliar if not esoteric modality. This is not taught in medical schools with the result that clinicians usually learn to use this 'on the job' and by 'word of mouth'. It is thus not surprising that many patients referred for a Nuclear medicine procedure have less than optimum indications for the test. This ties up Nuclear Medicine resources, causes a financial loss to the patient and the State (Nuclear Medicine is still heavily State subsidized) and delivers a radiation burden to a patient who might not benefit from it. This study was done to assess physicians perception of the usefulness of Nuclear Medicine procedures in specific medical conditions. 34 physicians, from both Medical (24) and surgical (10) specialists agreed to participate in this study. There were 6 consultants, 21 post-graduate residents and 7 graduate house officers. They were asked to grade from 1 to 5 (useless to most useful and essential) 46 conditions and 7 types of Nuclear Medicine procedures. The 4398 individual results were averaged to form 138 group results. These were then compared with our own impression of the usefulness of the procedures on the same scale. Our impression for each condition was then standardized to an arbitrary value of 5 and all responses were then corrected for this value. These results show that there was relative agreement (Our score of 5, physician score between 4-6 (-+ 20%) between our and the physicians understanding of the usefulness of these procedures in only 9 cases out of 46 (19%); with a more liberal criterion of - + 25% (score of 3.75-6.25) there was agreement in 16 out of 46 cases (35%). The purpose of the study was not to judge physicians knowledge but to highlight the lack of communication that exists between the Nuclear Medicine community in Multan and the clinical staff. It is our feeling that the situation in the rest of the country might be similar. If that is so, there is a tremendous opportunity of saving

  19. Misconceptions and misunderstandings about nuclear medicine: are we selling our wares properly? (abstract)

    International Nuclear Information System (INIS)

    Dure-e-Sabih

    1999-01-01

    Nuclear medicine is powerful but unfamiliar if not esoteric modality. This is not taught in medical schools with the result that clinicians usually learn to use this ''on the job word of mouth''. It is thus not surprising that many patients referred for a Nuclear Medicine procedure have less than optimum indication for the test. This ties up Nuclear Medicine resources, causes a financial loss to the patient and the State (Nuclear Medicine is still heavily State subsidized) and delivers a radiation burden to a patient who might not benefit from it. This study was done to assess physicians perception of the usefulness of nuclear Medicine procedures in specific medical conditions. 34 physicians, from both Medical (24) and surgical (10) specialists agreed to participate in this study. There were 6 consultants, 21 post-graduate residents and 7 graduates house officer. They were asked to grade from 1 to 5 (useless to most useful and essential) 46 conditions and 7 types of Nuclear Medicine procedures. The 4398 individual results were average to form 138 group results. These were than compared to our own impression of the usefulness of the procedures on the same scale. Out impression for each condition was then standardized to an arbitrary value of 5 and all responses were than corrected for this value. These results show that there was relative agreement (our score of 5, physician score between 4-6 (- +2%) between our and the physicians understanding of the usefulness of these procedures in only 9 cases out of 46 (19%); with a more liberal criterion of -+25% (score of 3.75-6.25) there was agreement in 16 out of 46 cases (35%). The purpose of the study was not to judge physicians knowledge but to highlight the lack of communication that exist between the Nuclear Medicine community in Multan and the clinical staff. It is our feeling that the situation in the rest of the country might be similar. If that is no there is a tremendous opportunity of saving scarce resources and

  20. European Association of Nuclear Medicine congress. Abstracts

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    To assess the exact place of nuclear medicine studies in the clinical environment in consensus with clinicians and radiologists will probably be our most important task during the coming year. Our society cannot afford unnecessary duplication of diagnostic tests but neither should our patients suffer from the failure to use procedures which could change the outcome of their illness or avoid unnecessary pain and costs because of ignorance, or even worse, self defence by larger and thus stronger pressure groups. Defeatism is as inappropriate as remaining in the splendid isolation of our professional and scientific organisations. There is no place for excessive humbleness either, most of the unnecessary procedures performed in modern medicine lie within the domain of other specialists. It is our duty to participate as actors in the thorough reappraisal of the medical, social and economic context of our activity in the interst of our field and our patients. By confronting our ideas and knowledge with those of others, by using our inventiveness to transfer important results from research laboratories to clinical practice and vice versa, by concentrating on the essential rather than pursuing all possible directions, we will be able to influence positively the future of nuclear medicine. There is no better way to develop our speciality than by understanding the clinical issues, by being able to communicate with our clinical partners and by performing common studies on the clinical impact, cost-efficiency and cost-benefit of nuclear medicine procedures. (orig./AJ)

  1. Evaluation of the use of a Business Intelligence system for management of patient radiation dose undergone to nuclear medicine exams

    International Nuclear Information System (INIS)

    Fischer, A.C.F.S.; Capaverde, A.S.; Moreira, M.N.; Moraes, A.L.; Andrade, J.R.M.; Bacelar, A.

    2017-01-01

    The feasibility of using a Business Intelligence (BI) system, IMPAX BI (Agfa), to manage the effective radiation dose of patients undergoing Nuclear Medicine exams was evaluated. The evaluation was divided into four stages, using retrospective data from the activity administered to adult patients in the year 2016. It was possible with the system to create panels to filter the data by date and display them in table and / or graphs, indicating the estimated doses and established limits. The IMPAX BI system proved to be a tool capable of assisting in dose management in Nuclear Medicine since it facilitates the identification of cases in which the patient is submitted to doses higher than those defined in the protocols of exams

  2. Nuclear medicine quality assurance program in Argentina

    International Nuclear Information System (INIS)

    Levi de Cabrejas, Mariana; Arashiro, Jorge G.; Giannone, Carlos A.

    1999-01-01

    A two steps program has been implemented: the first one is the quality control of the equipment and the second one the development of standard procedures for clinical studies of patients. A training program for doctors and technicians of the nuclear medicine laboratories was carried out. Workshops on instrumentation and quality assurance in nuclear medicine have been organized in several parts of the country. A joint program of the CNEA and the University of Buenos Aires has trained medical physicists. A method has been established to evaluate the capability of the laboratories to produce high quality images and to follow up the implementation of the quality control program

  3. The radiological protection in the nuclear medicine practice

    International Nuclear Information System (INIS)

    Maldonado M, H.

    2010-09-01

    The nuclear medicine practice dates of the 1950 years, in this work the achievements reached as regards radiological protection are shown, although even lack a lot to make, the doses for the occupationally exposed personnel have decreased with lapsing of the years, thanks to the perception of the nuclear physicians to improve the administration techniques of the radioactive material, the decrease of administered activity and the unit doses use among the most remarkable advances. The changes in the equipment s technology to quantify the activity to administer, detection systems and image formation have demanded the development of the new professionals of the nuclear medicine that allows give protection to the patient. This improvement needs to consolidate with the appropriate normative development, the involved personnel qualification and the methods and procedures actualization to improve the protection of the occupationally exposed personnel, the public, the environment and the patient. (Author)

  4. Nuclear medicine in the assessment of differentiated thyroid cancer

    International Nuclear Information System (INIS)

    Rutherford, G.-C.; Franc, B.; O'Connor, A.

    2008-01-01

    Despite modern multi-modality treatment, 10-30% of patients treated for differentiated thyroid cancer (DTC) ultimately develop local recurrence or metastatic disease. These malignancies are frequently slow-growing and secondary surgical resection is often undertaken along with radioactive iodine treatment. Correlation of radiological imaging with nuclear medicine studies is essential for individualized treatment planning, and to optimize this management. Radiologists should be familiar with the interpretation of various nuclear medicine studies used to image differentiated thyroid neoplasms

  5. The development of nuclear medicine in Slovenia and Ljubljana; half a century of nuclear medicine in Slovenia

    International Nuclear Information System (INIS)

    Slavec, Zvonka Zupanic; Gaberscek, Simona; Slavec, Ksenija

    2012-01-01

    Nuclear medicine began to be developed in the USA after 1938 when radionuclides were introduced into medicine and in Europe after radionuclides began to be produced at the Harwell reactor (England, 1947). Slovenia began its first investigations in the 1950s. This article describes the development of nuclear medicine in Slovenia and Ljubljana. The first nuclear medicine interventions were performed in Slovenia at the Internal Clinic in Ljubljana in the period 1954–1959. In 1954, Dr Jože Satler started using radioactive iodine for thyroid investigations. In the same year, Dr Bojan Varl, who is considered the pioneer of nuclear medicine in Slovenia, began systematically introducing nuclear medicine. The first radioisotope laboratories were established in January 1960 at the Institute of Oncology and at the Internal Clinic. Under the direction of Dr. Varl, the laboratory at the Internal Clinic developed gradually and in 1973 became the Clinic for Nuclear Medicine with departments for in vivo and in vitro diagnostics and for the treatment of inpatients and outpatients at the thyroid department. The Clinic for Nuclear Medicine became a teaching unit of the Medical Faculty and developed its own post-graduate programme – the first student enrolled in 1972. In the 1960s, radioisotope laboratories opened in the general hospitals of Slovenj Gradec and Celje, and in the 1970s also in Maribor, Izola and Šempeter pri Novi Gorici. Nowadays, nuclear medicine units are modernly equipped and the staff is trained in morphological, functional and laboratory diagnostics in clinical medicine. They also work on the treatment of cancer, increased thyroid function and other diseases

  6. Evolution of nuclear medicine: a historical perspective

    International Nuclear Information System (INIS)

    Ahmed, A.; Kamal, S.

    1996-01-01

    The field Nuclear Medicine has Completed its 100 yeas in 1996. Nuclear medicine began with physics, expanded into chemistry and instrumentation, and then greatly influenced various fields of medicine. The chronology of the events that formulated the present status of nuclear medicine involves some of the great pioneers of yesterday like Becquerel, Curie, Joliot, Hevesy, Anger, Berson and Yallow. The field of nuclear medicine has been regarded as the bridge builder between various aspects of health care and within next 20 years, nuclear medicine enters a new age of certainty, in which surgery, radiation and chemotherapy will only be used when a benefit in certain to result from the treatment. (author)

  7. Nuclear medicine tomorrow

    International Nuclear Information System (INIS)

    Marko, A.M.

    1986-04-01

    The purpose of this Workshop was to discuss and promote future nuclear medicine applications. Atomic Energy of Canada Limited (AECL) is determined to assist in this role. A major aim of this gathering was to form an interface that was meaningful, representative of the two entities, and above all, on-going. In the opening address, given by Mr. J. Donnelly, President of AECL, this strong commitment was emphasized. In the individual sessions, AECL participants outlined R and D programs and unique expertise that promised to be of interest to members of the nuclear medicine community. The latter group, in turn, described what they saw as some problems and needs of nuclear medicine, especially in the near future. These Proceedings comprise the record of the formal presentations. Additionally, a system of reporting by rapporteurs insured a summary of informal discussions at the sessions and brought to focus pertinent conclusions of the workshop attendees

  8. Procedures, activities and doses in nuclear medicine cycle in Brazil; Procedimentos, atividades e doses no ciclo da medicina nuclear no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Silvia Maria Velasques de

    2005-07-01

    With the aim of characterizing nuclear medicine procedures performed in Brazil, activities of radiopharmaceuticals used and effective doses to patients, data was collected from nuclear medicine institutions in three regions of the country, namely the Southeast, the Northeast and the South regions, representing public hospitals, university hospitals, private and philanthropic institutions with low, medium and high levels of consumption of radiopharmaceuticals. The three chosen regions are responsible for 92% of radiopharmaceutical consumption and imaging equipment in the country. Accordingly, it was requested of some participating institutions to fulfill manually from individual patients data, to record gender, age, weight, height and activities used, for each type of exam as well as the equipment used. In others, the researcher collected data personally. Per institution, nuclear medicine diagnostic procedures ranged from 700 to 13,000 per year, most of which are myocardial and bone imaging procedures, and imaging equipment ranged, from 1 to 8 machines, one or two head SPECT's (hybrid or not). 26.782 patients protocols were analysed, 24.371 adults and 2.411 children and teenagers. For adult patients, differences were observed in the amount of activities used in diagnostic procedures between public and private institutions, with lower average activities used in public institutions. Activities administered to children and their effective doses were difficult to evaluate due to the incompleteness of individual records. Appropriate individual patient records could be adopted without affecting hospitals routine and contributing for a comprehensive evaluation of the radiation protection of nuclear medicine patients. Data from 8.881 workers were analysed, 346 working at nuclear medicine institutions. For monitored workers and measurably exposed workers in nuclear medicine, the values 2.3 mSv and 5.4 mSv, respectively, for effective annual doses are greater than data

  9. Regulatory and administrative requirements for practice of nuclear medicine in India

    International Nuclear Information System (INIS)

    Tandon, Pankaj

    1998-01-01

    In order to ensure safety of the patients, staff and public in the practice of nuclear medicine, including in-vivo diagnostic investigations, radionuclide therapy and in research using unsealed radioactive substances a number of administrative and regulatory procedures are adopted. The salient features of regulatory and administrative requirements for practice of nuclear medicine in India are discussed

  10. Introductory physics of nuclear medicine. Third edition

    International Nuclear Information System (INIS)

    Chandra, R.

    1987-01-01

    The new third edition includes essential details and many examples and problems taken from the routine practice of nuclear medicine. Basic principles and underlying concepts are explained, although it is assumed that the reader has some current use as a bone densitometer. For resident physicians in nuclear medicine, residents in pathology, radiology, and internal medicine, and students of nuclear medicine technology, the third edition offers a simplified and reliable approach to the physics and basic sciences of nuclear medicine

  11. Technetium in chemistry and nuclear medicine

    International Nuclear Information System (INIS)

    Deutsch, E.; Nicolini, M.; Wagner, H.N.

    1983-01-01

    This volume explores the potential of technetium radiopharmaceuticals in clinical nuclear medicine. The authors examine the capabilities of synthetic inorganic chemists to synthesize technetium radiopharmaceuticals and the specific requirements of the nuclear medicine practitioner. Sections cover the chemistry of technetium, the production of radiopharmaceuticals labeled with technetium, and the use of technetium radiopharmaceuticals in nuclear medicine

  12. Intercomparison and calibration of dose calibrators used in nuclear medicine facilities

    CERN Document Server

    Costa, A M D

    2003-01-01

    The aim of this work was to establish a working standard for intercomparison and calibration of dose calibrators used in most of nuclear medicine facilities for the determination of the activity of radionuclides administered to patients in specific examinations or therapeutic procedures. A commercial dose calibrator, a set of standard radioactive sources, and syringes, vials and ampoules with radionuclide solutions used in nuclear medicine were utilized in this work. The commercial dose calibrator was calibrated for radionuclide solutions used in nuclear medicine. Simple instrument tests, such as linearity response and variation response with the source volume at a constant source activity concentration were performed. This instrument may be used as a reference system for intercomparison and calibration of other activity meters, as a method of quality control of dose calibrators utilized in nuclear medicine facilities.

  13. Nuclear medicine in Uzbekistan: Past, present and future

    International Nuclear Information System (INIS)

    Rasulova, N.; Khodjibekova, M.; Myasnik, B.; Pirnazarov, M.; Atadjanova, M.

    2007-01-01

    , Mediso). This gave rise to the possibility of introducing new methods of examinations and that we now perform. These examinations we perform now include: Stress/Rest Myocardial Perfusion SPECT, MUGA; Bone: - 3 phases, WB and SPECT; Renoscintigraphy with MAG3, DTPA (with ACH, with furosemid ) and DMSA; Lymphoscintigraphy and phleboscintigraphy of extremities; Esophagoscintigraphy (basis and with atropine probe) to DD Achalasia from Cardiospasm; Hepatic investigation with HIDA (hepatic extraction fraction and T 1/2), with sulfur colloid (hepatic blood flow and liver/spleen ratio); Scintimammography; Thyroid; Parathyroid; Brain SPECT; Scrotal scintigraphy; lung scan with Tc99m SestaMIBI; SLN imagine and intraoperative gamma probe. As far as radionuclide treatment is concerned, in 2006, we started treatment of bone metastases with Sm-153 EDTMP (CISBIO, France). But with regards to further continuation of treatment patients with bone metastasis, we are in the middle of negotiations with the Institute of Nuclear Physics (Tashkent, Uzbekistan) in order to have local production of Sm-153 EDTMP. The main part of radionuclide treatment of Uzbekistan handles the treatment of thyroid diseases, which is often performed at the Institute of Endocrinology. The rate of endemic iodine deficiency in Uzbekistan is 56%. However, it may vary from region to region (from 20% in Tashkent, up to 80% in Fergana). To prevent this deficiency, the country introduced iodized salt in the year 1998. The Institute of Endocrinology in Uzbekistan has nuclear medicine facilities that treat thyroid cancer with radioiodine. The average bed-stay cost for the isolation room, which has only single occupancy, is about US$ 25 per day. The incidence of thyroid cancer in Uzbekistan is 2.5/100,000 overall. Radioiodine is supplied as a liquid at a cost of US$ 6 per 37MBq (1mCi). In Uzbekistan, the legal limit of a single I-131 dose administered to an outpatient is 1.11 GBq (30 mCi). The usual dose range of I-131 for

  14. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... you about nuclear medicine. Nuclear medicine offers the potential to identify disease in its earliest stage, often ... may be asked to wear a gown as well. Tell your doctor if there is any possibility ...

  15. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... Nuclear Medicine Transcript Welcome to Radiology Info dot org Hello! I’m Dr. Ramji Rajendran, a radiation ... more about nuclear medicine, visit Radiology Info dot org. Thank you for your time! Spotlight Recently posted: ...

  16. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... stage, often before symptoms occur or before abnormalities can be detected with other diagnostic tests. Nuclear medicine ... nuclear medicine exam, there are several things you can do to prepare. First, you may be asked ...

  17. Medicine and ionizing rays: a help sheet in analysing risks in nuclear medicine

    International Nuclear Information System (INIS)

    Gauron, C.

    2006-01-01

    This document first proposes the various applicable legal and regulatory texts concerning radioprotection in the medical sector (European directives, institutions in charge of radioprotection, general arrangements, regulatory texts concerning worker protection against ionizing radiations, personnel specialized in medical radio-physics, electro-radiology operators, quality control of medical devices, and nuclear medicine and radiology). The second part proposes a synthesis of useful knowledge for radioprotection in the case of nuclear medicine when performing in vivo diagnosis, positron emission tomography or PET being excluded. Several aspects are considered: the concerned personnel, the course of treatment procedures, the hazards, the identification of the risk associated with ionizing radiation, the risk assessment and the determination of exposure levels, the strategy to control the risks (reduction of risks, technical measures concerning the installation or the personnel, teaching and information, prevention and medical monitoring), and risk control assessment. The next parts present the same kind of information but for positron emission tomography or PET with Fluorine 18, for therapeutic practice without hospitalization (activity of iodine 137 less than 740 MBq), for therapeutic practice in case of hospitalization (iodine 137 activity greater than 740 MBq), and when taking patients into care after treatment in a nuclear medicine (in this last case, legal and regulatory information focus on patients)

  18. Metrological aspects in estimating of radiation dose in patients of nuclear medicine; Aspectos metrologicos na estimativa da dose efetiva de pacientes em medicina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Ruzzarin, Anelise

    2015-06-01

    In order to investigate the performance of routine measurements in nuclear medicine services, LNMRI/IRD has been conducting, since 1998, a comparison program of activity measurements of radiopharmaceuticals administered to patients in nuclear medicine. Correction factors are determined from the result of performance analysis in order to determine with better accuracy the activity to be administered to the patients. The present study shows how the correction factor is determined by the ratio between the measurement of the activity at the nuclear medicine center and the activity determined by the LNMRI, which is adopted as reference. It is essential that the dose calibrator be calibrated with standards traceable to national metrology laboratories, so that the activity administered to the patient is neither greater nor smaller than the appropriate value. The corrected values of the activities can be used to calculate with greater accuracy the effective doses received by the patients as well as the risk of cancer. Information related to radiopharmaceuticals and administered activities, type of exams and patient data of three Brazilian hospitals were collected for 1496 adults and 134 children submitted to diagnostic exams employing {sup 99m}Tc and {sup 131}I. Results showed up to a considerable difference between the administered activity and the corrected activity until 30% and 13% above the reference value, respectively, for the {sup 131}I and {sup 99m}Tc was detected. The consequences of these differences were not very critical in this study since the activity measured in dose calibrator before administration was lower than the corrected activity, thus causing a lower effective dose in patients. However, this reduction in activity may result in problems in obtaining the image and consequently, failure diagnosis, delaying correct diagnosis. On the other hand, the overestimation would be worse, mainly in therapeutic applications, because an unnecessarily high absorbed

  19. Radioactive waste management of the nuclear medicine services

    International Nuclear Information System (INIS)

    Barboza, Alex

    2009-01-01

    Radioisotope applications in nuclear medicine services, for diagnosis and therapy, generate radioactive wastes. The general characteristics and the amount of wastes that are generated in each facility are function of the number of patients treated, the procedures adopted, and the radioisotopes used. The management of these wastes embraces every technical and administrative activity necessary to handle the wastes, from the moment of their generation, till their final disposal, must be planned before the nuclear medicine facility is commissioned, and aims at assuring people safety and environmental protection. The regulatory framework was established in 1985, when the National Commission on Nuclear Energy issued the regulation CNEN-NE-6.05 'Radioactive waste management in radioactive facilities'. Although the objective of that regulation was to set up the rules for the operation of a radioactive waste management system, many requirements were broadly or vaguely defined making it difficult to ascertain compliance in specific facilities. The objective of the present dissertation is to describe the radioactive waste management system in a nuclear medicine facility and provide guidance on how to comply with regulatory requirements. (author)

  20. Single-purpose nuclear medicine instruments

    International Nuclear Information System (INIS)

    Boucek, J.

    Nuclear medicine requires the most up-to-date specialized technical facilities. The paper underlines the factor of reliability in purpose-designed equipment used for basic examinations. The possibility is also discussed of the automation of standard nuclear medicine instruments

  1. Study of dose levels absorbed by members of the public in the nuclear medicine departments

    International Nuclear Information System (INIS)

    Cabral, Geovanna Oliveira de Mello

    2001-03-01

    In nuclear Medicine, radioisotopes are bound to various compounds (called radiopharmaceuticals) for use in various diagnostic and therapeutic applications. These unsealed sources are administered in various forms to patients, who remain radioactive for hours or days, and represent a source of potential radiation exposure for others. Thus, in nuclear medicine departments, radiation protection of workers and members of the public, especially persons accompanying patients, must consider, this exposure. In Brazil, the Comissao Nacional de Energia Nuclear (CNEN) establishes that, in nuclear medicine departments, the patients and persons accompanying should be separated each other. However, this rule is not always followed due to many factors such as physical and emotional conditions of patients. In this context, the aim of this study was the investigation of dose levels, which the persons accompanying patients are exposed to. For monitoring, thermoluminescent dosimeters were employed. The dosimeters were given to 380 persons who were accompanying patients in nuclear medicine departments. Exposure results were lower than 1 mSv. On the basis of CNEN rules, issues regarding stay conditions for members of the public in these departments are discussed. (author)

  2. Nuclear medicine

    International Nuclear Information System (INIS)

    Casier, Ph.; Lepage, B.

    1998-01-01

    Except for dedicated devices for mobile nuclear cardiology for instance, the market is set on variable angulation dual heads cameras. These cameras are suited for all general applications and their cost effectiveness is optimized. Now, all major companies have such a camera in their of products. But, the big question in nuclear medicine is about the future of coincidence imaging for the monitoring of treatments in oncology. Many companies are focused on WIP assessments to find out the right crustal thickness to perform both high energy FDG procedures and low energy Tc procedures, with the same SPECT camera. The classic thickness is 3/8''. Assessments are made with 1/2'', 5/8'' or 3/4'' crystals. If FDG procedures proved to be of great interest in oncology, it may lead to the design of a dedicated SPECT camera with a 1'' crustal. Due to the short half of FDG, it may be the dawning of slip ring technology. (e.g. Varicam from Elscint). The three small heads camera market seems to be depressed. Will the new three large heads camera unveiled by Picker, reverse that trend? The last important topic in nuclear medicine is the emergence of new flat digital detectors to get rid of the old bulky ones. Digirad is the first company to manufacture a commercial product based on that technology. Bichron, Siemens and General Electric are working on that development, too. But that technology is very expensive and the market for digital detection in nuclear medicine is not as large as the market in digital detection in radiology. (author)

  3. Programmatic activities of IAEA in nuclear medicine

    International Nuclear Information System (INIS)

    Padhy, A.K.

    2004-01-01

    Nuclear medicine is high-tech medicine. Nevertheless, it is essential for addressing important health problems of people living in developing countries also. Not only is it sometimes expensive to start with, it also involves a lot of technical know-how, requiring transfer of technology from developed to the developing countries. The rapid development of nuclear medicine, of sophisticated instrumentation and radiopharmaceuticals has resulted in an enormous increase in costs and in the need for maintaining quality. These constitute a challenge and a venture when promoting nuclear medicine globally and particularly in developing countries. No other international organization except IAEA has any specific mandate for application of nuclear energy in the area of human health. WHO has no specific programin nuclear medicine, hence the importance of IAEA's involvement. The IAEA has, ever since its inception, given high priority to enhancing the awareness and capabilities of developing member states to employ nuclear technology for health care and medical research. Much of the Agency promoted research in nuclear medicine is delivered through the so called co-ordinated research projects (CRPs). The CRPs are normally organised as multi-center, prospective studies so that large volume of scientific data could be generated in a short period of 18-24 months. The research is normally done within an operational frame work, established and co-ordinated by the IAEA. The reason for this is that the results can be compared despite site or country specific differences. The methods and materials used for such studies usually conform to a predetermined standard. The protocols for various investigations, criteria for patient selection, mode of arriving at a final diagnosis and analysis of data from these multi-center studies are normally agreed upon by the Chief Scientific Investigators from each participating institution and the IAEA prior to the start of the actual work programme. The

  4. Quality approach in in vivo nuclear medicine - Certification V2010 - Methodological guide

    International Nuclear Information System (INIS)

    Abdelmoumene, Nafissa; Ferreol, Dominique; Blondet, Emmanuelle; Bonardel, Gerald; Bourrel, Francois; Broglia, Jean Marc; Guilabert, Nadine; Israel, Jean-Marc; Machacek, Catherine; Martineau, Antoine; Remy, Herve; Rousseliere, Francis; Abelmann, Caroline

    2013-01-01

    This document first presents the different components of the activity in in-vivo nuclear medicine: techniques (functional imagery, vectorized internal radiotherapy, cases outside the nuclear medicine department), team composition and missions, radiation protection regulations, benefits and risks. Then, it addresses the quality approach: quality management system defined according to a process-oriented approach, documentation. It proposes a sheet to assess the implementation of the quality approach. This sheet contains 129 criteria which are related to management (strategy, activity steering and coordination), to support functions (management of human resources and abilities, management of radioactive sources and wastes, radio-pharmacy within the nuclear medicine department, management of medical devices, information system), to patient taking on (management of appointments and patient identification, imagery examination justification, patient reception, patients presenting risks and peculiar situations, checking before radio-pharmaceutical drug administering, taking on for diagnosis purpose, taking for therapeutic purposes), and to assessment, analysis and improvement (management of undesirable events associated with cares, quality follow-up for continuous improvement)

  5. Cardiovascular nuclear medicine and MRI

    International Nuclear Information System (INIS)

    Reiber, J.H.C.; Wall, E.E. van der

    1992-01-01

    This book is based on a meeting of the Working Group on Nuclear Cardiology, which held March 22-23,1991 under the auspices of the European Society of Cardiology and the Interuniversity Cardiology Institute of the Netherlands, and on the Second International Symposium on Computer Applications in Nuclear Medicine and Cardiac Magnetic Resonance Imaging, which was held March 20-22,1991 in Rotterdam, the Netherlands. It covers almost every aspect of quantitative cardio-vascular nuclear medicine and magnetic resonance imaging. The main topics are: single photon emission computed tomography (technical aspects); new development in cardiovascular nuclear medicine; advances in cardiovascular imaging; cardiovascular clinical applications; and cardiac magnetic resonance imaging. (A.S.). refs.; figs.; tabs

  6. Quality policy at nuclear medicine services

    International Nuclear Information System (INIS)

    Gil Martinez, Eduardo Manuel; Jimenez, Tomas

    2007-01-01

    In the present text we comment about a Quality Policy model to establish in a Nuclear Medicine Service. The need for a strict control in every process that take place in a Nuclear Medicine Service, requires of an exact planification in terms of Quality Policy, specific to the real needs of every Service. Quality Policy must be a live Policy, with capability of changes and must be known for every workers in a Nuclear Medicine Service. Although the 'model' showed in this text is concret for a specific Service type, it must be extrapolated to any Nuclear Medicine Service with the necessary changes (au)

  7. Hospital Intranet and Extranet in nuclear medicine

    International Nuclear Information System (INIS)

    Gambini, D.J.; Baum, T.P.; Spector, M.; Dumas, F.; Elgard, M.C.; Collington, M.A.; Barritault, L.

    1997-01-01

    Since two years ago nuclear medicine service of Laennec Hospital has implemented transmission and distribution networks of scintigraphic images. A new stage was reached at present by developing an Intranet and Extranet system for nursing units and other services of nuclear medicine. The Intranet link to the services of Laennec Hospital and AP HP is based on a image server connected to the service gamma camera and, after a possible post-processing, the images are transmitted in PCX format by e-mail, attached to the medical record. For communication between nuclear medicine services, a heavier procedure making use of a program for image processing under inter-file standards has been implemented. To achieve the Extranet link with services and physicians of town, exterior to AP HP, a procedure was installed which allows reaching any nursing unit or town physicians having at their disposal e-mail on a secured network. This procedure will be generalized when the Health secured network, linking the medical bodies to Health insurance institutions, will be operational. The interactive tele-medicine will be achieved by means of a procedure based on Internet cooperative tools (wild cards, video- and vision-conferences) which will permits in all situations an interactive work on all the transmitted patient files

  8. Assessment of OEP health's risk in nuclear medicine

    International Nuclear Information System (INIS)

    Santacruz-Gomez, K.; Manzano, C.; Melendrez, R.; Castaneda, B.; Barboza-Flores, M.; Pedroza-Montero, M.

    2012-01-01

    The use of ionizing radiation has been increased in recent years within medical applications. Nuclear Medicine Department offers both treatment and diagnosis of diseases using radioisotopes to controlled doses. Despite the great benefits to the patient, there is an inherent risk to workers which remains in contact with radiation sources for long periods. These personnel must be monitored to avoid deterministic effects. In this work, we retrospectively evaluated occupationally exposed personnel (OEP) to ionizing radiation in nuclear medicine during the last five years. We assessed both area and personal dosimetry of this department in a known Clinic in Sonora. Our results show an annual equivalent dose average of 4.49 ± 0.70 mSv in OEP without showing alarming changes in clinical parameters analyzed. These results allow us to conclude that health of OEP in nuclear medicine of this clinic has not been at risk during the evaluated period. However, we may suggest the use of individual profiles based on specific radiosensitivity markers.

  9. Nuclear medicine applications: Summary of Panel 4

    International Nuclear Information System (INIS)

    Wolf, A.P.

    1988-01-01

    Nuclear medicine is currently facing a desperate shortage of organic and inorganic chemists and nuclear pharmacists who also have advanced training in nuclear and radiochemistry. Ironically, this shortfall is occurring in the face of rapid growth and technological advances which have made the practice of nuclear medicine an integral part of the modern health care system. This shortage threatens to limit the availability of radiopharmaceuticals required in routine hospital procedures and to impede the development of new diagnostic and therapeutic agents. To redress this need and prevent a similar shortfall in the future, this panel recommends immediate action and a long-term commitment to the following: educating the public on the benefits of nuclear medicine; informing undergraduate and graduate chemistry students about career opportunities in nuclear medicine; offering upper level courses in nuclear and radiochemistry (including laboratory) in universities; establishing training centers and fellowships at the postgraduate level for specialized education in the aspects of nuclear and radiochemistry required by the nuclear medicine profession. 1 tab

  10. [Costing nuclear medicine diagnostic procedures].

    Science.gov (United States)

    Markou, Pavlos

    2005-01-01

    To the Editor: Referring to a recent special report about the cost analysis of twenty-nine nuclear medicine procedures, I would like to clarify some basic aspects for determining costs of nuclear medicine procedure with various costing methodologies. Activity Based Costing (ABC) method, is a new approach in imaging services costing that can provide the most accurate cost data, but is difficult to perform in nuclear medicine diagnostic procedures. That is because ABC requires determining and analyzing all direct and indirect costs of each procedure, according all its activities. Traditional costing methods, like those for estimating incomes and expenses per procedure or fixed and variable costs per procedure, which are widely used in break-even point analysis and the method of ratio-of-costs-to-charges per procedure may be easily performed in nuclear medicine departments, to evaluate the variability and differences between costs and reimbursement - charges.

  11. Nuclear medicine in China

    International Nuclear Information System (INIS)

    Wang, Shihchen; Liu, Xiujie

    1986-01-01

    Since China first applied isotopes to medical research in 1956, over 800 hospitals and research institutions with 4000 staff have taken up nuclear technology. So far, over 120 important biologically active materials have been measured by radioimmunoassay in China, and 44 types of RIA kit have been supplied commercially. More than 50,000 cases of hyperthyroidism have been treated satisfactorily with 131 I. Radionuclide imaging of practically all organs and systems of the human body has been performed, and adrenal imaging and nuclear cardiology have become routine clinical practice in several large hospitals. The thyroid iodine uptake test, renogram tracing and cardiac function studies with a cardiac probe are also commonly used in most Chinese hospitals. The active principles of more than 60 medicinal herbs have been labelled with isotopes in order to study the drug metabolism and mechanism of action. Through the use of labelled neurotransmitters or deoxyglucose, RIA, radioreceptor assay and autoradiography, Chinese researchers have made remarkable achievements in the study of the scientific basis of acupuncture analgesia. In 1980 the Chinese Society of Nuclear Medicine was founded, and since 1981 the Chinese Journal of Nuclear Medicine has been published. Although nuclear medicine in China has already made some progress, when compared with advanced countries, much progress is still to be made. It is hoped that international scientific exchange will be strengthened in the future. (author)

  12. Essentials of nuclear medicine imaging

    CERN Document Server

    Mettler, Fred A. Jr

    2012-01-01

    Essentials of Nuclear Medicine Imaging, by Drs. Fred A Mettler and Milton J Guiberteau, provides the practical and comprehensive guidance you need to master key nuclear imaging techniques. From physics, instrumentation, quality control, and legal requirements to hot topics such as sodium fluoride, radiopharmaceuticals, and recommended pediatric administered doses and guidelines, this sixth edition covers the fundamentals and recent developments in the practice of nuclear medicine.

  13. Nuclear Medicine in Surgical Oncology

    International Nuclear Information System (INIS)

    Ndirangu, D.T.

    2009-01-01

    Defines nuclear medicine as a branch that utilizes nuclear technology for diagnosis and treatment of diseases.The principles of nuclear medicine are; it uses the principle that a certain radiopharmaceutical (tracer) will at a certain point in time have a preferential uptake by a particular body or tissue. it is imaged by use the use of detectors mounted in gamma cameras or PET (Position emission tomography) devices

  14. Regulatory problems in nuclear medicine

    International Nuclear Information System (INIS)

    Vandergrift, J.F.

    1987-01-01

    Governmental involvement in the practice of medicine has increased sharply within the past few years. The impact on health care has, for the most part, been in terms of financial interactions between health care facilities and federally funded health services programs. One might say that this type of governmental involvement has indirect impact on the medical and/or technical decisions in the practice of nuclear medicine. In other areas, however, governmental policies and regulations have had a more direct and fundamental impact on nuclear medicine than on any other medical specialty. Without an understanding and acceptance of this situation, the practice of nuclear medicine can be very frustrating. This chapter is thus written in the hope that potential frustration can be reduced or eliminated

  15. Peptide radiopharmaceuticals in nuclear medicine

    International Nuclear Information System (INIS)

    Blok, D.; Vermeij, P.; Feitsma, R.I.J.; Pauwels, E.J.K.

    1999-01-01

    This article reviews the labelling of peptides that are recognised to be of interest for nuclear medicine or are the subject of ongoing nuclear medicine research. Applications and approaches to the labelling of peptide radiopharmaceuticals are discussed, and drawbacks in their development considered. (orig.)

  16. Development of molecular nuclear medicine

    International Nuclear Information System (INIS)

    Tang Ganghua

    2002-01-01

    The basic theory of molecular nuclear medicine is briefly introduced. The hot areas of molecular nuclear medicine including metabolic imaging and blood flow imaging, radioimmunoimaging and radioimmunotherapy, radioreceptor imaging and receptor-radioligand therapy, and imaging gene expression and gene radiation therapy are emphatically described

  17. The radiation dose to accompanying nurses, relatives and other patients in a nuclear medicine department waiting room

    Energy Technology Data Exchange (ETDEWEB)

    Harding, L K; Harding, N J; Warren, H; Mills, A; Thomson, W H [Dudley Road Hospital, Birmingham (UK)

    1990-01-01

    The radiation dose to accompanying nurses, relatives and other patients in a nuclear medicine department waiting room was assessed at 5 min intervals by observing the seating arrangement. The total radiation dose to each person was calculated, using fixed values of dose rate per 100 MBq activity for radionuclides, and applying the inverse square law. Radioactive decay and attenuation effects due to intervening persons were also taken into account. The median radiation doses to accompanying nurses, relatives and other patients were 2.3, 2.0 and 0.2 {mu}Sv with maximum values of 17, 33 and 5 {mu}Sv respectively. In all cases, the radiation dose received by patients was less than 0.2% of the radiation dose resulting from their own investigation. Also, the maximum radiation dose received by an accompanying norse or friend was less than 1% of their appropriate annual dose limit. Similar values were obtained with calculations based on a 15 min time interval. The radiation doses received by those in a nuclear medicine department waiting room are small, and separate waiting room facilities for radioactive patients are unnecessary. (author).

  18. Promoting nuclear medicine in developing countries

    International Nuclear Information System (INIS)

    Ganatra, R.; Nofal, M.

    1986-01-01

    After a short review of the applications of nuclear medicine in diagnosis and treatment of diseases or in medical research the ways and the means of IAEA's support in helping developing countries to set up nuclear medicine capabilities in their hospitals are described. Some trends and new directions in the field of nuclear medicine and the problems related to the implementation of these techniques in developing countries are presented

  19. Radiation hazards in the nuclear medicine

    International Nuclear Information System (INIS)

    Roo, M.J.K. de

    1981-01-01

    After a survey of the actual situation of nuclear medicine in Belgium, the evolution of nuclear medicine is studied with regard to quantitative aspects (tracerquantities, number of radioisotopic explorations, number of certified doctors) and qualitative aspects (use of short living isotopes emitting low energy radiation, introduction of in vitro tests). Taking these data into consideration, the exposure of nuclear medicine staff by external or internal radiation is evaluated. From this study it appears that the radiation exposure of the personnel of nuclear medicine departments remains low if proper manipulation methods and simple protective devices are used and if there is an efficient collaboration with an active health physics department or radiation control organism. (author)

  20. Essentials of nuclear medicine physics and instrumentation

    CERN Document Server

    Powsner, Rachel A; Powsner, Edward R

    2013-01-01

    An excellent introduction to the basic concepts of nuclear medicine physics This Third Edition of Essentials of Nuclear Medicine Physics and Instrumentation expands the finely developed illustrated review and introductory guide to nuclear medicine physics and instrumentation. Along with simple, progressive, highly illustrated topics, the authors present nuclear medicine-related physics and engineering concepts clearly and concisely. Included in the text are introductory chapters on relevant atomic structure, methods of radionuclide production, and the interaction of radiation with matter. Fu

  1. Nuclear medicine in psychiatry

    International Nuclear Information System (INIS)

    Lass, P.; Slawek, P.

    2007-01-01

    In the same way that the symptoms between different diseases in psychiatry overlap, functional brain research frequently shows the same pattern of changes across diagnostic borders; on the other hand, many the other tests, e.g. psychological tests, present the same problem as mentioned above; therefore: The psychiatrist seldom applies to an NM specialist to obtain a diagnosis; instead, a nuclear medicine report will rather confirm, or less frequently exclude, the psychiatrist's diagnosis. Ideally, psychiatric patients should be rescanned after the treatment, and changes in perfusion and/or metabolism discussed between psychiatrist and NM specialist. As shown above, there are few practical applications of nuclear medicine due to low specificity and low spatial resolution, although in the aspect of functional imaging it is still superior to CT/MRI, even in their functional modalities. On the other hand, its investigational potential is still growing, as there is no imaging technique in sight which could replace metabolic and receptor studies, and also because the scope of functional imaging in psychiatric diseases is spreading from its traditional applications, like dementia or depression, towards many poorly investigated fields e.g. hypnosis, suicidal behaviour or sleep disorders. (author)

  2. Handbook of nuclear medicine practice in developing countries

    International Nuclear Information System (INIS)

    1992-01-01

    This ''Handbook of Nuclear Medicine Practices in the Developing Countries'' is meant primarily for those, who intend to install and practice nuclear medicine in a developing country. By and large, the conventional Textbooks of nuclear medicine do note cater to the special problems and needs of these countries. The Handbook is not trying to replace these textbooks, but supplement them with special information and guidance, necessary for making nuclear medicine cost-effective and useful in a hospital of a developing country. It is written mostly by those, who have made success in their careers in nuclear medicine, in one of these countries. One way to describe this Handbook will be that it represents the ways, in which, nuclear medicine is practised in the developing countries, described by those, who have a long and authentic experience of practising nuclear medicine in a developing country

  3. Proceedings of 2nd Korea-China Congress of Nuclear Medicine and the Korean Society Nuclear Medicine Spring Meeting 2000

    International Nuclear Information System (INIS)

    2000-01-01

    This proceedings contains articles of 2nd Korea-China Congress of Nuclear Medicine and 2000 spring meeting of the Korean Society Nuclear Medicine. It was held on May 17-19, 2000 in Seoul, Korean. This proceedings is comprised of 6 sessions. The subject titles of session are as follows: general nuclear medicine, neurology, oncology, radiopharmacy and biology, nuclear cardiology, nuclear cardiology: physics and instrumentation and so on. (Yi, J. H.)

  4. Estimated collective effective dose to the population from nuclear medicine examinations in Slovenia

    International Nuclear Information System (INIS)

    Skrk, Damijan; Zontar, Dejan

    2013-01-01

    A national survey of patient exposure from nuclear medicine diagnostic procedures was performed by Slovenian Radiation Protection Administration in order to estimate their contribution to the collective effective dose to the population of Slovenia. A set of 36 examinations with the highest contributions to the collective effective dose was identified. Data about frequencies and average administered activities of radioisotopes used for those examinations were collected from all nuclear medicine departments in Slovenia. A collective effective dose to the population and an effective dose per capita were estimated from the collected data using dose conversion factors. The total collective effective dose to the population from nuclear medicine diagnostic procedures in 2011 was estimated to 102 manSv, giving an effective dose per capita of 0.05 mSv. The comparison of results of this study with studies performed in other countries indicates that the nuclear medicine providers in Slovenia are well aware of the importance of patient protection measures and of optimisation of procedures

  5. Implantation of a data bank of nuclear medicine patients (DOSIMED); Implantacao de um banco de dados de pacientes de medicina nuclear (DOSIMED)

    Energy Technology Data Exchange (ETDEWEB)

    Krempser, Alexandre R.; Oliveira, Silvia M. Velasques de; Silva, Tadeu A.A., E-mail: krempser@ird.com.b, E-mail: silvia@ird.gov.b, E-mail: tedsilva@ird.gov.b [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2009-07-01

    This paper develops a institutional data bank for internal dosimetry and radiological protection of nuclear medicine patents. The data are originating from projects in progress performed by the Group for Research in Internal Dosimetry in Nuclear Medicine of the IRD, Brazil. The DOSIMED data bank was developed on the Linux computer operation system, under PHP and SQL languages, using the Script Case software. Since the investigation is due to medical applications, the data entry is done by projects, after their approval by a committee of local ethics. Projects are associated with equipment used and with studied patients. Patients are associated to and/or appropriated therapeutic protocols. The patient internal dosimetry data are generated by three types of monitoring: image quantification, bio analysis in vitro and external exposure for the patient injected with radioisotope. For the guarantee of data quality, the collected data are imported fro the original documents for the DOSIMED, and the comparison can be done after the final study for data evaluation. Up to the present, the screens for the data entry were developed and the respective consistence data are in progress. The DOSIMED will be available at the IRD intra net for the director and the investigators involved in each project

  6. Application of medical psychology in the reception of nuclear medicine department

    International Nuclear Information System (INIS)

    Zhan Hao; Xiong Jie; Huang Daijuan; Yuan Bin; Xu Wendai; Zhang Yongxue

    2003-01-01

    Reception of nuclear medicine department is often ignored. In fact, it is an important part of clinical work. If the patient's psychological status is understood, and the psychological knowledge is handles and applied in practice, the quality of work can be improved. The personnel in nuclear medicine should recognize the significance of humanity in medical practice and acquire the communication skill between doctors and patients. They should also understand the four aspects of psychological need of patients: The need of being understood and respected; the need of being greeted, accepted and a sense of belonging; the need of being informed; the need of feeling safe and rehabilitated

  7. Overview of radiation protection programme in nuclear medicine facility for diagnostic procedures

    International Nuclear Information System (INIS)

    Ahmed, Ezzeldein Mohammed Nour Mohammed

    2015-02-01

    This project was conducted to review Radiation Protection Program in Nuclear Medicine facility for diagnostic procedures which will provide guide for meeting the standard and regulatory requirements in diagnostic nuclear medicine. The main objective of this project is to keep dose to staff, patient and public as low as reasonably achievable (ALARA). The specific objectives were to review the Radiation Protection Program (RPP) in diagnostic nuclear medicine and to make some recommendation for improving the level of radiation protection in diagnostic nuclear medicine that will help to control normal exposure and prevent or mitigate potential exposure. The methodology used is review of various documents. The review showed that if the Radiation Protection Program is inadequate it leads to unjustified exposure to radiation. Finally, this study stated some recommendations that if implemented could improve the level of radiation protection in nuclear medicine department. One of the most important recommendations is that a qualified Radiation Protection Officer (RPO) should be appointed to lay down and oversee a radiation protection in the nuclear medicine department. The RPO must be given the full authority and the adequate time to enable him to perform his duties effectively. (au)

  8. Internal dosimetry in nuclear medicine procedures; Dosimetria interna por procedimientos en medicina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Carrera Magarino, F.; Salgado Garcia, C.; Ruiz Manzano, P.; Rivas Ballarin, M. A.; Jimenez Hefernan, A.; Sanchez Segovia, J.

    2011-07-01

    The Department of Radio Physics and Radiation Protection, University Hospital Lozano Blesa Zaragoza presented a calculus textbook to estimate patient doses in diagnostic nuclear medicine. In this paper present an updated version referred Book of calculation.

  9. Handbook of nuclear medicine practice in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    This ``Handbook of Nuclear Medicine Practices in the Developing Countries`` is meant primarily for those, who intend to install and practice nuclear medicine in a developing country. By and large, the conventional Textbooks of nuclear medicine do note cater to the special problems and needs of these countries. The Handbook is not trying to replace these textbooks, but supplement them with special information and guidance, necessary for making nuclear medicine cost-effective and useful in a hospital of a developing country. It is written mostly by those, who have made success in their careers in nuclear medicine, in one of these countries. One way to describe this Handbook will be that it represents the ways, in which, nuclear medicine is practised in the developing countries, described by those, who have a long and authentic experience of practising nuclear medicine in a developing country Figs, tabs

  10. Metabolic radiopharmaceutical therapy in nuclear medicine

    International Nuclear Information System (INIS)

    Reguera, L.; Lozano, M. L.; Alonso, J. C.

    2016-01-01

    In 1986 the National Board of Medical Specialties defined the specialty of nuclear medicine as a medical specialty that uses radioisotopes for prevention, diagnosis, therapy and medical research. Nowadays, treatment with radiopharmaceuticals has reached a major importance within of nuclear medicine. The ability to treat tumors with radiopharmaceutical, Radiation selective therapy has become a first line alternative. In this paper, the current situation of the different therapies that are sued in nuclear medicine, is reviewed. (Author)

  11. Nuclear Medicine in a developing country

    International Nuclear Information System (INIS)

    Wenzel, K.S. von; Rubow, S.M.; Ellmann, A.; Ghoorun, S.

    2002-01-01

    Namibia is a country with 1,8 million inhabitants, of whom the majority has limited access to first world facilities. Nevertheless, medical services of high standard are offered. A Nuclear Medicine Department was established at Windhoek Central Hospital in 1982. A nuclear physician, two nuclear medicine radiographers and a nursing sister staff the department. Equipment includes a Siemens Orbiter and an Elscint Apex SPX Helix gamma camera. Radiopharmaceuticals are obtained from suppliers in South Africa. Investigations performed include musculoskeletal, liver, hepatobiliary, thyroid, renal studies, ventilation perfusion lung scans as well as the following Nuclear Cardiology studies: Gated blood pool scans, Tc-99m pyrophosphate hot spot scans, Tl-201 myocardial perfusion studies, Tc-99m MIBI myocardial perfusion studies and Tl-201 rest-redistribution studies. Problems experienced at the Windhoek Nuclear Medicine department include: Lack of funding and high cost of equipment and radiopharmaceuticals, lack of understanding of Nuclear Medicine by the hospital management and health administrators, and difficulties in procuring short-lived radiopharmaceuticals. Furthermore, the absence of company representatives and spare parts in Namibia leads to loss of time whenever equipment needs to be repaired. Working as the only nuclear medicine physician in a country also poses major problems. Careful management of resources and information drives have helped to sustain the Nuclear Medicine service despite economic problems in the country. Installation of a tele-link between the department in Windhoek Hospital and Tygerberg Hospital in South Africa has greatly assisted to overcome the problem of isolation and lack of back up from fellow specialists. The IAEA has equipped both departments with Hermes workstations (Nuclear Diagnostics) and a tele-link is maintained via modem. The current software provided with the Hermes system is ideally suited to processing of data such as gated

  12. Radiopharmaceutical activities administered for paediatric nuclear medicine procedures in Australia

    International Nuclear Information System (INIS)

    Towson, J.E.; Smart, R.C.; Rossleigh, M.A.

    2001-01-01

    A survey of radiopharmaceutical activities used at the eight hospital centres specialising in paediatric nuclear medicine in Australia was conducted in 1999-2000 by the Australian and New Zealand Society of Nuclear Medicine and the Australasian Radiation Protection Society. Data on the maximum and minimum administered activities (A max and A min ) as obtained for 43 paediatric imaging procedures are presented. The results are also available on the ANZSNM and ARPS websites at: http://www.anzsnm.org.au and http://www.arps.org.au. The A max values were significantly less than the corresponding Reference Activities for adults determined in a previous study. Activities for individual patients are calculated using surface area scaling at five centres and body weight scaling at three centres. The median values of A max and A min are recommended as Paediatric Reference Activities. The effective dose to patients of various sizes for the Paediatric Reference Activities and both methods of scaling was calculated for each procedure. Copyright (2000) The Australian and New Zealand Society of Nuclear Medicine Inc

  13. Where is high technology taking nuclear medicine

    International Nuclear Information System (INIS)

    Veall, N.

    1985-01-01

    The question is posed as to whether high technology in nuclear medicine might lead to the nuclear medicine practitioner possibly finishing up working for the machine rather than the improvement of health care in its widest sense. A brief examination of some pros and cons of high technology nuclear medicine is given. (U.K.)

  14. Examining Quality Management Audits in Nuclear Medicine Practice as a lifelong learning process: opportunities and challenges to the nuclear medicine professional and beyond.

    Science.gov (United States)

    Pascual, Thomas N B

    2016-08-01

    This essay will explore the critical issues and challenges surrounding lifelong learning for professionals, initially exploring within the profession and organizational context of nuclear medicine practice. It will critically examine how the peer-review process called Quality Management Audits in Nuclear Medicine Practice (QUANUM) of the International Atomic Energy Agency (IAEA) can be considered a lifelong learning opportunity to instill a culture of quality to improve patient care and elevate the status of the nuclear medicine profession and practice within the demands of social changes, policy, and globalization. This will be explored initially by providing contextual background to the identity of the IAEA as an organization responsible for nuclear medicine professionals, followed by the benefits that QUANUM can offer. Further key debates surrounding lifelong learning, such as compulsification of lifelong learning and impact on professional change, will then be weaved through the discussion using theoretical grounding through a qualitative review of the literature. Keeping in mind that there is very limited literature focusing on the implications of QUANUM as a lifelong learning process for nuclear medicine professionals, this essay uses select narratives and observations of QUANUM as a lifelong learning process from an auditor's perspective and will further provide a comparative perspective of QUANUM on the basis of other lifelong learning opportunities such as continuing professional development activities and observe parallelisms on its benefits and challenges that it will offer to other professionals in other medical speciality fields and in the teaching profession.

  15. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... can be detected with other diagnostic tests. Nuclear medicine imaging procedures use small amounts of radioactive materials – called radiotracers – that ... outweighs any risk. To learn more about nuclear medicine, visit Radiology Info dot org. Thank you for your ... of Use | Links | Site Map Copyright © 2018 Radiological Society of ...

  16. Quality control of radiopharmaceutical dose calibrators in nuclear medicine unit

    International Nuclear Information System (INIS)

    Oliveira, C.F.M.; Lucindo Junior, C.R.; Lopes Filho, F.J.

    2015-01-01

    As part of the program to ensure quality in nuclear medicine unit, in addition to diagnostic procedures, are evaluated activity meters, which is intended to measure the aliquot of radiation of radionuclides and / or radiopharmaceuticals that are administered to patients undergoing diagnostic investigation and / or therapeutic treatment. The good operating condition of dose calibrators is essential to ensure efficiency, safety and reliability of the measurements, once the lack of accuracy in the responses of these equipments can cause significant errors in the activity administered to the patient and may result in poor quality images resulting in the repetition of examis and interference in the successful treatment of the patient. This study aims to, considering the need for constant evaluation of the functioning of the activity meters and the fact that this issue be part the responsibilities of the professional of radiology, perform quality control testing of these instruments in relation to the most recent norm of National Commission of nuclear Energy (CNEN-NN 3:05) in Brazil, that is also in according to the international standards and reference values established during acceptance testing of these instruments in a nuclear medicine service. For this, was made a review of specific literature and the use of barium, cobalt and cesium to the tests in a nuclear medicine service of the state of Pernambuco in Brazil. The obtained results of the specific tests utilized to verify the correct working of the dose calibrators show coherency with the resolutions of the CNEN-NN 3:05 and are also in agreement with the international standards to that the measurement of activities be made with accurate results and thereby contribute to the proper functioning of nuclear medicine service. (authors)

  17. Nuclear medicine at the crossroads

    International Nuclear Information System (INIS)

    Strauss, H.W.

    1996-01-01

    Many nuclear medicine procedures, originally developed more than 20 years ago, are now performed with new radiopharmaceuticals or instruments; it is therefore apposite to reappraise what we are doing and why we are doing it. The clinical utility of nuclear medicine is discussed with reference, by way of example, to gated blood pools scans and myocardial perfusion imaging; the importance of the referred population for the outcome of studies is stressed. Attention is drawn to the likelohood that the detection of ischemia would be enhanced by the administration of nitroglycerin prior to rest thallium injection. Emphasis is also placed on the increasing acceptance of dual-tracer studies. The significance of expression of p-glycoprotein by some tumors for sestamibi imaging is discussed, and advances in respect of fluorodeoxyglucose imaging are reviewed. The final section covers issues relating to the development of new procedures, such as the value of nuclear medicine in the detection and characterization of tissue oxygen levels and the possible future role of nuclear medicine in the management of sleeping and eating disorders. (orig.)

  18. Virtual reality as information for patients and their families in a therapeutic procedure in Nuclear Medicine

    International Nuclear Information System (INIS)

    Mendonça, S.F.; Nascimento, A.C.H.; Mol, A.C.A.; Marins, E.R.; Suíta, J.C.

    2017-01-01

    This work consists of the research and unification of the guidelines transmitted to the patients and their relatives in the radioiodine therapy procedures. The goal is to provide greater understanding of the use of nuclear radiation and better understanding of treatment, to help patients better adapt to therapy, to demystify misconceptions about radiation use, and to improve care for their protection and for people close to them. Based on written and verbal information, collected in the scientific literature and in loco, accompanying the routine of the therapeutic rooms of Nuclear Medicine Services (NMS) in Rio de Janeiro, the set of actions that define scenarios experienced by radioiodine therapy patients and their helpers is being generated. Based on this information, a virtual environment is being developed in the Virtual Reality Laboratory of the Institute of Nuclear Engineering (IEN/CNEN-RJ), Brazil, a virtual environment that will allow the visualization of the procedures and instructions passed to the patients by the NMS teams. With this virtual environment, the patient will be able to immersive visualize and experience the different phases of the treatment increasing the chances of efficiency of their participation in the process. (author)

  19. The integral formation of the university technologists in nuclear medicine

    International Nuclear Information System (INIS)

    Tossi, Mirta H.; Chwojnik, Abraham; Otero, Dino

    2003-01-01

    Full text: Nuclear medicine has contributed to notable benefits to the human health from the very beginning. The Radioisotopes techniques, as well as the ionizing radiation used, have evolved providing functional and anatomical information of the patient, through non-invasive methods. With reference to Radiological Protection, the justification of each one of these practices and its perfect execution is intimately related to the benefit provided to the patients. The National Atomic Energy Commission apart from favouring the scientific and technological development, considers indispensable to work thoroughly on the professional training of the prospective technologists. Our over twenty-year experience in organizing and delivering courses of Technologists in Nuclear Medicine, although based on a much simpler program, have allowed the Institute of Nuclear Studies of the Ezeiza Atomic Center to acquire the capacity of developing a program to train highly qualified Technologists in that field. This project represents a step forward of great importance to the graduates qualification, since they will have the endorsement of CNEA and of the Faculty of Medicine of the Maimonides University. These are the three outstanding characteristics agreed on: 1.- General Education, carried out by subjects closely related to the optimisation of the relation Technologist - Patient - Environment and represented by: Radiological Protection and Hospital Security, Psychology, Ethics and Professional Medical Ethics, Nursing, English, Hygiene and Hospital Security and Management of the Quality in Services of Health. 2.- Diagnostic Procedures: planned according to organs, apparatuses or systems which are horizontally crossed by the anatomy, physiology and physiopathology Preparation of the patient, indications, main counter indications, radiopharmaceuticals, mechanisms of incorporation, pathologies, clinical protocols, instrumentation, post radiopharmaceuticals administration imaging

  20. A scientific model to determine the optimal radiographer staffing component in a nuclear medicine department

    International Nuclear Information System (INIS)

    Shipanga, A.N.; Ellmann, A.

    2004-01-01

    Full text: Introduction: Nuclear medicine in South Africa is developing fast. Much has changed since the constitution of a scientific model for determining an optimum number of radiographer posts in a Nuclear Medicine department in the late 1980's. Aim: The aim of this study was to ascertain whether the number of radiographers required by a Nuclear Medicine department can still be determined according to the norms established in 1988. Methods: A quantitative study using non-experimental evaluation design was conducted to determine the ratios between current radiographer workload and staffing norms. The workload ratios were analysed using the procedures statistics of the Nuclear Medicine department at Tygerberg Hospital. Radiographers provided data about their activities related to patient procedures, including information about the condition of the patients, activities in the radiopharmaceutical laboratory, and patient related administrative tasks. These were factored into an equation relating this data to working hours, including vacation and sick leave. The calculation of Activity Standards and an annual Standard Workload was used to finally calculate the staffing requirements for a Nuclear Medicine department. Results: Preliminary data confirmed that old staffing norms cannot be used in a modern Nuclear Medicine department. Protocols for several types of study have changed, including the additional acquisition of tomographic studies. Interest in the use of time-consuming non-imaging studies has been revived and should be factored Into the equation. Conclusions: All Nuclear Medicine departments In South Africa, where the types of studies performed have changed over the past years, should look carefully at their radiographer staffing ratio to ascertain whether the number of radiographers needed is adequate for the current workload. (author)

  1. Practice of nuclear medicine in a developing country

    International Nuclear Information System (INIS)

    Hasan, M.M.; Karim, M.A.; Nahar, N.; Haque, M.M.

    2002-01-01

    For more than a half a century nuclear medicine is contributing in the field of medicine. Still nuclear medicine is not widely available in many countries. Especially in developing countries due to many a reasons nuclear medicine could not flourish in that way. Availability of radioisotope, high cost of instrument and sophistication of the branch are the three main reasons behind. Even the countries where nuclear medicine is functioning for quite a long time, the facilities for proper function are still not adequate. Training of manpower, maintenance of instruments, regular supply of isotopes and kit and cost effectiveness are some of the major problems. We have seen some fast developments in nuclear medicine in last few decades. Development of gamma detecting systems with SPECT, positron emission detector (PET), supported computer technology and introduction of some newer radiopharmaceuticals for functional studies are few of the examples. The developing countries also have a problem to go on parallel with these rapid development of nuclear medicine in other part of the world. In last few decades we have also witnessed development of CT, MRI, Ultrasound and other imaging modalities as our competitor. Specially for developing countries these have posed as a major challenge for nuclear medicine. A better understanding between developed and developing nations is the key point of todays ultimate success in any sector. For real development of nuclear medicine and to give the majority of the people the benefit of nuclear medicine a better and more active co-operation is needed between all the countries. The paper presents the difficulties and some practical problems of practicing nuclear medicine in a developing country. And also appeals for global co-operation to solve the problems for better interest of the subject

  2. Nuclear medicine in the Philippines

    International Nuclear Information System (INIS)

    Villadolid, Leland.

    1978-01-01

    This article traces the history of nuclear medicine in the country from the time the first radioisotope laboratory was set up by the Philippine General Hospital about 1955, to the not too satisfactory present facilities acquired by hospitals for diagnosis, treatment and investigation of diseases. It is in research, the investigation of disease that is nuclear medicine's most important area. The Philippine Atomic Energy Commission (PAEC) has pioneered in the conducting of courses in the medical uses of radioisotopes. The local training of nuclear manpower has been continued and updated and foreign fellowships are availed of through the cooperation of IAEA. Quite a number are already trained also in the allied fields that support the practice of nuclear medicine. However the brain drain has seriously affected the number of trained staff of medical units. Discussed and presented is the growth of the medical use of radioisotopes which are locally produced by PAEC. In order to benefit from the full advantage that nuclear medicine can do to a majority of Filipinos, the government should extend its financial support in acquiring such facilities to equip strategic hospitals in the country and support training programs. The Philippine has the expertise to start the expansion but only with adequate provision of funds will our capacity turn into reality. (RTD)

  3. Nuclear tele medicine; Telemedicina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, L.; Hernandez, F.; Fernandez, R. [Departamento de Medicina Nuclear, Imagenologia Diagnostica, Xalapa, Veracruz (Mexico)

    2005-07-01

    The great majority of the digital images of nuclear medicine are susceptible of being sent through internet. This has allowed that the work in diagnosis cabinets by image it can benefit of this modern technology. We have presented in previous congresses works related with tele medicine, however, due to the speed in the evolution of the computer programs and the internet, becomes necessary to make a current position in this modality of work. (Author)

  4. The Basic Principles in Assessment and Selection of Reference Doses: Considerations in Nuclear Medicine (invited paper)

    International Nuclear Information System (INIS)

    Mattsson, S.; Jacobsson, L.; Vestergren, E.

    1998-01-01

    The possible ways to optimise the relation between diagnostic information and patient absorbed dose differ between nuclear medicine and X ray imaging. In nuclear medicine, very little has been done to find an optimal dosage of radiopharmaceuticals. Current nuclear medicine methods are discussed in the light of the recent ICRP Publications and the new EU Patient Directive. The paper also discusses how reference levels for administered activity may be derived from patient studies. In order to eliminate the most inappropriate choices (too low or too high activities), knowledge of the current statistical distribution of administered activities may be helpful. Different methods to estimate the amount of activity that should be administered to children of various body sizes to guarantee the same image quality as for adults are also discussed. Examples of current activity levels for common nuclear medicine procedures, indicating the state of the practice, are given. (author)

  5. Experimental nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Dormehl, I C [Nuclear Development Corp. of South Africa (Pty.) Ltd., Pelindaba, Pretoria. Inst. of Life Sciences; Du Plessis, M; Jacobs, D J

    1983-07-01

    Exciting investigative research, widening the dimensions of conventional nuclear medicine, is being conducted in Pretoria where the development and evaluation of new radiopharmaceuticals in particular is attracting international attention. Additional to this, the development of new diagnostic techniques involving sophisticated data processing, is helping to place South Africa firmly in the front line of nuclear medical progress.

  6. Physics and radiobiology of nuclear medicine

    CERN Document Server

    Saha, Gopal B

    2010-01-01

    From a distinguished author comes this new edition for technologists, practitioners, residents, and students in radiology and nuclear medicine. Encompassing major topics in nuclear medicine from the basic physics of radioactive decay to instrumentation and radiobiology, it is an ideal review for Board and Registry examinations. The material is well organized and written with clarity. The book is supplemented with tables and illustrations throughout. It provides a quick reference book that is concise but comprehensive, and offers a complete discussion of topics for the nuclear medicine and radi

  7. Physics in nuclear medicine

    CERN Document Server

    Cherry, Simon R; Phelps, Michael E

    2012-01-01

    Physics in Nuclear Medicine - by Drs. Simon R. Cherry, James A. Sorenson, and Michael E. Phelps - provides current, comprehensive guidance on the physics underlying modern nuclear medicine and imaging using radioactively labeled tracers. This revised and updated fourth edition features a new full-color layout, as well as the latest information on instrumentation and technology. Stay current on crucial developments in hybrid imaging (PET/CT and SPECT/CT), and small animal imaging, and benefit from the new section on tracer kinetic modeling in neuroreceptor imaging.

  8. Quality assurance in nuclear medicine

    International Nuclear Information System (INIS)

    Paras, P.

    1978-01-01

    Quality assurance practices must be followed throughout the entire nuclear medicine process, from the initial decision to perform a particular procedure, through the interpretation and reporting of the results. The various parameters that can be defined and measured in each area must be monitored by quality control tests to assure the excellence of the total nuclear medicine process. The presentation will discuss each of the major areas of nuclear medicine quality control and their interaction as a part of the entire system. Quality control testing results and recommendations for measurements of radioactivity distribution will be described with emphasis on imaging equipment and dose calibrating instrumentation. The role of the health physicist in a quality assurance program will be stressed. (author)

  9. Draft report on the national seminar in nuclear medicine

    International Nuclear Information System (INIS)

    1977-01-01

    The proceedings of the seminar on nuclear medicine have been conducted in four main sessions. In the first session a review of the current status of clinical nuclear medicine in India is reviewed. The use of radioisotopes in thyroid function studies, central nervous systems, liver disorders, lung and bone imaging, renal function studies, dynamic function studies, gastroenterology haematology etc. are described. The existing facilities and the future needs for radioimmunoassay and radiotherapy are discussed. In Session 2, the existing facilities in nuclear medicine in different states in India are reviewed. In Session 3, the available resources in nuclear medicine are reviewed. Radiation protection procedures are outlined. Various nuclear instruments developed at the Bhabha Atomic Research Centre, (BARC), Bombay, for use in nuclear medicine are briefly described. A list of radiopharmaceuticals developed by BARC and in current use, is given. The roles of the physicist, pharmacist and the nuclear medicine technologist in the hospitals having nuclear medicine units, are stressed. The importance of training and education for personnel in nuclear medicine and medical physics is pointed out. (A.K.)

  10. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... physician who has specialized training in nuclear medicine will interpret the images and send a report to your referring physician. top of page What are the benefits vs. risks? Benefits The information provided by nuclear ...

  11. Ninth Argentine congress on biology and nuclear medicine; fourth Southernmost sessions of ALASBIMN (Latin-American Association of Biology and Nuclear Medicine); first Spanish-Argentine congress on nuclear medicine; first Argentine sessions on nuclear cardiology

    International Nuclear Information System (INIS)

    1991-01-01

    This work deals with all the papers presented at the 9. Argentine congress on biology and nuclear medicine; IV Southernmost sessions of ALASBIMN; I Spanish-Argentine congress on nuclear medicine and I Sessions Argentine sessions on nuclear cardiology held in Buenos Aires, Argentina, from October 14 - 18, 1991

  12. Monte Carlo simulation in nuclear medicine

    International Nuclear Information System (INIS)

    Morel, Ch.

    2007-01-01

    The Monte Carlo method allows for simulating random processes by using series of pseudo-random numbers. It became an important tool in nuclear medicine to assist in the design of new medical imaging devices, optimise their use and analyse their data. Presently, the sophistication of the simulation tools allows the introduction of Monte Carlo predictions in data correction and image reconstruction processes. The availability to simulate time dependent processes opens up new horizons for Monte Carlo simulation in nuclear medicine. In a near future, these developments will allow to tackle simultaneously imaging and dosimetry issues and soon, case system Monte Carlo simulations may become part of the nuclear medicine diagnostic process. This paper describes some Monte Carlo method basics and the sampling methods that were developed for it. It gives a referenced list of different simulation software used in nuclear medicine and enumerates some of their present and prospective applications. (author)

  13. Physical bases of nuclear medicine

    International Nuclear Information System (INIS)

    Isabelle, D.B.; Ducassou, D.

    1975-01-01

    The physical bases of nuclear medicine are outlined in several chapters devoted successively to: atomic and nuclear structures; nuclear reactions; radioactiity laws; a study of different types of disintegration; the interactions of radiations with matter [fr

  14. Children in nuclear medicine

    International Nuclear Information System (INIS)

    Fischer, S.

    2002-01-01

    With each study in paediatric nuclear medicine one must try to reach a high quality standard with a minimum of radiation exposure to the child. This is true for the indication for the study and the interpretation of the results as well as the preparation, the image acquisition, the processing and the documentation. A continuous evaluation of all aspects is necessary to receive optimal, clinically relevant information. In addition it is important that the child keeps nuclear medicine in a good mind, especially when it has to come back for a control study. (orig.) [de

  15. Role of nuclear medicine in imaging companion animals

    International Nuclear Information System (INIS)

    Currie, Geoffrey M.; Wheat, Janelle M.

    2005-01-01

    The role of equine nuclear medicine in Australia has been previously described in this journal and more recently, Lyall et al. provided a general overview of demographics of veterinary nuclear medicine departments in Australia. Lyall et al. discuss the main clinical applications of nuclear medicine scintigraphy in companion animals; dogs and cats. The aim of this article is to discuss in brief the applications of commonly performed nuclear medicine procedures in humans with respect to veterinary applications. More detailed discussion will also be offered for investigation of pathologies unique to veterinary nuclear medicine or which are more common in animals than humans. Companion animals are living longer today due to advances in both veterinary and human medicine. The problem is, like humans, longevity brings higher incidence of old age morbidity. As a pet owner, one might be initially motivated to extend life expectancy which is followed by the realisation that one also demands quality of life for pets. Early detection through advanced diagnostic tools, like nuclear medicine scintigraphy, allows greater efficacy in veterinary disease. There are limited veterinary nuclear medicine facilities in Australia due to cost and demand. Not surprisingly then, the growth of veterinary nuclear medicine in Australia, and overseas, has been integrally coupled to evaluation of race horses. While these facilities are generally specifically designed for race horses, racing greyhounds, lame family horses and companion animals are being investigated more frequently. In the USA, the American College of Veterinary Radiology (ACVC) is very active clinically and in research. The ACVC journal, Journal of Veterinary Radiology and Ultrasound, is published quarterly and includes a Nuclear Medicine section. Within the ACVR is the Society of Veterinary Nuclear Medicine. Proliferation of veterinary nuclear medicine centres in the USA has been associated with insurance and lifestyle changes

  16. Nuclear medicine training and practice in Turkey.

    Science.gov (United States)

    Ozcan, Zehra; Bozkurt, M Fani; Erbas, Belkıs; Durak, Hatice

    2017-05-01

    Nuclear medicine applications in Turkey started in the early 1950s, grew as an independent medical discipline and finally were recognized by the Ministry of Health in 1973. Later on, the professional organization of nuclear medicine physicians and other related professionals including radiopharmacists and technologists under the Turkish Society of Nuclear Medicine were established in 1975. Recently after completing more than a half century in Turkey, nuclear medicine has proved to be a strong and evolving medical field with more than 600 physicians serving for the changing needs of clinical practice throughout these years. This article describes past and present facts in this field and attempts to provide insights into the future which hopefully will be brighter than before.

  17. Quality Management Audits in Nuclear Medicine Practices. 2. Ed. Companion CD-ROM

    International Nuclear Information System (INIS)

    2015-01-01

    Quality management systems are essential and should be maintained with the intent to continuously improve effectiveness and efficiency, enabling nuclear medicine to achieve the expectations of its quality policy, satisfy its customers and improve professionalism. The quality management (QM) audit methodology in nuclear medicine practice, introduced in this publication, is designed to be applied to a variety of economic circumstances. A key outcome is a culture of reviewing all processes of the clinical service for continuous improvement in nuclear medicine practice. Regular quality audits and assessments are vital for modern nuclear medicine services. More importantly, the entire QM and audit process has to be systematic, patient oriented and outcome based. The management of services should also take into account the diversity of nuclear medicine services around the world and multidisciplinary contributions. The latter include clinical, technical, radiopharmaceutical, medical physics and radiation safety procedures. This companion CD-ROM is attached to the printed STI/PUB/1683 and contains the full-text of STI/PUB/1683 as well as checklists in PDF and Excel format and a table with the contents of a standardized audit report

  18. Nuclear medicine applications for the diabetic foot

    International Nuclear Information System (INIS)

    Hartshorne, M.F.; Peters, V.

    1987-01-01

    Although not frequently described in the podiatric literature, nuclear medicine imaging may be of great assistance to the clinical podiatrist. This report reviews in detail the use of modern nuclear medicine approaches to the diagnosis and management of the diabetic foot. Nuclear medicine techniques are helpful in evaluating possible osteomyelitis, in determining appropriate amputation levels, and in predicting response to conservative ulcer management. Specific indications for bone, gallium, and perfusion imaging are described

  19. Radioisotopes for nuclear medicine: the future

    International Nuclear Information System (INIS)

    Carr, S.W.

    1998-01-01

    Full text: Nuclear medicine occupies an important niche in the spectrum of medical capability. Since its initial application on a routine basis over 30 years ago its importance has continued to grow. For example, it is expected that over 430,000 Australians will have a nuclear medicine procedure in 1998. Current procedures using nuclear medicine are mainly concerned with diagnosis of oncology, cardiology and neurology. The main radioisotope used in nuclear medicine is Tc 99m, which is produced by a 'so called' Mo-Tc 99m generator. Other isotopes which currently find routine use are Ga-67, Th-201 and I-131. The selective uptakes by particular organs or structures is facilitated by the use of 'cold kits' which after the chemistry of the radioisotope many of the recent advances have been concerned with increasing the selectivity for a particular organ structure. Several of these new agents show increased selectivity using antibody a peptide recognition units

  20. Special problems of setting up nuclear medicine in a developing country

    Energy Technology Data Exchange (ETDEWEB)

    Ganatra, R D

    1993-12-31

    There are some special problems in setting up nuclear medicine in a developing country. They can be briefly described in the form of the following general rules. 1) Impossible triangle. For the practice of nuclear medicine, three things are needed: Instrument, Radiopharmaceutical and a Patient. In a developing country, these three become three sides of an impossible triangle. When the radiopharmaceutical is available, the instrument may not be working; when the instrument is functioning, the radiopharmaceutical may not have been obtained from the foreign supplier; and when both are there, the patient might no longer be in the hospital. Three sides of this triangle never join to become a congruent whole. 2) Reverse square law. Further away one is from the source of supply of instruments and radiopharmaceuticals, the problems multiply by the square of this distance. 3) Future of nuclear medicine is tied to the electrical supply available in a developing country. These problems related to power supply are described in the Chapter on maintenance of instruments

  1. Special problems of setting up nuclear medicine in a developing country

    International Nuclear Information System (INIS)

    Ganatra, R.D.

    1992-01-01

    There are some special problems in setting up nuclear medicine in a developing country. They can be briefly described in the form of the following general rules. 1) Impossible triangle. For the practice of nuclear medicine, three things are needed: Instrument, Radiopharmaceutical and a Patient. In a developing country, these three become three sides of an impossible triangle. When the radiopharmaceutical is available, the instrument may not be working; when the instrument is functioning, the radiopharmaceutical may not have been obtained from the foreign supplier; and when both are there, the patient might no longer be in the hospital. Three sides of this triangle never join to become a congruent whole. 2) Reverse square law. Further away one is from the source of supply of instruments and radiopharmaceuticals, the problems multiply by the square of this distance. 3) Future of nuclear medicine is tied to the electrical supply available in a developing country. These problems related to power supply are described in the Chapter on maintenance of instruments

  2. Links between nuclear medicine and radiopharmacy; Structuration des liens entre medecine nucleaire et radiopharmacie

    Energy Technology Data Exchange (ETDEWEB)

    Pelegrin, M. [Inserm, U896, CRLC Val-d' Aurelle-Paul-Lamarque, institut de recherche en cancerologie de Montpellier (IRCM), universite Montpellier 1, 34 - Montpellier (France); Francois-Joubert, A. [Service de medecine nucleaire, centre hospitalier de Chambery, 73 - Chambery (France); Chassel, M.L. [Radiopharmacie, service de pharmacie, centre hospitalier de Chambery, 73 - Chambrry (France); Desruet, M.D. [Service de radiopharmacie et service pharmaceutique, clinique universitaire de medecine nucleaire, CHU de Grenoble, 38 - Grenoble (France); Bolot, C. [Service de radiopharmacie, service pharmaceutique, centre de medecine nucleaire, groupement hospitalier Est, 69 - Bron (France); Lao, S. [Service de radiopharmacie, medecine nucleaire, hopital de l' Archet, 06 - Nice (France)

    2010-11-15

    Radiopharmaceuticals are nowadays under the responsibility of the radio-pharmacist because of their medicinal product status. Radiopharmacy belongs to the hospital pharmacy department, nevertheless, interactions with nuclear medicine department are important: rooms are included or located near nuclear medicine departments in order to respect radiation protection rules, more over staff, a part of the material and some activities are shared between the two departments. Consequently, it seems essential to formalize links between the radiopharmacy and the nuclear medicine department, setting the goals to avoid conflicts and to ensure patients' security. Modalities chosen for this formalization will depend on the establishment's organization. (authors)

  3. Maladministrations in nuclear medicine

    International Nuclear Information System (INIS)

    Smart, R.C.

    2002-01-01

    Maladministration has been defined as the mistaken administration of a radiopharmaceutical to a patient. Examples include the administration of the wrong radiopharmaceutical or the wrong activity to the correct patient or the administration of the correct radiopharmaceutical to the wrong patient. Although maladministrations are rare, lessons can be learnt from the incidents that do occur. Medical maladministrations and other radiation incidents are discussed by members of the NSW Hospital and University Radiation Safety Officers Group (HURSOG) at their bi-monthly meetings. During the three years of 1997-1999 fourteen incidents of maladministrations in nuclear medicine were reported. Analysis of these reports indicated that eight (57 %) were due to the wrong radiopharmaceutical having been administered. This usually occurred because the technologist had selected the wrong lyophilised agent when the radiopharmaceutical was being prepared, or selected the wrong vial of the reconstituted agent. For example, in one instance a vial of MAG3 was reconstituted instead of a vial of HMPAO. These mistakes occurred even though the vials were clearly labelled and sometimes had different coloured labels. Of the remaining 6 cases, two involved the wrong activity being administered due to a mis-read dose calibrator, two involved the wrong procedure being performed following a breakdown in communication and the final two incidents resulted in the wrong patient being administered the radiopharmaceutical. In order to minimise the possibility of recurrence of these incidents the NSW Radiation Advisory Council asked the NSW Branch of the Australian and New Zealand Society of Nuclear Medicine and HURSOG to jointly convene a Working Party to prepare Guidelines for the administration of radiopharmaceuticals. The Guidelines specify: 1. the procedure for the validation of the requested investigation on the request form 2. who should reconstitute, dispense and administer radiopharmaceuticals

  4. Nuclear medicine - the condition and prospects

    International Nuclear Information System (INIS)

    Zaredinov, D.A.; Altaeva, B.M.

    2004-01-01

    Full text: The nuclear medicine has rather strongly determined the place in clinical and diagnostic practice. Statistical researches show, that, even despite of the certain successes in treatment of many diseases, rather high death rate at cardiovascular, oncological and many other diseases. The urgency of clinical tasks connected with a state of health of the population puts before nuclear medicine a (task) on development and introduction of new methods of diagnostics and therapy. The nuclear medicine is characterized by some number of diagnostic and therapeutic methods which application frequently does not have other alternative. The methods of visualization used in nuclear medicine, are full informative, exact and have ability to reveal structurally functional changes of bodies and fabrics practically at a cellular level. To present time diagnostic radiopharmacy (Ph) wed practically in all clinical areas of medicine. In world practice steady growth of increase of manufacture as diagnostic and radiotherapeutic RP was planned. The even greater (reduction) of potential risk one and of conditions by which development of nuclear medicine in the near future is defined is at realization of the procedures connected to application of radioactive preparations and reduction of beam loadings on the patient. An important point in the clinic-diagnostic field is replacement the RP on short-lived and ultra short-lived. Among examples of such transition it is necessary to name replacement 131 I in diagnostic application on 123 I, and also active introduction PET. It is possible to call essentially new direction of development of technologies of the directed transport the open radioactive isotopes and RP to pathology changed bodies or organisms demanding realization of diagnostic procedures or selective beam therapy. However, despite of huge potential opportunities of the domestic nuclear industry, even such old method as the radiotherapy I-131 - is used by iodine in our country

  5. Nuclear medicine training and practice in Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Ozcan, Zehra [Ege University School of Medicine, Department of Nuclear Medicine, Izmir (Turkey); Bozkurt, M. Fani; Erbas, Belkis [Hacettepe University School of Medicine, Department of Nuclear Medicine, Ankara (Turkey); Durak, Hatice [Dokuz Eyluel University School of Medicine, Department of Nuclear Medicine, Izmir (Turkey)

    2017-05-15

    Nuclear medicine applications in Turkey started in the early 1950s, grew as an independent medical discipline and finally were recognized by the Ministry of Health in 1973. Later on, the professional organization of nuclear medicine physicians and other related professionals including radiopharmacists and technologists under the Turkish Society of Nuclear Medicine were established in 1975. Recently after completing more than a half century in Turkey, nuclear medicine has proved to be a strong and evolving medical field with more than 600 physicians serving for the changing needs of clinical practice throughout these years. This article describes past and present facts in this field and attempts to provide insights into the future which hopefully will be brighter than before. (orig.)

  6. Nuclear medicine training and practice in Turkey

    International Nuclear Information System (INIS)

    Ozcan, Zehra; Bozkurt, M. Fani; Erbas, Belkis; Durak, Hatice

    2017-01-01

    Nuclear medicine applications in Turkey started in the early 1950s, grew as an independent medical discipline and finally were recognized by the Ministry of Health in 1973. Later on, the professional organization of nuclear medicine physicians and other related professionals including radiopharmacists and technologists under the Turkish Society of Nuclear Medicine were established in 1975. Recently after completing more than a half century in Turkey, nuclear medicine has proved to be a strong and evolving medical field with more than 600 physicians serving for the changing needs of clinical practice throughout these years. This article describes past and present facts in this field and attempts to provide insights into the future which hopefully will be brighter than before. (orig.)

  7. The situation of chinese nuclear medicine technologists and strategy in future

    International Nuclear Information System (INIS)

    Zhang Yongxue

    2001-01-01

    Nuclear medicine technologists is an important part of nuclear medicine professionals, and play an important role in the progress of nuclear medicine. The professional quality of nuclear medicine technologists must adapt to the development of nuclear medicine. There is a relatively great gap between China mainland and developed countries in the field of nuclear medicine. In future, it is urgent to improve the professional quality and the educational level of nuclear medicine technologists

  8. Nuclear medicine training and practice in the Czech Republic

    International Nuclear Information System (INIS)

    Kaminek, Milan; Koranda, Pavel

    2014-01-01

    Nuclear medicine in the Czech Republic is a full specialty with an exclusive practice. Since the training program was organized and structured in recent years, residents have had access to the specialty of nuclear medicine, starting with a two-year general internship (in internal medicine or radiology). At present, nuclear medicine services are provided in 45 departments. In total, 119 nuclear medicine specialists are currently registered. In order to obtain the title of Nuclear Medicine Specialist, five years of training are necessary; the first two years consist of a general internship in internal medicine or radiology. The remaining three years consist of training in the nuclear medicine specialty itself, but includes three months of practice in radiology. Twenty-one physicians are currently in nuclear medicine training and a mean of three specialists pass the final exam per year. The syllabus is very similar to that of the European Union of Medical Specialists (UEMS), namely concerning the minimum recommended numbers for diagnostic and therapeutic procedures. In principle, the Czech law requires continuous medical education for all practicing doctors. The Czech Medical Chamber has provided a continuing medical education (CME) system. Other national CMEs are not accepted in Czech Republic. (orig.)

  9. Nuclear medicine training and practice in the Czech Republic

    Energy Technology Data Exchange (ETDEWEB)

    Kaminek, Milan; Koranda, Pavel [University Hospital Olomouc, Department of Nuclear Medicine, Olomouc (Czech Republic)

    2014-08-15

    Nuclear medicine in the Czech Republic is a full specialty with an exclusive practice. Since the training program was organized and structured in recent years, residents have had access to the specialty of nuclear medicine, starting with a two-year general internship (in internal medicine or radiology). At present, nuclear medicine services are provided in 45 departments. In total, 119 nuclear medicine specialists are currently registered. In order to obtain the title of Nuclear Medicine Specialist, five years of training are necessary; the first two years consist of a general internship in internal medicine or radiology. The remaining three years consist of training in the nuclear medicine specialty itself, but includes three months of practice in radiology. Twenty-one physicians are currently in nuclear medicine training and a mean of three specialists pass the final exam per year. The syllabus is very similar to that of the European Union of Medical Specialists (UEMS), namely concerning the minimum recommended numbers for diagnostic and therapeutic procedures. In principle, the Czech law requires continuous medical education for all practicing doctors. The Czech Medical Chamber has provided a continuing medical education (CME) system. Other national CMEs are not accepted in Czech Republic. (orig.)

  10. Radiation physics for nuclear medicine

    CERN Document Server

    Hoeschen, Christoph

    2011-01-01

    The field of nuclear medicine is expanding rapidly, with the development of exciting new diagnostic methods and treatments. This growth is closely associated with significant advances in radiation physics. In this book, acknowledged experts explain the basic principles of radiation physics in relation to nuclear medicine and examine important novel approaches in the field. The first section is devoted to what might be termed the "building blocks" of nuclear medicine, including the mechanisms of interaction between radiation and matter and Monte Carlo codes. In subsequent sections, radiation sources for medical applications, radiopharmaceutical development and production, and radiation detectors are discussed in detail. New frontiers are then explored, including improved algorithms for image reconstruction, biokinetic models, and voxel phantoms for internal dosimetry. Both trainees and experienced practitioners and researchers will find this book to be an invaluable source of up-to-date information.

  11. Computers for use in nuclear medicine

    International Nuclear Information System (INIS)

    Surova, H.

    1991-01-01

    Brief information is presented on computers for nuclear medicine that are currently available on the market. The treatment is based on print material by various manufacturers and commercial organizations and on the publication ''Nuclear Medicine Computers - A Personal Comparison Chart'' of May 1991, issued by the Reilly Publishing Company. (Z.S.)

  12. Nuclear tele medicine

    International Nuclear Information System (INIS)

    Vargas, L.; Hernandez, F.; Fernandez, R.

    2005-01-01

    The great majority of the digital images of nuclear medicine are susceptible of being sent through internet. This has allowed that the work in diagnosis cabinets by image it can benefit of this modern technology. We have presented in previous congresses works related with tele medicine, however, due to the speed in the evolution of the computer programs and the internet, becomes necessary to make a current position in this modality of work. (Author)

  13. Recent applications of nuclear medicine in diagnostics: II part

    Directory of Open Access Journals (Sweden)

    Giorgio Treglia

    2013-04-01

    Full Text Available Introduction: Positron-emission tomography (PET and single photon emission computed tomography (SPECT are effective diagnostic imaging tools in several clinical settings. The aim of this article (the second of a 2-part series is to examine some of the more recent applications of nuclear medicine imaging techniques, particularly in the fields of neurology, cardiology, and infection/inflammation. Discussion: A review of the literature reveals that in the field of neurology nuclear medicine techniques are most widely used to investigate cognitive deficits and dementia (particularly those associated with Alzheimer disease, epilepsy, and movement disorders. In cardiology, SPECT and PET also play important roles in the work-up of patients with coronary artery disease, providing accurate information on the state of the myocardium (perfusion, metabolism, and innervation. White blood cell scintigraphy and FDG-PET are widely used to investigate many infectious/inflammatory processes. In each of these areas, the review discusses the use of recently developed radiopharmaceuticals, the growth of tomographic nuclear medicine techniques, and the ways in which these advances are improving molecular imaging of biologic processes at the cellular level.

  14. Current Status of The Korean Society of Nuclear Medicine

    International Nuclear Information System (INIS)

    Koh, Chang Soon

    1977-01-01

    As the application of nuclear medicine to clinics became generalized and it held an important position, the Korean Society of Nuclear Medicine was founded in 1961, and today it has become known as one of the oldest nuclear medicine societies not only to Asian nations but also to other advanced countries all over the world. Now it has 100 or so regular members composed of students of each medicine filed unlike other medical societies. Only nuclear medicine research workers are eligible for its membership. The Korean Society of Nuclear Medicine holds its regular general meeting and symposium twice per annom respectively in addition to occasional group gatherings and provincial lectures on nuclear medicine. With an eye to exchanging information on symposium, research and know-how, KSNM issued its initial magazine in 1967. Every year two editions are published. Year after year the contents of treatises are getting elevated with researches on each field including the early study on morphology-greatly improved both in quality and quantity. Of late, a minute and fixed quantity of various matters by dynamical research and radioimmunoassay of every kind has become visibly active. In particular, since KSNM, unlike other local societies, keeps close and frequent contact with the nuclear medicine researchers of world-wide fame, monographs by eminent scholars of the world are carried in its magazine now internationally and well received in foreign countries. Now the magazine has been improved to such an extent that foreign authors quote its contents. KSNM invited many a foreign scholar with a view to exchanging the knowledge of nuclear medicine. Sponsored by nuclear energy institute, the nuclear medicine symposium held in Seoul in October of 1966 was a success with Dr. Wagner participating, a great scholar of world wide fame: It was the first international symposium ever held in Korea, and the Korea Japan symposium held in Seoul 1971 was attended by all distinguished nuclear

  15. Digital filtering in nuclear medicine

    International Nuclear Information System (INIS)

    Miller, T.R.; Sampathkumaran, S.

    1982-01-01

    Digital filtering is a powerful mathematical technique in computer analysis of nuclear medicine studies. The basic concepts of object-domain and frequency-domain filtering are presented in simple, largely nonmathemaical terms. Computational methods are described using both the Fourier transform and convolution techniques. The frequency response is described and used to represent the behavior of several classes of filters. These concepts are illustrated with examples drawn from a variety of important applications in nuclear medicine

  16. Nuclear medicine. La medecine nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Blanquet, P; Blanc, D

    1976-01-01

    The applications of radioisotopes in medical diagnostics are briefly reviewed. Each organ system is considered and the Nuclear medicine procedures pertinent to that system are discussed. This includes, the principle of the test, the detector and the radiopharmaceutical used, the procedure followed and the clinical results obtained. The various types of radiation detectors presently employed in Nuclear Medicine are surveyed, including scanners, gamma cameras, positron cameras and procedures for obtaining tomographic presentation of radionuclide distributions.

  17. Radiation protection for the parent and child in diagnostic nuclear medicine

    International Nuclear Information System (INIS)

    Mountford, P.J.

    1991-01-01

    Administration of a radiopharmaceutical to a parent or child for diagnostic purposes will result in certain specific radiation hazards, yet it can yield information vital to patient management. These hazards have been cited as a reason for the reluctance of some referring clinicians and, indeed, nuclear medicine practitioners to exploit paediatric radiopharmaceutical investigations (Piepsz et al. 1991). Ignorance of these hazards has the following consequences. Firstly, a valuable diagnostic procedure could be denied to a parent or child patient without justification, thereby compromising their management. Secondly, inappropriate recommendations could result in either excessive restrictions or an unnecessarily high radiation dose to a patient's family and to hospital staff. All members of a nuclear medicine service should be familiar with these radiation risks in order to provide appropriate guidance and to dispel any unwarranted fears. (orig.)

  18. The state of the art of nuclear medicine in 1980

    International Nuclear Information System (INIS)

    Tamat, S.R.

    1982-01-01

    The second congress of World Federation of Nuclear Medicine and Biology proved that nuclear medicine is returning to physiology. Around 1951, when motorized detector was introduced and when GM tube was replaced by scintillation crystal detector, physiologic nuclear medicine moved to anatomic nuclear medicine. Since 1970, when research on cardiology developed, nuclear medicine has been returning to physiology. Since 1963 Kuhl has been doing research on quantitative tomography which develops to emission computerized tomography emphasizing the physiological aspects of medicine. The recent contribution of nuclear medicine to medical science is the concept that human body is a unity of dynamic structure consisting of millions of cubes moving physio-chemically. (RUW)

  19. The Mexican Nuclear Medicine Society and the National Commission of Nuclear Safety and Safeguards

    International Nuclear Information System (INIS)

    Maldonado M, H.I.

    2007-01-01

    This presentation contains an analysis of the work make by the medical and radiological personnel and its recommendations inside the nuclear medicine installations as well as the appropriate safety measures for the patients and its families protection as well as the environment. (Author)

  20. Considerations on radiation protection and accidents in nuclear medicine

    International Nuclear Information System (INIS)

    Lima, Carla Flavia de; Avelar, Artur Canella; Campos, Tarcisio P.R.

    2001-01-01

    The present study presents the radiation protection in the services of nuclear medicine in relation to the design of the services, manipulation of sources, cares with the patient, accomplishment of procedures and definition of accidents and incidents; besides approaching the CNEN requirements

  1. Carcinogenic risk in diagnostic nuclear medicine: biological and epidemiological considerations

    International Nuclear Information System (INIS)

    Overbeek, F.; Pauwels, E.K.J.; Broerse, J.J.

    1994-01-01

    During the last decade new data have become available on the mechanism of carcinogenesis and on cancer induction by ionizing radiation. This review concentrates on these two items in relation to the use of radiopharmaceuticals in diagnostic nuclear medicine. On the basis of reports of expert committees, the concept of radiation risk is elucidated for high and low doses. Mortality risk factors due to ionizing radiation are put in perspective to other risks. The extra risk for patients who undergo a scintigraphic examination for fatal cancer is very small and is of the order of 1.4 x 10 -4 . It is most unlikely that this figure can even be verified by actual measurement since the majority of nuclear medicine patients will die of other causes before the radiogenic cancer manifests itself. (orig.)

  2. Radiation and Radionuclides in Medicine: A Brief Overview of Nuclear Medicine and Radiotherapy

    International Nuclear Information System (INIS)

    Jawerth, Nicole

    2014-01-01

    In the past two centuries, the field of medicine has seen unprecedented advances. Alongside discoveries like the smallpox vaccine and antibiotics, the discovery of radiation and radionuclides for use in medicine has led to more diverse and effective prevention, diagnostic and treatment options for many health conditions. Diseases like cancer that were once considered unmanageable and fatal can now be diagnosed earlier and treated more effectively using nuclear techniques, giving patients a fighting chance and, for many, a significant chance for a cure. These methods are more important than ever as high-mortality diseases like cancer or cardiovascular diseases are on the rise and are among the leading health threats globally. The IAEA has worked for over 50 years to promote the use of nuclear techniques in medicine by collaborating with its Member States and other organizations through projects, programmes and agreements. The Agency’s aim is to help build Member States’ capacities in this field in order to support the provision of high-quality health care worldwide, particularly in developing countries

  3. The developments and applications of molecular nuclear medicine

    International Nuclear Information System (INIS)

    Fang Shengwei; Xi Wang; Zhang Hong

    2009-01-01

    Molecular nuclear medicine including PET and SPECT is one of the most important parts of the molecular imaging. The combinations of molecular unclear medicine with CT, MRI, ultrasound or optical imaging and synthesis of multimodality radiopharmaceuticals are the major trends of the development of nuclear medicine. Molecular nuclear medicine has more and more and more important value on the monitoring of response to biology involved gene therapy or stem cell therapy and the developments of new drug. (authors)

  4. Assessment of OEP health's risk in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Santacruz-Gomez, K.; Manzano, C.; Melendrez, R.; Castaneda, B.; Barboza-Flores, M.; Pedroza-Montero, M. [Departamento de Fisica, Universidad de Sonora. A.P. 1626 Hermosillo, Sonora, Mexico and Centro de Investigacion en Materiales Avanzados CIMAV, A.C. Chihuahua, Chihuahua (Mexico); Centro de Diagnostico Integral del Noroeste, Luis Donaldo Colosio 23 83000 Centro Hermosillo, Sonora (Mexico); Departamento de Investigacion en Fisica, Universidad de Sonora. A. P. 5-088 Hermosillo, Sonora (Mexico); Departamento de Fisica, Universidad de Sonora. A.P. 1626 Hermosillo, Sonora (Mexico); Departamento de Investigacion en Fisica, Universidad de Sonora. A. P. 5-088 Hermosillo, Sonora (Mexico)

    2012-10-23

    The use of ionizing radiation has been increased in recent years within medical applications. Nuclear Medicine Department offers both treatment and diagnosis of diseases using radioisotopes to controlled doses. Despite the great benefits to the patient, there is an inherent risk to workers which remains in contact with radiation sources for long periods. These personnel must be monitored to avoid deterministic effects. In this work, we retrospectively evaluated occupationally exposed personnel (OEP) to ionizing radiation in nuclear medicine during the last five years. We assessed both area and personal dosimetry of this department in a known Clinic in Sonora. Our results show an annual equivalent dose average of 4.49 {+-} 0.70 mSv in OEP without showing alarming changes in clinical parameters analyzed. These results allow us to conclude that health of OEP in nuclear medicine of this clinic has not been at risk during the evaluated period. However, we may suggest the use of individual profiles based on specific radiosensitivity markers.

  5. Evaluation of radiation protection in nuclear medicine diagnostic procedures

    International Nuclear Information System (INIS)

    Mohammed, Ezzeldien Mohammed Nour

    2013-05-01

    This study conducted to evaluate the radiation protection in nuclear medicine diagnostic procedures in four nuclear medicine departments in Sudan. The evaluated procedures followed in these departments were in accordance with the standards, International Recommendations and code of practice for radiation protection in nuclear medicine. The evolution included the optimum design for diagnostic nuclear medicine departments, dealing with radioactive sources, quality assurance and quality control, training and responsibilities for radiation worker taking into account economic factors in Sudan. Evaluation of radiation protection procedures in diagnostic investigations was carried out by taken direct measurements of dose rate and the contamination level in some areas where radiation sources, radiation workers and public are involved. Designated questionnaires covered thirteen areas of radiation protection based on inspection check list for nuclear medicine prepared by the International Atomic Energy Agency (IAEA) and American Association of Physicist in Medicine (AAPM) were used in the evaluation. This questionnaire has been Filled by Radiation Protection Officer (RPO), nuclear medicine technologist, nuclear medicine specialist in the nuclear medicine departments. Four hospitals, two governmental hospital and two private hospitals, have been assisted, the assessment shows that although the diagnostic nuclear medicine department in Sudan are not applying a fully safety and radiation protection procedures, but the level of radiation dose and the contamination level were found within acceptable limits. The private hospital D scored the higher level of protection (85.25%) while the governmental hospital C scored the lower level of protection (59.02%). Finally, this study stated some recommendations that if implemented could improve the level of radiation protection in nuclear medicine department. One of the most important recommendations is that a proper radiation protection

  6. Distribution of nuclear medicine service in Brazil

    International Nuclear Information System (INIS)

    Silva, Ana Carolina Costa da; Duarte, Alessandro; Santos, Bianca Maciel dos

    2011-01-01

    The Brazil does not posses a good distribution of nuclear medicine service por all his territory. This paper shows the difference among country regions as far the number of clinics of nuclear medicine as is concerning, and also doctors licensed in the area and radioprotection supervisors, both licensed by the Brazilian Nuclear Energy Commission (CNEN)

  7. Computers in nuclear medicine: introductory concepts

    International Nuclear Information System (INIS)

    Weber, D.A.

    1978-01-01

    Computers play an important role in image and data processing in nuclear medicine. Applications extend from relatively simple mathematical processing of in vitro specimen assays to more sophisticated image reconstruction procedures for emission tomography. The basic concepts and terminology associated with computer applications in image and data processing in nuclear medicine are presented here

  8. Results of a national survey on nuclear medicine procedures

    International Nuclear Information System (INIS)

    Curti, A.R.; Gatica, N.A.; Melis, H.J.

    1998-01-01

    Full text: In 1997, the Nuclear Regulatory Authority of Argentina carried out a compilation of data on radiopharmaceuticals administered to patients in nuclear medicine procedures. Its aim was to get information on the radiopharmaceuticals that are used in different procedures and the activity administered to the patient, to assess the radiation exposure of the population and to contribute to a global survey of medical radiation usage and exposures conducted by the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), by sending information of the country. The data compiled were analysed, and for the most frequent procedures, the mean activity administered, the standard deviation, the distribution of the number of procedures for different age groups, sex and radiopharmaceuticals were assessed. The radiation exposure for children and adults was estimated. For the main diagnostic examinations, the results of the survey were compared with specific values published in the Basic Safety Standards of the International Atomic Energy Agency (Safety Series No. 115, 1996). As a conclusion, it may be point out the importance of continuing with the compilation of this kind of information in order to identify emerging trends on the use of nuclear medicine procedures in Argentina and the activity of radiopharmaceuticals administered to the patients. (author) [es

  9. Nuclear medicine imaging. An encyclopedic dictionary

    International Nuclear Information System (INIS)

    Thie, Joseph A.

    2012-01-01

    The rapidly growing and somewhat complex area of nuclear medicine imaging receives only limited attention in broad-based medical dictionaries. This encyclopedic dictionary is intended to fill the gap. More than 400 entries of between one and three paragraphs are included, defining and carefully explaining terms in an appropriate degree of detail. The dictionary encompasses concepts used in planar, SPECT, and PET imaging protocols and covers both scanner operations and popular data analysis approaches. In spite of the mathematical complexities in the acquisition and analysis of images, the explanations given are kept simple and easy to understand; in addition, many helpful concrete examples are provided. Nuclear Medicine Imaging: An Encyclopedic Dictionary will be ideal for those who wish to obtain a rapid grasp of a concept beyond a definition of a few words but do not want to resort to a time-consuming search of the reference literature. The almost tutorial-like style accommodates the needs of students, nuclear medicine technologists, and varieties of other medical professionals who interface with specialists within nuclear medicine.

  10. Quality control of nuclear medicine instruments, 1991

    International Nuclear Information System (INIS)

    1996-12-01

    This document gives detailed guidance on the quality control of various instruments used in nuclear medicine. A first preliminary document was drawn up in 1979. A revised and extended version, incorporating recommended procedures, test schedules and protocols was prepared in 1982. The first edition of 'Quality Control of Nuclear Medicine Instruments', IAEA-TECDOC-317, was printed in late 1984. Recent advances in the field of nuclear medicine imaging made it necessary to add a chapter on Camera-Computer Systems and another on SPECT Systems

  11. Quality control of nuclear medicine instruments 1991

    International Nuclear Information System (INIS)

    1991-05-01

    This document gives detailed guidance on the quality control of various instruments used in nuclear medicine. A first preliminary document was drawn up in 1979. A revised and extended version, incorporating recommended procedures, test schedules and protocols was prepared in 1982. The first edition of ''Quality Control of Nuclear Medicine Instruments'', IAEA-TECDOC-317, was printed in late 1984. Recent advances in the field of nuclear medicine imaging made it necessary to add a chapter on Camera-Computer Systems and another on SPECT Systems. Figs and tabs

  12. Workshop on radiation protection of patient. Workshop on radiation protection of worker in nuclear medicine and biomedicine

    International Nuclear Information System (INIS)

    1998-01-01

    In these workshops, information on the following subjects was presented: biological and prenatal effects of ionizing radiation, excretion of radiopharmaceuticals in human breast milk, fetal doses assessment, final disposal of radioactive waste in medical applications, regulatory functions for installations in nuclear medicine, workers doses in nuclear medicine and biomedicine, radioprotection of their nuclear installations, programs of quality assurance, etc

  13. 22. French language symposium on nuclear medicine

    International Nuclear Information System (INIS)

    1981-01-01

    The 80 papers presented in summary form at the Congress are given. These papers cover three main topics: broncho-pulmonary investigation with radioaerosols; role of nuclear medicine in pharmacokinetics; role of Nuclear Medicine in metabolic investigations [fr

  14. Paediatric nuclear medicine imaging.

    Science.gov (United States)

    Biassoni, Lorenzo; Easty, Marina

    2017-09-01

    Nuclear medicine imaging explores tissue viability and function by using radiotracers that are taken up at cellular level with different mechanism. This imaging technique can also be used to assess blood flow and transit through tubular organs. Nuclear medicine imaging has been used in paediatrics for decades and this field is continuously evolving. The data presented comes from clinical experience and some milestone papers on the subject. Nuclear medicine imaging is well-established in paediatric nephro-urology in the context of urinary tract infection, ante-natally diagnosed hydronephrosis and other congenital renal anomalies. Also, in paediatric oncology, I-123-meta-iodobenzyl-guanidine has a key role in the management of children with neuroblastic tumours. Bone scintigraphy is still highly valuable to localize the source of symptoms in children and adolescents with bone pain when other imaging techniques have failed. Thyroid scintigraphy in neonates with congenital hypothyroidism is the most accurate imaging technique to confirm the presence of ectopic functioning thyroid tissue. Radionuclide transit studies of the gastro-intestinal tract are potentially useful in suspected gastroparesis or small bowel or colonic dysmotility. However, until now a standardized protocol and a validated normal range have not been agreed, and more work is necessary. Research is ongoing on whether magnetic resonance imaging (MRI), with its great advantage of great anatomical detail and no ionizing radiations, can replace nuclear medicine imaging in some clinical context. On the other hand, access to MRI is often difficult in many district general hospitals and general anaesthesia is frequently required, thus adding to the complexity of the examination. Patients with bone pain and no cause for it demonstrated on MRI can benefit from bone scintigraphy with single photon emission tomography and low-dose computed tomography. This technique can identify areas of mechanical stress at

  15. The 3rd Sino-Japan nuclear medicine conference

    International Nuclear Information System (INIS)

    1999-01-01

    The 3rd Sino-Japan Nuclear Medicine Conference was hold on May 11-13, 1999 in Xi'an of China by Chinese Society of Nuclear Medicine, Japanese Society of Nuclear Medicine, Chinese Medicine Association and Japan-China Medicine Association. 62 articles were published in the proceeding of the conference. The contents of the articles include development and application of the radioisotopes (such as Tc-99, I-125, I-131, F-18, In-111, Tl-201, Ga-67, Sm-153, Re-188) and its radiopharmaceuticals, but application also include radiotherapy and diagnosis in the oncology and pathology by SPECT and PET

  16. Report on the second Congress of the Russian nuclear medicine society and on International conference Current problems of nuclear medicine and radiopharmaceuticals

    International Nuclear Information System (INIS)

    Lishmanov, Yu.B.; Chernov, V.I.

    2001-01-01

    Information on the work of Second Congress of Russian Nuclear Medicine Society and International Conference - Current problems of nuclear medicine and radiopharmaceuticals, - held in Obninsk in October, 2000, is adduced. Reports presented in the conference are dedicated to various aspects of application of radionuclide methods to cardiology, angiology, oncology, surgery, hematology, endocrinology, pediatrics and neurology. Problems in the development of radiopharmaceutical, training and skill advancement of experts, dosimetry and radiation safety in nuclear medicine were discussed. Congress considered the organizational problems in Russian nuclear medicine [ru

  17. Exposure dose in recent treatment of nuclear medicine and countermeasures

    International Nuclear Information System (INIS)

    Iio, Masahiro

    1974-01-01

    Radioactive pharmaceuticals widely used for the diagnosis in nuclear medicine utilize radiation as tracer for dynamic behavior measurement and locality diagnosis, and the exposure due to their use has very little chance to attain the maximum permissible dose of ICRP. The MIRD (Medical Internal Radiation Dose) method tends to be adopted for the measurement of internally absorbed dose due to radio-pharmaceuticals in future. The feature of the MIRD method is that the targeted object is not a critical organ but the region of interest, and the source organ and target organ are fully taken into consideration. Recently, the exposure of patients has been significantly lowered by applying sup(99m)Tc and the like. Though the contribution to national dose is small, it is required to perform immediate conversion from the older nuclear medicine typified with conventional 131 I, 198 Au and 203 Hg to modern one centering around sup(99m)Tc. The problems in calculating the absorbed dose due to nuclear medicine diagnosis are very low accuracy of biological data though the high accuracy of data in physics has been achieved, and the difficulty to obtain data for calculating patients' absorbed dose in routine inspection. (Wakatsuki, Y.)

  18. Developing and setting up of a nuclear medicine information management system

    International Nuclear Information System (INIS)

    Baghel, N.S.; Asopa, R.; Nayak, U.N.; Rajan, M.G.R.; Subhalakshmi, P.V.; Shailaja, A.; Rajashekharrao, B.; Karunanidhi, Y.R.

    2010-01-01

    Full text: With the advent and progress of information technology in the present decade, high-performance networks are being installed in hospitals to implement an effective and reliable Hospital Information Management Systems (HIMS). The Radiation Medicine Centre (RMC), is one of the earliest and largest nuclear medicine centres in India and several thousand patients undergo diagnostic as well as therapeutic procedures with different radiopharmaceuticals. The evolution towards a fully digital department of nuclear medicine is driven by expectations of not only improved patient management but also a well-defined workflow along with prompt and quality patient services. The aim was to develop and set up a practical and utility based Nuclear Medicine Information Management System (NMIMS) for various functional procedures at RMC. A customised NMIMS is developed with M/s ECIL using ASP.NET and SQL server technology facilitated by an IBM x3650 M3 Server, 18 thin-clients/desktop PCs and Windows 2008 server operating system and MS-SQL 2005 server software. The various modules have been developed to meet the requirements of different activities pertaining to patient appointment and scheduling, clinical assessment, radiopharmacy procedures, imaging and non-imaging studies and protocols, in-vitro laboratory tests, in-patient and out-patient treatment procedures, radiation protection and regulatory aspects and other routine operational procedures associated with patient management at RMC. The menus are developed as per scheduled workflow (SWF) in the department. The various aspects of SWF have been designed to ensure smooth, easy and trouble free patient management. Presently, the NMIMS has been developed excluding imaging data and we are in the process of setting up Picture Archiving Communication System (PACS) integrated to the existing database system, which will archive and facilitate imaging data in DICOM format in order to make a paperless department. The developed NMIMS

  19. Pulmonary explorations in nuclear medicine

    International Nuclear Information System (INIS)

    Beck, C.

    1987-01-01

    Ten years ago specialists in Nuclear Medicine from the South of France formed an Association called ACOMEN. The objectives were to create a permanent exchange of ideas between members and a close collaboration with physicians. The group objectives have led to a combination of efforts on the behalf of each one to clarify our techniques for physicians having recourse to this speciality as well as the various categories of students passing through the Nuclear Medicine Departments. Different groups within the ACOMEN were assigned to specific subjects. Each group was in charge of building the framework of a certain topic, which was then illustrated by selected documents contributed by all members. A slide collection, complete with an explanatory booklet is the final result of this collaboration. Thus anyone concerned in any way, with nuclear medicine, is able to quickly become familiar with the techniques of the speciality, to be aware of its possibilities and its limitations and to update his hnowledge. One realizes that the first theme selected was not the easiest; pulmonary radionuclide explorations are, as everyone knows, variable and even personalized. However, the choice was deliberate. The difficulty should stimulate those responsible for the other themes as well as the people working with them. There is already a slide collection available to anyone who wishes to learn about the use of nuclear medicine in the diagnosis of respiratory diseases [fr

  20. Radiation exposure of workers in nuclear medicine

    International Nuclear Information System (INIS)

    Bujnova, A.

    2008-01-01

    Nuclear medicine is an interdisciplinary department that deals with diagnosis and therapy using open sources. Therefore workers in nuclear medicine are in daily contact with ionizing radiation and thus it is essential to monitor a radiation load. Each work must therefore carry out monitoring of workers. It monitors compliance with the radiation limits set by law, allows an early detection of deviations from normal operation and to demonstrate whether the radiation protection at the workplace is optimized. This work describes the principles of monitoring of workers in nuclear medicine and monitoring methods for personal dosimetry. In the next section the author specifically deals with personal dosimetry at the Department of Nuclear Medicine St. Elizabeth Cancer Institute, Bratislava (KNM-Ba-OUSA). The main part of the work is to evaluate the results of a one-year monitoring of radiation workers KNM-Ba-OUSA. (author)

  1. Hand Dose in Nuclear Medicine Staff Members

    International Nuclear Information System (INIS)

    Taha, T.M.; Shahein, A.Y.; Hassan, R.

    2009-01-01

    Measurement of the hand dose during preparation and injection of radiopharmaceuticals is useful in the assessment of the extremity doses received by nuclear medicine personnel. Hand radiation doses to the occupational workers that handling 99m Tc-labeled compounds, 131 I for diagnostic in nuclear medicine were measured by thermoluminescence dosimetry. A convenient method is to use a TLD ring dosimeter for measuring doses of the diagnostic units of different nuclear medicine facilities . Their doses were reported in millisieverts that accumulated in 4 weeks. The radiation doses to the hands of nuclear medicine staff at the hospitals under study were measured. The maximum expected annual dose to the extremities appeared to be less than the annual limit (500 mSv/y) because all of these workers are on rotation and do not constantly handle radioactivity throughout the year

  2. Lessons from other areas of medical imaging - nuclear medicine

    International Nuclear Information System (INIS)

    McCready, V.R.

    1981-01-01

    Ultrasound and nuclear medicine are similar in that they both have been developed for clinical use in the past decade. Unlike X-ray techniques the success or failure of ultrasound and nuclear medicine depend more upon both the operator and the method of display. Since both ultrasound and nuclear medicine use relatively complicated methods of gathering and displaying information some of the lessons learnt during the development of nuclear medicine can be equally applied to ultrasound techniques. (Auth.)

  3. The radiological protection in the nuclear medicine practice; La proteccion radiologica en la practica de medicina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Maldonado M, H., E-mail: hmaldonado@cnsns.gob.m [Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Barragan No. 779, Col. Narvarte, 03020 Mexico D. F. (Mexico)

    2010-09-15

    The nuclear medicine practice dates of the 1950 years, in this work the achievements reached as regards radiological protection are shown, although even lack a lot to make, the doses for the occupationally exposed personnel have decreased with lapsing of the years, thanks to the perception of the nuclear physicians to improve the administration techniques of the radioactive material, the decrease of administered activity and the unit doses use among the most remarkable advances. The changes in the equipment s technology to quantify the activity to administer, detection systems and image formation have demanded the development of the new professionals of the nuclear medicine that allows give protection to the patient. This improvement needs to consolidate with the appropriate normative development, the involved personnel qualification and the methods and procedures actualization to improve the protection of the occupationally exposed personnel, the public, the environment and the patient. (Author)

  4. Radiation protection for the parent and child in diagnostic nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Mountford, P.J. (Kent and Canterbury Hospital (UK). Dept. of Nuclear Medicine)

    1991-12-01

    Administration of a radiopharmaceutical to a parent or child for diagnostic purposes will result in certain specific radiation hazards, yet it can yield information vital to patient management. These hazards have been cited as a reason for the reluctance of some referring clinicians and, indeed, nuclear medicine practitioners to exploit paediatric radiopharmaceutical investigations (Piepsz et al. 1991). Ignorance of these hazards has the following consequences. Firstly, a valuable diagnostic procedure could be denied to a parent or child patient without justification, thereby compromising their management. Secondly, inappropriate recommendations could result in either excessive restrictions or an unnecessarily high radiation dose to a patient's family and to hospital staff. All members of a nuclear medicine service should be familiar with these radiation risks in order to provide appropriate guidance and to dispel any unwarranted fears. (orig.).

  5. The 3rd questionnaire report of safety control on instrument in nuclear medicine laboratory

    International Nuclear Information System (INIS)

    1994-01-01

    The present 3rd survey was aimed at grasping safety control in nuclear medicine examination and the trend for SPECT usage. Questionnaires were sent to 1238 facilities dealing with nuclear medicine; and 1127 facilities (91.0%) responded. The survey period was three years from April 1, 1989 through March 31, 1992. The following 7 items were surveyed: (1) nuclear medicine personnel, (2) nuclear medicine equipments, (3) accidents occurring in nuclear medicine laboratories, (4) risk factors leading to accidents, (5) countermeasures for improving safety control, (6) major breakdown of the machinery and equipment, and (7) demands for makers. Majority of nuclear medicine personnel were male and were less than 50 years old. The number of SPECT equipments increased from 714 in the previous survey to 968. Accidents (personal injuries) and narrow escape from an accident were seen in 45 and 154 cases. Personal injuries such as falling occurred in 37 patients and 8 nuclear medicine personnel. According to nuclear medicine examinations, SPECT was the most common examination associated with accident and narrow escape cases (86/199). Such cases at the beginning of examination were remarkably decreased, as compared with those in the previous two surveys. Accidents were primarily attributable to careless management by personnel. Breakdown of the machinery and equipment was reported in 207 cases. In Item 5, the following contents were presented: heads for examination, personnel's behavior, education, examination equipments, collimators and others. Finally, contents in Item 7 included: equipment design, heads for examination, maintenance or management, data processing, collimators, examination equipments and others. (N.K.)

  6. Research and career opportunities for chemists in nuclear medicine

    International Nuclear Information System (INIS)

    Welch, M.J.

    1989-01-01

    Two recent publications [Training Requirements for Chemists in Nuclear Medicine, Nuclear Industry, and Related Areas: Report of a Workshop National Academy Press, Washington, D.C., 1988, and Report of the Society of Nuclear Medicine Manpower Committee, Journal of Nuclear Medicine, January, 1989] have emphasized the opportunities for Chemists in Nuclear Medicine. These opportunities exist in Medical Centers, the Radiopharmaceutical Drug Industry as well as the Ethical Drug Industry of particular importance of the need for organic and inorganic chemists with knowledge and experience in radiochemistry to develop and prepare the radiopharmaceuticals needed for the Nuclear Medicine community. The number of positions available at present and anticipated in the future will be compared and the number of training programs listed. Examples of the types of opportunities in this area will be given

  7. Nuclear medicine program progress report for quarter ending December 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, F.F. Jr.; Beets, A.L.; Boll, R.; Luo, H.; McPherson, D.W.; Mirzadeh, S.

    1997-03-20

    In this report the authors describe the use of an effective method for concentration of the rhenium-188 bolus and the results of the first Phase 1 clinical studies for bone pain palliation with rhenium-188 obtained from the tungsten-188/rhenium-188 generator. Initial studies with therapeutic levels of Re-188-HEDP at the Clinic for Nuclear Medicine at the University of Bonn, Germany, have demonstrated the expected good metastatic uptake of Re-188-HEDP in four patients who presented with skeletal metastases from disseminated prostatic cancer with good pain palliation and minimal marrow suppression. In addition, skeletal metastatic targeting of tracer doses of Re-188(V)-DMSA has been evaluated in several patients with metastases from prostatic cancer at the Department of Nuclear Medicine at the Canterbury and Kent Hospital in Canterbury, England. In this report the authors also describe further studies with the E-(R,R)-IQNP ligand developed in the ORNL Nuclear Medicine Program as a potential imaging agent for detection of changes which may occur in the cerebral muscarinic-cholinergic receptors (mAChR) in Alzheimer`s and other diseases.

  8. Effective collective dose imparted by a medicine nuclear service to Cordoba and Jaen populations

    International Nuclear Information System (INIS)

    Arias, M.C.; Galvez, M.; Torres, M.

    1997-01-01

    The application of diagnostic techniques in nuclear medicine is ever growing as part of clinical daily routine. Although the diagnostic procedures carry a negligible clinical risk, the introduction of radioactive substances into the patient makes it imperative to determine the effective dose to minimize the stochastic effects to the patient thus establishing the collective dose to the community. The aim of our work is to study the collective effective dose imparted by Nuclear Medicine Service during 1997 to Cordoba and Jaen inhabitants (1 448 988). The nuclear medicine techniques of bone exploration with 11 454 mSv-person (4,6 mSv/exploration) and thyroid scintigraphy with 6181 mSv-person (7,0 mSv /exploration) are the main techniques implicated in the relative contribution to the total annual effective collective dose of 35 901.2 mSv-person

  9. Evaluation of performance of activimeter used in nuclear medicine for radiopharmaceuticals activity measure

    International Nuclear Information System (INIS)

    Silva, Tais Lins da; Oliveira, Antonio Eduardo de; Iwahara, Akira; Tauhata, Luiz; Ruzzarin, Anelise; Xavier, Ana Maria

    2013-01-01

    This paper presents the performance evaluation of radionuclide calibrators of Nuclear Medicine Centers located in Rio de Janeiro state and Porto Alegre city at the criterion of accuracy required by the standard NN-3.05 of the National Commission on Nuclear Energy for measuring of activity of radiopharmaceuticals. Of total of 203 results evaluated for 99 mTc, 131 I, 67 Ga and 201 Tl, 88% showed acceptable performance according to this criterion. Ideally, and fully attainable, the performance should be 100%, for the benefit of patients undergoing nuclear medicine procedures. (author)

  10. Imaging nuclear medicine techniques for diagnostic evaluation of arterial hypertension

    International Nuclear Information System (INIS)

    Eisenberg, B.M.; Linss, G.

    1989-01-01

    Arterial hypertension may be caused by a malfunction of organs and in turn may lead to secondary organic lesions. Modern diagnostic nuclear medicine is applied for function studies in order to detect or exclude secondary hypertension and functional or perfusion disturbances due to hypertension, or to assess and follow up hemodynamic conditions and cardiac functions prior to and during therapy. The article presents a survey of imaging diagnostic nuclear medicine techniques for the eamination of the heart, the brain, the kidneys and endocrine glands in patients with arterial hypertension, discussing the methods with a view to obtainable information, limits of detection, and indications. (orig.) [de

  11. Nuclear Medicine on the net

    International Nuclear Information System (INIS)

    Graney, K.; Lin, P.C.; Chu, J.; Sathiakumur, C.

    2003-01-01

    Full text: To gain insight into Internet usage as a potential means of communicating with clinicians. Method: 200 clinicians within the South Western Sydney Health Area were surveyed by mail. Questionnaire details included Internet access, frequency of access, interest in department web site, suitability of content and interest in electronic bookings. The total response rate was 37% (74/200). General Practitioners comprised 46% of the respondents, and specialists 54%. All respondents had access to the Internet (44% from home only, 8% from work, 48% from both locations), with 57% accessing the Web daily. There was a high overall interest by respondents in accessing a Nuclear medicine web site, particularly for information and results, but a relative reluctance to consider electronic bookings. The following table outlines the respondents in detail. Our results indicate that a Nuclear Medicine web site has the potential to be an effective means of communicating with clinicians. Copyright (2003) The Australian and New Zealand Society of Nuclear Medicine Inc

  12. Interventional studies in nuclear medicine

    International Nuclear Information System (INIS)

    Saha, G.B.; Swanson, D.P.; Hladik, W.B. III

    1987-01-01

    Pharmacological interventions in nuclear medicine studies have been in practice for a long time. The triiodothyronine (T/sub 3/) suppression, Thyroid-stimulating hormone (TSH) stimulation, and perchlorate discharge tests are common examples of well-established diagnostic interventional studies. In recent years, pharmacologic and physiologic interventions in other nuclear medicine procedures have drawn considerable attention. The primary purpose of these interventions is to augment, complement or, more often, differentiate the information obtained from conventional nuclear medicine diagnostic studies. Pharmacologic interventions involve the administration of a specific drug before, during, or after the administration of radiopharmaceutical for a given study. The change in information due to intervention of the drug offers clues to differentiating various disease conditions. These changes can be brought about by physiologic interventions also, e.g., exercise in radionuclide ventriculography. In the latter interventions, the physiologic function of an organ is enhanced or decreased by physical maneuvers, and the changes observed can be used to differentiate various disease conditions

  13. Highlights of articles published in annals of nuclear medicine 2016

    International Nuclear Information System (INIS)

    Jadvar, Hossein

    2017-01-01

    This article is the first installment of highlights of selected articles published during 2016 in the Annals of Nuclear Medicine, an official peer-reviewed journal of the Japanese Society of Nuclear Medicine. A companion article highlighting selected articles published during 2016 in the European Journal of Nuclear Medicine and Molecular Imaging, which is the official peer-reviewed journal of the European Association of Nuclear Medicine, will also appear in the Annals Nuclear Medicine. This new initiative by the respective journals will continue as an annual endeavor and is anticipated to not only enhance the scientific collaboration between Europe and Japan but also facilitate global partnership in the field of nuclear medicine and molecular imaging. (orig.)

  14. Highlights of articles published in annals of nuclear medicine 2016

    Energy Technology Data Exchange (ETDEWEB)

    Jadvar, Hossein [University of Southern California, Division of Nuclear Medicine, Department of Radiology, Keck School of Medicine, Los Angeles, CA (United States)

    2017-10-15

    This article is the first installment of highlights of selected articles published during 2016 in the Annals of Nuclear Medicine, an official peer-reviewed journal of the Japanese Society of Nuclear Medicine. A companion article highlighting selected articles published during 2016 in the European Journal of Nuclear Medicine and Molecular Imaging, which is the official peer-reviewed journal of the European Association of Nuclear Medicine, will also appear in the Annals Nuclear Medicine. This new initiative by the respective journals will continue as an annual endeavor and is anticipated to not only enhance the scientific collaboration between Europe and Japan but also facilitate global partnership in the field of nuclear medicine and molecular imaging. (orig.)

  15. NCRP report 160 and what it means for medical imaging and nuclear medicine.

    Science.gov (United States)

    Bolus, Norman E

    2013-12-01

    The purpose of this paper is to briefly explain report 160 of the National Council on Radiation Protection and Measurement and the significance of the report to medical imaging as a whole and nuclear medicine specifically. The implications of the findings of report 160 have had repercussions and will continue to affect all of ionizing radiation medical imaging. The nuclear medicine community should have an understanding of why and how report 160 is important. After reading this article, the nuclear medicine technologist will be familiar with the main focus of report 160, the significant change that has occurred since the 1980s in the ionizing radiation exposure of people in the United States, the primary background source of ionizing radiation in the United States, the primary medical exposure to ionizing radiation in the United States, trends in nuclear medicine procedures and patient exposure, and a comparison of population doses between 2006 and the early 1980s as outlined in report 160.

  16. Mentoring and the Nuclear Medicine Technologist.

    Science.gov (United States)

    Burrell, Lance

    2018-06-08

    The goal of this article is to give an overview of mentoring for nuclear medicine technologists (NMT). Mentoring is an integral part of the training and practice in the field of nuclear medicine technology. There is a great need for NMTs to continue involvement in mentorship so that we can develop and maintain the talent and leadership that the field needs. In this article, definitions of mentorship will be provided. Then, how mentoring can work; including different methods and techniques will be covered. Next, the benefits of mentoring will be discussed. Finally, advice for improved application will be presented. Throughout, this article will discuss how mentoring applies to the NMT. Copyright © 2018 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  17. Radiopharmaceutical activities administered for paediatric nuclear medicine procedures in Australia

    International Nuclear Information System (INIS)

    Towson, J.E.; Smart, R.C.; Rossleigh, M.A.; Children's Hospital, Randwick, NSW

    2000-01-01

    A survey of radiopharmaceutical activities used at the eight hospital centres specialising in paediatric nuclear medicine in Australia was conducted in 1999-2000 by the Australian and New Zealand Society of Nuclear Medicine and the Australasian Radiation Protection Society. Data on the maximum and minimum administered activities was obtained for 43 paediatric imaging procedures. The maximum values were significantly less than the corresponding Reference Activities for adults determined in a previous study. Activities for individual patients are calculated using surface area scaling at five centres and body weight scaling at three centres. The median values of A max and A min are recommended as Paediatric Reference Activities. The effective dose to patients of various sizes for the Paediatric Reference Activities and both methods of scaling was calculated for each procedure. Copyright (2000) Australasian Radiation Protection Society Inc

  18. Nuclear techniques in medicine

    International Nuclear Information System (INIS)

    Basson, J.K.

    1984-01-01

    The use of nuclear techniques in medicine has, also in South Africa, increased enormously, especially as regards diagnosis and reseach. In 1983 in vivo tests with radioisotopes were carried out and also in vitro tests, mainly by radioimmunoassay. Therapy with open and sealed radioactive sources was concentrated mainly on cancer treatments. In 1983 NUCOR supported 83 research projects in the life sciences. Imaging of organs or tissues in the body with nuclear techniques has developed into the most important application of nuclear medicine, with the development of even more specific labelled compounds as the main objective. Radioimmunoassay is at an exciting watershed, now that labelled monoclonal antibodies with high specificity for early diagnosis (also in cancer) and even localised radiotherapy have become available. The establishment of the 200 MeV open-sector cyclotron by the National Accelerator Centre also for medical purposes will, in addition to the large-scale production of the protonrich isotopes, also make a substantial contribution to radiotherapy with nuclear particles such as neutrons, protons and helium-3

  19. Pulmonary applications of nuclear medicine

    International Nuclear Information System (INIS)

    Kramer, E.L.; Divgi, C.R.

    1991-01-01

    Nuclear medicine techniques have a long history in pulmonary medicine, one that has been continually changing and growing. Even longstanding methods, such as perfusion scanning for embolic disease or for pretherapy pulmonary function evaluation, have largely withstood the test of recent careful scrutiny. Not only have these techniques remained an important part of the diagnostic armamentarium, but we have learned how to use them more effectively. Furthermore, because of technical advances, we are in a phase of expanding roles for nuclear imaging. Gallium citrate scanning for the mediastinal staging and follow-up of lymphoma has been recognized as a valuable adjunct to the anatomic information provided by CT and MRI. With the growth of PET technology in areas that have been explored in a limited fashion until now, such as noncardiogenic pulmonary edema and lung carcinoma, evaluation and management of these patients may substantially improve. Finally, in the field of radiolabeled monoclonal antibodies, attention is now being turned to both the diagnostic and the therapeutic problems presented by lung carcinoma. As radiolabeling methods are refined and as new and better antibodies are developed, radioimmunodetection and therapy in lung carcinoma may begin to make inroads on this common and hard to control disease.157 references

  20. A study using virtual reality as a source of complementary information for nuclear medicine patients and its relatives

    Energy Technology Data Exchange (ETDEWEB)

    Mendonça, Sérgio F.; Nascimento, Ana C.H.; Mol, Antônio C.A.; Marins, Eugênio R.; Suíta, Júlio C., E-mail: sergio.f2014@hotmail.com, E-mail: acris@ien.gov.br, E-mail: mol@ien.gov.br, E-mail: eugenio@ien.gov.br, E-mail: suita@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    This work consists in the research, analysis and unification of the guidelines transmitted to the patients and their relatives in the radioiodine therapy procedures. The goal is to provide greater understanding of the use of nuclear radiation and better understanding of treatment, to help patients better adapt to therapy, to demystify misconceptions about radiation use, and to improve care for their protection and for people close to them. Based on written and verbal information, collected in the scientific literature and in loco accompanying the routine of the therapeutic rooms of Nuclear Medicine Services in Rio de Janeiro, the set of actions that define scenarios experienced by radioiodine therapy patients and their helpers is being generated. Based on this information, a virtual environment is being developed in the Virtual Reality Laboratory of the Institute of Nuclear Engineering (IEN / CNEN), a virtual environment that will allow the visualization of the procedures and instructions passed to the patients by the SMN1 teams. With this virtual environment, the patient will be able to perform an immersive visualization and to experience the different phases of the treatment, increasing the chances of efficiency of their participation in the process. (author)

  1. A study using virtual reality as a source of complementary information for nuclear medicine patients and its relatives

    International Nuclear Information System (INIS)

    Mendonça, Sérgio F.; Nascimento, Ana C.H.; Mol, Antônio C.A.; Marins, Eugênio R.; Suíta, Júlio C.

    2017-01-01

    This work consists in the research, analysis and unification of the guidelines transmitted to the patients and their relatives in the radioiodine therapy procedures. The goal is to provide greater understanding of the use of nuclear radiation and better understanding of treatment, to help patients better adapt to therapy, to demystify misconceptions about radiation use, and to improve care for their protection and for people close to them. Based on written and verbal information, collected in the scientific literature and in loco accompanying the routine of the therapeutic rooms of Nuclear Medicine Services in Rio de Janeiro, the set of actions that define scenarios experienced by radioiodine therapy patients and their helpers is being generated. Based on this information, a virtual environment is being developed in the Virtual Reality Laboratory of the Institute of Nuclear Engineering (IEN / CNEN), a virtual environment that will allow the visualization of the procedures and instructions passed to the patients by the SMN1 teams. With this virtual environment, the patient will be able to perform an immersive visualization and to experience the different phases of the treatment, increasing the chances of efficiency of their participation in the process. (author)

  2. Preliminary results of the analysis of the administered activities in diagnostic studies of nuclear medicine

    International Nuclear Information System (INIS)

    Lopez Bejerano, G.; Sed, L.J.

    2001-01-01

    The worldwide use of Nuclear Medicine diagnostic procedures and the tendency to its increment, infers an important exposure of the population to ionising radiation; it has motivated that the IAEA in the International Basic Safety Standards (BSS), emits recommendations for the establishment of guidance levels of activities administered to the patients in diagnostic procedures. Taking into account the above-mentioned and that in Cuba there exist 20 departments of Nuclear Medicine that in the majority possess equipment with more than 20 years of operation, which influences directly the medical exposure. A survey was designed and applied in 10 of these departments. The survey evaluates the compliance with the BSS requirements, and specifically, the activities administered to the patients in Nuclear Medicine diagnostic procedures are analysed. In the present work the obtained preliminary results of the statistical analysis carried out on the activity values used in Nuclear Medicine departments are presented, and comparisons made for a proposal of guidance levels for the national practice, which is compared with those recommended internationally. (author)

  3. Managing medical treatment waste and effluent: the point of view of a nuclear medicine practitioner

    International Nuclear Information System (INIS)

    Karcher, G.

    2011-01-01

    The nuclear medicine department of the Nancy CHU hospital is one of the largest in France: 16.000 patients are welcomed each year and 4.000 persons undergo a tomography there. 5 shielded and isolated rooms, dedicated to Iodine 131 treatment, allow the care of 150 to 200 patients each year. The head of the nuclear medicine department gives his meaning about the new regulation on the management of radioactive effluents. According to him, regulations are necessary but the values of the imposed thresholds have to be scientifically justified. Another point is that a lot of money is spent on radiation protection issues while the radioactive risks are almost null, which leads to wasting money. The elaboration of the radioprotection regulations must be made not as a whole but on a specific basis according to the domain: nuclear power plants, research reactors or nuclear medicine, it applies. (A.C.)

  4. Nuclear Medicine Imaging Devices. Chapter 11

    Energy Technology Data Exchange (ETDEWEB)

    Lodge, M. A.; Frey, E. C. [Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, MD (United States)

    2014-12-15

    Imaging forms an important part of nuclear medicine and a number of different imaging devices have been developed. This chapter describes the principles and technological characteristics of the main imaging devices used in nuclear medicine. The two major categories are gamma camera systems and positron emission tomography (PET) systems. The former are used to image γ rays emitted by any nuclide, while the latter exploit the directional correlation between annihilation photons emitted by positron decay. The first section of this chapter discusses the principal components of gamma cameras and how they are used to form 2-D planar images as well as 3-D tomographic images (single photon emission computed tomography (SPECT)). The second section describes related instrumentation that has been optimized for PET data acquisition. A major advance in nuclear medicine was achieved with the introduction of multi-modality imaging systems including SPECT/computed tomography (CT) and PET/CT. In these systems, the CT images can be used to provide an anatomical context for the functional nuclear medicine images and allow for attenuation compensation. The third section in this chapter provides a discussion of the principles of these devices.

  5. 1. A brief history of nuclear medicine

    International Nuclear Information System (INIS)

    Dienstbier, Z.

    1989-01-01

    The milestones of history of nuclear medicine are dealt with. A brief account is given of the history of nuclear medicine abroad, and a more in-depth treatment is devoted to Czechoslovakia, where the beginning of this branch of science dates to 1951. (Z.S.)

  6. Study of dose levels absorbed by members of the public in the nuclear medicine departments; Estudo dos niveis de dose em individuos do publico nos servicos de medicina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Cabral, Geovanna Oliveira de Mello

    2001-03-01

    In nuclear Medicine, radioisotopes are bound to various compounds (called radiopharmaceuticals) for use in various diagnostic and therapeutic applications. These unsealed sources are administered in various forms to patients, who remain radioactive for hours or days, and represent a source of potential radiation exposure for others. Thus, in nuclear medicine departments, radiation protection of workers and members of the public, especially persons accompanying patients, must consider, this exposure. In Brazil, the Comissao Nacional de Energia Nuclear (CNEN) establishes that, in nuclear medicine departments, the patients and persons accompanying should be separated each other. However, this rule is not always followed due to many factors such as physical and emotional conditions of patients. In this context, the aim of this study was the investigation of dose levels, which the persons accompanying patients are exposed to. For monitoring, thermoluminescent dosimeters were employed. The dosimeters were given to 380 persons who were accompanying patients in nuclear medicine departments. Exposure results were lower than 1 mSv. On the basis of CNEN rules, issues regarding stay conditions for members of the public in these departments are discussed. (author)

  7. Nuclear medicine in the countries of Latin America

    International Nuclear Information System (INIS)

    Touya, Eh.

    1987-01-01

    The role of nuclear medicine in protection of health in Latin America states is shown. Nuclear medicine methods are applied in Latin America countries for diagnosis of coronary disease, cancer, malfunctioning of separate organs and transplants, kidney transplants in particular. The present situation in protection of health in the region is evaluated. It is emphasized that nuclear medicine should play its role in the course of public health improvement in those countries

  8. Radiation management for infectious waste from nuclear medicine studies

    International Nuclear Information System (INIS)

    Kondo, Yuji; Takeuchi, Yasuyuki; Masumoto, Kazuya

    2003-01-01

    An industrial waste management service has refused to collect medical waste from our hospital owing to radioactive contamination found in the waste in July 2000. An investigation revealed that the ''three-way stopcock'' and handling diapers used for radioisotope examination were the radioactive contaminants. We therefore reconsidered the system of medical waste maintenance especially for radioactive materials. Since February 2001, we have resumed radiation maintenance by following the manual for the handling diapers of patients administered radiopharmaceuticals issued by five organizations associated with Japan Radiological Society (JRS), Japanese Society of Radiological Technology (JSRT), the Japanese Society of Nuclear Medicine (JSNM), the Japanese Society of Nuclear Medicine Technology (JSNMT), and Japan Association on Radiological Protection in Medicine (JARPM). A major change was to check the radioactive waste at the individual departments and at a centralized check system. This eliminated the problem of dumping radioactive material into medical waste as well as resolving the concerns of the industrial waste management service. (author)

  9. Imaging in nuclear medicine

    International Nuclear Information System (INIS)

    Giussani, Augusto; Hoeschen, Christoph

    2013-01-01

    Presents the most recent developments in nuclear medicine imaging, with emphasis on the latest research findings. Considers the latest advances in imaging systems, image reconstruction, noise correction, and quality assurance. Discusses novel concepts, including those developed within the framework of the EURATOM FP7 MADEIRA project. Lists rules of thumb for imaging of use to both beginners and experienced researchers. This volume addresses a wide range of issues in the field of nuclear medicine imaging, with an emphasis on the latest research findings. Initial chapters set the scene by considering the role of imaging in nuclear medicine from the medical perspective and discussing the implications of novel agents and applications for imaging. The physics at the basis of the most modern imaging systems is described, and the reader is introduced to the latest advances in image reconstruction and noise correction. Various novel concepts are then discussed, including those developed within the framework of the EURATOM FP7 MADEIRA research project on the optimization of imaging procedures in order to permit a reduction in the radiation dose to healthy tissues. Advances in quality control and quality assurance are covered, and the book concludes by listing rules of thumb for imaging that will be of use to both beginners and experienced researchers.

  10. Imaging in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Giussani, Augusto [BfS - Federal Office for Radiation Protection, Oberschleissheim (Germany). Dept. of Radiation Protection and Health; Hoeschen, Christoph (eds.) [Helmholtz Zentrum Muenchen - German Research Center for Environmental Health, Neuherberg (Germany). Research Unit Medical Raditation Physics and Diagnostics

    2013-08-01

    Presents the most recent developments in nuclear medicine imaging, with emphasis on the latest research findings. Considers the latest advances in imaging systems, image reconstruction, noise correction, and quality assurance. Discusses novel concepts, including those developed within the framework of the EURATOM FP7 MADEIRA project. Lists rules of thumb for imaging of use to both beginners and experienced researchers. This volume addresses a wide range of issues in the field of nuclear medicine imaging, with an emphasis on the latest research findings. Initial chapters set the scene by considering the role of imaging in nuclear medicine from the medical perspective and discussing the implications of novel agents and applications for imaging. The physics at the basis of the most modern imaging systems is described, and the reader is introduced to the latest advances in image reconstruction and noise correction. Various novel concepts are then discussed, including those developed within the framework of the EURATOM FP7 MADEIRA research project on the optimization of imaging procedures in order to permit a reduction in the radiation dose to healthy tissues. Advances in quality control and quality assurance are covered, and the book concludes by listing rules of thumb for imaging that will be of use to both beginners and experienced researchers.

  11. Computers. A perspective on their usefulness in nuclear medicine

    International Nuclear Information System (INIS)

    Loken, M.K.; Williams, L.E.; Ponto, R.A.; Ganatra, R.D.; Raikar, U.; Samuel, A.M.

    1977-01-01

    To date, many symposia have been held on computer applications in nuclear medicine. Despite all of these efforts, an appraisal of the true utility of computers in the day-to-day practice of nuclear medicine is yet to be achieved. Now that the technology of data storage and processing in nuclear medicine has reached a high degree of sophistication, as evidenced by many reports in the literature, the time has come to develop a perspective on the proper place of computers in nuclear medicine practice. The paper summarizes various uses of a dedicated computer (Nuclear Data Med II) at our two institutions and comments on its clinical utility. (author)

  12. Current research in nuclear medicine and molecular imaging in Italy: highlights of the 10th National Congress of the Italian Association of Nuclear Medicine and Molecular Imaging.

    Science.gov (United States)

    Cuocolo, A

    2011-06-01

    The 10th National Congress of the Italian Association of Nuclear Medicine and Molecular Imaging (AIMN) took place in Rimini on March 18-21, 2011 under the chairmanship of Professor Stefano Fanti. The program was of excellent quality and put a further step for the settlement of the standardized AIMN congress structure. A large industrial exhibition demonstrated the latest technological innovations and developments within the field. The congress was a great success with more than 1100 total participants and more than 360 abstracts received. Of these, 40 abstracts were accepted for oral and 285 for poster presentations. The original investigations presented were related to different areas of nuclear medicine and molecular imaging, with particular focus on advances in instrumentation and data processing, progress in radiochemistry and pharmacy, novel diagnostics and therapeutics, and new insights in well established areas of clinical application, such as oncology, cardiology, neurology, psychiatry, endocrinology, paediatrics, and infection and inflammation. Noteworthy, several presentations at this congress, focusing on quantitative interpretation of the imaging data and on pragmatic endpoints, such as adverse outcomes, identified when nuclear medicine procedures achieved clinical effectiveness for patient care and patient management and further demonstrated that nuclear medicine plays a crucial role in the contemporary medical scenario. This highlights lecture is only a brief summary of the large amount of data presented and discussed, which can be found in much greater detail in the congress abstract book, published as volume 55, supplement 1 of the Q J Nucl Med Mol Imaging in April 2011.

  13. The 8th questionnaire survey report of safety control in nuclear medicine

    International Nuclear Information System (INIS)

    2008-01-01

    A questionnaire survey on safety of nuclear medicine studies was conducted under the subcommittee for radionuclide imaging and nuclear medicine technology of Japan Radioisotope Association to promote patient safety. Questionnaires were sent to 1300 hospitals and 21 clinical laboratories in Japan with 1034 facilities responded (78.3%). Sixty percents of the workers in the facilities were nuclear medicine technologists. Medical doctors comprised 20% of the workers, but 32% in the university hospitals. The number of laboratory technologists decreased in all categories of the facilities. Composite PET/CT scanners increased sharply, whereas 2-detector and 3-detector imaging systems decreased. Regular maintenance was performed in approximately 80% of the SPECT imaging systems, while the single head imaging systems were maintained less frequently. Filmless systems were employed in 25.3% of all of the facilities responded, with the higher rate in the university hospitals. The number of accidents and incidents in the facilities decreased. Falls on floor and fall from an examination bed were reported. The nuclear medicine technologists were concerned about safety mechanism of imaging systems, and dimension and height of examination beds. They also wanted prompt supply of safety information and easy interconnectivity among different data of various vendors' systems. The results of this survey may be a valuable source of information on safety of nuclear medicine procedures. (author)

  14. Radioactive waste management of the nuclear medicine services; Gestao de rejeitos radioativos em servicos de medicina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Barboza, Alex

    2009-07-01

    Radioisotope applications in nuclear medicine services, for diagnosis and therapy, generate radioactive wastes. The general characteristics and the amount of wastes that are generated in each facility are function of the number of patients treated, the procedures adopted, and the radioisotopes used. The management of these wastes embraces every technical and administrative activity necessary to handle the wastes, from the moment of their generation, till their final disposal, must be planned before the nuclear medicine facility is commissioned, and aims at assuring people safety and environmental protection. The regulatory framework was established in 1985, when the National Commission on Nuclear Energy issued the regulation CNEN-NE-6.05 'Radioactive waste management in radioactive facilities'. Although the objective of that regulation was to set up the rules for the operation of a radioactive waste management system, many requirements were broadly or vaguely defined making it difficult to ascertain compliance in specific facilities. The objective of the present dissertation is to describe the radioactive waste management system in a nuclear medicine facility and provide guidance on how to comply with regulatory requirements. (author)

  15. Radioactive waste management of the nuclear medicine services; Gestao de rejeitos radioativos em servicos de medicina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Barboza, Alex

    2009-07-01

    Radioisotope applications in nuclear medicine services, for diagnosis and therapy, generate radioactive wastes. The general characteristics and the amount of wastes that are generated in each facility are function of the number of patients treated, the procedures adopted, and the radioisotopes used. The management of these wastes embraces every technical and administrative activity necessary to handle the wastes, from the moment of their generation, till their final disposal, must be planned before the nuclear medicine facility is commissioned, and aims at assuring people safety and environmental protection. The regulatory framework was established in 1985, when the National Commission on Nuclear Energy issued the regulation CNEN-NE-6.05 'Radioactive waste management in radioactive facilities'. Although the objective of that regulation was to set up the rules for the operation of a radioactive waste management system, many requirements were broadly or vaguely defined making it difficult to ascertain compliance in specific facilities. The objective of the present dissertation is to describe the radioactive waste management system in a nuclear medicine facility and provide guidance on how to comply with regulatory requirements. (author)

  16. Historic images in nuclear medicine

    DEFF Research Database (Denmark)

    Hess, Søren; Høilund-Carlsen, Poul Flemming; Alavi, Abass

    2014-01-01

    In 1976, 2 major molecular imaging events coincidentally took place: Clinical Nuclear Medicine was first published in June, and in August researchers at the Hospital of the University of Pennsylvania created the first images in humans with F-FDG. FDG was initially developed as part of an evolution...... set in motion by fundamental research studies with positron-emitting tracers in the 1950s by Michel Ter-Pegossian and coworkers at the Washington University. Today, Clinical Nuclear Medicine is a valued scientific contributor to the molecular imaging community, and FDG PET is considered the backbone...

  17. Beijing nuclear medicine survey 2005: general information

    International Nuclear Information System (INIS)

    Geng Jianhua; Si Hongwei; Chen Shengzu

    2008-01-01

    Objective: To evaluate the status of nuclear medicine department in Beijing area. Methods: Staff, equipment and clinical applications of nuclear medicine departments in Beijing area during 2005 were evaluated by postal questionnaires. Results: Thirty nuclear medicine departments responded to our survey. In these departments, 321 staff, 141 doctors, 122 technicians, 7 physicists, 22 nurses and 29 other staff were employed; and 41 large imaging equipments, 37 SPECT, 3 PET, 1 PET-CT were equipped. During 2005, 88135 radionuclide imaging (84734 for SPECT, 3401 for PET), 462246 radioimmunoassay and 2228 radionuclide therapies (the most for Graves' disease, the second for thyroid cancer, the third for bone metastasis) were performed. For only 41.5% and 22.0% equipments the daily quality control (QC) and weekly QC were conducted. Conclusions Staff, equipments and activities of nuclear medicine department in Beijing were in a considerable scale, but did not balance among hospitals. Most departments should increase the number of physicists and the equipment QC procedures to improve the image quality. (authors)

  18. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... variety of diseases, including many types of cancers, heart disease, gastrointestinal, endocrine, neurological disorders and other abnormalities within the body. Because nuclear medicine procedures are ...

  19. New aspects regarding to radiation protection in nuclear medicine

    International Nuclear Information System (INIS)

    Shabestani Monfared, A.; Amiri, M.

    2002-01-01

    Introduction and objectives: The society has been concerned about nuclear energy usage and nuclear environment pollution for ages. The necessity of using radiation and its applications in modern life especially in medicine is undeniable. Some interesting properties such as the potential for non-destructive tests, detection simplicity, and penetrability into substances and having reactions with them cause radiation to be known as a useful tool for peace purposes. Nuclear weapons' experiments (1945-1973) and nuclear accidents in Three-Mile Island in USA, Goiania in Brazil and Chernobyl in Ukraine Republic have enhanced man's worries towards nuclear radiation and radioactivity in environment, and founding associations and groups which are against nuclear energy, such as green peace society, can be related with above mentioned concerns. Today, nuclear medicine has rapidly been developed so that in some cases plays a unique role in diagnosis but unfortunately in spite of diagnostic and therapeutic advantages, the term N UCLEAR c an induce worries in patients and society. In this article, base on new documents we intend to show that this worries has no scientific basis. Material and Methods: To produce a realistic view, regarding to radiation protection we used several ways such as natural origin of radiation, high natural background radiation areas' data non-linear dose-effect model, risk versus benefit, use of arbitrary unit for measurement of radiation, radio adaptive response and radiation hormesis. Discussion and conclusion: Harmful effects of radiation on biologic systems has obviously been shown, but most of related documents are based on receiving high doses in nuclear and atomic accidents and explosions and radiation protection regulations are based on this observations. So, it sometimes causes patients are afraid of low doses of radiation in medical diagnostic procedures so that some of them even resist against performing this procedures. Thus, being aware of

  20. Accuracy and Precision of Radioactivity Quantification in Nuclear Medicine Images

    Science.gov (United States)

    Frey, Eric C.; Humm, John L.; Ljungberg, Michael

    2012-01-01

    The ability to reliably quantify activity in nuclear medicine has a number of increasingly important applications. Dosimetry for targeted therapy treatment planning or for approval of new imaging agents requires accurate estimation of the activity in organs, tumors, or voxels at several imaging time points. Another important application is the use of quantitative metrics derived from images, such as the standard uptake value commonly used in positron emission tomography (PET), to diagnose and follow treatment of tumors. These measures require quantification of organ or tumor activities in nuclear medicine images. However, there are a number of physical, patient, and technical factors that limit the quantitative reliability of nuclear medicine images. There have been a large number of improvements in instrumentation, including the development of hybrid single-photon emission computed tomography/computed tomography and PET/computed tomography systems, and reconstruction methods, including the use of statistical iterative reconstruction methods, which have substantially improved the ability to obtain reliable quantitative information from planar, single-photon emission computed tomography, and PET images. PMID:22475429

  1. Special monitoring in nuclear medicine

    International Nuclear Information System (INIS)

    Beltran, C.C.; Puerta, J.A.; Morales, J.

    2006-01-01

    Colombia counts with around 56 centers of Nuclear Medicine, 70 Nuclear Doctors and more of 100 Technologists in this area. The radioisotopes more used are the 131 I and the 99m Tc. The radiological surveillance singular in the country is carried out for external dosimetry, being the surveillance by incorporation of radioactive materials very sporadic in our media. Given the necessity to implement monitoring programs in the incorporation of radionuclides of the occupationally exposed personnel, in the routine practice them routine of Nuclear Medicine, it was implemented a pilot program of Special Monitoring with two centers of importance in the city of Medellin. This program it was carried out with the purpose of educating, to stimulate and to establish a program of reference monitoring with base in the National Program of Monitoring in the radionuclides Incorporation that serves like base for its application at level of all the services of Nuclear Medicine in the country. This monitoring type was carried out with the purpose of obtaining information on the work routine in these centers, form of manipulation and dosage of the radionuclides, as well as the administration to the patient. The application of the program was carried out to define the frequency of Monitoring and analysis technique for the implementation of a program of routine monitoring, following the recommendations of the International Commission of Radiological Protection. For their application methods of activity evaluation were used in urine and in 7 workers thyroid, of those which only two deserve an analysis because they presented important activities. The measures were carried out during one month, every day by means in urine samples and to the most critic case is practiced two thyroid measures, one in the middle of the period and another when concluding the monitoring. To the other guy is practiced an activity count in thyroid when concluding the monitoring period. The obtained result of the

  2. Challenges for nuclear medicine in the 1990s

    International Nuclear Information System (INIS)

    Ell, P.J.

    1992-01-01

    This article discusses the problems facing nuclear medicine in the coming decade and outlines the areas in which new developments or expansion can be expected. The questions considered include legislative requirements, the need to educate the public and the medical profession on the strengths of nuclear medicine, approaches to cost-benefit analysis, and development of new technologies and new radiopharmaceuticals. There is also an evaluation of expansion in nuclear medicine using both existing methodology and new methodologies. (author)

  3. Quality assurance in nuclear medicine

    International Nuclear Information System (INIS)

    Kaul, A.

    1986-01-01

    'Quality Assurance in Nuclear Medicine' is the title of the English language original that has been translated into German. The manual very extensively deals with quality control of nuclear medical equipment. Tests are explained for checking radioactivity measuring devices, manual and automatic in-vitro sample measuring systems, in-vivo measuring systems with single or multiple detectors, rectlinear scanners, and gamma cameras, including the phantoms required for the methods. Other chapters discuss the quality control of radiopharmaceuticals, or the quality assurance in data recording and evaluation of results. Helpful comments on the organisation of quality assurance programms are given. The book is intended as a practical guide for introducing quality assurance principles in nuclear medicine in the Federal Republic of Germany. With 13 figs., 22 tabs [de

  4. The practice of nuclear medicine in the Philippines

    International Nuclear Information System (INIS)

    San Luis, T.O.L.

    1996-01-01

    The advent of nuclear medicine in the early 1940's came with the use of radioiodine in the study of thyroid physiology and eventual treatment of hyperthyroidism. Instrumentation to detect radionuclides introduced into the human body, and the production of various radiopharmaceuticals as tracers or as therapy agents provided the impetus for the rapid development of nuclear medicine as a distinct specialty. In the Philippines, nuclear medicine formally began in 1956 with the establishment of the Radioisotope Laboratory at the Philippine General Hospital. Acquisition of nuclear instrumentation by various institutions, training of medical staff and personnel, sourcing of radiopharmaceuticals proceeded thereafter

  5. Integration of PACS and HIS info the workflow of a nuclear medicine department. Experience in Regensburg

    International Nuclear Information System (INIS)

    Maenner, P.; Fuchs, E.; Marienhagen, J.; Schoenberger, J.; Eilles, C.; Tege, B.; Reicherzer, H.G.; Kurz, M.; Boerner, W.

    2006-01-01

    Aim: the development of new diagnostic techniques and the implementation of a modern quality control management system requires the continuous adaptation of existing data processing tools to the nuclear medicine diagnostic workflow. Furthermore, PACS connected to HIS facilitates and enhances the transfer of data and pictures, and satisfies the legal requirements for data retention as regulated by law. Therefore, the aim of this work is to present the architecture, structure and results of such a system newly installed in a department of nuclear medicine. Methods: initially, the nuclear medicine workflow was carefully analyzed and each step was correlated to the corresponding module. The standard SAP R/3 and IS-H / IS-H*med based software used for patient administration at the University of Regensburg Hospital was adapted to the needs of the Nuclear Medicine Department. The networking of the imaging systems was done by integration of a PACS. Finally, the PACS was connected to the HIS to allow the attachment of images to the medical report. Results, conclusion: by connecting the HIS to the nuclear medicine PACS, the workflow was significantly improved. The data management sequence starting at the reception desk, continuing through the nuclear medical examination, to the physician's final written and image report is clearly structured. Although high demands exist on technical support and administration the integration of PACS and HIS into the nuclear medicine workflow leads to enhanced efficiency and reduction in hospital costs. Patient and data management are considerably improved in this way. (orig.)

  6. Absorbed Doses to Patients in Nuclear Medicine; Doskatalogen foer nukleaermedicin

    Energy Technology Data Exchange (ETDEWEB)

    Leide-Svegborn, Sigrid; Mattsson, Soeren; Johansson, Lennart; Fernlund, Per; Nosslin, Bertil

    2007-04-15

    The Swedish radiation protection authority, (SSI), has supported work on estimates of radiation doses to patients from nuclear medicine examinations since more than 20 years. A number of projects have been reported. The results are put together and published under the name 'Doskatalogen' which contains data on doses to different organs and tissues from radiopharmaceuticals used for diagnostics and research. This new report contains data on: {sup 11}C-labelled substances (realistic maximum model), amino acids labelled with {sup 11}C, {sup 18}F or {sup 75}Se, {sup 99m}Tc-apcitide, {sup 123}I-labelled fatty acids ({sup 123}I- BMIPP and {sup 123}I-IPPA) and revised models for previously reported {sup 15}O-labelled water, {sup 99m}Tc-tetrofosmin (rest as well as exercise) and {sup 201}Tl-ion Data for almost 200 substances and radionuclides are included in the 'Doskatalogen' today. Since the year 2001 the 'Doskatalogen' is available on the authority's home page (www.ssi.se)

  7. Nuclear medicine and related radionuclide applications in developing countries

    International Nuclear Information System (INIS)

    1986-01-01

    The Symposium presentations were divided into sessions devoted to the following topics: Radioimmunoassay and related techniques (4 papers and 4 poster presentations); Radionuclide applications in the diagnosis of parasitic diseases (7 papers and 2 posters); Instrumentation (6 papers and 4 posters); Clinical nuclear medicine: liver, bones, thyroid, cardiovascular system, lungs, kidneys, brain (23 papers and 15 posters); Organization of nuclear medicine services in the developing countries (9 papers and 5 posters); Training in nuclear medicine (4 papers) and the panel discussion. Future of Nuclear Medicine in the developing countries. A separate abstract was prepared for each of these papers and posters

  8. Initial experience with a nuclear medicine viewing workstation

    Science.gov (United States)

    Witt, Robert M.; Burt, Robert W.

    1992-07-01

    Graphical User Interfaced (GUI) workstations are now available from commercial vendors. We recently installed a GUI workstation in our nuclear medicine reading room for exclusive use of staff and resident physicians. The system is built upon a Macintosh platform and has been available as a DELTAmanager from MedImage and more recently as an ICON V from Siemens Medical Systems. The workstation provides only display functions and connects to our existing nuclear medicine imaging system via ethernet. The system has some processing capabilities to create oblique, sagittal and coronal views from transverse tomographic views. Hard copy output is via a screen save device and a thermal color printer. The DELTAmanager replaced a MicroDELTA workstation which had both process and view functions. The mouse activated GUI has made remarkable changes to physicians'' use of the nuclear medicine viewing system. Training time to view and review studies has been reduced from hours to about 30-minutes. Generation of oblique views and display of brain and heart tomographic studies has been reduced from about 30-minutes of technician''s time to about 5-minutes of physician''s time. Overall operator functionality has been increased so that resident physicians with little prior computer experience can access all images on the image server and display pertinent patient images when consulting with other staff.

  9. Attitudes of Kuwaiti public towards the radiation risks of nuclear medicine diagnositic procedures

    International Nuclear Information System (INIS)

    Elgazzar, AH; Al-Ghani, HE; Collier, BD; Al-Saeedi, F; Al-Shammari, J; Mahmoud, AM; Omar, A

    2004-01-01

    Public perception of radiation risks of diagnostic imaging procedures differs from that of professionals working in the field. The perception probably varies among societies and may vary within the same society. The objective of this study is to determine the public perception in Kuwait represented by patients referred for nuclear medicine diagnostic studies. With the assistance of Arabic speaking investigators, 239 patients (139 males and 100 females) with a mean age of 37 years (Range of 15 to 90 years) completed a questionnaire about their opinion of radiation fear from the nuclear medicine procedures as well as their education, income, ability to speak English and foreign travel experience. Radiation phobia was measured by asking the patient to to the statement 'Radiation from nuclear medicine examination is likely to harm my body' by one of 5 choices, 1 strongly agree, 2 somewhat agree, 3 uncertain, 4 somewhat disagree, 5 strongly disagree. Responses 1 and 2 were classified as radiation phobia. Pearson correlation coefficient and logistic regression analysis were used for data analysis. Forty four percent of patients had radiation phobia. Only education significantly correlated with radiation phobia. Income, ability to speak English, age, gender or travel experience did not show significant correlation. Our study indicates that radiation phobia is common and is probably widespread throughout the society. Patient education should emphasize radiation benefits and actual risks and include the entire community. (authors)

  10. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Because the doses of radiotracer administered are small, diagnostic nuclear medicine procedures result in low radiation exposure, acceptable for diagnostic exams. Thus, the radiation risk is very low ...

  11. Metabolic radiopharmaceutical therapy in nuclear medicine; Terapia metabolica mediante radiofarmacos en medicina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Reguera, L.; Lozano, M. L.; Alonso, J. C.

    2016-08-01

    In 1986 the National Board of Medical Specialties defined the specialty of nuclear medicine as a medical specialty that uses radioisotopes for prevention, diagnosis, therapy and medical research. Nowadays, treatment with radiopharmaceuticals has reached a major importance within of nuclear medicine. The ability to treat tumors with radiopharmaceutical, Radiation selective therapy has become a first line alternative. In this paper, the current situation of the different therapies that are sued in nuclear medicine, is reviewed. (Author)

  12. Nuclear radiation and its role in general nuclear medicine

    International Nuclear Information System (INIS)

    Kempaiah, A.; Ravi, C.

    2012-01-01

    Radiation is really nothing more than the emission of energy through space, as well as through physical objects. Nuclear radiations are emitted due to decay of nuclei of radioactive materials and damage cells and the DNA inside them through its ionizing effect. That causes melanoma and other cancers. Nuclear radiation has a number of beneficial uses especially in medical field with low levels of radioactive compounds, better than X-rays. There are some 440 nuclear reactors worldwide, people around will be under the effect of radiation. In nuclear medicine (medical imaging) small amount of radioactive materials were used to diagnose and determine the severity of or treat a variety of disease, including many types of cancers, heart disease, gastrointestinal, endocrine, neurological disorders and other abnormalities within the body it is painless and cost-effective techniques and provides information about both structure and function. Nuclear medicine diagnostic procedures called Gamma camera, single photon emission computed tomography (SPECT) and positron emission tomography (PET) were discussed in this paper. (author)

  13. Nuclear medicine research: an evaluation of the ERDA program

    International Nuclear Information System (INIS)

    1976-08-01

    Legislation which established the Energy Research and Development Administration (ERDA) January 19, 1975, stipulated that this new agency should be responsible for all activities previously assigned to the Atomic Energy Commission (AEC) and not specifically assigned to other agencies. Such activities included the nuclear medicine research program of the AEC Division of Biomedical and Environmental Research (DBER). To determine whether continuation of this program under the broader ERDA mission of energy-related research was in fact appropriate, a special task force was appointed in January 1975 by Dr. James L. Liverman, the director of DBER. This task force, comprised of established scientists knowledgeable about issues related to nuclear medicine either currently or in the past, was charged specifically to assess the historical impact of the AEC/ERDA nuclear medicine program on the development of nuclear medicine, the current status of this program, and its future role within the structure of ERDA. The specific recommendations, in brief form, are as follows: the federal government should continue to support the medical application of nuclear technology; ERDA should retain primary responsibility for support and management of federal nuclear medicine research programs; and management and emphasis of the ERDA nuclear medicine program require modification in certain areas, which are set forth

  14. Proceedings of the Korean Society Nuclear Medicine Autumn Meeting 2001

    International Nuclear Information System (INIS)

    2001-01-01

    This proceedings contains articles of 2001 autumn meeting of the Korean Society Nuclear Medicine. It was held on November 16-17, 2001 in Seoul, Korea. This proceedings is comprised of 6 sessions. The subject titles of session are as follows: Cancer, Physics of nuclear medicine, Neurology, Radiopharmacy and biology, Nuclear cardiology, General nuclear medicine. (Yi, J. H.)

  15. XXIVth days of nuclear medicine

    International Nuclear Information System (INIS)

    1986-01-01

    Abstracts are presented of papers submitted to the 24th Days of Nuclear Medicine held in Opava, Czechoslovakia between Oct 9 and 11, 1985. The conference proceeded in three sessions, namely nuclear pediatrics, miscellaneous and technicians' session. The publication also contains abstracts of posters. (L.O.)

  16. Nuclear medicine applications in AIDS

    International Nuclear Information System (INIS)

    Abdel-Dayem, H.M.

    2004-01-01

    Full text: Aids patients are liable to more than one medical problem at anyone time as the number of CD4 cells decrease and the viral load increases. Problems are related to multiple causes of opportunistic Infections, malignant lymphoma and Kaposi sarcoma. Laboratory tests, sputum analysis and bronchial lavage have problems of decreased sensitivity. morphologic Imaging modalities such as chest X-ray, CT or MRI has problems of specificity. Nuclear medicine techniques has the advantage of total body functional imaging that can visualize more than one organ. The use nuclear medicine imaging is recommended when the diagnosis is uncertain and for initiation of proper treatment. Gallium-67 citrate total body scans acquired at 4 hours following the IV injection and at 24-48 hours has been very useful for the early diagnosis of opportunistic infections such as PCP, TB, Disseminated Mycobacterium avii complex; MAI, malignant lymphoma and various forms of AIDS related colitis. Sequential thallium and gallium scan help to differentiate Kaposi sarcoma (thallium positive, gallium negative) from opportunistic infections (gallium positive, thallium negative) and malignant lymphoma (thallium and gallium positive). Gallium is the most convenient radiopharmaceutical for the diagnosis of malignant lymphoma of the heart. Thallium and Tc-99m Sestamibi are useful for the differentiation of intracranial toxoplasmosis from malignant lymphoma. The presentation will illustrate different examples and will explain the limitations of all these tests. (author)

  17. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... endocrine, neurological disorders and other abnormalities within the body. Because nuclear medicine procedures are able to pinpoint molecular activity within the body, they offer the potential to identify disease in ...

  18. Availability of oncological nuclear medicine in the regions of Slovakia

    International Nuclear Information System (INIS)

    Lepej, J.; Kaliska, L.

    2004-01-01

    Full text: Nuclear medicine (NM) imaging technology, alone and in combination with other imaging modalities, provides clinically significant and useful information in the staging and treatment of the oncological diseases. The main objective of our study was to find out and present the situation vis-a-vis nuclear medicine facilities in the Central European country that soon becomes the new member of EU. For the purposes statistical data of WHO, Slovak Republic (SR) and nuclear medicine department (NMD) were evaluated for the period 1995-2001. Comparison with Czech Republic (CR) was done because of almost similar occurrence of the malignant diseases in these two republics that were a one country till separation in 1993. First nuclear medicine department in Czechoslovakia was established about 55 years ago. Comparing to CR the expenditures on health care per capita in SR is only 67% of CR. The number of gamma cameras, physicians and number of investigations are far from good standard of CR. The number NM departments are significantly low and growth of only 29% compared to CR is alarming. The one main reason is inadequate financial support to the health care and high debts of hospitals running nuclear medicine facilities. Providing radiology departments with new CT and MRI scanners is another reason of less nuclear medicine facilities. During the last five years, though the number of gamma cameras increased by 10%, but the number of investigations did not rise accordingly. Because of bad management of health care services in Slovakia, the latest facilities availability is greatly delayed. However, the exception is the installation of a new PET scanner in 2001. Of late, sentinel lymph node detection was started only with the help of IAEA. Data shows that most of the nuclear medicine centers are around the state capital. It is imperative to have sufficient diagnostic and therapeutic facilities in each region so as to make these available to patients living away from the

  19. Present-day problems of nuclear medicine in immunology

    International Nuclear Information System (INIS)

    Agranat, V.Z.; Rossel's, A.N.; Balyura, A.V.

    1990-01-01

    The authors describe in a systemic order the potentialities of the use of nuclear medicine methods in immunology. Two fields of their application were singled out: experimental and clinical immunology, each one including in vivo and in vitro methods. The authors cited examples of their use, emphasizing the importance and prospects of radioimmunoassays for determination of the level of hormones in patients with various immunological pathology

  20. Introduction of nuclear medicine research in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Inubushi, Masayuki [Kawasaki Medical School, Division of Nuclear Medicine, Department of Radiology, Kurashiki, Okayama (Japan); Higashi, Tatsuya [National Institutes of Quantum and Radiological Science and Technology, National Institute of Radiological Sciences, Chiba, Chiba (Japan); Kuji, Ichiei [Saitama Medical University International Medical Center, Department of Nuclear Medicine, Hidaka-shi, Saitama (Japan); Sakamoto, Setsu [Dokkyo University School of Medicine, PET Center, Mibu, Tochigi (Japan); Tashiro, Manabu [Tohoku University, Division of Cyclotron Nuclear Medicine, Cyclotron and Radioisotope Center, Sendai, Miyagi (Japan); Momose, Mitsuru [Tokyo Women' s Medical University, Department of Diagnostic Imaging and Nuclear Medicine, Tokyo (Japan)

    2016-12-15

    There were many interesting presentations of unique studies at the Annual Meeting of the Japanese Society of Nuclear Medicine, although there were fewer attendees from Europe than expected. These presentations included research on diseases that are more frequent in Japan and Asia than in Europe, synthesis of original radiopharmaceuticals, and development of imaging devices and methods with novel ideas especially by Japanese manufacturers. In this review, we introduce recent nuclear medicine research conducted in Japan in the five categories of Oncology, Neurology, Cardiology, Radiopharmaceuticals and Technology. It is our hope that this article will encourage the participation of researchers from all over the world, in particular from Europe, in scientific meetings on nuclear medicine held in Japan. (orig.)

  1. Nanotechnology and nuclear medicine; research and preclinical applications.

    Science.gov (United States)

    Assadi, Majid; Afrasiabi, Kolsoom; Nabipour, Iraj; Seyedabadi, Mohammad

    2011-01-01

    The birth of nanotechnology in human society was around 2000 years ago and soon found applications in various fields. In this article, we highlight the current status of research and preclinical applications and also future prospects of nanotechnology in medicine and in nuclear medicine. The most important field is cancer. A regular nanotechnology training program for nuclear medicine physicians may be welcome.

  2. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... the procedure? How does the nuclear medicine procedure work? What does the equipment look like? How is the procedure performed? What will my child experience during and after the procedure? How should ...

  3. In vivo diagnostic nuclear medicine. Pediatric experience

    International Nuclear Information System (INIS)

    Goetz, W.A.; Hendee, W.R.; Gilday, D.L.

    1983-01-01

    The use of radiopharmaceuticals for diagnostic tests in children is increasing and interest in these is evidenced by the addition of scientific sessions devoted to pediatric medicine at annual meetings of The Society of Nuclear Medicine and by the increase in the literature on pediatric dosimetry. Data presented in this paper describe the actual pediatric nuclear medicine experience from 26 nationally representative U.S. hospitals and provide an overview of the pediatric procedures being performed the types of radiopharmaceuticals being used, and the activity levels being administered

  4. Nuclear Medicine Technologists' Perception and Current Assessment of Quality: A Society of Nuclear Medicine and Molecular Imaging Technologist Section Survey.

    Science.gov (United States)

    Mann, April; Farrell, Mary Beth; Williams, Jessica; Basso, Danny

    2017-06-01

    In 2015, the Society of Nuclear Medicine and Molecular Imaging Technologist Section (SNMMI-TS) launched a multiyear quality initiative to help prepare the technologist workforce for an evidence-based health-care delivery system that focuses on quality. To best implement the quality strategy, the SNMMI-TS first surveyed technologists to ascertain their perception of quality and current measurement of quality indicators. Methods: An internet survey was sent to 27,989 e-mail contacts. Questions related to demographic data, perceptions of quality, quality measurement, and opinions on the minimum level of education are discussed in this article. Results: A total of 4,007 (14.3%) responses were received. When asked to list 3 words or phrases that represent quality, there were a plethora of different responses. The top 3 responses were image quality, quality control, and technologist education or competency. Surveying patient satisfaction was the most common quality measure (80.9%), followed by evaluation of image quality (78.2%). Evaluation of image quality (90.3%) and equipment functionality (89.4%) were considered the most effective measures. Technologists' differentiation between quality, quality improvement, quality control, quality assurance, and quality assessment seemed ambiguous. Respondents were confident in their ability to assess and improve quality at their workplace (91.9%) and agreed their colleagues were committed to delivering quality work. Of note, 70.7% of respondents believed that quality is directly related to the technologist's level of education. Correspondingly, respondents felt there should be a minimum level of education (99.5%) and that certification or registry should be required (74.4%). Most respondents (59.6%) felt that a Bachelor's degree should be the minimum level of education, followed by an Associate's degree (40.4%). Conclusion: To best help nuclear medicine technologists provide quality care, the SNMMI-TS queried technologists to

  5. Radiation Risk to Patients from Nuclear Medicine Procedures in Camaguey and Ciego de Avila Provinces (Cuba) during the period 2000-2005

    International Nuclear Information System (INIS)

    Brigido Flores, O.; Barreras Caballero, A.

    2015-01-01

    Population radiation dose estimation due to administration of radiopharmaceuticals in Camaguey and Ciego de Avila provinces was carried out using Medical Internal Radiation Dose scheme (MIRD). Data were gathered on the type of radiopharmaceuticals used, the administered activity, the numbers of each kind of examination, and the age and sex of the patients involved during the period 2000 - 2005. The average annual frequency of examinations was estimated to be 3.65 per 1000 population. The results show that imaging nuclear medicine techniques of thyroid and bone explorations with 13.3 and 12.9%, respectively and iodide uptake with 50% are the main techniques implicated in the relative contribution to the total annual effective collective dose which averaged 95 man-Sv for the studied period. Radiation risks for the Camaguey-Ciego de Avila population caused by nuclear medicine examinations in the period studied were calculated: the total number of fatal and non-fatal cancers was 34.2 and the number of serious hereditary disturbance was 7.4 as a result of 24139 nuclear medicine procedures, corresponding to a total detriment of 1.72 per 1000 examination. (Author)

  6. Mongolia and nuclear medicine development

    International Nuclear Information System (INIS)

    Onkhuudai, P.; Gonchigsuren, D.

    2007-01-01

    Full text: Mongolia is a large, landlocked and sparsely populated country in the northern part of Central Asia, located between Russia on the north and China on east, south and west. Its total land area of 1.5 millions square kilometers is about the size if India or large than Alaska, but contains only 2.3 million population or 1.3 person per square kilometer. It is 2400 kilometers long from east to west maximum of 1260 kilometers from north to south.The priority problems in health.Democratic political reforms since 1990 saw a major transformation process, which is aimed at changing the centrally planned economy to one based on market orient principles. Mongolia is in a gradual epidemiological transition from preponderance of infectious diseases towards non-communicable and degenerative diseases. Mean features of this transition are sharp decrease in mortality from infectious and parasitic diseases and sharp increase in mortality from diseases of the circulatory system and neoplasms. Life expectancy at birth was 65.7 year in 1997. Cardiovascular diseases and cancer are among the leading causes of death in Mongolia.Nuclear Medicine in Mongolia-1975-1981 Beginning First Medical Application of radioisotopes in 1972. First Rectilinear scanner. Single and dual scintillation detectors system, Thyroid Uptake Test; 1982-1999 Settlement, IAEA TC Project since 1982, Thematic Program on Health Care (RAS) since 1997, First Gamma Camera since 1997, Radioimmunological Laboratory and first Radioiodine treatment since 1982, Mongolian Society of Nuclear Medicine since 1982, Member of World and Federation of Nuclear Medicine and Biology since 1994, Member of Asia and Oceania Radionuclide Therapy Council , 2000 Development, First SPECT and Quantitative Measurement in 2000 Second Gamma Camera, New Thyroid Uptake System-Atomlab 950 PC Spectrometer Radioimmunological Laboratory replacement, Myocardial Perfusion Scintigraphy, Liver Cancer Treatment with Re-188, Radiosynovectomy with Re

  7. Basic science of nuclear medicine the bare bone essentials

    CERN Document Server

    Lee, Kai H

    2015-01-01

    Through concise, straightforward explanations and supporting graphics that bring abstract concepts to life, the new Basic Science of Nuclear Medicine—the Bare Bone Essentials is an ideal tool for nuclear medicine technologist students and nuclear cardiology fellows looking for an introduction to the fundamentals of the physics and technologies of modern day nuclear medicine.

  8. Asian School of Nuclear Medicine

    International Nuclear Information System (INIS)

    Sundram, Felix X.

    2004-01-01

    The Asian School of Nuclear Medicine (ASNM) was formed in February 2003, with the ARCCNM as the parent body. Aims of ASNM: 1. To foster Education in Nuclear Medicine among the Asian countries, particularly the less developed ones. 2. To promote training of Nuclear Medicine Physicians in cooperation with government agencies, IAEA and universities and societies. 3. To assist in national and regional training courses, award continuing medical education (CME) points and provide regional experts for advanced educational programmes. 4. To work towards awarding of diplomas or degrees in association with recognized universities by distance learning and practical attachments, with examinations. The ASNM works toward a formal training courses leading to the award of a certificate in the long term. The most fundamental job of the ASNM remains the transfer of knowledge from the more developed countries to the less developed ones in the Asian region. The ASNM could award credit hours to the participants of training courses conducted in the various countries and conduct electronic courses and examinations. CME programmes may also be conducted as part of the regular ARCCNM meetings and the ASNM will award CME credit points for such activities

  9. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... kidneys and bladder. bones. liver and gallbladder. gastrointestinal tract. heart. lungs. brain. thyroid. Nuclear medicine scans are typically used to help diagnose and evaluate: urinary blockage in the kidney. backflow of urine from ...

  10. Tomography in nuclear medicine

    International Nuclear Information System (INIS)

    Levi de Cabrejas, Mariana

    1999-01-01

    This book is a contribution to the training and diffusion of the tomography method image diagnosis in nuclear medicine, which principal purpose is the information to professionals and technical personnel, specially for the spanish speaking staff

  11. Molecular methods in nuclear medicine therapy

    International Nuclear Information System (INIS)

    Lee, Kyung Han

    2001-01-01

    Nuclear medicine has traditionally contributed to molecular oncology by allowing noninvasive monitoring of tumor metabolism, growth and genetic changes, thereby providing a basis for appropriate biology-based treatment planning. However, NM techniques are now being applied as an active therapeutic tool in novel molecular approaches for cancer treatment. Such areas include research on cancer therapy with radiolabeled ligands or oligonucleotides, and utilization of synergism between NM radiotherapy and gene transfer techniques. Here we will focus on novel aspects of nuclear medicine therapy

  12. Radiation dose to technologists per nuclear medicine examination and estimation of annual dose.

    Science.gov (United States)

    Bayram, Tuncay; Yilmaz, A Hakan; Demir, Mustafa; Sonmez, Bircan

    2011-03-01

    Conventional diagnostic nuclear medicine applications have been continuously increasing in most nuclear medicine departments in Turkey, but to our knowledge no one has studied the doses to technologists who perform nuclear medicine procedures. Most nuclear medicine laboratories do not have separate control rooms for technologists, who are quite close to the patient during data acquisition. Technologists must therefore stay behind lead shields while performing their task if they are to reduce the radiation dose received. The aim of this study was to determine external radiation doses to technologists during nuclear medicine procedures with and without a lead shield. Another aim was to investigate the occupational annual external radiation doses to Turkish technologists. This study used a Geiger-Müller detector to measure dose rates to technologists at various distances from patients (0.25, 0.50, 1, and 2 m and behind a lead shield) and determined the average time spent by technologists at these distances. Deep-dose equivalents to technologists were obtained. The following conventional nuclear medicine procedures were considered: thyroid scintigraphy performed using (99m)Tc pertechnetate, whole-body bone scanning performed using (99m)Tc-methylene diphosphonate, myocardial perfusion scanning performed using (99m)Tc-methoxyisobutyl isonitrile, and (201)Tl (thallous chloride) and renal scanning performed using (99m)Tc-dimercaptosuccinic acid. The measured deep-dose equivalent to technologists per procedure was within the range of 0.13 ± 0.05 to 0.43 ± 0.17 μSv using a lead shield and 0.21 ± 0.07 to 1.01 ± 0.46 μSv without a lead shield. Also, the annual individual dose to a technologist performing only a particular scintigraphic procedure throughout a year was estimated. For a total of 95 clinical cases (71 patients), effective external radiation doses to technologists were found to be within the permissible levels. This study showed that a 2-mm lead shield

  13. Radiochemistry and its application to nuclear medicine

    International Nuclear Information System (INIS)

    Welch, J.J.

    1990-01-01

    The role of the radiochemist in Nuclear Medicine has increased since the early 1960's. At that time the first medical 99 Mo/ 99m /Tc generator was developed at Brookhaven National Laboratory and the first hospital based cyclotron installed at Washington University. Radiochemists have been involved in both the development and application of generator and accelerator based radiopharmaceuticals. The development of oxygen-15, nitrogen 13, carbon-11 and fluorine-18 simple compound and synthetic precursors will be discussed. In recent years new high current accelerators have been proposed from Nuclear Medicine isotope production. Generator produced radiopharmaceuticals continue to play a major role in Nuclear Medicine. Problems in the development of targetry to produce parent nuclides as well as challenges in generator development will be described

  14. Czechoslovak nuclear medicine, development and present state

    Energy Technology Data Exchange (ETDEWEB)

    Hupka, S [Ustav Klinickej Onkologie, Bratislava (Czechoslovakia)

    1981-01-01

    The growth is described of nuclear medicine departments and units in Czechoslovakia in the past 25 years of the existence of the Czechoslovak Society for Nuclear Medicine and Radiation Hygiene, the numbers of personnel and their qualifications. While only three nuclear medicine units were involved in the use of radioisotopes for diagnostic and therapeutic purposes in the 1950's, 29 specialized departments and 15 laboratories are now in existence with a staff of 299 medical doctors and other university graduates and 365 technicians and nurses. They operate all possible instruments, from simple detector devices via gamma cameras to computer tomographs. Briefly, the involvement of the Society is described in coordinated research programs, both with institutions in the country and with the other CMEA countries and IAEA.

  15. Monte Carlo techniques in diagnostic and therapeutic nuclear medicine

    International Nuclear Information System (INIS)

    Zaidi, H.

    2002-01-01

    Monte Carlo techniques have become one of the most popular tools in different areas of medical radiation physics following the development and subsequent implementation of powerful computing systems for clinical use. In particular, they have been extensively applied to simulate processes involving random behaviour and to quantify physical parameters that are difficult or even impossible to calculate analytically or to determine by experimental measurements. The use of the Monte Carlo method to simulate radiation transport turned out to be the most accurate means of predicting absorbed dose distributions and other quantities of interest in the radiation treatment of cancer patients using either external or radionuclide radiotherapy. The same trend has occurred for the estimation of the absorbed dose in diagnostic procedures using radionuclides. There is broad consensus in accepting that the earliest Monte Carlo calculations in medical radiation physics were made in the area of nuclear medicine, where the technique was used for dosimetry modelling and computations. Formalism and data based on Monte Carlo calculations, developed by the Medical Internal Radiation Dose (MIRD) committee of the Society of Nuclear Medicine, were published in a series of supplements to the Journal of Nuclear Medicine, the first one being released in 1968. Some of these pamphlets made extensive use of Monte Carlo calculations to derive specific absorbed fractions for electron and photon sources uniformly distributed in organs of mathematical phantoms. Interest in Monte Carlo-based dose calculations with β-emitters has been revived with the application of radiolabelled monoclonal antibodies to radioimmunotherapy. As a consequence of this generalized use, many questions are being raised primarily about the need and potential of Monte Carlo techniques, but also about how accurate it really is, what would it take to apply it clinically and make it available widely to the medical physics

  16. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... leaving the nuclear medicine facility. Through the natural process of radioactive decay, the small amount of radiotracer ... possible charges you will incur. Web page review process: This Web page is reviewed regularly by a ...

  17. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... diagnoses. In addition, manufacturers are now making single photon emission computed tomography/computed tomography (SPECT/CT) and ... nuclear medicine include the gamma camera and single-photon emission-computed tomography (SPECT). The gamma camera, also ...

  18. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... top of page What are the benefits vs. risks? Benefits The information provided by nuclear medicine examinations ... diagnosis or to determine appropriate treatment, if any. Risks Because the doses of radiotracer administered are small, ...

  19. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... of page How does the nuclear medicine procedure work? With ordinary x-ray examinations, an image is ... result, imaging may be done immediately, a few hours later, or even a few days after your ...

  20. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... including many types of cancers, heart disease, gastrointestinal, endocrine, neurological disorders and other abnormalities within the body. ... Physicians use nuclear medicine imaging to evaluate organ systems, including the: kidneys and bladder. bones. liver and ...

  1. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... beforehand, especially if sedation is to be used. Most nuclear medicine exams will involve an injection in ... PET/CT, SPECT/CT and PET/MR) are most often used in children with cancer, epilepsy and ...

  2. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... small amount of energy in the form of gamma rays. Special cameras detect this energy, and with ... imaging techniques used in nuclear medicine include the gamma camera and single-photon emission-computed tomography (SPECT). ...

  3. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... both imaging exams at the same time. An emerging imaging technology, but not readily available at this ... often unattainable using other imaging procedures. For many diseases, nuclear medicine scans yield the most useful information ...

  4. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... of page How does the nuclear medicine procedure work? With ordinary x-ray examinations, an image is ... and other metallic accessories should be left at home if possible, or removed prior to the exam ...

  5. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... exams at the same time. An emerging imaging technology, but not readily available at this time is ... leaving the nuclear medicine facility. Through the natural process of radioactive decay, the small amount of radiotracer ...

  6. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... the most useful information needed to make a diagnosis or to determine appropriate treatment, if any. Risks Because the doses of radiotracer administered are small, diagnostic nuclear medicine procedures result in low radiation exposure, ...

  7. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... molecular information. In many centers, nuclear medicine images can be superimposed with computed tomography (CT) or magnetic ... small hand-held device resembling a microphone that can detect and measure the amount of the radiotracer ...

  8. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... nuclear medicine images can be superimposed with computed tomography (CT) or magnetic resonance imaging (MRI) to produce ... manufacturers are now making single photon emission computed tomography/computed tomography (SPECT/CT) and positron emission tomography/ ...

  9. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... bones. liver and gallbladder. gastrointestinal tract. heart. lungs. brain. thyroid. Nuclear medicine scans are typically used to ... differently than when breathing room air or holding his or her breath. With some exams, a catheter ...

  10. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... MRI. top of page What are some common uses of the procedure? Children's (pediatric) nuclear medicine imaging ... community, you can search the ACR-accredited facilities database . This website does not provide cost information. The ...

  11. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... variety of diseases, including many types of cancers, heart disease, gastrointestinal, endocrine, neurological disorders and other abnormalities ... and bladder. bones. liver and gallbladder. gastrointestinal tract. heart. lungs. brain. thyroid. Nuclear medicine scans are typically ...

  12. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... computer, create pictures offering details on both the structure and function of organs and tissues in your ... substantially shorten the procedure time. The resolution of structures of the body with nuclear medicine may not ...

  13. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... exams at the same time. An emerging imaging technology, but not readily available at this time is ... bones. liver and gallbladder. gastrointestinal tract. heart. lungs. brain. thyroid. Nuclear medicine scans are typically used to ...

  14. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... of page How does the nuclear medicine procedure work? With ordinary x-ray examinations, an image is ... than five decades, and there are no known long-term adverse effects from such low-dose exposure. ...

  15. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... performed to help diagnose childhood disorders that are congenital (present at birth) or that develop during childhood. ... often unattainable using other imaging procedures. For many diseases, nuclear medicine scans yield the most useful information ...

  16. The Present Status of Nuclear Medicine in Korea

    International Nuclear Information System (INIS)

    Lee, Mun Ho

    1968-01-01

    It is my privilege to give you a brief history on the status of nuclear medicine in Korea. There is nothing much to mention, as the history of the peaceful use of atomic energy is rather short and the RI facilities are limited in the number. It is my sincere hope, however, that you may understand what steps nuclear medicine in the developing countries did take and how it has been developed, seeing the present status of nuclear medicine in Korea, as one of the models. In our country, the peaceful use of atomic energy was actualized since the Law of Atomic Energy had been enacted in March 1959, and the Office of Atomic Energy and the Atomic Energy Research Institute had been established. The Korea Society of Nuclear Medicine was organized in 1961, which i think is one of the older in the Far East area. The Society now held about 170 members and the annual meetings in addition to the quarterly meeting have been held. The 6th general scientific meeting for 1967 is scheduled to be held in 25 November. The society publishes the Korean Journal of Nuclear Medicine twice a year, and the second issue appeared Oct. 1967. The instruments used in nuclear medicine are mostly expensive, therefore, the hospitals equipped with such instruments are inevitably limited in number and the after-service or repair of such instruments are technically not easy. Some of these difficulties, i hope, shall be overcome in the near future.

  17. Report from Uruguay: Nuclear medicine in Latin America

    International Nuclear Information System (INIS)

    Touya, E.

    1987-01-01

    The paper presents some historical aspects concerning the development of nuclear medicine in Latin American countries. The role and the impact of nuclear medicine on health care is analysed and the present needs for the further development of these techniques in developing countries are presented

  18. Nuclear medicine in South Africa : current status

    International Nuclear Information System (INIS)

    Vangu, M.D.T.H.W.

    2004-01-01

    Full text: Nuclear medicine in South Africa has been a full specialty on its own since 1987. It is practiced in almost all teaching hospitals and within the private sector in larger cities. Most of the routine radiopharmaceuticals are domestically manufactured and the main isotope can be obtained from locally produced technetium generators. All the radionuclide imaging devices used in the country are imported. The main vendors are GE, Siemens and Phillips. The majority of radionuclide imaging comprises work from nuclear cardiology and nuclear oncology. Almost all the routine clinical nuclear medicine procedures are performed and some in vitro work is also done, however. Principal therapeutic agents used in the country include radioactive iodine, radioactive iodine MIBG and yttrium. The country still lacks experience in receptors imaging and radioimmunology work and no PET scanner has been purchased yet. The academic institutions are active with participation in national and international congresses and also with publications. Although much remains to be done, the future of nuclear medicine in South Africa does not appear gloomy. (author)

  19. Nuclear medicine in gynecologic oncology: Recent practice

    International Nuclear Information System (INIS)

    Lamki, L.M.

    1987-01-01

    Nuclear medicine tests tell more about the physiological function of an organ that about its anatomy. This is in contrast to several other modalities in current use in the field of diagnostic imaging. Some of these newer modalities, such as computerized tomography (CT), offer a better resolution of the anatomy of the organ being examined. This has caused physicians to drift away from certain nuclear medicine tests, specifically those that focus primarily on the anatomy. When CT scanning is available, for instance, it is no longer advisable to perform a scintigraphic brain scan in search of metastasis;CT scanning is more accurate overall and more likely than a nuclear study to result in a specific diagnosis. In certain cases of diffuse cortical infections like herpes encephalitis, however, a scintiscan is still superior to a CT scan. Today's practice of nuclear medicine in gynecologic oncology may be divided into the three categories - (1) time-tested function-oriented scintiscans, (2) innovations of established nuclear tests, and (3) newer pathophysiological scintistudies. The author discusses here, briefly, each of these categories, giving three examples of each

  20. Calibration and intercomparison methods of dose calibrators used in nuclear medicine facilities

    International Nuclear Information System (INIS)

    Costa, Alessandro Martins da

    1999-01-01

    Dose calibrators are used in most of the nuclear medicine facilities to determine the amount of radioactivity administered to a patient in a particular investigation or therapeutic procedure. It is therefore of vital importance that the equipment used presents good performance and is regular;y calibrated at a authorized laboratory. This occurs of adequate quality assurance procedures are carried out. Such quality control tests should be performed daily, other biannually or yearly, testing, for example, its accuracy and precision, the reproducibility and response linearity. In this work a commercial dose calibrator was calibrated with solution of radionuclides used in nuclear medicine. Simple instrument tests, such as response linearity and the response variation of the source volume increase at a constant source activity concentration, were performed. This instrument can now be used as a working standard for calibration of other dose calibrators/ An intercomparison procedure was proposed as a method of quality control of dose calibrators used in nuclear medicine facilities. (author)

  1. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... to be followed after leaving the nuclear medicine facility. Through the natural process of radioactive decay, the ... Please note RadiologyInfo.org is not a medical facility. Please contact your physician with specific medical questions ...

  2. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... and are rarely associated with significant discomfort or side effects. If the radiotracer is given intravenously, your child ... techniques for a variety of indications, and the functional information gained from nuclear medicine exams is often ...

  3. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... to Children's (Pediatric) Nuclear Medicine Sponsored by Please note RadiologyInfo.org is not a medical facility. Please ... is further reviewed by committees from the American College of Radiology (ACR) and the Radiological Society of ...

  4. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... exams at the same time. An emerging imaging technology, but not readily available at this time is PET/MRI. top of page What are some common uses of the procedure? Children's (pediatric) nuclear medicine imaging ...

  5. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... of page How does the nuclear medicine procedure work? With ordinary x-ray examinations, an image is ... The exception to this is if the child’s mother is pregnant. When the examination is completed, your ...

  6. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... also very helpful. Often, a monitor with children's programming and/or children’s DVDs are available in the ... techniques for a variety of indications, and the functional information gained from nuclear medicine exams is often ...

  7. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... The teddy bear denotes child-specific content. Related Articles and Media General Nuclear Medicine Children's (Pediatric) CT ( ... About Us | Contact Us | FAQ | Privacy | Terms of Use | Links | Site Map Copyright © 2018 Radiological Society of ...

  8. Application of nuclear irradiation to traditional chinese medicine

    International Nuclear Information System (INIS)

    Liang Jianping; Li Xuehu; Lu Xihong; Tao Lei; Wang Shuyang

    2010-01-01

    The application of nuclear irradiation in the field of traditional Chinese medicine has received much attention. In this paper we reviewed the application of nuclear radiation on the cultivation, breeding and disinfection of traditional Chinese medicine, and pointed out that the combination of radiation-induced mutagenesis and biological technology would promise broad prospects for increasing the cellular mutation rate and speeding up the genetic improvement of traditional Chinese medicine. (authors)

  9. The contribution of pulmonary nuclear medicine

    International Nuclear Information System (INIS)

    Kawakami, Kenji

    1991-01-01

    The contribution of pulmonary nuclear medicine was evaluated in 115 patients with interstitial pulmonary diseases (IPD). Ventilation study (V) with 81m Kr or 133 Xe, distribution of compliance in thoraco-pulmonary system (C) by 81m Kr gas bolus inhalation method, perfusion study (Q) with 99m Tc-MAA, 67 Ga scintigraphy and an assessment of pulmonary epithelial permeability with 99m Tc-DTPA aerosol were performed as nuclear medicine procedures. Pulmonary function test (%DLco, vital capacity, and functional residual capacity) and blood gas analysis were also examined. Abnormalities in V were larger than that in Q, which was high V/Q mismatch finding, in interstitial pneumonia. Correlation between V/Q mismatch and PaO 2 was, therefore, not significant. %DLco was decreased in cases with larger V/Q mismatches. 67 Ga accumulated in the early stage of interstitial pneumonia when CT or chest X-ray did not show any finding. %DLco was decreased in cases with strong accumulation of 67 Ga. 67 Ga might be useful to evaluate activity of the disease. Pulmonary epithelial permeability was assessed by 99m Tc-DTPA inhalation study. This permeability became accelerated in idiopathic interstitial fibrosis and sarcoidosis. Pulmonary epithelial permeability may be useful as an indicator for epithelial cell injury. (author)

  10. Proceedings of the Korean Society Nuclear Medicine Autumn Meeting 2002

    International Nuclear Information System (INIS)

    2002-01-01

    This proceedings contains articles of 2002 autumn meeting of the Korean Society Nuclear Medicine. It was held on November 15-16, 2002 in Seoul, Korea. This proceedings is comprised of 5 sessions. The subject titles of session are as follows: Cancer, Physics of nuclear medicine, Neurology, Radiopharmacy and biology, General nuclear medicine. (Yi, J. H.)

  11. Quality control in paediatric nuclear medicine

    International Nuclear Information System (INIS)

    Fischer, S.; Hahn, K.

    1997-01-01

    Nuclear medicine examinations in children require a maximum in quality. This is true for the preparation of the child and parents, the imaging procedure, processing and documentation. It is necessary that quality control through all steps is performed regularly. The aim must be that the children receive a minimum radiation dose, while there needs to be a high quality in imaging and clinical information from the study. Furthermore the child should not be too much psychologically affected by the nuclear medicine examination. (orig.) [de

  12. Nuclear medicine in thyroid cancer management: A practical approach

    International Nuclear Information System (INIS)

    2009-03-01

    Thyroid cancers are now being diagnosed at an earlier stage and treatments together with follow-up strategies are more effective. However this is not consistent throughout the world. The practice does differ considerably from country to country and region to region. Many International Atomic Energy Agency (IAEA) Members States can benefit from the lessons learned and improve overall patient management of thyroid cancers. The IAEA has significantly enhanced the capabilities of many Member States in the field of nuclear medicine. Functional imaging using nuclear medicine procedures has become an indispensable tool for the diagnosis, treatment planning and management of patients. In terms of treatment, the use of radioiodine ( 131 I) has been central to thyroid cancer and has been successfully used for over six decades. Over the years the IAEA has also assisted many Member States to develop indigenous manufacturing of radioiodine therefore reducing the barriers for the care of patients. This publication is a culmination of efforts by more than twenty international experts in the field to produce a global perspective on the subject. Views expressed are those of individual experts involved and are intended to assist national or regional authorities in decisions regarding the frameworks for effective treatment of thyroid cancer

  13. The applications of nanomaterials in nuclear medicine

    International Nuclear Information System (INIS)

    Liu Jinjian; Liu Jianfeng

    2010-01-01

    Over the last decade, nanotechnology and nanomaterials have gained rapid development in medical application, especially in targeted drug delivery and gene transfer vector domain, and nano-materials are also beginning to applied in nuclear medicine. This paper is to make a view of the application research of several types of nanomaterials in nuclear medicine, and discuss some problems and the main direction of future development. (authors)

  14. Medical Imaging Informatics in Nuclear Medicine

    NARCIS (Netherlands)

    van Ooijen, Peter; Glaudemans, Andor W.J.M.; Medema, Jitze; van Zanten, Annie K.; Dierckx, Rudi A.J.O.; Ahaus, C.T.B. (Kees)

    2016-01-01

    Medical imaging informatics is gaining importance in medicine both in clinical practice and in scientific research. Besides radiology, nuclear medicine is also a major stakeholder in medical imaging informatics because of the variety of available imaging modalities and the imaging-oriented operation

  15. Pathogenesis and role of nuclear medicine

    International Nuclear Information System (INIS)

    Freedman, P. N; Korowlay, N. A

    2002-01-01

    The means by which replication of viruses takes place is explained, as it helps in the understanding of how viruses spread in the blood and how antiretroviral drugs work. The most important viruses, from a health care workers point of view, are hepatitis B and C and human immunodefiency virus (HIV). Whether nuclear medicine has a role to play in the diagnosis of these viruses, and the oportunistic infections that go with them, is debatable. Several radiopharmaceuticals are extremely sensitive for infection and tumor imaging but lack specificity. Patients' treatment is often not based on the outcome of the investigation but rather on preset protocols. AIDS patients are put on prophylactic antibiotic treatment as protection against infections such as toxoplasmosis and pneumocystis carinii pneumonia and there is a poor prognosis for AIDS patients with tumors (Au)

  16. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Pediatric) Nuclear Medicine Sponsored by Please note RadiologyInfo.org is not a medical facility. Please contact your ... links: For the convenience of our users, RadiologyInfo .org provides links to relevant websites. RadiologyInfo.org , ACR ...

  17. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... nuclear medicine images can be superimposed with computed tomography (CT) or magnetic resonance imaging (MRI) to produce special ... now making single photon emission computed tomography/computed tomography (SPECT/CT) and positron emission tomography/computed tomography (PET/CT) ...

  18. The medical physicist in a nuclear medicine department

    International Nuclear Information System (INIS)

    Trujillo Z, F.E.; Gomez A, E.

    2007-01-01

    The diagnostic studies and therapeutic treatments carried out in a Nuclear Medicine department make use of radioactive material. For such a reason it becomes necessary to take a strict control in the reception, use and waste that are generated of the typical works inside the department. Also, work related with the quality control of the equipment dedicated to produce images and of those not image formers, need to carry out to guarantee its maximum performance; as well as quality of the diagnostic and of the therapy imparted in patients. Additionally its are needed to make originated works of the individual procedures to patient and of the acquisition of radioactive materials and removal of the waste or radioactive contaminations. Presently work the recommendations of the American College of Radiology (ACR), the European Federation of Organizations for Medical Physics (EFOMP) and of the Mexican Official Standards relating to the functions that should be observed in a Nuclear Medicine Department are exposed. The ACR and the EFOMP, conclude in their recommendations that the medical physicist fulfills with the suitable profile and likewise they describe in detail the actions and functions that he should supervise, to carry out, to document and to inform. (Author)

  19. Some aspects of the development of nuclear medicine in the USSR

    International Nuclear Information System (INIS)

    Kasatkin, Yu.N.

    1989-01-01

    Principle directions of the development of nuclear medicine in the USSR are presented.Some problems, which solution affects the state of nuclear medicine in the country are discussed. Problems of technical equipment of nuclear-diagnostic investigations are considered. Measures, directed to improvement of proffesional traing of specialists dealing with nuclear medicine are planned

  20. Radiation Protection Programme in Nuclear Medicine Practice

    International Nuclear Information System (INIS)

    Alarfaj, Abd-I.M.

    2003-01-01

    This paper specifies the main elements of the radiation protection programma (RPP) that should be estabished for each practice, which involves radiation exposure. Practices of nuclear medicine have been considered as an example, since among the 245 installations which are conducting different practices with radiation sources in the Kingdom of Saudi Arabia, there are 78 installations dealing with nuclear medicine practices. Reviewing the RPP in these nuclear medicine installations, it may be easily concluded that the RPPs for the majority of these installations do not respond to the requirements of the regulatory body of the Kingdom, which is King Abdulaziz City for Science and Technology (KACST). This may be attributed to a set of different reasons, such as shortage in understanding the main elements of the RPP as well as in applying methodologies

  1. Dose evaluation and establishment of reference levels in activity for nuclear medicine

    International Nuclear Information System (INIS)

    Ribeiro, Julio Cesar de Souza

    2017-01-01

    The International Commission on Radiation Protection (ICRP) has emphasized the importance of accurately determining the mean dose levels, or administered activity, received by the patients for each medical procedure that uses ionizing radiation. However, the number of bibliographic references addressing the need to know and optimize these levels is insufficient, or rather limited, which may lead to non-standardizes techniques, a lack of exposures control, and also the increase of associated radiological risks of these procedures. In this context, a software in Visual Basic® of Microsoft© language was developed whose function is to elaborate a method of obtaining the Reference Levels in Activity (RLA) for nuclear medicine patients by determining the third quartile of the examinations carried out. The program also allows obtaining absorbed dose values in critical organs based on patient specificities as age, sex and Body Mass Index (BMI) in order to evaluate the risk involved in each procedure. The main nuclear medicine diagnostic procedures were evaluated through the database of two public hospitals and a private clinic, obtaining the NRAs of each facility, where the software was validated by comparison with the traditionally accepted calculation methods. Due to the results obtained in each installation, in addition to NRA determination, gaps in treatment capacities and unjustified dose variations for the same procedure were identified, indicating the need for optimization. Thus, the developed program is able to provide the estimated values of effective and absorbed doses involved in each procedure, for each patient, providing reference values for nuclear medicine field, not available in the national scenario so far. (author)

  2. Analysis of renal nuclear medicine images

    International Nuclear Information System (INIS)

    Jose, R.M.J.

    2000-01-01

    Nuclear medicine imaging of the renal system involves producing time-sequential images showing the distribution of a radiopharmaceutical in the renal system. Producing numerical and graphical data from nuclear medicine studies requires defining regions of interest (ROIs) around various organs within the field of view, such as the left kidney, right kidney and bladder. Automating this process has several advantages: a saving of a clinician's time; enhanced objectivity and reproducibility. This thesis describes the design, implementation and assessment of an automatic ROI generation system. The performance of the system described in this work is assessed by comparing the results to those obtained using manual techniques. Since nuclear medicine images are inherently noisy, the sequence of images is reconstructed using the first few components of a principal components analysis in order to reduce the noise in the images. An image of the summed reconstructed sequence is then formed. This summed image is segmented by using an edge co-occurrence matrix as a feature space for simultaneously classifying regions and locating boundaries. Two methods for assigning the regions of a segmented image to organ class labels are assessed. The first method is based on using Dempster-Shafer theory to combine uncertain evidence from several sources into a single evidence; the second method makes use of a neural network classifier. The use of each technique in classifying the regions of a segmented image are assessed in separate experiments using 40 real patient-studies. A comparative assessment of the two techniques shows that the neural network produces more accurate region labels for the kidneys. The optimum neural system is determined experimentally. Results indicate that combining temporal and spatial information with a priori clinical knowledge produces reasonable ROIs. Consistency in the neural network assignment of regions is enhanced by taking account of the contextual

  3. Nuclear medicine in bone diagnostics

    International Nuclear Information System (INIS)

    Feine, U.; Mueller-Schauenburg, W.

    1985-01-01

    This book on nuclear medicine in bone diagnostics and other complementary imaging methods is composed out of the 51 presentations of the 2nd Tuebinger bone symposium held on the 11th and 12th January 1985; it gives an overview of newer methods of nuclear medicine and other imaging methods such as magnetic-resonance tomography and sonography. While the 1st Tuebinger Symposium in January 1981 dealt with the clinical application of classical bone scintigraphy and the possibilities of the results of differential diagnosis, the present book is concerned with indications, alternative radiopharmaceuticals for skeleton scintigraphy and other techniques. The intention is to give a survey of the developments made over the last few years. (orig./MG) [de

  4. Nuclear magnetic resonance and medicine. Present applications

    International Nuclear Information System (INIS)

    1984-01-01

    At the workshop on nuclear magnetic resonance and medicine held at Saclay, the following topics were presented: physical principles of NMR; NMR spectroscopy signal to noise ratio; principles of NMR imaging; methods of NMR imaging; image options in NMR; biological significance of contrast in proton NMR imaging; measurement and significance of relaxation times in cancers; NMR contrast agents; NMR for in-vivo biochemistry; potential effects and hazards of NMR applications in Medicine; difficulties of NMR implantation in Hospitals; NMR imaging of brain tumors and diseases of the spinal cord; NMR and Nuclear Medicine in brain diseases [fr

  5. Medical application of nuclear science: nuclear medicine and production of radiopharmaceuticals

    International Nuclear Information System (INIS)

    Cornet, L.

    1997-01-01

    Nuclear science in attendance on medicine or from Radium to Radiopharmaceuticals. By a brief historical reminder of the evolution of the radioactivity and development of nuclear science, we could see a very early interest and application of the radioactivity in the medical field. Main steps: Detection of natural radioactivity/Discovery of artificial radioactivity/First treatment of leukaemia and thyroid/First nuclear reactor/First radioisotope laboratory in hospital/First scintigraphy/First radiopharmaceutical/First cyclotron and cyclotron products/First immunoscintigraphy/Biotechnology and radioisotope/Evolution of technics [equipment for diagnosis (imaging, scintigraphy) and therapy]/Evolution of production technics and concept of products (generators of Technetium) and machines, reactor, cyclotron/Evolution of importance and interest of nuclear medicine/Creation of international association of nuclear medicine and producers (example ARPR)/Evolution of safety and pharmaceuticals regulation. After the sixties, period extremely rich in invention of products, characterized by a high fertility specially due to a non-restrictive regulation in terms of safety and pharmaceutical consideration, the evolution of technics, the importance of costs (investment, research, healthcare and the evolution of the regulations) have smoothly but continuously transformed the contexts and different actors. Consequences and facts: Rationalization and standardization of the catalogues, total integration of radiopharmaceuticals into the pharmaceutical laws, stop of nuclear research reactors, increase of number of cyclotrons, transformation of size and role of the producers and nuclear centers, risk in supply of some raw materials like Molybdenum, medical nuclear application as a worldwide business

  6. Risks in production and utilisation of labelled compounds for nuclear medicine. 2. Benefits and risks of utilization of 99mTc generator in nuclear medicine

    International Nuclear Information System (INIS)

    Olteanu-Chiper, D.; Barna, C.; Gard, E.; Negoita, N.

    1999-01-01

    The growth of radioisotope applications in nuclear medicine, imposed the reduction of the radiation effects and so, the reduction of associated risk of these applications. The utilization of radioactive isotopes for investigations in nuclear medicine is conditioned by the chemical behaviour and the means of detection of the emitted radiation on one hand, and by the radiation doses received by the patient, on the other hand. In these conditions, the nuclear medicine uses only the radioisotopes which are short half-time and low radiation energy, but high enough to be detected from the exterior of human body, 99m Tc being the most favourable for utilization in diagnostic purpose. This advantage is increased by the multiple possibilities to obtain different chemical forms with 99m Tc included, which permit the production of a large variety of radiopharmaceutical products, having a specific localization in the human body (organ-targets), thus allowing the diagnosis of numerous diseases. In the work the benefits and risks of the 99m Tc-Generator utilization in the nuclear medicine are shown and the utilization technique in these applications is presented . The 99m Tc-Generator is a compact chromatographic system, with lead shielding, which permits the elution of a sterile, pyrogen-free, injectable sodium pertechnetate solution, from an aluminium chromatographic column which keeps the 99 Mo. The 99m Tc-Generator system ensures the operator protection. The radioactive solution with 99m Tc is obtained in a closed vial, within lead shielding, the irradiation or contamination risks being mostly reduced. The utilization of 99m Tc in scintigraphic exam for diagnostic medicine implies a labelling operation with 99m Tc chemically bounded in forms appropriate to the target-organ and than the intravenously injection in doses dependent on the specific scintigraphic investigation or examination. (authors)

  7. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... exams at the same time. An emerging imaging technology, but not readily available at this time is PET/MRI. top of page What are some common uses of the procedure? Children's (pediatric) nuclear medicine imaging is performed to help ...

  8. Annual congress of the European Association of Nuclear Medicine. EANM'14. Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-10-15

    The proceedings of the annual congress of the European Association of Nuclear Medicine EANM'14 contain abstracts on the following issues: nuclear cardiology practices, PET in lymphoma, advances in nuclear cardiology, dosimetry for intra-arterial treatment in the liver, pediatric nuclear medicine, therapeutic nuclear medicine, SPECT/CT, prostate cancer, extended competencies for nuclear medicine technologists, neurosciences - neurodegeneration and neuroinflammation, radionuclide therapy and dosimetry - preclinical studies, physics and instrumentation, clinical molecular imaging, conventional and specialized nuclear medicine.

  9. Nuclear Medicine Techniques in Haematological Research: Our Experience

    International Nuclear Information System (INIS)

    Maktouf, C.; Bounemra, A. B.; Elbedoui, J.; Bchir, F.; Louzir, H.; Karoui, M.; Dellagi, K.

    2007-01-01

    Abstract Nuclear diagnostic techniques have revolutionized medicine in its different specialties, among them hematology. This is, by the more relevant routine procedures of diagnostic as well as by future trends in this field, in-vivo research and clinical applications at the biochemical level. We report a part of our experience by the use in vitro and in vivo established nuclear medicine techniques, in evaluating hematological disease for clinical research that will lead to the basic research. The first study is megaloblastic anemia in which we report a prospective study from Tunisia, northern Africa, of 478 patients with megaloblastic anemia recruited over three years period. Etiologic investigation using cobalamin and folates measurements and the Schilling test revealed that folate deficiency was very uncommon and that 95% of patients had cobalamin deficiency that was the consequence of pernicious anemia (PA) in 87%. Patients with PA had a median age at presentation of 45.5 years with 21.5% of cases occurring in patients younger than 30 years. Patients less than 20 years old should be specifically investigated for genetic defect in cobalamin absorption. In the second study, the red cell mass was determined following labeling the red blood cells with either sodium radiochromate (51Cr) and the measurement of Plasma Volume is based on dilution of the injected radioiodine (125I)-labeled human serum albumin in the blood circulation (2,3). It is important to make this differentiation, thus our patients will fulfilled the criteria of the Polycythemia Vera Study Group, and therefore we will be able to evaluate serum VEGF levels in patients with Polycythemia Vera, secondary polycythemia and idiopatic polycythemia in an attempt to investigate the involvement and significance of this cytokine in these haematological disorders.

  10. Prospects in nuclear medicine

    International Nuclear Information System (INIS)

    Pink, V.; Johannsen, B.; Muenze, R.

    1990-01-01

    In nuclear medicine, a sequence of revolutioning research up to the simple and efficient application in routine has always then taken place when in an interdisciplinary teamwork new radiochemical tracers and/or new instrumentation had become available. At present we are at the beginning of a phase that means to be in-vivo-biochemistry, the targets of which are molecular interactions in the form of enzymatic reactions, ligand-receptor interactions or immunological reactions. The possibility to use positron-emitting radionuclides of bioelements in biomolecules or drugs to measure their distribution in the living organism by positron-emission tomography (PET) is gaining admittance into the pretentious themes of main directions of medical research. Diagnostic routine application of biochemically oriented nuclear medicine methods are predominantly expected from the transmission of knowledge in PET research to the larger appliable emission tomography with gamma-emitting tracers (SPECT). (author)

  11. Imaging in nuclear medicine

    CERN Document Server

    Hoeschen, Christoph

    2013-01-01

    This volume addresses a wide range of issues in the field of nuclear medicine imaging, with an emphasis on the latest research findings. Initial chapters set the scene by considering the role of imaging in nuclear medicine from the medical perspective and discussing the implications of novel agents and applications for imaging. The physics at the basis of the most modern imaging systems is described, and the reader is introduced to the latest advances in image reconstruction and noise correction. Various novel concepts are then discussed, including those developed within the framework of the EURATOM FP7 MADEIRA research project on the optimization of imaging procedures in order to permit a reduction in the radiation dose to healthy tissues. Advances in quality control and quality assurance are covered, and the book concludes by listing rules of thumb for imaging that will be of use to both beginners and experienced researchers.

  12. Developing a programme on molecular nuclear medicine. Proceedings of a technical meeting

    International Nuclear Information System (INIS)

    2007-07-01

    During the last decades, new methodologies have emerged in the molecular nuclear medicine field developed to contribute to the detection, diagnosis, staging and treatment follow-up of human diseases. Single photon emission computed tomography (SPECT) and positron emission tomography (PET) are two examples of this methodology that enabled the study of molecular alterations of cell metabolism in the living subject with non-invasive approaches. 18-fluorine fluorodeoxyglucose positron emission tomography (FDG-PET) is used for many disease diagnoses, differential diagnosis and treatment follow-up. Like FDG, new molecules are also being identified and are promising candidates to be used. Molecular imaging studies the expression of genes involved in the evolution of different diseases. This data has been shown to be a reliable prognostic marker, for accurate diagnosis or for predicting response to treatment in certain cases. The use of molecular imaging in the evaluation of exogenous gene therapy and the study of endogenous gene expression in genetic, neurological, cardiovascular and neoplastic diseases will be of significant importance worldwide in the near future. The use of nuclear medicine and molecular imaging for the study of a disease assures the determination of integral parameters for prognosis and diagnosis. The improvement of the therapeutic decisions involved with the stage and prognosis of a disease will certainly add to the clinical studies that are designed for patient care, treatment and survival improvement. Many efforts have been made and will continue in the future to demonstrate the potential of the association of molecular nuclear technology and nuclear medicine imaging, since it has been shown to be useful and applicable to many important diseases. In addition, molecular biology techniques, such as polymerase chain reaction (PCR) and differential gene expression have added important findings to the study of disease pathogenesis. These techniques have

  13. VIIth international symposium on nuclear medicine

    International Nuclear Information System (INIS)

    1983-01-01

    The conference proceedings contain abstracts of 100 presented papers, mainly dealing with radioimmunoassays, radiopharmaceuticals, scintiscanning, computer tomography, radionuclide lymphography, ventriculography, angiography, nuclear cardiology, liquid scintillator techniques, radioisotope generators, radiospirometry and various uses of labelled compounds and tracer techniques in nuclear medicine. (M.D.)

  14. Thirty years from now: future physics contributions in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, Dale L [School of Physics and Faculty of Health Sciences, University of Sydney, Sydney, 2006 (Australia); Department of Nuclear Medicine, Royal North Shore Hospital, St. Leonards, NSW 2065 (Australia)

    2014-05-01

    This paper is the first in a series of invited perspectives by pioneers of nuclear medicine imaging and physics. A medical physicist and a nuclear medicine physician each take a backward and a forward look at the contributions of physics to nuclear medicine. Here, we provide a forward look from the medical physicist’s perspective. The author examines a number of developments in nuclear medicine and discusses the ways in which physics has contributed to these. Future developments are postulated in the context of an increasingly personalised approach to medical diagnostics and therapies. A skill set for the next generation of medical physicists in nuclear medicine is proposed in the context of the increasing complexity of ‘Molecular Imaging’ in the next three decades. The author sees a shift away from ‘traditional’ roles in instrumentation QA to more innovative approaches in understanding radiobiology and human disease.

  15. Thirty years from now: future physics contributions in nuclear medicine

    International Nuclear Information System (INIS)

    Bailey, Dale L

    2014-01-01

    This paper is the first in a series of invited perspectives by pioneers of nuclear medicine imaging and physics. A medical physicist and a nuclear medicine physician each take a backward and a forward look at the contributions of physics to nuclear medicine. Here, we provide a forward look from the medical physicist’s perspective. The author examines a number of developments in nuclear medicine and discusses the ways in which physics has contributed to these. Future developments are postulated in the context of an increasingly personalised approach to medical diagnostics and therapies. A skill set for the next generation of medical physicists in nuclear medicine is proposed in the context of the increasing complexity of ‘Molecular Imaging’ in the next three decades. The author sees a shift away from ‘traditional’ roles in instrumentation QA to more innovative approaches in understanding radiobiology and human disease.

  16. A literature review of the cost-effectiveness of nuclear medicine

    International Nuclear Information System (INIS)

    Carter, J.

    1995-01-01

    Nuclear medicine is a medical speciality that uses tiny quantities of radioactivity to produce diagnostic images. It also has a role in therapy for some thyroid diseases and certain tumours. Surveys have shown that nuclear medicine procedures are used significantly less in the UK than in many other countries in Europe. One reason may be that there is inadequate information about the clinical utility of these techniques, particularly their cost-effectiveness in clinical management. To establish what evidence was currently available about the cost-effectiveness of nuclear medicine, the British Nuclear Medicine Society commissioned a worldwide literature review in diseases of the heart, kidney, lung, bone, brain, bowel and thyroid. This volume summarises the findings of the independent study and gives details of the background, clinical utility and limitations of the different nuclear medicine procedures used in the diagnosis and treatment of each disease reviewed. (author)

  17. Computed tomographic practice and dosimetry: implications for nuclear medicine: editorial

    International Nuclear Information System (INIS)

    Mountford, P.J.; Harding, L.K.

    1992-01-01

    This editorial briefly discusses the results of an NRPB survey of x-ray computed tomography practice and dosimetry in the UK. A wide variation in practice and patient doses was revealed. The implications for nuclear medicine are considered. The NRPB is to issue formal guidance on protection of the patient undergoing a CT investigation with the aim of achieving a more systematic approach to the justification and optimization of such exposures. (UK)

  18. Do we need a universal 'code of ethics' in nuclear medicine?

    Science.gov (United States)

    Ramesh, Chandakacharla N; Vinjamuri, Sobhan

    2010-06-01

    Recent years have seen huge advances in medicine and the science of medicine. Nuclear medicine has been no exception and there has been rapid acceptance of new concepts, new technologies and newer ways of working. Ethical principles have been traditionally considered as generic skills applicable to wide groups of scientists and doctors, with only token refinement at specialty level. Specialist bodies across the world representing wide groups of practitioners frequently have subgroups dealing exclusively with ethical issues. It could easily be argued that the basic principles of ethical practice adopted by specialist bodies closest to nuclear medicine practice, such as radiology and oncology, will also be applicable to nuclear medicine and that time and effort need not be spent on specifying a separate code for nuclear medicine. It could also be argued that nuclear medicine is an independent specialty and some (if not most) practitioners will not be aware of the guidelines adopted by other specialist societies, and that there is a need for re-iteration of ethical principles at the specialty level and on a worldwide scale.In this article we would like to present a brief history of medical ethics, discuss some of the advances in nuclear medicine and their associated ethical aspects, as well as list a framework of principles for consideration, should a specialist body deem it suitable to establish a 'code of ethics' for nuclear medicine.

  19. Special monitoring in nuclear medicine; Monitoreo especial en medicina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Beltran, C.C.; Puerta, J.A.; Morales, J. [Asociacion Colombiana de Proteccion Radiologica (Colombia)]. e-mail: ccbeltra@gmail.com

    2006-07-01

    Colombia counts with around 56 centers of Nuclear Medicine, 70 Nuclear Doctors and more of 100 Technologists in this area. The radioisotopes more used are the {sup 131} I and the {sup 99m} Tc. The radiological surveillance singular in the country is carried out for external dosimetry, being the surveillance by incorporation of radioactive materials very sporadic in our media. Given the necessity to implement monitoring programs in the incorporation of radionuclides of the occupationally exposed personnel, in the routine practice them routine of Nuclear Medicine, it was implemented a pilot program of Special Monitoring with two centers of importance in the city of Medellin. This program it was carried out with the purpose of educating, to stimulate and to establish a program of reference monitoring with base in the National Program of Monitoring in the radionuclides Incorporation that serves like base for its application at level of all the services of Nuclear Medicine in the country. This monitoring type was carried out with the purpose of obtaining information on the work routine in these centers, form of manipulation and dosage of the radionuclides, as well as the administration to the patient. The application of the program was carried out to define the frequency of Monitoring and analysis technique for the implementation of a program of routine monitoring, following the recommendations of the International Commission of Radiological Protection. For their application methods of activity evaluation were used in urine and in 7 workers thyroid, of those which only two deserve an analysis because they presented important activities. The measures were carried out during one month, every day by means in urine samples and to the most critic case is practiced two thyroid measures, one in the middle of the period and another when concluding the monitoring. To the other guy is practiced an activity count in thyroid when concluding the monitoring period. The obtained

  20. Pulmonary embolism in pregnancy: is nuclear medicine imaging still a valid option?

    LENUS (Irish Health Repository)

    Ezwawah, O

    2008-10-01

    In this study we demonstrate our Radiology Department\\'s experience in utilizing low dose (half the normal dose) lung perfusion radionuclide scanning for pregnant patients as the initial investigation for suspected pulmonary embolism (PE). Secondly; we highlight the radiation dose reduction advantages of nuclear medicine imaging over multi-detector computed tomography in this group. We performed a retrospective study of 21 consecutive pregnant women who presented with suspected PE. These patients underwent either lung perfusion scanning or CT pulmonary angiography (CTPA), over a two-year period (May 2005 to July 2007). 19 patients of the cohort studied underwent low dose perfusion-only scintigraphy, with half the usual dose of radionuclide activity. All scans were considered of diagnostic quality. No patient in our study required a ventilation scan. No patient with a negative perfusion scan represented during the 3 month follow up period with PE. We conclude, nuclear medicine imaging is an effective initial investigation for pregnant patients with suspected PE. While scinitigraphy is associated with a greater fetal radiation dose than CTPA, it imparts a lower maternal dose and significantly lower dose to radiosensitive tissues such as breast.

  1. Nuclear oncology: From genotype to patient care

    International Nuclear Information System (INIS)

    1997-01-01

    Nuclear medicine is the medical specialty best suited to translate the exploding body of knowledge obtained from research in genetics and molecular biology into the care of patients. This fourth annual nuclear oncology conference will address how this can be done and how positron emission tomography (PET) and single photon emission tomography (SPECT) can be used in the care of patients with cancer or with increased genetic risk of developing cancer. The course will include illustrative patient studies showing how PET and SPECT can help in diagnosis, staging and treatment planning and monitoring of patients with cancer

  2. Is hybridic positron emission tomography/computerized tomography the only option? The future of nuclear medicine and molecular imaging.

    Science.gov (United States)

    Grammaticos, Philip; Zerva, Cherry; Asteriadis, Ioannis; Trontzos, Christos; Hatziioannou, Kostas

    2007-01-01

    sources of radiation" b) nuclear radiation and c) molecular nuclear medicine. The "European Journal of Nuclear Medicine and Molecular Imaging" shall have to erase the three last words of its title and be renamed. As Professor Abass Alavi et al (2007), have mentioned: "Is PET/CT the only option?" In favor of PET/CT are the following: Attenuation correction (AC) and better anatomical localization of lesions visualized with PET. Also PET/CT can be used as a diagnostic CT scanner (dCT). Against using the PET/CT scanners are the following arguments: a) This equipment is not necessary because we can always ask the Radiologists for a dCT scan. Many patients have already done a dCT scan at the time they are referred for a PET scan to the Nuclear Medicine Department. b) The absolute clinical indications for PET/CT with the use of a contrast agent, are under investigation. c) Although there is at present a list of indications suggested for the PET/CT scanner, there are studies disputing some of these indications, as for example in metastatic colon cancer where a high diagnostic accuracy for PET study alone, has been reported. d) The option of AC performed by the PET/CT scanner has also been questioned. Artifacts may be up to 84%. e) The PET/CT is expensive, time consuming, space occupying, and needs additional medical and technical personnel. f) Not to mention the extra radiation dose to the patients. g) Shall we inform those young medical students who wish to become nuclear medicine physicians, to hold their decision till the content of future Nuclear Medicine is clarified? We may suggest that: Our specialty could be renamed as: "Clinical Nuclear Medicine" and include additional "proper certified education" on the PET/CT equipment. The PET/CT scanner should remain in the Nuclear Medicine Department where Radiologists could act as advisors.

  3. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... measure the amount of the radiotracer in a small area of your child's body. top of page How is the procedure performed? Nuclear medicine imaging is usually performed on an ... Intravenous: a small needle is used to inject the radiotracer. The ...

  4. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... pictures and provides molecular information. In many centers, nuclear medicine images can be superimposed with computed tomography (CT) or magnetic resonance imaging (MRI) to produce special views, a practice known as image fusion or co-registration. These views allow the information ...

  5. Improvements on a patient-specific dose estimation system in nuclear medicine examination

    International Nuclear Information System (INIS)

    Chuang, K. S.; Lu, J. C.; Lin, H. H.; Dong, S. L.; Yang, H. J.; Shih, C. T.; Lin, C. H.; Yao, W. J.; Ni, Y. C.; Jan, M. L.; Chang, S. J.

    2014-01-01

    The purpose of this paper is to develop a patient-specific dose estimation system in nuclear medicine examination. A dose deposition routine to store the deposited energy of the photons during their flights was embedded in the widely used SimSET Monte Carlo code and a user-friendly interface for reading PET and CT images was developed. Dose calculated on ORNL phantom was used to validate the accuracy of this system. The ratios of S value for 99m Tc, 18 F and 131 I computed by this system to those obtained with OLINDA for various organs were ranged from 0.93 to 1.18, which were comparable to that obtained from MCNPX2.6 code (0.88-1.22). Our system developed provides opportunity for tumor dose estimation which cannot be known from the MIRD. The radiation dose can provide useful information in the amount of radioisotopes to be administered in radioimmunotherapy. (authors)

  6. Nuclear medicine in sports

    International Nuclear Information System (INIS)

    Sharma, Anshu Rajnish

    2010-01-01

    Nuclear medicine can synergistically contribute to the sports medicine field, in the management of sports-related stress injures. Bone scintigraphy is commonly requested for evaluation of athletes with pain. Three-Phase 99m Tc MDP Bone Scan has emerged as the imaging reference standard for diagnosing such injuries. The inherently high-contrast resolution of the bone scan allows early detection of bone trauma and becomes positive within six to seventy-two hours after the onset of symptoms. The bone scan is able to demonstrate stress injuries days to weeks before the radiograph

  7. The Current Status and Future Perspectives of Nuclear Medicine in Korea

    International Nuclear Information System (INIS)

    Lee, Myung Chul; Oh, So Won; Chung, June Key; Lee, Dong Soo

    2010-01-01

    Since the introduction of nuclear medicine in 1959, Korea accomplished a brilliant development in terms of both clinical practice and research activities, which was mainly due to the dedication of nuclear medicine specialists, consisting of physicians, technicians, and scientists, and strong support from the Korean Government. Now, Korea has 150 medical institutes, performing approximately 561,000 nuclear imaging procedures and 11.6 million in vitro studies in 2008, and ranked fourth in the number of presentations at the Annual Meeting of the Society of Nuclear Medicine (SNM) in 2008. The successful progress in this field has allowed Korea to focus on the international promotion of nuclear medicine, especially in the developing and underdeveloped countries. In consequence, the Asian Regional Cooperative Council for Nuclear Medicine (ARCCNM) was established in 2001, and Seoul hosted the 9th Congress of the World Federation of Nuclear Medicine and Biology (WFNMB) in 2006. In the future, Korea will strive to sustain its rate of advancement in the field and make every effort to share its progress and promote the exchange of scientific information at the international level.

  8. Radionuclides for nuclear medicine: a nuclear physicists' view

    DEFF Research Database (Denmark)

    Cantone, M.; Haddad, F.; Harissopoulos, S.

    2013-01-01

    NuPECC (the Nuclear Physics European Collaboration Committee, an expert committee of the European Science Foundation) has the mission to strengthen European Collaboration in nuclear science through the promotion of nuclear physics and its trans-disciplinary use and application. NuPECC is currently...... working on a report on “Nuclear Physics for Medicine” and has set up a working group to review the present status and prospects of radionuclides for nuclear medicine. An interim report will be presented to seek comments and constructive input from EANM members. In particular it is investigated how nuclear...... physics Methods and nuclear physics facilities are supporting the development and supply of medical radionuclides and how this support could be further strengthened in future. Aspects that will be addressed: •In recent years, the reactor-based supply chain of 99Mo/99mTc generators was repeatedly...

  9. Evaluation of radiation protection in some nuclear medicine department

    International Nuclear Information System (INIS)

    Abdelrahim, Yassir Mohammed

    2015-12-01

    This study was carryout to evaluate the radiation protection in nuclear medicine department in Sudan, accordance with the standards international recommendation and code of practice for radiation protection in nuclear medicine, the evaluation was done for three nuclear medicine departments, included direct measurement of dose rate and the contamination level in some areas, were radiation sources, radiation workers and public are involved. The data was collected and analyzed from the results for three nuclear medicine departments that the average reading of ambient dose rate in : outside the door of imaging room (SPECT) 0.18μSv/h in hospital (1)& and 0.19μSv/h in hospital(2) and 0.19μSv/h hospital(3), inside control of imaging room (SPECT) 27.8μSv/h in hospital(1)& 0.14μSv/h in hospital(2)& 14μSv/h in hospital(3), inside the injection room 28.81μSv/h in hospital(1), 0.36μSv/h in hpspital(2), 0.06μSv/h in hospital(3) outside the door of lap, 0.65μSv/h in hospital(1), 0.13μSv/h in hospital(2) & 0.12μSv/h in hospital(3), inside the hot lap, 9.68μSv/h in hospital(1) & 0.30μSv/h in hospital(2) & 0.85 μSv/h in hospital(3), in outsidee the door of waiting room of injected patient 1.41μSv/h in hospital(1)& 0.16μSv/h in hospital(2) & 1.08μSv/h in hospital(3). Avaerge reading of contamination in: Floor of hot lap 44.50 B/cm"2 hospital(1) & 4.42B/cm"2in hospital(2) & 6.22 B/cm"2 in hospital (3) . on the bench tap 186.30 B/cm"2 hospital(1), 19.91 B/cm"2 in hospital(2) & 8.77B/cm"2 in hospital(3) floor of injection room 12.60 B/cm"2 in hospital(1) & 11.70 B/cm"2 in hospital(2) & 13.73 B/cm"2 hospital(3) & table of injection room 13.00 B/cm"2 in hospital(1)& 11.70 B/cm"2in hospital(2)& 13.73 B/cm"2 in hospital & tble of injection room 13.00 B/cm"2 in hospital(1) & 20.40 B/cm"2 in hospital(2) & 23.23 B/cm"2 B/cm"2 in hospital(3) on the shield of working surface 144.30 B/cm in hospital(1)& 47.00 B/cm"2 in hospital(2) & 52.33 B/cm"2 in hospital(3) , and makes check

  10. Nuclear Medicine Image Display. Chapter 14

    Energy Technology Data Exchange (ETDEWEB)

    Bergmann, H. [Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna (Austria)

    2014-12-15

    The final step in a medical imaging procedure is to display the image(s) on a suitable display system where it is presented to the medical specialist for diagnostic interpretation. The display of hard copy images on X ray film or photographic film has largely been replaced today by soft copy image display systems with cathode ray tube (CRT) or liquid crystal display (LCD) monitors as the image rendering device. Soft copy display requires a high quality display monitor and a certain amount of image processing to optimize the image both with respect to the properties of the display device and to some psychophysiological properties of the human visual system. A soft copy display system, therefore, consists of a display workstation providing some basic image processing functions and the display monitor as the intrinsic display device. Display devices of lower quality may be used during intermediate steps of the acquisition and analysis of a patient study. Display monitors with a quality suitable for diagnostic reading by the specialist medical doctor are called primary devices, also known as diagnostic devices. Monitors with lower quality but good enough to be used for positioning, processing of studies, presentation of images in the wards, etc. are referred to as secondary devices or clinical devices. Nuclear medicine images can be adequately displayed even for diagnostic purposes on secondary devices. However, the increasing use of X ray images on which to report jointly with images from nuclear medicine studies, such as those generated by dual modality imaging, notably by positron emission tomography (PET)/computed tomography (CT) and single photon emission computed tomography (SPECT)/CT, requires display devices capable of visualizing high resolution grey scale images at diagnostic quality, i.e. primary display devices. Both grey scale and colour display devices are used, the latter playing an important role in the display of processed nuclear medicine images and

  11. Nuclear Medicine Image Display. Chapter 14

    International Nuclear Information System (INIS)

    Bergmann, H.

    2014-01-01

    The final step in a medical imaging procedure is to display the image(s) on a suitable display system where it is presented to the medical specialist for diagnostic interpretation. The display of hard copy images on X ray film or photographic film has largely been replaced today by soft copy image display systems with cathode ray tube (CRT) or liquid crystal display (LCD) monitors as the image rendering device. Soft copy display requires a high quality display monitor and a certain amount of image processing to optimize the image both with respect to the properties of the display device and to some psychophysiological properties of the human visual system. A soft copy display system, therefore, consists of a display workstation providing some basic image processing functions and the display monitor as the intrinsic display device. Display devices of lower quality may be used during intermediate steps of the acquisition and analysis of a patient study. Display monitors with a quality suitable for diagnostic reading by the specialist medical doctor are called primary devices, also known as diagnostic devices. Monitors with lower quality but good enough to be used for positioning, processing of studies, presentation of images in the wards, etc. are referred to as secondary devices or clinical devices. Nuclear medicine images can be adequately displayed even for diagnostic purposes on secondary devices. However, the increasing use of X ray images on which to report jointly with images from nuclear medicine studies, such as those generated by dual modality imaging, notably by positron emission tomography (PET)/computed tomography (CT) and single photon emission computed tomography (SPECT)/CT, requires display devices capable of visualizing high resolution grey scale images at diagnostic quality, i.e. primary display devices. Both grey scale and colour display devices are used, the latter playing an important role in the display of processed nuclear medicine images and

  12. A glance at the history of nuclear medicine

    International Nuclear Information System (INIS)

    Carlsson, S.

    1995-01-01

    The development of nuclear medicine has resulted in several effective routine methods in diagnosis and therapy. There is an ongoing discussion about the future of the activity based on the fast development of ultrasound, CT and MR. In such discussions, it is often forgotten that nuclear medicine is also a dynamic diagnostic tool under continuous progress. As seen from this historical review, nuclear medicine has grown from quite simple in vitro tests to very advanced methods to image organ function. This is the result of the development of radiopharmaceuticals and instrumentation. Today, development is moving towards what is called receptor scintigraphy, i.e., the use of radiopharmaceuticals which are very specific to certain diseases, for instance, tumours. Even at present there is no other method to determine the regional myocardial blood flow both at stress and at rest, than myocardial scintigraphy. Nuclear medicine will remain an important diagnostic tool as long as it employs people with engagement and interest. Such people will also guarantee that the hospital management will supply the activity with funds for the necessary investments. (orig.)

  13. Official Program and Abstracts of the 15. Meeting of the Latin-American Association of Biology and Nuclear Medicine Societies (ALASBIMN 97); Iberoamerican Congress of Nuclear Medicine

    International Nuclear Information System (INIS)

    1997-01-01

    This issue contains 117 abstracts of lectures and poster sessions of the 15th Meeting of the Latin-American Association of Biology and Nuclear Medicine Societies (ALASBIMN 97) and Iberoamerican Congress of Nuclear Medicine, held in Lima, Peru, from 26 to 30 October 1997. The key subjects addressed are nuclear medicine and diagnostic techniques on brain, liver, lungs, heart, osteo-articular, cardiology, oncology, endocrinology, radiopharmaceuticals, medical physics, SPECT and their applications in diagnostic medicine. (APC)

  14. Pediatric nuclear medicine: A practical approach

    International Nuclear Information System (INIS)

    Pintelon, H.; Piepsz, A.; Dejonckheere, M.

    1997-01-01

    This paper is devoted to the practical aspects of pediatric nuclear medicine, particularly the controversy about drug sedation. The authors conclude that drug sedation should be exceptionally used. There is an alternative way, consisting in an adequate approach of the patient: good information to the parents and the child; taking care of the child's environment, starting from the first contacts in the waiting room; specific education of technologists: this includes injections and blood sampling, but also proper handling of the child during the procedure and adequate psychological attitudes toward child and parents. Taking these factors into account, it is exceptional that a test has to be postponed because of the lack of collaboration of the patient; good quality images, using the recommended paediatric amounts of radioactivity can be achieved even for procedures of prolonged duration

  15. Radiation protection in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Volodin, V; Hanson, G P

    1993-12-31

    The goal of this Chapter is to give a general outline of the essential principles and procedures for radiation protection in a nuclear medicine department where radionuclides are used for diagnosis and therapy. More detailed recommendations regarding radiation protection in nuclear medicine are given in the publications of the International Commission on Radiation Protection (ICRP, publications 25, 57, 60) and in ILO/IAEA/WHO Manual on Radiation Protection in Hospitals and General Practice (Volume 2: Unsealed Sources, WHO, Geneva, 1975), on which this Chapter is based. This chapter is not intended to replace the above-mentioned international recommendations on radiation protection, as well as existing national regulations on this subject, but intended only to provide guidance for implementing these recommendations in clinical practice

  16. Radiation protection in nuclear medicine

    International Nuclear Information System (INIS)

    Volodin, V.; Hanson, G.P.

    1992-01-01

    The goal of this Chapter is to give a general outline of the essential principles and procedures for radiation protection in a nuclear medicine department where radionuclides are used for diagnosis and therapy. More detailed recommendations regarding radiation protection in nuclear medicine are given in the publications of the International Commission on Radiation Protection (ICRP, publications 25, 57, 60) and in ILO/IAEA/WHO Manual on Radiation Protection in Hospitals and General Practice (Volume 2: Unsealed Sources, WHO, Geneva, 1975), on which this Chapter is based. This chapter is not intended to replace the above-mentioned international recommendations on radiation protection, as well as existing national regulations on this subject, but intended only to provide guidance for implementing these recommendations in clinical practice

  17. Present situation and proposal for nuclear medicine development

    International Nuclear Information System (INIS)

    Oliva Gonzalez, Juan P.

    2003-01-01

    In the present paper, the current situation of the Cuban nuclear medicine, after its introduction in the country in the 40s of the 20 th century and its expansion since 1962 and, particularly, from the installation of the first gamma camera in 1980, is analyzed. Nowadays, there is a total 14 Nuclear Medicine Departments or Services in our country within the National Oncology Networks and national Health System (SNS), which provide medical attention to the population depending on the nuclear equipment available A Program for the medical and technical personnel's training is proposed, as well as for gradual development of nuclear medicine department's (including the installation of gamma cameras, divided into two stages: 2003-2004 and 2005-2006). The prospective results of the proposed program are analyzed, as well as the impact on the populations health

  18. Analysis of data related to the updating of diagnosis reference levels in radiology and nuclear medicine. Assessment 2007-2008

    International Nuclear Information System (INIS)

    2010-01-01

    This report presents the results of the analysis of 'patient' dosimetric data which radiology and nuclear medicine establishments must supply every year to the IRSN (the French Radioprotection and Nuclear Safety Institute) according to a decree related to diagnosis reference levels in radiology and nuclear medicine. The analysed dosimetric data concern assessments performed during 2007 and 2008. For the different concerned practices (radiology, scanography, nuclear medicine), the report proposes a presentation and a discussion of global data, and then a presentation of data either for different types of examination on adults and on children, or for the different parts of the body

  19. Clinical nuclear medicine applications in Turkey and specific renal studies

    International Nuclear Information System (INIS)

    Erbas, B.

    2004-01-01

    Full text: Nuclear cardiology, nuclear oncology, pediatric nuclear medicine and nuclear endocrinology are the main application areas of clinical nuclear medicine in Turkey. Not only imaging studies, but also therapeutic application of radiopharmaceuticals is also performed at many institutes, such as hyperthyroidism treatment with radioiodine, thyroid cancer ablation and metastases treatment with radioiodine, radio synovectomy, metastatic pain therapy, and recently radioimmunotherapy of lymphomas. Almost all radionuclides and radiopharmaceuticals are obtained commercially from European countries, except 18-FDG which is obtained from two cyclotrons in Turkey. More than 30.000 renal procedures are performed at the University hospitals in a year. Pediatric age groups is approximately % 55 of patients. 99mTc-DTPA (%44), 99mTc-DMSA (%37), 99mTc-MAG3 (%17) and 99mTc-EC (%2) are the most commonly used radiopharmaceuticals for renal imaging. More than 6.000 vials of several pharmaceuticals are used for renal cortical scintigraphy (%35), dynamic renal imaging (%34), renal scintigraphy with diuretic (%27) and captopril scintigraphy (%4). Most common indication for renal cortical scintigraphy is detection of cortical scarring (%53). In addition, using single plasma sample method or gamma-camera method renal clearance measurements with 99mTc-MAG3 99mTc-DTPA have been used at some institutions

  20. Clinical nuclear medicine applications in Turkey and specific renal studies

    International Nuclear Information System (INIS)

    Erbas, B.

    2004-01-01

    Nuclear cardiology, nuclear oncology, pediatric nuclear medicine and nuclear endocrinology are the main application areas of clinical nuclear medicine in Turkey. Not only imaging studies, but also therapeutic application of radiopharmaceuticals is also performed at many institutes, such as hyperthyroidism treatment with radioiodine, thyroid cancer ablation and metastases treatment with radioiodine, radio synovectomy, metastatic pain therapy, and recently radioimmunotherapy of lymphomas. Almost all radionuclides and radiopharmaceuticals are obtained commercially from European countries, except 18-FDG which is obtained from two cyclotrons in Turkey. More than 30.000 renal procedures are performed at the University hospitals in a year. Pediatric age groups is approximately % 55 of patients. 99m Tc-DTPA (%44), 99m Tc-DMSA (%37), 99m Tc-MAG3 (%17) and 99m Tc-EC (%2) are the most commonly used radiopharmaceuticals for renal imaging. More than 6.000 vials of several pharmaceuticals are used for renal cortical scintigraphy (%35), dynamic renal imaging (%34), renal scintigraphy with diuretic (%27) and captopril scintigraphy (%4). Most common indication for renal cortical scintigraphy is detection of cortical scarring (%53). In addition, using single plasma sample method or gamma-camera method renal clearance measurements with 99m Tc-MAG3 99m Tc-DTPA have been used at some institutions. (author)

  1. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... both imaging exams at the same time. An emerging imaging technology, but not readily available at this time is PET/MRI. top of page What are some common uses of the procedure? Children's (pediatric) nuclear medicine imaging is performed to help diagnose childhood disorders ...

  2. More about ... Nuclear medicine

    African Journals Online (AJOL)

    Thyroid scintigraphy. In neonates with hypothyroidism detected on neonatal screening and confirmed by subsequent testing, a radionuclide thyroid scan should be performed as soon as possible. It must be undertaken in all nuclear medicine departments as a matter of urgency. Any delay in treatment should be avoided.

  3. Occupational exposure of nuclear medicine personnel

    International Nuclear Information System (INIS)

    Roessler, M.

    1982-01-01

    The results are given of measurements of the radiation burden of personnel in departments of nuclear medicine in the years 1979 to 1981 using film dosemeters and ring thermoluminescence dosemeters evaluated by the national personnel dosemeter service. The relations are examined of the exposure of hands and the preparation of radiopharmaceuticals and especially their use for examinations. Certain organizational measures are indicated for reducina radiation burden in a laboratory for the preparation of radiopharmaceuticals. The results of measurements and evaluations of radiation burden of personnel of nuclear medicine departments are confronted with conclusions published in the literature. (author)

  4. Basic requirements of nuclear medicine services

    Energy Technology Data Exchange (ETDEWEB)

    Belcher, E H

    1993-12-31

    Technological progress in nuclear medicine continues, not always to the immediate advantage of the developing world. The capital expense, operational demands and maintenance requirements of ever more complex equipment, the consequent need for highly trained staff, the necessity to assure regular supplies of costly radioactive materials, all present problems to which compromise or alternative solutions must often be sought. This chapter constitutes an attempt to define the basic requirements for thr practice of nuclear medicine with respect to staff, equipment, accommodation, supplies and supporting services with particular reference to the needs of institutions in developing countries

  5. Basic requirements of nuclear medicine services

    International Nuclear Information System (INIS)

    Belcher, E.H.

    1992-01-01

    Technological progress in nuclear medicine continues, not always to the immediate advantage of the developing world. The capital expense, operational demands and maintenance requirements of ever more complex equipment, the consequent need for highly trained staff, the necessity to assure regular supplies of costly radioactive materials, all present problems to which compromise or alternative solutions must often be sought. This chapter constitutes an attempt to define the basic requirements for thr practice of nuclear medicine with respect to staff, equipment, accommodation, supplies and supporting services with particular reference to the needs of institutions in developing countries

  6. Dose estimation and radiation control measures for individuals having close contact with patients administered in vivo nuclear medicine

    International Nuclear Information System (INIS)

    Konishi, E.; Abe, K.; Kusama, T.

    1993-01-01

    Patients who have been administered radiopharmaceuticals become a source of exposure to a non-occupational individual helping in support and comfort of these patients. We measured external dose rates at several distances from 84 adult patients administered radiopharmaceuticals, and urinary excretion of radioactivity in their patients. And we estimated the maximal dose for persons having close contact with patients administered radiopharmaceuticals from the combination of these measurement data and scenarios of contact with patients. On the basis of the estimated values, we proposed the following dose constraint for care givers. (1) The dose constraint for a non-occupational care givers to an adult nuclear medicine patient should in no case exceed 300 μSv per patient per examination of any kind. (2) The dose constraint in ordinary examinations employing a radionuclide should not be greater than 15 μSv per patient per examination. (3 tabs.)

  7. Nuclear methods in medicine

    International Nuclear Information System (INIS)

    Wolfe, D.M.

    1997-01-01

    Physicists have created remarkably sophisticated instruments for the performance of experiments. With variable phase lags many of these have become useful in technology. In the medical field NMD techniques have become commonplace under the rubric of Magnetic Resonance Imaging. Particle physics has developed sophisticated detectors for both charged and neutral particles. Many of these also have been adapted to medical uses. In both radiology and nuclear medicine, pixel detectors based on designs originating at large-scale colliders, are becoming highly useful in replacing film and NaI as the primary means of X-ray and (-ray detection. Coupled with high-speed work stations, these new techniques allow exciting new imagining modalities. Many of these are based on the handling of digital images originally developed for astronomy. Thus, once again, fundamental science is making large contributions to the development of technology. In this talk, various examples of developments in digital mammography and digital detectors for nuclear medicine will be given. The possibilities for telemedicine will be discussed. (author)

  8. Nuclear Medicine National Headquarter System

    Data.gov (United States)

    Department of Veterans Affairs — The Nuclear Medicine National HQ System database is a series of MS Excel spreadsheets and Access Database Tables by fiscal year. They consist of information from all...

  9. Java-based PACS and reporting system for nuclear medicine

    Science.gov (United States)

    Slomka, Piotr J.; Elliott, Edward; Driedger, Albert A.

    2000-05-01

    In medical imaging practice, images and reports often need be reviewed and edited from many locations. We have designed and implemented a Java-based Remote Viewing and Reporting System (JaRRViS) for a nuclear medicine department, which is deployed as a web service, at the fraction of the cost dedicated PACS systems. The system can be extended to other imaging modalities. JaRRViS interfaces to the clinical patient databases of imaging workstations. Specialized nuclear medicine applets support interactive displays of data such as 3-D gated SPECT with all the necessary options such as cine, filtering, dynamic lookup tables, and reorientation. The reporting module is implemented as a separate applet using Java Foundation Classes (JFC) Swing Editor Kit and allows composition of multimedia reports after selection and annotation of appropriate images. The reports are stored on the server in the HTML format. JaRRViS uses Java Servlets for the preparation and storage of final reports. The http links to the reports or to the patient's raw images with applets can be obtained from JaRRViS by any Hospital Information System (HIS) via standard queries. Such links can be sent via e-mail or included as text fields in any HIS database, providing direct access to the patient reports and images via standard web browsers.

  10. First Central and Eastern European Workshop on Quality control, patient dosimetry and radiation protection in diagnostic and interventional radiology and nuclear medicine

    International Nuclear Information System (INIS)

    National Frederic Joliot-Curie Research Institute for Radiobiology and Radiohygiene

    2007-01-01

    First Central and Eastern European Workshop on Quality Control, Patient Dosimetry and Radiation Protection in Diagnostic and Interventional Radiology and Nuclear Medicine, scientifically supported and accredited as a CPD event for medical physicists by EFOMP, National 'Frederic Joliot-Curie' Research Institute for Radiobiology and Radiohygiene (NRIRR), Budapest, Hungary, April 25-28, 2007. Topics of the meeting included all areas of medical radiation physics except radiation therapy. A unique possibility was realized by inviting four European manufacturers of quality control instrumentation, not only for exhibiting but they also had 45 minutes individual presentations about each manufacturer's product scale and conception. Further sessions dealt with dosimetry, optimization, quality control and testing, radiation protection and standardization, computed tomography and nuclear medicine, in 29 oral presentations and 1 poster of the participants. (S.I.)

  11. Technetium99m shortage: Practical solutions to manage lack of the radio-isotope in nuclear medicine departments

    International Nuclear Information System (INIS)

    Biechlin-Chassel, M.L.; Francois-Joubert, A.; Bolot, C.; Desruet, M.D.; Bourrel, F.; Pelegrin, M.; Couret, I.; Lao, S.; Quelven, I.

    2010-01-01

    Technetium 99m ( 99m Tc) shortage crisis regularly affect nuclear medicine activity and oblige the community to find solutions in order to perform most of the prescribed exams and avoid systematic substitutions by other non-nuclear medicine techniques. Firstly, some practical solutions can be set up in radiopharmacy departments such as using more than two generators together, realizing fractionated elutions, preparing radiopharmaceuticals with elutions providing from different generators.. Then, it could be interesting to have a reflexion in nuclear medicine departments to convene patients the days when 99m Tc supply is sufficient, to pool some exams or to make substitutions with more available isotopes. (authors)

  12. Past and present of measuring apparatus for nuclear medicine

    International Nuclear Information System (INIS)

    Murayama, Hideo

    2013-01-01

    The history of advancement of measuring apparatus for nuclear medicine is looked back. It is presented that Japanese contribution to these advancement has been in no small quantities. The future view carrying the measuring apparatus for nuclear medicine is also described. (M.H.)

  13. Current trends in nuclear medicine in Pakistan

    International Nuclear Information System (INIS)

    Kamal, S.; Ahmed, S.

    1990-01-01

    This volume is a compilation of dissertations on research projects submitted by the fellows of M. Sc. (Nuclear Medicine) who undertook a two-year intensive course initiated in 1989 by the Centre for Nuclear Studies, PINSTECH, Islamabad. The project covered major aspects of nuclear medicine including the cardiovascular, endocrine, haematopoietic, hepatobiliary, immune and skeletal systems. The results obtained proved interesting and of significant clinical relevance. Majority of essays addressed some new aspects of the problems and the resultants information should prove interesting for both local and foreign enthusiasts. This book proves a reflection of the high quality of work done by the faculty and the fellows. (orig./A.B.)

  14. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... drink before the exam, especially if your physician plans to use sedation for the procedure. top of page Who interprets the results and how do we get them? A radiologist or other physician who has specialized training in nuclear medicine will interpret the images and ...

  15. A retrospective analysis of the cost/benefit ratio for two nuclear medicine procedures performed with /sup 99m/Tc-radiopharmaceuticals

    International Nuclear Information System (INIS)

    Mariani, G.; Rosa, C.; Raciti, M.; Giganti, M.; Fatigante, L.; Giraldi, C.; Consoli, E.; Parenti, G.

    1986-01-01

    Technetium-99m is at present the most widely utilized radionuclide for in-vivo diagnostic nuclear medicine, either in the form of pertechnetate ion (as it is directly eluted from the generator column) or, more frequently, as a label for a number of molecules to which technetium-99m is attached to form radiopharmaceuticals characterized by a more or less selective accumulation in some organs or structures of the body. The impact of technetium-99m on the development of clinical nuclear medicine has reutilized with increasing frequency in diagnostic nuclear medicine, that is, whole-body skeletal scan and first-pass cerebral angioscintigraphy. These two procedures are, in fact, of great value, especially in the follow-up of two large categories of patients, namely cancer patients and patients with atherosclerotic cerebro-vascular disease

  16. The teaching of nuclear medicine

    International Nuclear Information System (INIS)

    Bok, B.; Ducassou, D.

    1984-01-01

    Having first recalled the need of a specialized teaching in the field of nuclear medicine, the authors describe the training programmes now available in this sector for doctors, chemists and hospital-attendants [fr

  17. Teaching of nuclear medicine at medical faculties

    International Nuclear Information System (INIS)

    Dienstbier, Z.

    1987-01-01

    The teaching of nuclear medicine at medical faculties in the CSSR is analyzed. It is shown that the teaching conditions are different at the individual faculties of medicine and the respective conditions are exemplified. (author). 4 tabs

  18. Recent advances in nuclear medicine in endocrine oncology.

    Science.gov (United States)

    Luster, Markus; Pfestroff, Andreas; Verburg, Frederik A

    2017-01-01

    The purpose is to review recent advances concerning the role of nuclear medicine in endocrine oncology. For I therapy of thyroid cancer a thyrotropin (TSH) more than 30 mU/l has for many years been deemed a condition sine qua non. However, new data show that patients with lower TSH levels at the time of ablation have the same rate of successful ablation as those with TSH more than 30 mU/l.I-124 combined integrated positron emission tomography and computed X-ray tomography was shown to be highly accurate in predicting findings on posttherapy radioiodine scanning and was shown to have a high prognostic power.In neuroendocrine tumors, long-term complication rates of peptide receptor radionuclide therapy were reported. Furthermore first preclinical and clinical results of peptide receptor radionuclide therapy with somatostatin receptor antagonists were published.In nuclear medicine, prostate-specific membrane antigen (PSMA)-targeted radionuclide imaging and therapy is of interest. PSMA was shown to also be expressed in neoplasms of the thyroid, the adrenal glands and neuroendocrine tumors. Further individualization of thyroid cancer patient care by means of I-124-positron emission tomography and computed X-ray tomography-based selection of the therapeutic strategy is possible. I therapy might not require as intensive TSH stimulation as thought previously. For endocrine-related malignancies PSMA targeting deserves further investigation.

  19. PREFACE: International Conference on Image Optimisation in Nuclear Medicine (OptiNM)

    Science.gov (United States)

    Christofides, Stelios; Parpottas, Yiannis

    2011-09-01

    Conference logo The International Conference on Image Optimisation in Nuclear Medicine was held at the Atlantica Aeneas Resort in Ayia Napa, Cyprus between 23-26 March 2011. It was organised in the framework of the research project "Optimising Diagnostic Value in SPECT Myocardial Perfusion Imaging" (YΓΕΙΑ/ΔYΓΕΙΑ/0308/11), funded by the Cyprus Research Promotion Foundation and the European Regional Development Fund, to present the highlights of the project, discuss the progress and results, and define future related goals. The aim of this International Conference was to concentrate on image optimization approaches in Nuclear Medicine. Experts in the field of nuclear medicine presented their latest research results, exchanged experiences and set future goals for image optimisation while balancing patient dose and diagnostic value. The conference was jointly organized by the Frederick Research Centre in Cyprus, the Department of Medical and Public Health Services of the Cyprus Ministry of Health, the Biomedical Research Foundation in Cyprus and the AGH University of Science and Technology in Poland. It was supported by the Cyprus Association of Medical Physics and Biomedical Engineering, and the Cyprus Society of Nuclear Medicine. The conference was held under the auspices of the European Federation of Organisations for Medical Physics and the European Association of Nuclear Medicine. The conference scientific programme covered several important topics such as functional imaging; image optimization; quantification for diagnosis; justification; simulations; patient dosimetry, staff exposures and radiation risks; quality assurance and clinical audit; education, training and radiation protection culture; hybrid systems and image registration; and new and competing technologies. The programme consisted of 13 invited and keynote presentations as well as workshops, round table discussions and a number of scientific sessions. A total of 51 speakers presented their

  20. Diagnosis of liver lesions in nuclear medicine

    International Nuclear Information System (INIS)

    Krause, T.; Juengling, F.

    2003-01-01

    With the introduction of new imaging protocols for ultrasound, computed tomography (CT) and magnetic resonance imaging (MRI), the importance of conventional nuclear medicine diagnostic procedures has changed fundamentally. With the introduction of positron emission tomography (PET) into routine diagnostics, the assessment of tissue-specific function adds on to the modern, morphological imaging procedures and in principle allows for differentiating benign from malignant lesions. The actual clinical value of nuclear medicine procedures for the diagnostic workup of focal liver lesions is discussed. (orig.) [de