WorldWideScience

Sample records for nuclear medicine department hospital

  1. Radioprotection in nuclear medicine department of 'Porto Alegre Clinical Hospital'

    International Nuclear Information System (INIS)

    Dias, T.M.; Pinto, A.L.; Bacelar, A.L.; Dytz, A.S.; Bernasiuk, M.E.; Baptista, I.S.

    1996-01-01

    The use of ionizing radiation in medicine allows great benefits. Nuclear Medicine uses ionizing radiation for medical diagnostic, such as: tumor, cancer, and dysfunctions location. However the use of ionizing radiation must be controlled in order to avoid likely biological effects in human beings. In order to extremely minimize that these effects appear, the Medical Physics Department of the Porto Alegre Clinical Hospital has implemented some procedures to assure that handling and use of radioactive material are in a safe way. This preoccupation is considered in all the places of nuclear medicine sector since the moment when the radioactive material is brought into including its manipulation and retirement, the exam process being accompanied. (authors). 4 refs

  2. Practical radiation protection in hospitals. A view at the nuclear medicine departement of the University Hospital of Cologne

    International Nuclear Information System (INIS)

    Sudbrock, Ferdinand

    2011-01-01

    Radiation protection plays a predominant role in nuclear medicine departments as they are installations dealing with open radioactive substances. Many experts in radiation protection who are not directly involved in nuclear medicine may only have a vague insight into the daily routine of such installations. This contribution would like to give an impression by making a virtual tour through the nuclear medicine department of the University Hospital of Cologne - a department that covers a large part of the ability spectrum of this discipline. This tour will show some specialities concerning radiation protection in diagnostic and therapeutic procedures. (orig.)

  3. Radiopharmaceutical prescription in nuclear medicine departments

    International Nuclear Information System (INIS)

    Biechlin-Chassel, M.L.; Lao, S.; Bolot, C.; Francois-Joubert, A.

    2010-01-01

    In France, radiopharmaceutical prescription is often discussed depending to which juridical structure the nuclear medicine department is belonging. According to current regulation, this prescription is an obligation in a department linked to hospital with a pharmacy department inside. But situation remains unclear for independent nuclear medicine departments where physicians are not constrained to prescribe radiopharmaceuticals. However, as radiographers and nurses are only authorized to realize theirs acts in front of a medical prescription, one prescription must be realized. Nowadays, computerized prescription tools have been developed but only for radiopharmaceutical drugs and not for medical acts. In the aim to achieve a safer patient care, the prescription regulation may be applied whatever differences between nuclear medicines departments. (authors)

  4. Routine dosimetry in a nuclear medicine department

    International Nuclear Information System (INIS)

    Dreuille, O. de; Carbonieres, H. de; Briand-Champlong, J.; Foehrenbach, H.; Guevel, E.; Maserlin, P.; Gaillard, J.F.; Treguier, J.Y.

    2002-01-01

    The nuclear medicine department of the Val de Grace Hospital, in cooperation with the Radiological Protection Army Service, has performed an evaluation of the staff's radio-exposure based on routine dosimetry for six months. The most exposed people are the technicians (2.6 mSv/yr) and the nurse (1.7 mS/yr). The nuclear medicine physicians (0.6 mSv/yr) and the secretaries (0.07 mSv/yr) are far less exposed. The most irradiant occupations are the preparation and the injection of the radiopharmaceuticals (18 mSv/dy) and the realization of the Positron Emission Tomography examinations (19 mSv/dy). The increasing number of PET exams and the development of new tomographs, requiring higher activities, will still increase the exposition level of this working post. This study demonstrates that the exposition doses in nuclear medicine are low compared to the regular limits. Based on these results, only the technicians and the nurse are relevant to the A class. However, these dose levels cannot be neglected for particular positions such as the injection and the PET management. (author)

  5. Evaluation of radiation protection in some nuclear medicine department

    International Nuclear Information System (INIS)

    Abdelrahim, Yassir Mohammed

    2015-12-01

    This study was carryout to evaluate the radiation protection in nuclear medicine department in Sudan, accordance with the standards international recommendation and code of practice for radiation protection in nuclear medicine, the evaluation was done for three nuclear medicine departments, included direct measurement of dose rate and the contamination level in some areas, were radiation sources, radiation workers and public are involved. The data was collected and analyzed from the results for three nuclear medicine departments that the average reading of ambient dose rate in : outside the door of imaging room (SPECT) 0.18μSv/h in hospital (1)& and 0.19μSv/h in hospital(2) and 0.19μSv/h hospital(3), inside control of imaging room (SPECT) 27.8μSv/h in hospital(1)& 0.14μSv/h in hospital(2)& 14μSv/h in hospital(3), inside the injection room 28.81μSv/h in hospital(1), 0.36μSv/h in hpspital(2), 0.06μSv/h in hospital(3) outside the door of lap, 0.65μSv/h in hospital(1), 0.13μSv/h in hospital(2) & 0.12μSv/h in hospital(3), inside the hot lap, 9.68μSv/h in hospital(1) & 0.30μSv/h in hospital(2) & 0.85 μSv/h in hospital(3), in outsidee the door of waiting room of injected patient 1.41μSv/h in hospital(1)& 0.16μSv/h in hospital(2) & 1.08μSv/h in hospital(3). Avaerge reading of contamination in: Floor of hot lap 44.50 B/cm"2 hospital(1) & 4.42B/cm"2in hospital(2) & 6.22 B/cm"2 in hospital (3) . on the bench tap 186.30 B/cm"2 hospital(1), 19.91 B/cm"2 in hospital(2) & 8.77B/cm"2 in hospital(3) floor of injection room 12.60 B/cm"2 in hospital(1) & 11.70 B/cm"2 in hospital(2) & 13.73 B/cm"2 hospital(3) & table of injection room 13.00 B/cm"2 in hospital(1)& 11.70 B/cm"2in hospital(2)& 13.73 B/cm"2 in hospital & tble of injection room 13.00 B/cm"2 in hospital(1) & 20.40 B/cm"2 in hospital(2) & 23.23 B/cm"2 B/cm"2 in hospital(3) on the shield of working surface 144.30 B/cm in hospital(1)& 47.00 B/cm"2 in hospital(2) & 52.33 B/cm"2 in hospital(3) , and makes check

  6. An eighteen year experience of differentiated thyroid carcinoma treatment with 131 radioiodine at the Military Hospital Nuclear Medicine Department

    Energy Technology Data Exchange (ETDEWEB)

    Jofre, M J; Sierralta, M P [Military Hospital Nuclear Medicine Department, Santiago (Chile); Del Campo, G; Ide, A; Wiener, R [Department of Endocrinology of the Military Hospital, Santiago (Chile)

    2002-09-01

    An eighteen year experience of differentiated thyroid carcinoma treatment with 131 radioiodine at the Military Hospital Nuclear Medicine Department. Since the beginning of Nuclear Medicine, the thyroid gland has been an important subject for study. In the fifties, the complimentary use of 131 radioiodine after differentiated thyroid carcinoma (DTC) surgery was postulated. The aim of the study was to analyze our experience of the management of patients with DTC. Material and methods: An 18-year retrospective analysis was made including 109 patients with previous diagnosis of DTC, 90 % females, mean age 47 +/- 17 y.o. (range: 19-85 y.o). Tumoral histology was 67 % papillary, 28 % follicular and 5% non-determined in the medical record. First doses of 131 radioiodine were between 50 and 200 mCi. In all, 156 radioiodine doses were given and 6 patients received 4 doses or more, with total doses between 300 and 570 mCi. Results: The distribution of first and total radioiodine doses is presented in the table below. Of the group of patients who received a first radioiodine dose of less than 100 mCi post surgery, 79% were treated before 1990. Those who received 150mCi or more had cervical ganglionar compromise, trachea invasion or subtotal thyroidectomy. In 50% of the patients who received 4 or more doses, the first two doses were 50 mCi. It is important to mention that there was one patient who received 8 radioiodine doses in 4 years , seven of them were 50 mCi ( total dose 438 mCi). This patient presented trachea and larynx invasion in the early stages, with a persistent focus in the left supraclavicular region. She later developed pulmonary fibrosis, for which she was treated with complimentary radiotherapy (30 Gy), before dying. Distribution of radioiodine doses is presented. Conclusion: It is important to emphasize the validity of a first 131 radioiodine dose after surgery of DTC patients of 100 mCi or more, to obtain the ablation of the remaining thyroid tissue. This

  7. An eighteen year experience of differentiated thyroid carcinoma treatment with 131 radioiodine at the Military Hospital Nuclear Medicine Department

    International Nuclear Information System (INIS)

    Jofre, M.J.; Sierralta, M.P.; Del Campo, G.; Ide, A.; Wiener, R.

    2002-01-01

    An eighteen year experience of differentiated thyroid carcinoma treatment with 131 radioiodine at the Military Hospital Nuclear Medicine Department. Since the beginning of Nuclear Medicine, the thyroid gland has been an important subject for study. In the fifties, the complimentary use of 131 radioiodine after differentiated thyroid carcinoma (DTC) surgery was postulated. The aim of the study was to analyze our experience of the management of patients with DTC. Material and methods: An 18-year retrospective analysis was made including 109 patients with previous diagnosis of DTC, 90 % females, mean age 47 +/- 17 y.o. (range: 19-85 y.o). Tumoral histology was 67 % papillary, 28 % follicular and 5% non-determined in the medical record. First doses of 131 radioiodine were between 50 and 200 mCi. In all, 156 radioiodine doses were given and 6 patients received 4 doses or more, with total doses between 300 and 570 mCi. Results: The distribution of first and total radioiodine doses is presented in the table below. Of the group of patients who received a first radioiodine dose of less than 100 mCi post surgery, 79% were treated before 1990. Those who received 150mCi or more had cervical ganglionar compromise, trachea invasion or subtotal thyroidectomy. In 50% of the patients who received 4 or more doses, the first two doses were 50 mCi. It is important to mention that there was one patient who received 8 radioiodine doses in 4 years , seven of them were 50 mCi ( total dose 438 mCi). This patient presented trachea and larynx invasion in the early stages, with a persistent focus in the left supraclavicular region. She later developed pulmonary fibrosis, for which she was treated with complimentary radiotherapy (30 Gy), before dying. Distribution of radioiodine doses is presented. Conclusion: It is important to emphasize the validity of a first 131 radioiodine dose after surgery of DTC patients of 100 mCi or more, to obtain the ablation of the remaining thyroid tissue. This

  8. Check-up and follow-up of papillary and follicular thyroid carcinoma in the department of nuclear medicine at Ibn Sina hospital Rabat

    International Nuclear Information System (INIS)

    Ben Rais Aouad, N.; Ghfir, I.; Guerrouj, H.; Fellah, S.; Rahali, J.; Ksyar, R.; Missoum, F.; Bssis, A.; Azrak, S.

    2009-01-01

    In the department of nuclear medicine at Ibn Sina university hospital. Thyroid carcinoma follow-up strategy has been modified and includes cervical ultrasonography and thyroglobulin measurement. The role of radio-iodine scanning in the management of differentiated thyroid carcinoma is decreasing. Papillary and follicular carcinoma have good prognosis but late metastases exist and can lead to death. A lifelong follow-up is therefore mandatory. The main goal of follow-up is to detect earlier persistent or recurrent disease. (authors)

  9. Security in the nuclear medicine department

    International Nuclear Information System (INIS)

    Bassingham, S.; Gane, J.; Chan, P.S.; Heenan, S.; Gulliver, N.; McVey, J.

    2005-01-01

    The current threat from terrorism highlights the need for awareness of adequate security of radioactive sources by health bodies to prevent the opportunistic access to, theft of. or accidental loss of sources, together with stringent security measures in place to prevent the international misuse of radioactive sources as a weapon by unauthorised access. This presentation discusses the processes undertaken to ensure the safety and security of radioactive materials within the nuclear medicine department in line with current regulations and guidelines. These include risk assessments, security systems, audit trails, restricted access and personnel background checks

  10. IRSN's expertise about nuclear medicine hospital effluents

    International Nuclear Information System (INIS)

    2009-01-01

    This brief note aims at presenting the radioactivity follow up of hospital effluents performed by the French Institute of Radiation Protection and Nuclear Safety (IRSN). This follow up concerns the radioactive compounds and radiopharmaceuticals used in nuclear medicine, and principally technetium 99 and iodine 131. The IRSN has developed a network of remote measurement systems for the monitoring of sewers and waste water cleaning facilities. Data are compiled in a data base for analysis and subsequent expertise. (J.S.)

  11. Reduction of doses to staff in a nuclear medicine department

    International Nuclear Information System (INIS)

    Van Every, B.

    1982-01-01

    Data relating to the radiation protection of staff working in the Department of Nuclear Medicine, Alfred Hospital, Victoria during the period 1977 to 1981 are examined. No member of staff received more than one tenth of the annual whole body dose limit of 5x10 4 μSv. The reduction in the total whole body dose of staff and in the technologist's individual dose is due to relocating the department, using appropriate radiation monitoring equipment, using a staff roster and making staff aware of previous doses

  12. Hospital Intranet and Extranet in nuclear medicine

    International Nuclear Information System (INIS)

    Gambini, D.J.; Baum, T.P.; Spector, M.; Dumas, F.; Elgard, M.C.; Collington, M.A.; Barritault, L.

    1997-01-01

    Since two years ago nuclear medicine service of Laennec Hospital has implemented transmission and distribution networks of scintigraphic images. A new stage was reached at present by developing an Intranet and Extranet system for nursing units and other services of nuclear medicine. The Intranet link to the services of Laennec Hospital and AP HP is based on a image server connected to the service gamma camera and, after a possible post-processing, the images are transmitted in PCX format by e-mail, attached to the medical record. For communication between nuclear medicine services, a heavier procedure making use of a program for image processing under inter-file standards has been implemented. To achieve the Extranet link with services and physicians of town, exterior to AP HP, a procedure was installed which allows reaching any nursing unit or town physicians having at their disposal e-mail on a secured network. This procedure will be generalized when the Health secured network, linking the medical bodies to Health insurance institutions, will be operational. The interactive tele-medicine will be achieved by means of a procedure based on Internet cooperative tools (wild cards, video- and vision-conferences) which will permits in all situations an interactive work on all the transmitted patient files

  13. Nosocomial Infections in Nuclear Medicine Departments: some considerations

    International Nuclear Information System (INIS)

    Metello, L.F.; Cunha, L.; Martins, M.; Isabel, O.; Ribeiro, G.

    2002-01-01

    Aim: Surveillance for Nosocomial Infection has become an integral part of hospital practice. Studies conducted more than 30 years ago by the Centers for Disease Control and Prevention (CDC) documented the efficacy of these surveillance activities in reducing Nosocomial Infection occurrence. It is clear that surveillance for Nosocomial Infection involves more than just documenting infection rates. However, many times the professionals involved have tended to stop at the point where rates are reported and fail to complete the task of implementing changes based on the analysis of rates or disseminating information. Moreover specific documentation regarding Nuclear Medicine Departments is not available. We therefore decided to produce this work based in the recognition of this specific need. Methods and Conclusions: Having previously defined the 'state-of-the-art' from science and technology concerning Nosocomial Infection Control and after particular study regarding technical/clinical reality of Nuclear Medicine Departments, namely introducing the radioactivity as a factor that must be taken into account with all its implications and interactions, we have obtained a group of considerations and/or recommendations to be considered in order to accomplish the maximum Quality and Efficiency regarding the Control of Nosocomial Infection in Nuclear Medicine Departments

  14. Contribution of radio-iodine 131 in the treatment of Grave's Basedow disease in the department of nuclear medicine of Ibn Sina Hospital in Rabat

    International Nuclear Information System (INIS)

    Mbodj, M.; Amjad, I.; Guerrouj, H.; Ben Rais, N.A.

    2009-01-01

    One hundred and twenty-nine Grave's Basedow diseases in any gender and variable age patients, coming from several cities of Morocco, were randomized in a study of radio-iodine treatment who took place at the nuclear medicine department of Ibn Sina Hospital (Rabat, Morocco) during the period (from January 2001 to December 2008). The radio-iodine treatment was a first, second or third option and radio-iodine activities delivered varied (from 222 to 555 MBq 6 to 15 mCi) according to the age, the thyroid volume, the degree of hyperthyroidism and socio-economical situation. The high amounts of 131 I were reserved especially to the patients who live far and whose socio-economic level is low with an aim of quickly obtaining an easily controllable state of hypothyroidism by a substitute treatment. The results showed that: (1) 57.36% of patients reverted to euthyroidism (n = 74) with a patient having received two 131 I cures. The second cure was justified by recurrence of hyperthyroidism after the first cure; (2) 34.88% passed in hypothyroidism (n = 45) with three patients having received two cures of 131 I, the second cure was justified by recurrence of hyperthyroidism after the first cure in two patients and by the persistence of the hyperthyroidism after the first cure for the third patient. The average time of passage in hypothyroidism was 4.5 months; (3) 7.76% had remained in hyperthyroidism after the radioactive iodine treatment. Finally, 92.24% of our patients treated by radioactive iodine had passed in euthyroidism or hypothyroidism against 7.76% whose hyperthyroidism had persisted or occurred. (authors)

  15. Security in transport, storage and disposal of radioactive materials, providing to the department of nuclear medicine in hospitals Rafael Angel Calderon Guardia, San Juan de Dios and Mexico

    International Nuclear Information System (INIS)

    Elizondo Valle, Alejandro; Jimenez Mendez, Christian; Leiton Araya, Christopher; Villalobos Rodriguez, Geovanny; Leal Vega, Olga Maritza; Lopez Gatjens, Santiago

    2010-01-01

    The security is analysed for the transport and storage of radioactive sources and the management of radioactive waste product of practices and interventions in nuclear medicine services in hospitals Calderon Guardia, San Juan de Dios and Mexico. The objective is to assess the compliance with current regulations, the effectiveness and efficiency of the same. The security and compliance with current regulations were considered related to the transport of radioactive sources by the two private companies that provide this service, from the Juan Santamaria airport customs to three hospitals evaluated. Compliance with national and international rules on storage of radioactive sources and waste materials were analyzed. For this has been studied Costa Rican law and the recommendations of international organizations related to the subject matter, in the three nuclear medicine services valued. The national and international background related to radiological accidents occurred with radioactive sources during transport, storage and waste were revised, where highlights that in most cases, these accidents occurred for breach of the regulations established. Studies in Costa Rica on radioactive waste management were analysed, and the current status of nuclear medicine services in terms of radiation safety, which helped with the investigation. The compliance and regulations were analyzed by the result of observation and interviews during development, to finally make a series of findings and provide recommendations that are considered relevant. Various variants and indicators that are defined in the theoretical framework were used; also, the strategy of methodology is described. The purpose of the work has been to provide a scientific nature, and that methodology met the objectives, offering an approach from different angles and the actors involved, and a critical and objective analysis strictly in order to contribute to public health. The research is a valuable tool that provides

  16. Internal Contamination by 131I in nuclear medicine department

    International Nuclear Information System (INIS)

    Chahed, N.; Mtimet, S.; Hammami, H.; Mhiri, A.

    1998-01-01

    Therapeutic applications in nuclear medicine use high activities of 131 I in sodium iodine liquid from which is volatile at ambient temperature. Besides external exposure there is, for the nuclear medicine personnel, an internal exposure risk induced by 131 iodine inhalation. So we tried to assess this risk among the personnel in a nuclear medicine department. We used direct method for measuring 131 radioactivity in vivo by external counting. Gamma ray detector with a Nal ( TI ) probe positioned near the thyroid gland allows investigation of 131 radioactivity. We realised 34 measurements among the personnel, two times at an interval of one month. The results indicate that an 131 iodine internal contamination is found. Estimated thyroid activities were ranging from 35 to 132 Bq. The highest activities has been found in the thyroid of the technicians involved in the administration of 131 iodine therapy. Therefore this values are lower than norms. This study must lead to the implementation control of the 131 iodine internal contamination in order to optimise the personnel protection in nuclear medicine departments (author)

  17. Nuclear medicine

    International Nuclear Information System (INIS)

    Chamberlain, M.J.

    1986-01-01

    Despite an aggressive, competitive diagnostic radiology department, the University Hospital, London, Ontario has seen a decline of 11% total (in vivo and in the laboratory) in the nuclear medicine workload between 1982 and 1985. The decline of in vivo work alone was 24%. This trend has already been noted in the U.S.. Nuclear medicine is no longer 'a large volume prosperous specialty of wide diagnostic application'

  18. The nuclear medicine department in the emergency management plan: a referent structure for the nuclear and radiological risks

    International Nuclear Information System (INIS)

    Barat, J.L.; Ducassou, D.; Lesgourgues, P.; Zamaron, S.; Boulard, G.

    2006-01-01

    Each french public or private hospital has to establish guidelines for an immediate response to mass casualties (Emergency Management Plan or 'White' Plan). For a nuclear accident or terrorist attack, the staff of the Nuclear Medicine Department may be adequately prepared and equipped. This paper presents the nuclear and radiological risks section of the final draft of the White Plan developed at Bordeaux University Hospital. (author)

  19. Digital nuclear medicine department: Is a filmless environment conceivable?

    International Nuclear Information System (INIS)

    Hacker, M.; Bauerschaper, B.; Dresel, S.; Weiss, M.; Heiss, D.; Hahn, K.; Muenchen Univ.

    2000-01-01

    Recent hardware improvements, the installation and development of fast networks and new technologies for storage of large data volumes all contribute to the propagation of digital reading and reporting of nuclear medicine studies. Thus, the vision of a fully digitized nuclear medicine department becomes reality. The high costs of purchasing hardware- and software-components are compensated by saving costs of films and by the improvement of the work flow in the long run. Independently from these issues, filmless reporting proves to be advantageous over conventional film reading in many facts that justify to switch to a digital department. Problems that occur in the process of becoming film-free are mainly based on compatibility issues and demand strong cooperation between the user and the manufacturer of the imaging devices in order to integrate all systems into one reading and reporting tool. The departments of nuclear medicine and radiology of the University of Munich, Innenstadt, now are reviewing a one-year process of being film-free, which makes a return to conventional film reading unconceivable. (orig.) [de

  20. Integration of PACS and HIS info the workflow of a nuclear medicine department. Experience in Regensburg

    International Nuclear Information System (INIS)

    Maenner, P.; Fuchs, E.; Marienhagen, J.; Schoenberger, J.; Eilles, C.; Tege, B.; Reicherzer, H.G.; Kurz, M.; Boerner, W.

    2006-01-01

    Aim: the development of new diagnostic techniques and the implementation of a modern quality control management system requires the continuous adaptation of existing data processing tools to the nuclear medicine diagnostic workflow. Furthermore, PACS connected to HIS facilitates and enhances the transfer of data and pictures, and satisfies the legal requirements for data retention as regulated by law. Therefore, the aim of this work is to present the architecture, structure and results of such a system newly installed in a department of nuclear medicine. Methods: initially, the nuclear medicine workflow was carefully analyzed and each step was correlated to the corresponding module. The standard SAP R/3 and IS-H / IS-H*med based software used for patient administration at the University of Regensburg Hospital was adapted to the needs of the Nuclear Medicine Department. The networking of the imaging systems was done by integration of a PACS. Finally, the PACS was connected to the HIS to allow the attachment of images to the medical report. Results, conclusion: by connecting the HIS to the nuclear medicine PACS, the workflow was significantly improved. The data management sequence starting at the reception desk, continuing through the nuclear medical examination, to the physician's final written and image report is clearly structured. Although high demands exist on technical support and administration the integration of PACS and HIS into the nuclear medicine workflow leads to enhanced efficiency and reduction in hospital costs. Patient and data management are considerably improved in this way. (orig.)

  1. Conception of a computer for the nuclear medical department of the Augsburg hospital center

    International Nuclear Information System (INIS)

    Graf, G.; Heidenreich, P.

    1984-01-01

    A computer system based on the Siemens R30 process computer has been employed at the Institute of Nuclear Medicine of the Augsburg Hospital Center since early 1981. This system, including the development and testing of organ-specific evaluation programs, was used as a basis for the conception of the new computer system for the department of nuclear medicine of the Augsburg Hospital Center. The computer system was extended and installed according to this conception when the new 1400-bed hospital was opened in the 3rd phase of construction in autumn 1982. (orig.) [de

  2. Radiation safety in the nuclear medicine department: impact of the UK Ionising Radiations Regulations

    International Nuclear Information System (INIS)

    Harding, L.K.

    1987-01-01

    The new 1985 regulations and guidance on radiation protection in the U.K. are discussed in relation to the needs for controlled areas in the nuclear medicine department and patient wards, admittance to hospital to comply with legislation, classification of workers, patient waiting rooms, handling flood sources, pregnancy and breast feeding. (U.K.)

  3. The liquidation of liquid radioactive waste on nuclear medicine departments

    International Nuclear Information System (INIS)

    Fueriova, A.

    1995-01-01

    The most serious problems for Clinic of Nuclear Medicine of National Oncological Institute, Bratislava (CNM) is the localization of CNM in the downtown, inside the hospital area with the dilution water deficit. This department is the only one in Slovak Republic performing therapeutical applications. To be able to perform the necessary amount of therapies and also to introduce a new therapeutical methods, in 1992-1994 the old liquidation waste disposal station (LWDS) was reconstructed with the aim to satisfy the newest requirements of radiation hygiene. LWDS is the 5-floor object partly underground which satisfied the requirements for liquidation of radioactive liquid waste from diagnostic procedures(annually 5000 patients) and also from 200 therapeutical applications annually (15 beds, 720 GBq iodine-131). The capacity of LWDS is able to store about 90 m 3 liquid radioactive waste. Part of the underground spaces are used for the storage of solid radioactive trash. The liquid waste from CNM is collected through isolated metal sewage system to the storage with continuous observation of water specific activity. According to the activity, the liquid waste is placed to the 5 decay storages with the volume about 15 m 3 . The six one serves for the case of technical accident. When the activity declines, the liquid waste is diluted with non active medical trash to the level which is acceptable by low about radiation hygiene protection. The storage walls are made from barium-concrete 25-50 cm thick which is enough for sufficient protection of operation staff and also for walking around persons. Double-layer high quality chemical material prevents the water leak and diffusion of radionuclides into the concrete. Technology consists of cast-iron drains, powerful slush pumps, operation valves, regulation technology from dosimetric system for continuous monitoring of specific activity, for managing system with powerful industrial computer

  4. The liquidation of liquid radioactive waste on nuclear medicine departments

    Energy Technology Data Exchange (ETDEWEB)

    Fueriova, A [National Oncological Institue, Bratislava (Slovakia). Hospital St. Elis, Clinic of Nuclear Medicine

    1996-12-31

    The most serious problems for Clinic of Nuclear Medicine of National Oncological Institute, Bratislava (CNM) is the localization of CNM in the downtown, inside the hospital area with the dilution water deficit. This department is the only one in Slovak Republic performing therapeutical applications. To be able to perform the necessary amount of therapies and also to introduce a new therapeutical methods, in 1992-1994 the old liquidation waste disposal station (LWDS) was reconstructed with the aim to satisfy the newest requirements of radiation hygiene. LWDS is the 5-floor object partly underground which satisfied the requirements for liquidation of radioactive liquid waste from diagnostic procedures(annually 5000 patients) and also from 200 therapeutical applications annually (15 beds, 720 GBq iodine-131). The capacity of LWDS is able to store about 90 m{sup 3} liquid radioactive waste. Part of the underground spaces are used for the storage of solid radioactive trash. The liquid waste from CNM is collected through isolated metal sewage system to the storage with continuous observation of water specific activity. According to the activity, the liquid waste is placed to the 5 decay storages with the volume about 15 m{sup 3}. The six one serves for the case of technical accident. When the activity declines, the liquid waste is diluted with non active medical trash to the level which is acceptable by low about radiation hygiene protection. The storage walls are made from barium-concrete 25-50 cm thick which is enough for sufficient protection of operation staff and also for walking around persons. Double-layer high quality chemical material prevents the water leak and diffusion of radionuclides into the concrete. Technology consists of cast-iron drains, powerful slush pumps, operation valves, regulation technology from dosimetric system for continuous monitoring of specific activity, for managing system with powerful industrial computer.

  5. The medical physicist in a nuclear medicine department

    International Nuclear Information System (INIS)

    Trujillo Z, F.E.; Gomez A, E.

    2007-01-01

    The diagnostic studies and therapeutic treatments carried out in a Nuclear Medicine department make use of radioactive material. For such a reason it becomes necessary to take a strict control in the reception, use and waste that are generated of the typical works inside the department. Also, work related with the quality control of the equipment dedicated to produce images and of those not image formers, need to carry out to guarantee its maximum performance; as well as quality of the diagnostic and of the therapy imparted in patients. Additionally its are needed to make originated works of the individual procedures to patient and of the acquisition of radioactive materials and removal of the waste or radioactive contaminations. Presently work the recommendations of the American College of Radiology (ACR), the European Federation of Organizations for Medical Physics (EFOMP) and of the Mexican Official Standards relating to the functions that should be observed in a Nuclear Medicine Department are exposed. The ACR and the EFOMP, conclude in their recommendations that the medical physicist fulfills with the suitable profile and likewise they describe in detail the actions and functions that he should supervise, to carry out, to document and to inform. (Author)

  6. A scientific model to determine the optimal radiographer staffing component in a nuclear medicine department

    International Nuclear Information System (INIS)

    Shipanga, A.N.; Ellmann, A.

    2004-01-01

    Full text: Introduction: Nuclear medicine in South Africa is developing fast. Much has changed since the constitution of a scientific model for determining an optimum number of radiographer posts in a Nuclear Medicine department in the late 1980's. Aim: The aim of this study was to ascertain whether the number of radiographers required by a Nuclear Medicine department can still be determined according to the norms established in 1988. Methods: A quantitative study using non-experimental evaluation design was conducted to determine the ratios between current radiographer workload and staffing norms. The workload ratios were analysed using the procedures statistics of the Nuclear Medicine department at Tygerberg Hospital. Radiographers provided data about their activities related to patient procedures, including information about the condition of the patients, activities in the radiopharmaceutical laboratory, and patient related administrative tasks. These were factored into an equation relating this data to working hours, including vacation and sick leave. The calculation of Activity Standards and an annual Standard Workload was used to finally calculate the staffing requirements for a Nuclear Medicine department. Results: Preliminary data confirmed that old staffing norms cannot be used in a modern Nuclear Medicine department. Protocols for several types of study have changed, including the additional acquisition of tomographic studies. Interest in the use of time-consuming non-imaging studies has been revived and should be factored Into the equation. Conclusions: All Nuclear Medicine departments In South Africa, where the types of studies performed have changed over the past years, should look carefully at their radiographer staffing ratio to ascertain whether the number of radiographers needed is adequate for the current workload. (author)

  7. Magistral preparation in nuclear medicine departments: Requirements for their realization

    International Nuclear Information System (INIS)

    Desruet, M.D.; Bolot, C.; Bourrel, F.; Francois-Joubert, A.; Biechlin-Chassel, M.L.; Couret, I.; Pelegrin, M.; Lao, S.; Ouhayon, E.; Sauvan, R.

    2010-01-01

    Use of radiopharmaceuticals in French nuclear medicine departments depends on marketing authorization and their development may be compromised by a limited return on investment. As an alternative, radiopharmaceuticals may also be prepared in the form of a magistral preparation, like in some European countries. In this case, these preparations are subjected to restrictions and requirements for radio-pharmacies relating to quality assurance, facilities and equipment, quality of starting materials and final radiopharmaceutical products defined in French good preparation practice. Labelled tracers used as magistral preparations have to be prepared under the full responsibility of a radio-pharmacist and used under the responsibility of the prescribing physician. Conditions of sufficient guarantees for the safety of the patient and adherence to pharmaceutical rules must be evaluated individually. However, this form of preparation intends to supply specific medical needs for an individual patient and is not an answer in the framework of development of radiopharmaceuticals. (authors)

  8. Quality control in Department of Nuclear Medicine, Clinical Center Banja Luka, RS, Bosnia and Herzegovina

    International Nuclear Information System (INIS)

    Goran Vuleta

    2007-01-01

    Complete test of publication follows. The aim of this work is to give a review of situations in the Department of Nuclear Medicine in Banja Luka related to quality control. We must perform daily, weekly and monthly control of equipment in the Department of Nuclear Medicine, and we must keep records. In our Department we have equipment from different producers and different year of production: 3 gamma cameras (1973, 1989, 2000); 2 auto gamma counters (2000, 2006); 2 dose calibrators (1973, 2000); 1 thyroid uptake system (2000). Normally procedures for quality control are also different. The situation, according to results of quality control is good. All equipment is working normally and with good performance (except one gamma camera - a problem with hard drive), but we don't have a routine daily control and periodical control for others tests. Keeping a records is another problem. Why? 1. In Bosnia and Herzegovina we don't have Regulatory authority. That means that we don't have legislation, rules, inspection or any other regulatory instruments. 2. There is only school for nurses, we have no special school for medical technician. So, we need an education in that field. 3. Very small number of physicist in hospital, no education for medical and nuclear medicine physicist. Conclusion. Situation in Department of Nuclear Medicine in Banja Luka related to quality control is on the medium level. We are trying to put that on the higher level, but to accomplish that we need additional education for nurses (technicians) and physicist.

  9. The main rules regarding the management of solid waste and liquid effluent contaminated during use at nuclear medicine departments

    International Nuclear Information System (INIS)

    Boudouin, E.

    2011-01-01

    This article describes the key requirements applicable to the management of contaminated medical waste and effluent from hospitals and health care centres, and more especially from nuclear medicine departments that use radionuclides for the purposes of diagnosis (in vivo or in vitro) or in patient treatment. It also presents the key management regulations, making a distinction between contaminated solid waste and contaminated liquid waste from such nuclear medicine departments. (author)

  10. The design of a purpose-built nuclear medicine department

    International Nuclear Information System (INIS)

    Dixon, J.; Walker, B.

    1999-01-01

    Full text: In December 1997, the Department of Nuclear Medicine relocated to new purpose-built premises. Two years of detailed planning preceded this move. Several innovative features were incorporated in the design. The 6 gamma camera rooms are arranged in pairs with shared shielded console areas, around a central 'staff-only' corridor with the radiopharmacy dispensing room (RP) at one end. This allows for direct staff access between these rooms while preserving the privacy of the patients. Hatches from the RP to the stress lab and procedures rooms allow for minimal carrying of doses. A separate hotlab adjoining the RP with a dedicated dose calibrator is used for preparations of all therapy doses and 18 F. A 'no return' policy was adopted for the RP. A separate isolated radioactive waste storage room (WSR) has an easily accessible anteroom used only for 99 Tc m , which allows efficient management of this short-lived waste. The nurses' station visualizes all waiting facilities, which include separate areas for trolley and ambulant patients as well as a playroom for the paediatric patients. An area for resting 18 F patients is located away from the general waiting areas and close to the coincidence detection camera room. After 1 year of operation, these specific design features have proved successful. They have led to improvement in the efficiency of operation of the department for the staff and increased comfort for the patients

  11. Nuclear medicine. The management of patients coming out of a nuclear medicine department - Radiation protection sheet ED 4242

    International Nuclear Information System (INIS)

    2006-03-01

    This sheet aims at providing elements for the preparation of the management of a patient by a department or unit other than a nuclear medicine department after this patient has been submitted to an examination or treatment involving the use of radionuclides in unsealed sources, as this exposure may result in an internal or external exposure risk for the personnel, other persons and relatives. It briefly describes the modalities of performance of nuclear medicine act, the modalities of information of patients and of their relatives, indicates instructions to departments hosting the patient (instruction regarding the patient and wastes), and instructions for pregnant or breast feeding women

  12. Air contamination measurements for the evaluation of internal dose to workers in nuclear medicine departments

    Science.gov (United States)

    De Massimi, B.; Bianchini, D.; Sarnelli, A.; D'Errico, V.; Marcocci, F.; Mezzenga, E.; Mostacci, D.

    2017-11-01

    Radionuclides handled in nuclear medicine departments are often characterized by high volatility and short half-life. It is generally difficult to monitor directly the intake of these short-lived radionuclides in hospital staff: this makes measuring air contamination of utmost interest. The aim of the present work is to provide a method for the evaluation of internal doses to workers in nuclear medicine, by means of an air activity sampling detector, to ensure that the limits prescribed by the relevant legislation are respected. A continuous air sampling system measures isotope concentration with a Nal(TI) detector. Energy efficiency of the system was assessed with GEANT4 and with known activities of 18F. Air is sampled in a number of areas of the nuclear medicine department of the IRST-IRCCS hospital (Meldola- Italy). To evaluate committed doses to hospital staff involved (doctors, technicians, nurses) different exposure situations (rooms, times, radionuclides etc) were considered. After estimating the intake, the committed effective dose has been evaluated, for the different radionuclides, using the dose coefficients mandated by the Italian legislation. Error propagation for the estimated intake and personal dose has been evaluated, starting from measurement statistics.

  13. Occupational radiation exposure in nuclear medicine department in Kuwait

    Science.gov (United States)

    Alnaaimi, M.; Alkhorayef, M.; Omar, M.; Abughaith, N.; Alduaij, M.; Salahudin, T.; Alkandri, F.; Sulieman, A.; Bradley, D. A.

    2017-11-01

    Ionizing radiation exposure is associated with eye lens opacities and cataracts. Radiation workers with heavy workloads and poor protection measures are at risk for vision impairment or cataracts if suitable protection measures are not implemented. The aim of this study was to measure and evaluate the occupational radiation exposure in a nuclear medicine (NM) department. The annual average effective doses (Hp[10] and Hp[0.07]) were measured using calibrated thermos-luminescent dosimeters (TLDs; MCP-N [LiF:Mg,Cu,P]). Five categories of staff (hot lab staff, PET physicians, NM physicians, technologists, and nurses) were included. The average annual eye dose (Hp[3]) for NM staff, based on measurements for a typical yearly workload of >7000 patients, was 4.5 mSv. The annual whole body radiation (Hp[10]) and skin doses (Hp[0.07]) were 4.0 and 120 mSv, respectively. The measured Hp(3), Hp(10), and Hp(0.07) doses for all NM staff categories were below the dose limits described in ICRP 2014 in light of the current practice. The results provide baseline data for staff exposure in NM in Kuwait. Radiation dose optimization measures are recommended to reduce NM staff exposure to its minimal value.

  14. A quality assurance in a Nuclear Medicine Department: Implementation, results and implications

    Energy Technology Data Exchange (ETDEWEB)

    Komninos, C.; Roach, P.J. [Royal North Shore Hospital, St Leonards, NSW (Australia)

    1998-03-01

    Full text: An increasing emphasis is being placed on quality assurance programs in all areas of health care delivery. We describe our experience with such a program in the Nuclear Medicine Department of a large teaching hospital. We obtained completed patient questionnaires from 92 outpatients referred to the Nuclear Medicine Department. Questions related to areas such as provision of information about the test; patient``s impressions of staff involved with the procedure (doctors, technologists, nurses, secretaries); waiting times and delays; the appearance of the department; and the patients`` general level of satisfaction with their attendance in our department. Suggestions for improvement were specifically encouraged. The results indicated that while there was a high level of satisfaction with the people performing the studies, comments and criticisms were made by a significant number of people in some areas. These included provision of more information about the study prior to and during the test; all staff introducing themselves by name during the procedure; better communication about any delays; and an upgrading in the appearance of the department. Based on the results of this questionnaire, we have been able to implement various changes within the department. Although the results of our survey will apply specifically to this department, we encourage other departments and practices to implement similar patient surveys, thereby potentially improving the quality of service and patient satisfaction.

  15. A quality assurance in a Nuclear Medicine Department: Implementation, results and implications

    International Nuclear Information System (INIS)

    Komninos, C.; Roach, P.J.

    1998-01-01

    Full text: An increasing emphasis is being placed on quality assurance programs in all areas of health care delivery. We describe our experience with such a program in the Nuclear Medicine Department of a large teaching hospital. We obtained completed patient questionnaires from 92 outpatients referred to the Nuclear Medicine Department. Questions related to areas such as provision of information about the test; patient''s impressions of staff involved with the procedure (doctors, technologists, nurses, secretaries); waiting times and delays; the appearance of the department; and the patients'' general level of satisfaction with their attendance in our department. Suggestions for improvement were specifically encouraged. The results indicated that while there was a high level of satisfaction with the people performing the studies, comments and criticisms were made by a significant number of people in some areas. These included provision of more information about the study prior to and during the test; all staff introducing themselves by name during the procedure; better communication about any delays; and an upgrading in the appearance of the department. Based on the results of this questionnaire, we have been able to implement various changes within the department. Although the results of our survey will apply specifically to this department, we encourage other departments and practices to implement similar patient surveys, thereby potentially improving the quality of service and patient satisfaction

  16. Level of occupational exposure during daily work in a Nuclear Medicine Department

    Energy Technology Data Exchange (ETDEWEB)

    Schwarcke, Marcelo, E-mail: mschwarcke@usp.br [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Dept. de Fisica e Matematica; Ferreira, Nadya [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil). Dept. de Engenharia Nuclear; Cardoso, Domingos [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    Workers of the Nuclear Medicine Department have a very complex geometric exposition. The source of irradiation is not collimated and irradiated for all direction, the interaction with many structural tissue is inside the body before could be detected outside. The professional who works in a Nuclear Medicine Department is exposed to this condition and different energies. This work proposes a good approach to estimate the mensal dose level according to the dose rate during their daily routine. To measure the dose rate, a Babyline 81 ionization chamber was used, and the most frequent exams using {sup 99m}Tc were chosen. A previous study was conducted to determine the most frequent exams made in the Nuclear Medicine Department at the Central Army Hospital in Rio de Janeiro, and previous environment monitoring determine the places with higher exposure that could interfere in the measurement of this paper. The Renal scintigraphy with diethylenetriaminepentaacetic acid (DTPA) had an average dose rate of (2.50{+-}0.25) {mu}Sv/h; for the Renal scintigraphy with dimercaptosuccinic acid (DMSA), it was of (1.20{+-}0.25) {mu}Sv/h; for Bone scintigraphy using two different protocols, it was (2.63{+-}0.30) {mu}Sv/h and (3.09{+-}0.30) {mu}Sv/h. Exposition during elution, dose preparing and clinical procedure was considered a critical moment in the daily routine of the employee. The dose rate obtained in this study demonstrated that the professional cannot exceed the public dose limit in one day of his work routine. Therefore, for the Radioprotection Department, this is a good approach to make a radioprotection plan in the Nuclear Medicine Department. (author)

  17. Operational measurements during medical examinations: nuclear medicine department

    International Nuclear Information System (INIS)

    Gardin, I.

    2009-01-01

    After having briefly recalled the nuclear medicine principles and objectives, and the main radiations used for different purposes (positrons for diagnosis, photons for diagnosis, electrons for therapy or diagnosis), the author presents the principle of determination of the absorbed dose: how this dose is expressed, how it is calculated per cumulative activity unit, how cumulative activity is determined. Then, she discusses some practical aspects of dosimetric assessments during diagnosis or therapeutic examinations

  18. Program for carrying out studies for the diagnoses in the nuclear medicine department at the Dr Gustavo Aldereguia Hospital in Cienfuegos province

    International Nuclear Information System (INIS)

    Romero Cabrera, J.L.

    1996-01-01

    Considering the relation conditions existing in the Dr Gustavo Aldereguia Lima Hospital this work tries to analyze the critical ways that lead to the dossefication of radiopharmaceutical drugs that do not fit the ALARA criterion and to propose a program that in a general consensus with all medical specialists would determine the precise medical test needed to be done

  19. Nuclear Medicine

    Science.gov (United States)

    ... Parents/Teachers Resource Links for Students Glossary Nuclear Medicine What is nuclear medicine? What are radioactive tracers? ... funded researchers advancing nuclear medicine? What is nuclear medicine? Nuclear medicine is a medical specialty that uses ...

  20. Passive Dosimetry Of Nuclear Medicine Service Staff, Ibn Sina Hospital

    International Nuclear Information System (INIS)

    Sebihi, R.; Talsmat, K.; Cherkaoui, R.; Ben Rais, N.

    2010-01-01

    Full text: Since the implementation of Law No. 00571 of 21 Chaabane 1391 on protection against ionizing radiation and its decrees 2: 2-97-30 and 2-97-132 28 October 1997, surveillance of workers has the subject of major regulatory developments in Morocco, including individual registration delayed for dosimetry. As part of optimizing the protection of medical personnel, a dosimetric study was performed for the first time at the national level, the Nuclear Medicine Service of the Ibn Sina hospital in collaboration with the National Center for Energy Sciences and Nuclear Techniques (CNESTEN). Dosimetric monitoring was conducted for 2 weeks with the use of passive thermoluminescent dosimeters, (GR200A), covering all categories of staff. The administration of samarium (β emitter with energy substantially higher than the energies encountered in conventional nuclear medicine) has been studied, given his first service. Other cases of people concerned our study: a pregnant woman doctor, whose exposure of the unborn child must be reduced as much as possible, and a woman from a private company, working without dosimeter, handles maintenance of premises. To control the conditions imposed on all activities requiring exposure to ionizing radiation, we evaluated the dose at the extremities of operators with the use of ring dosimeters (GR200A) and the dose on the ambient environment of staff (dosimeters ALNOR). This experiment has shown exposure levels below legal limits, without been negligible for certain post. The evaluation results equivalent doses manipulators justify the wearing of dosimeter rings as a complementary dosimeter in Nuclear Medicine service and a way of controlling the normal working conditions. Finally Monitoring ambient dosimetry showed that the environment is low radiation doses. Lessons learned from this study, for the protection of personnel are as follows: from the simple awareness of staff and means of optimizing radiation can maintain a dosimetry annual

  1. Medical and administrative management of a nuclear medicine department with a microcomputer

    International Nuclear Information System (INIS)

    Legras, B.; Kohler, F.

    1984-01-01

    The use of a microcomputer for data management in a department of Nuclear Medicine has allowed to reduce considerably office work, and supplies the physicians with very useful statistics on the investigations carried out [fr

  2. 222Radon concentration and irradiation dose inside the department of nuclear medicine in Wuhan

    International Nuclear Information System (INIS)

    Cheng Xiaoli; Wang Changyin; Gao Jianhua; Zou Xiaofeng

    2002-01-01

    Objective: Inspecting the high radioactivity area in department of nuclear medicine in Wuhan region and estimating the irradiation dose on relevant doctors. Methods: Select six 'three A' hospitals' high radioactivity area in department of nuclear medicine and common residential houses as examples. A half-year surveillance using 222 Rn detector (type LIH-2) was performed. Results: In high radioactivity rooms, imaging rooms residential houses, the average 222 Rn concentration are 27.8, 48.2, 27.1 (Bq·m -3 ) respectively. Effective dose equivalent absorbed by doctors in high radioactivity room and imaging room are 0.16 and 0.28 mSv. The authors estimated that the effective dose equivalent of doctors in these two room and common residents per year are 0.84, 0.70 and 0.64 mSv respectively. Conclusions: Doctors in imaging room and high radioactivity room are exposed to a relatively higher annual effective dose than common residents. But they are still within the normal range. Only two imaging rooms have high 222 Rn concentrations, which will cause potential harm

  3. Necessity of Internal Monitoring for Nuclear Medicine Staff in a Large Specialized Chinese Hospital.

    Science.gov (United States)

    Wang, Hong-Bo; Zhang, Qing-Zhao; Zhang, Zhen; Hou, Chang-Song; Li, Wen-Liang; Yang, Hui; Sun, Quan-Fu

    2016-04-12

    This work intends to quantify the risk of internal contaminations in the nuclear medicine staff of one hospital in Henan province, China. For this purpose, the criteria proposed by the International Atomic Energy Agency (IAEA) to determine whether it is necessary to conduct internal individual monitoring was applied to all of the 18 nuclear medicine staff members who handled radionuclides. The activity of different radionuclides used during a whole calendar year and the protection measures adopted were collected for each staff member, and the decision as to whether nuclear medicine staff in the hospital should be subjected to internal monitoring was made on the basis of the criteria proposed by IAEA. It is concluded that for all 18 members of the nuclear medicine staff in the hospital, internal monitoring is required. Internal exposure received by nuclear medicine staff should not be ignored, and it is necessary to implement internal monitoring for nuclear medicine staff routinely.

  4. Factors affecting patients’ satisfaction in nuclear medicine department in Egypt

    Directory of Open Access Journals (Sweden)

    Maged Abdel Galil Hamed

    2014-03-01

    Conclusions: Patients’ satisfaction was high in perceiving the infrastructure of the department while waiting time and giving information before examination were the least satisfied to the patients.

  5. Application of Balance Score Card (BSC) in a Nuclear Medicine Department

    International Nuclear Information System (INIS)

    Rayo, J.I.; Serrano, J.; Martin, R.; Corral, C.

    2002-01-01

    Balanced Scorecard (BSC) is a concept helping you translate strategy into action. BSC provides management with a comprehensive picture of business operations and a methodology that facilitates the communication and understanding of business goals and strategies at all levels of an organization. Traditional performance measurement, focusing on external accounting data, was quickly becoming obsolete and something more was needed to provide the information age enterprises with efficient planning tools, For this purpose Kaplan and Norton introduced four different perspectives. Aim: Application of BSC to a Nuclear Medicine Department for provides four perspectives: financial perspective, customer perspective, process perspective and learning and innovation perspective. Conclusion: BSC helps align key performance measures with strategy at all levels of a Nuclear Medicine Department, facilitates communication and understanding, provides feedback and learning and reduce the vast amount of information the Nuclear Medicine Department into essentials

  6. Quality assessment according to DIN EN ISO 9001:2000. Certification in a nuclear medicine department

    International Nuclear Information System (INIS)

    Doebert, N.; Osterloh, M.; Menzel, C.; Gruenwald, F.; Kahla-Witzsch, H.A.

    2005-01-01

    In the year 2002 our department started to inaugurate a quality management system. The certification according to DIN EN ISO 9001:2000 as required by the hospital management was achieved in August 2004. The aim was the optimisation of internal operating schedules and the standardisation of procedures according to logistic interfaces with external structures. Since 2000 the implementation of an internal quality management system is required by German law (SGB V paragraph 135) and threatened by penalty in case of non-implementation (SGB V paragraph 137). Beside a basic audit and optimisation of all organisational procedures all core processes of our department were determined and the approvals were checked. These aims concern i.e. both the quality of our diagnostics of nuclear medicine and of the in vitro laboratory and the aspects of service such as quickness of scheduling and forwarding of reports and economic and efficient aspects of our work. An important role plays the department of ''quality management'', whose main tasks are the professional guidance and the training of the quality management representatives. The realisation of the new regulations and the restructuring resulted in an increase of effectiveness and in an improvement of operational procedures in our department. Especially the patients and the staff granted from the reorganised and modified sequence of operations. Implementation of a quality management system takes some efforts but the positive aspects for the structure and the flow of work are predominant so that the inauguration of a quality management system in the different departments of a hospital are recommendable. (orig.)

  7. Equivalent doses of ionizing radiation received by medical staff at a nuclear medicine department

    International Nuclear Information System (INIS)

    Dziuk, E.; Kowalczyk, A.; Siekierzynski, M.; Jazwinski, J.; Chas, J.; Janiak, M.K.; Palijczuk, D.

    2002-01-01

    Aim: Total annual activity of I-131 used for the treatment of thyroid disorders at the Dept.of Nuclear Medicine, Central Clinical Hospital, Military University School of Medicine, in Warsaw, Poland, equal to 190 GBq; at the same time, total activity of Tc-99m utilized at the same Department for diagnostic purposes reached 1 TBq. As estimated from the radiometer readings, in extreme cases the equivalent at a couple of measurement points at this Department may exceed 200 mSv per year. Thus, in the present study we aimed to assess the potential risk of the exposure of medical personnel of the Department to ionizing radiation. Material and Methods: Polymethacrylate cases each housing four thermoluminescent dosimeters were continuously worn for one year by the nurses and doctors with the dosimeters being replaced by the new ones every three months. In addition, cases containing thermoluminescent dosimeters (three dosimeters per case) were placed in 20 different measurement points across the Department and the monitoring of the doses was carried out continuously for more than six years (from May 1995 to March 2002). Based on the quarterly readings of the dosimeters, equivalent doses were calculated for both the members of the personnel and the measurement space points. Results: The doses registered in the patient rooms ranged 5 to 90 mSv x y -1 , in the application room 10 to 15 mSv x y -1 , in the laboratory rooms 1.5 to 30 mSv x y -1 , and in the waiting room 2 to 6 mSv x y -1 ; no increment above the background level was detected in the nurses' station. Accordingly, the annual doses calculated from the dosimeters worn by the staff ranged 0.2 to 1.1 mSv x y -1 ; these latter findings were confirmed by direct readings from individual film dosimeters additionally worn by the staff members. Conclusion: The obtained results indicate that it is unlikely for the personnel of the monitored Nuclear Medicine Department to receive doses of radiation exceeding 40% of the annual

  8. Study of dose levels absorbed by members of the public in the nuclear medicine departments

    International Nuclear Information System (INIS)

    Cabral, Geovanna Oliveira de Mello

    2001-03-01

    In nuclear Medicine, radioisotopes are bound to various compounds (called radiopharmaceuticals) for use in various diagnostic and therapeutic applications. These unsealed sources are administered in various forms to patients, who remain radioactive for hours or days, and represent a source of potential radiation exposure for others. Thus, in nuclear medicine departments, radiation protection of workers and members of the public, especially persons accompanying patients, must consider, this exposure. In Brazil, the Comissao Nacional de Energia Nuclear (CNEN) establishes that, in nuclear medicine departments, the patients and persons accompanying should be separated each other. However, this rule is not always followed due to many factors such as physical and emotional conditions of patients. In this context, the aim of this study was the investigation of dose levels, which the persons accompanying patients are exposed to. For monitoring, thermoluminescent dosimeters were employed. The dosimeters were given to 380 persons who were accompanying patients in nuclear medicine departments. Exposure results were lower than 1 mSv. On the basis of CNEN rules, issues regarding stay conditions for members of the public in these departments are discussed. (author)

  9. Development of RadRob15, A Robot for Detecting Radioactive Contamination in Nuclear Medicine Departments

    Directory of Open Access Journals (Sweden)

    Shafe A.

    2016-09-01

    Full Text Available Accidental or intentional release of radioactive materials into the living or working environment may cause radioactive contamination. In nuclear medicine departments, radioactive contamination is usually due to radionuclides which emit high energy gamma photons and particles. These radionuclides have a broad range of energies and penetration capabilities. Rapid detection of radioactive contamination is very important for efficient removing of the contamination without spreading the radionuclides. A quick scan of the contaminated area helps health physicists locate the contaminated area and assess the level of activity. Studies performed in IR Iran shows that in some nuclear medicine departments, areas with relatively high levels of activity can be found. The highest contamination level was detected in corridors which are usually used by patients. To monitor radioactive contamination in nuclear medicine departments, RadRob15, a contamination detecting robot was developed in the Ionizing and Non-ionizing Radiation Protection Research Center (INIRPRC. The motor vehicle scanner and the gas radiation detector are the main components of this robot. The detection limit of this robot has enabled it to detect low levels of radioactive contamination. Our preliminary tests show that RadRob15 can be easily used in nuclear medicine departments as a device for quick surveys which identifies the presence or absence of radioactive contamination.

  10. Application of medical psychology in the reception of nuclear medicine department

    International Nuclear Information System (INIS)

    Zhan Hao; Xiong Jie; Huang Daijuan; Yuan Bin; Xu Wendai; Zhang Yongxue

    2003-01-01

    Reception of nuclear medicine department is often ignored. In fact, it is an important part of clinical work. If the patient's psychological status is understood, and the psychological knowledge is handles and applied in practice, the quality of work can be improved. The personnel in nuclear medicine should recognize the significance of humanity in medical practice and acquire the communication skill between doctors and patients. They should also understand the four aspects of psychological need of patients: The need of being understood and respected; the need of being greeted, accepted and a sense of belonging; the need of being informed; the need of feeling safe and rehabilitated

  11. Java-based remote viewing and processing of nuclear medicine images: toward "the imaging department without walls".

    Science.gov (United States)

    Slomka, P J; Elliott, E; Driedger, A A

    2000-01-01

    In nuclear medicine practice, images often need to be reviewed and reports prepared from locations outside the department, usually in the form of hard copy. Although hard-copy images are simple and portable, they do not offer electronic data search and image manipulation capabilities. On the other hand, picture archiving and communication systems or dedicated workstations cannot be easily deployed at numerous locations. To solve this problem, we propose a Java-based remote viewing station (JaRViS) for the reading and reporting of nuclear medicine images using Internet browser technology. JaRViS interfaces to the clinical patient database of a nuclear medicine workstation. All JaRViS software resides on a nuclear medicine department server. The contents of the clinical database can be searched by a browser interface after providing a password. Compressed images with the Java applet and color lookup tables are downloaded on the client side. This paradigm does not require nuclear medicine software to reside on remote computers, which simplifies support and deployment of such a system. To enable versatile reporting of the images, color tables and thresholds can be interactively manipulated and images can be displayed in a variety of layouts. Image filtering, frame grouping (adding frames), and movie display are available. Tomographic mode displays are supported, including gated SPECT. The time to display 14 lung perfusion images in 128 x 128 matrix together with the Java applet and color lookup tables over a V.90 modem is remote nuclear medicine viewing station using Java and an Internet or intranet browser. Images can be made easily and cost-effectively available to referring physicians and ambulatory clinics within and outside of the hospital, providing a convenient alternative to film media. We also find this system useful in home reporting of emergency procedures such as lung ventilation-perfusion scans or dynamic studies.

  12. Nuclear medicine

    International Nuclear Information System (INIS)

    Lentle, B.C.

    1986-01-01

    Several growth areas for nuclear medicine were defined. Among them were: cardiac nuclear medicine, neuro-psychiatric nuclear medicine, and cancer diagnosis through direct tumor imaging. A powerful new tool, Positron Emission Tomography (PET) was lauded as the impetus for new developments in nuclear medicine. The political environment (funding, degree of autonomy) was discussed, as were the economic and scientific environments

  13. Estimation of Internal Radiation Dose to Nuclear Medicine Workers at Siriraj Hospital

    International Nuclear Information System (INIS)

    Asawarattanapakdee, J.; Sritongkul, N.; Chaudakshetrin, P.; Kanchanaphiboon, P.; Tuntawiroon, M.

    2012-01-01

    Every type of work performed in a nuclear medicine department will make a contribution to both external and internal exposure of the worker. The purpose of this study is to evaluate the potential risks of internal contamination to staff members during nuclear medicine practices and to conclude about the requirement of a routine internal monitoring. Following the method describes in the ICRP Publication 78 and the IAEA Safety Standard Series No. RS- G-1.2, in vivo thyroid bioassays using NaI(Tl) thyroid probe were performed to determine the intake estimates on 7 groups of nuclear medicine personnel working with I-131 and Tc-99m, based on working conditions and amount of radionuclides being handled. Frequency of measurements was between 7 and 14 days. These include (1) physicians and physicists, (2) radiochemists (3) technologists, (4) nurses and assistant nurses, (5) imaging room assistants, (6) hot lab workers and (7) hospital ward housekeepers/cleaners. Among all workers, the intake estimates of I-131 in the thyroid ranged from 0 to 76.7 kBq and of the technetium-99m from 0 to 35.4 MBq. The mean committed effective dose equivalent (CEDE) from both I-131 and Tc-99m were 0.63, 1.44 0.53, 0.57, 0.73, 0.98, and 1.36, mSv, for group 1 through group 7 respectively. However, the highest mean CEDE of 1.44 (max. 1.75) and 1.36 (max. 2.11) mSv observed in groups of radiochemists and hospital ward housekeepers were within the permissible level. Our results showed that CEDE for internal exposure in this study were less than investigate level of 5 mSv according to the ICRP Publication 78 and the IAEA Basic Safety Standards. However, the mean CEDE for radiochemists and hospital ward housekeepers were considered in exceed of the limits of recording level (1 mSv).The increasing use of I-131 and Tc-99m in nuclear medicine poses significant risks of internal exposure to the staff. This study suggests that a routine monitoring program for internal exposures should be implemented for

  14. SARIS: a tool for occupational radiation protection improvement in a Nuclear Medicine Department

    International Nuclear Information System (INIS)

    Lopez Diaz, A.

    2015-01-01

    Self-assessment is an organization's internal process to review its current status. The IAEA has developed the SARIS system (Self-Assessment of the Regulatory Infrastructure for Safety) with the objective to improve and encourage the compliment of safety requirements and recommendations of the international safety standards. With the purpose to improve the effectiveness and efficiency of the occupational radiation protection structure in the Nuclear Medicine Department (from 'Hermanos Ameijeiras' Hospital), we applied 3 questionnaires of the Occupational Radiation Protection Module of SARIS. During the answering phase we provided factual responses to questions, appended all necessary documentary evidence and avoided opinion that cannot be objectively supported by evidence. In the analysis phase we identified the strengths and weaknesses, the opportunities for improvement and the risks if action is not taken. We look the expert's opinion and made recommendations to prepare an action plan for improvement. The Cuban regulations have more strengths than weakness. The major weakness founded was: the documental evidence of the knowledge about the legislative safety responsibility of the management structure and workers could be improved. Upon completion of the self-assessment analysis phase, was developed an action plan, trying to cover all the discovered weakness, making emphasis in the improvement of all documental issue related to radiation safety responsibilities. Were defined the responsibilities and activities in the short, medium and long terms. The SARIS self-assessment tools let us to learn more about our organization and provided us the key elements for the organization's continuous development and improvement. (Author)

  15. Investigation of public exposure resulted from the radioiodine delay tank facility of nuclear medicine department

    Energy Technology Data Exchange (ETDEWEB)

    Yusof, Mohd Fahmi Mohd, E-mail: mfahmi@usm.my; Ali, Abdul Muhaimin Mat; Abdullah, Reduan; Idris, Abdullah Waidi [School of Health Sciences, Universiti Sains Malaysia, 16150 Kota Bharu, Kelantan (Malaysia)

    2016-01-22

    The study is carried out to assess the exposure rate that could contribute to public exposure in a radioiodine ward delay tank facility of Radiotherapy, Oncology and Nuclear Medicine, Department, Hospital Universiti Sains Malaysia (HUSM). The exposure rate at several locations including the delay tank room, doorway and at the public walking route was measured using Victoreen 415P-RYR survey meter. The radioactive level of the {sup 131}I waste was measured using Captus 3000 well counting system. The results showed that exposure rate and total count of the delay tank sample increased when the radioiodine ward was fully occupied with patient and reduced when the ward was vacant. Occupancy of radioiodine ward for two consecutive weeks had dramatically increased the exposure rate around the delay tank and radioactive level of {sup 131}I waste. The highest exposure rate and radioactive level was recorded when the ward was occupied for two consecutive weeks with 177.00 µR/h and 58.36 kcpm respectively. The exposure rate decreased 15.76 % when the door of the delay tank room was closed. The exposure rate at public walking route decreased between 15.58 % and 36.92 % as the distance increased between 1 and 3 m.

  16. Application of ISO 9001:2000 in a Nuclear Medicine Department

    International Nuclear Information System (INIS)

    Rayo, J.I.; Serrano, J.; Martin, R.; Corral, C.

    2002-01-01

    Since 1947 ISO has been developing voluntary technical standards over almost all sectors of business, industry, and technology. The ISO 9000 standards were published in 1987, and new versions of the standards saw daylight in 1994 and 2000. The highlights of ISO 9001:2000 are: quality management system, management responsibility, resource management, product realization and measurement, analysis and improvement. Aim: Application of ISO 9001:2000 to a Nuclear Medicine Department for provides the organization with a model to follow, customer focus, people will understand the goals of the organization and are motivated to work for objectives and lower costs and shorter cycle times through effective use of resources. Conclusion: ISO 9001:2000 focuses on continual improvement of business processes that should be a permanent objective of the Nuclear Medicine Department

  17. Key formal and legal aspects of acquiring radiopharmaceuticals used in nuclear medicine departments

    International Nuclear Information System (INIS)

    Kapuscinski, J.

    2007-01-01

    The article presents the key both Polish and EU legal regulation concerning terms and conditions of acquiring radiopharmaceuticals, i.e. isotope labelled compounds used for diagnostic and/ therapeutic purposes in nuclear medicine departments. The emphasis was put on the requirements regarding provision of the medicaments' safety in broad meaning of the term, which are important factors in providing patients' safety. Legal acts discussed in the article remain valid as of May 2007. (author)

  18. Radiopharmaceutical prescription in nuclear medicine departments; La prescription medicale des radiopharmaceutiques au sein d'un service de medecine nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Biechlin-Chassel, M.L. [Radiopharmacie, service de pharmacie, Centre hospitalier de Chambery, 73 - Chambery (France); Lao, S. [Service de medecine nucleaire, CHU-Hopital de l' Archet, 06 - Nice (France); Bolot, C. [Service de pharmacie, hospices civiles de Lyon, groupement hospitalier Est, 69 - Bron (France); Francois-Joubert, A. [Service de medecine nucleaire, centre hospitalier de Chambery, 73 - Chambery (France)

    2010-11-15

    In France, radiopharmaceutical prescription is often discussed depending to which juridical structure the nuclear medicine department is belonging. According to current regulation, this prescription is an obligation in a department linked to hospital with a pharmacy department inside. But situation remains unclear for independent nuclear medicine departments where physicians are not constrained to prescribe radiopharmaceuticals. However, as radiographers and nurses are only authorized to realize theirs acts in front of a medical prescription, one prescription must be realized. Nowadays, computerized prescription tools have been developed but only for radiopharmaceutical drugs and not for medical acts. In the aim to achieve a safer patient care, the prescription regulation may be applied whatever differences between nuclear medicines departments. (authors)

  19. Is lead dust within nuclear medicine departments a hazard to pediatric patients?

    Science.gov (United States)

    Hulbert, Shannon M; Carlson, Katherine A

    2009-09-01

    Because of the penetrating ability of the radiation used in nuclear medicine, metallic lead is widely used as radiation shielding. However, this shielding may present an insidious health hazard because of the dust that is readily removed from the surfaces of lead objects. The lead dust may become airborne, contaminate floors and other nearby surfaces, and be inadvertently inhaled or ingested by patients. We determined if the quantity of lead dust encountered within nuclear medicine departments exceeded Environmental Protection Agency (EPA) standards. For lead dust quantification, professional lead test kits were used to sample fifteen 1-ft(2) sections of different surfaces within the department. Four samples were collected once per week from each site. The samples were then submitted to a National Lead Laboratory-accredited program for a total lead measurement. Lead contamination (mug/ft(2)) for each of the 60 samples was compared with the EPA standards for lead dust. Lead contamination was present at 6 of the 15 sites, and of 60 samples, 18 exceeded the EPA standard of 50 mug/ft(2). Lead contamination is present within nuclear medicine departments, and corrective measures should be considered when dealing with pediatric patients. A larger series needs to be conducted to confirm these findings.

  20. Occupational exposure at the Department of Nuclear Medicine as a work environment: A 19-year follow-up

    OpenAIRE

    Piwowarska-Bilska, Hanna; Birkenfeld, Bożena; Gwardyś, Aleksandra; Supińska, Aleksandra; Listewnik, Maria H.; Elbl, Bogumiła; Cichoń-Bańkowska, Katarzyna

    2011-01-01

    Summary Background: This study assessed the radiation safety at Nuclear Medicine Department being a work environment. Ionizing radiation exposure of the employees in the last 19 years and the effects of legislative changes in radiological protection were analyzed. Material/Methods: All employees of the investigated department were regularly and individually monitored using chest badges equipped with Kodak film type 2. Overall, 629 annual doses of the employees of nuclear medicine department, ...

  1. Data processing equipment of a Nuclear Medicine Department in 1980 - Introductory Report

    International Nuclear Information System (INIS)

    Itti, R.; Liehn, J.C.; Valeyre, J.

    1979-01-01

    A brief history enables the place taken by computers in nuclear medicine to be situated. Three stages are involved: at first, the quantitative functional studies developed (radioisotopic uptake curves) then the morphological studies with the research into increasingly efficient pictures systems and the introduction of data processing to improve the quality of the pictures and, finally, the digital analysis of the pictures leading to the build-up of regional physiological studies. The part played by computer systems in a Nuclear Medicine Department is summarized. The main advantages are emphasized and present possibilities are indicated. The components which make it possible to design a future acquisition and data processing system that may be used not only for routine practice examinations but also for axial scanning studies by emission are presented. The application of hyper-specialized systems using microprocessors is also under consideration [fr

  2. 50th Year Anniversary of Department of Anesthesiology, Faculty of Medicine Siriraj Hospital, Mahidol University.

    Science.gov (United States)

    Lertakyamanee, Jariya

    2016-05-01

    Department of Anesthesiology, Faculty of Medicine Siriraj Hospital, has started to be a formal anesthesia division, divided from division of Surgery in 1965; hence our 50th year anniversary in 2015. Research is now a priority and mandatory mission, according to the vision of Mahidol University. Second mission is to teach and train, and we produce the highest number of states-of-the-art anesthesiologists and anesthetic nurses each year Curriculum and training are being continuously improved. From a small unit, now it is one of the largest departments and extends the service, our third mission, to more than only in the operating theaters. We look after pre-anesthesia assessment, inside and outside operating room anesthesia, post-operative pain relief Intensive Care Unit, and chronic pain management. The number of patients and their diseases increase; so do the complexities of surgeries. There are tremendous changes in drugs and equipment. There is the fourth mission on administration, IT and resource management. And the fifth mission which is corporate social responsibility. However, we still believe that compassion, responsibility and integrity are most important. We have taught and tried to live by the teaching of HRH the King's Father. And these will contribute to our progress and shine in the next 50 years.

  3. Prognostic importance of glycaemic variability on hospital mortality in patients hospitalised in Internal Medicine Departments.

    Science.gov (United States)

    Sáenz-Abad, D; Gimeno-Orna, J A; Pérez-Calvo, J I

    2015-12-01

    The objective was to assess the prognostic importance of various glycaemic control measures on hospital mortality. Retrospective, analytical cohort study that included patients hospitalised in internal medicine departments with a diagnosis related to diabetes mellitus (DM), excluding acute decompensations. The clinical endpoint was hospital mortality. We recorded clinical, analytical and glycaemic control-related variables (scheduled insulin administration, plasma glycaemia at admission, HbA1c, mean glycaemia (MG) and in-hospital glycaemic variability and hypoglycaemia). The measurement of hospital mortality predictors was performed using univariate and multivariate logistic regression. A total of 384 patients (50.3% men) were included. The mean age was 78.5 (SD, 10.3) years. The DM-related diagnoses were type 2 diabetes (83.6%) and stress hyperglycaemia (6.8%). Thirty-one (8.1%) patients died while in hospital. In the multivariate analysis, the best model for predicting mortality (R(2)=0.326; P<.0001) consisted, in order of importance, of age (χ(2)=8.19; OR=1.094; 95% CI 1.020-1.174; P=.004), Charlson index (χ(2)=7.28; OR=1.48; 95% CI 1.11-1.99; P=.007), initial glycaemia (χ(2)=6.05; OR=1.007; 95% CI 1.001-1.014; P=.014), HbA1c (χ(2)=5.76; OR=0.59; 95% CI 0.33-1; P=.016), glycaemic variability (χ(2)=4.41; OR=1.031; 95% CI 1-1.062; P=.036), need for corticosteroid treatment (χ(2)=4.03; OR=3.1; 95% CI 1-9.64; P=.045), administration of scheduled insulin (χ(2)=3.98; OR=0.26; 95% CI 0.066-1; P=.046) and systolic blood pressure (χ(2)=2.92; OR=0.985; 95% CI 0.97-1.003; P=.088). An increase in initial glycaemia and in-hospital glycaemic variability predict the risk of mortality for hospitalised patients with DM. Copyright © 2015 Elsevier España, S.L.U. y Sociedad Española de Medicina Interna (SEMI). All rights reserved.

  4. [Assessing research productivity in Department of Internal Medicine, University of Zagreb, School of Medicine and University Hospital Centre Zagreb].

    Science.gov (United States)

    Petrak, Jelka; Sember, Marijan; Granić, Davorka

    2012-01-01

    Bibliometric analysis may give an objective information about publishing activity, citation rate and collaboration patterns of individuals, groups and institutions. The publication productivity of the present medical staff (79 with specialist degree and 22 residents) in Department of Internal Medicine, University of Zagreb School of Medicine in University Hospital Centre Zagreb was measured by the number of papers indexed by Medline, their impact was measured by the number of times these papers had subsequently been cited in the medical literature, while the collaboration pattern was estimated by the authors' addresses listed in the papers. PubMed database was a source for verifying the bibliographic data, and the citation data were searched via Thomson Web of Scence (WoS) platform. There were a total of 1182 papers, published from 1974 to date. The number of papers per author ranged from 0 to 252. Sixty of papers were published in English, and 39% in Croatian language. The roughly equal share was published in local and foreign journals. The RCT studies and practice guidelines were among the most cited papers and were at the same time published by the highly ranked journals. The collaboration analysis confirmed the extensive involment in the international multicentric clinical trials as well as in the development of international/local practice guidelines.

  5. Environmental dose in the Nuclear Medicine Department of the National Institute of Cancer

    International Nuclear Information System (INIS)

    Torres U, C. L.; Avila A, O. L.; Medina V, L. A.; Buenfil B, A. E.; Brandan S, M. E.; Trujillo Z, F. E.; Gamboa de Buen, I.

    2009-01-01

    The dosimeters TLD-100 and TLD-900 were used to know the levels of environmental dose in areas of the Nuclear Medicine Department of the National Institute of Cancer. The dosimeters calibration was carried out in the Metrology Department of the National Institute of Nuclear Research. The radioisotopes used in the studied areas are 131 I, 18 F, 67 Ga, 99m Tc, 111 In, 201 Tl and 137 Cs with gamma energies between 93 and 662 KeV. Dosimeters were placed during five months in the diagnostic, injection, waiting and PET rooms as well as hot room, waste room, enclosed corridors to patient rooms treated with 131 I and 137 Cs and witness dosimeters to know the bottom. The values found vary between 0.3 and 70 major times that those of bottom. The maximum doses were measured in the waste room and in the enclosed corridor to the patient rooms with cervical uterine cancer treated with 137 Cs. (Author)

  6. The design of diagnostic imaging and nuclear medicine facilities in a major new teaching hospital

    International Nuclear Information System (INIS)

    Causer, D.A.

    2010-01-01

    Full text: The design of the layout and radiation shielding for diagnostic imaging and nuclear medicine facilities in a modern teaching hospital requires the collaboration of persons from a number of professions including architects, engineers, radiologists, nuclear medicine physi cians, medical imaging technologists and medical physicists. This paper discusses the design of such facilities, including PET/CT and T-131 ablation therapy suites for a major new tertiary hospital in Perth. The importance of involving physicists on the planning team from the earliest stages of the design process is stressed, design plans presented, and some of the problems which may present themselves and their solutions are illustrated.

  7. Links between nuclear medicine and radiopharmacy

    International Nuclear Information System (INIS)

    Pelegrin, M.; Francois-Joubert, A.; Chassel, M.L.; Desruet, M.D.; Bolot, C.; Lao, S.

    2010-01-01

    Radiopharmaceuticals are nowadays under the responsibility of the radio-pharmacist because of their medicinal product status. Radiopharmacy belongs to the hospital pharmacy department, nevertheless, interactions with nuclear medicine department are important: rooms are included or located near nuclear medicine departments in order to respect radiation protection rules, more over staff, a part of the material and some activities are shared between the two departments. Consequently, it seems essential to formalize links between the radiopharmacy and the nuclear medicine department, setting the goals to avoid conflicts and to ensure patients' security. Modalities chosen for this formalization will depend on the establishment's organization. (authors)

  8. Effect of usual lead apron in decreasing dose rate in nuclear medicine department

    Energy Technology Data Exchange (ETDEWEB)

    Momennezhad, M.; Ghazikhanloo, K.; Zakavi, S.R. [Mashhad Univ. of Medical Sciences (Iran, Islamic Republic of)

    2006-07-01

    Full text of publication follows: Introduction: In a busy nuclear medicine department personnel exposure to radiation is inevitable during patient positioning and radiotracer preparation. There is controversy regarding usage of usual lead aprons with respect to penetrating gamma rays used in nuclear medicine departments as well as production of characteristic lead x-ray from aprons.This study tries to evaluate the effect of 0.5 mm lead apron on dose reduction. Methods and materials: We used three point sources usual radioisotopes used in nuclear medicine departments (99 mTc, 201 Tl and 131 I) and a single head L.F.O.V. gamma camera (S.M.V., D.S.X.) was used for counting purposes. The count rate for each source was about 20 K count/sec in air and in a brain water phantom. All point sources were placed at a distance of 3 meters, parallel to the center of the detector. The collimator was removed and imaging was performed for 1 min with and without lead apron on the detector. Lead apron covered all field of view of the detector. Each imaging was repeated 3 times and mean count was obtained for each radioisotope. The measurements were accomplished from full spectrum and specific region of spectrum such as characteristic lead x rays region (88 keV 20%) with and without apron. Result and Discussion: The measurement and comparison of count rates (count/min) for each source in different conditions (with and without apron source in air and in water phantom) showed that count rates were reduced in air about 77.3%, 84.2% and 40.8% for 99 mTc, 201 Tl and 131 I respectively. The reduction in count rates when sources placed in brain water phantom were 83.5%, 87% and 53.7% for the same isotope respectively. As the main source of radiation for personnel is from scattered photon and with respect to about 83% of count rate reduction using lead aprons for 99 mTc, it is expected that wearing lead apron significantly decrease dose rate. Conclusion: Our study showed that lead aprons

  9. Effect of usual lead apron in decreasing dose rate in nuclear medicine department

    International Nuclear Information System (INIS)

    Momennezhad, M.; Ghazikhanloo, K.; Zakavi, S.R.

    2006-01-01

    Full text of publication follows: Introduction: In a busy nuclear medicine department personnel exposure to radiation is inevitable during patient positioning and radiotracer preparation. There is controversy regarding usage of usual lead aprons with respect to penetrating gamma rays used in nuclear medicine departments as well as production of characteristic lead x-ray from aprons.This study tries to evaluate the effect of 0.5 mm lead apron on dose reduction. Methods and materials: We used three point sources usual radioisotopes used in nuclear medicine departments (99 mTc, 201 Tl and 131 I) and a single head L.F.O.V. gamma camera (S.M.V., D.S.X.) was used for counting purposes. The count rate for each source was about 20 K count/sec in air and in a brain water phantom. All point sources were placed at a distance of 3 meters, parallel to the center of the detector. The collimator was removed and imaging was performed for 1 min with and without lead apron on the detector. Lead apron covered all field of view of the detector. Each imaging was repeated 3 times and mean count was obtained for each radioisotope. The measurements were accomplished from full spectrum and specific region of spectrum such as characteristic lead x rays region (88 keV 20%) with and without apron. Result and Discussion: The measurement and comparison of count rates (count/min) for each source in different conditions (with and without apron source in air and in water phantom) showed that count rates were reduced in air about 77.3%, 84.2% and 40.8% for 99 mTc, 201 Tl and 131 I respectively. The reduction in count rates when sources placed in brain water phantom were 83.5%, 87% and 53.7% for the same isotope respectively. As the main source of radiation for personnel is from scattered photon and with respect to about 83% of count rate reduction using lead aprons for 99 mTc, it is expected that wearing lead apron significantly decrease dose rate. Conclusion: Our study showed that lead aprons

  10. Evaluation of radiation doses received by the staff in nuclear medicine department of Rick

    International Nuclear Information System (INIS)

    Ali, Naemat Abdalla Mohamed

    2001-01-01

    Environmental monitoring in nuclear medicine rooms at Radiation and Isotopes Center Khartoum RICK were carried out using survey meter and thermoluminescent dosimetry. Staff bodies and hands doses measurements are being conducted using thermoluminescent dosimetry. The purpose of the study is to evaluate the radiation received by the staff work in the nuclear medicine department at RICK. Survey meter (RDS-120) and TLD clips of LiF. (Mg.Ti) were used to measure the environment leading of the staff. The associated annual doses have been determined to the staff bodies and hands. It was found that the dose-equivalent rates from bodies and hands of the staff obtained through this work using TLD clips are: nuclear medicine technologist body reading 6.75 mSv per year, physicist body reading 7.89 mSv per year, chemist body reading 6.1 mSv per year, and nurse body reading 8.1 mSv per year. On the other hand the nuclear medicine technologist hands reading 24.19 mSv per year, physicist hands reading 19.15 mSv per year, chemist hands reading 14.616 mSv per year, and nurse hands reading 277.96 mSv per year. All the staff reading in this study agree with the national regulations and international recommendations. It is clear that the dose of nurse hands is the highest one, this is because when they inject the patient with the Tc-99 m they use to spend relatively long time. (Author)

  11. Quality assessment according to DIN EN ISO 9001:2000. An experience and development report of a nuclear medicine department

    International Nuclear Information System (INIS)

    Glawe, M.

    2005-01-01

    In 2001 the Department of Nuclear Medicine of the University Hospital Hamburg-Eppendorf was the first department in Germany certified by DIN EN ISO 9001:2000. Since then the quality management system (QM-system) was adapted to the needs and demands of our nuclear medicine department and of our team members. For easy access to all documents the whole system was put on a digital basis. Considering the meeting structure of our clinic the guidance of documents and the history of documents was integrated in a digital system. Revisions were made step-by-step with the objective to remove and avoid redundancies. To realise this requirement the investigation documentation (paragraph 85-sheet) was integrated in the QM-system in form and content complementing the guidelines of the corresponding Standard Operating Procedures (SOPs). The configuration of the SOPs has modified in the course of time and was tightened. A text module system was developed to assure a standardized quality of discharge letters and diagnostic findings. At regular intervals internal und external audits were performed. The exposure to so called ''undesired incidences'' has taken an important focus in our established QM-system. For a professional handling with mistakes we introduced a new system that also provides potential legal coverage. The critical examination of the own achievement and the professional handling of weak points is the major obstacle of a QM-system based on long-term considerations. (orig.)

  12. Technetium99m shortage: Practical solutions to manage lack of the radio-isotope in nuclear medicine departments

    International Nuclear Information System (INIS)

    Biechlin-Chassel, M.L.; Francois-Joubert, A.; Bolot, C.; Desruet, M.D.; Bourrel, F.; Pelegrin, M.; Couret, I.; Lao, S.; Quelven, I.

    2010-01-01

    Technetium 99m ( 99m Tc) shortage crisis regularly affect nuclear medicine activity and oblige the community to find solutions in order to perform most of the prescribed exams and avoid systematic substitutions by other non-nuclear medicine techniques. Firstly, some practical solutions can be set up in radiopharmacy departments such as using more than two generators together, realizing fractionated elutions, preparing radiopharmaceuticals with elutions providing from different generators.. Then, it could be interesting to have a reflexion in nuclear medicine departments to convene patients the days when 99m Tc supply is sufficient, to pool some exams or to make substitutions with more available isotopes. (authors)

  13. Analysis of radiation doses to patients from diagnostic department of nuclear medicine

    International Nuclear Information System (INIS)

    Lepej, L.; Messingerova, M.

    1995-01-01

    In this paper the values of mean effective dose equivalents per unit activity (H E/1Bq ) were used for the calculation of mean effective dose equivalents for one examination (H E ). The collective effective dose equivalents for each radiopharmaceutical and type of examination (S ER ) and global collective effective dose equivalent for department for all radiopharmaceuticals (S E ) during evaluated period were defined. The data for years from 1992 to 1994 were evaluated and compared with results in literature. The evaluation of radiation doses in nuclear medicine department is useful parameter for internal quality control. Using this method, the radiation dose in this laboratory was changed to minimum (under mean value of Slovak Republic). Unfortunately, the real data of patients radiation doses are different from the calculated one. Due to different kinetic of radiopharmaceuticals in individual patients (influenced by pathology, age, etc.) the evaluation of radiation burden to nuclear medicine patients is problematic. But this approach enable the relative comparison of the changes in values of H E and S E during the observed period. The evaluation of individual (minimal) effective dose equivalent - (H min ) which represents dose calculated under physiologic conditions can be useful for indication of diagnostic examination by physicians. Therefore the systematic registration of H min from all examinations - patient's radiation history. This is specially important in the case of children and young people. The importance of the proposed method, is in regulation of radiation dose from nuclear medicine diagnostic examinations, not only be the control of number and type of examinations, but also by selection of used radiopharmaceuticals and by the way how to use them. (J.K.) 1 fig., 2 refs

  14. Analysis of radiation doses to patients from diagnostic department of nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Lepej, L; Messingerova, M [F.D. Rosvelt Hospital, Banska Bystrica (Slovakia). Dept. of Nuclear Medicine; Ftacnikova, S [Inst. of Preventive and Clinical Medicine, Bratislava (Slovakia)

    1996-12-31

    In this paper the values of mean effective dose equivalents per unit activity (H{sub E/1Bq}) were used for the calculation of mean effective dose equivalents for one examination (H{sub E}). The collective effective dose equivalents for each radiopharmaceutical and type of examination (S{sub ER}) and global collective effective dose equivalent for department for all radiopharmaceuticals (S{sub E}) during evaluated period were defined. The data for years from 1992 to 1994 were evaluated and compared with results in literature. The evaluation of radiation doses in nuclear medicine department is useful parameter for internal quality control. Using this method, the radiation dose in this laboratory was changed to minimum (under mean value of Slovak Republic). Unfortunately, the real data of patients radiation doses are different from the calculated one. Due to different kinetic of radiopharmaceuticals in individual patients (influenced by pathology, age, etc.) the evaluation of radiation burden to nuclear medicine patients is problematic. But this approach enable the relative comparison of the changes in values of H{sub E} and S{sub E} during the observed period. The evaluation of individual (minimal) effective dose equivalent - (H{sub min}) which represents dose calculated under physiologic conditions can be useful for indication of diagnostic examination by physicians. Therefore the systematic registration of H{sub min} from all examinations - patient`s radiation history. This is specially important in the case of children and young people. The importance of the proposed method, is in regulation of radiation dose from nuclear medicine diagnostic examinations, not only be the control of number and type of examinations, but also by selection of used radiopharmaceuticals and by the way how to use them. (J.K.) 1 fig., 2 refs.

  15. Evaluation of the radiological protection in several departments of nuclear medicine

    International Nuclear Information System (INIS)

    Lopez Bejerano, G.; Jova Sed, L.

    2001-01-01

    For the evaluation of radiation protection, in several departments of nuclear medicine a survey was elaborated and applied that includes mainly: aspects of the licence and compliance with the requirements settled down in this, the program of individual radiological surveillance and their evaluation, functions that it completes the service of radiation protection, training program and the personnel's training, equipment and means of radiation protection, radiological surveillance program of the work areas, characteristics of the installation, radioactive waste management, quality assurance program, relative aspects to radiation protection in the procedures of diagnoses, as well as to pregnant patients and those related with the investigation of accidental medical exposures. The work makes a systematization and discussion of the state of compliance of the radiation protection requirements reflected in the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS) and the main recommendations are exposed to achieve in these departments the optimization of the radiation protection. (author)

  16. Nuclear medicine

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    The area of nuclear medicine, the development of artificially produced radioactive isotopes for medical applications, is relatively recent. Among the subjects covered in a lengthy discussion are the following: history of development; impact of nuclear medicine; understanding the most effective use of radioisotopes; most significant uses of nuclear medicine radioimmunoassays; description of equipment designed for use in the field of nuclear medicine (counters, scanning system, display systems, gamma camera); description of radioisotopes used and their purposes; quality control. Numerous historical photographs are included. 52 refs

  17. Evaluation of management of radioactive waste in nuclear medicine department of radiation and isotopes center, Khartoum

    International Nuclear Information System (INIS)

    Ahmed, Amel Bushra Abaker

    2001-01-01

    Evaluation of management of radioactive waste in nuclear medicine department of radiation and isotopes center in Khartoum, Sudan, was conducted using radiation survey meter. The purpose of this study is to provide protection of workers, patients, co patients, an the environment by introducing good practice in management of radioactive waste generated in this lab. In this work measurement of radiation effective dose at different locations in the department were carried out. These locations were selected around the radioactive liquid and solid waste disposal position. It was found that the effective doses per year from radioactive wastes obtained through this work using the survey meter RDS-120 at these locations, are 1.47 mSv/y at the neighbouring patients room, 5.47 mSv/y at the hot lab., 0.09 mSv/y at the neighbouring toilet, 0.321 mSv/y at the water closet, and 1.4 mSv/y at the place down water closet. The results obtained shows that the dose levels waste at the location not exceed the recommended dose limits for workers 20 mSv/y, that set by basic safety standards (Bss 115) which published by the international atomic energy agency. Also it s comply with the national regulation, regulation on basic radiation protection requirement and dose limits 1996, issued by sudan atomic energy commission act 1996. The annual dose calculated for the patients and co-patients at rooms around the nuclear medicine department, the results shows that dose are fairly high. Measure should taken to improve the waste management in the department for better protection of workers, patients and co patients. (Author)

  18. Establishment of national diagnostic reference level for renal doses in nuclear medicine departments at Khartoum-Sudan

    International Nuclear Information System (INIS)

    Alameen, Suhaib; Hamid, Alhadi; Rushdi, M. A. H.

    2016-01-01

    In this work we established a diagnostic reference level (DRL) for patient dose focusing on the investigation of activity to the kidneys during(99mTc-DTPA) kidney scan, selected two department nuclear medicine in main hospitals in Khartoum state. The DRLs is an investigational level used to identify unusually high radiation doses for common diagnostic medical in Nuclear Medicine procedures and suggested action levels above which a facility should review its methods and determine if acceptable image quality can be achieved at lower doses. The high specific activity of 99mTc makes it suitable as a first pass agent, for multiple or sequential studies, 99mTc diethylenetriaminepentaacetic acid (DTPA) is preferred to 99mTc-pertechnetate. Patients who had been prepared for the kidney scan 99mTc- DTPA were divided to three groups. The first group received dose less than 5 mCi, are represent (27.03%) from all patients, second group received dose 5 to 5.5 mCi are represent(66.67%) and the third group received dose from 5.6 to 6.2 mCi are represent (6.31%) from all patients 99mTc-DTPA. And according to the IAEA recommendation for adult doses(5-10mCi) this study show that about 93.1% of the sample examines by dose less than 5.5 mCi. The results presented will serve as a baseline data needed for deriving reference doses for renal examinations for nuclear medicine departments in Sudan.(Author)

  19. Internal dosimetry in nuclear medicine procedures

    International Nuclear Information System (INIS)

    Carrera Magarino, F.; Salgado Garcia, C.; Ruiz Manzano, P.; Rivas Ballarin, M. A.; Jimenez Hefernan, A.; Sanchez Segovia, J.

    2011-01-01

    The Department of Radio Physics and Radiation Protection, University Hospital Lozano Blesa Zaragoza presented a calculus textbook to estimate patient doses in diagnostic nuclear medicine. In this paper present an updated referred Book of calculation.

  20. An overview of radioactive waste disposal procedures of a nuclear medicine department

    Science.gov (United States)

    Ravichandran, R.; Binukumar, J. P.; Sreeram, Rajan; Arunkumar, L. S.

    2011-01-01

    Radioactive wastes from hospitals form one of the various types of urban wastes, which are managed in developed countries in a safe and organized way. In countries where growth of nuclear medicine services are envisaged, implementations of existing regulatory policies and guidelines in hospitals in terms of handling of radioactive materials used in the treatment of patients need a good model. To address this issue, a brief description of the methods is presented. A designed prototype waste storage trolley is found to be of great help in decaying the I-131 solid wastes from wards before releasing to waste treatment plant of the city. Two delay tanks with collection time of about 2 months and delay time of 2 months alternately result in 6 releases of urine toilet effluents to the sewage treatment plant (STP) of the hospital annually. Samples of effluents collected at releasing time documented radioactive releases of I-131 much below recommended levels of bi-monthly release. External counting of samples showed good statistical correlation with calculated values. An overview of safe procedures for radioactive waste disposal is presented. PMID:21731225

  1. An overview of radioactive waste disposal procedures of a nuclear medicine department.

    Science.gov (United States)

    Ravichandran, R; Binukumar, J P; Sreeram, Rajan; Arunkumar, L S

    2011-04-01

    Radioactive wastes from hospitals form one of the various types of urban wastes, which are managed in developed countries in a safe and organized way. In countries where growth of nuclear medicine services are envisaged, implementations of existing regulatory policies and guidelines in hospitals in terms of handling of radioactive materials used in the treatment of patients need a good model. To address this issue, a brief description of the methods is presented. A designed prototype waste storage trolley is found to be of great help in decaying the I-131 solid wastes from wards before releasing to waste treatment plant of the city. Two delay tanks with collection time of about 2 months and delay time of 2 months alternately result in 6 releases of urine toilet effluents to the sewage treatment plant (STP) of the hospital annually. Samples of effluents collected at releasing time documented radioactive releases of I-131 much below recommended levels of bi-monthly release. External counting of samples showed good statistical correlation with calculated values. An overview of safe procedures for radioactive waste disposal is presented.

  2. An overview of radioactive waste disposal procedures of a nuclear medicine department

    Directory of Open Access Journals (Sweden)

    R Ravichandran

    2011-01-01

    Full Text Available Radioactive wastes from hospitals form one of the various types of urban wastes, which are managed in developed countries in a safe and organized way. In countries where growth of nuclear medicine services are envisaged, implementations of existing regulatory policies and guidelines in hospitals in terms of handling of radioactive materials used in the treatment of patients need a good model. To address this issue, a brief description of the methods is presented. A designed prototype waste storage trolley is found to be of great help in decaying the I-131 solid wastes from wards before releasing to waste treatment plant of the city. Two delay tanks with collection time of about 2 months and delay time of 2 months alternately result in 6 releases of urine toilet effluents to the sewage treatment plant (STP of the hospital annually. Samples of effluents collected at releasing time documented radioactive releases of I-131 much below recommended levels of bi-monthly release. External counting of samples showed good statistical correlation with calculated values. An overview of safe procedures for radioactive waste disposal is presented.

  3. An overview of radioactive waste disposal procedures of a nuclear medicine department

    International Nuclear Information System (INIS)

    Ravichandran, R.; Binukumar, J.P.; Sreeram, Rajan; Arunkumar, L.S.

    2011-01-01

    Radioactive wastes from hospitals form one of the various types of urban wastes, which are managed in developed countries in a safe and organized way. In countries where growth of nuclear medicine services are envisaged, implementations of existing regulatory policies and guidelines in hospitals in terms of handling of radioactive materials used in the treatment of patients need a good model. To address this issue, a brief description of the methods is presented. A designed prototype waste storage trolley is found to be of great help in decaying the 131 I solid wastes from wards before releasing to waste treatment plant of the city. Two delay tanks with collection time of about 2 months and delay time of 2 months alternately result in 6 releases of urine toilet effluents to the sewage treatment plant (STP) of the hospital annually. Samples of effluents collected at releasing time documented radioactive releases of 131 I- much below recommended levels of bi-monthly release. External counting of samples showed good statistical correlation with calculated values. An overview of safe procedures for radioactive waste disposal is presented. (author)

  4. Measurement of beta emitting radionuclides in dose calibrators routinely used in nuclear medicine departments

    International Nuclear Information System (INIS)

    Tastan, S.; Soylu, A.; Kucuk, O.; Ibis, E.

    2004-01-01

    Full text: Radionuclides for diagnostics purposes like Tc-99m, Tl-201, Ga-67 and In-111 are measured by using ionization type of dose calibrators. Therapeutic radionuclides, which emit both beta and gamma rays are detected by the same type of dose calibrators. Other therapeutic products like Y-90, P-32 and Sr-89 are pure beta emitters and they are gaining wider utility because various new therapy radiopharmaceuticals are being developed. The type of container material, like glass or plastic, may seriously affect radioactivity measurement due to attenuation, Since it is crucial to give the exact amount of radioactivity to the patient for therapy purposes, dedicated dose calibrators are specially manufactured for the measurement of these radionuclides. But these measuring systems are not widely available in nuclear medicine centers where therapy is applied to the patient. It is a known fact that dose calibrators routinely used in nuclear medicine departments can be calibrated for vials and syringes using standard sources of the same radioisotope. The method of calibration of Y-90 measurement for two ionization chamber dose calibrators available in the institute will be summarized in this presentation

  5. Measurement of beta emitting radionuclides in dose calibrators routinely used in nuclear medicine departments

    International Nuclear Information System (INIS)

    Tastan, S.; Soylu, A.; Kucuk, O.; Ibis, E.

    2004-01-01

    Radionuclides for diagnostics purposes like Tc-99m, Tl-201, Ga-67 and In-111 are measured by using ionization type of dose calibrators. Therapeutic radionuclides, which emit both beta and gamma rays are detected by the same type of dose calibrators. Other therapeutic products like Y-90, P-32 and Sr-89 are pure beta emitters and they are gaining wider utility because various new therapy radiopharmaceuticals are being developed. The type of container material, like glass or plastic, may seriously affect radioactivity measurement due to attenuation, Since it is crucial to give the exact amount of radioactivity to the patient for therapy purposes, dedicated dose calibrators are specially manufactured for the measurement of these radionuclides. But these measuring systems are not widely available in nuclear medicine centers where therapy is applied to the patient. It is a known fact that dose calibrators routinely used in nuclear medicine departments can be calibrated for vials and syringes using standard sources of the same radioisotope. The method of calibration of Y-90 measurement for two ionization chamber dose calibrators available in the institute will be summarized in this presentation. (author)

  6. Nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, S M [Bhabha Atomic Research Centre, Bombay (India). Radiation Medicine Centre

    1967-01-01

    The article deals with the growth of nuclear medicine in India. Radiopharmaceuticals both in elemental form and radiolabelled compounds became commercially available in India in 1961. Objectives and educational efforts of the Radiation Medicine Centre setup in Bombay are mentioned. In vivo tests of nuclear medicine such as imaging procedures, dynamic studies, dilution studies, thyroid function studies, renal function studies, linear function studies, blood flow, and absorption studies are reported. Techniques of radioimmunoassay are also mentioned.

  7. Working towards implementation of a nuclear medicine accreditation program in a South African teaching hospital

    International Nuclear Information System (INIS)

    Eiselen, T.; Ellmann, A.

    2004-01-01

    Full text: Introduction: Quality assurance in Nuclear Medicine is of utmost importance in order to ensure optimal scintigraphic results and correct patient management and care. The implementation of a good quality assurance program should address all factors that playa role in the optimal functioning of a department. It should be developed by scientific findings as well as national and international guidelines. Aim: To develop a tailor made program that can be managed according to the individual needs and requirements of a Nuclear Medicine department in a teaching hospital. This program is aimed at international accreditation of the department. Materials and methods: Auditing of the following aspects was conducted: organizational, clinical and technical, personnel satisfaction, patient experience and satisfaction, referring physicians experience and satisfaction. Information was collected by means of questionnaires to groups and individuals for opinion polls; one-to-one interviews with personnel and patients; technical evaluation of equipment according to manufacturer's specifications and international standards; laboratory equipment evaluation according to precompiled guidelines and investigation of laboratory procedures for standardization and radiation safety. Existing procedure protocols were measured against international guidelines and evaluated for possible shortcomings of technical as well as cosmetic details, and data storage facilities were evaluated in terms of user friendliness, viability and cost effectiveness. A number of international accreditation experts were also visited to establish the validity of our results. Results: Patient questionnaires indicated overall satisfaction with personal service providing, but provision of written and understandable information, long waiting periods and equipment must receive attention. Staff questionnaires indicated a general lack of communication between different professional groups and the need for

  8. The medical physicist in a nuclear medicine department; El fisico medico en un departamento de medicina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Trujillo Z, F.E.; Gomez A, E. [Instituto nacional de Cancerologia, 14000 Mexico D.F. (Mexico)

    2007-07-01

    The diagnostic studies and therapeutic treatments carried out in a Nuclear Medicine department make use of radioactive material. For such a reason it becomes necessary to take a strict control in the reception, use and waste that are generated of the typical works inside the department. Also, work related with the quality control of the equipment dedicated to produce images and of those not image formers, need to carry out to guarantee its maximum performance; as well as quality of the diagnostic and of the therapy imparted in patients. Additionally its are needed to make originated works of the individual procedures to patient and of the acquisition of radioactive materials and removal of the waste or radioactive contaminations. Presently work the recommendations of the American College of Radiology (ACR), the European Federation of Organizations for Medical Physics (EFOMP) and of the Mexican Official Standards relating to the functions that should be observed in a Nuclear Medicine Department are exposed. The ACR and the EFOMP, conclude in their recommendations that the medical physicist fulfills with the suitable profile and likewise they describe in detail the actions and functions that he should supervise, to carry out, to document and to inform. (Author)

  9. Nuclear medicine

    International Nuclear Information System (INIS)

    Kand, Purushottam

    2012-01-01

    Nuclear medicine is a specialized area of radiology that uses very small amounts of radioactive materials to examine organ function and structure. Nuclear medicine is older than CT, ultrasound and MRI. It was first used in patients over 60-70 years ago. Today it is an established medical specialty and offers procedures that are essential in many medical specialities like nephrology, pediatrics, cardiology, psychiatry, endocrinology and oncology. Nuclear medicine refers to medicine (a pharmaceutical) that is attached to a small quantity of radioactive material (a radioisotope). This combination is called a radiopharmaceutical. There are many radiopharmaceuticals like DTPA, DMSA, HIDA, MIBI and MDP available to study different parts of the body like kidneys, heart and bones etc. Nuclear medicine uses radiation coming from inside a patient's body where as conventional radiology exposes patients to radiation from outside the body. Thus nuclear imaging study is a physiological imaging, whereas diagnostic radiology is anatomical imaging. It combines many different disciplines like chemistry, physics mathematics, computer technology, and medicine. It helps in diagnosis and to treat abnormalities very early in the progression of a disease. The information provides a quick and accurate diagnosis of wide range of conditions and diseases in a person of any age. These tests are painless and most scans expose patients to only minimal and safe amounts of radiation. The amount of radiation received from a nuclear medicine procedure is comparable to, or often many times less than, that of a diagnostic X-ray. Nuclear medicine provides an effective means of examining whether some tissues/organs are functioning properly. Therapy using nuclear medicine in an effective, safe and relatively inexpensive way of controlling and in some cases eliminating, conditions such as overactive thyroid, thyroid cancer and arthritis. Nuclear medicine imaging is unique because it provides doctors with

  10. [Clinical and economic analysis of an internal medicine-infectious disease department at a university general hospital (2005-2006)].

    Science.gov (United States)

    Gómez, Joaquín; García-Vázquez, Elisa; Antonio Puertas, José; Ródenas, Julio; Herrero, José Antonio; Albaladejo, Carmen; Baños, Víctor; Canteras, Manuel; Alcaraz, Manolo

    2009-02-01

    Comparative study in patients with infectious diseases admitted to a specialized Internal Medicine-Infectious Diseases Department (IMID) versus those admitted to other medical departments in a university general hospital, investigating quality and cost-effectiveness. Analysis of patients in 10 principle diagnosis-related groups (DRGs) of infectious diseases admitted to the IMID were compared to those admitted to other medical departments (2005-2006). The DRG were divided in 4 main groups: respiratory infections (DGR 88, 89, 90, 540), urinary infections (DRG 320, 321), sepsis (DRG 416, 584), and skin infections (DRG 277, 278). For each group, quality variables (mortality and readmission rate), efficacy variables (mean hospital stay and mean DRG-based cost per patient) and complexity variables (case mix, relative weight, and functional index) were analyzed. 542 patients included in the 10 main infectious disease DRGs were admitted to IMID and 2404 to other medical departments. After adjusting for DRG case mix (case mix 0.99 for IMID and 0.89 for others), mean hospital stay (5.11 days vs. 7.65 days), mortality (3.5% vs. 7.9%) and mean DRG-based economic cost per patient (1521euro/patient vs. 2952euro/patient) was significantly lower in the group of patients hospitalized in IMID than the group in other medical departments (peconomic cost per patient. Creation and development of IMID departments should be an essential objective to improve healthcare quality and respond to social demands.

  11. Radiation doses of employees of a nuclear medicine department after implementation of more rigorous radiation protection methods

    International Nuclear Information System (INIS)

    Piwowarska-Bilska, H.; Supinska, A.; Listewnik, M. H.; Zorga, P.; Birkenfeld, B.

    2013-01-01

    The appropriate radiation protection measures applied in departments of nuclear medicine should lead to a reduction in doses received by the employees. During 1991-2007, at the Department of Nuclear Medicine of Pomeranian Medical University (Szczecin, Poland), nurses received on average two-times higher (4.6 mSv) annual doses to the whole body than those received by radiopharmacy technicians. The purpose of this work was to examine whether implementation of changes in the radiation protection protocol will considerably influence the reduction in whole-body doses received by the staff that are the most exposed. A reduction in nurses' exposure by ∼63% took place in 2008-11, whereas the exposure of radiopharmacy technicians grew by no more than 22% in comparison with that in the period 1991-2007. Proper reorganisation of the work in departments of nuclear medicine can considerably affect dose reduction and bring about equal distribution of the exposure. (authors)

  12. [History of the 4th Department of Internal Medicine of the First Faculty of Medicine at Charles University and the General University Hospital in Prague].

    Science.gov (United States)

    Bartůněk, Petr

    In 2015, the doctors and nurses of the 4th Department of Internal Medicine of the First Faculty of Medicine, Charles University and the General University Hospital in Prague celebrated the 70th anniversary of its founding. The article summarizes the clinics contribution to the field of internal medicine, and particularly to angiology, hepatogastroenterology and lipidology. It comments the clinics current activities and the possibilities of its further development. Attention is also paid to the tradition of high ethical and professional standards of medical care in accordance with the norms established by the clinic's founder, prof. MUDr. Bohumil Prusík.

  13. Dose received by occupationally exposed workers at a nuclear medicine department

    Science.gov (United States)

    Ávila, O.; Sánchez-Uribe, N. A.; Rodríguez-Laguna, A.; Medina, L. A.; Estrada, E.; Buenfil, A. E.; Brandan, M. E.

    2012-10-01

    Personal Dose Equivalent (PDE) values were determined for occupational exposed workers (OEW) at the Nuclear Medicine Department (NMD) of "Instituto Nacional de Cancerología" (INCan), Mexico, using TLD-100 thermoluminescent dosemeters. OEW at NMD, INCan make use of radiopharmaceuticals for diagnosis and treatment of diseases. Radionuclides associated to a pharmaceutical compound used at this Department are 131I, 18F, 68Ga, 99mTc, 111In and 11C with main gamma emission energies between 140 and 511 keV. Dosemeter calibration was performed at the metrology department of "Instituto Nacional de Investigaciones Nucleares" (ININ), Mexico. Every occupational worker used dark containers with three dosimeters which were replaced monthly for a total of 5 periods. Additionally, control dosemeters were also placed at a site free of radioactive sources in order to determine the background radiation. Results were adjusted to find PDE/day and estimating annual PDE values in the range between 2 mSv (background) and 9 mSv. The mean annual value is 3.51 mSv and the standard deviation SD is 0.78 mSv. Four of the 16 OEW received annual doses higher than the average +1 SD (4.29 mSv). Results depend on OEW daily activities and were consistent for each OEW for the 5 studied periods as well as with PDE values reported by the firm that performs the monthly service. All obtained values are well within the established annual OEW dose limit stated in the "Reglamento General de Seguridad Radiológica", México (50 mSv), as well as within the lower limit recommended by the "International Commission on Radiation Protection" (ICRP), report no.60 (20 mSv). These results verify the adequate compliance of the NMD at INCan, Mexico with the norms given by the national regulatory commission.

  14. The main rules regarding the management of solid waste and liquid effluent contaminated during use at nuclear medicine departments; Les principales regles de gestion des dechets solides et des effluents liquides contamines dans les services de medecine nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Boudouin, E. [Autorite de Surete Nucleaire, Direction des rayonnements ionisants et de la sante, 75 - Paris (France)

    2011-02-15

    This article describes the key requirements applicable to the management of contaminated medical waste and effluent from hospitals and health care centres, and more especially from nuclear medicine departments that use radionuclides for the purposes of diagnosis (in vivo or in vitro) or in patient treatment. It also presents the key management regulations, making a distinction between contaminated solid waste and contaminated liquid waste from such nuclear medicine departments. (author)

  15. Hospital structure and technical efficiency in the production of nuclear medicine. Doctoral thesis

    International Nuclear Information System (INIS)

    Wilson, G.W.

    1976-01-01

    The relationship of hospital structure to production efficiency is explored. The hospital subindustry on which this research centers is nuclear medicine. The hypotheses generated were that technical efficiency is reduced by increased competitive intensity, by a lack of profit incentive, by a broader service range, and by in-house training of technical personnel. Most data employed in the study were gathered from the American College of Radiology and the Energy Research and Development Administration Census of Nuclear Medicine. More specific information came from questionnaires sent to 2,050 short-term general hospitals known to have a nuclear medicine facility. Of the responses 1,362 were usable for the study. A major study finding was that over half of the variations observed in technical efficiency were attributable to the structural elements being studied. The research indicated that competition for staff physicians has a role in reducing technical efficiency; that the output effect of in-house manpower training was relatively unimportant; and that profit incentives do have a significant impact. It is suggested that increased technical efficiency could be achieved through reduced competitive intensity, stronger profit orientation, and reduced service range. A bibliography is included

  16. Checklists for quality assurance and audit in nuclear medicine

    International Nuclear Information System (INIS)

    Williams, E.D.; Harding, L.K.; McKillop, J.H.

    1989-01-01

    A series of checklists are given which aim to provide some guidance to staff in determining whether their working procedures in nuclear medicine are likely to produce a good service and avoid mistakes. The checklists relate to the special equipment used in nuclear medicine departments, radiopharmaceuticals, nuclear medicine staff, services to medical and other hospital staff and finally the service to patients. The checklists are relevant to an average nuclear medicine department performing less than 2000 imaging studies per year. (U.K.)

  17. Nuclear medicine

    International Nuclear Information System (INIS)

    Blanquet, Paul; Blanc, Daniel.

    1976-01-01

    The applications of radioisotopes in medical diagnostics are briefly reviewed. Each organ system is considered and the Nuclear medicine procedures pertinent to that system are discussed. This includes, the principle of the test, the detector and the radiopharmaceutical used, the procedure followed and the clinical results obtained. The various types of radiation detectors presently employed in Nuclear Medicine are surveyed, including scanners, gamma cameras, positron cameras and procedures for obtaining tomographic presentation of radionuclide distributions [fr

  18. Fundamentals of nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Alazraki, N.P.; Mishkin, F.S.

    1984-01-01

    This guidebook for clinical nuclear medicine is written as a description of how nuclear medicine procedures should be used by clinicians in evaluating their patients. It is designed to assist medical students and physicians in becoming acquainted with nuclear medicine techniques for detecting and evaluating most common disorders. The material provides an introduction to, not a textbook of, nuclear medicine. Each chapter is devoted to a particular organ system or topic relevant to the risks and benefits involved in nuclear medicine studies. The emphasis is on presenting the rationales for ordering the various clinical imaging procedures performed in most nuclear medicine departments. Where appropriate, alternative imaging modalities including ultrasound, computed tomography imaging, and radiographic special procedures are discussed. Comparative data between nuclear medicine imaging and other modalities are presented to help guide the practicing clinician in the selection of the most appropriate procedure for a given problem.

  19. [The department budget, in the context of the hospital global budget. Initial results in general medicine].

    Science.gov (United States)

    Besançon, F

    1984-02-23

    In a general hospital (Hôtel-Dieu, in the center of Paris), run with a global budget, budgets determined for each unit were introduced as an experiment in 1980. Physicians were in charge of certain expenses, mainly: linen, drugs, transportation of patients to and from other hospitals within Paris, and blood fractions. The whole does not exceed 4% of the turnover (FF 20 millions in 1980) of a 67 bed internal medicine unit. Other accounts deal with the stays, admissions, prescriptions of technical acts, laboratory analyses, and X-rays. In 1980, expenses were 11% more than budgeted, but the increase in stays and particularly in admissions was significantly greater. The resulting savings were 8.8% and 18.7% for stays and admissions respectively. Psychic reactions were variable. The subsequent budgets followed the fluctuations of recorded expenses, which were fairly important in both directions. The unit budget may be an advance or a regression, in a restrictive and past-perpetuating context. The coherence between the unit budget and the global hospital budget is questionable. Physicians were willing to take part in accounting and saving. They have good reason for not enlarging their financial responsibilities. Conversely, they may give more attention to diseases of public opinion.

  20. PACS in nuclear medicine

    International Nuclear Information System (INIS)

    Kang, Keon Wook

    2000-01-01

    PACS (Picture Archiving and Communication System) is being rapidly spread and installed in many hospitals, but most of the system do not include nuclear medicine field. Although additional costs of hardware for nuclear medicine PACS is low, the complexity in developing viewing software and little market have made the nuclear medicine PACS not popular. Most PACS utilize DICOM 3.0 as standard format, but standard format in nuclear medicine has been Interfile. Interfile should be converted into DICOM format if nuclear images are to be stored and visualized in most PACS. Nowadays, many vendors supply the DICOM option in gamma camera and PET. Several hospitals in Korea have already installed nucler PACS with DICOM, but only the screen captured images are supplied. Software for visualizing pseudo-color with color lookup tables and expressing with volume view should be developed to fulfill the demand of referring physicians and nuclear medicine physicians. PACS is going to integrate not only radiologic images but also endoscopic and pathologic images. Web and PC based PACS is now a trend and is much compatible with nuclear medicine PACS. Most important barrier for nuclear medicine PACS that we encounter is not a technical problem, but indifference of investor such as administrator of hospital or PACS. Now it is time to support and invest for the development of nuclear medicine PACS

  1. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Physician Resources Professions Site Index A-Z Children's (Pediatric) Nuclear Medicine Children’s (pediatric) nuclear medicine imaging uses ... limitations of Children's Nuclear Medicine? What is Children's (Pediatric) Nuclear Medicine? Nuclear medicine is a branch of ...

  2. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Professions Site Index A-Z Children's (Pediatric) Nuclear Medicine Children’s (pediatric) nuclear medicine imaging uses small amounts ... Children's Nuclear Medicine? What is Children's (Pediatric) Nuclear Medicine? Nuclear medicine is a branch of medical imaging ...

  3. General Nuclear Medicine

    Science.gov (United States)

    ... Resources Professions Site Index A-Z General Nuclear Medicine Nuclear medicine imaging uses small amounts of radioactive ... of General Nuclear Medicine? What is General Nuclear Medicine? Nuclear medicine is a branch of medical imaging ...

  4. Children's (Pediatric) Nuclear Medicine

    Science.gov (United States)

    ... Professions Site Index A-Z Children's (Pediatric) Nuclear Medicine Children’s (pediatric) nuclear medicine imaging uses small amounts ... Children's Nuclear Medicine? What is Children's (Pediatric) Nuclear Medicine? Nuclear medicine is a branch of medical imaging ...

  5. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z Children's (Pediatric) Nuclear Medicine Children’s (pediatric) nuclear medicine imaging ... the limitations of Children's Nuclear Medicine? What is Children's (Pediatric) Nuclear Medicine? Nuclear medicine is a branch ...

  6. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Resources Professions Site Index A-Z Children's (Pediatric) Nuclear Medicine Children’s (pediatric) nuclear medicine imaging uses small ... of Children's Nuclear Medicine? What is Children's (Pediatric) Nuclear Medicine? Nuclear medicine is a branch of medical ...

  7. Workplace monitoring at the nuclear medicine department of IPO-CROL

    International Nuclear Information System (INIS)

    Rezio, M.T.; Vieira, M.R.; Alves, J.G.

    2005-01-01

    Full text: The Nuclear Medicine Department of the Portuguese Institute of Oncology in Lisboa (IPO-CROL, SA) has recently acquired a new type of equipment for workplace monitoring: TAM radiation meter system (Tema Sinergy, Italy). It consists of a Geiger-Mueller detector with a dose rate range between 0.1 μSv.h -1 to 0.02 Sv.h -1 and sensitive to energies between 50 keV to 1 MeV. Eight detectors were installed in the most important areas of our department, namely, radiopharmacy, waiting room for accompanying persons, waiting room of injected patients (at two points), room of injected patients, PET radiopharmacy, PET commands room, and waiting room of PET injected patients. The dose rate measured by the equipment is collected on a computer on a 24-hour basis. The system allows an online visualization of the measurements as well as the storage on a database for evaluation. In this work the data collected with this equipment is analyzed. The system gives us the dose rate average, for example, in the PET commands room (0,186 μSv.h -1 ) and in the PET radiopharmacy (0,240 μSv.h -1 ). The results show that the dose rate limits established by law for this type of installations (0.4 mSv.week -1 for professionally exposed workers and 0.02 mSv.week -1 for the general public) are not exceeded. The aim of this work is to demonstrate there are presently good radiation protection conditions at our department. (author)

  8. Image fusion in open-architecture quality-oriented nuclear medicine and radiology departments

    Energy Technology Data Exchange (ETDEWEB)

    Pohjonen, H

    1998-12-31

    Imaging examinations of patients belong to the most widely used diagnostic procedures in hospitals. Multimodal digital imaging is becoming increasingly common in many fields of diagnosis and therapy planning. Patients are frequently examined with magnetic resonance imaging (MRI), X-ray computed tomography (CT) or ultrasound imaging (US) in addition to single photon (SPET) or positron emission tomography (PET). The aim of the study was to provide means for improving the quality of the whole imaging and viewing chain in nuclear medicine and radiology. The specific aims were: (1) to construct and test a model for a quality assurance system in radiology based on ISO standards, (2) to plan a Dicom based image network for fusion purposes using ATM and Ethernet technologies, (3) to test different segmentation methods in quantitative SPET, (4) to study and implement a registration and visualisation method for multimodal imaging, (5) to apply the developed method in selected clinical brain and abdominal images, and (6) to investigate the accuracy of the registration procedure for brain SPET and MRI 90 refs. The thesis includes also six previous publications by author

  9. Image fusion in open-architecture quality-oriented nuclear medicine and radiology departments

    International Nuclear Information System (INIS)

    Pohjonen, H.

    1997-01-01

    Imaging examinations of patients belong to the most widely used diagnostic procedures in hospitals. Multimodal digital imaging is becoming increasingly common in many fields of diagnosis and therapy planning. Patients are frequently examined with magnetic resonance imaging (MRI), X-ray computed tomography (CT) or ultrasound imaging (US) in addition to single photon (SPET) or positron emission tomography (PET). The aim of the study was to provide means for improving the quality of the whole imaging and viewing chain in nuclear medicine and radiology. The specific aims were: (1) to construct and test a model for a quality assurance system in radiology based on ISO standards, (2) to plan a Dicom based image network for fusion purposes using ATM and Ethernet technologies, (3) to test different segmentation methods in quantitative SPET, (4) to study and implement a registration and visualisation method for multimodal imaging, (5) to apply the developed method in selected clinical brain and abdominal images, and (6) to investigate the accuracy of the registration procedure for brain SPET and MRI

  10. Image fusion in open-architecture quality-oriented nuclear medicine and radiology departments

    Energy Technology Data Exchange (ETDEWEB)

    Pohjonen, H

    1997-12-31

    Imaging examinations of patients belong to the most widely used diagnostic procedures in hospitals. Multimodal digital imaging is becoming increasingly common in many fields of diagnosis and therapy planning. Patients are frequently examined with magnetic resonance imaging (MRI), X-ray computed tomography (CT) or ultrasound imaging (US) in addition to single photon (SPET) or positron emission tomography (PET). The aim of the study was to provide means for improving the quality of the whole imaging and viewing chain in nuclear medicine and radiology. The specific aims were: (1) to construct and test a model for a quality assurance system in radiology based on ISO standards, (2) to plan a Dicom based image network for fusion purposes using ATM and Ethernet technologies, (3) to test different segmentation methods in quantitative SPET, (4) to study and implement a registration and visualisation method for multimodal imaging, (5) to apply the developed method in selected clinical brain and abdominal images, and (6) to investigate the accuracy of the registration procedure for brain SPET and MRI 90 refs. The thesis includes also six previous publications by author

  11. Oral mucosa lesion prevalence at Department of Oral Medicine, Halimah Daeng Sikati dental hospital in Makassar

    Directory of Open Access Journals (Sweden)

    Ayub Irmadani Anwar

    2016-06-01

    Full Text Available Oral soft tissue lesions based on clinical picture can be grouped in the form of discoloration, vesicles, tumor, erosion and ulceration. The purpose of this study is to provide apicture of people with oral mucosal lesions, including the factors thought to be the cause of the lesions listed in Department ofOral Medicine RSGMP Hj. Halimah Dg.Sikati, Makassar. This type of study is a descriptive observational study with cross-sectional research design study. This study showed that of 819 subjects, as many as 450 people were women with an average age of 15-49 years. Nutritional deficiency is one of the factors suspected to be causing the face of oral lesions in addition to other factors. These results are some what different from the results of several previous studies.

  12. Dose measurement received by the exposed occupationally personnel of the nuclear medicine department of the INCan

    International Nuclear Information System (INIS)

    Sanchez U, N. A.

    2011-01-01

    Personal dose equivalent (PDE) values were determined for occupational exposed workers (OEW) at the Nuclear Medicine Department (NMD) of Instituto Nacional de Cancerologia (INCan), Mexico, using TLD-100 thermoluminescent dosemeters. OEW at NMD, INCan make use of radiopharmaceuticals for diagnosis and treatment of diseases. Radionuclides associated to a pharmaceutical compound used at this Department are 131 I, 18 F, 67 Ga, 99m Tc, 111 In and 201 Tl with main gamma emission energies between 93 and 511 keV. Dosemeter calibration was performed at the metrology department of Instituto Nacional de Investigaciones Nucleares, Mexico. Every occupational worker used dark containers with three dosemeters which were replaced monthly for a total of 5 periods. Additionally, control dosemeters were also placed at a site free of radioactive sources in order to determine the background radiation. Results were adjusted to find PDE/day and estimating annual PDE values in the range between 2 mSv (background) and a maximum of 9 mSv. Two of the 16 members of the OEW receive high estimated annual doses (6-9 mSv), other 5 receive annual doses between 3 and 5 mSv, other 3 between 2.5 and 3 mSv, and the rest receive dose values consistent with background radiation. These values are dependent on their daily activities and it is clear that the maximum doses are received by those OEW who perform nursing duties and receive radiopharmaceuticals for daily use. All obtained values are well within the established annual OEW dose limit stated in the General Regulation of Radiological Protection, Mexico (50 mSv) as well as within the lower limit recommended by the International Commission on Radiation Protection, report no. 60 (20 mSv). Additionally, consistence was found between measured monthly values and those reported by the firm that performs the monthly service. These results verify the adequate compliance of the NMD at INCan, Mexico with the standards given by the national regulatory

  13. Control of the individual exposure in the practice of a nuclear medicine department

    International Nuclear Information System (INIS)

    Hernandez, J.M.; Castro Crespo, D.; Naranjo Cardentey, O.

    1996-01-01

    In Cuba, since the beginning of the 50 s radioisotopes and radiopharmaceutical have been used for medical purposes to diagnose different diseases. At present about 21 modules of Nuclear Medicine are available for this type of medical assistance service. Use of these substances has increased notably as years passed by, being it an important source of exposure to ionizing radiation. Therefore we were interested in knowing the behaviour of the distribution of equivalent doses during the procedures that are performed in one of such typical modules of nuclear medicine

  14. Nuclear medicine

    International Nuclear Information System (INIS)

    Reichelt, H.G.

    1980-01-01

    Nuclear medicine as a complex diagnostical method is used mainly to detect functional organic disorders, to locate disorders and for radioimmunologic assays (RIA) in vitro. In surgery, its indication range comprises the thyroid (in vivo and in vitro), liver and bile ducts, skeletal and joint diseases, disorders of the cerebro-spinal liquor system and the urologic disorders. In the early detection of tumors, the search for metastases and tumor after-care, scintiscanning and the tumor marcher method (CEA) can be of great practical advantage, but the value of myocardial sciritiscanning in cardiac respectively coronary disorders is restricted. The paper is also concerned with the radiation doses in nuclear medicine. (orig.) [de

  15. Nuclear medicine

    International Nuclear Information System (INIS)

    Sibille, L.; Nalda, E.; Collombier, L.; Kotzki, P.O.; Boudousq, V.

    2011-01-01

    Nuclear medicine is a medical specialty using the properties of radioactivity. Radioactive markers associated with vectors are used as a tracer or radiopharmaceutical for diagnostic purposes and/or therapy. Since its birth more than half a century ago, it has become essential in the care of many patients, particularly in oncology. After some definitions, this paper presents the main nuclear techniques - imaging for diagnostic, radiopharmaceuticals as therapeutic agents, intra-operative detection, technique of radioimmunoassay - and the future of this field. (authors)

  16. Hospital-Acquired Urinary Tract Infections: Results of a Cohort Study Performed in an Internal Medicine Department.

    Science.gov (United States)

    Lobão, Maria João; Sousa, Paulo

    2017-09-29

    Urinary tract infections are the most frequent healthcare associated infections, being related to both high costs and morbidity. Our intention was to carry out an epidemiological characterization of hospital acquired urinary tract infections that occurred in an internal medicine department of a Portuguese hospital. Retrospective cohort study (historic cohort). Data were analysed from a systematic random sample of 388 patients, representative of the 3492 admissions occurred in 2014 in that department. One in four patients underwent the placement of a bladder catheter [24.7% (n = 96); 95% CI: 20% - 29%], 36.5% (95% CI: 33% - 48%) of which in the absence of clinical criteria for that procedure. The global cumulative incidence rate for nosocomial urinary tract infections was 4.6% (95% CI: 2.5% - 6.7%). Most hospital acquired urinary tract infections (61.1%) were related to bladder catheter use. We quantified 3.06 infections / 1000 patient-days and 14.5 infections / 1000 catheter-days. Catheter associated urinary tract infection occurred at an early stage of hospitalization. The vast majority of patients (66.7%) that developed a catheter associated urinary tract infection were subjected to bladder catheter placement at emergency department. Seventy one per cent of catheter associated urinary tract infection occurred in patients that were subjected to bladder catheter placement without criteria. These results point to an excessive and inadequate use of urinary catheters, highlighting the need for judicious use taking into account the formal clinical indications. The incidence of catheter associated urinary tract infection is similar to what we found in other studies. Nevertheless we found a very high incidence density per catheter-days that may foresee a problem probably related to the absence of early withdrawal of the device, and to both bladder catheter placement and maintenance practices. A significant part of catheter associated urinary tract infection

  17. Present status of radioactive wastes from nuclear medicine in the hospitals of Guangdong province and the preliminary exploration to some relevant problems

    International Nuclear Information System (INIS)

    Kong Lingfeng

    1999-01-01

    In Guangdong province of China nuclear medicine is quite developed. There are about 50 hospitals (not including the hospitals only with radioimmunoassay) in the medical units of Guangdong province which have their own nuclear medical departments. More than 40 ECTs are owned by the hospitals and more than 10 radioisotopes, such as 131 I, 125 I, 99 Mo- 99m Tc, 90 Sr, 32 P, 153 Sm etc., are mainly used. The thesis, based on the author's work in checking the use of radiopharmaceuticals in the hospitals of Guangdong province, investigates and summarizes the actual situations of the use of radiopharmaceuticals and the discharge and treatment of radioactive wastes in nuclear medical departments of the hospitals in Guangdong province. According to the actual problems in administration and disposal of the radioactive wastes in the hospitals, it makes a preliminary exploration and puts forward some countermeasures and suggestions on how to supervise and administer the discharge of radioactive wastes in the hospitals, and how to further solve them, in order to prevent and reduce the radioactive contamination and damage to the environment and the public caused by the development of nuclear medicine

  18. Ambient radiation dose reduction within a newly remodeled Nuclear Medicine Department

    International Nuclear Information System (INIS)

    Lai, Y.C.; Chen, Y.W.; Huang, Y.F.

    2008-01-01

    Full text: Ambient radiation levels at the patient waiting areas have been greatly reduced after remodeling of our Nuclear Medicine Department (NMD) based on the ALARA consideration. Complete ambient radiation monitoring of our NMD before remodeling had been characterized and published earlier by the same authors elsewhere. The NMD outpatients, with an initial dose of up to 740 MBq (20 mCi) per case, may wait around and incidentally congest in one place that could cause an unexpected higher exposure level in public access areas. In this new surveillance study after remodeling, the ambient radiation time-profile, peak dose rates and daily doses have been re-evaluated by using high sensitivity, digital survey dosimeters. As a preliminary result, with our newly improved facility in operation, we have demonstrated the NMD waiting room average daily dose has dropped from about 3.0 μSv to 0.42 μSv during most of busy days in comparison. The hourly peak dose rate detected in patient waiting areas has also reduced to a factor of more than two, from maximum dose rate of 40.4 μSv/h to 15.4 μSv/h, during one worst case scenario. The great reduction of the environment dose was achieved mainly by using larger room space with thicker lead wall, from previous 2-mm to new 5-mm in lead thickness, and by increasing patient waiting rooms/areas with less chairs available in each seating location. Other NMD administrative control measure of our dose reduction program has also been emphasized in better patient routing, scheduling and less waiting time for the diagnostic patients. (author)

  19. Nuclear Medicine in Turkey

    International Nuclear Information System (INIS)

    Durak, H.

    2001-01-01

    Nuclear Medicine is a medical specialty that uses radionuclides for the diagnosis and treatment of diseases and it is one of the most important peaceful applications of nuclear sciences. Nuclear Medicine has a short history both in Turkey and in the world. The first use of I-131 for the treatment of thyrotoxicosis in Turkey was in 1958 at the Istanbul University Cerrahpasa Medical School. In 1962, Radiobiological Institute in Ankara University Medical School was established equipped with well-type counters, radiometers, scalers, external counters and a rectilinear scanner. In 1965, multi-probe external detection systems, color dot scanners and in 1967, anger scintillation camera had arrived. In 1962, wet lab procedures and organ scanning, in 1965 color dot scanning, dynamic studies (blood flow - renograms) and in 1967 analogue scintillation camera and dynamic camera studies have started. In 1974, nuclear medicine was established as independent medical specialty. Nuclear medicine departments have started to get established in 1978. In 1974, The Turkish Society of Nuclear Medicine (TSNM) was established with 10 members. The first president of TSNM was Prof. Dr. Yavuz Renda. Now, in the year 2000, TSNM has 349 members. Turkish Society of Nuclear Medicine is a member of European Association of Nuclear Medicine (EANM), World Federation of Nuclear Medicine and Biology (WFNMB) and WFNMB Asia-Oceania. Since 1974, TSNM has organized 13 national Nuclear Medicine congresses, 4 international Nuclear Oncology congresses and 13 nuclear medicine symposiums. In 1-5 October 2000, 'The VII th Asia and Oceania Congress of Nuclear Medicine and Biology' was held in Istanbul, Turkey. Since 1992, Turkish Journal of Nuclear Medicine is published quarterly and it is the official publication of TSNM. There are a total of 112 Nuclear Medicine centers in Turkey. There are 146 gamma cameras. (52 Siemens, 35 GE, 16 Elscint, 14 Toshiba, 10 Sopha, 12 MIE, 8 Philips, 9 Others) Two cyclotrons are

  20. [Laboratory medicine in the obligatory postgraduate clinical training system--common clinical training program in the department of laboratory medicine in our prefectural medical university hospital].

    Science.gov (United States)

    Okamoto, Yasuyuki

    2003-04-01

    I propose a postgraduate common clinical training program to be provided by the department of laboratory medicine in our prefectural medical university hospital. The program has three purposes: first, mastering basic laboratory tests; second, developing the skills necessary to accurately interpret laboratory data; third, learning specific techniques in the field of laboratory medicine. For the first purpose, it is important that medical trainees perform testing of their own patients at bedside or in the central clinical laboratory. When testing at the central clinical laboratory, instruction by expert laboratory technicians is helpful. The teaching doctors in the department of laboratory medicine are asked to advise the trainees on the interpretation of data. Consultation will be received via interview or e-mail. In addition, the trainees can participate in various conferences, seminars, and meetings held at the central clinical laboratory. Finally, in order to learn specific techniques in the field of laboratory medicine, several special courses lasting a few months will be prepared. I think this program should be closely linked to the training program in internal medicine.

  1. Current role of the radiographers in imaging diagnostics, nuclear medicine and radiotherapy in modern departments

    International Nuclear Information System (INIS)

    Karidova, S.; Velkova, K.; Panamska, K.; Petkova, K.

    2006-01-01

    Full text: In the communication we set out to focus the attention of the medical staff and the public on the place and the constantly growing role (relative burden) of the radiographers in imaging diagnostics, nuclear medicine and radiotherapy in the field of modern medicine. The advanced radiographers level and rapid development of the contemporary equipment and apparatuses used in imaging diagnostics, nuclear medicine and radiotherapy, as well as the methods of their utilization, presuppose very good and constantly improving theoretical and practical training of the imaging technician. The radiographer fulfills responsible tasks under the guidance of the physician or independently and bears specific responsibilities. Having mastered the fundamentals of radiation protection, the imaging technician protects both himself and the patient from the impact of ionizing radiation. To be able to fulfill his/her constantly increasing duties and obligations, the imaging radiographer has acquired wide knowledge of general education subjects, subjects of general medicine and special subjects. The radiographer has a good knowledge of Latin and a modern foreign language, and he is also computer literate so as to be able to cope with the widely spread visualizing methods. The radiographer acquires additional post-graduate training to work in narrowly specialized fields as well as to improve his/her qualifications

  2. Optimization of radiation protection (OPR) of workers in nuclear medicine department occupationally to ionizing radiation

    International Nuclear Information System (INIS)

    Ugrinska, Ana; Crcareva, Biljana; Andonovski, Boris

    2010-01-01

    Occupational radiation exposure of nuclear medicine personnel arise either from external irradiation during the handling or from the entry of radioactive substances in the body; the major source of external irradiation is the patient that has received a radiopharmaceutical for diagnostic or therapeutic purposes. In this study we present the dosimetry monitoring of the personnel at the Institute of Pathophysiology and Nuclear Medicine in Skopje (IPNM) before and after the implementation the methods of ORP. Twenty-seven employees were optimized with standard TLD card, monthly, expressed as whole body personal dose in the period of use of dosimeter. Annual Effective Doses (AED) are presented for years: 2001, 2004, 2005, 2006, 2007, 2008. In the year 2005, after measurement from Technical Service Organization, IPNM Radiation Protection Officer (RPO) designed and implemented new recommendation and modality such as: designation of areas, introducing ambiental dose measurements, classification of employees, personnel rotation, risk assessment, occupational dose constraints, education of personnel, compliance with written procedures and establishing the Programme for Radiation Protection (RP). ORP measures were applied during the year of 2006, so the results of 2001, 2004 and 2005 correspond to unopimized RP. We were evaluated three groups: radiopharmacy laboratory (RPL), nuclear medicine technologist (NMT) and medical doctors. The third group was further divided according to the AED in group with AED bellow 1.6 mSv (MD1), and group with AED above this level (MD2). The average AED in the NMT group for 2005 was 3.59 mSv, while in 2008 it was 1.8 mSv; for MD1 group in 2005 was 1.5 mSv and in MD2 was 3.0 mSv. The average AED in 2008 for MD1 was 1.1 mSv, while MD2 group comprised of only one subject with annual effective dose of 1.76 mSv. The most exposed groups were nuclear medicine technologists (NMT) and medical doctors routinely involved in everyday nuclear medicine

  3. Nuclear medicine

    International Nuclear Information System (INIS)

    Casier, Ph.; Lepage, B.

    1998-01-01

    Except for dedicated devices for mobile nuclear cardiology for instance, the market is set on variable angulation dual heads cameras. These cameras are suited for all general applications and their cost effectiveness is optimized. Now, all major companies have such a camera in their of products. But, the big question in nuclear medicine is about the future of coincidence imaging for the monitoring of treatments in oncology. Many companies are focused on WIP assessments to find out the right crustal thickness to perform both high energy FDG procedures and low energy Tc procedures, with the same SPECT camera. The classic thickness is 3/8''. Assessments are made with 1/2'', 5/8'' or 3/4'' crystals. If FDG procedures proved to be of great interest in oncology, it may lead to the design of a dedicated SPECT camera with a 1'' crustal. Due to the short half of FDG, it may be the dawning of slip ring technology. (e.g. Varicam from Elscint). The three small heads camera market seems to be depressed. Will the new three large heads camera unveiled by Picker, reverse that trend? The last important topic in nuclear medicine is the emergence of new flat digital detectors to get rid of the old bulky ones. Digirad is the first company to manufacture a commercial product based on that technology. Bichron, Siemens and General Electric are working on that development, too. But that technology is very expensive and the market for digital detection in nuclear medicine is not as large as the market in digital detection in radiology. (author)

  4. Measurements Of Fingers Doses Of Staff Members In Nuclear Medicine Department

    International Nuclear Information System (INIS)

    AL LEHYANI, S.H.; SHOUSHA, H.A.; HASSAN, R.A.

    2009-01-01

    For some occupationally radiation exposed groups, the hands are more heavily exposed to ionizing radiation than the rest of the body. The Egyptian Atomic Energy Authority runs an extensive personal dosimetry service in Egypt, but finger doses have not been measured to a wide extent. In this study, the finger doses were measured for five different nuclear medicine staff occupational groups for which heavy irradiation of the hands was suspected. Finger doses were measured for nuclear medicine physicians, technologists, nurses and physicists. The nuclear medicine staff working with the radioactive materials wears two TLD dosimeters during the whole period, which lasted from 1 to 4 weeks. The staff performs their work on a regular basis throughout the month, and means annual doses were calculated for these groups. The doses to the fingers for the 99m Tc technologists and nurses of groups (2) and (3) were observed to be 30.24 ± 14.5 μSv/GBq (mean ± SD) and 30.37 ± 17.5 μSv/GBq, respectively. Similarly, the dose to the fingers for the 131 I technologists in group (5) was estimated to be 126.13 ± 38.2μSv/GBq. Finger doses for the physicians could not be calculated per unit of activity because they did not handle the radiopharmaceuticals directly but their doses were reported in millisieverts that accumulated in 1 week. The doses to the fingers of the physicist were 16.3±7.7 μSv/GBq. The maximum average finger dose in this study was found to be 2.8 mSv for the technologists handled therapeutic 131 I (group 5). It could be concluded that the maximum expected annual dose to the extremities appeared to be less than the annual limit (500 mSv/y).

  5. Nuclear medicine

    International Nuclear Information System (INIS)

    James, A.E. Jr.; Squire, L.F.

    1977-01-01

    The book presents a number of fundamental imaging principles in nuclear medicine. The fact that low radiation doses are sufficient for the study of normal and changed physiological functions of the body is an important advancement brought about by nuclear medicine. The possibility of quantitative investigations of organs and organ regions and of an assessment of their function as compared to normal values is a fascinating new diagnostic dimension. The possibility of comparing the findings with other pathological findings and of course control in the same patient lead to a dynamic continuity with many research possibilities not even recognized until now. The limits of nuclear scanning methods are presented by the imprecise structural information of the images. When scintiscans are compared with X-ray images or contrast angiography, the great difference in the imaging of anatomical details is clearly seen. But although the present pictures are not optimal, they are a great improvement on the pictures that were considered clinically valuable a few years ago. (orig./AJ) [de

  6. Evaluation of radiation protection in nuclear medicine diagnostic procedures

    International Nuclear Information System (INIS)

    Mohammed, Ezzeldien Mohammed Nour

    2013-05-01

    This study conducted to evaluate the radiation protection in nuclear medicine diagnostic procedures in four nuclear medicine departments in Sudan. The evaluated procedures followed in these departments were in accordance with the standards, International Recommendations and code of practice for radiation protection in nuclear medicine. The evolution included the optimum design for diagnostic nuclear medicine departments, dealing with radioactive sources, quality assurance and quality control, training and responsibilities for radiation worker taking into account economic factors in Sudan. Evaluation of radiation protection procedures in diagnostic investigations was carried out by taken direct measurements of dose rate and the contamination level in some areas where radiation sources, radiation workers and public are involved. Designated questionnaires covered thirteen areas of radiation protection based on inspection check list for nuclear medicine prepared by the International Atomic Energy Agency (IAEA) and American Association of Physicist in Medicine (AAPM) were used in the evaluation. This questionnaire has been Filled by Radiation Protection Officer (RPO), nuclear medicine technologist, nuclear medicine specialist in the nuclear medicine departments. Four hospitals, two governmental hospital and two private hospitals, have been assisted, the assessment shows that although the diagnostic nuclear medicine department in Sudan are not applying a fully safety and radiation protection procedures, but the level of radiation dose and the contamination level were found within acceptable limits. The private hospital D scored the higher level of protection (85.25%) while the governmental hospital C scored the lower level of protection (59.02%). Finally, this study stated some recommendations that if implemented could improve the level of radiation protection in nuclear medicine department. One of the most important recommendations is that a proper radiation protection

  7. Experience with Nuclear Medicine Information System

    Directory of Open Access Journals (Sweden)

    Bilge Volkan-Salanci

    2012-12-01

    Full Text Available Objective: Radiology information system (RIS is basically evolved for the need of radiologists and ignores the vital steps needed for a proper work flow of Nuclear Medicine Department. Moreover, CT/MRI oriented classical PACS systems are far from satisfying Nuclear Physicians like storing dynamic data for reprocessing and quantitative analysis of colored images. Our purpose was to develop a workflow based Nuclear Medicine Information System (NMIS that fulfills the needs of Nuclear Medicine Department and its integration to hospital PACS system. Material and Methods: Workflow in NMIS uses HL7 (health level seven and steps include, patient scheduling and retrieving information from HIS (hospital information system, radiopharmacy, acquisition, digital reporting and approval of the reports using Nuclear Medicine specific diagnostic codes. Images and dynamic data from cameras of are sent to and retrieved from PACS system (Corttex© for reprocessing and quantitative analysis. Results: NMIS has additional functions to the RIS such as radiopharmaceutical management program which includes stock recording of both radioactive and non-radioactive substances, calculation of the radiopharmaceutical dose for individual patient according to body weight and maximum permissible activity, and calculation of radioactivity left per unit volume for each radionuclide according their half lives. Patient scheduling and gamma camera patient work list settings were arranged according to specific Nuclear Medicine procedures. Nuclear Medicine images and reports can be retrieved and viewed from HIS. Conclusion: NMIS provides functionality to standard RIS and PACS system according to the needs of Nuclear Medicine. (MIRT 2012;21:97-102

  8. Ambient radiation monitoring at a PET/CT imaging center within a nuclear medicine department

    International Nuclear Information System (INIS)

    Lai, Y.C.; Chen, Y.W.; Chuang, Y.W.

    2006-01-01

    Full text of publication follows: Potential environmental dose rates in a patient waiting room at the PET/CT Imaging Center within our Nuclear Medicine Department (N.M.D.) are evaluated by both of the computer modeling method and real-time monitoring in practical settings. The maximum dose rate is directly read from a peak dose-rate frozen-up, digital gamma G-M survey meter. The design basis of our PET/CT Imaging Center facility has assumed a maximum total of five 18 FDG-patients presented at any given time either in an Am or a Pm session according to two separated drug batch delivering runs. Due to the relatively high gamma energy of 511 keV emitted by the F- 18 labeled compound, we have remodeled our facility with a 0.5-cm thick Pb wall and larger space separations between rooms that include a PET/CT scan room, two separated 18 FDG i.v. injection rooms, and a delayed-phase patient waiting room. Patient could normally complete two separate PET/CT scan runs, if a delayed-phase scan is needed, within three hours time frame from an initial dose of 370 MBq (10 mCi) that has a physical half-live of 110 minutes for an F-18 labeled compound. When all the needed scans are finished, the patient is released from our PET/CT Imaging Center that has to follow the radiation safety guideline of less than 50 mSv/hr (5 m R/hr) at one meter distance. During typical operation, each drug i.v. injection room or the scan room is restricted to one patient access only. As a worst case scenario, the maximum ambient dose rate may only occur when two or more delayed phase patients would stay in the PET/CT waiting room that is excluded for other non-PET patient use. Theoretically using a computer discrete-ordinate integrating methods, dose rates at one meter distance from a mid-point geometry, based on a simulated 10 mCi F-18 point, line or volumetric source (assuming 170 cm in height and 20 cm in radius of homogeneous water media), can also be calculated to give values of 5.71, 4.73 and 3

  9. Contribution of radio-iodine 131 in the treatment of Grave's Basedow disease in the department of nuclear medicine of Ibn Sina Hospital in Rabat; Apport de l'iode 131 dans le traitement de la maladie de Basedow dans le service de medecine nucleaire de l'hopital Ibn Sina de Rabat

    Energy Technology Data Exchange (ETDEWEB)

    Mbodj, M.; Amjad, I. [Faculte de Medecine de Dakar, Lab. de Biophysique et de Medecine Nucleaire, UCAD, Dakar (Senegal); Guerrouj, H.; Ben Rais, N.A. [Hopital Ibn Sina de Rabat, Service de Medecine Nucleaire, Rabat (Morocco)

    2009-10-15

    One hundred and twenty-nine Grave's Basedow diseases in any gender and variable age patients, coming from several cities of Morocco, were randomized in a study of radio-iodine treatment who took place at the nuclear medicine department of Ibn Sina Hospital (Rabat, Morocco) during the period (from January 2001 to December 2008). The radio-iodine treatment was a first, second or third option and radio-iodine activities delivered varied (from 222 to 555 MBq 6 to 15 mCi) according to the age, the thyroid volume, the degree of hyperthyroidism and socio-economical situation. The high amounts of {sup 131}I were reserved especially to the patients who live far and whose socio-economic level is low with an aim of quickly obtaining an easily controllable state of hypothyroidism by a substitute treatment. The results showed that: (1) 57.36% of patients reverted to euthyroidism (n = 74) with a patient having received two {sup 131}I cures. The second cure was justified by recurrence of hyperthyroidism after the first cure; (2) 34.88% passed in hypothyroidism (n = 45) with three patients having received two cures of {sup 131}I, the second cure was justified by recurrence of hyperthyroidism after the first cure in two patients and by the persistence of the hyperthyroidism after the first cure for the third patient. The average time of passage in hypothyroidism was 4.5 months; (3) 7.76% had remained in hyperthyroidism after the radioactive iodine treatment. Finally, 92.24% of our patients treated by radioactive iodine had passed in euthyroidism or hypothyroidism against 7.76% whose hyperthyroidism had persisted or occurred. (authors)

  10. On a Work Expected to the Department of Emergency and Critical Care Medicine and the Emergency Unit of the Niigata University Hospital

    OpenAIRE

    小山, 真; Koyama, Shin

    2001-01-01

    The author would like to celebrate the start of the Department of emergency and critical care medicine and the Emergency unit of the Niigata University Hospital. The author also wishes to express his opinion, which is mentioned below, on preparing the Department and the Emergency unit for their future activity. 1 . The stuff members of the Department are expected to instruct undergraduate students in the knowledge and technique of Triage and the first aid in emergency exactly. 2 . The Emergen...

  11. Activity based costing of diagnostic procedures at a nuclear medicine center of a tertiary care hospital.

    Science.gov (United States)

    Hada, Mahesh Singh; Chakravarty, Abhijit; Mukherjee, Partha

    2014-10-01

    Escalating health care expenses pose a new challenge to the health care environment of becoming more cost-effective. There is an urgent need for more accurate data on the costs of health care procedures. Demographic changes, changing morbidity profile, and the rising impact of noncommunicable diseases are emphasizing the role of nuclear medicine (NM) in the future health care environment. However, the impact of emerging disease load and stagnant resource availability needs to be balanced by a strategic drive towards optimal utilization of available healthcare resources. The aim was to ascertain the cost of diagnostic procedures conducted at the NM Department of a tertiary health care facility by employing activity based costing (ABC) method. A descriptive cross-sectional study was carried out over a period of 1 year. ABC methodology was utilized for ascertaining unit cost of different diagnostic procedures and such costs were compared with prevalent market rates for estimating cost effectiveness of the department being studied. The cost per unit procedure for various procedures varied from Rs. 869 (USD 14.48) for a thyroid scan to Rs. 11230 (USD 187.16) for a meta-iodo-benzyl-guanidine (MIBG) scan, the most cost-effective investigations being the stress thallium, technetium-99 m myocardial perfusion imaging (MPI) and MIBG scan. The costs obtained from this study were observed to be competitive when compared to prevalent market rates. ABC methodology provides precise costing inputs and should be used for all future costing studies in NM Departments.

  12. Activity based costing of diagnostic procedures at a nuclear medicine center of a tertiary care hospital

    International Nuclear Information System (INIS)

    Hada, Mahesh Singh; Chakravarty, Abhijit; Mukherjee, Partha

    2014-01-01

    Escalating health care expenses pose a new challenge to the health care environment of becoming more cost-effective. There is an urgent need for more accurate data on the costs of health care procedures. Demographic changes, changing morbidity profile, and the rising impact of noncommunicable diseases are emphasizing the role of nuclear medicine (NM) in the future health care environment. However, the impact of emerging disease load and stagnant resource availability needs to be balanced by a strategic drive towards optimal utilization of available healthcare resources. The aim was to ascertain the cost of diagnostic procedures conducted at the NM Department of a tertiary health care facility by employing activity based costing (ABC) method. A descriptive cross-sectional study was carried out over a period of 1 year. ABC methodology was utilized for ascertaining unit cost of different diagnostic procedures and such costs were compared with prevalent market rates for estimating cost effectiveness of the department being studied. The cost per unit procedure for various procedures varied from Rs. 869 (USD 14.48) for a thyroid scan to Rs. 11230 (USD 187.16) for a meta-iodo-benzyl-guanidine (MIBG) scan, the most cost-effective investigations being the stress thallium, technetium-99 m myocardial perfusion imaging (MPI) and MIBG scan. The costs obtained from this study were observed to be competitive when compared to prevalent market rates. ABC methodology provides precise costing inputs and should be used for all future costing studies in NM Departments

  13. Occupational exposure at the Department of Nuclear Medicine as a work environment: A 19-year follow-up

    International Nuclear Information System (INIS)

    Piwowarska-Bilska, H.; Birkenfeld, B.; Gwardys, A.; Listewnik, M. H.; Elbl, B.; Cichon-Bankowska, K.; Supinska, A.

    2011-01-01

    Background: This study assessed the radiation safety at Nuclear Medicine Department being a work environment. Ionizing radiation exposure of the employees in the last 19 years and the effects of legislative changes in radiological protection were analyzed. Material/Methods: All employees of the investigated department were regularly and individually monitored using chest badges equipped with Kodak film type 2. Overall, 629 annual doses of the employees of nuclear medicine department, registered in the period 1991 - 2009, were analyzed statistically. Results: Technicians were found to be the largest exposed professional group, whereas nurses received the highest annual doses. Physicians received an average annual dose at the border detection methods. Ancillary and administration staff occasionally received doses above the method detection limit (MDL). The average annual dose for all dosimetry records was 0.7 mSv, and that for dosimetry records equal and higher than MDL was 2.2 mSv. Conclusions: There was no case of an exceeded dose limit for a worker. Furthermore, improvement of radiological protection had a significant impact on the reduction of doses for the most exposed employees. (authors)

  14. Nuclear medicine in China

    International Nuclear Information System (INIS)

    Wang, Shihchen; Liu, Xiujie

    1986-01-01

    Since China first applied isotopes to medical research in 1956, over 800 hospitals and research institutions with 4000 staff have taken up nuclear technology. So far, over 120 important biologically active materials have been measured by radioimmunoassay in China, and 44 types of RIA kit have been supplied commercially. More than 50,000 cases of hyperthyroidism have been treated satisfactorily with 131 I. Radionuclide imaging of practically all organs and systems of the human body has been performed, and adrenal imaging and nuclear cardiology have become routine clinical practice in several large hospitals. The thyroid iodine uptake test, renogram tracing and cardiac function studies with a cardiac probe are also commonly used in most Chinese hospitals. The active principles of more than 60 medicinal herbs have been labelled with isotopes in order to study the drug metabolism and mechanism of action. Through the use of labelled neurotransmitters or deoxyglucose, RIA, radioreceptor assay and autoradiography, Chinese researchers have made remarkable achievements in the study of the scientific basis of acupuncture analgesia. In 1980 the Chinese Society of Nuclear Medicine was founded, and since 1981 the Chinese Journal of Nuclear Medicine has been published. Although nuclear medicine in China has already made some progress, when compared with advanced countries, much progress is still to be made. It is hoped that international scientific exchange will be strengthened in the future. (author)

  15. A DICOM based PACS for nuclear medicine

    International Nuclear Information System (INIS)

    Lassmann, M.; Reiners, C.

    2002-01-01

    The installation of a radiology information system (RIS) connected to a hospital information system (HIS) and a picture archiving and communications system (PACS) seems mandatory for a nuclear medicine department in order to guarantee a high patient throughput. With these systems a fast transmission of reports, images to the in- and out-patients' wards and private practitioners is realized. Therefore, since April 2000, at the department of nuclear medicine of the university of Wuerzburg a completely DICOM based PACS has been implemented in addition to the RIS. With this system a DICOM based workflow is realized throughout the department of nuclear medicine for reporting and archiving. The PACS is connected to six gamma-cameras, a PET scanner, a bone densitometry system and an ultrasound device. The volume of image data archived per month is 4 GByte. Patient demographics are provided to the modalities via DICOM-Worklist. With these PACS components a department specific archive purely based on DICOM can be realized. During the installation process problems occurred mainly because of the complex DICOM standard for nuclear medicine. Related to that is the problem that most of the software implementations still contain bugs or are not adapted to the needs of a nuclear medicine department (particularly for PET). A communication software for the distribution of nuclear medicine reports and images based on techniques used for the worldwide web is currently tested. (orig.) [de

  16. The radiation dose to accompanying nurses, relatives and other patients in a nuclear medicine department waiting room

    Energy Technology Data Exchange (ETDEWEB)

    Harding, L K; Harding, N J; Warren, H; Mills, A; Thomson, W H [Dudley Road Hospital, Birmingham (UK)

    1990-01-01

    The radiation dose to accompanying nurses, relatives and other patients in a nuclear medicine department waiting room was assessed at 5 min intervals by observing the seating arrangement. The total radiation dose to each person was calculated, using fixed values of dose rate per 100 MBq activity for radionuclides, and applying the inverse square law. Radioactive decay and attenuation effects due to intervening persons were also taken into account. The median radiation doses to accompanying nurses, relatives and other patients were 2.3, 2.0 and 0.2 {mu}Sv with maximum values of 17, 33 and 5 {mu}Sv respectively. In all cases, the radiation dose received by patients was less than 0.2% of the radiation dose resulting from their own investigation. Also, the maximum radiation dose received by an accompanying norse or friend was less than 1% of their appropriate annual dose limit. Similar values were obtained with calculations based on a 15 min time interval. The radiation doses received by those in a nuclear medicine department waiting room are small, and separate waiting room facilities for radioactive patients are unnecessary. (author).

  17. More about ... Nuclear medicine

    African Journals Online (AJOL)

    Thyroid scintigraphy. In neonates with hypothyroidism detected on neonatal screening and confirmed by subsequent testing, a radionuclide thyroid scan should be performed as soon as possible. It must be undertaken in all nuclear medicine departments as a matter of urgency. Any delay in treatment should be avoided.

  18. Nuclear medicine: the Philippine Heart Center experience

    International Nuclear Information System (INIS)

    Cancino, E.L.

    1994-01-01

    The following is a report of a three (3) months on-the-job training in Nuclear Medicine at the Nuclear Medicine Department of the Philippine Heart Center. The hospital has current generation nuclear medicine instruments with data processor and is capable of a full range of in vivo and in vitro procedures. Gamma camera is the principal instrument for imaging in nuclear medicine used in the Philippine Heart Center. Thyroid scanning procedure is being performed with these instruments. Also the cardiovascular procedures, the pulmonary, skeletal, renal and hepatobiliary procedures were being performed with the use of gamma camera. Special emphasis is on nuclear cardiology since the PHC attends primarily to cardiovascular patients. (auth.)

  19. Environmental iodine intake and pattern of thyroid diseases: experience at nuclear medicine centre, Mayo Hospital (abstract)

    International Nuclear Information System (INIS)

    Elahi, S.; Khan, M.; Rasool, S.; Khalid, A.; Tasneem, A.

    2011-01-01

    To know level of iodine intake in women residing in Lahore and correlate it with pattern of thyroid diseases found in women referred to Centre for Nuclear Medicine (CENUM), Mayo Hospital. Iodine intake status was determined by urinary iodine (UI) excretion by Sandell-Kolthoff reaction. Thyroid related hormones (FT4, FT3 and TSH) were measured by radioimmunoassay. In 110 non-pregnant euthyroid women (age 20-36 year) average iodine intake was 66.3 +- 14.4 mu g/L (range: 30-98 mu g/dL). All women were iodine deficient (UI 22.0 pmol/L and TSH greater or equal to 0.1mIU/L) was detected in 580(10.8%) women and hypothyroidism (FT4 0.4mIU/L) was found in 271(5.1%) women. Thus incidence of hyperthyroidism was almost double than that of hypothyroidism. Low iodine intake is manifested as increased incidence of hyperthyroidism. (author)

  20. Radiation protection in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Volodin, V; Hanson, G P

    1993-12-31

    The goal of this Chapter is to give a general outline of the essential principles and procedures for radiation protection in a nuclear medicine department where radionuclides are used for diagnosis and therapy. More detailed recommendations regarding radiation protection in nuclear medicine are given in the publications of the International Commission on Radiation Protection (ICRP, publications 25, 57, 60) and in ILO/IAEA/WHO Manual on Radiation Protection in Hospitals and General Practice (Volume 2: Unsealed Sources, WHO, Geneva, 1975), on which this Chapter is based. This chapter is not intended to replace the above-mentioned international recommendations on radiation protection, as well as existing national regulations on this subject, but intended only to provide guidance for implementing these recommendations in clinical practice

  1. Radiation protection in nuclear medicine

    International Nuclear Information System (INIS)

    Volodin, V.; Hanson, G.P.

    1992-01-01

    The goal of this Chapter is to give a general outline of the essential principles and procedures for radiation protection in a nuclear medicine department where radionuclides are used for diagnosis and therapy. More detailed recommendations regarding radiation protection in nuclear medicine are given in the publications of the International Commission on Radiation Protection (ICRP, publications 25, 57, 60) and in ILO/IAEA/WHO Manual on Radiation Protection in Hospitals and General Practice (Volume 2: Unsealed Sources, WHO, Geneva, 1975), on which this Chapter is based. This chapter is not intended to replace the above-mentioned international recommendations on radiation protection, as well as existing national regulations on this subject, but intended only to provide guidance for implementing these recommendations in clinical practice

  2. Internal dosimetry in nuclear medicine procedures; Dosimetria interna por procedimientos en medicina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Carrera Magarino, F.; Salgado Garcia, C.; Ruiz Manzano, P.; Rivas Ballarin, M. A.; Jimenez Hefernan, A.; Sanchez Segovia, J.

    2011-07-01

    The Department of Radio Physics and Radiation Protection, University Hospital Lozano Blesa Zaragoza presented a calculus textbook to estimate patient doses in diagnostic nuclear medicine. In this paper present an updated version referred Book of calculation.

  3. [Physical medicine in hospital. Minimum standards in a physical medical department in acute inpatient areas in rheumatology].

    Science.gov (United States)

    Reißhauer, A; Liebl, M E

    2012-07-01

    Standards for what should be available in terms of equipment and services in a department of physical medicine caring for acute inpatients do not exist in Germany. The profile of a department determines the therapeutic services it focuses on and hence the technical facilities required. The German catalogue of operations and procedures defines minimum thresholds for treatment. In the opinion of the authors a department caring for inpatients with acute rheumatic diseases must, as a minimum, have the facilities and equipment necessary for offering thermotherapeutic treatment. Staff trained in physical therapeutic procedures and occupational therapy is also crucial. Moreover, it is desirable that the staff should be trained in manual therapy.

  4. Use of dual-head gamma camera in radionuclide internal contamination monitoring on radiation workers from a nuclear medicine department

    International Nuclear Information System (INIS)

    Rodriguez-Laguna, A.; Brandan, M.E.

    2008-01-01

    As a part of an internal dosimetry program that is performed at the Mexican National Institute of Cancerology - Nuclear Medicine Department, in the present work we suggest a procedure for the routinely monitoring of internal contamination on radiation workers and nuclear medicine staff. The procedure is based on the identification and quantification of contaminating radionuclides in human body by using a dual-head whole-body gamma camera. The results have shown that the procedures described in this study can be used to implement a method to quantify minimal accumulated activity in the main human organs to evaluate internal contamination with radionuclides. The high sensitivity of the uncollimated gamma camera is advantageous for the routinely detection and identification of small activities of internal contamination. But, the null spatial resolution makes impossible the definition of contaminated region of interest. Then, the use of collimators is necessary to the quantification of incorporated radionuclides activities in the main human organs and for the internal doses assessment. (author)

  5. Coordination compounds in nuclear medicine

    International Nuclear Information System (INIS)

    Jurisson, S.; Berning, D.; Wei Jia; Dangshe Ma

    1993-01-01

    Radiopharmaceuticals, drugs containing a radionuclide, are used routinely in nuclear medicine departments for the diagnosis of disease and are under investigation for use in the treatment of disease. Nuclear medicine takes advantage of both the nuclear properties of the radionuclide and the pharmacological properties of the radiopharmaceutical. Herein lies the real strength of nuclear medicine, the ability to monitor biochemical and physiological functions in vivo. This review discusses the coordination chemistry that forms the basis for nuclear medicine applications of the FDA-approved radiopharmaceuticals that are in clinical use, and of the most promising diagnostic and therapeutic radiopharmaceuticals that are in various stages of development. 232 refs

  6. Nuclear medicine in Ghana

    International Nuclear Information System (INIS)

    Affram, R.K.; Kyere, K.; Amuasi, J.

    1991-01-01

    The background to the introduction and application of radioisotopes in medicine culminating in the establishment of the nuclear Medicine Unit at the Korle Bu Teaching Hospital, Ghana, has been examined. The Unit has been involved in important clinical researches since early 1970s but routine application in patient management has not always been possible because of cost per test and lack of continuous availability of convertible currency for the purchase of radioisotopes which are not presently produced by the National Nuclear Research Institute at Kwabenya. The capabilities and potentials of the Unit are highlighted and a comparison of Nuclear Medicine techniques to other medical diagnostic and imaging methods have been made. There is no organised instruction in the principles of medical imaging and diagnostic methods at both undergraduate and postgraduate levels in Korle Bu Teaching Hospital which has not promoted the use of Nuclear Medicine techniques. The development of a comprehensive medical diagnostic and imaging services is urgently needed. (author). 18 refs., 3 tabs

  7. Nuclear Medicine week in Colombia

    International Nuclear Information System (INIS)

    Padhy, A.K.

    2003-01-01

    During the week of 6-12 October 2003 the IAEA organized a Research Coordination Meeting on 'Relationship between lower Respiratory Tract Infection, Gastroesophageal reflux and bronchial Asthma in children' at Hospital San Ignacio in Bogota. Besides there were four workshops in Bogota; workshops on Bone infection and Bone scan in Pediatric ortopaedics at Hospital Militar and Fundacion CardioInfantil, a workshop for Nuclear Medicine Technologists and a workshop on Sentinel Lymph Node mapping and Surgical Gamma Probe Application at Institute of Oncology. A nuclear cardiology workshop was organized in Medellin, and finally crowning them all was the 9th Congress of the Colombian Association of Nuclear Medicine at Cali from 10-12 October, 2003; probably the largest and best Colombian nuclear medicine congress every held in the country. A workshop was also organized in Cali for nuclear medicine technologists in conjunction with the Annual Convention. It was a mix of IAEA's Technical Cooperation and Regular Budget activities along with the activities of Colombian Association of Nuclear Medicine, bringing in absolute synergy to galvanize the entire nuclear medicine community of the country. The week saw nuclear medicine scientists from more than 20 IAEA Member States converging on Colombia to spread the message of nuclear medicine, share knowledge and to foster International understanding and friendship among the nuclear medicine people of the world

  8. Impact of the prospective payment system on the delivery of nuclear medicine services

    International Nuclear Information System (INIS)

    Crucitti, T.W.; Pappas, V.M.

    1986-07-01

    The study evaluates the effect of the Medicare Prospective Payment System (PPS) on nuclear medicine technologists and services. Since 80% of nuclear medicine technologists work in hospitals, a large segment of the professionals would be affected by the new system. The survey was designed to assess the PPSs effect on nuclear medicine departments at the early implementation stage

  9. The teaching of nuclear medicine

    International Nuclear Information System (INIS)

    Bok, B.; Ducassou, D.

    1984-01-01

    Having first recalled the need of a specialized teaching in the field of nuclear medicine, the authors describe the training programmes now available in this sector for doctors, chemists and hospital-attendants [fr

  10. ECAT ART - a continuously rotating PET camera: performance characteristics, initial clinical studies, and installation considerations in a nuclear medicine department

    International Nuclear Information System (INIS)

    Bailey, D.L.; Young, H.; Bloomfield, P.M.; Meikle, S.R.; Glass, D.; Myers, M.J.; Spinks, T.J.; Watson, C.C.; Luk, P.; Peters, A.M.; Jones, T.

    1997-01-01

    Advances in image reconstruction techniques have permitted the development of a commercial, rotating, partial ring, fully 3D scanner, the ECAT ART. The system has less than one-half the number of bismuth germanate detectors compared with a full ring scanner with the equivalent field of view, resulting in reduced capital cost. The performance characteristics, implications for installation in a nuclear medicine department, and clinical utility of the scanner are presented in this report. The sensitivity (20 cm diameter x 20 cm long cylindrical phantom, no scatter correction) is 11400 cps.kBq -1 .ml -1 . This compares with 5800 and 40500 cps.kBq -1 .ml -1 in 2D and 3D respectively for the equivalent full ring scanner (ECAT EXACT). With an energy window of 350-650 keV the maximum noise equivalent count (NEC) rate was 27 kcps at a radioactivity concentration of ∝15 kBq .ml -1 in the cylinder. Spatial resolution is ∝6 mm full width at half maximum on axis degrading to just under 8 mm at a distance of 20 cm off axis. Installation and use within the nuclear medicine department does not appreciably increase background levels of radiation on gamma cameras in adjacent rooms and the dose rate to an operator in the same room is 2 μSv .h -1 for a typical fluorine-18 fluorodeoxyglucose ( 18 F-FDG) study with an initial injected activity of 370 MBq. The scanner has been used for clinical imaging with 18 F-FDG for neurological and oncological applications. Its novel use for imaging iron-52 transferrin for localising erythropoietic activity demonstrates its sensitivity and resolution advantages over a conventional dual-headed gamma camera. The ECAT ART provides a viable alternative to conventional full ring PET scanners without compromising the performance required for clinical PET imaging. (orig.). With 9 figs., 3 tabs

  11. [Introduction of a quality management system compliant with DIN EN 9001:2000 in a university department of nuclear medicine].

    Science.gov (United States)

    Jansen-Schmidt, V; Paschen, U; Kröger, S; Bohuslavizki, K H; Clausen, M

    2001-12-01

    In 1995, the management of the University Clinic Hamburg-Eppendorf proposed to establish a total quality assurance (QA) system. A revised QA-system has been introduced stepwise in the department of nuclear medicine since 1997, and certification was achieved in accordance with DIN EN ISO 9001:2000 on February 14, 2001. The QA-handbook is divided into two parts. The first part contains operational (diagnostic and therapeutic) procedures in so-called standard operating procedures (SOP). They describe the indication of procedures as well as the competences and time necessary in a standardized manner. Up to now, more than 70 SOPs have been written as a collaborative approach between technicians and physicians during daily clinical routine after analysing and discussing the procedures. Thus, the results were more clearly defined processes and more satisfied employees. The second part consists of general rules and directions concerning the security of work and equipment as well as radiation protection tasks, hygiene etc. as it is required by the law. This part was written predominantly by the management of the department of nuclear-medicine and the QA-coordinator. Detailed information for the patients, documentation of the work-flows as well as the medical report was adopted to the QM-system. Although in the introduction phase of a QA-system a vast amount of time is necessary, some months later a surplus for the clinical workday will become available. The well defined relations of competences and procedures will result in a gain of time, a reduction of costs and a help to ensure the legal demands. Last but not least, the QA-system simply helps to build up confidence and acceptance both by the patients and the referring physicians.

  12. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... interventions. Children's (pediatric) nuclear medicine refers to imaging examinations done in babies, young children and teenagers. Nuclear ... nuclear medicine procedure work? With ordinary x-ray examinations, an image is made by passing x-rays ...

  13. The Frederic Joliot hospital department

    International Nuclear Information System (INIS)

    1999-02-01

    The Service Hospitalier Frederic Joliot (SHFJ) of the CEA, has got a scientific and a medical mission: to develop techniques allowing the functional study of human organs. The paper presents the main activities of this department: the positron emission tomography to visualize in real time markers in the organism in neurology and cardiology, researches on epilepsy to localize the epileptic centre, the nuclear medicine in cardiology with the use of the gamma photon emission tomography and the radiopharmacology to visualize the drugs effects in the organism. (A.L.B.)

  14. Nuclear medicine therapy

    CERN Document Server

    Eary, Janet F

    2013-01-01

    One in three of the 30 million Americans who are hospitalized are diagnosed or treated with nuclear medicine techniques. This text provides a succinct overview and detailed set of procedures and considerations for patient therapy with unsealed radioactivity sources.  Serving as a complete literature reference for therapy with radiopharmaceuticals currently utilized in practice, this source covers the role of the physician in radionuclide therapy, and essential procedures and protocols required by health care personnel.

  15. Results of the evaluation of the radiation protection in several nuclear medicine departments and recommendations for its optimization

    International Nuclear Information System (INIS)

    Bejerano, Gladys Lopez; Jova Sed, Luis; Diaz, Efren; jova@cphr.edu.cu

    2001-01-01

    For the evaluation of the radiological safety in several Nuclear Medicine departments a survey was processed and applied that gathers the related mainly to: aspect of the licensing and fulfillment of the establish in this, the program of individual radiologic monitoring and his evaluation, functions that serve to the radiologic protection system, program of qualification and training of the personnel, equipment and mean of radiation protection, program of monitoring of the area of work, characteristic of the premises, management of remainder radioactive, program of quality control, aspect related to the radiation protection in the procedure of diagnosis with the investigation; as well as to pregnant patients and those related to the investigation to accidental medical exhibitions. In the work a systematization of the main results had been done, insisting on the evaluation of the doses received by the workers occupational exposed. A comparison of the activities administered to the patients by different departments and the internationally recommended ones, explaining the found differences. In addition the main recommendations were exposed to obtain in these departments an optimization of the radiological safety

  16. Nuclear Medicine in a developing country

    International Nuclear Information System (INIS)

    Wenzel, K.S. von; Rubow, S.M.; Ellmann, A.; Ghoorun, S.

    2002-01-01

    Namibia is a country with 1,8 million inhabitants, of whom the majority has limited access to first world facilities. Nevertheless, medical services of high standard are offered. A Nuclear Medicine Department was established at Windhoek Central Hospital in 1982. A nuclear physician, two nuclear medicine radiographers and a nursing sister staff the department. Equipment includes a Siemens Orbiter and an Elscint Apex SPX Helix gamma camera. Radiopharmaceuticals are obtained from suppliers in South Africa. Investigations performed include musculoskeletal, liver, hepatobiliary, thyroid, renal studies, ventilation perfusion lung scans as well as the following Nuclear Cardiology studies: Gated blood pool scans, Tc-99m pyrophosphate hot spot scans, Tl-201 myocardial perfusion studies, Tc-99m MIBI myocardial perfusion studies and Tl-201 rest-redistribution studies. Problems experienced at the Windhoek Nuclear Medicine department include: Lack of funding and high cost of equipment and radiopharmaceuticals, lack of understanding of Nuclear Medicine by the hospital management and health administrators, and difficulties in procuring short-lived radiopharmaceuticals. Furthermore, the absence of company representatives and spare parts in Namibia leads to loss of time whenever equipment needs to be repaired. Working as the only nuclear medicine physician in a country also poses major problems. Careful management of resources and information drives have helped to sustain the Nuclear Medicine service despite economic problems in the country. Installation of a tele-link between the department in Windhoek Hospital and Tygerberg Hospital in South Africa has greatly assisted to overcome the problem of isolation and lack of back up from fellow specialists. The IAEA has equipped both departments with Hermes workstations (Nuclear Diagnostics) and a tele-link is maintained via modem. The current software provided with the Hermes system is ideally suited to processing of data such as gated

  17. Occupational doses of radiation workers in Nuclear Medicine Department, Ministry of Health, Oman: a dose analysis

    International Nuclear Information System (INIS)

    Al-Kindy, Sharifa; Al-Isaee, Nadia; Arun Kumar, L.S.; Al-Shanfari, Jamal

    2017-01-01

    Use of ionizing radiation in the Sultanate of Oman is increasing with the proliferation of hospitals and clinics. The great benefits of increased and improved diagnostic services have improved the quality of life for those in Oman. The World Health Organisation in 2000 applauded the quality, efficiency and delivery of health care to the population and ranked the Oman's health care system eighth in the world

  18. Beijing nuclear medicine survey 2005: general information

    International Nuclear Information System (INIS)

    Geng Jianhua; Si Hongwei; Chen Shengzu

    2008-01-01

    Objective: To evaluate the status of nuclear medicine department in Beijing area. Methods: Staff, equipment and clinical applications of nuclear medicine departments in Beijing area during 2005 were evaluated by postal questionnaires. Results: Thirty nuclear medicine departments responded to our survey. In these departments, 321 staff, 141 doctors, 122 technicians, 7 physicists, 22 nurses and 29 other staff were employed; and 41 large imaging equipments, 37 SPECT, 3 PET, 1 PET-CT were equipped. During 2005, 88135 radionuclide imaging (84734 for SPECT, 3401 for PET), 462246 radioimmunoassay and 2228 radionuclide therapies (the most for Graves' disease, the second for thyroid cancer, the third for bone metastasis) were performed. For only 41.5% and 22.0% equipments the daily quality control (QC) and weekly QC were conducted. Conclusions Staff, equipments and activities of nuclear medicine department in Beijing were in a considerable scale, but did not balance among hospitals. Most departments should increase the number of physicists and the equipment QC procedures to improve the image quality. (authors)

  19. An estimate of the maximal doses incurred by persons accompanying patients in the waiting area of a nuclear medicine department

    International Nuclear Information System (INIS)

    Dzik-Jurasz, A.S.K.; Farwell, J.

    1997-01-01

    The aim of the study was to make an estimate of the maximal doses that might be incurred by persons accompanying active patients in a nuclear medicine department waiting area. This was in order to determine whether the dose to such individuals approached current legislative or recently recommended limits. Thermoluminescent dosemeters were taped to the walls of the waiting area at waist level to the sitting individual, such that their record would reflect as closely as possible the dose incurred by an individual sitting next to an active patient. Dividing the recorded dose with the total occupancy time of that seat derived an average dose rate. Maximal doses were estimated by the product of the latter and maximal occupancy times. It was assumed that an accompanying individual would have been sitting next to the active patient for their whole duration of stay. The maximum estimates were 278 μSv and 103.2 μSv. These values are likely to be overestimates by the virtue of the TLD integrating the whole dose of its surrounds, especially adjacent active individuals. By current legislation and recent recommendations the values are reassuringly low, but idiosyncrasies in local practice might need to be considered in individual departments. (author)

  20. Nuclear Medicine National Headquarter System

    Data.gov (United States)

    Department of Veterans Affairs — The Nuclear Medicine National HQ System database is a series of MS Excel spreadsheets and Access Database Tables by fiscal year. They consist of information from all...

  1. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... are small, diagnostic nuclear medicine procedures result in low radiation exposure, acceptable for diagnostic exams. Thus, the radiation risk is very low compared with the potential benefits. Nuclear medicine diagnostic ...

  2. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... What are some common uses of the procedure? Children's (pediatric) nuclear medicine imaging is performed to help diagnose childhood disorders that are congenital (present at birth) or that develop during childhood. Physicians use nuclear medicine imaging to ...

  3. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Nuclear Medicine Children’s (pediatric) nuclear medicine imaging uses small amounts of radioactive materials called radiotracers, a special ... is a branch of medical imaging that uses small amounts of radioactive material to diagnose and determine ...

  4. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Tell your doctor about your child’s recent illnesses, medical conditions, medications and allergies. Depending on the type ... Nuclear Medicine? Nuclear medicine is a branch of medical imaging that uses small amounts of radioactive material ...

  5. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Because nuclear medicine procedures are able to pinpoint molecular activity within the body, they offer the potential ... or imaging device that produces pictures and provides molecular information. In many centers, nuclear medicine images can ...

  6. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... MRI. top of page What are some common uses of the procedure? Children's (pediatric) nuclear medicine imaging ... at birth) or that develop during childhood. Physicians use nuclear medicine imaging to evaluate organ systems, including ...

  7. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... child is taking as well as vitamins and herbal supplements and if he or she has any ... What are the limitations of Children's (Pediatric) Nuclear Medicine? Nuclear medicine procedures can be time consuming. It ...

  8. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Children's (Pediatric) Nuclear Medicine? What are some common uses of the procedure? How does the nuclear medicine procedure work? What does the equipment look like? How is ...

  9. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... that are congenital (present at birth) or that develop during childhood. Physicians use nuclear medicine imaging to evaluate organ ... Nuclear medicine scans are typically used to ...

  10. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... referring physician. top of page What are the benefits vs. risks? Benefits The information provided by nuclear medicine examinations is ... risk is very low compared with the potential benefits. Nuclear medicine diagnostic procedures have been used for ...

  11. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Nuclear Medicine? Nuclear medicine is a branch of medical imaging that uses small amounts of radioactive material to ... a radiologist or other physician. To locate a medical imaging or radiation oncology provider in your community, you ...

  12. Automated system of control of radioactive liquid effluents of patients submitted to therapy in hospitals of nuclear medicine (SACEL)

    International Nuclear Information System (INIS)

    Ruiz C, M.A.; Rivero G, T.; Celis del Angel, L.; Sainz M, E.; Molina, G.

    2006-01-01

    Different hospitals of nuclear medicine require of the technical attendance for the design, construction and instrumentation of an effluents retention system coming from the room dedicated to the medical application of iodine 131, with the one object of giving execution to the normative requirements of radiological protection, settled down in the General Regulation of Radiological Safety (RGSR) emitted by the CNSNS in November, 1988 and in the corresponding official standards. An automatic system of flow measurement, the activity concentration of the effluents to the drainage, the discharges control and the automated report it will allow the execution of the national regulations, also the elimination of unhealthy activities as the taking of samples, analysis of those same and the corresponding paperwork, its will allow that the SACEL is capable of to carry out registrations that are to consult in an automated way. The changes in the demands of the National Commission of Nuclear Safety and Safeguards in relation to the liberation of radioactive material in hospitals by medical treatments, it has created the necessity to develop a system that quantifies and dose the liquid effluents of people under thyroid treatment with iodine-131 to the drainage. The Automated System of Control of radioactive liquids effluents generated in Hospitals of Nuclear Medicine (SACEL) developed in the National Institute of Nuclear Research, it fulfills this regulation, besides improving the work conditions for the medical and technical personnel of the hospital in that are installed, since this system has the advantage of to be totally automated and to require of a minimum of attendance. The SACEL is an electro-hydraulic system of effluents control, based in the alternate operation of two decay deposits of the activity of the material contaminated with iodine-131. The system allows to take a registration of those volumes and liberated dose, besides being able to be monitoring in remote

  13. Radiation exposure to the hospital staff from confined patients submitted to nuclear medicine examinations

    International Nuclear Information System (INIS)

    Guidarelli, G.; Rossi, F.; Rossi, A.; Adversi, I.; Abbati, A.; Gaiba, W.; Vianello Vos, C.

    1983-01-01

    Dosimetric measurements were made of the radioactive patients, and, all the data were analyzed, taking into account also the statistical data given by the administration, such as the total number of hospitalized patients in the different departments, the mean duration of hospitalization, the number of staff and the effective presence of them near the patient. Analyzing those data the mean dose absorbed individually by the staff of the hospital and the collective dose in terms of man-rem, were estimated. The annual exposure to the hospital assistants also with the conservative estimates, can reasonably be considered between 5 and 23 mR inclusive. In the actual situation owing to these low levels of exposure, which allow a maximum collective dose of 6.5 manrem (determined on a staff of 242 hospital attendants including the replacements), particular measures of radioprotection for hospital attendants, are not indispensable. However, detailed information about the precautions, which especially refer to correct behaviour in the nursing of the radioactive patients, is necessary

  14. Nuclear medicine

    International Nuclear Information System (INIS)

    Price, D.C.

    1989-01-01

    The spleen is a sinusoidal vascular filter that is an integral part of the reticuloendothelial system and is the largest single lymphoid organ in the body. Thus it has important scavenging and immunologic functions in humans. It is also a site for normal hematopoiesis in humans during the third to sixth months of gestation. Solenic hematopoiesis does occur normally in adult animals of other species (for instance, mouse, rat, rabbit), but it is seen postnatally in humans only when they have certain hematologic disorders such as myelofibrosis with myeloid metaplasia and severe hemolytic anemias. In its role as a reticuloendothelial organ the adult human spleen serves as a vascular scavenger. Arterial blood filters through a network of arterioles, cords, and sinuses in a closed system that requires the blood cells to be pliable and brings them into intimate contact with macrophages suspended on the reticulin stroma of the cords. Erythrocyte culling and pitting functions as described by Crosby result in a transient retention of immature circulating erythroid cells until residual intracellular nuclear fragments have been extruded. The increased risk for overwhelming infection in children and adults whose spleen have been removed for reasons other than acute trauma would appear to be caused by the loss of both its phagocytic and its immunologic (antibody-producing) contributions to the monitoring of the circulating blood. This paper reports that the ability of the spleen to phagocytose intravascular foreign particles and to recognize and destroy damaged erythrocytes is the basis for the current use of radiopharmaceuticals in spleen scintigraphy

  15. Exposure from diagnostic nuclear medicine procedures

    International Nuclear Information System (INIS)

    Iacob, O.; Diaconescu, C.; Isac, R.

    2002-01-01

    According to our last national study on population exposures from natural and artificial sources of ionizing radiation, 16% of overall annual collective effective dose represent the contribution of diagnostic medical exposures. Of this value, 92% is due to diagnostic X-ray examinations and only 8% arise from diagnostic nuclear medicine procedures. This small contribution to collective dose is mainly the result of their lower frequency compared to that of the X-ray examinations, doses delivered to patients being, on average, ten times higher. The purpose of this review was to reassess the population exposure from in vivo diagnostic nuclear medicine procedures and to evaluate the temporal trends of diagnostic usage of radiopharmaceuticals in Romania. The current survey is the third one conducted in the last decade. As in the previous ones (1990 and 1995), the contribution of the Radiation Hygiene Laboratories Network of the Ministry of Health and Family in collecting data from nuclear medicine departments in hospitals was very important

  16. Links between nuclear medicine and radiopharmacy; Structuration des liens entre medecine nucleaire et radiopharmacie

    Energy Technology Data Exchange (ETDEWEB)

    Pelegrin, M. [Inserm, U896, CRLC Val-d' Aurelle-Paul-Lamarque, institut de recherche en cancerologie de Montpellier (IRCM), universite Montpellier 1, 34 - Montpellier (France); Francois-Joubert, A. [Service de medecine nucleaire, centre hospitalier de Chambery, 73 - Chambery (France); Chassel, M.L. [Radiopharmacie, service de pharmacie, centre hospitalier de Chambery, 73 - Chambrry (France); Desruet, M.D. [Service de radiopharmacie et service pharmaceutique, clinique universitaire de medecine nucleaire, CHU de Grenoble, 38 - Grenoble (France); Bolot, C. [Service de radiopharmacie, service pharmaceutique, centre de medecine nucleaire, groupement hospitalier Est, 69 - Bron (France); Lao, S. [Service de radiopharmacie, medecine nucleaire, hopital de l' Archet, 06 - Nice (France)

    2010-11-15

    Radiopharmaceuticals are nowadays under the responsibility of the radio-pharmacist because of their medicinal product status. Radiopharmacy belongs to the hospital pharmacy department, nevertheless, interactions with nuclear medicine department are important: rooms are included or located near nuclear medicine departments in order to respect radiation protection rules, more over staff, a part of the material and some activities are shared between the two departments. Consequently, it seems essential to formalize links between the radiopharmacy and the nuclear medicine department, setting the goals to avoid conflicts and to ensure patients' security. Modalities chosen for this formalization will depend on the establishment's organization. (authors)

  17. Nuclear medicine physics

    CERN Document Server

    De Lima, Joao Jose

    2011-01-01

    Edited by a renowned international expert in the field, Nuclear Medicine Physics offers an up-to-date, state-of-the-art account of the physics behind the theoretical foundation and applications of nuclear medicine. It covers important physical aspects of the methods and instruments involved in modern nuclear medicine, along with related biological topics. The book first discusses the physics of and machines for producing radioisotopes suitable for use in conventional nuclear medicine and PET. After focusing on positron physics and the applications of positrons in medicine and biology, it descr

  18. Radiotherapy and Nuclear Medicine Project for an Integral Oncology Center at the Oaxaca High Specialization Regional Hospital

    International Nuclear Information System (INIS)

    De Jesus, M.; Trujillo-Zamudio, F. E.

    2010-01-01

    A building project of Radiotherapy and Nuclear Medicine services (diagnostic and therapy), within an Integral Oncology Center (IOC), requires interdisciplinary participation of architects, biomedical engineers, radiation oncologists and medical physicists. This report focus on the medical physicist role in designing, building and commissioning stages, for the final clinical use of an IOC at the Oaxaca High Specialization Regional Hospital (HRAEO). As a first step, during design stage, the medical physicist participates in discussions about radiation safety and regulatory requirements for the National Regulatory Agency (called CNSNS in Mexico). Medical physicists propose solutions to clinical needs and take decisions about installing medical equipment, in order to fulfill technical and medical requirements. As a second step, during the construction stage, medical physicists keep an eye on building materials and structural specifications. Meanwhile, regulatory documentation must be sent to CNSNS. This documentation compiles information about medical equipment, radioactivity facility, radiation workers and nuclear material data, in order to obtain the license for the linear accelerator, brachytherapy and nuclear medicine facilities. As a final step, after equipment installation, the commissioning stage takes place. As the conclusion, we show that medical physicists are essentials in order to fulfill with Mexican regulatory requirements in medical facilities.

  19. Fundamentals of nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Alazraki, N.P.; Mishkin, F.S.

    1988-01-01

    The book begins with basic science and statistics relevant to nuclear medicine, and specific organ systems are addressed in separate chapters. A section of the text also covers imaging of groups of disease processes (eg, trauma, cancer). The authors present a comparison between nuclear medicine techniques and other diagnostic imaging studies. A table is given which comments on sensitivities and specificities of common nuclear medicine studies. The sensitivities and specificities are categorized as very high, high, moderate, and so forth.

  20. Fundamentals of nuclear medicine

    International Nuclear Information System (INIS)

    Alazraki, N.P.; Mishkin, F.S.

    1988-01-01

    The book begins with basic science and statistics relevant to nuclear medicine, and specific organ systems are addressed in separate chapters. A section of the text also covers imaging of groups of disease processes (eg, trauma, cancer). The authors present a comparison between nuclear medicine techniques and other diagnostic imaging studies. A table is given which comments on sensitivities and specificities of common nuclear medicine studies. The sensitivities and specificities are categorized as very high, high, moderate, and so forth

  1. Permeability of gloves used in nuclear medicine departments to [(99m)Tc]-pertechnetate and [(18)F]-fluorodeoxyglucose: radiation protection considerations.

    Science.gov (United States)

    Ridone, S; Matheoud, R; Valzano, S; Di Martino, R; Vigna, L; Brambilla, M

    2013-09-01

    In order to evaluate the safety of the individual protection devices, the permeability of four different types of disposable gloves, commonly used in hospitals, was tested in relation to [(99m)Tc]-pertechnetate and to [(18)F]-fluorodeoxyglucose ([(18)F]-FDG). From these radiopharmaceutical solutions, a drop was deposited on the external surface of the glove which was opened and stretched with the external surface placed upward. The smear test technique permitted to evaluate the activity onto the inner surface of the glove at different times. The smear tests were measured in a well sodium iodide detector calibrated in efficiency for (99m)Tc and (18)F. The permeability was tested on ten samples of each type of gloves and was expressed as the ratio of the activity onto the inner surface at each time interval to the activity deposited on the external surface of the glove. For each type of gloves and for each sampling time, mean value, standard deviation and percentage coefficient of variation of permeability were evaluated. One type of gloves showed a low resistance to permeation of both radiopharmaceuticals, while another one only to pertechnetate. The other gloves were good performers. The results of this study suggest to test permeability for gloves used for handling radiopharmaceuticals, before their adoption in the clinical routine. This practice will provide a more careful service of radiation protection for nuclear medicine department staff. Copyright © 2013 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  2. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... variety of diseases, including many types of cancers, heart disease, gastrointestinal, endocrine, neurological disorders and other abnormalities within the body. Because nuclear medicine procedures are ...

  3. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... physician who has specialized training in nuclear medicine will interpret the images and send a report to your referring physician. top of page What are the benefits vs. risks? Benefits The information provided by nuclear ...

  4. Experiences of the Nuclear Medicine Service at the University Hospital Surgical Clinic Dr. Salvador Allende 2013-2015

    International Nuclear Information System (INIS)

    Suárez Iznaga, Rodolfo; Pozo Almaguer, Armando del; Gil Valdés, Doris; Fleitas Anaya, Ricardo

    2016-01-01

    The Nuclear Medicine Service of the University Hospital Surgical Clinic D r. Salvador Allende , located in the municipality of Cerro, began the provision of scintigraphic services in May 2013. A retrospective descriptive and analytical study was carried out from May 2013 to December 2015 from the archived scintigraphic reports. The objective of the study was to present the results of the Nuclear Medicine Service during this period. The data were reflected in percentages, using tables and graphs. To determine the existence of a statistically significant relationship between the variables were used: Chi square test with a level of significance α = 0.05 being positive if p <0.05. Until December 2015, 798 cases had been reported, which included Bone scans (88.34%), renal (10.65%) and thyroid scans for follow-up of cancer patients (1%); (76.82%) and the female sex was the most attended with 446 (55.89%) patients, there were no statistically significant differences between the scintigraphic studies and the sex of the patients. There were statistically significant differences between the scintigraphic studies and the age of the patients. The most frequent diagnoses were: bone scintigraphy, metastasis in 86.52% of patients, renal cyst scintigraphy (48.78%) and dynamic scintigraphy of the kidneys with obstructive functional involvement (63.64%) It was recommended to create the necessary technical and human resources conditions to be able to introduce other scintigraphy studies in the Nuclear Medicine Service such as: breast scintigraphy and lymph node scans, high demand in the medical center. In addition, to use scientifically the criteria of approval of patients in the consultation of classification of the service, with the aim of achieving a better selection of the applicants for scintigraphic studies, which would favor a more rational and efficient use of these studies.

  5. Scientific publications from departments of clinical physiology and nuclear medicine in Denmark. A bibliometric analysis of "impact' in the years 1989-1994

    DEFF Research Database (Denmark)

    Hansen, HB; Brinch, K; Henriksen, Jens Henrik Sahl

    1996-01-01

    This study reports a bibliometric analysis of scientific publications emanating from departments of clinical physiology and nuclear medicine, Denmark, during the years 1989-1994. The total number of publications during this period was 860 (763 scientific journal papers, 71 book/book chapters and 26...... a collaboration between two or more departments of clinical physiology and nuclear medicine, but the collaboration with other medical specialities and institutions was much greater (85%). The 763 papers were published in 239 different scientific journals, 80% in journals with an official 'impact factor......', a bibliometric measure of quality (the average number of times a paper is cited in a journal in the publishing year and the subsequent year). Twenty per cent (20%) and 8.4% were printed in journals with an impact factor, respectively, of above 2.1 (the 500 journals most cited) and 3.7 (the 200 most cited), which...

  6. [Costing nuclear medicine diagnostic procedures].

    Science.gov (United States)

    Markou, Pavlos

    2005-01-01

    To the Editor: Referring to a recent special report about the cost analysis of twenty-nine nuclear medicine procedures, I would like to clarify some basic aspects for determining costs of nuclear medicine procedure with various costing methodologies. Activity Based Costing (ABC) method, is a new approach in imaging services costing that can provide the most accurate cost data, but is difficult to perform in nuclear medicine diagnostic procedures. That is because ABC requires determining and analyzing all direct and indirect costs of each procedure, according all its activities. Traditional costing methods, like those for estimating incomes and expenses per procedure or fixed and variable costs per procedure, which are widely used in break-even point analysis and the method of ratio-of-costs-to-charges per procedure may be easily performed in nuclear medicine departments, to evaluate the variability and differences between costs and reimbursement - charges.

  7. Extracts from IAEA's Resources Manual in Nuclear Medicine. Part-3: Establishing Nuclear Medicine Services

    International Nuclear Information System (INIS)

    2003-01-01

    In the past, consideration was given to the categories of nuclear medicine ranging from simple imaging or in-vitro laboratories, to more complex departments performing a full range of in-vitro and in-vivo procedures that are also involved in advanced clinical services, training programmes, research and development. In developing countries, nuclear medicine historically has often been an offshoot of pathology, radiology or radiotherapy services. These origins are currently changing as less radioimmunoassay is performed and fully-fledged, independent departments of nuclear medicine are being set up. The trend appears to be that all assays (radioassay or ELISA) are done in a biochemistry laboratory whereas nuclear medicine departments are involved largely in diagnostic procedures, radionuclide therapy and non-imaging in-vitro tests. The level of nuclear medicine services is categorized according to three levels of need: Level 1: Only one gamma camera is needed for imaging purposes. The radiopharmaceutical supply, physics and radiation protection services are contracted outside the centre. Other requirements include a receptionist and general secretarial assistance. A single imaging room connected to a shared reporting room should be sufficient, with a staff of one nuclear medicine physician and one technologist, with back-up. This level is appropriate for a small private practice. Level 2: This is suitable for a general hospital where there are multiple imaging rooms where in-vitro and other non-imaging studies would generally be performed as well as radionuclide therapy. Level 3: his is appropriate for an academic institution where there is a need for a comprehensive clinical nuclear medicine service, human resource development and research programmes. Radionuclide therapy for in-patients and outpatients is provided

  8. Nuclear Medicine Practice in Kenya

    International Nuclear Information System (INIS)

    Ndrirangu, T.T.

    2017-01-01

    Nuclear medicine is a medical specialty that relies on the use of nuclear technology in the diagnosis and treatment (therapy) of diseases. Nuclear medicine uses the principle that a certain radiopharmaceutical (tracer) will at a certain point in time have a preferential uptake by a particular body, tissue or cell. Unlike other radiation applications for medical use, nuclear medicine uses open (unsealed) sources of radiation. The tracer is introduced into the body of the patient through several routes (oral, intravenous, percutaneous, intradermally, inhalation, intracapsular etc) and s/he becomes the source of radiation. Early diagnosis of diseases coupled with associated timely therapeutic intervention will lead to better prognosis. In a country with an estimated population of 42 million in 2017, Kenya has only two (2) nuclear medicine facilities (units) that is Kenyatta National Hospital - Public facility and Aga Khan University Hospital which is a Private facility. Being a relatively new medical discipline in Kenya, several measures have been taken by the clinical nuclear medicine team to create awareness at various levels. Kenya does not manufacture radiopharmaceuticals. We therefore have to import them from abroad and this makes them quite expensive, and the process demanding. There is no local training in nuclear medicine and staff have to be sent abroad for training, making this quite expensive and cumbersome and the IAEA has been complimenting in this area. With concerted effort by all stakeholders at the individual, national and international level, it is possible for Kenya to effectively sustain clinical nuclear medicine service not only as a diagnostic tool in many disease entities, but also play an increasingly important role in therapy

  9. Nuclear energy and medicine

    International Nuclear Information System (INIS)

    1988-01-01

    The applications of nuclear energy on medicine, as well as the basic principles of these applications, are presented. The radiological diagnosis, the radiotherapy, the nuclear medicine, the radiological protection and the production of radioisotopes are studied. (M.A.C.) [pt

  10. Digital Nuclear Medicine

    International Nuclear Information System (INIS)

    Erickson, J.J.; Rollo, F.D.

    1982-01-01

    This book is meant ''to provide the most comprehensive presentation of the technical as well as clincial aspects of computerized nuclear medicine''. It covers basic applications, and advice on acquisition and quality control of nuclear medicine computer systems. The book evolved from a series of lectures given by the contributors during the computer preceptorship program at their institution, Vanderbilt University in Nashville

  11. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... resume his/her normal activities after the nuclear medicine scan. If the child has been sedated, you will receive specific instructions ... usually mild. Nevertheless, you should inform the nuclear medicine personnel of any allergies your child may have or other problems that may have ...

  12. Radiation exposure to staff involved in diagnostic and therapeutic nuclear medicine procedures in some hospitals in Sudan

    International Nuclear Information System (INIS)

    Salih, Lamia Hamza Bashir

    2015-05-01

    Study was performed to evaluate radiation dose to staff involved in nuclear medicine procedures in some hospitals in Sudan. 15 radiation workers were studied in three hospitals. Radiation dose was measured using personal dose equivalent Hp (10), using calibrated electronic personal dosimeters (EPDs) worn on the chest and read at the end of the day. Staff doses were monitored in each hospital for a period of four weeks, The measured monthly Hp(10) values to staff ranged between 82.96-83.94μSv (to nurses), 38.81-53.97 μSv (to pharmacists), 16.87-70.21μSv (to technologists), 40.22-76.56μSv (to medical physicists). These mean monthly radiation doses were projected to the annual radiation doses received by the staff. The mean monthly radiation doses were projected to the annual radiation doses were found to be between ranges (185.57-923.34μSv/y). Results found showed that there was no dose that exceeded the limits of annual dose recommended for workers by International Commission on Radiology Protection (ICRP) (20 mSv/year). This study is expected to increase the awareness of staff about the radiation hazards and protection.(Author)

  13. Nuclear medicine in the Philippines

    International Nuclear Information System (INIS)

    Villadolid, Leland.

    1978-01-01

    This article traces the history of nuclear medicine in the country from the time the first radioisotope laboratory was set up by the Philippine General Hospital about 1955, to the not too satisfactory present facilities acquired by hospitals for diagnosis, treatment and investigation of diseases. It is in research, the investigation of disease that is nuclear medicine's most important area. The Philippine Atomic Energy Commission (PAEC) has pioneered in the conducting of courses in the medical uses of radioisotopes. The local training of nuclear manpower has been continued and updated and foreign fellowships are availed of through the cooperation of IAEA. Quite a number are already trained also in the allied fields that support the practice of nuclear medicine. However the brain drain has seriously affected the number of trained staff of medical units. Discussed and presented is the growth of the medical use of radioisotopes which are locally produced by PAEC. In order to benefit from the full advantage that nuclear medicine can do to a majority of Filipinos, the government should extend its financial support in acquiring such facilities to equip strategic hospitals in the country and support training programs. The Philippine has the expertise to start the expansion but only with adequate provision of funds will our capacity turn into reality. (RTD)

  14. Nuclear medicine and AIDS

    International Nuclear Information System (INIS)

    O'Doherty, M.J.; Kent and Canterbury Hospital, Canterbury; Nunan, T.O.

    1993-01-01

    The human immunodeficiency virus (HIV) infection and its associated illnesses in a relatively young population of patients provides an expanding role for nuclear medicine. The disease enforces a review of each department's infection control procedures. It has also resulted in an increase in the number of patients presenting with diseases such as Pneumocystis carinii pneumonia, Kaposi's sarcoma etc. which prior to the HIV epidemic were extremely rare. Thus in high risk patients the interpretation of abnormalities in nuclear medicine scans needs to include the spectrum of opportunistic infections and unusual tumours. The presence of opportunistic infections in the severely immunocompromised patient has led to the development of techniques not normally used, i.e. lung 99 Tc m -diethylenetriamine pentaacetate (DTPA) transfer/clearance, donor leukocyte scanning to allow rapid diagnosis of an abnormality. Radionuclide techniques are also used to monitor the effect of therapy directed at the HIV itself or against opportunistic infections. This review covers aspects of infection control as well as the use of radionuclides to investigate specific problems related to HIV infection and therapy of the associated disease processes. (author)

  15. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... by Image/Video Gallery Your Radiologist Explains Nuclear Medicine Transcript Welcome to Radiology Info dot org Hello! ... d like to talk to you about nuclear medicine. Nuclear medicine offers the potential to identify disease ...

  16. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... Sponsored by Image/Video Gallery Your Radiologist Explains Nuclear Medicine Transcript Welcome to Radiology Info dot org ... I’d like to talk to you about nuclear medicine. Nuclear medicine offers the potential to identify ...

  17. Study of dose levels absorbed by members of the public in the nuclear medicine departments; Estudo dos niveis de dose em individuos do publico nos servicos de medicina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Cabral, Geovanna Oliveira de Mello

    2001-03-01

    In nuclear Medicine, radioisotopes are bound to various compounds (called radiopharmaceuticals) for use in various diagnostic and therapeutic applications. These unsealed sources are administered in various forms to patients, who remain radioactive for hours or days, and represent a source of potential radiation exposure for others. Thus, in nuclear medicine departments, radiation protection of workers and members of the public, especially persons accompanying patients, must consider, this exposure. In Brazil, the Comissao Nacional de Energia Nuclear (CNEN) establishes that, in nuclear medicine departments, the patients and persons accompanying should be separated each other. However, this rule is not always followed due to many factors such as physical and emotional conditions of patients. In this context, the aim of this study was the investigation of dose levels, which the persons accompanying patients are exposed to. For monitoring, thermoluminescent dosimeters were employed. The dosimeters were given to 380 persons who were accompanying patients in nuclear medicine departments. Exposure results were lower than 1 mSv. On the basis of CNEN rules, issues regarding stay conditions for members of the public in these departments are discussed. (author)

  18. Nuclear medicine and mathematics

    Energy Technology Data Exchange (ETDEWEB)

    Pedroso de Lima, J.J. [Dept. de Biofisica e Proc. de Imagem, IBILI - Faculdade de Medicina, Coimbra (Portugal)

    1996-06-01

    The purpose of this review is not to present a comprehensive description of all the mathematical tools used in nuclear medicine, but to emphasize the importance of the mathematical method in nuclear medicine and to elucidate some of the mathematical concepts currently used. We can distinguish three different areas in which mathematical support has been offered to nuclear medicine: Physiology, methodology and data processing. Nevertheless, the boundaries between these areas can be indistinct. It is impossible in a single article to give even an idea of the extent and complexity of the procedures currently usede in nuclear medicine, such as image processing, reconstruction from projections and artificial intelligence. These disciplines do not belong to nuclear medicine: They are already branches of engineering, and my interest will reside simply in revealing a little of the elegance and the fantastic potential of these new `allies` of nuclear medicine. In this review the mathematics of physiological interpretation and methodology are considered together in the same section. General aspects of data-processing methods, including image processing and artificial intelligence, are briefly analysed. The mathematical tools that are most often used to assist the interpretation of biological phenomena in nuclear medicine are considered; these include convolution and deconvolution methods, Fourier analysis, factorial analysis and neural networking. (orig.)

  19. Nuclear medicine and mathematics

    International Nuclear Information System (INIS)

    Pedroso de Lima, J.J.

    1996-01-01

    The purpose of this review is not to present a comprehensive description of all the mathematical tools used in nuclear medicine, but to emphasize the importance of the mathematical method in nuclear medicine and to elucidate some of the mathematical concepts currently used. We can distinguish three different areas in which mathematical support has been offered to nuclear medicine: Physiology, methodology and data processing. Nevertheless, the boundaries between these areas can be indistinct. It is impossible in a single article to give even an idea of the extent and complexity of the procedures currently usede in nuclear medicine, such as image processing, reconstruction from projections and artificial intelligence. These disciplines do not belong to nuclear medicine: They are already branches of engineering, and my interest will reside simply in revealing a little of the elegance and the fantastic potential of these new 'allies' of nuclear medicine. In this review the mathematics of physiological interpretation and methodology are considered together in the same section. General aspects of data-processing methods, including image processing and artificial intelligence, are briefly analysed. The mathematical tools that are most often used to assist the interpretation of biological phenomena in nuclear medicine are considered; these include convolution and deconvolution methods, Fourier analysis, factorial analysis and neural networking. (orig.)

  20. [In vivo mutagenicity and clastogenicity of ionizing radiation in nuclear medicine

    International Nuclear Information System (INIS)

    1989-01-01

    The overall goals of our research remains to investigate the mutagenic and clastogenic effects of exposure to low levels of ionizing radiation in human lymphocytes. We are studying hospital patients referred to a nuclear medicine department for diagnostic cardiac imaging and nuclear medicine technologists who administer radionuclides

  1. Historic images in nuclear medicine

    DEFF Research Database (Denmark)

    Hess, Søren; Høilund-Carlsen, Poul Flemming; Alavi, Abass

    2014-01-01

    In 1976, 2 major molecular imaging events coincidentally took place: Clinical Nuclear Medicine was first published in June, and in August researchers at the Hospital of the University of Pennsylvania created the first images in humans with F-FDG. FDG was initially developed as part of an evolution...... set in motion by fundamental research studies with positron-emitting tracers in the 1950s by Michel Ter-Pegossian and coworkers at the Washington University. Today, Clinical Nuclear Medicine is a valued scientific contributor to the molecular imaging community, and FDG PET is considered the backbone...

  2. Veterinary nuclear medicine

    International Nuclear Information System (INIS)

    Kallfelz, F.A.; Comar, C.L.; Wentworth, R.A.

    1974-01-01

    A brief review is presented of the expanding horizons of nuclear medicine, the equipment necessary for a nuclear medicine laboratory is listed, and the value of this relatively new field to the veterinary clinician is indicated. Although clinical applications to veterinary medicine have not kept pace with those of human medicine, many advances have been made, particularly in the use of in vitro techniques. Areas for expanded applications should include competitive protein binding and other in vitro procedures, particularly in connection with metabolic profile studies. Indicated also is more intensive application by the veterinarian of imaging procedures, which have been found to be of such great value to the physician. (U.S.)

  3. Practical nuclear medicine

    CERN Document Server

    Gemmell, Howard G; Sharp, Peter F

    2006-01-01

    Nuclear medicine plays a crucial role in patient care, and this book is an essential guide for all practitioners to the many techniques that inform clinical management. The first part covers the scientific basis of nuclear medicine, the rest of the book deals with clinical applications. Diagnostic imaging has an increasingly important role in patient management and, despite advances in other modalities (functional MRI and spiral CT), nuclear medicine continues to make its unique contribution by its ability to demonstrate physiological function. This book is also expanded by covering areas of d

  4. Nuclear Medicine Annual, 1989

    International Nuclear Information System (INIS)

    Freeman, L.M.; Weissmann, H.S.

    1989-01-01

    Among the highlights of Nuclear Medicine Annual, 1989 are a status report on the thyroid scan in clinical practice, a review of functional and structural brain imaging in dementia, an update on radionuclide renal imaging in children, and an article outlining a quality assurance program for SPECT instrumentation. Also included are discussions on current concepts in osseous sports and stress injury scintigraphy and on correlative magnetic resonance and radionuclide imaging of bone. Other contributors assess the role of nuclear medicine in clinical decision making and examine medicolegal and regulatory aspects of nuclear medicine

  5. Nuclear tele medicine; Telemedicina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, L.; Hernandez, F.; Fernandez, R. [Departamento de Medicina Nuclear, Imagenologia Diagnostica, Xalapa, Veracruz (Mexico)

    2005-07-01

    The great majority of the digital images of nuclear medicine are susceptible of being sent through internet. This has allowed that the work in diagnosis cabinets by image it can benefit of this modern technology. We have presented in previous congresses works related with tele medicine, however, due to the speed in the evolution of the computer programs and the internet, becomes necessary to make a current position in this modality of work. (Author)

  6. Assessment of radiation exposure at the nuclear medicine module from the Vladimir Ilich Lenin Hospital

    International Nuclear Information System (INIS)

    Velazquez Cruz, R.A.; Pupo Palma, C.

    1998-01-01

    The work evaluates the exposure to radiation during the last years in which radioactive substances had been employed. A statistical analysis was applied to evaluate radiological protection performance at the Hospital. Main elements from each study made are given

  7. Pulmonary ventilation/perfusion single photon emission tomography – Initial experience of a Nuclear Medicine Department

    Directory of Open Access Journals (Sweden)

    J. G. Santos

    2016-01-01

    Full Text Available Introduction: Lung ventilation/perfusion scintigraphy with planar images (V/QS-planar is very useful for the diagnosis and follow-up of pulmonary thromboembolism (PTE. Acquiring tomographic images (V/QS-SPECT is a recent development with potential to increase the technique's accuracy. The purpose of this work is to evaluate the added benefits of V/QS-SPECT studies as opposed to traditional planar imaging. Patients and methods: We prospectively revised 53 V/QS-planar and V/QS-SPECT exams, performed according to the European Association of Nuclear Medicine guidelines. We evaluated the exams independently, by consensus of two Nuclear Medicine physicians. For both methods, we gave each lung a score expressing the dimension and extension of perfusion defects with normal ventilation. For each lung, we compared the scores with the paired Wilcoxon test, estimating the 95% confidence interval (95CI for the respective difference. Results: We performed V/QS-SPECT exams without technical difficulties. The paired Wilcoxon test estimated the score difference to be −0.75 (95CI of −1.0 to −0.5; p-value = 9.6 × 10−7, expressing a statistically significant difference of about 1 subsegmental defect between both methods, with V/QS-SPECT detecting more defects. Discussion: The results demonstrate that V/QS-SPECT identifies a slightly larger number of perfusion defects than V/QS-planar, suggesting a higher sensitivity of this technique. However, more studies are necessary to evaluate the clinical meaning of this fact. Conclusion: V/QS-SPECT demonstrates a higher capability to identify perfusion defects. This method looks promising, allowing for a greater role of this exam in pulmonary thromboembolism diagnosis and follow-up. Keywords: Pulmonary thromboembolism, Lung, Scintigraphy, Single-photon emission-computed tomography (SPECT

  8. Promoting nuclear medicine in developing countries

    International Nuclear Information System (INIS)

    Ganatra, R.; Nofal, M.

    1986-01-01

    After a short review of the applications of nuclear medicine in diagnosis and treatment of diseases or in medical research the ways and the means of IAEA's support in helping developing countries to set up nuclear medicine capabilities in their hospitals are described. Some trends and new directions in the field of nuclear medicine and the problems related to the implementation of these techniques in developing countries are presented

  9. Department of Nuclear Energy

    International Nuclear Information System (INIS)

    2002-01-01

    Full text: The activities of Department was engaged in the selected topics in nuclear fission reactor science and engineering. Present and future industry competitiveness, economic prosperity and living standards within the world are strongly dependent on maintaining the availability of energy at reasonable prices and with security of supply. Also, protection of man and the environment from the harmful effects of all uses of energy is an important element of the quality of life especially in Europe. It is unrealistic to assume that the technology for renewable (hydro, wind, solar and biomass) available within a 20-30 year perspective could provide the production capacity to replace present use of nuclear power and at the same time substantially reduce the use of fossil fuels, especially when considering that energy demand in industrialized countries can be expected to continue to increase even within a framework of overall energy conservation and continued improvement of efficiency in energy usage. In the area of nuclear fission, we continue support to maintain and develop the competence needed to ensure the safety of existing and future reactors and other nuclear installations. In addition support is given to explore the potential for improving present fission technology from a sustainable development point of view. The focus on advanced modelling of improved reactor and fuel cycle concepts, including supporting experimental research, with a view to improving the utilisation of the inherent energy content of uranium and other nuclear fuels, whilst at the same time reducing the amount of long-lived radioactive waste produced. A common scientific understanding of the frequently used concept of ''reasonable assurance of safety'' for the long-term, post-closure phase of repositories for spent fuel and high-level waste developed in order to ensure reasonably equivalent legal interpretations in environmental impact assessment and licensing procedures. Also, research is

  10. Developments in nuclear medicine

    International Nuclear Information System (INIS)

    Elias, H.

    1977-01-01

    The article reports on the first international meeting about radiopharmaceutical chemistry in the Brookhaven National Laboratory, Long Island/USA, from 21st to 24th September, 1976. The meeting report is preceded by the explanation of the terms 'radiopharmaceutical chemistry' and 'nuclear medicine' and a brief survey of the history. The interdisciplinary connection of the spheres of nuclear physics, nuclear chemistry, biochemistry, nuclear medicine, and data processing is also briefly shown. This is necessary before radiodiagnosis can be made for a patient. (RB) [de

  11. [A retrospective study on the incidence of chronic renal failure in the Department of Internal Medicine and Nephrology at University Hospital of Antananarivo (the capital city of Madagascar)].

    Science.gov (United States)

    Ramilitiana, Benja; Ranivoharisoa, Eliane Mikkelsen; Dodo, Mihary; Razafimandimby, Evanirina; Randriamarotia, Willy Franck

    2016-01-01

    Chronic renal failure is a global public health problem. In developed countries, this disease occurs mainly in the elderly, but in Africa it rather affects active young subjects. This disease need for expensive treatments in a low income country, because of its costs. Our aim is to describe the epidemiology of new cases of chronic renal failure in Madagascar. This is a retrospective, descriptive study of 239 patients with chronic renal failure over a 3 year period, starting from 1 January 2007 to 31 December 2009, in the Department of Internal Medicine and Nephrology at University Hospital of Antananarivo. The incidence was 8.51% among patients hospitalized in the Department. The average age of patients was 45.4 years with extremes of 16 and 82 years and a sex ratio 1,46. The main antecedent was arterial hypertension (59.8%). Chronic renal failure was terminal in 75.31% of the cases (n=180). The causes of chronic renal failure were dominated by chronic glomerulonephritis (40.1%), nephroangiosclerosis (35.5%). Hemodialysis was performed in 3 patients (1.26%), no patient was scheduled for a renal transplantation. Mortality rate in the Department was 28.87%. Chronic renal failure is a debilitating disease with a dreadful prognosis which affects young patients in Madagascar. Its treatment remains inaccessible to the majority of patients. The focus must be mainly on prevention, especially on early effective management of infections, arterial hypertension and diabetes to reduce its negative impacts on the community and public health. The project on renal transplantation: living donor, effective and less expensive treatment compared to hemodialysis could also be a good solution for these Malagasy young subjects.

  12. Spatial map dose of nuclear medicine service of the Clinical Hospital of Botucatu, SP, Brazil; Mapa espacial de dose do servico de medicina nuclear do Hospital das Clinicas de Botucatu

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Caio V.; Mendonca, Caroline; Silva, Eduardo T.; Moriguchi, Sonia M.; Koga, Katia H., E-mail: caiov_oliveira@yahoo.com.br [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Botucatu, SP (Brazil). Faculdade de Medicina

    2013-12-15

    This study was conducted to describe levels of occupational and environmental exposure of the Nuclear Medicine Service of the Clinical Hospital of Botucatu. To this end, measurements were made of the radiometric levels of points strategically defined, in all the environments, for a period of six months, sampling different days and times, during operation normal routine of the sector. The results allow to estimate the expected dose for each environment, comparing them to the dose limitation established by the National Commission of Nuclear Energy (CNEN), allowing better targeting of occupationally exposed individuals, indicating the points where the occupation should be the minimum required, enabling the reduction of risks to potential exposures. (author)

  13. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... including many types of cancers, heart disease, gastrointestinal, endocrine, neurological disorders and other abnormalities within the body. ... Physicians use nuclear medicine imaging to evaluate organ systems, including the: kidneys and bladder. bones. liver and ...

  14. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... beforehand, especially if sedation is to be used. Most nuclear medicine exams will involve an injection in ... PET/CT, SPECT/CT and PET/MR) are most often used in children with cancer, epilepsy and ...

  15. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... small amount of energy in the form of gamma rays. Special cameras detect this energy, and with ... imaging techniques used in nuclear medicine include the gamma camera and single-photon emission-computed tomography (SPECT). ...

  16. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... to be followed after leaving the nuclear medicine facility. Through the natural process of radioactive decay, the ... Please note RadiologyInfo.org is not a medical facility. Please contact your physician with specific medical questions ...

  17. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... top of page What are the benefits vs. risks? Benefits The information provided by nuclear medicine examinations ... diagnosis or to determine appropriate treatment, if any. Risks Because the doses of radiotracer administered are small, ...

  18. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... of page How does the nuclear medicine procedure work? With ordinary x-ray examinations, an image is ... result, imaging may be done immediately, a few hours later, or even a few days after your ...

  19. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... exams at the same time. An emerging imaging technology, but not readily available at this time is ... leaving the nuclear medicine facility. Through the natural process of radioactive decay, the small amount of radiotracer ...

  20. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... leaving the nuclear medicine facility. Through the natural process of radioactive decay, the small amount of radiotracer ... possible charges you will incur. Web page review process: This Web page is reviewed regularly by a ...

  1. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... of page How does the nuclear medicine procedure work? With ordinary x-ray examinations, an image is ... The exception to this is if the child’s mother is pregnant. When the examination is completed, your ...

  2. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... the most useful information needed to make a diagnosis or to determine appropriate treatment, if any. Risks Because the doses of radiotracer administered are small, diagnostic nuclear medicine procedures result in low radiation exposure, ...

  3. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... nuclear medicine images can be superimposed with computed tomography (CT) or magnetic resonance imaging (MRI) to produce ... manufacturers are now making single photon emission computed tomography/computed tomography (SPECT/CT) and positron emission tomography/ ...

  4. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Because the doses of radiotracer administered are small, diagnostic nuclear medicine procedures result in low radiation exposure, acceptable for diagnostic exams. Thus, the radiation risk is very low ...

  5. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... molecular information. In many centers, nuclear medicine images can be superimposed with computed tomography (CT) or magnetic ... small hand-held device resembling a microphone that can detect and measure the amount of the radiotracer ...

  6. Tomography in nuclear medicine

    International Nuclear Information System (INIS)

    Levi de Cabrejas, Mariana

    1999-01-01

    This book is a contribution to the training and diffusion of the tomography method image diagnosis in nuclear medicine, which principal purpose is the information to professionals and technical personnel, specially for the spanish speaking staff

  7. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... both imaging exams at the same time. An emerging imaging technology, but not readily available at this ... often unattainable using other imaging procedures. For many diseases, nuclear medicine scans yield the most useful information ...

  8. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... endocrine, neurological disorders and other abnormalities within the body. Because nuclear medicine procedures are able to pinpoint molecular activity within the body, they offer the potential to identify disease in ...

  9. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... and are rarely associated with significant discomfort or side effects. If the radiotracer is given intravenously, your child ... techniques for a variety of indications, and the functional information gained from nuclear medicine exams is often ...

  10. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... to Children's (Pediatric) Nuclear Medicine Sponsored by Please note RadiologyInfo.org is not a medical facility. Please ... is further reviewed by committees from the American College of Radiology (ACR) and the Radiological Society of ...

  11. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... variety of diseases, including many types of cancers, heart disease, gastrointestinal, endocrine, neurological disorders and other abnormalities ... and bladder. bones. liver and gallbladder. gastrointestinal tract. heart. lungs. brain. thyroid. Nuclear medicine scans are typically ...

  12. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... bones. liver and gallbladder. gastrointestinal tract. heart. lungs. brain. thyroid. Nuclear medicine scans are typically used to ... differently than when breathing room air or holding his or her breath. With some exams, a catheter ...

  13. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... MRI. top of page What are some common uses of the procedure? Children's (pediatric) nuclear medicine imaging ... community, you can search the ACR-accredited facilities database . This website does not provide cost information. The ...

  14. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... computer, create pictures offering details on both the structure and function of organs and tissues in your ... substantially shorten the procedure time. The resolution of structures of the body with nuclear medicine may not ...

  15. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... kidneys and bladder. bones. liver and gallbladder. gastrointestinal tract. heart. lungs. brain. thyroid. Nuclear medicine scans are typically used to help diagnose and evaluate: urinary blockage in the kidney. backflow of urine from ...

  16. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... exams at the same time. An emerging imaging technology, but not readily available at this time is PET/MRI. top of page What are some common uses of the procedure? Children's (pediatric) nuclear medicine imaging ...

  17. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... the procedure? How does the nuclear medicine procedure work? What does the equipment look like? How is the procedure performed? What will my child experience during and after the procedure? How should ...

  18. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... of page How does the nuclear medicine procedure work? With ordinary x-ray examinations, an image is ... and other metallic accessories should be left at home if possible, or removed prior to the exam ...

  19. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... also very helpful. Often, a monitor with children's programming and/or children’s DVDs are available in the ... techniques for a variety of indications, and the functional information gained from nuclear medicine exams is often ...

  20. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... The teddy bear denotes child-specific content. Related Articles and Media General Nuclear Medicine Children's (Pediatric) CT ( ... About Us | Contact Us | FAQ | Privacy | Terms of Use | Links | Site Map Copyright © 2018 Radiological Society of ...

  1. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... of page How does the nuclear medicine procedure work? With ordinary x-ray examinations, an image is ... than five decades, and there are no known long-term adverse effects from such low-dose exposure. ...

  2. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... exams at the same time. An emerging imaging technology, but not readily available at this time is ... bones. liver and gallbladder. gastrointestinal tract. heart. lungs. brain. thyroid. Nuclear medicine scans are typically used to ...

  3. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... performed to help diagnose childhood disorders that are congenital (present at birth) or that develop during childhood. ... often unattainable using other imaging procedures. For many diseases, nuclear medicine scans yield the most useful information ...

  4. Nuclear medicine and radiopharmacy

    International Nuclear Information System (INIS)

    Leon A, M. C.

    2008-12-01

    In the areas of Nuclear Medicine and Radiopharmacy frequently happens that the personnel that is incorporated as a candidate to serve as personnel occupationally exposed have varied skills, not necessarily have an ingrained culture of safety and radiation protection, some are resistant to adoption a work discipline and have very limited notions of normalization, including the safety basic standards. In fact, referring to the safety basic standards, concepts such as practice justification, protection optimization and dose limitation, can be very abstract concepts for such personnel. In regard to training strategies, it was noted that training in the work is an effective tool although it is very demanding for the learner but mainly for the teaches. The experts number that can occur in this manner is limited because it is an individualized system; however those from the process usually acquire a good preparation, which certainly includes theoretical aspects. For greater efficiency it is necessary that hospitals account facilities, procedures and personnel that might have an exclusive dedication to education and training of human resources. This would create a safety culture, alleviating the burdens of the already existing expertise and improves the training conditions. The Mexican Society of Radiological Safety (SMSR) can help in these efforts through the publication of guides aimed at work training, coordination and articulation of the possible courses already on the market and own the courses organization, workshops and conferences with more frequency. It would also serves that the SMSR acts as speaker with political actors, advocating for the courses validation offered by higher learning institutions, coordinating and promoting postgraduates in Nuclear Medicine and Radiopharmacy. (Author)

  5. Radioisotopes in nuclear medicine

    International Nuclear Information System (INIS)

    Samuel, A.M.

    2002-01-01

    Full text: A number of advances in diverse fields of science and technology and the fruitful synchronization of many a new development to address the issues related to health care in terms of prognosis and diagnosis resulted in the availability of host of modern diagnostic tools in medicine. Nuclear medicine, a unique discipline in medicine is one such development, which during the last four decades has seen exponential growth. The unique contribution of this specialty is the ability to examine the dynamic state of every organ of the body with the help of radioactive tracers. This tracer application in nuclear medicine to monitor the biological molecules that participate in the dynamic state of body constituents has led to a whole new approach to biology and medicine. No other technique has the same level of sensitivity and specificity as obtained in radiotracer technique in the study of in-situ chemistry of body organs. As modem medicine becomes oriented towards molecules rather than organs, nuclear medicine will be in the forefront and will become an integral part of a curative process for regular and routine application. Advances in nuclear medicine will proceed along two principal lines: (i) the development of improved sensitive detectors of radiation, powerful and interpretable data processing, image analysis and display techniques, and (ii) the production of exotic and new but useful radiopharmaceuticals. All these aspects are dealt with in detail in this talk

  6. Oiling the gate: a mobile application to improve the admissions process from the emergency department to an academic community hospital inpatient medicine service.

    Science.gov (United States)

    Fung, Russell; Hyde, Jensen Hart; Davis, Mike

    2018-01-01

    The process of admitting patients from the emergency department (ED) to an academic internal medicine (AIM) service in a community teaching hospital is one fraught with variability and disorder. This results in an inconsistent volume of patients admitted to academic versus private hospitalist services and results in frustration of both ED and AIM clinicians. We postulated that implementation of a mobile application (app) would improve provider satisfaction and increase admissions to the academic service. The app was designed and implemented to be easily accessible to ED physicians, regularly updated by academic residents on call, and a real-time source of the number of open AIM admission spots. We found a significant improvement in ED and AIM provider satisfaction with the admission process. There was also a significant increase in admissions to the AIM service after implementation of the app. We submit that the implementation of a mobile app is a viable, cost-efficient, and effective method to streamline the admission process from the ED to AIM services at community-based hospitals.

  7. Use and toxicity of traditional and complementary medicine among patients seeking care at an emergency department of a teaching hospital in Malaysia.

    Science.gov (United States)

    Jatau, Abubakar Ibrahim; Aung, Myat Moe Thwe; Kamauzaman, Tuan Hairulnizam Tuan; Ab Rahman, Ab Fatah

    2018-05-01

    Traditional and Complementary Medicines (TCM) are widely used worldwide, and many of them have the potential to cause toxicity, interaction with conventional medications and non-adherence to prescribed medications due to patients' preference for the TCM use. However, information regarding their use among patients seeking care at emergency departments (ED) of a healthcare facility is limited. The study aimed to evaluate the TCM use among patients attending the ED of a teaching hospital in Malaysia. A sub-analysis of data from a prevalence study of medication-related visits among patients at the ED of Hospital Universiti Sains Malaysia was conducted. The study took place over a period of six weeks from December 2014 to January 2015 involving 434 eligible patients. Data on demography, conventional medication, and TCM uses were collected from patient interview and the medical folders. Among this cohort, 66 patients (15.2%, 95%CI 12.0, 19.0) reported concurrent TCM use. Sixteen (24.2%) of the TCM users were using more than one (1) type of TCM, and 17 (25.8%) came to the ED for medication-related reasons. Traditional Malay Medicine (TMM) was the most frequently used TCM by the patients. Five patients (7.6%) sought treatment at the ED for medical problems related to use of TCM. Patients seeking medical care at the ED may be currently using TCM. ED-physicians should be aware of these therapies and should always ask patients about the TCM use. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Nuclear medicine in emergency

    International Nuclear Information System (INIS)

    Mansi, L.; Rambaldi, P.F.; Cuccurullo, V.; Varetto, T.

    2005-01-01

    The role of a procedure depends not only on its own capabilities but also on a cost/effective comparison with alternative technique giving similar information. Starting from the definition of emergency as a sudden unexpected occurrence demanding immediate action, the role of nuclear medicine (NM) is difficult to identify if it is not possible to respond 24h a day, 365 days a year, to clinical demands. To justify a 24 h NM service it is necessary to reaffirm the role in diagnosis of pulmonary embolism in the spiral CT era, to spread knowledge of the capabilities of nuclear cardiology in reliability diagnosis myocardial infraction (better defining admission and discharge to/from the emergency department), to increase the number of indications. Radionuclide technique could be used as first line, alternative, complementary procedures in a diagnostic tree taking into account not only the diagnosis but also the connections with prognosis and therapy in evaluating cerebral pathologies, acute inflammation/infection, transplants, bleeding, trauma, skeletal, hepatobiliary, renal and endocrine emergencies, acute scrotal pain

  9. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... radioactive energy that is emitted from the patient's body and converts it into an image. The gamma camera itself does not emit any ... bear denotes child-specific content. Related Articles and Media General Nuclear ... (Pediatric) Nuclear Medicine Videos related ...

  10. Experimental nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Dormehl, I C [Nuclear Development Corp. of South Africa (Pty.) Ltd., Pelindaba, Pretoria. Inst. of Life Sciences; Du Plessis, M; Jacobs, D J

    1983-07-01

    Exciting investigative research, widening the dimensions of conventional nuclear medicine, is being conducted in Pretoria where the development and evaluation of new radiopharmaceuticals in particular is attracting international attention. Additional to this, the development of new diagnostic techniques involving sophisticated data processing, is helping to place South Africa firmly in the front line of nuclear medical progress.

  11. A cohort study to analyze the risk of venous thromboembolism mortality in patients admitted to the general medicine department, tan tock seng hospital, singapore.

    Science.gov (United States)

    Sule, Ashish Anil; Chin, Tay Jam; Sinnathamby, Letchumi; Lee, Hwei Khien; Earnest, Arul

    2011-06-01

    The purpose of this study was to assess the risk of venous thromboembolism (VTE) in patients admitted to the Tan Tock Seng Hospital (TTSH), Singapore during October and November 2009. The primary outcome assessed was mortality due to VTE, or development of deep vein thrombosis or pulmonary embolism (PE) within 3 months from the day of admission. Both univariate and multivariate analyses were performed for all-cause mortality and deaths associated with PE. Seven hundred twenty-one patients admitted to the 5th floor of the General Medicine Department, TTSH, during the 2 months were analyzed. There were 368 (51.04%) female patients and 353 (48.96%) male patients. As per race distribution, 566 (78.50%) patients were Chinese, 100 (13.86%) patients were Malaysians, 46 (6.38%) patients were Indians, and 9 (1.26%) were other races. Four hundred ninety-two (68.24%) were independent for activities of daily living (ADL) and 229 (31.76%) were dependent for all ADL. There were in all 42 deaths. There were definite PE deaths in 2 (4.76%) patients, probable PE deaths in 3 (7.14%) patients, and suspected PE deaths in 8 (19.05%) patients. Twenty (47.62%) deaths were due to pneumonia, 3 (7.14%) deaths were due to urinary tract infections, and 4 (9.52%) deaths were due to other infections. Two (4.76%) deaths were due to myocardial infarction. The risk of VTE was high in acutely ill patients admitted to the General Medicine Department, TTSH, Singapore. The factors that predispose patients to a very high risk are ADL dependence, acute heart failure, past history of VTE, or if they are clinically dehydrated and have acute renal failure. This warrants increased awareness and need for VTE prophylaxis.

  12. Nuclear Medicine on the net

    International Nuclear Information System (INIS)

    Graney, K.; Lin, P.C.; Chu, J.; Sathiakumur, C.

    2003-01-01

    Full text: To gain insight into Internet usage as a potential means of communicating with clinicians. Method: 200 clinicians within the South Western Sydney Health Area were surveyed by mail. Questionnaire details included Internet access, frequency of access, interest in department web site, suitability of content and interest in electronic bookings. The total response rate was 37% (74/200). General Practitioners comprised 46% of the respondents, and specialists 54%. All respondents had access to the Internet (44% from home only, 8% from work, 48% from both locations), with 57% accessing the Web daily. There was a high overall interest by respondents in accessing a Nuclear medicine web site, particularly for information and results, but a relative reluctance to consider electronic bookings. The following table outlines the respondents in detail. Our results indicate that a Nuclear Medicine web site has the potential to be an effective means of communicating with clinicians. Copyright (2003) The Australian and New Zealand Society of Nuclear Medicine Inc

  13. Radiation protection in nuclear medicine

    International Nuclear Information System (INIS)

    Seeburrun, V.

    2013-04-01

    Radiation protection in nuclear medicine in this project is concerned with the reduction of doses to workers, patients and members of the public. Protection of workers is achieved by adopting good personal habits, good housekeeping, proper use of personal protective devices and equipment, attend training and have continuous education. Exposure to radiation of workers and the members of the public are minimised by proper management of radioactive waste and safe transport of radioactive material. The design and shielding of a nuclear medicine department shall further provide for the protection of the worker, the patient and the general public. Protection of patient is achieved by justifying the procedure, delivering the minimum radiation dose possible to the patient while obtaining the best image quality and applying guidance levels. Special considerations shall be given to pregnant and breast-feeding patients. Quality assurance programme through image quality, radiopharmaceutical quality and patient records on nuclear medicine procedures shall provide assurance to the patient. (au)

  14. Special radiation protection aspects of radiotherapy and nuclear medicine in a medium-sized Swiss hospital

    International Nuclear Information System (INIS)

    Benes, I.; Heinzel, F.; Mueller-Duysing, W.

    1985-01-01

    The evolution of radiation protection in Switzerland caused the Triemli City Hospital to implement building modifications throughout its 13 years of existence which have not been completed todate. However, modest methods allowed to find practicable solutions which largely comply with today's radiation protection regulation. Radiation protection provisions have been rendered more stringent thus resulting in more jobs. At least one additional staff member is required in order to discharge all supervisory functions required like incorporation controls, controls of cleaning and technical staff for their working correctly, contamination controls of floors and working areas, exit controls of special working clothes, etc. The best solution for the hospital would be to have one health physics man specifically commissioned with and employed for radiation protection. (orig./HSCH) [de

  15. Paediatric nuclear medicine imaging.

    Science.gov (United States)

    Biassoni, Lorenzo; Easty, Marina

    2017-09-01

    Nuclear medicine imaging explores tissue viability and function by using radiotracers that are taken up at cellular level with different mechanism. This imaging technique can also be used to assess blood flow and transit through tubular organs. Nuclear medicine imaging has been used in paediatrics for decades and this field is continuously evolving. The data presented comes from clinical experience and some milestone papers on the subject. Nuclear medicine imaging is well-established in paediatric nephro-urology in the context of urinary tract infection, ante-natally diagnosed hydronephrosis and other congenital renal anomalies. Also, in paediatric oncology, I-123-meta-iodobenzyl-guanidine has a key role in the management of children with neuroblastic tumours. Bone scintigraphy is still highly valuable to localize the source of symptoms in children and adolescents with bone pain when other imaging techniques have failed. Thyroid scintigraphy in neonates with congenital hypothyroidism is the most accurate imaging technique to confirm the presence of ectopic functioning thyroid tissue. Radionuclide transit studies of the gastro-intestinal tract are potentially useful in suspected gastroparesis or small bowel or colonic dysmotility. However, until now a standardized protocol and a validated normal range have not been agreed, and more work is necessary. Research is ongoing on whether magnetic resonance imaging (MRI), with its great advantage of great anatomical detail and no ionizing radiations, can replace nuclear medicine imaging in some clinical context. On the other hand, access to MRI is often difficult in many district general hospitals and general anaesthesia is frequently required, thus adding to the complexity of the examination. Patients with bone pain and no cause for it demonstrated on MRI can benefit from bone scintigraphy with single photon emission tomography and low-dose computed tomography. This technique can identify areas of mechanical stress at

  16. Nuclear medicine resources manual

    International Nuclear Information System (INIS)

    2006-02-01

    Over the past decade many IAEA programmes have significantly enhanced the capabilities of numerous Member States in the field of nuclear medicine. Functional imaging using nuclear medicine procedures has become an indispensable tool for the diagnosis, treatment planning and management of patients. However, due to the heterogeneous growth and development of nuclear medicine in the IAEA's Member States, the operating standards of practice vary considerably from country to country and region to region. This publication is the result of the work of over 30 international professionals who have assisted the IAEA in the process of standardization and harmonization. This manual sets out the prerequisites for the establishment of a nuclear medicine service, including basic infrastructure, suitable premises, reliable supply of electricity, maintenance of a steady temperature, dust exclusion for gamma cameras and radiopharmacy dispensaries. It offers clear guidance on human resources and training needs for medical doctors, technologists, radiopharmaceutical scientists, physicists and specialist nurses in the practice of nuclear medicine. The manual describes the requirements for safe preparation and quality control of radiopharmaceuticals. In addition, it contains essential requirements for maintenance of facilities and instruments, for radiation hygiene and for optimization of nuclear medicine operational performance with the use of working clinical protocols. The result is a comprehensive guide at an international level that contains practical suggestions based on the experience of professionals around the globe. This publication will be of interest to nuclear medicine physicians, radiologists, medical educationalists, diagnostic centre managers, medical physicists, medical technologists, radiopharmacists, specialist nurses, clinical scientists and those engaged in quality assurance and control systems in public health in both developed and developing countries

  17. Nuclear Medicine Engineering

    International Nuclear Information System (INIS)

    Mateescu, Gheorghe; Craciunescu, Teddy

    2000-01-01

    'An image is more valuable than a thousand words' - this is the thought that underlies the authors' vision about the field of nuclear medicine. The monograph starts with a review of some theoretical and engineering notions that grounds the field of nuclear medicine: nuclear radiation, interaction of radiation with matter, radiation detection and measurement, numerical analysis. Products and methods needed for the implementation of diagnostic and research procedures in nuclear medicine are presented: radioisotopes and radiopharmaceuticals, equipment for in-vitro (radioimmunoassay, liquid scintillation counting) and in-vivo investigations (thyroid uptake, renography, dynamic studies, imaging). A special attention is focused on medical imaging theory and practice as a source of clinical information (morphological and functional). The large variety of parameters, components, biological structures and specific properties of live matter determines the practical use of three-dimensional tomographic techniques based on diverse physical principles: single-photon emission, positron emission, X-rays transmission, nuclear magnetic resonance, ultrasounds transmission and reflection, electrical impedance measurement. The fundamental reconstruction algorithms i.e., algorithms based on the projection theorem and Fourier filtering, algebraic reconstruction techniques and the algorithms based on statistical principles: maximum entropy, maximum likelihood, Monte Carlo algorithms, are depicted in details. A method based on the use of the measured point spread function is suggested. Some classical but often used techniques like linear scintigraphy and Anger gamma camera imaging are also presented together with some image enhancement techniques like Wiener filtering and blind deconvolution. The topic of the book is illustrated with some clinical samples obtained with nuclear medicine devices developed in the Nuclear Medicine Laboratory of the National Institute of Nuclear Physics and

  18. Pediatric nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    This symposium presented the latest techniques and approaches to the proper medical application of radionuclides in pediatrics. An expert faculty, comprised of specialists in the field of pediatric nuclear medicine, discussed the major indications as well as the advantages and potential hazards of nuclear medicine procedures compared to other diagnostic modalities. In recent years, newer radiopharmaceuticals labeled with technetium-99m and other short-lived radionuclides with relatively favorable radiation characteristics have permitted a variety of diagnostic studies that are very useful clinically and carry a substantially lower radiation burden then many comparable X-ray studies. This new battery of nuclear medicine procedures is now widely available for diagnosis and management of pediatric patients. Many recent research studies in children have yielded data concerning the effacacy of these procedures, and current recommendations will be presented by those involved in conducting such studies. Individual papers are processed separately for the Energy Data Base.

  19. Pediatric nuclear medicine

    International Nuclear Information System (INIS)

    1986-01-01

    This symposium presented the latest techniques and approaches to the proper medical application of radionuclides in pediatrics. An expert faculty, comprised of specialists in the field of pediatric nuclear medicine, discussed the major indications as well as the advantages and potential hazards of nuclear medicine procedures compared to other diagnostic modalities. In recent years, newer radiopharmaceuticals labeled with technetium-99m and other short-lived radionuclides with relatively favorable radiation characteristics have permitted a variety of diagnostic studies that are very useful clinically and carry a substantially lower radiation burden then many comparable X-ray studies. This new battery of nuclear medicine procedures is now widely available for diagnosis and management of pediatric patients. Many recent research studies in children have yielded data concerning the effacacy of these procedures, and current recommendations will be presented by those involved in conducting such studies. Individual papers are processed separately for the Energy Data Base

  20. Nuclear medicine tomorrow

    International Nuclear Information System (INIS)

    Marko, A.M.

    1986-04-01

    The purpose of this Workshop was to discuss and promote future nuclear medicine applications. Atomic Energy of Canada Limited (AECL) is determined to assist in this role. A major aim of this gathering was to form an interface that was meaningful, representative of the two entities, and above all, on-going. In the opening address, given by Mr. J. Donnelly, President of AECL, this strong commitment was emphasized. In the individual sessions, AECL participants outlined R and D programs and unique expertise that promised to be of interest to members of the nuclear medicine community. The latter group, in turn, described what they saw as some problems and needs of nuclear medicine, especially in the near future. These Proceedings comprise the record of the formal presentations. Additionally, a system of reporting by rapporteurs insured a summary of informal discussions at the sessions and brought to focus pertinent conclusions of the workshop attendees

  1. Nuclear tele medicine

    International Nuclear Information System (INIS)

    Vargas, L.; Hernandez, F.; Fernandez, R.

    2005-01-01

    The great majority of the digital images of nuclear medicine are susceptible of being sent through internet. This has allowed that the work in diagnosis cabinets by image it can benefit of this modern technology. We have presented in previous congresses works related with tele medicine, however, due to the speed in the evolution of the computer programs and the internet, becomes necessary to make a current position in this modality of work. (Author)

  2. Maladministrations in nuclear medicine

    International Nuclear Information System (INIS)

    Smart, R.C.

    2002-01-01

    Maladministration has been defined as the mistaken administration of a radiopharmaceutical to a patient. Examples include the administration of the wrong radiopharmaceutical or the wrong activity to the correct patient or the administration of the correct radiopharmaceutical to the wrong patient. Although maladministrations are rare, lessons can be learnt from the incidents that do occur. Medical maladministrations and other radiation incidents are discussed by members of the NSW Hospital and University Radiation Safety Officers Group (HURSOG) at their bi-monthly meetings. During the three years of 1997-1999 fourteen incidents of maladministrations in nuclear medicine were reported. Analysis of these reports indicated that eight (57 %) were due to the wrong radiopharmaceutical having been administered. This usually occurred because the technologist had selected the wrong lyophilised agent when the radiopharmaceutical was being prepared, or selected the wrong vial of the reconstituted agent. For example, in one instance a vial of MAG3 was reconstituted instead of a vial of HMPAO. These mistakes occurred even though the vials were clearly labelled and sometimes had different coloured labels. Of the remaining 6 cases, two involved the wrong activity being administered due to a mis-read dose calibrator, two involved the wrong procedure being performed following a breakdown in communication and the final two incidents resulted in the wrong patient being administered the radiopharmaceutical. In order to minimise the possibility of recurrence of these incidents the NSW Radiation Advisory Council asked the NSW Branch of the Australian and New Zealand Society of Nuclear Medicine and HURSOG to jointly convene a Working Party to prepare Guidelines for the administration of radiopharmaceuticals. The Guidelines specify: 1. the procedure for the validation of the requested investigation on the request form 2. who should reconstitute, dispense and administer radiopharmaceuticals

  3. Physics in nuclear medicine

    CERN Document Server

    Cherry, Simon R; Phelps, Michael E

    2012-01-01

    Physics in Nuclear Medicine - by Drs. Simon R. Cherry, James A. Sorenson, and Michael E. Phelps - provides current, comprehensive guidance on the physics underlying modern nuclear medicine and imaging using radioactively labeled tracers. This revised and updated fourth edition features a new full-color layout, as well as the latest information on instrumentation and technology. Stay current on crucial developments in hybrid imaging (PET/CT and SPECT/CT), and small animal imaging, and benefit from the new section on tracer kinetic modeling in neuroreceptor imaging.

  4. Children in nuclear medicine

    International Nuclear Information System (INIS)

    Fischer, S.

    2002-01-01

    With each study in paediatric nuclear medicine one must try to reach a high quality standard with a minimum of radiation exposure to the child. This is true for the indication for the study and the interpretation of the results as well as the preparation, the image acquisition, the processing and the documentation. A continuous evaluation of all aspects is necessary to receive optimal, clinically relevant information. In addition it is important that the child keeps nuclear medicine in a good mind, especially when it has to come back for a control study. (orig.) [de

  5. The development of nuclear medicine in Slovenia and Ljubljana; half a century of nuclear medicine in Slovenia

    International Nuclear Information System (INIS)

    Slavec, Zvonka Zupanic; Gaberscek, Simona; Slavec, Ksenija

    2012-01-01

    Nuclear medicine began to be developed in the USA after 1938 when radionuclides were introduced into medicine and in Europe after radionuclides began to be produced at the Harwell reactor (England, 1947). Slovenia began its first investigations in the 1950s. This article describes the development of nuclear medicine in Slovenia and Ljubljana. The first nuclear medicine interventions were performed in Slovenia at the Internal Clinic in Ljubljana in the period 1954–1959. In 1954, Dr Jože Satler started using radioactive iodine for thyroid investigations. In the same year, Dr Bojan Varl, who is considered the pioneer of nuclear medicine in Slovenia, began systematically introducing nuclear medicine. The first radioisotope laboratories were established in January 1960 at the Institute of Oncology and at the Internal Clinic. Under the direction of Dr. Varl, the laboratory at the Internal Clinic developed gradually and in 1973 became the Clinic for Nuclear Medicine with departments for in vivo and in vitro diagnostics and for the treatment of inpatients and outpatients at the thyroid department. The Clinic for Nuclear Medicine became a teaching unit of the Medical Faculty and developed its own post-graduate programme – the first student enrolled in 1972. In the 1960s, radioisotope laboratories opened in the general hospitals of Slovenj Gradec and Celje, and in the 1970s also in Maribor, Izola and Šempeter pri Novi Gorici. Nowadays, nuclear medicine units are modernly equipped and the staff is trained in morphological, functional and laboratory diagnostics in clinical medicine. They also work on the treatment of cancer, increased thyroid function and other diseases

  6. Training and education in nuclear medicine at the Medical Faculty of the University of Zagreb

    International Nuclear Information System (INIS)

    Ivancevic, D.; Popovic, S.; Simonovic, I.; Vlatkovic, M.

    1986-01-01

    Training for specialization in nuclear medicine in Yugoslavia includes 12 months of training in departments of clinical medicine and 24 months of training in departments of nuclear medicine. Since 1974 many physicians have passed the specialist examination in Zagreb. A postgraduate study in nuclear medicine began at the Medical Faculty of the University of Zagreb in 1979. It includes four semesters of courses and research on a selected subject leading to the degree of Magister (Master of Science). Most of the training is conducted by the Institute of Nuclear Medicine at the University Hospital, Rebro, in Zagreb, which has the necessary teaching staff, equipment and space. Forty-four students have completed this postgraduate study. Nuclear medicine in a developing country faces several problems. Scarcity of expensive equipment and radiopharmaceuticals calls for modifications of methods, home made products and instrument maintenance. These, mostly economic, factors are given special emphasis during training. Nuclear power generation may solve some of the country's energy problems; therefore, specialists in nuclear medicine must obtain additional knowledge about the medical care and treatment of persons who might be subject to irradiation and contamination in nuclear power plants. Lower economic resources in developing countries require better trained personnel, stressing the need for organized training and education in nuclear medicine. With some support the Institute of Nuclear Medicine will be able to offer various forms of training and education in nuclear medicine for physicians, chemists, physicists, technologists and other personnel from developing countries. (author)

  7. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician Resources Professions Site Index A-Z Children's (Pediatric) Nuclear Medicine ...

  8. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... measure the amount of the radiotracer in a small area of your child's body. top of page How is the procedure performed? Nuclear medicine imaging is usually performed on an ... Intravenous: a small needle is used to inject the radiotracer. The ...

  9. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... diagnoses. In addition, manufacturers are now making single photon emission computed tomography/computed tomography (SPECT/CT) and ... nuclear medicine include the gamma camera and single-photon emission-computed tomography (SPECT). The gamma camera, also ...

  10. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... The special camera and imaging techniques used in nuclear medicine include the gamma camera and single-photon emission-computed tomography (SPECT). The gamma camera, also called a scintillation camera, detects radioactive energy that is emitted from the patient's body and ...

  11. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Pediatric) Nuclear Medicine Sponsored by Please note RadiologyInfo.org is not a medical facility. Please contact your ... links: For the convenience of our users, RadiologyInfo .org provides links to relevant websites. RadiologyInfo.org , ACR ...

  12. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... exams at the same time. An emerging imaging technology, but not readily available at this time is PET/MRI. top of page What are some common uses of the procedure? Children's (pediatric) nuclear medicine imaging is performed to help ...

  13. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... both imaging exams at the same time. An emerging imaging technology, but not readily available at this time is PET/MRI. top of page What are some common uses of the procedure? Children's (pediatric) nuclear medicine imaging is performed to help diagnose childhood disorders ...

  14. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... nuclear medicine images can be superimposed with computed tomography (CT) or magnetic resonance imaging (MRI) to produce special ... now making single photon emission computed tomography/computed tomography (SPECT/CT) and positron emission tomography/computed tomography (PET/CT) ...

  15. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... drink before the exam, especially if your physician plans to use sedation for the procedure. top of page Who interprets the results and how do we get them? A radiologist or other physician who has specialized training in nuclear medicine will interpret the images and ...

  16. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... pictures and provides molecular information. In many centers, nuclear medicine images can be superimposed with computed tomography (CT) or magnetic resonance imaging (MRI) to produce special views, a practice known as image fusion or co-registration. These views allow the information ...

  17. Pulmonary explorations in nuclear medicine

    International Nuclear Information System (INIS)

    Beck, C.

    1987-01-01

    Ten years ago specialists in Nuclear Medicine from the South of France formed an Association called ACOMEN. The objectives were to create a permanent exchange of ideas between members and a close collaboration with physicians. The group objectives have led to a combination of efforts on the behalf of each one to clarify our techniques for physicians having recourse to this speciality as well as the various categories of students passing through the Nuclear Medicine Departments. Different groups within the ACOMEN were assigned to specific subjects. Each group was in charge of building the framework of a certain topic, which was then illustrated by selected documents contributed by all members. A slide collection, complete with an explanatory booklet is the final result of this collaboration. Thus anyone concerned in any way, with nuclear medicine, is able to quickly become familiar with the techniques of the speciality, to be aware of its possibilities and its limitations and to update his hnowledge. One realizes that the first theme selected was not the easiest; pulmonary radionuclide explorations are, as everyone knows, variable and even personalized. However, the choice was deliberate. The difficulty should stimulate those responsible for the other themes as well as the people working with them. There is already a slide collection available to anyone who wishes to learn about the use of nuclear medicine in the diagnosis of respiratory diseases [fr

  18. Computer applications in nuclear medicine

    International Nuclear Information System (INIS)

    Lancaster, J.L.; Lasher, J.C.; Blumhardt, R.

    1987-01-01

    Digital computers were introduced to nuclear medicine research as an imaging modality in the mid-1960s. Widespread use of imaging computers (scintigraphic computers) was not seen in nuclear medicine clinics until the mid-1970s. For the user, the ability to acquire scintigraphic images into the computer for quantitative purposes, with accurate selection of regions of interest (ROIs), promised almost endless computational capabilities. Investigators quickly developed many new methods for quantitating the distribution patterns of radiopharmaceuticals within the body both spatially and temporally. The computer was used to acquire data on practically every organ that could be imaged by means of gamma cameras or rectilinear scanners. Methods of image processing borrowed from other disciplines were applied to scintigraphic computer images in an attempt to improve image quality. Image processing in nuclear medicine has evolved into a relatively extensive set of tasks that can be called on by the user to provide additional clinical information rather than to improve image quality. Digital computers are utilized in nuclear medicine departments for nonimaging applications also, Patient scheduling, archiving, radiopharmaceutical inventory, radioimmunoassay (RIA), and health physics are just a few of the areas in which the digital computer has proven helpful. The computer is useful in any area in which a large quantity of data needs to be accurately managed, especially over a long period of time

  19. Radiation protection on nuclear medicine services

    International Nuclear Information System (INIS)

    Anon

    2000-01-01

    Nuclear medicine is a sector of the medicine that studies and applies radionuclide in diagnosis and therapy. Nuclear medicine is a very specific area of the medicine, making use of non-sealed radioactive sources which are prescribed to the patient orally or are injected. Special procedures in radiation protection are required in nuclear medicine to manipulate these kind of sources and to produce technetium-99m through molybdenum generator. The present paper addresses the them radiation protection in a Nuclear Medicine Department (NMD), showing the main requirements of the CNEN- National Commission of Nuclear Energy and the Public Health. Radiation protection procedures adopted in assembling a NMD, as well the daily techniques for monitoring and for individual dosimetry are discussed. Past and present analyses in a level of radiation protection are presented. (author)

  20. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... you about nuclear medicine. Nuclear medicine offers the potential to identify disease in its earliest stage, often ... may be asked to wear a gown as well. Tell your doctor if there is any possibility ...

  1. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... Nuclear Medicine Transcript Welcome to Radiology Info dot org Hello! I’m Dr. Ramji Rajendran, a radiation ... more about nuclear medicine, visit Radiology Info dot org. Thank you for your time! Spotlight Recently posted: ...

  2. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... stage, often before symptoms occur or before abnormalities can be detected with other diagnostic tests. Nuclear medicine ... nuclear medicine exam, there are several things you can do to prepare. First, you may be asked ...

  3. Magistral preparation in nuclear medicine departments: Requirements for their realization; Preparations magistrales en radiopharmacie: contraintes liees a la mise en place

    Energy Technology Data Exchange (ETDEWEB)

    Desruet, M.D. [Radiopharmacie, clinique universitaire de medecine nucleaire, CHU de Grenoble, 38 - Grenoble (France); Bolot, C. [Radiopharmacie, hospices civils de Lyon, groupement hospitalier Est, 69 - Bron (France); Bourrel, F. [Services de pharmacie et medecine nucleaire, centre hospitalier d' Avignon, 84 - Avignon (France); Francois-Joubert, A.; Biechlin-Chassel, M.L. [Medecine nucleaire et Radiopharmacie, centre hospitalier de Chambery, 73 - Chambery (France); Couret, I. [Service de medecine nucleaire, hopital Lapeyronie, 34 - Montpellier (France); Pelegrin, M. [Institut de recherche en cancerologie (IRCM), 34 - Montpellier (France); Service de medecine nucleaire, hopital Purpan, 31 - Toulouse (France); Lao, S. [Service de medecine nucleaire, CHU Hopital de l' Archet, 06 - Nice (France); Ouhayon, E.; Sauvan, R. [Service de medecine nucleaire, institut Paoli-Calmettes, 13 - Marseille (France)

    2010-11-15

    Use of radiopharmaceuticals in French nuclear medicine departments depends on marketing authorization and their development may be compromised by a limited return on investment. As an alternative, radiopharmaceuticals may also be prepared in the form of a magistral preparation, like in some European countries. In this case, these preparations are subjected to restrictions and requirements for radio-pharmacies relating to quality assurance, facilities and equipment, quality of starting materials and final radiopharmaceutical products defined in French good preparation practice. Labelled tracers used as magistral preparations have to be prepared under the full responsibility of a radio-pharmacist and used under the responsibility of the prescribing physician. Conditions of sufficient guarantees for the safety of the patient and adherence to pharmaceutical rules must be evaluated individually. However, this form of preparation intends to supply specific medical needs for an individual patient and is not an answer in the framework of development of radiopharmaceuticals. (authors)

  4. Nuclear medicine technology study guide

    CERN Document Server

    Patel, Dee

    2011-01-01

    Nuclear Medicine Technology Study Guide presents a comprehensive review of nuclear medicine principles and concepts necessary for technologists to pass board examinations. The practice questions and content follow the guidelines of the Nuclear Medicine Technology Certification Board (NMTCB) and American Registry of Radiological Technologists (ARRT), allowing test takers to maximize their success in passing the examinations. The book is organized by sections of increasing difficulty, with over 600 multiple-choice questions covering all areas of nuclear medicine, including radiation safety; radi

  5. [Implementation of a quality management system according to the UNE-UN-ISO 9001:2008 standard in a nuclear medicine department].

    Science.gov (United States)

    Poblete García, V M; Talavera Rubio, M P; Palomar Muñoz, A; Pilkington Woll, J P; Cordero García, J M; García Vicente, A M; Bellón Guardia, M; González García, B; Cañuelo Merino, T; Núñez García, A; Peiró Valgañón, V; Soriano Castrejón, A M

    2013-01-01

    To describe the process of implementing a quality management system according to UNE-EN-ISO 9001:2008 standard in a Nuclear Medicine Department. In February 2008, the committee on internal quality of the Department was established, naming a responsible physician. The general operating plan was drawn up, following the requirements established by the ISO 9001:2008 standard. It defined the scope of the standard, defining, preparing and transcribing the various activities of our Department. Four training sessions were carried out. A total of nine general and two specific procedures were documented in which all the activities performed in our Department were included. Personnel records of each worker were created, including their profiles and training plan. A record of the equipment and service providers was created, as well as issues with the latter. Satisfaction surveys were obtained from external (patients) and internal customers (faculty applicants). Targets for improvement and activity markers were established. Two audits were performed to complete the process, one internal and one external. The Department was accredited in April 2010. The quality accreditation process is a tool that requires reflection on how we do things and how they can be improved. It makes it possible to measure what we do, to analyze and introduce improvement measures, and therefore, to achieve a higher level of quality in the service we provide our customers. The involvement of the Department workers with a commitment to team performance was essential. Copyright © 2011 Elsevier España, S.L. and SEMNIM. All rights reserved.

  6. Nuclear medicine in sports

    International Nuclear Information System (INIS)

    Sharma, Anshu Rajnish

    2010-01-01

    Nuclear medicine can synergistically contribute to the sports medicine field, in the management of sports-related stress injures. Bone scintigraphy is commonly requested for evaluation of athletes with pain. Three-Phase 99m Tc MDP Bone Scan has emerged as the imaging reference standard for diagnosing such injuries. The inherently high-contrast resolution of the bone scan allows early detection of bone trauma and becomes positive within six to seventy-two hours after the onset of symptoms. The bone scan is able to demonstrate stress injuries days to weeks before the radiograph

  7. Nuclear Medicine and Application of Nuclear Techniques in Medicine

    International Nuclear Information System (INIS)

    Wiharto, Kunto

    1996-01-01

    The use of nuclear techniques medicine covers not only nuclear medicine and radiology in strict sense but also determination of body mineral content by neutron activation analysis and x-ray fluorescence technique either in vitro or in vivo, application of radioisotopes as tracers in pharmacology and biochemistry, etc. This paper describes the ideal tracer in nuclear medicine, functional and morphological imaging, clinical aspect and radiation protection in nuclear medicine. Nuclear technique offers facilities and chances related to research activities and services in medicine. The development of diagnostic as well as therapeutic methods using monoclonal antibodies labeled with radioisotope will undoubtedly play an important role in the disease control

  8. Handbooks in radiology: Nuclear medicine

    International Nuclear Information System (INIS)

    Datz, F.L.

    1988-01-01

    This series of handbooks covers the basic facts, major concepts and highlights in seven radiological subspecialties. ''Nuclear Medicine'' is a review of the principles, procedures and clinical applications that every radiology resident and practicing general radiologist should know about nuclear medicine. Presented in an outline format it covers all of the organ systems that are imaged by nuclear medicine

  9. Quality control in nuclear medicine

    International Nuclear Information System (INIS)

    Leme, P.R.

    1983-01-01

    The following topics are discussed: objectives of the quality control in nuclear medicine; the necessity of the quality control in nuclear medicine; guidelines and recommendations. An appendix is given concerning the guidelines for the quality control and instrumentation in nuclear medicine. (M.A.) [pt

  10. Hospital Medicine Resident Training Tracks: Developing the Hospital Medicine Pipeline.

    Science.gov (United States)

    Sweigart, Joseph R; Tad-Y, Darlene; Kneeland, Patrick; Williams, Mark V; Glasheen, Jeffrey J

    2017-03-01

    Hospital medicine (HM) is rapidly evolving into new clinical and nonclinical roles. Traditional internal medicine (IM) residency training likely does not optimally prepare residents for success in HM. Hospital medicine residency training tracks may offer a preferred method for specialized HM education. Internet searches and professional networks were used to identify HM training tracks. Information was gathered from program websites and discussions with track directors. The 11 HM tracks at academic medical centers across the United States focus mostly on senior residents. Track structure and curricular content are determined largely by the structure and curricula of the IM residency programs in which they exist. Almost all tracks feature experiential quality improvement projects. Content on healthcare economics and value is common, and numerous track leaders report this content is expanding from HM tracks into entire residency programs. Tracks also provide opportunities for scholarship and professional development, such as workshops on abstract creation and job procurement skills. Almost all tracks include HM preceptorships as well as rotations within various disciplines of HM. HM residency training tracks focus largely on quality improvement, health care economics, and professional development. The structures and curricula of these tracks are tightly linked to opportunities within IM residency programs. As HM continues to evolve, these tracks likely will expand to bridge clinical and extra-clinical gaps between traditional IM training and contemporary HM practice. Journal of Hospital Medicine 2017;12:173-176. © 2017 Society of Hospital Medicine

  11. Prospects in nuclear medicine

    International Nuclear Information System (INIS)

    Pink, V.; Johannsen, B.; Muenze, R.

    1990-01-01

    In nuclear medicine, a sequence of revolutioning research up to the simple and efficient application in routine has always then taken place when in an interdisciplinary teamwork new radiochemical tracers and/or new instrumentation had become available. At present we are at the beginning of a phase that means to be in-vivo-biochemistry, the targets of which are molecular interactions in the form of enzymatic reactions, ligand-receptor interactions or immunological reactions. The possibility to use positron-emitting radionuclides of bioelements in biomolecules or drugs to measure their distribution in the living organism by positron-emission tomography (PET) is gaining admittance into the pretentious themes of main directions of medical research. Diagnostic routine application of biochemically oriented nuclear medicine methods are predominantly expected from the transmission of knowledge in PET research to the larger appliable emission tomography with gamma-emitting tracers (SPECT). (author)

  12. Introduction to nuclear medicine

    International Nuclear Information System (INIS)

    Denhartog, P.; Wilmot, D.M.

    1987-01-01

    In this chapter, the fundamentals of nuclear medicine, the advantages and disadvantages of this modality (compared with radiography and ultrasound), and some of the areas in diagnosis and treatment in which it has found widest acceptance will be discussed. Nuclear medicine procedures can be broadly categorized into three groups: in vivo imaging, usually requiring the injection of an organ-specific radiopharmaceutical; in vitro procedures, in which the radioactive agent is mixed with the patient's blood in a test tube; and in vivo nonimaging procedures, in which the patient receives the radiopharmaceutical (intravenously or orally) after which a measurement of the amount appearing in a particular biological specimen (blood, urine, stool) is performed. In vivo imaging procedures will be the principal topics of this chapter

  13. Imaging in nuclear medicine

    CERN Document Server

    Hoeschen, Christoph

    2013-01-01

    This volume addresses a wide range of issues in the field of nuclear medicine imaging, with an emphasis on the latest research findings. Initial chapters set the scene by considering the role of imaging in nuclear medicine from the medical perspective and discussing the implications of novel agents and applications for imaging. The physics at the basis of the most modern imaging systems is described, and the reader is introduced to the latest advances in image reconstruction and noise correction. Various novel concepts are then discussed, including those developed within the framework of the EURATOM FP7 MADEIRA research project on the optimization of imaging procedures in order to permit a reduction in the radiation dose to healthy tissues. Advances in quality control and quality assurance are covered, and the book concludes by listing rules of thumb for imaging that will be of use to both beginners and experienced researchers.

  14. Nuclear medicine in otolaryngology

    International Nuclear Information System (INIS)

    Watkinson, J.C.

    1991-01-01

    Otolaryngology is concerned with the diagnosis and treatment of diseases which affect the mucosal structures of the upper aerodigestive tract and adnexial organs. This editorial outlines the current rate of nuclear medicine in otolaryngology with particular reference to diseases of the thyroid, the parathyroid, the salivary glands, the lacrimal glands, bones of the head and neck, tumours of the head and neck and CSF leaks. (UK)

  15. Veterinary nuclear medicine

    International Nuclear Information System (INIS)

    Krzeminski, M.; Lass, P.; Teodorczyk, J.; Krajka, J.

    2004-01-01

    The veterinary use of radionuclide techniques dates back to the mid-sixties, but its more extensive use dates back to the past two decades. Veterinary nuclear medicine is focused mainly on four major issues: bone scintigraphy - with the majority of applications in horses, veterinary endocrinology - dealing mainly with the problems of hyperthyreosis in cats and hyperthyreosis in dogs, portosystemic shunts in small animals and veterinary oncology, however, most radionuclide techniques applied to humans can be applied to most animals. (author)

  16. Imaging in nuclear medicine

    International Nuclear Information System (INIS)

    Giussani, Augusto; Hoeschen, Christoph

    2013-01-01

    Presents the most recent developments in nuclear medicine imaging, with emphasis on the latest research findings. Considers the latest advances in imaging systems, image reconstruction, noise correction, and quality assurance. Discusses novel concepts, including those developed within the framework of the EURATOM FP7 MADEIRA project. Lists rules of thumb for imaging of use to both beginners and experienced researchers. This volume addresses a wide range of issues in the field of nuclear medicine imaging, with an emphasis on the latest research findings. Initial chapters set the scene by considering the role of imaging in nuclear medicine from the medical perspective and discussing the implications of novel agents and applications for imaging. The physics at the basis of the most modern imaging systems is described, and the reader is introduced to the latest advances in image reconstruction and noise correction. Various novel concepts are then discussed, including those developed within the framework of the EURATOM FP7 MADEIRA research project on the optimization of imaging procedures in order to permit a reduction in the radiation dose to healthy tissues. Advances in quality control and quality assurance are covered, and the book concludes by listing rules of thumb for imaging that will be of use to both beginners and experienced researchers.

  17. Imaging in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Giussani, Augusto [BfS - Federal Office for Radiation Protection, Oberschleissheim (Germany). Dept. of Radiation Protection and Health; Hoeschen, Christoph (eds.) [Helmholtz Zentrum Muenchen - German Research Center for Environmental Health, Neuherberg (Germany). Research Unit Medical Raditation Physics and Diagnostics

    2013-08-01

    Presents the most recent developments in nuclear medicine imaging, with emphasis on the latest research findings. Considers the latest advances in imaging systems, image reconstruction, noise correction, and quality assurance. Discusses novel concepts, including those developed within the framework of the EURATOM FP7 MADEIRA project. Lists rules of thumb for imaging of use to both beginners and experienced researchers. This volume addresses a wide range of issues in the field of nuclear medicine imaging, with an emphasis on the latest research findings. Initial chapters set the scene by considering the role of imaging in nuclear medicine from the medical perspective and discussing the implications of novel agents and applications for imaging. The physics at the basis of the most modern imaging systems is described, and the reader is introduced to the latest advances in image reconstruction and noise correction. Various novel concepts are then discussed, including those developed within the framework of the EURATOM FP7 MADEIRA research project on the optimization of imaging procedures in order to permit a reduction in the radiation dose to healthy tissues. Advances in quality control and quality assurance are covered, and the book concludes by listing rules of thumb for imaging that will be of use to both beginners and experienced researchers.

  18. Physical bases of nuclear medicine

    International Nuclear Information System (INIS)

    Isabelle, D.B.; Ducassou, D.

    1975-01-01

    The physical bases of nuclear medicine are outlined in several chapters devoted successively to: atomic and nuclear structures; nuclear reactions; radioactiity laws; a study of different types of disintegration; the interactions of radiations with matter [fr

  19. Case assessments for nuclear medicine registrars

    International Nuclear Information System (INIS)

    Farlow, D.

    1994-01-01

    Westmead Hospital set some of the recent nuclear medicine cases for registrar training. These case assessments have been completed by the registrars and he thought it might be interesting for the general nuclear medicine community to attempt the cases themselves and compare their answers with the model reports and patient follow-ups. Edited versions of two cases and model answers are presented. 35 refs

  20. Nuclear techniques in medicine

    International Nuclear Information System (INIS)

    Basson, J.K.

    1984-01-01

    The use of nuclear techniques in medicine has, also in South Africa, increased enormously, especially as regards diagnosis and reseach. In 1983 in vivo tests with radioisotopes were carried out and also in vitro tests, mainly by radioimmunoassay. Therapy with open and sealed radioactive sources was concentrated mainly on cancer treatments. In 1983 NUCOR supported 83 research projects in the life sciences. Imaging of organs or tissues in the body with nuclear techniques has developed into the most important application of nuclear medicine, with the development of even more specific labelled compounds as the main objective. Radioimmunoassay is at an exciting watershed, now that labelled monoclonal antibodies with high specificity for early diagnosis (also in cancer) and even localised radiotherapy have become available. The establishment of the 200 MeV open-sector cyclotron by the National Accelerator Centre also for medical purposes will, in addition to the large-scale production of the protonrich isotopes, also make a substantial contribution to radiotherapy with nuclear particles such as neutrons, protons and helium-3

  1. The initial investigation of radiation dose rate at X-ray department and patients treating thyroid by I-131 at nuclear medicine department

    International Nuclear Information System (INIS)

    Nguyen Van Kinh; Vo Thanh Cuong

    2000-01-01

    Survey meter NSM 150 Fuji with detector Geiger Muller has been used to assess for average annual exposure dose which affect radiographer ≤ 2 mSv per year, the staff involved with Fluoroscopy ≤ 19 mSv per year. Dose rate in waiting area of patient is a range from 0.2 to 0.8 μSv/h. Patients who have been treated by radioiodine, may be only discharged when the remaining activity is 400.2 ±368.8 MBq. Radioactivity of I-131 and Tc-99m in the sewage system of hospital is 0.4x10 -11 Ci/l. (author)

  2. Frontiers in nuclear medicine symposium: Nuclear medicine & molecular biology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    This document contains the abstracts from the American College of Nuclear Physicians 1993 Fall Meeting entitled, `Frontiers in Nuclear Medicine Symposium: Nuclear Medicine and Molecular Biology`. This meeting was sponsored by the US DOE, Office of Health and Environmental Research, Office of Energy Research. The program chairman was Richard C. Reba, M.D.

  3. Radiation exposure of workers in nuclear medicine

    International Nuclear Information System (INIS)

    Bujnova, A.

    2008-01-01

    Nuclear medicine is an interdisciplinary department that deals with diagnosis and therapy using open sources. Therefore workers in nuclear medicine are in daily contact with ionizing radiation and thus it is essential to monitor a radiation load. Each work must therefore carry out monitoring of workers. It monitors compliance with the radiation limits set by law, allows an early detection of deviations from normal operation and to demonstrate whether the radiation protection at the workplace is optimized. This work describes the principles of monitoring of workers in nuclear medicine and monitoring methods for personal dosimetry. In the next section the author specifically deals with personal dosimetry at the Department of Nuclear Medicine St. Elizabeth Cancer Institute, Bratislava (KNM-Ba-OUSA). The main part of the work is to evaluate the results of a one-year monitoring of radiation workers KNM-Ba-OUSA. (author)

  4. Radiation hazards in the nuclear medicine

    International Nuclear Information System (INIS)

    Roo, M.J.K. de

    1981-01-01

    After a survey of the actual situation of nuclear medicine in Belgium, the evolution of nuclear medicine is studied with regard to quantitative aspects (tracerquantities, number of radioisotopic explorations, number of certified doctors) and qualitative aspects (use of short living isotopes emitting low energy radiation, introduction of in vitro tests). Taking these data into consideration, the exposure of nuclear medicine staff by external or internal radiation is evaluated. From this study it appears that the radiation exposure of the personnel of nuclear medicine departments remains low if proper manipulation methods and simple protective devices are used and if there is an efficient collaboration with an active health physics department or radiation control organism. (author)

  5. Nuclear medicine statistics

    International Nuclear Information System (INIS)

    Martin, P.M.

    1977-01-01

    Numerical description of medical and biologic phenomena is proliferating. Laboratory studies on patients now yield measurements of at least a dozen indices, each with its own normal limits. Within nuclear medicine, numerical analysis as well as numerical measurement and the use of computers are becoming more common. While the digital computer has proved to be a valuable tool for measurment and analysis of imaging and radioimmunoassay data, it has created more work in that users now ask for more detailed calculations and for indices that measure the reliability of quantified observations. The following material is presented with the intention of providing a straight-forward methodology to determine values for some useful parameters and to estimate the errors involved. The process used is that of asking relevant questions and then providing answers by illustrations. It is hoped that this will help the reader avoid an error of the third kind, that is, the error of statistical misrepresentation or inadvertent deception. This occurs most frequently in cases where the right answer is found to the wrong question. The purposes of this chapter are: (1) to provide some relevant statistical theory, using a terminology suitable for the nuclear medicine field; (2) to demonstrate the application of a number of statistical methods to the kinds of data commonly encountered in nuclear medicine; (3) to provide a framework to assist the experimenter in choosing the method and the questions most suitable for the experiment at hand; and (4) to present a simple approach for a quantitative quality control program for scintillation cameras and other radiation detectors

  6. Nuclear medicine and densitometry

    International Nuclear Information System (INIS)

    Mazess, R.B.; Wahner, H.M.

    1988-01-01

    Several reports and books over the past decade have summarized bone measurement methods. This chapter serves as an update on those with particular reference to nuclear medicine approaches to bone density and skeletal uptake. Bone densitometry approaches include singe-photon absorptiometry(SPA) and dual-photon absortiometry neutron activation (DPA) of calcium, Compton scattering, ultrasound measurements and uptake of diphosphonates. Of these only SPA and DPA are used clinically; the other methods are largely experimental or investigational. Radiographic morphometry, radiographic indices, and X-ray QCT are dealt with

  7. Nuclear medicine radiation dosimetry

    CERN Document Server

    McParland, Brian J

    2010-01-01

    Complexities of the requirements for accurate radiation dosimetry evaluation in both diagnostic and therapeutic nuclear medicine (including PET) have grown over the past decade. This is due primarily to four factors: growing consideration of accurate patient-specific treatment planning for radionuclide therapy as a means of improving the therapeutic benefit, development of more realistic anthropomorphic phantoms and their use in estimating radiation transport and dosimetry in patients, design and use of advanced Monte Carlo algorithms in calculating the above-mentioned radiation transport and

  8. Nuclear medicine in cardiology

    Energy Technology Data Exchange (ETDEWEB)

    Torizuka, K.; Ishii, Y.; Yonekura, Y.; Yamamoto, K.; Tamaki, N. (Kyoto Univ. (Japan). Faculty of Medicine)

    1981-02-01

    Nuclear medicine in cardiology was reviewed. Electrocardiogram is obtained from the ..gamma..-ray measurement of a tracer by a single detector, which enables a bedsidemonitoring. Resolution and sensitivity are high and nuclear stethoscope with a computer is applicable for a background treatment. Myocardium is imaged by /sup 201/Tl scintigraphy. Relative difference of the perfusion indicates the ischemia which gaives roughly the size and portion of myocardial infarction. For transient ischemia stress myocardial perfusion imaging (SMPI) is also used. sup(99m)Tc pyrophosphate provides a clear image for myocardial infarction. Angiocardiogram is obtained repeatedly, by a single administration, using an equilibrium method. An attempt of three-dimensional display by 7 pin hole collimator and positron CT are also discussed.

  9. Availability of oncological nuclear medicine in the regions of Slovakia

    International Nuclear Information System (INIS)

    Lepej, J.; Kaliska, L.

    2004-01-01

    Full text: Nuclear medicine (NM) imaging technology, alone and in combination with other imaging modalities, provides clinically significant and useful information in the staging and treatment of the oncological diseases. The main objective of our study was to find out and present the situation vis-a-vis nuclear medicine facilities in the Central European country that soon becomes the new member of EU. For the purposes statistical data of WHO, Slovak Republic (SR) and nuclear medicine department (NMD) were evaluated for the period 1995-2001. Comparison with Czech Republic (CR) was done because of almost similar occurrence of the malignant diseases in these two republics that were a one country till separation in 1993. First nuclear medicine department in Czechoslovakia was established about 55 years ago. Comparing to CR the expenditures on health care per capita in SR is only 67% of CR. The number of gamma cameras, physicians and number of investigations are far from good standard of CR. The number NM departments are significantly low and growth of only 29% compared to CR is alarming. The one main reason is inadequate financial support to the health care and high debts of hospitals running nuclear medicine facilities. Providing radiology departments with new CT and MRI scanners is another reason of less nuclear medicine facilities. During the last five years, though the number of gamma cameras increased by 10%, but the number of investigations did not rise accordingly. Because of bad management of health care services in Slovakia, the latest facilities availability is greatly delayed. However, the exception is the installation of a new PET scanner in 2001. Of late, sentinel lymph node detection was started only with the help of IAEA. Data shows that most of the nuclear medicine centers are around the state capital. It is imperative to have sufficient diagnostic and therapeutic facilities in each region so as to make these available to patients living away from the

  10. The pregnancy question: a survey regarding the establishment of whether females of childbearing age are or may be pregnant prior to radiation exposures in diagnostic radiology and nuclear medicine departments in the UK

    International Nuclear Information System (INIS)

    Lewis, C.; Arscott, T.

    2008-01-01

    Full text: In the UK, the Ionising Radiation (Medical Exposure) Regulations 2000 state that 'the written procedure for medical exposures shall include...procedures for making enquiries of females of childbearing age to establish whether the individual is or may be pregnant...'. Despite the importance of this question and the potential for causing great distress and anxiety if an examination involving ionising radiation is performed on a pregnant patient, the guidance available is vague and there is no universally accepted procedure on when and how to ask this difficult question. Anecdotal evidence suggests that the procedure for enquiring about possible pregnancy varies from department to department. To investigate this further, we devised a questionnaire to send out to diagnostic radiology and nuclear medicine departments across the UK. Questions asked related to the department's written procedure, the examinations for which the question would be asked, the age of women asked and the recording of whether the question was asked and the outcome. Responses were received from over 300 individuals from 66 different hospitals. The majority (73.5%) were from X-ray departments, 14.0% were from nuclear medicine and the remaining 12.5% included computed tomography, neuroradiology, angiography and cardiac catheter labs. 97.0% have a written procedure, 1.2% do not, 0.9% do not know and 0.9% gave no response. Of the responses from X-ray departments, 17% ask the question for all examinations, while 83% ask for examinations of specific body regions. Several body regions were stated and were divided into 9 categories with the main one being diaphragm to knees (45%). Nuclear medicine departments ask for all examinations. With regard to establishing the 'childbearing age', 5% state that for younger and older patients they ascertain whether the female has started/stopped menstruation before asking the pregnancy question (no age range given), and 95% state an age range of the females

  11. Analysis of changed bio-signal to radiation exposure of nuclear medicine worker

    International Nuclear Information System (INIS)

    Lee, Hwun Jae; Lee, Sang Bock

    2007-01-01

    In this paper, we are evaluated about bio-signal between general workers and nuclear medicine workers which is more radiation exposure relatively. In order to reciprocal evaluated two group, we experimented nuclear medicine workers in Chung-Buk National University Hospital at department of nuclear medicine and worker in Chon-Nam National University Hospital at CT room, general radiographic room, medical recording room, receipt room, general office room. Used of experimental equipments as follows, for a level of radiation measurement by pocket dosimeter which made by Arrow-Tech company, for heart rate and blood pressure measurement by TONOPORT V which made by GE medical systems company, for heat flux and skin temperature and energy expenditure measurement by Armband senseware 2000 which made by Bodymedia company. Result of experiment obtains as follows : 1) Individual radiation exposure is recorded 3.05 uSv at department of nuclear medicine and order as follows CT room, general radiograpic room, medical recording room, receipt room, general office room. Department of nuclear medicine more 1.5 times than other places. 2) Radiation accumulated dose is not related to Heat flux, Skin temperature, Energy expenditure. 3) Blood pressure is recorded equal to nuclear medical workers, general officer, general people about systolic blood pressure and diastolic blood pressure. Compared to blood pressure between nuclear medical works which is more radiation exposure and other workers was not changed. Consequently, more radiation exposed workers at nuclear medicine field doesn't have hazard

  12. Mongolia and nuclear medicine development

    International Nuclear Information System (INIS)

    Onkhuudai, P.; Gonchigsuren, D.

    2007-01-01

    -188, Member of ARCCNM, The IAEA has assisted Mongolia upgrading the Nuclear Medicine Diagnostic , Laboratory at the First State Central Hospital through the TC projects , (MON/6/004, MON/6/005, MON/6/006, MON/6/009). In the future, to be have updated and advanced technology of Nuclear Medicine we aim to introduce Molecular Based Diagnostics and PET-CT scanner in Mongolia. (author)

  13. Nuclear medicine and prostheses

    International Nuclear Information System (INIS)

    Bordenave, L.; Baquey, Ch.

    2004-01-01

    Whatever the bio-material, prosthesis or medical device concerned, from design to experimental then clinical validation, nuclear medicine (NM) techniques offer a unique opportunity in all indications, (in vitro diagnosis, in vivo diagnosis and therapy) to investigate, assess and predict the behaviour of the device, qualitatively and quantitatively. All research fields involving prostheses and their constitutive biomaterials may take advantage of NM. In order to review published works, one can analyze provided data according to two strategies: an upright one related to medical and surgical specialties that integrate NM and a more horizontal one, that is to describe what kind of contribution is brought by such investigations. The latter approach was preferred in our review. We discuss and illustrate benefits of NM in the following indications: as an in vitro tool, as an in vivo tool for the diagnosis i) of device integration in recipient, ii) of functional outcome after use or implantation, iii) and predictive assessment of undesirable side effects, iv) of occurrence of complications associated to the device implantation, v) of a new therapy efficiency; finally as in vivo tool of therapy. Tissue engineering and regenerative medicine domains with stem cell potential as well as that of medical device associated with vigilance are new fields in basic research and clinical assessment that seem increasingly promising for the nuclear physician and to which NM could and would contribute from molecule to integrated system in order to improve knowledge and achievement of prostheses. (author)

  14. Nuclear methods in medicine

    International Nuclear Information System (INIS)

    Wolfe, D.M.

    1997-01-01

    Physicists have created remarkably sophisticated instruments for the performance of experiments. With variable phase lags many of these have become useful in technology. In the medical field NMD techniques have become commonplace under the rubric of Magnetic Resonance Imaging. Particle physics has developed sophisticated detectors for both charged and neutral particles. Many of these also have been adapted to medical uses. In both radiology and nuclear medicine, pixel detectors based on designs originating at large-scale colliders, are becoming highly useful in replacing film and NaI as the primary means of X-ray and (-ray detection. Coupled with high-speed work stations, these new techniques allow exciting new imagining modalities. Many of these are based on the handling of digital images originally developed for astronomy. Thus, once again, fundamental science is making large contributions to the development of technology. In this talk, various examples of developments in digital mammography and digital detectors for nuclear medicine will be given. The possibilities for telemedicine will be discussed. (author)

  15. Nuclear medicine in psychiatry

    International Nuclear Information System (INIS)

    Lass, P.; Slawek, P.

    2007-01-01

    In the same way that the symptoms between different diseases in psychiatry overlap, functional brain research frequently shows the same pattern of changes across diagnostic borders; on the other hand, many the other tests, e.g. psychological tests, present the same problem as mentioned above; therefore: The psychiatrist seldom applies to an NM specialist to obtain a diagnosis; instead, a nuclear medicine report will rather confirm, or less frequently exclude, the psychiatrist's diagnosis. Ideally, psychiatric patients should be rescanned after the treatment, and changes in perfusion and/or metabolism discussed between psychiatrist and NM specialist. As shown above, there are few practical applications of nuclear medicine due to low specificity and low spatial resolution, although in the aspect of functional imaging it is still superior to CT/MRI, even in their functional modalities. On the other hand, its investigational potential is still growing, as there is no imaging technique in sight which could replace metabolic and receptor studies, and also because the scope of functional imaging in psychiatric diseases is spreading from its traditional applications, like dementia or depression, towards many poorly investigated fields e.g. hypnosis, suicidal behaviour or sleep disorders. (author)

  16. In vivo diagnostic nuclear medicine. Pediatric experience

    International Nuclear Information System (INIS)

    Goetz, W.A.; Hendee, W.R.; Gilday, D.L.

    1983-01-01

    The use of radiopharmaceuticals for diagnostic tests in children is increasing and interest in these is evidenced by the addition of scientific sessions devoted to pediatric medicine at annual meetings of The Society of Nuclear Medicine and by the increase in the literature on pediatric dosimetry. Data presented in this paper describe the actual pediatric nuclear medicine experience from 26 nationally representative U.S. hospitals and provide an overview of the pediatric procedures being performed the types of radiopharmaceuticals being used, and the activity levels being administered

  17. Nuclear magnetic resonance and medicine. Present applications

    International Nuclear Information System (INIS)

    1984-01-01

    At the workshop on nuclear magnetic resonance and medicine held at Saclay, the following topics were presented: physical principles of NMR; NMR spectroscopy signal to noise ratio; principles of NMR imaging; methods of NMR imaging; image options in NMR; biological significance of contrast in proton NMR imaging; measurement and significance of relaxation times in cancers; NMR contrast agents; NMR for in-vivo biochemistry; potential effects and hazards of NMR applications in Medicine; difficulties of NMR implantation in Hospitals; NMR imaging of brain tumors and diseases of the spinal cord; NMR and Nuclear Medicine in brain diseases [fr

  18. Hand Dose in Nuclear Medicine Staff Members

    International Nuclear Information System (INIS)

    Taha, T.M.; Shahein, A.Y.; Hassan, R.

    2009-01-01

    Measurement of the hand dose during preparation and injection of radiopharmaceuticals is useful in the assessment of the extremity doses received by nuclear medicine personnel. Hand radiation doses to the occupational workers that handling 99m Tc-labeled compounds, 131 I for diagnostic in nuclear medicine were measured by thermoluminescence dosimetry. A convenient method is to use a TLD ring dosimeter for measuring doses of the diagnostic units of different nuclear medicine facilities . Their doses were reported in millisieverts that accumulated in 4 weeks. The radiation doses to the hands of nuclear medicine staff at the hospitals under study were measured. The maximum expected annual dose to the extremities appeared to be less than the annual limit (500 mSv/y) because all of these workers are on rotation and do not constantly handle radioactivity throughout the year

  19. White paper of nuclear medicine

    International Nuclear Information System (INIS)

    2012-10-01

    This document aims at proposing a synthetic presentation of nuclear medicine in France (definition, strengths and weaknesses, key figures about practices and the profession, stakes for years to come), a description of the corresponding education (speciality definition, abilities and responsibilities, diploma content, proposition by the European Society of Radiology and by the CNIPI, demography of the profession), and an overview of characteristics of nuclear medicine (radio-pharmacy, medical physics, paramedical personnel in nuclear medicine, hybrid imagery, therapy, relationships with industries of nuclear medicine, relationships with health authorities)

  20. Nigerian Quarterly Journal of Hospital Medicine: Submissions

    African Journals Online (AJOL)

    Nigerian Quarterly Journal of Hospital Medicine: Submissions. Journal Home > About the Journal > Nigerian Quarterly Journal of Hospital Medicine: Submissions. Log in or Register to get access to full text downloads.

  1. The New South Wales nuclear medicine technology labour market

    International Nuclear Information System (INIS)

    Ridoutt, L.; Cowell, S.; Bush, V.

    1989-01-01

    A workforce study of 30 organisations was conducted in response to staffing difficulties in public hospital nuclear medicine departments. It was found that out of a total of 165.5 full-time equivalent establishment positions existed in public hospitals and the private sector, only 135.38 were filled. The vacancy level of about 15% was considered to be above the acceptable norm. Growth in demand between 1989 and 1993 is estimated at 46.7% and 89.1% in the public and private sector respectively. Recommendations are made to reduce losses from the workforce. 2 figs., tabs

  2. Nuclear medicine in Tunisia : current status and prospects

    International Nuclear Information System (INIS)

    Hammami, Hatem

    2013-01-01

    Nuclear medicine is concerned with the utilisation of radioactivity in vivo or in vitro for diagnostic or therapeutic purposes. In Tunisia, there are four public departments of nuclear medicine and seven private clinics. 50% of the population is localized in the north, which justifies the existence of 7 public and private departments of nuclear medicine with nine gamma cameras in this region. In the south, there are 30 pour cent of the population that goes to Sfax and 20 pour cent to Sousse where we count two departments with gamma cameras in public services and one in the private sector. The nuclear medicine services in the public sector have 4 SPECT / CT. Siemens is the leading provider of gamma cameras and occupies 73 pour cent of market share, subsequently ranks SMV (13 pour cent) and (GE and GAEDE) have the same proportion of the market share (7 pour cent). For radio-protected rooms, there is a single center with a single chamber from four public services. On the other hand, there are 2/7 private centers that are equipped with five radio-protected electrically rooms. Concerning the human resources, there are 26 doctors and 24 technicians in the public sector. The private sector has 6 doctors and 12 technicians. In 2012, there has been 22000 examinations (diagnostic and therapeutic procedures) in which 14,600 in nuclear medicine departments of public hospitals. Bone scintigraphy ranks first, with a relative frequency of 40-80 pour cent thereafter ranks renal scintigraphy (10-15 pour cent) and then the thyroid scintigraphy (8-12 pour cent). The waiting period is a major problem, especially in the public sector. Taking as an example, for the therapy of thyroid, injection of 100 mCi of I-131 requires a period of waiting more than six months and waiting more than three months for the bone scan. The second problem for patient with cancer is the distance, there are 11 centers concentrated in 3 coastal cities and none in the inner areas of the country, no regional

  3. Nuclear medicine applications: Summary of Panel 4

    International Nuclear Information System (INIS)

    Wolf, A.P.

    1988-01-01

    Nuclear medicine is currently facing a desperate shortage of organic and inorganic chemists and nuclear pharmacists who also have advanced training in nuclear and radiochemistry. Ironically, this shortfall is occurring in the face of rapid growth and technological advances which have made the practice of nuclear medicine an integral part of the modern health care system. This shortage threatens to limit the availability of radiopharmaceuticals required in routine hospital procedures and to impede the development of new diagnostic and therapeutic agents. To redress this need and prevent a similar shortfall in the future, this panel recommends immediate action and a long-term commitment to the following: educating the public on the benefits of nuclear medicine; informing undergraduate and graduate chemistry students about career opportunities in nuclear medicine; offering upper level courses in nuclear and radiochemistry (including laboratory) in universities; establishing training centers and fellowships at the postgraduate level for specialized education in the aspects of nuclear and radiochemistry required by the nuclear medicine profession. 1 tab

  4. Nuclear Medicine Practice in Kenya

    International Nuclear Information System (INIS)

    Ndirangu, T.D.

    2017-01-01

    Nuclear medicine is a medical specialty that relies on the use of nuclear technology in the diagnosis and treatment (therapy) of diseases. Nuclear medicine uses the principle that a certain radiopharmaceutical (tracer) will at a certain point in time have a preferential uptake by a particular body, tissue or cell. This uptake is then imaged by the use of detectors mounted in gamma cameras or PET (positron emission tomography) devices.. Unlike other radiation applications for medical use, nuclear medicine uses open (unsealed) sources of radiation. In a country with an estimated population of 48 million in 2017, Kenya has only two (2) nuclear medicine facilities (units). Being a relatively new medical discipline in Kenya, several measures have been taken by the clinical nuclear medicine team to create awareness at various levels

  5. Nuclear power in human medicine

    International Nuclear Information System (INIS)

    Kuczera, Bernhard

    2012-01-01

    The public widely associate nuclear power with the megawatt dimensions of nuclear power plants in which nuclear power is released and used for electricity production. While this use of nuclear power for electricity generation is rejected by part of the population adopting the polemic attitude of ''opting out of nuclear,'' the application of nuclear power in medicine is generally accepted. The appreciative, positive term used in this case is nuclear medicine. Both areas, nuclear medicine and environmentally friendly nuclear electricity production, can be traced back to one common origin, i.e. the ''Atoms for Peace'' speech by U.S. President Eisenhower to the U.N. Plenary Assembly on December 8, 1953. The methods of examination and treatment in nuclear medicine are illustrated in a few examples from the perspective of a nuclear engineer. Nuclear medicine is a medical discipline dealing with the use of radionuclides in humans for medical purposes. This is based on 2 principles, namely that the human organism is unable to distinguish among different isotopes in metabolic processes, and the radioactive substances are employed in amounts so small that metabolic processes will not be influenced. As in classical medicine, the application of these principles serves two complementary purposes: diagnosis and therapy. (orig.)

  6. Radiation management for infectious waste from nuclear medicine studies

    International Nuclear Information System (INIS)

    Kondo, Yuji; Takeuchi, Yasuyuki; Masumoto, Kazuya

    2003-01-01

    An industrial waste management service has refused to collect medical waste from our hospital owing to radioactive contamination found in the waste in July 2000. An investigation revealed that the ''three-way stopcock'' and handling diapers used for radioisotope examination were the radioactive contaminants. We therefore reconsidered the system of medical waste maintenance especially for radioactive materials. Since February 2001, we have resumed radiation maintenance by following the manual for the handling diapers of patients administered radiopharmaceuticals issued by five organizations associated with Japan Radiological Society (JRS), Japanese Society of Radiological Technology (JSRT), the Japanese Society of Nuclear Medicine (JSNM), the Japanese Society of Nuclear Medicine Technology (JSNMT), and Japan Association on Radiological Protection in Medicine (JARPM). A major change was to check the radioactive waste at the individual departments and at a centralized check system. This eliminated the problem of dumping radioactive material into medical waste as well as resolving the concerns of the industrial waste management service. (author)

  7. [Appropriateness admissions to the Department of Internal Medicine of the Hospital de Santa Luzia (Elvas) evaluated by the AEP (Appropriateness Evaluation Protocol)].

    Science.gov (United States)

    Cordero, A; Aguila, J; Massalana, A; Escoto, V; Lopes, L; Susano, R

    2004-01-01

    The authors analyse the appropriateness admissions to the Internal Medicine ward of the Hospital de Santa Luzia (Elvas). A retrospective study was performed during 6 months of 2001, using the Appropriateness Evaluation Protocol (AEP). Non-appropriateness admissions were found in 19% (CI95%: 16-22), and this group of patients had less mean age (63 + 16 vs 69 + 16; p <0.01), and less mean days of admission (7.1 + 6 vs 9.3 + 7; p <0.01) than group with appropriateness admissions. Appropriateness admissions were mainly found in patients admitted from the emergency room (86% vs 49%; p <0.001). Most of patients with non-appropriate admissions were admitted to undergo diagnostic tests (44%; CI95%: 35-53), or to be referred to other medical centres for specialized study and/or treatment (12%; CI95%: 6-18).

  8. A postal survey of quality assurance in nuclear medicine imaging in the UK during 1988

    International Nuclear Information System (INIS)

    Williams, E.D.; Harding, L.K.; McKillop, J.H.

    1989-01-01

    A questionnaire was sent to all the estimated 200 hospital departments providing nuclear medicine imaging services in the UK. Replies were received from 162 (81%). The questionnaire was brief, but covered a wide range of aspects of a nuclear medicine service. While all responses showed departments to have some quality control procedures in operation, they were often not used correctly. In most departments there appears to be scope for improvement so that departmental managers can monitor more closely the quality of service provided. (author)

  9. The Road to Excellence: : A Case Study of the Application of GMP, ISO 9001 and the EFQM Excellence Model in a Nuclear Medicine Department

    NARCIS (Netherlands)

    van Huizen, L; Ahaus, C.T.B. (Kees)

    2017-01-01

    Definitions are introduced to give insight in the field of work of Quality Management in relation to responsibilities in Nuclear Medicine and Molecular Imaging. A relation model visualizes the relationships. When working on the Road to Quality Excellence. The standards as GMP, GCP, ISO 9001 and EFQM

  10. Occupational exposure of nuclear medicine personnel

    International Nuclear Information System (INIS)

    Roessler, M.

    1982-01-01

    The results are given of measurements of the radiation burden of personnel in departments of nuclear medicine in the years 1979 to 1981 using film dosemeters and ring thermoluminescence dosemeters evaluated by the national personnel dosemeter service. The relations are examined of the exposure of hands and the preparation of radiopharmaceuticals and especially their use for examinations. Certain organizational measures are indicated for reducina radiation burden in a laboratory for the preparation of radiopharmaceuticals. The results of measurements and evaluations of radiation burden of personnel of nuclear medicine departments are confronted with conclusions published in the literature. (author)

  11. Peptide radiopharmaceuticals in nuclear medicine

    International Nuclear Information System (INIS)

    Blok, D.; Vermeij, P.; Feitsma, R.I.J.; Pauwels, E.J.K.

    1999-01-01

    This article reviews the labelling of peptides that are recognised to be of interest for nuclear medicine or are the subject of ongoing nuclear medicine research. Applications and approaches to the labelling of peptide radiopharmaceuticals are discussed, and drawbacks in their development considered. (orig.)

  12. Development of molecular nuclear medicine

    International Nuclear Information System (INIS)

    Tang Ganghua

    2002-01-01

    The basic theory of molecular nuclear medicine is briefly introduced. The hot areas of molecular nuclear medicine including metabolic imaging and blood flow imaging, radioimmunoimaging and radioimmunotherapy, radioreceptor imaging and receptor-radioligand therapy, and imaging gene expression and gene radiation therapy are emphatically described

  13. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... can be detected with other diagnostic tests. Nuclear medicine imaging procedures use small amounts of radioactive materials – called radiotracers – that ... outweighs any risk. To learn more about nuclear medicine, visit Radiology Info dot org. Thank you for your ... of Use | Links | Site Map Copyright © 2018 Radiological Society of ...

  14. The ability of clinical and laboratory findings to predict in-hospital death in patients with thrombotic thrombocytopenic purpura in an internal and emergency medicine department

    Directory of Open Access Journals (Sweden)

    Filippo Pieralli

    2012-01-01

    Full Text Available Introduction: Thrombotic thrombocytopenic purpura (TTP is a rare, life-threatening syndrome characterized by microangiopathic anemia, thrombocytopenia, diffuse microvascular thrombosis, and ischemia. It is associated with very low levels of ADAMTS-13. Measurement of ADAMTS-13 levels is used for diagnostic and prognostic purposes, but in every-day clinical practice, this type of analysis is not always readily available. In this retrospective study, we evaluated prognostic value of clinical and laboratory findings in patients with TTP. Materials and methods: We retrospectively investigated patients with clinically diagnosed TTP treated in a unit of Internal and Emergency Medicine (1996-2007. Clinical and laboratory findings were collected and analyzed in order to assess their ability to predict in-hospital death. Results: Twelve patients were identified (mean age 59 + 22 years; 58% were women. Five (42% died during the hospitalization, and the variables significantly associated with this outcome were: a delay between diagnosis and symptom onset (HR 1.36; 95% CI 1.04-1.78; p < 0.05; a higher severity score (HR 1.48; 95%CI 1,23-3.86; p < 0.05; hemodynamic instability with hypotension and/or shock (HR 3.35; 95%CI 3.02-9.26; p < 0.01; a higher schistocyte count on blood smear (HR 1.84; 95%CI 1.04-3.27; p < 0.05; and higher lactate values (HR 1.85; 95%CI 1.08- 3.16; p < 0.05. Conclusions: TTP is a rare and potentially fatal disease with protean manifestations. Delayed diagnosis after symptom onset is a major determinant of poor outcome. Hypotension and shock are also prognostically unfavourable. Laboratory evidence of cardiocirculatory compromise (i.e., elevated lactate levels and extension of the disease process (i.e., schistocyte count > 3 are predictive of in-hospital death, independently of the hemodynamic profile on admission.

  15. Nuclear medicine in developing nations

    International Nuclear Information System (INIS)

    Nofal, M.M.

    1985-01-01

    Agency activities in nuclear medicine are directed towards effectively applying techniques to the diagnosis and management of patients attending nuclear medicine units in about 60 developing countries. A corollary purpose is to use these techniques in investigations related to control of parasitic diseases distinctive to some of these countries. Through such efforts, the aim is to improve health standards through better diagnosis, and to achieve a better understanding of disease processes as well as their prevention and management. Among general trends observed for the region: Clinical nuclear medicine; Radiopharmaceuticals; Monoclonal antibodies; Radioimmunoassay (RIA); Nuclear imaging

  16. Radiation protection in nuclear medicine

    International Nuclear Information System (INIS)

    Corstens, F.

    1989-01-01

    Aspects of radiation protection in nuclear medicine and the role of the Dutch Society for Nuclear Medicine in these are discussed. With an effective dose-equivalence of averaged 3 mSv per year per nuclear medical examination and about 200.000 examinations per year in the Netherlands, nuclear medicine contributes only to a small degree to the total averaged radiation dose by medical treating. Nevertheless from the beginning, besides to protection of environment and personnel, much attention has been spent by nuclear physicians to dose reduction with patients. Replacing of relatively long living radionuclides like 131 I by short living radionuclides like 99m Tc is an example. In her education and acknowledgement policy the Dutch Society for Nuclear Medicine spends much attention to aspects of radiation reduction. (author). 3 tabs

  17. Department of Nuclear Reactions: Overview

    International Nuclear Information System (INIS)

    Rusek, K.

    2004-01-01

    Full text: In spite of reduced personnel the number of papers published and in press exceeded fifty, almost ten more than a year ago. Another good sign is the growing number of PhD students. The following short reports cover the three major domains of our scientific activities: nuclear, material and atomic physics. Nuclear physics: The structure of light nuclei was investigated, and studies of nuclear reactions induced by heavy ions were performed including experiments at the Heavy Ion Laboratory of Warsaw University. The experiments were carried out in collaboration with scientists from the Institute of Nuclear Research from Kiev, Ukraine. Proton induced reactions on zirconium were investigated theoretically by means of a multistep-direct model extended for the unbound particle - hole states. Good agreement with the experimental data was achieved. Isospin effects in multifragmentation of relativistic heavy ions were studied by the ALADIN Collaboration. Elements of a new generation detector PANDA were tested experimentally using a proton beam provided by the C-30 compact cyclotron at Swierk. Evidence of a narrow baryon state was found in a quasi - real photoproduction on the deuterium target by the HERMES Collaboration. Atomic physics: Ionisation of selected heavy elements by sulphur ions was investigated in collaboration with the Swietokrzyska Academy, Kielce. Materials research: Hydrogen release from ultrahigh molecular weight polythene was investigated by means of an α - particle beam from the Van de Graaff accelerator of our Department. Last but not least, many of our colleagues have been involved in education. Lectures on nuclear physics, accelerators, detectors used in nuclear research as well as nuclear methods applied in solid state studies for students from many high schools of Warsaw and for students of Warsaw University were given by Dr. Andrzej Korman and Dr. Lech Nowicki. Also, our Department made a significant contribution to the 7 th Science

  18. Essentials of nuclear medicine imaging

    CERN Document Server

    Mettler, Fred A. Jr

    2012-01-01

    Essentials of Nuclear Medicine Imaging, by Drs. Fred A Mettler and Milton J Guiberteau, provides the practical and comprehensive guidance you need to master key nuclear imaging techniques. From physics, instrumentation, quality control, and legal requirements to hot topics such as sodium fluoride, radiopharmaceuticals, and recommended pediatric administered doses and guidelines, this sixth edition covers the fundamentals and recent developments in the practice of nuclear medicine.

  19. Nuclear Medicine in Surgical Oncology

    International Nuclear Information System (INIS)

    Ndirangu, D.T.

    2009-01-01

    Defines nuclear medicine as a branch that utilizes nuclear technology for diagnosis and treatment of diseases.The principles of nuclear medicine are; it uses the principle that a certain radiopharmaceutical (tracer) will at a certain point in time have a preferential uptake by a particular body or tissue. it is imaged by use the use of detectors mounted in gamma cameras or PET (Position emission tomography) devices

  20. Radiological safety analysis of the nuclear medicine service at the 'Hospital Nacional Dos de Mayo'/Peru

    International Nuclear Information System (INIS)

    Acosta R, N.; Ramirez Q, R.

    1996-01-01

    For the purpose of applying for installation licenses for nuclear medicine, as it is required by the peruvian Law, it is necessary to make an analysis of safety and protection of the installation and its procedures, so that the technical criteria can be satisfied. Previous information includes a description of activities that employs I 131 and Tc 99m in the diagnosis and treatment. A description of the installations, surrounding areas and construction details is performed, especially in hot zones. The safety analysis takes into account the normal operation risk in terms of doses for each process or operation that is executed (for example: division, fraction, extraction, dilution, etc),the operation time and the frequency. The annual doses are not more than 5,88 mSv for diagnostics and 5 mSv in therapy. In accidental situations, events of individual contamination, spills, fire and explosion, which are the most likely to happen, have been taken into account. Due to these events, the doses are between 5.5 mSv and 0.53 mSv under reasonable assumptions. In view of the possibility of these normal and potential doses, it is necessary the implementation of procedures and specifications to complete the protection in the practice. The documents were evaluated and the installation license was granted. (authors). 7 refs., 1 fig

  1. Asian School of Nuclear Medicine

    International Nuclear Information System (INIS)

    Sundram, F.X.

    2007-01-01

    A number of organisations are involved in the field of nuclear medicine education. These include International Atomic Energy Agency (IAEA), World Federation of Nuclear Medicine and Biology (WFNMB), Asia-Oceania Federation of Nuclear Medicine and Biology (AOFNMB), Society of Nuclear Medicine (SNM in USA), European Association of Nuclear Medicine (EANM). Some Universities also have M.Sc courses in Nuclear Medicine. In the Asian Region, an Asian Regional Cooperative Council for Nuclear Medicine (ARCCNM) was formed in 2000, initiated by China, Japan and Korea, with the main aim of fostering the spread of Nuclear Medicine in Asia. The Asian School of Nuclear Medicine (ASNM) was formed in February 2003, with the ARCCNM as the parent body. The Aims of ASNM are: to foster Education in Nuclear Medicine among the Asian countries, particularly the less developed regions; to promote training of Nuclear Medicine Physicians in cooperation with government agencies, IAEA and universities and societies; to assist in national and regional training courses, award continuing medical education (CME) points and provide regional experts for advanced educational programmes; and to work towards awarding of diplomas or degrees in association with recognised universities by distance learning and practical attachments, with examinations. There are 10 to 12 teaching faculty members from each country comprising of physicists, radio pharmacists as well as nuclear medicine physicians. From this list of potential teaching experts, the Vice-Deans and Dean of ASNM would then decide on the 2 appropriate teaching faculty member for a given assignment or a course in a specific country. The educational scheme could be in conjunction with the ARCCNM or with the local participating countries and their nuclear medicine organisations, or it could be a one-off training course in a given country. This teaching faculty is purely voluntary with no major expenses paid by the ASNM; a token contribution could be

  2. Czechoslovak nuclear medicine, development and present state

    Energy Technology Data Exchange (ETDEWEB)

    Hupka, S [Ustav Klinickej Onkologie, Bratislava (Czechoslovakia)

    1981-01-01

    The growth is described of nuclear medicine departments and units in Czechoslovakia in the past 25 years of the existence of the Czechoslovak Society for Nuclear Medicine and Radiation Hygiene, the numbers of personnel and their qualifications. While only three nuclear medicine units were involved in the use of radioisotopes for diagnostic and therapeutic purposes in the 1950's, 29 specialized departments and 15 laboratories are now in existence with a staff of 299 medical doctors and other university graduates and 365 technicians and nurses. They operate all possible instruments, from simple detector devices via gamma cameras to computer tomographs. Briefly, the involvement of the Society is described in coordinated research programs, both with institutions in the country and with the other CMEA countries and IAEA.

  3. Department of Nuclear Reactions: Overview

    International Nuclear Information System (INIS)

    Rusek, K.

    2002-01-01

    Full text: Department of Nuclear Reactions has had a very productive year. We have carried out our work in close collaborations with physicists from many laboratories, home and foreign. The following reports cover three major domains of our activities: nuclear, material and atomic physics. * Nuclear physics: In collaboration with scientists from Ukraine experimental studies of nuclear reaction induced by heavy ions from the Warsaw Cyclotron have been performed. The aim of the experiments is to study nuclear reactions leading to the exotic light nuclei in exit channels and energy dependence of the nucleus - nucleus interactions. Proton induced charge-exchange reactions were investigated theoretically by means of multistep-direct model. Good agreement with the experimental data was achieved. A novel approach to the problem of the nuclear liquid → gas phase transition was proposed, based on synergetics - a domain of science dealing with self-organization in macroscopic systems. Decay properties of the Roper resonance were studied. Final analysis of the analysing powers for the polarized deuterons scattered on protons was accomplished. Experimental programme of the near-threshold meson production in proton - proton scattering has been started in collaboration with Forschungszentrum. Juelich. * Atomic physics: Spectra of the X-rays emitted by energetic sulphur ions scattered off carbon atoms were analysed in order to study the role of the multiple charge states of the inner shells in the dynamics of the collision process. Ionization probabilities in collision of oxygen ions with gold atoms were measured. The observed disagreement of the experimental data with the theoretical predictions suggest a strong effect generated by the sub-shell couplings. * Materials research: Ion channelling method was applied to investigate transformation of the defects in Al x Ga 1-x As crystalline layers. Activities of our colleagues in didactics have grown considerably. Lectures

  4. Evaluation of radiation dose to patients from Tc-99m during bone scan in nuclear medicine at Korle-Bu Teaching Hospital

    International Nuclear Information System (INIS)

    Bambara, T. L.

    2014-07-01

    Internal dosimetry deals with the measurement of the radiation dose absorbed internally by an organ after the administration of isotopes for diagnosis and treatment. In the present study radiation absorbed dose has been calculated for technetium-99m methylene diphosphonate (Tc-99m MDP) which is used frequently for bone scan in Korle-Bu teaching hospital nuclear medicine department. In these cases a small amount of isotopes are accumulated in kidney, urinary bladder etc. Study on sixty-five patients undergoing bone scans has been performed quantitatively using e.soft software. The Tc-99m MDP doses were administered to the patients with activity ranging from 377.4 to 932.4 MBq depending on their weights, and were then scanned with an installed e.Cam SPECT system. A 256 × 1024 matrix size was used in acquiring the bone scans. Also the scans of five volunteer patients at three different times (1 hour, 2 hour and 3 hour after injection) were used to determine the residence time in the bladder and kidney. To determine the amount of activity in patient kidney and urinary bladder, conjugate view method was applied on images information. MIRD equation and OLINDA/EXM software were then used to estimate absorbed dose in different organs of patients. The absorbed value obtained from the two methods were compared. The activity in patient’s left kidney, right kidney and urinary bladder undergoing bone scan three hours after injection of Tc-99m were 1.52±0.48 MBq, 1.52±0.44 MBq 4.88±3.11MBq respectively. The residence time for the kidney and urinary bladder were 0.128±0.043 hour and 1.099±0.330 hour respectively. The absorbed dose per unit of injected activity (mGy/MBq) for bladder, kidneys, liver, lungs, red marrow, ovaries, pancreas, skin and spleen were calculated for the male and the female patients using the two methods. The absorbed dose values obtained from the two methods were compared. In the study for absorbed dose calculation, MIRD equation is in agreement with

  5. 131I intake survey and effective dose calculation for personnel in a nuclear medicine department; Vigilancia de incorporaciones de 131I y estimacion de dosis efectiva comprometida en el personal de un servicio de medicina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Laguna, A.; Estrada-Lobato, E.; Brandan, M.E.; Medina, L.A.

    2010-07-01

    The staff of a nuclear medicine department is subject to the risk of 131I intake as consequence of oversights in the radiation safety procedures, the occurrence of an accident, or malicious acts. The intake can be estimated by using a detection system based on NaI(Tl) or HpGe. This paper presents a methodological proposal for the use of a gammacamera for detection of occupational intakes of 131I in the Nuclear Medicine staff. We used a Siemens e.cam gamma camera (GC) as the radionuclide intake detection system. GC sensitivity and minimum detectable activity were determined to quantify activity retained in the thyroid gland. A whole-body anthropomorphic phantom REMCAL was also used to simulate and quantify the intake in the thyroid gland. To estimate the minimal uptake and the minimal committed effective dose E(50) that can be quantified with the gammacamera, the AIDE (Activity and Internal Dose Estimates) software was used. The gammacamera can detect 131I activity in thyroid, as low as 175 Bq without collimators, and 5948 Bq with high-energy collimators. The calculation of E(50) shows to be as low as 5% of the annual limit. This work has shown the utility of the gammacamera to detect intakes of 131I and to estimate the E(50). (Author).

  6. Future of nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Ganatra, R D

    1993-12-31

    When it comes to setting up nuclear medicine in a developing country, there is a group of people, who feel that such high technology has no place in a developing country. RIA is likely to remain the method of choice for the research laboratory. The use of radioisotopic label has many advantages compared to the use of an enzyme marker. Generally, iodination is simpler than the preparation of an enzyme labelled substance, especially since there has been no agreement as to which enzyme is best for substances as small as steroids or a large as viruses. In addition, there may be some change in the configuration of the enzyme or the substance to be labelled during the conjugation procedure. Monoclonal antibodies can provide virtually unlimited amounts of homogenous antibodies against a specific antigenic site. The heterogeneous antibodies are more likely to provide more sensitive assays than the monoclonal antibodies, although assays employing the latter are likely to be more specific. The optimal choice of the antiserum may depend on whether sensitivity or specificity is required for the assays

  7. Future of nuclear medicine

    International Nuclear Information System (INIS)

    Ganatra, R.D.

    1992-01-01

    When it comes to setting up nuclear medicine in a developing country, there is a group of people, who feel that such high technology has no place in a developing country. RIA is likely to remain the method of choice for the research laboratory. The use of radioisotopic label has many advantages compared to the use of an enzyme marker. Generally, iodination is simpler than the preparation of an enzyme labelled substance, especially since there has been no agreement as to which enzyme is best for substances as small as steroids or a large as viruses. In addition, there may be some change in the configuration of the enzyme or the substance to be labelled during the conjugation procedure. Monoclonal antibodies can provide virtually unlimited amounts of homogenous antibodies against a specific antigenic site. The heterogeneous antibodies are more likely to provide more sensitive assays than the monoclonal antibodies, although assays employing the latter are likely to be more specific. The optimal choice of the antiserum may depend on whether sensitivity or specificity is required for the assays

  8. Nuclear medicine imaging system

    Science.gov (United States)

    Bennett, Gerald W.; Brill, A. Bertrand; Bizais, Yves J. C.; Rowe, R. Wanda; Zubal, I. George

    1986-01-01

    A nuclear medicine imaging system having two large field of view scintillation cameras mounted on a rotatable gantry and being movable diametrically toward or away from each other is disclosed. In addition, each camera may be rotated about an axis perpendicular to the diameter of the gantry. The movement of the cameras allows the system to be used for a variety of studies, including positron annihilation, and conventional single photon emission, as well as static orthogonal dual multi-pinhole tomography. In orthogonal dual multi-pinhole tomography, each camera is fitted with a seven pinhole collimator to provide seven views from slightly different perspectives. By using two cameras at an angle to each other, improved sensitivity and depth resolution is achieved. The computer system and interface acquires and stores a broad range of information in list mode, including patient physiological data, energy data over the full range detected by the cameras, and the camera position. The list mode acquisition permits the study of attenuation as a result of Compton scatter, as well as studies involving the isolation and correlation of energy with a range of physiological conditions.

  9. Nuclear medicine in oncology

    International Nuclear Information System (INIS)

    Bishop, J.F.

    1999-01-01

    Cancer is increasingly prevalent in our society. There is a life-time risk that 1 in 3 Australian men and 1 in 4 Australian women will get cancer before the age of 75 years. Overall, 27% of the deaths in NSW are currently related to cancer. The common cancers for men are prostate, lung, melanoma, colon, rectum and bladder. For women the common cancers are breast, colon, melanoma, lung and unknown primary. However, overall lung cancer remains the major cause of cancer deaths (20%) followed by colorectal (13%), unknown site (8%), breast and prostate. Breast and lung cancer are the major causes of death in women. Recent information on 5 year survivals reveal good 5 year survival rates for breast (78.6%), prostate (72.4%) and melanoma (92%), while some tumours such as lung cancer (10.7%) have poor survival. Colon cancer has intermediate survival (57.1%). Projections for cancer incidence suggests rates of cancer will increase for colorectal cancer, melanoma, lung cancer in females but decrease for breast, lung in males and prostate cancer. Major strategic directions in cancer research are understanding carcinogenesis, identification of high risk groups, screening and early detection, chemo-prevention, new cancer therapies, combined modality therapy and quality of life issues. Nuclear medicine will play an important part in many of these areas

  10. Department of Nuclear Spectroscopy - Overview

    International Nuclear Information System (INIS)

    Styczen, J.

    2002-01-01

    Full text: The Nuclear Spectroscopy Department is the largest department of the Institute. It merges a variety of research groups having been performing investigations with a rich diversity of methods: from pure studies of the structure of nucleus and of nuclear properties through applied nuclear spectroscopy in condensed matter research, to the complex biophysical investigations of biological tissues. The nuclear structure experiments were performed mainly in European Large Scale Facilities (ALPIINFN-Legnaro, VIVITRON-IReS-Strasbourg, JYFL-K100-Cyclotron) with the use of the GASP, EUROBALL IV, RITU systems and with application of ancillary detectors - HECTOR+HELENA, RFD. Some data were obtained with the GAMMASPHERE in USA. Other research has been based on our own instrumentation - VdG, AFM, Dual-Beam-Implanter, PAC, Moessbauer spectrometers etc., in a strong co-operation with Polish and European institutions, of course. The atomic studies were done on the ESR at GSI in Darmastadt. In several pages which follow, some important results of the investigations in the Department are presented. In 2001, Dr hab. Jerzy Dryzek and Dr hab. Adam Maj were granted the Associated Professor positions, and Miss Agnieszka Kulinska and Mrs Maria Kmiecik - the Ph.D. degrees. Dr Kmiecik was also awarded the Henryk Niewodniczanski prize for studies of 147 Eu compound nucleus shape evolution. Some of us became (continued to be) members of International Committees - the PHINUFY (R. Broda), the Steering Committee of RISING at GSI (J. Styczen), the PAC of the VIVITRON at Strasbourg (J. Styczen). We organized an International Conference on Condensed Matter Studies (100 participants), which belonged to the well known series of Zakopane School of Physics. It's Proceedings appeared as a volume of the Acta Physica Polonica A journal. (author)

  11. Recent history of nuclear medicine

    International Nuclear Information System (INIS)

    Potchen, E.J.; Gift, D.A.

    1988-01-01

    Diagnostic nuclear medicine's recent history is characterized both by significant change and by growing participation in efforts to quantify the impact of nuclear medicine procedures on clinical judgment and patient management, as well as to develop methods for studying the efficacy of diagnostic procedures in general. The replacement of many nuclear medicine procedures that at one time were considered essential standards of clinical care by newer, more efficient and effective modalities has been complimented by the continued development of increasingly sophisticated applications of scintigraphic tracer methods

  12. Nuclear medicine, a proven partnership

    International Nuclear Information System (INIS)

    Henderson, L. A.

    2009-01-01

    Full text:Ultrasonography is the modality of choice for demonstrating many cystic structures within the body. However nuclear medicine is often able to demonstrate functional disturbance where ultrasound and conventional radiography are unsuccessful. A case is presented in which a 16 day old male child presented to nuclear medicine with a right upper quadrant cyst found in ultrasound with exact location equivocal. Determining the location and nature of the cyst was essential to the treatment team for patient management. A hepatobiliary study was performed and evidence of a choledochal cyst was found. In partnership with ultrasound, nuclear medicine was able to identify a possibly malignant structure and consequently patient management was determined.

  13. Department of Nuclear Reactions: Overview

    International Nuclear Information System (INIS)

    Rusek, K.

    2003-01-01

    Full text: In 2002, the Department has been involved in two new experimental programmes. Our colleagues led by Prof. Pawel Zupranski joined a large international collaboration HERMES and took part in experiments at DESY devoted to the study of the spin structure of the nucleon. Another group directed by Associate Prof. Bogdan Zwieglinski has worked on a conceptual design of a new generation detector PANDA (Proton-Antiproton Detection) which will be used in future experiments at GSI. Moreover, the experimental programmes covering three major domains of our scientific activities: nuclear physics, materials research and atomic physics were continued. - Nuclear physics: Experimental studies of nuclear reactions induced by heavy ions provided by the Warsaw U-200P Cyclotron were performed in collaboration with scientists from the Institute for Nuclear Studies in Kiev, Ukraine. The aim of the experiments was to investigate isotopic effects in the scattering of 11 B from carbon nuclides. Also, excited states of 6 Li predicted theoretically but never seen in experiments were investigated by means of one-neutron transfer reactions. Proton induced reactions were investigated theoretically by means of the multistep-direct model. Good agreement with the experimental data was achieved. The mechanism of fragments production in collisions of 197 Au with a gold target in the wide range of energies was studied by ALADIN and INDRA Collaborations. The production of η mesons from proton - proton collisions was investigated experimentally at the Juelich Cooler Synchrotron COSY. - Atomic physics: The ionisation of Au, Bi, Th and U atoms by Si ions was investigated in collaboration with the Swietokrzyska Academy, Kielce, and the University of Erlangen-Nuernberg. - Materials research: The sensitivity of the Solid State Nuclear Track PM-355 detectors was tested against intensive gamma and electron radiation. Moreover, using a monoenergetic sulphur ion beam from the Warsaw Cyclotron, the

  14. Handbook of nuclear medicine practice in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    This ``Handbook of Nuclear Medicine Practices in the Developing Countries`` is meant primarily for those, who intend to install and practice nuclear medicine in a developing country. By and large, the conventional Textbooks of nuclear medicine do note cater to the special problems and needs of these countries. The Handbook is not trying to replace these textbooks, but supplement them with special information and guidance, necessary for making nuclear medicine cost-effective and useful in a hospital of a developing country. It is written mostly by those, who have made success in their careers in nuclear medicine, in one of these countries. One way to describe this Handbook will be that it represents the ways, in which, nuclear medicine is practised in the developing countries, described by those, who have a long and authentic experience of practising nuclear medicine in a developing country Figs, tabs

  15. Handbook of nuclear medicine practice in developing countries

    International Nuclear Information System (INIS)

    1992-01-01

    This ''Handbook of Nuclear Medicine Practices in the Developing Countries'' is meant primarily for those, who intend to install and practice nuclear medicine in a developing country. By and large, the conventional Textbooks of nuclear medicine do note cater to the special problems and needs of these countries. The Handbook is not trying to replace these textbooks, but supplement them with special information and guidance, necessary for making nuclear medicine cost-effective and useful in a hospital of a developing country. It is written mostly by those, who have made success in their careers in nuclear medicine, in one of these countries. One way to describe this Handbook will be that it represents the ways, in which, nuclear medicine is practised in the developing countries, described by those, who have a long and authentic experience of practising nuclear medicine in a developing country

  16. Radiation exposure to nuclear medicine staffs during 18F-FDG PET/CT procedures at Ramathibodi Hospital

    International Nuclear Information System (INIS)

    Donmoon, T; Chamroonrat, W; Tuntawiroon, M

    2016-01-01

    The aim of this study is to estimate the whole body and finger radiation doses per study received by nuclear medicine staff involved in dispensing, administration of 18 F-FDG and interacting with radioactive patients during PET/CT imaging procedures in a PET/CT facility. The whole-body doses received by radiopharmacists, technologists and nurses were measured by electronic dosimeter and the finger doses by ring dosimeter during a period of 4 months. In 70 PET/CT studies, the mean whole-body dose per study to radiopharmacist, technologist, and nurse were 1.07±0.09, 1.77±0.46, μSv, and not detectable respectively. The mean finger doses per study received by radiopharmacist, technologist, and nurse were 265.65±107.55, 4.84±1.08 and 19.22±2.59 μSv, respectively. The average time in contact with 18 F-FDG was 5.88±0.03, 39.06±1.89 and 1.21±0.02 minutes per study for radiopharmacist, technologist and nurse respectively. Technologists received highest mean effective whole- body dose per study and radiopharmacist received the highest finger dose per study. When compared with the ICRP dose limit, each individual worker can work with many more 18 F- FDG PET/CT studies for a whole year without exceeding the occupational dose limits. This study confirmed that low levels of radiation does are received by our medical personnel involved in 18 F-FDG PET/CT procedures. (paper)

  17. Complementary alternative medicine and nuclear medicine

    International Nuclear Information System (INIS)

    Werneke, Ursula; McCready, V.Ralph

    2004-01-01

    Complementary alternative medicines (CAMs), including food supplements, are taken widely by patients, especially those with cancer. Others take CAMs hoping to improve fitness or prevent disease. Physicians (and patients) may not be aware of the potential side-effects and interactions of CAMs with conventional treatment. Likewise, their known physiological effects could interfere with radiopharmaceutical kinetics, producing abnormal treatment responses and diagnostic results. Nuclear medicine physicians are encouraged to question patients on their intake of CAMs when taking their history prior to radionuclide therapy or diagnosis. The potential effect of CAMs should be considered when unexpected therapeutic or diagnostic results are found. (orig.)

  18. Department of Nuclear Spectroscopy - Overview

    International Nuclear Information System (INIS)

    Styczen, J.

    2000-01-01

    Full text: The contributions given hereafter to this Annual Report cover a broad activity of the Department in 1999 both in the pure nuclear spectroscopy and in the applied spectroscopy investigations. That activity is then assembled in the two main groups: the nuclear structure studies with the application of the multidetector systems such as GASP, GAMMASPHERE, EUROBALL and the RFD - as its ancillary device, and investigations of condensed matter properties with the use of nuclear methods. In addition, non-nuclear methods such as the atomic force microscopy provided several new encouraging results. The nice data obtained are due to the great skill and hard work of all members of the staff, and a vast cooperation both with international and national institutes and institutions. When anticipated for calling the attractive results of the past year, I would rather admit that all data given here pretend to be those. To meet with, I refer directly to the short presentations given in the next pages. (author)

  19. Computers in nuclear medicine

    International Nuclear Information System (INIS)

    Cradduck, T.D.; Knowles, L.G.

    1977-01-01

    The decision to buy a computer is difficult. The wide variety of computing systems available makes that decision even harder because each of the systems has unique advantages and disadvantages. The following list contains many of the essentials any computer system for nuclear medicine should embody: (1) sophisticated and reliable hardware with sufficient memory capacity to acquire or display at least 128 x 128 static images or 64 x 64 dynamic studies and with the facility for adding extra hardware and peripheral equipment at a later date; (2) a well-proved, general-purpose, real-time operating system to which the programs specific to the gamma camera have been interfaced and which will allow expansion or modification of both hardware and software in the future; (3) a display exhibiting at least 128 x 128 resolution, a monochrome mode with extended gray scale, and perhaps color; a varied set of programmed image formats and hardware system that includes local refresher capabilities; (4) a high-level language, such as FORTRAN or BASIC, with the ability to directly access all data files and interact with system programs as well as a macroprogramming capability so the user may write his own programs for data manipulation and analysis; (5) a comprehensive yet generally applicable set of system programs to enable data acquisition, storage, analysis, and display. In addition to the above, one should expect the services of a team of well-trained maintenance technicians and engineers. The manufacturer should offer software support and exhibit a plan for continued development and upgrading of the software initially provided

  20. Occupational exposure in nuclear medicine in Portugal in the 1999-2003 period

    International Nuclear Information System (INIS)

    Martins, M. B.; Alves, J. G.; Abrantes, J. N.; Roda, A. R.

    2007-01-01

    The annual doses received by the staff of nuclear medicine departments from public hospitals and private clinics and evaluated by the Individual Monitoring Service of the Radiological Protection and Nuclear Safety Dept. (DPRSN) of the Nuclear and Technological Inst. (ITN) in Portugal, in the 5 y period from 1999 to 2003, are analysed and presented in this paper. In the 1999-2003 period, ITN-DPRSN monitored on an average 462 workers from nuclear medicine departments, which represents 6% of the 8000 workers of the medical field (approximately). The medical sector represents 80-85% of all the monitored population in Portugal. The professions of the monitored workers at nuclear medicine departments were identified by the respective departments as administrative, auxiliary, medical doctor, nuclear medicine technician, nurse, pharmacist and physicist. This information was collected at the onset of the monitoring and was updated over the last 3 y. The annual whole-body doses evaluated in the period 1999-2003 were used to derive the distribution of workers by dose intervals for every profession. The respective annual average doses and annual collective doses, as well as, the total average and total collective doses for the nuclear medicine sector were also determined and are presented. Internal radiation hasn't been monitored. (authors)

  1. Radiochemistry and its application to nuclear medicine

    International Nuclear Information System (INIS)

    Welch, J.J.

    1990-01-01

    The role of the radiochemist in Nuclear Medicine has increased since the early 1960's. At that time the first medical 99 Mo/ 99m /Tc generator was developed at Brookhaven National Laboratory and the first hospital based cyclotron installed at Washington University. Radiochemists have been involved in both the development and application of generator and accelerator based radiopharmaceuticals. The development of oxygen-15, nitrogen 13, carbon-11 and fluorine-18 simple compound and synthetic precursors will be discussed. In recent years new high current accelerators have been proposed from Nuclear Medicine isotope production. Generator produced radiopharmaceuticals continue to play a major role in Nuclear Medicine. Problems in the development of targetry to produce parent nuclides as well as challenges in generator development will be described

  2. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... Disorders Video: The Basketball Game: An MRI Story Radiology and You Sponsored by Image/Video Gallery Your Radiologist Explains Nuclear Medicine Transcript Welcome to Radiology Info dot org Hello! I’m Dr. Ramji ...

  3. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... other diagnostic tests. Nuclear medicine imaging procedures use small amounts of radioactive materials – called radiotracers – that are ... However, because the amount of radiotracer used is small, the level of radiation exposure is relatively low ...

  4. Considerations regarding nuclear medicine terminology

    International Nuclear Information System (INIS)

    Als, C.

    2008-01-01

    This article through some examples shows us all the interest of the use of terminology in nuclear medicine. Each would find in it its interest, from the patient to the doctors in different disciplines. (N.C.)

  5. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... or before abnormalities can be detected with other diagnostic tests. Nuclear medicine imaging procedures use small amounts ... relatively low and the benefit of an accurate diagnosis far outweighs any risk. To learn more about ...

  6. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... An MRI Story Radiology and You Sponsored by Image/Video Gallery Your Radiologist Explains Nuclear Medicine Transcript ... by a special camera and computer to create images of the inside of your body. If you’ ...

  7. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... you have any allergies. You may have some concerns about nuclear medicine. However, because the amount of ... You Sponsored by About Us | Contact Us | FAQ | Privacy | Terms of Use | Links | Site Map Copyright © 2018 ...

  8. Automated system of control of radioactive liquid effluents of patients submitted to therapy in hospitals of nuclear medicine (SACEL); Sistema automatizado de control de efluentes liquidos radiactivos de pacientes sometidos a terapia en hospitales de medicina nuclear (SACEL)

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz C, M A; Rivero G, T; Celis del Angel, L; Sainz M, E; Molina, G [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2006-07-01

    Different hospitals of nuclear medicine require of the technical attendance for the design, construction and instrumentation of an effluents retention system coming from the room dedicated to the medical application of iodine 131, with the one object of giving execution to the normative requirements of radiological protection, settled down in the General Regulation of Radiological Safety (RGSR) emitted by the CNSNS in November, 1988 and in the corresponding official standards. An automatic system of flow measurement, the activity concentration of the effluents to the drainage, the discharges control and the automated report it will allow the execution of the national regulations, also the elimination of unhealthy activities as the taking of samples, analysis of those same and the corresponding paperwork, its will allow that the SACEL is capable of to carry out registrations that are to consult in an automated way. The changes in the demands of the National Commission of Nuclear Safety and Safeguards in relation to the liberation of radioactive material in hospitals by medical treatments, it has created the necessity to develop a system that quantifies and dose the liquid effluents of people under thyroid treatment with iodine-131 to the drainage. The Automated System of Control of radioactive liquids effluents generated in Hospitals of Nuclear Medicine (SACEL) developed in the National Institute of Nuclear Research, it fulfills this regulation, besides improving the work conditions for the medical and technical personnel of the hospital in that are installed, since this system has the advantage of to be totally automated and to require of a minimum of attendance. The SACEL is an electro-hydraulic system of effluents control, based in the alternate operation of two decay deposits of the activity of the material contaminated with iodine-131. The system allows to take a registration of those volumes and liberated dose, besides being able to be monitoring in remote

  9. Department of Nuclear Reactions: Overview

    International Nuclear Information System (INIS)

    Rusek, K.

    1999-01-01

    Full text: The Department of Nuclear Reactions had a very productive year. The following reports cover three major domains of our activities: nuclear, material and atomic physics. One of the current questions in modern nuclear physics is question of the phase transitions in nuclear matter. Our physicists, the members of the ALADIN Collaboration at Gesellschaft fuer Schwerionenforschung, participated in new experiments exploring properties of highly excited nuclear matter and the phenomenon of the liquid - gas phase transition. The experiments yielded a number of important results. Details can be found in the three short reports presented in this volume. Structure of a nucleon is another important subject of nuclear science research. In the last year energy region of Δ resonance has been investigated by means of charge exchange reaction. The experiment was performed at Laboratory National Saturne in Saclay by SPESIV-π collaboration consisting of physicist from Institute of Nuclear Physics Orsay, Niels Bohr Institute Copenhagen and from our Department. The main achievement of the experiment was evidence for a Δ - hole attraction in the spin longitudinal channel. Reactions induced by radioactive ion beams such as 6 He recently attract a lot of interest. There exist some evidences that the 6 He nucleus has a two-neutron halo structure similar to that well established for 11 Li. An analysis of 6 He + 4 He scattering data reported in this volume revealed some similarities between the loosely bound 6 Li nucleus and the neutron rich 6 He. Research in material physics has focused on two basic topics: a crystallographic model of uranium dioxide, a material currently used as a nuclear fuel and transformations of defects in GaAs crystals at low temperature. The investigations have been carried out in a wide collaboration with scientists from the University of Jena, Research Center Karlsruhe and Centre de Spectrometrie Nucleaire Orsay. Some experiments have been performed at

  10. LECI Department of Nuclear Materials

    International Nuclear Information System (INIS)

    2006-01-01

    The LECI is a 'hot' laboratory dedicated mostly to the characterization of irradiated materials. It has, however, limited activities on fuel, as a back up to the LECA STAR in Cadarache. The LECI belongs to the Section of Research on Irradiated Materials (Department of Nuclear Materials). The Department for Nuclear Materials (DMN) has for its missions: - to contribute, through theoretical and experimental investigations, to the development of knowledge in materials science in order to be able to predict the evolution of the material physical and mechanical properties under service conditions (irradiation, thermomechanical solicitations, influence of the environment,..); - to characterize the properties of the materials used in the nuclear industry in order to determine their performance and to be able to predict their life expectancy, in particular via modelling. These materials can be irradiated or not, and originate from surveillance programs, experimental neutron irradiations or simulated irradiations with charged particles; - to establish, maintain and make use of the databases generated by these data; - to propose new or optimized materials, satisfying future service conditions and extend the life or the competitiveness of the associated systems; - to establish constitutive laws and models for the materials in service, incidental, accidental and storage conditions, and contribute to the development of the associated design codes in order to support the safety argumentation of utilities and vendors; - to provide expertise on industrial components, in particular to investigate strain or rupture mechanisms and to offer leads for improvement. This document presents, first, the purpose of the LECI (Historical data, Strategy, I and K shielded cell lines (building 605), M shielded cell line (building 625), Authorized materials). Then, it presents the microscopy and irradiation damage studies laboratory of the Saclay centre (Building 605) Which belongs to the Nuclear

  11. Digital filtering in nuclear medicine

    International Nuclear Information System (INIS)

    Miller, T.R.; Sampathkumaran, S.

    1982-01-01

    Digital filtering is a powerful mathematical technique in computer analysis of nuclear medicine studies. The basic concepts of object-domain and frequency-domain filtering are presented in simple, largely nonmathemaical terms. Computational methods are described using both the Fourier transform and convolution techniques. The frequency response is described and used to represent the behavior of several classes of filters. These concepts are illustrated with examples drawn from a variety of important applications in nuclear medicine

  12. Nuclear medicine. La medecine nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Blanquet, P; Blanc, D

    1976-01-01

    The applications of radioisotopes in medical diagnostics are briefly reviewed. Each organ system is considered and the Nuclear medicine procedures pertinent to that system are discussed. This includes, the principle of the test, the detector and the radiopharmaceutical used, the procedure followed and the clinical results obtained. The various types of radiation detectors presently employed in Nuclear Medicine are surveyed, including scanners, gamma cameras, positron cameras and procedures for obtaining tomographic presentation of radionuclide distributions.

  13. Results of the evaluation of the radiation protection in several nuclear medicine departments and recommendations for its optimization; Resultados de la evaluacion de la proteccion radiologica en varios departamentos de medicina nuclear y recomendaciones para su optimizacion

    Energy Technology Data Exchange (ETDEWEB)

    Bejerano, Gladys Lopez; Jova Sed, Luis; Diaz, Efren [Centro de Proteccion y Higiene de las Radiaciones, La Habana (Cuba)]. E-mail: gladys@cphr.edu.cu; jova@cphr.edu.cu [and others

    2001-07-01

    For the evaluation of the radiological safety in several Nuclear Medicine departments a survey was processed and applied that gathers the related mainly to: aspect of the licensing and fulfillment of the establish in this, the program of individual radiologic monitoring and his evaluation, functions that serve to the radiologic protection system, program of qualification and training of the personnel, equipment and mean of radiation protection, program of monitoring of the area of work, characteristic of the premises, management of remainder radioactive, program of quality control, aspect related to the radiation protection in the procedure of diagnosis with the investigation; as well as to pregnant patients and those related to the investigation to accidental medical exhibitions. In the work a systematization of the main results had been done, insisting on the evaluation of the doses received by the workers occupational exposed. A comparison of the activities administered to the patients by different departments and the internationally recommended ones, explaining the found differences. In addition the main recommendations were exposed to obtain in these departments an optimization of the radiological safety.

  14. Nuclear medicine and the pregnant patient

    International Nuclear Information System (INIS)

    Collins, L.

    1988-01-01

    Estimates of the risks of exposing an embryo or fetus to radiation are discussed. Recommendations are made about the policies a nuclear medicine department should develop for handling cases of accidental irradiation of an embryo or fetus. The choices available where a known pregnancy is involved and diagnostic radiology is required are outlined. Only necessary examinations should be performed and care taken to avoid or minimise irradiation of the fetus. The nuclear medicine physician must be prepared to make (and defend if necessary) an informed decision on whether to proceed with an examination and must also be in a position to discuss the risks with anxious parents

  15. Radiation protection in nuclear medicine

    International Nuclear Information System (INIS)

    Chougule, Arun

    2014-01-01

    The branch of medical science that utilizes the nuclear properties of the radioactivity and stable nuclides to make diagnostic evaluation of anatomical and/or physiological conditions of the body and provide therapy with unsealed radioactive sources is called Nuclear Medicine (NM). The use of unsealed radionuclides in medicine is increasing throughout the world for diagnosis and treatment. As per UNSCEAR report more than 6 million nuclear medicine procedures are conducted in a year. However we know that radiation is double edged sword and if not used carefully will be harmful to patient as well as staff and therefore a nuclear medicine procedure should be undertaken only after proper justification and optimization. Nuclear medicine procedures are different than the X-ray diagnostic procedures as in NM, radioisotope is administered to patient and patient becomes radioactive. The NM staff is involved in unpacking radioactive material, activity measurements, storage of sources, internal transports of sources, preparation of radiopharmaceuticals, administration of radiopharmaceutical, examination of the patient, care of the radioactive patient, handling of radioactive waste and therefore receives radiation dose. This talk will discuss the various steps for radiation safety of patient, staff and public during Nuclear Medicine procedures so as to implementing the ALARA concept. (author)

  16. Department of Nuclear Theory: Overview

    International Nuclear Information System (INIS)

    Wilk, G.

    1999-01-01

    Full text: The Department of Nuclear Theory consists of 18 physicists and 3 graduate students working on different aspects of low energy, high energy, plasma and nonlinear physics. Most of the effort is phenomenologically oriented. Close collaboration with SMC, LEAR and ALICE Collaborations at CERN must be also emphasized. The specific topics are: Studies of strangeness in nuclei stem from a long Warsaw tradition of hypernuclear physics. These include attempts to understand the elusive Σ-hypernuclei, studies of nuclear bound states of η-mesons that introduce hidden strangeness into nuclei. Some studies have been devoted to the structure of superheavy elements, which resulted in predicting properties of deformed superheavy nuclei. They are continued with calculations of collective motion, neutron haloes and energy dissipation in heavy ion collisions. An increasing effort is also devoted to research on nuclear collisions at high energies. Much attention is paid to the study of the mass of exotic nuclei. Studies in high energy physics are devoted to understanding deep inelastic lepton scattering, formal properties of the contour gauge theories, the phenomenology of high energy multiparticle and production processes in both hadronic and nuclear collisions, (especially the systematics of leading particle production in these processes). A new approach to the standard model via conformed unification of general relativity has been attempted. The new attempt at quantization of nonlinear theories has been undertaken and first positive and interesting results obtained. Theoretical studies of soliton solutions in several branches of physics are performed. Methods of testing the stability and metamorphosis of these soliton solutions have been developed. Results have implications in solid state physics as well as for plasmas and hydrodynamics. Collaborations with several universities have been maintained. These include the Universities of Warsaw, Bucharest, Kielce, T.U. Munich

  17. Nuclear medicine. 1 part. Manual

    International Nuclear Information System (INIS)

    Shlygina, O.E.; Borisenko, A.R.

    2006-01-01

    Current manual is urged to give wide-scale readers a submission on a key principles and methods of nuclear medicine, and it opportunities and restrictions in diagnostics and treatment of different diseases. Nuclear medicine is differing first of all by combination of diverse knowledge fields: special knowledge of a doctor, knowledge of physical processes bases, related with radiation, grounds of radiopharmaceutics, dosimetry. In the base of the book the 5th edition of 'Nuclear medicine' manual in 2 parts of German authors - Schicha, G.; Schober, O. is applied. In the book publishing the stuff of the Institute of Nuclear Physics of the National Nuclear Center of Republic of Kazakhstan has been worked. Modifications undergo practically all chapters: especially the second one, forth and sixth was enlarged. The 1 part of the book was published due to support of IAEA within the Technical cooperation project 'Implementation of Nuclear Medicine and Biophysics Center' (KAZ/6/007). The manual second part - devoted to applications of nuclear medicine methods for diagnostics and treatment - will be published in 2007

  18. Nuclear Medicine Imaging

    Science.gov (United States)

    ... necesita saber acerca de... Estudios de Imagen de Medicina Nuclear Un procedimiento de medicina nuclear se describe algunas veces como unos rayos- ... través del cuerpo del paciente. Los procedimientos de medicina nuclear utilizan pequeñas cantidades de mate- riales radiactivos, ...

  19. Department of Nuclear Physical Chemistry

    International Nuclear Information System (INIS)

    Mikulski, J.

    1994-01-01

    The research program at the Department of Nuclear Physical Chemistry of the Niewodniczanski Institute of Nuclear Physics is described. The Department consist of three laboratories. First - Laboratory of Physical Chemistry of Separation Processes on which the activity is concentrated on production and separation of neutron deficient isotopes for medical diagnostic. Recently, the main interest was in 111 In which is a promising tracer for cancer diagnostic. To increase the effectiveness of production of indium 111 In the reaction with deuterons on the enriched cadmium target was carried out instead of the previously used one with alpha particles on natural silver. In the second one - Laboratory of Chemistry and Radiochemistry - the systematic studies of physicochemical properties of transition elements in solutions are carried out. The results of the performed experiments were used for the elaboration of new rapid and selective methods for various elements. Some of these results have been applied for separation of trans actinide elements at U-400 cyclotron of JINR Dubna. The third one laboratory -Environmental Radioactivity Laboratory - conducts continuous monitoring of radioactivity contamination of atmosphere. The investigation of different radionuclides concentration in natural environment, mainly in the forest had been carried out

  20. Knowledge Management in Nuclear Medicine

    International Nuclear Information System (INIS)

    Abaza, A.

    2017-01-01

    The last two decades have seen a significant increase in the demand for medical radiation services following the introduction of new techniques and technologies that has led to major improvements in the diagnosis and treatment of human diseases. The diagnostic and therapeutic applications of nuclear medicine techniques play a pivotal role in the management of these diseases, improving the quality of life of patients by means of an early diagnosis allowing opportune and proper therapy. On the other hand, inappropriate or unskilled use of these technologies can result in potential health hazards for patients and staff. So, there is a need to control and minimize these health risks and to maximize the benefits of radiation in medicine. The present study aims to discuss the role of nuclear medicine technology knowledge and scales in improving the management of patients, and raising the awareness and knowledge of nuclear medicine staff regarding the use of nuclear medicine facilities. The practical experience knowledge of nuclear medicine staff in 50 medical centers was reviewed through normal visiting and compared with the IAEA Published documents information. This review shows that the nuclear medicine staff has good technology knowledge and scales during managing patients as compared to IAEA Published information regarding the radiation protection measures and regulation. The outcome of the study reveals that competent authority can improve radiation safety in medical settings by developing and facilitating the implementation of scientific evidence-based policies and recommendations covering nuclear medicine technology focusing in the public health aspects and considering the risks and benefits of the use of radiation in health care. It could be concluded that concerted and coordinated efforts are required to improve radiation safety, quality and sustain ability of health systems

  1. Performance evaluation of the activity meters of nuclear medicine services of the hospitals Rafael Angel Calderon, San Juan de Dios and Mexico during the period from July 1, 2008 to December 31, 2008

    International Nuclear Information System (INIS)

    Barahona Navarro, Alvaro; Binns Quiros, Natalia

    2009-01-01

    Nuclear medicine has used radioisotopes associated to drugs in order to get them to an organ of interest. The radioisotope has the quality to emit radiation, which passes through the body, after being admitted to it, and this is perceived by equipment such as a gamma camera to study the behavior of the organ under study. The radiation is a energy emission able to boot electrons from atoms and produce ions, thus the chemical composition may be altered, resulting in alterations in the cells. Conditions such as: a onreproductive of the cells, causing a tumor; or alterations in geminal cells, causing genetic alterations, which may occur in the offspring of an individual. For the above reason is that the use of radiopharmaceuticals should be as careful as possible, doing as little radiation exposure, without compromising the quality of the study, these should be applied with more important in more radiosensitive population such as children and older adults. The doses used in nuclear medicine are quantified using a device called activity meters and the proper functioning of the overexposures shall impose or low-quality studies doses outside the range of usefulness. The operation of these machines based on the quality control logs have been studied to discover if there are alterations in dosages of nuclear medicine departments of hospitals Calderon Guardia, San Juan de Dios and Mexico. Tests of zero settings, display, physical monitoring, high voltage, linearity test, stability, background radiation, precision, accuracy and consistency have been performed as quality control. This research is classified as non-experimental longitudinal quantitative. The study population was the record set and the realization of quality control tests made to the hospital activity meters above. The collection of data was performed by two steps, the first taking records concerning quality control of the different hospitals, completed tabulation, gratification and analysis of the same. The

  2. Department of Nuclear Reactions - Overview

    International Nuclear Information System (INIS)

    Nowicki, L.

    2006-01-01

    In 2005 the Department held a steady course. Topics of nuclear physics, atomic physics and materials research that started in previous years were continued. Although our team was smaller than years ago, the scientific activity, estimated by number of published papers is still very high. Scientists of the Department are co-authors or authors of more than 50 papers. Nuclear physics, which is our main-stream activity, covered a wide energy range. It started close to the Coulomb barrier, where 6 He breakup on heavy nuclei were studied, and ended at zones of tens of GeV; such high energies were used to investigate spin structure of deuterons and to explore hadron leptoproduction. Traditionally, experimental investigations in the fields of atomic physics and of physics of materials completed the scene. Our old Van de Graaff accelerator Lech was used for studies of M-shell ionisation of heavy elements, for hardening of Ultra-High Molecular Weight Polyethylene and for characterisation of materials with RBS and NRA techniques. The VdG runs perfectly although it is over 40 years old. Two Ph.D. students finished their theses and were promoted. Izabela Fijal's work concerned multi-ionization and intrashell coupling effects for L-shell x-ray emission induced by heavy ions, while Sergiy Mezhevych showed studies on scattering of 11 B from carbon isotopes. It is obvious that contemporary works on physics do not arise in a single lab. Our contributions to many papers were possible due owing to collaborations involving many institutions. Some of them are listed: GSI, Darmstadt (PANDA Collaboration) DESY, Hamburg (HERMES Collaboration) Institut fuer Kernphysik, Forschungszentrum Juelich Forschungszentrum Rossendorf CSNSM, Orsay GANIL, Caen University of Huelva Institute of Nuclear Research, Kiev SLCJ, Warsaw ITME, Warsaw Some of our colleagues traditionally gave lectures and made physical demonstrations on Warsaw informal learning events: 9 th Science Picnic and 9 th Science Festival

  3. Department of Nuclear Reactions: Overview

    International Nuclear Information System (INIS)

    Rusek, K.

    2000-01-01

    Full text: During last year the physicists of the Department of Nuclear Reactions were involved in many experiments and projects: -Low energy nuclear reactions: For the first time a heavy ion beam from the Warsaw Cyclotron C-200 was used to investigate elastic and inelastic scattering of 12 C ions from 12 C target. The experiment is a part of a long range programme devoted to study the energy dependence of the nucleus-nucleus interactions. -Multifragmentation of relativistic heavy ions: Multifragmentation reactions induced by 12 C on different heavy targets and at different energies were studied in experiments performed at Gesellschaft fuer Schwerionenforschung by the ALADIN Collaboration. These asymmetric systems were investigated in order to study the interplay between preequilibrium and equilibrium phenomena in the nuclear liquid - gas phase transition. -The structure of nucleons: A novel, two-structure description of the Roper resonance was proposed on the basis of the α-p scattering data reanalysed by means of a T-matrix formalism. -Atomic physics: Emission of the X-rays by fast heavy ions (S, Ti, Fe) as they traverse the matter (thin carbon or other light element foil) was investigated in a series of experiments performed at University of Erlangen. It was demonstrated, that the characteristic K α X-rays emitted by a heavy ion can serve as a tool for Z-value control of the ion. -Material research: Semiconductor heterostructures were investigated by means of Rutherford Back Scattering and Channeling methods using the 2 MeV α particles from the Van de Graaff accelerator ''Lech'' at the Department. The following reports present the results and major successes which were achieved in 1999. (author)

  4. Therapy in nuclear medicine

    International Nuclear Information System (INIS)

    Eftekhari, M.; Sadeghi, R.; Takavar, A.; Fard, A.; Saghari, M.

    2002-01-01

    Although there have been very significant development in the field of radionuclide therapy within the past 10 years, radionuclide therapy in the form of 131 I, 33 P,.... have been in use for over 46 years. Palliation of bone pain is a good example for radionuclide therapy. It has an especial role in advanced metastatic cancer. 32 P, 89 Sr-Cl, 186 Re-HEDP, 133 Sm-EDTMP, and 117 mSn-DTPA are used in these patients. They are usually effective and help to maintain a painless life for patients with advanced cancer. Although this kind of therapy is not as rapid as radiotherapy, its effect lasts longer. In addition re-treatment with these agents is safe and effective. Radioimmunotherapy is a new exciting technique in the radionuclide therapy. In this technique monoclonal antibodies or their fragments are labeled with a suitable radionuclide, these antibodies can irradiate tumor cells over a distance of some fraction of a millimeter. Bulky tumors are obviously unsuitable targets for Rit. Several antibodies specific for Cd 20 (B1 and 1 F 5) and CD 37 (Mb-1) labeled with 131 I have been used for hematologic malignancies with good response. Several antigens associated with carcinomas of various histologic types have been targeted for therapeutic purposes by antibodies labeled with different radionuclides. Other routes of administration like intraperitoneal, intrathecal, and intravesical have been used with different rates of success. Pre targeting techniques can be used to reduce unwanted radioactive concentration in normal tissues. The avidin-biotin system is an example, which exploits the high-affinity binding between avidin and biotin, and was first used with anti-Cea antibody. Radiation synovectomy is another aspect of radionuclide therapy 198 Au colloid, 90 Y resin colloid, and 165 Dy-FHMA are some of the radionuclides used in the field of hematology. There has been significant advances in the field of therapy in nuclear medicine in recent years, which are briefly

  5. XXIVth days of nuclear medicine

    International Nuclear Information System (INIS)

    1986-01-01

    Abstracts are presented of papers submitted to the 24th Days of Nuclear Medicine held in Opava, Czechoslovakia between Oct 9 and 11, 1985. The conference proceeded in three sessions, namely nuclear pediatrics, miscellaneous and technicians' session. The publication also contains abstracts of posters. (L.O.)

  6. Managing medical treatment waste and effluent: the point of view of a nuclear medicine practitioner

    International Nuclear Information System (INIS)

    Karcher, G.

    2011-01-01

    The nuclear medicine department of the Nancy CHU hospital is one of the largest in France: 16.000 patients are welcomed each year and 4.000 persons undergo a tomography there. 5 shielded and isolated rooms, dedicated to Iodine 131 treatment, allow the care of 150 to 200 patients each year. The head of the nuclear medicine department gives his meaning about the new regulation on the management of radioactive effluents. According to him, regulations are necessary but the values of the imposed thresholds have to be scientifically justified. Another point is that a lot of money is spent on radiation protection issues while the radioactive risks are almost null, which leads to wasting money. The elaboration of the radioprotection regulations must be made not as a whole but on a specific basis according to the domain: nuclear power plants, research reactors or nuclear medicine, it applies. (A.C.)

  7. Department of Nuclear Reactions - Overview

    International Nuclear Information System (INIS)

    Rusek, K.

    2007-01-01

    The scientific activity of our department is traditionally focused on nuclear physics, atomic physics and material research. Our interest in nuclear physics is broad, ranging from the structure of a nucleon to the structure of the nucleus. The spin structure of a nucleon has been investigated within the HERMES Collaboration which comprises 32 institutions from 11 countries. The collaboration performs experiments at Deutches Elektronen-Synchrotron in Hamburg. Another large-scale international collaboration we are participating in is PANDA. The PANDA (antiProton ANnihilation at DArmstadt) experiment will be installed at the High Energy Storage Ring for antiprotons of the future Facility for Antiproton and Ion Research (FAIR) in Darmstadt. Our colleagues, led by Dr. B. Zwieglinski, have been working on the concept of a calorimeter, testing different scintillators. Many experiments in low energy nuclear physics were performed in collaboration with University of Jyvaeskylae, the Institute of Nuclear Research of the Ukrainian Academy of Science and Heavy Ion Laboratory of the Warsaw University. They were devoted to studying nucleus-nucleus interactions near the Coulomb barrier. This year, atomic studies focused on the L-shell ionisation of some heavy elements by silicon ions accelerated to the energy of 8.5-36 MeV. The results are presented in this report and are compared to different model calculations. Finally, I take great pleasure in congratulating Dr. L. Nowicki, whose study of uranium oxide structure, performed in collaboration with Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse in Orsay, was chosen as an important scientific achievement of our Institute in 2006. Apart from purely scientific activities, a few of our colleagues have been involved in education, giving lectures to students from high schools in Warsaw and Warsaw University. R. Ratajczak contributed to the 10 th Science Festival, an event organized for the general public every year

  8. Regulatory problems in nuclear medicine

    International Nuclear Information System (INIS)

    Vandergrift, J.F.

    1987-01-01

    Governmental involvement in the practice of medicine has increased sharply within the past few years. The impact on health care has, for the most part, been in terms of financial interactions between health care facilities and federally funded health services programs. One might say that this type of governmental involvement has indirect impact on the medical and/or technical decisions in the practice of nuclear medicine. In other areas, however, governmental policies and regulations have had a more direct and fundamental impact on nuclear medicine than on any other medical specialty. Without an understanding and acceptance of this situation, the practice of nuclear medicine can be very frustrating. This chapter is thus written in the hope that potential frustration can be reduced or eliminated

  9. Department of Nuclear Reactions - Overview

    International Nuclear Information System (INIS)

    Marianski, B.

    2010-01-01

    of polychromatic decorations from ancient Egyptian tombs. Important findings on the origin and dating of wall paintings at different archaeological sites are reported. · In this year the study of nuclear track detectors continued. These detectors will be used in a planned tokamak experiment in Great Britain. A new subject undertaken in the Department in collaboration with the Institute of Nuclear Physics of the Polish Academy of Science concerns diamond detectors. Diamond detectors have a large energy gap and very short pulse rise time. They are able to measure high intensity particle beams. As every year, apart from purely scientific activities. a few of our colleagues have been involved in education, giving lectures to students of many High Schools in Warsaw and to students of Warsaw University. (author)

  10. Department of Nuclear Reactions - Overview

    Energy Technology Data Exchange (ETDEWEB)

    Marianski, B [The Andrzej Soltan Institute for Nuclear Studies, Swierk-Otwock (Poland)

    2010-07-01

    -ray emission (PIXE) studies of polychromatic decorations from ancient Egyptian tombs. Important findings on the origin and dating of wall paintings at different archaeological sites are reported. centre dot In this year the study of nuclear track detectors continued. These detectors will be used in a planned tokamak experiment in Great Britain. A new subject undertaken in the Department in collaboration with the Institute of Nuclear Physics of the Polish Academy of Science concerns diamond detectors. Diamond detectors have a large energy gap and very short pulse rise time. They are able to measure high intensity particle beams. As every year, apart from purely scientific activities. a few of our colleagues have been involved in education, giving lectures to students of many High Schools in Warsaw and to students of Warsaw University. (author)

  11. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... medicine imaging to evaluate organ systems, including the: kidneys and bladder. bones. liver and gallbladder. gastrointestinal tract. ... help diagnose and evaluate: urinary blockage in the kidney. backflow of urine from the bladder into the ...

  12. Cardiovascular nuclear medicine and MRI

    International Nuclear Information System (INIS)

    Reiber, J.H.C.; Wall, E.E. van der

    1992-01-01

    This book is based on a meeting of the Working Group on Nuclear Cardiology, which held March 22-23,1991 under the auspices of the European Society of Cardiology and the Interuniversity Cardiology Institute of the Netherlands, and on the Second International Symposium on Computer Applications in Nuclear Medicine and Cardiac Magnetic Resonance Imaging, which was held March 20-22,1991 in Rotterdam, the Netherlands. It covers almost every aspect of quantitative cardio-vascular nuclear medicine and magnetic resonance imaging. The main topics are: single photon emission computed tomography (technical aspects); new development in cardiovascular nuclear medicine; advances in cardiovascular imaging; cardiovascular clinical applications; and cardiac magnetic resonance imaging. (A.S.). refs.; figs.; tabs

  13. Department of Nuclear Reactions: Overview

    International Nuclear Information System (INIS)

    Rusek, K.

    1998-01-01

    (full text) During the last year our activities were spread over the three major domains: nuclear, atomic and material physics. The nuclear physics experimental programme covered a broad range of nuclear reactions induced by light and heavy ions. New experiments were performed at the compact C-30 cyclotron at Swierk, at University of Jyvaeskylae, GSI Darmstadt, LN Saturne. Prospects for future experiments on nucleon structure at Forschungszentrum Juelich were open. The collaboration with INR Kiev was tightened and work was done in order to prepare experiments at the C-200 heavy ion cyclotron in Warsaw. An effort to install the ion guide isotope separator on line (IGISOL) at the C-200 cyclotron has also to be mentioned A half a year stay of Dr. Nicholas Keeley in the Department, who received The Royal Society/Polish Academy of Science grant, resulted in many interesting results on breakup of light nuclei. Details can be found in the short abstracts presented in this report. As far as atomic physics is concerned, the activity of a group lead by Prof. Marian Jaskola yielded various new results. The experiments were performed at the University of Erlangen, in close collaboration with the Pedagogical University in Kielce and the University of Basel. Fast neutrons generated in the 3 H(d,n) 4 He reaction induced by the 2 MeV deuteron beam from the Van der Graaff accelerator at the Department were used to calibrate solid state-nuclear-track detectors. This was a very good year for material physics research: Jan Kaczanowski and Slawomir Kwiatkawski received Ph.D. degrees based on dissertation research performed in the material physics research programme, while Pawel Kolodziej completed his MSc. thesis in collaboration with the Institute of Electronic Materials Technology in Warsaw, Research Center Karlsruhe, University of Jena and CSNSM Orsay many results were obtained. Lech Nowicki and Prof. Andrzej Turos were awarded by the Director of the IPJ prizes for their scientific

  14. Quality management audits in nuclear medicine practices

    International Nuclear Information System (INIS)

    2008-12-01

    An effective management system that integrates quality management (QM) is essential in modern nuclear medicine departments in Member States. The IAEA, in its Safety Standards Series, has published a Safety Requirement (GS-R-3) and a Safety Guide (GS-G-3.1) on management systems for all facilities. These publications address the application of an integrated management system approach that is applicable to nuclear medicine organizations as well. Quality management systems are maintained with the intent to continuously improve effectiveness and efficiency, enabling nuclear medicine to achieve the expectations of its quality policy, and to satisfy its customers. The IAEA has a long history of providing assistance in the field of nuclear medicine to its Member States. Regular quality audits and assessments are essential for modern nuclear medicine departments. More importantly, the entire QM and audit process has to be systematic, patient oriented and outcome based. The management of services should also take into account the diversity of nuclear medicine services around the world and multidisciplinary contributions. The latter include clinical, technical, radiopharmaceutical and medical physics procedures. Aspects of radiation safety and patient protection should also be integral to the process. Such an approach ensures consistency in providing safe, quality and superior services to patients. Increasingly standardized clinical protocol and evidence based medicine is used in nuclear medicine services, and some of these are recommended in numerous IAEA publications, for example, the Nuclear Medicine Resources Manual. Reference should also be made to other IAEA publications such as the IAEA Safety Standards Series, which include the regulations for the safe transport of nuclear material and on waste management as all of these have an impact on the provision of nuclear medicine services. The main objective of this publication is to introduce a routine of conducting an

  15. Department of Nuclear Reactions: Overview

    International Nuclear Information System (INIS)

    Rusek, K.

    2001-01-01

    Full text: The last year of the twentieth-century was productive for our Department. Although the name of the Department suggests that we are all involved in investigations of nuclear reactions, in fact our activities are spread over three major domains: nuclear, atomic and material physics. Some of the projects we were involved in the last year have been realized using national facilities and accelerators, like the Van de Graaff accelerator of our Department at 69 Hoza Street, Warsaw Cyclotron U-200P of Warsaw University, and compact C30 cyclotron of our Institute at Swierk. Other projects were done abroad, using facilities of the Gesellschaft fuer Schwerionenforschung in Darmstadt, Institute de Physique Nucleaire at Orsay, and Universitaet Erlangen-Nuernberg in Erlangen. We carried out our work in close collaborations with physicists from many laboratories, Polish and foreign. - Low energy nuclear reactions. In collaboration with scientists from Ukraine experiments, using heavy ion beam provided by the Warsaw Cyclotron, were started. The aim of the experiments is to study nuclear reactions leading to the exotic light nuclei in exit channels and energy dependence of the nucleus - nucleus interaction. Efforts were made to develop a multistep direct model of nuclear reactions. In the model contributions due to the low energy collective excitations were taken into account. Good agreement with the experimental data was achieved. - Multifragmentation of relativistic heavy ions. ALADIN Collaboration studied multifragmentation reactions induced by relativistic heavy ions. The main activities of our scientists concentrated on an upgrade of the detecting system in order to replace photo multipliers with large area avalanche photodiodes in the central section of the TOF-wall. Some tests of the photodiodes manufactured by Advanced Photonix Inc. were performed using standard β - and γ-sources. - Structure of a nucleon. Decay properties of the Roper resonance were studied. A

  16. Neuroimaging, nuclear medicine

    International Nuclear Information System (INIS)

    Kato, Takashi; Ito, Kengo; Arahata, Yutaka

    2007-01-01

    This chapter describes radionuclide imaging as it related to neurodegenerative dementias like Alzheimer's disease (AD), idiopathic Parkinson's disease (PD), and normal aging, among the various diseases of the elderly. The role of neuroimaging with nuclear medicine is to detect changes in neural activities that are caused by these diseases. Such changes may be indirect phenomena, but the imaging of neural functions provides physicians with useful, objective information regarding pathophysiology in the brain. Brain activities change with age, with the elderly showing decreased brain function in memory, execution, and attention. Age-dependent reduction in the global mean of cerebral blood flow (CBF) has been reported in many studies that have used X-133 and O-15 labeled gas, the spatial resolution of which is low. Partial volume correction (PVC) is available through the segmentation of grey matter from high-resolution T1-weighted magnetic resonance imaging. Meltzer reported that age-related change disappeared after PVC. The relative distribution of CBF and glucose metabolism has been examined on a voxel-by-voxel basis in many studies. The areas negatively correlated with age are the anterior part of the brain, especially the dorsolateral and medial frontal areas, anterior cingulate cortices, frontolateral and perisylvian cortices, and basal ganglia. The areas positively correlated with age are the occipital lobe, temporal lobe, sensorimotor cortex, and primary visual cortex. It is not easy to define ''normal aging''. Aged people tend to have the potential for diseases like cerebral ischemia caused by arteriosclerosis. Ischemia results in volume loss of the gray matter and CBF. The ApoE e4 gene is a risk factor for AD, and carriers of the ApoE e4 allel show CBF-like AD even at a relatively young age. Hypo-glucose metabolism in the posterior cingulate cortex is seen in 5% of normal people over 50 years of age. This Alzheimer-like CBF/metabolic pattern needs further

  17. The market for hospital medicine in Denmark

    Directory of Open Access Journals (Sweden)

    Gisela Hostenkamp

    2011-11-01

    Full Text Available Pharmaceutical expenditure growth has outpaced GDP and healthcare expenditure growth rates in Denmark as in most OECD countries for the last decade. A major part of this increase was due to high growth rates in specialist areas that are typically located in hospital settings. Yet the market for hospital medicines and their procurement are still poorly understood. The present paper characterises the market for hospital medicines in Denmark in terms of its organisation and developments between 2005 and 2009. In Denmark hospital medicines are publicly financed and procurement is centrally organised. 98% of all medicines administered at Danish public hospitals are purchased through a public procurement agency by means of public tenders. Using data on actual contract prices we decompose pharmaceutical expenditure growth into the contributions from newly introduced medicines, price and volume increases and use summary statistics to compare market performance in both sectors. The market for hospital medicine is more concentrated than the pharmaceutical retail sector and the share of generics and parallel imported products is significantly lower. Between 2005 and 2009 expenditures for hospital medicines more than doubled -accounting for almost 40% of the total Danish pharmaceutical market in 2009. Price increases however - although positive and higher than in the pharmaceutical retail sector - were only moderate. The majority of the expenditure growth was due to an increase in utilisation and the introduction of new medicines in the hospital sector. Centralised tendering may therefore have important implications for competition and industry structure in the long run.

  18. The Market for Hospital Medicine in Denmark

    DEFF Research Database (Denmark)

    Hostenkamp, Gisela

    2012-01-01

    Pharmaceutical expenditure growth has outpaced GDP and healthcare expenditure growth rates in Denmark as in most OECD countries for the last decade. A major part of this increase was due to high growth rates in specialist areas that are typically located in hospital settings. Yet the market...... for hospital medicines and their procurement are still poorly understood. The present paper characterises the market for hospital medicines in Denmark in terms of its organisation and developments between 2005 and 2009. In Denmark hospital medicines are publicly financed and procurement is centrally organised....... 98% of all medicines administered at Danish public hospitals are purchased through a public procurement agency by means of public tenders. Using data on actual contract prices we decompose pharmaceutical expenditure growth into the contributions from newly introduced medicines, price and volume...

  19. Maintenance of nuclear medicine instruments

    Energy Technology Data Exchange (ETDEWEB)

    Ambro, P

    1993-12-31

    Maintenance of instruments is generally of two kinds: (a) corrective maintenance, on a non-scheduled basis, to restore equipment to a functional status by repairs; (b) preventive maintenance, to keep equipment in a specified functional condition by providing systematic inspection, quality control, detection and correction of early malfunctions. Most of the instruments used in nuclear medicine are rather complex systems built from mechanical, electrical and electronic parts. Any one of these components is liable to fail at some time or other. Repair could be done only by a specialist who is able to evaluate the condition of the various parts ranging from cables to connectors, from scintillators to photomultipliers, from microprocessors to microswitches. The knowledge of the intricacies of the various electronic components required for their repairs is quite wide and varied. The electronics industry turns out more and more multi-purpose chips which can carry out the functions of many parts used in the instruments of the earlier generation. This provides protection against unauthorized copying of the circuits but it serves another purpose as well of inhibiting repairs by non-factory personnel. These trends of the instrument design should be taken into consideration when a policy has to be developed for the repairs of the hospital based equipment 1 fig., 1 tab

  20. Maintenance of nuclear medicine instruments

    International Nuclear Information System (INIS)

    Ambro, P.

    1992-01-01

    Maintenance of instruments is generally of two kinds: (a) corrective maintenance, on a non-scheduled basis, to restore equipment to a functional status by repairs; (b) preventive maintenance, to keep equipment in a specified functional condition by providing systematic inspection, quality control, detection and correction of early malfunctions. Most of the instruments used in nuclear medicine are rather complex systems built from mechanical, electrical and electronic parts. Any one of these components is liable to fail at some time or other. Repair could be done only by a specialist who is able to evaluate the condition of the various parts ranging from cables to connectors, from scintillators to photomultipliers, from microprocessors to microswitches. The knowledge of the intricacies of the various electronic components required for their repairs is quite wide and varied. The electronics industry turns out more and more multi-purpose chips which can carry out the functions of many parts used in the instruments of the earlier generation. This provides protection against unauthorized copying of the circuits but it serves another purpose as well of inhibiting repairs by non-factory personnel. These trends of the instrument design should be taken into consideration when a policy has to be developed for the repairs of the hospital based equipment

  1. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... used in children with cancer, epilepsy and back pain. top of page What does the equipment look ... being recorded. Though nuclear imaging itself causes no pain, children may experience some discomfort from having to ...

  2. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... may be placed into the bladder, which may cause temporary discomfort. It is important that your child ... images are being recorded. Though nuclear imaging itself causes no pain, children may experience some discomfort from ...

  3. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... resonance imaging (MRI) to produce special views, a practice known as image fusion or co-registration. These ... your doctor of any recent illnesses or other medical conditions. Depending on the type of nuclear scan ...

  4. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... help diagnose childhood disorders that are present at birth or that develop during childhood. It provides unique ... diagnose childhood disorders that are congenital (present at birth) or that develop during childhood. Physicians use nuclear ...

  5. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... exams at the same time. An emerging imaging technology, but not readily available at this time is ... your doctor of any recent illnesses or other medical conditions. Depending on the type of nuclear scan ...

  6. Department of Nuclear Reactions: Overview

    International Nuclear Information System (INIS)

    Rusek, K.

    2005-01-01

    Full text: It is surprising how so few under-paid scientists could do so much. During 2004 the number of papers published or being in press exceeded fifty, making almost three papers per person employed in our department. Furthermore, among these papers one was published in Nature, the World's highest-ranked scientific journal. This is a result that will be difficult to beat. It is my pleasure to mention that one of our PhD students, Mr Sergiy Mezhevych, won a prestigious Heavy Ion Laboratory Prize founded by Prof. Inamura, for his experimental work using a beam from the Warsaw Cyclotron. Thanks to the effort of our colleagues the Hermes Collaboration Meeting organized by IPJ in Kazimierz Dolny (June 25 - July 1) turned out a success. The following short reports cover the three major domains of our scientific activities: nuclear, materials and atomic physics. -Nuclear physics - The structure of light nuclei, including exotic radioactive isotopes, was investigated both experimentally and theoretically. Some experimental studies were performed at the Heavy Ion Laboratory of Warsaw University in collaboration with scientists from the Institute of Nuclear Research in Kiev, Ukraine. The two reports present interesting results for the rare carbon isotope, 14 C. In the framework of Feshbach, Kerman and Koonin theory the multistep emission of one particle as well as more complicated direct processes were studied. It was found that these more complex processes play an important role in proton induced reactions. Experimental data from projectile-multifragmentation experiments with stable and radioactive beams were analysed. Some preliminary results are presented. Using a proton beam provided by the C-30 compact cyclotron at Swierk, detectors consisting of a PWO scintillator coupled to avalanche photodiodes were tested. The aim of these tests was to find the best detectors for the large electromagnetic calorimeter which will be used in future PANDA Collaboration experiments

  7. BioChroma - A New and Patented Technology for Processing Radioactive Wastewater from Nuclear Medicine Therapy Facilities in Hospitals and Clinics.

    Science.gov (United States)

    Rodríguez, José Canga

    2012-01-01

    After undergoing radionuclide therapy, patients generate wastewater with a considerable amount of radioactivity, which can reach levels of as much as 90% of the administered dose. Due to the risk of accumulation after discharge into the sewer, it is advisable to collect this effluent for its treatment prior to final discharge. Delay and decay (natural decomposition of the isotope) is the most commonly used technical method of abating radioactive iodine, but it is frequently criticized as being complex and very expensive. BioChroma is a technology that has been developed as an alternative to these complicated and expensive systems. This paper describes this new technology and presents, as an example, a system that was installed and successfully commissioned in the middle of 2008 in a nuclear medicine ward with 12 beds in Stuttgart (Germany). Based on existing legislation, the responsible authorities and the company that operated the hospital agreed on a maximum activity level of 5 Bq/l. If a typical delay and decay system would have been installed, the 180 m(3) treatment plant that was already available in the hospital cellar would have to be extended by additional 150 m(3). By implementing the patented BioChroma process, the space requirements were reduced by 75%. For instance, since the new system was integrated into the existing installation, tanks accounting for 120 m³ could be used as buffering volume in the new wastewater treatment plant. The operation of the referred plant is currently producing very good results with values below the specified limit of 5 Bq/l for the isotope (131)I. In addition, (90)Y has been reported to be eliminated at the same time. Over the past 2 years of operation, the wastewater treatment plant has been able to achieve a maximum processing capacity of more than 2,000 l/day, which equates to a nuclear medicine ward with approx. 20 beds. The highest level recorded during the test period (of 180 days after start-up) was a peak of

  8. BioChroma – A New and Patented Technology for Processing Radioactive Wastewater from Nuclear Medicine Therapy Facilities in Hospitals and Clinics

    International Nuclear Information System (INIS)

    Rodríguez, José Canga

    2012-01-01

    After undergoing radionuclide therapy, patients generate wastewater with a considerable amount of radioactivity, which can reach levels of as much as 90% of the administered dose. Due to the risk of accumulation after discharge into the sewer, it is advisable to collect this effluent for its treatment prior to final discharge. Delay and decay (natural decomposition of the isotope) is the most commonly used technical method of abating radioactive iodine, but it is frequently criticized as being complex and very expensive. BioChroma is a technology that has been developed as an alternative to these complicated and expensive systems. This paper describes this new technology and presents, as an example, a system that was installed and successfully commissioned in the middle of 2008 in a nuclear medicine ward with 12 beds in Stuttgart (Germany). Based on existing legislation, the responsible authorities and the company that operated the hospital agreed on a maximum activity level of 5 Bq/l. If a typical delay and decay system would have been installed, the 180 m 3 treatment plant that was already available in the hospital cellar would have to be extended by additional 150 m 3 . By implementing the patented BioChroma process, the space requirements were reduced by 75%. For instance, since the new system was integrated into the existing installation, tanks accounting for 120 m³ could be used as buffering volume in the new wastewater treatment plant. The operation of the referred plant is currently producing very good results with values below the specified limit of 5 Bq/l for the isotope 131 I. In addition, 90 Y has been reported to be eliminated at the same time. Over the past 2 years of operation, the wastewater treatment plant has been able to achieve a maximum processing capacity of more than 2,000 l/day, which equates to a nuclear medicine ward with approx. 20 beds. The highest level recorded during the test period (of 180 days after start-up) was a peak of nearly 2

  9. Quality assurance in nuclear medicine

    International Nuclear Information System (INIS)

    Paras, P.

    1978-01-01

    Quality assurance practices must be followed throughout the entire nuclear medicine process, from the initial decision to perform a particular procedure, through the interpretation and reporting of the results. The various parameters that can be defined and measured in each area must be monitored by quality control tests to assure the excellence of the total nuclear medicine process. The presentation will discuss each of the major areas of nuclear medicine quality control and their interaction as a part of the entire system. Quality control testing results and recommendations for measurements of radioactivity distribution will be described with emphasis on imaging equipment and dose calibrating instrumentation. The role of the health physicist in a quality assurance program will be stressed. (author)

  10. Radiation physics for nuclear medicine

    CERN Document Server

    Hoeschen, Christoph

    2011-01-01

    The field of nuclear medicine is expanding rapidly, with the development of exciting new diagnostic methods and treatments. This growth is closely associated with significant advances in radiation physics. In this book, acknowledged experts explain the basic principles of radiation physics in relation to nuclear medicine and examine important novel approaches in the field. The first section is devoted to what might be termed the "building blocks" of nuclear medicine, including the mechanisms of interaction between radiation and matter and Monte Carlo codes. In subsequent sections, radiation sources for medical applications, radiopharmaceutical development and production, and radiation detectors are discussed in detail. New frontiers are then explored, including improved algorithms for image reconstruction, biokinetic models, and voxel phantoms for internal dosimetry. Both trainees and experienced practitioners and researchers will find this book to be an invaluable source of up-to-date information.

  11. Nuclear Physics Department annual report

    International Nuclear Information System (INIS)

    1997-07-01

    This annual report presents articles and abstracts published in foreign journals, covering the following subjects: nuclear structure, nuclear reactions, applied physics, instrumentation, nonlinear phenomena and high energy physics

  12. Department of Nuclear Theory: Overview

    International Nuclear Information System (INIS)

    Wilk, G.

    2000-01-01

    Full text: The Department of Nuclear Theory consists of 18 physicists and 3 graduate students working on different aspects of low energy, high energy, plasma and nonlinear physics and, recently, also on a general problem of quantization of particle dynamics. In addition to this activity, close collaboration with SMC, LEAR and ALICE Collaborations at CERN must be also emphasized. This year was particularly fruitful for our Department because of the success of our colleague, Dr. Robert Smolanczuk (at present Fullbright Fellow at LBL, Berkeley). In a series of papers he demonstrated a new possibility of obtaining superheavy elements hinting at the existence of the ''island of stability'' for some combinations of charges and atomic numbers. His ideas were behind the experiment done at Berkeley claiming the discovery of two new elements with A=116 and 118. If confirmed, this could be a dawn of a new approach to the physics of superheavy nuclei. The weight of this discovery is such that the name of our colleague was mentioned in international journals and papers of very broad dissemination, radio and TV included. He was also rewarded by ''J.M.Nitschke Technical Excellence Award'' (USA) for this achievement. Other studies were perhaps not so spectacular but still they brought us in total (including collaborations with experimental groups, mostly from the Department of High Energy Physics) 38 regular papers (plus over 14 already accepted for publication). The specific topics worthy of special emphasis are: - Studies of structure and decay of heaviest nuclei have been continued. Much attention was given to rotational properties of deformed superheavy nuclei. An intensive study of cross sections for the synthesis of heaviest nuclei via various reaction channels has been performed. - Studies of strange nuclear matter have been continued focusing this time on the proper description of the pion spectra from the strangeness exchange reactions measured recently at BNL. - The work

  13. Directory of computer users in nuclear medicine

    International Nuclear Information System (INIS)

    Erickson, J.J.; Gurney, J.; McClain, W.J.

    1979-09-01

    The Directory of Computer Users in Nuclear Medicine consists primarily of detailed descriptions and indexes to these descriptions. A typical Installation Description contains the name, address, type, and size of the institution and the names of persons within the institution who can be contacted for further information. If the department has access to a central computer facility for data analysis or timesharing, the type of equipment available and the method of access to that central computer is included. The dedicated data processing equipment used by the department in its nuclear medicine studies is described, including the peripherals, languages used, modes of data collection, and other pertinent information. Following the hardware descriptions are listed the types of studies for which the data processing equipment is used, including the language(s) used, the method of output, and an estimate of the frequency of the particular study. An Installation Index and an Organ Studies Index are also included

  14. Directory of computer users in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, J.J.; Gurney, J.; McClain, W.J. (eds.)

    1979-09-01

    The Directory of Computer Users in Nuclear Medicine consists primarily of detailed descriptions and indexes to these descriptions. A typical Installation Description contains the name, address, type, and size of the institution and the names of persons within the institution who can be contacted for further information. If the department has access to a central computer facility for data analysis or timesharing, the type of equipment available and the method of access to that central computer is included. The dedicated data processing equipment used by the department in its nuclear medicine studies is described, including the peripherals, languages used, modes of data collection, and other pertinent information. Following the hardware descriptions are listed the types of studies for which the data processing equipment is used, including the language(s) used, the method of output, and an estimate of the frequency of the particular study. An Installation Index and an Organ Studies Index are also included. (PCS)

  15. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... may be placed into the bladder, which may cause temporary discomfort. It is important that your child remain very still while the images are being recorded. Though nuclear imaging itself causes no pain, children may experience some discomfort from ...

  16. Nuclear medicine consensus

    International Nuclear Information System (INIS)

    Camargo, Edwaldo E.; Marin Neto, Jose Antonio; Naccarato, Alberto F.P.; Ramires, Jose Antonio F.; Castro, Iran de; Paiva, Eleuses Vieira; Thom, Anneliese F.; Barroso, Adelanir; Blum, Bernardo; Hollanda, Ricardo; Mansur, Antonio de Padua

    1995-01-01

    The use of nuclear methods in cardiovascular diseases is studied concerning diagnosis, risk, prognosis, indications and accuracy. Aspects concerning chronic coronary artery disease, myocardial ischemia, myocardial infarction, viable myocardium, valvular heart disease, ventricular dysfunction, heart transplant, congenital heart diseases in adults, are discussed

  17. Introductory physics of nuclear medicine. Third edition

    International Nuclear Information System (INIS)

    Chandra, R.

    1987-01-01

    The new third edition includes essential details and many examples and problems taken from the routine practice of nuclear medicine. Basic principles and underlying concepts are explained, although it is assumed that the reader has some current use as a bone densitometer. For resident physicians in nuclear medicine, residents in pathology, radiology, and internal medicine, and students of nuclear medicine technology, the third edition offers a simplified and reliable approach to the physics and basic sciences of nuclear medicine

  18. Department of Nuclear Reactions - Overview

    International Nuclear Information System (INIS)

    Rusek, K.

    2009-01-01

    Full text: Our activity in 2008 has focused on well-established domains of research: nuclear and atomic physics, and applications. · As far as nuclear physics is concerned; our interests are very broad, ranging from the structure of the nucleon to the structure of the nucleus including high-energy multifragmentation studies. Our colleagues led by Prof. Pawel Zupranski, members of the HERMES collaboration that comprises 32 institutions from eleven countries at the Deutsches Elektronen Synchrotron (DESY) in Hamburg, worked last year on the extraction of Spin Density Matrix Elements of vector mesons from scattering experiments on hydrogen targets. They also studied the distribution of quarks and gluons in nucleon. A team led by Prof. B. Zwieglinski was involved in the large-scale international collaboration PANDA (antiProton ANnihilation at DArmstadt). They studied the response of cooled PWO scintillators irradiated by gammas in the energy range of 4-20 MeV. The gammas were produced radiative proton capture on light by nuclei using a proton beam from the Van de Graaff accelerator of our Department. As a result, an important extrapolation of measurements performed by another group of physicists at much higher γ-ray energies was obtained. Low energy nuclear physics experiments were continued at the Heavy Ion Laboratory of Warsaw University in collaboration with foreign institutions: the University of Jyvaeskylae, the Institute of Nuclear Research of the Ukrainian Academy of Science and the Institute de Recherches Subatomique in Strasbourg. At high energies, a study of the isospin - dependence of the caloric curve was performed by the ALADIN Collaboration in a series of experiments at GSI - Darmstadt using radioactive beams of Sn and La. It was found that the asymmetry due to isospin is very weak. · Atomic physics studies were devoted to ionisation of heavy atoms by oxygen ions from the tandem accelerator of Erlangen-Nuernberg University. X-rays generated in the

  19. Department of Nuclear Reactions - Overview

    Energy Technology Data Exchange (ETDEWEB)

    Rusek, K [The Andrzej Soltan Institute for Nuclear Studies, Swierk-Otwock (Poland)

    2009-07-01

    Full text: Our activity in 2008 has focused on well-established domains of research: nuclear and atomic physics, and applications. {center_dot} As far as nuclear physics is concerned; our interests are very broad, ranging from the structure of the nucleon to the structure of the nucleus including high-energy multifragmentation studies. Our colleagues led by Prof. Pawel Zupranski, members of the HERMES collaboration that comprises 32 institutions from eleven countries at the Deutsches Elektronen Synchrotron (DESY) in Hamburg, worked last year on the extraction of Spin Density Matrix Elements of vector mesons from scattering experiments on hydrogen targets. They also studied the distribution of quarks and gluons in nucleon. A team led by Prof. B. Zwieglinski was involved in the large-scale international collaboration PANDA (antiProton ANnihilation at DArmstadt). They studied the response of cooled PWO scintillators irradiated by gammas in the energy range of 4-20 MeV. The gammas were produced radiative proton capture on light by nuclei using a proton beam from the Van de Graaff accelerator of our Department. As a result, an important extrapolation of measurements performed by another group of physicists at much higher {gamma}-ray energies was obtained. Low energy nuclear physics experiments were continued at the Heavy Ion Laboratory of Warsaw University in collaboration with foreign institutions: the University of Jyvaeskylae, the Institute of Nuclear Research of the Ukrainian Academy of Science and the Institute de Recherches Subatomique in Strasbourg. At high energies, a study of the isospin - dependence of the caloric curve was performed by the ALADIN Collaboration in a series of experiments at GSI - Darmstadt using radioactive beams of Sn and La. It was found that the asymmetry due to isospin is very weak. {center_dot} Atomic physics studies were devoted to ionisation of heavy atoms by oxygen ions from the tandem accelerator of Erlangen-Nuernberg University. X

  20. UK nuclear medicine survey, 1989/90

    International Nuclear Information System (INIS)

    Elliott, A.T.; Shields, R.A.

    1993-01-01

    A postal survey of UK nuclear medicine departments was carried out to obtain information on activity during the year 1989/90. A rise of 14% in the number of administrations of radiopharmaceuticals was found compared to 1982: a rise of 22% in imaging studies was offset by a 30% decrease in the number of nonimaging investigations. The estimated total number of administrations in the UK was 430 000. (author)

  1. Dose measurement received by the exposed occupationally personnel of the nuclear medicine department of the INCan; Medicion de dosis recibida por el personal ocupacionalmente expuesto del departamento de medicina nuclear del INCan

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez U, N. A.

    2011-07-01

    Personal dose equivalent (PDE) values were determined for occupational exposed workers (OEW) at the Nuclear Medicine Department (NMD) of Instituto Nacional de Cancerologia (INCan), Mexico, using TLD-100 thermoluminescent dosemeters. OEW at NMD, INCan make use of radiopharmaceuticals for diagnosis and treatment of diseases. Radionuclides associated to a pharmaceutical compound used at this Department are {sup 131}I, {sup 18}F, {sup 67}Ga, {sup 99m}Tc, {sup 111}In and {sup 201}Tl with main gamma emission energies between 93 and 511 keV. Dosemeter calibration was performed at the metrology department of Instituto Nacional de Investigaciones Nucleares, Mexico. Every occupational worker used dark containers with three dosemeters which were replaced monthly for a total of 5 periods. Additionally, control dosemeters were also placed at a site free of radioactive sources in order to determine the background radiation. Results were adjusted to find PDE/day and estimating annual PDE values in the range between 2 mSv (background) and a maximum of 9 mSv. Two of the 16 members of the OEW receive high estimated annual doses (6-9 mSv), other 5 receive annual doses between 3 and 5 mSv, other 3 between 2.5 and 3 mSv, and the rest receive dose values consistent with background radiation. These values are dependent on their daily activities and it is clear that the maximum doses are received by those OEW who perform nursing duties and receive radiopharmaceuticals for daily use. All obtained values are well within the established annual OEW dose limit stated in the General Regulation of Radiological Protection, Mexico (50 mSv) as well as within the lower limit recommended by the International Commission on Radiation Protection, report no. 60 (20 mSv). Additionally, consistence was found between measured monthly values and those reported by the firm that performs the monthly service. These results verify the adequate compliance of the NMD at INCan, Mexico with the standards given by

  2. Assessment of knowledge of general practitioners about nuclear medicine

    International Nuclear Information System (INIS)

    Zakavi, R.; Derakhshan, A.; Pourzadeh, Z.

    2002-01-01

    Nuclear medicine is an important department in most of scientific hospitals in the world. Rapid improvement in the filed of nuclear medicine needs continuing education of medical students. We tried to evaluate the knowledge of general practitioners in the flied of nuclear medicine, hoping that this study help mangers in accurate planning of teaching programs. Methods and materials: We prepared a questionnaire with 14 questions regarding applications of nuclear medicine techniques in different specialities of medicine. We selected questions as simple as possible with considering the most common techniques and best imaging modality in some disease. One question in nuclear cardiology, one in lung disease, two questions in thyroid therapy, another two in gastrointestinal system, two in genitourinary system and the last two in nuclear oncology. Also 4 questions were about general aspects of nuclear medicine. We have another 4 questions regarding the necessity of having a nuclear medicine subject during medical study, the best method of teaching of nuclear medicine and the preferred method of continuing education. Also age, sex, graduation date and university of education of all subjects were recorded. Results: One hundred (General practitioners) were studied. including, 58 male and 42 female with age range of 27-45 years did . About 60% of cases were 27-30 years old and 40 cases were older than 40. Seventy two cases were graduated in the last 5 years. Mashad University was the main university of education 52 cases with Tehran University (16 cases) and Tabriz University (6 cases) in the next ranks. Also 26 cases were graduated from other universities. From four questions in the field of general nuclear nedione 27% were correctly answered to all questions, 37% correctly answered two questions and 10% had correct answered only one question. No correct answer was noted in 26% . correct answer was noted in 80% the held of nuclear cardiology and in 72% in the field of lung

  3. A Cohort Study to Analyze the Risk of Venous Thromboembolism Mortality in Patients Admitted to the General Medicine Department, Tan Tock Seng Hospital, Singapore

    OpenAIRE

    Sule, Ashish Anil; Chin, Tay Jam; Sinnathamby, Letchumi; Lee, Hwei Khien; Earnest, Arul

    2011-01-01

    The purpose of this study was to assess the risk of venous thromboembolism (VTE) in patients admitted to the Tan Tock Seng Hospital (TTSH), Singapore during October and November 2009. The primary outcome assessed was mortality due to VTE, or development of deep vein thrombosis or pulmonary embolism (PE) within 3 months from the day of admission. Both univariate and multivariate analyses were performed for all-cause mortality and deaths associated with PE. Seven hundred twenty-one patients adm...

  4. Analysis of pattern of mortality in Medicine and Allied Departments at a tertiary care hospital in Islamabad: A losing battle against sepsis.

    Science.gov (United States)

    Azim, Saad; Zahoor, Sidra; Janjua, Jamal; Majeed, Azer; Hussain, Syed Waqar

    2017-01-01

    To identify the pattern of mortality in medical wards of a tertiary care hospital. This retrospective study was conducted at the Khan Research Laboratories Hospital, Islamabad, Pakistan, and comprised medical records of people who died during hospital stay between December 2013 and November 2014.SPSS 11 was used for data analysis. Of the 3,228 admissions, 105(3.25%) patients expired. Of them, 41(39.04%) were men with a mean age of 55±13.48 years (range: 17-88 years) and 64±11.76 (60.9%) were women with a mean age of 61±15.5 years (range: 23-91 years). The mean length of time between admission and death was 6.58±3.7 days (range: 1-33 days). The causes of death were categorised as infectious in 37(35.23%) patients, cancer-related in 20(19.045%), pulmonary in 19(18.09%), cardiovascular in 18(17.14%), gastrointestinal and neurological in 13(12.38%) each, nephrology in 10(9.52%), autoimmune disorders in 6(5.71%) and miscellaneous in 9(8.57%). Complications of sepsis were the most common cause of death in 38(36.19%) cases. Sepsis, primarily from pneumonia, was the major cause of mortality.

  5. Nuclear medicine in South Africa : current status

    International Nuclear Information System (INIS)

    Vangu, M.D.T.H.W.

    2004-01-01

    Full text: Nuclear medicine in South Africa has been a full specialty on its own since 1987. It is practiced in almost all teaching hospitals and within the private sector in larger cities. Most of the routine radiopharmaceuticals are domestically manufactured and the main isotope can be obtained from locally produced technetium generators. All the radionuclide imaging devices used in the country are imported. The main vendors are GE, Siemens and Phillips. The majority of radionuclide imaging comprises work from nuclear cardiology and nuclear oncology. Almost all the routine clinical nuclear medicine procedures are performed and some in vitro work is also done, however. Principal therapeutic agents used in the country include radioactive iodine, radioactive iodine MIBG and yttrium. The country still lacks experience in receptors imaging and radioimmunology work and no PET scanner has been purchased yet. The academic institutions are active with participation in national and international congresses and also with publications. Although much remains to be done, the future of nuclear medicine in South Africa does not appear gloomy. (author)

  6. Nuclear medicine : occupational health issues

    International Nuclear Information System (INIS)

    Rossleigh, M.

    1988-01-01

    The occupational health aspects of nuclear medicine are discussed. There is a lack of demonstrable biological effects from low level radiation. The radiation protection measures that are applied to ensure that staff are exposed to as low a level of radiation as is possible are outlined

  7. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... other diagnostic tests. Nuclear medicine imaging procedures use small amounts of radioactive materials – called radiotracers – that are typically injected into the bloodstream, inhaled or swallowed. The radiotracer travels through the area being examined and gives off energy in the ...

  8. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... through the area being examined and gives off energy in the form of gamma rays which are detected by a special camera and computer to create images of the inside of your body. If you’re scheduled for a nuclear medicine exam, there are several things you can ...

  9. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician ... before abnormalities can be detected with other diagnostic tests. Nuclear medicine imaging procedures use small amounts of ...

  10. Quality control in nuclear medicine

    International Nuclear Information System (INIS)

    Kostadinova, I.

    2007-01-01

    Nuclear medicine comprises diagnosis and therapy of the diseases with radiopharmaceuticals. The ambition of all specialists in our country is their activity to reach European standards. In this connection, a Commission for external audit was formed to evaluate the quality of work in the centers of nuclear medicine. This Commission create a long-lasting programme based on the objective European criteria and the national standard of nuclear medicine, having in mind to increase quality of the work and the expert evaluation of activity in every center. The program comprises measures for quality control of instrumentation, radiopharmaceuticals, performed investigations, obtained results and the whole organization from the receiving of the isotopes to the results of the patients. The ambition is most of the centers to fulfill the requirements. As a conclusion it could be said that not only the quality of everyday nuclear medicine work is enough to increase the prestige of the specialty. It is also necessary we to have understanding expert and financial support from corresponding institutions, incl. Ministry of health for a delivery of a new, contemporary instrumentation with new possibilities. Thus it would be possible Bulgarian patients to reach the high technology apparatuses for an early functional diagnosis of the diseases and optimal treatment, which possibility have the patients from the developed countries. (author)

  11. Tomographic methods in nuclear medicine

    International Nuclear Information System (INIS)

    Ahluwalia, B.D.

    1989-01-01

    This book is a review of the various approaches to tomographic imaging that have been pursued in nuclear medicine. The evolution of single photon emission computed tomography (SPECT) is discussed in detail, and the major classes of instrumentation are represented. A section on positron emission tomography is also included, but is rather brief and may serve only as a general introduction

  12. Nuclear medicine at the crossroads

    International Nuclear Information System (INIS)

    Strauss, H.W.

    1996-01-01

    Many nuclear medicine procedures, originally developed more than 20 years ago, are now performed with new radiopharmaceuticals or instruments; it is therefore apposite to reappraise what we are doing and why we are doing it. The clinical utility of nuclear medicine is discussed with reference, by way of example, to gated blood pools scans and myocardial perfusion imaging; the importance of the referred population for the outcome of studies is stressed. Attention is drawn to the likelohood that the detection of ischemia would be enhanced by the administration of nitroglycerin prior to rest thallium injection. Emphasis is also placed on the increasing acceptance of dual-tracer studies. The significance of expression of p-glycoprotein by some tumors for sestamibi imaging is discussed, and advances in respect of fluorodeoxyglucose imaging are reviewed. The final section covers issues relating to the development of new procedures, such as the value of nuclear medicine in the detection and characterization of tissue oxygen levels and the possible future role of nuclear medicine in the management of sleeping and eating disorders. (orig.)

  13. Images compression in nuclear medicine

    International Nuclear Information System (INIS)

    Rebelo, M.S.; Furuie, S.S.; Moura, L.

    1992-01-01

    The performance of two methods for images compression in nuclear medicine was evaluated. The LZW precise, and Cosine Transformed, approximate, methods were analyzed. The results were obtained, showing that the utilization of approximated method produced images with an agreeable quality for visual analysis and compression rates, considerably high than precise method. (C.G.C.)

  14. Nuclear medicine software: safety aspects

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    A brief editorial discusses the safety aspects of nuclear medicine software. Topics covered include some specific features which should be incorporated into a well-written piece of software, some specific points regarding software testing and legal liability if inappropriate medical treatment was initiated as a result of information derived from a piece of clinical apparatus incorporating a malfunctioning computer program. (U.K.)

  15. Radiation safety in nuclear medicine procedures

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sang Geon; Kim, Ja Hae; Song, Ho Chun [Dept. of Nuclear Medicine, Medical Radiation Safety Research Center, Chonnam National University Hospital, Gwangju (Korea, Republic of)

    2017-03-15

    Since the nuclear disaster at the Fukushima Daiichi Nuclear Power Plant in 2011, radiation safety has become an important issue in nuclear medicine. Many structured guidelines or recommendations of various academic societies or international campaigns demonstrate important issues of radiation safety in nuclear medicine procedures. There are ongoing efforts to fulfill the basic principles of radiation protection in daily nuclear medicine practice. This article reviews important principles of radiation protection in nuclear medicine procedures. Useful references, important issues, future perspectives of the optimization of nuclear medicine procedures, and diagnostic reference level are also discussed.

  16. Radiation safety in nuclear medicine procedures

    International Nuclear Information System (INIS)

    Cho, Sang Geon; Kim, Ja Hae; Song, Ho Chun

    2017-01-01

    Since the nuclear disaster at the Fukushima Daiichi Nuclear Power Plant in 2011, radiation safety has become an important issue in nuclear medicine. Many structured guidelines or recommendations of various academic societies or international campaigns demonstrate important issues of radiation safety in nuclear medicine procedures. There are ongoing efforts to fulfill the basic principles of radiation protection in daily nuclear medicine practice. This article reviews important principles of radiation protection in nuclear medicine procedures. Useful references, important issues, future perspectives of the optimization of nuclear medicine procedures, and diagnostic reference level are also discussed

  17. Estimation dose in patients of nuclear medicine. Implementation of a calculi program and methodology

    International Nuclear Information System (INIS)

    Prieto, C.; Espana, M.L.; Tomasi, L.; Lopez Franco, P.

    1998-01-01

    Our hospital is developing a nuclear medicine quality assurance program in order to comply with medical exposure Directive 97/43 EURATOM and the legal requirements established in our legislation. This program includes the quality control of equipment and, in addition, the dose estimation in patients undergoing nuclear medicine examinations. This paper is focused in the second aspect, and presents a new computer program, developed in our Department, in order to estimate the absorbed dose in different organs and the effective dose to the patients, based upon the data from the ICRP publication 53 and its addendum. (Author) 16 refs

  18. SPECT/CT co-registration of nuclear medicine studies and technologists: challenges and victories

    International Nuclear Information System (INIS)

    Cameron, P.J.

    2002-01-01

    Full text: A dual modality SPECT/CT gamma camera was installed in the Department of Nuclear Medicine at Fremantle Hospital, WA in 2000. The challenges were satisfying the requirements of the Radiological Advisory Council of WA with respect to room modifications and presence of a radiographer during CT acquisitions and once installation was complete, learning to operate the camera in dual modality mode. The victories are making CT/SPECT acquisitions a simple and routine procedure and the impact of the co-registered studies in both diagnostic and therapeutic applications in our practice. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc

  19. The practice of nuclear medicine in the Philippines

    International Nuclear Information System (INIS)

    San Luis, T.O.L.

    1996-01-01

    The advent of nuclear medicine in the early 1940's came with the use of radioiodine in the study of thyroid physiology and eventual treatment of hyperthyroidism. Instrumentation to detect radionuclides introduced into the human body, and the production of various radiopharmaceuticals as tracers or as therapy agents provided the impetus for the rapid development of nuclear medicine as a distinct specialty. In the Philippines, nuclear medicine formally began in 1956 with the establishment of the Radioisotope Laboratory at the Philippine General Hospital. Acquisition of nuclear instrumentation by various institutions, training of medical staff and personnel, sourcing of radiopharmaceuticals proceeded thereafter

  20. Therapeutic nuclear medicine

    International Nuclear Information System (INIS)

    Baum, Richard P.

    2014-01-01

    Discusses all aspects of radionuclide therapy, including basic principles, newly available treatments, regulatory requirements, and future trends. Provides the knowledge required to administer radionuclide therapy safely and effectively in the individual patient. Explains the role of the therapeutic nuclear physician in effectively coordinating a diverse multidisciplinary team. Written by leading experts. The recent revolution in molecular biology offers exciting new opportunities for targeted radionuclide therapy. The selective irradiation of tumor cells through molecular biological mechanisms is now permitting the radiopharmaceutical control of tumors that are unresectable and unresponsive to either chemotherapy or conventional radiotherapy. In this up-to-date, comprehensive book, world-renowned experts discuss the basic principles of radionuclide therapy, explore in detail the available treatments, explain the regulatory requirements, and examine likely future developments. The full range of clinical applications is considered, including thyroid cancer, hematological malignancies, brain tumors, liver cancer, bone and joint disease, and neuroendocrine tumors. The combination of theoretical background and practical information will provide the reader with all the knowledge required to administer radionuclide therapy safely and effectively in the individual patient. Careful attention is also paid to the important role of the therapeutic nuclear physician in delivering the effective coordination of a diverse multidisciplinary team that is essential to the safe provision of treatment.

  1. Therapeutic nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Baum, Richard P. (ed.) [ENETS Center of Excellence, Bad Berka (Germany). THERANOSTICS Center for Molecular Radiotherapy and Molecular Imaging

    2014-07-01

    Discusses all aspects of radionuclide therapy, including basic principles, newly available treatments, regulatory requirements, and future trends. Provides the knowledge required to administer radionuclide therapy safely and effectively in the individual patient. Explains the role of the therapeutic nuclear physician in effectively coordinating a diverse multidisciplinary team. Written by leading experts. The recent revolution in molecular biology offers exciting new opportunities for targeted radionuclide therapy. The selective irradiation of tumor cells through molecular biological mechanisms is now permitting the radiopharmaceutical control of tumors that are unresectable and unresponsive to either chemotherapy or conventional radiotherapy. In this up-to-date, comprehensive book, world-renowned experts discuss the basic principles of radionuclide therapy, explore in detail the available treatments, explain the regulatory requirements, and examine likely future developments. The full range of clinical applications is considered, including thyroid cancer, hematological malignancies, brain tumors, liver cancer, bone and joint disease, and neuroendocrine tumors. The combination of theoretical background and practical information will provide the reader with all the knowledge required to administer radionuclide therapy safely and effectively in the individual patient. Careful attention is also paid to the important role of the therapeutic nuclear physician in delivering the effective coordination of a diverse multidisciplinary team that is essential to the safe provision of treatment.

  2. Quality assurance in nuclear medicine

    International Nuclear Information System (INIS)

    Kaul, A.

    1986-01-01

    'Quality Assurance in Nuclear Medicine' is the title of the English language original that has been translated into German. The manual very extensively deals with quality control of nuclear medical equipment. Tests are explained for checking radioactivity measuring devices, manual and automatic in-vitro sample measuring systems, in-vivo measuring systems with single or multiple detectors, rectlinear scanners, and gamma cameras, including the phantoms required for the methods. Other chapters discuss the quality control of radiopharmaceuticals, or the quality assurance in data recording and evaluation of results. Helpful comments on the organisation of quality assurance programms are given. The book is intended as a practical guide for introducing quality assurance principles in nuclear medicine in the Federal Republic of Germany. With 13 figs., 22 tabs [de

  3. Department of Nuclear Reactions - Overview

    International Nuclear Information System (INIS)

    Budzanowski, A.

    1999-01-01

    Full text: The year 1998 can be considered as very successful both in harvesting important results from the existing collaborations as well as establishing new ones. In the frame of the COSY-11 collaboration cross section for η' production in p-p collision close to the threshold has been measured. In the region of excess energy between 1.5 and 4.1 MeV the η' cross sections are much lower than those of the π 0 and η production. There seems to be no indication that N * resonance doorway-like state governs the reaction mechanisms. The determined coupling constant g η'pp appears to be consistent with the prediction of the simple quark model. Results were published in Phys. Rev. Letters. Using the GEM detector, investigations of the isospin symmetry breaking were performed. Two reactions channels 3 Heπ 0 and 3 Hπ + from the reaction at proton momenta 700, 767, and 825 MeV/c were measured. Data analysis is in progress. The model of the meson cloud in the nucleon which is a speciality of our department has been successfully applied to explain the leading proton and neutron cross sections from the e + or e - proton collisions at the HERA ring. General formulas to calculate polarization of the particles with spin transmitted through the barrier in the presence of strong magnetic fields were obtained. New collaboration between our laboratory and the Institute for Nuclear Research in Kiev has been established. One PhD thesis was completed in the frame of this collaboration. We joined the new collaboration with Lund University concerning studies of hot nuclear matter properties using heavy ions from CELSIUS ring. First test of the phoswich detector for the forward wall was performed in Uppsala. Isoscalar giant dipole resonance strength distribution 3 ℎω has been evaluated in 208 Pb in the space of 1p1h and 2p2h excitation. The centroid energy of this state can directly be related to the nuclear incompressibility module. Our result indicates rather large values of

  4. Physics and radiobiology of nuclear medicine

    CERN Document Server

    Saha, Gopal B

    2013-01-01

    The Fourth Edition of Dr. Gopal B. Saha’s Physics and Radiobiology of Nuclear Medicine was prompted by the need to provide up-to-date information to keep pace with the perpetual growth and improvement in the instrumentation and techniques employed in nuclear medicine since the last edition published in 2006. Like previous editions, the book is intended for radiology and nuclear medicine residents to prepare for the American Board of Nuclear Medicine, American Board of Radiology, and American Board of Science in Nuclear Medicine examinations, all of which require a strong physics background. Additionally, the book will serve as a textbook on nuclear medicine physics for nuclear medicine technologists taking the Nuclear Medicine Technology Certification Board examination.

  5. 22. French language symposium on nuclear medicine

    International Nuclear Information System (INIS)

    1981-01-01

    The 80 papers presented in summary form at the Congress are given. These papers cover three main topics: broncho-pulmonary investigation with radioaerosols; role of nuclear medicine in pharmacokinetics; role of Nuclear Medicine in metabolic investigations [fr

  6. Evolution of nuclear medicine: a historical perspective

    International Nuclear Information System (INIS)

    Ahmed, A.; Kamal, S.

    1996-01-01

    The field Nuclear Medicine has Completed its 100 yeas in 1996. Nuclear medicine began with physics, expanded into chemistry and instrumentation, and then greatly influenced various fields of medicine. The chronology of the events that formulated the present status of nuclear medicine involves some of the great pioneers of yesterday like Becquerel, Curie, Joliot, Hevesy, Anger, Berson and Yallow. The field of nuclear medicine has been regarded as the bridge builder between various aspects of health care and within next 20 years, nuclear medicine enters a new age of certainty, in which surgery, radiation and chemotherapy will only be used when a benefit in certain to result from the treatment. (author)

  7. A concise guide to nuclear medicine

    CERN Document Server

    Elgazzar, Abdelhamid H

    2011-01-01

    Nuclear medicine is an important component of modern medicine. This easy-to-use book is designed to acquaint readers with the basic principles of nuclear medicine, the instrumentation used, the gamut of procedures available, and the basis for selecting specific diagnostic or therapeutic procedures and interpreting results. After an introductory chapter on the history, technical basis, and scope of nuclear medicine, a series of chapters are devoted to the application of nuclear medicine techniques in the different body systems. In addition, the use of nuclear medicine methods within oncology is

  8. Neutron use in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Guidez, J.; May, R.; Moss, R. [HFR-Unit, European Commission, IAM, Petten (Netherlands); Askienazy, S. [Departement Central de Medicine Nucleaire et Biophysique, Saint Antoine Hospital, Paris (France); Hildebrand, J. [Neurology Department, Erasmus Hospital, Brussels (Belgium)

    1999-07-01

    Neutrons produced by research reactors are being used in nuclear medicine and other medical applications in several ways. The High Flux Reactor (HFR) based in Petten (The Netherlands), owned by the European Commission, has been working increasingly in this field of health care for the European citizen. On the basis of this experience, a survey has been carried out on the main possibilities of neutrons used in nuclear medicine. The most important and most well known is the production of radioisotopes for diagnosis and therapy. Ten million patients receive nuclear medicine in Europe each year, with more than 8 million made with the products issued from research reactors. The survey of the market and the techniques (cyclotron, PET) shows that this market will continue to increase in the future. The direct use of reactors in medicine is actually made by the Boron Neutron capture Therapy (BNCT) for the treatment of glioblastoma, which kills about 15.000 people in Europe each year. For this promising technique, HFR is the most advanced for experimental possibilities and treatment studies. Medical research is also made in other promising fields: the use beam tubes for characterizing of prostheses and bio-medical materials, alpha-immuno therapy products, new types of radioisotopes, new types of illness to be treated by BNCT, etc. (author)

  9. Neutron use in nuclear medicine

    International Nuclear Information System (INIS)

    Guidez, J.; May, R.; Moss, R.; Askienazy, S.; Hildebrand, J.

    1999-01-01

    Neutrons produced by research reactors are being used in nuclear medicine and other medical applications in several ways. The High Flux Reactor (HFR) based in Petten (The Netherlands), owned by the European Commission, has been working increasingly in this field of health care for the European citizen. On the basis of this experience, a survey has been carried out on the main possibilities of neutrons used in nuclear medicine. The most important and most well known is the production of radioisotopes for diagnosis and therapy. Ten million patients receive nuclear medicine in Europe each year, with more than 8 million made with the products issued from research reactors. The survey of the market and the techniques (cyclotron, PET) shows that this market will continue to increase in the future. The direct use of reactors in medicine is actually made by the Boron Neutron capture Therapy (BNCT) for the treatment of glioblastoma, which kills about 15.000 people in Europe each year. For this promising technique, HFR is the most advanced for experimental possibilities and treatment studies. Medical research is also made in other promising fields: the use beam tubes for characterizing of prostheses and bio-medical materials, alpha-immuno therapy products, new types of radioisotopes, new types of illness to be treated by BNCT, etc. (author)

  10. Essentials of nuclear medicine physics and instrumentation

    CERN Document Server

    Powsner, Rachel A; Powsner, Edward R

    2013-01-01

    An excellent introduction to the basic concepts of nuclear medicine physics This Third Edition of Essentials of Nuclear Medicine Physics and Instrumentation expands the finely developed illustrated review and introductory guide to nuclear medicine physics and instrumentation. Along with simple, progressive, highly illustrated topics, the authors present nuclear medicine-related physics and engineering concepts clearly and concisely. Included in the text are introductory chapters on relevant atomic structure, methods of radionuclide production, and the interaction of radiation with matter. Fu

  11. An organizational metamodel for hospital emergency departments.

    Science.gov (United States)

    Kaptan, Kubilay

    2014-10-01

    I introduce an organizational model describing the response of the hospital emergency department. The hybrid simulation/analytical model (called a "metamodel") can estimate a hospital's capacity and dynamic response in real time and incorporate the influence of damage to structural and nonstructural components on the organizational ones. The waiting time is the main parameter of response and is used to evaluate the disaster resilience of health care facilities. Waiting time behavior is described by using a double exponential function and its parameters are calibrated based on simulated data. The metamodel covers a large range of hospital configurations and takes into account hospital resources in terms of staff and infrastructures, operational efficiency, and the possible existence of an emergency plan; maximum capacity; and behavior both in saturated and overcapacitated conditions. The sensitivity of the model to different arrival rates, hospital configurations, and capacities and the technical and organizational policies applied during and before a disaster were investigated. This model becomes an important tool in the decision process either for the engineering profession or for policy makers.

  12. Department of Nuclear Radiospectroscopy - Overview

    International Nuclear Information System (INIS)

    Jasinski, A.

    2001-01-01

    Full text: Research at the Department of Nuclear Radiospectroscopy encompasses various aspects of nuclear magnetic resonance (NMR) and its applications to solids and to biosystems. Current research activity covers two areas: investigation of molecular dynamics and structures in solids using NMR spectroscopy, and examination of human organs, small animals and plants using MR imaging and localized spectroscopy. MAGNETIC RESONANCE IMAGING LABORATORY Biomedical applications of magnetic resonance imaging (MRI) and spectroscopy (MRS) together with development and modification of the existing hardware were our main topic of research in the year 2000. The following projects have been carried out: * Investigation of the water diffusion tensor in biological systems in vivo and in vitro; * Study of localized MR spectra in the skeletal muscles of the human limbs; * Structure and physiological processes of the tissue and organs in the normal and pathological state studied by MRI and MRS methods; * Generation of the magnetic field gradients and design of highly specialized RF coils for MR localized spectroscopy and MR Imaging. This work has been done in collaboration with Collegium Medicum of the Jagiellonian University and the Institute for Biodiagnostics in Winnipeg, Canada. As far as the hardware and the methodology side are concerned our, tasks in the year 2000 included: * Development and modifications of home-built MR Microscopy based on 8.4T magnet; * Modifications of the 4.7T magnet console; * Designing and optimizing the ergometer used in skeletal muscle research; * Implementation of the fast imaging methods based on the spin echo sequences. MAGNETIC RESONANCE LABORATORY Deuteron NMR spectroscopy was applied to the study of reorientational dynamics and tunnelling rotation of ammonium ion isotopomers. As particular achievements we point out results concerning structure refinement of structure, establishing the symmetry of the rotational potential, and detection of the

  13. Introductory physics of nuclear medicine

    International Nuclear Information System (INIS)

    Chandra, R.

    1976-01-01

    This presentation is primarily addressed to resident physicians in nuclear medicine, as well as residents in radiology, pathology, and internal medicine. Topics covered include: basic review; nuclides and radioactive processes; radioactivity-law of decay, half-life, and statistics; production of radionuclides; radiopharmaceuticals; interaction of high-energy radiation with matter; radiation dosimetry; detection of high-energy radiation; in-vitro radiation detection; in-vivo radiation detection using external detectors; detectability or final contrast in a scan; resolution and sensitivity of a scanner; special techniques and instruments; therapeutic uses of radionuclides; biological effects of radiation; and safe handling of radionuclides

  14. Where is high technology taking nuclear medicine

    International Nuclear Information System (INIS)

    Veall, N.

    1985-01-01

    The question is posed as to whether high technology in nuclear medicine might lead to the nuclear medicine practitioner possibly finishing up working for the machine rather than the improvement of health care in its widest sense. A brief examination of some pros and cons of high technology nuclear medicine is given. (U.K.)

  15. Technetium in chemistry and nuclear medicine

    International Nuclear Information System (INIS)

    Deutsch, E.; Nicolini, M.; Wagner, H.N.

    1983-01-01

    This volume explores the potential of technetium radiopharmaceuticals in clinical nuclear medicine. The authors examine the capabilities of synthetic inorganic chemists to synthesize technetium radiopharmaceuticals and the specific requirements of the nuclear medicine practitioner. Sections cover the chemistry of technetium, the production of radiopharmaceuticals labeled with technetium, and the use of technetium radiopharmaceuticals in nuclear medicine

  16. Department of Detectors and Nuclear Electronics - Overview

    International Nuclear Information System (INIS)

    Guzik, Z.

    2006-01-01

    The basic activities of the Department of Nuclear Electronics in 2005 were concentrated on following areas: · studies of new scintillation techniques and their application in nuclear medicine and border monitoring, · contribution to the FWVI European projects, · scientific contracts with European industry in respect to detection techniques · electronics for experiments in High Energy Physics, · development of γ-ray spectrometry apparatus, · development of new generation State of the Art USB based and PCI based multi-channel analysers, · development, investigation and production of silicon detectors · normalisation activities. Most of the scientific achievements of the Department were summarized in 24 publications (released or being in press) and 6 publications submitted. The papers were published mainly in IEEE Trans. Nucl. Sci. and Nucl. Instr. Methods. Besides that, our scientists presented 11 contributions at international conferences - 5 presentations on IEEE Nuclear Science Symposium and Medical Imaging 2005 in Puerto Rico. It should also be stressed that prof. M. Moszynski was honoured with the title of IEEE Fellow and M. Kapusta has received PhD degree. There also were normalization activities in preparation of polish versions of European Standards in the field of electronics Studies on new scintillation techniques were addressed mainly to their application in a nuclear medicine and a border monitoring, induced by the European projects, realized within FWVI. The study of new prospects for a Time-of-Flight Positron Emission Tomography, carried out within BioCare project, strongly suggested that the time-of-flight PET, based on LSO crystals, is a realistic proposition for the further development. Moreover, the comparative study of several scintillators allowed selecting LaBr 3 crystal as a potential candidate to a common PET/CT detector. A comparative study of a large NaI(Tl) and BGO crystals allowed, in turn, selecting the 5''x 5''x 10'' Na

  17. Draft report on the national seminar in nuclear medicine

    International Nuclear Information System (INIS)

    1977-01-01

    The proceedings of the seminar on nuclear medicine have been conducted in four main sessions. In the first session a review of the current status of clinical nuclear medicine in India is reviewed. The use of radioisotopes in thyroid function studies, central nervous systems, liver disorders, lung and bone imaging, renal function studies, dynamic function studies, gastroenterology haematology etc. are described. The existing facilities and the future needs for radioimmunoassay and radiotherapy are discussed. In Session 2, the existing facilities in nuclear medicine in different states in India are reviewed. In Session 3, the available resources in nuclear medicine are reviewed. Radiation protection procedures are outlined. Various nuclear instruments developed at the Bhabha Atomic Research Centre, (BARC), Bombay, for use in nuclear medicine are briefly described. A list of radiopharmaceuticals developed by BARC and in current use, is given. The roles of the physicist, pharmacist and the nuclear medicine technologist in the hospitals having nuclear medicine units, are stressed. The importance of training and education for personnel in nuclear medicine and medical physics is pointed out. (A.K.)

  18. Implementation of radioactive wastes management system in nuclear medicine service of Hospital das Clinicas of Universidade de Campinas - UNICAMP, in Sao Paulo State, Brazil

    International Nuclear Information System (INIS)

    Rinaldi Neto, A.; Coelho, R.F.; Brunetto, S.Q.

    2001-01-01

    This work reports the experience acquired at the Servico de Medicina Nuclear of the Hospital de Clinicas/UNICAMP (SMN/HC) in planning and implementing the management system of radioactive waste. This system respects the Comissao Nacional de Energia Nuclear' (CNEN) standards and has been of relatively easy and simple performance, without disturbing the SMN/HC's routine. It has also proof to keep its quality along the time. (author)

  19. Pertinencia de la gammagrafía de tiroides en un servicio de medicina nuclear de referencia del oriente colombiano / Pertinence of Thyroid Scan in a Nuclear Medicine Department in Eastern Colombia / Relevância da cintilografia da tireóide em um centro de referência de medicina nuclear no leste colombiano

    Directory of Open Access Journals (Sweden)

    Liset Sánchez-Ordúz, MD.

    2015-03-01

    used in the study of thyroid diseases. It is recommended to perform it in patients presenting thyrotoxicosis, thyroid nodules with indeterminate cytology and when diagnosing ectopic thyroid. Our objective was to determine the pertinence of ordering thyroid scan in a nuclear medicine department in eastern Colombia. Methodology: Observational, retrospective, and cross-sectional descriptive study. Thyroid scans including relevant variables performed in the nuclear medicine department at Carlos Ardila Lulle hospital were evaluated during 3 consecutive months. The indication of the study, academic background of physician requesting the test, patient’s gender, concomitant presence of TSH with its respective value, and intake of Levothyroxine before test. Test results were also taken into account. Results: Out of the 277 performed scans, 244 (88% were women. 67% of them were not correctly indicated, and 32% of these patients were taking hormonal supplements, which was suspended 25 days before performing the test. General practitioners and consultants without specialization in endocrinology have a 9.08 and 9.37 probability respectively, of not indicating correctly the thyroid scan compared to endocrinologists. Conclusions: Two out of 3 thyroid scans performed in a nuclear medicine department in Eastern Colombia are not correctly indicated, producing a big impact in public health. [Sánchez-Orduz L, Wandurraga-Sánchez EA, García RE, Camacho PA. Pertinence of Thyroid Scan in a Nuclear Medicine Department in Eastern Colombia. MedUNAB 2015; 17(3: xx-xx]. Introdução: A cintilografia da tireóide é um teste muito usado no estudo de doenças da glândula tireóide. O monitoramento é recomendado em doentes com tireotoxicose, nódulos de tireóide com citologia indeterminada e suspeita de tireóide ectópica. Objetivo: Nosso objetivo foi determinar a pertinência do pedido de cintilografia da tireóide em um centro de referência de medicina nuclear no leste da Col

  20. Nuclear medicine in bone diagnostics

    International Nuclear Information System (INIS)

    Feine, U.; Mueller-Schauenburg, W.

    1985-01-01

    This book on nuclear medicine in bone diagnostics and other complementary imaging methods is composed out of the 51 presentations of the 2nd Tuebinger bone symposium held on the 11th and 12th January 1985; it gives an overview of newer methods of nuclear medicine and other imaging methods such as magnetic-resonance tomography and sonography. While the 1st Tuebinger Symposium in January 1981 dealt with the clinical application of classical bone scintigraphy and the possibilities of the results of differential diagnosis, the present book is concerned with indications, alternative radiopharmaceuticals for skeleton scintigraphy and other techniques. The intention is to give a survey of the developments made over the last few years. (orig./MG) [de

  1. Basic science of nuclear medicine

    International Nuclear Information System (INIS)

    Parker, R.P.; Taylor, D.M.; Smith, P.H.S.

    1978-01-01

    A book has been written presenting those aspects of physics, chemistry and related sciences which are essential to a clear understanding of the scientific basis of nuclear medicine. Part I covers the basic physics of radiation and radioactivity. Part II deals with radiation dosimetry, the biological effects of radiation and the principles of tracer techniques. The measurement of radioactivity and the principal aspects of modern instrumentation are presented in Part III. Those aspects of chemistry relevant to the preparation and use of radiopharmaceuticals are discussed in Part IV. The final section is concerned with the production of radionuclides and radiopharmaceuticals and with the practical aspects of laboratory practice, facilities and safety. The book serves as a general introductory text for physicians, scientists, radiographers and technicians who are entering nuclear medicine. (U.K.)

  2. Evaluation The Result Of Treating 1200 Patients Brain Tumor And Some Intracranial Diseases By Rotating GAMMA Knife (RGK) At The Nuclear Medicine And Oncology Center, Bach Mai Hospital

    International Nuclear Information System (INIS)

    Mai Trong Khoa; Nguyen Quang Hung; Tran Dinh Ha

    2011-01-01

    The paper is evaluating results of treating brain tumor and some intracranial diseases by rotating gamma knife (RGK) at The Nuclear Medicine and Oncology Center, Bach Mai Hospital, from July 2007 to August 2010, for 1200 patients treated with RGK. In 1200 patients - average age: 42.6 years old, Male/Female ratio:1/1.08 - pituitary tumors accounted for 19.8%, meningioma 18.3%, arteriovenous malformations (AVM) (16.7%), acoustic neuroma (8.7%), brain metastases (7.5%), craniopharyngeal tumor (5.0%), pineal tumor (3.5%), cavernoma (6%), astrocytoma (5.2%), meduloblastoma (2.9%), ependymoma (2.6%), others (3.8%). Average target volume: minimum 0.6cm 3 , maximum 27.6cm 3 , median 6.2 ± 4.6 cm 3 . Average radiosurgery dose changed depend on nature of the tumor: pituitary tumor (12.4 Gy), meningioma (18.8 Gy), AVM (18 Gy), acoustic neuroma (14.6 Gy), brain metastases (18.2 Gy), craniopharyngeal tumor (12.8 Gy), pineal tumor (16.3 Gy), cavernoma (17.5 Gy), astrocytoma (14.6 Gy), medulloblastoma (16.1 Gy), ependymoma (16.3 Gy), others (15 Gy). Conclusions: Almost case have improved clinical symptoms significantly: 80.2% after 1 month (complete response 20.2%), 100% at 36th month (complete response: 94%). Size of the tumor were reduced remarkably. Treatment were safe, no death or severe complications were observed within and after radiosurgery. (author)

  3. Converting energy to medical progress [nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-04-01

    For over 50 years the Office of Biological and Environmental Research (BER) of the United States Department of Energy (DOE) has been investing to advance environmental and biomedical knowledge connected to energy. The BER Medical Sciences program fosters research to develop beneficial applications of nuclear technologies for medical diagnosis and treatment of many diseases. Today, nuclear medicine helps millions of patients annually in the United States. Nearly every nuclear medicine scan or test used today was made possible by past BER-funded research on radiotracers, radiation detection devices, gamma cameras, PET and SPECT scanners, and computer science. The heart of biological research within BER has always been the pursuit of improved human health. The nuclear medicine of tomorrow will depend greatly on today's BER-supported research, particularly in the discovery of radiopharmaceuticals that seek specific molecular and genetic targets, the design of advanced scanners needed to create meaningful images with these future radiotracers, and the promise of new radiopharmaceutical treatments for cancers and genetic diseases.

  4. Converting energy to medical progress [nuclear medicine

    International Nuclear Information System (INIS)

    2001-01-01

    For over 50 years the Office of Biological and Environmental Research (BER) of the United States Department of Energy (DOE) has been investing to advance environmental and biomedical knowledge connected to energy. The BER Medical Sciences program fosters research to develop beneficial applications of nuclear technologies for medical diagnosis and treatment of many diseases. Today, nuclear medicine helps millions of patients annually in the United States. Nearly every nuclear medicine scan or test used today was made possible by past BER-funded research on radiotracers, radiation detection devices, gamma cameras, PET and SPECT scanners, and computer science. The heart of biological research within BER has always been the pursuit of improved human health. The nuclear medicine of tomorrow will depend greatly on today's BER-supported research, particularly in the discovery of radiopharmaceuticals that seek specific molecular and genetic targets, the design of advanced scanners needed to create meaningful images with these future radiotracers, and the promise of new radiopharmaceutical treatments for cancers and genetic diseases

  5. Nuclear medicine in developing countries

    International Nuclear Information System (INIS)

    Kremenchuzky, S.; Degrossi, O.J.

    1991-01-01

    The economic crisis through which developing countries are passing means that every field of endeavour must adapt to new realities imposed by each particular's country's situation. Public health is no exception, although it is obviously a priority field in view of the repercussions which social and economic phenomena can have on the health of a country's inhabitants. This article briefly considers ways in which nuclear medicine facilities in Argentina may be improved

  6. New procedures in nuclear medicine

    International Nuclear Information System (INIS)

    Spencer, R.P.

    1989-01-01

    The authors review the recent emergence of functional studies in nuclear medicine in this critical and informative text. The new procedures are presented in terms of their underlying physiology, indications, contraindications, methodology, results, interpretation and relationship to other evaluations. The volume includes discussions on the central nervous system, interventional studies, cardiac studies, bone densitometry, plus radiolabeled antibodies, radiolabeling of blood elements and flow and distribution

  7. Asian School of Nuclear Medicine

    International Nuclear Information System (INIS)

    Sundram, Felix X.

    2004-01-01

    The Asian School of Nuclear Medicine (ASNM) was formed in February 2003, with the ARCCNM as the parent body. Aims of ASNM: 1. To foster Education in Nuclear Medicine among the Asian countries, particularly the less developed ones. 2. To promote training of Nuclear Medicine Physicians in cooperation with government agencies, IAEA and universities and societies. 3. To assist in national and regional training courses, award continuing medical education (CME) points and provide regional experts for advanced educational programmes. 4. To work towards awarding of diplomas or degrees in association with recognized universities by distance learning and practical attachments, with examinations. The ASNM works toward a formal training courses leading to the award of a certificate in the long term. The most fundamental job of the ASNM remains the transfer of knowledge from the more developed countries to the less developed ones in the Asian region. The ASNM could award credit hours to the participants of training courses conducted in the various countries and conduct electronic courses and examinations. CME programmes may also be conducted as part of the regular ARCCNM meetings and the ASNM will award CME credit points for such activities

  8. Interventional studies in nuclear medicine

    International Nuclear Information System (INIS)

    Saha, G.B.; Swanson, D.P.; Hladik, W.B. III

    1987-01-01

    Pharmacological interventions in nuclear medicine studies have been in practice for a long time. The triiodothyronine (T/sub 3/) suppression, Thyroid-stimulating hormone (TSH) stimulation, and perchlorate discharge tests are common examples of well-established diagnostic interventional studies. In recent years, pharmacologic and physiologic interventions in other nuclear medicine procedures have drawn considerable attention. The primary purpose of these interventions is to augment, complement or, more often, differentiate the information obtained from conventional nuclear medicine diagnostic studies. Pharmacologic interventions involve the administration of a specific drug before, during, or after the administration of radiopharmaceutical for a given study. The change in information due to intervention of the drug offers clues to differentiating various disease conditions. These changes can be brought about by physiologic interventions also, e.g., exercise in radionuclide ventriculography. In the latter interventions, the physiologic function of an organ is enhanced or decreased by physical maneuvers, and the changes observed can be used to differentiate various disease conditions

  9. Department of Nuclear Radiospectroscopy - Overview

    International Nuclear Information System (INIS)

    Jasinski, A.

    2000-01-01

    Full text: Research at the Department of Nuclear Radiospectroscopy concerns various aspects of nuclear magnetic resonance (NMR) and its applications to solids and to biosystems. Current research activity covers two areas: investigation of molecular dynamics and structures in solids using magnetic resonance spectroscopy, and investigation of humans, small animals and plants using magnetic resonance imaging and localized spectroscopy. MAGNETIC RESONANCE LABORATORY: Molecular reorientation studies aimed at disclosing tunnelling rotation and structural research of amorphous solids were our main topics. Realisation of these projects, both supported by the grants of the State Scientific Committee, required a continuous development of our NMR pulse spectrometer and theoretical methods. Partially deuterated ammonium ions open a new field in studies of molecular mobility and crystal structure. We may point out new features observed in 2 H-NMR spectra of ammonium ion isotopomers NH 4-x D x + . Following observations and conclusions are based on recent experiments: - evidence for tunneling rotation of ND 2 H 2 + and ND 3 H + ions, - evidence for the domain structure in the ordered phase and high mobility of ammonium ions in domain walls. The application of high resolution solid state NMR spectroscopy to the studies of novel heterogeneous catalysts was continued in 1999. The static and MAS-NMR spectra of 51 V deposited on various substrates were measured. It was possible to determine the coordination, local symmetry and the type of association of vanadium complexes, and correlate this structural information with the catalytic activity and selectivity in model reactions. The short range structure and the nature of local inhomogeneities in the multicomponent polymeric oxide glasses were studied using the high resolution MAS-NMR technique. MAS-NMR spectra of 29 Si, 31 P, 11 B, and 27 AI were measured for two model glasses. The MAS-NMR has been found to be the only technique that

  10. Department of Nuclear Radiospectroscopy - Overview

    International Nuclear Information System (INIS)

    Jasinski, A.

    2002-01-01

    Full text: Research at the Department of Nuclear Radiospectroscopy concerns various aspects of Nuclear Magnetic Resonance (NMR) and its applications to solids and to biological systems. Current research activity covers two areas: investigation of molecular dynamics and structure in solids using NMR spectroscopy, and biomedical investigations on animal models and humans using NMR imaging and localized spectroscopy. MAGNETIC RESONANCE IMAGING LABORATORY: Biomedical applications of Magnetic Resonance Imaging (MRI) and Spectroscopy (MRS), as well as development of MR technology were our main topics of research. Our research capabilities were significantly widened with the commissioning of the 4.7 T horizontal bore animal MRI system with MARAN DRX console from Resonance Instruments Ltd. The water diffusion tensor in the spinal cord of the rat was investigated as a function of the diffusion gradient amplitude in order to determine different components of diffusion. In vitro DTI measurements using our 8.5 T MR Microscope were performed on excised samples of the injured and normal spinal cord of the rat kept in PBS. A non-exponential diffusion was found in the gray matter. In the white matter diffusion in the transverse direction to the axon bundles was non-exponential, whereas along the axon it had a single component. Experimental data could be best fitted using a model of two-component anisotropic diffusion. Our results and absolute values of the DT components are similar to the well known results obtained for the optical nerve. In order to analyze diffusion weighted MR images, a software using IDL was developed. First results of DTI in vivo for the rat brain and the rat spinal cord were obtained on our new 4.7 T MRI system. Continuing our interest in volume measurements using MRI, subdermic and visceral fatty tissue volumes were determined for a group of 46 patients undergoing a 6 months lose-weight program. In collaboration with the Academy of Physical Education

  11. Nuclear Safety Research Department annual report 2000

    DEFF Research Database (Denmark)

    Majborn, B.; Nielsen, Sven Poul; Damkjær, A.

    2001-01-01

    The report presents a summary of the work of the Nuclear Safety Research Department in 2000. The department's research and development activities were organized in two research programmes: "Radiation Protection and Reactor Safety" and "Radioecology andTracer Studies". In addtion the department...

  12. Nuclear Safety Research Department annual report 2001

    DEFF Research Database (Denmark)

    Majborn, B.; Damkjær, A.; Nielsen, Sven Poul

    2002-01-01

    The report presents a summary of the work of the Nuclear Safety Research Department in 2001. The department's research and development activities were organized in two research programmes: "Radiation Protection and Reactor Safety" and "Radioecology andTracer Studies". In addition the department...

  13. Quality control of nuclear medicine instrumentation

    International Nuclear Information System (INIS)

    Mould, R.F.

    1983-09-01

    The proceedings of a conference held by the Hospital Physicists' Association in London 1983 on the quality control of nuclear medicine instrumentation are presented. Section I deals with the performance of the Anger gamma camera including assessment during manufacture, acceptance testing, routine testing and long-term assessment of results. Section II covers interfaces, computers, the quality control problems of emission tomography and the quality of software. Section III deals with radionuclide measurement and impurity assessment and Section IV the presentation of images and the control of image quality. (U.K.)

  14. The applications of nuclear techniques in nuclear medicine

    International Nuclear Information System (INIS)

    Zhao Huiyang

    1986-01-01

    There are a great deal of advanced techniques in nuclear medicine imaging, because many recent achivements of nuclear techniques have been applied to medicine in recent years. This paper presents the effects of nuclear techniques in development of nuclear medicine imaging. The first part describes radiopharmaceuticals and nuclear medicine imaging including commonly used 99m Tc labeled agents and cyclotron produced radionuclides for organ imaging. The second part describes nuclear medicine instrucments, including PECT, SPECT, MRI ect.; and discussions on the advantages, disadvantages and present status

  15. A protocol to determine the situation of nuclear medicine in Venezuela, 1999-2000

    International Nuclear Information System (INIS)

    Carrizales, L.; Leandro, G.

    2001-01-01

    This paper presents preliminary results and the methodology followed for the implementation of a Protocol that included Radiological Protection and Quality Control at SPECT Systems in two important public hospitals at Republica Bolivariana de Venezuela. We found in these inspections that the main problems were the lack of medical physicist capacity in nuclear medicine that implemented programs of quality assurance as well as radiation protection in these departments. (author)

  16. A protocol to determine the situation of nuclear medicine in Venezuela, 1999-2000

    Energy Technology Data Exchange (ETDEWEB)

    Carrizales, L; Leandro, G [Laboratorio Secundario de Calibracion Dosimetrica, Unidad de Tecnologia Nuclear, Instituto Venezolano de Investigaciones Cientificas, Caracas (Venezuela)

    2001-03-01

    This paper presents preliminary results and the methodology followed for the implementation of a Protocol that included Radiological Protection and Quality Control at SPECT Systems in two important public hospitals at Republica Bolivariana de Venezuela. We found in these inspections that the main problems were the lack of medical physicist capacity in nuclear medicine that implemented programs of quality assurance as well as radiation protection in these departments. (author)

  17. Nuclear Medicine in Pediatric Cardiology.

    Science.gov (United States)

    Milanesi, Ornella; Stellin, Giovanni; Zucchetta, Pietro

    2017-03-01

    Accurate cardiovascular imaging is essential for the successful management of patients with congenital heart disease (CHD). Echocardiography and angiography have been for long time the most important imaging modalities in pediatric cardiology, but nuclear medicine has contributed in many situations to the comprehension of physiological consequences of CHD, quantifying pulmonary blood flow symmetry or right-to-left shunting. In recent times, remarkable improvements in imaging equipments, particularly in multidetector computed tomography and magnetic resonance imaging, have led to the progressive integration of high resolution modalities in the clinical workup of children affected by CHD, reducing the role of diagnostic angiography. Technology has seen a parallel evolution in the field of nuclear medicine, with the advent of hybrid machines, as SPECT/CT and PET/CT scanners. Improved detectors, hugely increased computing power, and new reconstruction algorithms allow for a significant reduction of the injected dose, with a parallel relevant decrease in radiation exposure. Nuclear medicine retains its distinctive capability of exploring at the tissue level many functional aspects of CHD in a safe and reproducible way. The lack of invasiveness, the limited need for sedation, the low radiation burden, and the insensitivity to body habitus variations make nuclear medicine an ideal complement of echocardiography. This is particularly true during the follow-up of patients with CHD, whose increasing survival represent a great medical success and a challenge for the health system in the next decades. Metabolic imaging using 18 FDG PET/CT has expanded its role in the management of infection and inflammation in adult patients, particularly in cardiology. The same expansion is observed in pediatric cardiology, with an increasing rate of studies on the use of FDG PET for the evaluation of children with vasculitis, suspected valvular infection or infected prosthetic devices. The

  18. Nuclear medicine training and practice in Poland

    International Nuclear Information System (INIS)

    Teresinska, Anna; Birkenfeld, Bozena; Krolicki, Leszek; Dziuk, Miroslaw

    2014-01-01

    In Poland, nuclear medicine (NM) has been an independent specialty since 1988. At the end of 2013, the syllabus for postgraduate specialization in NM has been modified to be in close accordance with the syllabus approved by the European Union of Medical Specialists and is expected to be enforced before the end of 2014. The National Consultant in Nuclear Medicine is responsible for the specialization program in NM. The Medical Center of Postgraduate Training is the administrative body which accepts the specialization programs, supervises the training, organizes the examinations, and awards the specialist title. Specialization in NM for physicians lasts for five years. It consists of 36 months of training in a native nuclear medicine department, 12 months of internship in radiology, 3 months in cardiology, 3 months in endocrinology, 3 months in oncology, and 3 months in two other departments of NM. If a NM trainee is a specialist of a clinical discipline and/or is after a long residency in NM departments, the specialization in NM can be shortened to three years. During the training, there are obligatory courses to be attended which include the elements of anatomy imaging in USG, CT, and MR. Currently, there are about 170 active NM specialists working for 38.5 million inhabitants in Poland. For other professionals working in NM departments, it is possible to get the title of a medical physics specialist after completing 3.5 years of training (for those with a master's in physics, technical physics or biomedical engineering) or the title of a radiopharmacy specialist after completing 3 years of training (for those with a master's in chemistry or biology). At present, the specialization program in NM for nurses is being developed by the Medical Centre of Postgraduate Education. Continuing education and professional development are obligatory for all physicians and governed by the Polish Medical Chamber. The Polish Society of Nuclear Medicine (PTMN) organizes regular

  19. Nuclear medicine training and practice in Poland

    Energy Technology Data Exchange (ETDEWEB)

    Teresinska, Anna [Institute of Cardiology, Department of Nuclear Medicine, Warsaw (Poland); Birkenfeld, Bozena [Pomeranian Medical University, Department of Nuclear Medicine, Szczecin (Poland); Krolicki, Leszek [Warsaw Medical University, Department of Nuclear Medicine, Warsaw (Poland); Dziuk, Miroslaw [Military Institute of Medicine, Department of Nuclear Medicine, Warsaw (Poland)

    2014-10-15

    In Poland, nuclear medicine (NM) has been an independent specialty since 1988. At the end of 2013, the syllabus for postgraduate specialization in NM has been modified to be in close accordance with the syllabus approved by the European Union of Medical Specialists and is expected to be enforced before the end of 2014. The National Consultant in Nuclear Medicine is responsible for the specialization program in NM. The Medical Center of Postgraduate Training is the administrative body which accepts the specialization programs, supervises the training, organizes the examinations, and awards the specialist title. Specialization in NM for physicians lasts for five years. It consists of 36 months of training in a native nuclear medicine department, 12 months of internship in radiology, 3 months in cardiology, 3 months in endocrinology, 3 months in oncology, and 3 months in two other departments of NM. If a NM trainee is a specialist of a clinical discipline and/or is after a long residency in NM departments, the specialization in NM can be shortened to three years. During the training, there are obligatory courses to be attended which include the elements of anatomy imaging in USG, CT, and MR. Currently, there are about 170 active NM specialists working for 38.5 million inhabitants in Poland. For other professionals working in NM departments, it is possible to get the title of a medical physics specialist after completing 3.5 years of training (for those with a master's in physics, technical physics or biomedical engineering) or the title of a radiopharmacy specialist after completing 3 years of training (for those with a master's in chemistry or biology). At present, the specialization program in NM for nurses is being developed by the Medical Centre of Postgraduate Education. Continuing education and professional development are obligatory for all physicians and governed by the Polish Medical Chamber. The Polish Society of Nuclear Medicine (PTMN) organizes

  20. Department of Nuclear Radiospectroscopy - Overview

    International Nuclear Information System (INIS)

    Jasinski, A.

    1999-01-01

    Research at the Department of Nuclear Radiospectroscopy concerns various aspects of the NMR and its applications to solids and to biosystems. The research activity covers: investigation of molecular dynamics and structures in solids using NMR spectroscopy, and investigation of humans, animals and plants using NMR imaging and localized spectroscopy. The MR Laboratory is equipped with a 7.05 T wide bore vertical superconducting magnet (SCM) with a pulse spectrometer. It allows to measure of deuteron NMR spectra at T ≥ 5 K. NMR high resolution spectra for 29 Si, 11 B, 27 Al and 31 P nuclei can be measured using MAS-NMR probe heads. The Magnetic Resonance Imaging Laboratory is equipped with 360 MHz MR microscope based on a 8.4 T narrow bore SCM and a MRI/MRS system based on a 2 T, 31 cm horizontal bore SCM. Magnetic Resonance Laboratory: Molecular reorientation studies aimed at disclosing tunnelling rotation and structural research of amorphous solids were main topics. Realisation of these projects required a development of our NMR pulse spectrometer and theoretical methods. The spectrometer was put into operation in 1997. Recent development was done in the data acquisition by the introduction of a new A/D converter and a pulse programmer. Tunnelling and reorientations of mixed isotope rotors are currently the most interesting topics. For a given deuteration rate of an ammonium compound it was anticipating that deuteron NMR spectra consist of weighted contributions from the following isotopomers: NH 3 D + , NH 2 D 2 + , NH 3 D + and ND 4 + . Each isotopomer provides a characteristic spectral component due to its mobility. Measurements were performed for a number of partially deuterated samples of (NH 4 ) 2 S 2 O 8 , NH 4 ClO 4 , NH 4 PF 6 , (NH 4 ) 2 ZnCl 4 and (NH 4 ) 2 TeCl 6 in the T = 5-100 K. The spectra of NH 3 D + ions are particularly interesting. A new effect of an isotope ordering was observed. The structural investigations of amorphous solids by NMR

  1. In vivo mutagenicity and clastogenicity of ionizing radiation in nuclear medicine

    International Nuclear Information System (INIS)

    Kelsey, K.T.

    1991-01-01

    The overall goal of our research was to investigate the mutagenic and clastogenic effects of exposure to low levels of ionizing radiation to human lymphocytes. Principally, we studied hospital patients referred to a nuclear medicine department for diagnostic cardiac imaging and nuclear medicine technologists who administer radionuclides. Emphasis in the first year, as described in the first progress report, was on optimization of the hprt mutation assay, measurement of mutant frequencies in patients imaged with thallium-201, and measurement of mutant frequencies in controls. Emphasis in the second and third years was on measurements of: (1) chromosome aberrations in patients imaged with thallium-201; (2) mutant frequencies in patients imaged with technetium-99; (3) mutant frequencies in nuclear medicine technicians and physical therapists; and (4) mutant frequencies in patients treated for Hodgkins disease with radiotherapy. The completed work has been published and is described below in more detail

  2. Nuclear medicine training and practice in the Czech Republic

    International Nuclear Information System (INIS)

    Kaminek, Milan; Koranda, Pavel

    2014-01-01

    Nuclear medicine in the Czech Republic is a full specialty with an exclusive practice. Since the training program was organized and structured in recent years, residents have had access to the specialty of nuclear medicine, starting with a two-year general internship (in internal medicine or radiology). At present, nuclear medicine services are provided in 45 departments. In total, 119 nuclear medicine specialists are currently registered. In order to obtain the title of Nuclear Medicine Specialist, five years of training are necessary; the first two years consist of a general internship in internal medicine or radiology. The remaining three years consist of training in the nuclear medicine specialty itself, but includes three months of practice in radiology. Twenty-one physicians are currently in nuclear medicine training and a mean of three specialists pass the final exam per year. The syllabus is very similar to that of the European Union of Medical Specialists (UEMS), namely concerning the minimum recommended numbers for diagnostic and therapeutic procedures. In principle, the Czech law requires continuous medical education for all practicing doctors. The Czech Medical Chamber has provided a continuing medical education (CME) system. Other national CMEs are not accepted in Czech Republic. (orig.)

  3. Nuclear medicine training and practice in the Czech Republic

    Energy Technology Data Exchange (ETDEWEB)

    Kaminek, Milan; Koranda, Pavel [University Hospital Olomouc, Department of Nuclear Medicine, Olomouc (Czech Republic)

    2014-08-15

    Nuclear medicine in the Czech Republic is a full specialty with an exclusive practice. Since the training program was organized and structured in recent years, residents have had access to the specialty of nuclear medicine, starting with a two-year general internship (in internal medicine or radiology). At present, nuclear medicine services are provided in 45 departments. In total, 119 nuclear medicine specialists are currently registered. In order to obtain the title of Nuclear Medicine Specialist, five years of training are necessary; the first two years consist of a general internship in internal medicine or radiology. The remaining three years consist of training in the nuclear medicine specialty itself, but includes three months of practice in radiology. Twenty-one physicians are currently in nuclear medicine training and a mean of three specialists pass the final exam per year. The syllabus is very similar to that of the European Union of Medical Specialists (UEMS), namely concerning the minimum recommended numbers for diagnostic and therapeutic procedures. In principle, the Czech law requires continuous medical education for all practicing doctors. The Czech Medical Chamber has provided a continuing medical education (CME) system. Other national CMEs are not accepted in Czech Republic. (orig.)

  4. The Frederic Joliot hospital department; Le service hospitalier Frederic Joliot

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-01

    The Service Hospitalier Frederic Joliot (SHFJ) of the CEA, has got a scientific and a medical mission: to develop techniques allowing the functional study of human organs. The paper presents the main activities of this department: the positron emission tomography to visualize in real time markers in the organism in neurology and cardiology, researches on epilepsy to localize the epileptic centre, the nuclear medicine in cardiology with the use of the gamma photon emission tomography and the radiopharmacology to visualize the drugs effects in the organism. (A.L.B.)

  5. Radiochemistry in nuclear medicine. Radiopharmaceuticals

    International Nuclear Information System (INIS)

    Samochocka, K.

    1999-01-01

    Radionuclides and radiopharmaceuticals play a kay role in nuclear medicine, both in diagnostics and therapy. Incorporation of radionuclides into biomolecules, and syntheses of radiolabelled compounds of high biological selectivity are a task for radiochemists working in the multidisciplinary field of radiopharmaceutical chemistry. The most commonly used radionuclide, 99m Tc, owes this popularity to its both nearly ideal nuclear properties in respect to medical imaging, and availability from inexpensive radionuclide generators. Also numerous other radionuclides are widely used for medical imaging and therapy. Labelling of biomolecules with radioiodine and various positron emitters is getting increasingly important. This review describes some chemical and radiochemical problems we meet while synthesizing and using 99m Tc-radiopharmaceuticals and radioiodine-labelled biomolecules. Also represented are the recent developments in the design and use of the second generation radiopharmaceuticals based on bifunctional radiochelates. Several principal routes of fast chemical synthesis concerning incorporation of short-lived positron emitters into biomolecules are outlined as well. The search for chemical structures of high biological selectivity, which would be activated by slow neutrons, is related to the method of Neutron Capture Therapy, an interesting option in nuclear medicine. (author)

  6. Radiation doses to patients from nuclear medicine examinations

    International Nuclear Information System (INIS)

    Boehm, K.; Boehmova, I.

    2014-01-01

    Public Health Authority of the Slovak Republic, Bratislava The exposure of the population to ionizing radiation is rising rapidly, nearly exclusively due to increasing medical use of radiation, including diagnostic methods of nuclear medicine. In 2012 Public health authority of the Slovak republic (PHA SR) performed a survey about the population exposure from nuclear medicine procedures. The primary objectives of this survey were to assess the frequency of different nuclear medicine procedures, determine the average activities administered by nuclear medicine procedures and compare them with the national diagnostic reference levels and determine the annual collective effective dose to the Slovak population from nuclear medicine. The effective dose calculation was based on the methodology of the ICRP32, ICRP80 and ICRP106. In Slovak republic are 11 nuclear medicine departments. The collected data of activities administered by different procedures correspond to 100 % of nuclear medicine departments. The total number of procedures included in the study was 36 250. The most commonly performed procedure was bone scintigraphy (35.9%), followed by lung perfusion and ventilation scintigraphy (17.0%), static and dynamic renal scintigraphy (13.0%), whole-body positron emission tomography of tumors with PET radiopharmaceuticals (11.6%), myocardial perfusion (8.8%), thyroid scintigraphy (6.2%), parathyroid scintigraphy (2.1%), scintigraphy of tumors (2.1%), scintigraphy of the liver and spleen (0.8%), brain perfusion (0.7%) and examination of the gastrointestinal system (0.3%). (authors)

  7. Department of Nuclear Reactions - Overview

    International Nuclear Information System (INIS)

    Rusek, K.

    2008-01-01

    Full text: Our scientific activities last year focused on nuclear physics, materials science and medical applications. · As far as nuclear physics is concerned, our interest ranged from the structure of the nucleon to that of the nucleus. On the 30 th June 2007 DESY's HERA collider was shut down, and so data taking by the HERMES experiment was terminated. However, our colleagues involved in studies of the spin structure of the nucleon have been working and will still work for a few more years analysing experimental data taken during the whole HERMES campaign. Last year they worked, among others, on the beam spin asymmetries for charged and neutral pions produced in deep inelastic scattering of polarized electrons on protons. A team led by Assoc. Prof. B. Zwieglinski was involved in a large-scale international collaboration PANDA. The PANDA (antiProton ANnihilation at Darmstadt) experiment will be installed at the High Energy Storage Ring for antiprotons of the future Facility for Antiproton and Ion Research (FAIR) in Darmstadt, Germany. In this report the team presents a proposal for an experimental study of the two-quark system. Low energy nuclear physics experiments were performed at the Heavy Ion Laboratory of Warsaw University in collaboration with foreign institutions: University of Jyvaeskylae, the Institute of Nuclear Research of the Ukrainian Academy of Sciences and the Institute de Recherches Subatomique in Strasbourg. One of the achievements was the commissioning of a large scattering chamber ICARE equipped with charged particle detectors. · Material science studies focused on semiconductor compounds that could be used in electronic and optoelectronic devices. This was done in collaboration with the Institute of Electronic Materials Technology. In particular, a channeling study of GaN was performed in order to learn about the thermal stability of this compound. · Radiobiological studies was a new domain of our activity last year. The team of Prof

  8. Is nuclear medicine really safe?

    International Nuclear Information System (INIS)

    Colas-Linhart, N.

    2000-01-01

    How to evaluate the benefit-risks ratio of scintigraphies? In nuclear medicine, radiation absorbed dose estimates at whole body or organ levels are very low. Nevertheless, at cellular level, there are both heterogeneity of distribution and heterogeneity of radiation emission. Consequently, absorbed doses at cellular level are often calculated. These absorbed dose values are surprising, even disturbing or not interpretable. In the present study, we have searched the biological consequences at the cellular level, radioinduced by two radiopharmaceuticals labelled with 99m Tc: human serum albumin microspheres and HMPAO, studying the cellular ultrastructure, over expression of p53 and scoring instable chromosomal aberrations. (author)

  9. Department of Nuclear Reaction - Overview

    International Nuclear Information System (INIS)

    Budzanowski, A.

    2000-01-01

    Full text: This year 1999 can be considered as very successful. Not only that we have published 33 papers in journals listed by the Philadelphia Institute of Science but because our hard work allowed us to obtain new and exciting results. A group of theoretical papers concerned with application of correlation among random matrices elements developed for statistical aspects of nuclear coupling into continuum to study of the collective effects in brain activity and stock market dynamics. These papers arose quite an interest and got several citations. Studies of the nonpartonic components in the nucleon structure function led to better understanding of the higher-twist effects. It was shown that inclusion of the terms of the order of 1/Q 4 improves fits to the experimental data. A review paper summarizing results on the role of the leading baryon in high energy reactions appeared in Progress on Nuclear and Particle Physics. Studies on multistep transfer reactions of light heavy ions in collaboration with the Institute of Nuclear Physics of the Ukrainian Academy of Sciences in Kiev have explained angular distributions of many reactions using the coupled channel theory. We have shown that it is possible to determine energy dependence of the optical model potential for such unstable nuclei like 8 Be. Further studies of mechanism of near threshold light meson production in collaboration with Juelich and Jagiellonian University were performed. Within COSY 10 and COSY 11 collaborations new data on the isospin symmetry breaking in pionic reactions and strange meson accompanied by hyperons emission were obtained. Together with colleagues from the Flerov Nuclear Reaction Laboratory we have started experiments with radioactive beams. Using magnetic separator COMBAS velocity distributions of isotopes with 2 ≤Z≤11 in reactions induced by 16 O on 9 Be were obtained. At the high resolution radioactive beam channel ACCULINA reactions induced by 6 He and 8 He nuclei were studied

  10. Nuclear analytical techniques in medicine

    International Nuclear Information System (INIS)

    Cesareo, R.

    1988-01-01

    This book acquaints one with the fundamental principles and the instrumentation relevant to analytical technique based on atomic and nuclear physics, as well as present and future biomedical applications. Besides providing a theoretical description of the physical phenomena, a large part of the book is devoted to applications in the medical and biological field, particularly in hematology, forensic medicine and environmental science. This volume reviews methods such as the possibility of carrying out rapid multi-element analysis of trace elements on biomedical samples, in vitro and in vivo, by XRF-analysis; the ability of the PIXE-microprobe to analyze in detail and to map trace elements in fragments of biomedical samples or inside the cells; the potentiality of in vivo nuclear activation analysis for diagnostic purposes. Finally, techniques are described such as radiation scattering (elastic and inelastic scattering) and attenuation measurements which will undoubtedly see great development in the immediate future

  11. Nuclear analytical techniques in medicine

    Energy Technology Data Exchange (ETDEWEB)

    Cesareo, R.

    1988-01-01

    This book acquaints one with the fundamental principles and the instrumentation relevant to analytical technique based on atomic and nuclear physics, as well as present and future biomedical applications. Besides providing a theoretical description of the physical phenomena, a large part of the book is devoted to applications in the medical and biological field, particularly in hematology, forensic medicine and environmental science. This volume reviews methods such as the possibility of carrying out rapid multi-element analysis of trace elements on biomedical samples, in vitro and in vivo, by XRF-analysis; the ability of the PIXE-microprobe to analyze in detail and to map trace elements in fragments of biomedical samples or inside the cells; the potentiality of in vivo nuclear activation analysis for diagnostic purposes. Finally, techniques are described such as radiation scattering (elastic and inelastic scattering) and attenuation measurements which will undoubtedly see great development in the immediate future.

  12. Distribution of nuclear medicine service in Brazil

    International Nuclear Information System (INIS)

    Silva, Ana Carolina Costa da; Duarte, Alessandro; Santos, Bianca Maciel dos

    2011-01-01

    The Brazil does not posses a good distribution of nuclear medicine service por all his territory. This paper shows the difference among country regions as far the number of clinics of nuclear medicine as is concerning, and also doctors licensed in the area and radioprotection supervisors, both licensed by the Brazilian Nuclear Energy Commission (CNEN)

  13. The nature and causes of unintended events reported at 10 internal medicine departments.

    NARCIS (Netherlands)

    Lubberding, S.; Zwaan, L.; Timmermans, D.R.M.; Wagner, C.

    2011-01-01

    Objective: This study aimed to examine the nature and causes of unintended events (UEs) at internal medicine departments (IMD). Methods: An observational study was conducted at 10 IMDs in 8 Dutch hospitals. The study period per participating department was 5 to 14 weeks. During this period, staff

  14. The application of nuclear-medicine methods in veterinary medicine

    International Nuclear Information System (INIS)

    Simpraga, M.; Kraljevic, P.; Dodig, D.

    1996-01-01

    X-radiography and ultrasound imaging are well established and widely used in veterinary practice, but it is not the same situation with radioisotope imaging. In veterinary practice the above mentioned methods of nuclear medicine are developed only in two countries in Europe. That is not doubt due, so bar, to the difficulties in obtaining satisfactory supply of radioisotopes and to the relatively high cost of scanning equipment. However, in collaboration with the Department of Radiation Protection and Nuclear Medicine of the Medical Faculty in Zagreb, Croatia, we have chance to develop the use of those methods in clinical veterinary practice in Zagreb. That is way in this paper an overview of the application of radioisotopes imaging in veterinary medicine is given. In small animals skeletal changes, lung perusions, brain lesions, space occupying lesions in the liver and its function and hearth function can be usefully searched by a gamma camera and its associated computer. In equine practice scintigraphy of bones, liver, hearth, pulmonary circulation and ventilation is described. The largest amount of radioactive material is used during gamma camera scanning of the skeletons of horses. In this cases the radiation dose 1-2 m from the animal is approximately 3 μSv/h. That is why the protection of personal involved in radioisotope scanning in veterinary medicine must be also regulated by low of radiation protection. Also, the animals should be confined to a controlled area for 2-3 days after scanning before being returned to their owners. After this period the area must be cleaned. (author)

  15. [Day hospital in internal medicine: A chance for ambulatory care].

    Science.gov (United States)

    Grasland, A; Mortier, E

    2018-04-16

    Internal medicine is an in-hospital speciality. Along with its expertise in rare diseases, it shares with general medicine the global care of patients but its place in the ambulatory shift has yet to be defined. The objective of our work was to evaluate the benefits of an internal medicine day-hospital devoted to general medicine. Named "Centre Vi'TAL" to underline the link between the city and the hospital, this novel activity was implemented in order to respond quickly to general practitioners having difficulties to synthesize their complex patients or facing diagnostic or therapeutic problems. Using preferentially email for communication, the general practitioners can contact an internist who is committed to respond on the same day and take over the patient within 7 days if day-hospital is appropriate for his condition. The other patients are directed either to the emergency department, consultation or full hospitalization. In 14 months, the center has received 213 (144 women, 69 men) patients, mean age 53.6, addressed by 88 general practitioners for 282 day-hospital sessions. Requests included problem diagnoses (n=105), synthesis reviews for complex patients (n=65), and treatment (n=43). In the ambulatory shift advocated by the authorities, this experience shows that internal medicine should engage in the recognition of day-hospital as a place for diagnosis and synthesis reviews connected with the city while leaving the general practitioners coordinator of their patient care. This activity of synthesis in day-hospital is useful for the patients and efficient for our healthcare system. Copyright © 2018 Société Nationale Française de Médecine Interne (SNFMI). Published by Elsevier SAS. All rights reserved.

  16. THE STRUCTURE AND FUNCTION OF DEPARTMENTS OF MEDICINE.

    Science.gov (United States)

    Landefeld, C Seth

    2016-01-01

    The structure and function of departments of medicine are important for several reasons. First, departments of medicine are the biggest departments in virtually every medical school and in most universities with a medical school, and they are the largest professional units in most academic medical centers. In fact, Petersdorf described them as "the linchpins of medical schools" (1). Departments of medicine account for one-fourth or more of the academic medical enterprise: they include about one-fourth of the faculty of medical school, account for roughly one-fourth of the patient care and clinical revenue of academic medical centers, and their faculty perform a disproportionate share of teaching and research, accounting for up to 45% of National Institutes of Health (NIH) - funded research in some medical schools. Second, the department's ability to fulfill its role and advance its mission depends on its structure and function. Finally, lessons learned from examining the structure and function of departments of medicine may guide other departments and schools of medicine themselves in improving their structure and function. This paper describes the issues that face departments of medicine in 2016. I begin by providing the context for these issues with a definition of a department of medicine, describing briefly the history of departments, and stating their mission.

  17. Department of Detectors and Nuclear Electronics: Overview

    International Nuclear Information System (INIS)

    Guzik, Z.

    2003-01-01

    Full text: The basic activities of the Department of Nuclear Electronics were concentrated on the following areas: - studies of new scintillation techniques, - contribution to the big European projects, - electronics for experiments in High Energy Physics, - development, investigation and production of silicon detectors, - development of γ-ray spectrometry apparatus, - development of new generation state of the art PCI based multi-channel analysers, - technical support for the Institute as the whole with special emphasis on networking, - normalisation activities. Most of the scientific achievements concerning the Department were summarized in 20 publications (released or being in press). The papers were published mainly in IEEE Trans. on Nucl. Sci. and Nucl. Instr. and Methods. Besides that, our scientists presented 6 contributions at international conferences (such as IEEE Nuclear Science Symposium 2002 in Norfolk, USA). The Department was involved in scientific collaborations with a number of international centers, such as CERN, Royal Institute of Technology in Stockholm, FZR Rossendorf, IKF Juelich, GSI Darmstadt and companies as Advanced Photonix, Inc in California, Scionix in Holland and Photonis in France. The collaboration with High Energy Physics Department of our Institute was focused on LHCb experiment in CERN. In the studies of new scintillation techniques large area avalanche photodiodes were used successfully to tests numerous scintillators at liquid nitrogen temperature. The study of pure (undoped) NaI showed some intriguing effects dealing with non-proportionality of the light yield versus energy of γ-quanta and intrinsic energy resolution of the crystals, which may provide a deeper insight into origin of intrinsic resolution. A very high-energy resolution of 3.8% was measured for 662 keV γ-rays from a 137 Cs source. Moreover, very promising properties of pure NaI at room temperature were shown for the first time. The study of Hamamatsu avalanche

  18. Progress report of the nuclear physics department

    International Nuclear Information System (INIS)

    1988-01-01

    This progress report presents the research programs and the technical developments carried out at the Nuclear Physics Department of Saclay from October 1, 1986 to September 30, 1987. The research programs concern the structure of nuclei and the general study of nuclear reaction mechanisms. Experiments use electromagnetic probes of the 700 Mev Saclay linear electron accelerator and hadronic probes, light polarised particles and heavy ions of the National Laboratories SATURNE and GANIL. The Nuclear Physics Department is also involved in development of accelerator technologies, especially in the field of superconducting cavities [fr

  19. Teaching of nuclear medicine at medical faculties

    International Nuclear Information System (INIS)

    Dienstbier, Z.

    1987-01-01

    The teaching of nuclear medicine at medical faculties in the CSSR is analyzed. It is shown that the teaching conditions are different at the individual faculties of medicine and the respective conditions are exemplified. (author). 4 tabs

  20. Nuclear medicine resources in the internet

    International Nuclear Information System (INIS)

    Obaldo, J.M.

    1996-01-01

    The internet is a global collection of networked computers linked by a set of protocols which allows the otherwise disperate computer systems to communicate with each other. In contrast to text-only data available previously, the World Wide Web allows multimedia content to be available on the internet. Graphics can now likewise be used as links. The development of World Wide Web client software such as Mosaic, or the currently more popular Netscape Navigator, makes linking from one document to another (colloquially referred to as 'surfing the Net') fast and simple. While these software are commonly called Web browsers their function extends to the other internet services such as e-mail, file transfer protocol, remote login, Gopher and WAIS. A prototype application being developed as a case-based teaching file which could include clinical data and case discussion, aside of course from the nuclear medicine and related images. Contributions from various institutions can be made available on their own servers and linked together through hypertext. Examples of these are websites of the Mallinckrodt Institute of Radiology and the Joint Program in Nuclear Medicine of the Harvard Medical School. The university of Iowa also has its Virtual Hospital, a collection of clinical cases with radiologic images. Most major universities and medical centers have websites where information on on-going research, facilities and personnel are made available. Links to various special interest discussion groups (e.g. those developing the common image file format) are also accessible and the documents often contain further links to related fields in nuclear technology. The very nature of the hypertext transfer protocol of the World Wide Web makes it a relatively simple matter for a developer of a teaching system to include links to necessary resources. It is envisioned that an internet-based teaching module will be incorporated in some nuclear medicine training programs in the United States