WorldWideScience

Sample records for nuclear medical imaging

  1. Medical Imaging Informatics in Nuclear Medicine

    NARCIS (Netherlands)

    van Ooijen, Peter; Glaudemans, Andor W.J.M.; Medema, Jitze; van Zanten, Annie K.; Dierckx, Rudi A.J.O.; Ahaus, C.T.B. (Kees)

    2016-01-01

    Medical imaging informatics is gaining importance in medicine both in clinical practice and in scientific research. Besides radiology, nuclear medicine is also a major stakeholder in medical imaging informatics because of the variety of available imaging modalities and the imaging-oriented operation

  2. Nuclear imaging in the realm of medical imaging

    International Nuclear Information System (INIS)

    Deconinck, Frank

    2003-01-01

    In medical imaging, information concerning the anatomy or biological processes of a patient is detected and presented on film or screen for interpretation by a reader. The information flow from patient to reader optimally implies: - the emission, transmission or reflection of information carriers, typically photons or sound waves, which have to be correctly modulated by patient information through interactions in the patient; - their detection by adequate imaging equipment preserving essential spectral, spatial and/or temporal information; - the presentation of the information in the most perceivable way; - the observation by an unbiased and trained expert. In reality, only an approximation to this optimal situation is achieved. It is the goal of R and D in the medical imaging field to approach the optimum as much as possible within societal constraints such as patient risk and comfort, economics, etc. First, the basic physical concepts underlying the imaging process will be introduced. Different imaging modalities will then be situated in the realm of medical imaging with some emphasis on nuclear imaging

  3. Pseudo-color processing in nuclear medical image

    International Nuclear Information System (INIS)

    Wang Zhiqian; Jin Yongjie

    1992-01-01

    The application of pseudo-color technology in nuclear medical image processing is discussed. It includes selection of the number of pseudo-colors, method of realizing pseudo-color transformation, function of pseudo-color transformation and operation on the function

  4. Medical imaging. From nuclear medicine to neuro-sciences

    International Nuclear Information System (INIS)

    2003-03-01

    Nuclear medicine and functional imaging were born of the CEA's ambition to promote and develop nuclear applications in the fields of biology and health. Nuclear medicine is based on the use of radioactive isotopes for diagnostic and therapeutic purposes. It could never have developed so rapidly without the progress made in atomic and nuclear physics. One major breakthrough was the discovery of artificial radioelements by Irene and Frederic Joliot in 1934, when a short-lived radioactive isotope was created for the first time ever. Whether natural or synthetic, isotopes possess the same chemical properties as their non-radioactive counterparts. The only difference is that they are unstable and this instability causes disintegration, leading to radiation emission. All we need are suitable detection tools to keep track of them. 'The discovery of artificial radioelements is at the root of the most advanced medical imaging techniques'. The notion of tracer dates back to 1913. Invented by George de Hevesy, it lies at the root of nuclear medicine. By discovering how to produce radioactive isotopes, Irene and Frederic Joliot provided biology researchers with nuclear tools of unrivalled efficiency. Today, nuclear medicine and functional imaging are the only techniques capable of giving us extremely precise information about living organisms in a non-traumatic manner and without upsetting their balance. Positron emission tomography (PET) and nuclear magnetic resonance imaging (MRI) are the main imaging techniques used at the CEA in its neuro-imaging research activities. These techniques are now developing rapidly and becoming increasingly important not only in the neuroscience world, but also for innovative therapies and cancer treatment. (authors)

  5. Medical Image Processing Server applied to Quality Control of Nuclear Medicine.

    Science.gov (United States)

    Vergara, C.; Graffigna, J. P.; Marino, E.; Omati, S.; Holleywell, P.

    2016-04-01

    This paper is framed within the area of medical image processing and aims to present the process of installation, configuration and implementation of a processing server of medical images (MIPS) in the Fundación Escuela de Medicina Nuclear located in Mendoza, Argentina (FUESMEN). It has been developed in the Gabinete de Tecnologia Médica (GA.TE.ME), Facultad de Ingeniería-Universidad Nacional de San Juan. MIPS is a software that using the DICOM standard, can receive medical imaging studies of different modalities or viewing stations, then it executes algorithms and finally returns the results to other devices. To achieve the objectives previously mentioned, preliminary tests were conducted in the laboratory. More over, tools were remotely installed in clinical enviroment. The appropiate protocols for setting up and using them in different services were established once defined those suitable algorithms. Finally, it’s important to focus on the implementation and training that is provided in FUESMEN, using nuclear medicine quality control processes. Results on implementation are exposed in this work.

  6. Medical Image Processing Server applied to Quality Control of Nuclear Medicine

    International Nuclear Information System (INIS)

    Vergara, C.; Graffigna, J.P.; Holleywell, P.; Marino, E.; Omati, S.

    2016-01-01

    This paper is framed within the area of medical image processing and aims to present the process of installation, configuration and implementation of a processing server of medical images (MIPS) in the Fundación Escuela de Medicina Nuclear located in Mendoza, Argentina (FUESMEN). It has been developed in the Gabinete de Tecnologia Médica (GA.TE.ME), Facultad de Ingeniería-Universidad Nacional de San Juan. MIPS is a software that using the DICOM standard, can receive medical imaging studies of different modalities or viewing stations, then it executes algorithms and finally returns the results to other devices. To achieve the objectives previously mentioned, preliminary tests were conducted in the laboratory. More over, tools were remotely installed in clinical enviroment. The appropiate protocols for setting up and using them in different services were established once defined those suitable algorithms. Finally, it’s important to focus on the implementation and training that is provided in FUESMEN, using nuclear medicine quality control processes. Results on implementation are exposed in this work. (paper)

  7. NCRP report 160 and what it means for medical imaging and nuclear medicine.

    Science.gov (United States)

    Bolus, Norman E

    2013-12-01

    The purpose of this paper is to briefly explain report 160 of the National Council on Radiation Protection and Measurement and the significance of the report to medical imaging as a whole and nuclear medicine specifically. The implications of the findings of report 160 have had repercussions and will continue to affect all of ionizing radiation medical imaging. The nuclear medicine community should have an understanding of why and how report 160 is important. After reading this article, the nuclear medicine technologist will be familiar with the main focus of report 160, the significant change that has occurred since the 1980s in the ionizing radiation exposure of people in the United States, the primary background source of ionizing radiation in the United States, the primary medical exposure to ionizing radiation in the United States, trends in nuclear medicine procedures and patient exposure, and a comparison of population doses between 2006 and the early 1980s as outlined in report 160.

  8. Recent progress in medical imaging technology

    International Nuclear Information System (INIS)

    Endo, Masahiro

    2004-01-01

    Medical imaging is name of methods for diagnosis and therapy, which make visible with physical media such as X-ray, structures and functions of man's inside those are usually invisible. These methods are classified by the physical media into ultrasound imaging, magnetic resonance imaging, nuclear medicine imaging and X-ray imaging etc. Having characteristics different from one another, these are used complementarily in medical fields though in some case being competitive. Medical imaging is supported by highly progressed technology, which is called medical imaging technology. This paper describes a survey of recent progress of medical imaging technology in magnetic resonance imaging, nuclear medicine imaging and X-ray imaging. (author)

  9. Medical imaging

    International Nuclear Information System (INIS)

    Loshkajian, A.

    2000-01-01

    This didactical book presents the medical imaging techniques: radiography, scanner, nuclear magnetic resonance (NMR). Examples are given for the most common pathologies in all domains of medicine. (J.S.)

  10. Medical Imaging with Neural Networks

    International Nuclear Information System (INIS)

    Pattichis, C.; Cnstantinides, A.

    1994-01-01

    The objective of this paper is to provide an overview of the recent developments in the use of artificial neural networks in medical imaging. The areas of medical imaging that are covered include : ultrasound, magnetic resonance, nuclear medicine and radiological (including computerized tomography). (authors)

  11. Medical imaging

    International Nuclear Information System (INIS)

    Elliott, Alex

    2005-01-01

    Diagnostic medical imaging is a fundamental part of the practice of modern medicine and is responsible for the expenditure of considerable amounts of capital and revenue monies in healthcare systems around the world. Much research and development work is carried out, both by commercial companies and the academic community. This paper reviews briefly each of the major diagnostic medical imaging techniques-X-ray (planar and CT), ultrasound, nuclear medicine (planar, SPECT and PET) and magnetic resonance. The technical challenges facing each are highlighted, with some of the most recent developments. In terms of the future, interventional/peri-operative imaging, the advancement of molecular medicine and gene therapy are identified as potential areas of expansion

  12. Medical Imaging with Neural Networks

    Energy Technology Data Exchange (ETDEWEB)

    Pattichis, C [Department of Computer Science, University of Cyprus, Kallipoleos 75, P.O.Box 537, Nicosia (Cyprus); Cnstantinides, A [Department of Electrical Engineering, Imperial College of Science, Technology and Medicine, London SW7 2BT (United Kingdom)

    1994-12-31

    The objective of this paper is to provide an overview of the recent developments in the use of artificial neural networks in medical imaging. The areas of medical imaging that are covered include : ultrasound, magnetic resonance, nuclear medicine and radiological (including computerized tomography). (authors). 61 refs, 4 tabs.

  13. Evaluation of XRI-UNO CdTe detector for nuclear medical imaging

    International Nuclear Information System (INIS)

    Jambi, L.K.; Lees, J.E.; Bugby, S.L.; Alqahtani, M.S.; Tipper, S.; Perkins, A.C.

    2015-01-01

    Over the last two decades advances in semiconductor detector technology have reached the point where they are sufficiently sensitive to become an alternative to scintillators for high energy gamma ray detection for application in fields such as medical imaging. This paper assessed the Cadmium-Telluride (CdTe) XRI-UNO semiconductor detector produced by X-RAY Imatek for photon energies of interest in nuclear imaging. The XRI-UNO detector was found to have an intrinsic spatial resolution of <0.5mm and a high incident count rate capability up to at least 1680cps. The system spatial resolution, uniformity and sensitivity characteristics are also reported

  14. Medical imaging

    CERN Document Server

    Townsend, David W

    1996-01-01

    Since the introduction of the X-ray scanner into radiology almost 25 years ago, non-invasive imaging has become firmly established as an essential tool in the diagnosis of disease. Fully three-dimensional imaging of internal organs is now possible, b and for studies which explore the functional status of the body. Powerful techniques to correlate anatomy and function are available, and scanners which combine anatomical and functional imaging in a single device are under development. Such techniques have been made possible through r ecent technological and mathematical advances. This series of lectures will review both the physical basis of medical imaging techniques using X-rays, gamma and positron emitting radiosiotopes, and nuclear magnetic resonance, and the mathematical methods used to reconstruct three-dimentional distributions from projection data. The lectures will trace the development of medical imaging from simple radiographs to the present-day non-invasive measurement of in vivo biochemistry. They ...

  15. Hybrid Imaging: A New Frontier in Medical Imaging

    OpenAIRE

    Bijan Bijan

    2010-01-01

    Introduction of hybrid imaging in the arena of medical imaging calls for re-strategizing in current practice. Operating PET-CT and upcoming PET-MRI is a turf battle between Radiologists, Nuclear Medicine Physicians, Oncologists, Cardiologists and other related fields.

  16. Java advanced medical image toolkit

    International Nuclear Information System (INIS)

    Saunder, T.H.C.; O'Keefe, G.J.; Scott, A.M.

    2002-01-01

    Full text: The Java Advanced Medical Image Toolkit (jAMIT) has been developed at the Center for PET and Department of Nuclear Medicine in an effort to provide a suite of tools that can be utilised in applications required to perform analysis, processing and visualisation of medical images. jAMIT uses Java Advanced Imaging (JAI) to combine the platform independent nature of Java with the speed benefits associated with native code. The object-orientated nature of Java allows the production of an extensible and robust package which is easily maintained. In addition to jAMIT, a Medical Image VO API called Sushi has been developed to provide access to many commonly used image formats. These include DICOM, Analyze, MINC/NetCDF, Trionix, Beat 6.4, Interfile 3.2/3.3 and Odyssey. This allows jAMIT to access data and study information contained in different medical image formats transparently. Additional formats can be added at any time without any modification to the jAMIT package. Tools available in jAMIT include 2D ROI Analysis, Palette Thresholding, Image Groping, Image Transposition, Scaling, Maximum Intensity Projection, Image Fusion, Image Annotation and Format Conversion. Future tools may include 2D Linear and Non-linear Registration, PET SUV Calculation, 3D Rendering and 3D ROI Analysis. Applications currently using JAMIT include Antibody Dosimetry Analysis, Mean Hemispheric Blood Flow Analysis, QuickViewing of PET Studies for Clinical Training, Pharamcodynamic Modelling based on Planar Imaging, and Medical Image Format Conversion. The use of jAMIT and Sushi for scripting and analysis in Matlab v6.1 and Jython is currently being explored. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc

  17. Nuclear medical physics

    International Nuclear Information System (INIS)

    Williams, L.E.

    1987-01-01

    This three-volume set covers the physical basis of nuclear medicine, and is intended as a source of data for practicing scientists and physicians as well as those beginning their careers or simply studying nuclear medical physics. It leads the reader from quantum theory to the production and attenuation of ionizing radiation; considers dosimetry and the most recent assessment of biological effects of such particles; describes in detail detector materials, signal analysis, and gamma cameras; includes extensive discussions of bone mineral measurement as well as magnetic resonance imaging; covers limited angle, rotating camera, and positron tomography; presents quality assurance and statistical theory with an eye toward enhanced departmental operations; and features descriptions of functional imaging and the psychophysical basis of diagnosis

  18. Nuclear medicine imaging. An encyclopedic dictionary

    International Nuclear Information System (INIS)

    Thie, Joseph A.

    2012-01-01

    The rapidly growing and somewhat complex area of nuclear medicine imaging receives only limited attention in broad-based medical dictionaries. This encyclopedic dictionary is intended to fill the gap. More than 400 entries of between one and three paragraphs are included, defining and carefully explaining terms in an appropriate degree of detail. The dictionary encompasses concepts used in planar, SPECT, and PET imaging protocols and covers both scanner operations and popular data analysis approaches. In spite of the mathematical complexities in the acquisition and analysis of images, the explanations given are kept simple and easy to understand; in addition, many helpful concrete examples are provided. Nuclear Medicine Imaging: An Encyclopedic Dictionary will be ideal for those who wish to obtain a rapid grasp of a concept beyond a definition of a few words but do not want to resort to a time-consuming search of the reference literature. The almost tutorial-like style accommodates the needs of students, nuclear medicine technologists, and varieties of other medical professionals who interface with specialists within nuclear medicine.

  19. Diagnostic medical imaging systems. X-ray radiography and angiography, computerized tomography, nuclear medicine, NMR imaging, sonography, integrated image information systems. 3. rev. and enl. ed.

    International Nuclear Information System (INIS)

    Morneburg, H.

    1995-01-01

    This third edition is based on major review and updating work. Many recent developments have been included, as for instance novel systems for fluoroscopy and mammography, spiral CT and electron beam CT, nuclear medical tomography ( SPECT and PET), novel techniques for fast NMR imaging, spectral and colour coded duplex sonography, as well as a new chapter on integrated image information systems, including network installations. (orig.) [de

  20. Medical imaging and the Internet

    International Nuclear Information System (INIS)

    Jones, D.N.; Carr, P.

    1995-01-01

    A brief introduction to the INTERNET and its benefits for those involved in nuclear medical imaging is given. In Australia, depending on the type of institution/department involved, connection to the INTERNET may be obtained via the Australian Academic and Research Network or through a commercial provider. The recent proliferation of WWW servers has also resulted in multiple medical imaging databases and teaching resources becoming available to the user. Some Newsgroups and WWW addresses related to radiology are provided. 3 refs

  1. Image processing technology for nuclear facilities

    International Nuclear Information System (INIS)

    Lee, Jong Min; Lee, Yong Beom; Kim, Woong Ki; Park, Soon Young

    1993-05-01

    Digital image processing technique is being actively studied since microprocessors and semiconductor memory devices have been developed in 1960's. Now image processing board for personal computer as well as image processing system for workstation is developed and widely applied to medical science, military, remote inspection, and nuclear industry. Image processing technology which provides computer system with vision ability not only recognizes nonobvious information but processes large information and therefore this technique is applied to various fields like remote measurement, object recognition and decision in adverse environment, and analysis of X-ray penetration image in nuclear facilities. In this report, various applications of image processing to nuclear facilities are examined, and image processing techniques are also analysed with the view of proposing the ideas for future applications. (Author)

  2. E-learning for medical imaging specialists: introducing blended learning in a nuclear medicine specialist course.

    Science.gov (United States)

    Haslerud, Torjan; Tulipan, Andreas Julius; Gray, Robert M; Biermann, Martin

    2017-07-01

    While e-learning has become an important tool in teaching medical students, the training of specialists in medical imaging is still dominated by lecture-based courses. To assess the potential of e-learning in specialist education in medical imaging. An existing lecture-based five-day course in Clinical Nuclear Medicine (NM) was enhanced by e-learning resources and activities, including practical exercises. An anonymized survey was conducted after participants had completed and passed the multiple choice electronic course examination. Twelve out of 15 course participants (80%) responded. Overall satisfaction with the new course format was high, but 25% of the respondents wanted more interactive elements such as discussions and practical exercises. The importance of lecture handouts and supplementary online material such as selected original articles and professional guidelines was affirmed by all the respondents (92% fully, 8% partially), while 75% fully and 25% partially agreed that the lectures had been interesting and relevant. E-learning represents a hitherto unrealized potential in the education of medical specialists. It may expedite training of medical specialists while at the same time containing costs.

  3. Development of nuclear imaging instrument and software

    International Nuclear Information System (INIS)

    Kim, Jang Hee; Chung Jae Myung; Nam, Sang Won; Chang, Hyung Uk

    1999-03-01

    In the medical diagnosis, the nuclear medical instrument using the radioactive isotope are commonly utilized. In the foreign countries, the medical application and development of the most advanced nuclear medical instrument such as Single Photon Emission Computer Tomography (SPECT) and position emission tomograph (PET), have been extensively carried out. However, in Korea, such highly expensive instruments have been all, imported, paying foreign currency. Since 1997, much efforts, the development of the radio nuclide medical instrument, the drive of the domestic production, etc. have been made to establish our own technologies and to balance the international payments under the support of the Ministry of Science and Technology. At present time, 180 nuclear imaging instruments are now in operation and 60 of them are analog camera. In analog camera, the vector X-Y monitor is need for are image display. Since the analog camera, signal can not be process in the digital form, we have difficulties to transfer and store the image data. The image displayed at the monitor must be stored in the form of polaroid or X ray film. In order to discard these disadvantages, if we developed the computer interface system, the performance analog camera will be comparable with that of the digital camera. The final objective of the research is that using the interface system developed in this research, we reconstruct the image data transmitted to the personal computer in the form of the generalized data file

  4. Imaging in nuclear medicine

    CERN Document Server

    Hoeschen, Christoph

    2013-01-01

    This volume addresses a wide range of issues in the field of nuclear medicine imaging, with an emphasis on the latest research findings. Initial chapters set the scene by considering the role of imaging in nuclear medicine from the medical perspective and discussing the implications of novel agents and applications for imaging. The physics at the basis of the most modern imaging systems is described, and the reader is introduced to the latest advances in image reconstruction and noise correction. Various novel concepts are then discussed, including those developed within the framework of the EURATOM FP7 MADEIRA research project on the optimization of imaging procedures in order to permit a reduction in the radiation dose to healthy tissues. Advances in quality control and quality assurance are covered, and the book concludes by listing rules of thumb for imaging that will be of use to both beginners and experienced researchers.

  5. Imaging in nuclear medicine

    International Nuclear Information System (INIS)

    Giussani, Augusto; Hoeschen, Christoph

    2013-01-01

    Presents the most recent developments in nuclear medicine imaging, with emphasis on the latest research findings. Considers the latest advances in imaging systems, image reconstruction, noise correction, and quality assurance. Discusses novel concepts, including those developed within the framework of the EURATOM FP7 MADEIRA project. Lists rules of thumb for imaging of use to both beginners and experienced researchers. This volume addresses a wide range of issues in the field of nuclear medicine imaging, with an emphasis on the latest research findings. Initial chapters set the scene by considering the role of imaging in nuclear medicine from the medical perspective and discussing the implications of novel agents and applications for imaging. The physics at the basis of the most modern imaging systems is described, and the reader is introduced to the latest advances in image reconstruction and noise correction. Various novel concepts are then discussed, including those developed within the framework of the EURATOM FP7 MADEIRA research project on the optimization of imaging procedures in order to permit a reduction in the radiation dose to healthy tissues. Advances in quality control and quality assurance are covered, and the book concludes by listing rules of thumb for imaging that will be of use to both beginners and experienced researchers.

  6. Imaging in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Giussani, Augusto [BfS - Federal Office for Radiation Protection, Oberschleissheim (Germany). Dept. of Radiation Protection and Health; Hoeschen, Christoph (eds.) [Helmholtz Zentrum Muenchen - German Research Center for Environmental Health, Neuherberg (Germany). Research Unit Medical Raditation Physics and Diagnostics

    2013-08-01

    Presents the most recent developments in nuclear medicine imaging, with emphasis on the latest research findings. Considers the latest advances in imaging systems, image reconstruction, noise correction, and quality assurance. Discusses novel concepts, including those developed within the framework of the EURATOM FP7 MADEIRA project. Lists rules of thumb for imaging of use to both beginners and experienced researchers. This volume addresses a wide range of issues in the field of nuclear medicine imaging, with an emphasis on the latest research findings. Initial chapters set the scene by considering the role of imaging in nuclear medicine from the medical perspective and discussing the implications of novel agents and applications for imaging. The physics at the basis of the most modern imaging systems is described, and the reader is introduced to the latest advances in image reconstruction and noise correction. Various novel concepts are then discussed, including those developed within the framework of the EURATOM FP7 MADEIRA research project on the optimization of imaging procedures in order to permit a reduction in the radiation dose to healthy tissues. Advances in quality control and quality assurance are covered, and the book concludes by listing rules of thumb for imaging that will be of use to both beginners and experienced researchers.

  7. Nuclear Medicine Image Display. Chapter 14

    Energy Technology Data Exchange (ETDEWEB)

    Bergmann, H. [Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna (Austria)

    2014-12-15

    The final step in a medical imaging procedure is to display the image(s) on a suitable display system where it is presented to the medical specialist for diagnostic interpretation. The display of hard copy images on X ray film or photographic film has largely been replaced today by soft copy image display systems with cathode ray tube (CRT) or liquid crystal display (LCD) monitors as the image rendering device. Soft copy display requires a high quality display monitor and a certain amount of image processing to optimize the image both with respect to the properties of the display device and to some psychophysiological properties of the human visual system. A soft copy display system, therefore, consists of a display workstation providing some basic image processing functions and the display monitor as the intrinsic display device. Display devices of lower quality may be used during intermediate steps of the acquisition and analysis of a patient study. Display monitors with a quality suitable for diagnostic reading by the specialist medical doctor are called primary devices, also known as diagnostic devices. Monitors with lower quality but good enough to be used for positioning, processing of studies, presentation of images in the wards, etc. are referred to as secondary devices or clinical devices. Nuclear medicine images can be adequately displayed even for diagnostic purposes on secondary devices. However, the increasing use of X ray images on which to report jointly with images from nuclear medicine studies, such as those generated by dual modality imaging, notably by positron emission tomography (PET)/computed tomography (CT) and single photon emission computed tomography (SPECT)/CT, requires display devices capable of visualizing high resolution grey scale images at diagnostic quality, i.e. primary display devices. Both grey scale and colour display devices are used, the latter playing an important role in the display of processed nuclear medicine images and

  8. Nuclear Medicine Image Display. Chapter 14

    International Nuclear Information System (INIS)

    Bergmann, H.

    2014-01-01

    The final step in a medical imaging procedure is to display the image(s) on a suitable display system where it is presented to the medical specialist for diagnostic interpretation. The display of hard copy images on X ray film or photographic film has largely been replaced today by soft copy image display systems with cathode ray tube (CRT) or liquid crystal display (LCD) monitors as the image rendering device. Soft copy display requires a high quality display monitor and a certain amount of image processing to optimize the image both with respect to the properties of the display device and to some psychophysiological properties of the human visual system. A soft copy display system, therefore, consists of a display workstation providing some basic image processing functions and the display monitor as the intrinsic display device. Display devices of lower quality may be used during intermediate steps of the acquisition and analysis of a patient study. Display monitors with a quality suitable for diagnostic reading by the specialist medical doctor are called primary devices, also known as diagnostic devices. Monitors with lower quality but good enough to be used for positioning, processing of studies, presentation of images in the wards, etc. are referred to as secondary devices or clinical devices. Nuclear medicine images can be adequately displayed even for diagnostic purposes on secondary devices. However, the increasing use of X ray images on which to report jointly with images from nuclear medicine studies, such as those generated by dual modality imaging, notably by positron emission tomography (PET)/computed tomography (CT) and single photon emission computed tomography (SPECT)/CT, requires display devices capable of visualizing high resolution grey scale images at diagnostic quality, i.e. primary display devices. Both grey scale and colour display devices are used, the latter playing an important role in the display of processed nuclear medicine images and

  9. General perspectives for molecular nuclear imaging

    International Nuclear Information System (INIS)

    Chung, June Key

    2004-01-01

    Molecular imaging provides a visualization of normal as well as abnormal cellular processes at a molecular or genetic level rather than at an anatomical level. Conventional medical imaging methods utilize the imaging signals produced by nonspecific physico-chemical interaction. However, molecular imaging methods utilize the imaging signals derived from specific cellular or molecular events. Because molecular and genetic changes precede anatomical change in the course of disease development, molecular imaging can detect early events in disease progression. In the near future, through molecular imaging we can understand basic mechanisms of disease, and diagnose earlier and, subsequently, treat earlier intractable disease such as cancer, neuro-degenerative diseases, and immunologic disorders. In beginning period, nuclear medicine started as a molecular imaging, and has had a leading role in the field of molecular imaging. But recently molecular imaging has been rapidly developed. Besides nuclear imaging, molecular imaging methods such as optical imaging, magnetic resonance imaging are emerging. Each imaging modalities have their advantages and weaknesses. The opportunities from molecular imaging look bright. We should try nuclear medicine continues to have a leading role in molecular imaging

  10. Artificial intelligence as a diagnostic adjunct in cardiovascular nuclear imaging

    International Nuclear Information System (INIS)

    Duncan, J.S.

    1988-01-01

    The radiologist and/or nuclear medicine physician is literally bombarded with information from today's diagnostic imaging technologies. As a consequence of this, whereas a decade ago the emphasis in medical image analysis was on improving the extraction of diagnostic information by developing and using more sophisticated imaging modalities, today those working on the development of medical imaging technology are struggling to find ways to handle all gathered information effectively. This chapter gives an introduction to the area of artificial intelligence, with an emphasis on the research ongoing in cardiovascular nuclear imaging. This chapter has reviewed the place of artificial intelligence in cardiovascular nuclear imaging. It is intended to provide a general sense of this new and emerging field, an insight into some of its specific methodologies and applications, and a closer look at the several AI approaches currently being applied in cardiovascular nuclear imaging

  11. Quantitative information in medical imaging

    International Nuclear Information System (INIS)

    Deconinck, F.

    1985-01-01

    When developing new imaging or image processing techniques, one constantly has in mind that the new technique should provide a better, or more optimal answer to medical tasks than existing techniques do 'Better' or 'more optimal' imply some kind of standard by which one can measure imaging or image processing performance. The choice of a particular imaging modality to answer a diagnostic task, such as the detection of coronary artery stenosis is also based on an implicit optimalisation of performance criteria. Performance is measured by the ability to provide information about an object (patient) to the person (referring doctor) who ordered a particular task. In medical imaging the task is generally to find quantitative information on bodily function (biochemistry, physiology) and structure (histology, anatomy). In medical imaging, a wide range of techniques is available. Each technique has it's own characteristics. The techniques discussed in this paper are: nuclear magnetic resonance, X-ray fluorescence, scintigraphy, positron emission tomography, applied potential tomography, computerized tomography, and compton tomography. This paper provides a framework for the comparison of imaging performance, based on the way the quantitative information flow is altered by the characteristics of the modality

  12. Medical Radioisotopes Production Without A Nuclear Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Van der Keur, H.

    2010-05-15

    This report is answering the key question: Is it possible to ban the use of research reactors for the production of medical radioisotopes? Chapter 2 offers a summarized overview on the history of nuclear medicine. Chapter 3 gives an overview of the basic principles and understandings of nuclear medicine. The production of radioisotopes and its use in radiopharmaceuticals as a tracer for imaging particular parts of the inside of the human body (diagnosis) or as an agent in radiotherapy. Chapter 4 lists the use of popular medical radioisotopes used in nuclear imaging techniques and radiotherapy. Chapter 5 analyses reactor-based radioisotopes that can be produced by particle accelerators on commercial scale, other alternatives and the advantages of the cyclotron. Chapter 6 gives an overview of recent developments and prospects in worldwide radioisotopes production. Chapter 7 presents discussion, conclusions and recommendations, and is answering the abovementioned key question of this report: Is it possible to ban the use of a nuclear reactor for the production of radiopharmaceuticals? Is a safe and secure production of radioisotopes possible?.

  13. Physics and engineering of medical imaging

    International Nuclear Information System (INIS)

    Guzzardi, R.

    1987-01-01

    The ever-developing technology of medical imaging has a continuous and significant impact on the practice of medicine as well as on clinical research activity. The information and level of accuracy obtained by an imaging methodology is a complex result of a multidisciplinary effort of physics, engineering, electronics, chemistry and medicine. In this book, the state of the art is described for NMR, ultrasound, X-ray CT, nuclear medicine, positron tomography and other imaging modalities. For every imaging modality, the most important clinical applications are described together with the delineation of problems and future needs. Furthermore, specific sections of the book are devoted to general aspects of medical imaging, such as reconstruction techniques, 2-D and 3-D display, quality control, archiving, market trends and correlative assessment

  14. Various dedicated imaging systems for routine nuclear medical applications

    International Nuclear Information System (INIS)

    Bela Kari; Tamas Gyorke; Erno Mako; Laszlo Nagy; Jozsef Turak; Oszkar Partos

    2004-01-01

    The most essential problems of nuclear medical imaging are resolution, signal/noise ratio (S/N) and sensitivity. Nowadays, the vast majority of the Anger system gamma cameras in clinical application are using parallel projection. The main problem of this projection method is the highly dependence of the image quality on the distance from the collimator surface as well as any improvement in the resolution with the distance -i.e. reduction of image blur- significantly reduces sensitivity. The aim of our research and development work was to create imaging geometry, collimator and detector constructions optimized to particular organs (brain, heart, thyroid), where it is simultaneously possible to increase the resolution and sensitivity. Main concept of the imaging geometry construction is based on the size, location and shape of a particular organ. In case of brain SPECT imaging a multiple head (4 heads in cylinder symmetric approximation) arrangement with extra high intrinsic resolution (<2.5 mm) dedicated detector design provide feasible solution for routine clinical application. The imaging system was essentially designed for Tc-99m and I-123 isotopes. The application field can be easily extended for functional small animal research and new born baby studies. Very positive feedbacks were received from both technical (stability and reproducibility of the technical parameters) and clinical sides in the past 2 years routine applications. A unique, novel conception ultra compact dedicated dual head SPECT system has been created only for 2D, 3D nuclear cardiac applications for Tc-99m and T1-201 labeled radio-pharmaceuticals. The two rectangular detectors (with <2.6 mm intrinsic resolution) are mounted fix in 90 degree geometry and move inside the special formed gantry arrangement. The unique and unusual gantry is designed to keep the detector heads as close as possible to the patient, while the patient is not exposed by any moving part. This special construction also

  15. Local anesthetics and nuclear medical bone images of the equine fore limb

    International Nuclear Information System (INIS)

    Gaughan, E.M.; Wallace, R.J.; Kallfelz, F.A.

    1990-01-01

    The effects of two local anesthetic agents on the diagnostic quality of nuclear medical bone images (NMBIs) of distal parts of the equine fore limb were investigated. Local effects on bone uptake of technetium 99m methylene diphosphonate (99mTc-MDP) 4 and 24 hours after perineural and intraarticular injection of mepivacaine hydrochloride and bupivacaine hydrochloride were evaluated in the carpal and metacarpophalangeal regions of 12 horses and ponies. Neither mepivacaine hydrochloride nor bupivacaine hydrochloride significantly altered the diagnostic quality of the NMBIs. The injection and subsequent action of local anesthetics do not appear to influence local bone uptake of 99mTc-MDP significantly

  16. MO-F-204-00: Preparing for the ABR Diagnostic and Nuclear Medical Physics Exams

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-06-15

    Adequate, efficient preparation for the ABR Diagnostic and Nuclear Medical Physics exams is key to successfully obtain ABR certification. Each part of the ABR exam presents its own challenges: Part I: Determine the scope of basic medical physics study material, efficiently review this material, and solve related written questions/problems. Part II: Understand imaging principles, modalities, and systems, including image acquisition, processing, and display. Understand the relationship between imaging techniques, image quality, patient dose and safety, and solve related written questions/problems. Part III: Gain crucial, practical, clinical medical physics experience. Effectively communicate and explain the practice, performance, and significance of all aspects of clinical medical physics. All parts of the ABR exam require specific skill sets and preparation: mastery of basic physics and imaging principles; written problem solving often involving rapid calculation; responding clearly and succinctly to oral questions about the practice, methods, and significance of clinical medical physics. This symposium focuses on the preparation necessary for each part of the ABR exam. Although there is some overlap, the nuclear exam covers a different body of knowledge than the diagnostic exam. A separate speaker will address those unique aspects of the nuclear exam, and how preparing for a second specialty differs from the first. Medical physicists who recently completed each ABR exam portion will share their experiences, insights, and preparation methods to help attendees best prepare for the challenges of each part of the ABR exam. In accordance with ABR exam security policy, no recalls or exam questions will be discussed. Learning Objectives: How to prepare for Part 1 of the ABR exam by determining the scope of basic medical physics study material and related problem solving/calculations How to prepare for Part 2 of the ABR exam by understanding diagnostic and/or nuclear

  17. MO-F-204-00: Preparing for the ABR Diagnostic and Nuclear Medical Physics Exams

    International Nuclear Information System (INIS)

    2016-01-01

    Adequate, efficient preparation for the ABR Diagnostic and Nuclear Medical Physics exams is key to successfully obtain ABR certification. Each part of the ABR exam presents its own challenges: Part I: Determine the scope of basic medical physics study material, efficiently review this material, and solve related written questions/problems. Part II: Understand imaging principles, modalities, and systems, including image acquisition, processing, and display. Understand the relationship between imaging techniques, image quality, patient dose and safety, and solve related written questions/problems. Part III: Gain crucial, practical, clinical medical physics experience. Effectively communicate and explain the practice, performance, and significance of all aspects of clinical medical physics. All parts of the ABR exam require specific skill sets and preparation: mastery of basic physics and imaging principles; written problem solving often involving rapid calculation; responding clearly and succinctly to oral questions about the practice, methods, and significance of clinical medical physics. This symposium focuses on the preparation necessary for each part of the ABR exam. Although there is some overlap, the nuclear exam covers a different body of knowledge than the diagnostic exam. A separate speaker will address those unique aspects of the nuclear exam, and how preparing for a second specialty differs from the first. Medical physicists who recently completed each ABR exam portion will share their experiences, insights, and preparation methods to help attendees best prepare for the challenges of each part of the ABR exam. In accordance with ABR exam security policy, no recalls or exam questions will be discussed. Learning Objectives: How to prepare for Part 1 of the ABR exam by determining the scope of basic medical physics study material and related problem solving/calculations How to prepare for Part 2 of the ABR exam by understanding diagnostic and/or nuclear

  18. Converting energy to medical progress [nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-04-01

    For over 50 years the Office of Biological and Environmental Research (BER) of the United States Department of Energy (DOE) has been investing to advance environmental and biomedical knowledge connected to energy. The BER Medical Sciences program fosters research to develop beneficial applications of nuclear technologies for medical diagnosis and treatment of many diseases. Today, nuclear medicine helps millions of patients annually in the United States. Nearly every nuclear medicine scan or test used today was made possible by past BER-funded research on radiotracers, radiation detection devices, gamma cameras, PET and SPECT scanners, and computer science. The heart of biological research within BER has always been the pursuit of improved human health. The nuclear medicine of tomorrow will depend greatly on today's BER-supported research, particularly in the discovery of radiopharmaceuticals that seek specific molecular and genetic targets, the design of advanced scanners needed to create meaningful images with these future radiotracers, and the promise of new radiopharmaceutical treatments for cancers and genetic diseases.

  19. Converting energy to medical progress [nuclear medicine

    International Nuclear Information System (INIS)

    2001-01-01

    For over 50 years the Office of Biological and Environmental Research (BER) of the United States Department of Energy (DOE) has been investing to advance environmental and biomedical knowledge connected to energy. The BER Medical Sciences program fosters research to develop beneficial applications of nuclear technologies for medical diagnosis and treatment of many diseases. Today, nuclear medicine helps millions of patients annually in the United States. Nearly every nuclear medicine scan or test used today was made possible by past BER-funded research on radiotracers, radiation detection devices, gamma cameras, PET and SPECT scanners, and computer science. The heart of biological research within BER has always been the pursuit of improved human health. The nuclear medicine of tomorrow will depend greatly on today's BER-supported research, particularly in the discovery of radiopharmaceuticals that seek specific molecular and genetic targets, the design of advanced scanners needed to create meaningful images with these future radiotracers, and the promise of new radiopharmaceutical treatments for cancers and genetic diseases

  20. Physics and engineering of medical imaging

    International Nuclear Information System (INIS)

    Guzzardi, R.

    1987-01-01

    The ever-growing development in the technology of Medical Imaging has a continuous and significant impact in the practice of Medicine as well as in the clinical research activity. The information and accuracy obtained by whatever imaging methodology is a complex result of a multidisciplinary effort of several sciences, such as Physics, Engineering, Electronics, Chemistry and Medicine. In this book, the state-of-the-art is described of the technology at the base of NMR, Ultrasound, X-ray CT, Nuclear Medicine, Positron Tomography and other Imaging Modalities such as Thermography or Biomagnetism, considering both the research and industrial point of view. For every imaging modality the most important clinical applications are described, together with the delineation of problems and future needs. Furthermore, specific sections of the book are devoted to general aspects of Medical Imaging, such as Reconstruction Techniques, 2-D and 3-D Display, Quality Control, Archiving, Market Trends and Correlative Assessment. (Auth.)

  1. IEEE Nuclear Science Symposium and Medical Imaging Conference

    CERN Document Server

    2016-01-01

    The NSS/MIC is a well-established meeting that has continuously provided an exceptional venue to showcase outstanding developments and contributions across the nuclear and medical instrumentation fields. This conference brings together engineers and scientists from around the world to share their knowledge and to gain insight and inspiration from others. The conference will include a distinguished series of short courses, relevant refresher courses, and workshops that will address areas of particular interest.

  2. Imaging systems for medical diagnostics

    International Nuclear Information System (INIS)

    Krestel, E.

    1990-01-01

    This book provides physicians and clinical physicists with detailed information on today's imaging modalities and assists them in selecting the optimal system for each clinical application. Physicists, engineers and computer specialists engaged in research and development and sales departments will also find this book to be of considerable use. It may also be employed at universities, training centers and in technical seminars. The physiological and physical fundamentals are explained in part 1. The technical solutions contained in part 2 illustrate the numerous possibilities available in X-ray diagnostics, computed tomography, nuclear medical diagnostics, magnetic resonance imaging, sonography and biomagnetic diagnostics. (orig.)

  3. Medical physics personnel for medical imaging: requirements, conditions of involvement and staffing levels-French recommendations

    International Nuclear Information System (INIS)

    Isambert, Aurelie; Valero, Marc; Rousse, Carole; Blanchard, Vincent; Le Du, Dominique; Guilhem, Marie-Therese; Dieudonne, Arnaud; Pierrat, Noelle; Salvat, Cecile

    2015-01-01

    The French regulations concerning the involvement of medical physicists in medical imaging procedures are relatively vague. In May 2013, the ASN and the SFPM issued recommendations regarding Medical Physics Personnel for Medical Imaging: Requirements, Conditions of Involvement and Staffing Levels. In these recommendations, the various areas of activity of medical physicists in radiology and nuclear medicine have been identified and described, and the time required to perform each task has been evaluated. Criteria for defining medical physics staffing levels are thus proposed. These criteria are defined according to the technical platform, the procedures and techniques practised on it, the number of patients treated and the number of persons in the medical and paramedical teams requiring periodic training. The result of this work is an aid available to each medical establishment to determine their own needs in terms of medical physics. (authors)

  4. Medical application of nuclear science: nuclear medicine and production of radiopharmaceuticals

    International Nuclear Information System (INIS)

    Cornet, L.

    1997-01-01

    Nuclear science in attendance on medicine or from Radium to Radiopharmaceuticals. By a brief historical reminder of the evolution of the radioactivity and development of nuclear science, we could see a very early interest and application of the radioactivity in the medical field. Main steps: Detection of natural radioactivity/Discovery of artificial radioactivity/First treatment of leukaemia and thyroid/First nuclear reactor/First radioisotope laboratory in hospital/First scintigraphy/First radiopharmaceutical/First cyclotron and cyclotron products/First immunoscintigraphy/Biotechnology and radioisotope/Evolution of technics [equipment for diagnosis (imaging, scintigraphy) and therapy]/Evolution of production technics and concept of products (generators of Technetium) and machines, reactor, cyclotron/Evolution of importance and interest of nuclear medicine/Creation of international association of nuclear medicine and producers (example ARPR)/Evolution of safety and pharmaceuticals regulation. After the sixties, period extremely rich in invention of products, characterized by a high fertility specially due to a non-restrictive regulation in terms of safety and pharmaceutical consideration, the evolution of technics, the importance of costs (investment, research, healthcare and the evolution of the regulations) have smoothly but continuously transformed the contexts and different actors. Consequences and facts: Rationalization and standardization of the catalogues, total integration of radiopharmaceuticals into the pharmaceutical laws, stop of nuclear research reactors, increase of number of cyclotrons, transformation of size and role of the producers and nuclear centers, risk in supply of some raw materials like Molybdenum, medical nuclear application as a worldwide business

  5. The development of nuclear medicine molecular imaging: An era of multiparametric imaging

    International Nuclear Information System (INIS)

    Zhu Yuyuan; Huang Gang

    2010-01-01

    Nuclear medical molecular imaging is developing toward a multimodality and multitracer future. Abundant complementary data generated from different tracers in different modalities are successfully serving the biological research and clinical treatment. Among the others, PER-MRI has the greatest potential and will be a research of interest in the near future. This article focused on the evolution history on nuclear medicine from single modality to multimodality, single tracer to multitracer. It also gave a brief summary to the identifications, differences, pros and consofmultimodality, multitracer, multiparametric molecular imaging. Issues, problems and challenges concerned with her development and recognition are also discussed. (authors)

  6. Multimodality image registration. A special development in medical imaging has been strongly influenced by a small but highly qualified software think-tank

    International Nuclear Information System (INIS)

    Diemling, M.

    2007-01-01

    The importance of image fusion and registration in the field of medical diagnostics will be shown. After some details and background of image registration, as well as the history of nuclear medicine imaging - given by the example of HERMES Medical Solutions of Stockholm, Sweden - the reader finds seven cases illustrating the clinical importance of this method. These cases were collected from various fields of applications of medical imaging, they are carefully documented and illustrated. (orig.)

  7. Medical physics personnel for medical imaging: requirements, conditions of involvement and staffing levels-French recommendations.

    Science.gov (United States)

    Isambert, Aurélie; Le Du, Dominique; Valéro, Marc; Guilhem, Marie-Thérèse; Rousse, Carole; Dieudonné, Arnaud; Blanchard, Vincent; Pierrat, Noëlle; Salvat, Cécile

    2015-04-01

    The French regulations concerning the involvement of medical physicists in medical imaging procedures are relatively vague. In May 2013, the ASN and the SFPM issued recommendations regarding Medical Physics Personnel for Medical Imaging: Requirements, Conditions of Involvement and Staffing Levels. In these recommendations, the various areas of activity of medical physicists in radiology and nuclear medicine have been identified and described, and the time required to perform each task has been evaluated. Criteria for defining medical physics staffing levels are thus proposed. These criteria are defined according to the technical platform, the procedures and techniques practised on it, the number of patients treated and the number of persons in the medical and paramedical teams requiring periodic training. The result of this work is an aid available to each medical establishment to determine their own needs in terms of medical physics. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Nuclear Medicine Physics: A Handbook for Teachers and Students. Endorsed by: American Association of Physicists in Medicine (AAPM), Asia–Oceania Federation of Organizations for Medical Physics (AFOMP), Australasian College of Physical Scientists and Engineers in Medicine (ACPSEM), European Federation of Organisations for Medical Physics (EFOMP), Federation of African Medical Physics Organisations (FAMPO), World Federation of Nuclear Medicine and Biology (WFNMB)

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, D. L.; Humm, J. L.; Todd-Pokropek, A.; Aswegen, A. van [eds.

    2014-12-15

    This publication provides the basis for the education of medical physicists initiating their university studies in the field of nuclear medicine. The handbook includes 20 chapters and covers topics relevant to nuclear medicine physics, including basic physics for nuclear medicine, radionuclide production, imaging and non-imaging detectors, quantitative nuclear medicine, internal dosimetry in clinical practice and radionuclide therapy. It provides, in the form of a syllabus, a comprehensive overview of the basic medical physics knowledge required for the practice of medical physics in modern nuclear medicine.

  9. The medical consequences of nuclear weapons

    International Nuclear Information System (INIS)

    Humphrey, J.; Hartog, M.; Middleton, H.

    1982-01-01

    A pamphlet has been produced by the Medical Campaign Against Nuclear Weapons (MCANW) and by the Medical Association for the Prevention of War (MAPW) to bring the catastrophic effects that the use of nuclear weapons would entail to the attention of the general public, politicians and members of the medical profession. It describes the medical consequences of the effects of blast, heat and ionizing radiation from nuclear weapons, including details from the Hiroshima and Nagasaki atomic bombings. The medical consequences of a nuclear attack including consideration of the casualties, care of the injured, psychological effects and the outcome are also discussed. It is concluded that if for none other than purely medical reasons, nuclear warfare must never be allowed to happen. (UK)

  10. Filter's importance in nuclear cardiology imaging

    International Nuclear Information System (INIS)

    Jesus, Maria C. de; Lima, Ana L.S.; Santos, Joyra A. dos; Megueriam, Berdj A.

    2008-01-01

    Full text: Nuclear Medicine is a medical speciality which employs tomography procedures for the diagnosis, treatment and prevention of diseases. One of the most commonly used apparatus is the Single Photon Emission Computed Tomography (SPECT). To perform exams, a very small amount of a radiopharmaceutical must be given to the patient. Then, a gamma camera is placed in convenient positions to perform the photon counting, which is used to reconstruct a full 3 dimensional distribution of the radionuclide inside the body or organ. This reconstruction provides a 3-dimensional image in spatial coordinates, of the body or organ under study, allowing the physician to give the diagnostic. Image reconstruction is usually worked in the frequency domain, due to a great simplification introduced by the Fourier decomposition of image spectra. After the reconstruction, an inverse Fourier transform must be applied to trace back the image into spatial coordinates. To optimize this reconstruction procedure, digital filters are used to remove undesirable components of frequency, which can 'shadow' relevant physical signatures of diseases. Unfortunately, the efficiency of the applied filter is strongly dependent on its own mathematical parameters. In this work we demonstrate how filters interfere on image quality in cardiology examinations with SPECT, concerning perfusion and myocardial viability and the importance of the medical physicist in the choice of the right filters avoiding some serious problems that could occur in the inadequate processing of an image damaging the medical diagnosis. (author)

  11. From analogue to apps--developing an app to prepare children for medical imaging procedures.

    Science.gov (United States)

    Williams, Gigi; Greene, Siobhan

    2015-01-01

    The Royal Children's Hospital (RCH) in Melbourne has launched a world-first app for children that will help reduce anxiety and the need for anesthesia during medical imaging procedures. The free, game-based app, "Okee in Medical Imaging", helps children aged from four to eight years to prepare for all medical imaging procedures--X-ray, CT, MRI, ultrasound, nuclear medicine, and fluoroscopy. The app is designed to reduce anticipatory fear of imaging procedures, while helping to ensure that children attend imaging appointments equipped with the skills required for efficient and effective scans to be performed. This paper describes how the app was developed.

  12. The origins and future of nuclear magnetic resonance imaging

    International Nuclear Information System (INIS)

    Wehrli, F.W.

    1992-01-01

    What began as a curiosity of physics has become the preeminent method of diagnostic medical imaging and may displace x-ray-based techniques in the 21st century. During the past two decades nuclear magnetic resonance has revolutionized chemistry, biochemistry, biology and, more recently, diagnostic medicine. Nuclear magnetic resonance imaging, (MRI) as it is commonly called, is fundamentally different from x-ray-based techniques in terms of the principles of spatial encoding and mechanisms of signal and contrast generation involved. MRI has a far richer ultimate potential than any other imaging technique known today, and its technology and applications are still far from maturation, which may not occur until early in the 21st century. 23 refs., 6 figs

  13. Medical aspects of nuclear armament

    Energy Technology Data Exchange (ETDEWEB)

    Janse, M.J.; Schene, A.; Koch, K.

    1983-06-18

    The authors highlight a few medical, biological and psycological aspects of the use of nuclear weapons, drawing attention to their viewpoint that doctors should actively participate in the fight against nuclear armament. The short and long-term radiation effects on man and ecology are presented based on the Hiroshima and Nagasaki experiences. The danger of human error within this framework is emphasised and it is suggested that it is the medical profession's duty to point out how the effect of stress and boredom can lead to a nuclear catastrophe. Medical expertise may also help in the identification of unstable personalities among those who have access to nuclear weapons and in the understanding of the psycology of international conflicts and the psychopathology of those leaders who would use nuclear war as an instrument of national policy. Finally the effects of the nuclear war threat on children and teenagers are considered.

  14. Medical aspects of nuclear armament

    International Nuclear Information System (INIS)

    Janse, M.J.; Schene, A.; Koch, K.

    1983-01-01

    The authors highlight a few medical, biological and psycological aspects of the use of nuclear weapons, drawing attention to their viewpoint that doctors should actively participate in the fight against nuclear armament. The short and long-term radiation effects on man and ecology are presented based on the Hiroshima and Nagasaki experiences. The danger of human error within this framework is emphasised and it is suggested that it is the medical profession's duty to point out how the effect of stress and boredom can lead to a nuclear catastrophe. Medical expertise may also help in the identification of unstable personalities among those who have access to nuclear weapons and in the understanding of the psycology of international conflicts and the psychopathology of those leaders who would use nuclear war as an instrument of national policy. Finally the effects of the nuclear war threat on children and teenagers are considered. (C.F.)

  15. Medical ultrasound imaging

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    2007-01-01

    The paper gives an introduction to current medical ultrasound imaging systems. The basics of anatomic and blood flow imaging are described. The properties of medical ultrasound and its focusing are described, and the various methods for two- and three-dimensional imaging of the human anatomy...

  16. Nuclear imaging system

    International Nuclear Information System (INIS)

    Barrett, H.H.; Horrigan, F.A.

    1975-01-01

    This invention relates to a nuclear imaging system for mapping the source of high energy nuclear particles from a living organ which has selectively absorbed a radioactive compound by spatially coding the energy from the source in a Fresnel pattern on a detector and decoding the detector output to prouce an image of the source. The coding is produced by a Fresnel zone plate interposed between the nuclear energy source and the detector whose position is adjustable with respect to the detector to focus the slices of the nuclear source on the detector. By adjusting the zone plate to a plurality of positions, data from a plurality of cross-sectional slices are produced from which a three-dimensional image of the nuclear source may be obtained. (Patent Office Record)

  17. Medical image registration for analysis

    International Nuclear Information System (INIS)

    Petrovic, V.

    2006-01-01

    Full text: Image registration techniques represent a rich family of image processing and analysis tools that aim to provide spatial correspondences across sets of medical images of similar and disparate anatomies and modalities. Image registration is a fundamental and usually the first step in medical image analysis and this paper presents a number of advanced techniques as well as demonstrates some of the advanced medical image analysis techniques they make possible. A number of both rigid and non-rigid medical image alignment algorithms of equivalent and merely consistent anatomical structures respectively are presented. The algorithms are compared in terms of their practical aims, inputs, computational complexity and level of operator (e.g. diagnostician) interaction. In particular, the focus of the methods discussion is placed on the applications and practical benefits of medical image registration. Results of medical image registration on a number of different imaging modalities and anatomies are presented demonstrating the accuracy and robustness of their application. Medical image registration is quickly becoming ubiquitous in medical imaging departments with the results of such algorithms increasingly used in complex medical image analysis and diagnostics. This paper aims to demonstrate at least part of the reason why

  18. Intra-operative nuclear imaging based on positron-emitting radiotracers

    International Nuclear Information System (INIS)

    Shakir, Dzhoshkun Ismail

    2014-01-01

    Positron-emitting radiotracers are an important part of nuclear medical imaging processes. Besides the very famous glucose analog [ 18 F]FDG, many not so well known ones exist, among them the particularly interesting amino acid-based tracers like [ 18 F]FET. Although peri-operative imaging with positron-emitting radiotracers has become state-of- the-art in cases of many types of cancer, their capability is not fully exploited in the operating room yet. In this thesis we explore two intra-operative nuclear imaging modalities exploiting different aspects of positron radiation towards quality assurance in challenging surgical treatment scenarios. The first modality freehand PET provides a tomographic image of a volume of interest and aims at minimizing invasiveness by assisting the surgeon in pinpointing target structures marked with a radiotracer. The second imaging modality epiphanography generates an image of the radiotracer distribution on a surface of interest and aims at providing a means for improving the control of tumor resection margins. The word epiphanography is a compound of the Greek words επιφανεια (epiphaneia) for surface and ζωγραφια (ographia) for image, and hence means the image of the surface similar to the compound τομοζ (tomos) for slice/volume and ζωγραφια (ographia) for image, meaning the image of the volume, i.e. tomography. To our knowledge this is the first use of the word epiphanography in the context of nuclear medical imaging. In this thesis we present our approach to modeling, developing and calibrating these two novel imaging modalities. In addition, we present our work towards their clinical integration. In the case of freehand PET, we have already acquired the first intra-operative datasets of a patient. We present this first experience in the operating room together with our phantom studies. In the case of epiphanography, we present our phantom studies with neurosurgeons towards the integration of this

  19. Building a medical system for nuclear facilities

    International Nuclear Information System (INIS)

    Maeda, Mitsuya

    2016-01-01

    To build a medical system for nuclear facilities, I explained what kinds of actions were performed with the TEPCO Fukushima Daiichi Nuclear Power Plant Accident and what kinds of actions are going to be performed in the future. We examined the health and medical care of the emergency workers in nuclear facilities including TEPCO Fukushima Daiichi Nuclear Power Plant from 2014 to 2015 in the Ministry of Health, Labour and Welfare (MHLW). We carried out a detailed hearing from stakeholders of electric companies and medical institutions about the medical system in nuclear facilities carrying out urgent activities. It has been said that the electric company is responsible to maintain the medical system for affected workers in nuclear facilities. However, TEPCO could not find the medical staff, such as doctors, by their own effort at the TEPCO Fukushima Daiichi Nuclear Power Plant Accident. The network of doctors familiar with emergency medical care support dispatched the medical staff after July of 2011. The stakeholders indicated that the following six tasks must be resolved: (1) the fact that no electric company performs the action of bringing up medical staff who can be dispatched into nuclear facilities in emergencies in 2015; (2) bringing up personnel in charge of radiation management and logistics other than the medical staff, such as doctors; (3) cooperation with the community medicine system given the light and shade by nuclear facilities; (4) performing training for the many concurrent wounded based on the scenario of a severe accident; (5) indicating both the condition of the contract and the guarantee of status that is appropriate for dispatched medical staffs; and (6) clarifying the organization of the network of stakeholders. The stakeholders showed the future directionality as follows: (1) To recruit the medical staff expected to be dispatched into nuclear facilities, (2) to carry out the discussion and conveyance training to strengthen cooperation with

  20. Medical Imaging System

    Science.gov (United States)

    1991-01-01

    The MD Image System, a true-color image processing system that serves as a diagnostic aid and tool for storage and distribution of images, was developed by Medical Image Management Systems, Huntsville, AL, as a "spinoff from a spinoff." The original spinoff, Geostar 8800, developed by Crystal Image Technologies, Huntsville, incorporates advanced UNIX versions of ELAS (developed by NASA's Earth Resources Laboratory for analysis of Landsat images) for general purpose image processing. The MD Image System is an application of this technology to a medical system that aids in the diagnosis of cancer, and can accept, store and analyze images from other sources such as Magnetic Resonance Imaging.

  1. Bioassay Phantoms Using Medical Images and Computer Aided Manufacturing

    International Nuclear Information System (INIS)

    Xu, X. Geroge

    2011-01-01

    A radiation bioassay program relies on a set of standard human phantoms to calibrate and assess radioactivity levels inside a human body for radiation protection and nuclear medicine imaging purposes. However, the methodologies in the development and application of anthropomorphic phantoms, both physical and computational, had mostly remained the same for the past 40 years. We herein propose a 3-year research project to develop medical image-based physical and computational phantoms specifically for radiation bioassay applications involving internally deposited radionuclides. The broad, long-term objective of this research was to set the foundation for a systematic paradigm shift away from the anatomically crude phantoms in existence today to realistic and ultimately individual-specific bioassay methodologies. This long-term objective is expected to impact all areas of radiation bioassay involving nuclear power plants, U.S. DOE laboratories, and nuclear medicine clinics.

  2. Frontiers in medical imaging technology

    International Nuclear Information System (INIS)

    Iinuma, Takeshi

    1992-01-01

    At present many medical images are used for diagnostics and treatment. After the advent of X-ray computer tomography (XCT), the violent development of medical images has continued. Medical imaging technology can be defined as the field of technology that deals with the production, processing, display, transmission, evaluation and so on of medical images, and it can be said that the present development of medical imaging diagnostics has been led by medical imaging technology. In this report, the most advanced technology of medical imaging is explained. The principle of XCT is shown. The feature of XCT is that it can image the delicate difference in the X-ray absorption factor of the cross section being measured. The technical development has been advanced to reduce the time for imaging and to heighten the resolution. The technology which brings about a large impact to future imaging diagnostics is computed radiography. Magnetic resonance imaging is the method of imaging the distribution of protons in human bodies. Positron CT is the method of measurement by injecting a positron-emitting RI. These methods are explained. (K.I.)

  3. Cerenkov luminescence imaging of medical isotopes.

    Science.gov (United States)

    Ruggiero, Alessandro; Holland, Jason P; Lewis, Jason S; Grimm, Jan

    2010-07-01

    The development of novel multimodality imaging agents and techniques represents the current frontier of research in the field of medical imaging science. However, the combination of nuclear tomography with optical techniques has yet to be established. Here, we report the use of the inherent optical emissions from the decay of radiopharmaceuticals for Cerenkov luminescence imaging (CLI) of tumors in vivo and correlate the results with those obtained from concordant immuno-PET studies. In vitro phantom studies were used to validate the visible light emission observed from a range of radionuclides including the positron emitters (18)F, (64)Cu, (89)Zr, and (124)I; beta-emitter (131)I; and alpha-particle emitter (225)Ac for potential use in CLI. The novel radiolabeled monoclonal antibody (89)Zr-desferrioxamine B [DFO]-J591 for immuno-PET of prostate-specific membrane antigen (PSMA) expression was used to coregister and correlate the CLI signal observed with the immuno-PET images and biodistribution studies. Phantom studies confirmed that Cerenkov radiation can be observed from a range of positron-, beta-, and alpha-emitting radionuclides using standard optical imaging devices. The change in light emission intensity versus time was concordant with radionuclide decay and was also found to correlate linearly with both the activity concentration and the measured PET signal (percentage injected dose per gram). In vivo studies conducted in male severe combined immune deficient mice bearing PSMA-positive, subcutaneous LNCaP tumors demonstrated that tumor-specific uptake of (89)Zr-DFO-J591 could be visualized by both immuno-PET and CLI. Optical and immuno-PET signal intensities were found to increase over time from 24 to 96 h, and biodistribution studies were found to correlate well with both imaging modalities. These studies represent the first, to our knowledge, quantitative assessment of CLI for measuring radiotracer uptake in vivo. Many radionuclides common to both nuclear

  4. Nuclear methods in medical physics

    International Nuclear Information System (INIS)

    Jeraj, R.

    2003-01-01

    A common ground for both, reactor and medical physics is a demand for high accuracy of particle transport calculations. In reactor physics, safe operation of nuclear power plants has been asking for high accuracy of calculation methods. Similarly, dose calculation in radiation therapy for cancer has been requesting high accuracy of transport methods to ensure adequate dosimetry. Common to both problems has always been a compromise between achievable accuracy and available computer power leading into a variety of calculation methods developed over the decades. On the other hand, differences of subjects (nuclear reactor vs. humans) and radiation types (neutron/photon vs. photon/electron or ions) are calling for very field-specific approach. Nevertheless, it is not uncommon to see drift of researches from one field to another. Several examples from both fields will be given with the aim to compare the problems, indicating their similarities and discussing their differences. As examples of reactor physics applications, both deterministic and Monte Carlo calculations will be presented for flux distributions of the VENUS and TRIGA Mark II benchmark. These problems will be paralleled to medical physics applications in linear accelerator radiation field determination and dose distribution calculations. Applicability of the adjoint/forward transport will be discussed in the light of both transport problems. Boron neutron capture therapy (BNCT) as an example of the close collaboration between the fields will be presented. At last, several other examples from medical physics, which can and cannot find corresponding problems in reactor physics, will be discussed (e.g., beam optimisation in inverse treatment planning, imaging applications). (author)

  5. Machine learning and medical imaging

    CERN Document Server

    Shen, Dinggang; Sabuncu, Mert

    2016-01-01

    Machine Learning and Medical Imaging presents state-of- the-art machine learning methods in medical image analysis. It first summarizes cutting-edge machine learning algorithms in medical imaging, including not only classical probabilistic modeling and learning methods, but also recent breakthroughs in deep learning, sparse representation/coding, and big data hashing. In the second part leading research groups around the world present a wide spectrum of machine learning methods with application to different medical imaging modalities, clinical domains, and organs. The biomedical imaging modalities include ultrasound, magnetic resonance imaging (MRI), computed tomography (CT), histology, and microscopy images. The targeted organs span the lung, liver, brain, and prostate, while there is also a treatment of examining genetic associations. Machine Learning and Medical Imaging is an ideal reference for medical imaging researchers, industry scientists and engineers, advanced undergraduate and graduate students, a...

  6. Digital medical imaging

    International Nuclear Information System (INIS)

    Goeringer, F.; Mun, S.K.; Kerlin, B.D.

    1989-01-01

    In formulating an implementation strategy for digital medical imaging, three interrelated thrusts have emerged for the defense medical establishment. These thrusts: totally filmless medical imaging on the battlefield, teleradiology, and DIN/PACS for peacetime military health care are discussed. They have implications in their fully developed form as resource savers and quality improvers for the unique aspects of military health care

  7. The medical physicist in a nuclear medicine department

    International Nuclear Information System (INIS)

    Trujillo Z, F.E.; Gomez A, E.

    2007-01-01

    The diagnostic studies and therapeutic treatments carried out in a Nuclear Medicine department make use of radioactive material. For such a reason it becomes necessary to take a strict control in the reception, use and waste that are generated of the typical works inside the department. Also, work related with the quality control of the equipment dedicated to produce images and of those not image formers, need to carry out to guarantee its maximum performance; as well as quality of the diagnostic and of the therapy imparted in patients. Additionally its are needed to make originated works of the individual procedures to patient and of the acquisition of radioactive materials and removal of the waste or radioactive contaminations. Presently work the recommendations of the American College of Radiology (ACR), the European Federation of Organizations for Medical Physics (EFOMP) and of the Mexican Official Standards relating to the functions that should be observed in a Nuclear Medicine Department are exposed. The ACR and the EFOMP, conclude in their recommendations that the medical physicist fulfills with the suitable profile and likewise they describe in detail the actions and functions that he should supervise, to carry out, to document and to inform. (Author)

  8. PREFACE: International Conference on Image Optimisation in Nuclear Medicine (OptiNM)

    Science.gov (United States)

    Christofides, Stelios; Parpottas, Yiannis

    2011-09-01

    Conference logo The International Conference on Image Optimisation in Nuclear Medicine was held at the Atlantica Aeneas Resort in Ayia Napa, Cyprus between 23-26 March 2011. It was organised in the framework of the research project "Optimising Diagnostic Value in SPECT Myocardial Perfusion Imaging" (YΓΕΙΑ/ΔYΓΕΙΑ/0308/11), funded by the Cyprus Research Promotion Foundation and the European Regional Development Fund, to present the highlights of the project, discuss the progress and results, and define future related goals. The aim of this International Conference was to concentrate on image optimization approaches in Nuclear Medicine. Experts in the field of nuclear medicine presented their latest research results, exchanged experiences and set future goals for image optimisation while balancing patient dose and diagnostic value. The conference was jointly organized by the Frederick Research Centre in Cyprus, the Department of Medical and Public Health Services of the Cyprus Ministry of Health, the Biomedical Research Foundation in Cyprus and the AGH University of Science and Technology in Poland. It was supported by the Cyprus Association of Medical Physics and Biomedical Engineering, and the Cyprus Society of Nuclear Medicine. The conference was held under the auspices of the European Federation of Organisations for Medical Physics and the European Association of Nuclear Medicine. The conference scientific programme covered several important topics such as functional imaging; image optimization; quantification for diagnosis; justification; simulations; patient dosimetry, staff exposures and radiation risks; quality assurance and clinical audit; education, training and radiation protection culture; hybrid systems and image registration; and new and competing technologies. The programme consisted of 13 invited and keynote presentations as well as workshops, round table discussions and a number of scientific sessions. A total of 51 speakers presented their

  9. Advances in medical image computing.

    Science.gov (United States)

    Tolxdorff, T; Deserno, T M; Handels, H; Meinzer, H-P

    2009-01-01

    Medical image computing has become a key technology in high-tech applications in medicine and an ubiquitous part of modern imaging systems and the related processes of clinical diagnosis and intervention. Over the past years significant progress has been made in the field, both on methodological and on application level. Despite this progress there are still big challenges to meet in order to establish image processing routinely in health care. In this issue, selected contributions of the German Conference on Medical Image Processing (BVM) are assembled to present latest advances in the field of medical image computing. The winners of scientific awards of the German Conference on Medical Image Processing (BVM) 2008 were invited to submit a manuscript on their latest developments and results for possible publication in Methods of Information in Medicine. Finally, seven excellent papers were selected to describe important aspects of recent advances in the field of medical image processing. The selected papers give an impression of the breadth and heterogeneity of new developments. New methods for improved image segmentation, non-linear image registration and modeling of organs are presented together with applications of image analysis methods in different medical disciplines. Furthermore, state-of-the-art tools and techniques to support the development and evaluation of medical image processing systems in practice are described. The selected articles describe different aspects of the intense development in medical image computing. The image processing methods presented enable new insights into the patient's image data and have the future potential to improve medical diagnostics and patient treatment.

  10. Nuclear data for medical applications

    International Nuclear Information System (INIS)

    Capote, Roberto

    2011-01-01

    Nuclear science plays an increasingly important role in medical applications, in particular the need for radioisotopes in both cancer therapy and diagnostic techniques is very well established. Over the previous thirty years, many laboratories have reported a significant body of experimental data relevant to medical radionuclide production, and international data centres have compiled most of these data. However, till late 90s no systematic effort had been devoted to their standardization and assembly. These needs are being addressed through three IAEA Coordinated Research Projects on Nuclear Data for the Production of Radionuclides that started in 1999. Monitor cross sections to be used in charged particle measurements have been also evaluated (see http://www-nds.iaea.org/medical/monitor reactions.html). A review of IAEA recommended cross sections for the production of medical radioisotopes will be presented. Theoretical modelling of nuclear reactions will be discussed both for nuclear data evaluation and validation. The role of the Recommended Input Parameter Library (RIPL) in defining the input for production codes like EMPIRE and TALYS will be highlighted. (author)

  11. Japan's contribution to nuclear medical research

    International Nuclear Information System (INIS)

    Rahman, M.; Sakamoto, Junichi; Fukui, Tsuguya

    2002-01-01

    We investigated the degree of Japan's contribution to the nuclear medical research in the last decade. Articles published in 1991-2000 in highly reputed nuclear medical journals were accessed through the MEDLINE database. The number of articles having affiliation with a Japanese institution was counted along with publication year. In addition, shares of top-ranking countries were determined along with their trends over time. Of the total number of articles (7,788), Japan's share of articles in selected nuclear medical journals was 11.4% (889 articles) and ranked 2nd in the world after the USA (2,645 articles). The recent increase in the share was statistically significant for Japan (p=0.02, test for trend). Japan's share in nuclear medical research output is much higher than that in other biomedical fields. (author)

  12. Medical revolution in Argentina.

    Science.gov (United States)

    Ballarin, V L; Isoardi, R A

    2010-01-01

    The paper discusses the major Argentineans contributors, medical physicists and scientists, in medical imaging and the development of medical imaging in Argentina. The following are presented: history of medical imaging in Argentina: the pioneers; medical imaging and medical revolution; nuclear medicine imaging; ultrasound imaging; and mathematics, physics, and electronics in medical image research: a multidisciplinary endeavor.

  13. Medical Imaging.

    Science.gov (United States)

    Barker, M. C. J.

    1996-01-01

    Discusses four main types of medical imaging (x-ray, radionuclide, ultrasound, and magnetic resonance) and considers their relative merits. Describes important recent and possible future developments in image processing. (Author/MKR)

  14. Medical Image Tamper Detection Based on Passive Image Authentication.

    Science.gov (United States)

    Ulutas, Guzin; Ustubioglu, Arda; Ustubioglu, Beste; V Nabiyev, Vasif; Ulutas, Mustafa

    2017-12-01

    Telemedicine has gained popularity in recent years. Medical images can be transferred over the Internet to enable the telediagnosis between medical staffs and to make the patient's history accessible to medical staff from anywhere. Therefore, integrity protection of the medical image is a serious concern due to the broadcast nature of the Internet. Some watermarking techniques are proposed to control the integrity of medical images. However, they require embedding of extra information (watermark) into image before transmission. It decreases visual quality of the medical image and can cause false diagnosis. The proposed method uses passive image authentication mechanism to detect the tampered regions on medical images. Structural texture information is obtained from the medical image by using local binary pattern rotation invariant (LBPROT) to make the keypoint extraction techniques more successful. Keypoints on the texture image are obtained with scale invariant feature transform (SIFT). Tampered regions are detected by the method by matching the keypoints. The method improves the keypoint-based passive image authentication mechanism (they do not detect tampering when the smooth region is used for covering an object) by using LBPROT before keypoint extraction because smooth regions also have texture information. Experimental results show that the method detects tampered regions on the medical images even if the forged image has undergone some attacks (Gaussian blurring/additive white Gaussian noise) or the forged regions are scaled/rotated before pasting.

  15. Intelligent distributed medical image management

    Science.gov (United States)

    Garcia, Hong-Mei C.; Yun, David Y.

    1995-05-01

    The rapid advancements in high performance global communication have accelerated cooperative image-based medical services to a new frontier. Traditional image-based medical services such as radiology and diagnostic consultation can now fully utilize multimedia technologies in order to provide novel services, including remote cooperative medical triage, distributed virtual simulation of operations, as well as cross-country collaborative medical research and training. Fast (efficient) and easy (flexible) retrieval of relevant images remains a critical requirement for the provision of remote medical services. This paper describes the database system requirements, identifies technological building blocks for meeting the requirements, and presents a system architecture for our target image database system, MISSION-DBS, which has been designed to fulfill the goals of Project MISSION (medical imaging support via satellite integrated optical network) -- an experimental high performance gigabit satellite communication network with access to remote supercomputing power, medical image databases, and 3D visualization capabilities in addition to medical expertise anywhere and anytime around the country. The MISSION-DBS design employs a synergistic fusion of techniques in distributed databases (DDB) and artificial intelligence (AI) for storing, migrating, accessing, and exploring images. The efficient storage and retrieval of voluminous image information is achieved by integrating DDB modeling and AI techniques for image processing while the flexible retrieval mechanisms are accomplished by combining attribute- based and content-based retrievals.

  16. Sub-millimeter nuclear medical imaging with high sensitivity in positron emission tomography using β+γ coincidences

    Science.gov (United States)

    Lang, C.; Habs, D.; Parodi, K.; Thirolf, P. G.

    2014-01-01

    We present a nuclear medical imaging technique, employing triple-γ trajectory intersections from β+-γ coincidences, able to reach sub-millimeter spatial resolution in 3 dimensions with a reduced requirement of reconstructed intersections per voxel compared to a conventional PET reconstruction analysis. This 'γ-PET' technique draws on specific β+-decaying isotopes, simultaneously emitting an additional photon. Exploiting the triple coincidence between the positron annihilation and the third photon, it is possible to separate the reconstructed 'true' events from background. In order to characterize this technique, Monte-Carlo simulations and image reconstructions have been performed. The achievable spatial resolution has been found to reach ca. 0.4 mm (FWHM) in each direction for the visualization of a 22Na point source. Only 40 intersections are sufficient for a reliable sub-millimeter image reconstruction of a point source embedded in a scattering volume of water inside a voxel volume of about 1 mm3 ('high-resolution mode'). Moreover, starting with an injected activity of 400 MBq for 76Br, the same number of only about 40 reconstructed intersections are needed in case of a larger voxel volume of 2 x 2 x 3 mm3 ('high-sensitivity mode'). Requiring such a low number of reconstructed events significantly reduces the required acquisition time for image reconstruction (in the above case to about 140 s) and thus may open up the perspective for a quasi real-time imaging.

  17. Roles of medical image processing in medical physics

    International Nuclear Information System (INIS)

    Arimura, Hidetaka

    2011-01-01

    Image processing techniques including pattern recognition techniques play important roles in high precision diagnosis and radiation therapy. The author reviews a symposium on medical image information, which was held in the 100th Memorial Annual Meeting of the Japan Society of Medical Physics from September 23rd to 25th. In this symposium, we had three invited speakers, Dr. Akinobu Shimizu, Dr. Hideaki Haneishi, and Dr. Hirohito Mekata, who are active engineering researchers of segmentation, image registration, and pattern recognition, respectively. In this paper, the author reviews the roles of the medical imaging processing in medical physics field, and the talks of the three invited speakers. (author)

  18. Medical applications in a nuclear research centre

    International Nuclear Information System (INIS)

    Vanhavere, F.; Eggermont, G.

    2001-01-01

    In these days of public aversion to nuclear power, it can be important to point at the medical applications of ionising radiation. Not only the general public, but also the authorities and research centres have to be aware of these medical applications, which are not without risk for public health. Now that funding for nuclear research is declining, an opening to the medical world can give new opportunities to a nuclear research centre. A lot of research could be done where the tools developed for the nuclear power world are very useful. Even new applications for the research reactors like BNCT (boron neutron capture therapy) can be envisaged for the near future. In this contribution an overview will be given of the different techniques used in the medical world with ionising radiation. The specific example of the Belgian Nuclear Research Centre will be given where the mission statement was changed to include a certain number of medical research topics. (authors)

  19. Nuclear imaging: Advances and trends

    International Nuclear Information System (INIS)

    Herk, G. van

    1986-01-01

    In this article, nuclear imaging instruments that are likely to be of interest to the nuclear medicine community of developing countries are emphasized. The advances, trends, developments, and future directions in the field of nuclear imaging are mentioned

  20. EMITEL: E-Encyclopaedia and E-Dictionary of Medical Imaging Technologies

    International Nuclear Information System (INIS)

    Medvedec, M.; Kovacevic, N.; Magjarevic, R.

    2011-01-01

    EMITEL (European Medical Imaging Technology e-Encyclopaedia for Lifelong Learning) is an electronic encyclopaedia and multilingual dictionary related to medical imaging technologies. It is a result of the multi-annual international project which involved more than 250 contributors from 35 countries, aiming to foster development of medical physics and biomedical/clinical engineering by a lifelong e-learning web tool for all interested individuals or groups. Currently, the encyclopaedia is equivalent to about 2100 hard copy pages and includes about 3300 terms with an explanatory article for each term. The dictionary provides bidirectional cross-translation of terms between any two among 28 languages from its current database. Dictionary entries are divided into seven groups: diagnostic radiology, nuclear medicine, radiotherapy, magnetic resonance imaging, ultrasound imaging, radiation protection and general terms. Croatian language was implemented in EMITEL dictionary in April 2010. There were 17 Croatian translators and reviewers from 8 institutions and 3 cities, ranging from medical physics experts to linguist. The basic terminological principles of translation were final intelligibility of terms, desirable Croatian origin and linguistic appropriateness. Croatian contribution in the actual phase of EMITEL project attempted to improve the quality and efficiency of the specific professional, scientific and teaching terminology. A sort of novel, consistent and verified pool of terms of emerging medical imaging technologies was built up, as a one small part of the process of developing information technologies and socio-cultural transition from the industrial society into the society of knowledge. (author)

  1. Image processing in medical ultrasound

    DEFF Research Database (Denmark)

    Hemmsen, Martin Christian

    This Ph.D project addresses image processing in medical ultrasound and seeks to achieve two major scientific goals: First to develop an understanding of the most significant factors influencing image quality in medical ultrasound, and secondly to use this knowledge to develop image processing...... multiple imaging setups. This makes the system well suited for development of new processing methods and for clinical evaluations, where acquisition of the exact same scan location for multiple methods is important. The second project addressed implementation, development and evaluation of SASB using...... methods for enhancing the diagnostic value of medical ultrasound. The project is an industrial Ph.D project co-sponsored by BK Medical ApS., with the commercial goal to improve the image quality of BK Medicals scanners. Currently BK Medical employ a simple conventional delay-and-sum beamformer to generate...

  2. General Nuclear Medicine

    Science.gov (United States)

    ... Resources Professions Site Index A-Z General Nuclear Medicine Nuclear medicine imaging uses small amounts of radioactive ... of General Nuclear Medicine? What is General Nuclear Medicine? Nuclear medicine is a branch of medical imaging ...

  3. Combination of radiological and nuclear medical imaging in animals: an overview about the today's possibilities

    International Nuclear Information System (INIS)

    Behe, M.; Keil, B.; Kiessling, A.; Heverhagen, J.T.; Alfke, H.; Boehm, I.; Gotthardt, M.

    2007-01-01

    Molecular imaging of small animals has made considerable progress in the last years. Various research fields are interested in imaging small animals due to the lower numbers of animals per experiment. This has advantages with respect to financial, ethical and research aspects. Non-invasive imaging allows examination of one animal several times during the same experiment. This makes it possible to follow a pathological process in the same animal over time. However, the radiological methods used such as magnetic resonance imaging or computed tomography as well as the nuclear medicine methods such as single photon emission computed tomography or positron emission tomography suffer from disadvantages. Molecular aspects are limited in the radiological methods while anatomical localization is difficult in nuclear medicine. The fusion of these methods leads to additional information. This review shows today's possibilities with their advantages as well as disadvantages. (orig.)

  4. Application of a latent variables model for the medical images analysis

    International Nuclear Information System (INIS)

    Campos S, Y.; Ruiz C, S.

    2008-01-01

    In recent years the technological advance has allowed the significant advance in diverse research fields, the medicine has not been exempt of this technology and the use of this technology has allowed a significant advance in the equipment that are used to obtain medical images. The quantity of information that is generated with this equipment has grown in exponential form and it is a difficult task to carry out a quantitative analysis of the data also the manipulation of big quantities of information makes the medical images analysis a complicated task. It is in fact this complexity what motivates this work where one of the main objectives is the analysis of techniques that allow to work with the complexity of the data generated with medical equipment. Likewise, it is wanted to illustrate an application of the peaceful uses of the nuclear energy to treat a medical problem where the diagnostic it depends essentially on the current medical equipment to give an appropriate treatment to the patients. (Author)

  5. Active contour segmentation in dynamic medical imaging: application to nuclear cardiology

    International Nuclear Information System (INIS)

    Debreuve, Eric

    2000-01-01

    In emission imaging, nuclear medicine provides functional information about the organ of interest. In transmission imaging, it provides anatomical information whose goal may be the correction of physical phenomena that corrupt emission images. With both emission and transmission images, it is useful to know how to extract, either automatically or semi-automatically, the organs of interest and the body outline in the case of a large field of view. This is the aim of segmentation. We developed two active contour segmentation methods. They were implemented using level sets. The key point is the evolution velocity definition. First, we were interested in static transmission imaging of the thorax. The evolution velocity was heuristically defined and depended only on the acquired projections. The segmented transmission map was computed w/o reconstruction and could be advantageously used for attenuation correction. Then, we studied the segmentation of cardiac gated sequences. The developed space-time segmentation method results from the minimization of a variational criterion which takes into account the whole sequence. The computed segmentation could be used for calculating physiological parameters. As an illustration, we computed the ejection fraction. Finally, we exploited some level set properties to develop a non-rigid, non-parametric, and geometric registration method. We applied it for kinetic compensation of cardiac gated sequences. The registered images were then added together providing an image with noise characteristics similar to a cardiac static image but w/o motion-induced blurring. (author)

  6. Structure of the medical digital image

    International Nuclear Information System (INIS)

    Baltadzhiev, D.

    1997-01-01

    In up-to-date medical practice diagnostic imaging techniques are the most powerful tools available to clinicians. The modern medical equipment is entirely based on digital technology. In this article the principle of generating medical images is presented. The concept for gray scale where medical images are commonly presented is described. The patterns of gray images transformation into colour scale are likewise outlined. Basic notions from medical imaging terminology such as image matrix, pixel, spatial and contrast resolution power, bit, byte and the like are explained. Also an example is given of how the binary system treats images. On the basis of digital technology the obtained medical images lend themselves readily to additional processing, reconstruction (including 3D) and storage for subsequent utilization. The ceaseless progress of computerized communications promote easy and prompt access for clinicians to the diagnostic images needed as well as realization of expert consultations by teleconference contact (author)

  7. The design of diagnostic imaging and nuclear medicine facilities in a major new teaching hospital

    International Nuclear Information System (INIS)

    Causer, D.A.

    2010-01-01

    Full text: The design of the layout and radiation shielding for diagnostic imaging and nuclear medicine facilities in a modern teaching hospital requires the collaboration of persons from a number of professions including architects, engineers, radiologists, nuclear medicine physi cians, medical imaging technologists and medical physicists. This paper discusses the design of such facilities, including PET/CT and T-131 ablation therapy suites for a major new tertiary hospital in Perth. The importance of involving physicists on the planning team from the earliest stages of the design process is stressed, design plans presented, and some of the problems which may present themselves and their solutions are illustrated.

  8. The value of nuclear medical examinations in paediatrics

    International Nuclear Information System (INIS)

    Sixthofer, A.

    1991-02-01

    In 1988 155 children were nuclear medically examined at the university clinic in Innsbruck. The first separations to be made were sex and age. A more precise organization concerning the clinically allocated diagnosis of the patients showed, that nephrological and urological questions were asked in 2/3 of the cases. The second point was the cure of inflammation and tumourous cases of the skeletal system (osteomyelitis, osteosarcoma) followed by the assessment of the practical and morphological disturbances to the thyroid glands. Nuclear medical examinations also, occasionally, used questions from the fields of neurology, gastroenterology, cardiology and pulmonology. Analysis regarding the concordance of nuclear medicine with the clinic expresses the diagnostical precision of nuclear medicine well. Nuclear medical diagnosis corresponded to conclusive clinical diagnosis in 73.75 % of the cases. The classification concerning with clinical relevance of the nuclear medical findings for treatment showed that, in only 7.5 % of all cases there was no influence of the nuclear medical diagnosis on the treatment. The investigation of radiation was done in three age groups (0 to 5 years, 5 to 10 years, 10 to 15 years). The calculations, especially with the kidney examinations, produced definite results, it could be illustrated that the nuclear medical examinations show a smaller amount of radiation as a radiological alternative, on intravenous urogram, for example. (author)

  9. Software for medical image based phantom modelling

    International Nuclear Information System (INIS)

    Possani, R.G.; Massicano, F.; Coelho, T.S.; Yoriyaz, H.

    2011-01-01

    Latest treatment planning systems depends strongly on CT images, so the tendency is that the dosimetry procedures in nuclear medicine therapy be also based on images, such as magnetic resonance imaging (MRI) or computed tomography (CT), to extract anatomical and histological information, as well as, functional imaging or activities map as PET or SPECT. This information associated with the simulation of radiation transport software is used to estimate internal dose in patients undergoing treatment in nuclear medicine. This work aims to re-engineer the software SCMS, which is an interface software between the Monte Carlo code MCNP, and the medical images, that carry information from the patient in treatment. In other words, the necessary information contained in the images are interpreted and presented in a specific format to the Monte Carlo MCNP code to perform the simulation of radiation transport. Therefore, the user does not need to understand complex process of inputting data on MCNP, as the SCMS is responsible for automatically constructing anatomical data from the patient, as well as the radioactive source data. The SCMS was originally developed in Fortran- 77. In this work it was rewritten in an object-oriented language (JAVA). New features and data options have also been incorporated into the software. Thus, the new software has a number of improvements, such as intuitive GUI and a menu for the selection of the energy spectra correspondent to a specific radioisotope stored in a XML data bank. The new version also supports new materials and the user can specify an image region of interest for the calculation of absorbed dose. (author)

  10. Nuclear imaging

    International Nuclear Information System (INIS)

    Miller, J.H.; Reid, B.S.

    1985-01-01

    Nuclear imaging, utilizing relatively low photon energy emitting isotopes, allows an assessment of anatomic configuration and organ function. This method of imaging is predicted on the utilization of physiologically active radioisotope-labeled compounds or biologically active radioisotopes. Localization of such isotopes in normal or abnormal concentrations may be due to varying physiological or pathological mechanisms

  11. Medical assistance in case of nuclear accident

    International Nuclear Information System (INIS)

    Dodig, D.; Tezak, S.; Kasal, B.; Huic, D.; Medvedec, M.; Loncaric, S.; Grosev, D.; Rozman, B.; Popovic, S.

    1996-01-01

    Medical service is a prerequisite for work license of nuclear installation. Every nuclear installation incorporate in their safety procedure also medical emergency plan. Usually the medical emergency plan consists of several degrees of action: 1. First aid, 2. First medical treatment, 3. Treatment in regional hospital, 4. Treatment in special institution (centre for radiation medicine). This paper discusses organization and activities of Centre for Radiation Medicine and Protection - Clinical Hospital Centre Zagreb

  12. Processing of medical images

    International Nuclear Information System (INIS)

    Restrepo, A.

    1998-01-01

    Thanks to the innovations in the technology for the processing of medical images, to the high development of better and cheaper computers, and, additionally, to the advances in the systems of communications of medical images, the acquisition, storage and handling of digital images has acquired great importance in all the branches of the medicine. It is sought in this article to introduce some fundamental ideas of prosecution of digital images that include such aspects as their representation, storage, improvement, visualization and understanding

  13. Application of a visualization method of image data base in nuclear cardiology

    International Nuclear Information System (INIS)

    Damien, J.; Bruyant, Ph.; Moreno, L.; Gabain, M.; Sayegh, Y.; Bontemps, L.; Itti, R.

    1997-01-01

    Medical imaging is undoubtedly one of the medical branches which benefited at most by the offsprings of computer science development. We present here a visualization software of image data base, making use of the last innovations in the field of multimedia application. The objective of such a software is to provide a reference tool for a given medical specialty offering at the same time, a high quality iconography, a rigorous content of the comments and the matching of graphical interfaces. Applied to nuclear cardiology and implanted on CD ROM, it contains a given number of clinical cases (around 150) which sweep quasi-exhaustively the subject. Each case centered around scintigraphic examination (myocardial tomographs, ventriculographs, SPECT, etc) makes available 'static' pictures (series of cross sections, planispheric images, ECG), animated cartoons (synchronized series, 3D visualization, etc) and also the clinical history of the patient and the records of complementary examinations (coronary-graphic, for instance). Being independent of the image data base which it visualizes, our software is easily applicable to other nuclear medicine specialties (neurology, renal exploration) and also to other modalities. It is multilingual already (French and English) and soon will be supplemented by a code dedicated to knowledge assessment intended to be an efficient tool in education and continuous formation. A Macintosh version will be soon obtainable and a demonstration diskette is free available on request

  14. Images of nuclear power plants

    International Nuclear Information System (INIS)

    Hashiguchi, Katsuhisa; Misumi, Jyuji; Yamada, Akira; Sakurai, Yukihiro; Seki, Fumiyasu; Shinohara, Hirofumi; Misumi, Emiko; Kinjou, Akira; Kubo, Tomonori.

    1995-01-01

    This study was conducted to check and see, using Hayashi's quantification method III, whether or not the respondents differed in their images of a nuclear power plant, depending on their demographic variables particularly occupations. In our simple tabulation, we compared subject groups of nuclear power plant employees with general citizens, nurses and students in terms of their images of a nuclear power plant. The results were that while the nuclear power plant employees were high in their evaluations of facts about a nuclear power plant and in their positive images of a nuclear power plant, general citizens, nurses and students were overwhelmingly high in their negative images of a nuclear power plant. In our analysis on category score by means of the quantification method III, the first correlation axis was the dimension of 'safety'-'danger' and the second correlation axis was the dimension of 'subjectivity'-'objectivity', and that the first quadrant was the area of 'safety-subjectivity', the second quadrant was the area of 'danger-subjectivity', the third quadrant as the area of 'danger-objectivity', and the forth quadrant was the area of 'safety-objectivity'. In our analysis of sample score, 16 occupation groups was compared. As a result, it was found that the 16 occupation groups' images of a nuclear power plant were, in the order of favorableness, (1) section chiefs in charge, maintenance subsection chiefs, maintenance foremen, (2) field leaders from subcontractors, (3) maintenance section members, operation section members, (4) employees of those subcontractors, (5) general citizens, nurses and students. On the 'safety-danger' dimension, nuclear power plant workers on the one hand and general citizens, nurses and students on the other were clearly divided in terms of their images of a nuclear power plant. Nuclear power plant workers were concentrated in the area of 'safety' and general citizens, nurses and students in the area of 'danger'. (J.P.N.)

  15. Medical consequences of a nuclear plant accident

    International Nuclear Information System (INIS)

    Olsson, S.E.; Reizenstein, P.; Stenke, L.

    1987-01-01

    The report gives background information concerning radiation and the biological medical effects and damages caused by radiation. The report also discusses nuclear power plant accidents and efforts from the medical service in the case of a nuclear power plant accident. (L.F.)

  16. Children's (Pediatric) Nuclear Medicine

    Science.gov (United States)

    ... Professions Site Index A-Z Children's (Pediatric) Nuclear Medicine Children’s (pediatric) nuclear medicine imaging uses small amounts ... Children's Nuclear Medicine? What is Children's (Pediatric) Nuclear Medicine? Nuclear medicine is a branch of medical imaging ...

  17. Study warns of radiation risk in medical imaging

    Science.gov (United States)

    Gwynne, Peter

    2009-10-01

    A study of a million US patients suggests that some who undergo medical imaging could be exposed to more ionizing radiation than those who work with radioactive materials in nuclear power plants. The study, reported in The New England Journal of Medicine (361 849), implies that current exposure to radiation from conventional X-ray equipment as well as computed tomography (CT) and positron-emission tomography (PET) scanners could lead to tens of thousands of extra cases of cancer in the US alone.

  18. Nuclear imaging of the chest

    International Nuclear Information System (INIS)

    Bahk, Y.W.

    1998-01-01

    This book provides up-to-the minute information on the diagnostic nuclear imaging of chest disorders. The authors have endeavored to integrate and consolidate the many different subspecialities in order to enable a holistic understanding of chest diseases from the nuclear medicine standpoint. Highlights of the book include in addition to the cardiac scan the description of aerosol lung imaging in COPD and other important pulmonary diseases and the updates on breast and lung cancer imaging, as well as imaging of the bony thorax and esophagus. It is required reading not only for nuclear medicine practitioners and researchers but also for all interested radiologists, traumatologists, pulmonologists, oncologists and cardiologists. (orig.)

  19. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Nuclear Medicine? Nuclear medicine is a branch of medical imaging that uses small amounts of radioactive material to ... a radiologist or other physician. To locate a medical imaging or radiation oncology provider in your community, you ...

  20. A study on the optimization of referring method about medical images using MIH (Medical Image History)

    International Nuclear Information System (INIS)

    Kim, Sun Chil; Kim, Jung Min

    2002-01-01

    The recent development of embodiment technology of the medical images makes most medical institutions introduce PACS (Picture Archiving and Communication System) in haste. However lots of PACS solutions, currently developed and distributed, haven't been able to serve the convenience of users and to satisfy user's demand because of economic limitations and administrator-oriented con-siderations in the process of development. So we have developed MIH (Medical Image History), by which we can search and refer to the patient's medical images and information with few restrictions of time and space for diagnosis and treatment. The program will contribute to the improvement in the medical environment and meet the clients' need. We'll make more effort to develop the application which insures the better quality of medical images. MIH manages the patient's image files and medical records like film chart in connection with time. This trial will contribute to the reduction of the economical loss caused by unnecessary references and improve the quality in the medical services. The demand on the development of the program which refers to the medical data quickly and keeps them stable will be continued by the medical institute. This will satisfy the client's demand and improve the service to the patients in that the program will be modified from the standpoint of the users. MIH is trying to keep user-oriented policy and to apply the benefit of the analog system to the digital environment. It is necessary to lead the public to the better understanding that the systematic management and referring of the medical images is as important as the quality of the images

  1. Medical activities at nuclear disaster. Experience in the accident of Fukushima nuclear power plant

    International Nuclear Information System (INIS)

    Hasegawa, Arifumi

    2013-01-01

    The Great East Japan Earthquake brought multiple disaster resulting nuclear accident at Fukushima. Existing medical system for emergency radiation exposure did not work well. Present medical system for the nuclear disaster is maintained temporary with supports by teams from regions other than Fukushima Pref. The radiation protection action must be both for the public and the medical persons. Medical activities for nuclear disaster are still in progress now. Medical system for radiation exposure should be maintained in future for works of decommissioning of reactors. Problems, however, may exist in economy and education of medical personnel. (K.Y.)

  2. Luminescence in medical image science

    Energy Technology Data Exchange (ETDEWEB)

    Kandarakis, I.S., E-mail: kandarakis@teiath.gr

    2016-01-15

    Radiation detection in Medical Imaging is mostly based on the use of luminescent materials (scintillators and phosphors) coupled to optical sensors. Materials are employed in the form of granular screens, structured (needle-like) crystals and single crystal transparent blocks. Storage phosphors are also incorporated in some x-ray imaging plates. Description of detector performance is currently based on quality metrics, such as the Luminescence efficiency, the Modulation Transfer Function (MTF), the Noise Power Spectrum (NPS) and the Detective Quantum Efficiency (DQE) can be defined and evaluated. The aforementioned metrics are experimental evaluated for various materials in the form of screens. A software was designed (MINORE v1) to present image quality measurements in a graphical user interface (GUI) environment. Luminescence efficiency, signal and noise analysis are valuable tools for the evaluation of luminescent materials as candidates for medical imaging detectors. - Highlights: • Luminescence based medical imaging detectors. • Image science: MTF, NPS, DQE. • Phosphors screens light emission efficiency experimental evaluation. • Theoretical models for estimation of phosphor screen properties. • Software for medical image quality metrics.

  3. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Professions Site Index A-Z Children's (Pediatric) Nuclear Medicine Children’s (pediatric) nuclear medicine imaging uses small amounts ... Children's Nuclear Medicine? What is Children's (Pediatric) Nuclear Medicine? Nuclear medicine is a branch of medical imaging ...

  4. Essentials of nuclear medicine imaging

    CERN Document Server

    Mettler, Fred A. Jr

    2012-01-01

    Essentials of Nuclear Medicine Imaging, by Drs. Fred A Mettler and Milton J Guiberteau, provides the practical and comprehensive guidance you need to master key nuclear imaging techniques. From physics, instrumentation, quality control, and legal requirements to hot topics such as sodium fluoride, radiopharmaceuticals, and recommended pediatric administered doses and guidelines, this sixth edition covers the fundamentals and recent developments in the practice of nuclear medicine.

  5. Diagnostic reference levels in medical imaging

    International Nuclear Information System (INIS)

    Rosenstein, M.

    2001-01-01

    The paper proposes additional advice to national or local authorities and the clinical community on the application of diagnostic reference levels as a practical tool to manage radiation doses to patients in diagnostic radiology and nuclear medicine. A survey was made of the various approaches that have been taken by authoritative bodies to establish diagnostic reference levels for medical imaging tasks. There are a variety of ways to implement the idea of diagnostic reference levels, depending on the medical imaging task of interest, the national or local state of practice and the national or local preferences for technical implementation. The existing International Commission on Radiological Protection (ICRP) guidance is reviewed, the survey information is summarized, a set of unifying principles is espoused and a statement of additional advice that has been proposed to ICRP Committee 3 is presented. The proposed advice would meet a need for a unifying set of principles to provide a framework for diagnostic reference levels but would allow flexibility in their selection and use. While some illustrative examples are given, the proposed advice does not specify the specific quantities to be used, the numerical values to be set for the quantities or the technical details of how national or local authorities should implement diagnostic reference levels. (author)

  6. A study on the optimization of referring method about medical images using MIH (Medical Image History)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun Chil; Kim, Jung Min [College of Health Sciences, Korea University, Seoul (Korea, Republic of)

    2002-09-15

    The recent development of embodiment technology of the medical images makes most medical institutions introduce PACS (Picture Archiving and Communication System) in haste. However lots of PACS solutions, currently developed and distributed, haven't been able to serve the convenience of users and to satisfy user's demand because of economic limitations and administrator-oriented con-siderations in the process of development. So we have developed MIH (Medical Image History), by which we can search and refer to the patient's medical images and information with few restrictions of time and space for diagnosis and treatment. The program will contribute to the improvement in the medical environment and meet the clients' need. We'll make more effort to develop the application which insures the better quality of medical images. MIH manages the patient's image files and medical records like film chart in connection with time. This trial will contribute to the reduction of the economical loss caused by unnecessary references and improve the quality in the medical services. The demand on the development of the program which refers to the medical data quickly and keeps them stable will be continued by the medical institute. This will satisfy the client's demand and improve the service to the patients in that the program will be modified from the standpoint of the users. MIH is trying to keep user-oriented policy and to apply the benefit of the analog system to the digital environment. It is necessary to lead the public to the better understanding that the systematic management and referring of the medical images is as important as the quality of the images.

  7. Knowledge-based analysis and understanding of 3D medical images

    International Nuclear Information System (INIS)

    Dhawan, A.P.; Juvvadi, S.

    1988-01-01

    The anatomical three-dimensional (3D) medical imaging modalities, such as X-ray CT and MRI, have been well recognized in the diagnostic radiology for several years while the nuclear medicine modalities, such as PET, have just started making a strong impact through functional imaging. Though PET images provide the functional information about the human organs, they are hard to interpret because of the lack of anatomical information. The authors objective is to develop a knowledge-based biomedical image analysis system which can interpret the anatomical images (such as CT). The anatomical information thus obtained can then be used in analyzing PET images of the same patient. This will not only help in interpreting PET images but it will also provide a means of studying the correlation between the anatomical and functional imaging. This paper presents the preliminary results of the knowledge based biomedical image analysis system for interpreting CT images of the chest

  8. Development of educational image databases and e-books for medical physics training.

    Science.gov (United States)

    Tabakov, S; Roberts, V C; Jonsson, B-A; Ljungberg, M; Lewis, C A; Wirestam, R; Strand, S-E; Lamm, I-L; Milano, F; Simmons, A; Deane, C; Goss, D; Aitken, V; Noel, A; Giraud, J-Y; Sherriff, S; Smith, P; Clarke, G; Almqvist, M; Jansson, T

    2005-09-01

    Medical physics education and training requires the use of extensive imaging material and specific explanations. These requirements provide an excellent background for application of e-Learning. The EU projects Consortia EMERALD and EMIT developed five volumes of such materials, now used in 65 countries. EMERALD developed e-Learning materials in three areas of medical physics (X-ray diagnostic radiology, nuclear medicine and radiotherapy). EMIT developed e-Learning materials in two further areas: ultrasound and magnetic resonance imaging. This paper describes the development of these e-Learning materials (consisting of e-books and educational image databases). The e-books include tasks helping studying of various equipment and methods. The text of these PDF e-books is hyperlinked with respective images. The e-books are used through the readers' own Internet browser. Each Image Database (IDB) includes a browser, which displays hundreds of images of equipment, block diagrams and graphs, image quality examples, artefacts, etc. Both the e-books and IDB are engraved on five separate CD-ROMs. Demo of these materials can be taken from www.emerald2.net.

  9. Compressive sensing in medical imaging.

    Science.gov (United States)

    Graff, Christian G; Sidky, Emil Y

    2015-03-10

    The promise of compressive sensing, exploitation of compressibility to achieve high quality image reconstructions with less data, has attracted a great deal of attention in the medical imaging community. At the Compressed Sensing Incubator meeting held in April 2014 at OSA Headquarters in Washington, DC, presentations were given summarizing some of the research efforts ongoing in compressive sensing for x-ray computed tomography and magnetic resonance imaging systems. This article provides an expanded version of these presentations. Sparsity-exploiting reconstruction algorithms that have gained popularity in the medical imaging community are studied, and examples of clinical applications that could benefit from compressive sensing ideas are provided. The current and potential future impact of compressive sensing on the medical imaging field is discussed.

  10. Three-dimensional analysis and display of medical images

    International Nuclear Information System (INIS)

    Bajcsy, R.

    1985-01-01

    Until recently, the most common medical images were X-rays on film analyzed by an expert, ususally a radiologist, who used, in addition to his/her visual perceptual abilities, knowledge obtained through medical studies, and experience. Today, however, with the advent of various imaging techniques, X-ray computerized axial tomographs (CAT), positron emission tomographs (PET), ultrasound tomographs, nuclear magnetic resonance tomographs (NMR), just to mention a few, the images are generated by computers and displayed on computer-controlled devices; so it is appropriate to think about more quantitative and perhaps automated ways of data analysis. Furthermore, since the data are generated by computer, it is only natural to take advantage of the computer for analysis purposes. In addition, using the computer, one can analyze more data and relate different modalities from the same subject, such as, for example, comparing the CAT images with PET images from the same subject. In the next section (The PET Scanner) the authors shall only briefly mention with appropriate references the modeling of the positron emission tomographic scanner, since this imaging technique is not as widely described in the literature as the CAT scanner. The modeling of the interpreter is not going to be mentioned, since it is a topic that by itself deserves a full paper; see, for example, Pizer [1981]. The thrust of this chapter is on modeling the organs that are being imaged and the matching techniques between the model and the data. The image data is from CAT and PET scans. Although the authors believe that their techniques are applicable to any organ of the human body, the examples are only from the brain

  11. ORIS: the Oak Ridge Imaging System program listings. [Nuclear medicine imaging with rectilinear scanner and gamma camera

    Energy Technology Data Exchange (ETDEWEB)

    Bell, P. R.; Dougherty, J. M.

    1978-04-01

    The Oak Ridge Imaging System (ORIS) is a general purpose access, storage, processing and display system for nuclear medicine imaging with rectilinear scanner and gamma camera. This volume contains listings of the PDP-8/E version of ORIS Version 2. The system is designed to run under the Digital Equipment Corporation's OS/8 monitor in 16K or more words of core. System and image file mass storage is on RK8E disk; longer-time image file storage is provided on DECtape. Another version of this program exists for use with the RF08 disk, and a more limited version is for DECtape only. This latter version is intended for non-medical imaging.

  12. The medical physicist in a nuclear medicine department; El fisico medico en un departamento de medicina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Trujillo Z, F.E.; Gomez A, E. [Instituto nacional de Cancerologia, 14000 Mexico D.F. (Mexico)

    2007-07-01

    The diagnostic studies and therapeutic treatments carried out in a Nuclear Medicine department make use of radioactive material. For such a reason it becomes necessary to take a strict control in the reception, use and waste that are generated of the typical works inside the department. Also, work related with the quality control of the equipment dedicated to produce images and of those not image formers, need to carry out to guarantee its maximum performance; as well as quality of the diagnostic and of the therapy imparted in patients. Additionally its are needed to make originated works of the individual procedures to patient and of the acquisition of radioactive materials and removal of the waste or radioactive contaminations. Presently work the recommendations of the American College of Radiology (ACR), the European Federation of Organizations for Medical Physics (EFOMP) and of the Mexican Official Standards relating to the functions that should be observed in a Nuclear Medicine Department are exposed. The ACR and the EFOMP, conclude in their recommendations that the medical physicist fulfills with the suitable profile and likewise they describe in detail the actions and functions that he should supervise, to carry out, to document and to inform. (Author)

  13. Nuclear Medicine Imaging Devices. Chapter 11

    Energy Technology Data Exchange (ETDEWEB)

    Lodge, M. A.; Frey, E. C. [Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, MD (United States)

    2014-12-15

    Imaging forms an important part of nuclear medicine and a number of different imaging devices have been developed. This chapter describes the principles and technological characteristics of the main imaging devices used in nuclear medicine. The two major categories are gamma camera systems and positron emission tomography (PET) systems. The former are used to image γ rays emitted by any nuclide, while the latter exploit the directional correlation between annihilation photons emitted by positron decay. The first section of this chapter discusses the principal components of gamma cameras and how they are used to form 2-D planar images as well as 3-D tomographic images (single photon emission computed tomography (SPECT)). The second section describes related instrumentation that has been optimized for PET data acquisition. A major advance in nuclear medicine was achieved with the introduction of multi-modality imaging systems including SPECT/computed tomography (CT) and PET/CT. In these systems, the CT images can be used to provide an anatomical context for the functional nuclear medicine images and allow for attenuation compensation. The third section in this chapter provides a discussion of the principles of these devices.

  14. Machine Learning for Medical Imaging.

    Science.gov (United States)

    Erickson, Bradley J; Korfiatis, Panagiotis; Akkus, Zeynettin; Kline, Timothy L

    2017-01-01

    Machine learning is a technique for recognizing patterns that can be applied to medical images. Although it is a powerful tool that can help in rendering medical diagnoses, it can be misapplied. Machine learning typically begins with the machine learning algorithm system computing the image features that are believed to be of importance in making the prediction or diagnosis of interest. The machine learning algorithm system then identifies the best combination of these image features for classifying the image or computing some metric for the given image region. There are several methods that can be used, each with different strengths and weaknesses. There are open-source versions of most of these machine learning methods that make them easy to try and apply to images. Several metrics for measuring the performance of an algorithm exist; however, one must be aware of the possible associated pitfalls that can result in misleading metrics. More recently, deep learning has started to be used; this method has the benefit that it does not require image feature identification and calculation as a first step; rather, features are identified as part of the learning process. Machine learning has been used in medical imaging and will have a greater influence in the future. Those working in medical imaging must be aware of how machine learning works. © RSNA, 2017.

  15. Automated medical image segmentation techniques

    Directory of Open Access Journals (Sweden)

    Sharma Neeraj

    2010-01-01

    Full Text Available Accurate segmentation of medical images is a key step in contouring during radiotherapy planning. Computed topography (CT and Magnetic resonance (MR imaging are the most widely used radiographic techniques in diagnosis, clinical studies and treatment planning. This review provides details of automated segmentation methods, specifically discussed in the context of CT and MR images. The motive is to discuss the problems encountered in segmentation of CT and MR images, and the relative merits and limitations of methods currently available for segmentation of medical images.

  16. Medical profession and nuclear war: a social history

    International Nuclear Information System (INIS)

    Day, B.; Waitzkin, H.

    1985-01-01

    Since World War II, individual physicians and medical organizations in the US have cooperated with the federal government in preparing for nuclear war. While most physicians have maintained a neutral stance, a minority have resisted federal policies. Health professionals participated actively at the wartime laboratories that developed the atomic bomb and in the medical research that followed Hiroshima and Nagasaki. Professional organizations helped with civil defense planning for nuclear conflict during the Cold War of the late 1950s and early 1960s. Medical resistance to nuclear war began in the same period, gained wide attention with the growth of Physicians for Social Responsibility in the early 1960s, declined during the Vietnam War, and vastly increased in the early 1980s. Activism by health professionals usually has responded to government policies that have increased the perceived risk of nuclear conflict. The recent return of civil defense planning has stimulated opposition in medical circles. Ambiguities of medical professionalism limit the scope of activism in the nuclear arena. These ambiguities concern the interplay of organized medicine and government, tensions between science and politics, and the difficulties of day-to-day work in medicine while the arms race continues

  17. Explanation of procedure on site medical emergency response for nuclear accident

    International Nuclear Information System (INIS)

    Liu Yulong; Jiang Zhong

    2012-01-01

    National occupational health standard-Procedure on Site Medical Emergency Response for Nuclear Accident has been approved and issued by the Ministry of Health. This standard is formulated according to the Emergency Response Law of the People's Republic of China, Law of the People 's Republic of China on Prevention and Control of Occupational Diseases, Regulations on Emergency Measures for Nuclear Accidents at Nuclear Power Plants, and Health Emergency Plans for Nuclear and Radiological Accidents of Ministry of Health, supporting the use of On-site Medical Emergency Planning and Preparedness for Nuclear Accidents and Off-site Medical Emergency Planning and Preparedness for Nuclear Accidents. Nuclear accident on-site medical response procedure is a part of the on-site emergency plan. The standard specifies the basic content and requirements of the nuclear accident on-site medical emergency response procedures of nuclear facilities operating units to guide and regulate the work of nuclear accident on-site medical emergency response of nuclear facilities operating units. The criteria-related contents were interpreted in this article. (authors)

  18. Medical image information system 2001. Development of the medical image information system to risk management- Medical exposure management

    International Nuclear Information System (INIS)

    Kuranishi, Makoto; Kumagai, Michitomo; Shintani, Mitsuo

    2000-01-01

    This paper discusses the methods and systems for optimizing the following supplements 10 and 17 for national health and medical care. The supplements 10 and 17 of DICOM (digital imaging and communications in medicine) system, which is now under progress for the purpose to keep compatibility within medical image information system as an international standard, are important for making the cooperation between HIS (hospital information system)/RIS (radiation information system) and modality (imaging instruments). Supplement 10 concerns the system to send the information of patients and their orders through HIS/RIS to modality and 17, the information of modality performed procedure step (MPPS) to HIS/RIS. The latter defines to document patients' exposure, a part of which has not been recognized in Japan. Thus the medical information system can be useful for risk-management of medical exposure in future. (K.H.)

  19. Medical image information system 2001. Development of the medical image information system to risk management- Medical exposure management

    Energy Technology Data Exchange (ETDEWEB)

    Kuranishi, Makoto; Kumagai, Michitomo; Shintani, Mitsuo [Toyama Medical and Pharmaceutical Univ. (Japan). Hospital

    2000-12-01

    This paper discusses the methods and systems for optimizing the following supplements 10 and 17 for national health and medical care. The supplements 10 and 17 of DICOM (digital imaging and communications in medicine) system, which is now under progress for the purpose to keep compatibility within medical image information system as an international standard, are important for making the cooperation between HIS (hospital information system)/RIS (radiation information system) and modality (imaging instruments). Supplement 10 concerns the system to send the information of patients and their orders through HIS/RIS to modality and 17, the information of modality performed procedure step (MPPS) to HIS/RIS. The latter defines to document patients' exposure, a part of which has not been recognized in Japan. Thus the medical information system can be useful for risk-management of medical exposure in future. (K.H.)

  20. Medical imaging systems

    Science.gov (United States)

    Frangioni, John V

    2013-06-25

    A medical imaging system provides simultaneous rendering of visible light and diagnostic or functional images. The system may be portable, and may include adapters for connecting various light sources and cameras in open surgical environments or laparascopic or endoscopic environments. A user interface provides control over the functionality of the integrated imaging system. In one embodiment, the system provides a tool for surgical pathology.

  1. Public Health and Medical Preparedness for a Nuclear Detonation: The Nuclear Incident Medical Enterprise

    Science.gov (United States)

    Coleman, C. Norman; Sullivan, Julie M.; Bader, Judith L.; Murrain-Hill, Paula; Koerner, John F.; Garrett, Andrew L.; Weinstock, David M.; Case, Cullen; Hrdina, Chad; Adams, Steven A.; Whitcomb, Robert C.; Graeden, Ellie; Shankman, Robert; Lant, Timothy; Maidment, Bert W.; Hatchett, Richard C.

    2014-01-01

    Resilience and the ability to mitigate the consequences of a nuclear incident are enhanced by (1) effective planning, preparation and training; (2) ongoing interaction, formal exercises, and evaluation among the sectors involved; (3) effective and timely response and communication; and (4) continuous improvements based on new science, technology, experience and ideas. Public health and medical planning require a complex, multi-faceted systematic approach involving federal, state, local, tribal and territorial governments, private sector organizations, academia, industry, international partners, and individual experts and volunteers. The approach developed by the U.S. Department of Health and Human Services Nuclear Incident Medical Enterprise (NIME) is the result of efforts from government and nongovernment experts. It is a “bottom-up” systematic approach built on the available and emerging science that considers physical infrastructure damage, the spectrum of injuries, a scarce resources setting, the need for decision making in the face of a rapidly evolving situation with limited information early on, timely communication and the need for tools and just-in-time information for responders who will likely be unfamiliar with radiation medicine and uncertain and overwhelmed in the face of the large number of casualties and the presence of radioactivity. The components of NIME can be used to support planning for, response to, and recovery from the effects of a nuclear incident. Recognizing that it is a continuous work-in-progress, the current status of the public health and medical preparedness and response for a nuclear incident is provided. PMID:25551496

  2. Radiation protection in medical imaging and radiation oncology

    CERN Document Server

    Stoeva, Magdalena S

    2016-01-01

    Radiation Protection in Medical Imaging and Radiation Oncology focuses on the professional, operational, and regulatory aspects of radiation protection. Advances in radiation medicine have resulted in new modalities and procedures, some of which have significant potential to cause serious harm. Examples include radiologic procedures that require very long fluoroscopy times, radiolabeled monoclonal antibodies, and intravascular brachytherapy. This book summarizes evidence supporting changes in consensus recommendations, regulations, and health physics practices associated with these recent advances in radiology, nuclear medicine, and radiation oncology. It supports intelligent and practical methods for protection of personnel, the public, and patients. The book is based on current recommendations by the International Commission on Radiological Protection and is complemented by detailed practical sections and professional discussions by the world’s leading medical and health physics professionals. It also ...

  3. Medical imaging and augmented reality. Proceedings

    International Nuclear Information System (INIS)

    Dohi, Takeyoshi; Sakuma, Ichiro; Liao, Hongen

    2008-01-01

    This book constitutes the refereed proceedings of the 4th International Workshop on Medical Imaging and Augmented Reality, MIAR 2008, held in Tokyo, Japan, in August 2008. The 44 revised full papers presented together with 3 invited papers were carefully reviewed and selected from 90 submissions. The papers are organized in topical sections on surgical planning and simulation, medical image computing, image analysis, shape modeling and morphometry, image-guided robotics, image-guided intervention, interventional imaging, image registration, augmented reality, and image segmentation. (orig.)

  4. Medical imaging and augmented reality. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Dohi, Takeyoshi [Tokyo Univ. (Japan). Dept. of Mechano-Informatics; Sakuma, Ichiro [Tokyo Univ. (Japan). Dept. of Precision Engineering; Liao, Hongen (eds.) [Tokyo Univ. (Japan). Dept. of Bioengineering

    2008-07-01

    This book constitutes the refereed proceedings of the 4th International Workshop on Medical Imaging and Augmented Reality, MIAR 2008, held in Tokyo, Japan, in August 2008. The 44 revised full papers presented together with 3 invited papers were carefully reviewed and selected from 90 submissions. The papers are organized in topical sections on surgical planning and simulation, medical image computing, image analysis, shape modeling and morphometry, image-guided robotics, image-guided intervention, interventional imaging, image registration, augmented reality, and image segmentation. (orig.)

  5. Dissemination of medical applications of nuclear energy with virtual reality technology

    International Nuclear Information System (INIS)

    Botelho, Felipe M.; Oliveira, Beatriz A.R.

    2007-01-01

    This work makes use of Virtual Reality technology to disseminate medical applications of nuclear energy, with educational purposes. Virtual Reality is an effective learning tool, since navigation and interaction in virtual worlds can improve motivation in the learning process. With this technology, learning can be achieved in a clearer, joyful and more objective way. Among the existing medical applications of nuclear energy, this work focuses on the use of radiopharmaceuticals. The goal is to simulate this application in a virtual environment, for educational purposes, and to show the absorption of a radiopharmaceutical by the human body, during a diagnostics or treatment procedure. An example has been chosen, for Iodine radiopharmaceutical, which has affinity with the thyroid, and then concentrates in this organ. During the simulation, the concentration of the radioactive Iodine in the thyroid can be emphasized, and in the sequence, the virtual patient can be shown during the imaging procedure. (author)

  6. TH-E-9A-01: Medical Physics 1.0 to 2.0, Session 4: Computed Tomography, Ultrasound and Nuclear Medicine

    International Nuclear Information System (INIS)

    Samei, E; Nelson, J; Hangiandreou, N

    2014-01-01

    communication, use optimization (dose and technique factors), automated analysis and data management (automated QC methods, protocol tracking, dose monitoring, issue tracking), and meaningful QC considerations. US 2.0: Ultrasound imaging is evolving at a rapid pace, adding new imaging functions and modes that continue to enhance its clinical utility and benefits to patients. The ultrasound talk will look ahead 10–15 years and consider how medical physicists can bring maximal value to the clinical ultrasound practices of the future. The roles of physics in accreditation and regulatory compliance, image quality and exam optimization, clinical innovation, and education of staff and trainees will all be considered. A detailed examination of expected technology evolution and impact on image quality metrics will be presented. Clinical implementation of comprehensive physics services will also be discussed. Nuclear Medicine 2.0: Although the basic science of nuclear imaging has remained relatively unchanged since its inception, advances in instrumentation continue to advance the field into new territories. With a great number of these advances occurring over the past decade, the role and testing strategies of clinical nuclear medicine physicists must evolve in parallel. The Nuclear Medicine 2.0 presentation is designed to highlight some of the recent advances from a clinical medical physicist perspective and provide ideas and motivation for designing better evaluation strategies. Topics include improvement of traditional physics metrics and analytics, testing implications of hybrid imaging and advanced detector technologies, and strategies for effective implementation into the clinic. Learning Objectives: Become familiar with new physics metrics and analytics in nuclear medicine, CT, and ultrasound. To become familiar with the major new developments of clinical physics support. To understand the physics testing implications of new technologies, hardware, software, and applications

  7. TH-E-9A-01: Medical Physics 1.0 to 2.0, Session 4: Computed Tomography, Ultrasound and Nuclear Medicine

    Energy Technology Data Exchange (ETDEWEB)

    Samei, E; Nelson, J [Duke University Medical Center, Durham, NC (United States); Hangiandreou, N [Mayo Clinic, Rochester, MN (United States)

    2014-06-15

    communication, use optimization (dose and technique factors), automated analysis and data management (automated QC methods, protocol tracking, dose monitoring, issue tracking), and meaningful QC considerations. US 2.0: Ultrasound imaging is evolving at a rapid pace, adding new imaging functions and modes that continue to enhance its clinical utility and benefits to patients. The ultrasound talk will look ahead 10–15 years and consider how medical physicists can bring maximal value to the clinical ultrasound practices of the future. The roles of physics in accreditation and regulatory compliance, image quality and exam optimization, clinical innovation, and education of staff and trainees will all be considered. A detailed examination of expected technology evolution and impact on image quality metrics will be presented. Clinical implementation of comprehensive physics services will also be discussed. Nuclear Medicine 2.0: Although the basic science of nuclear imaging has remained relatively unchanged since its inception, advances in instrumentation continue to advance the field into new territories. With a great number of these advances occurring over the past decade, the role and testing strategies of clinical nuclear medicine physicists must evolve in parallel. The Nuclear Medicine 2.0 presentation is designed to highlight some of the recent advances from a clinical medical physicist perspective and provide ideas and motivation for designing better evaluation strategies. Topics include improvement of traditional physics metrics and analytics, testing implications of hybrid imaging and advanced detector technologies, and strategies for effective implementation into the clinic. Learning Objectives: Become familiar with new physics metrics and analytics in nuclear medicine, CT, and ultrasound. To become familiar with the major new developments of clinical physics support. To understand the physics testing implications of new technologies, hardware, software, and applications

  8. Myocardial viability assessment using nuclear imaging

    International Nuclear Information System (INIS)

    Matsunari, Ichiro; Hisada, Kinichi; Taki, Junichi; Nakajima, Kenichi; Tonami, Norihisa

    2003-01-01

    Myocardial assessment continues to be an issue in patients with coronary artery disease and left ventricular dysfunction. Nuclear imaging has long played an important role in this field. In particular, PET imaging using 18 F-fluorodeoxyglucose is regarded as the metabolic gold standard of tissue viability, which has been supported by a wide clinical experience. Viability assessment using SPECT techniques has gained more wide-spread clinical acceptance than PET, because it is more widely available at lower cost. Moreover, technical advances in SPECT technology such as gated-SPECT further improve the diagnostic accuracy of the test. However, other imaging techniques such as dobutamine echocardiography have recently emerged as competitors to nuclear imaging. It is also important to note that they sometimes may work in a complementary fashion to nuclear imaging, indicating that an appropriate use of these techniques may significantly improve their overall accuracy. In keeping these circumstances in mind, further efforts are necessary to further improve the diagnostic performance of nuclear imaging as a reliable viability test. (author) 107 refs

  9. [Medical image compression: a review].

    Science.gov (United States)

    Noreña, Tatiana; Romero, Eduardo

    2013-01-01

    Modern medicine is an increasingly complex activity , based on the evidence ; it consists of information from multiple sources : medical record text , sound recordings , images and videos generated by a large number of devices . Medical imaging is one of the most important sources of information since they offer comprehensive support of medical procedures for diagnosis and follow-up . However , the amount of information generated by image capturing gadgets quickly exceeds storage availability in radiology services , generating additional costs in devices with greater storage capacity . Besides , the current trend of developing applications in cloud computing has limitations, even though virtual storage is available from anywhere, connections are made through internet . In these scenarios the optimal use of information necessarily requires powerful compression algorithms adapted to medical activity needs . In this paper we present a review of compression techniques used for image storage , and a critical analysis of them from the point of view of their use in clinical settings.

  10. Generative Interpretation of Medical Images

    DEFF Research Database (Denmark)

    Stegmann, Mikkel Bille

    2004-01-01

    This thesis describes, proposes and evaluates methods for automated analysis and quantification of medical images. A common theme is the usage of generative methods, which draw inference from unknown images by synthesising new images having shape, pose and appearance similar to the analysed images......, handling of non-Gaussian variation by means of cluster analysis, correction of respiratory noise in cardiac MRI, and the extensions to multi-slice two-dimensional time-series and bi-temporal three-dimensional models. The medical applications include automated estimation of: left ventricular ejection...

  11. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Tell your doctor about your child’s recent illnesses, medical conditions, medications and allergies. Depending on the type ... Nuclear Medicine? Nuclear medicine is a branch of medical imaging that uses small amounts of radioactive material ...

  12. Image analysis and modeling in medical image computing. Recent developments and advances.

    Science.gov (United States)

    Handels, H; Deserno, T M; Meinzer, H-P; Tolxdorff, T

    2012-01-01

    Medical image computing is of growing importance in medical diagnostics and image-guided therapy. Nowadays, image analysis systems integrating advanced image computing methods are used in practice e.g. to extract quantitative image parameters or to support the surgeon during a navigated intervention. However, the grade of automation, accuracy, reproducibility and robustness of medical image computing methods has to be increased to meet the requirements in clinical routine. In the focus theme, recent developments and advances in the field of modeling and model-based image analysis are described. The introduction of models in the image analysis process enables improvements of image analysis algorithms in terms of automation, accuracy, reproducibility and robustness. Furthermore, model-based image computing techniques open up new perspectives for prediction of organ changes and risk analysis of patients. Selected contributions are assembled to present latest advances in the field. The authors were invited to present their recent work and results based on their outstanding contributions to the Conference on Medical Image Computing BVM 2011 held at the University of Lübeck, Germany. All manuscripts had to pass a comprehensive peer review. Modeling approaches and model-based image analysis methods showing new trends and perspectives in model-based medical image computing are described. Complex models are used in different medical applications and medical images like radiographic images, dual-energy CT images, MR images, diffusion tensor images as well as microscopic images are analyzed. The applications emphasize the high potential and the wide application range of these methods. The use of model-based image analysis methods can improve segmentation quality as well as the accuracy and reproducibility of quantitative image analysis. Furthermore, image-based models enable new insights and can lead to a deeper understanding of complex dynamic mechanisms in the human body

  13. Medical management of nuclear disaster

    International Nuclear Information System (INIS)

    Kinugasa, Tatsuya

    1996-01-01

    This report briefly describes the measures to be taken other than ordinary duties when an accident happens in nuclear facilities such as atomic power plant, reprocessing plant, etc. Such nuclear disasters are assigned into four groups; (1) accidents in industrial levels, (2) accidents in which the workers are implicated, (3) accidents of which influence to environments should be taken into consideration and (4) accidents to which measures for inhabitants should be taken. Therefore, the measures to be taken at an emergency were also grouped in the following four; (1) treatments for the accident, itself, (2) measures to minimize the effects on the environment, (3) rescues of the victims and emergency cares for them and (4) measures and medical cares to protect the inhabitants from radiation exposure. Presently, medical professionals, especially doctors, nurses etc. are not accustomed to control nuclear contaminations. Therefore, it is needed for radiological professionals to actively provide appropriate advises about the control and measurement of contamination. (M.N.)

  14. Mobile medical image retrieval

    Science.gov (United States)

    Duc, Samuel; Depeursinge, Adrien; Eggel, Ivan; Müller, Henning

    2011-03-01

    Images are an integral part of medical practice for diagnosis, treatment planning and teaching. Image retrieval has gained in importance mainly as a research domain over the past 20 years. Both textual and visual retrieval of images are essential. In the process of mobile devices becoming reliable and having a functionality equaling that of formerly desktop clients, mobile computing has gained ground and many applications have been explored. This creates a new field of mobile information search & access and in this context images can play an important role as they often allow understanding complex scenarios much quicker and easier than free text. Mobile information retrieval in general has skyrocketed over the past year with many new applications and tools being developed and all sorts of interfaces being adapted to mobile clients. This article describes constraints of an information retrieval system including visual and textual information retrieval from the medical literature of BioMedCentral and of the RSNA journals Radiology and Radiographics. Solutions for mobile data access with an example on an iPhone in a web-based environment are presented as iPhones are frequently used and the operating system is bound to become the most frequent smartphone operating system in 2011. A web-based scenario was chosen to allow for a use by other smart phone platforms such as Android as well. Constraints of small screens and navigation with touch screens are taken into account in the development of the application. A hybrid choice had to be taken to allow for taking pictures with the cell phone camera and upload them for visual similarity search as most producers of smart phones block this functionality to web applications. Mobile information access and in particular access to images can be surprisingly efficient and effective on smaller screens. Images can be read on screen much faster and relevance of documents can be identified quickly through the use of images contained in

  15. Evidence based medical imaging (EBMI)

    International Nuclear Information System (INIS)

    Smith, Tony

    2008-01-01

    Background: The evidence based paradigm was first described about a decade ago. Previous authors have described a framework for the application of evidence based medicine which can be readily adapted to medical imaging practice. Purpose: This paper promotes the application of the evidence based framework in both the justification of the choice of examination type and the optimisation of the imaging technique used. Methods: The framework includes five integrated steps: framing a concise clinical question; searching for evidence to answer that question; critically appraising the evidence; applying the evidence in clinical practice; and, evaluating the use of revised practices. Results: This paper illustrates the use of the evidence based framework in medical imaging (that is, evidence based medical imaging) using the examples of two clinically relevant case studies. In doing so, a range of information technology and other resources available to medical imaging practitioners are identified with the intention of encouraging the application of the evidence based paradigm in radiography and radiology. Conclusion: There is a perceived need for radiographers and radiologists to make greater use of valid research evidence from the literature to inform their clinical practice and thus provide better quality services

  16. Medical imaging technology

    CERN Document Server

    Haidekker, Mark A

    2013-01-01

    Biomedical imaging is a relatively young discipline that started with Conrad Wilhelm Roentgen’s discovery of the x-ray in 1885. X-ray imaging was rapidly adopted in hospitals around the world. However, it was the advent of computerized data and image processing that made revolutionary new imaging modalities possible. Today, cross-sections and three-dimensional reconstructions of the organs inside the human body is possible with unprecedented speed, detail and quality. This book provides an introduction into the principles of image formation of key medical imaging modalities: X-ray projection imaging, x-ray computed tomography, magnetic resonance imaging, ultrasound imaging, and radionuclide imaging. Recent developments in optical imaging are also covered. For each imaging modality, the introduction into the physical principles and sources of contrast is provided, followed by the methods of image formation, engineering aspects of the imaging devices, and a discussion of strengths and limitations of the modal...

  17. Medical Isotope Production at TRIUMF - from Imaging to Treatment

    Science.gov (United States)

    Hoehr, C.; Bénard, F.; Buckley, K.; Crawford, J.; Gottberg, A.; Hanemaayer, V.; Kunz, P.; Ladouceur, K.; Radchenko, V.; Ramogida, C.; Robertson, A.; Ruth, T.; Zacchia, N.; Zeisler, S.; Schaffer, P.

    TRIUMF has a long history of medical isotope production. For more than 40 years, the Life Sciences Division at TRIUMF has produced isotopes for Positron Emission Tomography (PET) for the local hospitals. Recently, the division has taken on the challenge to expand the facility's isotope repertoire to isotopes for imaging to treatment. At the smallest cyclotron at TRIUMF with energy of 13 MeV, radiometals are being produced in a liquid target which is typically used for PET isotope production. This effort makes radiometals available for early stage research and preclinical trials. At beam energy of 24 MeV, we produce 99mTc from 100Mo with a cyclotron, the most common isotope for Single-Photon-Emission-Computed-Tomography (SPECT) and the most common isotope for nuclear imaging. The use of a cyclotron bypasses the common production route via a nuclear reactor as well as enriched uranium. And finally, at our 500 MeV cyclotron we have demonstrated the production of α emitters useful for targeted alpha therapy. Herein, these efforts are summarized.

  18. Visual perception and medical imaging

    International Nuclear Information System (INIS)

    Jaffe, C.C.

    1985-01-01

    Medical imaging represents a particularly distinct discipline for image processing since it uniquely depends on the ''expert observer'' and yet models of the human visual system are totally inadequate at the complex level to allow satisfactory prediction of observer response to a given image modification. An illustration of the difficulties in assessing observer performance is shown by a series of optical illustrations which demonstrate that net cognitive behavior is not readily predictable. Although many of these phenomena are often considered as exceptional visual events, the setting of complex images makes it difficult to entirely exclude at least partial operation of these impairments during performance of the diagnostic medical imaging task

  19. Medical hyperspectral imaging: a review

    Science.gov (United States)

    Lu, Guolan; Fei, Baowei

    2014-01-01

    Abstract. Hyperspectral imaging (HSI) is an emerging imaging modality for medical applications, especially in disease diagnosis and image-guided surgery. HSI acquires a three-dimensional dataset called hypercube, with two spatial dimensions and one spectral dimension. Spatially resolved spectral imaging obtained by HSI provides diagnostic information about the tissue physiology, morphology, and composition. This review paper presents an overview of the literature on medical hyperspectral imaging technology and its applications. The aim of the survey is threefold: an introduction for those new to the field, an overview for those working in the field, and a reference for those searching for literature on a specific application. PMID:24441941

  20. Nuclear data for medical applications: an overview

    International Nuclear Information System (INIS)

    Qaim, S.M.

    2001-01-01

    A brief introduction to nuclear data in medicine is given. The choice of a radioisotope for medical application demands an accurate knowledge of radioactive decay data. Short-lived single photon and β + -emitters are preferred for diagnostic investigations, and longer-lived corpuscular radiation emitting radioisotopes for endoradiotherapy. The nuclear reaction cross section data, on the other hand, are needed for optimising the production routes. Besides radioactive isotopes, the use of ionising radiation in therapy is discussed. External radiation therapy has achieved an important place in medicine. The role of nuclear data is briefly discussed; they are needed for radiation dose calculations. The hitherto rather neglected activation products in proton therapy are considered. The methodology of development of a nuclear data file for medical applications is outlined. (orig.)

  1. An overview of medical image data base

    International Nuclear Information System (INIS)

    Nishihara, Eitaro

    1992-01-01

    Recently, the systematization using computers in medical institutions has advanced, and the introduction of hospital information system has been almost completed in the large hospitals with more than 500 beds. But the objects of the management of the hospital information system are text information, and do not include the management of images of enormous quantity. By the progress of image diagnostic equipment, the digitization of medical images has advanced, but the management of images in hospitals does not utilize the merits of digital images. For the purpose of solving these problems, the picture archiving and communication system (PACS) was proposed about ten years ago, which makes medical images into a data base, and enables the on-line access to images from various places in hospitals. The studies have been continued to realize it. The features of medical image data, the present status of utilizing medical image data, the outline of the PACS, the image data base for the PACS, the problems in the realization of the data base and the technical trend, and the state of actual construction of the PACS are reported. (K.I.)

  2. Nuclear medical examinations

    International Nuclear Information System (INIS)

    Chiba, Kazuo; Yamada, Hideo

    1983-01-01

    Nuclear medical examinations for cerebral vascular diseases were outlined. These procedures developed associated with development of scanners, production of radionuclides and development of labelled compounds. Examination of cerebral circulation with 133 Xe and sup(87m)Kr was replaced by CT. Furthermore, emission CT developed. Each of brain scintiscan, measurement of regional cerebral blood flow, positron emission CT and single photon emission CT was reviewed. (Namekawa, K.)

  3. Historic images in nuclear medicine

    DEFF Research Database (Denmark)

    Hess, Søren; Høilund-Carlsen, Poul Flemming; Alavi, Abass

    2014-01-01

    In 1976, 2 major molecular imaging events coincidentally took place: Clinical Nuclear Medicine was first published in June, and in August researchers at the Hospital of the University of Pennsylvania created the first images in humans with F-FDG. FDG was initially developed as part of an evolution...... set in motion by fundamental research studies with positron-emitting tracers in the 1950s by Michel Ter-Pegossian and coworkers at the Washington University. Today, Clinical Nuclear Medicine is a valued scientific contributor to the molecular imaging community, and FDG PET is considered the backbone...

  4. HVS-based medical image compression

    Energy Technology Data Exchange (ETDEWEB)

    Kai Xie [Institute of Image Processing and Pattern Recognition, Shanghai Jiaotong University, 200030 Shanghai (China)]. E-mail: xie_kai2001@sjtu.edu.cn; Jie Yang [Institute of Image Processing and Pattern Recognition, Shanghai Jiaotong University, 200030 Shanghai (China); Min Zhuyue [CREATIS-CNRS Research Unit 5515 and INSERM Unit 630, 69621 Villeurbanne (France); Liang Lixiao [Institute of Image Processing and Pattern Recognition, Shanghai Jiaotong University, 200030 Shanghai (China)

    2005-07-01

    Introduction: With the promotion and application of digital imaging technology in the medical domain, the amount of medical images has grown rapidly. However, the commonly used compression methods cannot acquire satisfying results. Methods: In this paper, according to the existed and stated experiments and conclusions, the lifting step approach is used for wavelet decomposition. The physical and anatomic structure of human vision is combined and the contrast sensitivity function (CSF) is introduced as the main research issue in human vision system (HVS), and then the main designing points of HVS model are presented. On the basis of multi-resolution analyses of wavelet transform, the paper applies HVS including the CSF characteristics to the inner correlation-removed transform and quantization in image and proposes a new HVS-based medical image compression model. Results: The experiments are done on the medical images including computed tomography (CT) and magnetic resonance imaging (MRI). At the same bit rate, the performance of SPIHT, with respect to the PSNR metric, is significantly higher than that of our algorithm. But the visual quality of the SPIHT-compressed image is roughly the same as that of the image compressed with our approach. Our algorithm obtains the same visual quality at lower bit rates and the coding/decoding time is less than that of SPIHT. Conclusions: The results show that under common objective conditions, our compression algorithm can achieve better subjective visual quality, and performs better than that of SPIHT in the aspects of compression ratios and coding/decoding time.

  5. HVS-based medical image compression

    International Nuclear Information System (INIS)

    Kai Xie; Jie Yang; Min Zhuyue; Liang Lixiao

    2005-01-01

    Introduction: With the promotion and application of digital imaging technology in the medical domain, the amount of medical images has grown rapidly. However, the commonly used compression methods cannot acquire satisfying results. Methods: In this paper, according to the existed and stated experiments and conclusions, the lifting step approach is used for wavelet decomposition. The physical and anatomic structure of human vision is combined and the contrast sensitivity function (CSF) is introduced as the main research issue in human vision system (HVS), and then the main designing points of HVS model are presented. On the basis of multi-resolution analyses of wavelet transform, the paper applies HVS including the CSF characteristics to the inner correlation-removed transform and quantization in image and proposes a new HVS-based medical image compression model. Results: The experiments are done on the medical images including computed tomography (CT) and magnetic resonance imaging (MRI). At the same bit rate, the performance of SPIHT, with respect to the PSNR metric, is significantly higher than that of our algorithm. But the visual quality of the SPIHT-compressed image is roughly the same as that of the image compressed with our approach. Our algorithm obtains the same visual quality at lower bit rates and the coding/decoding time is less than that of SPIHT. Conclusions: The results show that under common objective conditions, our compression algorithm can achieve better subjective visual quality, and performs better than that of SPIHT in the aspects of compression ratios and coding/decoding time

  6. Application of stereo-imaging technology to medical field.

    Science.gov (United States)

    Nam, Kyoung Won; Park, Jeongyun; Kim, In Young; Kim, Kwang Gi

    2012-09-01

    There has been continuous development in the area of stereoscopic medical imaging devices, and many stereoscopic imaging devices have been realized and applied in the medical field. In this article, we review past and current trends pertaining to the application stereo-imaging technologies in the medical field. We describe the basic principles of stereo vision and visual issues related to it, including visual discomfort, binocular disparities, vergence-accommodation mismatch, and visual fatigue. We also present a brief history of medical applications of stereo-imaging techniques, examples of recently developed stereoscopic medical devices, and patent application trends as they pertain to stereo-imaging medical devices. Three-dimensional (3D) stereo-imaging technology can provide more realistic depth perception to the viewer than conventional two-dimensional imaging technology. Therefore, it allows for a more accurate understanding and analysis of the morphology of an object. Based on these advantages, the significance of stereoscopic imaging in the medical field increases in accordance with the increase in the number of laparoscopic surgeries, and stereo-imaging technology plays a key role in the diagnoses of the detailed morphologies of small biological specimens. The application of 3D stereo-imaging technology to the medical field will help improve surgical accuracy, reduce operation times, and enhance patient safety. Therefore, it is important to develop more enhanced stereoscopic medical devices.

  7. Developments in medical imaging techniques

    International Nuclear Information System (INIS)

    Kramer, Cornelis

    1979-01-01

    A review of the developments in medical imaging in the past 25 years shows a strong increase in the number of physical methods which have become available for obtaining images of diagnostic value. It is shown that despite this proliferation of methods the equipment used for obtaining the images can be based on a common structure. Also the resulting images can be characterized by a few relevant parameters which indicate their information content. On the basis of this common architecture a study is made of the potential capabilities of the large number of medical imaging techniques available now and in the future. Also the requirements and possibilities for handling the images obtained and for controlling the diagnostic systems are investigated [fr

  8. 21 CFR 892.2040 - Medical image hardcopy device.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical image hardcopy device. 892.2040 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2040 Medical image hardcopy device. (a) Identification. A medical image hardcopy device is a device that produces a visible printed record of a medical...

  9. Stereoscopic medical imaging collaboration system

    Science.gov (United States)

    Okuyama, Fumio; Hirano, Takenori; Nakabayasi, Yuusuke; Minoura, Hirohito; Tsuruoka, Shinji

    2007-02-01

    The computerization of the clinical record and the realization of the multimedia have brought improvement of the medical service in medical facilities. It is very important for the patients to obtain comprehensible informed consent. Therefore, the doctor should plainly explain the purpose and the content of the diagnoses and treatments for the patient. We propose and design a Telemedicine Imaging Collaboration System which presents a three dimensional medical image as X-ray CT, MRI with stereoscopic image by using virtual common information space and operating the image from a remote location. This system is composed of two personal computers, two 15 inches stereoscopic parallax barrier type LCD display (LL-151D, Sharp), one 1Gbps router and 1000base LAN cables. The software is composed of a DICOM format data transfer program, an operation program of the images, the communication program between two personal computers and a real time rendering program. Two identical images of 512×768 pixcels are displayed on two stereoscopic LCD display, and both images show an expansion, reduction by mouse operation. This system can offer a comprehensible three-dimensional image of the diseased part. Therefore, the doctor and the patient can easily understand it, depending on their needs.

  10. Knowledge of medical imaging radiation dose and risk among doctors.

    Science.gov (United States)

    Brown, Nicholas; Jones, Lee

    2013-02-01

    The growth of computed tomography (CT) and nuclear medicine (NM) scans has revolutionised healthcare but also greatly increased population radiation doses. Overuse of diagnostic radiation is becoming a feature of medical practice, leading to possible unnecessary radiation exposures and lifetime-risks of developing cancer. Doctors across all medical specialties and experience levels were surveyed to determine their knowledge of radiation doses and potential risks associated with some diagnostic imaging. A survey relating to knowledge and understanding of medical imaging radiation was distributed to doctors at 14 major Queensland public hospitals, as well as fellows and trainees in radiology, emergency medicine and general practice. From 608 valid responses, only 17.3% correctly estimated the radiation dose from CT scans and almost 1 in 10 incorrectly believed that CT radiation is not associated with any increased lifetime risk of developing cancer. There is a strong inverse relationship between a clinician's experience and their knowledge of CT radiation dose and risks, even among radiologists. More than a third (35.7%) of doctors incorrectly believed that typical NM imaging either does not use ionising radiation or emits doses equal to or less than a standard chest radiograph. Knowledge of CT and NM radiation doses is poor across all specialties, and there is a significant inverse relationship between experience and awareness of CT dose and risk. Despite having a poor understanding of these concepts, most doctors claim to consider them prior to requesting scans and when discussing potential risks with patients. © 2012 The Authors. Journal of Medical Imaging and Radiation Oncology © 2012 The Royal Australian and New Zealand College of Radiologists.

  11. A comparative study on medical image segmentation methods

    Directory of Open Access Journals (Sweden)

    Praylin Selva Blessy SELVARAJ ASSLEY

    2014-03-01

    Full Text Available Image segmentation plays an important role in medical images. It has been a relevant research area in computer vision and image analysis. Many segmentation algorithms have been proposed for medical images. This paper makes a review on segmentation methods for medical images. In this survey, segmentation methods are divided into five categories: region based, boundary based, model based, hybrid based and atlas based. The five different categories with their principle ideas, advantages and disadvantages in segmenting different medical images are discussed.

  12. Classification in Medical Imaging

    DEFF Research Database (Denmark)

    Chen, Chen

    Classification is extensively used in the context of medical image analysis for the purpose of diagnosis or prognosis. In order to classify image content correctly, one needs to extract efficient features with discriminative properties and build classifiers based on these features. In addition...... on characterizing human faces and emphysema disease in lung CT images....

  13. Reducing noise component on medical images

    Science.gov (United States)

    Semenishchev, Evgeny; Voronin, Viacheslav; Dub, Vladimir; Balabaeva, Oksana

    2018-04-01

    Medical visualization and analysis of medical data is an actual direction. Medical images are used in microbiology, genetics, roentgenology, oncology, surgery, ophthalmology, etc. Initial data processing is a major step towards obtaining a good diagnostic result. The paper considers the approach allows an image filtering with preservation of objects borders. The algorithm proposed in this paper is based on sequential data processing. At the first stage, local areas are determined, for this purpose the method of threshold processing, as well as the classical ICI algorithm, is applied. The second stage uses a method based on based on two criteria, namely, L2 norm and the first order square difference. To preserve the boundaries of objects, we will process the transition boundary and local neighborhood the filtering algorithm with a fixed-coefficient. For example, reconstructed images of CT, x-ray, and microbiological studies are shown. The test images show the effectiveness of the proposed algorithm. This shows the applicability of analysis many medical imaging applications.

  14. Medical Imaging and Infertility.

    Science.gov (United States)

    Peterson, Rebecca

    2016-11-01

    Infertility affects many couples, and medical imaging plays a vital role in its diagnosis and treatment. Radiologic technologists benefit from having a broad understanding of infertility risk factors and causes. This article describes the typical structure and function of the male and female reproductive systems, as well as congenital and acquired conditions that could lead to a couple's inability to conceive. Medical imaging procedures performed for infertility diagnosis are discussed, as well as common interventional options available to patients. © 2016 American Society of Radiologic Technologists.

  15. Digital Signal Processing for Medical Imaging Using Matlab

    CERN Document Server

    Gopi, E S

    2013-01-01

    This book describes medical imaging systems, such as X-ray, Computed tomography, MRI, etc. from the point of view of digital signal processing. Readers will see techniques applied to medical imaging such as Radon transformation, image reconstruction, image rendering, image enhancement and restoration, and more. This book also outlines the physics behind medical imaging required to understand the techniques being described. The presentation is designed to be accessible to beginners who are doing research in DSP for medical imaging. Matlab programs and illustrations are used wherever possible to reinforce the concepts being discussed.  ·         Acts as a “starter kit” for beginners doing research in DSP for medical imaging; ·         Uses Matlab programs and illustrations throughout to make content accessible, particularly with techniques such as Radon transformation and image rendering; ·         Includes discussion of the basic principles behind the various medical imaging tec...

  16. Nuclear data for medical applications: an overview

    International Nuclear Information System (INIS)

    Qaim, S.M.

    2002-01-01

    A brief introduction to nuclear data in medicine is given. The choice of a radioisotope for medical application demands an accurate knowledge of radioactive decay data. Short-lived single photon and beta sup + -emitters are preferred for diagnostic investigations, and longer-lived corpuscular radiation emitting radioisotopes for endo radiotherapy. The nuclear reaction cross section data, on the other hand, are needed for optimising the production routes. Besides radioactive isotopes, the use of ionising radiation in therapy is discussed. External radiation therapy has achieved an important place in medicine. The role of nuclear data is briefly discussed; they are needed for radiation dose calculations. The hitherto rather neglected activation products in proton therapy are considered. The methodology of development of a nuclear data file for medical applications is outlined. (author)

  17. High Bit-Depth Medical Image Compression With HEVC.

    Science.gov (United States)

    Parikh, Saurin S; Ruiz, Damian; Kalva, Hari; Fernandez-Escribano, Gerardo; Adzic, Velibor

    2018-03-01

    Efficient storing and retrieval of medical images has direct impact on reducing costs and improving access in cloud-based health care services. JPEG 2000 is currently the commonly used compression format for medical images shared using the DICOM standard. However, new formats such as high efficiency video coding (HEVC) can provide better compression efficiency compared to JPEG 2000. Furthermore, JPEG 2000 is not suitable for efficiently storing image series and 3-D imagery. Using HEVC, a single format can support all forms of medical images. This paper presents the use of HEVC for diagnostically acceptable medical image compression, focusing on compression efficiency compared to JPEG 2000. Diagnostically acceptable lossy compression and complexity of high bit-depth medical image compression are studied. Based on an established medically acceptable compression range for JPEG 2000, this paper establishes acceptable HEVC compression range for medical imaging applications. Experimental results show that using HEVC can increase the compression performance, compared to JPEG 2000, by over 54%. Along with this, a new method for reducing computational complexity of HEVC encoding for medical images is proposed. Results show that HEVC intra encoding complexity can be reduced by over 55% with negligible increase in file size.

  18. Medical applications of the nuclear energy

    International Nuclear Information System (INIS)

    Ugarte, Valentin E.

    2001-01-01

    The Nuclear Medicine School Foundation, in Mendoza (Argentina) was created in 1986 by the National Atomic Energy Commission (CNEA) and is supported by the Government of the Mendoza Province, the CNEA, and the National University of Cuyo. The main activities of the school are medical diagnosis using nuclear techniques and the training of physicians and technicians in nuclear medicine. Teletherapy and brachytherapy are also performed. The use of the PET is described in some detail

  19. A survey of medical diagnostic imaging technologies

    Energy Technology Data Exchange (ETDEWEB)

    Heese, V.; Gmuer, N.; Thomlinson, W.

    1991-10-01

    The fields of medical imaging and medical imaging instrumentation are increasingly important. The state-of-the-art continues to advance at a very rapid pace. In fact, various medical imaging modalities are under development at the National Synchrotron Light Source (such as MECT and Transvenous Angiography.) It is important to understand how these techniques compare with today`s more conventional imaging modalities. The purpose of this report is to provide some basic information about the various medical imaging technologies currently in use and their potential developments as a basis for this comparison. This report is by no means an in-depth study of the physics and instrumentation of the various imaging modalities; instead, it is an attempt to provide an explanation of the physical bases of these techniques and their principal clinical and research capabilities.

  20. A survey of medical diagnostic imaging technologies

    International Nuclear Information System (INIS)

    Heese, V.; Gmuer, N.; Thomlinson, W.

    1991-10-01

    The fields of medical imaging and medical imaging instrumentation are increasingly important. The state-of-the-art continues to advance at a very rapid pace. In fact, various medical imaging modalities are under development at the National Synchrotron Light Source (such as MECT and Transvenous Angiography.) It is important to understand how these techniques compare with today's more conventional imaging modalities. The purpose of this report is to provide some basic information about the various medical imaging technologies currently in use and their potential developments as a basis for this comparison. This report is by no means an in-depth study of the physics and instrumentation of the various imaging modalities; instead, it is an attempt to provide an explanation of the physical bases of these techniques and their principal clinical and research capabilities

  1. Overview of deep learning in medical imaging.

    Science.gov (United States)

    Suzuki, Kenji

    2017-09-01

    The use of machine learning (ML) has been increasing rapidly in the medical imaging field, including computer-aided diagnosis (CAD), radiomics, and medical image analysis. Recently, an ML area called deep learning emerged in the computer vision field and became very popular in many fields. It started from an event in late 2012, when a deep-learning approach based on a convolutional neural network (CNN) won an overwhelming victory in the best-known worldwide computer vision competition, ImageNet Classification. Since then, researchers in virtually all fields, including medical imaging, have started actively participating in the explosively growing field of deep learning. In this paper, the area of deep learning in medical imaging is overviewed, including (1) what was changed in machine learning before and after the introduction of deep learning, (2) what is the source of the power of deep learning, (3) two major deep-learning models: a massive-training artificial neural network (MTANN) and a convolutional neural network (CNN), (4) similarities and differences between the two models, and (5) their applications to medical imaging. This review shows that ML with feature input (or feature-based ML) was dominant before the introduction of deep learning, and that the major and essential difference between ML before and after deep learning is the learning of image data directly without object segmentation or feature extraction; thus, it is the source of the power of deep learning, although the depth of the model is an important attribute. The class of ML with image input (or image-based ML) including deep learning has a long history, but recently gained popularity due to the use of the new terminology, deep learning. There are two major models in this class of ML in medical imaging, MTANN and CNN, which have similarities as well as several differences. In our experience, MTANNs were substantially more efficient in their development, had a higher performance, and required a

  2. Medical and policy considerations for nuclear and radiation accidents, incidents and terrorism.

    Science.gov (United States)

    Gale, Robert Peter

    2017-11-01

    The purpose of this review is to address the increasing medical and public concern regarding the health consequences of radiation exposure, a concern shaped not only by fear of another Chernobyl or Fukushima nuclear power facility accident but also by the intentional use of a nuclear weapon, a radiological dispersion device, a radiological exposure device, or an improved nuclear device by rogue states such as North Korea and terrorist organizations such as Al Qaeda and ISIS. The United States has the medical capacity to respond to a limited nuclear or radiation accident or incident but an effective medical response to a catastrophic nuclear event is impossible. Dealing effectively with nuclear and radiation accidents or incidents requires diverse strategies, including policy decisions, public education, and medical preparedness. I review medical consequences of exposures to ionizing radiations, likely concomitant injuries and potential medical intervention. These data should help haematologists and other healthcare professionals understand the principles of medical consequences of nuclear terrorism. However, the best strategy is prevention.

  3. Radioisotopes and medical imaging in Sri Lanka

    International Nuclear Information System (INIS)

    Jayasinghe, J.M.A.C.

    1993-01-01

    The article deals with the use of X-rays and magnetic resonance imaging in medical diagnosis in its introduction. Then it elaborates on the facilities in the field of medical imaging for diagnosis, in Sri Lanka. The use of Technetium-99m in diagnostic medicine as well as the future of medical imaging in Sri Lanka is also dealt with

  4. Medical image segmentation using genetic algorithms.

    Science.gov (United States)

    Maulik, Ujjwal

    2009-03-01

    Genetic algorithms (GAs) have been found to be effective in the domain of medical image segmentation, since the problem can often be mapped to one of search in a complex and multimodal landscape. The challenges in medical image segmentation arise due to poor image contrast and artifacts that result in missing or diffuse organ/tissue boundaries. The resulting search space is therefore often noisy with a multitude of local optima. Not only does the genetic algorithmic framework prove to be effective in coming out of local optima, it also brings considerable flexibility into the segmentation procedure. In this paper, an attempt has been made to review the major applications of GAs to the domain of medical image segmentation.

  5. A survey of medical diagnostic imaging technologies

    Energy Technology Data Exchange (ETDEWEB)

    Heese, V.; Gmuer, N.; Thomlinson, W.

    1991-10-01

    The fields of medical imaging and medical imaging instrumentation are increasingly important. The state-of-the-art continues to advance at a very rapid pace. In fact, various medical imaging modalities are under development at the National Synchrotron Light Source (such as MECT and Transvenous Angiography.) It is important to understand how these techniques compare with today's more conventional imaging modalities. The purpose of this report is to provide some basic information about the various medical imaging technologies currently in use and their potential developments as a basis for this comparison. This report is by no means an in-depth study of the physics and instrumentation of the various imaging modalities; instead, it is an attempt to provide an explanation of the physical bases of these techniques and their principal clinical and research capabilities.

  6. Medical image segmentation using improved FCM

    Institute of Scientific and Technical Information of China (English)

    ZHANG XiaoFeng; ZHANG CaiMing; TANG WenJing; WEI ZhenWen

    2012-01-01

    Image segmentation is one of the most important problems in medical image processing,and the existence of partial volume effect and other phenomena makes the problem much more complex. Fuzzy Cmeans,as an effective tool to deal with PVE,however,is faced with great challenges in efficiency.Aiming at this,this paper proposes one improved FCM algorithm based on the histogram of the given image,which will be denoted as HisFCM and divided into two phases.The first phase will retrieve several intervals on which to compute cluster centroids,and the second one will perform image segmentation based on improved FCM algorithm.Compared with FCM and other improved algorithms,HisFCM is of much higher efficiency with satisfying results.Experiments on medical images show that HisFCM can achieve good segmentation results in less than 0.1 second,and can satisfy real-time requirements of medical image processing.

  7. Impact of Nuclear Laboratory Personnel Credentials & Continuing Education on Nuclear Cardiology Laboratory Quality Operations.

    Science.gov (United States)

    Malhotra, Saurabh; Sobieraj, Diana M; Mann, April; Parker, Matthew W

    2017-12-22

    Background/Objectives: The specific credentials and continuing education (CME/CE) of nuclear cardiology laboratory medical and technical staff are important factors in the delivery of quality imaging services that have not been systematically evaluated. Methods: Nuclear cardiology accreditation application data from the Intersocietal Accreditation Commission (IAC) was used to characterize facilities performing myocardial perfusion imaging by setting, size, previous accreditation and credentials of the medical and technical staff. Credentials and CME/CE were compared against initial accreditation decisions (grant or delay) using multivariable logistic regression. Results: Complete data were available for 1913 nuclear cardiology laboratories from 2011-2014. Laboratories with initial positive accreditation decisions had a greater prevalence of Certification Board in Nuclear Cardiology (CBNC) certified medical directors and specialty credentialed technical directors. Certification and credentials of the medical and technical directors, respectively, staff CME/CE compliance, and assistance of a consultant with the application were positively associated with accreditation decisions. Conclusion: Nuclear cardiology laboratories directed by CBNC-certified physicians and NCT- or PET-credentialed technologists were less likely to receive delay decisions for MPI. CME/CE compliance of both the medical and technical directors was associated with accreditation decision. Medical and technical directors' years of experience were not associated with accreditation decision. Copyright © 2017 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  8. Current research in nuclear medicine and molecular imaging in Italy: highlights of the 10th National Congress of the Italian Association of Nuclear Medicine and Molecular Imaging.

    Science.gov (United States)

    Cuocolo, A

    2011-06-01

    The 10th National Congress of the Italian Association of Nuclear Medicine and Molecular Imaging (AIMN) took place in Rimini on March 18-21, 2011 under the chairmanship of Professor Stefano Fanti. The program was of excellent quality and put a further step for the settlement of the standardized AIMN congress structure. A large industrial exhibition demonstrated the latest technological innovations and developments within the field. The congress was a great success with more than 1100 total participants and more than 360 abstracts received. Of these, 40 abstracts were accepted for oral and 285 for poster presentations. The original investigations presented were related to different areas of nuclear medicine and molecular imaging, with particular focus on advances in instrumentation and data processing, progress in radiochemistry and pharmacy, novel diagnostics and therapeutics, and new insights in well established areas of clinical application, such as oncology, cardiology, neurology, psychiatry, endocrinology, paediatrics, and infection and inflammation. Noteworthy, several presentations at this congress, focusing on quantitative interpretation of the imaging data and on pragmatic endpoints, such as adverse outcomes, identified when nuclear medicine procedures achieved clinical effectiveness for patient care and patient management and further demonstrated that nuclear medicine plays a crucial role in the contemporary medical scenario. This highlights lecture is only a brief summary of the large amount of data presented and discussed, which can be found in much greater detail in the congress abstract book, published as volume 55, supplement 1 of the Q J Nucl Med Mol Imaging in April 2011.

  9. Medical imaging, PACS, and imaging informatics: retrospective.

    Science.gov (United States)

    Huang, H K

    2014-01-01

    Historical reviews of PACS (picture archiving and communication system) and imaging informatics development from different points of view have been published in the past (Huang in Euro J Radiol 78:163-176, 2011; Lemke in Euro J Radiol 78:177-183, 2011; Inamura and Jong in Euro J Radiol 78:184-189, 2011). This retrospective attempts to look at the topic from a different angle by identifying certain basic medical imaging inventions in the 1960s and 1970s which had conceptually defined basic components of PACS guiding its course of development in the 1980s and 1990s, as well as subsequent imaging informatics research in the 2000s. In medical imaging, the emphasis was on the innovations at Georgetown University in Washington, DC, in the 1960s and 1970s. During the 1980s and 1990s, research and training support from US government agencies and public and private medical imaging manufacturers became available for training of young talents in biomedical physics and for developing the key components required for PACS development. In the 2000s, computer hardware and software as well as communication networks advanced by leaps and bounds, opening the door for medical imaging informatics to flourish. Because many key components required for the PACS operation were developed by the UCLA PACS Team and its collaborative partners in the 1980s, this presentation is centered on that aspect. During this period, substantial collaborative research efforts by many individual teams in the US and in Japan were highlighted. Credits are due particularly to the Pattern Recognition Laboratory at Georgetown University, and the computed radiography (CR) development at the Fuji Electric Corp. in collaboration with Stanford University in the 1970s; the Image Processing Laboratory at UCLA in the 1980s-1990s; as well as the early PACS development at the Hokkaido University, Sapporo, Japan, in the late 1970s, and film scanner and digital radiography developed by Konishiroku Photo Ind. Co. Ltd

  10. Nuclear imaging drug development tools

    International Nuclear Information System (INIS)

    Buchanan, L.; Jurek, P.; Redshaw, R.

    2007-01-01

    This article describes the development of nuclear imaging as an enabling technology in the pharmaceutical industry. Molecular imaging is maturing into an important tool with expanding applications from validating that a drug reaches the intended target through to market launch of a new drug. Molecular imaging includes anatomical imaging of organs or tissues, computerized tomography (CT), magnetic resonance imaging (MRI) and ultrasound.

  11. The present and future of medical imaging physics

    International Nuclear Information System (INIS)

    Bao Shanglian; Zhang Huailing; Huang Feizeng

    2004-01-01

    The physics of medical imaging is one of the main branches of medical physics, which trains medical physicists for the R and D of medical imaging equipment, clinical application of this equipment as well as R and D in medical physics. The development of medical imaging physics is one of the biggest programs aimed at making China a world manufacturer both in hardware and software. However, there is no formal medical physics in China as yet. The scale of education and training, and the level of manufacture of medical imaging equipment are very low compared with developed countries. It is therefore imperative for China to accelerate the rate of development to satisfy her requirements. Amongst other priorities, building up the education and training system in medical physics and setting up a staff of medical physicists in hospitals is the most urgent thing

  12. Viewpoints on Medical Image Processing: From Science to Application

    Science.gov (United States)

    Deserno (né Lehmann), Thomas M.; Handels, Heinz; Maier-Hein (né Fritzsche), Klaus H.; Mersmann, Sven; Palm, Christoph; Tolxdorff, Thomas; Wagenknecht, Gudrun; Wittenberg, Thomas

    2013-01-01

    Medical image processing provides core innovation for medical imaging. This paper is focused on recent developments from science to applications analyzing the past fifteen years of history of the proceedings of the German annual meeting on medical image processing (BVM). Furthermore, some members of the program committee present their personal points of views: (i) multi-modality for imaging and diagnosis, (ii) analysis of diffusion-weighted imaging, (iii) model-based image analysis, (iv) registration of section images, (v) from images to information in digital endoscopy, and (vi) virtual reality and robotics. Medical imaging and medical image computing is seen as field of rapid development with clear trends to integrated applications in diagnostics, treatment planning and treatment. PMID:24078804

  13. Viewpoints on Medical Image Processing: From Science to Application.

    Science.gov (United States)

    Deserno Né Lehmann, Thomas M; Handels, Heinz; Maier-Hein Né Fritzsche, Klaus H; Mersmann, Sven; Palm, Christoph; Tolxdorff, Thomas; Wagenknecht, Gudrun; Wittenberg, Thomas

    2013-05-01

    Medical image processing provides core innovation for medical imaging. This paper is focused on recent developments from science to applications analyzing the past fifteen years of history of the proceedings of the German annual meeting on medical image processing (BVM). Furthermore, some members of the program committee present their personal points of views: (i) multi-modality for imaging and diagnosis, (ii) analysis of diffusion-weighted imaging, (iii) model-based image analysis, (iv) registration of section images, (v) from images to information in digital endoscopy, and (vi) virtual reality and robotics. Medical imaging and medical image computing is seen as field of rapid development with clear trends to integrated applications in diagnostics, treatment planning and treatment.

  14. Lessons from other areas of medical imaging - nuclear medicine

    International Nuclear Information System (INIS)

    McCready, V.R.

    1981-01-01

    Ultrasound and nuclear medicine are similar in that they both have been developed for clinical use in the past decade. Unlike X-ray techniques the success or failure of ultrasound and nuclear medicine depend more upon both the operator and the method of display. Since both ultrasound and nuclear medicine use relatively complicated methods of gathering and displaying information some of the lessons learnt during the development of nuclear medicine can be equally applied to ultrasound techniques. (Auth.)

  15. Medical image diagnosis of liver cancer using artificial intelligence

    International Nuclear Information System (INIS)

    Kondo, Tadashi; Ueno, Junji; Takao, Shoichiro

    2010-01-01

    A revised Group Method of Data Handling (GMDH)-type neural network algorithm using artificial intelligence technology for medical image diagnosis is proposed and is applied to medical image diagnosis of liver cancer. In this algorithm, the knowledge base for medical image diagnosis are used for organizing the neural network architecture for medical image diagnosis. Furthermore, the revised GMDH-type neural network algorithm has a feedback loop and can identify the characteristics of the medical images accurately using feedback loop calculations. The optimum neural network architecture fitting the complexity of the medical images is automatically organized so as to minimize the prediction error criterion defined as Prediction Sum of Squares (PSS). It is shown that the revised GMDH-type neural network can be easily applied to the medical image diagnosis. (author)

  16. Diagnostic imaging in undergraduate medical education: an expanding role

    International Nuclear Information System (INIS)

    Miles, K.A.

    2005-01-01

    Radiologists have been involved in anatomy instruction for medical students for decades. However, recent technical advances in radiology, such as multiplanar imaging, 'virtual endoscopy', functional and molecular imaging, and spectroscopy, offer new ways in which to use imaging for teaching basic sciences to medical students. The broad dissemination of picture archiving and communications systems is making such images readily available to medical schools, providing new opportunities for the incorporation of diagnostic imaging into the undergraduate medical curriculum. Current reforms in the medical curriculum and the establishment of new medical schools in the UK further underline the prospects for an expanding role for imaging in medical education. This article reviews the methods by which diagnostic imaging can be used to support the learning of anatomy and other basic sciences

  17. Applications of VLSI circuits to medical imaging

    International Nuclear Information System (INIS)

    O'Donnell, M.

    1988-01-01

    In this paper the application of advanced VLSI circuits to medical imaging is explored. The relationship of both general purpose signal processing chips and custom devices to medical imaging is discussed using examples of fabricated chips. In addition, advanced CAD tools for silicon compilation are presented. Devices built with these tools represent a possible alternative to custom devices and general purpose signal processors for the next generation of medical imaging systems

  18. Medical image transmission via communication satellite. Evaluation of bone scintigraphy

    International Nuclear Information System (INIS)

    Suzuki, Hideki; Inoue, Tomio; Endo, Keigo; Shimamoto, Shigeru.

    1995-01-01

    As compared with terrestrial circuits, the communication satellite possesses superior characteristics such as wide area coverage, broadcasting, high capacity, and robustness to disasters. Utilizing the narrow band channel (64 kbps) of the geostationary satellite JCSAT 1 located at the altitude of 36,000 km above the equator, the authors investigated satellite-relayed medical imagings by video signals, with bone scintigraphy as a model. Each bone scintigraphy was taken by a handy-video camera, digitalized and transmitted from faculty of technology located at 25 kilometers apart from our department. Clear bone scintigraphy was obtained via satellite, as seen on the view box. Eight nuclear physicians evaluated 20 cases of bone scintigraphy. ROC (Receiver Operating Characteristic) analysis was performed between the scintigraphies on view box and via satellite by the rating method. The area under the ROC curve was 91.6±2.6% via satellite, and 93.2±2.4% on the view box and there was no significant difference between them. These results suggest that the satellite communication is very useful and effective system to send nuclear imagings to distant institutes. (author)

  19. [Medical image transmission via communication satellite: evaluation of bone scintigraphy].

    Science.gov (United States)

    Suzuki, H; Inoue, T; Endo, K; Shimamoto, S

    1995-10-01

    As compared with terrestrial circuits, the communication satellite possesses superior characteristics such as wide area coverage, broadcasting, high capacity, and robustness to disasters. Utilizing the narrow band channel (64 kbps) of the geostationary satellite JCSAT1 located at the altitude of 36,000 km above the equator, the authors investigated satellite-relayed medical images by video signals, with bone scintigraphy as a model. Each bone scintigraphy was taken by a handy-video camera, digitalized and transmitted from faculty of technology located at 25 kilometers apart from our department. Clear bone scintigraphy was obtained via satellite, as seen on the view box. Eight nuclear physicians evaluated 20 cases of bone scintigraphy. ROC (Receiver Operating Characteristic) analysis was performed between the scintigraphies on view box and via satellite by the rating method. The area under the ROC curve was 91.6 +/- 2.6% via satellite, and 93.2 +/- 2.4% on the view box and there was no significant difference between them. These results suggest that the satellite communication is very useful and effective system to send nuclear imagings to distant institutes.

  20. Army medical imaging system: ARMIS

    International Nuclear Information System (INIS)

    Siedband, M.P.; Kramp, D.C.

    1987-01-01

    Recent advances of stimulable phosphor screens, data cards using optical storage means, and new personal computers with image processing capability have made possible the design of economical filmless medical imaging systems. The addition of communication links means that remote interpretation of images is also possible. The Army Medical Imaging System uses stimulable phosphor screens, digital readout, a small computer, an optical digital data card device, and a DIN/PACS link. Up to 200 images can be stored in the computer hard disk for rapid recall and reading by the radiologist. The computer permits image processing, annotation, insertion of text, and control of the system. Each device contains an image storage RAM and communicates with the computer via the small computer systems interface. Data compression is used to reduce the required storage capacity and transmission times of the 1-mB images. The credit card-size optical data cards replace film and can store 12 or more images. The data cards can be read on an independent viewer. The research is supported by the U.S. Army Biomedical Research and Development Laboratory

  1. Nuclear imaging in pediatrics

    International Nuclear Information System (INIS)

    Siddiqui, A.R.

    1985-01-01

    The author's intent is to familiarize practicing radiologists with the technical aspects and interpretation of nuclear medicine procedures in children and to illustrate the indications for nuclear medicine procedures in pediatric problems. Pediatric doses, dosimetry, sedation, and injection techniques, organ systems, oncology and infection, testicular scanning and nuclear crystography, pediatric endocrine and skeletal systems, ventilation and perfusion imaging of both congenital and acquired pediatric disorders, cardiovascular problems, gastrointestinal, hepatobiliary, reticuloendothelial studies, and central nervous system are all topics which are included and discussed

  2. Nuclear medicine imaging instrumentations for molecular imaging

    International Nuclear Information System (INIS)

    Chung, Yong Hyun; Song, Tae Yong; Choi, Yong

    2004-01-01

    Small animal models are extensively utilized in the study of biomedical sciences. Current animal experiments and analysis are largely restricted to in vitro measurements and need to sacrifice animals to perform tissue or molecular analysis. This prevents researchers from observing in vivo the natural evolution of the process under study. Imaging techniques can provide repeatedly in vivo anatomic and molecular information noninvasively. Small animal imaging systems have been developed to assess biological process in experimental animals and increasingly employed in the field of molecular imaging studies. This review outlines the current developments in nuclear medicine imaging instrumentations including fused multi-modality imaging systems for small animal imaging

  3. Lossless medical image compression with a hybrid coder

    Science.gov (United States)

    Way, Jing-Dar; Cheng, Po-Yuen

    1998-10-01

    The volume of medical image data is expected to increase dramatically in the next decade due to the large use of radiological image for medical diagnosis. The economics of distributing the medical image dictate that data compression is essential. While there is lossy image compression, the medical image must be recorded and transmitted lossless before it reaches the users to avoid wrong diagnosis due to the image data lost. Therefore, a low complexity, high performance lossless compression schematic that can approach the theoretic bound and operate in near real-time is needed. In this paper, we propose a hybrid image coder to compress the digitized medical image without any data loss. The hybrid coder is constituted of two key components: an embedded wavelet coder and a lossless run-length coder. In this system, the medical image is compressed with the lossy wavelet coder first, and the residual image between the original and the compressed ones is further compressed with the run-length coder. Several optimization schemes have been used in these coders to increase the coding performance. It is shown that the proposed algorithm is with higher compression ratio than run-length entropy coders such as arithmetic, Huffman and Lempel-Ziv coders.

  4. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Nuclear Medicine Children’s (pediatric) nuclear medicine imaging uses small amounts of radioactive materials called radiotracers, a special ... is a branch of medical imaging that uses small amounts of radioactive material to diagnose and determine ...

  5. Nuclear medicine. Medical technology research

    International Nuclear Information System (INIS)

    Lerch, H.; Jigalin, A.

    2005-01-01

    Aim, method: the scientific publications in the 2003 and 2004 issues of the journal Nuklearmedizin were analyzed retrospectively with regard to the proportion of medical technology research. Results: out of a total of 73 articles examined, 9 (12%) were classified as medical technology research, that is, 8/15 of the original papers (16%) and one of the case reports (5%). Of these 9 articles, 44% (4/9) focused on the combination of molecular and morphological imaging with direct technical appliance or information technology solutions. Conclusion: medical technology research is limited in the journal's catchment area. The reason for this is related to the interdependency between divergent development dynamics in the medical technology industry's locations, the many years that the area of scintigraphic technology has been underrepresented, research policy particularly in discrepancies in the promotion of molecular imaging and a policy in which health is not perceived as a predominantly good and positive economic factor, but more as a curb to economic development. (orig.)

  6. A special designed library for medical imaging applications

    International Nuclear Information System (INIS)

    Lymberopoulos, D.; Kotsopoulos, S.; Zoupas, V.; Yoldassis, N.; Spyropoulos, C.

    1994-01-01

    The present paper deals with a sophisticated and flexible library of medical purpose image processing routines. It contains modules for simple as well as advanced gray or colour image processing. This library offers powerful features for medical image processing and analysis applications, thus providing the physician with a means of analyzing and estimating medical images in order to accomplish their diagnostic procedures

  7. Topics in medical image processing and computational vision

    CERN Document Server

    Jorge, Renato

    2013-01-01

      The sixteen chapters included in this book were written by invited experts of international recognition and address important issues in Medical Image Processing and Computational Vision, including: Object Recognition, Object Detection, Object Tracking, Pose Estimation, Facial Expression Recognition, Image Retrieval, Data Mining, Automatic Video Understanding and Management, Edges Detection, Image Segmentation, Modelling and Simulation, Medical thermography, Database Systems, Synthetic Aperture Radar and Satellite Imagery.   Different applications are addressed and described throughout the book, comprising: Object Recognition and Tracking, Facial Expression Recognition, Image Database, Plant Disease Classification, Video Understanding and Management, Image Processing, Image Segmentation, Bio-structure Modelling and Simulation, Medical Imaging, Image Classification, Medical Diagnosis, Urban Areas Classification, Land Map Generation.   The book brings together the current state-of-the-art in the various mul...

  8. Review of medical imaging with emphasis on X-ray detectors

    Science.gov (United States)

    Hoheisel, Martin

    2006-07-01

    Medical imaging can be looked at from two different perspectives, the medical and the physical. The medical point of view is application-driven and involves finding the best way of tackling a medical problem through imaging, i.e. either to answer a diagnostic question, or to facilitate a therapy. For this purpose, industry offers a broad spectrum of radiographic, fluoroscopic, and angiographic equipment. The requirements depend on the medical problem: which organs have to be imaged, which details have to be made visible, how to deal with the problem of motion if any, and so forth. In radiography, for instance, large detector sizes of up to 43 cm×43 cm and relatively high energies are needed to image a whole chest. In mammography, pixel sizes between 25 and 70 μm are favorable for good spatial resolution, which is essential for detecting microcalcifications. In cardiology, 30-60 images per second are required to follow the heart's motion. In computed tomography, marginal contrast differences down to one Hounsfield unit have to be resolved. In all cases, but especially in pediatrics, the required radiation dose must be kept as low as reasonably achievable. Moreover, three-dimensional(3D) reconstruction of image data allows much better orientation in the body, permitting a more accurate diagnosis, precise treatment planning, and image-guided therapy. Additional functional information from different modalities is very helpful, information such as perfusion, flow rate, diffusion, oxygen concentration, metabolism, and receptor affinity for specific molecules. To visualize, functional and anatomical information are fused into one combined image. The physical point of view is technology-driven. A choice of different energies from the electromagnetic spectrum is available for imaging; not only X-rays in the range of 10-150 keV, but also γ rays, which are used in nuclear medicine, X-rays in the MeV range, which are used in portal imaging to monitor radiation therapy

  9. Review of medical imaging with emphasis on X-ray detectors

    Energy Technology Data Exchange (ETDEWEB)

    Hoheisel, Martin [Siemens AG Medical Solutions, Angiography, Fluoroscopic- and Radiographic Systems, Innovations, Siemensstr.1, 91301 Forchheim (Germany)]. E-mail: martin.hoheisel@siemens.com

    2006-07-01

    Medical imaging can be looked at from two different perspectives, the medical and the physical. The medical point of view is application-driven and involves finding the best way of tackling a medical problem through imaging, i.e. either to answer a diagnostic question, or to facilitate a therapy. For this purpose, industry offers a broad spectrum of radiographic, fluoroscopic, and angiographic equipment. The requirements depend on the medical problem: which organs have to be imaged, which details have to be made visible, how to deal with the problem of motion if any, and so forth. In radiography, for instance, large detector sizes of up to 43 cmx43 cm and relatively high energies are needed to image a whole chest. In mammography, pixel sizes between 25 and 70 {mu}m are favorable for good spatial resolution, which is essential for detecting microcalcifications. In cardiology, 30-60 images per second are required to follow the heart's motion. In computed tomography, marginal contrast differences down to one Hounsfield unit have to be resolved. In all cases, but especially in pediatrics, the required radiation dose must be kept as low as reasonably achievable. Moreover, three-dimensional(3D) reconstruction of image data allows much better orientation in the body, permitting a more accurate diagnosis, precise treatment planning, and image-guided therapy. Additional functional information from different modalities is very helpful, information such as perfusion, flow rate, diffusion, oxygen concentration, metabolism, and receptor affinity for specific molecules. To visualize, functional and anatomical information are fused into one combined image. The physical point of view is technology-driven. A choice of different energies from the electromagnetic spectrum is available for imaging; not only X-rays in the range of 10-150 keV, but also {gamma} rays, which are used in nuclear medicine, X-rays in the MeV range, which are used in portal imaging to monitor radiation

  10. Review of medical imaging with emphasis on X-ray detectors

    International Nuclear Information System (INIS)

    Hoheisel, Martin

    2006-01-01

    Medical imaging can be looked at from two different perspectives, the medical and the physical. The medical point of view is application-driven and involves finding the best way of tackling a medical problem through imaging, i.e. either to answer a diagnostic question, or to facilitate a therapy. For this purpose, industry offers a broad spectrum of radiographic, fluoroscopic, and angiographic equipment. The requirements depend on the medical problem: which organs have to be imaged, which details have to be made visible, how to deal with the problem of motion if any, and so forth. In radiography, for instance, large detector sizes of up to 43 cmx43 cm and relatively high energies are needed to image a whole chest. In mammography, pixel sizes between 25 and 70 μm are favorable for good spatial resolution, which is essential for detecting microcalcifications. In cardiology, 30-60 images per second are required to follow the heart's motion. In computed tomography, marginal contrast differences down to one Hounsfield unit have to be resolved. In all cases, but especially in pediatrics, the required radiation dose must be kept as low as reasonably achievable. Moreover, three-dimensional(3D) reconstruction of image data allows much better orientation in the body, permitting a more accurate diagnosis, precise treatment planning, and image-guided therapy. Additional functional information from different modalities is very helpful, information such as perfusion, flow rate, diffusion, oxygen concentration, metabolism, and receptor affinity for specific molecules. To visualize, functional and anatomical information are fused into one combined image. The physical point of view is technology-driven. A choice of different energies from the electromagnetic spectrum is available for imaging; not only X-rays in the range of 10-150 keV, but also γ rays, which are used in nuclear medicine, X-rays in the MeV range, which are used in portal imaging to monitor radiation therapy

  11. Medical Physics Staffing Needs in Diagnostic Imaging and Radionuclide Therapy: An Activity Based Approach [Endorsed by International Organization for Medical Physics

    International Nuclear Information System (INIS)

    2018-01-01

    Over the last decades, the rapid technological development of diagnostic and interventional radiology and nuclear medicine has made them major tools of modern medicine. However, at the same time the involved risks, the growing number of procedures and the increasing complexity of the procedures require competent professional staff to ensure safe and effective patient diagnosis, treatment and management. Medical physicists (or clinically qualified medical physicists) have been recognized as vital health professionals with important and clear responsibilities related to quality and safety of applications of ionizing radiation in medicine. This publication describes an algorithm developed to determine the recommended staffing levels for clinical medical physics services in medical imaging and radionuclide therapy, based on current best practice, as described in international guidelines.

  12. Medical image informatics infrastructure design and applications.

    Science.gov (United States)

    Huang, H K; Wong, S T; Pietka, E

    1997-01-01

    Picture archiving and communication systems (PACS) is a system integration of multimodality images and health information systems designed for improving the operation of a radiology department. As it evolves, PACS becomes a hospital image document management system with a voluminous image and related data file repository. A medical image informatics infrastructure can be designed to take advantage of existing data, providing PACS with add-on value for health care service, research, and education. A medical image informatics infrastructure (MIII) consists of the following components: medical images and associated data (including PACS database), image processing, data/knowledge base management, visualization, graphic user interface, communication networking, and application oriented software. This paper describes these components and their logical connection, and illustrates some applications based on the concept of the MIII.

  13. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Resources Professions Site Index A-Z Children's (Pediatric) Nuclear Medicine Children’s (pediatric) nuclear medicine imaging uses small ... of Children's Nuclear Medicine? What is Children's (Pediatric) Nuclear Medicine? Nuclear medicine is a branch of medical ...

  14. Commentary from Westminster. Medical effects of nuclear war.

    Science.gov (United States)

    Deitch, R

    1983-03-12

    A British Medical Association report on the medical consequences of nuclear war, scheduled for commercial publication in April 1983, could damage the Government's arguments for maintaining a nuclear deterrent. The gist of the BMA's findings is that Britain could not possibly cope with the aftermath of nuclear attack. Although Prime Minister Thatcher has made no comment, both the Home Office and the Department of Health and Social Security have criticized the report's negative conclusions. The BMA is expected to take up the issue at its annual meeting, and the Labour party has called for a Parliamentary debate on the report and its implications.

  15. Medical physics 2013. Abstracts

    International Nuclear Information System (INIS)

    Treuer, Harald

    2013-01-01

    The proceedings of the medical physics conference 2013 include abstract of lectures and poster sessions concerning the following issues: Tele-therapy - application systems, nuclear medicine and molecular imaging, neuromodulation, hearing and technical support, basic dosimetry, NMR imaging -CEST (chemical exchange saturation transfer), medical robotics, magnetic particle imaging, audiology, radiation protection, phase contrast - innovative concepts, particle therapy, brachytherapy, computerized tomography, quantity assurance, hybrid imaging techniques, diffusion and lung NMR imaging, image processing - visualization, cardiac and abdominal NMR imaging.

  16. Hybrid imaging, PET-CT and SPECT-CT: What impact on nuclear medicine education and practice in France?

    International Nuclear Information System (INIS)

    Mundler, O.

    2009-01-01

    To define the policy of our specialty with a consensus opinion, a questionnaire entitled 'hybrid imaging' was sent to practicing nuclear medicine specialist physicians in France to obtain their opinion on the impact of this recent method in training and in the practice of nuclear medicine and on the relations between nuclear medicine specialists and other medical imaging specialists. This questionnaire, written by the office of the French Society of Nuclear Medicine (F.S.N.M.) and molecular imaging, was divided into four parts: Profile and experience in hybrid imaging, Relations with radiologists, Practice of CT scans with hybrid equipment, and the Future of the specialty and of training in nuclear medicine. The response rate was 60%, i.e. 374 completed questionnaires. Overall, the responses were uniform, whatever the respondent's experience, type and place of practice. Regular participation in hybrid imaging practice was the reply provided by the majority of respondents. In terms of relations with radiologists, such contacts existed in over 85% of cases and are considered as being of high quality in over 90% of cases. The vast majority of practitioners believe that hybrid imaging will become the standard. Opinions on the diagnostic use of CT scans are divided, as well as their interpretation by a radiologist, a nuclear medicine specialist or by both. In the opinion of the vast majority, hybrid equipment systems should be managed by nuclear medicine specialists. With regard to the future, nuclear medicine should remain an independent specialty with enhanced training in morphological imaging and a residency training program whose length should be increased to 5 years. (author)

  17. Nuclear medicine in Ghana

    International Nuclear Information System (INIS)

    Affram, R.K.; Kyere, K.; Amuasi, J.

    1991-01-01

    The background to the introduction and application of radioisotopes in medicine culminating in the establishment of the nuclear Medicine Unit at the Korle Bu Teaching Hospital, Ghana, has been examined. The Unit has been involved in important clinical researches since early 1970s but routine application in patient management has not always been possible because of cost per test and lack of continuous availability of convertible currency for the purchase of radioisotopes which are not presently produced by the National Nuclear Research Institute at Kwabenya. The capabilities and potentials of the Unit are highlighted and a comparison of Nuclear Medicine techniques to other medical diagnostic and imaging methods have been made. There is no organised instruction in the principles of medical imaging and diagnostic methods at both undergraduate and postgraduate levels in Korle Bu Teaching Hospital which has not promoted the use of Nuclear Medicine techniques. The development of a comprehensive medical diagnostic and imaging services is urgently needed. (author). 18 refs., 3 tabs

  18. A special designed library for medical imaging applications

    Energy Technology Data Exchange (ETDEWEB)

    Lymberopoulos, D; Kotsopoulos, S; Zoupas, V; Yoldassis, N [Departmeent of Electrical Engineering, University of Patras, Patras 26 110 Greece (Greece); Spyropoulos, C [School of Medicine, Regional University Hospital, University of Patras, Patras 26 110 Greece (Greece)

    1994-12-31

    The present paper deals with a sophisticated and flexible library of medical purpose image processing routines. It contains modules for simple as well as advanced gray or colour image processing. This library offers powerful features for medical image processing and analysis applications, thus providing the physician with a means of analyzing and estimating medical images in order to accomplish their diagnostic procedures. 6 refs, 1 figs.

  19. Knowledge of medical imaging radiation dose and risk among doctors

    International Nuclear Information System (INIS)

    Brown, Nicholas; Jones, Lee

    2013-01-01

    The growth of computed tomography (CT) and nuclear medicine (NM) scans has revolutionised healthcare but also greatly increased population radiation doses. Overuse of diagnostic radiation is becoming a feature of medical practice, leading to possible unnecessary radiation exposures and lifetime-risks of developing cancer. Doctors across all medical specialties and experience levels were surveyed to determine their knowledge of radiation doses and potential risks associated with some diagnostic imaging. A survey relating to knowledge and understanding of medical imaging radiation was distributed to doctors at 14 major Queensland public hospitals, as well as fellows and trainees in radiology, emergency medicine and general practice. From 608 valid responses, only 17.3% correctly estimated the radiation dose from CT scans and almost 1 in 10 incorrectly believed that CT radiation is not associated with any increased lifetime risk of developing cancer. There is a strong inverse relationship between a clinician's experience and their knowledge of CT radiation dose and risks, even among radiologists. More than a third (35.7%) of doctors incorrectly believed that typical NM imaging either does not use ionising radiation or emits doses equal to or less than a standard chest radiograph. Knowledge of CT and NM radiation doses is poor across all specialties, and there is a significant inverse relationship between experience and awareness of CT dose and risk. Despite having a poor understanding of these concepts, most doctors claim to consider them prior to requesting scans and when discussing potential risks with patients.

  20. Desktop publishing and medical imaging: paper as hardcopy medium for digital images.

    Science.gov (United States)

    Denslow, S

    1994-08-01

    Desktop-publishing software and hardware has progressed to the point that many widely used word-processing programs are capable of printing high-quality digital images with many shades of gray from black to white. Accordingly, it should be relatively easy to print digital medical images on paper for reports, instructional materials, and in research notes. Components were assembled that were necessary for extracting image data from medical imaging devices and converting the data to a form usable by word-processing software. A system incorporating these components was implemented in a medical setting and has been operating for 18 months. The use of this system by medical staff has been monitored.

  1. The Orthanc Ecosystem for Medical Imaging.

    Science.gov (United States)

    Jodogne, Sébastien

    2018-05-03

    This paper reviews the components of Orthanc, a free and open-source, highly versatile ecosystem for medical imaging. At the core of the Orthanc ecosystem, the Orthanc server is a lightweight vendor neutral archive that provides PACS managers with a powerful environment to automate and optimize the imaging flows that are very specific to each hospital. The Orthanc server can be extended with plugins that provide solutions for teleradiology, digital pathology, or enterprise-ready databases. It is shown how software developers and research engineers can easily develop external software or Web portals dealing with medical images, with minimal knowledge of the DICOM standard, thanks to the advanced programming interface of the Orthanc server. The paper concludes by introducing the Stone of Orthanc, an innovative toolkit for the cross-platform rendering of medical images.

  2. Deep Learning in Medical Image Analysis.

    Science.gov (United States)

    Shen, Dinggang; Wu, Guorong; Suk, Heung-Il

    2017-06-21

    This review covers computer-assisted analysis of images in the field of medical imaging. Recent advances in machine learning, especially with regard to deep learning, are helping to identify, classify, and quantify patterns in medical images. At the core of these advances is the ability to exploit hierarchical feature representations learned solely from data, instead of features designed by hand according to domain-specific knowledge. Deep learning is rapidly becoming the state of the art, leading to enhanced performance in various medical applications. We introduce the fundamentals of deep learning methods and review their successes in image registration, detection of anatomical and cellular structures, tissue segmentation, computer-aided disease diagnosis and prognosis, and so on. We conclude by discussing research issues and suggesting future directions for further improvement.

  3. Planning of emergency medical treatment in nuclear power plant

    International Nuclear Information System (INIS)

    Kusama, Tomoko

    1989-01-01

    Medical staffs and health physicists have shown deep concerning at the emergency plans of nuclear power plants after the TMI nuclear accident. The most important and basic countermeasure for accidents was preparing appropriate and concrete organization and plans for treatment. We have planed emergency medical treatment for radiation workers in a nuclear power plant institute. The emergency medical treatment at institute consisted of two stages, that is on-site emergency treatment at facility medical service. In first step of planning in each stage, we selected and treatment at facility medical service. In first step of planning in each stage, we selected and analyzed all possible accidents in the institute and discussed on practical treatments for some possible accidents. The manuals of concrete procedure of emergency treatment for some accidents were prepared following discussion and facilities and equipment for medical treatment and decontamination were provided. All workers in the institute had periodical training and drilling of on-site emergency treatment and mastered technique of first aid. Decontamination and operation rooms were provided in the facillity medical service. The main functions at the facility medical service have been carried out by industrial nurses. Industrial nurses have been in close co-operation with radiation safety officers and medical doctors in regional hospital. (author)

  4. A hierarchical SVG image abstraction layer for medical imaging

    Science.gov (United States)

    Kim, Edward; Huang, Xiaolei; Tan, Gang; Long, L. Rodney; Antani, Sameer

    2010-03-01

    As medical imaging rapidly expands, there is an increasing need to structure and organize image data for efficient analysis, storage and retrieval. In response, a large fraction of research in the areas of content-based image retrieval (CBIR) and picture archiving and communication systems (PACS) has focused on structuring information to bridge the "semantic gap", a disparity between machine and human image understanding. An additional consideration in medical images is the organization and integration of clinical diagnostic information. As a step towards bridging the semantic gap, we design and implement a hierarchical image abstraction layer using an XML based language, Scalable Vector Graphics (SVG). Our method encodes features from the raw image and clinical information into an extensible "layer" that can be stored in a SVG document and efficiently searched. Any feature extracted from the raw image including, color, texture, orientation, size, neighbor information, etc., can be combined in our abstraction with high level descriptions or classifications. And our representation can natively characterize an image in a hierarchical tree structure to support multiple levels of segmentation. Furthermore, being a world wide web consortium (W3C) standard, SVG is able to be displayed by most web browsers, interacted with by ECMAScript (standardized scripting language, e.g. JavaScript, JScript), and indexed and retrieved by XML databases and XQuery. Using these open source technologies enables straightforward integration into existing systems. From our results, we show that the flexibility and extensibility of our abstraction facilitates effective storage and retrieval of medical images.

  5. A high performance parallel approach to medical imaging

    International Nuclear Information System (INIS)

    Frieder, G.; Frieder, O.; Stytz, M.R.

    1988-01-01

    Research into medical imaging using general purpose parallel processing architectures is described and a review of the performance of previous medical imaging machines is provided. Results demonstrating that general purpose parallel architectures can achieve performance comparable to other, specialized, medical imaging machine architectures is presented. A new back-to-front hidden-surface removal algorithm is described. Results demonstrating the computational savings obtained by using the modified back-to-front hidden-surface removal algorithm are presented. Performance figures for forming a full-scale medical image on a mesh interconnected multiprocessor are presented

  6. Contributions to HEVC Prediction for Medical Image Compression

    OpenAIRE

    Guarda, André Filipe Rodrigues

    2016-01-01

    Medical imaging technology and applications are continuously evolving, dealing with images of increasing spatial and temporal resolutions, which allow easier and more accurate medical diagnosis. However, this increase in resolution demands a growing amount of data to be stored and transmitted. Despite the high coding efficiency achieved by the most recent image and video coding standards in lossy compression, they are not well suited for quality-critical medical image compressi...

  7. Automatic medical image annotation and keyword-based image retrieval using relevance feedback.

    Science.gov (United States)

    Ko, Byoung Chul; Lee, JiHyeon; Nam, Jae-Yeal

    2012-08-01

    This paper presents novel multiple keywords annotation for medical images, keyword-based medical image retrieval, and relevance feedback method for image retrieval for enhancing image retrieval performance. For semantic keyword annotation, this study proposes a novel medical image classification method combining local wavelet-based center symmetric-local binary patterns with random forests. For keyword-based image retrieval, our retrieval system use the confidence score that is assigned to each annotated keyword by combining probabilities of random forests with predefined body relation graph. To overcome the limitation of keyword-based image retrieval, we combine our image retrieval system with relevance feedback mechanism based on visual feature and pattern classifier. Compared with other annotation and relevance feedback algorithms, the proposed method shows both improved annotation performance and accurate retrieval results.

  8. Imaging techniques for medical diagnosis

    International Nuclear Information System (INIS)

    Gudden, F.

    1982-01-01

    In the last few decades, science, engineering and medicine have combinded to improve the quality of our lives to a level previously unimagined. Within the framework of medical engineering - the field of activity of the Medical Engineering Group of Siemens AG - diagnostic image-generating systems have played an important role in effecting these changes and improvements. The importance of these systems to the success of the Group is clearly evident. Diagnostic imaging systems account for 65% of the sales achieved by this Group. In this article an overview is presented of the major innovations and the aims of developments in the field of imaging systems. (orig.)

  9. The semiotics of medical image Segmentation.

    Science.gov (United States)

    Baxter, John S H; Gibson, Eli; Eagleson, Roy; Peters, Terry M

    2018-02-01

    As the interaction between clinicians and computational processes increases in complexity, more nuanced mechanisms are required to describe how their communication is mediated. Medical image segmentation in particular affords a large number of distinct loci for interaction which can act on a deep, knowledge-driven level which complicates the naive interpretation of the computer as a symbol processing machine. Using the perspective of the computer as dialogue partner, we can motivate the semiotic understanding of medical image segmentation. Taking advantage of Peircean semiotic traditions and new philosophical inquiry into the structure and quality of metaphors, we can construct a unified framework for the interpretation of medical image segmentation as a sign exchange in which each sign acts as an interface metaphor. This allows for a notion of finite semiosis, described through a schematic medium, that can rigorously describe how clinicians and computers interpret the signs mediating their interaction. Altogether, this framework provides a unified approach to the understanding and development of medical image segmentation interfaces. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Trends in medical image processing

    International Nuclear Information System (INIS)

    Robilotta, C.C.

    1987-01-01

    The function of medical image processing is analysed, mentioning the developments, the physical agents, and the main categories, as conection of distortion in image formation, detectability increase, parameters quantification, etc. (C.G.C.) [pt

  11. Medical imaging systems

    Science.gov (United States)

    Frangioni, John V [Wayland, MA

    2012-07-24

    A medical imaging system provides simultaneous rendering of visible light and fluorescent images. The system may employ dyes in a small-molecule form that remains in a subject's blood stream for several minutes, allowing real-time imaging of the subject's circulatory system superimposed upon a conventional, visible light image of the subject. The system may also employ dyes or other fluorescent substances associated with antibodies, antibody fragments, or ligands that accumulate within a region of diagnostic significance. In one embodiment, the system provides an excitation light source to excite the fluorescent substance and a visible light source for general illumination within the same optical guide that is used to capture images. In another embodiment, the system is configured for use in open surgical procedures by providing an operating area that is closed to ambient light. More broadly, the systems described herein may be used in imaging applications where a visible light image may be usefully supplemented by an image formed from fluorescent emissions from a fluorescent substance that marks areas of functional interest.

  12. Nonreference Medical Image Edge Map Measure

    Directory of Open Access Journals (Sweden)

    Karen Panetta

    2014-01-01

    Full Text Available Edge detection is a key step in medical image processing. It is widely used to extract features, perform segmentation, and further assist in diagnosis. A poor quality edge map can result in false alarms and misses in cancer detection algorithms. Therefore, it is necessary to have a reliable edge measure to assist in selecting the optimal edge map. Existing reference based edge measures require a ground truth edge map to evaluate the similarity between the generated edge map and the ground truth. However, the ground truth images are not available for medical images. Therefore, a nonreference edge measure is ideal for medical image processing applications. In this paper, a nonreference reconstruction based edge map evaluation (NREM is proposed. The theoretical basis is that a good edge map keeps the structure and details of the original image thus would yield a good reconstructed image. The NREM is based on comparing the similarity between the reconstructed image with the original image using this concept. The edge measure is used for selecting the optimal edge detection algorithm and optimal parameters for the algorithm. Experimental results show that the quantitative evaluations given by the edge measure have good correlations with human visual analysis.

  13. REVIEW OF MATHEMATICAL METHODS AND ALGORITHMS OF MEDICAL IMAGE PROCESSING ON THE EXAMPLE OF TECHNOLOGY OF MEDICAL IMAGE PROCESSING FROM WOLFRAM MATHEMATICA

    Directory of Open Access Journals (Sweden)

    О. E. Prokopchenko

    2015-09-01

    Full Text Available The article analyzes the basic methods and algorithms of mathematical processing of medical images as objects of computer mathematics. The presented methods and computer algorithms of mathematics relevant and may find application in the field of medical imaging - automated processing of images; as a tool for measurement and determination the optical parameters; identification and formation of medical images database. Methods and computer algorithms presented in the article & based on Wolfram Mathematica are also relevant to the problem of modern medical education. As an example of Wolfram Mathematica may be considered appropriate demonstration, such as recognition of special radiographs and morphological imaging. These methods are used to improve the diagnostic significance and value of medical (clinical research and can serve as an educational interactive demonstration. Implementation submitted individual methods and algorithms of computer Wolfram Mathematics contributes, in general, the optimization process of practical processing and presentation of medical images.

  14. Nuclear energy and its medical application

    International Nuclear Information System (INIS)

    Jain, S.K.

    2010-01-01

    Ionising radiation is used in radiotherapy to treat cancer and to sterilise medical equipment because it destroys cells. Radioactive tracers are used in nuclear medicine because the ionising radiation it emits is easy to detect. There are three main uses of ionising radiation in medicine: treatment, diagnosis and sterilisation. Radiotherapy is used to treat cancers by irradiating them with ionising radiation. Radioactive tracers are used to diagnose and investigate several medical conditions. Ionising radiation is used to sterilise medical equipment as it kills germs and/or bacteria

  15. Nuclear imaging of hepatic impact injury on rabbits

    International Nuclear Information System (INIS)

    Jin Rongbing; Wen Jianliang; Tang Weijia; Ma Xiaolin

    2002-01-01

    Objective: To investigate the effect and clinic application value of nuclear imaging on hepatic impact experiment. Methods: Experimental rabbits were impact injured on liver with BIM-IV bio-impact machine. Liver imaging was performed with sodium phytate labeled by 99m Tc. Liver blood pool imaging was performed with labeled red blood cells. The results of imaging were similar with the results of anatomy. Results: There were significant difference between normal liver and injured liver. Radio diminution and defect were showed on injured liver areas in labeled hepatic cells. Many types of abnormal radioactivity distribution were observed in liver pool imaging. The results of liver imaging and liver blood pool imaging were corresponded to the results of anatomy. Conclusion: Changes of hepatic cell structures and function after injury could be showed by nuclear imaging. Nuclear imaging was valuable in determining injured liver position or injured degree

  16. A digital library for medical imaging activities

    Science.gov (United States)

    dos Santos, Marcelo; Furuie, Sérgio S.

    2007-03-01

    This work presents the development of an electronic infrastructure to make available a free, online, multipurpose and multimodality medical image database. The proposed infrastructure implements a distributed architecture for medical image database, authoring tools, and a repository for multimedia documents. Also it includes a peer-reviewed model that assures quality of dataset. This public repository provides a single point of access for medical images and related information to facilitate retrieval tasks. The proposed approach has been used as an electronic teaching system in Radiology as well.

  17. Imaging systems in nuclear medicine and image evaluation

    International Nuclear Information System (INIS)

    Beck, R.; Charleston, D.; Metz, C.

    1980-01-01

    This project deals with imaging systems in nuclear medicine and image evaluation and is presented as four subprojects. The goal of the first subproject is to improve diagnositc image quality by development of a general computer code for optimizing collimator design. The second subproject deals with a secondary emission and fluorescence technique for thyroid scanning while the third subproject emphasizes the need for more sophisticated image processing systems such as coherent optical spatial filtering systems and digital image processing. The fourth subproject presents a new approach for processing image data by taking into account the energy of each detected gamma-ray photon

  18. Application of mathematical morphology in discrimination nuclear track images

    International Nuclear Information System (INIS)

    Zhang Qingxian; Ge Liangquan; Xiao Caijin

    2008-01-01

    Solid nuclear tracks test is an important and usual method in radioactivity test. But how to divide the overlapped tracks is the key of the processing of digital images of the nuclear tracks. Mathematical Morphology is used in processing of digital images of the nuclear tracks. As a result, the method has been programmed by c++ and used in experiments. It is successful in processing of digital images of the nuclear tracks. (authors)

  19. Quantitative Nuclear Medicine Imaging: Concepts, Requirements and Methods

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-01-15

    The absolute quantification of radionuclide distribution has been a goal since the early days of nuclear medicine. Nevertheless, the apparent complexity and sometimes limited accuracy of these methods have prevented them from being widely used in important applications such as targeted radionuclide therapy or kinetic analysis. The intricacy of the effects degrading nuclear medicine images and the lack of availability of adequate methods to compensate for these effects have frequently been seen as insurmountable obstacles in the use of quantitative nuclear medicine in clinical institutions. In the last few decades, several research groups have consistently devoted their efforts to the filling of these gaps. As a result, many efficient methods are now available that make quantification a clinical reality, provided appropriate compensation tools are used. Despite these efforts, many clinical institutions still lack the knowledge and tools to adequately measure and estimate the accumulated activities in the human body, thereby using potentially outdated protocols and procedures. The purpose of the present publication is to review the current state of the art of image quantification and to provide medical physicists and other related professionals facing quantification tasks with a solid background of tools and methods. It describes and analyses the physical effects that degrade image quality and affect the accuracy of quantification, and describes methods to compensate for them in planar, single photon emission computed tomography (SPECT) and positron emission tomography (PET) images. The fast paced development of the computational infrastructure, both hardware and software, has made drastic changes in the ways image quantification is now performed. The measuring equipment has evolved from the simple blind probes to planar and three dimensional imaging, supported by SPECT, PET and hybrid equipment. Methods of iterative reconstruction have been developed to allow for

  20. Feature Detector and Descriptor for Medical Images

    Science.gov (United States)

    Sargent, Dusty; Chen, Chao-I.; Tsai, Chang-Ming; Wang, Yuan-Fang; Koppel, Daniel

    2009-02-01

    The ability to detect and match features across multiple views of a scene is a crucial first step in many computer vision algorithms for dynamic scene analysis. State-of-the-art methods such as SIFT and SURF perform successfully when applied to typical images taken by a digital camera or camcorder. However, these methods often fail to generate an acceptable number of features when applied to medical images, because such images usually contain large homogeneous regions with little color and intensity variation. As a result, tasks like image registration and 3D structure recovery become difficult or impossible in the medical domain. This paper presents a scale, rotation and color/illumination invariant feature detector and descriptor for medical applications. The method incorporates elements of SIFT and SURF while optimizing their performance on medical data. Based on experiments with various types of medical images, we combined, adjusted, and built on methods and parameter settings employed in both algorithms. An approximate Hessian based detector is used to locate scale invariant keypoints and a dominant orientation is assigned to each keypoint using a gradient orientation histogram, providing rotation invariance. Finally, keypoints are described with an orientation-normalized distribution of gradient responses at the assigned scale, and the feature vector is normalized for contrast invariance. Experiments show that the algorithm detects and matches far more features than SIFT and SURF on medical images, with similar error levels.

  1. A framework for integration of heterogeneous medical imaging networks.

    Science.gov (United States)

    Viana-Ferreira, Carlos; Ribeiro, Luís S; Costa, Carlos

    2014-01-01

    Medical imaging is increasing its importance in matters of medical diagnosis and in treatment support. Much is due to computers that have revolutionized medical imaging not only in acquisition process but also in the way it is visualized, stored, exchanged and managed. Picture Archiving and Communication Systems (PACS) is an example of how medical imaging takes advantage of computers. To solve problems of interoperability of PACS and medical imaging equipment, the Digital Imaging and Communications in Medicine (DICOM) standard was defined and widely implemented in current solutions. More recently, the need to exchange medical data between distinct institutions resulted in Integrating the Healthcare Enterprise (IHE) initiative that contains a content profile especially conceived for medical imaging exchange: Cross Enterprise Document Sharing for imaging (XDS-i). Moreover, due to application requirements, many solutions developed private networks to support their services. For instance, some applications support enhanced query and retrieve over DICOM objects metadata. This paper proposes anintegration framework to medical imaging networks that provides protocols interoperability and data federation services. It is an extensible plugin system that supports standard approaches (DICOM and XDS-I), but is also capable of supporting private protocols. The framework is being used in the Dicoogle Open Source PACS.

  2. REVIEW OF MATHEMATICAL METHODS AND ALGORITHMS OF MEDICAL IMAGE PROCESSING ON THE EXAMPLE OF TECHNOLOGY OF MEDICAL IMAGE PROCESSING FROM WOLFRAM MATHEMATICS

    Directory of Open Access Journals (Sweden)

    O. Ye. Prokopchenko

    2015-10-01

    Full Text Available The article analyzes the basic methods and algorithms of mathematical processing of medical images as objects of computer mathematics. The presented methods and computer algorithms of mathematics relevant and may find application in the field of medical imaging - automated processing of images; as a tool for measurement and determination the optical parameters; identification and formation of medical images database. Methods and computer algorithms presented in the article and based on Wolfram Mathematica are also relevant to the problem of modern medical education. As an example of Wolfram Mathematics may be considered appropriate demonstration, such as recognition of special radiographs and morphological imaging. These methods are used to improve  the diagnostic significance and value of medical (clinical research and can serve as an educational interactive demonstration. Implementation submitted individual methods and algorithms of computer Wolfram Mathematics contributes, in general, the optimization process of practical processing and presentation of medical images.

  3. Interpretation of medical images by model guided analysis

    International Nuclear Information System (INIS)

    Karssemeijer, N.

    1989-01-01

    Progress in the development of digital pictorial information systems stimulates a growing interest in the use of image analysis techniques in medicine. Especially when precise quantitative information is required the use of fast and reproducable computer analysis may be more appropriate than relying on visual judgement only. Such quantitative information can be valuable, for instance, in diagnostics or in irradiation therapy planning. As medical images are mostly recorded in a prescribed way, human anatomy guarantees a common image structure for each particular type of exam. In this thesis it is investigated how to make use of this a priori knowledge to guide image analysis. For that purpose models are developed which are suited to capture common image structure. The first part of this study is devoted to an analysis of nuclear medicine images of myocardial perfusion. In ch. 2 a model of these images is designed in order to represent characteristic image properties. It is shown that for these relatively simple images a compact symbolic description can be achieved, without significant loss of diagnostically importance of several image properties. Possibilities for automatic interpretation of more complex images is investigated in the following chapters. The central topic is segmentation of organs. Two methods are proposed and tested on a set of abdominal X-ray CT scans. Ch. 3 describes a serial approach based on a semantic network and the use of search areas. Relational constraints are used to guide the image processing and to classify detected image segments. In teh ch.'s 4 and 5 a more general parallel approach is utilized, based on a markov random field image model. A stochastic model used to represent prior knowledge about the spatial arrangement of organs is implemented as an external field. (author). 66 refs.; 27 figs.; 6 tabs

  4. Novel targeted nuclear imaging agent for gastric cancer diagnosis: glucose-regulated protein 78 binding peptide-guided 111In-labeled polymeric micelles

    Directory of Open Access Journals (Sweden)

    Cheng CC

    2013-04-01

    Full Text Available Chun-Chia Cheng,1,2,* Chiung-Fang Huang,3,4,* Ai-Sheng Ho,5 Cheng-Liang Peng,6 Chun-Chao Chang,7,8 Fu-Der Mai,1,9 Ling-Yun Chen,10 Tsai-Yueh Luo,2 Jungshan Chang1,11,121Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, 2Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan, 3School of Dental Technology, Taipei Medical University, Taipei, 4Division of Family and Operative Dentistry, Department of Dentistry, Taipei Medical University Hospital, Taipei, 5Division of Gastroenterology, Cheng Hsin General Hospital, Taipei, 6Institute of Biomedical Engineering, National Taiwan University, Taipei, 7Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, 8Department of Internal Medicine, Taipei Medical University, Taipei, 9Department of Biochemistry, Taipei Medical University, Taipei, 10Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung, 11Neuroscience Research Center, Taipei Medical University Hospital, Taipei, 12Research Center for Biomedical Implants and Microsurgery Devices, Taipei Medical University, Taipei, Taiwan*These authors contributed equally to this workAbstract: Increased expression of cellular membrane bound glucose-regulated protein 78 (GRP78 is considered to be one of the biomarkers for gastric cancers. Therefore, peptides or molecules with specific recognition to GRP78 can act as a guiding probe to direct conjugated imaging agents to localized cancers. Based on this rationale, GRP78-guided polymeric micelles were designed and manufactured for nuclear imaging detection of tumors. Thiolated GRP78 binding peptide (GRP78BP was first labeled with maleimide-terminated poly(ethylene glycol–poly(ε-caprolactone and then mixed with diethylenetriaminepentaacetic acid (DTPA-linked poly(ethylene glycol–poly(ε-caprolactone to form DTPA/GRP78BP-conjugated micelles. The coupling efficiency of micelles with

  5. Developments in medical image processing and computational vision

    CERN Document Server

    Jorge, Renato

    2015-01-01

    This book presents novel and advanced topics in Medical Image Processing and Computational Vision in order to solidify knowledge in the related fields and define their key stakeholders. It contains extended versions of selected papers presented in VipIMAGE 2013 – IV International ECCOMAS Thematic Conference on Computational Vision and Medical Image, which took place in Funchal, Madeira, Portugal, 14-16 October 2013.  The twenty-two chapters were written by invited experts of international recognition and address important issues in medical image processing and computational vision, including: 3D vision, 3D visualization, colour quantisation, continuum mechanics, data fusion, data mining, face recognition, GPU parallelisation, image acquisition and reconstruction, image and video analysis, image clustering, image registration, image restoring, image segmentation, machine learning, modelling and simulation, object detection, object recognition, object tracking, optical flow, pattern recognition, pose estimat...

  6. Applicability of compton imaging in nuclear decommissioning activities

    International Nuclear Information System (INIS)

    Ljubenov, V.Lj.; Marinkovic, P.M.

    2002-01-01

    During the decommissioning of nuclear facilities significant part of the activities is related to the radiological characterization, waste classification and management. For these purposes a relatively new imaging technique, based on information from the gamma radiation that undergoes Compton scattering, is applicable. Compton imaging systems have a number of advantages for nuclear waste characterization, such as identifying hot spots in mixed waste in order to reduce the volume of high-level waste requiring extensive treatment or long-term storage, imaging large contaminated areas and objects etc. Compton imaging also has potential applications for monitoring of production, transport and storage of nuclear materials and components. This paper discusses some system design requirements and performance specifications for these applications. The advantages of Compton imaging are compared to competing imaging techniques. (author)

  7. Applied medical image processing a basic course

    CERN Document Server

    Birkfellner, Wolfgang

    2014-01-01

    A widely used, classroom-tested text, Applied Medical Image Processing: A Basic Course delivers an ideal introduction to image processing in medicine, emphasizing the clinical relevance and special requirements of the field. Avoiding excessive mathematical formalisms, the book presents key principles by implementing algorithms from scratch and using simple MATLAB®/Octave scripts with image data and illustrations on an accompanying CD-ROM or companion website. Organized as a complete textbook, it provides an overview of the physics of medical image processing and discusses image formats and data storage, intensity transforms, filtering of images and applications of the Fourier transform, three-dimensional spatial transforms, volume rendering, image registration, and tomographic reconstruction.

  8. Future of X-ray phase imaging in medical imaging technology

    International Nuclear Information System (INIS)

    Momose, Atsushi

    2007-01-01

    Weakly absorbing materials, such as biological, soft tissues, can be imaged by generating contrast due to the phase shift of X-rays. In the past decade, several methods for X-ray phase imaging were proposed and demonstrated. The performance of X-ray phase imaging is attractive in the field of medical imaging technology, and its development for practical use is expected. Many methods, however, have been developed under the assumption of the use of synchrotron radiation, which is an obstacle to practical use. The method based on Talbot (-Lau) interferometry enables us to use a compact X-ray source, and its development is expected as a breakthrough for medical applications. (author)

  9. An interactive medical image segmentation framework using iterative refinement.

    Science.gov (United States)

    Kalshetti, Pratik; Bundele, Manas; Rahangdale, Parag; Jangra, Dinesh; Chattopadhyay, Chiranjoy; Harit, Gaurav; Elhence, Abhay

    2017-04-01

    Segmentation is often performed on medical images for identifying diseases in clinical evaluation. Hence it has become one of the major research areas. Conventional image segmentation techniques are unable to provide satisfactory segmentation results for medical images as they contain irregularities. They need to be pre-processed before segmentation. In order to obtain the most suitable method for medical image segmentation, we propose MIST (Medical Image Segmentation Tool), a two stage algorithm. The first stage automatically generates a binary marker image of the region of interest using mathematical morphology. This marker serves as the mask image for the second stage which uses GrabCut to yield an efficient segmented result. The obtained result can be further refined by user interaction, which can be done using the proposed Graphical User Interface (GUI). Experimental results show that the proposed method is accurate and provides satisfactory segmentation results with minimum user interaction on medical as well as natural images. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Content Based Medical Image Retrieval for Histopathological, CT and MRI Images

    Directory of Open Access Journals (Sweden)

    Swarnambiga AYYACHAMY

    2013-09-01

    Full Text Available A content based approach is followed for medical images. The purpose of this study is to access the stability of these methods for medical image retrieval. The methods used in color based retrieval for histopathological images are color co-occurrence matrix (CCM and histogram with meta features. For texture based retrieval GLCM (gray level co-occurrence matrix and local binary pattern (LBP were used. For shape based retrieval canny edge detection and otsu‘s method with multivariable threshold were used. Texture and shape based retrieval were implemented using MRI (magnetic resonance images. The most remarkable characteristics of the article are its content based approach for each medical imaging modality. Our efforts were focused on the initial visual search. From our experiment, histogram with meta features in color based retrieval for histopathological images shows a precision of 60 % and recall of 30 %. Whereas GLCM in texture based retrieval for MRI images shows a precision of 70 % and recall of 20 %. Shape based retrieval for MRI images shows a precision of 50% and recall of 25 %. The retrieval results shows that this simple approach is successful.

  11. Advanced Laser-Compton Gamma-Ray Sources for Nuclear Materials Detection, Assay and Imaging

    Science.gov (United States)

    Barty, C. P. J.

    2015-10-01

    Highly-collimated, polarized, mono-energetic beams of tunable gamma-rays may be created via the optimized Compton scattering of pulsed lasers off of ultra-bright, relativistic electron beams. Above 2 MeV, the peak brilliance of such sources can exceed that of the world's largest synchrotrons by more than 15 orders of magnitude and can enable for the first time the efficient pursuit of nuclear science and applications with photon beams, i.e. Nuclear Photonics. Potential applications are numerous and include isotope-specific nuclear materials management, element-specific medical radiography and radiology, non-destructive, isotope-specific, material assay and imaging, precision spectroscopy of nuclear resonances and photon-induced fission. This review covers activities at the Lawrence Livermore National Laboratory related to the design and optimization of mono-energetic, laser-Compton gamma-ray systems and introduces isotope-specific nuclear materials detection and assay applications enabled by them.

  12. Wavelets in medical imaging

    International Nuclear Information System (INIS)

    Zahra, Noor e; Sevindir, Huliya A.; Aslan, Zafar; Siddiqi, A. H.

    2012-01-01

    The aim of this study is to provide emerging applications of wavelet methods to medical signals and images, such as electrocardiogram, electroencephalogram, functional magnetic resonance imaging, computer tomography, X-ray and mammography. Interpretation of these signals and images are quite important. Nowadays wavelet methods have a significant impact on the science of medical imaging and the diagnosis of disease and screening protocols. Based on our initial investigations, future directions include neurosurgical planning and improved assessment of risk for individual patients, improved assessment and strategies for the treatment of chronic pain, improved seizure localization, and improved understanding of the physiology of neurological disorders. We look ahead to these and other emerging applications as the benefits of this technology become incorporated into current and future patient care. In this chapter by applying Fourier transform and wavelet transform, analysis and denoising of one of the important biomedical signals like EEG is carried out. The presence of rhythm, template matching, and correlation is discussed by various method. Energy of EEG signal is used to detect seizure in an epileptic patient. We have also performed denoising of EEG signals by SWT.

  13. Wavelets in medical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Zahra, Noor e; Sevindir, Huliya A.; Aslan, Zafar; Siddiqi, A. H. [Sharda University, SET, Department of Electronics and Communication, Knowledge Park 3rd, Gr. Noida (India); University of Kocaeli, Department of Mathematics, 41380 Kocaeli (Turkey); Istanbul Aydin University, Department of Computer Engineering, 34295 Istanbul (Turkey); Sharda University, SET, Department of Mathematics, 32-34 Knowledge Park 3rd, Greater Noida (India)

    2012-07-17

    The aim of this study is to provide emerging applications of wavelet methods to medical signals and images, such as electrocardiogram, electroencephalogram, functional magnetic resonance imaging, computer tomography, X-ray and mammography. Interpretation of these signals and images are quite important. Nowadays wavelet methods have a significant impact on the science of medical imaging and the diagnosis of disease and screening protocols. Based on our initial investigations, future directions include neurosurgical planning and improved assessment of risk for individual patients, improved assessment and strategies for the treatment of chronic pain, improved seizure localization, and improved understanding of the physiology of neurological disorders. We look ahead to these and other emerging applications as the benefits of this technology become incorporated into current and future patient care. In this chapter by applying Fourier transform and wavelet transform, analysis and denoising of one of the important biomedical signals like EEG is carried out. The presence of rhythm, template matching, and correlation is discussed by various method. Energy of EEG signal is used to detect seizure in an epileptic patient. We have also performed denoising of EEG signals by SWT.

  14. Moonshot Acceleration Factor: Medical Imaging.

    Science.gov (United States)

    Sevick-Muraca, Eva M; Frank, Richard A; Giger, Maryellen L; Mulshine, James L

    2017-11-01

    Medical imaging is essential to screening, early diagnosis, and monitoring responses to cancer treatments and, when used with other diagnostics, provides guidance for clinicians in choosing the most effective patient management plan that maximizes survivorship and quality of life. At a gathering of agency officials, patient advocacy organizations, industry/professional stakeholder groups, and clinical/basic science academicians, recommendations were made on why and how one should build a "cancer knowledge network" that includes imaging. Steps to accelerate the translation and clinical adoption of cancer discoveries to meet the goals of the Cancer Moonshot include harnessing computational power and architectures, developing data sharing policies, and standardizing medical imaging and in vitro diagnostics. Cancer Res; 77(21); 5717-20. ©2017 AACR . ©2017 American Association for Cancer Research.

  15. Resolution enhancement in medical ultrasound imaging.

    Science.gov (United States)

    Ploquin, Marie; Basarab, Adrian; Kouamé, Denis

    2015-01-01

    Image resolution enhancement is a problem of considerable interest in all medical imaging modalities. Unlike general purpose imaging or video processing, for a very long time, medical image resolution enhancement has been based on optimization of the imaging devices. Although some recent works purport to deal with image postprocessing, much remains to be done regarding medical image enhancement via postprocessing, especially in ultrasound imaging. We face a resolution improvement issue in the case of medical ultrasound imaging. We propose to investigate this problem using multidimensional autoregressive (AR) models. Noting that the estimation of the envelope of an ultrasound radio frequency (RF) signal is very similar to the estimation of classical Fourier-based power spectrum estimation, we theoretically show that a domain change and a multidimensional AR model can be used to achieve super-resolution in ultrasound imaging provided the order is estimated correctly. Here, this is done by means of a technique that simultaneously estimates the order and the parameters of a multidimensional model using relevant regression matrix factorization. Doing so, the proposed method specifically fits ultrasound imaging and provides an estimated envelope. Moreover, an expression that links the theoretical image resolution to both the image acquisition features (such as the point spread function) and a postprocessing feature (the AR model) order is derived. The overall contribution of this work is threefold. First, it allows for automatic resolution improvement. Through a simple model and without any specific manual algorithmic parameter tuning, as is used in common methods, the proposed technique simply and exclusively uses the ultrasound RF signal as input and provides the improved B-mode as output. Second, it allows for the a priori prediction of the improvement in resolution via the knowledge of the parametric model order before actual processing. Finally, to achieve the

  16. Shape analysis in medical image analysis

    CERN Document Server

    Tavares, João

    2014-01-01

    This book contains thirteen contributions from invited experts of international recognition addressing important issues in shape analysis in medical image analysis, including techniques for image segmentation, registration, modelling and classification, and applications in biology, as well as in cardiac, brain, spine, chest, lung and clinical practice. This volume treats topics such as, anatomic and functional shape representation and matching; shape-based medical image segmentation; shape registration; statistical shape analysis; shape deformation; shape-based abnormity detection; shape tracking and longitudinal shape analysis; machine learning for shape modeling and analysis; shape-based computer-aided-diagnosis; shape-based medical navigation; benchmark and validation of shape representation, analysis and modeling algorithms. This work will be of interest to researchers, students, and manufacturers in the fields of artificial intelligence, bioengineering, biomechanics, computational mechanics, computationa...

  17. Nuclear, biological and chemical warfare. Part I: Medical aspects of nuclear warfare.

    Science.gov (United States)

    Kasthuri, A S; Pradhan, A B; Dham, S K; Bhalla, I P; Paul, J S

    1990-04-01

    Casualties in earlier wars were due much more to diseases than to weapons. Mention has been made in history of the use of biological agents in warfare, to deny the enemy food and water and to cause disease. In the first world war chemical agents were used to cause mass casualties. Nuclear weapons were introduced in the second world war. Several countries are now involved in developing nuclear, biological and chemical weapon systems, for the mass annihilation of human beings, animals and plants, and to destroy the economy of their enemies. Recently, natural calamities and accidents in nuclear, chemical and biological laboratories and industries have caused mass instantaneous deaths in civilian population. The effects of future wars will not be restricted to uniformed persons. It is time that physicians become aware of the destructive potential of these weapons. Awareness, immediate protective measures and first aid will save a large number of persons. This series of articles will outline the medical aspects of nuclear, biological and chemical weapon systems in three parts. Part I will deal with the biological effects of a nuclear explosion. The short and long term effects due to blast, heat and associated radiation are highlighted. In Part II, the role of biological agents which cause commoner or new disease patterns is mentioned. Some of the accidents from biological warfare laboratories are a testimony to its potential deleterious effects. Part III deals with medical aspects of chemical warfare agents, which in view of their mass effects can overwhelm the existing medical resources, both civilian and military.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Molecular nuclear imaging for targeting and trafficking

    International Nuclear Information System (INIS)

    Bom, Hee Seung; Min, Jung Jun; Jeong, Hwan-Jeong

    2006-01-01

    Noninvasive molecular targeting in living subjects is highly demanded for better understanding of such diverse topics as the efficient delivery of drugs, genes, or radionuclides for the diagnosis or treatment of diseases. Progress in molecular biology, genetic engineering and polymer chemistry provides various tools to target molecules and cells in vivo. We used chitosan as a polymer, and 99m Tc as a radionuclide. We developed 99m Tc-galactosylated chitosan to target asialoglycoprotein receptors for nuclear imaging. We also developed 99m Tc-HYNIC-chitosan-transferrin to target inflammatory cells, which was more effective than 67 Ga-citrate for imaging inflammatory lesions. For an effective delivery of molecules, a longer circulation time is needed. We found that around 10% PEGylation was most effective to prolong the circulation time of liposomes for nuclear imaging of 99m Tc-HMPAO-labeled liposomes in rats. Using various characteristics of molecules, we can deliver drugs into targets more effectively. We found that 99m Tc-labeled biodegradable pullulan-derivatives are retained in tumor tissue in response to extracellular ion-strength. For the trafficking of various cells or bacteria in an intact animal, we used optical imaging techniques or radiolabeled cells. We monitored tumor-targeting bacteria by bioluminescent imaging techniques, dentritic cells by radiolabeling and neuronal stem cells by sodium-iodide symporter reporter gene imaging. In summary, we introduced recent achievements of molecular nuclear imaging technologies in targeting receptors for hepatocyte or inflammatory cells and in trafficking bacterial, immune and stem cells using molecular nuclear imaging techniques

  19. Signal Processing in Medical Ultrasound B-mode Imaging

    International Nuclear Information System (INIS)

    Song, Tai Kyong

    2000-01-01

    Ultrasonic imaging is the most widely used modality among modern imaging device for medical diagnosis and the system performance has been improved dramatically since early 90's due to the rapid advances in DSP performance and VLSI technology that made it possible to employ more sophisticated algorithms. This paper describes 'main stream' digital signal processing functions along with the associated implementation considerations in modern medical ultrasound imaging systems. Topics covered include signal processing methods for resolution improvement, ultrasound imaging system architectures, roles and necessity of the applications of DSP and VLSI technology in the development of the medical ultrasound imaging systems, and array signal processing techniques for ultrasound focusing

  20. Nuclear magnetic resonance imaging

    International Nuclear Information System (INIS)

    Young, I.R.

    1984-01-01

    In a method of imaging a body in which nuclear magnetic resonance is excited in a region including part of the body, and the free induction decay signal is measured, a known quantity of a material of known nuclear magnetic resonance properties, for example a bag of water, is included in the region so as to enhance the measured free induction decay signal. This then reduces the generation of noise during subsequent processing of the signal. (author)

  1. Experimental development of a liquid xenon Compton telescope for functional medical imaging

    International Nuclear Information System (INIS)

    Oger, Tugdual

    2012-01-01

    imaging is a new nuclear medical imaging technique which has been suggested by Subatech laboratory. This technique involves locating three-dimensional position of the decay of an innovative radioisotope (β + ,γ) emitter, the 44 Sc. The principle consist in the detection of two photons of 511 keV gamma rays from the decay of the positron, provided by a PET ring detector, associated to the detection of the third photon by a Liquid xenon Compton telescope. The energy deposited in the interaction between the photon and xenon and its position are identified by measuring the ionization signal with a Micromegas chamber (Micro-Mesh Gaseous Structure), while the trigger and time measurement of the interaction are provided by the detection of the scintillation signal. The principle of the TPC is thus used to Compton imaging. In order to demonstrate experimentally the feasibility of imaging 3γ, a small prototype, XEMIS (Xenon Medical Imaging System) was developed. This thesis is an important step towards the proof of feasibility. In this work are exposed the characterization of the detector response for a beam of 511 keV gamma rays and the analysis of data derived from it. The measurement of energy and time resolutions will be presented, as well as the purity of the liquid xenon. (author) [fr

  2. Medical rescue for nuclear or radiologic emergencies

    International Nuclear Information System (INIS)

    Chen Xiaohua; Nie Suifeng

    2011-01-01

    Nuclear or radiologic emergencies are defined as incidents that are caused by radioactive substance or by other sources of radiation and can pose a serious hazard to public health. In case of nuclear or radiologic emergencies, radioactive rays will damage the human body and bring about psychological and mental stress, resulting in a series of social psychological effects. The key to medical rescue for nuclear or radiologic emergencies is to take effective measures which can minimize the body harm resulting from nuclear or radiologic emergencies and maintain social stability. This article reviews the personnel protection, on-the-spot salvage, treatments of various harm, and prevention of public psychological effect following nuclear or radiologic emergencies. (authors)

  3. The future of three-dimensional medical imaging

    International Nuclear Information System (INIS)

    Peter, T.M.

    1996-01-01

    The past 15 years have witnessed an explosion in medical imaging technology, and none more so than in the tomographic imaging modalities of CT and MRI. Prior to 1975, 3-D imaging was largely performed in the minds of radiologists and surgeons, assisted by the modalities of conventional x-ray tomography and stereoscopic radiography. However today, with the advent of imaging techniques which ower their existence to computer technology, three-dimensional image acquisition is fast becoming the norm and the clinician finally has access to sets of data that represent the entire imaged volume. Stereoscopic image visualization has already begun to reappear as a viable means of visualizing 3 D medical images. The future of 3-D imaging is exciting and will undoubtedly move further in the direction of virtual reality. (author)

  4. Nuclear medical examinations in Marfan's syndrome

    International Nuclear Information System (INIS)

    D'haene, E.G.M.

    1985-01-01

    Four patients of one family with the Marfan's syndrome have been examined with nuclear medical techniques. A combination of isotopes, angiography and ECG triggered bloodpoolscintigraphy with echocardiography are very suitable to examine the course of the disease. (Auth.)

  5. Paediatric nuclear medicine imaging.

    Science.gov (United States)

    Biassoni, Lorenzo; Easty, Marina

    2017-09-01

    Nuclear medicine imaging explores tissue viability and function by using radiotracers that are taken up at cellular level with different mechanism. This imaging technique can also be used to assess blood flow and transit through tubular organs. Nuclear medicine imaging has been used in paediatrics for decades and this field is continuously evolving. The data presented comes from clinical experience and some milestone papers on the subject. Nuclear medicine imaging is well-established in paediatric nephro-urology in the context of urinary tract infection, ante-natally diagnosed hydronephrosis and other congenital renal anomalies. Also, in paediatric oncology, I-123-meta-iodobenzyl-guanidine has a key role in the management of children with neuroblastic tumours. Bone scintigraphy is still highly valuable to localize the source of symptoms in children and adolescents with bone pain when other imaging techniques have failed. Thyroid scintigraphy in neonates with congenital hypothyroidism is the most accurate imaging technique to confirm the presence of ectopic functioning thyroid tissue. Radionuclide transit studies of the gastro-intestinal tract are potentially useful in suspected gastroparesis or small bowel or colonic dysmotility. However, until now a standardized protocol and a validated normal range have not been agreed, and more work is necessary. Research is ongoing on whether magnetic resonance imaging (MRI), with its great advantage of great anatomical detail and no ionizing radiations, can replace nuclear medicine imaging in some clinical context. On the other hand, access to MRI is often difficult in many district general hospitals and general anaesthesia is frequently required, thus adding to the complexity of the examination. Patients with bone pain and no cause for it demonstrated on MRI can benefit from bone scintigraphy with single photon emission tomography and low-dose computed tomography. This technique can identify areas of mechanical stress at

  6. From Roentgen to magnetic resonance imaging: the history of medical imaging.

    Science.gov (United States)

    Scatliff, James H; Morris, Peter J

    2014-01-01

    Medical imaging has advanced in remarkable ways since the discovery of x-rays 120 years ago. Today's radiologists can image the human body in intricate detail using computed tomography, magnetic resonance imaging, positron emission tomography, ultrasound, and various other modalities. Such technology allows for improved screening, diagnosis, and monitoring of disease, but it also comes with risks. Many imaging modalities expose patients to ionizing radiation, which potentially increases their risk of developing cancer in the future, and imaging may also be associated with possible allergic reactions or risks related to the use of intravenous contrast agents. In addition, the financial costs of imaging are taxing our health care system, and incidental findings can trigger anxiety and further testing. This issue of the NCMJ addresses the pros and cons of medical imaging and discusses in detail the following uses of medical imaging: screening for breast cancer with mammography, screening for osteoporosis and monitoring of bone mineral density with dual-energy x-ray absorptiometry, screening for congenital hip dysplasia in infants with ultrasound, and evaluation of various heart conditions with cardiac imaging. Together, these articles show the challenges that must be met as we seek to harness the power of today's imaging technologies, as well as the potential benefits that can be achieved when these hurdles are overcome.

  7. Characterisation of Geiger-mode avalanche photodiodes for medical imaging applications

    Energy Technology Data Exchange (ETDEWEB)

    Britvitch, I. [Swiss Federal Institute of Technology, CH-8092 Zurich (Switzerland)]. E-mail: Ilia.britvitch@psi.ch; Johnson, I. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Renker, D. [Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Stoykov, A. [Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Lorenz, E. [Swiss Federal Institute of Technology, CH-8092 Zurich (Switzerland); Max Planck Institute for Physics, 80805 Munich (Germany)

    2007-02-01

    Recently developed multipixel Geiger-mode avalanche photodiodes (G-APDs) are very promising candidates for the detection of light in medical imaging instruments (e.g. positron emission tomography) as well as in high-energy physics experiments and astrophysical applications. G-APDs are especially well suited for morpho-functional imaging (multimodality PET/CT, SPECT/CT, PET/MRI, SPECT/MRI). G-APDs have many advantages compared to conventional photosensors such as photomultiplier tubes because of their compact size, low-power consumption, high quantum efficiency and insensitivity to magnetic fields. Compared to avalanche photodiodes and PIN diodes, they are advantageous because of their high gain, reduced sensitivity to pick up and the so-called nuclear counter effect and lower noise. We present measurements of the basic G-APD characteristics: photon detection efficiency, gain, inter-cell crosstalk, dynamic range, recovery time and dark count rate.

  8. Characterisation of Geiger-mode avalanche photodiodes for medical imaging applications

    International Nuclear Information System (INIS)

    Britvitch, I.; Johnson, I.; Renker, D.; Stoykov, A.; Lorenz, E.

    2007-01-01

    Recently developed multipixel Geiger-mode avalanche photodiodes (G-APDs) are very promising candidates for the detection of light in medical imaging instruments (e.g. positron emission tomography) as well as in high-energy physics experiments and astrophysical applications. G-APDs are especially well suited for morpho-functional imaging (multimodality PET/CT, SPECT/CT, PET/MRI, SPECT/MRI). G-APDs have many advantages compared to conventional photosensors such as photomultiplier tubes because of their compact size, low-power consumption, high quantum efficiency and insensitivity to magnetic fields. Compared to avalanche photodiodes and PIN diodes, they are advantageous because of their high gain, reduced sensitivity to pick up and the so-called nuclear counter effect and lower noise. We present measurements of the basic G-APD characteristics: photon detection efficiency, gain, inter-cell crosstalk, dynamic range, recovery time and dark count rate

  9. Physics instrumentation for medical imaging

    International Nuclear Information System (INIS)

    Townsend, D.W.

    1993-01-01

    The first Nobel Physics Prize, awarded in 1901, went to Wilhelm Röntgen for his discovery of X-rays in 1895. This, and the most recent physics Nobel, to Georges Charpak last year for his detector developments, span several generations of applied science. As well as helping to launch the science of atomic physics, Röntgen's discovery also marked the dawn of a medical science - radiography - using beams of various kinds to image what otherwise cannot be seen. Ever since, physicists and radiologists have worked hand in hand to improve imaging techniques and widen their medical applications

  10. Physics instrumentation for medical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Townsend, D. W. [Geneva University Hospital, Geneva (Switzerland)

    1993-04-15

    The first Nobel Physics Prize, awarded in 1901, went to Wilhelm Röntgen for his discovery of X-rays in 1895. This, and the most recent physics Nobel, to Georges Charpak last year for his detector developments, span several generations of applied science. As well as helping to launch the science of atomic physics, Röntgen's discovery also marked the dawn of a medical science - radiography - using beams of various kinds to image what otherwise cannot be seen. Ever since, physicists and radiologists have worked hand in hand to improve imaging techniques and widen their medical applications.

  11. Medical Image Registration and Surgery Simulation

    DEFF Research Database (Denmark)

    Bro-Nielsen, Morten

    1996-01-01

    This thesis explores the application of physical models in medical image registration and surgery simulation. The continuum models of elasticity and viscous fluids are described in detail, and this knowledge is used as a basis for most of the methods described here. Real-time deformable models......, and the use of selective matrix vector multiplication. Fluid medical image registration A new and faster algorithm for non-rigid registration using viscous fluid models is presented. This algorithm replaces the core part of the original algorithm with multi-resolution convolution using a new filter, which...... growth is also presented. Using medical knowledge about the growth processes of the mandibular bone, a registration algorithm for time sequence images of the mandible is developed. Since this registration algorithm models the actual development of the mandible, it is possible to simulate the development...

  12. Quantitative Analysis in Nuclear Medicine Imaging

    CERN Document Server

    2006-01-01

    This book provides a review of image analysis techniques as they are applied in the field of diagnostic and therapeutic nuclear medicine. Driven in part by the remarkable increase in computing power and its ready and inexpensive availability, this is a relatively new yet rapidly expanding field. Likewise, although the use of radionuclides for diagnosis and therapy has origins dating back almost to the discovery of natural radioactivity itself, radionuclide therapy and, in particular, targeted radionuclide therapy has only recently emerged as a promising approach for therapy of cancer and, to a lesser extent, other diseases. As effort has, therefore, been made to place the reviews provided in this book in a broader context. The effort to do this is reflected by the inclusion of introductory chapters that address basic principles of nuclear medicine imaging, followed by overview of issues that are closely related to quantitative nuclear imaging and its potential role in diagnostic and therapeutic applications. ...

  13. Radiology and Enterprise Medical Imaging Extensions (REMIX).

    Science.gov (United States)

    Erdal, Barbaros S; Prevedello, Luciano M; Qian, Songyue; Demirer, Mutlu; Little, Kevin; Ryu, John; O'Donnell, Thomas; White, Richard D

    2018-02-01

    Radiology and Enterprise Medical Imaging Extensions (REMIX) is a platform originally designed to both support the medical imaging-driven clinical and clinical research operational needs of Department of Radiology of The Ohio State University Wexner Medical Center. REMIX accommodates the storage and handling of "big imaging data," as needed for large multi-disciplinary cancer-focused programs. The evolving REMIX platform contains an array of integrated tools/software packages for the following: (1) server and storage management; (2) image reconstruction; (3) digital pathology; (4) de-identification; (5) business intelligence; (6) texture analysis; and (7) artificial intelligence. These capabilities, along with documentation and guidance, explaining how to interact with a commercial system (e.g., PACS, EHR, commercial database) that currently exists in clinical environments, are to be made freely available.

  14. Radically Reducing Radiation Exposure during Routine Medical Imaging

    Science.gov (United States)

    Exposure to radiation from medical imaging in the United States has increased dramatically. NCI and several partner organizations sponsored a 2011 summit to promote efforts to reduce radiation exposure from medical imaging.

  15. Nuclear risk: information of medical practitioners in Isere Department. Impact of the booklet: 'doctors and nuclear risk'

    International Nuclear Information System (INIS)

    Jonquet, M.E.

    1990-02-01

    In this thesis, the author first presents 'Isere, pilot department' operation, then the importance of nuclear risks in Isere, considers the role and place of medical practitioners in the management of this risk and in information request of medical personnel. The author also presents the booklet 'Doctors and nuclear risk' and analyzes the results of study on its impact close to medical population. 9 tabs., 25 figs

  16. A Kalman filter technique applied for medical image reconstruction

    International Nuclear Information System (INIS)

    Goliaei, S.; Ghorshi, S.; Manzuri, M. T.; Mortazavi, M.

    2011-01-01

    Medical images contain information about vital organic tissues inside of human body and are widely used for diagnoses of disease or for surgical purposes. Image reconstruction is essential for medical images for some applications such as suppression of noise or de-blurring the image in order to provide images with better quality and contrast. Due to vital rule of image reconstruction in medical sciences the corresponding algorithms with better efficiency and higher speed is desirable. Most algorithms in image reconstruction are operated on frequency domain such as the most popular one known as filtered back projection. In this paper we introduce a Kalman filter technique which is operated in time domain for medical image reconstruction. Results indicated that as the number of projection increases in both normal collected ray sum and the collected ray sum corrupted by noise the quality of reconstructed image becomes better in terms of contract and transparency. It is also seen that as the number of projection increases the error index decreases.

  17. A review of m-health in medical imaging.

    Science.gov (United States)

    Perera, Chandrashan Mahendra; Chakrabarti, Rahul

    2015-02-01

    The increasing capabilities of camera-equipped mobile phones have led to a growing body of evidence regarding their use in medical imaging across a broad range of medical specialties. This article reviews the current evidence for the use of mobile health (m-health) in medical imaging. We performed a structured review of the published literature regarding m-health in medical imaging using the Medline, PubMed, and Web of Science databases (January 2002-August 2013). The two authors independently extracted data regarding type of specialty, purpose, and study design of publications. In total, 235 articles were identified. The majority of studies were case reports or noncomparative product validation studies. The greatest volume of publications originated in the fields of radiology (21%), dermatology (15%), laboratory techniques (15%), and plastic surgery (12%). Among these studies, m-health was used as diagnostic aids, for patient monitoring, and to improve communication between health practitioners. With the growing use of mobile phones for medical imaging, considerations need to be given to informed consent, privacy, image storage and transfer, and guidelines for healthcare workers and patients. There are several novel uses of mobile devices for medical imaging that show promise across a variety of areas and subspecialties of healthcare. Currently, studies are mostly exploratory in nature. To validate these devices, studies with higher methodological rigor are required.

  18. Large-scale retrieval for medical image analytics: A comprehensive review.

    Science.gov (United States)

    Li, Zhongyu; Zhang, Xiaofan; Müller, Henning; Zhang, Shaoting

    2018-01-01

    Over the past decades, medical image analytics was greatly facilitated by the explosion of digital imaging techniques, where huge amounts of medical images were produced with ever-increasing quality and diversity. However, conventional methods for analyzing medical images have achieved limited success, as they are not capable to tackle the huge amount of image data. In this paper, we review state-of-the-art approaches for large-scale medical image analysis, which are mainly based on recent advances in computer vision, machine learning and information retrieval. Specifically, we first present the general pipeline of large-scale retrieval, summarize the challenges/opportunities of medical image analytics on a large-scale. Then, we provide a comprehensive review of algorithms and techniques relevant to major processes in the pipeline, including feature representation, feature indexing, searching, etc. On the basis of existing work, we introduce the evaluation protocols and multiple applications of large-scale medical image retrieval, with a variety of exploratory and diagnostic scenarios. Finally, we discuss future directions of large-scale retrieval, which can further improve the performance of medical image analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Medical emergencies in the imaging department of a university hospital: event and imaging characteristics.

    Science.gov (United States)

    van Tonder, F C; Sutherland, T; Smith, R J; Chock, J M E; Santamaria, J D

    2013-01-01

    We aimed to describe the characteristics of medical emergencies that occurred in the medical imaging department (MID) of a university hospital in Melbourne, Australia. A database of 'Respond Medical Emergency Team (MET)' and 'Respond Blue' calls was retrospectively examined for the period June 2003 to November 2010 in relation to events that occurred in the MID. The hospital medical imaging database was also examined in relation to these events and, where necessary, patients' notes were reviewed. Ethics approval was granted by the hospital ethics review board. There were 124 medical emergency calls in the MID during the study period, 28% Respond Blue and 72% Respond MET. Of these 124 calls, 26% occurred outside of usual work hours and 12% involved cardiac arrest. The most common reasons for the emergency calls were seizures (14%) and altered conscious state (13%). Contrast anaphylaxis precipitated the emergency in 4% of cases. In 83% of cases the emergency calls were for patients attending the MID for diagnostic imaging, the remainder being for a procedure. Of the scheduled imaging techniques, 45% were for computed tomography. The scheduled imaging was abandoned due to the emergency in 12% of cases. When performed, imaging informed patient management in 34% of cases in diagnostic imaging and in all cases in the context of image-guided procedures. Medical emergency calls in the MID often occurred outside usual work hours and were attributed to a range of medical problems. The emergencies occurred in relation to all imaging techniques and imaging informed patient management in many cases. Crown Copyright © 2012. Published by Elsevier Ireland Ltd. All rights reserved.

  20. Tissues segmentation based on multi spectral medical images

    Science.gov (United States)

    Li, Ya; Wang, Ying

    2017-11-01

    Each band image contains the most obvious tissue feature according to the optical characteristics of different tissues in different specific bands for multispectral medical images. In this paper, the tissues were segmented by their spectral information at each multispectral medical images. Four Local Binary Patter descriptors were constructed to extract blood vessels based on the gray difference between the blood vessels and their neighbors. The segmented tissue in each band image was merged to a clear image.

  1. How the radiologic and nuclear medical communities can improve nuclear security.

    Science.gov (United States)

    Kahn, Laura H; von Hippel, Frank

    2007-04-01

    Highly enriched uranium (HEU) is used to manufacture technetium-99m, the most widely used medical radioisotope in the world. Highly enriched uranium is also used to make nuclear bombs; 50 kg of HEU is enough to make a Hiroshima-type bomb. It is generally agreed that this technology is within the reach of a terrorist group; the main obstacle is acquiring HEU. Currently, as a legacy of the US and Soviet Atoms for Peace Program, there are civilian users of HEU in 40 countries, and about 1,000 kg are still being shipped each year. Unfortunately, the major international manufacturers of technetium-99m have been refusing to convert their production facilities to use low-enriched uranium (LEU), which cannot be used to make a nuclear bomb. Only 1% to 2% of the HEU is consumed in the process of producing technetium-99m. The remainder is accumulating in radioactive waste storage facilities. The radiologic and nuclear medical communities could make a tremendous contribution to a safer world by supporting the replacement of HEU with LEU in the production of technetium-99m. Low-enriched uranium is just as cost effective as HEU for the manufacture of technetium-99m and does not contribute to the risk for nuclear terrorism.

  2. Images compression in nuclear medicine

    International Nuclear Information System (INIS)

    Rebelo, M.S.; Furuie, S.S.; Moura, L.

    1992-01-01

    The performance of two methods for images compression in nuclear medicine was evaluated. The LZW precise, and Cosine Transformed, approximate, methods were analyzed. The results were obtained, showing that the utilization of approximated method produced images with an agreeable quality for visual analysis and compression rates, considerably high than precise method. (C.G.C.)

  3. Invitation to medical image processing

    International Nuclear Information System (INIS)

    Kitasaka, Takayuki; Suenaga, Yasuhito; Mori, Kensaku

    2010-01-01

    This medical essay explains the present state of CT image processing technology about its recognition, acquisition and visualization for computer-assisted diagnosis (CAD) and surgery (CAS), and future view. Medical image processing has a series of history of its original start from the discovery of X-ray to its application to diagnostic radiography, its combination with the computer for CT, multi-detector raw CT, leading to 3D/4D images for CAD and CAS. CAD is performed based on the recognition of normal anatomical structure of human body, detection of possible abnormal lesion and visualization of its numerical figure into image. Actual instances of CAD images are presented here for chest (lung cancer), abdomen (colorectal cancer) and future body atlas (models of organs and diseases for imaging), a recent national project: computer anatomy. CAS involves the surgical planning technology based on 3D images, navigation of the actual procedure and of endoscopy. As guidance to beginning technological image processing, described are the national and international community like related academic societies, regularly conducting congresses, textbooks and workshops, and topics in the field like computed anatomy of an individual patient for CAD and CAS, its data security and standardization. In future, protective medicine is in authors' view based on the imaging technology, e.g., daily life CAD of individuals ultimately, as exemplified in the present body thermometer and home sphygmometer, to monitor one's routine physical conditions. (T.T.)

  4. Quality criteria for the indication and interpretation of nuclear medical examinations

    International Nuclear Information System (INIS)

    Reiners, C.; Becker, W.; Boerner, W.

    1984-01-01

    The correct indication presupposes the consideration of the history, signs symptoms and preexisting finding. With repect to minimal radiation exposure the optimal radiopharmaceutical substance has to be selected. Physiological or pharmacokinetic effects should be used to reduce radiation exposure. This would also provided additional information to be obtained by stimulation or suppression tests. If several nuclear medical examination are needed, the correct sequence and timing should be considered. With regard to the correct interpretation of in vivo examination in nuclear medicine, the basic requirement is to strictly differentiate between the mere description of results in the sense of findings and the final summary in the sense of judgement. The specificity of diagnoses can be increased by considering the history, signs, symptoms and premedication. To correctly interprete nuclear medical findings the physician should know the numerous causes of potential misinterpretations. Last but not least a permanent exchange of information between the nuclear medical physician, the X-ray and ultrasounds diagnostician, the clinician and the pathologist will provide increased diagnostic accuracy of nuclear medical in vivo examinations. (orig./MG) [de

  5. Medical lessons learned from chernobyl relative to nuclear detonations and failed nuclear reactors.

    Science.gov (United States)

    Dallas, Cham E

    2012-12-01

    The Chernobyl disaster in 1986 involved the largest airborne release of radioactivity in history, more than 100 times as much radioactivity as the Hiroshima and Nagasaki atomic bombs together. The resulting emergency response, administrative blunders, and subsequent patient outcomes from this large-scale radiological disaster provide a wealth of information and valuable lessons for those who may find themselves having to deal with the staggering consequences of nuclear war. Research findings, administrative strategies (successful and otherwise), and resulting clinical procedures from the Chernobyl experience are reviewed to determine a current utility in addressing the appropriate protocols for a medical response to nuclear war. As various myths are still widely associated with radiation exposure, attention is given to the realities of a mass casualty medical response as it would occur with a nuclear detonation.

  6. Hungarian medical physics MSc education

    International Nuclear Information System (INIS)

    Legrady, D.; Czifrus, Z.; Zarand, P.; Aszodi, A.; Pesznyak, C.; Major, T.

    2012-01-01

    The medical physics specialisation aims at providing high level interdisciplinary theoretical and practical knowledge and readily applicable skills, which can put into action in both the clinical and the R and D field. The first competence based gradual medical physics course in the B.Sc./M.Sc. system in Hungary was launched two years ago at the Faculty of Natural Sciences of Budapest University of Technology and Economics managed by the Institute of Nuclear Techniques. The MSc programme was compiled on the base of EFOMP, IPEM, AAPM and IAEA recommendations. The course curriculum comprises fundamental physical subjects (atomic and molecular physics, nuclear physics and particle physics) as well as fundamental medical knowledge (anatomy, physiology and radiobiology) required for subjects of diagnostic and therapy. Students of this MSc branch may chose further subjects from a 'compulsory optional' set of subjects, which contains medical imaging, X-ray diagnostics, radiation therapy, magnetic resonance imaging, radiation protection, Monte Carlo calculation and its clinical applications, ultrasound diagnostics and nuclear medicine. (authors)

  7. Patients radiation protection in medical imaging. Conference proceedings

    International Nuclear Information System (INIS)

    2011-12-01

    This document brings together the available presentations given at the conference organised by the French society of radiation protection about patients radiation protection in medical imaging. Twelve presentations (slides) are compiled in this document and deal with: 1 - Medical exposure of the French population: methodology and results (Bernard Aubert, IRSN); 2 - What indicators for the medical exposure? (Cecile Etard, IRSN); 3 - Guidebook of correct usage of medical imaging examination (Philippe Grenier, Pitie-Salpetriere hospital); 4 - Radiation protection optimization in pediatric imaging (Hubert Ducou-Le-Pointe, Aurelien Bouette (Armand-Trousseau children hospital); 5 - Children's exposure to image scanners: epidemiological survey (Marie-Odile Bernier, IRSN); 6 - Management of patient's irradiation: from image quality to good practice (Thierry Solaire, General Electric); 7 - Dose optimization in radiology (Cecile Salvat (Lariboisiere hospital); 8 - Cancer detection in the breast cancer planned screening program - 2004-2009 era (Agnes Rogel, InVS); 9 - Mammographic exposures - radiobiological effects - radio-induced DNA damages (Catherine Colin, Lyon Sud hospital); 10 - Breast cancer screening program - importance of non-irradiating techniques (Anne Tardivon, Institut Curie); 11 - Radiation protection justification for the medical imaging of patients over the age of 50 (Michel Bourguignon, ASN); 12 - Search for a molecular imprint for the discrimination between radio-induced and sporadic tumors (Sylvie Chevillard, CEA)

  8. Segmentation of medical images using explicit anatomical knowledge

    Science.gov (United States)

    Wilson, Laurie S.; Brown, Stephen; Brown, Matthew S.; Young, Jeanne; Li, Rongxin; Luo, Suhuai; Brandt, Lee

    1999-07-01

    Knowledge-based image segmentation is defined in terms of the separation of image analysis procedures and representation of knowledge. Such architecture is particularly suitable for medical image segmentation, because of the large amount of structured domain knowledge. A general methodology for the application of knowledge-based methods to medical image segmentation is described. This includes frames for knowledge representation, fuzzy logic for anatomical variations, and a strategy for determining the order of segmentation from the modal specification. This method has been applied to three separate problems, 3D thoracic CT, chest X-rays and CT angiography. The application of the same methodology to such a range of applications suggests a major role in medical imaging for segmentation methods incorporating representation of anatomical knowledge.

  9. Mesh Processing in Medical Image Analysis

    DEFF Research Database (Denmark)

    The following topics are dealt with: mesh processing; medical image analysis; interactive freeform modeling; statistical shape analysis; clinical CT images; statistical surface recovery; automated segmentation; cerebral aneurysms; and real-time particle-based representation....

  10. Practical guide to quality assurance in medical imaging

    International Nuclear Information System (INIS)

    Moores, M.; Watkinson, S.; Pearcy, J.; Henshaw, E.T.

    1987-01-01

    This volume forms an important part of the response to a growing need to ensure the same and cost-effective use of ionizing radiations for the benefit of both staff and patients. The authors provide guidance to implementing and running quality assurance programs in medical imaging departments. The treatment provides an overview of all the tests which need to be carried out in medical imaging, and the text contains step-by-step guidance as to how to perform and interpret the results of medical imaging

  11. Nuclear cardiac imaging: Principles and applications

    Energy Technology Data Exchange (ETDEWEB)

    Iskandrian, A.S.

    1987-01-01

    This book is divided into 11 chapters. The first three provide a short description of the instrumentation, radiopharmaceuticals, and imaging techniques used in nuclear cardiology. Chapter 4 discusses exercise testing. Chapter 5 gives the theory, technical aspects, and interpretations of thallium-201 myocardial imaging and radionuclide ventriculography. The remaining chapters discuss the use of these techniques in patients with coronary artery disease, acute myocardial infarction, valvular heart disease, and other forms of cardiac disease. The author intended to emphasize the implications of nuclear cardiology procedures on patient care management and to provide a comprehensive bibliography.

  12. Nuclear cardiac imaging: Principles and applications

    International Nuclear Information System (INIS)

    Iskandrian, A.S.

    1987-01-01

    This book is divided into 11 chapters. The first three provide a short description of the instrumentation, radiopharmaceuticals, and imaging techniques used in nuclear cardiology. Chapter 4 discusses exercise testing. Chapter 5 gives the theory, technical aspects, and interpretations of thallium-201 myocardial imaging and radionuclide ventriculography. The remaining chapters discuss the use of these techniques in patients with coronary artery disease, acute myocardial infarction, valvular heart disease, and other forms of cardiac disease. The author intended to emphasize the implications of nuclear cardiology procedures on patient care management and to provide a comprehensive bibliography

  13. Introduction to Medical Image Analysis

    DEFF Research Database (Denmark)

    Paulsen, Rasmus Reinhold; Moeslund, Thomas B.

    of the book is to present the fascinating world of medical image analysis in an easy and interesting way. Compared to many standard books on image analysis, the approach we have chosen is less mathematical and more casual. Some of the key algorithms are exemplified in C-code. Please note that the code...

  14. Applications of Particle Accelerators in Medical Physics

    CERN Document Server

    Cuttone, G

    2008-01-01

    Particle accelerators are often associated to high energy or nuclear physics. As well pointed out in literature [1] if we kindly analyse the number of installation worldwide we can easily note that about 50% is mainly devoted to medical applications (radiotherapy, medical radioisotopes production, biomedical research). Particle accelerators are also playing an important indirect role considering the improvement of the technical features of medical diagnostic. In fact the use of radionuclide for advanced medical imaging is strongly increasing either in conventional radiography (CT and MRI) and also in nuclear medicine for Spect an PET imaging. In this paper role of particle accelerators for medical applications will be presented together with the main solutions applied.

  15. Evaluation Of Medical Fluoroscopy Imaging

    International Nuclear Information System (INIS)

    Hartana, Budi; Santoso

    2000-01-01

    It has been done to evaluate image system of medical fluoroscopic machine by Leeds Test Object (LTO). Two x-ray potentials of 70 kV and 40-60 kV were used to evaluate image by LTO on monitor and oscilloscope. Performance of imaging system decreased for some parameters of video signal, linearity of television scan, contras threshold of 4.5%, distortion integral of 65.1%, and focus uniformity decrease to edge image. Comparison of field diameter of television image to intensifier field vertically and horizontally were respectively 221:230 and 205:230, symmetrically vignetting, spatial resolution limit is 1.26 lp/mm

  16. Improved Interactive Medical-Imaging System

    Science.gov (United States)

    Ross, Muriel D.; Twombly, Ian A.; Senger, Steven

    2003-01-01

    An improved computational-simulation system for interactive medical imaging has been invented. The system displays high-resolution, three-dimensional-appearing images of anatomical objects based on data acquired by such techniques as computed tomography (CT) and magnetic-resonance imaging (MRI). The system enables users to manipulate the data to obtain a variety of views for example, to display cross sections in specified planes or to rotate images about specified axes. Relative to prior such systems, this system offers enhanced capabilities for synthesizing images of surgical cuts and for collaboration by users at multiple, remote computing sites.

  17. Electronics Related to Nuclear Medicine Imaging Devices. Chapter 7

    Energy Technology Data Exchange (ETDEWEB)

    Ott, R. J. [Joint Department of Physics, Royal Marsden Hospital and Institute of Cancer Research, Surrey (United Kingdom); Stephenson, R. [Rutherford Appleton Laboratory, Oxfordshire (United Kingdom)

    2014-12-15

    Nuclear medicine imaging is generally based on the detection of X rays and γ rays emitted by radionuclides injected into a patient. In the previous chapter, the methods used to detect these photons were described, based most commonly on a scintillation counter although there are imaging devices that use either gas filled ionization detectors or semiconductors. Whatever device is used, nuclear medicine images are produced from a very limited number of photons, due mainly to the level of radioactivity that can be safely injected into a patient. Hence, nuclear medicine images are usually made from many orders of magnitude fewer photons than X ray computed tomography (CT) images, for example. However, as the information produced is essentially functional in nature compared to the anatomical detail of CT, the apparently poorer image quality is overcome by the nature of the information produced. The low levels of photons detected in nuclear medicine means that photon counting can be performed. Here each photon is detected and analysed individually, which is especially valuable, for example, in enabling scattered photons to be rejected. This is in contrast to X ray imaging where images are produced by integrating the flux entering the detectors. Photon counting, however, places a heavy burden on the electronics used for nuclear medicine imaging in terms of electronic noise and stability. This chapter will discuss how the signals produced in the primary photon detection process can be converted into pulses providing spatial, energy and timing information, and how this information is used to produce both qualitative and quantitative images.

  18. Artificial intelligence and medical imaging. Expert systems and image analysis

    International Nuclear Information System (INIS)

    Wackenheim, A.; Zoellner, G.; Horviller, S.; Jacqmain, T.

    1987-01-01

    This paper gives an overview on the existing systems for automated image analysis and interpretation in medical imaging, especially in radiology. The example of ORFEVRE, the system for the analysis of CAT-scan images of the cervical triplet (c3-c5) by image analysis and subsequent expert-system is given and discussed in detail. Possible extensions are described [fr

  19. Ontology modularization to improve semantic medical image annotation.

    Science.gov (United States)

    Wennerberg, Pinar; Schulz, Klaus; Buitelaar, Paul

    2011-02-01

    Searching for medical images and patient reports is a significant challenge in a clinical setting. The contents of such documents are often not described in sufficient detail thus making it difficult to utilize the inherent wealth of information contained within them. Semantic image annotation addresses this problem by describing the contents of images and reports using medical ontologies. Medical images and patient reports are then linked to each other through common annotations. Subsequently, search algorithms can more effectively find related sets of documents on the basis of these semantic descriptions. A prerequisite to realizing such a semantic search engine is that the data contained within should have been previously annotated with concepts from medical ontologies. One major challenge in this regard is the size and complexity of medical ontologies as annotation sources. Manual annotation is particularly time consuming labor intensive in a clinical environment. In this article we propose an approach to reducing the size of clinical ontologies for more efficient manual image and text annotation. More precisely, our goal is to identify smaller fragments of a large anatomy ontology that are relevant for annotating medical images from patients suffering from lymphoma. Our work is in the area of ontology modularization, which is a recent and active field of research. We describe our approach, methods and data set in detail and we discuss our results. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Development of 3-D Medical Image VIsualization System

    African Journals Online (AJOL)

    User

    uses standard 2-D medical imaging inputs and generates medical images of human body parts ... light wave from points on the 3-D object(s) in ... tools, and communication bandwidth cannot .... locations along the track that correspond with.

  1. New perspectives in nuclear imaging

    International Nuclear Information System (INIS)

    Wagner, H.N. Jr.

    1981-01-01

    In nuclear medicine, biodistribution is studied by quantitative nuclear imaging; chemistry is translated into radio-pharmacology; physics into instrumentation; and biology into physiology. Nuclear medicine can be thought of as applied physiology and physiological chemistry. The modern nuclear chemist is concerned with molecules, with relating chemical structure to biological distributions, as for iminodiacetate compounds. Using mixed ligand analysis, the hepatobiliary agent, HIDA, developed by Loberg, proved an anionic bis-complex with a charge of minus one. Further studies elsewhere showed that the co-ordination number of technetium was 5 and that an oxo-oxygen was in the apical position. From a series of analogues the amount of the complexes excreted in the bile was found to be directly proportional to the natural log of the molecular weight to charge ratio. The trend is towards the synthesis of labelled compounds whose biodistribution depends on their chemical interaction with structurally specific binding sites, i.e. receptors, enzymes or binding sites of active transport systems. Other examples include amino acids for pancreatic imaging; deoxyglucose for studies of regional brain and heart metabolism; fatty acids for studies of the heart; steroid hormones for breast tumours; and muscarinic compounds for study of the cholinergic system of the heart. Most of these compounds are labelled with 11 C, 18 F or 13 N, available only from cyclotrons, but the extension to the more widely available 123 I and sup(99m)Tc is also proceeding rapidly, stimulated chiefly by the success with the positron-emitting compounds. Advances in nuclear imaging include the development of both positron and single photon emission tomography. Biodistribution studies in man permit measurement of regional as well as global function. Improved perception is being augmented by improved quantification and automation

  2. Nuclear medicine imaging of diabetic foot infection

    International Nuclear Information System (INIS)

    Capriotti, Gabriela; D'Alessandria, Calogero; Signore, Alberto; Chianelli, Marco; Prandini, Napoleone

    2005-01-01

    Full text: Osteomyelitis of the foot is the most frequent complication in diabetic patients. Nuclear medicine plays an important role in diagnosis and for therapy follow-up, using different tracers. We reviewed 57 papers on diabetic foot imaging (published from 1982 to 2004, 50 original papers and 7 reviews), for a total of 2889 lesions. Data analysis has been carried out to establish which imaging technique could be used as a 'gold standard' for diagnosis of infection and to evaluate the extent of disease and to monitor the efficacy of therapy. Data analysis revealed that three-phase bone-scan is sensitive but not specific whereas specificity and diagnostic accuracy of 99m Tc-WBC scintigraphy is higher than 111 In- WBC scintigraphy. In the forefoot leukocyte scintigraphy may be useful for diagnosis of osteomyelitis and for monitoring the response to medical treatment. In the mid/hind foot the leukocytes uptake is not related only to the presence of infected region, but it is attributed to inflammation, fractures and reparative processes. Other radiopharmaceuticals such as 99m Tc/ 111 In-HIG, radiolabelled antibody and their fragments, showed high sensibility, but lower specificity than WBC (96.8/66.5, 95.8/70.2, 91.3/62 vs 85.8/84.5). Conclusion: It emerged that in the forefoot when clinical suspicious of osteomyelitis is low and medical treatment is contemplated, three-phase bon scan is the procedure of choice. A positive test is not diagnostic for osteomyelitis, and radiolabelled WBC scintigraphy is necessary. In the mid/hind foot, diagnosis of neuropathic joint with infection is problematic. Radiolabelled WBC imaging is probably the most accurate test for determining the presence of infection. Although a negative study strongly indicate the absence of osteomyelitis, it is important to note that a positive result requires a complementary study with marrow agent. (author)

  3. Leadership and power in medical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yielder, Jill [School of Health and Community Studies, Unitec New Zealand, Private Bag 92 025, Mt Albert, Auckland (New Zealand)]. E-mail: jyielder@unitec.ac.nz

    2006-11-15

    This article examines the concept of professional leadership in medical imaging. It explores the context of power issues in which such leadership is located, the differences between leadership and management, the qualities needed for effective leadership and how an individual's psychology may affect it. The article concludes that in the current climate of change and development, the medical imaging profession needs strong and appropriate leadership to profile the profession effectively and to lead it through to a more autonomous future.

  4. Leadership and power in medical imaging

    International Nuclear Information System (INIS)

    Yielder, Jill

    2006-01-01

    This article examines the concept of professional leadership in medical imaging. It explores the context of power issues in which such leadership is located, the differences between leadership and management, the qualities needed for effective leadership and how an individual's psychology may affect it. The article concludes that in the current climate of change and development, the medical imaging profession needs strong and appropriate leadership to profile the profession effectively and to lead it through to a more autonomous future

  5. A new concept for medical imaging centered on cellular phone technology.

    Directory of Open Access Journals (Sweden)

    Yair Granot

    2008-04-01

    Full Text Available According to World Health Organization reports, some three quarters of the world population does not have access to medical imaging. In addition, in developing countries over 50% of medical equipment that is available is not being used because it is too sophisticated or in disrepair or because the health personnel are not trained to use it. The goal of this study is to introduce and demonstrate the feasibility of a new concept in medical imaging that is centered on cellular phone technology and which may provide a solution to medical imaging in underserved areas. The new system replaces the conventional stand-alone medical imaging device with a new medical imaging system made of two independent components connected through cellular phone technology. The independent units are: a a data acquisition device (DAD at a remote patient site that is simple, with limited controls and no image display capability and b an advanced image reconstruction and hardware control multiserver unit at a central site. The cellular phone technology transmits unprocessed raw data from the patient site DAD and receives and displays the processed image from the central site. (This is different from conventional telemedicine where the image reconstruction and control is at the patient site and telecommunication is used to transmit processed images from the patient site. The primary goal of this study is to demonstrate that the cellular phone technology can function in the proposed mode. The feasibility of the concept is demonstrated using a new frequency division multiplexing electrical impedance tomography system, which we have developed for dynamic medical imaging, as the medical imaging modality. The system is used to image through a cellular phone a simulation of breast cancer tumors in a medical imaging diagnostic mode and to image minimally invasive tissue ablation with irreversible electroporation in a medical imaging interventional mode.

  6. Nuclear Medicine Imaging of Neuroendocrine Tumors

    NARCIS (Netherlands)

    Brabander, Tessa; Kwekkeboom, Dik J.; Feelders, Richard A.; Brouwers, Adrienne H.; Teunissen, Jaap J. M.; Papotti, M; DeHerder, WW

    2015-01-01

    An important role is reserved for nuclear imaging techniques in the imaging of neuroendocrine tumors (NETs). Somatostatin receptor scintigraphy (SRS) with In-111-DTPA-octreotide is currently the most important tracer in the diagnosis, staging and selection for peptide receptor radionuclide therapy

  7. Immediate medical consequences of nuclear accidents: lessons from Chernobyl

    International Nuclear Information System (INIS)

    Gale, R.P.

    1987-01-01

    The immediate medical response to the nuclear accident at the Chernobyl nuclear power station involved containment of the radioactivity and evacuation of the nearby population. The next step consisted of assessment of the radiation dose received by individuals, based on biological dosimetry, and treatment of those exposed. Medical care involved treatment of skin burns; measures to support bone marrow failure, gastrointestinal tract injury, and other organ damage (i.e., infection prophylaxis and transfusions) for those with lower radiation dose exposure; and bone marrow transplantation for those exposed to a high dose of radiation. At Chernobyl, two victims died immediately and 29 died of radiation or thermal injuries in the next three months. The remaining victims of the accident are currently well. A nuclear accident anywhere is a nuclear accident everywhere. Prevention and cooperation in response to these accidents are essential goals

  8. Medical support to a disabled nuclear platform at sea

    Directory of Open Access Journals (Sweden)

    Vishal Kansal

    2016-01-01

    Full Text Available Indian Navy has recently joined the select band of countries that are operating nuclear powered platforms. Despite the fact, that the present day nuclear technology is quite advanced and safe; accidents on board can still happen. An accident on board a Nuclear Platform at sea can result in ‘Radiation Exposure and Contamination’ to the crew members; which can prove catastrophic. Management of casualties on board a Nuclear platform at sea presents a formidable challenge. The distressed platform being at sea will also bring in many other operational variables like distance from shore, geographical location, weather conditions, availability of rescue assets and trained manpower etc. Consequently, there is a necessity to have a well defined ‘Medical Contingency Plan’ to deal with any such eventuality happening at sea. The successful execution of the contingency plan will depend upon close coordination among diverse authorities like local Service Hospital, Command Medical & Operational Authorities, Naval Dockyard, Radiation Safety Organisations and the Rescue/Hospital Ship crew. The need is to have a holistic review of our existing medical set up and integrate new equipment, training methodologies, operating procedures to have a credible response capability.

  9. Hello World Deep Learning in Medical Imaging.

    Science.gov (United States)

    Lakhani, Paras; Gray, Daniel L; Pett, Carl R; Nagy, Paul; Shih, George

    2018-05-03

    There is recent popularity in applying machine learning to medical imaging, notably deep learning, which has achieved state-of-the-art performance in image analysis and processing. The rapid adoption of deep learning may be attributed to the availability of machine learning frameworks and libraries to simplify their use. In this tutorial, we provide a high-level overview of how to build a deep neural network for medical image classification, and provide code that can help those new to the field begin their informatics projects.

  10. Use of mobile devices for medical imaging.

    Science.gov (United States)

    Hirschorn, David S; Choudhri, Asim F; Shih, George; Kim, Woojin

    2014-12-01

    Mobile devices have fundamentally changed personal computing, with many people forgoing the desktop and even laptop computer altogether in favor of a smaller, lighter, and cheaper device with a touch screen. Doctors and patients are beginning to expect medical images to be available on these devices for consultative viewing, if not actual diagnosis. However, this raises serious concerns with regard to the ability of existing mobile devices and networks to quickly and securely move these images. Medical images often come in large sets, which can bog down a network if not conveyed in an intelligent manner, and downloaded data on a mobile device are highly vulnerable to a breach of patient confidentiality should that device become lost or stolen. Some degree of regulation is needed to ensure that the software used to view these images allows all relevant medical information to be visible and manipulated in a clinically acceptable manner. There also needs to be a quality control mechanism to ensure that a device's display accurately conveys the image content without loss of contrast detail. Furthermore, not all mobile displays are appropriate for all types of images. The smaller displays of smart phones, for example, are not well suited for viewing entire chest radiographs, no matter how small and numerous the pixels of the display may be. All of these factors should be taken into account when deciding where, when, and how to use mobile devices for the display of medical images. Copyright © 2014 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  11. Neural networks: Application to medical imaging

    Science.gov (United States)

    Clarke, Laurence P.

    1994-01-01

    The research mission is the development of computer assisted diagnostic (CAD) methods for improved diagnosis of medical images including digital x-ray sensors and tomographic imaging modalities. The CAD algorithms include advanced methods for adaptive nonlinear filters for image noise suppression, hybrid wavelet methods for feature segmentation and enhancement, and high convergence neural networks for feature detection and VLSI implementation of neural networks for real time analysis. Other missions include (1) implementation of CAD methods on hospital based picture archiving computer systems (PACS) and information networks for central and remote diagnosis and (2) collaboration with defense and medical industry, NASA, and federal laboratories in the area of dual use technology conversion from defense or aerospace to medicine.

  12. NiftyNet: a deep-learning platform for medical imaging.

    Science.gov (United States)

    Gibson, Eli; Li, Wenqi; Sudre, Carole; Fidon, Lucas; Shakir, Dzhoshkun I; Wang, Guotai; Eaton-Rosen, Zach; Gray, Robert; Doel, Tom; Hu, Yipeng; Whyntie, Tom; Nachev, Parashkev; Modat, Marc; Barratt, Dean C; Ourselin, Sébastien; Cardoso, M Jorge; Vercauteren, Tom

    2018-05-01

    Medical image analysis and computer-assisted intervention problems are increasingly being addressed with deep-learning-based solutions. Established deep-learning platforms are flexible but do not provide specific functionality for medical image analysis and adapting them for this domain of application requires substantial implementation effort. Consequently, there has been substantial duplication of effort and incompatible infrastructure developed across many research groups. This work presents the open-source NiftyNet platform for deep learning in medical imaging. The ambition of NiftyNet is to accelerate and simplify the development of these solutions, and to provide a common mechanism for disseminating research outputs for the community to use, adapt and build upon. The NiftyNet infrastructure provides a modular deep-learning pipeline for a range of medical imaging applications including segmentation, regression, image generation and representation learning applications. Components of the NiftyNet pipeline including data loading, data augmentation, network architectures, loss functions and evaluation metrics are tailored to, and take advantage of, the idiosyncracies of medical image analysis and computer-assisted intervention. NiftyNet is built on the TensorFlow framework and supports features such as TensorBoard visualization of 2D and 3D images and computational graphs by default. We present three illustrative medical image analysis applications built using NiftyNet infrastructure: (1) segmentation of multiple abdominal organs from computed tomography; (2) image regression to predict computed tomography attenuation maps from brain magnetic resonance images; and (3) generation of simulated ultrasound images for specified anatomical poses. The NiftyNet infrastructure enables researchers to rapidly develop and distribute deep learning solutions for segmentation, regression, image generation and representation learning applications, or extend the platform to new

  13. Data Analysis Strategies in Medical Imaging.

    Science.gov (United States)

    Parmar, Chintan; Barry, Joseph D; Hosny, Ahmed; Quackenbush, John; Aerts, Hugo Jwl

    2018-03-26

    Radiographic imaging continues to be one of the most effective and clinically useful tools within oncology. Sophistication of artificial intelligence (AI) has allowed for detailed quantification of radiographic characteristics of tissues using predefined engineered algorithms or deep learning methods. Precedents in radiology as well as a wealth of research studies hint at the clinical relevance of these characteristics. However, there are critical challenges associated with the analysis of medical imaging data. While some of these challenges are specific to the imaging field, many others like reproducibility and batch effects are generic and have already been addressed in other quantitative fields such as genomics. Here, we identify these pitfalls and provide recommendations for analysis strategies of medical imaging data including data normalization, development of robust models, and rigorous statistical analyses. Adhering to these recommendations will not only improve analysis quality, but will also enhance precision medicine by allowing better integration of imaging data with other biomedical data sources. Copyright ©2018, American Association for Cancer Research.

  14. Nuclear medicine

    International Nuclear Information System (INIS)

    Kand, Purushottam

    2012-01-01

    Nuclear medicine is a specialized area of radiology that uses very small amounts of radioactive materials to examine organ function and structure. Nuclear medicine is older than CT, ultrasound and MRI. It was first used in patients over 60-70 years ago. Today it is an established medical specialty and offers procedures that are essential in many medical specialities like nephrology, pediatrics, cardiology, psychiatry, endocrinology and oncology. Nuclear medicine refers to medicine (a pharmaceutical) that is attached to a small quantity of radioactive material (a radioisotope). This combination is called a radiopharmaceutical. There are many radiopharmaceuticals like DTPA, DMSA, HIDA, MIBI and MDP available to study different parts of the body like kidneys, heart and bones etc. Nuclear medicine uses radiation coming from inside a patient's body where as conventional radiology exposes patients to radiation from outside the body. Thus nuclear imaging study is a physiological imaging, whereas diagnostic radiology is anatomical imaging. It combines many different disciplines like chemistry, physics mathematics, computer technology, and medicine. It helps in diagnosis and to treat abnormalities very early in the progression of a disease. The information provides a quick and accurate diagnosis of wide range of conditions and diseases in a person of any age. These tests are painless and most scans expose patients to only minimal and safe amounts of radiation. The amount of radiation received from a nuclear medicine procedure is comparable to, or often many times less than, that of a diagnostic X-ray. Nuclear medicine provides an effective means of examining whether some tissues/organs are functioning properly. Therapy using nuclear medicine in an effective, safe and relatively inexpensive way of controlling and in some cases eliminating, conditions such as overactive thyroid, thyroid cancer and arthritis. Nuclear medicine imaging is unique because it provides doctors with

  15. Medical image transmission via communication satellite: evaluation of ultrasonographic images.

    Science.gov (United States)

    Suzuki, H; Horikoshi, H; Shiba, H; Shimamoto, S

    1996-01-01

    As compared with terrestrial circuits, communication satellites possess superior characteristics such as wide area coverage, broadcasting functions, high capacity, and resistance to disasters. Utilizing the narrow band channel (64 kbps) of the stationary communication satellite JCSAT1 located at an altitude of 36,000 km above the equator, we investigated satelliterelayed dynamic medical images transmitted by video signals, using hepatic ultrasonography as a model. We conclude that the "variable playing speed transmission scheme" proposed by us is effective for the transmission of dynamic images in the narrow band channel. This promises to permit diverse utilization and applications for purposes such as the transmission of other types of ultrasonic images as well as remotely directed medical diagnosis and treatment.

  16. The development of application technology for image processing in nuclear facilities

    International Nuclear Information System (INIS)

    Lee, Jong Min; Lee, Yong Bum; Kim, Woog Ki; Sohn, Surg Won; Kim, Seung Ho; Hwang, Suk Yeoung; Kim, Byung Soo

    1991-01-01

    The object of this project is to develop application technology of image processing in nuclear facilities where image signal are used for reliability and safety enhancement of operation, radiation exposure reduce of operator, and automation of operation processing. We has studied such application technology for image processing in nuclear facilities as non-tactile measurement, remote and automatic inspection, remote control, and enhanced analysis of visual information. On these bases, automation system and real-time image processing system are developed. Nuclear power consists in over 50% share of electic power supply of our country nowdays. So, it is required of technological support for top-notch technology in nuclear industry and its related fields. Especially, it is indispensable for image processing technology to enhance the reliabilty and safety of operation, to automate the process in a place like a nuclear power plant and radioactive envionment. It is important that image processing technology is linked to a nuclear engineering, and enhance the reliability abd safety of nuclear operation, as well as decrease the dose rate. (Author)

  17. Energy functionals for medical image segmentation: choices and consequences

    OpenAIRE

    McIntosh, Christopher

    2011-01-01

    Medical imaging continues to permeate the practice of medicine, but automated yet accurate segmentation and labeling of anatomical structures continues to be a major obstacle to computerized medical image analysis. Though there exists numerous approaches for medical image segmentation, one in particular has gained increasing popularity: energy minimization-based techniques, and the large set of methods encompassed therein. With these techniques an energy function must be chosen, segmentations...

  18. Fundamentals of nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Alazraki, N.P.; Mishkin, F.S.

    1984-01-01

    This guidebook for clinical nuclear medicine is written as a description of how nuclear medicine procedures should be used by clinicians in evaluating their patients. It is designed to assist medical students and physicians in becoming acquainted with nuclear medicine techniques for detecting and evaluating most common disorders. The material provides an introduction to, not a textbook of, nuclear medicine. Each chapter is devoted to a particular organ system or topic relevant to the risks and benefits involved in nuclear medicine studies. The emphasis is on presenting the rationales for ordering the various clinical imaging procedures performed in most nuclear medicine departments. Where appropriate, alternative imaging modalities including ultrasound, computed tomography imaging, and radiographic special procedures are discussed. Comparative data between nuclear medicine imaging and other modalities are presented to help guide the practicing clinician in the selection of the most appropriate procedure for a given problem.

  19. Global Security, Medical Isotopes, and Nuclear Science

    Science.gov (United States)

    Ahle, Larry

    2007-10-01

    Over the past century basic nuclear science research has led to the use of radioactive isotopes into a wide variety of applications that touch our lives everyday. Some are obvious, such as isotopes for medical diagnostics and treatment. Others are less so, such as National/Global security issues. And some we take for granted, like the small amount of 241 Am that is in every smoke detector. At the beginning of this century, we are in a position where the prevalence and importance of some applications of nuclear science are pushing the basic nuclear science community for improved models and nuclear data. Yet, at the same time, the push by the basic nuclear science community to study nuclei that are farther and farther away from stability also offer new opportunities for many applications. This talk will look at several global security applications of nuclear science, summarizing current R&D and need for improved nuclear data It will also look at how applications of nuclear science, such as to medicine, will benefit from the push for more and more powerful radioactive ion beam facilities.

  20. Gamma-Ray imaging for nuclear security and safety: Towards 3-D gamma-ray vision

    Science.gov (United States)

    Vetter, Kai; Barnowksi, Ross; Haefner, Andrew; Joshi, Tenzing H. Y.; Pavlovsky, Ryan; Quiter, Brian J.

    2018-01-01

    The development of portable gamma-ray imaging instruments in combination with the recent advances in sensor and related computer vision technologies enable unprecedented capabilities in the detection, localization, and mapping of radiological and nuclear materials in complex environments relevant for nuclear security and safety. Though multi-modal imaging has been established in medicine and biomedical imaging for some time, the potential of multi-modal data fusion for radiological localization and mapping problems in complex indoor and outdoor environments remains to be explored in detail. In contrast to the well-defined settings in medical or biological imaging associated with small field-of-view and well-constrained extension of the radiation field, in many radiological search and mapping scenarios, the radiation fields are not constrained and objects and sources are not necessarily known prior to the measurement. The ability to fuse radiological with contextual or scene data in three dimensions, in analog to radiological and functional imaging with anatomical fusion in medicine, provides new capabilities enhancing image clarity, context, quantitative estimates, and visualization of the data products. We have developed new means to register and fuse gamma-ray imaging with contextual data from portable or moving platforms. These developments enhance detection and mapping capabilities as well as provide unprecedented visualization of complex radiation fields, moving us one step closer to the realization of gamma-ray vision in three dimensions.

  1. Novel medical image enhancement algorithms

    Science.gov (United States)

    Agaian, Sos; McClendon, Stephen A.

    2010-01-01

    In this paper, we present two novel medical image enhancement algorithms. The first, a global image enhancement algorithm, utilizes an alpha-trimmed mean filter as its backbone to sharpen images. The second algorithm uses a cascaded unsharp masking technique to separate the high frequency components of an image in order for them to be enhanced using a modified adaptive contrast enhancement algorithm. Experimental results from enhancing electron microscopy, radiological, CT scan and MRI scan images, using the MATLAB environment, are then compared to the original images as well as other enhancement methods, such as histogram equalization and two forms of adaptive contrast enhancement. An image processing scheme for electron microscopy images of Purkinje cells will also be implemented and utilized as a comparison tool to evaluate the performance of our algorithm.

  2. Geospatial Image Mining For Nuclear Proliferation Detection: Challenges and New Opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Vatsavai, Raju [ORNL; Bhaduri, Budhendra L [ORNL; Cheriyadat, Anil M [ORNL; Arrowood, Lloyd [Y-12 National Security Complex; Bright, Eddie A [ORNL; Gleason, Shaun Scott [ORNL; Diegert, Carl [Sandia National Laboratories (SNL); Katsaggelos, Aggelos K [ORNL; Pappas, Thrasos N [ORNL; Porter, Reid [Los Alamos National Laboratory (LANL); Bollinger, Jim [Savannah River National Laboratory (SRNL); Chen, Barry [Lawrence Livermore National Laboratory (LLNL); Hohimer, Ryan [Pacific Northwest National Laboratory (PNNL)

    2010-01-01

    With increasing understanding and availability of nuclear technologies, and increasing persuasion of nuclear technologies by several new countries, it is increasingly becoming important to monitor the nuclear proliferation activities. There is a great need for developing technologies to automatically or semi-automatically detect nuclear proliferation activities using remote sensing. Images acquired from earth observation satellites is an important source of information in detecting proliferation activities. High-resolution remote sensing images are highly useful in verifying the correctness, as well as completeness of any nuclear program. DOE national laboratories are interested in detecting nuclear proliferation by developing advanced geospatial image mining algorithms. In this paper we describe the current understanding of geospatial image mining techniques and enumerate key gaps and identify future research needs in the context of nuclear proliferation.

  3. Gadgetron: An Open Source Framework for Medical Image Reconstruction

    DEFF Research Database (Denmark)

    Hansen, Michael Schacht; Sørensen, Thomas Sangild

    2013-01-01

    This work presents a new open source framework for medical image reconstruction called the “Gadgetron.” The framework implements a flexible system for creating streaming data processing pipelines where data pass through a series of modules or “Gadgets” from raw data to reconstructed images...... with a set of dedicated toolboxes in shared libraries for medical image reconstruction. This includes generic toolboxes for data-parallel (e.g., GPU-based) execution of compute-intensive components. The basic framework architecture is independent of medical imaging modality, but this article focuses on its...

  4. An open architecture for medical image workstation

    Science.gov (United States)

    Liang, Liang; Hu, Zhiqiang; Wang, Xiangyun

    2005-04-01

    Dealing with the difficulties of integrating various medical image viewing and processing technologies with a variety of clinical and departmental information systems and, in the meantime, overcoming the performance constraints in transferring and processing large-scale and ever-increasing image data in healthcare enterprise, we design and implement a flexible, usable and high-performance architecture for medical image workstations. This architecture is not developed for radiology only, but for any workstations in any application environments that may need medical image retrieving, viewing, and post-processing. This architecture contains an infrastructure named Memory PACS and different kinds of image applications built on it. The Memory PACS is in charge of image data caching, pre-fetching and management. It provides image applications with a high speed image data access and a very reliable DICOM network I/O. In dealing with the image applications, we use dynamic component technology to separate the performance-constrained modules from the flexibility-constrained modules so that different image viewing or processing technologies can be developed and maintained independently. We also develop a weakly coupled collaboration service, through which these image applications can communicate with each other or with third party applications. We applied this architecture in developing our product line and it works well. In our clinical sites, this architecture is applied not only in Radiology Department, but also in Ultrasonic, Surgery, Clinics, and Consultation Center. Giving that each concerned department has its particular requirements and business routines along with the facts that they all have different image processing technologies and image display devices, our workstations are still able to maintain high performance and high usability.

  5. 47 CFR 15.513 - Technical requirements for medical imaging systems.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Technical requirements for medical imaging... DEVICES Ultra-Wideband Operation § 15.513 Technical requirements for medical imaging systems. (a) The UWB... MHz and 10,600 MHz. (b) Operation under the provisions of this section is limited to medical imaging...

  6. Quantitative imaging features: extension of the oncology medical image database

    Science.gov (United States)

    Patel, M. N.; Looney, P. T.; Young, K. C.; Halling-Brown, M. D.

    2015-03-01

    Radiological imaging is fundamental within the healthcare industry and has become routinely adopted for diagnosis, disease monitoring and treatment planning. With the advent of digital imaging modalities and the rapid growth in both diagnostic and therapeutic imaging, the ability to be able to harness this large influx of data is of paramount importance. The Oncology Medical Image Database (OMI-DB) was created to provide a centralized, fully annotated dataset for research. The database contains both processed and unprocessed images, associated data, and annotations and where applicable expert determined ground truths describing features of interest. Medical imaging provides the ability to detect and localize many changes that are important to determine whether a disease is present or a therapy is effective by depicting alterations in anatomic, physiologic, biochemical or molecular processes. Quantitative imaging features are sensitive, specific, accurate and reproducible imaging measures of these changes. Here, we describe an extension to the OMI-DB whereby a range of imaging features and descriptors are pre-calculated using a high throughput approach. The ability to calculate multiple imaging features and data from the acquired images would be valuable and facilitate further research applications investigating detection, prognosis, and classification. The resultant data store contains more than 10 million quantitative features as well as features derived from CAD predictions. Theses data can be used to build predictive models to aid image classification, treatment response assessment as well as to identify prognostic imaging biomarkers.

  7. Whole mount nuclear fluorescent imaging: convenient documentation of embryo morphology.

    Science.gov (United States)

    Sandell, Lisa L; Kurosaka, Hiroshi; Trainor, Paul A

    2012-11-01

    Here, we describe a relatively inexpensive and easy method to produce high quality images that reveal fine topological details of vertebrate embryonic structures. The method relies on nuclear staining of whole mount embryos in combination with confocal microscopy or conventional wide field fluorescent microscopy. In cases where confocal microscopy is used in combination with whole mount nuclear staining, the resulting embryo images can rival the clarity and resolution of images produced by scanning electron microscopy (SEM). The fluorescent nuclear staining may be performed with a variety of cell permeable nuclear dyes, enabling the technique to be performed with multiple standard microscope/illumination or confocal/laser systems. The method may be used to document morphology of embryos of a variety of organisms, as well as individual organs and tissues. Nuclear stain imaging imposes minimal impact on embryonic specimens, enabling imaged specimens to be utilized for additional assays. Copyright © 2012 Wiley Periodicals, Inc.

  8. Use of medical imaging as an epidemiologic tracer

    International Nuclear Information System (INIS)

    Dartigues, J.F.

    1987-01-01

    Medical imaging is a source of data for clinical and epidemiological research just like any other factual information obtained during medical treatment. Medical imaging data, like any other information, are not really useful unless they are obtained in rigorously controlled and determined conditions, defined a priori in the research protocol. In order to be use as an epidemiologic tracer (that is, as a meaning of finding a given pathology in a given population and during a given time period), the imaging data have to be valid, reliable, and representative, of easy access and obtained at a low cost [fr

  9. Facilitating medical information search using Google Glass connected to a content-based medical image retrieval system.

    Science.gov (United States)

    Widmer, Antoine; Schaer, Roger; Markonis, Dimitrios; Muller, Henning

    2014-01-01

    Wearable computing devices are starting to change the way users interact with computers and the Internet. Among them, Google Glass includes a small screen located in front of the right eye, a camera filming in front of the user and a small computing unit. Google Glass has the advantage to provide online services while allowing the user to perform tasks with his/her hands. These augmented glasses uncover many useful applications, also in the medical domain. For example, Google Glass can easily provide video conference between medical doctors to discuss a live case. Using these glasses can also facilitate medical information search by allowing the access of a large amount of annotated medical cases during a consultation in a non-disruptive fashion for medical staff. In this paper, we developed a Google Glass application able to take a photo and send it to a medical image retrieval system along with keywords in order to retrieve similar cases. As a preliminary assessment of the usability of the application, we tested the application under three conditions (images of the skin; printed CT scans and MRI images; and CT and MRI images acquired directly from an LCD screen) to explore whether using Google Glass affects the accuracy of the results returned by the medical image retrieval system. The preliminary results show that despite minor problems due to the relative stability of the Google Glass, images can be sent to and processed by the medical image retrieval system and similar images are returned to the user, potentially helping in the decision making process.

  10. An Integrated Dictionary-Learning Entropy-Based Medical Image Fusion Framework

    Directory of Open Access Journals (Sweden)

    Guanqiu Qi

    2017-10-01

    Full Text Available Image fusion is widely used in different areas and can integrate complementary and relevant information of source images captured by multiple sensors into a unitary synthetic image. Medical image fusion, as an important image fusion application, can extract the details of multiple images from different imaging modalities and combine them into an image that contains complete and non-redundant information for increasing the accuracy of medical diagnosis and assessment. The quality of the fused image directly affects medical diagnosis and assessment. However, existing solutions have some drawbacks in contrast, sharpness, brightness, blur and details. This paper proposes an integrated dictionary-learning and entropy-based medical image-fusion framework that consists of three steps. First, the input image information is decomposed into low-frequency and high-frequency components by using a Gaussian filter. Second, low-frequency components are fused by weighted average algorithm and high-frequency components are fused by the dictionary-learning based algorithm. In the dictionary-learning process of high-frequency components, an entropy-based algorithm is used for informative blocks selection. Third, the fused low-frequency and high-frequency components are combined to obtain the final fusion results. The results and analyses of comparative experiments demonstrate that the proposed medical image fusion framework has better performance than existing solutions.

  11. Simultaneous acquisition of physiological data and nuclear medicine images

    International Nuclear Information System (INIS)

    Rosenthal, M.S.; Klein, H.A.; Orenstein, S.R.

    1988-01-01

    A technique has been developed that allows the simultaneous acquisition of both image and physiological data into a standard nuclear medicine computer system. The physiological data can be displayed along with the nuclear medicine images allowing temporal correlation between the two. This technique has been used to acquire images of gastroesophageal reflux simultaneously with the intraluminal esophageal pH. The resulting data are displayed either as a standard dynamic sequence with the physiological data appearing in a corner of the image or as condensed dynamic images

  12. PET-based molecular nuclear neuro-imaging

    International Nuclear Information System (INIS)

    Kim, Jong Ho

    2004-01-01

    Molecular nuclear neuro-imaging in CNS drug discovery and development can be divided into four categories that are clearly inter-related. (1) Neuroreceptor mapping to examine the involvement of specific neurotransmitter system in CNS diseases, drug occupancy characteristics and perhaps examine mechanisms of action;(2) Structural and spectroscopic imaging to examine morphological changes and their consequences;(3) Metabolic mapping to provide evidence of central activity and CNS fingerprinting the neuroanatomy of drug effects;(4) Functional mapping to examine disease-drug interactions. In addition, targeted delivery of therapeutic agents could be achieved by modifying stem cells to release specific drugs at the site of transplantation('stem cell pharmacology'). Future exploitation of stem cell biology, including enhanced release of therapeutic factors through genetic stem cell engineering might thus constitute promising pharmaceutical approaches to treating diseases of the nervous system. With continued improvements in instrumentation, identification of better imaging probes by innovative chemistry, molecular nuclear neuro-imaging promise to play increasingly important roles in disease diagnosis and therapy

  13. PET-based molecular nuclear neuro-imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Ho [Gil Medical Center, Gachon (Korea, Republic of)

    2004-04-01

    Molecular nuclear neuro-imaging in CNS drug discovery and development can be divided into four categories that are clearly inter-related. (1) Neuroreceptor mapping to examine the involvement of specific neurotransmitter system in CNS diseases, drug occupancy characteristics and perhaps examine mechanisms of action;(2) Structural and spectroscopic imaging to examine morphological changes and their consequences;(3) Metabolic mapping to provide evidence of central activity and CNS fingerprinting the neuroanatomy of drug effects;(4) Functional mapping to examine disease-drug interactions. In addition, targeted delivery of therapeutic agents could be achieved by modifying stem cells to release specific drugs at the site of transplantation('stem cell pharmacology'). Future exploitation of stem cell biology, including enhanced release of therapeutic factors through genetic stem cell engineering might thus constitute promising pharmaceutical approaches to treating diseases of the nervous system. With continued improvements in instrumentation, identification of better imaging probes by innovative chemistry, molecular nuclear neuro-imaging promise to play increasingly important roles in disease diagnosis and therapy.

  14. Medical emergency planning in case of severe nuclear power plant accidents

    International Nuclear Information System (INIS)

    Ohlenschlaeger, L.

    1980-01-01

    This paper is an attempt to discuss a three-step-plan on medical emergency planning in case of severe accidents at nuclear power plants on the basis of own experiences in the regional area as well as on the basis of recommendations of the Federal Minister of the Interior. The medical considerations take account of the severity and extension of an accident whereby the current definitions used in nuclear engineering for accident situations are taken as basis. A comparison between obligatory and actual state is made on the possibilities of medical emergency planning, taking all capacities of staff, facilities, and equipment available in the Federal Republic of Germany into account. To assure a useful and quick utilization of the existing infra-structure as well as nation-wide uniform training of physicians and medical assistants in the field of medical emergency in case of a nuclear catastrophe, a federal law for health protection is regarded urgently necessary. (orig.) [de

  15. Gamma-ray imaging. Applications in nuclear non-proliferation and homeland security

    International Nuclear Information System (INIS)

    Vetter, Kai; Mihailescu, Lucian

    2010-01-01

    This paper provides the motivation and describes implementations of gamma-ray imaging for homeland security applications and more general for national and international nuclear security. As in nuclear medicine and astrophysics, the goal of gamma-ray imaging is the detection and localization of nuclear materials, however, here in a terrestrial environment with distances between nuclear medicine and astrophysics, i.e. in the range of 1-100 meters. Due to the recently increased threat of nuclear terrorism, the detection of illicit nuclear materials and the prevention of nuclear proliferation through the development of advanced gamma-ray imaging concepts and technologies has become and active research field. (author)

  16. Molecular–Genetic Imaging: A Nuclear Medicine–Based Perspective

    Directory of Open Access Journals (Sweden)

    Ronald G. Blasberg

    2002-07-01

    Full Text Available Molecular imaging is a relatively new discipline, which developed over the past decade, initially driven by in situ reporter imaging technology. Noninvasive in vivo molecular–genetic imaging developed more recently and is based on nuclear (positron emission tomography [PET], gamma camera, autoradiography imaging as well as magnetic resonance (MR and in vivo optical imaging. Molecular–genetic imaging has its roots in both molecular biology and cell biology, as well as in new imaging technologies. The focus of this presentation will be nuclear-based molecular–genetic imaging, but it will comment on the value and utility of combining different imaging modalities. Nuclear-based molecular imaging can be viewed in terms of three different imaging strategies: (1 “indirect” reporter gene imaging; (2 “direct” imaging of endogenous molecules; or (3 “surrogate” or “bio-marker” imaging. Examples of each imaging strategy will be presented and discussed. The rapid growth of in vivo molecular imaging is due to the established base of in vivo imaging technologies, the established programs in molecular and cell biology, and the convergence of these disciplines. The development of versatile and sensitive assays that do not require tissue samples will be of considerable value for monitoring molecular–genetic and cellular processes in animal models of human disease, as well as for studies in human subjects in the future. Noninvasive imaging of molecular–genetic and cellular processes will complement established ex vivo molecular–biological assays that require tissue sampling, and will provide a spatial as well as a temporal dimension to our understanding of various diseases and disease processes.

  17. A cloud collaborative medical image platform oriented by social network

    Science.gov (United States)

    Muniz, Frederico B.; Araújo, Luciano V.; Nunes, Fátima L. S.

    2017-03-01

    Computer-aided diagnosis systems using medical images and three-dimensional models as input data have greatly expanded and developed, but in terms of building suitable image databases to assess them, the challenge remains. Although there are some image databases available for this purpose, they are generally limited to certain types of exams or contain a limited number of medical cases. The objective of this work is to present the concepts and the development of a collaborative platform for sharing medical images and three-dimensional models, providing a resource to share and increase the number of images available for researchers. The collaborative cloud platform, called CATALYZER, aims to increase the availability and sharing of graphic objects, including 3D images, and their reports that are essential for research related to medical images. A survey conducted with researchers and health professionals indicated that this could be an innovative approach in the creation of medical image databases, providing a wider variety of cases together with a considerable amount of shared information among its users.

  18. Radiology Physician Extenders: A Literature Review of the History and Current Roles of Physician Extenders in Medical Imaging.

    Science.gov (United States)

    Sanders, Vicki L; Flanagan, Jennifer

    2015-01-01

    The purpose of the literature review was to assess the origins of radiology physician extenders and examine the current roles found in the literature of advanced practice physician extenders within medical imaging. Twenty-six articles relating to physician assistants (PAs), nurse practitioners (NPs), radiologist assistants (RAs), and nuclear medicine advanced associates (NMAAs) were reviewed to discern similarities and differences in history, scope of practice, and roles in the medical imaging field. The literature showed PAs and NPs are working mostly in interventional radiology. PAs, NPs, and RAs perform similar tasks in radiology, including history and physicals, evaluation and management, preprocedure work-up, obtaining informed consent, initial observations/reports, and post-procedure follow-up. NPs and PAs perform a variety of procedures but most commonly vascular access, paracentesis, and thoracentesis. RAs perform gastrointestinal, genitourinary, nonvascular invasive fluoroscopy procedures, and vascular access procedures. The review revealed NMAAs are working in an advanced role, but no specific performances of procedures was found in the literature, only suggested tasks and clinical competencies. PAs, NPs, and RAs are currently the three main midlevel providers used in medical imaging. These midlevel providers are being used in a variety of ways to increase the efficiency of the radiologist and provide diagnostic and therapeutic radiologic procedures to patients. NMAAs are being used in medical imaging but little literature is available on current roles in clinical practice. More research is needed to assess the exact procedures and duties being performed by these medical imaging physician extenders.

  19. Perspective of diffusion of imaging technologies

    International Nuclear Information System (INIS)

    Gariod, R.

    1984-10-01

    Medical imaging is dependant on the following techniques (ultra sounds, conventional radiology, digital radiology, X-ray computed tomography, NMR imaging, nuclear medicine). An overview of the forecast for world market evolution of medical imaging and the respective part taken by different techniques are presented

  20. Real-time image mosaicing for medical applications.

    Science.gov (United States)

    Loewke, Kevin E; Camarillo, David B; Jobst, Christopher A; Salisbury, J Kenneth

    2007-01-01

    In this paper we describe the development of a robotically-assisted image mosaicing system for medical applications. The processing occurs in real-time due to a fast initial image alignment provided by robotic position sensing. Near-field imaging, defined by relatively large camera motion, requires translations as well as pan and tilt orientations to be measured. To capture these measurements we use 5-d.o.f. sensing along with a hand-eye calibration to account for sensor offset. This sensor-based approach speeds up the mosaicing, eliminates cumulative errors, and readily handles arbitrary camera motions. Our results have produced visually satisfactory mosaics on a dental model but can be extended to other medical images.

  1. Teaching of nuclear medicine at medical faculties

    International Nuclear Information System (INIS)

    Dienstbier, Z.

    1987-01-01

    The teaching of nuclear medicine at medical faculties in the CSSR is analyzed. It is shown that the teaching conditions are different at the individual faculties of medicine and the respective conditions are exemplified. (author). 4 tabs

  2. Use of organoboranes in modern medical imaging

    International Nuclear Information System (INIS)

    Kabalka, G.W.

    1991-01-01

    Isotopically labeled materials have proven to be invaluable in chemical, medical, and biological research. Organoboranes are beginning to play a significant role in the synthesis of medically important materials which contain both stable and short-lived isotopes. The organic compounds of boron possess characteristics which make them ideal intermediates in radiopharmaceutical pathways; these include the facts that boron reactions tolerate a wide variety of physiologically active functionality and that the reactions proceed rapidly and in high yields. Boranes have found important applications in modern medical imaging techniques such as positron emission tomography (PET) and magnetic resonance imaging (MRI). (author)

  3. Image processing for medical diagnosis using CNN

    International Nuclear Information System (INIS)

    Arena, Paolo; Basile, Adriano; Bucolo, Maide; Fortuna, Luigi

    2003-01-01

    Medical diagnosis is one of the most important area in which image processing procedures are usefully applied. Image processing is an important phase in order to improve the accuracy both for diagnosis procedure and for surgical operation. One of these fields is tumor/cancer detection by using Microarray analysis. The research studies in the Cancer Genetics Branch are mainly involved in a range of experiments including the identification of inherited mutations predisposing family members to malignant melanoma, prostate and breast cancer. In bio-medical field the real-time processing is very important, but often image processing is a quite time-consuming phase. Therefore techniques able to speed up the elaboration play an important rule. From this point of view, in this work a novel approach to image processing has been developed. The new idea is to use the Cellular Neural Networks to investigate on diagnostic images, like: Magnetic Resonance Imaging, Computed Tomography, and fluorescent cDNA microarray images

  4. Induced-Fission Imaging of Nuclear Material

    International Nuclear Information System (INIS)

    Hausladen, Paul; Blackston, Matthew A.; Mullens, James Allen; McConchie, Seth M.; Mihalczo, John T.; Bingham, Philip R.; Ericson, Milton Nance; Fabris, Lorenzo

    2010-01-01

    This paper presents initial results from development of the induced-fission imaging technique, which can be used for the purpose of measuring or verifying the distribution of fissionable material in an unopened container. The technique is based on stimulating fissions in nuclear material with 14 MeV neutrons from an associated-particle deuterium-tritium (D-T) generator and counting the subsequent induced fast fission neutrons with an array of fast organic scintillation detectors. For each source neutron incident on the container, the neutron creation time and initial trajectory are known from detection of the associated alpha particle of the d + t → α + n reaction. Many induced fissions will lie along (or near) the interrogating neutron path, allowing an image of the spatial distribution of prompt induced fissions, and thereby fissionable material, to be constructed. A variety of induced-fission imaging measurements have been performed at Oak Ridge National Laboratory with a portable, low-dose D-T generator, including single-view radiographic measurements and three-dimensional tomographic measurements. Results from these measurements will be presented along with the neutron transmission images that have been performed simultaneously. This new capability may have applications to a number of areas in which there may be a need to confirm the presence or configuration of nuclear materials, such as nuclear material control and accountability, quality assurance, treaty confirmation, or homeland security applications.

  5. Evaluation of nuclear data for R and D projects; development of database for medical nuclear data

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Tae Suk [Catholic University, Seoul (Korea); Shin, D. O. [Kyung Hee University, Seoul (Korea); Joh, C. W.; Chang, J. S. [Ajou University, Suwon (Korea); Choi, Y. [Sungkyunkwan University, Seoul (Korea); Kim, S. H. [Hanyang University, Seoul (Korea); Park, S. Y. [National Cancer Center, Seoul (Korea); Shin, D. H.; Lee, S [Kyonggi University, Seoul (Korea)

    2002-04-01

    Medical nuclear data used in the country is not provided by academic associations and organizations concerned and even by government organizations concerned. This is aimed to investigate the diagnostic and therapeutic equipments in the clinical use and the domestic present status of nuclear data and physical properties of sealed or unsealed radioactive isotopes and to establish the nuclear database. About 120 domestic centers take nuclear medicine tests and 52 medical centers do radiotherapy. The 30-odd different kinds of radionuclides are usually used in nuclear medicine in the country. The 30-odd kinds of unsealed sources are used for diagnosis and therapy and 10-odd kinds of sealed sources for brachytherapy in the country. The special radiotherapy includes Gamma-knife, linac-based stereotactic radiosurgery, conformal radiotherapy and Intensity modulated radiotherapy. The nuclear data base has been completed on the basis of these data collected and the web site made is available with ease to anyone who want to get nuclear data. 39 refs., 20 figs., 8 tabs. (Author)

  6. Multi-channel medical imaging system

    Science.gov (United States)

    Frangioni, John V

    2013-12-31

    A medical imaging system provides simultaneous rendering of visible light and fluorescent images. The system may employ dyes in a small-molecule form that remain in the subject's blood stream for several minutes, allowing real-time imaging of the subject's circulatory system superimposed upon a conventional, visible light image of the subject. The system may provide an excitation light source to excite the fluorescent substance and a visible light source for general illumination within the same optical guide used to capture images. The system may be configured for use in open surgical procedures by providing an operating area that is closed to ambient light. The systems described herein provide two or more diagnostic imaging channels for capture of multiple, concurrent diagnostic images and may be used where a visible light image may be usefully supplemented by two or more images that are independently marked for functional interest.

  7. Images of mycobacterium for nuclear reactions

    International Nuclear Information System (INIS)

    Lima, C.T.S.; Crispim, V.R.; Silva, M.G.

    2007-01-01

    According to the World Health Organization (WHO) tuberculosis is responsible for 2.9 million deaths annually worldwide. The necessity for optimizing time to detect the tuberculosis bacillus (mycobacterium tuberculosis) in the sputum samples of affected individuals (TB patients) led to the development of a methodology based on the doping with boron of the bacillus, submission of the samples to thermal neutron beam and ionizing particles, generating nuclear reactions of the types: 10 B (n,α) 7 Li and 10 B(α, p) 13 C. Images of these bacilli are obtained by means of the nuclear tracks produced in the CR-39 detector for particles products of these nuclear reactions, α and p. When the CR-39 is submitted to a chemical attack the traces are developed and the images of the microorganisms registered in the detector can be observed with a conventional light microscope, characterizing them by morphology. The use of this methodology results in images of the mycobacterium tuberculosis becoming more defined and enlarged than those obtained by bacilloscopy, in which the sample is submitted to the method of coloration of Ziehl-Neelsen (ZN) and observed in light microscopy. (author)

  8. a New Approach to Physiologic Triggering in Medical Imaging Using Multiple Heart Sounds Alone.

    Science.gov (United States)

    Groch, Mark Walter

    A new method for physiological synchronization of medical image acquisition using both the first and second heart sound has been developed. Heart sounds gating (HSG) circuitry has been developed which identifies, individually, both the first (S1) and second (S2) heart sounds from their timing relationship alone, and provides two synchronization points during the cardiac cycle. Identification of first and second heart sounds from their timing relationship alone and application to medical imaging has, heretofore, not been performed in radiology or nuclear medicine. The heart sounds are obtained as conditioned analog signals from a piezoelectric transducer microphone placed on the patient's chest. The timing relationships between the S1 to S2 pulses and the S2 to S1 pulses are determined using a logic scheme capable of distinguishing the S1 and S2 pulses from the heart sounds themselves, using their timing relationships, and the assumption that initially the S1-S2 interval will be shorter than the S2-S1 interval. Digital logic circuitry is utilized to continually track the timing intervals and extend the S1/S2 identification to heart rates up to 200 beats per minute (where the S1-S2 interval is not shorter than the S2-S1 interval). Clinically, first heart sound gating may be performed to assess the systolic ejection portion of the cardiac cycle, with S2 gating utilized for reproduction of the diastolic filling portion of the cycle. One application of HSG used for physiologic synchronization is in multigated blood pool (MGBP) imaging in nuclear medicine. Heart sounds gating has been applied to twenty patients who underwent analysis of ventricular function in Nuclear Medicine, and compared to conventional ECG gated MGBP. Left ventricular ejection fractions calculated from MGBP studies using a S1 and a S2 heart sound trigger correlated well with conventional ECG gated acquisitions in patients adequately gated by HSG and ECG. Heart sounds gating provided superior

  9. FUZZY BASED CONTRAST STRETCHING FOR MEDICAL IMAGE ENHANCEMENT

    Directory of Open Access Journals (Sweden)

    T.C. Raja Kumar

    2011-07-01

    Full Text Available Contrast Stretching is an important part in medical image processing applications. Contrast is the difference between two adjacent pixels. Fuzzy statistical values are analyzed and better results are produced in the spatial domain of the input image. The histogram mapping produces the resultant image with less impulsive noise and smooth nature. The probabilities of gray values are generated and the fuzzy set is determined from the position of the input image pixel. The result indicates the good performance of the proposed fuzzy based stretching. The inverse transform of the real values are mapped with the input image to generate the fuzzy statistics. This approach gives a flexible image enhancement for medical images in the presence of noises.

  10. An intelligent framework for medical image retrieval using MDCT and multi SVM.

    Science.gov (United States)

    Balan, J A Alex Rajju; Rajan, S Edward

    2014-01-01

    Volumes of medical images are rapidly generated in medical field and to manage them effectively has become a great challenge. This paper studies the development of innovative medical image retrieval based on texture features and accuracy. The objective of the paper is to analyze the image retrieval based on diagnosis of healthcare management systems. This paper traces the development of innovative medical image retrieval to estimate both the image texture features and accuracy. The texture features of medical images are extracted using MDCT and multi SVM. Both the theoretical approach and the simulation results revealed interesting observations and they were corroborated using MDCT coefficients and SVM methodology. All attempts to extract the data about the image in response to the query has been computed successfully and perfect image retrieval performance has been obtained. Experimental results on a database of 100 trademark medical images show that an integrated texture feature representation results in 98% of the images being retrieved using MDCT and multi SVM. Thus we have studied a multiclassification technique based on SVM which is prior suitable for medical images. The results show the retrieval accuracy of 98%, 99% for different sets of medical images with respect to the class of image.

  11. Diagnostic Imaging Workshop

    International Nuclear Information System (INIS)

    Sociedad Argentina de Fisica Medica

    2012-01-01

    The American Association of Physicist in Medicine (AAPM), the International Organization for Medical Physics (IOMP) and the Argentina Society of Medical Physics (SAFIM) was organized the Diagnostic Imaging Workshop 2012, in the city of Buenos Aires, Argentina. This workshop was an oriented training and scientific exchange between professionals and technicians who work in medical physics, especially in the areas of diagnostic imaging, nuclear medicine and radiotherapy, with special emphasis on the use of multimodal imaging for radiation treatment, planning as well of quality assurance associates.

  12. Machine Learning in Medical Imaging.

    Science.gov (United States)

    Giger, Maryellen L

    2018-03-01

    Advances in both imaging and computers have synergistically led to a rapid rise in the potential use of artificial intelligence in various radiological imaging tasks, such as risk assessment, detection, diagnosis, prognosis, and therapy response, as well as in multi-omics disease discovery. A brief overview of the field is given here, allowing the reader to recognize the terminology, the various subfields, and components of machine learning, as well as the clinical potential. Radiomics, an expansion of computer-aided diagnosis, has been defined as the conversion of images to minable data. The ultimate benefit of quantitative radiomics is to (1) yield predictive image-based phenotypes of disease for precision medicine or (2) yield quantitative image-based phenotypes for data mining with other -omics for discovery (ie, imaging genomics). For deep learning in radiology to succeed, note that well-annotated large data sets are needed since deep networks are complex, computer software and hardware are evolving constantly, and subtle differences in disease states are more difficult to perceive than differences in everyday objects. In the future, machine learning in radiology is expected to have a substantial clinical impact with imaging examinations being routinely obtained in clinical practice, providing an opportunity to improve decision support in medical image interpretation. The term of note is decision support, indicating that computers will augment human decision making, making it more effective and efficient. The clinical impact of having computers in the routine clinical practice may allow radiologists to further integrate their knowledge with their clinical colleagues in other medical specialties and allow for precision medicine. Copyright © 2018. Published by Elsevier Inc.

  13. Aliphatic polyesters for medical imaging and theranostic applications.

    Science.gov (United States)

    Nottelet, Benjamin; Darcos, Vincent; Coudane, Jean

    2015-11-01

    Medical imaging is a cornerstone of modern medicine. In that context the development of innovative imaging systems combining biomaterials and contrast agents (CAs)/imaging probes (IPs) for improved diagnostic and theranostic applications focuses intense research efforts. In particular, the classical aliphatic (co)polyesters poly(lactide) (PLA), poly(lactide-co-glycolide) (PLGA) and poly(ɛ-caprolactone) (PCL), attract much attention due to their long track record in the medical field. This review aims therefore at providing a state-of-the-art of polyester-based imaging systems. In a first section a rapid description of the various imaging modalities, including magnetic resonance imaging (MRI), optical imaging, computed tomography (CT), ultrasound (US) and radionuclide imaging (SPECT, PET) will be given. Then, the two main strategies used to combine the CAs/IPs and the polyesters will be discussed. In more detail we will first present the strategies relying on CAs/IPs encapsulation in nanoparticles, micelles, dendrimers or capsules. We will then present chemical modifications of polyesters backbones and/or polyester surfaces to yield macromolecular imaging agents. Finally, opportunities offered by these innovative systems will be illustrated with some recent examples in the fields of cell labeling, diagnostic or theranostic applications and medical devices. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Global Security, Medical Isotopes, and Nuclear Science

    International Nuclear Information System (INIS)

    Ahle, Larry

    2007-01-01

    Over the past century basic nuclear science research has led to the use of radioactive isotopes into a wide variety of applications that touch our lives everyday. Some are obvious, such as isotopes for medical diagnostics and treatment. Others are less so, such as National/Global security issues. And some we take for granted, like the small amount of 241 Am that is in every smoke detector. At the beginning of this century, we are in a position where the prevalence and importance of some applications of nuclear science are pushing the basic nuclear science community for improved models and nuclear data. Yet, at the same time, the push by the basic nuclear science community to study nuclei that are farther and farther away from stability also offer new opportunities for many applications. This talk will look at several global security applications of nuclear science, summarizing current R and D and need for improved nuclear data It will also look at how applications of nuclear science, such as to medicine, will benefit from the push for more and more powerful radioactive ion beam facilities

  15. Brain medical image diagnosis based on corners with importance-values.

    Science.gov (United States)

    Gao, Linlin; Pan, Haiwei; Li, Qing; Xie, Xiaoqin; Zhang, Zhiqiang; Han, Jinming; Zhai, Xiao

    2017-11-21

    Brain disorders are one of the top causes of human death. Generally, neurologists analyze brain medical images for diagnosis. In the image analysis field, corners are one of the most important features, which makes corner detection and matching studies essential. However, existing corner detection studies do not consider the domain information of brain. This leads to many useless corners and the loss of significant information. Regarding corner matching, the uncertainty and structure of brain are not employed in existing methods. Moreover, most corner matching studies are used for 3D image registration. They are inapplicable for 2D brain image diagnosis because of the different mechanisms. To address these problems, we propose a novel corner-based brain medical image classification method. Specifically, we automatically extract multilayer texture images (MTIs) which embody diagnostic information from neurologists. Moreover, we present a corner matching method utilizing the uncertainty and structure of brain medical images and a bipartite graph model. Finally, we propose a similarity calculation method for diagnosis. Brain CT and MRI image sets are utilized to evaluate the proposed method. First, classifiers are trained in N-fold cross-validation analysis to produce the best θ and K. Then independent brain image sets are tested to evaluate the classifiers. Moreover, the classifiers are also compared with advanced brain image classification studies. For the brain CT image set, the proposed classifier outperforms the comparison methods by at least 8% on accuracy and 2.4% on F1-score. Regarding the brain MRI image set, the proposed classifier is superior to the comparison methods by more than 7.3% on accuracy and 4.9% on F1-score. Results also demonstrate that the proposed method is robust to different intensity ranges of brain medical image. In this study, we develop a robust corner-based brain medical image classifier. Specifically, we propose a corner detection

  16. Large-Scale medical image analytics: Recent methodologies, applications and Future directions.

    Science.gov (United States)

    Zhang, Shaoting; Metaxas, Dimitris

    2016-10-01

    Despite the ever-increasing amount and complexity of annotated medical image data, the development of large-scale medical image analysis algorithms has not kept pace with the need for methods that bridge the semantic gap between images and diagnoses. The goal of this position paper is to discuss and explore innovative and large-scale data science techniques in medical image analytics, which will benefit clinical decision-making and facilitate efficient medical data management. Particularly, we advocate that the scale of image retrieval systems should be significantly increased at which interactive systems can be effective for knowledge discovery in potentially large databases of medical images. For clinical relevance, such systems should return results in real-time, incorporate expert feedback, and be able to cope with the size, quality, and variety of the medical images and their associated metadata for a particular domain. The design, development, and testing of the such framework can significantly impact interactive mining in medical image databases that are growing rapidly in size and complexity and enable novel methods of analysis at much larger scales in an efficient, integrated fashion. Copyright © 2016. Published by Elsevier B.V.

  17. Visualization index for image-enabled medical records

    Science.gov (United States)

    Dong, Wenjie; Zheng, Weilin; Sun, Jianyong; Zhang, Jianguo

    2011-03-01

    With the widely use of healthcare information technology in hospitals, the patients' medical records are more and more complex. To transform the text- or image-based medical information into easily understandable and acceptable form for human, we designed and developed an innovation indexing method which can be used to assign an anatomical 3D structure object to every patient visually to store indexes of the patients' basic information, historical examined image information and RIS report information. When a doctor wants to review patient historical records, he or she can first load the anatomical structure object and the view the 3D index of this object using a digital human model tool kit. This prototype system helps doctors to easily and visually obtain the complete historical healthcare status of patients, including large amounts of medical data, and quickly locate detailed information, including both reports and images, from medical information systems. In this way, doctors can save time that may be better used to understand information, obtain a more comprehensive understanding of their patients' situations, and provide better healthcare services to patients.

  18. Defining nuclear medical file formal based on DICOM standard

    International Nuclear Information System (INIS)

    He Bin; Jin Yongjie; Li Yulan

    2001-01-01

    With the wide application of computer technology in medical area, DICOM is becoming the standard of digital imaging and communication. The author discusses how to define medical imaging file formal based on DICOM standard. It also introduces the format of ANMIS system the authors defined the validity and integrality of this format

  19. Aligning Islamic Spirituality to Medical Imaging.

    Science.gov (United States)

    Zainuddin, Zainul Ibrahim

    2017-10-01

    This paper attempts to conceptualize Islamic spirituality in medical imaging that deals with the humanistic and technical dimensions. It begins with establishing an understanding concerning spirituality, an area that now accepted as part of patient-centred care. This is followed by discussions pertaining to Islamic spirituality, related to the practitioner, patient care and the practice. Possible avenues towards applying Islamic spirituality in medical imaging are proposed. It is hoped that the resultant harmonization between Islamic spirituality and the practice will trigger awareness and interests pertaining to the role of a Muslim practitioner in advocating and enhancing Islamic spirituality.

  20. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... resonance imaging (MRI) to produce special views, a practice known as image fusion or co-registration. These ... your doctor of any recent illnesses or other medical conditions. Depending on the type of nuclear scan ...

  1. An Improved FCM Medical Image Segmentation Algorithm Based on MMTD

    Directory of Open Access Journals (Sweden)

    Ningning Zhou

    2014-01-01

    Full Text Available Image segmentation plays an important role in medical image processing. Fuzzy c-means (FCM is one of the popular clustering algorithms for medical image segmentation. But FCM is highly vulnerable to noise due to not considering the spatial information in image segmentation. This paper introduces medium mathematics system which is employed to process fuzzy information for image segmentation. It establishes the medium similarity measure based on the measure of medium truth degree (MMTD and uses the correlation of the pixel and its neighbors to define the medium membership function. An improved FCM medical image segmentation algorithm based on MMTD which takes some spatial features into account is proposed in this paper. The experimental results show that the proposed algorithm is more antinoise than the standard FCM, with more certainty and less fuzziness. This will lead to its practicable and effective applications in medical image segmentation.

  2. Organization and visualization of medical images in radiotherapy

    International Nuclear Information System (INIS)

    Lorang, T.

    2001-05-01

    In modern radiotherapy, various imaging equipment is used to acquire views from inside human bodies. Tomographic imaging equipment is acquiring stacks of cross-sectional images, software implementations derive three-dimensional volumes from planar images to allow for visualization of reconstructed cross-sections at any orientation and location and higher-level visualization systems allow for transparent views and surface rendering. Of upcoming interest in radiotherapy is mutual information, the integration of information from multiple imaging equipment res. from the same imaging equipment at different time stamps and varying acquisition parameters. Huge amounts of images are acquired nowadays at radiotherapy centers, requiring organization of images with respect to patient, acquisition and equipment to allow for visualization of images in a comparative and integrative manner. Especially for integration of image information from different equipment, geometrical information is required to allow for registration of images res. volumes. DICOM 3.0 has been introduced as a standard for information interchange with respect to medical imaging. Geometric information of cross-sections, demographic information of patients and medical information of acquisitions and equipment are covered by this standard, allowing for a high-level automation with respect to organization and visualization of medical images. Reconstructing cross-sectional images from volumes at any orientation and location is required for the purpose of registration and multi-planar views. Resampling and addressing of discrete volume data need be implemented efficiently to allow for simultaneous visualization of multiple cross-sectional images, especially with respect to multiple, non-isotropy volume data sets. (author)

  3. Emergency medical assistance programs for nuclear power reactors

    International Nuclear Information System (INIS)

    Linnemann, R.E.; Mettler, F.A. Jr.

    1977-01-01

    This paper deals with a simple but practical medical support of geographically distributed nuclear reactors in isolated areas. A staff of experts at a centre devote their full attention to accident prevention and preparedness at reactor sites. They establish and maintain emergency medical programs at reactor sites and nearby support hospitals. The emphasis is on first aid and emergency treatment by medical attendants who are not and cannot be experts in radiation but do know how to treat patients. (author)

  4. Java-based remote viewing and processing of nuclear medicine images: toward "the imaging department without walls".

    Science.gov (United States)

    Slomka, P J; Elliott, E; Driedger, A A

    2000-01-01

    In nuclear medicine practice, images often need to be reviewed and reports prepared from locations outside the department, usually in the form of hard copy. Although hard-copy images are simple and portable, they do not offer electronic data search and image manipulation capabilities. On the other hand, picture archiving and communication systems or dedicated workstations cannot be easily deployed at numerous locations. To solve this problem, we propose a Java-based remote viewing station (JaRViS) for the reading and reporting of nuclear medicine images using Internet browser technology. JaRViS interfaces to the clinical patient database of a nuclear medicine workstation. All JaRViS software resides on a nuclear medicine department server. The contents of the clinical database can be searched by a browser interface after providing a password. Compressed images with the Java applet and color lookup tables are downloaded on the client side. This paradigm does not require nuclear medicine software to reside on remote computers, which simplifies support and deployment of such a system. To enable versatile reporting of the images, color tables and thresholds can be interactively manipulated and images can be displayed in a variety of layouts. Image filtering, frame grouping (adding frames), and movie display are available. Tomographic mode displays are supported, including gated SPECT. The time to display 14 lung perfusion images in 128 x 128 matrix together with the Java applet and color lookup tables over a V.90 modem is remote nuclear medicine viewing station using Java and an Internet or intranet browser. Images can be made easily and cost-effectively available to referring physicians and ambulatory clinics within and outside of the hospital, providing a convenient alternative to film media. We also find this system useful in home reporting of emergency procedures such as lung ventilation-perfusion scans or dynamic studies.

  5. Contributions in compression of 3D medical images and 2D images

    International Nuclear Information System (INIS)

    Gaudeau, Y.

    2006-12-01

    The huge amounts of volumetric data generated by current medical imaging techniques in the context of an increasing demand for long term archiving solutions, as well as the rapid development of distant radiology make the use of compression inevitable. Indeed, if the medical community has sided until now with compression without losses, most of applications suffer from compression ratios which are too low with this kind of compression. In this context, compression with acceptable losses could be the most appropriate answer. So, we propose a new loss coding scheme based on 3D (3 dimensional) Wavelet Transform and Dead Zone Lattice Vector Quantization 3D (DZLVQ) for medical images. Our algorithm has been evaluated on several computerized tomography (CT) and magnetic resonance image volumes. The main contribution of this work is the design of a multidimensional dead zone which enables to take into account correlations between neighbouring elementary volumes. At high compression ratios, we show that it can out-perform visually and numerically the best existing methods. These promising results are confirmed on head CT by two medical patricians. The second contribution of this document assesses the effect with-loss image compression on CAD (Computer-Aided Decision) detection performance of solid lung nodules. This work on 120 significant lungs images shows that detection did not suffer until 48:1 compression and still was robust at 96:1. The last contribution consists in the complexity reduction of our compression scheme. The first allocation dedicated to 2D DZLVQ uses an exponential of the rate-distortion (R-D) functions. The second allocation for 2D and 3D medical images is based on block statistical model to estimate the R-D curves. These R-D models are based on the joint distribution of wavelet vectors using a multidimensional mixture of generalized Gaussian (MMGG) densities. (author)

  6. Medical physics 2013. Abstracts; Medizinische Physik 2013. Abstractband

    Energy Technology Data Exchange (ETDEWEB)

    Treuer, Harald (ed.) [Koeln Univ. (Germany). Klinik fuer Stereotaxie und Funktionelle Neurochirurgie

    2013-07-01

    The proceedings of the medical physics conference 2013 include abstract of lectures and poster sessions concerning the following issues: Tele-therapy - application systems, nuclear medicine and molecular imaging, neuromodulation, hearing and technical support, basic dosimetry, NMR imaging -CEST (chemical exchange saturation transfer), medical robotics, magnetic particle imaging, audiology, radiation protection, phase contrast - innovative concepts, particle therapy, brachytherapy, computerized tomography, quantity assurance, hybrid imaging techniques, diffusion and lung NMR imaging, image processing - visualization, cardiac and abdominal NMR imaging.

  7. MEDICAL IMAGE COMPRESSION USING HYBRID CODER WITH FUZZY EDGE DETECTION

    Directory of Open Access Journals (Sweden)

    K. Vidhya

    2011-02-01

    Full Text Available Medical imaging techniques produce prohibitive amounts of digitized clinical data. Compression of medical images is a must due to large memory space required for transmission and storage. This paper presents an effective algorithm to compress and to reconstruct medical images. The proposed algorithm first extracts edge information of medical images by using fuzzy edge detector. The images are decomposed using Cohen-Daubechies-Feauveau (CDF wavelet. The hybrid technique utilizes the efficient wavelet based compression algorithms such as JPEG2000 and Set Partitioning In Hierarchical Trees (SPIHT. The wavelet coefficients in the approximation sub band are encoded using tier 1 part of JPEG2000. The wavelet coefficients in the detailed sub bands are encoded using SPIHT. Consistent quality images are produced by this method at a lower bit rate compared to other standard compression algorithms. Two main approaches to assess image quality are objective testing and subjective testing. The image quality is evaluated by objective quality measures. Objective measures correlate well with the perceived image quality for the proposed compression algorithm.

  8. The Handbook of Medical Image Perception and Techniques

    Science.gov (United States)

    Samei, Ehsan; Krupinski, Elizabeth

    2014-07-01

    1. Medical image perception Ehsan Samei and Elizabeth Krupinski; Part I. Historical Reflections and Theoretical Foundations: 2. A short history of image perception in medical radiology Harold Kundel and Calvin Nodine; 3. Spatial vision research without noise Arthur Burgess; 4. Signal detection theory, a brief history Arthur Burgess; 5. Signal detection in radiology Arthur Burgess; 6. Lessons from dinners with the giants of modern image science Robert Wagner; Part II. Science of Image Perception: 7. Perceptual factors in reading medical images Elizabeth Krupinski; 8. Cognitive factors in reading medical images David Manning; 9. Satisfaction of search in traditional radiographic imaging Kevin Berbaum, Edmund Franken, Robert Caldwell and Kevin Schartz; 10. The role of expertise in radiologic image interpretation Calvin Nodine and Claudia Mello-Thoms; 11. A primer of image quality and its perceptual relevance Robert Saunders and Ehsan Samei; 12. Beyond the limitations of human vision Maria Petrou; Part III. Perception Metrology: 13. Logistical issues in designing perception experiments Ehsan Samei and Xiang Li; 14. ROC analysis: basic concepts and practical applications Georgia Tourassi; 15. Multi-reader ROC Steve Hillis; 16. Recent developments in FROC methodology Dev Chakraborty; 17. Observer models as a surrogate to perception experiments Craig Abbey and Miguel Eckstein; 18. Implementation of observer models Matthew Kupinski; Part IV. Decision Support and Computer Aided Detection: 19. CAD: an image perception perspective Maryellen Giger and Weijie Chen; 20. Common designs of CAD studies Yulei Jiang; 21. Perceptual effect of CAD in reading chest images Matthew Freedman and Teresa Osicka; 22. Perceptual issues in mammography and CAD Michael Ulissey; 23. How perceptual factors affect the use and accuracy of CAD for interpretation of CT images Ronald Summers; 24. CAD: risks and benefits for radiologists' decisions Eugenio Alberdi, Andrey Povyakalo, Lorenzo Strigini and

  9. Medical images storage using discrete cosine transform

    International Nuclear Information System (INIS)

    Arhouma, Ali M.; Ajaal, Tawfik; Marghani, Khaled

    2010-01-01

    The advances in technology during the last decades have made the use of digital images as one of the common things in everyday life. While the application of digital images in communicating information is very important, the cost of storing and transmitting images is much larger compared to storage and transmission of text. The main problem with all of the images was the fact that they take large size of memory space, large transmission bandwidth and long transmission time. Image data compression is needed to reduce the storage space,transmission bandwidth and transmission time. Medical image compression plays a key role as hospitals move towards filmless imaging and go completely digital. Image compression allows Picture Archiving and Communication Systems (PACS) to reduce the file size on their storage requirements while maintaining relevant diagnostic information. The reduced image file size yield reduced transmission times. Even as the capacity of storage media continues to increase, it is expected that the volume of uncompressed data produced by hospitals will exceed capacity of storage and drive up costs. This paper proposes a Discrete Cosine Transform (DCT) algorithm which can help to solve the image storage and transmission time problem in hospitals. Discrete cosine transform (DCT) has become the most popular technique for image compression over the past several years. One of the major reasons for its popularity is its selection as the standard for JPEG. DCTs are most commonly used for non-analytical applications such as image processing and digital signal-processing (DSP) applications such as video conferencing, fax systems, video disks, and high-definition television HDTV. They also can be used on a matrix of practically any dimension. The proposed (DCT) algorithm improves the performance of medical image compression while satisfying both the medical image quality, and the high compression ratio. Application of DCT coding algorithm to actual still images

  10. Medical imaging and augmented reality. Proceedings

    International Nuclear Information System (INIS)

    Yang Guang-Zhong; Jiang Tianzi; Shen Dinggang; Gu Lixu; Yang Jie

    2006-01-01

    This book constitutes the refereed proceedings of the Third International Workshop on Medical Imaging and Augmented Reality, MIAR 2006, held in Shanghai, China, in August 2006. The 45 revised full papers presented together with 4 invited papers were carefully reviewed and selected from 87 submissions. The papers are organized in topical sections on shape modeling and morphometry, patient specific modeling and quantification, surgical simulation and skills assessment, surgical guidance and navigation, image registration, PET image reconstruction, and image segmentation. (orig.)

  11. Adaptive Beamforming for Medical Ultrasound Imaging

    DEFF Research Database (Denmark)

    Holfort, Iben Kraglund

    This dissertation investigates the application of adaptive beamforming for medical ultrasound imaging. The investigations have been concentrated primarily on the Minimum Variance (MV) beamformer. A broadband implementation of theMV beamformer is described, and simulated data have been used...... to demonstrate the performance. The MV beamformer has been applied to different sets of ultrasound imaging sequences; synthetic aperture ultrasound imaging and plane wave ultrasound imaging. And an approach for applying MV optimized apodization weights on both the transmitting and the receiving apertures...

  12. [Managing digital medical imaging projects in healthcare services: lessons learned].

    Science.gov (United States)

    Rojas de la Escalera, D

    2013-01-01

    Medical imaging is one of the most important diagnostic instruments in clinical practice. The technological development of digital medical imaging has enabled healthcare services to undertake large scale projects that require the participation and collaboration of many professionals of varied backgrounds and interests as well as substantial investments in infrastructures. Rather than focusing on systems for dealing with digital medical images, this article deals with the management of projects for implementing these systems, reviewing various organizational, technological, and human factors that are critical to ensure the success of these projects and to guarantee the compatibility and integration of digital medical imaging systems with other health information systems. To this end, the author relates several lessons learned from a review of the literature and the author's own experience in the technical coordination of digital medical imaging projects. Copyright © 2012 SERAM. Published by Elsevier Espana. All rights reserved.

  13. Diagnostic information management system for the evaluation of medical images

    Energy Technology Data Exchange (ETDEWEB)

    Higa, Toshiaki; Torizuka, Kanji; Minato, Kotaro; Komori, Masaru; Hirakawa, Akina

    1985-04-01

    A practical, small and low-cost diagnostic information management system has been developed for a comparative study of various medical imaging procedures, including ordinary radiography, X-ray computed tomography, emission computed tomography, and so forth. The purpose of the system is to effectively manage the original image data files and diagnostic descriptions during the various imaging procedures. A diagnostic description of each imaging procedure for each patient is made on a hand-sort punched-card with line-drawings and ordinary medical terminology and then coded and computerized using Index for Roentgen Diagnoses (American College of Radiology). A database management software (DB Master) on a personal computer (Apple II) is used for searching for patients' records on hand-sort punched-cards and finally original medical images. Discussed are realistic use of medical images and an effective form of diagnostic descriptions.

  14. Diagnostic information management system for the evaluation of medical images

    International Nuclear Information System (INIS)

    Higa, Toshiaki; Torizuka, Kanji; Minato, Kotaro; Komori, Masaru; Hirakawa, Akina.

    1985-01-01

    A practical, small and low-cost diagnostic information management system has been developed for a comparative study of various medical imaging procedures, including ordinary radiography, X-ray computed tomography, emission computed tomography, and so forth. The purpose of the system is to effectively manage the original image data files and diagnostic descriptions during the various imaging procedures. A diagnostic description of each imaging procedure for each patient is made on a hand-sort punched-card with line-drawings and ordinary medical terminology and then coded and computerized using Index for Roentgen Diagnoses (American College of Radiology). A database management software (DB Master) on a personal computer (Apple II) is used for searching for patients' records on hand-sort punched-cards and finally original medical images. Discussed are realistic use of medical images and an effective form of diagnostic descriptions. (author)

  15. Potential medical applications of the plasma focus in the radioisotope production for PET imaging

    International Nuclear Information System (INIS)

    Roshan, M.V.; Razaghi, S.; Asghari, F.; Rawat, R.S.; Springham, S.V.; Lee, P.; Lee, S.; Tan, T.L.

    2014-01-01

    Devices other than the accelerators are desired to be investigated for generating high energy particles to induce nuclear reaction and positron emission tomography (PET) producing radioisotopes. The experimental data of plasma focus devices (PF) are studied and the activity scaling law for External Solid Target (EST) activation is established. Based on the scaling law and the techniques to enhance the radioisotopes production, the feasibility of generating the required activity for PET imaging is studied. - Highlights: • Short lived radioisotopes for PET imaging are produced in plasma focus device. • The scaling law of the activity induced with plasma focus energy is established. • The potential medical applications of plasma focus are studied

  16. Intelligent medical image processing by simulated annealing

    International Nuclear Information System (INIS)

    Ohyama, Nagaaki

    1992-01-01

    Image processing is being widely used in the medical field and already has become very important, especially when used for image reconstruction purposes. In this paper, it is shown that image processing can be classified into 4 categories; passive, active, intelligent and visual image processing. These 4 classes are explained at first through the use of several examples. The results show that the passive image processing does not give better results than the others. Intelligent image processing, then, is addressed, and the simulated annealing method is introduced. Due to the flexibility of the simulated annealing, formulated intelligence is shown to be easily introduced in an image reconstruction problem. As a practical example, 3D blood vessel reconstruction from a small number of projections, which is insufficient for conventional method to give good reconstruction, is proposed, and computer simulation clearly shows the effectiveness of simulated annealing method. Prior to the conclusion, medical file systems such as IS and C (Image Save and Carry) is pointed out to have potential for formulating knowledge, which is indispensable for intelligent image processing. This paper concludes by summarizing the advantages of simulated annealing. (author)

  17. Identifying regions of interest in medical images using self-organizing maps.

    Science.gov (United States)

    Teng, Wei-Guang; Chang, Ping-Lin

    2012-10-01

    Advances in data acquisition, processing and visualization techniques have had a tremendous impact on medical imaging in recent years. However, the interpretation of medical images is still almost always performed by radiologists. Developments in artificial intelligence and image processing have shown the increasingly great potential of computer-aided diagnosis (CAD). Nevertheless, it has remained challenging to develop a general approach to process various commonly used types of medical images (e.g., X-ray, MRI, and ultrasound images). To facilitate diagnosis, we recommend the use of image segmentation to discover regions of interest (ROI) using self-organizing maps (SOM). We devise a two-stage SOM approach that can be used to precisely identify the dominant colors of a medical image and then segment it into several small regions. In addition, by appropriately conducting the recursive merging steps to merge smaller regions into larger ones, radiologists can usually identify one or more ROIs within a medical image.

  18. Machine learning approaches in medical image analysis

    DEFF Research Database (Denmark)

    de Bruijne, Marleen

    2016-01-01

    Machine learning approaches are increasingly successful in image-based diagnosis, disease prognosis, and risk assessment. This paper highlights new research directions and discusses three main challenges related to machine learning in medical imaging: coping with variation in imaging protocols......, learning from weak labels, and interpretation and evaluation of results....

  19. Application for internal dosimetry using biokinetic distribution of photons based on nuclear medicine images.

    Science.gov (United States)

    Leal Neto, Viriato; Vieira, José Wilson; Lima, Fernando Roberto de Andrade

    2014-01-01

    This article presents a way to obtain estimates of dose in patients submitted to radiotherapy with basis on the analysis of regions of interest on nuclear medicine images. A software called DoRadIo (Dosimetria das Radiações Ionizantes [Ionizing Radiation Dosimetry]) was developed to receive information about source organs and target organs, generating graphical and numerical results. The nuclear medicine images utilized in the present study were obtained from catalogs provided by medical physicists. The simulations were performed with computational exposure models consisting of voxel phantoms coupled with the Monte Carlo EGSnrc code. The software was developed with the Microsoft Visual Studio 2010 Service Pack and the project template Windows Presentation Foundation for C# programming language. With the mentioned tools, the authors obtained the file for optimization of Monte Carlo simulations using the EGSnrc; organization and compaction of dosimetry results with all radioactive sources; selection of regions of interest; evaluation of grayscale intensity in regions of interest; the file of weighted sources; and, finally, all the charts and numerical results. The user interface may be adapted for use in clinical nuclear medicine as a computer-aided tool to estimate the administered activity.

  20. Nuclear Medicine Practice in Kenya

    International Nuclear Information System (INIS)

    Ndirangu, T.D.

    2017-01-01

    Nuclear medicine is a medical specialty that relies on the use of nuclear technology in the diagnosis and treatment (therapy) of diseases. Nuclear medicine uses the principle that a certain radiopharmaceutical (tracer) will at a certain point in time have a preferential uptake by a particular body, tissue or cell. This uptake is then imaged by the use of detectors mounted in gamma cameras or PET (positron emission tomography) devices.. Unlike other radiation applications for medical use, nuclear medicine uses open (unsealed) sources of radiation. In a country with an estimated population of 48 million in 2017, Kenya has only two (2) nuclear medicine facilities (units). Being a relatively new medical discipline in Kenya, several measures have been taken by the clinical nuclear medicine team to create awareness at various levels

  1. Internal radiation dosimetry using nuclear medicine imaging in radionuclide therapy

    International Nuclear Information System (INIS)

    Kim, Kyeong Min; Byun, Byun Hyun; Cheon, Gi Jeong; Lim, Sang Moo

    2007-01-01

    Radionuclide therapy has been an important field in nuclear medicine. In radionuclide therapy, relevant evaluation of internally absorbed dose is essential for the achievement of efficient and sufficient treatment of incurable disease, and can be accomplished by means of accurate measurement of radioactivity in body and its changes with time. Recently, the advances of nuclear medicine imaging and multi modality imaging processing techniques can provide chance of more accurate and easier measurement of the measures commented above, in cooperation of conventional imaging based approaches. In this review, basic concept for internal dosimetry using nuclear medicine imaging is summarized with several check points which should be considered in real practice

  2. Wavelet optimization for content-based image retrieval in medical databases.

    Science.gov (United States)

    Quellec, G; Lamard, M; Cazuguel, G; Cochener, B; Roux, C

    2010-04-01

    We propose in this article a content-based image retrieval (CBIR) method for diagnosis aid in medical fields. In the proposed system, images are indexed in a generic fashion, without extracting domain-specific features: a signature is built for each image from its wavelet transform. These image signatures characterize the distribution of wavelet coefficients in each subband of the decomposition. A distance measure is then defined to compare two image signatures and thus retrieve the most similar images in a database when a query image is submitted by a physician. To retrieve relevant images from a medical database, the signatures and the distance measure must be related to the medical interpretation of images. As a consequence, we introduce several degrees of freedom in the system so that it can be tuned to any pathology and image modality. In particular, we propose to adapt the wavelet basis, within the lifting scheme framework, and to use a custom decomposition scheme. Weights are also introduced between subbands. All these parameters are tuned by an optimization procedure, using the medical grading of each image in the database to define a performance measure. The system is assessed on two medical image databases: one for diabetic retinopathy follow up and one for screening mammography, as well as a general purpose database. Results are promising: a mean precision of 56.50%, 70.91% and 96.10% is achieved for these three databases, when five images are returned by the system. Copyright 2009 Elsevier B.V. All rights reserved.

  3. Personalizing Medicine Through Hybrid Imaging and Medical Big Data Analysis

    Directory of Open Access Journals (Sweden)

    Laszlo Papp

    2018-06-01

    Full Text Available Medical imaging has evolved from a pure visualization tool to representing a primary source of analytic approaches toward in vivo disease characterization. Hybrid imaging is an integral part of this approach, as it provides complementary visual and quantitative information in the form of morphological and functional insights into the living body. As such, non-invasive imaging modalities no longer provide images only, but data, as stated recently by pioneers in the field. Today, such information, together with other, non-imaging medical data creates highly heterogeneous data sets that underpin the concept of medical big data. While the exponential growth of medical big data challenges their processing, they inherently contain information that benefits a patient-centric personalized healthcare. Novel machine learning approaches combined with high-performance distributed cloud computing technologies help explore medical big data. Such exploration and subsequent generation of knowledge require a profound understanding of the technical challenges. These challenges increase in complexity when employing hybrid, aka dual- or even multi-modality image data as input to big data repositories. This paper provides a general insight into medical big data analysis in light of the use of hybrid imaging information. First, hybrid imaging is introduced (see further contributions to this special Research Topic, also in the context of medical big data, then the technological background of machine learning as well as state-of-the-art distributed cloud computing technologies are presented, followed by the discussion of data preservation and data sharing trends. Joint data exploration endeavors in the context of in vivo radiomics and hybrid imaging will be presented. Standardization challenges of imaging protocol, delineation, feature engineering, and machine learning evaluation will be detailed. Last, the paper will provide an outlook into the future role of hybrid

  4. The influence nuclear power has on corporate image and the effect of offering merit information of nuclear power

    International Nuclear Information System (INIS)

    Oiso, Shinichi

    2006-01-01

    Many electric power companies in Japan, irrespective of their nuclear power generation ratio's difference, have nuclear power plants. These days, corporate brand image is becoming more and more important. Therefore, a survey was carried out to study the effect that nuclear power (including comparison with the other type of industry besides electric power) has on the corporate image of an electric power company. Further more, the survey includes a research about the effect on people's attitude change towards nuclear power before and after discovering the merits or benefits of nuclear power. The possibility of enhancing the corporate brand image of electric power companies by providing merit information of nuclear power was studied. (author)

  5. Current role of the radiographers in imaging diagnostics, nuclear medicine and radiotherapy in modern departments

    International Nuclear Information System (INIS)

    Karidova, S.; Velkova, K.; Panamska, K.; Petkova, K.

    2006-01-01

    Full text: In the communication we set out to focus the attention of the medical staff and the public on the place and the constantly growing role (relative burden) of the radiographers in imaging diagnostics, nuclear medicine and radiotherapy in the field of modern medicine. The advanced radiographers level and rapid development of the contemporary equipment and apparatuses used in imaging diagnostics, nuclear medicine and radiotherapy, as well as the methods of their utilization, presuppose very good and constantly improving theoretical and practical training of the imaging technician. The radiographer fulfills responsible tasks under the guidance of the physician or independently and bears specific responsibilities. Having mastered the fundamentals of radiation protection, the imaging technician protects both himself and the patient from the impact of ionizing radiation. To be able to fulfill his/her constantly increasing duties and obligations, the imaging radiographer has acquired wide knowledge of general education subjects, subjects of general medicine and special subjects. The radiographer has a good knowledge of Latin and a modern foreign language, and he is also computer literate so as to be able to cope with the widely spread visualizing methods. The radiographer acquires additional post-graduate training to work in narrowly specialized fields as well as to improve his/her qualifications

  6. ImageParser: a tool for finite element generation from three-dimensional medical images

    Directory of Open Access Journals (Sweden)

    Yamada T

    2004-10-01

    Full Text Available Abstract Background The finite element method (FEM is a powerful mathematical tool to simulate and visualize the mechanical deformation of tissues and organs during medical examinations or interventions. It is yet a challenge to build up an FEM mesh directly from a volumetric image partially because the regions (or structures of interest (ROIs may be irregular and fuzzy. Methods A software package, ImageParser, is developed to generate an FEM mesh from 3-D tomographic medical images. This software uses a semi-automatic method to detect ROIs from the context of image including neighboring tissues and organs, completes segmentation of different tissues, and meshes the organ into elements. Results The ImageParser is shown to build up an FEM model for simulating the mechanical responses of the breast based on 3-D CT images. The breast is compressed by two plate paddles under an overall displacement as large as 20% of the initial distance between the paddles. The strain and tangential Young's modulus distributions are specified for the biomechanical analysis of breast tissues. Conclusion The ImageParser can successfully exact the geometry of ROIs from a complex medical image and generate the FEM mesh with customer-defined segmentation information.

  7. Improved Software to Browse the Serial Medical Images for Learning.

    Science.gov (United States)

    Kwon, Koojoo; Chung, Min Suk; Park, Jin Seo; Shin, Byeong Seok; Chung, Beom Sun

    2017-07-01

    The thousands of serial images used for medical pedagogy cannot be included in a printed book; they also cannot be efficiently handled by ordinary image viewer software. The purpose of this study was to provide browsing software to grasp serial medical images efficiently. The primary function of the newly programmed software was to select images using 3 types of interfaces: buttons or a horizontal scroll bar, a vertical scroll bar, and a checkbox. The secondary function was to show the names of the structures that had been outlined on the images. To confirm the functions of the software, 3 different types of image data of cadavers (sectioned and outlined images, volume models of the stomach, and photos of the dissected knees) were inputted. The browsing software was downloadable for free from the homepage (anatomy.co.kr) and available off-line. The data sets provided could be replaced by any developers for their educational achievements. We anticipate that the software will contribute to medical education by allowing users to browse a variety of images. © 2017 The Korean Academy of Medical Sciences.

  8. Nuclear security of Cuba’s medical facilities

    International Nuclear Information System (INIS)

    Dahlstrom, Danielle

    2016-01-01

    Cuba is a leading hub for medical research and cancer treatment in Latin America and the Caribbean. Physical protection is installed at radiotherapy facilities to detect entry of and delay access to an intruder. This minimizes the likelihood of unauthorized access and maximizes nuclear security.

  9. FAST: framework for heterogeneous medical image computing and visualization.

    Science.gov (United States)

    Smistad, Erik; Bozorgi, Mohammadmehdi; Lindseth, Frank

    2015-11-01

    Computer systems are becoming increasingly heterogeneous in the sense that they consist of different processors, such as multi-core CPUs and graphic processing units. As the amount of medical image data increases, it is crucial to exploit the computational power of these processors. However, this is currently difficult due to several factors, such as driver errors, processor differences, and the need for low-level memory handling. This paper presents a novel FrAmework for heterogeneouS medical image compuTing and visualization (FAST). The framework aims to make it easier to simultaneously process and visualize medical images efficiently on heterogeneous systems. FAST uses common image processing programming paradigms and hides the details of memory handling from the user, while enabling the use of all processors and cores on a system. The framework is open-source, cross-platform and available online. Code examples and performance measurements are presented to show the simplicity and efficiency of FAST. The results are compared to the insight toolkit (ITK) and the visualization toolkit (VTK) and show that the presented framework is faster with up to 20 times speedup on several common medical imaging algorithms. FAST enables efficient medical image computing and visualization on heterogeneous systems. Code examples and performance evaluations have demonstrated that the toolkit is both easy to use and performs better than existing frameworks, such as ITK and VTK.

  10. Introduction to Medical Image Analysis

    DEFF Research Database (Denmark)

    Paulsen, Rasmus Reinhold; Moeslund, Thomas B.

    This book is a result of a collaboration between DTU Informatics at the Technical University of Denmark and the Laboratory of Computer Vision and Media Technology at Aalborg University. It is partly based on the book ”Image and Video Processing”, second edition by Thomas Moeslund. The aim...... of the book is to present the fascinating world of medical image analysis in an easy and interesting way. Compared to many standard books on image analysis, the approach we have chosen is less mathematical and more casual. Some of the key algorithms are exemplified in C-code. Please note that the code...

  11. A Survey on Deep Learning in Medical Image Analysis

    NARCIS (Netherlands)

    Litjens, G.J.; Kooi, T.; Ehteshami Bejnordi, B.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; Laak, J.A.W.M. van der; Ginneken, B. van; Sanchez, C.I.

    2017-01-01

    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared

  12. Noise removal for medical X-ray images in wavelet domain

    International Nuclear Information System (INIS)

    Wang, Ling; Lu, Jianming; Li, Yeqiu; Yahagi, Takashi; Okamoto, Takahide

    2006-01-01

    Many important problems in engineering and science are well-modeled by Poisson noise, the noise of medical X-ray image is Poisson noise. In this paper, we propose a method of noise removal for degraded medical X-ray image using improved preprocessing and improved BayesShrink (IBS) method in wavelet domain. Firstly, we pre-process the medical X-ray image, Secondly, we apply the Daubechies (db) wavelet transform to medical X-ray image to acquire scaling and wavelet coefficients. Thirdly, we apply the proposed IBS method to process wavelet coefficients. Finally, we compute the inverse wavelet transform for the thresholded coefficeints. Experimental results show that the proposed method always outperforms traditional methods. (author)

  13. Frontier of Advanced Accelerator Applications and Medical Treatments Using Nuclear Techniques. Abstract

    International Nuclear Information System (INIS)

    2015-01-01

    To address the challenges of research-based practice, developing advanced accelerator applications, and medical treatments using nuclear tecniqoes, researchers from Rajamakala University of Technology Lanna, Office of Atoms for Peace, and Chiang Mai University have joined in hosting this conference. Nuclear medicine, amedical specialty, diagnoses and treats diseases in a safe and painless way. Nuclear techniques can determine medical information that may otherwise be unavailable, require surgery, or necessitate more expensive and invasive diagnostic tests. Advance in nuclear techniques also offer the potential to detect abnormalities at earlier stages, leasding to earlier treatment and a more successful prognosis.

  14. Cascaded Window Memoization for Medical Imaging

    OpenAIRE

    Khalvati , Farzad; Kianpour , Mehdi; Tizhoosh , Hamid ,

    2011-01-01

    Part 12: Medical Applications of ANN and Ethics of AI; International audience; Window Memoization is a performance improvement technique for image processing algorithms. It is based on removing computational redundancy in an algorithm applied to a single image, which is inherited from data redundancy in the image. The technique employs a fuzzy reuse mechanism to eliminate unnecessary computations. This paper extends the window memoization technique such that in addition to exploiting the data...

  15. elastix: a toolbox for intensity-based medical image registration.

    Science.gov (United States)

    Klein, Stefan; Staring, Marius; Murphy, Keelin; Viergever, Max A; Pluim, Josien P W

    2010-01-01

    Medical image registration is an important task in medical image processing. It refers to the process of aligning data sets, possibly from different modalities (e.g., magnetic resonance and computed tomography), different time points (e.g., follow-up scans), and/or different subjects (in case of population studies). A large number of methods for image registration are described in the literature. Unfortunately, there is not one method that works for all applications. We have therefore developed elastix, a publicly available computer program for intensity-based medical image registration. The software consists of a collection of algorithms that are commonly used to solve medical image registration problems. The modular design of elastix allows the user to quickly configure, test, and compare different registration methods for a specific application. The command-line interface enables automated processing of large numbers of data sets, by means of scripting. The usage of elastix for comparing different registration methods is illustrated with three example experiments, in which individual components of the registration method are varied.

  16. Rapid development of medical imaging tools with open-source libraries.

    Science.gov (United States)

    Caban, Jesus J; Joshi, Alark; Nagy, Paul

    2007-11-01

    Rapid prototyping is an important element in researching new imaging analysis techniques and developing custom medical applications. In the last ten years, the open source community and the number of open source libraries and freely available frameworks for biomedical research have grown significantly. What they offer are now considered standards in medical image analysis, computer-aided diagnosis, and medical visualization. A cursory review of the peer-reviewed literature in imaging informatics (indeed, in almost any information technology-dependent scientific discipline) indicates the current reliance on open source libraries to accelerate development and validation of processes and techniques. In this survey paper, we review and compare a few of the most successful open source libraries and frameworks for medical application development. Our dual intentions are to provide evidence that these approaches already constitute a vital and essential part of medical image analysis, diagnosis, and visualization and to motivate the reader to use open source libraries and software for rapid prototyping of medical applications and tools.

  17. Mathematics and computer science in medical imaging

    International Nuclear Information System (INIS)

    Viergever, M.A.; Todd-Pokroper, A.E.

    1987-01-01

    The book is divided into two parts. Part 1 gives an introduction to and an overview of the field in ten tutorial chapters. Part 2 contains a selection of invited and proffered papers reporting on current research. Subjects covered in depth are: analytical image reconstruction, regularization, iterative methods, image structure, 3-D display, compression, architectures for image processing, statistical pattern recognition, and expert systems in medical imaging

  18. Medical imaging technology reviews and computational applications

    CERN Document Server

    Dewi, Dyah

    2015-01-01

    This book presents the latest research findings and reviews in the field of medical imaging technology, covering ultrasound diagnostics approaches for detecting osteoarthritis, breast carcinoma and cardiovascular conditions, image guided biopsy and segmentation techniques for detecting lung cancer, image fusion, and simulating fluid flows for cardiovascular applications. It offers a useful guide for students, lecturers and professional researchers in the fields of biomedical engineering and image processing.

  19. Soviet medical response to the Chernobyl nuclear accident

    International Nuclear Information System (INIS)

    Linnemann, R.E.

    1987-01-01

    The nuclear accident at Chernobyl was the worst in the history of nuclear power. It tested the organized medical response to mass radiation casualties. This article reviews the Soviet response as reported at the 1986 postaccident review meeting in Vienna and as determined from interviews. The Soviets used three levels of care: rescue and first aid at the plant site; emergency treatment at regional hospitals; and definitive evaluation and treatment in Moscow. Diagnosis, triage, patient disposition, attendant exposure, and preventive actions are detailed. The United States would be well advised to organize its resources definitively to cope with future nonmilitary nuclear accidents

  20. The medical implications of nuclear power plant accidents

    International Nuclear Information System (INIS)

    Tyror, J.G.; Pearson, G.W.

    1989-11-01

    This paper examines the UK position regarding the potential for an accident at a nuclear power plant, the safeguards in place to prevent such an accident occurring and the emergency procedures designed to cope with the consequences should one occur. It focuses on the role of the medical services and examines previous accidents to suggest the nature and likely scale of response that may need to be provided. It is apparent that designs of UK nuclear power stations are robust and that the likelihood of a significant accident occurring is extremely remote. Emergency arrangements are, however, in place to deal with the eventuality should it arise and these incorporate sufficient flexibility to accommodate a wide range of accidents. Analysis of previous nuclear accidents at Windscale, Three Mile Island and Chernobyl provide a limited but valuable insight into the diversity and potential scale of response that may be required. It is concluded that above all, the response must be flexible to enable medical services to deal with the wide range of effects that may arise. (author)

  1. Object-oriented design of medical imaging software.

    Science.gov (United States)

    Ligier, Y; Ratib, O; Logean, M; Girard, C; Perrier, R; Scherrer, J R

    1994-01-01

    A special software package for interactive display and manipulation of medical images was developed at the University Hospital of Geneva, as part of a hospital wide Picture Archiving and Communication System (PACS). This software package, called Osiris, was especially designed to be easily usable and adaptable to the needs of noncomputer-oriented physicians. The Osiris software has been developed to allow the visualization of medical images obtained from any imaging modality. It provides generic manipulation tools, processing tools, and analysis tools more specific to clinical applications. This software, based on an object-oriented paradigm, is portable and extensible. Osiris is available on two different operating systems: the Unix X-11/OSF-Motif based workstations, and the Macintosh family.

  2. Performance evaluation of emerging JPEGXR compression standard for medical images

    International Nuclear Information System (INIS)

    Basit, M.A.

    2012-01-01

    Medical images require loss less compression as a small error due to lossy compression may be considered as a diagnostic error. JPEG XR is the latest image compression standard designed for variety of applications and has a support for lossy and loss less modes. This paper provides in-depth performance evaluation of latest JPEGXR with existing image coding standards for medical images using loss less compression. Various medical images are used for evaluation and ten images of each organ are tested. Performance of JPEGXR is compared with JPEG2000 and JPEGLS using mean square error, peak signal to noise ratio, mean absolute error and structural similarity index. JPEGXR shows improvement of 20.73 dB and 5.98 dB over JPEGLS and JPEG2000 respectively for various test images used in experimentation. (author)

  3. Nuclear magnetic resonance imaging

    International Nuclear Information System (INIS)

    1983-06-01

    This report summarises the aspects of nuclear magnetic resonance imaging (NMRI) considered by the National Health Technology Advisory Panel and makes recommendations on its introduction in Australia with particular regard to the need for thorough evaluation of its cost effectiveness. Topics covered are: principles of the technique, equipment required, installation, costs, reliability, performance parameters, clinical indications, training and staff requirements, and safety considerations

  4. iMAGE cloud: medical image processing as a service for regional healthcare in a hybrid cloud environment.

    Science.gov (United States)

    Liu, Li; Chen, Weiping; Nie, Min; Zhang, Fengjuan; Wang, Yu; He, Ailing; Wang, Xiaonan; Yan, Gen

    2016-11-01

    To handle the emergence of the regional healthcare ecosystem, physicians and surgeons in various departments and healthcare institutions must process medical images securely, conveniently, and efficiently, and must integrate them with electronic medical records (EMRs). In this manuscript, we propose a software as a service (SaaS) cloud called the iMAGE cloud. A three-layer hybrid cloud was created to provide medical image processing services in the smart city of Wuxi, China, in April 2015. In the first step, medical images and EMR data were received and integrated via the hybrid regional healthcare network. Then, traditional and advanced image processing functions were proposed and computed in a unified manner in the high-performance cloud units. Finally, the image processing results were delivered to regional users using the virtual desktop infrastructure (VDI) technology. Security infrastructure was also taken into consideration. Integrated information query and many advanced medical image processing functions-such as coronary extraction, pulmonary reconstruction, vascular extraction, intelligent detection of pulmonary nodules, image fusion, and 3D printing-were available to local physicians and surgeons in various departments and healthcare institutions. Implementation results indicate that the iMAGE cloud can provide convenient, efficient, compatible, and secure medical image processing services in regional healthcare networks. The iMAGE cloud has been proven to be valuable in applications in the regional healthcare system, and it could have a promising future in the healthcare system worldwide.

  5. Near-infrared spectroscopic tissue imaging for medical applications

    Science.gov (United States)

    Demos, Stavros [Livermore, CA; Staggs, Michael C [Tracy, CA

    2006-12-12

    Near infrared imaging using elastic light scattering and tissue autofluorescence are explored for medical applications. The approach involves imaging using cross-polarized elastic light scattering and tissue autofluorescence in the Near Infra-Red (NIR) coupled with image processing and inter-image operations to differentiate human tissue components.

  6. APES Beamforming Applied to Medical Ultrasound Imaging

    DEFF Research Database (Denmark)

    Blomberg, Ann E. A.; Holfort, Iben Kraglund; Austeng, Andreas

    2009-01-01

    Recently, adaptive beamformers have been introduced to medical ultrasound imaging. The primary focus has been on the minimum variance (MV) (or Capon) beamformer. This work investigates an alternative but closely related beamformer, the Amplitude and Phase Estimation (APES) beamformer. APES offers...... added robustness at the expense of a slightly lower resolution. The purpose of this study was to evaluate the performance of the APES beamformer on medical imaging data, since correct amplitude estimation often is just as important as spatial resolution. In our simulations we have used a 3.5 MHz, 96...... element linear transducer array. When imaging two closely spaced point targets, APES displays nearly the same resolution as the MV, and at the same time improved amplitude control. When imaging cysts in speckle, APES offers speckle statistics similar to that of the DAS, without the need for temporal...

  7. Automatic Image Alignment and Stitching of Medical Images with Seam Blending

    OpenAIRE

    Abhinav Kumar; Raja Sekhar Bandaru; B Madhusudan Rao; Saket Kulkarni; Nilesh Ghatpande

    2010-01-01

    This paper proposes an algorithm which automatically aligns and stitches the component medical images (fluoroscopic) with varying degrees of overlap into a single composite image. The alignment method is based on similarity measure between the component images. As applied here the technique is intensity based rather than feature based. It works well in domains where feature based methods have difficulty, yet more robust than traditional correlation. Component images are stitched together usin...

  8. Motion correction in medical imaging.

    OpenAIRE

    Smith, Rhodri

    2017-01-01

    It is estimated that over half of current adults within Great Britain under the age of 65 will be diagnosed with cancer at some point in their lifetime. Medical Imaging forms an essential part of cancer clinical protocols and is able to furnish morphological, metabolic and functional information. The imaging of molecular interactions of biological processes in vivo with Positron Emission Tomography (PET) is informative not only for disease detection but also therapeutic response. The qualitat...

  9. Elastix : a toolbox for intensity-based medical image registration

    NARCIS (Netherlands)

    Klein, S.; Staring, M.; Murphy, K.; Viergever, M.A.; Pluim, J.P.W.

    2010-01-01

    Medical image registration is an important task in medical image processing. It refers to the process of aligning data sets, possibly from different modalities (e.g., magnetic resonance and computed tomography), different time points (e.g., follow-up scans), and/or different subjects (in case of

  10. The public image and image shaping of the nuclear and radiation safety regulatory organization

    International Nuclear Information System (INIS)

    Li Zhiguo

    2013-01-01

    Good image is the basis of trust. It is imminent to build good public image as our society and the public pay close attention to the negative information of relevant government departments which directly or indirectly affects the public image of the government departments in recent years. In order to promote the public image of the government regulatory department, it is required for all staff to figure out how to conscientiously fulfill social responsibility, how to respond to and properly handle emergencies, and how to establish and improve a full-time public relations team. Based on nuclear and radiation safety regulatory task, this paper discussed the necessity of government departments to set up the public image, and how to shape the public image of the nuclear and radiation safety regulatory organization. (author)

  11. Imaging requirements for medical applications of additive manufacturing.

    Science.gov (United States)

    Huotilainen, Eero; Paloheimo, Markku; Salmi, Mika; Paloheimo, Kaija-Stiina; Björkstrand, Roy; Tuomi, Jukka; Markkola, Antti; Mäkitie, Antti

    2014-02-01

    Additive manufacturing (AM), formerly known as rapid prototyping, is steadily shifting its focus from industrial prototyping to medical applications as AM processes, bioadaptive materials, and medical imaging technologies develop, and the benefits of the techniques gain wider knowledge among clinicians. This article gives an overview of the main requirements for medical imaging affected by needs of AM, as well as provides a brief literature review from existing clinical cases concentrating especially on the kind of radiology they required. As an example application, a pair of CT images of the facial skull base was turned into 3D models in order to illustrate the significance of suitable imaging parameters. Additionally, the model was printed into a preoperative medical model with a popular AM device. Successful clinical cases of AM are recognized to rely heavily on efficient collaboration between various disciplines - notably operating surgeons, radiologists, and engineers. The single main requirement separating tangible model creation from traditional imaging objectives such as diagnostics and preoperative planning is the increased need for anatomical accuracy in all three spatial dimensions, but depending on the application, other specific requirements may be present as well. This article essentially intends to narrow the potential communication gap between radiologists and engineers who work with projects involving AM by showcasing the overlap between the two disciplines.

  12. Novel imaging techniques for the nuclear microprobe

    International Nuclear Information System (INIS)

    Saint, A.

    1998-01-01

    Many of the developments of the scanning electron microscope (SEM) have been paralleled during the development of the scanning nuclear microprobe. Secondary electrons were used in the early development of both devices to provide specimen imaging due to the large numbers of secondaries produced per incident charged particle. Other imaging contrast techniques have also been developed on both machines. These include X-ray analysis, scattering contrast, transmission microscopy, channelling induced charge and others. The 'cross-section dependent' imaging techniques such as PIXE, RBS, NRA, etc., rely on the beam current on target for a given resolution. This has prompted research and development of brighter ion sources to maintain probe resolution at high beam current. Higher beam current bring problems with beam damage to the specimen. Low beam current techniques however rely on high countrate data collection systems, but this is only for spectroscopy. To produce an image we can increase beam currents to produce live-time images for specimen manipulation and observation. The work presented here will focus on some developments in live-time imaging with a nuclear micro probe that have taken place recently at the School of Physics, Microanalytical Research Centre (MARC), University of Melbourne

  13. Study on the action guidelines for medical support team for nuclear and radiological emergency

    International Nuclear Information System (INIS)

    Liu Chang'an; Liu Ying; Geng Xiusheng

    2006-01-01

    Objective: To study the action guidelines for medical support team for nuclear and radiological emergency. Methods: It is based on the experience and lessons learned in the course of meeting the emergencies preparedness and response of nuclear and radiological emergencies in China and abroad with the reference of the relevant reports of International Atomic Energy Agency. Results: Essential requirements and practical recommendations for the roles, responsibilities, emergency preparedness, principles and procedures of medical assistance at the scene, as well as the radiological protection of medical support team were provided. Conclusion: The document mentioned above can be applied to direct the establishment, effective medical preparedness and response of the medical support team for nuclear and radiological emergency. (authors)

  14. Segmentation of elongated structures in medical images

    NARCIS (Netherlands)

    Staal, Jozef Johannes

    2004-01-01

    The research described in this thesis concerns the automatic detection, recognition and segmentation of elongated structures in medical images. For this purpose techniques have been developed to detect subdimensional pointsets (e.g. ridges, edges) in images of arbitrary dimension. These

  15. Challenges for data storage in medical imaging research.

    Science.gov (United States)

    Langer, Steve G

    2011-04-01

    Researchers in medical imaging have multiple challenges for storing, indexing, maintaining viability, and sharing their data. Addressing all these concerns requires a constellation of tools, but not all of them need to be local to the site. In particular, the data storage challenges faced by researchers can begin to require professional information technology skills. With limited human resources and funds, the medical imaging researcher may be better served with an outsourcing strategy for some management aspects. This paper outlines an approach to manage the main objectives faced by medical imaging scientists whose work includes processing and data mining on non-standard file formats, and relating those files to the their DICOM standard descendents. The capacity of the approach scales as the researcher's need grows by leveraging the on-demand provisioning ability of cloud computing.

  16. The future of medical imaging

    International Nuclear Information System (INIS)

    Maidment, A. D. A.

    2010-01-01

    The organisers of this conference have kindly provided me with the forum to look forward and examine the future of medical imaging. My view of the future is informed by my own research directions; thus, I illustrate my vision of the future with results from my own research, and from the research that has motivated me over the last few years. As such, the results presented are specific to the field of breast imaging; however, I believe that the trends presented have general applicability, and hope that this discourse will motivate new research. My vision of the future can be summarised in accordance with three broad trends: (1) increased prevalence of low-dose tomographic X-ray imaging; (2) continuing advances in functional and molecular X-ray imaging; and (3) novel image-based bio-marker discovery. (authors)

  17. Medical image reconstruction. A conceptual tutorial

    International Nuclear Information System (INIS)

    Zeng, Gengsheng Lawrence

    2010-01-01

    ''Medical Image Reconstruction: A Conceptual Tutorial'' introduces the classical and modern image reconstruction technologies, such as two-dimensional (2D) parallel-beam and fan-beam imaging, three-dimensional (3D) parallel ray, parallel plane, and cone-beam imaging. This book presents both analytical and iterative methods of these technologies and their applications in X-ray CT (computed tomography), SPECT (single photon emission computed tomography), PET (positron emission tomography), and MRI (magnetic resonance imaging). Contemporary research results in exact region-of-interest (ROI) reconstruction with truncated projections, Katsevich's cone-beam filtered backprojection algorithm, and reconstruction with highly undersampled data with l 0 -minimization are also included. (orig.)

  18. Medical image processing on the GPU - past, present and future.

    Science.gov (United States)

    Eklund, Anders; Dufort, Paul; Forsberg, Daniel; LaConte, Stephen M

    2013-12-01

    Graphics processing units (GPUs) are used today in a wide range of applications, mainly because they can dramatically accelerate parallel computing, are affordable and energy efficient. In the field of medical imaging, GPUs are in some cases crucial for enabling practical use of computationally demanding algorithms. This review presents the past and present work on GPU accelerated medical image processing, and is meant to serve as an overview and introduction to existing GPU implementations. The review covers GPU acceleration of basic image processing operations (filtering, interpolation, histogram estimation and distance transforms), the most commonly used algorithms in medical imaging (image registration, image segmentation and image denoising) and algorithms that are specific to individual modalities (CT, PET, SPECT, MRI, fMRI, DTI, ultrasound, optical imaging and microscopy). The review ends by highlighting some future possibilities and challenges. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Statistical physics of medical ultrasonic images

    International Nuclear Information System (INIS)

    Wagner, R.F.; Insana, M.F.; Brown, D.G.; Smith, S.W.

    1987-01-01

    The physical and statistical properties of backscattered signals in medical ultrasonic imaging are reviewed in terms of: 1) the radiofrequency signal; 2) the envelope (video or magnitude) signal; and 3) the density of samples in simple and in compounded images. There is a wealth of physical information in backscattered signals in medical ultrasound. This information is contained in the radiofrequency spectrum - which is not typically displayed to the viewer - as well as in the higher statistical moments of the envelope or video signal - which are not readily accessed by the human viewer of typical B-scans. This information may be extracted from the detected backscattered signals by straightforward signal processing techniques at low resolution

  20. Bayesian image restoration for medical images using radon transform

    International Nuclear Information System (INIS)

    Shouno, Hayaru; Okada, Masato

    2010-01-01

    We propose an image reconstruction algorithm using Bayesian inference for Radon transformed observation data, which often appears in the field of medical image reconstruction known as computed tomography (CT). In order to apply our Bayesian reconstruction method, we introduced several hyper-parameters that control the ratio between prior information and the fidelity of the observation process. Since the quality of the reconstructed image is influenced by the estimation accuracy of these hyper-parameters, we propose an inference method for them based on the marginal likelihood maximization principle as well as the image reconstruction method. We are able to demonstrate a reconstruction result superior to that obtained using the conventional filtered back projection method. (author)

  1. Medical Imaging Informatics: Towards a Personalized Computational Patient.

    Science.gov (United States)

    Ayache, N

    2016-05-20

    Medical Imaging Informatics has become a fast evolving discipline at the crossing of Informatics, Computational Sciences, and Medicine that is profoundly changing medical practices, for the patients' benefit.

  2. Mesh Processing in Medical-Image Analysis-a Tutorial

    DEFF Research Database (Denmark)

    Levine, Joshua A.; Paulsen, Rasmus Reinhold; Zhang, Yongjie

    2012-01-01

    Medical-image analysis requires an understanding of sophisticated scanning modalities, constructing geometric models, building meshes to represent domains, and downstream biological applications. These four steps form an image-to-mesh pipeline. For research in this field to progress, the imaging...

  3. [Current situations and problems of quality control for medical imaging display systems].

    Science.gov (United States)

    Shibutani, Takayuki; Setojima, Tsuyoshi; Ueda, Katsumi; Takada, Katsumi; Okuno, Teiichi; Onoguchi, Masahisa; Nakajima, Tadashi; Fujisawa, Ichiro

    2015-04-01

    Diagnostic imaging has been shifted rapidly from film to monitor diagnostic. Consequently, Japan medical imaging and radiological systems industries association (JIRA) have recommended methods of quality control (QC) for medical imaging display systems. However, in spite of its need by majority of people, executing rate is low. The purpose of this study was to validate the problem including check items about QC for medical imaging display systems. We performed acceptance test of medical imaging display monitors based on Japanese engineering standards of radiological apparatus (JESRA) X-0093*A-2005 to 2009, and performed constancy test based on JESRA X-0093*A-2010 from 2010 to 2012. Furthermore, we investigated the cause of trouble and repaired number. Medical imaging display monitors had 23 inappropriate monitors about visual estimation, and all these monitors were not criteria of JESRA about luminance uniformity. Max luminance was significantly lower year-by-year about measurement estimation, and the 29 monitors did not meet the criteria of JESRA about luminance deviation. Repaired number of medical imaging display monitors had 25, and the cause was failure liquid crystal panel. We suggested the problems about medical imaging display systems.

  4. An overview of digital image processing in the field of nuclear medicine

    International Nuclear Information System (INIS)

    Okuyama, Yasuo

    1992-01-01

    The current status and remaining problems of digital image processing in nuclear medicine were discussed. Digitalization of nuclear medicine images has made it possible, in conjunction with computers, to obtain new information (Fourier analysis, Factor analysis, etc.) with added value from images, in place of the fixed concepts that had formerly been drawn only from images. However, the basis of this technology is the special QC and QA of nuclear medicine examinations, and those techniques have not yet been adequately established. The advantage of digitalization is the flexibility that comes from the programs, but the element of the subjectivity of each individual plays a large role, and it can be said that there is also the risk that the logic of image diagnosis established to date will be destroyed. Accordingly, the creation of digital image processing technique with specifications will give birth to standardized digital nuclear medicine images, and these development will certainly lead to progress in nuclear medicine diagnosis. In addition, in comparison with other modalities, the field of nuclear medicine involves a lesser amount of information, and this simplifiers the digitalization of images. At present, equipment is being designed and developed with incorporation of the concept of a work station. A serious problem that remains in this field is the standardization of image transmission. In summary, the main problem that must be solved in the field of nuclear medicine examinations is the establishment of QC and QA methods and practical algorithms for the software. It is hoped that there will be open access to information, etc., related to the software. (author)

  5. Submillimeter medical imaging in emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Lang, C.; Thirolf, P.G. [LMU, Muenchen (Germany); Habs, D. [LMU, Muenchen (Germany); MPQ, Garching (Germany); Zoglauer, A. [SSL, Berkeley (United States)

    2012-07-01

    We present a nuclear medical imaging technique, capable to reach submillimeter spatial resolution in 3 dimensions with a short exposure time and a low radioactive dose compared to conventional PET. This '{gamma}-PET' technique takes advantage of specific e{sup +} sources which simultaneously with the {beta}{sup +} decay emit an additional photon. Exploiting the triple coincidence between the positron annihilation and the additional emitted {gamma}, it is possible to separate the reconstructed 'true' events from background. Thus the spatial uncertainty introduced by the motion of the e{sup +} or by Compton scattering within the patient can be strongly reduced in the direction normal to the annihilation. MC-simulations and image reconstruction studies have been performed using the library MEGAlib, which we modified to realize an event reconstruction using the {beta}{sup +}{gamma} coincidences. The simulated geometry consists of 4 LaBr{sub 3} scintillator crystals (5 x 5 x 3 cm{sup 3}) read out by a 2D-segmented photomultiplier (64 pixels, each 6 x 6 mm{sup 2}) and 4 double-sided silicon strip detectors (each with 2 x 128 strips, active area of 5 x 5 cm{sup 2}, thickness 0.5 mm), positioned around an H{sub 2}O sphere of 6 cm diameter. Inside are two {sup 22}Na point-like test sources, placed at a distance of 0.4 mm. The resolution results in 0.2 mm (FWHM) in each direction, surpassing the performance of conventional PET by about an order of magnitude.

  6. Superconductors and medical imaging

    International Nuclear Information System (INIS)

    Aubert, Guy

    2011-01-01

    After difficult beginnings in the 1970's, magnetic resonance imaging (MRI) has evolved to become nowadays the jewel in the crown of medical technology. Superconductors have been a key factor for the extraordinary expansion of MRI which in turn represents about 75 % of their total market. After recalling some basic principles, this article traces their common history and refers to future developments. (author)

  7. User Oriented Platform for Data Analytics in Medical Imaging Repositories.

    Science.gov (United States)

    Valerio, Miguel; Godinho, Tiago Marques; Costa, Carlos

    2016-01-01

    The production of medical imaging studies and associated data has been growing in the last decades. Their primary use is to support medical diagnosis and treatment processes. However, the secondary use of the tremendous amount of stored data is generally more limited. Nowadays, medical imaging repositories have turned into rich databanks holding not only the images themselves, but also a wide range of metadata related to the medical practice. Exploring these repositories through data analysis and business intelligence techniques has the potential of increasing the efficiency and quality of the medical practice. Nevertheless, the continuous production of tremendous amounts of data makes their analysis difficult by conventional approaches. This article proposes a novel automated methodology to derive knowledge from medical imaging repositories that does not disrupt the regular medical practice. Our method is able to apply statistical analysis and business intelligence techniques directly on top of live institutional repositories. It is a Web-based solution that provides extensive dashboard capabilities, including complete charting and reporting options, combined with data mining components. Moreover, it enables the operator to set a wide multitude of query parameters and operators through the use of an intuitive graphical interface.

  8. Nuclear medicine and multimodality imaging of pediatric neuroblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Wolfgang Peter; Pfluger, Thomas [Ludwig-Maximilians-University of Munich, Department of Nuclear Medicine, Munich (Germany); Coppenrath, Eva [Ludwig-Maximilians-University of Munich, Department of Radiology, Munich (Germany)

    2013-04-15

    Neuroblastoma is an embryonic tumor of the peripheral sympathetic nervous system and is metastatic or high risk for relapse in nearly 50% of cases. Therefore, exact staging with radiological and nuclear medicine imaging methods is crucial for defining the adequate therapeutic choice. Tumor cells express the norepinephrine transporter, which makes metaiodobenzylguanidine (MIBG), an analogue of norepinephrine, an ideal tumor specific agent for imaging. MIBG imaging has several disadvantages, such as limited spatial resolution, limited sensitivity in small lesions and the need for two or even more acquisition sessions. Most of these limitations can be overcome with positron emission tomography (PET) using [F-18]2-fluoro-2-deoxyglucose [FDG]. Furthermore, new tracers, such as fluorodopa or somatostatin receptor agonists, have been tested for imaging neuroblastoma recently. However, MIBG scintigraphy and PET alone are not sufficient for operative or biopsy planning. In this regard, a combination with morphological imaging is indispensable. This article will discuss strategies for primary and follow-up diagnosis in neuroblastoma using different nuclear medicine and radiological imaging methods as well as multimodality imaging. (orig.)

  9. Clinical Training of Medical Physicists Specializing in Nuclear Medicine

    International Nuclear Information System (INIS)

    2011-01-01

    The application of radiation in human health, for both diagnosis and treatment of disease, is an important component of the work of the IAEA. The responsibility for the increasingly technical aspects of this work is undertaken by the medical physicist. To ensure good practice in this vital area, structured clinical training programmes are required to complement academic learning. This publication is intended to be a guide to the practical implementation of such a programme for nuclear medicine. There is a general and growing awareness that radiation medicine is increasingly dependent on well trained medical physicists who are based in a clinical setting. However an analysis of the availability of medical physicists indicates a large shortfall of qualified and capable professionals. This is particularly evident in developing countries. While strategies to increase educational opportunities are critical to such countries, the need for guidance on structured clinical training was recognized by the members of the Regional Cooperative Agreement for Research, Development and Training related to Nuclear Science and Technology (RCA) for the Asia-Pacific region. Consequently, a technical cooperation regional project (RAS6038) under the RCA programme was formulated to address this need in this region by developing suitable material and establishing its viability. Development of a clinical training guide for medical physicists specialising in nuclear medicine was started in 2009 with the appointment of a core drafting committee of regional and international experts. The publication drew on the experience of clinical training in Australia, Croatia and Sweden and was moderated by physicists working in the Asian region. The present publication follows the approach of earlier IAEA publications in the Training Course Series, specifically Nos 37 and 47, Clinical Training of Medical Physicists Specializing in Radiation Oncology and Clinical Training of Medical Physicists

  10. Analysis of renal nuclear medicine images

    International Nuclear Information System (INIS)

    Jose, R.M.J.

    2000-01-01

    Nuclear medicine imaging of the renal system involves producing time-sequential images showing the distribution of a radiopharmaceutical in the renal system. Producing numerical and graphical data from nuclear medicine studies requires defining regions of interest (ROIs) around various organs within the field of view, such as the left kidney, right kidney and bladder. Automating this process has several advantages: a saving of a clinician's time; enhanced objectivity and reproducibility. This thesis describes the design, implementation and assessment of an automatic ROI generation system. The performance of the system described in this work is assessed by comparing the results to those obtained using manual techniques. Since nuclear medicine images are inherently noisy, the sequence of images is reconstructed using the first few components of a principal components analysis in order to reduce the noise in the images. An image of the summed reconstructed sequence is then formed. This summed image is segmented by using an edge co-occurrence matrix as a feature space for simultaneously classifying regions and locating boundaries. Two methods for assigning the regions of a segmented image to organ class labels are assessed. The first method is based on using Dempster-Shafer theory to combine uncertain evidence from several sources into a single evidence; the second method makes use of a neural network classifier. The use of each technique in classifying the regions of a segmented image are assessed in separate experiments using 40 real patient-studies. A comparative assessment of the two techniques shows that the neural network produces more accurate region labels for the kidneys. The optimum neural system is determined experimentally. Results indicate that combining temporal and spatial information with a priori clinical knowledge produces reasonable ROIs. Consistency in the neural network assignment of regions is enhanced by taking account of the contextual

  11. Diagnostic Medical Imaging in Pediatric Patients and Subsequent Cancer Risk.

    Science.gov (United States)

    Mulvihill, David J; Jhawar, Sachin; Kostis, John B; Goyal, Sharad

    2017-11-01

    The use of diagnostic medical imaging is becoming increasingly more commonplace in the pediatric setting. However, many medical imaging modalities expose pediatric patients to ionizing radiation, which has been shown to increase the risk of cancer development in later life. This review article provides a comprehensive overview of the available data regarding the risk of cancer development following exposure to ionizing radiation from diagnostic medical imaging. Attention is paid to modalities such as computed tomography scans and fluoroscopic procedures that can expose children to radiation doses orders of magnitude higher than standard diagnostic x-rays. Ongoing studies that seek to more precisely determine the relationship of diagnostic medical radiation in children and subsequent cancer development are discussed, as well as modern strategies to better quantify this risk. Finally, as cardiovascular imaging and intervention contribute substantially to medical radiation exposure, we discuss strategies to enhance radiation safety in these areas. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  12. Curriculum for education and training of Medical Physicists in Nuclear Medicine

    DEFF Research Database (Denmark)

    Del Guerra, Alberto; Bardies, Manuel; Belcari, Nicola

    2013-01-01

    and Competence approach along the lines recommended by the European Qualifications Framework. The minimum level expected in each topic in the theoretical knowledge and practical experience sections is intended to bring trainees up to the requirements expected of a Medical Physicist entering the field of Nuclear...... Medicine. CONCLUSIONS: This new joint EANM/EFOMP European guideline curriculum is a further step to harmonise specialist training of Medical Physicists in Nuclear Medicine within Europe. It provides a common framework for national Medical Physics societies to develop or benchmark their own curricula....... The responsibility for the implementation and accreditation of these standards and guidelines resides within national training and regulatory bodies....

  13. Image processing techniques for thermal, x-rays and nuclear radiations

    International Nuclear Information System (INIS)

    Chadda, V.K.

    1998-01-01

    The paper describes image acquisition techniques for the non-visible range of electromagnetic spectrum especially thermal, x-rays and nuclear radiations. Thermal imaging systems are valuable tools used for applications ranging from PCB inspection, hot spot studies, fire identification, satellite imaging to defense applications. Penetrating radiations like x-rays and gamma rays are used in NDT, baggage inspection, CAT scan, cardiology, radiography, nuclear medicine etc. Neutron radiography compliments conventional x-rays and gamma radiography. For these applications, image processing and computed tomography are employed for 2-D and 3-D image interpretation respectively. The paper also covers main features of image processing systems for quantitative evaluation of gray level and binary images. (author)

  14. Multispectral system for medical fluorescence imaging

    International Nuclear Information System (INIS)

    Andersson, P.S.; Montan, S.; Svanberg, S.

    1987-01-01

    The principles of a powerful multicolor imaging system for tissue fluorescence diagnostics are discussed. Four individually spectrally filtered images are formed on a matrix detector by means of a split-mirror arrangement. The four images are processed in a computer, pixel by pixel, by means of mathematical operations, leading to an optimized contrast image, which enhances a selected feature. The system is being developed primarily for medical fluorescence imaging, but has wide applications in fluorescence, reflectance, and transmission monitoring related to a wide range of industrial and environmental problems. The system operation is described for the case of linear imaging on a diode array detector. Laser-induced fluorescence is used for cancer tumor and arteriosclerotic plaque demarcation using the contrast enhancement capabilities of this imaging system. Further examples of applications include fluorescing minerals and flames

  15. Radiation Exposure by Nuclear Medicine Imaging Procedures: Case Study

    International Nuclear Information System (INIS)

    Kopjar, N.; Marovic, G.; Prlic, I.; Sencar, J.; Zeljezic, D.; Ramic, S.

    2013-01-01

    Using high-resolution gamma spectrometry, we investigated the activity concentrations of thallium radioisotopes in a urine sample collected during a period of 24 h following nuclear medicine cardiac imaging. As part of a thallium stress test the subject of the study received a radiopharmaceutical preparation with 201Tl (activity 111 MBq). In order to assess whether the cardiac imaging procedure resulted in lymphocyte genome damage, we studied the frequency of sister chromatid exchanges (SCE) and lymphocyte cell kinetics in the blood samples collected before and after the cardiac imaging. The highest activity concentration (538960.9 ± 405.9 Bq/L u rine) was estimated for 201Tl, followed by 1770.54 ± 3.57 Bq/L u rine for 202Tl, and 422.035 ± 2.091 Bq/Lurine for 200Tl. The applied radiopharmaceutical contained 99.595 % of 201Tl, 0.078 % of 200Tl and 0.327 % of 202Tl. The estimated effective dose received through a single exposure to the radiopharmaceutical and calculated for a period of two days was mostly affected by 201Tl (0.0453 mSv). Due to its half-life of 12.2 days, the contribution of 202Tl (0.0008 mSv) to the effective dose was also significant. Results of the cytogenetic analysis indicate that a single diagnostic exposure to thallium caused an increase of SCE frequency and decrease of the proliferation rate index (PRI). Both parameters normalized steadily 14 days after the cardiac imaging procedure, which is also in accord with data obtained in previous studies. Our results indicate the presence of impurities in the radiopharmaceutical which should contain only 201Tl. This calls for a stricter process of quality control for radiopharmaceuticals used in nuclear medical diagnostic procedures. In this particular case, we emphasize 'contamination' with 202Tl, whose contribution to the effective dose cannot be ignored if one takes into account that it has the longest half-life of all three thallium radioisotopes detected in the urine sample.(author)

  16. Medical measures in case of nuclear power plant accidents

    International Nuclear Information System (INIS)

    1986-01-01

    The Laender governments of the Federal Republic of Germany are of the opinion that within the framework of precautionary disaster control, plans have to be set up dealing with nuclear disasters that seem improbable but cannot be completely excluded. Accordingly, recommendations presented by the Federal Government and the Laender governments have been combined into a framework disaster control scheme where the competencies for activities and measures lie with the several Laender governments, as given by the Basic Law. A further recommendation deals with the medical care and service in case of a nuclear disaster, and the practical guide presented here is intended to give the information and instructions needed in order to comply with the legal framework. A working group has been set up in order to work out the rules and facts for optimum medical care. The activities are planned to be based on an emergency station responsible for medical examination, treatment, and transfer of victims. The practical guide has been discussed by the 'Committee for disaster control in the vicinity of nuclear installations' of the SSK, has been approved of by the supreme Land authorities of the Laender concerned, and has been passed by the SSK at its 63rd meeting. With 5 figs., 6 tabs [de

  17. Medical image computing for computer-supported diagnostics and therapy. Advances and perspectives.

    Science.gov (United States)

    Handels, H; Ehrhardt, J

    2009-01-01

    Medical image computing has become one of the most challenging fields in medical informatics. In image-based diagnostics of the future software assistance will become more and more important, and image analysis systems integrating advanced image computing methods are needed to extract quantitative image parameters to characterize the state and changes of image structures of interest (e.g. tumors, organs, vessels, bones etc.) in a reproducible and objective way. Furthermore, in the field of software-assisted and navigated surgery medical image computing methods play a key role and have opened up new perspectives for patient treatment. However, further developments are needed to increase the grade of automation, accuracy, reproducibility and robustness. Moreover, the systems developed have to be integrated into the clinical workflow. For the development of advanced image computing systems methods of different scientific fields have to be adapted and used in combination. The principal methodologies in medical image computing are the following: image segmentation, image registration, image analysis for quantification and computer assisted image interpretation, modeling and simulation as well as visualization and virtual reality. Especially, model-based image computing techniques open up new perspectives for prediction of organ changes and risk analysis of patients and will gain importance in diagnostic and therapy of the future. From a methodical point of view the authors identify the following future trends and perspectives in medical image computing: development of optimized application-specific systems and integration into the clinical workflow, enhanced computational models for image analysis and virtual reality training systems, integration of different image computing methods, further integration of multimodal image data and biosignals and advanced methods for 4D medical image computing. The development of image analysis systems for diagnostic support or

  18. Nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Cremin, B.J.

    1981-01-01

    Recent advances in diagnostic imaging, have been the medical application of nuclear magnetic resonance (NMR). It's been used to study the structure of various compounds in chemistry and physics, and in the mid-1970 to produce images of rabbits and eventually of the human hand and head. The images are produced by making use of the nuclear magnetization of the hydrogen ion, or proton, that is present in biological material to record the density distribution of protons in cellular water and lipids. An exploration of the end-results of complicated free induction decay signals, that have been digitized and frequency-analysed by mathematical computerized techniques to produce an image of tissue density, is given. At present NMR produces images comparable to those of early computed tomography

  19. [Research progress of multi-model medical image fusion and recognition].

    Science.gov (United States)

    Zhou, Tao; Lu, Huiling; Chen, Zhiqiang; Ma, Jingxian

    2013-10-01

    Medical image fusion and recognition has a wide range of applications, such as focal location, cancer staging and treatment effect assessment. Multi-model medical image fusion and recognition are analyzed and summarized in this paper. Firstly, the question of multi-model medical image fusion and recognition is discussed, and its advantage and key steps are discussed. Secondly, three fusion strategies are reviewed from the point of algorithm, and four fusion recognition structures are discussed. Thirdly, difficulties, challenges and possible future research direction are discussed.

  20. Nuclear physics and medical work in Burma

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1967-02-15

    Useful information connected with environmental radioactivity has already been obtained by the Rangoon Nuclear Physics Laboratory, Burma, the setting up of which was helped by the Agency's Technical Assistance Programme. Other assistance has helped the Rangoon General Hospital to install a scanning unit with which medical diagnosis and treatment can be aided

  1. Synchrotrons and their applications in medical imaging and therapy

    International Nuclear Information System (INIS)

    Lewis, R.

    2004-01-01

    Full text: Australasia's first synchrotron is being built on the campus of Monash University near Melbourne. Is it of any relevance to the medical imaging and radiation therapy communities? The answer is an unequivocal yes. Synchrotrons overcome many of the problems with conventional X-ray sources and as a result make it possible to demonstrate extraordinary advances in both X-ray imaging and indeed in radio-therapy. Synchrotron imaging offers us a window into what is possible and the results are spectacular. Specific examples include lung images that reveal alveolar structure and computed tomography of single cells. For therapy treatments are being pioneered that seem to be effective on high grade gliomas. An overview of the status of medical applications using synchrotrons will be given and the proposed Australian medical imaging and therapy facilities will be described and some of the proposed research highlighted. Copyright (2004) Australasian College of Physical Scientists and Engineers in Medicine

  2. 76 FR 45402 - Advisory Committee; Medical Imaging Drugs Advisory Committee; Re-Establishment

    Science.gov (United States)

    2011-07-29

    .... FDA-2010-N-0002] Advisory Committee; Medical Imaging Drugs Advisory Committee; Re- Establishment... (FDA) is announcing the re- establishment of the Medical Imaging Drugs Advisory Committee in FDA's Center for Drug Evaluation and Research. This rule amends the current language for the Medical Imaging...

  3. High-performance method of morphological medical image processing

    Directory of Open Access Journals (Sweden)

    Ryabykh M. S.

    2016-07-01

    Full Text Available the article shows the implementation of grayscale morphology vHGW algorithm for selection borders in the medical image. Image processing is executed using OpenMP and NVIDIA CUDA technology for images with different resolution and different size of the structuring element.

  4. Uncovering Special Nuclear Materials by Low-energy Nuclear Reaction Imaging.

    Science.gov (United States)

    Rose, P B; Erickson, A S; Mayer, M; Nattress, J; Jovanovic, I

    2016-04-18

    Weapons-grade uranium and plutonium could be used as nuclear explosives with extreme destructive potential. The problem of their detection, especially in standard cargo containers during transit, has been described as "searching for a needle in a haystack" because of the inherently low rate of spontaneous emission of characteristic penetrating radiation and the ease of its shielding. Currently, the only practical approach for uncovering well-shielded special nuclear materials is by use of active interrogation using an external radiation source. However, the similarity of these materials to shielding and the required radiation doses that may exceed regulatory limits prevent this method from being widely used in practice. We introduce a low-dose active detection technique, referred to as low-energy nuclear reaction imaging, which exploits the physics of interactions of multi-MeV monoenergetic photons and neutrons to simultaneously measure the material's areal density and effective atomic number, while confirming the presence of fissionable materials by observing the beta-delayed neutron emission. For the first time, we demonstrate identification and imaging of uranium with this novel technique using a simple yet robust source, setting the stage for its wide adoption in security applications.

  5. Digital fluoroscopy: a new development in medical imaging

    International Nuclear Information System (INIS)

    Maher, K.P.; Malone, J.F.; Dublin Inst. of Technology

    1986-01-01

    Medical fluoroscopy is briefly reviewed and video-image digitization is described. Image processing requirements and image processors available for digital fluoroscopy are discussed in detail. Specific reference is made to an application of digital fluoroscopy in the imaging of blood-vessels. This application involves an image substraction technique which is referred to as digital subtraction angiography (DSA). A number of DSA images of relevance to the discussion are included. (author)

  6. Application for internal dosimetry using biokinetic distribution of photons based on nuclear medicine images*

    Science.gov (United States)

    Leal Neto, Viriato; Vieira, José Wilson; Lima, Fernando Roberto de Andrade

    2014-01-01

    Objective This article presents a way to obtain estimates of dose in patients submitted to radiotherapy with basis on the analysis of regions of interest on nuclear medicine images. Materials and Methods A software called DoRadIo (Dosimetria das Radiações Ionizantes [Ionizing Radiation Dosimetry]) was developed to receive information about source organs and target organs, generating graphical and numerical results. The nuclear medicine images utilized in the present study were obtained from catalogs provided by medical physicists. The simulations were performed with computational exposure models consisting of voxel phantoms coupled with the Monte Carlo EGSnrc code. The software was developed with the Microsoft Visual Studio 2010 Service Pack and the project template Windows Presentation Foundation for C# programming language. Results With the mentioned tools, the authors obtained the file for optimization of Monte Carlo simulations using the EGSnrc; organization and compaction of dosimetry results with all radioactive sources; selection of regions of interest; evaluation of grayscale intensity in regions of interest; the file of weighted sources; and, finally, all the charts and numerical results. Conclusion The user interface may be adapted for use in clinical nuclear medicine as a computer-aided tool to estimate the administered activity. PMID:25741101

  7. Application for internal dosimetry using biokinetic distribution of photons based on nuclear medicine images

    International Nuclear Information System (INIS)

    Leal Neto, Viriato; Vieira, Jose Wilson; Lima, Fernando Roberto de Andrade

    2014-01-01

    Objective: this article presents a way to obtain estimates of dose in patients submitted to radiotherapy with basis on the analysis of regions of interest on nuclear medicine images. Materials and methods: a software called DoRadIo (Dosimetria das Radiacoes Ionizantes [Ionizing Radiation Dosimetry]) was developed to receive information about source organs and target organs, generating graphical and numerical results. The nuclear medicine images utilized in the present study were obtained from catalogs provided by medical physicists. The simulations were performed with computational exposure models consisting of voxel phantoms coupled with the Monte Carlo EGSnrc code. The software was developed with the Microsoft Visual Studio 2010 Service Pack and the project template Windows Presentation Foundation for C ⧣ programming language. Results: with the mentioned tools, the authors obtained the file for optimization of Monte Carlo simulations using the EGSnrc; organization and compaction of dosimetry results with all radioactive sources; selection of regions of interest; evaluation of grayscale intensity in regions of interest; the file of weighted sources; and, finally, all the charts and numerical results. Conclusion: the user interface may be adapted for use in clinical nuclear medicine as a computer-aided tool to estimate the administered activity. (author)

  8. Application for internal dosimetry using biokinetic distribution of photons based on nuclear medicine images

    Energy Technology Data Exchange (ETDEWEB)

    Leal Neto, Viriato, E-mail: viriatoleal@yahoo.com.br [Instituto Federal de Educacao, Ciencia e Tecnologia de Pernambuco (IFPE), Recife, PE (Brazil); Vieira, Jose Wilson [Universidade Federal de Pernambuco (UPE), Recife, PE (Brazil); Lima, Fernando Roberto de Andrade [Centro Regional de Ciencias Nucleares (CRCN-NE/CNEN-PE), Recife, PE (Brazil)

    2014-09-15

    Objective: this article presents a way to obtain estimates of dose in patients submitted to radiotherapy with basis on the analysis of regions of interest on nuclear medicine images. Materials and methods: a software called DoRadIo (Dosimetria das Radiacoes Ionizantes [Ionizing Radiation Dosimetry]) was developed to receive information about source organs and target organs, generating graphical and numerical results. The nuclear medicine images utilized in the present study were obtained from catalogs provided by medical physicists. The simulations were performed with computational exposure models consisting of voxel phantoms coupled with the Monte Carlo EGSnrc code. The software was developed with the Microsoft Visual Studio 2010 Service Pack and the project template Windows Presentation Foundation for C ⧣ programming language. Results: with the mentioned tools, the authors obtained the file for optimization of Monte Carlo simulations using the EGSnrc; organization and compaction of dosimetry results with all radioactive sources; selection of regions of interest; evaluation of grayscale intensity in regions of interest; the file of weighted sources; and, finally, all the charts and numerical results. Conclusion: the user interface may be adapted for use in clinical nuclear medicine as a computer-aided tool to estimate the administered activity. (author)

  9. Data bank applications of a nuclear medical computer system

    International Nuclear Information System (INIS)

    Hale, T.I.; Jucker, A.; Haering, W.; Schmid, B.

    1980-01-01

    Computer systems in nuclear medicine are normally not used for data bank applications. A concept for a PDP-11-34 with RK 05 disc is presented, which serves the needs of data manipulations of a medium sized hospital including management of patient data, pharma stock control etc. besides specific use for nuclear medical work with absolute priority. The program is available upon request. (orig.) [de

  10. Medical radiation

    International Nuclear Information System (INIS)

    1992-01-01

    This leaflet in the At-a-Glance Series describes the medical use of X-rays, how X-rays help in diagnosis, radiation protection of the patient, staff protection, how radioactive materials in nuclear medicine examinations help in diagnosis and the use of radiation in radiotherapy. Magnetic resonance imaging, a diagnostic technique involving no ionizing radiation, is also briefly examined. The role of the NRPB in the medical use of radiation is outlined. (UK)

  11. Molecular nuclear cardiac imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Soo; Paeng, Jin Chul [College of Medicine, Seoul National Univ., Seoul (Korea, Republic of)

    2004-04-01

    Molecular nuclear cardiac imaging has included Tc-99m Annexin imaging to visualize myocardial apoptosis, but is now usually associated with gene therapy and cell-based therapy. Cardiac gene therapy was not successful so far but cardiac reporter gene imaging was made possible using HSV-TK (herpes simplex virus thymidine kinase) and F-18 FHBG (fluoro-hydroxymethylbutyl guanine) or I-124 FIAU (fluoro-deoxyiodo-arabino-furanosyluracil). Gene delivery was performed by needle injection with or without catheter guidance. TK expression did not last longer than 2 weeks in myocardium. Cell-based therapy of ischemic heart or failing heart looks promising, but biodistribution and differentiation of transplanted cells are not known. Reporter genes can be transfected to the stem/progenitor cells and cells containing these genes can be transplanted to the recipients using catheter-based purging or injection. Repeated imaging should be available and if promoter are varied to let express reporter transgenes, cellular (trans)differentiation can be studied. NIS (sodium iodide symporter) or D2R receptor genes are promising in this aspect.

  12. Molecular nuclear cardiac imaging

    International Nuclear Information System (INIS)

    Lee, Dong Soo; Paeng, Jin Chul

    2004-01-01

    Molecular nuclear cardiac imaging has included Tc-99m Annexin imaging to visualize myocardial apoptosis, but is now usually associated with gene therapy and cell-based therapy. Cardiac gene therapy was not successful so far but cardiac reporter gene imaging was made possible using HSV-TK (herpes simplex virus thymidine kinase) and F-18 FHBG (fluoro-hydroxymethylbutyl guanine) or I-124 FIAU (fluoro-deoxyiodo-arabino-furanosyluracil). Gene delivery was performed by needle injection with or without catheter guidance. TK expression did not last longer than 2 weeks in myocardium. Cell-based therapy of ischemic heart or failing heart looks promising, but biodistribution and differentiation of transplanted cells are not known. Reporter genes can be transfected to the stem/progenitor cells and cells containing these genes can be transplanted to the recipients using catheter-based purging or injection. Repeated imaging should be available and if promoter are varied to let express reporter transgenes, cellular (trans)differentiation can be studied. NIS (sodium iodide symporter) or D2R receptor genes are promising in this aspect

  13. Medical image security using modified chaos-based cryptography approach

    Science.gov (United States)

    Talib Gatta, Methaq; Al-latief, Shahad Thamear Abd

    2018-05-01

    The progressive development in telecommunication and networking technologies have led to the increased popularity of telemedicine usage which involve storage and transfer of medical images and related information so security concern is emerged. This paper presents a method to provide the security to the medical images since its play a major role in people healthcare organizations. The main idea in this work based on the chaotic sequence in order to provide efficient encryption method that allows reconstructing the original image from the encrypted image with high quality and minimum distortion in its content and doesn’t effect in human treatment and diagnosing. Experimental results prove the efficiency of the proposed method using some of statistical measures and robust correlation between original image and decrypted image.

  14. Calculation of nuclear level density parameters of some light deformed medical radionuclides using collective excitation modes of observed nuclear spectra

    International Nuclear Information System (INIS)

    Okuducu, S.; Sarac, H.; Akti, N. N.; Boeluekdemir, M. H.; Tel, E.

    2010-01-01

    In this study the nuclear energy level density based on nuclear collective excitation mechanism has been identified in terms of the low-lying collective level bands at near the neutron binding energy. Nuclear level density parameters of some light deformed medical radionuclides used widely in medical applications have been calculated by using different collective excitation modes of observed nuclear spectra. The calculated parameters have been used successfully in estimation of the neutron-capture cross section basic data for the production of new medical radionuclides. The investigated radionuclides have been considered in the region of mass number 40< A< 100. The method used in the present work assumes equidistance spacing of the collective coupled state bands of the interest radionuclides. The present calculated results have been compared with the compiled values from the literatures for s-wave neutron resonance data.

  15. Spatio-Temporal Encoding in Medical Ultrasound Imaging

    DEFF Research Database (Denmark)

    Gran, Fredrik

    2005-01-01

    In this dissertation two methods for spatio-temporal encoding in medical ultrasound imaging are investigated. The first technique is based on a frequency division approach. Here, the available spectrum of the transducer is divided into a set of narrow bands. A waveform is designed for each band...... the signal to noise ratio and simultaneously the penetration depth so that the medical doctor can image deeper lying structures. The method is tested both experimentally and in simulation and has also evaluated for the purpose of blood flow estimation. The work presented is based on four papers which...

  16. Population Pharmacokinetics of Tracers: A New Tool for Medical Imaging?

    Science.gov (United States)

    Gandia, Peggy; Jaudet, Cyril; Chatelut, Etienne; Concordet, Didier

    2017-02-01

    Positron emission tomography-computed tomography is a medical imaging method measuring the activity of a radiotracer chosen to accumulate in cancer cells. A recent trend of medical imaging analysis is to account for the radiotracer's pharmacokinetic properties at a voxel (three-dimensional-pixel) level to separate the different tissues. These analyses are closely linked to population pharmacokinetic-pharmacodynamic modelling. Kineticists possess the cultural background to improve medical imaging analysis. This article stresses the common points with population pharmacokinetics and highlights the methodological locks that need to be lifted.

  17. Advances in nuclear medicine instrumentation: considerations in the design and selection of an imaging system

    International Nuclear Information System (INIS)

    Links, J.M.

    1998-01-01

    Nuclear medicine remains a vibrant and dynamic medical specialty because it so adeptly marries advances in basic science research, technology, and medical practice in attempting to solve patients' problems. As a physicist, it is my responsibility to identify or design new instrumentation and techniques, and to implement, validate, and help apply these new approaches in the practice of nuclear medicine. At Johns Hopkins, we are currently in the process of purchasing both a single-photon/coincidence tomographic imaging system and a dedicated positron emission tomography (PET) scanner. Given the exciting advances that have been made, but the conflicting opinions of manufacturers and colleagues alike regarding ''best'' choices, it seemed useful to review what is new now, and what is on the horizon, to help identify all of the important considerations in the design and selection of an imaging system. It is important to note that many of the ''advances'' described here are in an early stage of development, and may never make it to routine clinical practice. Further, not all of the advances are of equal importance, or have the same degree of general clinical applicability. Please also note that the references contained herein are for illustrative purposes and are not all-inclusive; no implication that those chosen are ''better'' than others not mentioned is intended. (orig.)

  18. PCANet-Based Structural Representation for Nonrigid Multimodal Medical Image Registration

    Directory of Open Access Journals (Sweden)

    Xingxing Zhu

    2018-05-01

    Full Text Available Nonrigid multimodal image registration remains a challenging task in medical image processing and analysis. The structural representation (SR-based registration methods have attracted much attention recently. However, the existing SR methods cannot provide satisfactory registration accuracy due to the utilization of hand-designed features for structural representation. To address this problem, the structural representation method based on the improved version of the simple deep learning network named PCANet is proposed for medical image registration. In the proposed method, PCANet is firstly trained on numerous medical images to learn convolution kernels for this network. Then, a pair of input medical images to be registered is processed by the learned PCANet. The features extracted by various layers in the PCANet are fused to produce multilevel features. The structural representation images are constructed for two input images based on nonlinear transformation of these multilevel features. The Euclidean distance between structural representation images is calculated and used as the similarity metrics. The objective function defined by the similarity metrics is optimized by L-BFGS method to obtain parameters of the free-form deformation (FFD model. Extensive experiments on simulated and real multimodal image datasets show that compared with the state-of-the-art registration methods, such as modality-independent neighborhood descriptor (MIND, normalized mutual information (NMI, Weber local descriptor (WLD, and the sum of squared differences on entropy images (ESSD, the proposed method provides better registration performance in terms of target registration error (TRE and subjective human vision.

  19. Analysis of scientific papers in the field of radiology and medical imaging included in Science Citation Index expanded and published by Turkish authors.

    Science.gov (United States)

    Akpinar, Erhan; Karçaaltincaba, Muşturay

    2010-09-01

    We aimed to analyze scientific papers published by Turkish authors in "radiology, nuclear medicine and medical imaging" journals included in the Science Citation Index Expanded and compared the number of published scientific papers from Turkey and other countries. We retrospectively searched all papers published by Turkish authors between 1945 and 2008 by using Web of Science software. We performed the analysis by typing "Turkey" in the address section and all radiology and medical imaging journals in the source title section using the general search function of the software. We further analyzed these results by using "analyze" function of the software according to the number of publications per year, journals, institution and type of papers. We also calculated total number of citations to published scientific papers using citation report function. We analyzed the rank of Turkey among other countries in terms of the number of published papers. Overall, 4,532 papers were published between 1945 and 2008. The first paper was published in 1976. Number of publications increased dramatically from 1976 (n = 1) to 2008 (n = 383). The top 5 journals publishing papers from Turkish authors were European Journal of Nuclear Medicine and Molecular Imaging (n = 328), Clinical Nuclear Medicine (n = 296), European Journal of Radiology (n = 289), European Radiology (n = 207) and Journal of Clinical Ultrasound (n = 186). All published papers received 18,419 citations and citation to paper ratio was 4.06. The rank of Turkey among other countries in terms of published papers improved during the last 25 years. Number of papers from Turkey published in radiology and medical imaging journals has increased at the start of the new millennium. Currently, Turkey is among the top 12 countries when the number of scientific papers published in radiology journals is taken into consideration.

  20. Development of a radioiodinated triazolopyrimidine probe for nuclear medical imaging of fatty acid binding protein 4.

    Directory of Open Access Journals (Sweden)

    Kantaro Nishigori

    Full Text Available Fatty acid binding protein 4 (FABP4 is the most well-characterized FABP isoform. FABP4 regulates inflammatory pathways in adipocytes and macrophages and is involved in both inflammatory diseases and tumor formation. FABP4 expression was recently reported for glioblastoma, where it may participate in disease malignancy. While FABP4 is a potential molecular imaging target, with the exception of a tritium labeled probe there are no reports of other nuclear imaging probes that target this protein. Here we designed and synthesized a nuclear imaging probe, [123I]TAP1, and evaluated its potential as a FABP4 targeting probe in in vitro and in vivo assays. We focused on the unique structure of a triazolopyrimidine scaffold that lacks a carboxylic acid to design the TAP1 probe that can undergo facilitated delivery across cell membranes. The affinity of synthesized TAP1 was measured using FABP4 and 8-anilino-1-naphthalene sulfonic acid. [125I]TAP1 was synthesized by iododestannylation of a precursor, followed by affinity and selectivity measurements using immobilized FABPs. Biodistributions in normal and C6 glioblastoma-bearing mice were evaluated, and excised tumors were subjected to autoradiography and immunohistochemistry. TAP1 and [125I]TAP1 showed high affinity for FABP4 (Ki = 44.5±9.8 nM, Kd = 69.1±12.3 nM. The FABP4 binding affinity of [125I]TAP1 was 11.5- and 35.5-fold higher than for FABP3 and FABP5, respectively. In an in vivo study [125I]TAP1 displayed high stability against deiodination and degradation, and moderate radioactivity accumulation in C6 tumors (1.37±0.24% dose/g 3 hr after injection. The radioactivity distribution profile in tumors partially corresponded to the FABP4 positive area and was also affected by perfusion. The results indicate that [125I]TAP1 could detect FABP4 in vitro and partly in vivo. As such, [125I]TAP1 is a promising lead compound for further refinement for use in in vivo FABP4 imaging.

  1. Integration of Medical Imaging Including Ultrasound into a New Clinical Anatomy Curriculum

    Science.gov (United States)

    Moscova, Michelle; Bryce, Deborah A.; Sindhusake, Doungkamol; Young, Noel

    2015-01-01

    In 2008 a new clinical anatomy curriculum with integrated medical imaging component was introduced into the University of Sydney Medical Program. Medical imaging used for teaching the new curriculum included normal radiography, MRI, CT scans, and ultrasound imaging. These techniques were incorporated into teaching over the first two years of the…

  2. Breast Imaging Utilizing Dedicated Gamma Camera and (99m)Tc-MIBI: Experience at the Tel Aviv Medical Center and Review of the Literature Breast Imaging.

    Science.gov (United States)

    Even-Sapir, Einat; Golan, Orit; Menes, Tehillah; Weinstein, Yuliana; Lerman, Hedva

    2016-07-01

    The scope of the current article is the clinical role of gamma cameras dedicated for breast imaging and (99m)Tc-MIBI tumor-seeking tracer, as both a screening modality among a healthy population and as a diagnostic modality in patients with breast cancer. Such cameras are now commercially available. The technology utilizing a camera composed of a NaI (Tl) detector is termed breast-specific gamma imaging. The technology of dual-headed camera composed of semiconductor cadmium zinc telluride detectors that directly converts gamma-ray energy into electronic signals is termed molecular breast imaging. Molecular breast imaging system has been installed at the Department of Nuclear medicine at the Tel Aviv Sourasky Medical Center, Tel Aviv in 2009. The article reviews the literature well as our own experience. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. NMR clinical imaging and spectroscopy: Its impact on nuclear medicine

    International Nuclear Information System (INIS)

    1990-01-01

    This is a collection of four papers describing aspects of past and future use of nuclear magnetic resonance as a clinical diagnostic tool. The four papers are entitled (1) What Does NMR Offer that Nuclear Medicine Does Not? by Jerry W. Froelich, (2) Oncological Imaging: Now, Future and Impact Jerry W. Froelich, (3) Magnetic Resonance Spectroscopy/Spectroscopic Imaging and Nuclear Medicine: Past, Present and Future by H. Cecil Charles, and (4) MR Cardiology: Now, Future and Impact by Robert J. Herfkens

  4. Coded Aperture Nuclear Scintigraphy: A Novel Small Animal Imaging Technique

    Directory of Open Access Journals (Sweden)

    Dawid Schellingerhout

    2002-10-01

    Full Text Available We introduce and demonstrate the utility of coded aperture (CA nuclear scintigraphy for imaging small animals. CA imaging uses multiple pinholes in a carefully designed mask pattern, mounted on a conventional gamma camera. System performance was assessed using point sources and phantoms, while several animal experiments were performed to test the usefulness of the imaging system in vivo, with commonly used radiopharmaceuticals. The sensitivity of the CA system for 99mTc was 4.2 × 103 cps/Bq (9400 cpm/μCi, compared to 4.4 × 104 cps/Bq (990 cpm/μCi for a conventional collimator system. The system resolution was 1.7 mm, as compared to 4–6 mm for the conventional imaging system (using a high-sensitivity low-energy collimator. Animal imaging demonstrated artifact-free imaging with superior resolution and image quality compared to conventional collimator images in several mouse and rat models. We conclude that: (a CA imaging is a useful nuclear imaging technique for small animal imaging. The advantage in signal-to-noise can be traded to achieve higher resolution, decreased dose or reduced imaging time. (b CA imaging works best for images where activity is concentrated in small volumes; a low count outline may be better demonstrated using conventional collimator imaging. Thus, CA imaging should be viewed as a technique to complement rather than replace traditional nuclear imaging methods. (c CA hardware and software can be readily adapted to existing gamma cameras, making their implementation a relatively inexpensive retrofit to most systems.

  5. Display of nuclear medicine imaging studies

    International Nuclear Information System (INIS)

    Singh, B.; Kataria, S.K.; Samuel, A.M.

    2002-08-01

    Nuclear medicine imaging studies involve evaluation of a large amount of image data. Digital signal processing techniques have introduced processing algorithms that increase the information content of the display. Nuclear medicine imaging studies require interactive selection of suitable form of display and pre-display processing. Static imaging study requires pre-display processing to detect focal defects. Point operations (histogram modification) along with zoom and capability to display more than one image in one screen is essential. This album mode of display is also applicable to dynamic, MUGA and SPECT data. Isometric display or 3-D graph of the image data is helpful in some cases e.g. point spread function, flood field data. Cine display is used on a sequence of images e.g. dynamic, MUGA and SPECT imaging studies -to assess the spatial movement of tracer with time. Following methods are used at the investigator's discretion for inspection of the 3-D object. 1) Display of orthogonal projections, 2) Display of album of user selected coronal/ sagital/ transverse orthogonal slices, 3) Display of three orthogonal slices through user selected point, 4) Display of a set of orthogonal slices generated in the user-selected volume, 5) Generation and display of 3-D shaded surface. 6) Generation of volume data and display along with the 3-D shaded surface, 7) Side by side display orthogonal slices of two 3-D objects. Displaying a set of two-dimensional slices of a 3-D reconstructed object through shows all the defects but lacks the 3-D perspective. Display of shaded surface lacks the ability to show the embedded defects. Volume display -combining the 3-D surface and gray level volume data is perhaps the best form of display. This report describes these forms of display along with the theory. (author)

  6. Accuracy and Precision of Radioactivity Quantification in Nuclear Medicine Images

    Science.gov (United States)

    Frey, Eric C.; Humm, John L.; Ljungberg, Michael

    2012-01-01

    The ability to reliably quantify activity in nuclear medicine has a number of increasingly important applications. Dosimetry for targeted therapy treatment planning or for approval of new imaging agents requires accurate estimation of the activity in organs, tumors, or voxels at several imaging time points. Another important application is the use of quantitative metrics derived from images, such as the standard uptake value commonly used in positron emission tomography (PET), to diagnose and follow treatment of tumors. These measures require quantification of organ or tumor activities in nuclear medicine images. However, there are a number of physical, patient, and technical factors that limit the quantitative reliability of nuclear medicine images. There have been a large number of improvements in instrumentation, including the development of hybrid single-photon emission computed tomography/computed tomography and PET/computed tomography systems, and reconstruction methods, including the use of statistical iterative reconstruction methods, which have substantially improved the ability to obtain reliable quantitative information from planar, single-photon emission computed tomography, and PET images. PMID:22475429

  7. Upgradation of nuclear medical equipment in the developing countries and its impact in Bangladesh

    CERN Document Server

    Jahangir, S M; Haque, M A S; Hoq, M; Mawla, Y; Morium, T; Uddin, M R; Xie, Y

    2002-01-01

    Bangladesh has thirteen Nuclear Medical Centres and one Institute of Nuclear Medicine in the country which are being run and maintained by the physicians scientists and engineers of Bangladesh Atomic Energy Commission. The peaceful application of atomic energy was initiated through all these Centres with the use of clinical isotopes for thyroid and kidney studies. The equipment used for these purposes were the thyroid uptake system, rectilinear scanner and the multiprobe renogram system. The first gamma camera was installed in the country in 1980 at the Institute of Nuclear Medicine, Dhaka. That was the turning point for the country in the field of nuclear medicine. Presently all the nuclear medical establishments are equipped least with a gamma camera, thyroid uptake system and a renogram system. In the last two decades there has been a tremendous development in the design of nuclear medical equipment. Most of the old equipments were slow and manually operated. In the beginning of nineties of the past centur...

  8. Quantification of heterogeneity observed in medical images

    OpenAIRE

    Brooks, Frank J; Grigsby, Perry W

    2013-01-01

    Background There has been much recent interest in the quantification of visually evident heterogeneity within functional grayscale medical images, such as those obtained via magnetic resonance or positron emission tomography. In the case of images of cancerous tumors, variations in grayscale intensity imply variations in crucial tumor biology. Despite these considerable clinical implications, there is as yet no standardized method for measuring the heterogeneity observed via these imaging mod...

  9. Evaluation on the imaging of the bronchial blood flow using nuclear angiocardiography

    International Nuclear Information System (INIS)

    Fujii, Tadashige; Hirayama, Jiro; Kanai, Hisakata; Kobayashi, Toshio; Handa, Kenjiro

    1979-01-01

    Nuclear angiocardiography with sup(99m)TcO 4 - was performed for the purpose of the delineation of the systemic perfusion in various lung diseases, using a scintillation camera with a digital minicomputer system. The images of the bronchial blood flow were obtained in cases with primary lung cancer, pulmonary tuberculosis, lung abscess, bronchiectasis and chronic bronchitis. The fair images of the bronchial blood flow were taken in cases of peripheral type, adenocarcinoma and primary foci of atelectatic type in primary lung cancer. The grade of delineation of the bronchial blood flow and vascularity of bronchial artery in foci of primary lung cancer were correlative to the grade of accumulation of 197 HgCl 2 , respectively. The joint use of nuclear angiocardiography and other imagings such as tumor or perfusion one was useful for evaluation of the pulmonary and systemic circulation, and that made isotope diagnosis of primary lung cancer more reliable too. The image as a isocount map extracted out of the image of 197 HgCl 2 or sup(99m)Tc-MAA, was superimposed to the brightness image of the nuclear angiocardiogram (aortic phase). This image superimposition methods were valuable to improve anatomic orientation of the nuclear angiocardiogram. The delineation of the bronchial blood flow on the subtraction image, which obtained from the two time-different images in aortic phase of the nuclear angiocardiogram, was better than that of the original images. (author)

  10. Anomaly detection for medical images based on a one-class classification

    Science.gov (United States)

    Wei, Qi; Ren, Yinhao; Hou, Rui; Shi, Bibo; Lo, Joseph Y.; Carin, Lawrence

    2018-02-01

    Detecting an anomaly such as a malignant tumor or a nodule from medical images including mammogram, CT or PET images is still an ongoing research problem drawing a lot of attention with applications in medical diagnosis. A conventional way to address this is to learn a discriminative model using training datasets of negative and positive samples. The learned model can be used to classify a testing sample into a positive or negative class. However, in medical applications, the high unbalance between negative and positive samples poses a difficulty for learning algorithms, as they will be biased towards the majority group, i.e., the negative one. To address this imbalanced data issue as well as leverage the huge amount of negative samples, i.e., normal medical images, we propose to learn an unsupervised model to characterize the negative class. To make the learned model more flexible and extendable for medical images of different scales, we have designed an autoencoder based on a deep neural network to characterize the negative patches decomposed from large medical images. A testing image is decomposed into patches and then fed into the learned autoencoder to reconstruct these patches themselves. The reconstruction error of one patch is used to classify this patch into a binary class, i.e., a positive or a negative one, leading to a one-class classifier. The positive patches highlight the suspicious areas containing anomalies in a large medical image. The proposed method has been tested on InBreast dataset and achieves an AUC of 0.84. The main contribution of our work can be summarized as follows. 1) The proposed one-class learning requires only data from one class, i.e., the negative data; 2) The patch-based learning makes the proposed method scalable to images of different sizes and helps avoid the large scale problem for medical images; 3) The training of the proposed deep convolutional neural network (DCNN) based auto-encoder is fast and stable.

  11. Nuclear applications in life sciences

    International Nuclear Information System (INIS)

    Uenak, P.

    2009-01-01

    Radioactivity has revolutionized life sciences during the last century, and it is still an indispensable tool. Nuclear Medicine, Radiation Biology and Radiotherapy, Dosimetry and Medical Radiation Physics, Nutrition and Environmental Problems Relevant Health are significant application fields of Nuclear Sciences. Nuclear medicine today is a well established branch of medicine. Radionuclides and radiopharmaceuticals play a key role both in diagnostic investigations and therapy-Both cyclotron and reactor produced radionuclides find application, the former more in diagnostic studies and the latter in therapy. New therapy applications such as bor neutron therapy are increasing by time together with the technological improvements in imaging systems such as PET and SPECT. Radionuclides and radiopharmaceuticals play important role in both therapy and imaging. However cyclotron produced radionuclides have been using generally in imaging purposes while reactor produced radionuclides have also therapeutic applications. With the advent of emission tomography, new vistas for probing biochemistry in vivo have been opened. The radio chemist faces an ever-increasing challenge of designing new tracers for diagnostic and therapeutic applications. Rapid, efficient and automated methods of radionuclide and precursor production, labeling of biomolecules, and quality control need to be developed. The purpose of this article is a short interface from Nuclear Medicine, Radiation Biology and Radiotherapy, Dosimetry and Medical Radiation Physics Applications of Nuclear Sciences.

  12. A Novel Medical Image Watermarking in Three-dimensional Fourier Compressed Domain

    Directory of Open Access Journals (Sweden)

    Baoru Han

    2015-09-01

    Full Text Available Digital watermarking is a research hotspot in the field of image security, which is protected digital image copyright. In order to ensure medical image information security, a novel medical image digital watermarking algorithm in three-dimensional Fourier compressed domain is proposed. The novel medical image digital watermarking algorithm takes advantage of three-dimensional Fourier compressed domain characteristics, Legendre chaotic neural network encryption features and robust characteristics of differences hashing, which is a robust zero-watermarking algorithm. On one hand, the original watermarking image is encrypted in order to enhance security. It makes use of Legendre chaotic neural network implementation. On the other hand, the construction of zero-watermarking adopts differences hashing in three-dimensional Fourier compressed domain. The novel watermarking algorithm does not need to select a region of interest, can solve the problem of medical image content affected. The specific implementation of the algorithm and the experimental results are given in the paper. The simulation results testify that the novel algorithm possesses a desirable robustness to common attack and geometric attack.

  13. Restoration and functional analysis of nuclear medicine images

    International Nuclear Information System (INIS)

    Wendt, R.E. III.

    1982-01-01

    The nuclear medicine physician uses visual interpretation of a movie-like display of the beating human heart to detect wall motion abnormalities which might be related to impaired cardiac function. The present work is directed toward extracting more information from the heart motion study, and presenting it in a useful manner. A spatially adaptive smoothing routine using a quadtree image representation gives an improvement in mean squared error compared to the S9 smoother commonly used for nuclear medicine studies. Functional images show the two-dimensional distribution of parameters of the heart motion. The most popular, the first harmonic phase functional image, formed from the first Fourier harmonic fit to each pixel time-activity curve, is subject to significant artifacts which make a simple interpretation of it difficult. A multi-harmonic approximation is more accurate and offers a wealth of unique parameters with which to construct more directly meaningful functional images

  14. Nuclear radiation and its role in general nuclear medicine

    International Nuclear Information System (INIS)

    Kempaiah, A.; Ravi, C.

    2012-01-01

    Radiation is really nothing more than the emission of energy through space, as well as through physical objects. Nuclear radiations are emitted due to decay of nuclei of radioactive materials and damage cells and the DNA inside them through its ionizing effect. That causes melanoma and other cancers. Nuclear radiation has a number of beneficial uses especially in medical field with low levels of radioactive compounds, better than X-rays. There are some 440 nuclear reactors worldwide, people around will be under the effect of radiation. In nuclear medicine (medical imaging) small amount of radioactive materials were used to diagnose and determine the severity of or treat a variety of disease, including many types of cancers, heart disease, gastrointestinal, endocrine, neurological disorders and other abnormalities within the body it is painless and cost-effective techniques and provides information about both structure and function. Nuclear medicine diagnostic procedures called Gamma camera, single photon emission computed tomography (SPECT) and positron emission tomography (PET) were discussed in this paper. (author)

  15. The research progress of nuclear medicine on cardiovascular molecular imaging

    International Nuclear Information System (INIS)

    Yin Xiaohua; Zhang Yongxue

    2007-01-01

    Cardiovascular molecular imaging is a rapidly evolving discipline and its clinical application is promising. Nuclear medicine is playing a leading role in this field with its special superiority of noninvasive, quantifiability, high sensitivity and specificity. It provides broad opportunities for exploring the pathophysiologic process of cardiovascular diseases and monitoring its gene therapy in the molecular level. In this review, we mainly discuss some basic knowledge on cardiovascular molecular imaging, and then focus on the applied research prospect of nuclear medicine radionuclide imaging. (authors)

  16. Imaginary Savior: the image of the nuclear bomb in Korea, 1945-1960.

    Science.gov (United States)

    Kim, Dong-Won

    2009-01-01

    Two atomic bombs dropped on Hiroshima and Nagasaki in August 1945 brought the unexpected liberation of Korea from the 35-year Japanese occupation. Koreans therefore had a very favorable and positive image of the nuclear bomb and nuclear energy from the beginning. The image of the nuclear bomb as "savior" was strengthened during the Korean War when the United States openly mentioned the possible use of the nuclear bomb against North Korean and Chinese military. After the end of the Korean War in July 1953 South Koreans strongly supported the development of the nuclear bomb in order to deter another North Korean invasion. When the US government provided South Korea with a research nuclear reactor in the late 1950s, most South Koreans hailed it as the first step to developing their own nuclear bomb. This paper will analyze how and why the savior image of the nuclear bomb originated and spread in Korea during the 1950s.

  17. From spoken narratives to domain knowledge: mining linguistic data for medical image understanding.

    Science.gov (United States)

    Guo, Xuan; Yu, Qi; Alm, Cecilia Ovesdotter; Calvelli, Cara; Pelz, Jeff B; Shi, Pengcheng; Haake, Anne R

    2014-10-01

    Extracting useful visual clues from medical images allowing accurate diagnoses requires physicians' domain knowledge acquired through years of systematic study and clinical training. This is especially true in the dermatology domain, a medical specialty that requires physicians to have image inspection experience. Automating or at least aiding such efforts requires understanding physicians' reasoning processes and their use of domain knowledge. Mining physicians' references to medical concepts in narratives during image-based diagnosis of a disease is an interesting research topic that can help reveal experts' reasoning processes. It can also be a useful resource to assist with design of information technologies for image use and for image case-based medical education systems. We collected data for analyzing physicians' diagnostic reasoning processes by conducting an experiment that recorded their spoken descriptions during inspection of dermatology images. In this paper we focus on the benefit of physicians' spoken descriptions and provide a general workflow for mining medical domain knowledge based on linguistic data from these narratives. The challenge of a medical image case can influence the accuracy of the diagnosis as well as how physicians pursue the diagnostic process. Accordingly, we define two lexical metrics for physicians' narratives--lexical consensus score and top N relatedness score--and evaluate their usefulness by assessing the diagnostic challenge levels of corresponding medical images. We also report on clustering medical images based on anchor concepts obtained from physicians' medical term usage. These analyses are based on physicians' spoken narratives that have been preprocessed by incorporating the Unified Medical Language System for detecting medical concepts. The image rankings based on lexical consensus score and on top 1 relatedness score are well correlated with those based on challenge levels (Spearman correlation>0.5 and Kendall

  18. Intrasubject registration for change analysis in medical imaging

    NARCIS (Netherlands)

    Staring, M.

    2008-01-01

    Image matching is important for the comparison of medical images. Comparison is of clinical relevance for the analysis of differences due to changes in the health of a patient. For example, when a disease is imaged at two time points, then one wants to know if it is stable, has regressed, or

  19. CRC Handbook of Medical Physics, vol. 3

    International Nuclear Information System (INIS)

    Waggener, R.G.; Kereiakes, J.G.; Shalek, R.J.

    1984-01-01

    In this work, the care and testing of measurement and diagnostic instruments are described in detail. Difficulties encountered with therapeutic and diagnostic calibrations are explored and solutions are suggested. VOLUME III Physics Teaching for Radiologic Technologists, Physics Teaching for Diagnostic Radiology Residents, Physics Teaching for Nuclear Medicine Residents, Physics Teaching for Radiotherapy Residents, Degree Programs in Medical Physics, Radiobiology Teaching, Non-Degree Medical Physics Training and American Board of Radiology Certifications, Radioactivity and Production of Medical Isotopes, Practical Medical Physics Consulting, Radiologic Terminology, Nuclear Medicine Imaging Techniques, Description of Radiotherapy Procedures, Medical Applications of Ultrasonography and Thermography, Glossary of Medical and Anatomical Terms Used in Medical Physics, Equipment List for Medical Physics and Acquisition Priority. Bibliography of Reference Materials. Index

  20. Structural analysis in medical imaging

    International Nuclear Information System (INIS)

    Dellepiane, S.; Serpico, S.B.; Venzano, L.; Vernazza, G.

    1987-01-01

    The conventional techniques in Pattern Recognition (PR) have been greatly improved by the introduction of Artificial Intelligence (AI) approaches, in particular for knowledge representation, inference mechanism and control structure. The purpose of this paper is to describe an image understanding system, based on the integrated approach (AI - PR), developed in the author's Department to interpret Nuclear Magnetic Resonance (NMR) images. The system is characterized by a heterarchical control structure and a blackboard model for the global data-base. The major aspects of the system are pointed out, with particular reference to segmentation, knowledge representation and error recovery (backtracking). The eye slices obtained in the case of two patients have been analyzed and the related results are discussed

  1. Clinical applications of SPECT/CT: New hybrid nuclear medicine imaging system

    International Nuclear Information System (INIS)

    2008-08-01

    Interest in multimodality imaging shows no sign of subsiding. New tracers are spreading out the spectrum of clinical applications and innovative technological solutions are preparing the way for yet more modality marriages: hybrid imaging. Single photon emission computed tomography (SPECT) has enabled the evaluation of disease processes based on functional and metabolic information of organs and cells. Integration of X ray computed tomography (CT) into SPECT has recently emerged as a brilliant diagnostic tool in medical imaging, where anatomical details may delineate functional and metabolic information. SPECT/CT has proven to be valuable in oncology. For example, in the case of a patient with metastatic thyroid cancer, neither SPECT nor CT alone could identify the site of malignancy. SPECT/CT, a hybrid image, precisely identified where the surgeon should operate. However SPECT/CT is not just advantageous in oncology. It may also be used as a one-stop-shop for various diseases. Clinical applications with SPECT/CT have started and expanded in developed countries. It has been reported that moving from SPECT alone to SPECT/CT could change diagnoses in 30% of cases. Large numbers of people could therefore benefit from this shift all over the world. This report presents an overview of clinical applications of SPECT/CT and a relevant source of information for nuclear medicine physicians, radiologists and clinical practitioners. This information may also be useful for decision making when allocating resources dedicated to the health care system, a critical issue that is especially important for the development of nuclear medicine in developing countries. In this regard, the IAEA may be heavily involved in the promotion of programmes aimed at the IAEA's coordinated research projects and Technical Cooperation projects

  2. An evaluation on CT image acquisition method for medical VR applications

    Science.gov (United States)

    Jang, Seong-wook; Ko, Junho; Yoo, Yon-sik; Kim, Yoonsang

    2017-02-01

    Recent medical virtual reality (VR) applications to minimize re-operations are being studied for improvements in surgical efficiency and reduction of operation error. The CT image acquisition method considering three-dimensional (3D) modeling for medical VR applications is important, because the realistic model is required for the actual human organ. However, the research for medical VR applications has focused on 3D modeling techniques and utilized 3D models. In addition, research on a CT image acquisition method considering 3D modeling has never been reported. The conventional CT image acquisition method involves scanning a limited area of the lesion for the diagnosis of doctors once or twice. However, the medical VR application is required to acquire the CT image considering patients' various postures and a wider area than the lesion. A wider area than the lesion is required because of the necessary process of comparing bilateral sides for dyskinesia diagnosis of the shoulder, pelvis, and leg. Moreover, patients' various postures are required due to the different effects on the musculoskeletal system. Therefore, in this paper, we perform a comparative experiment on the acquired CT images considering image area (unilateral/bilateral) and patients' postures (neutral/abducted). CT images are acquired from 10 patients for the experiments, and the acquired CT images are evaluated based on the length per pixel and the morphological deviation. Finally, by comparing the experiment results, we evaluate the CT image acquisition method for medical VR applications.

  3. A similarity-based data warehousing environment for medical images.

    Science.gov (United States)

    Teixeira, Jefferson William; Annibal, Luana Peixoto; Felipe, Joaquim Cezar; Ciferri, Ricardo Rodrigues; Ciferri, Cristina Dutra de Aguiar

    2015-11-01

    A core issue of the decision-making process in the medical field is to support the execution of analytical (OLAP) similarity queries over images in data warehousing environments. In this paper, we focus on this issue. We propose imageDWE, a non-conventional data warehousing environment that enables the storage of intrinsic features taken from medical images in a data warehouse and supports OLAP similarity queries over them. To comply with this goal, we introduce the concept of perceptual layer, which is an abstraction used to represent an image dataset according to a given feature descriptor in order to enable similarity search. Based on this concept, we propose the imageDW, an extended data warehouse with dimension tables specifically designed to support one or more perceptual layers. We also detail how to build an imageDW and how to load image data into it. Furthermore, we show how to process OLAP similarity queries composed of a conventional predicate and a similarity search predicate that encompasses the specification of one or more perceptual layers. Moreover, we introduce an index technique to improve the OLAP query processing over images. We carried out performance tests over a data warehouse environment that consolidated medical images from exams of several modalities. The results demonstrated the feasibility and efficiency of our proposed imageDWE to manage images and to process OLAP similarity queries. The results also demonstrated that the use of the proposed index technique guaranteed a great improvement in query processing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Medical imaging informatics simulators: a tutorial.

    Science.gov (United States)

    Huang, H K; Deshpande, Ruchi; Documet, Jorge; Le, Anh H; Lee, Jasper; Ma, Kevin; Liu, Brent J

    2014-05-01

    A medical imaging informatics infrastructure (MIII) platform is an organized method of selecting tools and synthesizing data from HIS/RIS/PACS/ePR systems with the aim of developing an imaging-based diagnosis or treatment system. Evaluation and analysis of these systems can be made more efficient by designing and implementing imaging informatics simulators. This tutorial introduces the MIII platform and provides the definition of treatment/diagnosis systems, while primarily focusing on the development of the related simulators. A medical imaging informatics (MII) simulator in this context is defined as a system integration of many selected imaging and data components from the MIII platform and clinical treatment protocols, which can be used to simulate patient workflow and data flow starting from diagnostic procedures to the completion of treatment. In these processes, DICOM and HL-7 standards, IHE workflow profiles, and Web-based tools are emphasized. From the information collected in the database of a specific simulator, evidence-based medicine can be hypothesized to choose and integrate optimal clinical decision support components. Other relevant, selected clinical resources in addition to data and tools from the HIS/RIS/PACS and ePRs platform may also be tailored to develop the simulator. These resources can include image content indexing, 3D rendering with visualization, data grid and cloud computing, computer-aided diagnosis (CAD) methods, specialized image-assisted surgical, and radiation therapy technologies. Five simulators will be discussed in this tutorial. The PACS-ePR simulator with image distribution is the cradle of the other simulators. It supplies the necessary PACS-based ingredients and data security for the development of four other simulators: the data grid simulator for molecular imaging, CAD-PACS, radiation therapy simulator, and image-assisted surgery simulator. The purpose and benefits of each simulator with respect to its clinical relevance

  5. Shaping the future through innovations: From medical imaging to precision medicine.

    Science.gov (United States)

    Comaniciu, Dorin; Engel, Klaus; Georgescu, Bogdan; Mansi, Tommaso

    2016-10-01

    Medical images constitute a source of information essential for disease diagnosis, treatment and follow-up. In addition, due to its patient-specific nature, imaging information represents a critical component required for advancing precision medicine into clinical practice. This manuscript describes recently developed technologies for better handling of image information: photorealistic visualization of medical images with Cinematic Rendering, artificial agents for in-depth image understanding, support for minimally invasive procedures, and patient-specific computational models with enhanced predictive power. Throughout the manuscript we will analyze the capabilities of such technologies and extrapolate on their potential impact to advance the quality of medical care, while reducing its cost. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Unsupervised segmentation of medical image based on difference of mutual information

    Institute of Scientific and Technical Information of China (English)

    L(U) Qingwen; CHEN Wufan

    2006-01-01

    In the scope of medical image processing, segmentation is important and difficult. There are still two problems which trouble us in this field. One is how to determine the number of clusters in an image and the other is how to segment medical images containing lesions. A new segmentation method called DDC, based on difference of mutual information (dMI) and pixon, is proposed in this paper. Experiments demonstrate that dMI shows one kind of intrinsic relationship between the segmented image and the original one and so it can be used to well determine the number of clusters. Furthermore, multi-modality medical images with lesions can be automatically and successfully segmented by DDC method.

  7. Trends in the Use of Medical Imaging to Diagnose Appendicitis at an Academic Medical Center.

    Science.gov (United States)

    Repplinger, Michael D; Weber, Andrew C; Pickhardt, Perry J; Rajamanickam, Victoria P; Svenson, James E; Ehlenbach, William J; Westergaard, Ryan P; Reeder, Scott B; Jacobs, Elizabeth A

    2016-09-01

    To quantify the trends in imaging use for the diagnosis of appendicitis. A retrospective study covering a 22-year period was conducted at an academic medical center. Patients were identified by International Classification of Diseases-9 diagnosis code for appendicitis. Medical record data extraction of these patients included imaging test used (ultrasound, CT, or MRI), gender, age, and body mass index (BMI). The proportion of patients undergoing each scan was calculated by year. Regression analysis was performed to determine whether age, gender, or BMI affected imaging choice. The study included a total of 2,108 patients, including 967 (43.5%) females and 599 (27%) children (imaging used for the diagnosis of appendicitis decreased over time (P medical center, CT use increased more than 20-fold. However, no statistically significant trend was found for increased use of ultrasound or MRI. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  8. Image sequence analysis in nuclear medicine: (1) Parametric imaging using statistical modelling

    International Nuclear Information System (INIS)

    Liehn, J.C.; Hannequin, P.; Valeyre, J.

    1989-01-01

    This is a review of parametric imaging methods on Nuclear Medicine. A Parametric Image is an image in which each pixel value is a function of the value of the same pixel of an image sequence. The Local Model Method is the fitting of each pixel time activity curve by a model which parameter values form the Parametric Images. The Global Model Method is the modelling of the changes between two images. It is applied to image comparison. For both methods, the different models, the identification criterion, the optimization methods and the statistical properties of the images are discussed. The analysis of one or more Parametric Images is performed using 1D or 2D histograms. The statistically significant Parametric Images, (Images of significant Variances, Amplitudes and Differences) are also proposed [fr

  9. Medical image computing and computer-assisted intervention - MICCAI 2005. Proceedings; Pt. 1

    International Nuclear Information System (INIS)

    Duncan, J.S.; Gerig, G.

    2005-01-01

    The two-volume set LNCS 3749 and LNCS 3750 constitutes the refereed proceedings of the 8th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2005, held in Palm Springs, CA, USA, in October 2005. Based on rigorous peer reviews the program committee selected 237 carefully revised full papers from 632 submissions for presentation in two volumes. The first volume includes all the contributions related to image analysis and validation, vascular image segmentation, image registration, diffusion tensor image analysis, image segmentation and analysis, clinical applications - validation, imaging systems - visualization, computer assisted diagnosis, cellular and molecular image analysis, physically-based modeling, robotics and intervention, medical image computing for clinical applications, and biological imaging - simulation and modeling. The second volume collects the papers related to robotics, image-guided surgery and interventions, image registration, medical image computing, structural and functional brain analysis, model-based image analysis, image-guided intervention: simulation, modeling and display, and image segmentation and analysis. (orig.)

  10. Medical image computing and computer science intervention. MICCAI 2005. Pt. 2. Proceedings

    International Nuclear Information System (INIS)

    Duncan, J.S.; Yale Univ., New Haven, CT; Gerig, G.

    2005-01-01

    The two-volume set LNCS 3749 and LNCS 3750 constitutes the refereed proceedings of the 8th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2005, held in Palm Springs, CA, USA, in October 2005. Based on rigorous peer reviews the program committee selected 237 carefully revised full papers from 632 submissions for presentation in two volumes. The first volume includes all the contributions related to image analysis and validation, vascular image segmentation, image registration, diffusion tensor image analysis, image segmentation and analysis, clinical applications - validation, imaging systems - visualization, computer assisted diagnosis, cellular and molecular image analysis, physically-based modeling, robotics and intervention, medical image computing for clinical applications, and biological imaging - simulation and modeling. The second volume collects the papers related to robotics, image-guided surgery and interventions, image registration, medical image computing, structural and functional brain analysis, model-based image analysis, image-guided intervention: simulation, modeling and display, and image segmentation and analysis. (orig.)

  11. Medical image computing and computer-assisted intervention - MICCAI 2005. Proceedings; Pt. 1

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, J.S. [Yale Univ., New Haven, CT (United States). Dept. of Biomedical Engineering and Diagnostic Radiology; Gerig, G. (eds.) [North Carolina Univ., Chapel Hill (United States). Dept. of Computer Science

    2005-07-01

    The two-volume set LNCS 3749 and LNCS 3750 constitutes the refereed proceedings of the 8th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2005, held in Palm Springs, CA, USA, in October 2005. Based on rigorous peer reviews the program committee selected 237 carefully revised full papers from 632 submissions for presentation in two volumes. The first volume includes all the contributions related to image analysis and validation, vascular image segmentation, image registration, diffusion tensor image analysis, image segmentation and analysis, clinical applications - validation, imaging systems - visualization, computer assisted diagnosis, cellular and molecular image analysis, physically-based modeling, robotics and intervention, medical image computing for clinical applications, and biological imaging - simulation and modeling. The second volume collects the papers related to robotics, image-guided surgery and interventions, image registration, medical image computing, structural and functional brain analysis, model-based image analysis, image-guided intervention: simulation, modeling and display, and image segmentation and analysis. (orig.)

  12. Medical image computing and computer science intervention. MICCAI 2005. Pt. 2. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, J.S. [Yale Univ., New Haven, CT (United States). Dept. of Biomedical Engineering]|[Yale Univ., New Haven, CT (United States). Dept. of Diagnostic Radiology; Gerig, G. (eds.) [North Carolina Univ., Chapel Hill, NC (United States). Dept. of Computer Science

    2005-07-01

    The two-volume set LNCS 3749 and LNCS 3750 constitutes the refereed proceedings of the 8th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2005, held in Palm Springs, CA, USA, in October 2005. Based on rigorous peer reviews the program committee selected 237 carefully revised full papers from 632 submissions for presentation in two volumes. The first volume includes all the contributions related to image analysis and validation, vascular image segmentation, image registration, diffusion tensor image analysis, image segmentation and analysis, clinical applications - validation, imaging systems - visualization, computer assisted diagnosis, cellular and molecular image analysis, physically-based modeling, robotics and intervention, medical image computing for clinical applications, and biological imaging - simulation and modeling. The second volume collects the papers related to robotics, image-guided surgery and interventions, image registration, medical image computing, structural and functional brain analysis, model-based image analysis, image-guided intervention: simulation, modeling and display, and image segmentation and analysis. (orig.)

  13. Nuclear image display controller

    International Nuclear Information System (INIS)

    Roth, D.A.

    1985-01-01

    In a nuclear imaging system the digitized x and y coordinates of gamma ray photon emission events address memory locations corresponding to the coordinates. The respective locations are incremented each time they are addressed so at the end of a selected time or event count period the locations contain digital values or raw data corresponding to the intensity of pixels comprising an image frame. The raw data for a frame is coupled to one input of an arithmetic logic unit (ALU) whose output is coupled to a display controller memory. The output of the controller memory is coupled to another ALU input with a feedback bus and is also coupled to a further signal processing circuit which includes means for converting processed data to analog video signals for television display. The ALU is selectively controlled to let raw image data pass through to the display controllor memory or alternately to add (or subtract) raw data for the last image frame developed to the raw data for preceding frames held in the display controller to thereby produce the visual effect on the television screen of an isotope flowing through anatomy

  14. Mapping very low level occupational exposure in medical imaging: A useful tool in risk communication and decision making

    Energy Technology Data Exchange (ETDEWEB)

    Covens, P., E-mail: pcovens@vub.ac.be [Health Physics Department, Vrije Universiteit Brussel and UZ Brussel, Laarbeeklaan 103, 1090 Brussels (Belgium); Beeldvorming en Fysische Wetenschappen (BEFY), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels (Belgium); Berus, D., E-mail: dberus@vub.ac.be [Health Physics Department, Vrije Universiteit Brussel and UZ Brussel, Laarbeeklaan 103, 1090 Brussels (Belgium); Mey, J. de, E-mail: Johan.DeMey@uzbrussel.be [Department of Radiology, UZ Brussel, Laarbeeklaan 101, 1090 Brussels (Belgium); Beeldvorming en Fysische Wetenschappen (BEFY), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels (Belgium); Buls, N., E-mail: Nico.Buls@uzbrussel.be [Department of Radiology, UZ Brussel, Laarbeeklaan 101, 1090 Brussels (Belgium); Beeldvorming en Fysische Wetenschappen (BEFY), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels (Belgium)

    2012-09-15

    Objectives: The use of ionising radiation in medical imaging is accompanied with occupational exposure which should be limited by optimised room design and safety instructions. These measures can however not prevent that workers are exposed to instantaneous dose rates, e.g. the residual exposure through shielding or the exposure of discharged nuclear medicine patients. The latter elements are often questioned by workers and detailed assessment should give more information about the impact on the individual radiation dose. Methods: Cumulated radiation exposure was measured in a university hospital during a period of 6 months by means of thermoluminescent dosimeters. Radiation exposure was measured at background locations and at locations where enhanced exposure levels are expected but where the impact on the individual exposure is unclear. Results: The results show a normal distribution of the cumulated background radiation level. No enhanced cumulated radiation exposure which significantly differs from this background level could be found during the operation of intra-oral apparatus, during ultrasonography procedures among nuclear medicine patients and at operator consoles of most CT-rooms. Conclusions: This 6 months survey offers useful information about occupational low level exposure in medical imaging and the findings can be useful in both risk communication and decision making.

  15. Mapping very low level occupational exposure in medical imaging: A useful tool in risk communication and decision making

    International Nuclear Information System (INIS)

    Covens, P.; Berus, D.; Mey, J. de; Buls, N.

    2012-01-01

    Objectives: The use of ionising radiation in medical imaging is accompanied with occupational exposure which should be limited by optimised room design and safety instructions. These measures can however not prevent that workers are exposed to instantaneous dose rates, e.g. the residual exposure through shielding or the exposure of discharged nuclear medicine patients. The latter elements are often questioned by workers and detailed assessment should give more information about the impact on the individual radiation dose. Methods: Cumulated radiation exposure was measured in a university hospital during a period of 6 months by means of thermoluminescent dosimeters. Radiation exposure was measured at background locations and at locations where enhanced exposure levels are expected but where the impact on the individual exposure is unclear. Results: The results show a normal distribution of the cumulated background radiation level. No enhanced cumulated radiation exposure which significantly differs from this background level could be found during the operation of intra-oral apparatus, during ultrasonography procedures among nuclear medicine patients and at operator consoles of most CT-rooms. Conclusions: This 6 months survey offers useful information about occupational low level exposure in medical imaging and the findings can be useful in both risk communication and decision making

  16. Regional variation in Medicare payments for medical imaging: radiologists versus nonradiologists.

    Science.gov (United States)

    Rosman, David A; Nsiah, Eugene; Hughes, Danny R; Duszak, Richard

    2015-05-01

    The purpose of this article was to study regional variation in Medicare Physician Fee Schedule (MPFS) payments for medical imaging to radiologists compared with nonradiologists. Using a 5% random sample of all Medicare enrollees, which covered approximately 2.5 million Part B beneficiaries in 2011, total professional-only, technical-only, and global MPFS spending was calculated on a state-by-state and United States Census Bureau regional basis for all Medicare Berenson-Eggers Type of Service-defined medical imaging services. Payments to radiologists versus nonradiologists were identified and variation was analyzed. Nationally, mean MPFS medical imaging spending per Medicare beneficiary was $207.17 ($95.71 [46.2%] to radiologists vs $111.46 [53.8%] to nonradiologists). Of professional-only (typically interpretation) payments, 20.6% went to nonradiologists. Of technical-only (typically owned equipment) payments, 84.9% went to nonradiologists. Of global (both professional and technical) payments, 70.1% went to nonradiologists. The percentage of MPFS medical imaging spending on nonradiologists ranged from 32% (Minnesota) to 69.5% (South Carolina). The percentage of MPFS payments for medical imaging to nonradiologists exceeded those to radiologists in 58.8% of states. The relative percentage of MPFS payments to nonradiologists was highest in the South (58.5%) and lowest in the Northeast (48.0%). Nationally, 53.8% of MPFS payments for medical imaging services are made to nonradiologists, who claim a majority of MPFS payments in most states dominated by noninterpretive payments. This majority spending on nonradiologists may have implications in bundled and capitated payment models for radiology services. Medical imaging payment policy initiatives must consider the roles of all provider groups and associated regional variation.

  17. Teaching the physics of medical imaging: an active learning approach involving imaging of biological tissue

    DEFF Research Database (Denmark)

    Wilhjelm, Jens E.; Pihl, Michael Johannes; Lonsdale, Markus Nowak

    2008-01-01

    Introduction to medical imaging is an experimentally oriented course in the physics of medical imaging, where the students record, process and analyse 3D data of an unknown piece of formalin fixed animal tissue embedded in agar in order to estimate the tissue types present. Planar X-ray, CT, MRI......, ultrasound and SPECT/PET images are recorded, showing the tissue in very different ways. In order for the students to estimate the tissue type, they need to study the physical principles of the imaging modalities. The “true” answer is subsequently revealed by slicing the tissue....

  18. X-ray detectors in medical imaging

    International Nuclear Information System (INIS)

    Spahn, Martin

    2013-01-01

    Healthcare systems are subject to continuous adaptation, following trends such as the change of demographic structures, the rise of life-style related and chronic diseases, and the need for efficient and outcome-oriented procedures. This also influences the design of new imaging systems as well as their components. The applications of X-ray imaging in the medical field are manifold and have led to dedicated modalities supporting specific imaging requirements, for example in computed tomography (CT), radiography, angiography, surgery or mammography, delivering projection or volumetric imaging data. Depending on the clinical needs, some X-ray systems enable diagnostic imaging while others support interventional procedures. X-ray detector design requirements for the different medical applications can vary strongly with respect to size and shape, spatial resolution, frame rates and X-ray flux, among others. Today, integrating X-ray detectors are in common use. They are predominantly based on scintillators (e.g. CsI or Gd 2 O 2 S) and arrays of photodiodes made from crystalline silicon (Si) or amorphous silicon (a-Si) or they employ semiconductors (e.g. Se) with active a-Si readout matrices. Ongoing and future developments of X-ray detectors will include optimization of current state-of-the-art integrating detectors in terms of performance and cost, will enable the usage of large size CMOS-based detectors, and may facilitate photon counting techniques with the potential to further enhance performance characteristics and foster the prospect of new clinical applications

  19. National emergency medical assistance program for commercial nuclear power plants

    International Nuclear Information System (INIS)

    Linnemann, R.E.; Berger, M.E.

    1987-01-01

    Radiation Management Consultant's Emergency Medical Assistance Program (EMAP) for nuclear facilities provides a twenty-four hour emergency medical and health physics response capability, training of site and off-site personnel, and three levels of care for radiation accident victims: first air and rescue at an accident site, hospital emergency assessment and treatment, and definitive evaluation and treatment at a specialized medical center. These aspects of emergency preparedness and fifteen years of experience in dealing with medical personnel and patients with real or suspected radiation injury will be reviewed

  20. Feature and Intensity Based Medical Image Registration Using Particle Swarm Optimization.

    Science.gov (United States)

    Abdel-Basset, Mohamed; Fakhry, Ahmed E; El-Henawy, Ibrahim; Qiu, Tie; Sangaiah, Arun Kumar

    2017-11-03

    Image registration is an important aspect in medical image analysis, and kinds use in a variety of medical applications. Examples include diagnosis, pre/post surgery guidance, comparing/merging/integrating images from multi-modal like Magnetic Resonance Imaging (MRI), and Computed Tomography (CT). Whether registering images across modalities for a single patient or registering across patients for a single modality, registration is an effective way to combine information from different images into a normalized frame for reference. Registered datasets can be used for providing information relating to the structure, function, and pathology of the organ or individual being imaged. In this paper a hybrid approach for medical images registration has been developed. It employs a modified Mutual Information (MI) as a similarity metric and Particle Swarm Optimization (PSO) method. Computation of mutual information is modified using a weighted linear combination of image intensity and image gradient vector flow (GVF) intensity. In this manner, statistical as well as spatial image information is included into the image registration process. Maximization of the modified mutual information is effected using the versatile Particle Swarm Optimization which is developed easily with adjusted less parameter. The developed approach has been tested and verified successfully on a number of medical image data sets that include images with missing parts, noise contamination, and/or of different modalities (CT, MRI). The registration results indicate the proposed model as accurate and effective, and show the posture contribution in inclusion of both statistical and spatial image data to the developed approach.

  1. Medical image archive node simulation and architecture

    Science.gov (United States)

    Chiang, Ted T.; Tang, Yau-Kuo

    1996-05-01

    It is a well known fact that managed care and new treatment technologies are revolutionizing the health care provider world. Community Health Information Network and Computer-based Patient Record projects are underway throughout the United States. More and more hospitals are installing digital, `filmless' radiology (and other imagery) systems. They generate a staggering amount of information around the clock. For example, a typical 500-bed hospital might accumulate more than 5 terabytes of image data in a period of 30 years for conventional x-ray images and digital images such as Magnetic Resonance Imaging and Computer Tomography images. With several hospitals contributing to the archive, the storage required will be in the hundreds of terabytes. Systems for reliable, secure, and inexpensive storage and retrieval of digital medical information do not exist today. In this paper, we present a Medical Image Archive and Distribution Service (MIADS) concept. MIADS is a system shared by individual and community hospitals, laboratories, and doctors' offices that need to store and retrieve medical images. Due to the large volume and complexity of the data, as well as the diversified user access requirement, implementation of the MIADS will be a complex procedure. One of the key challenges to implementing a MIADS is to select a cost-effective, scalable system architecture to meet the ingest/retrieval performance requirements. We have performed an in-depth system engineering study, and developed a sophisticated simulation model to address this key challenge. This paper describes the overall system architecture based on our system engineering study and simulation results. In particular, we will emphasize system scalability and upgradability issues. Furthermore, we will discuss our simulation results in detail. The simulations study the ingest/retrieval performance requirements based on different system configurations and architectures for variables such as workload, tape

  2. Analysis and synthesis of nuclear medical letters in the field of nephrological diseases

    International Nuclear Information System (INIS)

    Kley, K.H.

    1979-01-01

    The task of this study consisted in providing the conditions for the automized issue of nuclear nephrological medical letters based on the nuclear medical polyclinic Marburg Selex system working for 8 years now. Part of the task was to develop the structure and coding of the medical letter content appropriately for EDP documentation, as in the Selex system all data for medical letter acquisition are simultaneously acquired on a data carrier for EDP documentation. The analysis of commonly provided medical letters also exhibited in this field the known weaknesses: especially insufficient systematics and the all-over information of interfering redundances. The work describes in detail how the required thesaurus has been worked out and structured into obligatory and optional rough and detailed components. A general form was developed for the findings of paired organs and the special form for nuclear nephrological medical letters was adapted to it. Of the auxiliaries worked out for the doctor in setting up the working instructions to operate the Selex system, scriptate leaflet, short vocabulary album; the two former are presented fully and the latter with typical examples. The result of this work can basically also be applied to other hardware. (orig.) [de

  3. Development of an electronic medical report delivery system to 3G GSM mobile (cellular) phones for a medical imaging department.

    Science.gov (United States)

    Lim, Eugene Y; Lee, Chiang; Cai, Weidong; Feng, Dagan; Fulham, Michael

    2007-01-01

    Medical practice is characterized by a high degree of heterogeneity in collaborative and cooperative patient care. Fast and effective communication between medical practitioners can improve patient care. In medical imaging, the fast delivery of medical reports to referring medical practitioners is a major component of cooperative patient care. Recently, mobile phones have been actively deployed in telemedicine applications. The mobile phone is an ideal medium to achieve faster delivery of reports to the referring medical practitioners. In this study, we developed an electronic medical report delivery system from a medical imaging department to the mobile phones of the referring doctors. The system extracts a text summary of medical report and a screen capture of diagnostic medical image in JPEG format, which are transmitted to 3G GSM mobile phones.

  4. View interpolation for medical images on autostereoscopic displays

    NARCIS (Netherlands)

    Zinger, S.; Ruijters, D.; Do, Q.L.; With, de P.H.N.

    2012-01-01

    We present an approach for efficient rendering and transmitting views to a high-resolution autostereoscopic display for medical purposes. Displaying biomedical images on an autostereoscopic display poses different requirements than in a consumer case. For medical usage, it is essential that the

  5. Nuclear medicine and radiologic imaging in sports injuries

    Energy Technology Data Exchange (ETDEWEB)

    Glaudermans, Andor W.J.M. [Groningen Univ. (Netherlands). Dept. of Nuclear Medicine and Molecular Imaging; Dierckx, Rudi A.J.O. [Groningen Univ. (Netherlands). Dept. of Nuclear Medicine and Molecular Imaging; Ghent Univ. (Belgium); Gielen, Jan L.M.A. [Antwerp Univ. Hospital, Edegem (Belgium). Dept. of Radiology; Antwerp Univ. Hospital, Edegem (Belgium). Dept. of Sports Medicine; Antwerp Univ. Hospital, Edegem (Belgium). Dept. of Medicine; Zwerver, Johannes (ed.) [Groningen Univ. (Netherlands). Center for Sports Medicine

    2015-10-01

    This comprehensive book describes in detail how nuclear medicine and radiology can meet the needs of the sports medicine physician by assisting in precise diagnosis, clarification of pathophysiology, imaging of treatment outcome and monitoring of rehabilitation. Individual sections focus on nuclear medicine and radiologic imaging of injuries to the head and face, spine, chest, shoulder, elbow and forearm, wrist and hand, pelvic region, knee, lower leg, ankle and foot. The pathophysiology of sports injuries frequently encountered in different regions of the body is described from the perspective of each specialty, and the potential diagnostic and management benefits offered by the new hybrid imaging modalities - SPECT/CT, PET/CT, and PET/MRI - are explained. In addition, a range of basic and general issues are addressed, including imaging of the injuries characteristic of specific sports. It is hoped that this book will promote interdisciplinary awareness and communication and improve the management of injured recreational or elite athletes.

  6. Nuclear medicine and radiologic imaging in sports injuries

    International Nuclear Information System (INIS)

    Glaudermans, Andor W.J.M.; Gielen, Jan L.M.A.; Antwerp Univ. Hospital, Edegem; Antwerp Univ. Hospital, Edegem; Zwerver, Johannes

    2015-01-01

    This comprehensive book describes in detail how nuclear medicine and radiology can meet the needs of the sports medicine physician by assisting in precise diagnosis, clarification of pathophysiology, imaging of treatment outcome and monitoring of rehabilitation. Individual sections focus on nuclear medicine and radiologic imaging of injuries to the head and face, spine, chest, shoulder, elbow and forearm, wrist and hand, pelvic region, knee, lower leg, ankle and foot. The pathophysiology of sports injuries frequently encountered in different regions of the body is described from the perspective of each specialty, and the potential diagnostic and management benefits offered by the new hybrid imaging modalities - SPECT/CT, PET/CT, and PET/MRI - are explained. In addition, a range of basic and general issues are addressed, including imaging of the injuries characteristic of specific sports. It is hoped that this book will promote interdisciplinary awareness and communication and improve the management of injured recreational or elite athletes.

  7. Imaging in hematology. Part 2: Computed tomography, magnetic resonance imaging and nuclear imaging

    International Nuclear Information System (INIS)

    Zhechev, Y.

    2003-01-01

    A dramatic increase of the role of imaging in diagnosis of blood diseases occurred with the development of computed tomography (CT) and magnetic resonance imaging (MRI). At present CT of the chest, abdomen, and pelvis is routinely employed in diagnostic and staging evaluation. The bone marrow may be imaged by one of several methods, including scintigraphy, CT and MRI. Nuclear imaging at diagnosis can clarify findings of uncertain significance on conventional staging and may be very useful in the setting of large masses to follow responses to therapy nad to evaluate the residual tumor in a large mass that has responded to treatment. Recent developments such as helical CT, single proton emission computed tomography (SPECT) and positron-emission tomography (PET) have continued to advance diagnosis and therapy

  8. SemVisM: semantic visualizer for medical image

    Science.gov (United States)

    Landaeta, Luis; La Cruz, Alexandra; Baranya, Alexander; Vidal, María.-Esther

    2015-01-01

    SemVisM is a toolbox that combines medical informatics and computer graphics tools for reducing the semantic gap between low-level features and high-level semantic concepts/terms in the images. This paper presents a novel strategy for visualizing medical data annotated semantically, combining rendering techniques, and segmentation algorithms. SemVisM comprises two main components: i) AMORE (A Modest vOlume REgister) to handle input data (RAW, DAT or DICOM) and to initially annotate the images using terms defined on medical ontologies (e.g., MesH, FMA or RadLex), and ii) VOLPROB (VOlume PRObability Builder) for generating the annotated volumetric data containing the classified voxels that belong to a particular tissue. SemVisM is built on top of the semantic visualizer ANISE.1

  9. Development of Standard Process for Private Information Protection of Medical Imaging Issuance

    International Nuclear Information System (INIS)

    Park, Bum Jin; Jeong, Jae Ho; Son, Gi Gyeong Son; Kang, Hee Doo; Yoo, Beong Gyu; Lee, Jong Seok

    2009-01-01

    The medical imaging issuance is changed from conventional film method to Digital Compact Disk solution because of development on IT technology. However other medical record department's are undergoing identification check through and through whereas medical imaging department cannot afford to do that. So, we examine present applicant's recognition of private intelligence safeguard, and medical imaging issuance condition by CD and DVD medium toward various medical facility and then perform comparative analysis associated with domestic and foreign law and recommendation, lastly suggest standard for medical imaging issuance and process relate with internal environment. First, we surveyed issuance process and required documents when situation of medical image issuance in the metropolitan medical facility by wire telephone between 2008.6.-12008.7.1. in accordance with the medical law Article 21clause 2, suggested standard through applicant's required documents occasionally - (1) in the event of oneself verifying identification, (2) in the event of family verifying applicant identification and family relations document (health insurance card, attested copy, and so on), (3) third person or representative verifying applicant identification and letter of attorney and certificate of one's seal impression. Second, also checked required documents of applicant in accordance with upper standard when situation of medical image issuance in Kyung-hee university medical center during 3 month 2008.5.-12008.7.31. Third, developed a work process by triangular position of issuance procedure for situation when verifying required documents and management of unpreparedness. Look all over the our manufactured output in the hospital - satisfy the all conditions 4 place(12%), possibly request everyone 4 place(12%), and apply in the clinic section 9 place(27%) that does not medical imaging issuance office, so we don't know about required documents condition. and look into whether meet or not

  10. Cytogenetic analysis for radiation dose assessment in the medical nuclear workers

    International Nuclear Information System (INIS)

    Milacic, S.; Jovicic, D.; Rakic, B.; Djokovic, J.

    2009-01-01

    Radionuclide is used in medicine for laboratory research, laboratory testing for enzymes, hormones, medicines in vitro and in vivo in nuclear medicine (NM) for the diagnosis and treatment of diseases. Commissioners, who performed the application radionuclide (RN), are nuclear medicine specialists, senior medical and radiological technicians, nurses and laboratory technicians. They are daily exposed to ionizing irradiations, from outside sources, as well as inside if they were to contamination. Medical nuclear workers (MNW) are exposed to ionizing irradiation, working with radio nuclides. MNW are periodically reviewed for contamination verified. Cytogenetic analysis of peripheral-blood lymphocytes (Ly) is the most sensitive tests for detecting a clinical biologic response to ionizing radiation. The frequency of chromosomal aberrations (f ca) in peripheral circulating lymphocytes (Ly) correlates with the dose received. (author) [sr

  11. Watermark Compression in Medical Image Watermarking Using Lempel-Ziv-Welch (LZW) Lossless Compression Technique.

    Science.gov (United States)

    Badshah, Gran; Liew, Siau-Chuin; Zain, Jasni Mohd; Ali, Mushtaq

    2016-04-01

    In teleradiology, image contents may be altered due to noisy communication channels and hacker manipulation. Medical image data is very sensitive and can not tolerate any illegal change. Illegally changed image-based analysis could result in wrong medical decision. Digital watermarking technique can be used to authenticate images and detect as well as recover illegal changes made to teleradiology images. Watermarking of medical images with heavy payload watermarks causes image perceptual degradation. The image perceptual degradation directly affects medical diagnosis. To maintain the image perceptual and diagnostic qualities standard during watermarking, the watermark should be lossless compressed. This paper focuses on watermarking of ultrasound medical images with Lempel-Ziv-Welch (LZW) lossless-compressed watermarks. The watermark lossless compression reduces watermark payload without data loss. In this research work, watermark is the combination of defined region of interest (ROI) and image watermarking secret key. The performance of the LZW compression technique was compared with other conventional compression methods based on compression ratio. LZW was found better and used for watermark lossless compression in ultrasound medical images watermarking. Tabulated results show the watermark bits reduction, image watermarking with effective tamper detection and lossless recovery.

  12. Nuclear medicine and imaging research. Progress report, January 1, 1981-December 31, 1981

    International Nuclear Information System (INIS)

    Beck, R.N.; Cooper, M.C.

    1981-09-01

    The Progress Report for the period January 1, 1981-December 31, 1981 of the Franklin Memorial Research Institute discusses instrumentation and quantitative methods of evaluation in nuclear medicine and imaging research. Imaging systems and image evaluation are discussed in four projects: Radiation Detector Studies, Dual Purpose Scanner for Thyroid Imaging, Instrumentation for Image Processing and Enhancement, and Energy-Coded Processing in Nuclear Medicine

  13. Open-source software platform for medical image segmentation applications

    Science.gov (United States)

    Namías, R.; D'Amato, J. P.; del Fresno, M.

    2017-11-01

    Segmenting 2D and 3D images is a crucial and challenging problem in medical image analysis. Although several image segmentation algorithms have been proposed for different applications, no universal method currently exists. Moreover, their use is usually limited when detection of complex and multiple adjacent objects of interest is needed. In addition, the continually increasing volumes of medical imaging scans require more efficient segmentation software design and highly usable applications. In this context, we present an extension of our previous segmentation framework which allows the combination of existing explicit deformable models in an efficient and transparent way, handling simultaneously different segmentation strategies and interacting with a graphic user interface (GUI). We present the object-oriented design and the general architecture which consist of two layers: the GUI at the top layer, and the processing core filters at the bottom layer. We apply the framework for segmenting different real-case medical image scenarios on public available datasets including bladder and prostate segmentation from 2D MRI, and heart segmentation in 3D CT. Our experiments on these concrete problems show that this framework facilitates complex and multi-object segmentation goals while providing a fast prototyping open-source segmentation tool.

  14. Plane Wave Medical Ultrasound Imaging Using Adaptive Beamforming

    DEFF Research Database (Denmark)

    Holfort, Iben Kraglund; Gran, Fredrik; Jensen, Jørgen Arendt

    2008-01-01

    In this paper, the adaptive, minimum variance (MV) beamformer is applied to medical ultrasound imaging. The Significant resolution and contrast gain provided by the adaptive, minimum variance (MV) beamformer, introduces the possibility of plane wave (PW) ultrasound imaging. Data is obtained using...

  15. Medical Preparedness and Response for a Nuclear or Radiological Emergency. Training Materials

    International Nuclear Information System (INIS)

    2014-01-01

    In almost all nuclear and radiological emergencies, local emergency services (e.g. local medical, law enforcement, and fire brigades) will have the most important role in the early response. Within hours, hospitals may also have an important role to play in the response at the local level. Since nuclear and radiological emergencies are rare, medical responders often have little or no experience in dealing with this type of emergency and inexperience may lead to an inadequate response. For this reason, training in medical preparedness and response for a nuclear or radiological emergency is an important aspect of preparedness and response activities. These materials are designed for use at a training course on medical preparedness and response for a nuclear or radiological emergency. They contain a wide range of lectures and supporting materials, which cover the basic topics and more specific areas of medical preparedness and response. Therefore, in planning their specific courses, organizers are encouraged to choose those lectures and supportive materials from the CD-ROM that best match their training priorities. Materials on the CD-ROM address the following areas: • Terrorism in Perspective; • Malicious Act Scenarios; • Providing Information to the Medical Community and the Public; • Medical Response to a Radiation Mass Casualty Event; • Handling of Contaminated Persons in Malicious Events; • Planning and Preparedness for Medical Response to Malicious Events with Radioactive Material; • Handling the Bodies of Decedents Contaminated with Radioactive Material; • Radiation Emergencies: Scope of the Problem; • Common Sources of Radiation; • Basic Concepts of Ionizing Radiation; • Basic Concepts of Radiation Protection; • Biological Effects of Ionizing Radiation – Basic Notions; • Basics of Radiopathology; • External Radioactive Contamination; • Internal Radioactive Contamination; • Acute Radiation Syndrome; • Cutaneous Radiation

  16. Nuclear magnetic resonance imaging of the thorax

    International Nuclear Information System (INIS)

    Gamsu, G.; Webb, W.R.; Sheldon, P.; Kaufman, L.; Crooks, L.E.; Birnberg, F.A.; Goodman, P.; Hinchcliffe, W.A.; Hedgecock, M.

    1983-01-01

    Nuclear magnetic resonance (NMR) images of the thorax were obtained in ten normal volunteers, nine patients with advanced bronchogenic carcinoma, and three patients with benign thoracic abnormalities. In normal volunteers, mediastinal and hilar structures were seen with equal frequency on NMR images and computed tomographic scans. The hila were especially well displayed on spin-echo images. Spin-echo images showed mediastinal invasion by tumor, vascular and bronchial compression and invasion, and hilar and mediastinal adenopathy. Tumor and benign abnormalities could be separated from mediastinal and hilar fat because of their longer T1 times. Lung masses and nodules as small as 1.5 cm could be seen on the spin-echo images. NMR imaging shows promise for assessment of benign and malignant mediastinal, hilar, and lung abnormalities

  17. From medical imaging data to 3D printed anatomical models.

    Directory of Open Access Journals (Sweden)

    Thore M Bücking

    Full Text Available Anatomical models are important training and teaching tools in the clinical environment and are routinely used in medical imaging research. Advances in segmentation algorithms and increased availability of three-dimensional (3D printers have made it possible to create cost-efficient patient-specific models without expert knowledge. We introduce a general workflow that can be used to convert volumetric medical imaging data (as generated by Computer Tomography (CT to 3D printed physical models. This process is broken up into three steps: image segmentation, mesh refinement and 3D printing. To lower the barrier to entry and provide the best options when aiming to 3D print an anatomical model from medical images, we provide an overview of relevant free and open-source image segmentation tools as well as 3D printing technologies. We demonstrate the utility of this streamlined workflow by creating models of ribs, liver, and lung using a Fused Deposition Modelling 3D printer.

  18. Current status on image processing in medical fields in Japan

    International Nuclear Information System (INIS)

    Atsumi, Kazuhiko

    1979-01-01

    Information on medical images are classified in the two patterns. 1) off-line images on films-x-ray films, cell image, chromosome image etc. 2) on-line images detected through sensors, RI image, ultrasonic image, thermogram etc. These images are divided into three characteristic, two dimensional three dimensional and dynamic images. The research on medical image processing have been reported in several meeting in Japan and many fields on images have been studied on RI, thermogram, x-ray film, x-ray-TV image, cancer cell, blood cell, bacteria, chromosome, ultrasonics, and vascular image. Processing on TI image useful and easy because of their digital displays. Software on smoothing, restoration (iterative approximation), fourier transformation, differentiation and subtration. Image on stomach and chest x-ray films have been processed automatically utilizing computer system. Computed Tomography apparatuses have been already developed in Japan and automated screening instruments on cancer cells and recently on blood cells classification have been also developed. Acoustical holography imaging and moire topography have been also studied in Japan. (author)

  19. Robotic 3D scanner as an alternative to standard modalities of medical imaging.

    Science.gov (United States)

    Chromy, Adam; Zalud, Ludek

    2014-01-01

    There are special medical cases, where standard medical imaging modalities are able to offer sufficient results, but not in the optimal way. It means, that desired results are produced with unnecessarily high expenses, with redundant informations or with needless demands on patient. This paper deals with one special case, where information useful for examination is the body surface only, inner sight into the body is needless. New specialized medical imaging device is developed for this situation. In the Introduction section, analysis of presently used medical imaging modalities is presented, which declares, that no available imaging device is best fitting for mentioned purposes. In the next section, development of the new specialized medical imaging device is presented, and its principles and functions are described. Then, the parameters of new device are compared with present ones. It brings significant advantages comparing to present imaging systems.

  20. Processing And Display Of Medical Three Dimensional Arrays Of Numerical Data Using Octree Encoding

    Science.gov (United States)

    Amans, Jean-Louis; Darier, Pierre

    1986-05-01

    imaging modalities such as X-Ray computerized Tomography (CT), Nuclear Medecine and Nuclear Magnetic Resonance can produce three-dimensional (3-D) arrays of numerical data of medical object internal structures. The analysis of 3-D data by synthetic generation of realistic images is an important area of computer graphics and imaging.