WorldWideScience

Sample records for nuclear medicine equipment

  1. Equipment used in nuclear medicine

    International Nuclear Information System (INIS)

    Das, B.K.; Noreen Norfaraheen Lee Abdullah

    2012-01-01

    Detection of radiation is the common purpose of all equipment's and instruments used in radioisotope laboratories. The first and most important instrument that was used in nuclear medicine was Geiger tube developed by H.W. Geiger as early in 1908. He in association with Mueller developed the so called Geiger-Muller tube (GM tube) which could be used to detect beta and gamma radiations. In spite of its severe limitations, GM tube remained the only external counting device until 1949. In 1948, Kallman reported that the scintillations can be detected and amplified with the help of photomultiplier tubes (PMTs). In comparison with gas filled detectors, scintillation detectors have two principal advantages that augment their use in nuclear medicine. Firstly, they are capable of much higher counting rates because of fast resolving times and secondly, because they are much more efficient for gamma ray detection. The scintillation detector is the most basic block of any modern radioisotope detection instrument like rate meter, counter, scanner, gamma camera or single photon emission computed tomography. (author)

  2. Specification and acceptance testing of nuclear medicine equipment

    International Nuclear Information System (INIS)

    Wegst, A.V.; Erickson, J.J.

    1984-01-01

    The purchase of nuclear medicine equipment is of prime importance in the operation of a clinical service. Failure to properly evaluate the potential uses of the instrumentation and the various operational characteristics of the equipment can often result in the purchase of inappropriate or inferior instruments. The magnitude of the purchase in terms of time and financial investments make it imperative that the purchase be approached in a systematic manner. Consideration of both the intended clinical functions and personnel requirements is important. It is necessary also to evaluate the ability of the equipment vendor to support the instrumentation after the purchase has been completed and the equipment installed in the clinical site. The desired specifications of the instrument characteristics should be stated in terms that can be verified by acceptance testing. The complexity of modern instrumentation and the sensitivity of it to the environment require the buyer to take into account the potential problems of controlling the temperature, humidity, and electrical power of the installation site. If properly and systematically approached, the purchase of new nuclear medicine instrumentation can result in the acquisition of a powerful diagnostic tool which will have a useful lifetime of many years. If not so approached, it may result in the expenditure of a large amount of money and personnel time without the concomitant return in useful clinical service. (author)

  3. Current situation of the facilities, equipments and human resources in nuclear medicine in Argentina

    International Nuclear Information System (INIS)

    Chiliutti, Claudia A.

    2008-01-01

    The current situation of nuclear medicine in Argentina, taking into account the facilities, their equipment and human resources available is presented in this paper. A review and analysis of the equipment, including technical characteristics and a survey of the professionals and technicians of the area, was carried out. In Argentina, there are 266 centers of nuclear medicine distributed all over the country. The operating licenses are granted by the Nuclear Regulatory Authority (Autoridad Regulatoria Nuclear - ARN). Forty four percent of the installed equipment are SPECT of 1 or 2 heads and 39,4 % are gamma camera. Besides, there are eleven PET operating in Argentina. There are 416 nuclear medicine physicians with individual permit for diagnostic purposes and 50% of them has also individual permit for treatment purposes. With the purpose of analyzing the regional distribution of the available resources in nuclear medicine, the country was divided into 7 geographical regions: City of Buenos Aires, Province of Buenos Aires, Pampa, Cuyo, Northeast, Northwest and Patagonia. From the analysis of the gathered information it is possible to conclude that the nuclear medicine equipment as well as the personnel present an irregular distribution, with a major concentration in the City of Buenos Aires and Province of Buenos Aires. The Northeast region presents the lowest number of Nuclear Medicine centers and the Patagonia region has the lowest number of medicine nuclear physicians with individual permits. The number of SPECT and gamma cameras is 7,3 per million of inhabitants. The information about the available resources in nuclear medicine presented in this paper and its comparison with the international information available provide elements for a better planning of the future activities in the area not only for the operators but also from the regulatory point of view. (author)

  4. Nuclear medicine

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    The area of nuclear medicine, the development of artificially produced radioactive isotopes for medical applications, is relatively recent. Among the subjects covered in a lengthy discussion are the following: history of development; impact of nuclear medicine; understanding the most effective use of radioisotopes; most significant uses of nuclear medicine radioimmunoassays; description of equipment designed for use in the field of nuclear medicine (counters, scanning system, display systems, gamma camera); description of radioisotopes used and their purposes; quality control. Numerous historical photographs are included. 52 refs

  5. Nuclear Medicine

    Science.gov (United States)

    ... Parents/Teachers Resource Links for Students Glossary Nuclear Medicine What is nuclear medicine? What are radioactive tracers? ... funded researchers advancing nuclear medicine? What is nuclear medicine? Nuclear medicine is a medical specialty that uses ...

  6. Survey on quality control measurements for nuclear medicine imaging equipment in Finland in 2006

    International Nuclear Information System (INIS)

    Korpela, Helinae; Niemelae, Jarkko

    2008-01-01

    Routine quality control (QC) is an essential requirement in nuclear medicine (NM) in order to ensure optimal functioning of equipment. To harmonise the routine QC of NM imaging equipment in Finnish hospital s (planar gamma cameras, SPECT, coincidence gamma cameras, PET), the Radiation and Nuclear Safety Authority (STUK) will publish guidelines on QC in collaboration with several hospital physicists. Recommendations will be provided on routine QC measurements and on the frequency of testing. It is also planned to provide recommendations for the acceptance criteria when assessing different performance parameters for NM imaging equipment. In order to determine what performance parameters of NM equipment are currently measured in hospitals, how frequently they are measured and what acceptance criteria are used, a survey was carried out on the QC of NM equipment in Finland during 2006. (author)

  7. The maintenance of nuclear medicine equipments: the stakes in the liberal sector

    International Nuclear Information System (INIS)

    Fauchet, M.; Chambon, T.; Tellier, P.

    1994-01-01

    Maintenance of nuclear medicine installations is an obligation in the private sector (preventive maintenance to be sure of the detectors quality and of the associated software and hardware, corrective maintenance to be sure of the results quality and of the installations profitability). They must be negotiated at the time of the installations choice and added to the total cost of the equipment. Gamma cameras are chosen for illustrating these maintenance problems. (A.B.). 5 refs., 7 figs

  8. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Children's (Pediatric) Nuclear Medicine? What are some common uses of the procedure? How does the nuclear medicine procedure work? What does the equipment look like? How is ...

  9. State-of-the-art of the installations, equipments and human resources of nuclear medicine in Argentina

    International Nuclear Information System (INIS)

    Chiliutti, Claudia A.

    2004-01-01

    The current situation of nuclear medicine in Argentina, taking into account the facilities, their equipment and human resources available is presented in this paper. A review and analysis of the equipment, including technical characteristics and a survey of the professionals and technicians of the area, was carried out . In Argentina, there are 292 centers of nuclear medicine distributed all over the country. The operating licenses are granted by the Nuclear Regulatory Authority. Forty percent of the installed equipment are SPECT of 1 or 2 heads and 40 % are gamma camera. Besides, there are two PET operating in Argentina. There are 402 nuclear medicine physicians with individual permit for diagnostic purposes and 50% of them has also individual permit for treatment purposes. With the purpose of analyzing the regional distribution of the available resources in nuclear medicine, the country was divided into 7 geographical regions: City of Buenos Aires, Province of Buenos Aires, Pampeana, Cuyo, Northeast, Northwest and Patagonia. From the analysis of the gathered information it is possible to conclude that the nuclear medicine equipment as well as the personnel presents an irregular distribution, with a major concentration in the City of Buenos Aires and Province of Buenos Aires. The Northeast region presents the lowest number of Nuclear Medicine centers and the Patagonia region has the lowest number of nuclear medicine physicians with individual permits. The number of SPECT and gamma cameras is 8,65 per million of inhabitants. The information about the available resources in nuclear medicine presented in this paper and its comparison with the international available information provide elements for a better planning of the future activities in the area not only for the operators but also from the regulatory point of view. (author)

  10. Nuclear medicine

    International Nuclear Information System (INIS)

    Lentle, B.C.

    1986-01-01

    Several growth areas for nuclear medicine were defined. Among them were: cardiac nuclear medicine, neuro-psychiatric nuclear medicine, and cancer diagnosis through direct tumor imaging. A powerful new tool, Positron Emission Tomography (PET) was lauded as the impetus for new developments in nuclear medicine. The political environment (funding, degree of autonomy) was discussed, as were the economic and scientific environments

  11. Implementation of a quality control program of the equipment of the nuclear medicine services in Chile

    International Nuclear Information System (INIS)

    Astudillo, R.; Diaz, G.; Ferreira, A.; Garcia, M.; Hermosilla, A.; Pacheco, F.; Vasquez, M.; Coca, M.

    2014-08-01

    Now days in Chile there are more of 43 Nuclear Medicine centers; most of them have gamma cameras in order to study physiological process in diagnostic and treatment of patients pathologies. This requires having the equipment in optimal operating condition and it is ensured with quality control programs that are based on a series of tests relating to protocols, such as TECDOC-602 y AAPM No.6. Planar test often applied in gamma cameras including: spatial resolution, spatial linearity, sensitivity and uniformity. SPECT tests consider: tomography uniformity, rotation center tomography resolution and total performance. The tests in dose calibrator are: background measurement, accuracy, precision, linearity and reproducibility. The tests above require the use of radioactive sources and specific simulators patterns or phantom based on international standards such as The National Electrical Manufacturers Association (Nema), International Atomic Energy Agency (IAEA) and The American Association of Medical Physics (AAPM). In this work we carried out several tests of quality control in a Nuclear Medicine Center of Temuco and we propose to implement the applied methodology in others similar Chilean centers. (author)

  12. Quality control test solutions for diagnostic radiology, nuclear medicine and health physics with PTW equipment

    International Nuclear Information System (INIS)

    Froescher, Olga

    2007-01-01

    Complete test of publication follows. In 1922 PTW-Freiburg was founded to produce and market a revolutionary new electromechanical component for measuring very small electrical charges. Today PTW is the specialist and one of the global market leaders for manufacturing and supplying high-quality products in diagnostic radiology, nuclear medicine, radiation therapy and health physics. The quality control of X-ray images is influenced by a number of parameters. To maintain a consistent performance of X-ray installations, quality checks have to be conducted regularly. PTW offers a variety of diagnostic test tools for different X-ray devices, and therefore to reduce patient exposure and costs for X-ray departments. PTW's 'Code of Practice' defines in an easy and compact way how to perform quality control measurements on different diagnostic X-ray installations. The necessary equipment for measuring main parameters as well as acceptable limits are mentioned accordingly. The 'Code of Practice' bases on actual standards.

  13. Country-wide quality control of equipment in Norwegian laboratories performing in vivo nuclear medicine examinations

    International Nuclear Information System (INIS)

    Skretting, A.; Rootwelt, K.; Berthelsen, T.

    1984-01-01

    The report presents the methods used and the results obtained in quality control tests performd in all Norwegian hospital laboratories performing in vivo nuclear medicine examinations. The tests included activity meters and scintillation cameras. The activity meters were tested by means of calibrated, long-lived radioactive sources. The quality of these instruments were judged to be satisfactory for moderate and high activities, non of them showing a deviation of more than 10% from the calibration value. Deviations were larger at low activities and were for some laboratories unacceptable. The scintillation cameras test included studies of flood field (homogeneity), geometrical resolution and energy resolution, as well as measurements of count rate characteristics and sensitivity. 40% of the cameras were judged to have flood field responses with satisfactory homogeneity, whereas 32% of the cameras had a satisfactory resolution ability. A liver/abdomen phantom test was carried out by the staff of the actual laboratory. This test proved that only 20% of the laboratories had a satisfactory total performance, managing to detect and describe satisfactorily 4 out of 5 simulated defects in the liver phantom. Lack of information density and insufficient number of projections was the main reason for unsatisfactory results with good cameras. It is recommended that quality control equipment as used in the described tests should be made available to Norwegian hospitals for self assessment. Regular quality assurance tests as recommended by the Norwegian Association for Radiation Physics and Norwegian Society of Nuclear Medicine should be implemented in all hospitals. Moreover, a practical training course in quality assurance should be arranged. (RF)

  14. Evaluation of the Nuclear Medicine facilities in Minas Gerais state: quality control program of equipment

    International Nuclear Information System (INIS)

    Kubo, Tadeu Takao Almodovar; Biancardi, Rodrigo; Rocha, Adriana Marcia Guimaraes; Ferreira, Denia Romao; Silva, Franciele Aquiles Anjos; Assuncao, Jonathan Buenos Aires; Alves, Ederson Henrique; Almeida, Ana Flavia Batista; Alves, Nathalia Fernandes; Xavier, Faber Henrique Zacarias; Gontijo, Rodrigo Modesto Gadelha; Mamede, Marcelo; Universidade Federal de Minas Gerais

    2017-01-01

    With the reformulation of the CNEN-NN-3.05 standard in December 2013, Brazil's Nuclear Medicine (NMS) services have to perform a greater number of quality controls for SPECT and PET equipment. However, little is known about the reality of the quality control programs of these services regarding the application of the new standard. Thus, in this context, the objective of the present study was to evaluate the quality control program of MNSs in the state of Minas Gerais. All NMSs in the state of Minas Gerais were invited to participate in the project. Of these, 34.48% (20 facilities) agreed to participate in the project, 50.00% (29 facilities) did not respond to the invitation and 15.52%(9 facilities) declined their participation. Thus, as of November 2015, 20 SPECT and 2 PET/CT equipment were evaluated for the performance of the quality control tests recommended by the new CNEN standard. The phantoms required for the evaluation came from the Laboratory of Dosimetry and Quality Control of UFMG. Even with the deadlines set by CNEN for the implementation of the quality control program in the NMSs, more than 50% of the evaluated services did not implement the quality controls, and the absence of specific phantoms is the main reason for the failure. Among the problems found in the installations, the most critical were: collimators with no conditions of use in the clinical routine, linearity problems of the evaluated image and values of image uniformity superior to the limits of acceptance. Problems in the uniformity and linearity of the image found directly impacted the performance of other tests, such as spatial resolution, SPECT performance, among others. In a general way, the NMSs in the state of Minas Gerais evaluated with the present study are in clinical feasible conditions. (author)

  15. Advantages of a program of quality control in the nuclear medicine equipment

    International Nuclear Information System (INIS)

    Trujillo Z, F.E.; Argumosa, E.; Herrera R, M.R.

    2007-01-01

    In Nuclear Medicine more 90% of the entirety of the carried out procedures its are with diagnostic ends where it is acquired one or several images. This makes indispensable to have an appropriate operation of the dedicated equipment to produce images and also of those non former images, as the activity caliper, to assure an appropriate quality diagnoses not from the images and the correct dose administration to the patient. In this work the main calibrations that should be carried out and an example of the program of quality control of a gamma camera mark Siemens and model E.CAM are presented. Considerations that should take as for the radiological protection are exposed. Comments on the parameters that correct the required calibrations and the images taken place by an operation or inadequate calibrations are included. In conclusion, the necessity of a program that it contains as minimum the quality control of the gamma cameras and of the activity caliper, having as main advantages a good image quality diagnoses and to minimize the dose imparted the patient are exposed. (Author)

  16. Quality control for the equipment of Nuclear medicine: experience of the H.U. de la Princesa

    International Nuclear Information System (INIS)

    Espana, M.L.; Gracia, A.; Prieto, C.; Lopez F, P.

    1998-01-01

    The quality control of the equipment used in a nuclear medicine service is a fundamental aspect in the Quality Assurance Program that in the present time is starting in our hospital. the objective of this work is to present the internal protocol used, its problematic associated with its starting, and the results obtained in the quality control as of the gamma camera as of the activimeter. In addition to the equipment own to the nuclear medicine service it has been used a Cs-137 source and puppets for several purposes. The results obtained demonstrated the stability of the controlled parameters which has led us to a restating of the established periodicities in our internal protocol, over all for some constancy tests. (Author)

  17. Nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, S M [Bhabha Atomic Research Centre, Bombay (India). Radiation Medicine Centre

    1967-01-01

    The article deals with the growth of nuclear medicine in India. Radiopharmaceuticals both in elemental form and radiolabelled compounds became commercially available in India in 1961. Objectives and educational efforts of the Radiation Medicine Centre setup in Bombay are mentioned. In vivo tests of nuclear medicine such as imaging procedures, dynamic studies, dilution studies, thyroid function studies, renal function studies, linear function studies, blood flow, and absorption studies are reported. Techniques of radioimmunoassay are also mentioned.

  18. Nuclear medicine

    International Nuclear Information System (INIS)

    Kand, Purushottam

    2012-01-01

    Nuclear medicine is a specialized area of radiology that uses very small amounts of radioactive materials to examine organ function and structure. Nuclear medicine is older than CT, ultrasound and MRI. It was first used in patients over 60-70 years ago. Today it is an established medical specialty and offers procedures that are essential in many medical specialities like nephrology, pediatrics, cardiology, psychiatry, endocrinology and oncology. Nuclear medicine refers to medicine (a pharmaceutical) that is attached to a small quantity of radioactive material (a radioisotope). This combination is called a radiopharmaceutical. There are many radiopharmaceuticals like DTPA, DMSA, HIDA, MIBI and MDP available to study different parts of the body like kidneys, heart and bones etc. Nuclear medicine uses radiation coming from inside a patient's body where as conventional radiology exposes patients to radiation from outside the body. Thus nuclear imaging study is a physiological imaging, whereas diagnostic radiology is anatomical imaging. It combines many different disciplines like chemistry, physics mathematics, computer technology, and medicine. It helps in diagnosis and to treat abnormalities very early in the progression of a disease. The information provides a quick and accurate diagnosis of wide range of conditions and diseases in a person of any age. These tests are painless and most scans expose patients to only minimal and safe amounts of radiation. The amount of radiation received from a nuclear medicine procedure is comparable to, or often many times less than, that of a diagnostic X-ray. Nuclear medicine provides an effective means of examining whether some tissues/organs are functioning properly. Therapy using nuclear medicine in an effective, safe and relatively inexpensive way of controlling and in some cases eliminating, conditions such as overactive thyroid, thyroid cancer and arthritis. Nuclear medicine imaging is unique because it provides doctors with

  19. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... the procedure? How does the nuclear medicine procedure work? What does the equipment look like? How is the procedure performed? What will my child experience during and after the procedure? How should ...

  20. Data processing equipment of a Nuclear Medicine Department in 1980 - Introductory Report

    International Nuclear Information System (INIS)

    Itti, R.; Liehn, J.C.; Valeyre, J.

    1979-01-01

    A brief history enables the place taken by computers in nuclear medicine to be situated. Three stages are involved: at first, the quantitative functional studies developed (radioisotopic uptake curves) then the morphological studies with the research into increasingly efficient pictures systems and the introduction of data processing to improve the quality of the pictures and, finally, the digital analysis of the pictures leading to the build-up of regional physiological studies. The part played by computer systems in a Nuclear Medicine Department is summarized. The main advantages are emphasized and present possibilities are indicated. The components which make it possible to design a future acquisition and data processing system that may be used not only for routine practice examinations but also for axial scanning studies by emission are presented. The application of hyper-specialized systems using microprocessors is also under consideration [fr

  1. Nuclear medicine

    International Nuclear Information System (INIS)

    Blanquet, Paul; Blanc, Daniel.

    1976-01-01

    The applications of radioisotopes in medical diagnostics are briefly reviewed. Each organ system is considered and the Nuclear medicine procedures pertinent to that system are discussed. This includes, the principle of the test, the detector and the radiopharmaceutical used, the procedure followed and the clinical results obtained. The various types of radiation detectors presently employed in Nuclear Medicine are surveyed, including scanners, gamma cameras, positron cameras and procedures for obtaining tomographic presentation of radionuclide distributions [fr

  2. Nuclear medicine

    International Nuclear Information System (INIS)

    Chamberlain, M.J.

    1986-01-01

    Despite an aggressive, competitive diagnostic radiology department, the University Hospital, London, Ontario has seen a decline of 11% total (in vivo and in the laboratory) in the nuclear medicine workload between 1982 and 1985. The decline of in vivo work alone was 24%. This trend has already been noted in the U.S.. Nuclear medicine is no longer 'a large volume prosperous specialty of wide diagnostic application'

  3. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Physician Resources Professions Site Index A-Z Children's (Pediatric) Nuclear Medicine Children’s (pediatric) nuclear medicine imaging uses ... limitations of Children's Nuclear Medicine? What is Children's (Pediatric) Nuclear Medicine? Nuclear medicine is a branch of ...

  4. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Professions Site Index A-Z Children's (Pediatric) Nuclear Medicine Children’s (pediatric) nuclear medicine imaging uses small amounts ... Children's Nuclear Medicine? What is Children's (Pediatric) Nuclear Medicine? Nuclear medicine is a branch of medical imaging ...

  5. General Nuclear Medicine

    Science.gov (United States)

    ... Resources Professions Site Index A-Z General Nuclear Medicine Nuclear medicine imaging uses small amounts of radioactive ... of General Nuclear Medicine? What is General Nuclear Medicine? Nuclear medicine is a branch of medical imaging ...

  6. Children's (Pediatric) Nuclear Medicine

    Science.gov (United States)

    ... Professions Site Index A-Z Children's (Pediatric) Nuclear Medicine Children’s (pediatric) nuclear medicine imaging uses small amounts ... Children's Nuclear Medicine? What is Children's (Pediatric) Nuclear Medicine? Nuclear medicine is a branch of medical imaging ...

  7. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z Children's (Pediatric) Nuclear Medicine Children’s (pediatric) nuclear medicine imaging ... the limitations of Children's Nuclear Medicine? What is Children's (Pediatric) Nuclear Medicine? Nuclear medicine is a branch ...

  8. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Resources Professions Site Index A-Z Children's (Pediatric) Nuclear Medicine Children’s (pediatric) nuclear medicine imaging uses small ... of Children's Nuclear Medicine? What is Children's (Pediatric) Nuclear Medicine? Nuclear medicine is a branch of medical ...

  9. Nuclear medicine

    International Nuclear Information System (INIS)

    Reichelt, H.G.

    1980-01-01

    Nuclear medicine as a complex diagnostical method is used mainly to detect functional organic disorders, to locate disorders and for radioimmunologic assays (RIA) in vitro. In surgery, its indication range comprises the thyroid (in vivo and in vitro), liver and bile ducts, skeletal and joint diseases, disorders of the cerebro-spinal liquor system and the urologic disorders. In the early detection of tumors, the search for metastases and tumor after-care, scintiscanning and the tumor marcher method (CEA) can be of great practical advantage, but the value of myocardial sciritiscanning in cardiac respectively coronary disorders is restricted. The paper is also concerned with the radiation doses in nuclear medicine. (orig.) [de

  10. Nuclear medicine

    International Nuclear Information System (INIS)

    Sibille, L.; Nalda, E.; Collombier, L.; Kotzki, P.O.; Boudousq, V.

    2011-01-01

    Nuclear medicine is a medical specialty using the properties of radioactivity. Radioactive markers associated with vectors are used as a tracer or radiopharmaceutical for diagnostic purposes and/or therapy. Since its birth more than half a century ago, it has become essential in the care of many patients, particularly in oncology. After some definitions, this paper presents the main nuclear techniques - imaging for diagnostic, radiopharmaceuticals as therapeutic agents, intra-operative detection, technique of radioimmunoassay - and the future of this field. (authors)

  11. Veterinary nuclear medicine

    International Nuclear Information System (INIS)

    Kallfelz, F.A.; Comar, C.L.; Wentworth, R.A.

    1974-01-01

    A brief review is presented of the expanding horizons of nuclear medicine, the equipment necessary for a nuclear medicine laboratory is listed, and the value of this relatively new field to the veterinary clinician is indicated. Although clinical applications to veterinary medicine have not kept pace with those of human medicine, many advances have been made, particularly in the use of in vitro techniques. Areas for expanded applications should include competitive protein binding and other in vitro procedures, particularly in connection with metabolic profile studies. Indicated also is more intensive application by the veterinarian of imaging procedures, which have been found to be of such great value to the physician. (U.S.)

  12. Nuclear Medicine in Turkey

    International Nuclear Information System (INIS)

    Durak, H.

    2001-01-01

    Nuclear Medicine is a medical specialty that uses radionuclides for the diagnosis and treatment of diseases and it is one of the most important peaceful applications of nuclear sciences. Nuclear Medicine has a short history both in Turkey and in the world. The first use of I-131 for the treatment of thyrotoxicosis in Turkey was in 1958 at the Istanbul University Cerrahpasa Medical School. In 1962, Radiobiological Institute in Ankara University Medical School was established equipped with well-type counters, radiometers, scalers, external counters and a rectilinear scanner. In 1965, multi-probe external detection systems, color dot scanners and in 1967, anger scintillation camera had arrived. In 1962, wet lab procedures and organ scanning, in 1965 color dot scanning, dynamic studies (blood flow - renograms) and in 1967 analogue scintillation camera and dynamic camera studies have started. In 1974, nuclear medicine was established as independent medical specialty. Nuclear medicine departments have started to get established in 1978. In 1974, The Turkish Society of Nuclear Medicine (TSNM) was established with 10 members. The first president of TSNM was Prof. Dr. Yavuz Renda. Now, in the year 2000, TSNM has 349 members. Turkish Society of Nuclear Medicine is a member of European Association of Nuclear Medicine (EANM), World Federation of Nuclear Medicine and Biology (WFNMB) and WFNMB Asia-Oceania. Since 1974, TSNM has organized 13 national Nuclear Medicine congresses, 4 international Nuclear Oncology congresses and 13 nuclear medicine symposiums. In 1-5 October 2000, 'The VII th Asia and Oceania Congress of Nuclear Medicine and Biology' was held in Istanbul, Turkey. Since 1992, Turkish Journal of Nuclear Medicine is published quarterly and it is the official publication of TSNM. There are a total of 112 Nuclear Medicine centers in Turkey. There are 146 gamma cameras. (52 Siemens, 35 GE, 16 Elscint, 14 Toshiba, 10 Sopha, 12 MIE, 8 Philips, 9 Others) Two cyclotrons are

  13. Nuclear medicine

    International Nuclear Information System (INIS)

    Casier, Ph.; Lepage, B.

    1998-01-01

    Except for dedicated devices for mobile nuclear cardiology for instance, the market is set on variable angulation dual heads cameras. These cameras are suited for all general applications and their cost effectiveness is optimized. Now, all major companies have such a camera in their of products. But, the big question in nuclear medicine is about the future of coincidence imaging for the monitoring of treatments in oncology. Many companies are focused on WIP assessments to find out the right crustal thickness to perform both high energy FDG procedures and low energy Tc procedures, with the same SPECT camera. The classic thickness is 3/8''. Assessments are made with 1/2'', 5/8'' or 3/4'' crystals. If FDG procedures proved to be of great interest in oncology, it may lead to the design of a dedicated SPECT camera with a 1'' crustal. Due to the short half of FDG, it may be the dawning of slip ring technology. (e.g. Varicam from Elscint). The three small heads camera market seems to be depressed. Will the new three large heads camera unveiled by Picker, reverse that trend? The last important topic in nuclear medicine is the emergence of new flat digital detectors to get rid of the old bulky ones. Digirad is the first company to manufacture a commercial product based on that technology. Bichron, Siemens and General Electric are working on that development, too. But that technology is very expensive and the market for digital detection in nuclear medicine is not as large as the market in digital detection in radiology. (author)

  14. Nuclear medicine

    International Nuclear Information System (INIS)

    James, A.E. Jr.; Squire, L.F.

    1977-01-01

    The book presents a number of fundamental imaging principles in nuclear medicine. The fact that low radiation doses are sufficient for the study of normal and changed physiological functions of the body is an important advancement brought about by nuclear medicine. The possibility of quantitative investigations of organs and organ regions and of an assessment of their function as compared to normal values is a fascinating new diagnostic dimension. The possibility of comparing the findings with other pathological findings and of course control in the same patient lead to a dynamic continuity with many research possibilities not even recognized until now. The limits of nuclear scanning methods are presented by the imprecise structural information of the images. When scintiscans are compared with X-ray images or contrast angiography, the great difference in the imaging of anatomical details is clearly seen. But although the present pictures are not optimal, they are a great improvement on the pictures that were considered clinically valuable a few years ago. (orig./AJ) [de

  15. Nuclear Medicine Engineering

    International Nuclear Information System (INIS)

    Mateescu, Gheorghe; Craciunescu, Teddy

    2000-01-01

    'An image is more valuable than a thousand words' - this is the thought that underlies the authors' vision about the field of nuclear medicine. The monograph starts with a review of some theoretical and engineering notions that grounds the field of nuclear medicine: nuclear radiation, interaction of radiation with matter, radiation detection and measurement, numerical analysis. Products and methods needed for the implementation of diagnostic and research procedures in nuclear medicine are presented: radioisotopes and radiopharmaceuticals, equipment for in-vitro (radioimmunoassay, liquid scintillation counting) and in-vivo investigations (thyroid uptake, renography, dynamic studies, imaging). A special attention is focused on medical imaging theory and practice as a source of clinical information (morphological and functional). The large variety of parameters, components, biological structures and specific properties of live matter determines the practical use of three-dimensional tomographic techniques based on diverse physical principles: single-photon emission, positron emission, X-rays transmission, nuclear magnetic resonance, ultrasounds transmission and reflection, electrical impedance measurement. The fundamental reconstruction algorithms i.e., algorithms based on the projection theorem and Fourier filtering, algebraic reconstruction techniques and the algorithms based on statistical principles: maximum entropy, maximum likelihood, Monte Carlo algorithms, are depicted in details. A method based on the use of the measured point spread function is suggested. Some classical but often used techniques like linear scintigraphy and Anger gamma camera imaging are also presented together with some image enhancement techniques like Wiener filtering and blind deconvolution. The topic of the book is illustrated with some clinical samples obtained with nuclear medicine devices developed in the Nuclear Medicine Laboratory of the National Institute of Nuclear Physics and

  16. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... interventions. Children's (pediatric) nuclear medicine refers to imaging examinations done in babies, young children and teenagers. Nuclear ... nuclear medicine procedure work? With ordinary x-ray examinations, an image is made by passing x-rays ...

  17. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... are small, diagnostic nuclear medicine procedures result in low radiation exposure, acceptable for diagnostic exams. Thus, the radiation risk is very low compared with the potential benefits. Nuclear medicine diagnostic ...

  18. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... What are some common uses of the procedure? Children's (pediatric) nuclear medicine imaging is performed to help diagnose childhood disorders that are congenital (present at birth) or that develop during childhood. Physicians use nuclear medicine imaging to ...

  19. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Nuclear Medicine Children’s (pediatric) nuclear medicine imaging uses small amounts of radioactive materials called radiotracers, a special ... is a branch of medical imaging that uses small amounts of radioactive material to diagnose and determine ...

  20. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Tell your doctor about your child’s recent illnesses, medical conditions, medications and allergies. Depending on the type ... Nuclear Medicine? Nuclear medicine is a branch of medical imaging that uses small amounts of radioactive material ...

  1. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Because nuclear medicine procedures are able to pinpoint molecular activity within the body, they offer the potential ... or imaging device that produces pictures and provides molecular information. In many centers, nuclear medicine images can ...

  2. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... MRI. top of page What are some common uses of the procedure? Children's (pediatric) nuclear medicine imaging ... at birth) or that develop during childhood. Physicians use nuclear medicine imaging to evaluate organ systems, including ...

  3. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... child is taking as well as vitamins and herbal supplements and if he or she has any ... What are the limitations of Children's (Pediatric) Nuclear Medicine? Nuclear medicine procedures can be time consuming. It ...

  4. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... that are congenital (present at birth) or that develop during childhood. Physicians use nuclear medicine imaging to evaluate organ ... Nuclear medicine scans are typically used to ...

  5. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... referring physician. top of page What are the benefits vs. risks? Benefits The information provided by nuclear medicine examinations is ... risk is very low compared with the potential benefits. Nuclear medicine diagnostic procedures have been used for ...

  6. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Nuclear Medicine? Nuclear medicine is a branch of medical imaging that uses small amounts of radioactive material to ... a radiologist or other physician. To locate a medical imaging or radiation oncology provider in your community, you ...

  7. Nuclear medicine

    International Nuclear Information System (INIS)

    Price, D.C.

    1989-01-01

    The spleen is a sinusoidal vascular filter that is an integral part of the reticuloendothelial system and is the largest single lymphoid organ in the body. Thus it has important scavenging and immunologic functions in humans. It is also a site for normal hematopoiesis in humans during the third to sixth months of gestation. Solenic hematopoiesis does occur normally in adult animals of other species (for instance, mouse, rat, rabbit), but it is seen postnatally in humans only when they have certain hematologic disorders such as myelofibrosis with myeloid metaplasia and severe hemolytic anemias. In its role as a reticuloendothelial organ the adult human spleen serves as a vascular scavenger. Arterial blood filters through a network of arterioles, cords, and sinuses in a closed system that requires the blood cells to be pliable and brings them into intimate contact with macrophages suspended on the reticulin stroma of the cords. Erythrocyte culling and pitting functions as described by Crosby result in a transient retention of immature circulating erythroid cells until residual intracellular nuclear fragments have been extruded. The increased risk for overwhelming infection in children and adults whose spleen have been removed for reasons other than acute trauma would appear to be caused by the loss of both its phagocytic and its immunologic (antibody-producing) contributions to the monitoring of the circulating blood. This paper reports that the ability of the spleen to phagocytose intravascular foreign particles and to recognize and destroy damaged erythrocytes is the basis for the current use of radiopharmaceuticals in spleen scintigraphy

  8. Advantages of a program of quality control in the nuclear medicine equipment; Ventajas de un programa de control de calidad en los equipos de medicina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Trujillo Z, F.E.; Argumosa, E. [Departamento de Medicina Nuclear del Instituto Nacional de Cancerologia, Tlalpan, Mexico D.F. (Mexico); Herrera R, M.R. [Hospital Infantil de Mexico ' Federico Gomez' , Mexico D.F. (Mexico)

    2007-07-01

    In Nuclear Medicine more 90% of the entirety of the carried out procedures its are with diagnostic ends where it is acquired one or several images. This makes indispensable to have an appropriate operation of the dedicated equipment to produce images and also of those non former images, as the activity caliper, to assure an appropriate quality diagnoses not from the images and the correct dose administration to the patient. In this work the main calibrations that should be carried out and an example of the program of quality control of a gamma camera mark Siemens and model E.CAM are presented. Considerations that should take as for the radiological protection are exposed. Comments on the parameters that correct the required calibrations and the images taken place by an operation or inadequate calibrations are included. In conclusion, the necessity of a program that it contains as minimum the quality control of the gamma cameras and of the activity caliper, having as main advantages a good image quality diagnoses and to minimize the dose imparted the patient are exposed. (Author)

  9. TU-G-213-03: IEC Subcommittee 62C (Equipment for Radiotherapy, Nuclear Medicine and Radiation Dosimetry): Recent and Active Projects

    Energy Technology Data Exchange (ETDEWEB)

    Culberson, W. [University of Wisconsin - Madison (United States)

    2015-06-15

    The International Electrotechnical Commission (IEC) writes standards that manufacturers of electrical equipment must comply with. Medical electrical equipment, such as medical imaging, radiation therapy, and radiation dosimetry devices, fall under Technical Committee 62. Of particular interest to medical physicists are the standards developed within Subcommittees (SC) 62B, which addresses diagnostic radiological imaging equipment, and 62C, which addresses equipment for radiation therapy, nuclear medicine and dosimetry. For example, a Working Group of SC 62B is responsible for safety and quality assurance standards for CT scanners and a Working Group of SC 62C is responsible for standards that set requirements for dosimetric safety and accuracy of linacs and proton accelerators. IEC standards thus have an impact on every aspect of a medical physicist’s job, including equipment testing, shielding design, room layout, and workflow. Consequently, it is imperative that US medical physicists know about existing standards, as well as have input on those under development or undergoing revision. The structure of the IEC and current standards development work will be described in detail. The presentation will explain how US medical physicists can learn about IEC standards and contribute to their development. Learning Objectives: Learn about the structure of the IEC and the influence that IEC standards have on the design of equipment for radiology and radiation therapy. Learn about the mechanisms by which the US participates in the development and revision of standards. Understand the specific requirements of several standards having direct relevance to diagnostic and radiation therapy physicists.

  10. Fundamentals of nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Alazraki, N.P.; Mishkin, F.S.

    1984-01-01

    This guidebook for clinical nuclear medicine is written as a description of how nuclear medicine procedures should be used by clinicians in evaluating their patients. It is designed to assist medical students and physicians in becoming acquainted with nuclear medicine techniques for detecting and evaluating most common disorders. The material provides an introduction to, not a textbook of, nuclear medicine. Each chapter is devoted to a particular organ system or topic relevant to the risks and benefits involved in nuclear medicine studies. The emphasis is on presenting the rationales for ordering the various clinical imaging procedures performed in most nuclear medicine departments. Where appropriate, alternative imaging modalities including ultrasound, computed tomography imaging, and radiographic special procedures are discussed. Comparative data between nuclear medicine imaging and other modalities are presented to help guide the practicing clinician in the selection of the most appropriate procedure for a given problem.

  11. The standardization methods of radioactive sources (125I, 131I, 99mTc, and 18F) for calibrating nuclear medicine equipment in Indonesia

    International Nuclear Information System (INIS)

    Wurdiyanto, G; Candra, H

    2016-01-01

    The standardization of radioactive sources ( 125 I, 131 I, 99m Tc and 18 F) to calibrate the nuclear medicine equipment had been carried out in PTKMR-BATAN. This is necessary because the radioactive sources used in the field of nuclear medicine has a very short half-life in other that to obtain a quality measurement results require special treatment. Besides that, the use of nuclear medicine techniques in Indonesia develop rapidly. All the radioactive sources were prepared by gravimetric methods. Standardization of 125 I has been carried out by photon- photon coincidence methods, while the others have been carried out by gamma spectrometry methods. The standar sources are used to calibrate a Capintec CRC-7BT radionuclide calibrator. The results shows that calibration factor for Capintec CRC-7BT dose calibrator is 1,03; 1,02; 1,06; and 1,04 for 125 I, 131 I, 99m Tc and 18 F respectively, by about 5 to 6% of the expanded uncertainties. (paper)

  12. The standardization methods of radioactive sources (125I, 131I, 99mTc, and 18F) for calibrating nuclear medicine equipment in Indonesia

    Science.gov (United States)

    Wurdiyanto, G.; Candra, H.

    2016-03-01

    The standardization of radioactive sources (125I, 131I, 99mTc and 18F) to calibrate the nuclear medicine equipment had been carried out in PTKMR-BATAN. This is necessary because the radioactive sources used in the field of nuclear medicine has a very short half-life in other that to obtain a quality measurement results require special treatment. Besides that, the use of nuclear medicine techniques in Indonesia develop rapidly. All the radioactive sources were prepared by gravimetric methods. Standardization of 125I has been carried out by photon- photon coincidence methods, while the others have been carried out by gamma spectrometry methods. The standar sources are used to calibrate a Capintec CRC-7BT radionuclide calibrator. The results shows that calibration factor for Capintec CRC-7BT dose calibrator is 1,03; 1,02; 1,06; and 1,04 for 125I, 131I, 99mTc and 18F respectively, by about 5 to 6% of the expanded uncertainties.

  13. Nuclear medicine physics

    CERN Document Server

    De Lima, Joao Jose

    2011-01-01

    Edited by a renowned international expert in the field, Nuclear Medicine Physics offers an up-to-date, state-of-the-art account of the physics behind the theoretical foundation and applications of nuclear medicine. It covers important physical aspects of the methods and instruments involved in modern nuclear medicine, along with related biological topics. The book first discusses the physics of and machines for producing radioisotopes suitable for use in conventional nuclear medicine and PET. After focusing on positron physics and the applications of positrons in medicine and biology, it descr

  14. Fundamentals of nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Alazraki, N.P.; Mishkin, F.S.

    1988-01-01

    The book begins with basic science and statistics relevant to nuclear medicine, and specific organ systems are addressed in separate chapters. A section of the text also covers imaging of groups of disease processes (eg, trauma, cancer). The authors present a comparison between nuclear medicine techniques and other diagnostic imaging studies. A table is given which comments on sensitivities and specificities of common nuclear medicine studies. The sensitivities and specificities are categorized as very high, high, moderate, and so forth.

  15. Fundamentals of nuclear medicine

    International Nuclear Information System (INIS)

    Alazraki, N.P.; Mishkin, F.S.

    1988-01-01

    The book begins with basic science and statistics relevant to nuclear medicine, and specific organ systems are addressed in separate chapters. A section of the text also covers imaging of groups of disease processes (eg, trauma, cancer). The authors present a comparison between nuclear medicine techniques and other diagnostic imaging studies. A table is given which comments on sensitivities and specificities of common nuclear medicine studies. The sensitivities and specificities are categorized as very high, high, moderate, and so forth

  16. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... variety of diseases, including many types of cancers, heart disease, gastrointestinal, endocrine, neurological disorders and other abnormalities within the body. Because nuclear medicine procedures are ...

  17. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... physician who has specialized training in nuclear medicine will interpret the images and send a report to your referring physician. top of page What are the benefits vs. risks? Benefits The information provided by nuclear ...

  18. Quality control for the equipment of Nuclear medicine: experience of the H.U. de la Princesa; Control de calidad del equipamiento en Medicina Nuclear. Experiencia enel H.U. de la Princesa

    Energy Technology Data Exchange (ETDEWEB)

    Espana, M.L.; Gracia, A.; Prieto, C.; Lopez F, P. [Servicio de ProteccionRadiologica. Hospital Universitario de la Princesa C/ Diego de Leon 62, 28006Madrid (Spain)

    1998-12-31

    The quality control of the equipment used in a nuclear medicine service is a fundamental aspect in the Quality Assurance Program that in the present time is starting in our hospital. the objective of this work is to present the internal protocol used, its problematic associated with its starting, and the results obtained in the quality control as of the gamma camera as of the activimeter. In addition to the equipment own to the nuclear medicine service it has been used a Cs-137 source and puppets for several purposes. The results obtained demonstrated the stability of the controlled parameters which has led us to a restating of the established periodicities in our internal protocol, over all for some constancy tests. (Author)

  19. PACS in nuclear medicine

    International Nuclear Information System (INIS)

    Kang, Keon Wook

    2000-01-01

    PACS (Picture Archiving and Communication System) is being rapidly spread and installed in many hospitals, but most of the system do not include nuclear medicine field. Although additional costs of hardware for nuclear medicine PACS is low, the complexity in developing viewing software and little market have made the nuclear medicine PACS not popular. Most PACS utilize DICOM 3.0 as standard format, but standard format in nuclear medicine has been Interfile. Interfile should be converted into DICOM format if nuclear images are to be stored and visualized in most PACS. Nowadays, many vendors supply the DICOM option in gamma camera and PET. Several hospitals in Korea have already installed nucler PACS with DICOM, but only the screen captured images are supplied. Software for visualizing pseudo-color with color lookup tables and expressing with volume view should be developed to fulfill the demand of referring physicians and nuclear medicine physicians. PACS is going to integrate not only radiologic images but also endoscopic and pathologic images. Web and PC based PACS is now a trend and is much compatible with nuclear medicine PACS. Most important barrier for nuclear medicine PACS that we encounter is not a technical problem, but indifference of investor such as administrator of hospital or PACS. Now it is time to support and invest for the development of nuclear medicine PACS

  20. Nuclear energy and medicine

    International Nuclear Information System (INIS)

    1988-01-01

    The applications of nuclear energy on medicine, as well as the basic principles of these applications, are presented. The radiological diagnosis, the radiotherapy, the nuclear medicine, the radiological protection and the production of radioisotopes are studied. (M.A.C.) [pt

  1. Digital Nuclear Medicine

    International Nuclear Information System (INIS)

    Erickson, J.J.; Rollo, F.D.

    1982-01-01

    This book is meant ''to provide the most comprehensive presentation of the technical as well as clincial aspects of computerized nuclear medicine''. It covers basic applications, and advice on acquisition and quality control of nuclear medicine computer systems. The book evolved from a series of lectures given by the contributors during the computer preceptorship program at their institution, Vanderbilt University in Nashville

  2. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... resume his/her normal activities after the nuclear medicine scan. If the child has been sedated, you will receive specific instructions ... usually mild. Nevertheless, you should inform the nuclear medicine personnel of any allergies your child may have or other problems that may have ...

  3. Single-purpose nuclear medicine instruments

    International Nuclear Information System (INIS)

    Boucek, J.

    Nuclear medicine requires the most up-to-date specialized technical facilities. The paper underlines the factor of reliability in purpose-designed equipment used for basic examinations. The possibility is also discussed of the automation of standard nuclear medicine instruments

  4. Quality assurance in nuclear medicine

    International Nuclear Information System (INIS)

    Paras, P.

    1978-01-01

    Quality assurance practices must be followed throughout the entire nuclear medicine process, from the initial decision to perform a particular procedure, through the interpretation and reporting of the results. The various parameters that can be defined and measured in each area must be monitored by quality control tests to assure the excellence of the total nuclear medicine process. The presentation will discuss each of the major areas of nuclear medicine quality control and their interaction as a part of the entire system. Quality control testing results and recommendations for measurements of radioactivity distribution will be described with emphasis on imaging equipment and dose calibrating instrumentation. The role of the health physicist in a quality assurance program will be stressed. (author)

  5. Radiation protection in nuclear medicine

    International Nuclear Information System (INIS)

    Seeburrun, V.

    2013-04-01

    Radiation protection in nuclear medicine in this project is concerned with the reduction of doses to workers, patients and members of the public. Protection of workers is achieved by adopting good personal habits, good housekeeping, proper use of personal protective devices and equipment, attend training and have continuous education. Exposure to radiation of workers and the members of the public are minimised by proper management of radioactive waste and safe transport of radioactive material. The design and shielding of a nuclear medicine department shall further provide for the protection of the worker, the patient and the general public. Protection of patient is achieved by justifying the procedure, delivering the minimum radiation dose possible to the patient while obtaining the best image quality and applying guidance levels. Special considerations shall be given to pregnant and breast-feeding patients. Quality assurance programme through image quality, radiopharmaceutical quality and patient records on nuclear medicine procedures shall provide assurance to the patient. (au)

  6. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... by Image/Video Gallery Your Radiologist Explains Nuclear Medicine Transcript Welcome to Radiology Info dot org Hello! ... d like to talk to you about nuclear medicine. Nuclear medicine offers the potential to identify disease ...

  7. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... Sponsored by Image/Video Gallery Your Radiologist Explains Nuclear Medicine Transcript Welcome to Radiology Info dot org ... I’d like to talk to you about nuclear medicine. Nuclear medicine offers the potential to identify ...

  8. Nuclear medicine and mathematics

    Energy Technology Data Exchange (ETDEWEB)

    Pedroso de Lima, J.J. [Dept. de Biofisica e Proc. de Imagem, IBILI - Faculdade de Medicina, Coimbra (Portugal)

    1996-06-01

    The purpose of this review is not to present a comprehensive description of all the mathematical tools used in nuclear medicine, but to emphasize the importance of the mathematical method in nuclear medicine and to elucidate some of the mathematical concepts currently used. We can distinguish three different areas in which mathematical support has been offered to nuclear medicine: Physiology, methodology and data processing. Nevertheless, the boundaries between these areas can be indistinct. It is impossible in a single article to give even an idea of the extent and complexity of the procedures currently usede in nuclear medicine, such as image processing, reconstruction from projections and artificial intelligence. These disciplines do not belong to nuclear medicine: They are already branches of engineering, and my interest will reside simply in revealing a little of the elegance and the fantastic potential of these new `allies` of nuclear medicine. In this review the mathematics of physiological interpretation and methodology are considered together in the same section. General aspects of data-processing methods, including image processing and artificial intelligence, are briefly analysed. The mathematical tools that are most often used to assist the interpretation of biological phenomena in nuclear medicine are considered; these include convolution and deconvolution methods, Fourier analysis, factorial analysis and neural networking. (orig.)

  9. Nuclear medicine and mathematics

    International Nuclear Information System (INIS)

    Pedroso de Lima, J.J.

    1996-01-01

    The purpose of this review is not to present a comprehensive description of all the mathematical tools used in nuclear medicine, but to emphasize the importance of the mathematical method in nuclear medicine and to elucidate some of the mathematical concepts currently used. We can distinguish three different areas in which mathematical support has been offered to nuclear medicine: Physiology, methodology and data processing. Nevertheless, the boundaries between these areas can be indistinct. It is impossible in a single article to give even an idea of the extent and complexity of the procedures currently usede in nuclear medicine, such as image processing, reconstruction from projections and artificial intelligence. These disciplines do not belong to nuclear medicine: They are already branches of engineering, and my interest will reside simply in revealing a little of the elegance and the fantastic potential of these new 'allies' of nuclear medicine. In this review the mathematics of physiological interpretation and methodology are considered together in the same section. General aspects of data-processing methods, including image processing and artificial intelligence, are briefly analysed. The mathematical tools that are most often used to assist the interpretation of biological phenomena in nuclear medicine are considered; these include convolution and deconvolution methods, Fourier analysis, factorial analysis and neural networking. (orig.)

  10. Practical nuclear medicine

    CERN Document Server

    Gemmell, Howard G; Sharp, Peter F

    2006-01-01

    Nuclear medicine plays a crucial role in patient care, and this book is an essential guide for all practitioners to the many techniques that inform clinical management. The first part covers the scientific basis of nuclear medicine, the rest of the book deals with clinical applications. Diagnostic imaging has an increasingly important role in patient management and, despite advances in other modalities (functional MRI and spiral CT), nuclear medicine continues to make its unique contribution by its ability to demonstrate physiological function. This book is also expanded by covering areas of d

  11. Nuclear Medicine Annual, 1989

    International Nuclear Information System (INIS)

    Freeman, L.M.; Weissmann, H.S.

    1989-01-01

    Among the highlights of Nuclear Medicine Annual, 1989 are a status report on the thyroid scan in clinical practice, a review of functional and structural brain imaging in dementia, an update on radionuclide renal imaging in children, and an article outlining a quality assurance program for SPECT instrumentation. Also included are discussions on current concepts in osseous sports and stress injury scintigraphy and on correlative magnetic resonance and radionuclide imaging of bone. Other contributors assess the role of nuclear medicine in clinical decision making and examine medicolegal and regulatory aspects of nuclear medicine

  12. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... used in children with cancer, epilepsy and back pain. top of page What does the equipment look ... being recorded. Though nuclear imaging itself causes no pain, children may experience some discomfort from having to ...

  13. Nuclear tele medicine; Telemedicina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, L.; Hernandez, F.; Fernandez, R. [Departamento de Medicina Nuclear, Imagenologia Diagnostica, Xalapa, Veracruz (Mexico)

    2005-07-01

    The great majority of the digital images of nuclear medicine are susceptible of being sent through internet. This has allowed that the work in diagnosis cabinets by image it can benefit of this modern technology. We have presented in previous congresses works related with tele medicine, however, due to the speed in the evolution of the computer programs and the internet, becomes necessary to make a current position in this modality of work. (Author)

  14. Developments in nuclear medicine

    International Nuclear Information System (INIS)

    Elias, H.

    1977-01-01

    The article reports on the first international meeting about radiopharmaceutical chemistry in the Brookhaven National Laboratory, Long Island/USA, from 21st to 24th September, 1976. The meeting report is preceded by the explanation of the terms 'radiopharmaceutical chemistry' and 'nuclear medicine' and a brief survey of the history. The interdisciplinary connection of the spheres of nuclear physics, nuclear chemistry, biochemistry, nuclear medicine, and data processing is also briefly shown. This is necessary before radiodiagnosis can be made for a patient. (RB) [de

  15. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... including many types of cancers, heart disease, gastrointestinal, endocrine, neurological disorders and other abnormalities within the body. ... Physicians use nuclear medicine imaging to evaluate organ systems, including the: kidneys and bladder. bones. liver and ...

  16. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... beforehand, especially if sedation is to be used. Most nuclear medicine exams will involve an injection in ... PET/CT, SPECT/CT and PET/MR) are most often used in children with cancer, epilepsy and ...

  17. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... small amount of energy in the form of gamma rays. Special cameras detect this energy, and with ... imaging techniques used in nuclear medicine include the gamma camera and single-photon emission-computed tomography (SPECT). ...

  18. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... to be followed after leaving the nuclear medicine facility. Through the natural process of radioactive decay, the ... Please note RadiologyInfo.org is not a medical facility. Please contact your physician with specific medical questions ...

  19. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... top of page What are the benefits vs. risks? Benefits The information provided by nuclear medicine examinations ... diagnosis or to determine appropriate treatment, if any. Risks Because the doses of radiotracer administered are small, ...

  20. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... of page How does the nuclear medicine procedure work? With ordinary x-ray examinations, an image is ... result, imaging may be done immediately, a few hours later, or even a few days after your ...

  1. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... exams at the same time. An emerging imaging technology, but not readily available at this time is ... leaving the nuclear medicine facility. Through the natural process of radioactive decay, the small amount of radiotracer ...

  2. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... leaving the nuclear medicine facility. Through the natural process of radioactive decay, the small amount of radiotracer ... possible charges you will incur. Web page review process: This Web page is reviewed regularly by a ...

  3. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... of page How does the nuclear medicine procedure work? With ordinary x-ray examinations, an image is ... The exception to this is if the child’s mother is pregnant. When the examination is completed, your ...

  4. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... the most useful information needed to make a diagnosis or to determine appropriate treatment, if any. Risks Because the doses of radiotracer administered are small, diagnostic nuclear medicine procedures result in low radiation exposure, ...

  5. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... nuclear medicine images can be superimposed with computed tomography (CT) or magnetic resonance imaging (MRI) to produce ... manufacturers are now making single photon emission computed tomography/computed tomography (SPECT/CT) and positron emission tomography/ ...

  6. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Because the doses of radiotracer administered are small, diagnostic nuclear medicine procedures result in low radiation exposure, acceptable for diagnostic exams. Thus, the radiation risk is very low ...

  7. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... molecular information. In many centers, nuclear medicine images can be superimposed with computed tomography (CT) or magnetic ... small hand-held device resembling a microphone that can detect and measure the amount of the radiotracer ...

  8. Tomography in nuclear medicine

    International Nuclear Information System (INIS)

    Levi de Cabrejas, Mariana

    1999-01-01

    This book is a contribution to the training and diffusion of the tomography method image diagnosis in nuclear medicine, which principal purpose is the information to professionals and technical personnel, specially for the spanish speaking staff

  9. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... both imaging exams at the same time. An emerging imaging technology, but not readily available at this ... often unattainable using other imaging procedures. For many diseases, nuclear medicine scans yield the most useful information ...

  10. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... endocrine, neurological disorders and other abnormalities within the body. Because nuclear medicine procedures are able to pinpoint molecular activity within the body, they offer the potential to identify disease in ...

  11. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... and are rarely associated with significant discomfort or side effects. If the radiotracer is given intravenously, your child ... techniques for a variety of indications, and the functional information gained from nuclear medicine exams is often ...

  12. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... to Children's (Pediatric) Nuclear Medicine Sponsored by Please note RadiologyInfo.org is not a medical facility. Please ... is further reviewed by committees from the American College of Radiology (ACR) and the Radiological Society of ...

  13. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... variety of diseases, including many types of cancers, heart disease, gastrointestinal, endocrine, neurological disorders and other abnormalities ... and bladder. bones. liver and gallbladder. gastrointestinal tract. heart. lungs. brain. thyroid. Nuclear medicine scans are typically ...

  14. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... bones. liver and gallbladder. gastrointestinal tract. heart. lungs. brain. thyroid. Nuclear medicine scans are typically used to ... differently than when breathing room air or holding his or her breath. With some exams, a catheter ...

  15. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... MRI. top of page What are some common uses of the procedure? Children's (pediatric) nuclear medicine imaging ... community, you can search the ACR-accredited facilities database . This website does not provide cost information. The ...

  16. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... computer, create pictures offering details on both the structure and function of organs and tissues in your ... substantially shorten the procedure time. The resolution of structures of the body with nuclear medicine may not ...

  17. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... kidneys and bladder. bones. liver and gallbladder. gastrointestinal tract. heart. lungs. brain. thyroid. Nuclear medicine scans are typically used to help diagnose and evaluate: urinary blockage in the kidney. backflow of urine from ...

  18. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... exams at the same time. An emerging imaging technology, but not readily available at this time is PET/MRI. top of page What are some common uses of the procedure? Children's (pediatric) nuclear medicine imaging ...

  19. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... of page How does the nuclear medicine procedure work? With ordinary x-ray examinations, an image is ... and other metallic accessories should be left at home if possible, or removed prior to the exam ...

  20. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... also very helpful. Often, a monitor with children's programming and/or children’s DVDs are available in the ... techniques for a variety of indications, and the functional information gained from nuclear medicine exams is often ...

  1. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... The teddy bear denotes child-specific content. Related Articles and Media General Nuclear Medicine Children's (Pediatric) CT ( ... About Us | Contact Us | FAQ | Privacy | Terms of Use | Links | Site Map Copyright © 2018 Radiological Society of ...

  2. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... of page How does the nuclear medicine procedure work? With ordinary x-ray examinations, an image is ... than five decades, and there are no known long-term adverse effects from such low-dose exposure. ...

  3. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... exams at the same time. An emerging imaging technology, but not readily available at this time is ... bones. liver and gallbladder. gastrointestinal tract. heart. lungs. brain. thyroid. Nuclear medicine scans are typically used to ...

  4. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... performed to help diagnose childhood disorders that are congenital (present at birth) or that develop during childhood. ... often unattainable using other imaging procedures. For many diseases, nuclear medicine scans yield the most useful information ...

  5. Radioisotopes in nuclear medicine

    International Nuclear Information System (INIS)

    Samuel, A.M.

    2002-01-01

    Full text: A number of advances in diverse fields of science and technology and the fruitful synchronization of many a new development to address the issues related to health care in terms of prognosis and diagnosis resulted in the availability of host of modern diagnostic tools in medicine. Nuclear medicine, a unique discipline in medicine is one such development, which during the last four decades has seen exponential growth. The unique contribution of this specialty is the ability to examine the dynamic state of every organ of the body with the help of radioactive tracers. This tracer application in nuclear medicine to monitor the biological molecules that participate in the dynamic state of body constituents has led to a whole new approach to biology and medicine. No other technique has the same level of sensitivity and specificity as obtained in radiotracer technique in the study of in-situ chemistry of body organs. As modem medicine becomes oriented towards molecules rather than organs, nuclear medicine will be in the forefront and will become an integral part of a curative process for regular and routine application. Advances in nuclear medicine will proceed along two principal lines: (i) the development of improved sensitive detectors of radiation, powerful and interpretable data processing, image analysis and display techniques, and (ii) the production of exotic and new but useful radiopharmaceuticals. All these aspects are dealt with in detail in this talk

  6. Nuclear medicine in the Philippines

    International Nuclear Information System (INIS)

    Villadolid, Leland.

    1978-01-01

    This article traces the history of nuclear medicine in the country from the time the first radioisotope laboratory was set up by the Philippine General Hospital about 1955, to the not too satisfactory present facilities acquired by hospitals for diagnosis, treatment and investigation of diseases. It is in research, the investigation of disease that is nuclear medicine's most important area. The Philippine Atomic Energy Commission (PAEC) has pioneered in the conducting of courses in the medical uses of radioisotopes. The local training of nuclear manpower has been continued and updated and foreign fellowships are availed of through the cooperation of IAEA. Quite a number are already trained also in the allied fields that support the practice of nuclear medicine. However the brain drain has seriously affected the number of trained staff of medical units. Discussed and presented is the growth of the medical use of radioisotopes which are locally produced by PAEC. In order to benefit from the full advantage that nuclear medicine can do to a majority of Filipinos, the government should extend its financial support in acquiring such facilities to equip strategic hospitals in the country and support training programs. The Philippine has the expertise to start the expansion but only with adequate provision of funds will our capacity turn into reality. (RTD)

  7. Quality assurance in nuclear medicine

    International Nuclear Information System (INIS)

    Kaul, A.

    1986-01-01

    'Quality Assurance in Nuclear Medicine' is the title of the English language original that has been translated into German. The manual very extensively deals with quality control of nuclear medical equipment. Tests are explained for checking radioactivity measuring devices, manual and automatic in-vitro sample measuring systems, in-vivo measuring systems with single or multiple detectors, rectlinear scanners, and gamma cameras, including the phantoms required for the methods. Other chapters discuss the quality control of radiopharmaceuticals, or the quality assurance in data recording and evaluation of results. Helpful comments on the organisation of quality assurance programms are given. The book is intended as a practical guide for introducing quality assurance principles in nuclear medicine in the Federal Republic of Germany. With 13 figs., 22 tabs [de

  8. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... radioactive energy that is emitted from the patient's body and converts it into an image. The gamma camera itself does not emit any ... bear denotes child-specific content. Related Articles and Media General Nuclear ... (Pediatric) Nuclear Medicine Videos related ...

  9. Experimental nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Dormehl, I C [Nuclear Development Corp. of South Africa (Pty.) Ltd., Pelindaba, Pretoria. Inst. of Life Sciences; Du Plessis, M; Jacobs, D J

    1983-07-01

    Exciting investigative research, widening the dimensions of conventional nuclear medicine, is being conducted in Pretoria where the development and evaluation of new radiopharmaceuticals in particular is attracting international attention. Additional to this, the development of new diagnostic techniques involving sophisticated data processing, is helping to place South Africa firmly in the front line of nuclear medical progress.

  10. Nuclear medicine resources manual

    International Nuclear Information System (INIS)

    2006-02-01

    Over the past decade many IAEA programmes have significantly enhanced the capabilities of numerous Member States in the field of nuclear medicine. Functional imaging using nuclear medicine procedures has become an indispensable tool for the diagnosis, treatment planning and management of patients. However, due to the heterogeneous growth and development of nuclear medicine in the IAEA's Member States, the operating standards of practice vary considerably from country to country and region to region. This publication is the result of the work of over 30 international professionals who have assisted the IAEA in the process of standardization and harmonization. This manual sets out the prerequisites for the establishment of a nuclear medicine service, including basic infrastructure, suitable premises, reliable supply of electricity, maintenance of a steady temperature, dust exclusion for gamma cameras and radiopharmacy dispensaries. It offers clear guidance on human resources and training needs for medical doctors, technologists, radiopharmaceutical scientists, physicists and specialist nurses in the practice of nuclear medicine. The manual describes the requirements for safe preparation and quality control of radiopharmaceuticals. In addition, it contains essential requirements for maintenance of facilities and instruments, for radiation hygiene and for optimization of nuclear medicine operational performance with the use of working clinical protocols. The result is a comprehensive guide at an international level that contains practical suggestions based on the experience of professionals around the globe. This publication will be of interest to nuclear medicine physicians, radiologists, medical educationalists, diagnostic centre managers, medical physicists, medical technologists, radiopharmacists, specialist nurses, clinical scientists and those engaged in quality assurance and control systems in public health in both developed and developing countries

  11. Pediatric nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    This symposium presented the latest techniques and approaches to the proper medical application of radionuclides in pediatrics. An expert faculty, comprised of specialists in the field of pediatric nuclear medicine, discussed the major indications as well as the advantages and potential hazards of nuclear medicine procedures compared to other diagnostic modalities. In recent years, newer radiopharmaceuticals labeled with technetium-99m and other short-lived radionuclides with relatively favorable radiation characteristics have permitted a variety of diagnostic studies that are very useful clinically and carry a substantially lower radiation burden then many comparable X-ray studies. This new battery of nuclear medicine procedures is now widely available for diagnosis and management of pediatric patients. Many recent research studies in children have yielded data concerning the effacacy of these procedures, and current recommendations will be presented by those involved in conducting such studies. Individual papers are processed separately for the Energy Data Base.

  12. Pediatric nuclear medicine

    International Nuclear Information System (INIS)

    1986-01-01

    This symposium presented the latest techniques and approaches to the proper medical application of radionuclides in pediatrics. An expert faculty, comprised of specialists in the field of pediatric nuclear medicine, discussed the major indications as well as the advantages and potential hazards of nuclear medicine procedures compared to other diagnostic modalities. In recent years, newer radiopharmaceuticals labeled with technetium-99m and other short-lived radionuclides with relatively favorable radiation characteristics have permitted a variety of diagnostic studies that are very useful clinically and carry a substantially lower radiation burden then many comparable X-ray studies. This new battery of nuclear medicine procedures is now widely available for diagnosis and management of pediatric patients. Many recent research studies in children have yielded data concerning the effacacy of these procedures, and current recommendations will be presented by those involved in conducting such studies. Individual papers are processed separately for the Energy Data Base

  13. Nuclear medicine tomorrow

    International Nuclear Information System (INIS)

    Marko, A.M.

    1986-04-01

    The purpose of this Workshop was to discuss and promote future nuclear medicine applications. Atomic Energy of Canada Limited (AECL) is determined to assist in this role. A major aim of this gathering was to form an interface that was meaningful, representative of the two entities, and above all, on-going. In the opening address, given by Mr. J. Donnelly, President of AECL, this strong commitment was emphasized. In the individual sessions, AECL participants outlined R and D programs and unique expertise that promised to be of interest to members of the nuclear medicine community. The latter group, in turn, described what they saw as some problems and needs of nuclear medicine, especially in the near future. These Proceedings comprise the record of the formal presentations. Additionally, a system of reporting by rapporteurs insured a summary of informal discussions at the sessions and brought to focus pertinent conclusions of the workshop attendees

  14. Nuclear tele medicine

    International Nuclear Information System (INIS)

    Vargas, L.; Hernandez, F.; Fernandez, R.

    2005-01-01

    The great majority of the digital images of nuclear medicine are susceptible of being sent through internet. This has allowed that the work in diagnosis cabinets by image it can benefit of this modern technology. We have presented in previous congresses works related with tele medicine, however, due to the speed in the evolution of the computer programs and the internet, becomes necessary to make a current position in this modality of work. (Author)

  15. Physics in nuclear medicine

    CERN Document Server

    Cherry, Simon R; Phelps, Michael E

    2012-01-01

    Physics in Nuclear Medicine - by Drs. Simon R. Cherry, James A. Sorenson, and Michael E. Phelps - provides current, comprehensive guidance on the physics underlying modern nuclear medicine and imaging using radioactively labeled tracers. This revised and updated fourth edition features a new full-color layout, as well as the latest information on instrumentation and technology. Stay current on crucial developments in hybrid imaging (PET/CT and SPECT/CT), and small animal imaging, and benefit from the new section on tracer kinetic modeling in neuroreceptor imaging.

  16. Children in nuclear medicine

    International Nuclear Information System (INIS)

    Fischer, S.

    2002-01-01

    With each study in paediatric nuclear medicine one must try to reach a high quality standard with a minimum of radiation exposure to the child. This is true for the indication for the study and the interpretation of the results as well as the preparation, the image acquisition, the processing and the documentation. A continuous evaluation of all aspects is necessary to receive optimal, clinically relevant information. In addition it is important that the child keeps nuclear medicine in a good mind, especially when it has to come back for a control study. (orig.) [de

  17. Nuclear medicine in China

    International Nuclear Information System (INIS)

    Wang, Shihchen; Liu, Xiujie

    1986-01-01

    Since China first applied isotopes to medical research in 1956, over 800 hospitals and research institutions with 4000 staff have taken up nuclear technology. So far, over 120 important biologically active materials have been measured by radioimmunoassay in China, and 44 types of RIA kit have been supplied commercially. More than 50,000 cases of hyperthyroidism have been treated satisfactorily with 131 I. Radionuclide imaging of practically all organs and systems of the human body has been performed, and adrenal imaging and nuclear cardiology have become routine clinical practice in several large hospitals. The thyroid iodine uptake test, renogram tracing and cardiac function studies with a cardiac probe are also commonly used in most Chinese hospitals. The active principles of more than 60 medicinal herbs have been labelled with isotopes in order to study the drug metabolism and mechanism of action. Through the use of labelled neurotransmitters or deoxyglucose, RIA, radioreceptor assay and autoradiography, Chinese researchers have made remarkable achievements in the study of the scientific basis of acupuncture analgesia. In 1980 the Chinese Society of Nuclear Medicine was founded, and since 1981 the Chinese Journal of Nuclear Medicine has been published. Although nuclear medicine in China has already made some progress, when compared with advanced countries, much progress is still to be made. It is hoped that international scientific exchange will be strengthened in the future. (author)

  18. Computers in nuclear medicine

    International Nuclear Information System (INIS)

    Cradduck, T.D.; Knowles, L.G.

    1977-01-01

    The decision to buy a computer is difficult. The wide variety of computing systems available makes that decision even harder because each of the systems has unique advantages and disadvantages. The following list contains many of the essentials any computer system for nuclear medicine should embody: (1) sophisticated and reliable hardware with sufficient memory capacity to acquire or display at least 128 x 128 static images or 64 x 64 dynamic studies and with the facility for adding extra hardware and peripheral equipment at a later date; (2) a well-proved, general-purpose, real-time operating system to which the programs specific to the gamma camera have been interfaced and which will allow expansion or modification of both hardware and software in the future; (3) a display exhibiting at least 128 x 128 resolution, a monochrome mode with extended gray scale, and perhaps color; a varied set of programmed image formats and hardware system that includes local refresher capabilities; (4) a high-level language, such as FORTRAN or BASIC, with the ability to directly access all data files and interact with system programs as well as a macroprogramming capability so the user may write his own programs for data manipulation and analysis; (5) a comprehensive yet generally applicable set of system programs to enable data acquisition, storage, analysis, and display. In addition to the above, one should expect the services of a team of well-trained maintenance technicians and engineers. The manufacturer should offer software support and exhibit a plan for continued development and upgrading of the software initially provided

  19. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician Resources Professions Site Index A-Z Children's (Pediatric) Nuclear Medicine ...

  20. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... measure the amount of the radiotracer in a small area of your child's body. top of page How is the procedure performed? Nuclear medicine imaging is usually performed on an ... Intravenous: a small needle is used to inject the radiotracer. The ...

  1. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... diagnoses. In addition, manufacturers are now making single photon emission computed tomography/computed tomography (SPECT/CT) and ... nuclear medicine include the gamma camera and single-photon emission-computed tomography (SPECT). The gamma camera, also ...

  2. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... The special camera and imaging techniques used in nuclear medicine include the gamma camera and single-photon emission-computed tomography (SPECT). The gamma camera, also called a scintillation camera, detects radioactive energy that is emitted from the patient's body and ...

  3. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Pediatric) Nuclear Medicine Sponsored by Please note RadiologyInfo.org is not a medical facility. Please contact your ... links: For the convenience of our users, RadiologyInfo .org provides links to relevant websites. RadiologyInfo.org , ACR ...

  4. Nuclear medicine in Ghana

    International Nuclear Information System (INIS)

    Affram, R.K.; Kyere, K.; Amuasi, J.

    1991-01-01

    The background to the introduction and application of radioisotopes in medicine culminating in the establishment of the nuclear Medicine Unit at the Korle Bu Teaching Hospital, Ghana, has been examined. The Unit has been involved in important clinical researches since early 1970s but routine application in patient management has not always been possible because of cost per test and lack of continuous availability of convertible currency for the purchase of radioisotopes which are not presently produced by the National Nuclear Research Institute at Kwabenya. The capabilities and potentials of the Unit are highlighted and a comparison of Nuclear Medicine techniques to other medical diagnostic and imaging methods have been made. There is no organised instruction in the principles of medical imaging and diagnostic methods at both undergraduate and postgraduate levels in Korle Bu Teaching Hospital which has not promoted the use of Nuclear Medicine techniques. The development of a comprehensive medical diagnostic and imaging services is urgently needed. (author). 18 refs., 3 tabs

  5. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... exams at the same time. An emerging imaging technology, but not readily available at this time is PET/MRI. top of page What are some common uses of the procedure? Children's (pediatric) nuclear medicine imaging is performed to help ...

  6. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... both imaging exams at the same time. An emerging imaging technology, but not readily available at this time is PET/MRI. top of page What are some common uses of the procedure? Children's (pediatric) nuclear medicine imaging is performed to help diagnose childhood disorders ...

  7. More about ... Nuclear medicine

    African Journals Online (AJOL)

    Thyroid scintigraphy. In neonates with hypothyroidism detected on neonatal screening and confirmed by subsequent testing, a radionuclide thyroid scan should be performed as soon as possible. It must be undertaken in all nuclear medicine departments as a matter of urgency. Any delay in treatment should be avoided.

  8. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... nuclear medicine images can be superimposed with computed tomography (CT) or magnetic resonance imaging (MRI) to produce special ... now making single photon emission computed tomography/computed tomography (SPECT/CT) and positron emission tomography/computed tomography (PET/CT) ...

  9. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... drink before the exam, especially if your physician plans to use sedation for the procedure. top of page Who interprets the results and how do we get them? A radiologist or other physician who has specialized training in nuclear medicine will interpret the images and ...

  10. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... pictures and provides molecular information. In many centers, nuclear medicine images can be superimposed with computed tomography (CT) or magnetic resonance imaging (MRI) to produce special views, a practice known as image fusion or co-registration. These views allow the information ...

  11. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... you about nuclear medicine. Nuclear medicine offers the potential to identify disease in its earliest stage, often ... may be asked to wear a gown as well. Tell your doctor if there is any possibility ...

  12. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... Nuclear Medicine Transcript Welcome to Radiology Info dot org Hello! I’m Dr. Ramji Rajendran, a radiation ... more about nuclear medicine, visit Radiology Info dot org. Thank you for your time! Spotlight Recently posted: ...

  13. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... stage, often before symptoms occur or before abnormalities can be detected with other diagnostic tests. Nuclear medicine ... nuclear medicine exam, there are several things you can do to prepare. First, you may be asked ...

  14. Procurement strategic analysis of nuclear safety equipment

    International Nuclear Information System (INIS)

    Wu Caixia; Yang Haifeng; Li Xiaoyang; Li Shixin

    2013-01-01

    The nuclear power development plan in China puts forward a challenge on procurement of nuclear safety equipment. Based on the characteristics of the procurement of nuclear safety equipment, requirements are raised for procurement process, including further clarification of equipment technical specification, establishment and improvement of the expert database of the nuclear power industry, adoption of more reasonable evaluation method and establishment of a unified platform for nuclear power plants to procure nuclear safety equipment. This paper makes recommendation of procurement strategy for nuclear power production enterprises from following aspects, making a plan of procurement progress, dividing procurement packages rationally, establishing supplier database through qualification review and implementing classified management, promoting localization process of key equipment continually and further improving the system and mechanism of procurement of nuclear safety equipment. (authors)

  15. Checklists for quality assurance and audit in nuclear medicine

    International Nuclear Information System (INIS)

    Williams, E.D.; Harding, L.K.; McKillop, J.H.

    1989-01-01

    A series of checklists are given which aim to provide some guidance to staff in determining whether their working procedures in nuclear medicine are likely to produce a good service and avoid mistakes. The checklists relate to the special equipment used in nuclear medicine departments, radiopharmaceuticals, nuclear medicine staff, services to medical and other hospital staff and finally the service to patients. The checklists are relevant to an average nuclear medicine department performing less than 2000 imaging studies per year. (U.K.)

  16. Beijing nuclear medicine survey 2005: general information

    International Nuclear Information System (INIS)

    Geng Jianhua; Si Hongwei; Chen Shengzu

    2008-01-01

    Objective: To evaluate the status of nuclear medicine department in Beijing area. Methods: Staff, equipment and clinical applications of nuclear medicine departments in Beijing area during 2005 were evaluated by postal questionnaires. Results: Thirty nuclear medicine departments responded to our survey. In these departments, 321 staff, 141 doctors, 122 technicians, 7 physicists, 22 nurses and 29 other staff were employed; and 41 large imaging equipments, 37 SPECT, 3 PET, 1 PET-CT were equipped. During 2005, 88135 radionuclide imaging (84734 for SPECT, 3401 for PET), 462246 radioimmunoassay and 2228 radionuclide therapies (the most for Graves' disease, the second for thyroid cancer, the third for bone metastasis) were performed. For only 41.5% and 22.0% equipments the daily quality control (QC) and weekly QC were conducted. Conclusions Staff, equipments and activities of nuclear medicine department in Beijing were in a considerable scale, but did not balance among hospitals. Most departments should increase the number of physicists and the equipment QC procedures to improve the image quality. (authors)

  17. Nuclear medicine technology study guide

    CERN Document Server

    Patel, Dee

    2011-01-01

    Nuclear Medicine Technology Study Guide presents a comprehensive review of nuclear medicine principles and concepts necessary for technologists to pass board examinations. The practice questions and content follow the guidelines of the Nuclear Medicine Technology Certification Board (NMTCB) and American Registry of Radiological Technologists (ARRT), allowing test takers to maximize their success in passing the examinations. The book is organized by sections of increasing difficulty, with over 600 multiple-choice questions covering all areas of nuclear medicine, including radiation safety; radi

  18. Nuclear medicine in sports

    International Nuclear Information System (INIS)

    Sharma, Anshu Rajnish

    2010-01-01

    Nuclear medicine can synergistically contribute to the sports medicine field, in the management of sports-related stress injures. Bone scintigraphy is commonly requested for evaluation of athletes with pain. Three-Phase 99m Tc MDP Bone Scan has emerged as the imaging reference standard for diagnosing such injuries. The inherently high-contrast resolution of the bone scan allows early detection of bone trauma and becomes positive within six to seventy-two hours after the onset of symptoms. The bone scan is able to demonstrate stress injuries days to weeks before the radiograph

  19. Nuclear Medicine and Application of Nuclear Techniques in Medicine

    International Nuclear Information System (INIS)

    Wiharto, Kunto

    1996-01-01

    The use of nuclear techniques medicine covers not only nuclear medicine and radiology in strict sense but also determination of body mineral content by neutron activation analysis and x-ray fluorescence technique either in vitro or in vivo, application of radioisotopes as tracers in pharmacology and biochemistry, etc. This paper describes the ideal tracer in nuclear medicine, functional and morphological imaging, clinical aspect and radiation protection in nuclear medicine. Nuclear technique offers facilities and chances related to research activities and services in medicine. The development of diagnostic as well as therapeutic methods using monoclonal antibodies labeled with radioisotope will undoubtedly play an important role in the disease control

  20. Handbooks in radiology: Nuclear medicine

    International Nuclear Information System (INIS)

    Datz, F.L.

    1988-01-01

    This series of handbooks covers the basic facts, major concepts and highlights in seven radiological subspecialties. ''Nuclear Medicine'' is a review of the principles, procedures and clinical applications that every radiology resident and practicing general radiologist should know about nuclear medicine. Presented in an outline format it covers all of the organ systems that are imaged by nuclear medicine

  1. Quality control in nuclear medicine

    International Nuclear Information System (INIS)

    Leme, P.R.

    1983-01-01

    The following topics are discussed: objectives of the quality control in nuclear medicine; the necessity of the quality control in nuclear medicine; guidelines and recommendations. An appendix is given concerning the guidelines for the quality control and instrumentation in nuclear medicine. (M.A.) [pt

  2. Prospects in nuclear medicine

    International Nuclear Information System (INIS)

    Pink, V.; Johannsen, B.; Muenze, R.

    1990-01-01

    In nuclear medicine, a sequence of revolutioning research up to the simple and efficient application in routine has always then taken place when in an interdisciplinary teamwork new radiochemical tracers and/or new instrumentation had become available. At present we are at the beginning of a phase that means to be in-vivo-biochemistry, the targets of which are molecular interactions in the form of enzymatic reactions, ligand-receptor interactions or immunological reactions. The possibility to use positron-emitting radionuclides of bioelements in biomolecules or drugs to measure their distribution in the living organism by positron-emission tomography (PET) is gaining admittance into the pretentious themes of main directions of medical research. Diagnostic routine application of biochemically oriented nuclear medicine methods are predominantly expected from the transmission of knowledge in PET research to the larger appliable emission tomography with gamma-emitting tracers (SPECT). (author)

  3. Introduction to nuclear medicine

    International Nuclear Information System (INIS)

    Denhartog, P.; Wilmot, D.M.

    1987-01-01

    In this chapter, the fundamentals of nuclear medicine, the advantages and disadvantages of this modality (compared with radiography and ultrasound), and some of the areas in diagnosis and treatment in which it has found widest acceptance will be discussed. Nuclear medicine procedures can be broadly categorized into three groups: in vivo imaging, usually requiring the injection of an organ-specific radiopharmaceutical; in vitro procedures, in which the radioactive agent is mixed with the patient's blood in a test tube; and in vivo nonimaging procedures, in which the patient receives the radiopharmaceutical (intravenously or orally) after which a measurement of the amount appearing in a particular biological specimen (blood, urine, stool) is performed. In vivo imaging procedures will be the principal topics of this chapter

  4. Imaging in nuclear medicine

    CERN Document Server

    Hoeschen, Christoph

    2013-01-01

    This volume addresses a wide range of issues in the field of nuclear medicine imaging, with an emphasis on the latest research findings. Initial chapters set the scene by considering the role of imaging in nuclear medicine from the medical perspective and discussing the implications of novel agents and applications for imaging. The physics at the basis of the most modern imaging systems is described, and the reader is introduced to the latest advances in image reconstruction and noise correction. Various novel concepts are then discussed, including those developed within the framework of the EURATOM FP7 MADEIRA research project on the optimization of imaging procedures in order to permit a reduction in the radiation dose to healthy tissues. Advances in quality control and quality assurance are covered, and the book concludes by listing rules of thumb for imaging that will be of use to both beginners and experienced researchers.

  5. Basic requirements of nuclear medicine services

    International Nuclear Information System (INIS)

    Belcher, E.H.

    1992-01-01

    Technological progress in nuclear medicine continues, not always to the immediate advantage of the developing world. The capital expense, operational demands and maintenance requirements of ever more complex equipment, the consequent need for highly trained staff, the necessity to assure regular supplies of costly radioactive materials, all present problems to which compromise or alternative solutions must often be sought. This chapter constitutes an attempt to define the basic requirements for thr practice of nuclear medicine with respect to staff, equipment, accommodation, supplies and supporting services with particular reference to the needs of institutions in developing countries

  6. Basic requirements of nuclear medicine services

    Energy Technology Data Exchange (ETDEWEB)

    Belcher, E H

    1993-12-31

    Technological progress in nuclear medicine continues, not always to the immediate advantage of the developing world. The capital expense, operational demands and maintenance requirements of ever more complex equipment, the consequent need for highly trained staff, the necessity to assure regular supplies of costly radioactive materials, all present problems to which compromise or alternative solutions must often be sought. This chapter constitutes an attempt to define the basic requirements for thr practice of nuclear medicine with respect to staff, equipment, accommodation, supplies and supporting services with particular reference to the needs of institutions in developing countries

  7. Nuclear medicine in otolaryngology

    International Nuclear Information System (INIS)

    Watkinson, J.C.

    1991-01-01

    Otolaryngology is concerned with the diagnosis and treatment of diseases which affect the mucosal structures of the upper aerodigestive tract and adnexial organs. This editorial outlines the current rate of nuclear medicine in otolaryngology with particular reference to diseases of the thyroid, the parathyroid, the salivary glands, the lacrimal glands, bones of the head and neck, tumours of the head and neck and CSF leaks. (UK)

  8. Nuclear medicine therapy

    CERN Document Server

    Eary, Janet F

    2013-01-01

    One in three of the 30 million Americans who are hospitalized are diagnosed or treated with nuclear medicine techniques. This text provides a succinct overview and detailed set of procedures and considerations for patient therapy with unsealed radioactivity sources.  Serving as a complete literature reference for therapy with radiopharmaceuticals currently utilized in practice, this source covers the role of the physician in radionuclide therapy, and essential procedures and protocols required by health care personnel.

  9. Veterinary nuclear medicine

    International Nuclear Information System (INIS)

    Krzeminski, M.; Lass, P.; Teodorczyk, J.; Krajka, J.

    2004-01-01

    The veterinary use of radionuclide techniques dates back to the mid-sixties, but its more extensive use dates back to the past two decades. Veterinary nuclear medicine is focused mainly on four major issues: bone scintigraphy - with the majority of applications in horses, veterinary endocrinology - dealing mainly with the problems of hyperthyreosis in cats and hyperthyreosis in dogs, portosystemic shunts in small animals and veterinary oncology, however, most radionuclide techniques applied to humans can be applied to most animals. (author)

  10. Implementation of a quality control program of the equipment of the nuclear medicine services in Chile; Implementacion de un programa de control de calidad del equipamiento de los servicios de medicina nuclear de Chile

    Energy Technology Data Exchange (ETDEWEB)

    Astudillo, R.; Diaz, G.; Ferreira, A.; Garcia, M.; Hermosilla, A.; Pacheco, F.; Vasquez, M. [Universidad de la Frontera, Departamento de Ciencias Fisicas, Av. Francisco Salazar 1145, Temuco 4811230, Araucania (Chile); Coca, M., E-mail: ferreira.sdgr@gmail.com [MedScan Concepcion, Paicavi 270, Concepcion (Chile)

    2014-08-15

    Now days in Chile there are more of 43 Nuclear Medicine centers; most of them have gamma cameras in order to study physiological process in diagnostic and treatment of patients pathologies. This requires having the equipment in optimal operating condition and it is ensured with quality control programs that are based on a series of tests relating to protocols, such as TECDOC-602 y AAPM No.6. Planar test often applied in gamma cameras including: spatial resolution, spatial linearity, sensitivity and uniformity. SPECT tests consider: tomography uniformity, rotation center tomography resolution and total performance. The tests in dose calibrator are: background measurement, accuracy, precision, linearity and reproducibility. The tests above require the use of radioactive sources and specific simulators patterns or phantom based on international standards such as The National Electrical Manufacturers Association (Nema), International Atomic Energy Agency (IAEA) and The American Association of Medical Physics (AAPM). In this work we carried out several tests of quality control in a Nuclear Medicine Center of Temuco and we propose to implement the applied methodology in others similar Chilean centers. (author)

  11. Imaging in nuclear medicine

    International Nuclear Information System (INIS)

    Giussani, Augusto; Hoeschen, Christoph

    2013-01-01

    Presents the most recent developments in nuclear medicine imaging, with emphasis on the latest research findings. Considers the latest advances in imaging systems, image reconstruction, noise correction, and quality assurance. Discusses novel concepts, including those developed within the framework of the EURATOM FP7 MADEIRA project. Lists rules of thumb for imaging of use to both beginners and experienced researchers. This volume addresses a wide range of issues in the field of nuclear medicine imaging, with an emphasis on the latest research findings. Initial chapters set the scene by considering the role of imaging in nuclear medicine from the medical perspective and discussing the implications of novel agents and applications for imaging. The physics at the basis of the most modern imaging systems is described, and the reader is introduced to the latest advances in image reconstruction and noise correction. Various novel concepts are then discussed, including those developed within the framework of the EURATOM FP7 MADEIRA research project on the optimization of imaging procedures in order to permit a reduction in the radiation dose to healthy tissues. Advances in quality control and quality assurance are covered, and the book concludes by listing rules of thumb for imaging that will be of use to both beginners and experienced researchers.

  12. Imaging in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Giussani, Augusto [BfS - Federal Office for Radiation Protection, Oberschleissheim (Germany). Dept. of Radiation Protection and Health; Hoeschen, Christoph (eds.) [Helmholtz Zentrum Muenchen - German Research Center for Environmental Health, Neuherberg (Germany). Research Unit Medical Raditation Physics and Diagnostics

    2013-08-01

    Presents the most recent developments in nuclear medicine imaging, with emphasis on the latest research findings. Considers the latest advances in imaging systems, image reconstruction, noise correction, and quality assurance. Discusses novel concepts, including those developed within the framework of the EURATOM FP7 MADEIRA project. Lists rules of thumb for imaging of use to both beginners and experienced researchers. This volume addresses a wide range of issues in the field of nuclear medicine imaging, with an emphasis on the latest research findings. Initial chapters set the scene by considering the role of imaging in nuclear medicine from the medical perspective and discussing the implications of novel agents and applications for imaging. The physics at the basis of the most modern imaging systems is described, and the reader is introduced to the latest advances in image reconstruction and noise correction. Various novel concepts are then discussed, including those developed within the framework of the EURATOM FP7 MADEIRA research project on the optimization of imaging procedures in order to permit a reduction in the radiation dose to healthy tissues. Advances in quality control and quality assurance are covered, and the book concludes by listing rules of thumb for imaging that will be of use to both beginners and experienced researchers.

  13. Establishment for Nuclear Equipment: Overview

    International Nuclear Information System (INIS)

    Pracz, J.

    2000-01-01

    Full text: The main objective of the activity of the Establishment for Nuclear Equipment (ZdAJ) in 1999 was to obtain the ISO 9001 certificate. Work on this problem has been successfully completed. The changes introduced in agreement with requirements of ISO in supervising the construction, manufacturing and servicing eliminate possible deficiencies of our products and will pay in the future. Two new important ventures have been undertaken: design of an accelerator with two photon energies and a reconstruction of simulator directed towards better geometrical parameters. The completion of the improvements in accelerator is foreseen for the year 2002. The changes comprise almost all sub-assemblies of the device. The modernized simulator will be installed in the hospital already in the year 2000 - the ameliorations concern mainly the arm of the apparatus, collimator, driving gears and control system. Of course - apart from this, the routine production activity of the Establishment was continued in 1999. (author)

  14. Radiosanitary control in nuclear medicine

    International Nuclear Information System (INIS)

    Degrossi, O.J.

    1987-01-01

    Nuclear Medicine has recently modified radiosanitary control standards for the three sectors involved: patients, personnel and general population. Nuclear Medicine does not constitute an important source of radiation, including patients and population, compared with radiology. The basic problems of radiosanitary controls are: the absorbed dose and the patient. Low risk deferred stochastic effects may appear with correct use of these controls. On the other hand, risk of stochastic consequences and non stochastic complications appear with incorrect applications. The following aspects should be considered for correct uses: A-1- The critical organ, which is not always the one under study. 2-The rest of the organism, specially the more sensitive organs. B- The radiopharmaceutical used, considering the following periods: physical, biological and effective. C-Technical and human resources that include quality control for the equipment. Radiosanitary control aims at a common objetive: dose limitation to the patient, personnel and general population. For this, it is necessary to accomplish the training programme for proffesional and technical personnel about quality control and to stablish basic standards for the equipment. Current law and regulations assign to the National Atomic Energy Comission the responsibility for controlling the use of radioisotopes and radiations in order to safeguard the health and life of the population. (M.E.L.) [es

  15. Physical bases of nuclear medicine

    International Nuclear Information System (INIS)

    Isabelle, D.B.; Ducassou, D.

    1975-01-01

    The physical bases of nuclear medicine are outlined in several chapters devoted successively to: atomic and nuclear structures; nuclear reactions; radioactiity laws; a study of different types of disintegration; the interactions of radiations with matter [fr

  16. Nuclear techniques in medicine

    International Nuclear Information System (INIS)

    Basson, J.K.

    1984-01-01

    The use of nuclear techniques in medicine has, also in South Africa, increased enormously, especially as regards diagnosis and reseach. In 1983 in vivo tests with radioisotopes were carried out and also in vitro tests, mainly by radioimmunoassay. Therapy with open and sealed radioactive sources was concentrated mainly on cancer treatments. In 1983 NUCOR supported 83 research projects in the life sciences. Imaging of organs or tissues in the body with nuclear techniques has developed into the most important application of nuclear medicine, with the development of even more specific labelled compounds as the main objective. Radioimmunoassay is at an exciting watershed, now that labelled monoclonal antibodies with high specificity for early diagnosis (also in cancer) and even localised radiotherapy have become available. The establishment of the 200 MeV open-sector cyclotron by the National Accelerator Centre also for medical purposes will, in addition to the large-scale production of the protonrich isotopes, also make a substantial contribution to radiotherapy with nuclear particles such as neutrons, protons and helium-3

  17. Frontiers in nuclear medicine symposium: Nuclear medicine & molecular biology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    This document contains the abstracts from the American College of Nuclear Physicians 1993 Fall Meeting entitled, `Frontiers in Nuclear Medicine Symposium: Nuclear Medicine and Molecular Biology`. This meeting was sponsored by the US DOE, Office of Health and Environmental Research, Office of Energy Research. The program chairman was Richard C. Reba, M.D.

  18. Nuclear Medicine in Pediatric Cardiology.

    Science.gov (United States)

    Milanesi, Ornella; Stellin, Giovanni; Zucchetta, Pietro

    2017-03-01

    Accurate cardiovascular imaging is essential for the successful management of patients with congenital heart disease (CHD). Echocardiography and angiography have been for long time the most important imaging modalities in pediatric cardiology, but nuclear medicine has contributed in many situations to the comprehension of physiological consequences of CHD, quantifying pulmonary blood flow symmetry or right-to-left shunting. In recent times, remarkable improvements in imaging equipments, particularly in multidetector computed tomography and magnetic resonance imaging, have led to the progressive integration of high resolution modalities in the clinical workup of children affected by CHD, reducing the role of diagnostic angiography. Technology has seen a parallel evolution in the field of nuclear medicine, with the advent of hybrid machines, as SPECT/CT and PET/CT scanners. Improved detectors, hugely increased computing power, and new reconstruction algorithms allow for a significant reduction of the injected dose, with a parallel relevant decrease in radiation exposure. Nuclear medicine retains its distinctive capability of exploring at the tissue level many functional aspects of CHD in a safe and reproducible way. The lack of invasiveness, the limited need for sedation, the low radiation burden, and the insensitivity to body habitus variations make nuclear medicine an ideal complement of echocardiography. This is particularly true during the follow-up of patients with CHD, whose increasing survival represent a great medical success and a challenge for the health system in the next decades. Metabolic imaging using 18 FDG PET/CT has expanded its role in the management of infection and inflammation in adult patients, particularly in cardiology. The same expansion is observed in pediatric cardiology, with an increasing rate of studies on the use of FDG PET for the evaluation of children with vasculitis, suspected valvular infection or infected prosthetic devices. The

  19. Establishment for Nuclear Equipment -Overview

    International Nuclear Information System (INIS)

    Pracz, J.

    2006-01-01

    Research and development works conducted in the Establishment for Nuclear Equipment (ZdAJ) were focused around 3 subject areas: an accelerator for cancer treatment, therapeutical tables, systems and methods for controlling objects that cross international borders. The new, medium energy accelerator for cancer therapy cases is being designed in the Establishment for several years. In 2005 progress was achieved. A physical part, containing an electron beam has been completed and the parameters of that beam make it useful for therapeutical purposes. Consequently, the work on designing and testing of beam control systems, ensuring its high stability, repetition of irradiation parameters and accuracy of dosage have been started. Results of these tests make it very probable that 2006 will be the final year of scientific works and in 2007 the new apparatus will be ready for sales. Therapeutical tables have become a leading product of ZdAJ IPJ. Their technical parameters, reliability and universality in uses are appreciated by many customers of ZdAJ. In 2005, the table Polkam 16 was registered by the national Office for Registration of Medical Equipment as the first product of ZdAJ that meets all technical and formal requirements of the safety mark CE. This allows sales of the product on the market of the European Union. The research and development part of designing a therapeutical table for uses in the total body irradiation technique was also concluded in 2005. After the September 11 terrorist attacks on WTC a matter of controlling international borders have become a priority for many countries. In 2005 in ZdAJ IPJ, we conducted many preliminary calculations and experiments analyzing systems of irradiation sources, both photon and neutron as well as systems of detection and designing of signals triggered by controlling objects crossing the border. The results so far have enabled us to formulate a research project which has been positively evaluated by experts and found

  20. Coordination compounds in nuclear medicine

    International Nuclear Information System (INIS)

    Jurisson, S.; Berning, D.; Wei Jia; Dangshe Ma

    1993-01-01

    Radiopharmaceuticals, drugs containing a radionuclide, are used routinely in nuclear medicine departments for the diagnosis of disease and are under investigation for use in the treatment of disease. Nuclear medicine takes advantage of both the nuclear properties of the radionuclide and the pharmacological properties of the radiopharmaceutical. Herein lies the real strength of nuclear medicine, the ability to monitor biochemical and physiological functions in vivo. This review discusses the coordination chemistry that forms the basis for nuclear medicine applications of the FDA-approved radiopharmaceuticals that are in clinical use, and of the most promising diagnostic and therapeutic radiopharmaceuticals that are in various stages of development. 232 refs

  1. Nuclear medicine statistics

    International Nuclear Information System (INIS)

    Martin, P.M.

    1977-01-01

    Numerical description of medical and biologic phenomena is proliferating. Laboratory studies on patients now yield measurements of at least a dozen indices, each with its own normal limits. Within nuclear medicine, numerical analysis as well as numerical measurement and the use of computers are becoming more common. While the digital computer has proved to be a valuable tool for measurment and analysis of imaging and radioimmunoassay data, it has created more work in that users now ask for more detailed calculations and for indices that measure the reliability of quantified observations. The following material is presented with the intention of providing a straight-forward methodology to determine values for some useful parameters and to estimate the errors involved. The process used is that of asking relevant questions and then providing answers by illustrations. It is hoped that this will help the reader avoid an error of the third kind, that is, the error of statistical misrepresentation or inadvertent deception. This occurs most frequently in cases where the right answer is found to the wrong question. The purposes of this chapter are: (1) to provide some relevant statistical theory, using a terminology suitable for the nuclear medicine field; (2) to demonstrate the application of a number of statistical methods to the kinds of data commonly encountered in nuclear medicine; (3) to provide a framework to assist the experimenter in choosing the method and the questions most suitable for the experiment at hand; and (4) to present a simple approach for a quantitative quality control program for scintillation cameras and other radiation detectors

  2. Nuclear medicine and densitometry

    International Nuclear Information System (INIS)

    Mazess, R.B.; Wahner, H.M.

    1988-01-01

    Several reports and books over the past decade have summarized bone measurement methods. This chapter serves as an update on those with particular reference to nuclear medicine approaches to bone density and skeletal uptake. Bone densitometry approaches include singe-photon absorptiometry(SPA) and dual-photon absortiometry neutron activation (DPA) of calcium, Compton scattering, ultrasound measurements and uptake of diphosphonates. Of these only SPA and DPA are used clinically; the other methods are largely experimental or investigational. Radiographic morphometry, radiographic indices, and X-ray QCT are dealt with

  3. Nuclear medicine radiation dosimetry

    CERN Document Server

    McParland, Brian J

    2010-01-01

    Complexities of the requirements for accurate radiation dosimetry evaluation in both diagnostic and therapeutic nuclear medicine (including PET) have grown over the past decade. This is due primarily to four factors: growing consideration of accurate patient-specific treatment planning for radionuclide therapy as a means of improving the therapeutic benefit, development of more realistic anthropomorphic phantoms and their use in estimating radiation transport and dosimetry in patients, design and use of advanced Monte Carlo algorithms in calculating the above-mentioned radiation transport and

  4. Nuclear medicine in cardiology

    Energy Technology Data Exchange (ETDEWEB)

    Torizuka, K.; Ishii, Y.; Yonekura, Y.; Yamamoto, K.; Tamaki, N. (Kyoto Univ. (Japan). Faculty of Medicine)

    1981-02-01

    Nuclear medicine in cardiology was reviewed. Electrocardiogram is obtained from the ..gamma..-ray measurement of a tracer by a single detector, which enables a bedsidemonitoring. Resolution and sensitivity are high and nuclear stethoscope with a computer is applicable for a background treatment. Myocardium is imaged by /sup 201/Tl scintigraphy. Relative difference of the perfusion indicates the ischemia which gaives roughly the size and portion of myocardial infarction. For transient ischemia stress myocardial perfusion imaging (SMPI) is also used. sup(99m)Tc pyrophosphate provides a clear image for myocardial infarction. Angiocardiogram is obtained repeatedly, by a single administration, using an equilibrium method. An attempt of three-dimensional display by 7 pin hole collimator and positron CT are also discussed.

  5. Nuclear Medicine week in Colombia

    International Nuclear Information System (INIS)

    Padhy, A.K.

    2003-01-01

    During the week of 6-12 October 2003 the IAEA organized a Research Coordination Meeting on 'Relationship between lower Respiratory Tract Infection, Gastroesophageal reflux and bronchial Asthma in children' at Hospital San Ignacio in Bogota. Besides there were four workshops in Bogota; workshops on Bone infection and Bone scan in Pediatric ortopaedics at Hospital Militar and Fundacion CardioInfantil, a workshop for Nuclear Medicine Technologists and a workshop on Sentinel Lymph Node mapping and Surgical Gamma Probe Application at Institute of Oncology. A nuclear cardiology workshop was organized in Medellin, and finally crowning them all was the 9th Congress of the Colombian Association of Nuclear Medicine at Cali from 10-12 October, 2003; probably the largest and best Colombian nuclear medicine congress every held in the country. A workshop was also organized in Cali for nuclear medicine technologists in conjunction with the Annual Convention. It was a mix of IAEA's Technical Cooperation and Regular Budget activities along with the activities of Colombian Association of Nuclear Medicine, bringing in absolute synergy to galvanize the entire nuclear medicine community of the country. The week saw nuclear medicine scientists from more than 20 IAEA Member States converging on Colombia to spread the message of nuclear medicine, share knowledge and to foster International understanding and friendship among the nuclear medicine people of the world

  6. Nuclear medicine and prostheses

    International Nuclear Information System (INIS)

    Bordenave, L.; Baquey, Ch.

    2004-01-01

    Whatever the bio-material, prosthesis or medical device concerned, from design to experimental then clinical validation, nuclear medicine (NM) techniques offer a unique opportunity in all indications, (in vitro diagnosis, in vivo diagnosis and therapy) to investigate, assess and predict the behaviour of the device, qualitatively and quantitatively. All research fields involving prostheses and their constitutive biomaterials may take advantage of NM. In order to review published works, one can analyze provided data according to two strategies: an upright one related to medical and surgical specialties that integrate NM and a more horizontal one, that is to describe what kind of contribution is brought by such investigations. The latter approach was preferred in our review. We discuss and illustrate benefits of NM in the following indications: as an in vitro tool, as an in vivo tool for the diagnosis i) of device integration in recipient, ii) of functional outcome after use or implantation, iii) and predictive assessment of undesirable side effects, iv) of occurrence of complications associated to the device implantation, v) of a new therapy efficiency; finally as in vivo tool of therapy. Tissue engineering and regenerative medicine domains with stem cell potential as well as that of medical device associated with vigilance are new fields in basic research and clinical assessment that seem increasingly promising for the nuclear physician and to which NM could and would contribute from molecule to integrated system in order to improve knowledge and achievement of prostheses. (author)

  7. Nuclear medicine and AIDS

    International Nuclear Information System (INIS)

    O'Doherty, M.J.; Kent and Canterbury Hospital, Canterbury; Nunan, T.O.

    1993-01-01

    The human immunodeficiency virus (HIV) infection and its associated illnesses in a relatively young population of patients provides an expanding role for nuclear medicine. The disease enforces a review of each department's infection control procedures. It has also resulted in an increase in the number of patients presenting with diseases such as Pneumocystis carinii pneumonia, Kaposi's sarcoma etc. which prior to the HIV epidemic were extremely rare. Thus in high risk patients the interpretation of abnormalities in nuclear medicine scans needs to include the spectrum of opportunistic infections and unusual tumours. The presence of opportunistic infections in the severely immunocompromised patient has led to the development of techniques not normally used, i.e. lung 99 Tc m -diethylenetriamine pentaacetate (DTPA) transfer/clearance, donor leukocyte scanning to allow rapid diagnosis of an abnormality. Radionuclide techniques are also used to monitor the effect of therapy directed at the HIV itself or against opportunistic infections. This review covers aspects of infection control as well as the use of radionuclides to investigate specific problems related to HIV infection and therapy of the associated disease processes. (author)

  8. Nuclear methods in medicine

    International Nuclear Information System (INIS)

    Wolfe, D.M.

    1997-01-01

    Physicists have created remarkably sophisticated instruments for the performance of experiments. With variable phase lags many of these have become useful in technology. In the medical field NMD techniques have become commonplace under the rubric of Magnetic Resonance Imaging. Particle physics has developed sophisticated detectors for both charged and neutral particles. Many of these also have been adapted to medical uses. In both radiology and nuclear medicine, pixel detectors based on designs originating at large-scale colliders, are becoming highly useful in replacing film and NaI as the primary means of X-ray and (-ray detection. Coupled with high-speed work stations, these new techniques allow exciting new imagining modalities. Many of these are based on the handling of digital images originally developed for astronomy. Thus, once again, fundamental science is making large contributions to the development of technology. In this talk, various examples of developments in digital mammography and digital detectors for nuclear medicine will be given. The possibilities for telemedicine will be discussed. (author)

  9. Nuclear medicine in psychiatry

    International Nuclear Information System (INIS)

    Lass, P.; Slawek, P.

    2007-01-01

    In the same way that the symptoms between different diseases in psychiatry overlap, functional brain research frequently shows the same pattern of changes across diagnostic borders; on the other hand, many the other tests, e.g. psychological tests, present the same problem as mentioned above; therefore: The psychiatrist seldom applies to an NM specialist to obtain a diagnosis; instead, a nuclear medicine report will rather confirm, or less frequently exclude, the psychiatrist's diagnosis. Ideally, psychiatric patients should be rescanned after the treatment, and changes in perfusion and/or metabolism discussed between psychiatrist and NM specialist. As shown above, there are few practical applications of nuclear medicine due to low specificity and low spatial resolution, although in the aspect of functional imaging it is still superior to CT/MRI, even in their functional modalities. On the other hand, its investigational potential is still growing, as there is no imaging technique in sight which could replace metabolic and receptor studies, and also because the scope of functional imaging in psychiatric diseases is spreading from its traditional applications, like dementia or depression, towards many poorly investigated fields e.g. hypnosis, suicidal behaviour or sleep disorders. (author)

  10. Maintenance of nuclear medicine instruments

    Energy Technology Data Exchange (ETDEWEB)

    Ambro, P

    1993-12-31

    Maintenance of instruments is generally of two kinds: (a) corrective maintenance, on a non-scheduled basis, to restore equipment to a functional status by repairs; (b) preventive maintenance, to keep equipment in a specified functional condition by providing systematic inspection, quality control, detection and correction of early malfunctions. Most of the instruments used in nuclear medicine are rather complex systems built from mechanical, electrical and electronic parts. Any one of these components is liable to fail at some time or other. Repair could be done only by a specialist who is able to evaluate the condition of the various parts ranging from cables to connectors, from scintillators to photomultipliers, from microprocessors to microswitches. The knowledge of the intricacies of the various electronic components required for their repairs is quite wide and varied. The electronics industry turns out more and more multi-purpose chips which can carry out the functions of many parts used in the instruments of the earlier generation. This provides protection against unauthorized copying of the circuits but it serves another purpose as well of inhibiting repairs by non-factory personnel. These trends of the instrument design should be taken into consideration when a policy has to be developed for the repairs of the hospital based equipment 1 fig., 1 tab

  11. Maintenance of nuclear medicine instruments

    International Nuclear Information System (INIS)

    Ambro, P.

    1992-01-01

    Maintenance of instruments is generally of two kinds: (a) corrective maintenance, on a non-scheduled basis, to restore equipment to a functional status by repairs; (b) preventive maintenance, to keep equipment in a specified functional condition by providing systematic inspection, quality control, detection and correction of early malfunctions. Most of the instruments used in nuclear medicine are rather complex systems built from mechanical, electrical and electronic parts. Any one of these components is liable to fail at some time or other. Repair could be done only by a specialist who is able to evaluate the condition of the various parts ranging from cables to connectors, from scintillators to photomultipliers, from microprocessors to microswitches. The knowledge of the intricacies of the various electronic components required for their repairs is quite wide and varied. The electronics industry turns out more and more multi-purpose chips which can carry out the functions of many parts used in the instruments of the earlier generation. This provides protection against unauthorized copying of the circuits but it serves another purpose as well of inhibiting repairs by non-factory personnel. These trends of the instrument design should be taken into consideration when a policy has to be developed for the repairs of the hospital based equipment

  12. White paper of nuclear medicine

    International Nuclear Information System (INIS)

    2012-10-01

    This document aims at proposing a synthetic presentation of nuclear medicine in France (definition, strengths and weaknesses, key figures about practices and the profession, stakes for years to come), a description of the corresponding education (speciality definition, abilities and responsibilities, diploma content, proposition by the European Society of Radiology and by the CNIPI, demography of the profession), and an overview of characteristics of nuclear medicine (radio-pharmacy, medical physics, paramedical personnel in nuclear medicine, hybrid imagery, therapy, relationships with industries of nuclear medicine, relationships with health authorities)

  13. Equipment for nuclear medical centers, production capabilities of Rosatom enterprises

    International Nuclear Information System (INIS)

    Gavrish, Yu. N.; Koloskov, S. A.; Smirnov, V. P.; Strokach, A. P.

    2015-01-01

    Analysis of the capabilities of the State Corporation Rosatom enterprises on the development and production of diagnostic and therapeutic equipment for nuclear medicine centers is presented. Prospects of the development of accelerator equipment for the production of a wide range of radioisotope products are shown, and the trends of its development are determined. A comparative analysis of the technical parameters of domestic tomographs and devices for brachytherapy with foreign counterparts is given

  14. Equipment for nuclear medical centers, production capabilities of Rosatom enterprises

    Science.gov (United States)

    Gavrish, Yu. N.; Koloskov, S. A.; Smirnov, V. P.; Strokach, A. P.

    2015-12-01

    Analysis of the capabilities of the State Corporation Rosatom enterprises on the development and production of diagnostic and therapeutic equipment for nuclear medicine centers is presented. Prospects of the development of accelerator equipment for the production of a wide range of radioisotope products are shown, and the trends of its development are determined. A comparative analysis of the technical parameters of domestic tomographs and devices for brachytherapy with foreign counterparts is given.

  15. Nuclear Medicine Practice in Kenya

    International Nuclear Information System (INIS)

    Ndirangu, T.D.

    2017-01-01

    Nuclear medicine is a medical specialty that relies on the use of nuclear technology in the diagnosis and treatment (therapy) of diseases. Nuclear medicine uses the principle that a certain radiopharmaceutical (tracer) will at a certain point in time have a preferential uptake by a particular body, tissue or cell. This uptake is then imaged by the use of detectors mounted in gamma cameras or PET (positron emission tomography) devices.. Unlike other radiation applications for medical use, nuclear medicine uses open (unsealed) sources of radiation. In a country with an estimated population of 48 million in 2017, Kenya has only two (2) nuclear medicine facilities (units). Being a relatively new medical discipline in Kenya, several measures have been taken by the clinical nuclear medicine team to create awareness at various levels

  16. Nuclear Medicine in a developing country

    International Nuclear Information System (INIS)

    Wenzel, K.S. von; Rubow, S.M.; Ellmann, A.; Ghoorun, S.

    2002-01-01

    Namibia is a country with 1,8 million inhabitants, of whom the majority has limited access to first world facilities. Nevertheless, medical services of high standard are offered. A Nuclear Medicine Department was established at Windhoek Central Hospital in 1982. A nuclear physician, two nuclear medicine radiographers and a nursing sister staff the department. Equipment includes a Siemens Orbiter and an Elscint Apex SPX Helix gamma camera. Radiopharmaceuticals are obtained from suppliers in South Africa. Investigations performed include musculoskeletal, liver, hepatobiliary, thyroid, renal studies, ventilation perfusion lung scans as well as the following Nuclear Cardiology studies: Gated blood pool scans, Tc-99m pyrophosphate hot spot scans, Tl-201 myocardial perfusion studies, Tc-99m MIBI myocardial perfusion studies and Tl-201 rest-redistribution studies. Problems experienced at the Windhoek Nuclear Medicine department include: Lack of funding and high cost of equipment and radiopharmaceuticals, lack of understanding of Nuclear Medicine by the hospital management and health administrators, and difficulties in procuring short-lived radiopharmaceuticals. Furthermore, the absence of company representatives and spare parts in Namibia leads to loss of time whenever equipment needs to be repaired. Working as the only nuclear medicine physician in a country also poses major problems. Careful management of resources and information drives have helped to sustain the Nuclear Medicine service despite economic problems in the country. Installation of a tele-link between the department in Windhoek Hospital and Tygerberg Hospital in South Africa has greatly assisted to overcome the problem of isolation and lack of back up from fellow specialists. The IAEA has equipped both departments with Hermes workstations (Nuclear Diagnostics) and a tele-link is maintained via modem. The current software provided with the Hermes system is ideally suited to processing of data such as gated

  17. Nuclear power in human medicine

    International Nuclear Information System (INIS)

    Kuczera, Bernhard

    2012-01-01

    The public widely associate nuclear power with the megawatt dimensions of nuclear power plants in which nuclear power is released and used for electricity production. While this use of nuclear power for electricity generation is rejected by part of the population adopting the polemic attitude of ''opting out of nuclear,'' the application of nuclear power in medicine is generally accepted. The appreciative, positive term used in this case is nuclear medicine. Both areas, nuclear medicine and environmentally friendly nuclear electricity production, can be traced back to one common origin, i.e. the ''Atoms for Peace'' speech by U.S. President Eisenhower to the U.N. Plenary Assembly on December 8, 1953. The methods of examination and treatment in nuclear medicine are illustrated in a few examples from the perspective of a nuclear engineer. Nuclear medicine is a medical discipline dealing with the use of radionuclides in humans for medical purposes. This is based on 2 principles, namely that the human organism is unable to distinguish among different isotopes in metabolic processes, and the radioactive substances are employed in amounts so small that metabolic processes will not be influenced. As in classical medicine, the application of these principles serves two complementary purposes: diagnosis and therapy. (orig.)

  18. Directory of computer users in nuclear medicine

    International Nuclear Information System (INIS)

    Erickson, J.J.; Gurney, J.; McClain, W.J.

    1979-09-01

    The Directory of Computer Users in Nuclear Medicine consists primarily of detailed descriptions and indexes to these descriptions. A typical Installation Description contains the name, address, type, and size of the institution and the names of persons within the institution who can be contacted for further information. If the department has access to a central computer facility for data analysis or timesharing, the type of equipment available and the method of access to that central computer is included. The dedicated data processing equipment used by the department in its nuclear medicine studies is described, including the peripherals, languages used, modes of data collection, and other pertinent information. Following the hardware descriptions are listed the types of studies for which the data processing equipment is used, including the language(s) used, the method of output, and an estimate of the frequency of the particular study. An Installation Index and an Organ Studies Index are also included

  19. Directory of computer users in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, J.J.; Gurney, J.; McClain, W.J. (eds.)

    1979-09-01

    The Directory of Computer Users in Nuclear Medicine consists primarily of detailed descriptions and indexes to these descriptions. A typical Installation Description contains the name, address, type, and size of the institution and the names of persons within the institution who can be contacted for further information. If the department has access to a central computer facility for data analysis or timesharing, the type of equipment available and the method of access to that central computer is included. The dedicated data processing equipment used by the department in its nuclear medicine studies is described, including the peripherals, languages used, modes of data collection, and other pertinent information. Following the hardware descriptions are listed the types of studies for which the data processing equipment is used, including the language(s) used, the method of output, and an estimate of the frequency of the particular study. An Installation Index and an Organ Studies Index are also included. (PCS)

  20. Paediatric nuclear medicine imaging.

    Science.gov (United States)

    Biassoni, Lorenzo; Easty, Marina

    2017-09-01

    Nuclear medicine imaging explores tissue viability and function by using radiotracers that are taken up at cellular level with different mechanism. This imaging technique can also be used to assess blood flow and transit through tubular organs. Nuclear medicine imaging has been used in paediatrics for decades and this field is continuously evolving. The data presented comes from clinical experience and some milestone papers on the subject. Nuclear medicine imaging is well-established in paediatric nephro-urology in the context of urinary tract infection, ante-natally diagnosed hydronephrosis and other congenital renal anomalies. Also, in paediatric oncology, I-123-meta-iodobenzyl-guanidine has a key role in the management of children with neuroblastic tumours. Bone scintigraphy is still highly valuable to localize the source of symptoms in children and adolescents with bone pain when other imaging techniques have failed. Thyroid scintigraphy in neonates with congenital hypothyroidism is the most accurate imaging technique to confirm the presence of ectopic functioning thyroid tissue. Radionuclide transit studies of the gastro-intestinal tract are potentially useful in suspected gastroparesis or small bowel or colonic dysmotility. However, until now a standardized protocol and a validated normal range have not been agreed, and more work is necessary. Research is ongoing on whether magnetic resonance imaging (MRI), with its great advantage of great anatomical detail and no ionizing radiations, can replace nuclear medicine imaging in some clinical context. On the other hand, access to MRI is often difficult in many district general hospitals and general anaesthesia is frequently required, thus adding to the complexity of the examination. Patients with bone pain and no cause for it demonstrated on MRI can benefit from bone scintigraphy with single photon emission tomography and low-dose computed tomography. This technique can identify areas of mechanical stress at

  1. Nuclear medicine and radiopharmacy

    International Nuclear Information System (INIS)

    Leon A, M. C.

    2008-12-01

    In the areas of Nuclear Medicine and Radiopharmacy frequently happens that the personnel that is incorporated as a candidate to serve as personnel occupationally exposed have varied skills, not necessarily have an ingrained culture of safety and radiation protection, some are resistant to adoption a work discipline and have very limited notions of normalization, including the safety basic standards. In fact, referring to the safety basic standards, concepts such as practice justification, protection optimization and dose limitation, can be very abstract concepts for such personnel. In regard to training strategies, it was noted that training in the work is an effective tool although it is very demanding for the learner but mainly for the teaches. The experts number that can occur in this manner is limited because it is an individualized system; however those from the process usually acquire a good preparation, which certainly includes theoretical aspects. For greater efficiency it is necessary that hospitals account facilities, procedures and personnel that might have an exclusive dedication to education and training of human resources. This would create a safety culture, alleviating the burdens of the already existing expertise and improves the training conditions. The Mexican Society of Radiological Safety (SMSR) can help in these efforts through the publication of guides aimed at work training, coordination and articulation of the possible courses already on the market and own the courses organization, workshops and conferences with more frequency. It would also serves that the SMSR acts as speaker with political actors, advocating for the courses validation offered by higher learning institutions, coordinating and promoting postgraduates in Nuclear Medicine and Radiopharmacy. (Author)

  2. Nuclear medicine quality assurance program in Argentina

    International Nuclear Information System (INIS)

    Levi de Cabrejas, Mariana; Arashiro, Jorge G.; Giannone, Carlos A.

    1999-01-01

    A two steps program has been implemented: the first one is the quality control of the equipment and the second one the development of standard procedures for clinical studies of patients. A training program for doctors and technicians of the nuclear medicine laboratories was carried out. Workshops on instrumentation and quality assurance in nuclear medicine have been organized in several parts of the country. A joint program of the CNEA and the University of Buenos Aires has trained medical physicists. A method has been established to evaluate the capability of the laboratories to produce high quality images and to follow up the implementation of the quality control program

  3. Control of Nuclear Materials and Special Equipment (Nuclear Safety Regulations)

    International Nuclear Information System (INIS)

    Cizmek, A.; Prah, M.; Medakovic, S.; Ilijas, B.

    2008-01-01

    Based on Nuclear Safety Act (OG 173/03) the State Office for Nuclear Safety (SONS) in 2008 adopted beside Ordinance on performing nuclear activities (OG 74/06) and Ordinance on special conditions for individual activities to be performed by expert organizations which perform activities in the area of nuclear safety (OG 74/06) the new Ordinance on the control of nuclear material and special equipment (OG 15/08). Ordinance on the control of nuclear material and special equipment lays down the list of nuclear materials and special equipment as well as of nuclear activities covered by the system of control of production of special equipment and non-nuclear material, the procedure for notifying the intention to and filing the application for a license to carry out nuclear activities, and the format and contents of the forms for doing so. This Ordinance also lays down the manner in which nuclear material records have to be kept, the procedure for notifying the State administration organization (regulatory body) responsible for nuclear safety by the nuclear material user, and the keeping of registers of nuclear activities, nuclear material and special equipment by the State administration organization (regulatory body) responsible for nuclear safety, as well as the form and content of official nuclear safety inspector identification card and badge.(author)

  4. Peptide radiopharmaceuticals in nuclear medicine

    International Nuclear Information System (INIS)

    Blok, D.; Vermeij, P.; Feitsma, R.I.J.; Pauwels, E.J.K.

    1999-01-01

    This article reviews the labelling of peptides that are recognised to be of interest for nuclear medicine or are the subject of ongoing nuclear medicine research. Applications and approaches to the labelling of peptide radiopharmaceuticals are discussed, and drawbacks in their development considered. (orig.)

  5. Development of molecular nuclear medicine

    International Nuclear Information System (INIS)

    Tang Ganghua

    2002-01-01

    The basic theory of molecular nuclear medicine is briefly introduced. The hot areas of molecular nuclear medicine including metabolic imaging and blood flow imaging, radioimmunoimaging and radioimmunotherapy, radioreceptor imaging and receptor-radioligand therapy, and imaging gene expression and gene radiation therapy are emphatically described

  6. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... can be detected with other diagnostic tests. Nuclear medicine imaging procedures use small amounts of radioactive materials – called radiotracers – that ... outweighs any risk. To learn more about nuclear medicine, visit Radiology Info dot org. Thank you for your ... of Use | Links | Site Map Copyright © 2018 Radiological Society of ...

  7. Nuclear medicine in emergency

    International Nuclear Information System (INIS)

    Mansi, L.; Rambaldi, P.F.; Cuccurullo, V.; Varetto, T.

    2005-01-01

    The role of a procedure depends not only on its own capabilities but also on a cost/effective comparison with alternative technique giving similar information. Starting from the definition of emergency as a sudden unexpected occurrence demanding immediate action, the role of nuclear medicine (NM) is difficult to identify if it is not possible to respond 24h a day, 365 days a year, to clinical demands. To justify a 24 h NM service it is necessary to reaffirm the role in diagnosis of pulmonary embolism in the spiral CT era, to spread knowledge of the capabilities of nuclear cardiology in reliability diagnosis myocardial infraction (better defining admission and discharge to/from the emergency department), to increase the number of indications. Radionuclide technique could be used as first line, alternative, complementary procedures in a diagnostic tree taking into account not only the diagnosis but also the connections with prognosis and therapy in evaluating cerebral pathologies, acute inflammation/infection, transplants, bleeding, trauma, skeletal, hepatobiliary, renal and endocrine emergencies, acute scrotal pain

  8. Nuclear medicine in developing nations

    International Nuclear Information System (INIS)

    Nofal, M.M.

    1985-01-01

    Agency activities in nuclear medicine are directed towards effectively applying techniques to the diagnosis and management of patients attending nuclear medicine units in about 60 developing countries. A corollary purpose is to use these techniques in investigations related to control of parasitic diseases distinctive to some of these countries. Through such efforts, the aim is to improve health standards through better diagnosis, and to achieve a better understanding of disease processes as well as their prevention and management. Among general trends observed for the region: Clinical nuclear medicine; Radiopharmaceuticals; Monoclonal antibodies; Radioimmunoassay (RIA); Nuclear imaging

  9. Evaluation of the Nuclear Medicine facilities in Minas Gerais state: quality control program of equipment; Avaliacao dos servicos de Medicina Nuclear do estado de Minas Gerais: programa de controle de qualidade dos equipamentos

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, Tadeu Takao Almodovar; Biancardi, Rodrigo; Rocha, Adriana Marcia Guimaraes; Ferreira, Denia Romao; Silva, Franciele Aquiles Anjos; Assuncao, Jonathan Buenos Aires; Alves, Ederson Henrique; Almeida, Ana Flavia Batista; Alves, Nathalia Fernandes; Xavier, Faber Henrique Zacarias; Gontijo, Rodrigo Modesto Gadelha; Mamede, Marcelo, E-mail: mamede.mm@gmail.com [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN), Belo Horizonte, MG (Brazil); Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento Anatomia e Imagem

    2017-11-01

    With the reformulation of the CNEN-NN-3.05 standard in December 2013, Brazil's Nuclear Medicine (NMS) services have to perform a greater number of quality controls for SPECT and PET equipment. However, little is known about the reality of the quality control programs of these services regarding the application of the new standard. Thus, in this context, the objective of the present study was to evaluate the quality control program of MNSs in the state of Minas Gerais. All NMSs in the state of Minas Gerais were invited to participate in the project. Of these, 34.48% (20 facilities) agreed to participate in the project, 50.00% (29 facilities) did not respond to the invitation and 15.52%(9 facilities) declined their participation. Thus, as of November 2015, 20 SPECT and 2 PET/CT equipment were evaluated for the performance of the quality control tests recommended by the new CNEN standard. The phantoms required for the evaluation came from the Laboratory of Dosimetry and Quality Control of UFMG. Even with the deadlines set by CNEN for the implementation of the quality control program in the NMSs, more than 50% of the evaluated services did not implement the quality controls, and the absence of specific phantoms is the main reason for the failure. Among the problems found in the installations, the most critical were: collimators with no conditions of use in the clinical routine, linearity problems of the evaluated image and values of image uniformity superior to the limits of acceptance. Problems in the uniformity and linearity of the image found directly impacted the performance of other tests, such as spatial resolution, SPECT performance, among others. In a general way, the NMSs in the state of Minas Gerais evaluated with the present study are in clinical feasible conditions. (author)

  10. ER-E3 regulation. Minimal instrumentation that must operate nuclear medicine in Cuba

    International Nuclear Information System (INIS)

    2015-01-01

    The purpose of this regulation is to define the instrumentation that must exist in any institution conducting the practice of nuclear medicine in Cuba. This regulation emphasizes two aspects: The minimum equipment necessary to operate a nuclear medicine laboratory for use 'in vitro' and the minimum equipment required to operate a Nuclear Medicine use 'in vivo'

  11. Radiation protection in nuclear medicine

    International Nuclear Information System (INIS)

    Corstens, F.

    1989-01-01

    Aspects of radiation protection in nuclear medicine and the role of the Dutch Society for Nuclear Medicine in these are discussed. With an effective dose-equivalence of averaged 3 mSv per year per nuclear medical examination and about 200.000 examinations per year in the Netherlands, nuclear medicine contributes only to a small degree to the total averaged radiation dose by medical treating. Nevertheless from the beginning, besides to protection of environment and personnel, much attention has been spent by nuclear physicians to dose reduction with patients. Replacing of relatively long living radionuclides like 131 I by short living radionuclides like 99m Tc is an example. In her education and acknowledgement policy the Dutch Society for Nuclear Medicine spends much attention to aspects of radiation reduction. (author). 3 tabs

  12. Essentials of nuclear medicine imaging

    CERN Document Server

    Mettler, Fred A. Jr

    2012-01-01

    Essentials of Nuclear Medicine Imaging, by Drs. Fred A Mettler and Milton J Guiberteau, provides the practical and comprehensive guidance you need to master key nuclear imaging techniques. From physics, instrumentation, quality control, and legal requirements to hot topics such as sodium fluoride, radiopharmaceuticals, and recommended pediatric administered doses and guidelines, this sixth edition covers the fundamentals and recent developments in the practice of nuclear medicine.

  13. Nuclear Medicine in Surgical Oncology

    International Nuclear Information System (INIS)

    Ndirangu, D.T.

    2009-01-01

    Defines nuclear medicine as a branch that utilizes nuclear technology for diagnosis and treatment of diseases.The principles of nuclear medicine are; it uses the principle that a certain radiopharmaceutical (tracer) will at a certain point in time have a preferential uptake by a particular body or tissue. it is imaged by use the use of detectors mounted in gamma cameras or PET (Position emission tomography) devices

  14. Asian School of Nuclear Medicine

    International Nuclear Information System (INIS)

    Sundram, F.X.

    2007-01-01

    A number of organisations are involved in the field of nuclear medicine education. These include International Atomic Energy Agency (IAEA), World Federation of Nuclear Medicine and Biology (WFNMB), Asia-Oceania Federation of Nuclear Medicine and Biology (AOFNMB), Society of Nuclear Medicine (SNM in USA), European Association of Nuclear Medicine (EANM). Some Universities also have M.Sc courses in Nuclear Medicine. In the Asian Region, an Asian Regional Cooperative Council for Nuclear Medicine (ARCCNM) was formed in 2000, initiated by China, Japan and Korea, with the main aim of fostering the spread of Nuclear Medicine in Asia. The Asian School of Nuclear Medicine (ASNM) was formed in February 2003, with the ARCCNM as the parent body. The Aims of ASNM are: to foster Education in Nuclear Medicine among the Asian countries, particularly the less developed regions; to promote training of Nuclear Medicine Physicians in cooperation with government agencies, IAEA and universities and societies; to assist in national and regional training courses, award continuing medical education (CME) points and provide regional experts for advanced educational programmes; and to work towards awarding of diplomas or degrees in association with recognised universities by distance learning and practical attachments, with examinations. There are 10 to 12 teaching faculty members from each country comprising of physicists, radio pharmacists as well as nuclear medicine physicians. From this list of potential teaching experts, the Vice-Deans and Dean of ASNM would then decide on the 2 appropriate teaching faculty member for a given assignment or a course in a specific country. The educational scheme could be in conjunction with the ARCCNM or with the local participating countries and their nuclear medicine organisations, or it could be a one-off training course in a given country. This teaching faculty is purely voluntary with no major expenses paid by the ASNM; a token contribution could be

  15. Maladministrations in nuclear medicine

    International Nuclear Information System (INIS)

    Smart, R.C.

    2002-01-01

    Maladministration has been defined as the mistaken administration of a radiopharmaceutical to a patient. Examples include the administration of the wrong radiopharmaceutical or the wrong activity to the correct patient or the administration of the correct radiopharmaceutical to the wrong patient. Although maladministrations are rare, lessons can be learnt from the incidents that do occur. Medical maladministrations and other radiation incidents are discussed by members of the NSW Hospital and University Radiation Safety Officers Group (HURSOG) at their bi-monthly meetings. During the three years of 1997-1999 fourteen incidents of maladministrations in nuclear medicine were reported. Analysis of these reports indicated that eight (57 %) were due to the wrong radiopharmaceutical having been administered. This usually occurred because the technologist had selected the wrong lyophilised agent when the radiopharmaceutical was being prepared, or selected the wrong vial of the reconstituted agent. For example, in one instance a vial of MAG3 was reconstituted instead of a vial of HMPAO. These mistakes occurred even though the vials were clearly labelled and sometimes had different coloured labels. Of the remaining 6 cases, two involved the wrong activity being administered due to a mis-read dose calibrator, two involved the wrong procedure being performed following a breakdown in communication and the final two incidents resulted in the wrong patient being administered the radiopharmaceutical. In order to minimise the possibility of recurrence of these incidents the NSW Radiation Advisory Council asked the NSW Branch of the Australian and New Zealand Society of Nuclear Medicine and HURSOG to jointly convene a Working Party to prepare Guidelines for the administration of radiopharmaceuticals. The Guidelines specify: 1. the procedure for the validation of the requested investigation on the request form 2. who should reconstitute, dispense and administer radiopharmaceuticals

  16. Proceedings of the forty third annual conference of Society of Nuclear Medicine India: empowering modern medicine with molecular nuclear medicine

    International Nuclear Information System (INIS)

    2011-01-01

    Theme of the 43rd Annual Conference of the Society of Nuclear Medicine India is 'empowering modem medicine with molecular nuclear medicine'. Keeping the theme in mind, the scientific committee has arranged an attractive and comprehensive program for both physicians and scientists reflecting the multimodality background of Nuclear Medicine and Metabolic Imaging. During this meeting the present status and future prospects of Nuclear medicine are discussed at length by esteemed faculty in dedicated symposia and interesting featured sessions which are immensely facilitate in educating the participants. Nuclear Medicine has come a long way since the first applications of radioiodine in the diagnosis of thyroid disease. The specialty of nuclear medicine in India is growing very rapidly. Technology continues to push the field in new directions and open new pathways for providing optimal care to patients. It is indeed an exciting time in the world of imaging and in the field of nuclear medicine. Innovative techniques in hardware and software offer advantages for enhanced accuracy. New imaging agents, equipment, and software will provide us with new opportunities to improve current practices and to introduce new technology into the clinical protocols. Papers relevant to INIS are indexed separately

  17. Safety guide for protection in nuclear medicine laboratories

    International Nuclear Information System (INIS)

    1995-01-01

    The regulations that must be taken into account during constructing the nuclear medicine laboratories to meet the requirements of radiation protection and the specifications of equipment in the laboratory, quality control, radioactive monitoring, protective procedures, personnel qualifications are given

  18. Nuclear Medicine | RadTown USA | US EPA

    Science.gov (United States)

    2018-05-01

    >Nuclear medicine procedures can help detect and treat disease by using a small amount of radioactive material, called a radiopharmaceutical. Some radiopharmaceuticals are used with imaging equipment to detect diseases.

  19. Future of nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Ganatra, R D

    1993-12-31

    When it comes to setting up nuclear medicine in a developing country, there is a group of people, who feel that such high technology has no place in a developing country. RIA is likely to remain the method of choice for the research laboratory. The use of radioisotopic label has many advantages compared to the use of an enzyme marker. Generally, iodination is simpler than the preparation of an enzyme labelled substance, especially since there has been no agreement as to which enzyme is best for substances as small as steroids or a large as viruses. In addition, there may be some change in the configuration of the enzyme or the substance to be labelled during the conjugation procedure. Monoclonal antibodies can provide virtually unlimited amounts of homogenous antibodies against a specific antigenic site. The heterogeneous antibodies are more likely to provide more sensitive assays than the monoclonal antibodies, although assays employing the latter are likely to be more specific. The optimal choice of the antiserum may depend on whether sensitivity or specificity is required for the assays

  20. Future of nuclear medicine

    International Nuclear Information System (INIS)

    Ganatra, R.D.

    1992-01-01

    When it comes to setting up nuclear medicine in a developing country, there is a group of people, who feel that such high technology has no place in a developing country. RIA is likely to remain the method of choice for the research laboratory. The use of radioisotopic label has many advantages compared to the use of an enzyme marker. Generally, iodination is simpler than the preparation of an enzyme labelled substance, especially since there has been no agreement as to which enzyme is best for substances as small as steroids or a large as viruses. In addition, there may be some change in the configuration of the enzyme or the substance to be labelled during the conjugation procedure. Monoclonal antibodies can provide virtually unlimited amounts of homogenous antibodies against a specific antigenic site. The heterogeneous antibodies are more likely to provide more sensitive assays than the monoclonal antibodies, although assays employing the latter are likely to be more specific. The optimal choice of the antiserum may depend on whether sensitivity or specificity is required for the assays

  1. Nuclear medicine imaging system

    Science.gov (United States)

    Bennett, Gerald W.; Brill, A. Bertrand; Bizais, Yves J. C.; Rowe, R. Wanda; Zubal, I. George

    1986-01-01

    A nuclear medicine imaging system having two large field of view scintillation cameras mounted on a rotatable gantry and being movable diametrically toward or away from each other is disclosed. In addition, each camera may be rotated about an axis perpendicular to the diameter of the gantry. The movement of the cameras allows the system to be used for a variety of studies, including positron annihilation, and conventional single photon emission, as well as static orthogonal dual multi-pinhole tomography. In orthogonal dual multi-pinhole tomography, each camera is fitted with a seven pinhole collimator to provide seven views from slightly different perspectives. By using two cameras at an angle to each other, improved sensitivity and depth resolution is achieved. The computer system and interface acquires and stores a broad range of information in list mode, including patient physiological data, energy data over the full range detected by the cameras, and the camera position. The list mode acquisition permits the study of attenuation as a result of Compton scatter, as well as studies involving the isolation and correlation of energy with a range of physiological conditions.

  2. Nuclear medicine in oncology

    International Nuclear Information System (INIS)

    Bishop, J.F.

    1999-01-01

    Cancer is increasingly prevalent in our society. There is a life-time risk that 1 in 3 Australian men and 1 in 4 Australian women will get cancer before the age of 75 years. Overall, 27% of the deaths in NSW are currently related to cancer. The common cancers for men are prostate, lung, melanoma, colon, rectum and bladder. For women the common cancers are breast, colon, melanoma, lung and unknown primary. However, overall lung cancer remains the major cause of cancer deaths (20%) followed by colorectal (13%), unknown site (8%), breast and prostate. Breast and lung cancer are the major causes of death in women. Recent information on 5 year survivals reveal good 5 year survival rates for breast (78.6%), prostate (72.4%) and melanoma (92%), while some tumours such as lung cancer (10.7%) have poor survival. Colon cancer has intermediate survival (57.1%). Projections for cancer incidence suggests rates of cancer will increase for colorectal cancer, melanoma, lung cancer in females but decrease for breast, lung in males and prostate cancer. Major strategic directions in cancer research are understanding carcinogenesis, identification of high risk groups, screening and early detection, chemo-prevention, new cancer therapies, combined modality therapy and quality of life issues. Nuclear medicine will play an important part in many of these areas

  3. Recent history of nuclear medicine

    International Nuclear Information System (INIS)

    Potchen, E.J.; Gift, D.A.

    1988-01-01

    Diagnostic nuclear medicine's recent history is characterized both by significant change and by growing participation in efforts to quantify the impact of nuclear medicine procedures on clinical judgment and patient management, as well as to develop methods for studying the efficacy of diagnostic procedures in general. The replacement of many nuclear medicine procedures that at one time were considered essential standards of clinical care by newer, more efficient and effective modalities has been complimented by the continued development of increasingly sophisticated applications of scintigraphic tracer methods

  4. Nuclear medicine, a proven partnership

    International Nuclear Information System (INIS)

    Henderson, L. A.

    2009-01-01

    Full text:Ultrasonography is the modality of choice for demonstrating many cystic structures within the body. However nuclear medicine is often able to demonstrate functional disturbance where ultrasound and conventional radiography are unsuccessful. A case is presented in which a 16 day old male child presented to nuclear medicine with a right upper quadrant cyst found in ultrasound with exact location equivocal. Determining the location and nature of the cyst was essential to the treatment team for patient management. A hepatobiliary study was performed and evidence of a choledochal cyst was found. In partnership with ultrasound, nuclear medicine was able to identify a possibly malignant structure and consequently patient management was determined.

  5. Establishment of nuclear equipment qualification system

    International Nuclear Information System (INIS)

    Joo, Po Kook; Lim, Nam Jin; Lee, Young Gun

    2003-04-01

    This study is carried out by KEARI(Korea Atomic Energy Research Institute) as the lead organization in cooperation with KIMM(Korea Institute of Machinery and Materials), KTL(Korea Testing Laboratory) and KRISS(Korea Research Institute of Standards and Science) to construct a basis of efficient management of nuclear equipment qualification business by expanding test equipment of each of participating organization, and developing qualification technologies. As for KIMM, control system of large scale shaker was replaced with advanced system, and LOCA(Loss of Coolant Accident) test facility was installed. KTL is now capable of conducting seismic tests of nuclear I and C as a result of installation of seismic test equipment during the first two project years. KRISS participated in the Project with a view to have large scale EMI test equipment and related technologies. In parallel with expansion of test equipment, a industrial-educational-research cooperation committee, as an intermediate step toward integrated equipment qualification system to maximize the usage of test equipment, was established and cooperation methods were investigated. As a result, Korea Nuclear Equipment Qualification Association, an corporate juridical person, was established. Research on development of thermal and radiation aging test technology of nuclear materials was carried out by Hanyang University and SECO(Saehan Engineering and Qualification Co., Ltd.). Integrated Equipment Qualification Database was developed which contains material test data, equipment qualification data and other EQ related informations. Standard qualification procedures were developed in order for test laboratories and manufacturers to establish design requirements and to efficiently perform tests

  6. Complementary alternative medicine and nuclear medicine

    International Nuclear Information System (INIS)

    Werneke, Ursula; McCready, V.Ralph

    2004-01-01

    Complementary alternative medicines (CAMs), including food supplements, are taken widely by patients, especially those with cancer. Others take CAMs hoping to improve fitness or prevent disease. Physicians (and patients) may not be aware of the potential side-effects and interactions of CAMs with conventional treatment. Likewise, their known physiological effects could interfere with radiopharmaceutical kinetics, producing abnormal treatment responses and diagnostic results. Nuclear medicine physicians are encouraged to question patients on their intake of CAMs when taking their history prior to radionuclide therapy or diagnosis. The potential effect of CAMs should be considered when unexpected therapeutic or diagnostic results are found. (orig.)

  7. Establishment for Nuclear Equipment: Overview

    International Nuclear Information System (INIS)

    Pracz, J.

    2001-01-01

    Full text: The activity of ZdAJ in 2000 was focused on realisation of the Government-Ordered Project - 6/15 MeV Accelerator. The realisation was accomplished in two stages: - stage I should result in deriving principal operational parameters of the accelerator - stage 2 will result in full implementation of the control system providing optimum control of the equipment and automatic maintaining of its parameters. Within the frames of the first stage, a klystron modulator panel was finished and the design documentation of the mechanical supporting structure, the arm, accelerating structure, collimator and control panel were advanced. Manufacturing of the above sub-units in the workshop has started. In the frames of the Specific Project of the State Committee for Scientific Research, the improvement of Neptun lOPC accelerator was undertaken. The read-out of the monitor dose with atmospheric pressure and ambient temperature compensation has been introduced. New filters for equalising the photon and electron beam and new wedge filters have been designed. Changes in programming have been introduced, which improve the patient's safety by eliminating possible personnel errors and increase the accuracy of radiation fields read-out. In 2000 ZdAJ progressed in development of the Quality System conforming EN-ISO 9001 Standard by including the provisions of EN 46001 Standard. The Standard EN 46001: ''Quality Systems - Medical Equipment''. Detailed requirements related to application of EN ISO 9001 is an European Quality Standard extending the provisions of EN ISO 9001 Standard over the manufacturers of medical equipment. (author)

  8. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... Disorders Video: The Basketball Game: An MRI Story Radiology and You Sponsored by Image/Video Gallery Your Radiologist Explains Nuclear Medicine Transcript Welcome to Radiology Info dot org Hello! I’m Dr. Ramji ...

  9. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... other diagnostic tests. Nuclear medicine imaging procedures use small amounts of radioactive materials – called radiotracers – that are ... However, because the amount of radiotracer used is small, the level of radiation exposure is relatively low ...

  10. Considerations regarding nuclear medicine terminology

    International Nuclear Information System (INIS)

    Als, C.

    2008-01-01

    This article through some examples shows us all the interest of the use of terminology in nuclear medicine. Each would find in it its interest, from the patient to the doctors in different disciplines. (N.C.)

  11. The teaching of nuclear medicine

    International Nuclear Information System (INIS)

    Bok, B.; Ducassou, D.

    1984-01-01

    Having first recalled the need of a specialized teaching in the field of nuclear medicine, the authors describe the training programmes now available in this sector for doctors, chemists and hospital-attendants [fr

  12. Nuclear Medicine National Headquarter System

    Data.gov (United States)

    Department of Veterans Affairs — The Nuclear Medicine National HQ System database is a series of MS Excel spreadsheets and Access Database Tables by fiscal year. They consist of information from all...

  13. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... or before abnormalities can be detected with other diagnostic tests. Nuclear medicine imaging procedures use small amounts ... relatively low and the benefit of an accurate diagnosis far outweighs any risk. To learn more about ...

  14. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... An MRI Story Radiology and You Sponsored by Image/Video Gallery Your Radiologist Explains Nuclear Medicine Transcript ... by a special camera and computer to create images of the inside of your body. If you’ ...

  15. [Costing nuclear medicine diagnostic procedures].

    Science.gov (United States)

    Markou, Pavlos

    2005-01-01

    To the Editor: Referring to a recent special report about the cost analysis of twenty-nine nuclear medicine procedures, I would like to clarify some basic aspects for determining costs of nuclear medicine procedure with various costing methodologies. Activity Based Costing (ABC) method, is a new approach in imaging services costing that can provide the most accurate cost data, but is difficult to perform in nuclear medicine diagnostic procedures. That is because ABC requires determining and analyzing all direct and indirect costs of each procedure, according all its activities. Traditional costing methods, like those for estimating incomes and expenses per procedure or fixed and variable costs per procedure, which are widely used in break-even point analysis and the method of ratio-of-costs-to-charges per procedure may be easily performed in nuclear medicine departments, to evaluate the variability and differences between costs and reimbursement - charges.

  16. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... you have any allergies. You may have some concerns about nuclear medicine. However, because the amount of ... You Sponsored by About Us | Contact Us | FAQ | Privacy | Terms of Use | Links | Site Map Copyright © 2018 ...

  17. Digital filtering in nuclear medicine

    International Nuclear Information System (INIS)

    Miller, T.R.; Sampathkumaran, S.

    1982-01-01

    Digital filtering is a powerful mathematical technique in computer analysis of nuclear medicine studies. The basic concepts of object-domain and frequency-domain filtering are presented in simple, largely nonmathemaical terms. Computational methods are described using both the Fourier transform and convolution techniques. The frequency response is described and used to represent the behavior of several classes of filters. These concepts are illustrated with examples drawn from a variety of important applications in nuclear medicine

  18. Nuclear medicine. La medecine nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Blanquet, P; Blanc, D

    1976-01-01

    The applications of radioisotopes in medical diagnostics are briefly reviewed. Each organ system is considered and the Nuclear medicine procedures pertinent to that system are discussed. This includes, the principle of the test, the detector and the radiopharmaceutical used, the procedure followed and the clinical results obtained. The various types of radiation detectors presently employed in Nuclear Medicine are surveyed, including scanners, gamma cameras, positron cameras and procedures for obtaining tomographic presentation of radionuclide distributions.

  19. Radiation protection in nuclear medicine

    International Nuclear Information System (INIS)

    Chougule, Arun

    2014-01-01

    The branch of medical science that utilizes the nuclear properties of the radioactivity and stable nuclides to make diagnostic evaluation of anatomical and/or physiological conditions of the body and provide therapy with unsealed radioactive sources is called Nuclear Medicine (NM). The use of unsealed radionuclides in medicine is increasing throughout the world for diagnosis and treatment. As per UNSCEAR report more than 6 million nuclear medicine procedures are conducted in a year. However we know that radiation is double edged sword and if not used carefully will be harmful to patient as well as staff and therefore a nuclear medicine procedure should be undertaken only after proper justification and optimization. Nuclear medicine procedures are different than the X-ray diagnostic procedures as in NM, radioisotope is administered to patient and patient becomes radioactive. The NM staff is involved in unpacking radioactive material, activity measurements, storage of sources, internal transports of sources, preparation of radiopharmaceuticals, administration of radiopharmaceutical, examination of the patient, care of the radioactive patient, handling of radioactive waste and therefore receives radiation dose. This talk will discuss the various steps for radiation safety of patient, staff and public during Nuclear Medicine procedures so as to implementing the ALARA concept. (author)

  20. Nuclear medicine. 1 part. Manual

    International Nuclear Information System (INIS)

    Shlygina, O.E.; Borisenko, A.R.

    2006-01-01

    Current manual is urged to give wide-scale readers a submission on a key principles and methods of nuclear medicine, and it opportunities and restrictions in diagnostics and treatment of different diseases. Nuclear medicine is differing first of all by combination of diverse knowledge fields: special knowledge of a doctor, knowledge of physical processes bases, related with radiation, grounds of radiopharmaceutics, dosimetry. In the base of the book the 5th edition of 'Nuclear medicine' manual in 2 parts of German authors - Schicha, G.; Schober, O. is applied. In the book publishing the stuff of the Institute of Nuclear Physics of the National Nuclear Center of Republic of Kazakhstan has been worked. Modifications undergo practically all chapters: especially the second one, forth and sixth was enlarged. The 1 part of the book was published due to support of IAEA within the Technical cooperation project 'Implementation of Nuclear Medicine and Biophysics Center' (KAZ/6/007). The manual second part - devoted to applications of nuclear medicine methods for diagnostics and treatment - will be published in 2007

  1. Nuclear Medicine Imaging

    Science.gov (United States)

    ... necesita saber acerca de... Estudios de Imagen de Medicina Nuclear Un procedimiento de medicina nuclear se describe algunas veces como unos rayos- ... través del cuerpo del paciente. Los procedimientos de medicina nuclear utilizan pequeñas cantidades de mate- riales radiactivos, ...

  2. Knowledge Management in Nuclear Medicine

    International Nuclear Information System (INIS)

    Abaza, A.

    2017-01-01

    The last two decades have seen a significant increase in the demand for medical radiation services following the introduction of new techniques and technologies that has led to major improvements in the diagnosis and treatment of human diseases. The diagnostic and therapeutic applications of nuclear medicine techniques play a pivotal role in the management of these diseases, improving the quality of life of patients by means of an early diagnosis allowing opportune and proper therapy. On the other hand, inappropriate or unskilled use of these technologies can result in potential health hazards for patients and staff. So, there is a need to control and minimize these health risks and to maximize the benefits of radiation in medicine. The present study aims to discuss the role of nuclear medicine technology knowledge and scales in improving the management of patients, and raising the awareness and knowledge of nuclear medicine staff regarding the use of nuclear medicine facilities. The practical experience knowledge of nuclear medicine staff in 50 medical centers was reviewed through normal visiting and compared with the IAEA Published documents information. This review shows that the nuclear medicine staff has good technology knowledge and scales during managing patients as compared to IAEA Published information regarding the radiation protection measures and regulation. The outcome of the study reveals that competent authority can improve radiation safety in medical settings by developing and facilitating the implementation of scientific evidence-based policies and recommendations covering nuclear medicine technology focusing in the public health aspects and considering the risks and benefits of the use of radiation in health care. It could be concluded that concerted and coordinated efforts are required to improve radiation safety, quality and sustain ability of health systems

  3. Some aspects of the development of nuclear medicine in the USSR

    International Nuclear Information System (INIS)

    Kasatkin, Yu.N.

    1989-01-01

    Principle directions of the development of nuclear medicine in the USSR are presented.Some problems, which solution affects the state of nuclear medicine in the country are discussed. Problems of technical equipment of nuclear-diagnostic investigations are considered. Measures, directed to improvement of proffesional traing of specialists dealing with nuclear medicine are planned

  4. Nuclear Medicine Practice in Kenya

    International Nuclear Information System (INIS)

    Ndrirangu, T.T.

    2017-01-01

    Nuclear medicine is a medical specialty that relies on the use of nuclear technology in the diagnosis and treatment (therapy) of diseases. Nuclear medicine uses the principle that a certain radiopharmaceutical (tracer) will at a certain point in time have a preferential uptake by a particular body, tissue or cell. Unlike other radiation applications for medical use, nuclear medicine uses open (unsealed) sources of radiation. The tracer is introduced into the body of the patient through several routes (oral, intravenous, percutaneous, intradermally, inhalation, intracapsular etc) and s/he becomes the source of radiation. Early diagnosis of diseases coupled with associated timely therapeutic intervention will lead to better prognosis. In a country with an estimated population of 42 million in 2017, Kenya has only two (2) nuclear medicine facilities (units) that is Kenyatta National Hospital - Public facility and Aga Khan University Hospital which is a Private facility. Being a relatively new medical discipline in Kenya, several measures have been taken by the clinical nuclear medicine team to create awareness at various levels. Kenya does not manufacture radiopharmaceuticals. We therefore have to import them from abroad and this makes them quite expensive, and the process demanding. There is no local training in nuclear medicine and staff have to be sent abroad for training, making this quite expensive and cumbersome and the IAEA has been complimenting in this area. With concerted effort by all stakeholders at the individual, national and international level, it is possible for Kenya to effectively sustain clinical nuclear medicine service not only as a diagnostic tool in many disease entities, but also play an increasingly important role in therapy

  5. Therapy in nuclear medicine

    International Nuclear Information System (INIS)

    Eftekhari, M.; Sadeghi, R.; Takavar, A.; Fard, A.; Saghari, M.

    2002-01-01

    Although there have been very significant development in the field of radionuclide therapy within the past 10 years, radionuclide therapy in the form of 131 I, 33 P,.... have been in use for over 46 years. Palliation of bone pain is a good example for radionuclide therapy. It has an especial role in advanced metastatic cancer. 32 P, 89 Sr-Cl, 186 Re-HEDP, 133 Sm-EDTMP, and 117 mSn-DTPA are used in these patients. They are usually effective and help to maintain a painless life for patients with advanced cancer. Although this kind of therapy is not as rapid as radiotherapy, its effect lasts longer. In addition re-treatment with these agents is safe and effective. Radioimmunotherapy is a new exciting technique in the radionuclide therapy. In this technique monoclonal antibodies or their fragments are labeled with a suitable radionuclide, these antibodies can irradiate tumor cells over a distance of some fraction of a millimeter. Bulky tumors are obviously unsuitable targets for Rit. Several antibodies specific for Cd 20 (B1 and 1 F 5) and CD 37 (Mb-1) labeled with 131 I have been used for hematologic malignancies with good response. Several antigens associated with carcinomas of various histologic types have been targeted for therapeutic purposes by antibodies labeled with different radionuclides. Other routes of administration like intraperitoneal, intrathecal, and intravesical have been used with different rates of success. Pre targeting techniques can be used to reduce unwanted radioactive concentration in normal tissues. The avidin-biotin system is an example, which exploits the high-affinity binding between avidin and biotin, and was first used with anti-Cea antibody. Radiation synovectomy is another aspect of radionuclide therapy 198 Au colloid, 90 Y resin colloid, and 165 Dy-FHMA are some of the radionuclides used in the field of hematology. There has been significant advances in the field of therapy in nuclear medicine in recent years, which are briefly

  6. Basic Physics for Nuclear Medicine. Chapter 1

    Energy Technology Data Exchange (ETDEWEB)

    Podgorsak, E. B. [Department of Medical Physics, McGill University, Montreal (Canada); Kesner, A. L. [Division of Human Health, International Atomic Energy Agency, Vienna (Austria); Soni, P. S. [Medical Cyclotron Facility, Board of Radiation and Isotope Technology, Bhabha Atomic Research Centre, Mumbai (India)

    2014-12-15

    The technologies used in nuclear medicine for diagnostic imaging have evolved over the last century, starting with Röntgen’s discovery of X rays and Becquerel’s discovery of natural radioactivity. Each decade has brought innovation in the form of new equipment, techniques, radiopharmaceuticals, advances in radionuclide production and, ultimately, better patient care. All such technologies have been developed and can only be practised safely with a clear understanding of the behaviour and principles of radiation sources and radiation detection. These central concepts of basic radiation physics and nuclear physics are described in this chapter and should provide the requisite knowledge for a more in depth understanding of the modern nuclear medicine technology discussed in subsequent chapters.

  7. Introduction to the physics of nuclear medicine

    International Nuclear Information System (INIS)

    Goodwin, P.N.; Rao, D.V.

    1977-01-01

    This book presents the fundamentals of physics as they relate to nuclear medicine in as elementary way as possible. The text concentrates solely on those facts which apply directly to the studies or to the instruments which the physician or technician will be using. After an introductory review of the necessary mathematics, the text examines the structure of matter and the nature of radioactivity. The discussion of nuclear decay processes incorporates information on negative beta decay, gamma emission, positron decay, electron capture and isomeric transitions. Alpha particles, beta particles and photons are explored in the chapter on the interaction of radiation with matter. Scintillation detectors, scanners, gamma cameras, and other imaging devices are all explored in detail. This overview of equipment is followed by a study of radionuclides in nuclear medicine and a review of statistics. The final two chapters are concerned with radiation safety and dosimetry

  8. XXIVth days of nuclear medicine

    International Nuclear Information System (INIS)

    1986-01-01

    Abstracts are presented of papers submitted to the 24th Days of Nuclear Medicine held in Opava, Czechoslovakia between Oct 9 and 11, 1985. The conference proceeded in three sessions, namely nuclear pediatrics, miscellaneous and technicians' session. The publication also contains abstracts of posters. (L.O.)

  9. Regulatory problems in nuclear medicine

    International Nuclear Information System (INIS)

    Vandergrift, J.F.

    1987-01-01

    Governmental involvement in the practice of medicine has increased sharply within the past few years. The impact on health care has, for the most part, been in terms of financial interactions between health care facilities and federally funded health services programs. One might say that this type of governmental involvement has indirect impact on the medical and/or technical decisions in the practice of nuclear medicine. In other areas, however, governmental policies and regulations have had a more direct and fundamental impact on nuclear medicine than on any other medical specialty. Without an understanding and acceptance of this situation, the practice of nuclear medicine can be very frustrating. This chapter is thus written in the hope that potential frustration can be reduced or eliminated

  10. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... medicine imaging to evaluate organ systems, including the: kidneys and bladder. bones. liver and gallbladder. gastrointestinal tract. ... help diagnose and evaluate: urinary blockage in the kidney. backflow of urine from the bladder into the ...

  11. Cardiovascular nuclear medicine and MRI

    International Nuclear Information System (INIS)

    Reiber, J.H.C.; Wall, E.E. van der

    1992-01-01

    This book is based on a meeting of the Working Group on Nuclear Cardiology, which held March 22-23,1991 under the auspices of the European Society of Cardiology and the Interuniversity Cardiology Institute of the Netherlands, and on the Second International Symposium on Computer Applications in Nuclear Medicine and Cardiac Magnetic Resonance Imaging, which was held March 20-22,1991 in Rotterdam, the Netherlands. It covers almost every aspect of quantitative cardio-vascular nuclear medicine and magnetic resonance imaging. The main topics are: single photon emission computed tomography (technical aspects); new development in cardiovascular nuclear medicine; advances in cardiovascular imaging; cardiovascular clinical applications; and cardiac magnetic resonance imaging. (A.S.). refs.; figs.; tabs

  12. Upgradation of nuclear medical equipment in the developing countries and its impact in Bangladesh

    CERN Document Server

    Jahangir, S M; Haque, M A S; Hoq, M; Mawla, Y; Morium, T; Uddin, M R; Xie, Y

    2002-01-01

    Bangladesh has thirteen Nuclear Medical Centres and one Institute of Nuclear Medicine in the country which are being run and maintained by the physicians scientists and engineers of Bangladesh Atomic Energy Commission. The peaceful application of atomic energy was initiated through all these Centres with the use of clinical isotopes for thyroid and kidney studies. The equipment used for these purposes were the thyroid uptake system, rectilinear scanner and the multiprobe renogram system. The first gamma camera was installed in the country in 1980 at the Institute of Nuclear Medicine, Dhaka. That was the turning point for the country in the field of nuclear medicine. Presently all the nuclear medical establishments are equipped least with a gamma camera, thyroid uptake system and a renogram system. In the last two decades there has been a tremendous development in the design of nuclear medical equipment. Most of the old equipments were slow and manually operated. In the beginning of nineties of the past centur...

  13. Neuroimaging, nuclear medicine

    International Nuclear Information System (INIS)

    Kato, Takashi; Ito, Kengo; Arahata, Yutaka

    2007-01-01

    This chapter describes radionuclide imaging as it related to neurodegenerative dementias like Alzheimer's disease (AD), idiopathic Parkinson's disease (PD), and normal aging, among the various diseases of the elderly. The role of neuroimaging with nuclear medicine is to detect changes in neural activities that are caused by these diseases. Such changes may be indirect phenomena, but the imaging of neural functions provides physicians with useful, objective information regarding pathophysiology in the brain. Brain activities change with age, with the elderly showing decreased brain function in memory, execution, and attention. Age-dependent reduction in the global mean of cerebral blood flow (CBF) has been reported in many studies that have used X-133 and O-15 labeled gas, the spatial resolution of which is low. Partial volume correction (PVC) is available through the segmentation of grey matter from high-resolution T1-weighted magnetic resonance imaging. Meltzer reported that age-related change disappeared after PVC. The relative distribution of CBF and glucose metabolism has been examined on a voxel-by-voxel basis in many studies. The areas negatively correlated with age are the anterior part of the brain, especially the dorsolateral and medial frontal areas, anterior cingulate cortices, frontolateral and perisylvian cortices, and basal ganglia. The areas positively correlated with age are the occipital lobe, temporal lobe, sensorimotor cortex, and primary visual cortex. It is not easy to define ''normal aging''. Aged people tend to have the potential for diseases like cerebral ischemia caused by arteriosclerosis. Ischemia results in volume loss of the gray matter and CBF. The ApoE e4 gene is a risk factor for AD, and carriers of the ApoE e4 allel show CBF-like AD even at a relatively young age. Hypo-glucose metabolism in the posterior cingulate cortex is seen in 5% of normal people over 50 years of age. This Alzheimer-like CBF/metabolic pattern needs further

  14. Nuclear medicine. Abstracts

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    This issue of the journal contains the abstracts of the 183 conference papers as well as 266 posters presented at the conference. Subject fields covered are: Neurology, psychology, oncology, pediatrics, radiopharmacy, endocrinology, EDP, measuring equipment and methods, radiological protection, cardiology, and therapy. (orig./CB) [de

  15. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... for the radiotracer to accumulate in the body part of interest and imaging may take up to several hours to perform, though in some cases, newer equipment is available that can substantially shorten the procedure time. The resolution of structures of the body with ...

  16. Gamma scanning equipment for nuclear safeguards

    International Nuclear Information System (INIS)

    De Grandi, G.; Stanchi, L.

    1975-01-01

    Many reasons justify the use of gamma techniques in the field of nuclear safeguards. The paper describes electronic equipment for gamma-scanning of non-irradiated fuel elements. The control of the operation is completely digital and driven by a minicomputer and gives more accurate results in respect of an analog chain which has been successfully used in fuel element manufacturing plants

  17. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... may be placed into the bladder, which may cause temporary discomfort. It is important that your child ... images are being recorded. Though nuclear imaging itself causes no pain, children may experience some discomfort from ...

  18. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... resonance imaging (MRI) to produce special views, a practice known as image fusion or co-registration. These ... your doctor of any recent illnesses or other medical conditions. Depending on the type of nuclear scan ...

  19. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... help diagnose childhood disorders that are present at birth or that develop during childhood. It provides unique ... diagnose childhood disorders that are congenital (present at birth) or that develop during childhood. Physicians use nuclear ...

  20. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... exams at the same time. An emerging imaging technology, but not readily available at this time is ... your doctor of any recent illnesses or other medical conditions. Depending on the type of nuclear scan ...

  1. Equipment system for advanced nuclear fuel development

    International Nuclear Information System (INIS)

    Kwon, Hyuk Il; Ji, C. G.; Bae, S. O.

    2002-11-01

    The purpose of the settlement of equipment system for nuclear Fuel Technology Development Facility(FTDF) is to build a seismic designed facility that can accommodate handling of nuclear materials including <20% enriched Uranium and produce HANARO fuel commercially, and also to establish the advanced common research equipment essential for the research on advanced fuel development. For this purpose, this research works were performed for the settlement of radiation protection system and facility special equipment for the FTDF, and the advanced common research equipment for the fuel fabrication and research. As a result, 11 kinds of radiation protection systems such as criticality detection and alarm system, 5 kinds of facility special equipment such as environmental pollution protection system and 5 kinds of common research equipment such as electron-beam welding machine were established. By the settlement of exclusive domestic facility for the research of advanced fuel, the fabrication and supply of HANARO fuel is possible and also can export KAERI-invented centrifugal dispersion fuel materials and its technology to the nations having research reactors in operation. For the future, the utilization of the facility will be expanded to universities, industries and other research institutes

  2. Development of nuclear equipment qualification technology

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Heon O; Kim, Wu Hyun; Kim, Jin Wuk; Kim, Jeong Hyun; Lee, Jeong Kyu; Kim, Yong Han; Jeong, Hang Keun [Korea Institute of Machinery and Materials, Taejon (Korea)

    1999-03-01

    In order to enhance testing and evaluation technologies, which is one of the main works of the Chanwon branch of KIMM(Korea Institute of Machinery and Materials), in addition to the present work scope of the testing and evaluation in the industrial facilities such as petroleum and chemical, plants, the qualification technologies of the equipments important to safety used in the key industrial facilities such as nuclear power plants should be localized: Equipments for testing and evaluation is to be set up and the related technologies must be developed. In the first year of this study, of vibration aging qualification technologies of equipments important to safety used in nuclear power plants have been performed. (author). 27 refs., 81 figs., 17 tabs.

  3. Radiation physics for nuclear medicine

    CERN Document Server

    Hoeschen, Christoph

    2011-01-01

    The field of nuclear medicine is expanding rapidly, with the development of exciting new diagnostic methods and treatments. This growth is closely associated with significant advances in radiation physics. In this book, acknowledged experts explain the basic principles of radiation physics in relation to nuclear medicine and examine important novel approaches in the field. The first section is devoted to what might be termed the "building blocks" of nuclear medicine, including the mechanisms of interaction between radiation and matter and Monte Carlo codes. In subsequent sections, radiation sources for medical applications, radiopharmaceutical development and production, and radiation detectors are discussed in detail. New frontiers are then explored, including improved algorithms for image reconstruction, biokinetic models, and voxel phantoms for internal dosimetry. Both trainees and experienced practitioners and researchers will find this book to be an invaluable source of up-to-date information.

  4. Nuclear Medicine on the net

    International Nuclear Information System (INIS)

    Graney, K.; Lin, P.C.; Chu, J.; Sathiakumur, C.

    2003-01-01

    Full text: To gain insight into Internet usage as a potential means of communicating with clinicians. Method: 200 clinicians within the South Western Sydney Health Area were surveyed by mail. Questionnaire details included Internet access, frequency of access, interest in department web site, suitability of content and interest in electronic bookings. The total response rate was 37% (74/200). General Practitioners comprised 46% of the respondents, and specialists 54%. All respondents had access to the Internet (44% from home only, 8% from work, 48% from both locations), with 57% accessing the Web daily. There was a high overall interest by respondents in accessing a Nuclear medicine web site, particularly for information and results, but a relative reluctance to consider electronic bookings. The following table outlines the respondents in detail. Our results indicate that a Nuclear Medicine web site has the potential to be an effective means of communicating with clinicians. Copyright (2003) The Australian and New Zealand Society of Nuclear Medicine Inc

  5. Historic images in nuclear medicine

    DEFF Research Database (Denmark)

    Hess, Søren; Høilund-Carlsen, Poul Flemming; Alavi, Abass

    2014-01-01

    In 1976, 2 major molecular imaging events coincidentally took place: Clinical Nuclear Medicine was first published in June, and in August researchers at the Hospital of the University of Pennsylvania created the first images in humans with F-FDG. FDG was initially developed as part of an evolution...... set in motion by fundamental research studies with positron-emitting tracers in the 1950s by Michel Ter-Pegossian and coworkers at the Washington University. Today, Clinical Nuclear Medicine is a valued scientific contributor to the molecular imaging community, and FDG PET is considered the backbone...

  6. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... may be placed into the bladder, which may cause temporary discomfort. It is important that your child remain very still while the images are being recorded. Though nuclear imaging itself causes no pain, children may experience some discomfort from ...

  7. Nuclear medicine consensus

    International Nuclear Information System (INIS)

    Camargo, Edwaldo E.; Marin Neto, Jose Antonio; Naccarato, Alberto F.P.; Ramires, Jose Antonio F.; Castro, Iran de; Paiva, Eleuses Vieira; Thom, Anneliese F.; Barroso, Adelanir; Blum, Bernardo; Hollanda, Ricardo; Mansur, Antonio de Padua

    1995-01-01

    The use of nuclear methods in cardiovascular diseases is studied concerning diagnosis, risk, prognosis, indications and accuracy. Aspects concerning chronic coronary artery disease, myocardial ischemia, myocardial infarction, viable myocardium, valvular heart disease, ventricular dysfunction, heart transplant, congenital heart diseases in adults, are discussed

  8. Introductory physics of nuclear medicine. Third edition

    International Nuclear Information System (INIS)

    Chandra, R.

    1987-01-01

    The new third edition includes essential details and many examples and problems taken from the routine practice of nuclear medicine. Basic principles and underlying concepts are explained, although it is assumed that the reader has some current use as a bone densitometer. For resident physicians in nuclear medicine, residents in pathology, radiology, and internal medicine, and students of nuclear medicine technology, the third edition offers a simplified and reliable approach to the physics and basic sciences of nuclear medicine

  9. Project management in nuclear equipment manufacture

    International Nuclear Information System (INIS)

    Liu Jiancheng

    2005-01-01

    The completion of the management organization shall be firstly considered in project management for a nuclear power plant. The organization of nuclear equipment quality assurance program and project management consists of 5 departments such as the nuclear power container department, the manufacture department and the quality assurance department. The general manager takes the overall responsibility for the quality of the nuclear press usr bearing equipment, and the vice general manager takes responsibility for the quality, technology and schedule related with the manufacture of the equipment, and organizes the organization department for the audit. The director of the quality assurance department takes the responsibility for the establishment and completion of the quality assurance program, with enough rights authorized by the general manager, including the right not bounded by the cost and schedule, and confirms the implementation of the program by related departments and personnel. The manufacture schedule shall be prepared to ensure the implementation feasibility, process continuity and flexibility. The schedule shall be followed and monitored for the whole process, to check and feedback the implementation. (authors)

  10. Seismic verification of nuclear plant equipment anchorage

    International Nuclear Information System (INIS)

    Lepiece, M.; Van Vyve, J.

    1991-01-01

    More than 60% of the electrical power of Belgium is generated by seven PWR nuclear power plants. For three of them, the electro-mechanical equipment had to be reassessed after ten years of operation, because the seismic requirements were upgraded from 0.1 g to 0.17 g free field ground acceleration. The seismic requalification of the active equipment was a critical problem as the classical methods were too conservative. The approach based on the use of the past experience on the seismic behavior of nonnuclear equipment, chosen and developed by the SQUG, had to be transposed to the Belgian N.P.P. The decision of the accept-ability of equipment relies heavily on the aseismatic capacity of anchorage. The Electrical Power Research Institute (EPRI) developed the procedure and guideline for the demonstration of the aseismatic adequacy of equipment anchorage in a cost-effective and consistent manner, to support the decision by Seismic Review Team. The field inspection procedure to identify the type of fasteners and detect their possible defects and the verification procedure developed to calculate the aseismatic capacity of equipment anchorage on the strength of fasteners, the aseismatic capacity of anchorage and the comparison of the capacity with the demand are reported. (K.I.)

  11. Calculation of an analytical memory for the installation of a PET-CT equipment in the Nuclear Medicine Department of the National Institute of Cancerology

    International Nuclear Information System (INIS)

    Trujillo Z, F.E.; Gomez A, E.

    2007-01-01

    The studies with a PET-CT equipment combines the metabolic information that provides the Positron Emission Tomography technique (PET), with the morphological data offered by the Computerized Tomography (CT). In Mexico, it will have the first PET-CT equipment, for a public service hospital. Since that makes use of radioactive material (emission of annihilation photons with 511 keV) and X rays, is necessary to calculate the necessary shielding for the PET-CT equipment room and for the area where it is managed or have presence of radioactive material (mainly fluorodeoxyglucose labelled with F-18, i.e. FDG-F18). It is presented a summary of the calculations and necessary considerations so that the shielding allows to fulfill with the official doses limits in Mexico (50 mSv/year for Occupationally Exposure Personnel, OEP and 5 mSv/year for public in general), taking into account the adjacent areas to the installation. It is concluded with the shielding thickness required for the walls and roof of the installation, having a maximum of 20 cm of concrete (ρ = 2.35 g/cm 3 ) for the administration room of radioactive material to the patients and a minimum of 1 mm of lead for the room of the PET-CT equipment, having taken into account the dimensions of each area. (Author)

  12. Nuclear medicine : occupational health issues

    International Nuclear Information System (INIS)

    Rossleigh, M.

    1988-01-01

    The occupational health aspects of nuclear medicine are discussed. There is a lack of demonstrable biological effects from low level radiation. The radiation protection measures that are applied to ensure that staff are exposed to as low a level of radiation as is possible are outlined

  13. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... other diagnostic tests. Nuclear medicine imaging procedures use small amounts of radioactive materials – called radiotracers – that are typically injected into the bloodstream, inhaled or swallowed. The radiotracer travels through the area being examined and gives off energy in the ...

  14. Pulmonary explorations in nuclear medicine

    International Nuclear Information System (INIS)

    Beck, C.

    1987-01-01

    Ten years ago specialists in Nuclear Medicine from the South of France formed an Association called ACOMEN. The objectives were to create a permanent exchange of ideas between members and a close collaboration with physicians. The group objectives have led to a combination of efforts on the behalf of each one to clarify our techniques for physicians having recourse to this speciality as well as the various categories of students passing through the Nuclear Medicine Departments. Different groups within the ACOMEN were assigned to specific subjects. Each group was in charge of building the framework of a certain topic, which was then illustrated by selected documents contributed by all members. A slide collection, complete with an explanatory booklet is the final result of this collaboration. Thus anyone concerned in any way, with nuclear medicine, is able to quickly become familiar with the techniques of the speciality, to be aware of its possibilities and its limitations and to update his hnowledge. One realizes that the first theme selected was not the easiest; pulmonary radionuclide explorations are, as everyone knows, variable and even personalized. However, the choice was deliberate. The difficulty should stimulate those responsible for the other themes as well as the people working with them. There is already a slide collection available to anyone who wishes to learn about the use of nuclear medicine in the diagnosis of respiratory diseases [fr

  15. Computer applications in nuclear medicine

    International Nuclear Information System (INIS)

    Lancaster, J.L.; Lasher, J.C.; Blumhardt, R.

    1987-01-01

    Digital computers were introduced to nuclear medicine research as an imaging modality in the mid-1960s. Widespread use of imaging computers (scintigraphic computers) was not seen in nuclear medicine clinics until the mid-1970s. For the user, the ability to acquire scintigraphic images into the computer for quantitative purposes, with accurate selection of regions of interest (ROIs), promised almost endless computational capabilities. Investigators quickly developed many new methods for quantitating the distribution patterns of radiopharmaceuticals within the body both spatially and temporally. The computer was used to acquire data on practically every organ that could be imaged by means of gamma cameras or rectilinear scanners. Methods of image processing borrowed from other disciplines were applied to scintigraphic computer images in an attempt to improve image quality. Image processing in nuclear medicine has evolved into a relatively extensive set of tasks that can be called on by the user to provide additional clinical information rather than to improve image quality. Digital computers are utilized in nuclear medicine departments for nonimaging applications also, Patient scheduling, archiving, radiopharmaceutical inventory, radioimmunoassay (RIA), and health physics are just a few of the areas in which the digital computer has proven helpful. The computer is useful in any area in which a large quantity of data needs to be accurately managed, especially over a long period of time

  16. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... through the area being examined and gives off energy in the form of gamma rays which are detected by a special camera and computer to create images of the inside of your body. If you’re scheduled for a nuclear medicine exam, there are several things you can ...

  17. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician ... before abnormalities can be detected with other diagnostic tests. Nuclear medicine imaging procedures use small amounts of ...

  18. Quality control in nuclear medicine

    International Nuclear Information System (INIS)

    Kostadinova, I.

    2007-01-01

    Nuclear medicine comprises diagnosis and therapy of the diseases with radiopharmaceuticals. The ambition of all specialists in our country is their activity to reach European standards. In this connection, a Commission for external audit was formed to evaluate the quality of work in the centers of nuclear medicine. This Commission create a long-lasting programme based on the objective European criteria and the national standard of nuclear medicine, having in mind to increase quality of the work and the expert evaluation of activity in every center. The program comprises measures for quality control of instrumentation, radiopharmaceuticals, performed investigations, obtained results and the whole organization from the receiving of the isotopes to the results of the patients. The ambition is most of the centers to fulfill the requirements. As a conclusion it could be said that not only the quality of everyday nuclear medicine work is enough to increase the prestige of the specialty. It is also necessary we to have understanding expert and financial support from corresponding institutions, incl. Ministry of health for a delivery of a new, contemporary instrumentation with new possibilities. Thus it would be possible Bulgarian patients to reach the high technology apparatuses for an early functional diagnosis of the diseases and optimal treatment, which possibility have the patients from the developed countries. (author)

  19. Tomographic methods in nuclear medicine

    International Nuclear Information System (INIS)

    Ahluwalia, B.D.

    1989-01-01

    This book is a review of the various approaches to tomographic imaging that have been pursued in nuclear medicine. The evolution of single photon emission computed tomography (SPECT) is discussed in detail, and the major classes of instrumentation are represented. A section on positron emission tomography is also included, but is rather brief and may serve only as a general introduction

  20. Nuclear medicine at the crossroads

    International Nuclear Information System (INIS)

    Strauss, H.W.

    1996-01-01

    Many nuclear medicine procedures, originally developed more than 20 years ago, are now performed with new radiopharmaceuticals or instruments; it is therefore apposite to reappraise what we are doing and why we are doing it. The clinical utility of nuclear medicine is discussed with reference, by way of example, to gated blood pools scans and myocardial perfusion imaging; the importance of the referred population for the outcome of studies is stressed. Attention is drawn to the likelohood that the detection of ischemia would be enhanced by the administration of nitroglycerin prior to rest thallium injection. Emphasis is also placed on the increasing acceptance of dual-tracer studies. The significance of expression of p-glycoprotein by some tumors for sestamibi imaging is discussed, and advances in respect of fluorodeoxyglucose imaging are reviewed. The final section covers issues relating to the development of new procedures, such as the value of nuclear medicine in the detection and characterization of tissue oxygen levels and the possible future role of nuclear medicine in the management of sleeping and eating disorders. (orig.)

  1. Images compression in nuclear medicine

    International Nuclear Information System (INIS)

    Rebelo, M.S.; Furuie, S.S.; Moura, L.

    1992-01-01

    The performance of two methods for images compression in nuclear medicine was evaluated. The LZW precise, and Cosine Transformed, approximate, methods were analyzed. The results were obtained, showing that the utilization of approximated method produced images with an agreeable quality for visual analysis and compression rates, considerably high than precise method. (C.G.C.)

  2. Nuclear medicine software: safety aspects

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    A brief editorial discusses the safety aspects of nuclear medicine software. Topics covered include some specific features which should be incorporated into a well-written piece of software, some specific points regarding software testing and legal liability if inappropriate medical treatment was initiated as a result of information derived from a piece of clinical apparatus incorporating a malfunctioning computer program. (U.K.)

  3. Radiation safety in nuclear medicine procedures

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sang Geon; Kim, Ja Hae; Song, Ho Chun [Dept. of Nuclear Medicine, Medical Radiation Safety Research Center, Chonnam National University Hospital, Gwangju (Korea, Republic of)

    2017-03-15

    Since the nuclear disaster at the Fukushima Daiichi Nuclear Power Plant in 2011, radiation safety has become an important issue in nuclear medicine. Many structured guidelines or recommendations of various academic societies or international campaigns demonstrate important issues of radiation safety in nuclear medicine procedures. There are ongoing efforts to fulfill the basic principles of radiation protection in daily nuclear medicine practice. This article reviews important principles of radiation protection in nuclear medicine procedures. Useful references, important issues, future perspectives of the optimization of nuclear medicine procedures, and diagnostic reference level are also discussed.

  4. Radiation safety in nuclear medicine procedures

    International Nuclear Information System (INIS)

    Cho, Sang Geon; Kim, Ja Hae; Song, Ho Chun

    2017-01-01

    Since the nuclear disaster at the Fukushima Daiichi Nuclear Power Plant in 2011, radiation safety has become an important issue in nuclear medicine. Many structured guidelines or recommendations of various academic societies or international campaigns demonstrate important issues of radiation safety in nuclear medicine procedures. There are ongoing efforts to fulfill the basic principles of radiation protection in daily nuclear medicine practice. This article reviews important principles of radiation protection in nuclear medicine procedures. Useful references, important issues, future perspectives of the optimization of nuclear medicine procedures, and diagnostic reference level are also discussed

  5. Computers in nuclear medicine - current trends and future directions

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Previously, a decision to purchase computing equipment for nuclear medicine usually required evaluation of the 'local' needs. With the advent of Pacs and state of the art computer techniques for image acquisition and manipulation, purchase and subsequent application is to become much more complex. Some of the current trends and future possibilities which may influence the choice and operation of computers within and outside the nuclear medicine environment is discussed. (author)

  6. Consolidation equipment for irradiated nuclear fuel channels

    International Nuclear Information System (INIS)

    Taguchi, M.; Komatsu, Y.; Ose, T.

    1989-01-01

    The authors have developed and put into use a new type of mechanical consolidation equipment for irradiated nuclear fuel channels. This includes round-slice cutting of the top 100mm of the fuel channel with a guillotine cutter, and press cutting of the two corners of the remaining length of the fuel channel. Four guillotine blades work in combination with receiving blades arranged inside the fuel channel to cut the top 100mm, including the clips and spacers, of the fuel channel into a round slice. A press assembled in the consolidation equipment then presses the slice to achieve volume reduction. The press cutting operation uses two press cutting blades arranged inside the fuel channel and the receiving blades outside the fuel channel. The remaining length of fuel channel is cut off into L-shaped pieces by press cutting. This consolidation equipment is highly efficient because the round-slice cutting, pressing, and press cutting are all achieved by one unit

  7. Therapeutic nuclear medicine

    International Nuclear Information System (INIS)

    Baum, Richard P.

    2014-01-01

    Discusses all aspects of radionuclide therapy, including basic principles, newly available treatments, regulatory requirements, and future trends. Provides the knowledge required to administer radionuclide therapy safely and effectively in the individual patient. Explains the role of the therapeutic nuclear physician in effectively coordinating a diverse multidisciplinary team. Written by leading experts. The recent revolution in molecular biology offers exciting new opportunities for targeted radionuclide therapy. The selective irradiation of tumor cells through molecular biological mechanisms is now permitting the radiopharmaceutical control of tumors that are unresectable and unresponsive to either chemotherapy or conventional radiotherapy. In this up-to-date, comprehensive book, world-renowned experts discuss the basic principles of radionuclide therapy, explore in detail the available treatments, explain the regulatory requirements, and examine likely future developments. The full range of clinical applications is considered, including thyroid cancer, hematological malignancies, brain tumors, liver cancer, bone and joint disease, and neuroendocrine tumors. The combination of theoretical background and practical information will provide the reader with all the knowledge required to administer radionuclide therapy safely and effectively in the individual patient. Careful attention is also paid to the important role of the therapeutic nuclear physician in delivering the effective coordination of a diverse multidisciplinary team that is essential to the safe provision of treatment.

  8. Therapeutic nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Baum, Richard P. (ed.) [ENETS Center of Excellence, Bad Berka (Germany). THERANOSTICS Center for Molecular Radiotherapy and Molecular Imaging

    2014-07-01

    Discusses all aspects of radionuclide therapy, including basic principles, newly available treatments, regulatory requirements, and future trends. Provides the knowledge required to administer radionuclide therapy safely and effectively in the individual patient. Explains the role of the therapeutic nuclear physician in effectively coordinating a diverse multidisciplinary team. Written by leading experts. The recent revolution in molecular biology offers exciting new opportunities for targeted radionuclide therapy. The selective irradiation of tumor cells through molecular biological mechanisms is now permitting the radiopharmaceutical control of tumors that are unresectable and unresponsive to either chemotherapy or conventional radiotherapy. In this up-to-date, comprehensive book, world-renowned experts discuss the basic principles of radionuclide therapy, explore in detail the available treatments, explain the regulatory requirements, and examine likely future developments. The full range of clinical applications is considered, including thyroid cancer, hematological malignancies, brain tumors, liver cancer, bone and joint disease, and neuroendocrine tumors. The combination of theoretical background and practical information will provide the reader with all the knowledge required to administer radionuclide therapy safely and effectively in the individual patient. Careful attention is also paid to the important role of the therapeutic nuclear physician in delivering the effective coordination of a diverse multidisciplinary team that is essential to the safe provision of treatment.

  9. Composition and fundamental requirements of nuclear emergency response monitoring equipment

    International Nuclear Information System (INIS)

    Lai Yongfang; Huang Weiqi; Wang Yonghong

    2009-01-01

    Nuclear emergency monitoring equipment is concrete foundation for accomplishing radiation monitoring in nuclear or radiation accidents. Based on technical report: Generic procedures for monitoring in a nuclear or radiological emergency published by IAEA in 1999, this paper presents the main task and composition of nuclear emergency monitoring briefly, and then the basic equipment and trends of nuclear emergency monitoring equipment is put forward in detail, which is useful to construction and reinforcement of our nuclear emergency monitoring. (authors)

  10. Physics and radiobiology of nuclear medicine

    CERN Document Server

    Saha, Gopal B

    2013-01-01

    The Fourth Edition of Dr. Gopal B. Saha’s Physics and Radiobiology of Nuclear Medicine was prompted by the need to provide up-to-date information to keep pace with the perpetual growth and improvement in the instrumentation and techniques employed in nuclear medicine since the last edition published in 2006. Like previous editions, the book is intended for radiology and nuclear medicine residents to prepare for the American Board of Nuclear Medicine, American Board of Radiology, and American Board of Science in Nuclear Medicine examinations, all of which require a strong physics background. Additionally, the book will serve as a textbook on nuclear medicine physics for nuclear medicine technologists taking the Nuclear Medicine Technology Certification Board examination.

  11. 22. French language symposium on nuclear medicine

    International Nuclear Information System (INIS)

    1981-01-01

    The 80 papers presented in summary form at the Congress are given. These papers cover three main topics: broncho-pulmonary investigation with radioaerosols; role of nuclear medicine in pharmacokinetics; role of Nuclear Medicine in metabolic investigations [fr

  12. Evolution of nuclear medicine: a historical perspective

    International Nuclear Information System (INIS)

    Ahmed, A.; Kamal, S.

    1996-01-01

    The field Nuclear Medicine has Completed its 100 yeas in 1996. Nuclear medicine began with physics, expanded into chemistry and instrumentation, and then greatly influenced various fields of medicine. The chronology of the events that formulated the present status of nuclear medicine involves some of the great pioneers of yesterday like Becquerel, Curie, Joliot, Hevesy, Anger, Berson and Yallow. The field of nuclear medicine has been regarded as the bridge builder between various aspects of health care and within next 20 years, nuclear medicine enters a new age of certainty, in which surgery, radiation and chemotherapy will only be used when a benefit in certain to result from the treatment. (author)

  13. A concise guide to nuclear medicine

    CERN Document Server

    Elgazzar, Abdelhamid H

    2011-01-01

    Nuclear medicine is an important component of modern medicine. This easy-to-use book is designed to acquaint readers with the basic principles of nuclear medicine, the instrumentation used, the gamut of procedures available, and the basis for selecting specific diagnostic or therapeutic procedures and interpreting results. After an introductory chapter on the history, technical basis, and scope of nuclear medicine, a series of chapters are devoted to the application of nuclear medicine techniques in the different body systems. In addition, the use of nuclear medicine methods within oncology is

  14. Neutron use in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Guidez, J.; May, R.; Moss, R. [HFR-Unit, European Commission, IAM, Petten (Netherlands); Askienazy, S. [Departement Central de Medicine Nucleaire et Biophysique, Saint Antoine Hospital, Paris (France); Hildebrand, J. [Neurology Department, Erasmus Hospital, Brussels (Belgium)

    1999-07-01

    Neutrons produced by research reactors are being used in nuclear medicine and other medical applications in several ways. The High Flux Reactor (HFR) based in Petten (The Netherlands), owned by the European Commission, has been working increasingly in this field of health care for the European citizen. On the basis of this experience, a survey has been carried out on the main possibilities of neutrons used in nuclear medicine. The most important and most well known is the production of radioisotopes for diagnosis and therapy. Ten million patients receive nuclear medicine in Europe each year, with more than 8 million made with the products issued from research reactors. The survey of the market and the techniques (cyclotron, PET) shows that this market will continue to increase in the future. The direct use of reactors in medicine is actually made by the Boron Neutron capture Therapy (BNCT) for the treatment of glioblastoma, which kills about 15.000 people in Europe each year. For this promising technique, HFR is the most advanced for experimental possibilities and treatment studies. Medical research is also made in other promising fields: the use beam tubes for characterizing of prostheses and bio-medical materials, alpha-immuno therapy products, new types of radioisotopes, new types of illness to be treated by BNCT, etc. (author)

  15. Neutron use in nuclear medicine

    International Nuclear Information System (INIS)

    Guidez, J.; May, R.; Moss, R.; Askienazy, S.; Hildebrand, J.

    1999-01-01

    Neutrons produced by research reactors are being used in nuclear medicine and other medical applications in several ways. The High Flux Reactor (HFR) based in Petten (The Netherlands), owned by the European Commission, has been working increasingly in this field of health care for the European citizen. On the basis of this experience, a survey has been carried out on the main possibilities of neutrons used in nuclear medicine. The most important and most well known is the production of radioisotopes for diagnosis and therapy. Ten million patients receive nuclear medicine in Europe each year, with more than 8 million made with the products issued from research reactors. The survey of the market and the techniques (cyclotron, PET) shows that this market will continue to increase in the future. The direct use of reactors in medicine is actually made by the Boron Neutron capture Therapy (BNCT) for the treatment of glioblastoma, which kills about 15.000 people in Europe each year. For this promising technique, HFR is the most advanced for experimental possibilities and treatment studies. Medical research is also made in other promising fields: the use beam tubes for characterizing of prostheses and bio-medical materials, alpha-immuno therapy products, new types of radioisotopes, new types of illness to be treated by BNCT, etc. (author)

  16. Essentials of nuclear medicine physics and instrumentation

    CERN Document Server

    Powsner, Rachel A; Powsner, Edward R

    2013-01-01

    An excellent introduction to the basic concepts of nuclear medicine physics This Third Edition of Essentials of Nuclear Medicine Physics and Instrumentation expands the finely developed illustrated review and introductory guide to nuclear medicine physics and instrumentation. Along with simple, progressive, highly illustrated topics, the authors present nuclear medicine-related physics and engineering concepts clearly and concisely. Included in the text are introductory chapters on relevant atomic structure, methods of radionuclide production, and the interaction of radiation with matter. Fu

  17. The market for nuclear equipment - engineering and fabrication

    International Nuclear Information System (INIS)

    Tait, D.R.

    1977-01-01

    The role of electronic equipment in a CANDU power station is explained. Costs of installations and outages are outlined. The nuclear market for electronic equipment utilizes many components common to non-nuclear applications. (E.C.B.)

  18. Introductory physics of nuclear medicine

    International Nuclear Information System (INIS)

    Chandra, R.

    1976-01-01

    This presentation is primarily addressed to resident physicians in nuclear medicine, as well as residents in radiology, pathology, and internal medicine. Topics covered include: basic review; nuclides and radioactive processes; radioactivity-law of decay, half-life, and statistics; production of radionuclides; radiopharmaceuticals; interaction of high-energy radiation with matter; radiation dosimetry; detection of high-energy radiation; in-vitro radiation detection; in-vivo radiation detection using external detectors; detectability or final contrast in a scan; resolution and sensitivity of a scanner; special techniques and instruments; therapeutic uses of radionuclides; biological effects of radiation; and safe handling of radionuclides

  19. Where is high technology taking nuclear medicine

    International Nuclear Information System (INIS)

    Veall, N.

    1985-01-01

    The question is posed as to whether high technology in nuclear medicine might lead to the nuclear medicine practitioner possibly finishing up working for the machine rather than the improvement of health care in its widest sense. A brief examination of some pros and cons of high technology nuclear medicine is given. (U.K.)

  20. Technetium in chemistry and nuclear medicine

    International Nuclear Information System (INIS)

    Deutsch, E.; Nicolini, M.; Wagner, H.N.

    1983-01-01

    This volume explores the potential of technetium radiopharmaceuticals in clinical nuclear medicine. The authors examine the capabilities of synthetic inorganic chemists to synthesize technetium radiopharmaceuticals and the specific requirements of the nuclear medicine practitioner. Sections cover the chemistry of technetium, the production of radiopharmaceuticals labeled with technetium, and the use of technetium radiopharmaceuticals in nuclear medicine

  1. Radiation protection in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Volodin, V; Hanson, G P

    1993-12-31

    The goal of this Chapter is to give a general outline of the essential principles and procedures for radiation protection in a nuclear medicine department where radionuclides are used for diagnosis and therapy. More detailed recommendations regarding radiation protection in nuclear medicine are given in the publications of the International Commission on Radiation Protection (ICRP, publications 25, 57, 60) and in ILO/IAEA/WHO Manual on Radiation Protection in Hospitals and General Practice (Volume 2: Unsealed Sources, WHO, Geneva, 1975), on which this Chapter is based. This chapter is not intended to replace the above-mentioned international recommendations on radiation protection, as well as existing national regulations on this subject, but intended only to provide guidance for implementing these recommendations in clinical practice

  2. Radiation protection in nuclear medicine

    International Nuclear Information System (INIS)

    Volodin, V.; Hanson, G.P.

    1992-01-01

    The goal of this Chapter is to give a general outline of the essential principles and procedures for radiation protection in a nuclear medicine department where radionuclides are used for diagnosis and therapy. More detailed recommendations regarding radiation protection in nuclear medicine are given in the publications of the International Commission on Radiation Protection (ICRP, publications 25, 57, 60) and in ILO/IAEA/WHO Manual on Radiation Protection in Hospitals and General Practice (Volume 2: Unsealed Sources, WHO, Geneva, 1975), on which this Chapter is based. This chapter is not intended to replace the above-mentioned international recommendations on radiation protection, as well as existing national regulations on this subject, but intended only to provide guidance for implementing these recommendations in clinical practice

  3. Nuclear medicine in bone diagnostics

    International Nuclear Information System (INIS)

    Feine, U.; Mueller-Schauenburg, W.

    1985-01-01

    This book on nuclear medicine in bone diagnostics and other complementary imaging methods is composed out of the 51 presentations of the 2nd Tuebinger bone symposium held on the 11th and 12th January 1985; it gives an overview of newer methods of nuclear medicine and other imaging methods such as magnetic-resonance tomography and sonography. While the 1st Tuebinger Symposium in January 1981 dealt with the clinical application of classical bone scintigraphy and the possibilities of the results of differential diagnosis, the present book is concerned with indications, alternative radiopharmaceuticals for skeleton scintigraphy and other techniques. The intention is to give a survey of the developments made over the last few years. (orig./MG) [de

  4. Basic science of nuclear medicine

    International Nuclear Information System (INIS)

    Parker, R.P.; Taylor, D.M.; Smith, P.H.S.

    1978-01-01

    A book has been written presenting those aspects of physics, chemistry and related sciences which are essential to a clear understanding of the scientific basis of nuclear medicine. Part I covers the basic physics of radiation and radioactivity. Part II deals with radiation dosimetry, the biological effects of radiation and the principles of tracer techniques. The measurement of radioactivity and the principal aspects of modern instrumentation are presented in Part III. Those aspects of chemistry relevant to the preparation and use of radiopharmaceuticals are discussed in Part IV. The final section is concerned with the production of radionuclides and radiopharmaceuticals and with the practical aspects of laboratory practice, facilities and safety. The book serves as a general introductory text for physicians, scientists, radiographers and technicians who are entering nuclear medicine. (U.K.)

  5. Nuclear medicine in developing countries

    International Nuclear Information System (INIS)

    Kremenchuzky, S.; Degrossi, O.J.

    1991-01-01

    The economic crisis through which developing countries are passing means that every field of endeavour must adapt to new realities imposed by each particular's country's situation. Public health is no exception, although it is obviously a priority field in view of the repercussions which social and economic phenomena can have on the health of a country's inhabitants. This article briefly considers ways in which nuclear medicine facilities in Argentina may be improved

  6. New procedures in nuclear medicine

    International Nuclear Information System (INIS)

    Spencer, R.P.

    1989-01-01

    The authors review the recent emergence of functional studies in nuclear medicine in this critical and informative text. The new procedures are presented in terms of their underlying physiology, indications, contraindications, methodology, results, interpretation and relationship to other evaluations. The volume includes discussions on the central nervous system, interventional studies, cardiac studies, bone densitometry, plus radiolabeled antibodies, radiolabeling of blood elements and flow and distribution

  7. Asian School of Nuclear Medicine

    International Nuclear Information System (INIS)

    Sundram, Felix X.

    2004-01-01

    The Asian School of Nuclear Medicine (ASNM) was formed in February 2003, with the ARCCNM as the parent body. Aims of ASNM: 1. To foster Education in Nuclear Medicine among the Asian countries, particularly the less developed ones. 2. To promote training of Nuclear Medicine Physicians in cooperation with government agencies, IAEA and universities and societies. 3. To assist in national and regional training courses, award continuing medical education (CME) points and provide regional experts for advanced educational programmes. 4. To work towards awarding of diplomas or degrees in association with recognized universities by distance learning and practical attachments, with examinations. The ASNM works toward a formal training courses leading to the award of a certificate in the long term. The most fundamental job of the ASNM remains the transfer of knowledge from the more developed countries to the less developed ones in the Asian region. The ASNM could award credit hours to the participants of training courses conducted in the various countries and conduct electronic courses and examinations. CME programmes may also be conducted as part of the regular ARCCNM meetings and the ASNM will award CME credit points for such activities

  8. Interventional studies in nuclear medicine

    International Nuclear Information System (INIS)

    Saha, G.B.; Swanson, D.P.; Hladik, W.B. III

    1987-01-01

    Pharmacological interventions in nuclear medicine studies have been in practice for a long time. The triiodothyronine (T/sub 3/) suppression, Thyroid-stimulating hormone (TSH) stimulation, and perchlorate discharge tests are common examples of well-established diagnostic interventional studies. In recent years, pharmacologic and physiologic interventions in other nuclear medicine procedures have drawn considerable attention. The primary purpose of these interventions is to augment, complement or, more often, differentiate the information obtained from conventional nuclear medicine diagnostic studies. Pharmacologic interventions involve the administration of a specific drug before, during, or after the administration of radiopharmaceutical for a given study. The change in information due to intervention of the drug offers clues to differentiating various disease conditions. These changes can be brought about by physiologic interventions also, e.g., exercise in radionuclide ventriculography. In the latter interventions, the physiologic function of an organ is enhanced or decreased by physical maneuvers, and the changes observed can be used to differentiate various disease conditions

  9. The application of nuclear-medicine methods in veterinary medicine

    International Nuclear Information System (INIS)

    Simpraga, M.; Kraljevic, P.; Dodig, D.

    1996-01-01

    X-radiography and ultrasound imaging are well established and widely used in veterinary practice, but it is not the same situation with radioisotope imaging. In veterinary practice the above mentioned methods of nuclear medicine are developed only in two countries in Europe. That is not doubt due, so bar, to the difficulties in obtaining satisfactory supply of radioisotopes and to the relatively high cost of scanning equipment. However, in collaboration with the Department of Radiation Protection and Nuclear Medicine of the Medical Faculty in Zagreb, Croatia, we have chance to develop the use of those methods in clinical veterinary practice in Zagreb. That is way in this paper an overview of the application of radioisotopes imaging in veterinary medicine is given. In small animals skeletal changes, lung perusions, brain lesions, space occupying lesions in the liver and its function and hearth function can be usefully searched by a gamma camera and its associated computer. In equine practice scintigraphy of bones, liver, hearth, pulmonary circulation and ventilation is described. The largest amount of radioactive material is used during gamma camera scanning of the skeletons of horses. In this cases the radiation dose 1-2 m from the animal is approximately 3 μSv/h. That is why the protection of personal involved in radioisotope scanning in veterinary medicine must be also regulated by low of radiation protection. Also, the animals should be confined to a controlled area for 2-3 days after scanning before being returned to their owners. After this period the area must be cleaned. (author)

  10. The applications of nuclear techniques in nuclear medicine

    International Nuclear Information System (INIS)

    Zhao Huiyang

    1986-01-01

    There are a great deal of advanced techniques in nuclear medicine imaging, because many recent achivements of nuclear techniques have been applied to medicine in recent years. This paper presents the effects of nuclear techniques in development of nuclear medicine imaging. The first part describes radiopharmaceuticals and nuclear medicine imaging including commonly used 99m Tc labeled agents and cyclotron produced radionuclides for organ imaging. The second part describes nuclear medicine instrucments, including PECT, SPECT, MRI ect.; and discussions on the advantages, disadvantages and present status

  11. Mongolia and nuclear medicine development

    International Nuclear Information System (INIS)

    Onkhuudai, P.; Gonchigsuren, D.

    2007-01-01

    Full text: Mongolia is a large, landlocked and sparsely populated country in the northern part of Central Asia, located between Russia on the north and China on east, south and west. Its total land area of 1.5 millions square kilometers is about the size if India or large than Alaska, but contains only 2.3 million population or 1.3 person per square kilometer. It is 2400 kilometers long from east to west maximum of 1260 kilometers from north to south.The priority problems in health.Democratic political reforms since 1990 saw a major transformation process, which is aimed at changing the centrally planned economy to one based on market orient principles. Mongolia is in a gradual epidemiological transition from preponderance of infectious diseases towards non-communicable and degenerative diseases. Mean features of this transition are sharp decrease in mortality from infectious and parasitic diseases and sharp increase in mortality from diseases of the circulatory system and neoplasms. Life expectancy at birth was 65.7 year in 1997. Cardiovascular diseases and cancer are among the leading causes of death in Mongolia.Nuclear Medicine in Mongolia-1975-1981 Beginning First Medical Application of radioisotopes in 1972. First Rectilinear scanner. Single and dual scintillation detectors system, Thyroid Uptake Test; 1982-1999 Settlement, IAEA TC Project since 1982, Thematic Program on Health Care (RAS) since 1997, First Gamma Camera since 1997, Radioimmunological Laboratory and first Radioiodine treatment since 1982, Mongolian Society of Nuclear Medicine since 1982, Member of World and Federation of Nuclear Medicine and Biology since 1994, Member of Asia and Oceania Radionuclide Therapy Council , 2000 Development, First SPECT and Quantitative Measurement in 2000 Second Gamma Camera, New Thyroid Uptake System-Atomlab 950 PC Spectrometer Radioimmunological Laboratory replacement, Myocardial Perfusion Scintigraphy, Liver Cancer Treatment with Re-188, Radiosynovectomy with Re

  12. Welding technologies for nuclear machinery and equipment

    International Nuclear Information System (INIS)

    Kobayashi, Masahiro; Yokono, Tomomi.

    1991-01-01

    The main welding methods applied to nuclear machinery and equipment are shielded metal arc welding, submerged arc welding, MAG welding and TIG welding. But in the last 10 years, in order to improve the reliability required for the welding of nuclear machinery and equipment, the welding technologies aiming at the reduction of heat input, the decrease of the number of welding pass and the automatic control of welding factors have been applied for the main purpose of bettering the quality and excluding human errors. The merits and the technology of narrow gap, pulsed MAG welding and melt-through welding are explained. As the automation of TIG welding, image processing type narrow gap, hot wire TIG welding and remote control type automatic TIG welding are described. For the longitudinal welding of active metal sheet products, plasma key-hole welding is applied. Since the concentration of its arc is good, high speed welding with low heat input can be done. For the stainless steel cladding by welding, electroslag welding has become to be employed in place of conventional submerged arc welding. Arc is not generated in the electroslag welding, and the penetration into base metal is small. (K.I.)

  13. Radiochemistry in nuclear medicine. Radiopharmaceuticals

    International Nuclear Information System (INIS)

    Samochocka, K.

    1999-01-01

    Radionuclides and radiopharmaceuticals play a kay role in nuclear medicine, both in diagnostics and therapy. Incorporation of radionuclides into biomolecules, and syntheses of radiolabelled compounds of high biological selectivity are a task for radiochemists working in the multidisciplinary field of radiopharmaceutical chemistry. The most commonly used radionuclide, 99m Tc, owes this popularity to its both nearly ideal nuclear properties in respect to medical imaging, and availability from inexpensive radionuclide generators. Also numerous other radionuclides are widely used for medical imaging and therapy. Labelling of biomolecules with radioiodine and various positron emitters is getting increasingly important. This review describes some chemical and radiochemical problems we meet while synthesizing and using 99m Tc-radiopharmaceuticals and radioiodine-labelled biomolecules. Also represented are the recent developments in the design and use of the second generation radiopharmaceuticals based on bifunctional radiochelates. Several principal routes of fast chemical synthesis concerning incorporation of short-lived positron emitters into biomolecules are outlined as well. The search for chemical structures of high biological selectivity, which would be activated by slow neutrons, is related to the method of Neutron Capture Therapy, an interesting option in nuclear medicine. (author)

  14. Is nuclear medicine really safe?

    International Nuclear Information System (INIS)

    Colas-Linhart, N.

    2000-01-01

    How to evaluate the benefit-risks ratio of scintigraphies? In nuclear medicine, radiation absorbed dose estimates at whole body or organ levels are very low. Nevertheless, at cellular level, there are both heterogeneity of distribution and heterogeneity of radiation emission. Consequently, absorbed doses at cellular level are often calculated. These absorbed dose values are surprising, even disturbing or not interpretable. In the present study, we have searched the biological consequences at the cellular level, radioinduced by two radiopharmaceuticals labelled with 99m Tc: human serum albumin microspheres and HMPAO, studying the cellular ultrastructure, over expression of p53 and scoring instable chromosomal aberrations. (author)

  15. Nuclear analytical techniques in medicine

    International Nuclear Information System (INIS)

    Cesareo, R.

    1988-01-01

    This book acquaints one with the fundamental principles and the instrumentation relevant to analytical technique based on atomic and nuclear physics, as well as present and future biomedical applications. Besides providing a theoretical description of the physical phenomena, a large part of the book is devoted to applications in the medical and biological field, particularly in hematology, forensic medicine and environmental science. This volume reviews methods such as the possibility of carrying out rapid multi-element analysis of trace elements on biomedical samples, in vitro and in vivo, by XRF-analysis; the ability of the PIXE-microprobe to analyze in detail and to map trace elements in fragments of biomedical samples or inside the cells; the potentiality of in vivo nuclear activation analysis for diagnostic purposes. Finally, techniques are described such as radiation scattering (elastic and inelastic scattering) and attenuation measurements which will undoubtedly see great development in the immediate future

  16. Nuclear analytical techniques in medicine

    Energy Technology Data Exchange (ETDEWEB)

    Cesareo, R.

    1988-01-01

    This book acquaints one with the fundamental principles and the instrumentation relevant to analytical technique based on atomic and nuclear physics, as well as present and future biomedical applications. Besides providing a theoretical description of the physical phenomena, a large part of the book is devoted to applications in the medical and biological field, particularly in hematology, forensic medicine and environmental science. This volume reviews methods such as the possibility of carrying out rapid multi-element analysis of trace elements on biomedical samples, in vitro and in vivo, by XRF-analysis; the ability of the PIXE-microprobe to analyze in detail and to map trace elements in fragments of biomedical samples or inside the cells; the potentiality of in vivo nuclear activation analysis for diagnostic purposes. Finally, techniques are described such as radiation scattering (elastic and inelastic scattering) and attenuation measurements which will undoubtedly see great development in the immediate future.

  17. Distribution of nuclear medicine service in Brazil

    International Nuclear Information System (INIS)

    Silva, Ana Carolina Costa da; Duarte, Alessandro; Santos, Bianca Maciel dos

    2011-01-01

    The Brazil does not posses a good distribution of nuclear medicine service por all his territory. This paper shows the difference among country regions as far the number of clinics of nuclear medicine as is concerning, and also doctors licensed in the area and radioprotection supervisors, both licensed by the Brazilian Nuclear Energy Commission (CNEN)

  18. Instrumentation in the nuclear medicine modern achievements and perspective developments

    International Nuclear Information System (INIS)

    Narkevich, B.Ya.

    1999-01-01

    Most important achievement and tendencies of development of physical maintenance of modern nuclear medicine are analysed. The urgent problems and directions of researches are considered in the field of development of the equipment, technologies of measurements and software maintenance, and also means and procedures of the warranty of radiodiagnostic researches [ru

  19. Teaching of nuclear medicine at medical faculties

    International Nuclear Information System (INIS)

    Dienstbier, Z.

    1987-01-01

    The teaching of nuclear medicine at medical faculties in the CSSR is analyzed. It is shown that the teaching conditions are different at the individual faculties of medicine and the respective conditions are exemplified. (author). 4 tabs

  20. Pulmonary applications of nuclear medicine

    International Nuclear Information System (INIS)

    Kramer, E.L.; Divgi, C.R.

    1991-01-01

    Nuclear medicine techniques have a long history in pulmonary medicine, one that has been continually changing and growing. Even longstanding methods, such as perfusion scanning for embolic disease or for pretherapy pulmonary function evaluation, have largely withstood the test of recent careful scrutiny. Not only have these techniques remained an important part of the diagnostic armamentarium, but we have learned how to use them more effectively. Furthermore, because of technical advances, we are in a phase of expanding roles for nuclear imaging. Gallium citrate scanning for the mediastinal staging and follow-up of lymphoma has been recognized as a valuable adjunct to the anatomic information provided by CT and MRI. With the growth of PET technology in areas that have been explored in a limited fashion until now, such as noncardiogenic pulmonary edema and lung carcinoma, evaluation and management of these patients may substantially improve. Finally, in the field of radiolabeled monoclonal antibodies, attention is now being turned to both the diagnostic and the therapeutic problems presented by lung carcinoma. As radiolabeling methods are refined and as new and better antibodies are developed, radioimmunodetection and therapy in lung carcinoma may begin to make inroads on this common and hard to control disease.157 references

  1. Radiation dosimetry in nuclear medicine

    International Nuclear Information System (INIS)

    Stabin, M.G.; Tagesson, M.; Ljungberg, M.; Strand, S.E.; Thomas, S.R.

    1999-01-01

    Radionuclides are used in nuclear medicine in a variety of diagnostic and therapeutic procedures. A knowledge of the radiation dose received by different organs in the body is essential to an evaluation of the risks and benefits of any procedure. In this paper, current methods for internal dosimetry are reviewed, as they are applied in nuclear medicine. Particularly, the Medical Internal Radiation Dose (MIRD) system for dosimetry is explained, and many of its published resources discussed. Available models representing individuals of different age and gender, including those representing the pregnant woman are described; current trends in establishing models for individual patients are also evaluated. The proper design of kinetic studies for establishing radiation doses for radiopharmaceuticals is discussed. An overview of how to use information obtained in a dosimetry study, including that of the effective dose equivalent (ICRP 30) and effective dose (ICRP 60), is given. Current trends and issues in internal dosimetry, including the calculation of patient-specific doses and in the use of small scale and microdosimetry techniques, are also reviewed

  2. Infection diagnosis in nuclear medicine

    International Nuclear Information System (INIS)

    Martin-Comin, J.

    1997-01-01

    Full text. The clinical applicability of agents like 67 Ga and 111 In-labelled leukocytes began the era of infection imaging diagnosis in Nuclear Medicine, more than two decades ago. In this period other agents have appeared in the field. 99 m Tc-HMPAQ-leukocytes and 99 m Tc-anti granulocyte monoclonal antibodies (able to label white blood cells) and 111 In and 99 mTc-polyclonal immuno globulins (in cold kit presentation). These agents had widespread the use of Nuclear Medicine procedures in clinical practice. Nevertheless, there is not, up to now, an specific agent to diagnose infection and is some cases a second or third agent (i.e.: 99 mTc-colloid) is used to obtain an accurate diagnosis. Actually, research is orientated to the development of agents with low antigenic power (peptides or fragments of monoclonal antibodies), or other non immunogenic agents involved in the inflammation process (selectin, antibiotic). Some experiences have also been done with PET agents. The clinical usefulness of commercially available agents and the future possibilities of the new ones will be presented

  3. Nuclear medicine applications in AIDS

    International Nuclear Information System (INIS)

    Abdel-Dayem, H.M.

    2004-01-01

    Full text: Aids patients are liable to more than one medical problem at anyone time as the number of CD4 cells decrease and the viral load increases. Problems are related to multiple causes of opportunistic Infections, malignant lymphoma and Kaposi sarcoma. Laboratory tests, sputum analysis and bronchial lavage have problems of decreased sensitivity. morphologic Imaging modalities such as chest X-ray, CT or MRI has problems of specificity. Nuclear medicine techniques has the advantage of total body functional imaging that can visualize more than one organ. The use nuclear medicine imaging is recommended when the diagnosis is uncertain and for initiation of proper treatment. Gallium-67 citrate total body scans acquired at 4 hours following the IV injection and at 24-48 hours has been very useful for the early diagnosis of opportunistic infections such as PCP, TB, Disseminated Mycobacterium avii complex; MAI, malignant lymphoma and various forms of AIDS related colitis. Sequential thallium and gallium scan help to differentiate Kaposi sarcoma (thallium positive, gallium negative) from opportunistic infections (gallium positive, thallium negative) and malignant lymphoma (thallium and gallium positive). Gallium is the most convenient radiopharmaceutical for the diagnosis of malignant lymphoma of the heart. Thallium and Tc-99m Sestamibi are useful for the differentiation of intracranial toxoplasmosis from malignant lymphoma. The presentation will illustrate different examples and will explain the limitations of all these tests. (author)

  4. Dementia and rural nuclear medicine

    International Nuclear Information System (INIS)

    Cowell, S.F.; Davison, A.; Logan-Sinclair, P.; Sturt University, Dubbo, NSW; Greenough, R.

    2003-01-01

    Full text: The rapid increase in dementia is directly related to the growing number of aged people in developed countries, such as Australia. This increase heightens the need for accurate dementia diagnosis to ensure treatment resources are appropriately allocated. However, current diagnostic methods are unable to determine specific dementia types limiting the effectiveness of many care plans. The lack of specialist resources in rural Australian communities presents nuclear medicine with an opportunity to make a significant impact on the management of this disease. This investigation aimed to identify how SPECT perfusion imaging could maximise its role in the management of dementia in a rural New South Wales setting. The study reviewed all Technetium 99m HMPAO SPECT brain studies over a three-year period. This included a medical record audit, review of all diagnostic imaging reports and an analysis of referral patterns. The results of this study provide compelling evidence that, even in a rural setting, brain SPECT, in conjunction with neuropsychological testing, offers high accuracy in determining the presence and type of dementia. In addition, the study found more than 30% of referrers had no training in SPECT, emphasising the importance of ensuring that brain SPECT reports, in a rural setting, educate and specify to referrers the significance and exact disease type found in the study. Copyright (2003) The Australian and New Zealand Society of Nuclear Medicine Inc

  5. Diagnostic interventions in nuclear medicine

    International Nuclear Information System (INIS)

    Thrall, J.H.; Swanson, D.P.

    1989-01-01

    Diagnostic interventions in nuclear medicine may be defined as the coadministration of a nonradioactive drug or application of a physical stimulus or physiologic maneuver to enhance the diagnostic utility of a nuclear medicine test. The rationale for each interventional maneuver follows from the physiology or metabolism of the particular organ or organ system under evaluation. Diagnostic inference is drawn from the pattern of change in the biodistribution of the tracer in response to the intervention-induced change in metabolism or function. In current practice, the most commonly performed interventional maneuvers are aimed at studies of the heart, genitourinary system, hepatobiliary system, and gastrointestinal tract. The single most commonly performed interventional study in the United States is the stress Thallium-201 myocardial perfusion scan aimed at the diagnosis of coronary artery disease. The stress portion of the study is accomplished with dynamic leg exercise on a treadmill and is aimed at increasing myocardial oxygen demands. Areas of myocardium distal to hemodynamically significant lesions in the coronary arteries become ischemic at peak stress due to the inability of the stenotic vessel to respond to the oxygen demand/blood flow needs of the myocardium. Ischemic areas are readily recognized as photopenic defects on scans obtained immediately after exercise, with normalization upon delayed imaging. Diuresis renography is aimed at the differential diagnosis of hydroureteronephrosis. By challenging the urinary tract collecting structures with an augmented urine flow, dilated, unobstructed systems can be differentiated from systems with significant mechanical obstruction. 137 references

  6. Nuclear medicine applications for the diabetic foot

    International Nuclear Information System (INIS)

    Hartshorne, M.F.; Peters, V.

    1987-01-01

    Although not frequently described in the podiatric literature, nuclear medicine imaging may be of great assistance to the clinical podiatrist. This report reviews in detail the use of modern nuclear medicine approaches to the diagnosis and management of the diabetic foot. Nuclear medicine techniques are helpful in evaluating possible osteomyelitis, in determining appropriate amputation levels, and in predicting response to conservative ulcer management. Specific indications for bone, gallium, and perfusion imaging are described

  7. Promoting nuclear medicine in developing countries

    International Nuclear Information System (INIS)

    Ganatra, R.; Nofal, M.

    1986-01-01

    After a short review of the applications of nuclear medicine in diagnosis and treatment of diseases or in medical research the ways and the means of IAEA's support in helping developing countries to set up nuclear medicine capabilities in their hospitals are described. Some trends and new directions in the field of nuclear medicine and the problems related to the implementation of these techniques in developing countries are presented

  8. Metabolic radiopharmaceutical therapy in nuclear medicine

    International Nuclear Information System (INIS)

    Reguera, L.; Lozano, M. L.; Alonso, J. C.

    2016-01-01

    In 1986 the National Board of Medical Specialties defined the specialty of nuclear medicine as a medical specialty that uses radioisotopes for prevention, diagnosis, therapy and medical research. Nowadays, treatment with radiopharmaceuticals has reached a major importance within of nuclear medicine. The ability to treat tumors with radiopharmaceutical, Radiation selective therapy has become a first line alternative. In this paper, the current situation of the different therapies that are sued in nuclear medicine, is reviewed. (Author)

  9. Special monitoring in nuclear medicine

    International Nuclear Information System (INIS)

    Beltran, C.C.; Puerta, J.A.; Morales, J.

    2006-01-01

    Colombia counts with around 56 centers of Nuclear Medicine, 70 Nuclear Doctors and more of 100 Technologists in this area. The radioisotopes more used are the 131 I and the 99m Tc. The radiological surveillance singular in the country is carried out for external dosimetry, being the surveillance by incorporation of radioactive materials very sporadic in our media. Given the necessity to implement monitoring programs in the incorporation of radionuclides of the occupationally exposed personnel, in the routine practice them routine of Nuclear Medicine, it was implemented a pilot program of Special Monitoring with two centers of importance in the city of Medellin. This program it was carried out with the purpose of educating, to stimulate and to establish a program of reference monitoring with base in the National Program of Monitoring in the radionuclides Incorporation that serves like base for its application at level of all the services of Nuclear Medicine in the country. This monitoring type was carried out with the purpose of obtaining information on the work routine in these centers, form of manipulation and dosage of the radionuclides, as well as the administration to the patient. The application of the program was carried out to define the frequency of Monitoring and analysis technique for the implementation of a program of routine monitoring, following the recommendations of the International Commission of Radiological Protection. For their application methods of activity evaluation were used in urine and in 7 workers thyroid, of those which only two deserve an analysis because they presented important activities. The measures were carried out during one month, every day by means in urine samples and to the most critic case is practiced two thyroid measures, one in the middle of the period and another when concluding the monitoring. To the other guy is practiced an activity count in thyroid when concluding the monitoring period. The obtained result of the

  10. Quality policy at nuclear medicine services

    International Nuclear Information System (INIS)

    Gil Martinez, Eduardo Manuel; Jimenez, Tomas

    2007-01-01

    In the present text we comment about a Quality Policy model to establish in a Nuclear Medicine Service. The need for a strict control in every process that take place in a Nuclear Medicine Service, requires of an exact planification in terms of Quality Policy, specific to the real needs of every Service. Quality Policy must be a live Policy, with capability of changes and must be known for every workers in a Nuclear Medicine Service. Although the 'model' showed in this text is concret for a specific Service type, it must be extrapolated to any Nuclear Medicine Service with the necessary changes (au)

  11. The development of nuclear medicine in Slovenia and Ljubljana; half a century of nuclear medicine in Slovenia

    International Nuclear Information System (INIS)

    Slavec, Zvonka Zupanic; Gaberscek, Simona; Slavec, Ksenija

    2012-01-01

    Nuclear medicine began to be developed in the USA after 1938 when radionuclides were introduced into medicine and in Europe after radionuclides began to be produced at the Harwell reactor (England, 1947). Slovenia began its first investigations in the 1950s. This article describes the development of nuclear medicine in Slovenia and Ljubljana. The first nuclear medicine interventions were performed in Slovenia at the Internal Clinic in Ljubljana in the period 1954–1959. In 1954, Dr Jože Satler started using radioactive iodine for thyroid investigations. In the same year, Dr Bojan Varl, who is considered the pioneer of nuclear medicine in Slovenia, began systematically introducing nuclear medicine. The first radioisotope laboratories were established in January 1960 at the Institute of Oncology and at the Internal Clinic. Under the direction of Dr. Varl, the laboratory at the Internal Clinic developed gradually and in 1973 became the Clinic for Nuclear Medicine with departments for in vivo and in vitro diagnostics and for the treatment of inpatients and outpatients at the thyroid department. The Clinic for Nuclear Medicine became a teaching unit of the Medical Faculty and developed its own post-graduate programme – the first student enrolled in 1972. In the 1960s, radioisotope laboratories opened in the general hospitals of Slovenj Gradec and Celje, and in the 1970s also in Maribor, Izola and Šempeter pri Novi Gorici. Nowadays, nuclear medicine units are modernly equipped and the staff is trained in morphological, functional and laboratory diagnostics in clinical medicine. They also work on the treatment of cancer, increased thyroid function and other diseases

  12. Nuclear Medicine at Charles Sturt University

    International Nuclear Information System (INIS)

    Swan, H.; Sinclair, P.; Scollard, D.

    1998-01-01

    Full text: A distance educational programme for upgrading of Certificate, Associate Diploma and Diploma to a Bachelor of Applied Science degree commenced in second semester of 1997 with approximately 15 Australian students and 15 Canadian students. The first graduation will occur in 1998. Formal links with the Michener Institute in Toronto have allowed Canadian students access to study resources during the course. All students entering the course are accredited or registered with their respective professional societies. The short conversion programme for those with three year diplomas includes Nuclear Medicine Physics and Instrumentation, Imaging Pathology, Clinical Neuroscience and Research Method subjects. An inaugural undergraduate degree programme in Nuclear Medicine Technology commences in first semester of 1998 on the Riverina Campus at Wagga Wagga. An intake of 15 students is anticipated. This small group of rural based students will have the benefits of international expertise. The programme has a strong clinical practice component including time on campus to supplement the practicum in departments. Physiology studies continue through to third year to complement the professional subjects. Active participation is solicited from those departments involved with aspects of the practicum well before students are placed. A fully functional teaching laboratory has been constructed containing a well equipped radiopharmacy, gamma camera room and computer laboratory using modern applications software to provide the students with a solid background in their chosen field

  13. Radiation protection on nuclear medicine services

    International Nuclear Information System (INIS)

    Anon

    2000-01-01

    Nuclear medicine is a sector of the medicine that studies and applies radionuclide in diagnosis and therapy. Nuclear medicine is a very specific area of the medicine, making use of non-sealed radioactive sources which are prescribed to the patient orally or are injected. Special procedures in radiation protection are required in nuclear medicine to manipulate these kind of sources and to produce technetium-99m through molybdenum generator. The present paper addresses the them radiation protection in a Nuclear Medicine Department (NMD), showing the main requirements of the CNEN- National Commission of Nuclear Energy and the Public Health. Radiation protection procedures adopted in assembling a NMD, as well the daily techniques for monitoring and for individual dosimetry are discussed. Past and present analyses in a level of radiation protection are presented. (author)

  14. Radionuclides for nuclear medicine: a nuclear physicists' view

    Czech Academy of Sciences Publication Activity Database

    Cantone, M.; Haddad, F.; Harissopoulos, S.; Jensen, M.; Jokinen, A.; Koster, U.; Lebeda, Ondřej; Ponsard, B.; Ratzinger, U.; Stora, T.; Tarkanyi, F.; Van Duppen, P.

    2013-01-01

    Roč. 40, 2 Supplement (2013), S257-S257 ISSN 1619-7070. [Annual Congress of the European Association of Nuclear Medicine (EANM). 19.10.2013-23.10.2013, Lyon] Institutional support: RVO:61389005 Keywords : nuclear physics for medicine * EANM * medical radionuclides Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders

  15. Nuclear electronic equipment for control and monitoring boards. Susceptibility of nuclear electronic pulse equipment to interference

    International Nuclear Information System (INIS)

    Buisson, Jacques; Cochinal, R.; Duquesnoy, J.; Roquefort, H.

    1972-07-01

    The correct functioning of pulse measurement units in industrial environmental conditions where interference is high, frequently gives rise to many installation problems which are difficult to solve. This paper offers some recommendations with a view to minimising the effect to electric interference on electronic equipment and gives a test method which enables this effect to be assessed qualitatively. It has been devised for nuclear electronic instrumentation but it may also be applied to other equipment and in particular the test method may be used for other cases. After a few preliminaries on how interference acts and on the terminology, the design of the equipment and the recommended connections are mentioned. Test methods are then indicated, followed by various technical comments. (author) [fr

  16. Present situation and proposal for nuclear medicine development

    International Nuclear Information System (INIS)

    Oliva Gonzalez, Juan P.

    2003-01-01

    In the present paper, the current situation of the Cuban nuclear medicine, after its introduction in the country in the 40s of the 20 th century and its expansion since 1962 and, particularly, from the installation of the first gamma camera in 1980, is analyzed. Nowadays, there is a total 14 Nuclear Medicine Departments or Services in our country within the National Oncology Networks and national Health System (SNS), which provide medical attention to the population depending on the nuclear equipment available A Program for the medical and technical personnel's training is proposed, as well as for gradual development of nuclear medicine department's (including the installation of gamma cameras, divided into two stages: 2003-2004 and 2005-2006). The prospective results of the proposed program are analyzed, as well as the impact on the populations health

  17. The Present Status of Nuclear Medicine in Korea

    International Nuclear Information System (INIS)

    Lee, Mun Ho

    1968-01-01

    It is my privilege to give you a brief history on the status of nuclear medicine in Korea. There is nothing much to mention, as the history of the peaceful use of atomic energy is rather short and the RI facilities are limited in the number. It is my sincere hope, however, that you may understand what steps nuclear medicine in the developing countries did take and how it has been developed, seeing the present status of nuclear medicine in Korea, as one of the models. In our country, the peaceful use of atomic energy was actualized since the Law of Atomic Energy had been enacted in March 1959, and the Office of Atomic Energy and the Atomic Energy Research Institute had been established. The Korea Society of Nuclear Medicine was organized in 1961, which i think is one of the older in the Far East area. The Society now held about 170 members and the annual meetings in addition to the quarterly meeting have been held. The 6th general scientific meeting for 1967 is scheduled to be held in 25 November. The society publishes the Korean Journal of Nuclear Medicine twice a year, and the second issue appeared Oct. 1967. The instruments used in nuclear medicine are mostly expensive, therefore, the hospitals equipped with such instruments are inevitably limited in number and the after-service or repair of such instruments are technically not easy. Some of these difficulties, i hope, shall be overcome in the near future.

  18. Control of nuclear material specified equipment and specified material

    International Nuclear Information System (INIS)

    1982-04-01

    The goal and application field of NE 2.02 regulatory guide of CNEN (Comissao Nacional de Energia Nuclear), are described. This regulatory guide is about nuclear material management, specified equipment and specified material. (E.G.) [pt

  19. New nuclear medicine gamma camera systems

    International Nuclear Information System (INIS)

    Villacorta, Edmundo V.

    1997-01-01

    The acquisition of the Open E.CAM and DIACAM gamma cameras by Makati Medical Center is expected to enhance the capabilities of its nuclear medicine facilities. When used as an aid to diagnosis, nuclear medicine entails the introduction of a minute amount of radioactive material into the patient; thus, no reaction or side-effect is expected. When it reaches the particular target organ, depending on the radiopharmaceutical, a lesion will appear as a decrease (cold) area or increase (hot) area in the radioactive distribution as recorded byu the gamma cameras. Gamma camera images in slices or SPECT (Single Photon Emission Computer Tomography), increase the sensitivity and accuracy in detecting smaller and deeply seated lesions, which otherwise may not be detected in the regular single planar images. Due to the 'open' design of the equipment, claustrophobic patients will no longer feel enclosed during the procedure. These new gamma cameras yield improved resolution and superb image quality, and the higher photon sensitivity shortens imaging acquisition time. The E.CAM, which is the latest generation gamma camera, is featured by its variable angle dual-head system, the only one available in the Philipines, and the excellent choice for Myocardial Perfusion Imaging (MPI). From the usual 45 minutes, the acquisition time for gated SPECT imaging of the heart has now been remarkably reduced to 12 minutes. 'Gated' infers snap-shots of the heart in selected phases of its contraction and relaxation as triggered by ECG. The DIACAM is installed in a room with access outside the main entrance of the department, intended specially for bed-borne patients. Both systems are equipped with a network of high performance Macintosh ICOND acquisition and processing computers. Added to the hardware is the ICON processing software which allows total simultaneous acquisition and processing capabilities in the same operator's terminal. Video film and color printers are also provided. Together

  20. Noble gases in nuclear medicine

    International Nuclear Information System (INIS)

    Calderon, M.; Burdine, J.A.

    1973-01-01

    Radioactive noble gases have made a significant contribution to diagnostic nuclear medicine. In the area of regional assessment of pulmonary function, 133 Xe has had its greatest clinical impact. Following a breath of 133 Xe gas, pulmonary ventilation can be measured using a scintillation camera or other appropriate radiation detector. If 133 Xe dissolved in saline is injected intravenously, both pulmonary capillary perfusion and ventilation can be measured since 90 percent of the highly insoluble xenon escapes into the alveoli during the first passage through the lungs. Radionuclide pulmonary function tests provide the first qualitative means of assessing lung ventilation and blood flow on a regional basis, and have recently been extended to include quantification of various parameters of lung function by means of a small computer interfaced to the scintillation camera. 133 Xe is also used in the measurement of organ blood flow following injection into a vessel leading into an organ such as the brain, heart kidneys, or muscles

  1. Performance and quality control of nuclear medicine instrumentation

    International Nuclear Information System (INIS)

    Paras, P.

    1981-01-01

    The status and the recent developments of nuclear medicine instrumentation performance, with an emphasis on gamma-camera performance, are discussed as the basis for quality control. New phantoms and techniques for the measurement of gamma-camera performance parameters are introduced and their usefulness for quality control is discussed. Tests and procedures for dose calibrator quality control are included. Also, the principles of quality control, tests, equipment and procedures for each type of instrument are reviewed, and minimum requirements for an effective quality assurance programme for nuclear medicine instrumentation are suggested. (author)

  2. Nuclear medicine - the condition and prospects

    International Nuclear Information System (INIS)

    Zaredinov, D.A.; Altaeva, B.M.

    2004-01-01

    Full text: The nuclear medicine has rather strongly determined the place in clinical and diagnostic practice. Statistical researches show, that, even despite of the certain successes in treatment of many diseases, rather high death rate at cardiovascular, oncological and many other diseases. The urgency of clinical tasks connected with a state of health of the population puts before nuclear medicine a (task) on development and introduction of new methods of diagnostics and therapy. The nuclear medicine is characterized by some number of diagnostic and therapeutic methods which application frequently does not have other alternative. The methods of visualization used in nuclear medicine, are full informative, exact and have ability to reveal structurally functional changes of bodies and fabrics practically at a cellular level. To present time diagnostic radiopharmacy (Ph) wed practically in all clinical areas of medicine. In world practice steady growth of increase of manufacture as diagnostic and radiotherapeutic RP was planned. The even greater (reduction) of potential risk one and of conditions by which development of nuclear medicine in the near future is defined is at realization of the procedures connected to application of radioactive preparations and reduction of beam loadings on the patient. An important point in the clinic-diagnostic field is replacement the RP on short-lived and ultra short-lived. Among examples of such transition it is necessary to name replacement 131 I in diagnostic application on 123 I, and also active introduction PET. It is possible to call essentially new direction of development of technologies of the directed transport the open radioactive isotopes and RP to pathology changed bodies or organisms demanding realization of diagnostic procedures or selective beam therapy. However, despite of huge potential opportunities of the domestic nuclear industry, even such old method as the radiotherapy I-131 - is used by iodine in our country

  3. 1. A brief history of nuclear medicine

    International Nuclear Information System (INIS)

    Dienstbier, Z.

    1989-01-01

    The milestones of history of nuclear medicine are dealt with. A brief account is given of the history of nuclear medicine abroad, and a more in-depth treatment is devoted to Czechoslovakia, where the beginning of this branch of science dates to 1951. (Z.S.)

  4. Quality assurance of nuclear medicine instruments

    International Nuclear Information System (INIS)

    Soni, P.S.

    1998-01-01

    Quality assurance in nuclear medicine refers collectively to all aspects of a nuclear medicine programme that may contribute directly or indirectly to the quality of the results obtained. For examples, patients scheduling; preparation and dispensing of radiopharmaceutical; the protection of patients, staff and the general public against radiation hazards and accidents caused by faulty instruments; methodology, data interpretation and record keeping

  5. Guidelines for patient information in nuclear medicine

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    This guide for patients information in nuclear medicine is organised in the following manner: what is a medical examination in nuclear medicine, the preparation and the duration of the examination, the possible risks and the radiation doses, pregnancy, delayed menstruation and nursing and what to do after the examination. (N.C.)

  6. Computers for use in nuclear medicine

    International Nuclear Information System (INIS)

    Surova, H.

    1991-01-01

    Brief information is presented on computers for nuclear medicine that are currently available on the market. The treatment is based on print material by various manufacturers and commercial organizations and on the publication ''Nuclear Medicine Computers - A Personal Comparison Chart'' of May 1991, issued by the Reilly Publishing Company. (Z.S.)

  7. Computers in nuclear medicine: introductory concepts

    International Nuclear Information System (INIS)

    Weber, D.A.

    1978-01-01

    Computers play an important role in image and data processing in nuclear medicine. Applications extend from relatively simple mathematical processing of in vitro specimen assays to more sophisticated image reconstruction procedures for emission tomography. The basic concepts and terminology associated with computer applications in image and data processing in nuclear medicine are presented here

  8. Links between nuclear medicine and radiopharmacy

    International Nuclear Information System (INIS)

    Pelegrin, M.; Francois-Joubert, A.; Chassel, M.L.; Desruet, M.D.; Bolot, C.; Lao, S.

    2010-01-01

    Radiopharmaceuticals are nowadays under the responsibility of the radio-pharmacist because of their medicinal product status. Radiopharmacy belongs to the hospital pharmacy department, nevertheless, interactions with nuclear medicine department are important: rooms are included or located near nuclear medicine departments in order to respect radiation protection rules, more over staff, a part of the material and some activities are shared between the two departments. Consequently, it seems essential to formalize links between the radiopharmacy and the nuclear medicine department, setting the goals to avoid conflicts and to ensure patients' security. Modalities chosen for this formalization will depend on the establishment's organization. (authors)

  9. Training and education in nuclear medicine at the Medical Faculty of the University of Zagreb

    International Nuclear Information System (INIS)

    Ivancevic, D.; Popovic, S.; Simonovic, I.; Vlatkovic, M.

    1986-01-01

    Training for specialization in nuclear medicine in Yugoslavia includes 12 months of training in departments of clinical medicine and 24 months of training in departments of nuclear medicine. Since 1974 many physicians have passed the specialist examination in Zagreb. A postgraduate study in nuclear medicine began at the Medical Faculty of the University of Zagreb in 1979. It includes four semesters of courses and research on a selected subject leading to the degree of Magister (Master of Science). Most of the training is conducted by the Institute of Nuclear Medicine at the University Hospital, Rebro, in Zagreb, which has the necessary teaching staff, equipment and space. Forty-four students have completed this postgraduate study. Nuclear medicine in a developing country faces several problems. Scarcity of expensive equipment and radiopharmaceuticals calls for modifications of methods, home made products and instrument maintenance. These, mostly economic, factors are given special emphasis during training. Nuclear power generation may solve some of the country's energy problems; therefore, specialists in nuclear medicine must obtain additional knowledge about the medical care and treatment of persons who might be subject to irradiation and contamination in nuclear power plants. Lower economic resources in developing countries require better trained personnel, stressing the need for organized training and education in nuclear medicine. With some support the Institute of Nuclear Medicine will be able to offer various forms of training and education in nuclear medicine for physicians, chemists, physicists, technologists and other personnel from developing countries. (author)

  10. Course on internal dosimetry in nuclear medicine

    International Nuclear Information System (INIS)

    2004-01-01

    This documentation was distributed to the participants in the Course of Internal Dosimetry in Nuclear Medicine organised by the Nuclear Regulatory Authority (ARN) of Argentina and held in Buenos Aires, Argentina, August 9-13, 2004. The course was intended for people from IAEA Member States in the Latin American and Caribbean region, and for professionals and workers in medicine, related with the radiation protection. Spanish and English were the languages of the course. The following subjects were covered: radioprotection of the patient in nuclear medicine; injuries by ionizing radiations; MIRD methodology; radiation dose assessment in nuclear medicine; small scale and microdosimetry; bone and marrow dose modelling; medical internal dose calculations; SPECT and image reconstruction; principles of the gamma camera; scattering and attenuation correction in SPECT; tomography in nuclear medicine

  11. Nuclear power plant equipment design and construction rules

    International Nuclear Information System (INIS)

    Boiron, P.

    1983-03-01

    Presentation of the AFCEN (French association for nuclear power plant equipment design and construction rules) working, of its edition activity and of somes of its edited documents such as RCC-C (design and construction rules for PWR power plant fuel assemblies) and RCC-E (design and construction rules for nuclear facility electrical equipments) [fr

  12. Seismic qualification method of equipment for nuclear power plant

    International Nuclear Information System (INIS)

    Kim, J.S.; Choi, T.H.; Sulaimana, R.A.

    1995-01-01

    Safety related equipment installed in Korean Nuclear Power Plants are required to perform a safety function during and after a seismic event. To accomplish this safety function, they must be seismically qualified in accordance with the intent and requirements of the USNRC Reg. Guide 1.100 Rev. 02 and IEEE Std. 344-1987. This paper defines and summarizes acceptable criteria and procedures, based on the Korean experience, for seismic qualification of purchased equipment to be installed in a nuclear power plant. As such the paper is intended to be a concise reference by equipment designers, architectural engineering company and plant owners in uniform implementation of commitments to nuclear regulatory agencies such as the USNRC or Korea Institute of Nuclear Safety (KINS) relating to adequacy of seismic Category 1 equipment. Thus, the paper provides the methodologies which can be used for qualifying equipment for safely related service in Nuclear Power Plants in a cost effective manner

  13. Experience with Nuclear Medicine Information System

    Directory of Open Access Journals (Sweden)

    Bilge Volkan-Salanci

    2012-12-01

    Full Text Available Objective: Radiology information system (RIS is basically evolved for the need of radiologists and ignores the vital steps needed for a proper work flow of Nuclear Medicine Department. Moreover, CT/MRI oriented classical PACS systems are far from satisfying Nuclear Physicians like storing dynamic data for reprocessing and quantitative analysis of colored images. Our purpose was to develop a workflow based Nuclear Medicine Information System (NMIS that fulfills the needs of Nuclear Medicine Department and its integration to hospital PACS system. Material and Methods: Workflow in NMIS uses HL7 (health level seven and steps include, patient scheduling and retrieving information from HIS (hospital information system, radiopharmacy, acquisition, digital reporting and approval of the reports using Nuclear Medicine specific diagnostic codes. Images and dynamic data from cameras of are sent to and retrieved from PACS system (Corttex© for reprocessing and quantitative analysis. Results: NMIS has additional functions to the RIS such as radiopharmaceutical management program which includes stock recording of both radioactive and non-radioactive substances, calculation of the radiopharmaceutical dose for individual patient according to body weight and maximum permissible activity, and calculation of radioactivity left per unit volume for each radionuclide according their half lives. Patient scheduling and gamma camera patient work list settings were arranged according to specific Nuclear Medicine procedures. Nuclear Medicine images and reports can be retrieved and viewed from HIS. Conclusion: NMIS provides functionality to standard RIS and PACS system according to the needs of Nuclear Medicine. (MIRT 2012;21:97-102

  14. Respiratory and protective equipment at a large nuclear facility

    International Nuclear Information System (INIS)

    Zippler, D.B.

    1975-12-01

    A variety of personal protective equipment is used in a large nuclear facility to protect employees against both nuclear and ordinary industrial materials. Equipment requirements are based on risk evaluation and may range from a minimum of shoe covers to whole body protection by air-supplied plastic suits. Types of equipment are listed and one-year costs are given. Criteria for evaluating and compartmentalizing risks are discussed. Air-supplied suits and hoods are discussed in detail

  15. Department of Nuclear Equipment '' High Technology Center - HITEC '' - Overview

    International Nuclear Information System (INIS)

    Krawczyk, P.

    2010-01-01

    Full text: The Department of Nuclear Equipment specializes in applications of accelerator technologies in medicine and industrial radiography. It combines research and development with manufacturing activities. The year 2009 was an important and busy period for the Department. We expect to observe already its full results in the coming year. In 2009, the Department concentrated on developing technologies, solutions and elements for use in the new generation of medical accelerators. Design, manufacturing and tests of a model of a new accelerating structure were conducted. The overall mechanical and electrical design of the accelerator was reworked and partially tested. Major efforts were devoted to creating an efficient software environment for the accelerators: new concepts for the control system were developed and tested, and a recording and verification system based on the DICOM standard was completed. A new imaging system was designed and manufactured and work on the associated imaging software was initiated. Design work on a multileaf collimator, begun in 2008, was continued. In effect, an operational model of the device was manufactured which allowed a practical verification of the design ideas. A lull scale prototype is scheduled for manufacture in 2010. The 2009 edition of the HITEC School on Medical Accelerators was directed to Medical Technicians. Very positive feedback from the participants proves the correctness of that decision. The year 2009 was also important for the manufacturing capabilities of the Department of Nuclear Equipment: a new Precision Machining Workshop was established and equipped with modern CNC milling machines. Also, the Vacuum Technologies Laboratory significantly extended the range of its machinery. In 2009 HITEC underwent deep organizational changes. The Quality Management System that governs all aspects of the Department's activities was also substantially redesigned. In December 2009, the new System was successfully audited and

  16. Dynamic functional studies in nuclear medicine in developing countries

    International Nuclear Information System (INIS)

    1989-01-01

    The Proceedings document some of the trials and tribulations involved in setting up nuclear medicine facilities in general and specifically as regards nuclear medicine applications for the diagnosis of the diseases prevalent in the less developed countries. Most of the 51 papers deal with various clinical applications of dynamic functional studies. However, there was also a session on quality control of the equipment used, and a panel discussion critically looked at the problems and potential of dynamic studies in developing countries. This book will be of interest and use not only to those practising nuclear medicine in the developing countries, but it may also bring home to users in developed countries how ''more can be done with less''. Refs, figs and tabs

  17. Procedures, activities and doses in nuclear medicine cycle in Brazil

    International Nuclear Information System (INIS)

    Oliveira, Silvia Maria Velasques de

    2005-01-01

    With the aim of characterizing nuclear medicine procedures performed in Brazil, activities of radiopharmaceuticals used and effective doses to patients, data was collected from nuclear medicine institutions in three regions of the country, namely the Southeast, the Northeast and the South regions, representing public hospitals, university hospitals, private and philanthropic institutions with low, medium and high levels of consumption of radiopharmaceuticals. The three chosen regions are responsible for 92% of radiopharmaceutical consumption and imaging equipment in the country. Accordingly, it was requested of some participating institutions to fulfill manually from individual patients data, to record gender, age, weight, height and activities used, for each type of exam as well as the equipment used. In others, the researcher collected data personally. Per institution, nuclear medicine diagnostic procedures ranged from 700 to 13,000 per year, most of which are myocardial and bone imaging procedures, and imaging equipment ranged, from 1 to 8 machines, one or two head SPECT's (hybrid or not). 26.782 patients protocols were analysed, 24.371 adults and 2.411 children and teenagers. For adult patients, differences were observed in the amount of activities used in diagnostic procedures between public and private institutions, with lower average activities used in public institutions. Activities administered to children and their effective doses were difficult to evaluate due to the incompleteness of individual records. Appropriate individual patient records could be adopted without affecting hospitals routine and contributing for a comprehensive evaluation of the radiation protection of nuclear medicine patients. Data from 8.881 workers were analysed, 346 working at nuclear medicine institutions. For monitored workers and measurably exposed workers in nuclear medicine, the values 2.3 mSv and 5.4 mSv, respectively, for effective annual doses are greater than data

  18. Nuclear medicine: the Philippine Heart Center experience

    International Nuclear Information System (INIS)

    Cancino, E.L.

    1994-01-01

    The following is a report of a three (3) months on-the-job training in Nuclear Medicine at the Nuclear Medicine Department of the Philippine Heart Center. The hospital has current generation nuclear medicine instruments with data processor and is capable of a full range of in vivo and in vitro procedures. Gamma camera is the principal instrument for imaging in nuclear medicine used in the Philippine Heart Center. Thyroid scanning procedure is being performed with these instruments. Also the cardiovascular procedures, the pulmonary, skeletal, renal and hepatobiliary procedures were being performed with the use of gamma camera. Special emphasis is on nuclear cardiology since the PHC attends primarily to cardiovascular patients. (auth.)

  19. Aspects on caring in pediatric nuclear medicine

    International Nuclear Information System (INIS)

    Ljung, B.M.L.

    2002-01-01

    During nuclear medicine examinations, the child is exposed to more or less distressful and/or painful procedures. Many children find it difficult to understand why they have to go through a specific examination. In addition, the surrounding is unfamiliar with heavy technical equipment. The first experience is crucial for the child's future attitudes towards hospitals in general and diagnostic procedures in particular. Apart from having child-focused personnel, there are many ways to improve the situation, and I will focus on four corner-stones. 1. Information; 2. Pain relief; 3. Diversion; 4. Sedation. 1. Information should be addressed directly to the child as well as to the parents. Today, children use the computer already from an early age, and we have initiated the use of Internet as a medium for child-adapted information. With texts, photos and multimedia on an interactive site we are able to reach also quite young children as well as children with difficulties to understand only written parts. Pain relief for vein puncture should always be considered. We use the topical anaesthetic EMLA cream in newborns (> 2.800 g) as well as in teenagers. Trained staff is another condition for high success rate in performing vein punctures, and continuous education vouches for that. 3. Diversion (distraction) is a general term for directing the child's attention from the procedures or to make time pass faster. Age adapted diversions should be readily available for every child. Apart from soap bubbles, toys, books, music and videos there are other possibilities, such as 'Guided imagery', a way of day-dreaming initiated by personnel trained in this method. 4. Sedation should be used when other options are not sufficient. For conscious sedation we use midazolam, administered either iv, intranasal, rectally or orally. The nurses/technologists handle the routines. In nuclear medicine, 4-5 % of the children, mostly between 1-3 years old, are sedated either for fear of vein

  20. Quality control of nuclear medicine instruments 1991

    International Nuclear Information System (INIS)

    1991-05-01

    This document gives detailed guidance on the quality control of various instruments used in nuclear medicine. A first preliminary document was drawn up in 1979. A revised and extended version, incorporating recommended procedures, test schedules and protocols was prepared in 1982. The first edition of ''Quality Control of Nuclear Medicine Instruments'', IAEA-TECDOC-317, was printed in late 1984. Recent advances in the field of nuclear medicine imaging made it necessary to add a chapter on Camera-Computer Systems and another on SPECT Systems. Figs and tabs

  1. Quality control of nuclear medicine instruments, 1991

    International Nuclear Information System (INIS)

    1996-12-01

    This document gives detailed guidance on the quality control of various instruments used in nuclear medicine. A first preliminary document was drawn up in 1979. A revised and extended version, incorporating recommended procedures, test schedules and protocols was prepared in 1982. The first edition of 'Quality Control of Nuclear Medicine Instruments', IAEA-TECDOC-317, was printed in late 1984. Recent advances in the field of nuclear medicine imaging made it necessary to add a chapter on Camera-Computer Systems and another on SPECT Systems

  2. Protection of the patient in nuclear medicine

    International Nuclear Information System (INIS)

    1987-01-01

    In ICRP Publication 52, the 'Protection of the Patient in Nuclear Medicine', is concerned with exposures of patients resulting from the administration of radiopharmaceuticals for diagnostic, therapeutic and research purposes. The report includes guidelines for nuclear medicine physicians, radiologists, medical physicists and technologists on the factors that influence absorbed doses to patients from different types of nuclear medicine examinations. Other topics in the report include education and training, estimates of absorbed dose, design of facilities, instrumentation, quality assurance and control and preparation, quality assurance and control of radiopharmaceuticals. (U.K.)

  3. Physics and radiobiology of nuclear medicine

    CERN Document Server

    Saha, Gopal B

    2010-01-01

    From a distinguished author comes this new edition for technologists, practitioners, residents, and students in radiology and nuclear medicine. Encompassing major topics in nuclear medicine from the basic physics of radioactive decay to instrumentation and radiobiology, it is an ideal review for Board and Registry examinations. The material is well organized and written with clarity. The book is supplemented with tables and illustrations throughout. It provides a quick reference book that is concise but comprehensive, and offers a complete discussion of topics for the nuclear medicine and radi

  4. Nuclear medicine applications: Summary of Panel 4

    International Nuclear Information System (INIS)

    Wolf, A.P.

    1988-01-01

    Nuclear medicine is currently facing a desperate shortage of organic and inorganic chemists and nuclear pharmacists who also have advanced training in nuclear and radiochemistry. Ironically, this shortfall is occurring in the face of rapid growth and technological advances which have made the practice of nuclear medicine an integral part of the modern health care system. This shortage threatens to limit the availability of radiopharmaceuticals required in routine hospital procedures and to impede the development of new diagnostic and therapeutic agents. To redress this need and prevent a similar shortfall in the future, this panel recommends immediate action and a long-term commitment to the following: educating the public on the benefits of nuclear medicine; informing undergraduate and graduate chemistry students about career opportunities in nuclear medicine; offering upper level courses in nuclear and radiochemistry (including laboratory) in universities; establishing training centers and fellowships at the postgraduate level for specialized education in the aspects of nuclear and radiochemistry required by the nuclear medicine profession. 1 tab

  5. Integrating cardiology for nuclear medicine physicians. A guide to nuclear medicine physicians

    International Nuclear Information System (INIS)

    Movahed, Assad; Gnanasegaran, Gopinath; Buscombe, John R.; Hall, Margaret

    2009-01-01

    Nuclear cardiology is no longer a medical discipline residing solely in nuclear medicine. This is the first book to recognize this fact by integrating in-depth information from both the clinical cardiology and nuclear cardiology literature, and acknowledging cardiovascular medicine as the fundamental knowledge base needed for the practice of nuclear cardiology. The book is designed to increase the practitioner's knowledge of cardiovascular medicine, thereby enhancing the quality of interpretations through improved accuracy and clinical relevance.The text is divided into four sections covering all major topics in cardiology and nuclear cardiology: -Basic Sciences and Cardiovascular Diseases; -Conventional Diagnostic Modalities; -Nuclear Cardiology; -Management of Cardiovascular Diseases. (orig.)

  6. Nuclear medicine in childhood tumours

    International Nuclear Information System (INIS)

    Hoefnagel, C.A.

    2004-01-01

    Full text: In recent years the contribution of nuclear medicine has been of increasing interest to paediatric oncology, in particular in imaging for diagnosis, staging and follow-up, in quantitative function analysis of organs at risk during oncological therapy, as well as in radionuclide therapy. For tumour imaging a great number of tumour-seeking radiopharmaceuticals are available, exploiting various metabolic and biological properties of individual tumours; several of these agents can also be applied for radionuclide therapy. More recent tracers allow the characterization of tumours, highlighting features like hormone receptors, hypoxia, MDR and apoptosis. New techniques in paediatric oncology include PET and probe-guided surgery. As a functional modality, nuclear medicine is well suited to monitor the function of organs at risk during treatment in paediatric oncology, in particular cardiac, pulmonary, renal and salivary gland function. A summary of applications and major Indications will be presented. Osteosarcoma: In differentiated osteosarcoma bone scintigraphy/SPECT using 99m Tc-diphosphonate may, as a result of Its targeting the tumour-produced osteoid, visualize not only the primary bone tumour and skeletal metastases, but also the extraosseous metastases. For preoperative therapy nd palliation of metastases beta-emitting bone-seeking agents, such as 89 Sr-chloride, 186 Re-HEDP and 153 Sm-EDTMP, are available. Lymphoma: 67 Ga-citrate has been used for decades in the detection, staging and follow up of lymphoma, as well as for early recognition of response to therapy. 201 TI-chloride scintigraphy/SPECT and PET using 18 F-deoxyglucose can also be used for this purpose. 99m Tc- sestamibi and 99m Tc-tetrofosmin are associated with p-glycoprotein, playing a role in multidrug resistance. In adults with recurrent non Hodgkin lymphoma treatment with 131 l- or 90 Y labelled anti-CD20 antibodies is highly effective. Thyroid carcinoma. 201 TI-chloride scintigraphy

  7. Radioisotopes for nuclear medicine: the future

    International Nuclear Information System (INIS)

    Carr, S.W.

    1998-01-01

    Full text: Nuclear medicine occupies an important niche in the spectrum of medical capability. Since its initial application on a routine basis over 30 years ago its importance has continued to grow. For example, it is expected that over 430,000 Australians will have a nuclear medicine procedure in 1998. Current procedures using nuclear medicine are mainly concerned with diagnosis of oncology, cardiology and neurology. The main radioisotope used in nuclear medicine is Tc 99m, which is produced by a 'so called' Mo-Tc 99m generator. Other isotopes which currently find routine use are Ga-67, Th-201 and I-131. The selective uptakes by particular organs or structures is facilitated by the use of 'cold kits' which after the chemistry of the radioisotope many of the recent advances have been concerned with increasing the selectivity for a particular organ structure. Several of these new agents show increased selectivity using antibody a peptide recognition units

  8. Nuclear medicine training and practice in Turkey.

    Science.gov (United States)

    Ozcan, Zehra; Bozkurt, M Fani; Erbas, Belkıs; Durak, Hatice

    2017-05-01

    Nuclear medicine applications in Turkey started in the early 1950s, grew as an independent medical discipline and finally were recognized by the Ministry of Health in 1973. Later on, the professional organization of nuclear medicine physicians and other related professionals including radiopharmacists and technologists under the Turkish Society of Nuclear Medicine were established in 1975. Recently after completing more than a half century in Turkey, nuclear medicine has proved to be a strong and evolving medical field with more than 600 physicians serving for the changing needs of clinical practice throughout these years. This article describes past and present facts in this field and attempts to provide insights into the future which hopefully will be brighter than before.

  9. Nuclear medicine in the nephrourinary tract

    International Nuclear Information System (INIS)

    Jofre M, M.Josefina; Sierralta C, Paulina

    2002-01-01

    Nuclear medicine images play an important role in the evaluation of urinary tract pathologies. Radionuclide imaging studies (DMSA scan, DTPA/MAG3 renography, radionuclide cistography) are reviewed, analyzing their indications (au)

  10. Internal dosimetry in nuclear medicine procedures

    International Nuclear Information System (INIS)

    Carrera Magarino, F.; Salgado Garcia, C.; Ruiz Manzano, P.; Rivas Ballarin, M. A.; Jimenez Hefernan, A.; Sanchez Segovia, J.

    2011-01-01

    The Department of Radio Physics and Radiation Protection, University Hospital Lozano Blesa Zaragoza presented a calculus textbook to estimate patient doses in diagnostic nuclear medicine. In this paper present an updated referred Book of calculation.

  11. Nuclear medicine training and practice in Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Ozcan, Zehra [Ege University School of Medicine, Department of Nuclear Medicine, Izmir (Turkey); Bozkurt, M. Fani; Erbas, Belkis [Hacettepe University School of Medicine, Department of Nuclear Medicine, Ankara (Turkey); Durak, Hatice [Dokuz Eyluel University School of Medicine, Department of Nuclear Medicine, Izmir (Turkey)

    2017-05-15

    Nuclear medicine applications in Turkey started in the early 1950s, grew as an independent medical discipline and finally were recognized by the Ministry of Health in 1973. Later on, the professional organization of nuclear medicine physicians and other related professionals including radiopharmacists and technologists under the Turkish Society of Nuclear Medicine were established in 1975. Recently after completing more than a half century in Turkey, nuclear medicine has proved to be a strong and evolving medical field with more than 600 physicians serving for the changing needs of clinical practice throughout these years. This article describes past and present facts in this field and attempts to provide insights into the future which hopefully will be brighter than before. (orig.)

  12. Radiation exposure of workers in nuclear medicine

    International Nuclear Information System (INIS)

    Bujnova, A.

    2008-01-01

    Nuclear medicine is an interdisciplinary department that deals with diagnosis and therapy using open sources. Therefore workers in nuclear medicine are in daily contact with ionizing radiation and thus it is essential to monitor a radiation load. Each work must therefore carry out monitoring of workers. It monitors compliance with the radiation limits set by law, allows an early detection of deviations from normal operation and to demonstrate whether the radiation protection at the workplace is optimized. This work describes the principles of monitoring of workers in nuclear medicine and monitoring methods for personal dosimetry. In the next section the author specifically deals with personal dosimetry at the Department of Nuclear Medicine St. Elizabeth Cancer Institute, Bratislava (KNM-Ba-OUSA). The main part of the work is to evaluate the results of a one-year monitoring of radiation workers KNM-Ba-OUSA. (author)

  13. Monte Carlo simulation in nuclear medicine

    International Nuclear Information System (INIS)

    Morel, Ch.

    2007-01-01

    The Monte Carlo method allows for simulating random processes by using series of pseudo-random numbers. It became an important tool in nuclear medicine to assist in the design of new medical imaging devices, optimise their use and analyse their data. Presently, the sophistication of the simulation tools allows the introduction of Monte Carlo predictions in data correction and image reconstruction processes. The availability to simulate time dependent processes opens up new horizons for Monte Carlo simulation in nuclear medicine. In a near future, these developments will allow to tackle simultaneously imaging and dosimetry issues and soon, case system Monte Carlo simulations may become part of the nuclear medicine diagnostic process. This paper describes some Monte Carlo method basics and the sampling methods that were developed for it. It gives a referenced list of different simulation software used in nuclear medicine and enumerates some of their present and prospective applications. (author)

  14. Nuclear medicine training and practice in Turkey

    International Nuclear Information System (INIS)

    Ozcan, Zehra; Bozkurt, M. Fani; Erbas, Belkis; Durak, Hatice

    2017-01-01

    Nuclear medicine applications in Turkey started in the early 1950s, grew as an independent medical discipline and finally were recognized by the Ministry of Health in 1973. Later on, the professional organization of nuclear medicine physicians and other related professionals including radiopharmacists and technologists under the Turkish Society of Nuclear Medicine were established in 1975. Recently after completing more than a half century in Turkey, nuclear medicine has proved to be a strong and evolving medical field with more than 600 physicians serving for the changing needs of clinical practice throughout these years. This article describes past and present facts in this field and attempts to provide insights into the future which hopefully will be brighter than before. (orig.)

  15. Aplications of Nuclear Medicine in endocrinology

    International Nuclear Information System (INIS)

    Jales, R.L.C.

    1981-01-01

    A scanning of thyroid has been undertaked by using radioactive isotopes. Clinical procedures performed in the nuclear medicine field were cited along with its principles and interpretation. (Author) [pt

  16. Hand Dose in Nuclear Medicine Staff Members

    International Nuclear Information System (INIS)

    Taha, T.M.; Shahein, A.Y.; Hassan, R.

    2009-01-01

    Measurement of the hand dose during preparation and injection of radiopharmaceuticals is useful in the assessment of the extremity doses received by nuclear medicine personnel. Hand radiation doses to the occupational workers that handling 99m Tc-labeled compounds, 131 I for diagnostic in nuclear medicine were measured by thermoluminescence dosimetry. A convenient method is to use a TLD ring dosimeter for measuring doses of the diagnostic units of different nuclear medicine facilities . Their doses were reported in millisieverts that accumulated in 4 weeks. The radiation doses to the hands of nuclear medicine staff at the hospitals under study were measured. The maximum expected annual dose to the extremities appeared to be less than the annual limit (500 mSv/y) because all of these workers are on rotation and do not constantly handle radioactivity throughout the year

  17. Systematic thinks of nuclear medicine diagnosis

    International Nuclear Information System (INIS)

    Wang Jing

    2002-01-01

    For proper diagnosis using nuclear medicine techniques, an integrated man-machine system should be the starting point; the best choice should be the essential purpose and modeling is the necessary method

  18. Radiation hazards in the nuclear medicine

    International Nuclear Information System (INIS)

    Roo, M.J.K. de

    1981-01-01

    After a survey of the actual situation of nuclear medicine in Belgium, the evolution of nuclear medicine is studied with regard to quantitative aspects (tracerquantities, number of radioisotopic explorations, number of certified doctors) and qualitative aspects (use of short living isotopes emitting low energy radiation, introduction of in vitro tests). Taking these data into consideration, the exposure of nuclear medicine staff by external or internal radiation is evaluated. From this study it appears that the radiation exposure of the personnel of nuclear medicine departments remains low if proper manipulation methods and simple protective devices are used and if there is an efficient collaboration with an active health physics department or radiation control organism. (author)

  19. Maintenance and fabrication of nuclear electronic equipment

    International Nuclear Information System (INIS)

    Hong, Seok Boong; Chung, Chong Eun; Hwang, In Koo; Koo, In Soo; Park, Bum; Kim, Soo Hee; Lee, Seong Joo; Kim, Min Seok; Choi, Wha Lim

    2011-12-01

    - process equipment at PIEF, Chemical Analysis Team and RWFTF have been calibrated. - The electronic equipment and radiation equipment at RWTF and PIEF have been prepared. - Development and installation of integrated RMS software for Hanaro Cold Neutron Laboratory Building(CNLB) RMS, and development and performance upgrade of a portal monitor for CNLB. - Performance test of the Hardware/Software of digital unit controller has been performed, and functional upgrade of the Hardware/Software of stimulator for SMART MMIS performance test facility has also been performed. - A controller of high voltage power supply for a small electron beam generator and a controller for razer pinning and a remote monitoring apparatus of cathode power supply for a 0.2 Mev. small electron beam generator have been designed and fabricated. - Database construction for effective maintenance for the process equipment and radiation instruments are designed and constructed

  20. Upgradation of nuclear medical equipment in the developing countries and its impact in Bangladesh

    International Nuclear Information System (INIS)

    Jahangir, Saleh Mahmud; Xie, Y.; Uddin, Md. Rokon; Haque, Mohammod Abu Sayid; Hoq, Mahbubul; Mawla, Yasmeen; Alom, Md. Zahangir; Morium, Tasnim

    2002-11-01

    Bangladesh has thirteen Nuclear Medical Centres and one Institute of Nuclear Medicine in the country which are being run and maintained by the physicians scientists and engineers of Bangladesh Atomic Energy Commission. The peaceful application of atomic energy was initiated through all these Centres with the use of clinical isotopes for thyroid and kidney studies. The equipment used for these purposes were the thyroid uptake system, rectilinear scanner and the multiprobe renogram system. The first gamma camera was installed in the country in 1980 at the Institute of Nuclear Medicine, Dhaka. That was the turning point for the country in the field of nuclear medicine. Presently all the nuclear medical establishments are equipped least with a gamma camera, thyroid uptake system and a renogram system. In the last two decades there has been a tremendous development in the design of nuclear medical equipment. Most of the old equipments were slow and manually operated. In the beginning of nineties of the past century there was an uprising in the computer technology and most of the manually operated machines were brought under computerization. It was basically done with a custom built processor to perform only the specific job and spare the users from doing some extra manual work. But the performances of the recent models of the same computerized equipment are by far the best as compared with the past ones. This report describes the role of the IAEA in the upgradation of medical equipment, PC interfacing, upgrading of old gamma cameras and the technological and socio-economic impact in Bangladesh

  1. Case assessments for nuclear medicine registrars

    International Nuclear Information System (INIS)

    Farlow, D.

    1994-01-01

    Westmead Hospital set some of the recent nuclear medicine cases for registrar training. These case assessments have been completed by the registrars and he thought it might be interesting for the general nuclear medicine community to attempt the cases themselves and compare their answers with the model reports and patient follow-ups. Edited versions of two cases and model answers are presented. 35 refs

  2. Molecular methods in nuclear medicine therapy

    International Nuclear Information System (INIS)

    Lee, Kyung Han

    2001-01-01

    Nuclear medicine has traditionally contributed to molecular oncology by allowing noninvasive monitoring of tumor metabolism, growth and genetic changes, thereby providing a basis for appropriate biology-based treatment planning. However, NM techniques are now being applied as an active therapeutic tool in novel molecular approaches for cancer treatment. Such areas include research on cancer therapy with radiolabeled ligands or oligonucleotides, and utilization of synergism between NM radiotherapy and gene transfer techniques. Here we will focus on novel aspects of nuclear medicine therapy

  3. The applications of nanomaterials in nuclear medicine

    International Nuclear Information System (INIS)

    Liu Jinjian; Liu Jianfeng

    2010-01-01

    Over the last decade, nanotechnology and nanomaterials have gained rapid development in medical application, especially in targeted drug delivery and gene transfer vector domain, and nano-materials are also beginning to applied in nuclear medicine. This paper is to make a view of the application research of several types of nanomaterials in nuclear medicine, and discuss some problems and the main direction of future development. (authors)

  4. The 3rd questionnaire report of safety control on instrument in nuclear medicine laboratory

    International Nuclear Information System (INIS)

    1994-01-01

    The present 3rd survey was aimed at grasping safety control in nuclear medicine examination and the trend for SPECT usage. Questionnaires were sent to 1238 facilities dealing with nuclear medicine; and 1127 facilities (91.0%) responded. The survey period was three years from April 1, 1989 through March 31, 1992. The following 7 items were surveyed: (1) nuclear medicine personnel, (2) nuclear medicine equipments, (3) accidents occurring in nuclear medicine laboratories, (4) risk factors leading to accidents, (5) countermeasures for improving safety control, (6) major breakdown of the machinery and equipment, and (7) demands for makers. Majority of nuclear medicine personnel were male and were less than 50 years old. The number of SPECT equipments increased from 714 in the previous survey to 968. Accidents (personal injuries) and narrow escape from an accident were seen in 45 and 154 cases. Personal injuries such as falling occurred in 37 patients and 8 nuclear medicine personnel. According to nuclear medicine examinations, SPECT was the most common examination associated with accident and narrow escape cases (86/199). Such cases at the beginning of examination were remarkably decreased, as compared with those in the previous two surveys. Accidents were primarily attributable to careless management by personnel. Breakdown of the machinery and equipment was reported in 207 cases. In Item 5, the following contents were presented: heads for examination, personnel's behavior, education, examination equipments, collimators and others. Finally, contents in Item 7 included: equipment design, heads for examination, maintenance or management, data processing, collimators, examination equipments and others. (N.K.)

  5. The basic discussion on nuclear power safety improvement based on nuclear equipment design

    International Nuclear Information System (INIS)

    Zhao Feiyun; Yao Yangui; Yu Hao; He Yinbiao; Gao Lei; Yao Weida

    2013-01-01

    The safety of strengthening nuclear power design was described based on nuclear equipment design after Fukushima nuclear accident. From these aspects, such as advanced standard system, advanced design method, suitable test means, consideration of beyond design basis event, and nuclear safety culture construction, the importance of nuclear safety improvement was emphatically presented. The enlightenment was given to nuclear power designer. (authors)

  6. Maintenance and Fabrication of Nuclear Electronic Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Chong Eun; Koo, In Soo; Hong, Seok Boong (and others)

    2006-12-15

    Based on the development of Hanaro RMS software, the RMS software system for another radiation facility(RI and IMEF) at KAERI will be developed next year. Development and its application of a wire-mesh sensor could contribute to the safe operation of nuclear power plants and could be used to develop other precision sensors for nuclear applications. Development of an ERMS could be used not only in nuclear facility but also in other radiation application institution such as acceleration facility etc.

  7. Medical Imaging Informatics in Nuclear Medicine

    NARCIS (Netherlands)

    van Ooijen, Peter; Glaudemans, Andor W.J.M.; Medema, Jitze; van Zanten, Annie K.; Dierckx, Rudi A.J.O.; Ahaus, C.T.B. (Kees)

    2016-01-01

    Medical imaging informatics is gaining importance in medicine both in clinical practice and in scientific research. Besides radiology, nuclear medicine is also a major stakeholder in medical imaging informatics because of the variety of available imaging modalities and the imaging-oriented operation

  8. A DICOM based PACS for nuclear medicine

    International Nuclear Information System (INIS)

    Lassmann, M.; Reiners, C.

    2002-01-01

    The installation of a radiology information system (RIS) connected to a hospital information system (HIS) and a picture archiving and communications system (PACS) seems mandatory for a nuclear medicine department in order to guarantee a high patient throughput. With these systems a fast transmission of reports, images to the in- and out-patients' wards and private practitioners is realized. Therefore, since April 2000, at the department of nuclear medicine of the university of Wuerzburg a completely DICOM based PACS has been implemented in addition to the RIS. With this system a DICOM based workflow is realized throughout the department of nuclear medicine for reporting and archiving. The PACS is connected to six gamma-cameras, a PET scanner, a bone densitometry system and an ultrasound device. The volume of image data archived per month is 4 GByte. Patient demographics are provided to the modalities via DICOM-Worklist. With these PACS components a department specific archive purely based on DICOM can be realized. During the installation process problems occurred mainly because of the complex DICOM standard for nuclear medicine. Related to that is the problem that most of the software implementations still contain bugs or are not adapted to the needs of a nuclear medicine department (particularly for PET). A communication software for the distribution of nuclear medicine reports and images based on techniques used for the worldwide web is currently tested. (orig.) [de

  9. Research on the organization of equipment of nuclear emergency

    International Nuclear Information System (INIS)

    Li Xiaoming; Yang Jun

    2012-01-01

    The emergency rescue operation on major accident of nuclear facilities contains four kinds of abilities that are command and control, radiation protection, radiation monitoring and radioactive decontamination, so it needs to organize some equipment of nuclear emergency to enhance the efficiency of nuclear emergency operation. The organization of equipment of nuclear emergency should accord to the reality of the development in our country. It should have extractive structure, brief variety and advance capability, and also should be convenient, useful and adequate. The method of organization can first accord to the organization of group and organize the facilities accord to the organization of group of the emergency rescue force. (authors)

  10. Hoisting appliances and fuel handling equipment at nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-12-31

    The guide is followed by the Finnish Centre for Radiation and Nuclear Safety (STUK) in regulating hoisting and handling equipment Class 3 at nuclear facilities. The guide is applied e.g. to the following equipment: reactor building overhead cranes, hoisting appliances at nuclear fuel storages, fuel handling machines, other hoisting appliances, which because of nuclear safety aspects are classified in Safety Class 3, and load-bearing devices connected with the above equipment, such as replaceable hoisting tools and auxiliary lifting devices. The regulating of hoisting and handling equipment comprises the following stages: handling of preliminary and final safety analysis reports, inspection of the construction plan, supervision of fabrication and construction inspection, and supervision of initial start-up and commissioning inspection. 36 refs. Translation. The original text is published under the same guide number. The guide is valid from 5 January 1987 and will be in force until further notice.

  11. Hoisting appliances and fuel handling equipment at nuclear facilities

    International Nuclear Information System (INIS)

    1987-01-01

    The guide is followed by the Finnish Centre for Radiation and Nuclear Safety (STUK) in regulating hoisting and handling equipment Class 3 at nuclear facilities. The guide is applied e.g. to the following equipment: reactor building overhead cranes, hoisting appliances at nuclear fuel storages, fuel handling machines, other hoisting appliances, which because of nuclear safety aspects are classified in Safety Class 3, and load-bearing devices connected with the above equipment, such as replaceable hoisting tools and auxiliary lifting devices. The regulating of hoisting and handling equipment comprises the following stages: handling of preliminary and final safety analysis reports, inspection of the construction plan, supervision of fabrication and construction inspection, and supervision of initial start-up and commissioning inspection

  12. Nuclear power equipment procurement management under EPC mode

    International Nuclear Information System (INIS)

    Shuai Yuezhi

    2014-01-01

    Nuclear power equipment procurement is one of the major constraints and management difficulties in the process of domestic nuclear power project construction for a long time. The construction of Hainan Changjiang Project can not meet the milestones due to the major equipment supply delay. Through the introduction to the organization and features of Changjiang project equipment procurement under EPC mode, and the main problems in the procurement process and its reason analysis, the purpose of this paper is to put forward ideas and suggestions of these items, i.e. selection of equipment suppliers, equipment localization, mass material design and procurement, complete system equipment supply, spare parts delivery and storage, owner process management, providing reference for follow-up projects. (author)

  13. Nuclear medicine in Tunisia : current status and prospects

    International Nuclear Information System (INIS)

    Hammami, Hatem

    2013-01-01

    Nuclear medicine is concerned with the utilisation of radioactivity in vivo or in vitro for diagnostic or therapeutic purposes. In Tunisia, there are four public departments of nuclear medicine and seven private clinics. 50% of the population is localized in the north, which justifies the existence of 7 public and private departments of nuclear medicine with nine gamma cameras in this region. In the south, there are 30 pour cent of the population that goes to Sfax and 20 pour cent to Sousse where we count two departments with gamma cameras in public services and one in the private sector. The nuclear medicine services in the public sector have 4 SPECT / CT. Siemens is the leading provider of gamma cameras and occupies 73 pour cent of market share, subsequently ranks SMV (13 pour cent) and (GE and GAEDE) have the same proportion of the market share (7 pour cent). For radio-protected rooms, there is a single center with a single chamber from four public services. On the other hand, there are 2/7 private centers that are equipped with five radio-protected electrically rooms. Concerning the human resources, there are 26 doctors and 24 technicians in the public sector. The private sector has 6 doctors and 12 technicians. In 2012, there has been 22000 examinations (diagnostic and therapeutic procedures) in which 14,600 in nuclear medicine departments of public hospitals. Bone scintigraphy ranks first, with a relative frequency of 40-80 pour cent thereafter ranks renal scintigraphy (10-15 pour cent) and then the thyroid scintigraphy (8-12 pour cent). The waiting period is a major problem, especially in the public sector. Taking as an example, for the therapy of thyroid, injection of 100 mCi of I-131 requires a period of waiting more than six months and waiting more than three months for the bone scan. The second problem for patient with cancer is the distance, there are 11 centers concentrated in 3 coastal cities and none in the inner areas of the country, no regional

  14. Quality assurance grading of conventional equipment at nuclear power station

    International Nuclear Information System (INIS)

    Li Ping; Li Shichang

    2006-01-01

    Equipment QA grading with the systematic and standardized approach will benefit the concerned organizations by effective allocating of limited resources to guarantee the quality of essential equipment. This paper presents a new quality assurance grading system for the convention systems/equipment of nuclear power station, which is operative and at the same time could help the owner to allot resource reasonably through the analysis of the purpose of grading and the experience and lessons of LINGAO Phase I project. (authors)

  15. Qualification of electric equipments for nuclear power plants

    International Nuclear Information System (INIS)

    Chauvin, G.; Raimondo, E.

    1983-03-01

    Description of the testing equipment, testing methods and standards of the resistance to seisms of electrical equipments (switches, pump motors, electrovalves, ...) for electronuclear power plants in France. Presentation of the French design and construction rules for electrical devices in the domestic and export nuclear market (resistance to thermodynamical and chemical stresses, to seisms, etc...) [fr

  16. Some electron beam welding equipments for the nuclear industry

    International Nuclear Information System (INIS)

    Helm, H.; Rodier, R.; Sayegh, G.

    1978-01-01

    Results of various electron beam welding equipment developed for the nuclear industry obtained from a 100 kW electron beam machine to weld thick plates made of stainless steel and reactor steel, and from some equipment with local vacuum to weld pipes onto a pipe wall. (orig.) [de

  17. In vivo diagnostic nuclear medicine. Pediatric experience

    International Nuclear Information System (INIS)

    Goetz, W.A.; Hendee, W.R.; Gilday, D.L.

    1983-01-01

    The use of radiopharmaceuticals for diagnostic tests in children is increasing and interest in these is evidenced by the addition of scientific sessions devoted to pediatric medicine at annual meetings of The Society of Nuclear Medicine and by the increase in the literature on pediatric dosimetry. Data presented in this paper describe the actual pediatric nuclear medicine experience from 26 nationally representative U.S. hospitals and provide an overview of the pediatric procedures being performed the types of radiopharmaceuticals being used, and the activity levels being administered

  18. Nuclear magnetic resonance and medicine. Present applications

    International Nuclear Information System (INIS)

    1984-01-01

    At the workshop on nuclear magnetic resonance and medicine held at Saclay, the following topics were presented: physical principles of NMR; NMR spectroscopy signal to noise ratio; principles of NMR imaging; methods of NMR imaging; image options in NMR; biological significance of contrast in proton NMR imaging; measurement and significance of relaxation times in cancers; NMR contrast agents; NMR for in-vivo biochemistry; potential effects and hazards of NMR applications in Medicine; difficulties of NMR implantation in Hospitals; NMR imaging of brain tumors and diseases of the spinal cord; NMR and Nuclear Medicine in brain diseases [fr

  19. The radiological protection in the nuclear medicine practice

    International Nuclear Information System (INIS)

    Maldonado M, H.

    2010-09-01

    The nuclear medicine practice dates of the 1950 years, in this work the achievements reached as regards radiological protection are shown, although even lack a lot to make, the doses for the occupationally exposed personnel have decreased with lapsing of the years, thanks to the perception of the nuclear physicians to improve the administration techniques of the radioactive material, the decrease of administered activity and the unit doses use among the most remarkable advances. The changes in the equipment s technology to quantify the activity to administer, detection systems and image formation have demanded the development of the new professionals of the nuclear medicine that allows give protection to the patient. This improvement needs to consolidate with the appropriate normative development, the involved personnel qualification and the methods and procedures actualization to improve the protection of the occupationally exposed personnel, the public, the environment and the patient. (Author)

  20. VIIth international symposium on nuclear medicine

    International Nuclear Information System (INIS)

    1983-01-01

    The conference proceedings contain abstracts of 100 presented papers, mainly dealing with radioimmunoassays, radiopharmaceuticals, scintiscanning, computer tomography, radionuclide lymphography, ventriculography, angiography, nuclear cardiology, liquid scintillator techniques, radioisotope generators, radiospirometry and various uses of labelled compounds and tracer techniques in nuclear medicine. (M.D.)

  1. Information for nuclear medicine researchers and practitioners

    International Nuclear Information System (INIS)

    Bartlett, W.

    1987-01-01

    The Australian Nuclear Science and Technology Organisation (ANSTO) has a major research program in nuclear medicine; this article describes the information support given to the program by the Lucas Heights Research Laboratories (LHRL) Library. The INIS database is a prime indicator of the information held at LHRL Library, however, other databases also cover nuclear medicine. As part of the Australian library system the ANSTO Library's resources are accessed by subscription. The ANSTO Library staff can also search INIS for a fee for external enquiries but the other databases can presently only be searched for LHRL staff and affiliates. Even so, most major library and information services can provide access to these databases

  2. Current trends in nuclear medicine in Pakistan

    International Nuclear Information System (INIS)

    Kamal, S.; Ahmed, S.

    1990-01-01

    This volume is a compilation of dissertations on research projects submitted by the fellows of M. Sc. (Nuclear Medicine) who undertook a two-year intensive course initiated in 1989 by the Centre for Nuclear Studies, PINSTECH, Islamabad. The project covered major aspects of nuclear medicine including the cardiovascular, endocrine, haematopoietic, hepatobiliary, immune and skeletal systems. The results obtained proved interesting and of significant clinical relevance. Majority of essays addressed some new aspects of the problems and the resultants information should prove interesting for both local and foreign enthusiasts. This book proves a reflection of the high quality of work done by the faculty and the fellows. (orig./A.B.)

  3. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... medicine exam, there are several things you can do to prepare. First, you may be asked not ... To help ensure current and accurate information, we do not permit copying but encourage linking to this ...

  4. The application of GIS equipment in nuclear power plant

    International Nuclear Information System (INIS)

    Ji Lin; Huang Pengbo; Chang Xin'ai

    2012-01-01

    In this paper, the advantage and disadvantage of gas insulated switchgear (GIS) in environmental adaptability, operation safety and economic benefit are analyzed. Issues concerning the manufacture, transportation, on-site installation, operation, maintenance and extension of GIS equipment are discussed. Comparing those characteristics with air insulated switchgear (AIS), GIS is characterized by better aseismic ability, less occupied area and installation process, lower fault rate, longer maintenance period, easier for extension and higher economic benefit, SF6 gas insures the operation safety and reliability of GIS equipment, modular transport and re-assembling improves the installation flexibility. Therefore, GIS equipment may be the first choice for the primary equipment of nuclear power plant. (authors)

  5. Discussion on the safety classification of nuclear safety mechanical equipment

    International Nuclear Information System (INIS)

    Shen Wei

    2010-01-01

    The purpose and definition of the equipment safety classification in nuclear plant are introduced. The differences of several safety classification criterions are compared, and the object of safety classification is determined. According to the regulation, the definition and category of the safety functions are represented. The safety classification method, safety classification process, safety class interface, and the requirement for the safety class mechanical equipment are explored. At last, the relation of the safety classification between the mechanical and electrical equipment is presented, and the relation of the safety classification between mechanical equipment and system is also presented. (author)

  6. Quality management audits in nuclear medicine practices

    International Nuclear Information System (INIS)

    2008-12-01

    An effective management system that integrates quality management (QM) is essential in modern nuclear medicine departments in Member States. The IAEA, in its Safety Standards Series, has published a Safety Requirement (GS-R-3) and a Safety Guide (GS-G-3.1) on management systems for all facilities. These publications address the application of an integrated management system approach that is applicable to nuclear medicine organizations as well. Quality management systems are maintained with the intent to continuously improve effectiveness and efficiency, enabling nuclear medicine to achieve the expectations of its quality policy, and to satisfy its customers. The IAEA has a long history of providing assistance in the field of nuclear medicine to its Member States. Regular quality audits and assessments are essential for modern nuclear medicine departments. More importantly, the entire QM and audit process has to be systematic, patient oriented and outcome based. The management of services should also take into account the diversity of nuclear medicine services around the world and multidisciplinary contributions. The latter include clinical, technical, radiopharmaceutical and medical physics procedures. Aspects of radiation safety and patient protection should also be integral to the process. Such an approach ensures consistency in providing safe, quality and superior services to patients. Increasingly standardized clinical protocol and evidence based medicine is used in nuclear medicine services, and some of these are recommended in numerous IAEA publications, for example, the Nuclear Medicine Resources Manual. Reference should also be made to other IAEA publications such as the IAEA Safety Standards Series, which include the regulations for the safe transport of nuclear material and on waste management as all of these have an impact on the provision of nuclear medicine services. The main objective of this publication is to introduce a routine of conducting an

  7. Past, current and future aspects of nuclear medicine in Malaysia

    International Nuclear Information System (INIS)

    Dharmalingam, S.K.

    1980-01-01

    Nuclear Medicine in Malaysia began initially with the use of radioiodine and radiophosphorous for the investigation and treatment of thyroid and blood disorders around 1960. Following this we went through a phase of organ imaging using radioiodine and radiogold using an early generation Phillips Scanner. In terms of Medical usefulness this proved a big step forward in Malaysian Medicine, basic though the techniques were. The third phase of this speciality came on in the 1970s with the availability of generator scanners. A tremendous spurt in Nuclear Imaging and thyroid function studies took place. We have now together with the University Hospital Gamma Cameras which have considerably widened the scope of Nuclear Medicine especially in the field of cardiovascular studies. Further advances are expected in the future with the availability of medical cyclotrons, positron cameras and emission tomography. However yesterdays problems have not disappeared completely and the training of personnel and provision of up to date Nuclear Medicine laboratories with the latest equipment should be given top priority so as to assure progress in this speciality. (author)

  8. Medicine and nuclear war - helpless

    International Nuclear Information System (INIS)

    1983-01-01

    At the end of the ''2nd Medical Congress for the Prevention of Nuclear War'' attention is again drawn to the fact that erroneous or intended use of nuclear weapons can kill hundreds of millions and make the earth unlivable. What physicians are refusing here is not to give whatever help they can or are obliged to. They are on strike against politicians and journalists who ascribe them an ability they do not possess. They refuse to be the objects of false praise pretending that they could be helpers or rescuers in the, unfortunately, not only possible but probable nuclear catastrophe. (orig./HSCH) [de

  9. Nuclear medicine consensus; Consenso sobre medicina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Camargo, Edwaldo E.; Marin Neto, Jose Antonio; Naccarato, Alberto F.P.; Ramires, Jose Antonio F.; Castro, Iran de; Paiva, Eleuses Vieira; Thom, Anneliese F.; Barroso, Adelanir; Blum, Bernardo; Hollanda, Ricardo; Mansur, Antonio de Padua

    1995-04-01

    The use of nuclear methods in cardiovascular diseases is studied concerning diagnosis, risk, prognosis, indications and accuracy. Aspects concerning chronic coronary artery disease, myocardial ischemia, myocardial infarction, viable myocardium, valvular heart disease, ventricular dysfunction, heart transplant, congenital heart diseases in adults, are discussed.

  10. Nuclear medicine with its interdependencies

    International Nuclear Information System (INIS)

    1980-01-01

    Newly developed nuclear methods and measuring techniques in the diagnosis and therapy of diseases of the blood, heart, vessels, thyroid, gastrointestinal tract, kidneys, skeleton and ophthalmological diseases are described. Occupational radiation exposure is briefly discussed. (AJ) [de

  11. The state of the art of nuclear medicine in 1980

    International Nuclear Information System (INIS)

    Tamat, S.R.

    1982-01-01

    The second congress of World Federation of Nuclear Medicine and Biology proved that nuclear medicine is returning to physiology. Around 1951, when motorized detector was introduced and when GM tube was replaced by scintillation crystal detector, physiologic nuclear medicine moved to anatomic nuclear medicine. Since 1970, when research on cardiology developed, nuclear medicine has been returning to physiology. Since 1963 Kuhl has been doing research on quantitative tomography which develops to emission computerized tomography emphasizing the physiological aspects of medicine. The recent contribution of nuclear medicine to medical science is the concept that human body is a unity of dynamic structure consisting of millions of cubes moving physio-chemically. (RUW)

  12. Method for keeping equipment and pipeline of nuclear power plant

    International Nuclear Information System (INIS)

    Okubo, Osamu.

    1990-01-01

    The present invention intends to suppress corrosion of equipments and pipelines in condensate, feedwater and feedwater heater drain systems during operation of a nuclear power plant. That is, condensate, feedwater and drain remained in equipments and pipelines just after the stopping of operation are passed through pipelines comprising only conduits, or they are introduced to a condensator passing through the pipelines and condensate pipes. Further, the remaining droplets on the inner surfaces are evaporated by the remaining heat of the equipments and the pipelines themselves. Then, the equipments and pipelines are isolated from other regions and kept. In view of the above, since condensate, feedwater and water feeder drains are introduced directly to the condensator passing through the conduits in which other equipments such as tanks and pumps are not present and are isolated and kept, corrosion of the equipments and the pipelines is suppressed and radioactive contamination is suppressed from prevailing by way of cruds. (I.S.)

  13. Auxiliary equipment cooling circuit in nuclear reactors

    International Nuclear Information System (INIS)

    Yanagisawa, Ko.

    1986-01-01

    Purpose: To prevent the propagation of bacterias that transform NO 2 into NO 3 in auxiliary equipment coolants using corrosion inhibitors of nitrite type in BWR type reactors. Method: In auxiliary equipments coolant systems, water quality is controlled by using purified water as supplement water and nitrite such as Na 2 NO 2 as the corrosion inhibitors. However, in the circumstance where dissolved oxygen is present, bacteria propagate to oxidize NO 2 into NO 3 . Thus, NO 2 at 200 ppm is reduced to 20 ppm. In view of the above, a surge tank supplied from water supplement line is connected in series and a deaeration device is disposed thereto. Since the presence of dissolved oxygen causes the bacteria to propagate it is desired that the dissolved oxygen density in the supplement water is less than 5 ppm. Deaeration and pressure reduction in the surge tank can remove the dissolved oxygen, prevent NO 3 increase and also prevent stress corrosion cracks in the system pipeways. (Horiuchi, T.)

  14. Sodium cleaning device for nuclear reactor equipments

    International Nuclear Information System (INIS)

    Fujisawa, Morio.

    1985-01-01

    Purpose: To enable sodium cleaning over the entire length of large size equipments such as control rod drives and primary coolant recycling pumps for use in FBR type reactors. Constitution: A plurality of warm water supply nozzles each having a valve are connected at varying height on the side of a cleaning tank, to which an exhaust line is connected. These nozzles are connected with an exhaust port at the bottom of the tank to constitute a pipeway for cleaning warm water recycling line including a water feed pump and a feedwater heater. The water level in the tank is changed stepwise by successively selecting the warm water feed nozzles. Further, the warm water in the tank is recyclically fed through the nozzles selected at each step of the water level through the recycle line while warming. On the other hand, the pressure inside the tank is reduced through the exhaust line, whereby the warm water in the tank is boiled at low temperature to clean-up sodium on the equipments to be cleaned over the entire length. (Horiuchi, T.)

  15. Lightning effects on electrical and nuclear equipment

    International Nuclear Information System (INIS)

    Gary, C.

    1986-01-01

    This paper gives the physical bases on which lightning protection of buildings and other erections such as nuclear power stations depend. To this end it first examines the impact phenomena of lightning, the operating systems of lightning conductors and methods of protection using metal mesh. It then describes various secondary effects of lightning, particularly those which occur inside buildings as a result of the potential rise in earthing systems and electromagnetic induction phenomena. 18 refs [fr

  16. Reliability of nuclear power plants and equipment

    International Nuclear Information System (INIS)

    1985-01-01

    The standard sets the general principles, a list of reliability indexes and demands on their selection. Reliability indexes of nuclear power plants include the simple indexes of fail-safe operation, life and maintainability, and of storage capability. All terms and notions are explained and methods of evaluating the indexes briefly listed - statistical, and calculation experimental. The dates when the standard comes in force in the individual CMEA countries are given. (M.D.)

  17. Radiation dose assessment in nuclear medicine

    International Nuclear Information System (INIS)

    Stabin, M.G.

    2002-01-01

    In any application involving the use of ionizing radiation in humans, risks and benefits must be properly evaluated and balanced. Radionuclides are used in nuclear medicine in a variety of diagnostic and therapeutic procedures. Recently, interest has grown in therapeutic agents for a number of applications in nuclear medicine, particularly in the treatment of hematologic and non-hematologic malignancies. This has heightened interest in the need for radiation dose calculations and challenged the scientific community to develop more patient-specific and relevant dose models. Consideration of radiation dose in such studies is central to efforts to maximize dose to tumor while sparing normal tissues. In many applications, a significant absorbed dose may be received by some radiosensitive organs, particularly the active marrow. This talk will review the methods and models used in internal dosimetry in nuclear medicine, and discuss some current trends and challenges in this field

  18. Radiochemistry and its application to nuclear medicine

    International Nuclear Information System (INIS)

    Welch, J.J.

    1990-01-01

    The role of the radiochemist in Nuclear Medicine has increased since the early 1960's. At that time the first medical 99 Mo/ 99m /Tc generator was developed at Brookhaven National Laboratory and the first hospital based cyclotron installed at Washington University. Radiochemists have been involved in both the development and application of generator and accelerator based radiopharmaceuticals. The development of oxygen-15, nitrogen 13, carbon-11 and fluorine-18 simple compound and synthetic precursors will be discussed. In recent years new high current accelerators have been proposed from Nuclear Medicine isotope production. Generator produced radiopharmaceuticals continue to play a major role in Nuclear Medicine. Problems in the development of targetry to produce parent nuclides as well as challenges in generator development will be described

  19. Radiation Protection Programme in Nuclear Medicine Practice

    International Nuclear Information System (INIS)

    Alarfaj, Abd-I.M.

    2003-01-01

    This paper specifies the main elements of the radiation protection programma (RPP) that should be estabished for each practice, which involves radiation exposure. Practices of nuclear medicine have been considered as an example, since among the 245 installations which are conducting different practices with radiation sources in the Kingdom of Saudi Arabia, there are 78 installations dealing with nuclear medicine practices. Reviewing the RPP in these nuclear medicine installations, it may be easily concluded that the RPPs for the majority of these installations do not respond to the requirements of the regulatory body of the Kingdom, which is King Abdulaziz City for Science and Technology (KACST). This may be attributed to a set of different reasons, such as shortage in understanding the main elements of the RPP as well as in applying methodologies

  20. Patient preparation for nuclear medicine studies

    International Nuclear Information System (INIS)

    Stathis, V.J.; Cantrell, D.W.; Cantrell, T.J.

    1987-01-01

    In this chapter are described methods of patient preparation that can favorably affect the outcome of nuclear medicine studies in specific situations. Some of these practices may be considered essential to the success of the nuclear medicine procedure, whereas others may be thought of simply as a means of obtaining more valid or reliable information. Regardless of relative importance, each of the preparatory methods discussed can contribute to the quality of the respective study and can serve as a means of maximizing the value of nuclear medicine procedures. The specific patient preparation techniques discussed in this chapter may not be readily applicable to every practice setting or situation. These or similar procedures can be used or modified as necessary. It is important, however, that when new protocols are developed, the rationale and theoretical basis of each technique be considered

  1. Mentoring and the Nuclear Medicine Technologist.

    Science.gov (United States)

    Burrell, Lance

    2018-06-08

    The goal of this article is to give an overview of mentoring for nuclear medicine technologists (NMT). Mentoring is an integral part of the training and practice in the field of nuclear medicine technology. There is a great need for NMTs to continue involvement in mentorship so that we can develop and maintain the talent and leadership that the field needs. In this article, definitions of mentorship will be provided. Then, how mentoring can work; including different methods and techniques will be covered. Next, the benefits of mentoring will be discussed. Finally, advice for improved application will be presented. Throughout, this article will discuss how mentoring applies to the NMT. Copyright © 2018 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  2. Introduction of nuclear medicine research in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Inubushi, Masayuki [Kawasaki Medical School, Division of Nuclear Medicine, Department of Radiology, Kurashiki, Okayama (Japan); Higashi, Tatsuya [National Institutes of Quantum and Radiological Science and Technology, National Institute of Radiological Sciences, Chiba, Chiba (Japan); Kuji, Ichiei [Saitama Medical University International Medical Center, Department of Nuclear Medicine, Hidaka-shi, Saitama (Japan); Sakamoto, Setsu [Dokkyo University School of Medicine, PET Center, Mibu, Tochigi (Japan); Tashiro, Manabu [Tohoku University, Division of Cyclotron Nuclear Medicine, Cyclotron and Radioisotope Center, Sendai, Miyagi (Japan); Momose, Mitsuru [Tokyo Women' s Medical University, Department of Diagnostic Imaging and Nuclear Medicine, Tokyo (Japan)

    2016-12-15

    There were many interesting presentations of unique studies at the Annual Meeting of the Japanese Society of Nuclear Medicine, although there were fewer attendees from Europe than expected. These presentations included research on diseases that are more frequent in Japan and Asia than in Europe, synthesis of original radiopharmaceuticals, and development of imaging devices and methods with novel ideas especially by Japanese manufacturers. In this review, we introduce recent nuclear medicine research conducted in Japan in the five categories of Oncology, Neurology, Cardiology, Radiopharmaceuticals and Technology. It is our hope that this article will encourage the participation of researchers from all over the world, in particular from Europe, in scientific meetings on nuclear medicine held in Japan. (orig.)

  3. Basics of radiobiology and nuclear medicine

    International Nuclear Information System (INIS)

    Kostadinova, I.; Hadjidekova, V.; Georgieva, R.

    2002-01-01

    The authors successively reveal the topics of the biological impact of radiation (radiobiology) and the diagnostic and the therapeutic application of radiopharmaceuticals (nuclear medicine). Data on the influence of radiation on subcellular, cellular, tissue and organ level are given, on early and late radiation changes, as well. Indication for the application of the different radionuclide methods in the diagnosis of the diseases in the endocrinology, nephrology, cardiology, gastroenterology, haematology of lungs, bones, tumors are pointed out and the main trends of the growing therapeutical use of nuclear medicine are presented. The aim is to teach students the nuclear medicine methods in the complex investigation of the patients, his preliminary preparation and the biological impact of radiation and its risk. Self assessment test for students are proposed and a literature for further reading

  4. Czechoslovak nuclear medicine, development and present state

    Energy Technology Data Exchange (ETDEWEB)

    Hupka, S [Ustav Klinickej Onkologie, Bratislava (Czechoslovakia)

    1981-01-01

    The growth is described of nuclear medicine departments and units in Czechoslovakia in the past 25 years of the existence of the Czechoslovak Society for Nuclear Medicine and Radiation Hygiene, the numbers of personnel and their qualifications. While only three nuclear medicine units were involved in the use of radioisotopes for diagnostic and therapeutic purposes in the 1950's, 29 specialized departments and 15 laboratories are now in existence with a staff of 299 medical doctors and other university graduates and 365 technicians and nurses. They operate all possible instruments, from simple detector devices via gamma cameras to computer tomographs. Briefly, the involvement of the Society is described in coordinated research programs, both with institutions in the country and with the other CMEA countries and IAEA.

  5. Exposure from diagnostic nuclear medicine procedures

    International Nuclear Information System (INIS)

    Iacob, O.; Diaconescu, C.; Isac, R.

    2002-01-01

    According to our last national study on population exposures from natural and artificial sources of ionizing radiation, 16% of overall annual collective effective dose represent the contribution of diagnostic medical exposures. Of this value, 92% is due to diagnostic X-ray examinations and only 8% arise from diagnostic nuclear medicine procedures. This small contribution to collective dose is mainly the result of their lower frequency compared to that of the X-ray examinations, doses delivered to patients being, on average, ten times higher. The purpose of this review was to reassess the population exposure from in vivo diagnostic nuclear medicine procedures and to evaluate the temporal trends of diagnostic usage of radiopharmaceuticals in Romania. The current survey is the third one conducted in the last decade. As in the previous ones (1990 and 1995), the contribution of the Radiation Hygiene Laboratories Network of the Ministry of Health and Family in collecting data from nuclear medicine departments in hospitals was very important

  6. Radiopharmaceutical prescription in nuclear medicine departments

    International Nuclear Information System (INIS)

    Biechlin-Chassel, M.L.; Lao, S.; Bolot, C.; Francois-Joubert, A.

    2010-01-01

    In France, radiopharmaceutical prescription is often discussed depending to which juridical structure the nuclear medicine department is belonging. According to current regulation, this prescription is an obligation in a department linked to hospital with a pharmacy department inside. But situation remains unclear for independent nuclear medicine departments where physicians are not constrained to prescribe radiopharmaceuticals. However, as radiographers and nurses are only authorized to realize theirs acts in front of a medical prescription, one prescription must be realized. Nowadays, computerized prescription tools have been developed but only for radiopharmaceutical drugs and not for medical acts. In the aim to achieve a safer patient care, the prescription regulation may be applied whatever differences between nuclear medicines departments. (authors)

  7. Calibration of nuclear medicine gamma counters

    International Nuclear Information System (INIS)

    Orlic, M.; Spasic-Jokic, V.; Jovanovic, M.; Vranjes, S. . E-mail address of corresponding author: morlic@vin.bg.ac.yu; Orlic, M.)

    2005-01-01

    In this paper the practical problem of nuclear medicine gamma counters calibration has been solved by using dose calibrators CRC-15R with standard error ±5%. The samples from technetium generators have been measured both by dose calibrators CRC-15R and gamma counter ICN Gamma 3.33 taking into account decay correction. Only the linear part of the curve has practical meaning. The advantage of this procedure satisfies the requirements from international standards: the calibration of sources used for medical exposure be traceable to a standard dosimetry laboratory and radiopharmaceuticals for nuclear medicine procedures be calibrated in terms of activity of the radiopharmaceutical to be administered. (author)

  8. Nuclear medicine and the pregnant patient

    International Nuclear Information System (INIS)

    Collins, L.

    1988-01-01

    Estimates of the risks of exposing an embryo or fetus to radiation are discussed. Recommendations are made about the policies a nuclear medicine department should develop for handling cases of accidental irradiation of an embryo or fetus. The choices available where a known pregnancy is involved and diagnostic radiology is required are outlined. Only necessary examinations should be performed and care taken to avoid or minimise irradiation of the fetus. The nuclear medicine physician must be prepared to make (and defend if necessary) an informed decision on whether to proceed with an examination and must also be in a position to discuss the risks with anxious parents

  9. Quality control in paediatric nuclear medicine

    International Nuclear Information System (INIS)

    Fischer, S.; Hahn, K.

    1997-01-01

    Nuclear medicine examinations in children require a maximum in quality. This is true for the preparation of the child and parents, the imaging procedure, processing and documentation. It is necessary that quality control through all steps is performed regularly. The aim must be that the children receive a minimum radiation dose, while there needs to be a high quality in imaging and clinical information from the study. Furthermore the child should not be too much psychologically affected by the nuclear medicine examination. (orig.) [de

  10. Nuclear medicine environmental discharge measurement. Final report

    International Nuclear Information System (INIS)

    Gesell, T.F.; Prichard, H.M.; Davis, E.M.; Pirtle, O.L.; DiPietro, W.

    1975-06-01

    The discharge of most man-made radioactive materials to the environment is controlled by Federal, State or local regulatory agencies. Exceptions to this control include the radioactive wastes eliminated by individuals who have undergone diagnostic or therapeutic nuclear medicine procedures. The purpose of this study is to estimate the amount of radioactivity released to the environment via the nuclear medicine pathway for a single sewage drainage basin and to measure the amounts discharged to the environment. The report is organized into a review of previous studies, scope of work, facility data, environmental measurements and estimates of population exposure

  11. Occupational exposure of nuclear medicine personnel

    International Nuclear Information System (INIS)

    Roessler, M.

    1982-01-01

    The results are given of measurements of the radiation burden of personnel in departments of nuclear medicine in the years 1979 to 1981 using film dosemeters and ring thermoluminescence dosemeters evaluated by the national personnel dosemeter service. The relations are examined of the exposure of hands and the preparation of radiopharmaceuticals and especially their use for examinations. Certain organizational measures are indicated for reducina radiation burden in a laboratory for the preparation of radiopharmaceuticals. The results of measurements and evaluations of radiation burden of personnel of nuclear medicine departments are confronted with conclusions published in the literature. (author)

  12. Diagnosis of liver lesions in nuclear medicine

    International Nuclear Information System (INIS)

    Krause, T.; Juengling, F.

    2003-01-01

    With the introduction of new imaging protocols for ultrasound, computed tomography (CT) and magnetic resonance imaging (MRI), the importance of conventional nuclear medicine diagnostic procedures has changed fundamentally. With the introduction of positron emission tomography (PET) into routine diagnostics, the assessment of tissue-specific function adds on to the modern, morphological imaging procedures and in principle allows for differentiating benign from malignant lesions. The actual clinical value of nuclear medicine procedures for the diagnostic workup of focal liver lesions is discussed. (orig.) [de

  13. Medical application of nuclear science: nuclear medicine and production of radiopharmaceuticals

    International Nuclear Information System (INIS)

    Cornet, L.

    1997-01-01

    Nuclear science in attendance on medicine or from Radium to Radiopharmaceuticals. By a brief historical reminder of the evolution of the radioactivity and development of nuclear science, we could see a very early interest and application of the radioactivity in the medical field. Main steps: Detection of natural radioactivity/Discovery of artificial radioactivity/First treatment of leukaemia and thyroid/First nuclear reactor/First radioisotope laboratory in hospital/First scintigraphy/First radiopharmaceutical/First cyclotron and cyclotron products/First immunoscintigraphy/Biotechnology and radioisotope/Evolution of technics [equipment for diagnosis (imaging, scintigraphy) and therapy]/Evolution of production technics and concept of products (generators of Technetium) and machines, reactor, cyclotron/Evolution of importance and interest of nuclear medicine/Creation of international association of nuclear medicine and producers (example ARPR)/Evolution of safety and pharmaceuticals regulation. After the sixties, period extremely rich in invention of products, characterized by a high fertility specially due to a non-restrictive regulation in terms of safety and pharmaceutical consideration, the evolution of technics, the importance of costs (investment, research, healthcare and the evolution of the regulations) have smoothly but continuously transformed the contexts and different actors. Consequences and facts: Rationalization and standardization of the catalogues, total integration of radiopharmaceuticals into the pharmaceutical laws, stop of nuclear research reactors, increase of number of cyclotrons, transformation of size and role of the producers and nuclear centers, risk in supply of some raw materials like Molybdenum, medical nuclear application as a worldwide business

  14. Nuclear safety regulation on nuclear safety equipment activities in relation to human and organizational factors

    International Nuclear Information System (INIS)

    Li Tianshu

    2013-01-01

    Based on years of knowledge in nuclear safety supervision and experience of investigating and dealing with violation events in repair welding of DFHM, this paper analyzes major faults in manufacturing and maintaining activities of nuclear safety equipment in relation to human and organizational factors. It could be deducted that human and organizational factors has definitely become key features in the development of nuclear energy and technology. Some feasible measures to reinforce supervision on nuclear safety equipment activities have also been proposed. (author)

  15. The medicine of nuclear warfare

    International Nuclear Information System (INIS)

    Eastwood, M.

    1981-01-01

    In this article the immediate physical effects on survivors of a nuclear attack and the problems that might face doctors in providing first aid are considered. Radiation effects including long term and genetic effects and public health hazards facing survivors are discussed. (author)

  16. IRSN's expertise about nuclear medicine hospital effluents

    International Nuclear Information System (INIS)

    2009-01-01

    This brief note aims at presenting the radioactivity follow up of hospital effluents performed by the French Institute of Radiation Protection and Nuclear Safety (IRSN). This follow up concerns the radioactive compounds and radiopharmaceuticals used in nuclear medicine, and principally technetium 99 and iodine 131. The IRSN has developed a network of remote measurement systems for the monitoring of sewers and waste water cleaning facilities. Data are compiled in a data base for analysis and subsequent expertise. (J.S.)

  17. Development and Manufacture of the Nuclear Laboratory Equipment

    International Nuclear Information System (INIS)

    Youm, Ki Un; Kim, J. K.; Kim, K. S.; Lee, I. B.; Youm, J. H.; Park, I. W.

    2008-12-01

    This report on development and manufacture of the nuclear laboratory equipment contains the work scope and contents performed for supporting the researches and the developments projects efficiently. And also, the records for the principal production design, the manufacture contents, the working drawings and the CNC program are described in it. Most of works are to support the successful and convenient performance of the R and D projects by development and manufacturing the requested laboratory equipment

  18. Development and Manufacture of the Nuclear Laboratory Equipment

    International Nuclear Information System (INIS)

    Youm, Ki Un; Moon, J. S.; Lee, I. B.; Youn, J. H.

    2010-12-01

    This report on development and manufacture of the nuclear laboratory equipment contains the work scope and contents performed for supporting the researches and the developments projects efficiently. And also, the records for the principal production design, the manufacture contents, the working drawings and the CNC program are described in it. Most of works are to support the successful and convenient performance of the R and D projects by development and manufacturing the requested laboratory equipment

  19. Development and Manufacture of the Nuclear laboratory equipment

    International Nuclear Information System (INIS)

    Youm, Ki Un; Lee, I. B.; Youm, J. H.

    2009-12-01

    This report on development and manufacture of the nuclear laboratory equipment contains the work scope and contents performed for supporting the researches and the developments projects efficiently. And also, the records for the principal production design, the manufacture contents, the working drawings and the CNC program are described in it. Most of works are to support the successful and convenient performance of the R and D projects by development and manufacturing the requested laboratory equipment

  20. Proceedings of the Korean Society Nuclear Medicine Autumn Meeting 2001

    International Nuclear Information System (INIS)

    2001-01-01

    This proceedings contains articles of 2001 autumn meeting of the Korean Society Nuclear Medicine. It was held on November 16-17, 2001 in Seoul, Korea. This proceedings is comprised of 6 sessions. The subject titles of session are as follows: Cancer, Physics of nuclear medicine, Neurology, Radiopharmacy and biology, Nuclear cardiology, General nuclear medicine. (Yi, J. H.)

  1. Earthquake protection of nuclear power plant equipment

    Energy Technology Data Exchange (ETDEWEB)

    Nawrotzki, Peter [GERB Vibration Control Systems, Berlin (Germany)

    2010-05-15

    Power plant machinery can be dynamically decoupled from the substructure by the effective use of helical steel springs and viscous dampers. Turbine foundations, boiler feed pumps and other machine foundations benefit from this type of elastic support systems to mitigate the transmission of operational vibration. The application of these devices may also be used to protect against earthquakes and other catastrophic events, i.e. airplane crash, of particular importance in nuclear facilities. This article illustrates basic principles of elastic support systems and applications on power plant buildings in medium and high seismic areas. Spring-damper combinations with special stiffness properties are used to reduce seismic acceleration levels of turbine components and other safety or non-safety related structures. For turbine buildings, the integration of the turbine substructure into the machine building can further reduce stress levels in all structural members. (orig.)

  2. Earthquake protection of nuclear power plant equipment

    International Nuclear Information System (INIS)

    Nawrotzki, Peter

    2010-01-01

    Power plant machinery can be dynamically decoupled from the substructure by the effective use of helical steel springs and viscous dampers. Turbine foundations, boiler feed pumps and other machine foundations benefit from this type of elastic support systems to mitigate the transmission of operational vibration. The application of these devices may also be used to protect against earthquakes and other catastrophic events, i.e. airplane crash, of particular importance in nuclear facilities. This article illustrates basic principles of elastic support systems and applications on power plant buildings in medium and high seismic areas. Spring-damper combinations with special stiffness properties are used to reduce seismic acceleration levels of turbine components and other safety or non-safety related structures. For turbine buildings, the integration of the turbine substructure into the machine building can further reduce stress levels in all structural members. (orig.)

  3. Application of Equipment Monitoring Technology in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kang, H. T.; Lee, J. K.; Lee, K. D.; Jo, S. H.

    2012-01-01

    The major goal of nuclear power industries during the past 10 years is to increase reliability and utility capacity factor. As the capacitor factor, however, crept upward. it became harder to attain next percentage of improvement. Therefore other innovative technologies are required. By the technologies applied to the fossil power plants, equipment health monitoring was performed on equipment to maintain it in operable condition and contributed on improving their reliability a lot. But the equipment monitoring may be limited to the observation of current system states in nuclear power plant. Monitoring of current system states is being augmented with prediction of future operating states and predictive diagnosis of future failure states. Such predictive diagnosis is motivated by the need for nuclear power plants to optimize equipment performance and reduce costs and unscheduled downtime. This paper reviews the application of techniques that focus on improving reliability in nuclear power plant by monitoring and predicting equipment health and suggests how possible to support on-line monitoring

  4. Guidelines for nuclear reactor equipments safety-analysis

    International Nuclear Information System (INIS)

    1978-01-01

    The safety analysis in approving the applications for nuclear reactor constructions (or alterations) is performed by the Committee on Examination of Reactor Safety in accordance with various guidelines prescribed by the Atomic Energy Commission. In addition, the above Committee set forth its own regulations for the safety analysis on common problems among various types of nuclear reactors. This book has collected and edited those guidelines and regulations. It has two parts: Part I includes the guidelines issued to date by the Atomic Energy Commission: and Part II - regulations of the Committee. Part I has collected 8 categories of guidelines which relate to following matters: nuclear reactor sites analysis guidelines and standards for their applications; standard exposure dose of plutonium; nuclear ship operation guidelines; safety design analysis guidelines for light-water type, electricity generating nuclear reactor equipments; safety evaluation guidelines for emergency reactor core cooling system of light-water type power reactors; guidelines for exposure dose target values around light-water type electricity generating nuclear reactor equipments, and guidelines for evaluation of above target values; and meteorological guidelines for the safety analysis of electricity generating nuclear reactor equipments. Part II includes regulations of the Committee concerning - the fuel assembly used in boiling-water type and in pressurized-water type reactors; techniques of reactor core heat designs, etc. in boiling-water reactors; and others

  5. Nuclear equipment recalsification based on the service experience

    International Nuclear Information System (INIS)

    Geambasu, A.; Segarceanu, D.

    2000-01-01

    The paper presents some considerations concerning the need of comparison between equipment performance proven by test and the service experience in Cernavoda Nuclear Plant. Service performance dana obtain partly from service failures (failures times) and partly from service experience without failure (running times) can be statistically analyzed to obtain predictions of the number of failures of unfailed units in specified period of time, means time to first failure, means time of median failure, a.s.o. These informations can be used during the operation of Nuclear Power Plant to estimate when a equipment should be replaced with a new one in order to prevent getting to the life end point. (author)

  6. Method and procedure of fatigue analysis for nuclear equipment

    International Nuclear Information System (INIS)

    Wen Jing; Fang Yonggang; Lu Yan; Zhang Yue; Sun Zaozhan; Zou Mingzhong

    2014-01-01

    As an example, the fatigue analysis for the upper head of the pressurizer in one NPP was carried out by using ANSYS, a finite element method analysis software. According to RCC-M code, only two kinds of typical transients of temperature and pressure were considered in the fatigue analysis. Meanwhile, the influence of earthquake was taken into account. The method and procedure of fatigue analysis for nuclear safety equipment were described in detail. This paper provides a reference for fatigue analysis and assessment of nuclear safety grade equipment and pipe. (authors)

  7. Development of YAG laser cutting system for decommissioning nuclear equipments

    International Nuclear Information System (INIS)

    Kasai, Takeshi; Nitta, Kazuhiko; Hosoda, Hiroshi.

    1995-01-01

    Technology of remote controlled cutting and reduction of generative secondary products have been required to the cutting system for decommissioning nuclear equipments. At a point of view that laser cutting technology by use of a Nd:YAG laser is effective, we have developed the laser cutting machine and carried out cutting tests for several stainless steel plates. As a result, the stainless steel plate with a thickness of 22mm could be cut by using an optical fiber which can flexibly propagate laser power, and possibility of application of this laser cutting system to decommissioning nuclear equipments was verified. (author)

  8. Development of YAG laser cutting system for decommissioning nuclear equipments

    Energy Technology Data Exchange (ETDEWEB)

    Kasai, Takeshi [Fuji Electric Co. Research and Development Ltd., Yokosuka, Kanagawa (Japan); Nitta, Kazuhiko; Hosoda, Hiroshi

    1995-07-01

    Technology of remote controlled cutting and reduction of generative secondary products have been required to the cutting system for decommissioning nuclear equipments. At a point of view that laser cutting technology by use of a Nd:YAG laser is effective, we have developed the laser cutting machine and carried out cutting tests for several stainless steel plates. As a result, the stainless steel plate with a thickness of 22mm could be cut by using an optical fiber which can flexibly propagate laser power, and possibility of application of this laser cutting system to decommissioning nuclear equipments was verified. (author).

  9. Perry Nuclear Power Plant Area/Equipment Temperature Monitoring Program

    International Nuclear Information System (INIS)

    McGuire, L.L.

    1991-01-01

    The Perry Nuclear Power Plant Area/Equipment Temperature Monitoring Program serves two purposes. The first is to track temperature trends during normal plant operation in areas where suspected deviations from established environmental profiles exist. This includes the use of Resistance Temperature Detectors, Recorders, and Temperature Dots for evaluation of equipment qualified life for comparison with tested parameters and the established Environmental Design Profile. It also may be used to determine the location and duration of steam leaks for effect on equipment qualified life. The second purpose of this program is to aid HVAC design engineers in determining the source of heat outside anticipated design parameters. Resistance Temperature Detectors, Recorders, and Temperature Dots are also used for this application but the results may include design changes to eliminate the excess heat or provide qualified equipment (cable) to withstand the elevated temperature, splitting of environmental zones to capture accurate temperature parameters, or continued environmental monitoring for evaluation of equipment located in hot spots

  10. Daya Bay Nuclear Power Station equipment reliability management system innovation

    International Nuclear Information System (INIS)

    Gao Ligang; Wang Zongjun

    2006-01-01

    Daya Bay Nuclear Power Station has achieved good performance since its commercial operation in 1994. The equipment reliability management system that features Daya Bay characteristics has been established through constant technology introduction, digestion and innovation. It is also based on the success of operational system, equipment maintenance system and technical support system. The system lays a solid foundation for the long-term safe operation of power station. This article emphasizes on the innovation part of equipment reliability management system in Daya Bay. (authors)

  11. Damage caused to houses and equipment by underground nuclear explosions

    International Nuclear Information System (INIS)

    Delort, F.; Guerrini, C.

    1969-01-01

    A description is given of the damaged caused to various structures, buildings, houses, mechanical equipment and electrical equipment by underground nuclear explosions in granite. For each type of equipment or building are given the limiting distances for a given degree of damage. These distances have been related to a parameter characterizing the movement of the medium; it is thus possible to generalize the results obtained in granite, for different media. The problem of estimating the damage caused at a greater distance from the explosion is considered. (authors) [fr

  12. Positron in nuclear medicine imaging

    International Nuclear Information System (INIS)

    Basu, S.

    2012-01-01

    The last two decades have witnessed a rapid expansion of clinical indications of positron emission tomography (PET) based imaging in assessing a wide range of disorders influencing their clinical management. This is primarily based upon a large dataset of evidence that has been generated over the years. The impact has been most remarkable in the field of cancer, where it takes a pivotal role in the decision making (at initial diagnosis, early response assessment and following completion of therapeutic intervention) of a number of important malignancies. The concept of PET based personalized cancer medicine is an evolving and attractive proposition that has gained significant momentum in recent years. The non-oncological applications of PET and PET/CT are in (A) Cardiovascular Diseases (e.g. Myocardial Viability, Flow reserve with PET Perfusion Imaging and atherosclerosis imaging); (B) Neuropsychiatric disorders (e.g. Dementia, Epileptic Focus detection, Parkinson's Disease, Hyperkinetic Movement Disorders and Psychiatric diseases); (C) Infection and Inflammatory Disorders (e.g. Pyrexia of Unknown origin, complicated Diabetic Foot, Periprosthetic Infection, Tuberculosis, Sarcoidosis, Vasculitic disorders etc). Apart from these, there are certain novel clinical applications where it is undergoing critical evaluation in various large and small scale studies across several centres across the world. The modality represents a classical example of a successful translational research of recent times with a revolutionary and far-reaching impact in the field of medicine. (author)

  13. Radionuclides for nuclear medicine: a nuclear physicists' view

    DEFF Research Database (Denmark)

    Cantone, M.; Haddad, F.; Harissopoulos, S.

    2013-01-01

    NuPECC (the Nuclear Physics European Collaboration Committee, an expert committee of the European Science Foundation) has the mission to strengthen European Collaboration in nuclear science through the promotion of nuclear physics and its trans-disciplinary use and application. NuPECC is currently...... working on a report on “Nuclear Physics for Medicine” and has set up a working group to review the present status and prospects of radionuclides for nuclear medicine. An interim report will be presented to seek comments and constructive input from EANM members. In particular it is investigated how nuclear...... physics Methods and nuclear physics facilities are supporting the development and supply of medical radionuclides and how this support could be further strengthened in future. Aspects that will be addressed: •In recent years, the reactor-based supply chain of 99Mo/99mTc generators was repeatedly...

  14. Nuclear Medicine Imaging Devices. Chapter 11

    Energy Technology Data Exchange (ETDEWEB)

    Lodge, M. A.; Frey, E. C. [Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, MD (United States)

    2014-12-15

    Imaging forms an important part of nuclear medicine and a number of different imaging devices have been developed. This chapter describes the principles and technological characteristics of the main imaging devices used in nuclear medicine. The two major categories are gamma camera systems and positron emission tomography (PET) systems. The former are used to image γ rays emitted by any nuclide, while the latter exploit the directional correlation between annihilation photons emitted by positron decay. The first section of this chapter discusses the principal components of gamma cameras and how they are used to form 2-D planar images as well as 3-D tomographic images (single photon emission computed tomography (SPECT)). The second section describes related instrumentation that has been optimized for PET data acquisition. A major advance in nuclear medicine was achieved with the introduction of multi-modality imaging systems including SPECT/computed tomography (CT) and PET/CT. In these systems, the CT images can be used to provide an anatomical context for the functional nuclear medicine images and allow for attenuation compensation. The third section in this chapter provides a discussion of the principles of these devices.

  15. Neuroimaging in nuclear medicine: drug addicted brain

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Yong-An; Kim, Dae-Jin [The Catholic University of Korea, Seoul (Korea, Republic of)

    2006-02-15

    Addiction to illicit drugs in one of today's most important social issues. Most addictive drugs lead to irreversible parenchymal changes in the human brain. Neuroimaging data bring to light the pharmacodynamics and pharmacokinetics of the abused drugs, and demonstrate that addiction is a disease of the brain. Continuous researches better illustrate the neurochemical alterations in brain function, and attempt to discover the links to consequent behavioral changes. Newer hypotheses and theories follow the numerous results, and more rational methods of approaching therapy are being developed. Substance abuse is on the rise in Korea, and social interest in the matter as well. On the other hand, diagnosis and treatment of drug addiction is still very difficult, because how the abused substance acts in the brain, or how it leads to behavioral problems in not widely known. Therefore, understanding the mechanism of drug addiction can improve the process of diagnosing addict patients, planning therapy, and predicting the prognosis . Neuroimaging approaches by nuclear medicine methods are expected to objectively judge behavioral and neurochemical changes, and response to treatment. In addition, as genes associated with addictive behavior are discovered, functional nuclear medicine images will aid in the assessment of individuals. Reviewing published literature on neuroimaging regarding nuclear medicine is expected to be of assistance to the management of drug addict patients. What's more, means of applying nuclear medicine to the care of drug addict patients should be investigated further.

  16. Nuclear medicine imaging. An encyclopedic dictionary

    International Nuclear Information System (INIS)

    Thie, Joseph A.

    2012-01-01

    The rapidly growing and somewhat complex area of nuclear medicine imaging receives only limited attention in broad-based medical dictionaries. This encyclopedic dictionary is intended to fill the gap. More than 400 entries of between one and three paragraphs are included, defining and carefully explaining terms in an appropriate degree of detail. The dictionary encompasses concepts used in planar, SPECT, and PET imaging protocols and covers both scanner operations and popular data analysis approaches. In spite of the mathematical complexities in the acquisition and analysis of images, the explanations given are kept simple and easy to understand; in addition, many helpful concrete examples are provided. Nuclear Medicine Imaging: An Encyclopedic Dictionary will be ideal for those who wish to obtain a rapid grasp of a concept beyond a definition of a few words but do not want to resort to a time-consuming search of the reference literature. The almost tutorial-like style accommodates the needs of students, nuclear medicine technologists, and varieties of other medical professionals who interface with specialists within nuclear medicine.

  17. VIIIth international symposium on nuclear medicine

    International Nuclear Information System (INIS)

    1986-01-01

    The conference proceedings contain 92 abstracts of submitted papers dealing with various applications of radioisotopes in diagnosis and therapy. The papers were devoted to scintiscanning, radioimmunoassay, tomography, the applications of nuclear magnetic resonance and electron microscopy in different branches - oncology, cardiology, neurology, histology, gynecology, internal medicine, etc. (M.D.)

  18. Traumatic Brain Injury: Nuclear Medicine Neuroimaging

    NARCIS (Netherlands)

    Sánchez-Catasús, Carlos A; Vállez Garcia, David; Le Riverend Morales, Eloísa; Galvizu Sánchez, Reinaldo; Dierckx, Rudi; Dierckx, Rudi AJO; Otte, Andreas; de Vries, Erik FJ; van Waarde, Aren; Leenders, Klaus L

    2014-01-01

    This chapter provides an up-to-date review of nuclear medicine neuroimaging in traumatic brain injury (TBI). 18F-FDG PET will remain a valuable tool in researching complex mechanisms associated with early metabolic dysfunction in TBI. Although evidence-based imaging studies are needed, 18F-FDG PET

  19. Neuroimaging in nuclear medicine: drug addicted brain

    International Nuclear Information System (INIS)

    Chung, Yong-An; Kim, Dae-Jin

    2006-01-01

    Addiction to illicit drugs in one of today's most important social issues. Most addictive drugs lead to irreversible parenchymal changes in the human brain. Neuroimaging data bring to light the pharmacodynamics and pharmacokinetics of the abused drugs, and demonstrate that addiction is a disease of the brain. Continuous researches better illustrate the neurochemical alterations in brain function, and attempt to discover the links to consequent behavioral changes. Newer hypotheses and theories follow the numerous results, and more rational methods of approaching therapy are being developed. Substance abuse is on the rise in Korea, and social interest in the matter as well. On the other hand, diagnosis and treatment of drug addiction is still very difficult, because how the abused substance acts in the brain, or how it leads to behavioral problems in not widely known. Therefore, understanding the mechanism of drug addiction can improve the process of diagnosing addict patients, planning therapy, and predicting the prognosis . Neuroimaging approaches by nuclear medicine methods are expected to objectively judge behavioral and neurochemical changes, and response to treatment. In addition, as genes associated with addictive behavior are discovered, functional nuclear medicine images will aid in the assessment of individuals. Reviewing published literature on neuroimaging regarding nuclear medicine is expected to be of assistance to the management of drug addict patients. What's more, means of applying nuclear medicine to the care of drug addict patients should be investigated further

  20. Nuclear medicine in obstetrics and gynecology

    International Nuclear Information System (INIS)

    Patterson, V.N.

    1975-01-01

    The role of radioisotopes for diagnosis and therapy in obstetrics and gynecology are reviewed. A brief history of the development of nuclear medicine is given along with a discussion of basic concepts. Finally a more detailed overview with graphs and pictures is presented for specific techniques

  1. Nuclear medicine and thyroid disease - part II

    International Nuclear Information System (INIS)

    Chatterton, B.E.

    2005-01-01

    Part 1 of this article discussed the anatomy, physiology and basic pathology of the thyroid gland. Techniques of thyroid scanning and a few clinical examples are shown part II Copyright (2005) The Australian and New Zealand Society Of Nuclear Medicine Inc

  2. Equipment transporter for nuclear steam generator

    International Nuclear Information System (INIS)

    Hayes, L.R.

    1987-01-01

    A transporter is described for use in a steam generator of a nuclear power installation. The generator is essentially a heat exchanger having a vertically extended shell. Across the lower portion extends a horizontal tube sheet having an upper surface which supports a bundle of vertically extending tubes forming a limited annular space with the inside of the shell wall and the upper surface. An opening of limited dimensions through the shell wall gains manual access to the limited annular space. The transporter has means for locating and removing solid debris from the upper surface of the tube sheet in the annular space and has a means for assembly and disassembly of the transporter so that it may be manually passed through the shell opening to and from a position on the upper surface of the tube sheet in the annular space. The transporter includes: a body; at least three wheels mounted on the body for engaging the upper surface of the tube sheet; a first motor mounted on the body drivingly connected to the wheels for moving the transporter along the upper surface of the tube sheet in the annular space; a remotely operated means on the body for locating solid debris on the upper surface of the tube sheet; and means for securing and removing solid debris on the upper surface of the tube sheet located by the means for locating

  3. Present status of nuclear medicine - Situation in France

    International Nuclear Information System (INIS)

    Swiniarski, R. de

    2002-01-01

    Contrary to the general belief the nuclear medicine (NM) is a rather old science; actually, Henry Becquerel, the discoverer of the natural radioactivity in 1896, is deemed often as the initiator of this science and that would be the first stage. Discovery of artificial radioactivity by Irene and Frederic Joliot-Curie in 1934 marks the second essential stage and as such the initiation of NM. Nuclear medicine recorded significant progress since its inception, essentially after the WW1 due mainly to the advance of nuclear physics, nuclear electronics and the associated information techniques. But, the development of general physics boosted also other new methods of medical imaging as MRI (Magnetic Resonance Imaging), ultrasonic imaging, X-ray scanner, magnetic encephalography (MEG), etc. Several services of nuclear medicine currently functioning in France, in public or private hospitals, are all equipped at least with one Anger chamber, possibly two, what allows making the scintigraphy of most of human organs, or else, planar gamma-scintigraphy or tomo-scintigraphy. Unfortunately, regarding the positron chambers (positron computed tomography-PCT) the situation in France is not satisfactory. For the time being only three centres, particularly designed for research, are equipped with cyclotrons plus PCT technology, namely SHFJ at Orsay, Cyceron at Caen and SERMEP at Lyon (especially devoted to cardiologic investigation). Other two installations will be soon available at Toulouse and at Tenon (Paris). Officials, responsible of health services and medical schools and hospitals have defined a national index for PCT in France. Thus, starting from 2001, a machine for every million of inhabitants is provided, i.e. about 60 PCTs are planned to be installed till 2003 in Lille, Grenoble, Nantes, Rennes and other large French cities. France is committed not to miss the European bus of nuclear oncology of installing this equipment absolutely necessary in cancer detection and

  4. Study of metrologic characteristics in activimeters used in Nuclear Medicine Centers in Colombia

    International Nuclear Information System (INIS)

    Davila, Hernan Olaya; Flores, Guillermo

    2013-01-01

    In our country currently there is a legislation that regulated de Nuclear Medicine practice, that establish the criteria about quality assurance in Nuclear Medicine and the justification to imparted to medical exposures. In this work includes some tests to the clinical approval in this type of instruments before to be used. The type of tests are linearity, geometric dependence and the energetic response and moreover to evaluate the total uncertainty during the work the physician using this equipment with radioactive sources. (author)

  5. Nuclear medicine in South Africa : current status

    International Nuclear Information System (INIS)

    Vangu, M.D.T.H.W.

    2004-01-01

    Full text: Nuclear medicine in South Africa has been a full specialty on its own since 1987. It is practiced in almost all teaching hospitals and within the private sector in larger cities. Most of the routine radiopharmaceuticals are domestically manufactured and the main isotope can be obtained from locally produced technetium generators. All the radionuclide imaging devices used in the country are imported. The main vendors are GE, Siemens and Phillips. The majority of radionuclide imaging comprises work from nuclear cardiology and nuclear oncology. Almost all the routine clinical nuclear medicine procedures are performed and some in vitro work is also done, however. Principal therapeutic agents used in the country include radioactive iodine, radioactive iodine MIBG and yttrium. The country still lacks experience in receptors imaging and radioimmunology work and no PET scanner has been purchased yet. The academic institutions are active with participation in national and international congresses and also with publications. Although much remains to be done, the future of nuclear medicine in South Africa does not appear gloomy. (author)

  6. Nuclear medicine in gynecologic oncology: Recent practice

    International Nuclear Information System (INIS)

    Lamki, L.M.

    1987-01-01

    Nuclear medicine tests tell more about the physiological function of an organ that about its anatomy. This is in contrast to several other modalities in current use in the field of diagnostic imaging. Some of these newer modalities, such as computerized tomography (CT), offer a better resolution of the anatomy of the organ being examined. This has caused physicians to drift away from certain nuclear medicine tests, specifically those that focus primarily on the anatomy. When CT scanning is available, for instance, it is no longer advisable to perform a scintigraphic brain scan in search of metastasis;CT scanning is more accurate overall and more likely than a nuclear study to result in a specific diagnosis. In certain cases of diffuse cortical infections like herpes encephalitis, however, a scintiscan is still superior to a CT scan. Today's practice of nuclear medicine in gynecologic oncology may be divided into the three categories - (1) time-tested function-oriented scintiscans, (2) innovations of established nuclear tests, and (3) newer pathophysiological scintistudies. The author discusses here, briefly, each of these categories, giving three examples of each

  7. The nuclear medicine department in the emergency management plan: a referent structure for the nuclear and radiological risks

    International Nuclear Information System (INIS)

    Barat, J.L.; Ducassou, D.; Lesgourgues, P.; Zamaron, S.; Boulard, G.

    2006-01-01

    Each french public or private hospital has to establish guidelines for an immediate response to mass casualties (Emergency Management Plan or 'White' Plan). For a nuclear accident or terrorist attack, the staff of the Nuclear Medicine Department may be adequately prepared and equipped. This paper presents the nuclear and radiological risks section of the final draft of the White Plan developed at Bordeaux University Hospital. (author)

  8. Quantitative Analysis in Nuclear Medicine Imaging

    CERN Document Server

    2006-01-01

    This book provides a review of image analysis techniques as they are applied in the field of diagnostic and therapeutic nuclear medicine. Driven in part by the remarkable increase in computing power and its ready and inexpensive availability, this is a relatively new yet rapidly expanding field. Likewise, although the use of radionuclides for diagnosis and therapy has origins dating back almost to the discovery of natural radioactivity itself, radionuclide therapy and, in particular, targeted radionuclide therapy has only recently emerged as a promising approach for therapy of cancer and, to a lesser extent, other diseases. As effort has, therefore, been made to place the reviews provided in this book in a broader context. The effort to do this is reflected by the inclusion of introductory chapters that address basic principles of nuclear medicine imaging, followed by overview of issues that are closely related to quantitative nuclear imaging and its potential role in diagnostic and therapeutic applications. ...

  9. The importance of HIFAR to nuclear medicine

    International Nuclear Information System (INIS)

    Wood, N.R.

    1997-01-01

    Since its official opening on 26 January 1960, the HIFAR research reactor operated by the Australian Nuclear Science and Technology Organisation (ANSTO) at Lucas Heights near Sydney has been used to support an expanding nuclear medicine market. HIFAR has characteristics which make it very suitable for this role and the effect has been to make ANSTO the dominant supplier of reactor-based radiopharmaceuticals in Australia and a significant exporter. While HIFAR has capacity to support limited increased production, its future requires government decisions. The author concluded that the absence of an operational research reactor in Australia and the lack of another local source of neutrons could directly affect the practice of nuclear medicine in the country and the level of presently increasing exports

  10. Establishing a nuclear medicine service within the turnkey contract system

    International Nuclear Information System (INIS)

    Horton, P.W.

    1986-01-01

    The turnkey method of developing hospitals and its effect on the provision of nuclear medicine services are described. Accommodation provided is often limited to an imaging suite and a 'hot' laboratory and additional space may be required. Alterations may also be necessary, especially for radiopharmacies to meet current standards. Major items of capital equipment are provided but these may be out of date since they were purchased when hospital building commenced. A 'shortfall' of smaller items will need to be purchased and regular supplies of radiopharmaceuticals established. Radiation protection requirements for a new service in a developing country are listed. Some suggestions for improving the value of the turnkey method are made. (author)

  11. Reduction of doses to staff in a nuclear medicine department

    International Nuclear Information System (INIS)

    Van Every, B.

    1982-01-01

    Data relating to the radiation protection of staff working in the Department of Nuclear Medicine, Alfred Hospital, Victoria during the period 1977 to 1981 are examined. No member of staff received more than one tenth of the annual whole body dose limit of 5x10 4 μSv. The reduction in the total whole body dose of staff and in the technologist's individual dose is due to relocating the department, using appropriate radiation monitoring equipment, using a staff roster and making staff aware of previous doses

  12. Design of equipment management information system for nuclear power plant

    International Nuclear Information System (INIS)

    Wang Chengyuan

    1996-01-01

    The author describes the ideas and practical method for need analysis, system function dividing, code design, program design and network disposition of equipment purchase management system of nuclear power plant during building, from the view of engineering investment control, schedule control and quality control

  13. Automatization of welding for nuclear power equipments and facilities

    International Nuclear Information System (INIS)

    Tamai, Yasumasa; Matsumoto, Teruo; Koyama, Takaichi

    1980-01-01

    For the requirement of high reliability in the construction of nuclear power plants and the reduction of radiation exposure in the modefying works of existing plants, the automation and remote operation of welding have increased their necessity. In this paper, the present state of the automation of welding for making machines, equipments and pipings for nuclear power plants in Hitachi Ltd. is described, and the aim of developing the automation, the features of the equipments and the state of application to actual plants are introduced, centering around the automation of welding for large structures such as reactor containment vessels and the remote type automatic welding system for pipings. By these automations, the large outcomes were obtained in the improvement of welding quality required for the machines and equipments for atomic energy. Moreover, the conspicuous results were also obtained in case of the peculiar works to nuclear power plants, in which the reduction of the radiation exposure related to human bodies and the welding of high quality are demanded. The present state of the automation of welding for nuclear installations in Hitachi Ltd., the development of automatic welding equipments and the present state of application to actual plants, and the development and application of the automatic pipe working machine for reducing radiation exposure are explained. (Kako, I.)

  14. Programmatic activities of IAEA in nuclear medicine

    International Nuclear Information System (INIS)

    Padhy, A.K.

    2004-01-01

    Nuclear medicine is high-tech medicine. Nevertheless, it is essential for addressing important health problems of people living in developing countries also. Not only is it sometimes expensive to start with, it also involves a lot of technical know-how, requiring transfer of technology from developed to the developing countries. The rapid development of nuclear medicine, of sophisticated instrumentation and radiopharmaceuticals has resulted in an enormous increase in costs and in the need for maintaining quality. These constitute a challenge and a venture when promoting nuclear medicine globally and particularly in developing countries. No other international organization except IAEA has any specific mandate for application of nuclear energy in the area of human health. WHO has no specific programin nuclear medicine, hence the importance of IAEA's involvement. The IAEA has, ever since its inception, given high priority to enhancing the awareness and capabilities of developing member states to employ nuclear technology for health care and medical research. Much of the Agency promoted research in nuclear medicine is delivered through the so called co-ordinated research projects (CRPs). The CRPs are normally organised as multi-center, prospective studies so that large volume of scientific data could be generated in a short period of 18-24 months. The research is normally done within an operational frame work, established and co-ordinated by the IAEA. The reason for this is that the results can be compared despite site or country specific differences. The methods and materials used for such studies usually conform to a predetermined standard. The protocols for various investigations, criteria for patient selection, mode of arriving at a final diagnosis and analysis of data from these multi-center studies are normally agreed upon by the Chief Scientific Investigators from each participating institution and the IAEA prior to the start of the actual work programme. The

  15. Fourth congress of the South African Society of Nuclear Medicine

    International Nuclear Information System (INIS)

    1990-01-01

    This seminar contains 68 papers. Sixty three papers were indexed. Five papers were considered out of scope for INIS. The implementation of nuclear medicine in the following fields were discussed: neurology, cardiology, monoclonal antibodies, endocrinology, nuclear medicine physics, and radiopharmacy

  16. Quality control of radiopharmaceutical dose calibrators in nuclear medicine unit

    International Nuclear Information System (INIS)

    Oliveira, C.F.M.; Lucindo Junior, C.R.; Lopes Filho, F.J.

    2015-01-01

    As part of the program to ensure quality in nuclear medicine unit, in addition to diagnostic procedures, are evaluated activity meters, which is intended to measure the aliquot of radiation of radionuclides and / or radiopharmaceuticals that are administered to patients undergoing diagnostic investigation and / or therapeutic treatment. The good operating condition of dose calibrators is essential to ensure efficiency, safety and reliability of the measurements, once the lack of accuracy in the responses of these equipments can cause significant errors in the activity administered to the patient and may result in poor quality images resulting in the repetition of examis and interference in the successful treatment of the patient. This study aims to, considering the need for constant evaluation of the functioning of the activity meters and the fact that this issue be part the responsibilities of the professional of radiology, perform quality control testing of these instruments in relation to the most recent norm of National Commission of nuclear Energy (CNEN-NN 3:05) in Brazil, that is also in according to the international standards and reference values established during acceptance testing of these instruments in a nuclear medicine service. For this, was made a review of specific literature and the use of barium, cobalt and cesium to the tests in a nuclear medicine service of the state of Pernambuco in Brazil. The obtained results of the specific tests utilized to verify the correct working of the dose calibrators show coherency with the resolutions of the CNEN-NN 3:05 and are also in agreement with the international standards to that the measurement of activities be made with accurate results and thereby contribute to the proper functioning of nuclear medicine service. (authors)

  17. Department of Nuclear Equipment '' High Technology Center - HITEC '' - Overview

    International Nuclear Information System (INIS)

    Krawczyk, P.

    2010-01-01

    Full text: The Department of Nuclear Equipment, also known under the brand '' HITEC '' plays a unique role in the Institute. It combines research and development with manufacturing activities in the area of accelerator technology applications in medicine and industrial radiography. In 2010, the Department continued intense development efforts in the framework of Project No. POIG.01.01-14-012/08-00 (known under the short name of '' Accelerators and Detectors '') funded by EU Structural Funds. As described in detail elsewhere in this Report, these efforts resulted in substantial progress in the design and manufacture of the first model of a medical multi-energy accelerator for advanced radiotherapy. This model is an important testbed for a number of technologies and solutions that will be implemented in the final accelerator. Also, design and manufacture of the elements for an intra-surgery accelerator was carried out. It is worth noting that participation in the '' Accelerators and Detectors '' Project allowed HITEC to modernize significantly its manufacturing and testing capabilities. In 2010, the new equipment was successfully implemented for use in a manufacturing regime. The year 2010 also saw the completion of two R(and)D projects co-financed by the Polish Ministry of Science and Higher Education: · Multileaf Collimator as a Precision Device for Irradiation Field Delimiting in Medical Accelerators; · 4? Recessed Ionization Chamber with Internal Power Supply. In both cases, full scale prototypes of the respective devices were manufactured. In response to market interest HITEC started in 2010 a concept study of a compact low energy industrial radiography accelerator. Subsequently, HITEC received an order to develop and manufacture such a device and the development work was started. On completion the new device will extend the range of commercially available accelerators. In parallel to the above, HITEC continued to extend its engagement in scientific

  18. Discussion on unpacking inspection of imported civil nuclear safety equipment

    International Nuclear Information System (INIS)

    Li Chan; Zhang Wenguang; Li Maolin; Li Shixin; Jin Gang; Yao Yuan

    2014-01-01

    This paper introduces the purpose, contents, process and requirements of unpacking inspection which is the second stage of safety inspection of imported civil nuclear safety equipment, expresses review key points on application documents of unpacking inspection, processes of witness on-the-spot before unpacking inspection outside the civil nuclear facilities by the test agency, discusses understanding of unpacking inspection, supervision of manufacture, inspection prior to shipment, supervision of loading and acceptance by the unit operating civil nuclear facilities, reports on unpacking inspection. Some suggestions on reinforcing the unpacking inspection in China are concerned. (authors)

  19. Hospital Intranet and Extranet in nuclear medicine

    International Nuclear Information System (INIS)

    Gambini, D.J.; Baum, T.P.; Spector, M.; Dumas, F.; Elgard, M.C.; Collington, M.A.; Barritault, L.

    1997-01-01

    Since two years ago nuclear medicine service of Laennec Hospital has implemented transmission and distribution networks of scintigraphic images. A new stage was reached at present by developing an Intranet and Extranet system for nursing units and other services of nuclear medicine. The Intranet link to the services of Laennec Hospital and AP HP is based on a image server connected to the service gamma camera and, after a possible post-processing, the images are transmitted in PCX format by e-mail, attached to the medical record. For communication between nuclear medicine services, a heavier procedure making use of a program for image processing under inter-file standards has been implemented. To achieve the Extranet link with services and physicians of town, exterior to AP HP, a procedure was installed which allows reaching any nursing unit or town physicians having at their disposal e-mail on a secured network. This procedure will be generalized when the Health secured network, linking the medical bodies to Health insurance institutions, will be operational. The interactive tele-medicine will be achieved by means of a procedure based on Internet cooperative tools (wild cards, video- and vision-conferences) which will permits in all situations an interactive work on all the transmitted patient files

  20. European Association of Nuclear Medicine congress. Abstracts

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    To assess the exact place of nuclear medicine studies in the clinical environment in consensus with clinicians and radiologists will probably be our most important task during the coming year. Our society cannot afford unnecessary duplication of diagnostic tests but neither should our patients suffer from the failure to use procedures which could change the outcome of their illness or avoid unnecessary pain and costs because of ignorance, or even worse, self defence by larger and thus stronger pressure groups. Defeatism is as inappropriate as remaining in the splendid isolation of our professional and scientific organisations. There is no place for excessive humbleness either, most of the unnecessary procedures performed in modern medicine lie within the domain of other specialists. It is our duty to participate as actors in the thorough reappraisal of the medical, social and economic context of our activity in the interst of our field and our patients. By confronting our ideas and knowledge with those of others, by using our inventiveness to transfer important results from research laboratories to clinical practice and vice versa, by concentrating on the essential rather than pursuing all possible directions, we will be able to influence positively the future of nuclear medicine. There is no better way to develop our speciality than by understanding the clinical issues, by being able to communicate with our clinical partners and by performing common studies on the clinical impact, cost-efficiency and cost-benefit of nuclear medicine procedures. (orig./AJ)

  1. Export of nuclear equipment and materials and the non-proliferation of nuclear weapons

    International Nuclear Information System (INIS)

    Courteix, Simone.

    1977-01-01

    The problem of the non-proliferation of nuclear weapons is one of great concern today despite the entry into force in the early '70s of the NPT. To master civilian nuclear technology implies the ability to develop nuclear explosive devices; therefore in recent years contacts have strengthened between countries exporting nuclear equipment, specially in the frame of the 'London Club' so as to ensure that their exports will not result in disseminating nuclear weapons. (NEA) [fr

  2. A manual of nuclear medicine procedures

    International Nuclear Information System (INIS)

    Das, B.K.; Noreen Norfaraheen Lee Abdullah

    2012-01-01

    Nuclear medicine is a fast growing specialty. The procedures provide quantitative parameters of organ functions required for modern practice of medicine. With the development of new machines and increased application of computer software, the procedures are under continuous change. Some procedures have become outdated or redundant while new methods have been introduced to enhance the quality of information obtained from a particular application. Although there are a few books published abroad to inform doctors and technical staff about the procedures, a comprehensive source to give quick information about how different test are performed, particularly the new developments and the expected outcome both in normal and abnormal cases has been a long felt need. The physician ordering a Nuclear Medicine test also needs to know what patient preparations are required for optimal results, how to satisfy the queries of the patient particularly in respect of radiation exposure which sometimes can be a major concern of the patient. This manual has been prepared not only to describe technical details of various procedures that are currently practiced in Nuclear Medicine, but also to provide quick information for the doctors and health care personnel on how to inform the patients about the investigation for which they are being referred and how to interpret the results. Since there is no such comprehensive book published yet in Asia including South-East Asia, it is likely to be in great demand in the region. All students of Master Degree, M.D., DRM, DMRIT, M.Sc. (Nuclear Medicine) and technologists already working in various diagnostic centers will likely buy this book. General practitioners and specialists who refer patients for different radioisotope investigations may find this book useful for quick reference. (author)

  3. Lessons from other areas of medical imaging - nuclear medicine

    International Nuclear Information System (INIS)

    McCready, V.R.

    1981-01-01

    Ultrasound and nuclear medicine are similar in that they both have been developed for clinical use in the past decade. Unlike X-ray techniques the success or failure of ultrasound and nuclear medicine depend more upon both the operator and the method of display. Since both ultrasound and nuclear medicine use relatively complicated methods of gathering and displaying information some of the lessons learnt during the development of nuclear medicine can be equally applied to ultrasound techniques. (Auth.)

  4. Seismic fragility levels of nuclear power plant equipment

    International Nuclear Information System (INIS)

    Bandyopadhyay, K.K.; Hofmayer, C.H.

    1987-01-01

    Seismic fragility levels of safety-related electrical and mechanical equipment used in nuclear power plants are discussed. The fragility level is defined as the vibration level corresponding to initiation of equipment malfunctions. The test response spectrum is used as a measure of this vibration level. The fragility phenomenon of an equipment is represented by a number of response spectra corresponding to various failure modes. Analysis methods are described for determination of the fragility level by use of existing test data. Useful conversion factors are tabulated to transform test response spectra from one damping value to another. Results are presented for switch-gears and motor control centers. The capacity levels of these equipment assemblies are observed to be limited by malfunctioning of contactors, motor starters, relays and/or switches. The applicability of the fragility levels, determined in terms of test response spectra, to Seismic Margin Studies and Probabilistic Risk Assessments is discussed and specific recommendations are provided

  5. Radiation, ionization, and detection in nuclear medicine

    International Nuclear Information System (INIS)

    Gupta, Tapan K.

    2013-01-01

    Up-to-date information on a wide range of topics relating to radiation, ionization, and detection in nuclear medicine. In-depth coverage of basic radiophysics relating to diagnosis and therapy. Extensive discussion of instrumentation and radiation detectors. Detailed information on mathematical modelling of radiation detectors. Although our understanding of cancer has improved, the disease continues to be a leading cause of death across the world. The good news is that the recent technological developments in radiotherapy, radionuclide diagnostics and therapy, digital imaging systems, and detection technology have raised hope that cancer will in the future be combatted more efficiently and effectively. For this goal to be achieved, however, safe use of radionuclides and detailed knowledge of radiation sources are essential. Radiation, Ionization, and Detection in Nuclear Medicine addresses these subjects and related issues very clearly and elaborately and will serve as the definitive source of detailed information in the field. Individual chapters cover fundamental aspects of nuclear radiation, including dose and energy, sources, and shielding; the detection and measurement of radiation exposure, with detailed information on mathematical modelling; medical imaging; the different types of radiation detector and their working principles; basic principles of and experimental techniques for deposition of scintillating materials; device fabrication; the optical and electrical behaviors of radiation detectors; and the instrumentation used in nuclear medicine and its application. The book will be an invaluable source of information for academia, industry, practitioners, and researchers.

  6. Radiation, ionization, and detection in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Tapan K. [Radiation Monitoring Devices Research, Nuclear Medicine, Watertown, MA (United States)

    2013-08-01

    Up-to-date information on a wide range of topics relating to radiation, ionization, and detection in nuclear medicine. In-depth coverage of basic radiophysics relating to diagnosis and therapy. Extensive discussion of instrumentation and radiation detectors. Detailed information on mathematical modelling of radiation detectors. Although our understanding of cancer has improved, the disease continues to be a leading cause of death across the world. The good news is that the recent technological developments in radiotherapy, radionuclide diagnostics and therapy, digital imaging systems, and detection technology have raised hope that cancer will in the future be combatted more efficiently and effectively. For this goal to be achieved, however, safe use of radionuclides and detailed knowledge of radiation sources are essential. Radiation, Ionization, and Detection in Nuclear Medicine addresses these subjects and related issues very clearly and elaborately and will serve as the definitive source of detailed information in the field. Individual chapters cover fundamental aspects of nuclear radiation, including dose and energy, sources, and shielding; the detection and measurement of radiation exposure, with detailed information on mathematical modelling; medical imaging; the different types of radiation detector and their working principles; basic principles of and experimental techniques for deposition of scintillating materials; device fabrication; the optical and electrical behaviors of radiation detectors; and the instrumentation used in nuclear medicine and its application. The book will be an invaluable source of information for academia, industry, practitioners, and researchers.

  7. Converting energy to medical progress [nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-04-01

    For over 50 years the Office of Biological and Environmental Research (BER) of the United States Department of Energy (DOE) has been investing to advance environmental and biomedical knowledge connected to energy. The BER Medical Sciences program fosters research to develop beneficial applications of nuclear technologies for medical diagnosis and treatment of many diseases. Today, nuclear medicine helps millions of patients annually in the United States. Nearly every nuclear medicine scan or test used today was made possible by past BER-funded research on radiotracers, radiation detection devices, gamma cameras, PET and SPECT scanners, and computer science. The heart of biological research within BER has always been the pursuit of improved human health. The nuclear medicine of tomorrow will depend greatly on today's BER-supported research, particularly in the discovery of radiopharmaceuticals that seek specific molecular and genetic targets, the design of advanced scanners needed to create meaningful images with these future radiotracers, and the promise of new radiopharmaceutical treatments for cancers and genetic diseases.

  8. Converting energy to medical progress [nuclear medicine

    International Nuclear Information System (INIS)

    2001-01-01

    For over 50 years the Office of Biological and Environmental Research (BER) of the United States Department of Energy (DOE) has been investing to advance environmental and biomedical knowledge connected to energy. The BER Medical Sciences program fosters research to develop beneficial applications of nuclear technologies for medical diagnosis and treatment of many diseases. Today, nuclear medicine helps millions of patients annually in the United States. Nearly every nuclear medicine scan or test used today was made possible by past BER-funded research on radiotracers, radiation detection devices, gamma cameras, PET and SPECT scanners, and computer science. The heart of biological research within BER has always been the pursuit of improved human health. The nuclear medicine of tomorrow will depend greatly on today's BER-supported research, particularly in the discovery of radiopharmaceuticals that seek specific molecular and genetic targets, the design of advanced scanners needed to create meaningful images with these future radiotracers, and the promise of new radiopharmaceutical treatments for cancers and genetic diseases

  9. Equipment and performance upgrade of compact nuclear simulator

    International Nuclear Information System (INIS)

    Park, J. C.; Kwon, K. C.; Lee, D. Y.; Hwang, I. K.; Park, W. M.; Cha, K. H.; Song, S. J.; Lee, J. W.; Kim, B. G.; Kim, H. J.

    1999-01-01

    The simulator at Nuclear Training Center in KAERI became old and has not been used effectively for nuclear-related training and researches due to the problems such as aging of the equipment, difficulties in obtaining consumables and their high cost, and less personnel available who can handle the old equipment. To solve the problems, this study was performed for recovering the functions of the simulator through the technical design and replacement of components with new ones. As results of this study, our test after the replacement showed the same simulation status as the previous one, and new graphic displays added to the simulator was effective for the training and easy for maintenance. This study is meaningful as demonstrating the way of upgrading nuclear training simulators that lost their functioning due to the obsolescence of simulators and the unavailability of components

  10. Electrical and control equipment in nuclear power plants. Problems when replacing aging equipment

    International Nuclear Information System (INIS)

    Nordling, Anna; Haakansson, Goeran

    2012-01-01

    Interoperability between different technical systems is more complicated when old and new technology meet, such as between analog and digital technology. New electrical and I and C equipment is selected with consideration to simplify and improve the compatibility and interoperability. The original construction of nuclear power plants with electricity and I and C equipment had more natural interfaces. Generally experienced guidance, to the management of interoperability and interfaces, feels insufficient. Skills transfer programs are identified as a major need, as more and more important personnel are retiring and important information is lost with them. Lack of appropriate skills directly affects the ability to produce accurate and complete requirements specification. Failure modes of newer electrical and I and C equipment are perceived as more complex than the older equipment. When choosing equipment, attempts are made to minimize unnecessary features, to reduce the number of potential failure modes. There is a lack of consistent understanding of the meaning of robustness in electrical technology and I and C technology, in the nuclear plant engineering departments. The overall picture is that the robustness has worsened since the facilities were built. The Swedish nuclear power plants have an internal organizational structure with separated client and support organization. This splits the nuclear organization into two distinct parts which threaten to separate the two entities focus. Engineering departments at the Swedish nuclear power plants express a need for increased expertise in the client organization (blocks). Competence requested is for example, system knowledge to facilitate and enhance the quality of the initial analysis performed in the blocks. Suppliers receive more recently larger turnkey projects, both to minimize costs but also to minimize the interfaces and co-function problems. This, however, heightens demands for knowledge transfer between

  11. Organization and regulation of nuclear medicine and radiotherapy in Argentina

    International Nuclear Information System (INIS)

    Degrossi, O.J.; Altschuler, Noe; Mugliaroli, H.A.

    1982-01-01

    After describing the efforts carried out in Argentina during the decade of 1970 to consolidate nuclear medicine as a new clinical specialty, reference is made to the constitution, in 1979, of a Joint Advisory Committee on Nuclear Medicine and Radiotherapy integrated by members of the National Atomic Energy Commission and by members of the Public Health Ministry of the Nation, with the purpose to coordinate and plan said activities within the country. Two recommendations of said Advisory Committee are transcribed. The first one defines the different specialties of the professionals and technicians working in the new discipline. The second recommendation is referred to the regulations on ''Operation of Nuclear Medicine Units'', which set up different categories of medical establishments of the specialty (''unit'', ''service'' and ''center''), define their respective functions as well as the equipment and specialized personnel that they should be fitted with in each case, and institute the requirement to demonstrate having the corresponding academic and professional up-dating in the specialty to obtain the periodic revalidation of operation licences. (C.A.K.) [es

  12. Proceedings of the Korean Society Nuclear Medicine Autumn Meeting 2002

    International Nuclear Information System (INIS)

    2002-01-01

    This proceedings contains articles of 2002 autumn meeting of the Korean Society Nuclear Medicine. It was held on November 15-16, 2002 in Seoul, Korea. This proceedings is comprised of 5 sessions. The subject titles of session are as follows: Cancer, Physics of nuclear medicine, Neurology, Radiopharmacy and biology, General nuclear medicine. (Yi, J. H.)

  13. A nuclear chocolate box: the periodic table of nuclear medicine.

    Science.gov (United States)

    Blower, Philip J

    2015-03-21

    Radioisotopes of elements from all parts of the periodic table find both clinical and research applications in radionuclide molecular imaging and therapy (nuclear medicine). This article provides an overview of these applications in relation to both the radiological properties of the radionuclides and the chemical properties of the elements, indicating past successes, current applications and future opportunities and challenges for inorganic chemistry.

  14. In vivo studies. In vivo nuclear medicine

    International Nuclear Information System (INIS)

    Syrota, A.; CEA, 91 - Orsay

    1997-01-01

    A historical review of the use of radioelements for biological applications and nuclear medicine is presented: planar gamma-scintigraphy, invented in 1957, which gives planar projections of the radioactivity distribution in an organ; tomography, which gives sections of an organ and reconstructed three-dimensional images; positron emission tomography, invented in the 70's, gives brain section images with carbon 11, nitrogen 13 and oxygen 15. Coupled utilization of these techniques with other functional image systems such as nuclear magnetic resonance, enables simultaneous anatomic and functional information such as cognitive functions and cerebral localizations

  15. Scintigraphic instruments and techniques in nuclear medicine

    International Nuclear Information System (INIS)

    Bornand, Bernard; Soussaline, Francoise; CEA, 91 - Orsay

    1978-01-01

    A short survey of data processing techniques in medical scintigraphy is presented. Three lists of abstracts being firstly from reviews, secondly from proceedings, and thirdly of reports and thesis, are presented as an addendum to the bibliography CEA-BIB-214, for the period 1975 up to march 1977. An index of authors and subjects is included. Finally an appendix with 18 patents is attached. Several bibliographical reviews: Excerpta Medica (Nuclear Medicine) Abstract Journal, INIS Atomindex, Nuclear Science Abstracts, together with a number of special journals and documents, recently published, have been used for this work [fr

  16. Areas control of a nuclear medicine service

    International Nuclear Information System (INIS)

    Silva, Islane C.S.; Silva, Iasmim M.S.; Júnior, Cláudio L.R.; Silva, Isvânia S.; Gonzalez, Kethyllém M.; Melo, Francisca A.; Lima, Fernando R.A.

    2017-01-01

    The measurement of the exposure rate of the sectors of a nuclear medicine service (NMS), with the purpose of establishing safety to the service workers and the public, classifying the areas according to the monitoring is presented. Following the studies on the classifications of the areas of a Nuclear Medicine service provided by the category regulatory standard, 3.05 CNEN-NN, measures were taken in all sectors of the NMS in order to classify the areas in: Free, controlled and supervised according to with the exposure level. As a measurement instrument, a Geiger-Muller counter of the digital type was used. The results obtained show a correlation with the Brazilian norm satisfactorily, referring to the exposure rate of the studied SMN sectors

  17. New developments in nuclear medicine technology

    International Nuclear Information System (INIS)

    Ziegler, S.I.; Pichler, B.J.

    2000-01-01

    During the past few years, there have been new impulses in the development of a number of technologies employed in Nuclear Medicine imaging. These include new scintillation materials, the way of detecting the scintillation light, and completely novel methods to detect gamma rays by means of semiconductor detectors. In addition to combined instrumentation that can be used for SPECT and PET, already in clinical use, combined scintigraphic and anatomic imaging devices are now becoming available, for example SPECT/CT or PET/CT. This review article describes the most important of the new components, part of which have already entered product development and part of which are still in the research phase. The review focus on the employment of modern semiconductor detectors in Nuclear Medicine. (orig.) [de

  18. Recommendations for managing equipment aging in nuclear power plants

    International Nuclear Information System (INIS)

    Gunther, W.E.; Subudhi, M.; Aggarwal, S.K.

    1992-01-01

    Research conducted under the auspices of the US NRC's Nuclear Plant Aging Research (NPAR) Program has resulted in a large database of component and system operating, maintenance, and testing information. This database has been used to determine the susceptibility to aging of selected components, and the potential for equipment aging to impact plant safety and availability. it has also identified methods for detecting and mitigating component and system aging. This paper describes the research recommendations on electrical components which could be applied to maintenance, testing, and inspection activities to detect and mitigate the effects of aging prior to equipment failures

  19. Development of nuclear fuel microsphere handling techniques and equipment

    International Nuclear Information System (INIS)

    Mack, J.E.; Suchomel, R.R.; Angelini, P.

    1979-01-01

    Considerable progress has been made in the development of microsphere handling techniques and equipment for nuclear applications. Work at Oak Ridge National Laboratory with microspherical fuel forms dates back to the early sixties with the development of the sol-gel process. Since that time a number of equipment items and systems specifically related to microsphere handling and characterization have been identified and developed for eventual application in a remote recycle facility. These include positive and negative pressure transfer systems, samplers, weighers, a blender-dispenser, and automated devices for particle size distribution and crushing strength analysis. The current status of these and other components and systems is discussed

  20. Extracts from IAEA's Resources Manual in Nuclear Medicine. Part-3: Establishing Nuclear Medicine Services

    International Nuclear Information System (INIS)

    2003-01-01

    In the past, consideration was given to the categories of nuclear medicine ranging from simple imaging or in-vitro laboratories, to more complex departments performing a full range of in-vitro and in-vivo procedures that are also involved in advanced clinical services, training programmes, research and development. In developing countries, nuclear medicine historically has often been an offshoot of pathology, radiology or radiotherapy services. These origins are currently changing as less radioimmunoassay is performed and fully-fledged, independent departments of nuclear medicine are being set up. The trend appears to be that all assays (radioassay or ELISA) are done in a biochemistry laboratory whereas nuclear medicine departments are involved largely in diagnostic procedures, radionuclide therapy and non-imaging in-vitro tests. The level of nuclear medicine services is categorized according to three levels of need: Level 1: Only one gamma camera is needed for imaging purposes. The radiopharmaceutical supply, physics and radiation protection services are contracted outside the centre. Other requirements include a receptionist and general secretarial assistance. A single imaging room connected to a shared reporting room should be sufficient, with a staff of one nuclear medicine physician and one technologist, with back-up. This level is appropriate for a small private practice. Level 2: This is suitable for a general hospital where there are multiple imaging rooms where in-vitro and other non-imaging studies would generally be performed as well as radionuclide therapy. Level 3: his is appropriate for an academic institution where there is a need for a comprehensive clinical nuclear medicine service, human resource development and research programmes. Radionuclide therapy for in-patients and outpatients is provided

  1. UK nuclear medicine survey, 1989/90

    International Nuclear Information System (INIS)

    Elliott, A.T.; Shields, R.A.

    1993-01-01

    A postal survey of UK nuclear medicine departments was carried out to obtain information on activity during the year 1989/90. A rise of 14% in the number of administrations of radiopharmaceuticals was found compared to 1982: a rise of 22% in imaging studies was offset by a 30% decrease in the number of nonimaging investigations. The estimated total number of administrations in the UK was 430 000. (author)

  2. New trends and possibilities in nuclear medicine

    International Nuclear Information System (INIS)

    Schmidt, H.A.E.; Csernay, L.

    1988-01-01

    The abstracts of this book mainly deal with the results of scientific work in diagnostic nuclear medicine, radiobiology, dosimetry, medical physics, radiopharmacology and biochemistry. Clinical and experimental data are presented within the fields of endocrinology, cardiology, pulmonology, gastroenterology, neurology, nephrology, osteology, hematology and oncology (- even including diagnostic and therapeutic aspects of labelled monoclonal antibodies). Basic information about instrumentation (PET, SPECT, NMR), artificial intelligence and qualitiy control is given. Separate abstracts are prepared for 189 papers. (TRV) With 363 figs., 143 tabs

  3. Thirty year celebration of the contribution of nuclear medicine physicists in Australia

    International Nuclear Information System (INIS)

    Walker, B. M.

    2007-01-01

    Full text: The intention of this article is to describe the contributions of the many nuclear medicine physicists who in a large or small way have added to the ongoing development of nuclear medicine in Australia from the first years of the discipline in the late 1960s to the present time. Unlike our colleagues in radiation oncology physics, the nuclear medicine physicist fraternity has always been a very small group which unfortunately has not expanded greatly over the 30 years and beyond. This is emphasized in the survey by W.H.Round 1 which showed the bias towards older physicists being involved in the discipline. Because of the small numbers of nuclear medicine physicists in the public hospital system, mostly one or two per teaching hospital, most physicists are heavily involved in clinical duties to keep up the high standard of equipment and software performance required. Many nuclear medicine physicists also have the dual role of hospital radiation safety officers which is becoming more demanding as radiation legislation increases. For this reason much of the pure research has been confined to the hospitals with larger numbers of physicists. However a high proportion of nuclear medicine physicists across the country have contributed greatly to clinical research and development as part of their job. Unfortunately these cannot all be recognised in this article. Young physicists may not realise how much 'in house' research and development was carried out by physicists in the early years of nuclear medicine when equipment companies did not provide the software which is now available to purchase. Many of these innovative techniques and software, described in this article, are still in use today. Some of the 'big events' in the history of nuclear medicine in Australia in which physicists have played a leading role will also be highlighted. This will serve to emphasize how physicists have worked closely with clinicians and technologists in the ongoing development of

  4. Nuclear medicine solutions in winter sports problems

    International Nuclear Information System (INIS)

    Hoeflin, F.G.

    2002-01-01

    Full text: The diagnostic workup of acute Winter Sports injuries is done by Conventional X Ray, CT and MRI. Chronic injuries as stress reactions are best investigated by Nuclear Medicine procedures: Snow Boarding: In Snow-Boarding chronic injuries are mostly seen as local increased uptake laterally in the lower third of the Fibula of the front leg together with Tibial increase medially in the other leg. Skiing: Chronic Skiing injuries are less asymmetrical and mostly seen on the apex of the patella. Chronic Feet Problems: A different chronic problem is the reduced blood perfusion in the feet if hard, tightened boots are used for longer time by professional ski instructors and racers. Flow difference between the foot in the boot and the other without boot are dramatic as measured by Nuclear Medicine Procedures and MRI. Pulmonary Embolism: Acute pulmonary embolism caused by thrombi originating at the site of constant pressure on the back rim of ski boots is not uncommon in older skiers (seek and you will find), but never seen in the younger group of Snow-Boarders. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc

  5. Routine dosimetry in a nuclear medicine department

    International Nuclear Information System (INIS)

    Dreuille, O. de; Carbonieres, H. de; Briand-Champlong, J.; Foehrenbach, H.; Guevel, E.; Maserlin, P.; Gaillard, J.F.; Treguier, J.Y.

    2002-01-01

    The nuclear medicine department of the Val de Grace Hospital, in cooperation with the Radiological Protection Army Service, has performed an evaluation of the staff's radio-exposure based on routine dosimetry for six months. The most exposed people are the technicians (2.6 mSv/yr) and the nurse (1.7 mS/yr). The nuclear medicine physicians (0.6 mSv/yr) and the secretaries (0.07 mSv/yr) are far less exposed. The most irradiant occupations are the preparation and the injection of the radiopharmaceuticals (18 mSv/dy) and the realization of the Positron Emission Tomography examinations (19 mSv/dy). The increasing number of PET exams and the development of new tomographs, requiring higher activities, will still increase the exposition level of this working post. This study demonstrates that the exposition doses in nuclear medicine are low compared to the regular limits. Based on these results, only the technicians and the nurse are relevant to the A class. However, these dose levels cannot be neglected for particular positions such as the injection and the PET management. (author)

  6. Justification of the hybrid nuclear medicine examinations

    International Nuclear Information System (INIS)

    Garcheva-Tsacheva, Marina B.

    2015-01-01

    The annual frequency of nuclear medicine examinations is increasing worldwide. This is partly a consequence of the recently introduced single photon emission tomography, combined with computed tomography, and positron emission tomography, combined with computed tomography, techniques, which combine functional, metabolic and morphological information important for the diagnosis of many diseases. However, since the effective radiation dose is the sum of the dose of two components, the hybrid examinations result in increased patient exposure. Accordingly, their justification becomes mandatory. It starts with their clinical importance-the opportunity to resolve a clinical problem decisive for patients' management. Knowledge of the indications, contraindications and the examinations' limitations is the responsibility of the nuclear medicine physician, as well as the choice of the most adequate examination and protocol. In conclusion, the cost and the accessibility of the examinations should not be the principal consideration as opposed to the diagnostic value and the exposure. Flexible protocols and algorithms should be used for hybrid nuclear medicine examinations. (authors)

  7. Basic science of nuclear medicine the bare bone essentials

    CERN Document Server

    Lee, Kai H

    2015-01-01

    Through concise, straightforward explanations and supporting graphics that bring abstract concepts to life, the new Basic Science of Nuclear Medicine—the Bare Bone Essentials is an ideal tool for nuclear medicine technologist students and nuclear cardiology fellows looking for an introduction to the fundamentals of the physics and technologies of modern day nuclear medicine.

  8. Proceedings of 2nd Korea-China Congress of Nuclear Medicine and the Korean Society Nuclear Medicine Spring Meeting 2000

    International Nuclear Information System (INIS)

    2000-01-01

    This proceedings contains articles of 2nd Korea-China Congress of Nuclear Medicine and 2000 spring meeting of the Korean Society Nuclear Medicine. It was held on May 17-19, 2000 in Seoul, Korean. This proceedings is comprised of 6 sessions. The subject titles of session are as follows: general nuclear medicine, neurology, oncology, radiopharmacy and biology, nuclear cardiology, nuclear cardiology: physics and instrumentation and so on. (Yi, J. H.)

  9. Problems and future outlook in the nuclear equipment manufacturing industry

    International Nuclear Information System (INIS)

    Suenaga, Soichiro

    1984-01-01

    The energy policy in Japan is based on a balance between the energy security and the energy cost for the purpose of realizing optimal supply/demand structure. In this field, nuclear equipment manufacturers should cooperate in the settlement of LWR power generation through plant safety and reliability and through high economical efficiency, all involving the advancement of technology. As a new concept being developed, there is an APWR (advanced PWR) which has the electric output of 1,350 MWe. The export of nuclear power plants, though there are various problems, should be enhanced in the high-technology export area. The following matters are described: the settlement of and the heightening of technology in nuclear power generation, the development of the advanced PWR, and the measures for the export of nuclear power plants and components. (Mori, K.)

  10. Handbook of nuclear medicine practice in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    This ``Handbook of Nuclear Medicine Practices in the Developing Countries`` is meant primarily for those, who intend to install and practice nuclear medicine in a developing country. By and large, the conventional Textbooks of nuclear medicine do note cater to the special problems and needs of these countries. The Handbook is not trying to replace these textbooks, but supplement them with special information and guidance, necessary for making nuclear medicine cost-effective and useful in a hospital of a developing country. It is written mostly by those, who have made success in their careers in nuclear medicine, in one of these countries. One way to describe this Handbook will be that it represents the ways, in which, nuclear medicine is practised in the developing countries, described by those, who have a long and authentic experience of practising nuclear medicine in a developing country Figs, tabs

  11. Handbook of nuclear medicine practice in developing countries

    International Nuclear Information System (INIS)

    1992-01-01

    This ''Handbook of Nuclear Medicine Practices in the Developing Countries'' is meant primarily for those, who intend to install and practice nuclear medicine in a developing country. By and large, the conventional Textbooks of nuclear medicine do note cater to the special problems and needs of these countries. The Handbook is not trying to replace these textbooks, but supplement them with special information and guidance, necessary for making nuclear medicine cost-effective and useful in a hospital of a developing country. It is written mostly by those, who have made success in their careers in nuclear medicine, in one of these countries. One way to describe this Handbook will be that it represents the ways, in which, nuclear medicine is practised in the developing countries, described by those, who have a long and authentic experience of practising nuclear medicine in a developing country

  12. Regulatory Activities on Civil Nuclear Safety Equipment in China

    International Nuclear Information System (INIS)

    Gaoshang, Lu; Choi, Kwang Sik

    2011-01-01

    It is stipulated in IAEA Fundamental Safety Principles (SF1) that the fundamental safety objective is to protect people and the environment from harmful effects of ionizing radiation. The fundamental safety objective applies for all facilities and activities and for all stages over the lifetime of a facility or radiation source, including planning, sitting, design, manufacturing, construction, commissioning and operation, as well as decommissioning and closure. So, according to the requirement, the related activities such as design, manufacturing, installation and non-destructive test that conducted on civil nuclear equipment should be well controlled by the vendors, the owner of the nuclear power plants and the regulatory body. To insure the quality of those equipment, Chinese government had taken a series of measures to regulate the related activities on them

  13. Decommissioning and equipment replacement of nuclear power plants under uncertainty

    International Nuclear Information System (INIS)

    Takashima, Ryuta; Naito, Yuta; Kimura, Hiroshi; Madarame, Haruki

    2007-01-01

    This study examines the optimal timing for the decommissioning and equipment replacement of nuclear power plants. We consider that the firm has two options of decommissioning and equipment replacement, and determines to exercise these options under electricity price uncertainty. This problem is formulated as two optimal stopping problems. The solution of this model provides the value of the nuclear power plant and the threshold values for decommissioning and replacement. The dependence of decommissioning and replacement strategies on uncertainty and each cost is shown. In order to investigate the probability of events for decommissioning and replacement, Monte Carlo calculations are performed. We also show the probability distribution and the conditional expected time for each event. (author)

  14. Overview of nuclear power plant equipment qualification issues and practices

    International Nuclear Information System (INIS)

    Torr, K.G.

    1989-01-01

    This report presents a view of and commentary on the current status of equipment qualification (EQ) in nuclear industries of the major western nations. The introductory chapters discuss the concepts of EQ, the elements of EQ process and highlight some of the key issues in EQ. A brief review of industry practices and some of the prevalent industrial standards is presented, followed by an overview of current regulatory positions in the USA, France, Germany and Sweden. A summary and commentary on the latest research findings on issues relating to accident simulation, to aging simulation and some special topics related to EQ, has been contributed by Franklin Research Centre of Philadelphia. The last part of the report deals with equipment qualification in Canada and gives recommendations on EQ for new plants as well as currently operational CANDU nuclear power plants

  15. A proposal of nuclear fusion power plant equipped with SMES

    International Nuclear Information System (INIS)

    Natsukawa, Tatsuya; Makamura, Hirokazu; Molinas, Marta; Nomura, Shinichi; Tsuji-Iio, Shunji; Shimada, Ryuichi

    2000-01-01

    When we intend to operate the nuclear fusion power plant (NFPP) under the economically efficient conditions as an independent power plant, it is desirable that the generated electric power should be sent to network according to the power demand. With such strategy being expanded, some energy storage system is available. In this paper, NFPP equipped with the superconducting magnetic energy storage system (SMES) as electric power storage device is proposed. The advantages of NFPP equipped with SMES are discussed and a case study of 500 MW NFPP equipped with 6 GWh SMES is done with estimating its operational value. For SMES coil, the concept of Force Balanced Coil (FBC) is applied and 6 GWh class FBC is briefly designed

  16. The developments and applications of molecular nuclear medicine

    International Nuclear Information System (INIS)

    Fang Shengwei; Xi Wang; Zhang Hong

    2009-01-01

    Molecular nuclear medicine including PET and SPECT is one of the most important parts of the molecular imaging. The combinations of molecular unclear medicine with CT, MRI, ultrasound or optical imaging and synthesis of multimodality radiopharmaceuticals are the major trends of the development of nuclear medicine. Molecular nuclear medicine has more and more and more important value on the monitoring of response to biology involved gene therapy or stem cell therapy and the developments of new drug. (authors)

  17. Equipment and performance upgrade of compact nuclear simulator

    International Nuclear Information System (INIS)

    Park, Jae Chang; Kwon, Kee Choon; Cha, Hyung Ho; Park, Won Man; Song, Soon Ja; Seh, Kyung Won; Joo, Young Chang

    1998-12-01

    In this project, the techniques to upgrade obsolescent nuclear power plant simulation were developed: the simulation code operated in Macro-VAX II has been transplanted to the HP workstation: commercial equipment PLC was adopted for the interface system: the protection logic was developed in the prototype level: and the display system was strengthened. These techniques can be directly used to upgrade other obsolescent simulators

  18. Nuclear power generating station equipment qualification method and apparatus

    International Nuclear Information System (INIS)

    Fero, A.H.; Potochnik, L.M.; Riling, R.W.; Semethy, K.F.

    1990-01-01

    This patent describes a method of monitoring an object piece of qualified equipment in a nuclear power plant. It comprises providing a first passive mimic means for mimicking the effect of radiation received by the object piece on the object piece; providing a second mimic means for mimicking the effect of a thermal history of the object piece on the object piece and mounting the first passive mimic means and the second mimic means in close proximity to the object piece

  19. Equipment and performance upgrade of compact nuclear simulator

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jae Chang; Kwon, Kee Choon; Cha, Hyung Ho; Park, Won Man; Song, Soon Ja; Seh, Kyung Won; Joo, Young Chang

    1998-12-01

    In this project, the techniques to upgrade obsolescent nuclear power plant simulation were developed: the simulation code operated in Macro-VAX II has been transplanted to the HP workstation: commercial equipment PLC was adopted for the interface system: the protection logic was developed in the prototype level: and the display system was strengthened. These techniques can be directly used to upgrade other obsolescent simulators.

  20. Nuclear power plants. Electrical equipment of the safety system. Qualification

    International Nuclear Information System (INIS)

    2001-01-01

    This International Standard applies to electrical parts of safety systems employed at nuclear power plants, including components and equipment of any interface whose failure could affect unfavourably properties of the safety system. The standard also applies to non-electrical safety-related interfaces. Furthermore, the standard describes the generic process of qualification certification procedures and methods of qualification testing and related documentation. (P.A.)