WorldWideScience

Sample records for nuclear medical imaging

  1. Medical Imaging Informatics in Nuclear Medicine

    NARCIS (Netherlands)

    van Ooijen, Peter; Glaudemans, Andor W.J.M.; Medema, Jitze; van Zanten, Annie K.; Dierckx, Rudi A.J.O.; Ahaus, C.T.B. (Kees)

    2016-01-01

    Medical imaging informatics is gaining importance in medicine both in clinical practice and in scientific research. Besides radiology, nuclear medicine is also a major stakeholder in medical imaging informatics because of the variety of available imaging modalities and the imaging-oriented operation

  2. Nuclear imaging in the realm of medical imaging

    International Nuclear Information System (INIS)

    Deconinck, Frank

    2003-01-01

    In medical imaging, information concerning the anatomy or biological processes of a patient is detected and presented on film or screen for interpretation by a reader. The information flow from patient to reader optimally implies: - the emission, transmission or reflection of information carriers, typically photons or sound waves, which have to be correctly modulated by patient information through interactions in the patient; - their detection by adequate imaging equipment preserving essential spectral, spatial and/or temporal information; - the presentation of the information in the most perceivable way; - the observation by an unbiased and trained expert. In reality, only an approximation to this optimal situation is achieved. It is the goal of R and D in the medical imaging field to approach the optimum as much as possible within societal constraints such as patient risk and comfort, economics, etc. First, the basic physical concepts underlying the imaging process will be introduced. Different imaging modalities will then be situated in the realm of medical imaging with some emphasis on nuclear imaging

  3. Pseudo-color processing in nuclear medical image

    International Nuclear Information System (INIS)

    Wang Zhiqian; Jin Yongjie

    1992-01-01

    The application of pseudo-color technology in nuclear medical image processing is discussed. It includes selection of the number of pseudo-colors, method of realizing pseudo-color transformation, function of pseudo-color transformation and operation on the function

  4. Medical imaging. From nuclear medicine to neuro-sciences

    International Nuclear Information System (INIS)

    2003-03-01

    Nuclear medicine and functional imaging were born of the CEA's ambition to promote and develop nuclear applications in the fields of biology and health. Nuclear medicine is based on the use of radioactive isotopes for diagnostic and therapeutic purposes. It could never have developed so rapidly without the progress made in atomic and nuclear physics. One major breakthrough was the discovery of artificial radioelements by Irene and Frederic Joliot in 1934, when a short-lived radioactive isotope was created for the first time ever. Whether natural or synthetic, isotopes possess the same chemical properties as their non-radioactive counterparts. The only difference is that they are unstable and this instability causes disintegration, leading to radiation emission. All we need are suitable detection tools to keep track of them. 'The discovery of artificial radioelements is at the root of the most advanced medical imaging techniques'. The notion of tracer dates back to 1913. Invented by George de Hevesy, it lies at the root of nuclear medicine. By discovering how to produce radioactive isotopes, Irene and Frederic Joliot provided biology researchers with nuclear tools of unrivalled efficiency. Today, nuclear medicine and functional imaging are the only techniques capable of giving us extremely precise information about living organisms in a non-traumatic manner and without upsetting their balance. Positron emission tomography (PET) and nuclear magnetic resonance imaging (MRI) are the main imaging techniques used at the CEA in its neuro-imaging research activities. These techniques are now developing rapidly and becoming increasingly important not only in the neuroscience world, but also for innovative therapies and cancer treatment. (authors)

  5. Medical imaging

    International Nuclear Information System (INIS)

    Loshkajian, A.

    2000-01-01

    This didactical book presents the medical imaging techniques: radiography, scanner, nuclear magnetic resonance (NMR). Examples are given for the most common pathologies in all domains of medicine. (J.S.)

  6. Various dedicated imaging systems for routine nuclear medical applications

    International Nuclear Information System (INIS)

    Bela Kari; Tamas Gyorke; Erno Mako; Laszlo Nagy; Jozsef Turak; Oszkar Partos

    2004-01-01

    The most essential problems of nuclear medical imaging are resolution, signal/noise ratio (S/N) and sensitivity. Nowadays, the vast majority of the Anger system gamma cameras in clinical application are using parallel projection. The main problem of this projection method is the highly dependence of the image quality on the distance from the collimator surface as well as any improvement in the resolution with the distance -i.e. reduction of image blur- significantly reduces sensitivity. The aim of our research and development work was to create imaging geometry, collimator and detector constructions optimized to particular organs (brain, heart, thyroid), where it is simultaneously possible to increase the resolution and sensitivity. Main concept of the imaging geometry construction is based on the size, location and shape of a particular organ. In case of brain SPECT imaging a multiple head (4 heads in cylinder symmetric approximation) arrangement with extra high intrinsic resolution (<2.5 mm) dedicated detector design provide feasible solution for routine clinical application. The imaging system was essentially designed for Tc-99m and I-123 isotopes. The application field can be easily extended for functional small animal research and new born baby studies. Very positive feedbacks were received from both technical (stability and reproducibility of the technical parameters) and clinical sides in the past 2 years routine applications. A unique, novel conception ultra compact dedicated dual head SPECT system has been created only for 2D, 3D nuclear cardiac applications for Tc-99m and T1-201 labeled radio-pharmaceuticals. The two rectangular detectors (with <2.6 mm intrinsic resolution) are mounted fix in 90 degree geometry and move inside the special formed gantry arrangement. The unique and unusual gantry is designed to keep the detector heads as close as possible to the patient, while the patient is not exposed by any moving part. This special construction also

  7. Medical imaging

    CERN Document Server

    Townsend, David W

    1996-01-01

    Since the introduction of the X-ray scanner into radiology almost 25 years ago, non-invasive imaging has become firmly established as an essential tool in the diagnosis of disease. Fully three-dimensional imaging of internal organs is now possible, b and for studies which explore the functional status of the body. Powerful techniques to correlate anatomy and function are available, and scanners which combine anatomical and functional imaging in a single device are under development. Such techniques have been made possible through r ecent technological and mathematical advances. This series of lectures will review both the physical basis of medical imaging techniques using X-rays, gamma and positron emitting radiosiotopes, and nuclear magnetic resonance, and the mathematical methods used to reconstruct three-dimentional distributions from projection data. The lectures will trace the development of medical imaging from simple radiographs to the present-day non-invasive measurement of in vivo biochemistry. They ...

  8. IEEE Nuclear Science Symposium and Medical Imaging Conference

    CERN Document Server

    2016-01-01

    The NSS/MIC is a well-established meeting that has continuously provided an exceptional venue to showcase outstanding developments and contributions across the nuclear and medical instrumentation fields. This conference brings together engineers and scientists from around the world to share their knowledge and to gain insight and inspiration from others. The conference will include a distinguished series of short courses, relevant refresher courses, and workshops that will address areas of particular interest.

  9. Medical imaging

    International Nuclear Information System (INIS)

    Elliott, Alex

    2005-01-01

    Diagnostic medical imaging is a fundamental part of the practice of modern medicine and is responsible for the expenditure of considerable amounts of capital and revenue monies in healthcare systems around the world. Much research and development work is carried out, both by commercial companies and the academic community. This paper reviews briefly each of the major diagnostic medical imaging techniques-X-ray (planar and CT), ultrasound, nuclear medicine (planar, SPECT and PET) and magnetic resonance. The technical challenges facing each are highlighted, with some of the most recent developments. In terms of the future, interventional/peri-operative imaging, the advancement of molecular medicine and gene therapy are identified as potential areas of expansion

  10. Lessons from other areas of medical imaging - nuclear medicine

    International Nuclear Information System (INIS)

    McCready, V.R.

    1981-01-01

    Ultrasound and nuclear medicine are similar in that they both have been developed for clinical use in the past decade. Unlike X-ray techniques the success or failure of ultrasound and nuclear medicine depend more upon both the operator and the method of display. Since both ultrasound and nuclear medicine use relatively complicated methods of gathering and displaying information some of the lessons learnt during the development of nuclear medicine can be equally applied to ultrasound techniques. (Auth.)

  11. NCRP report 160 and what it means for medical imaging and nuclear medicine.

    Science.gov (United States)

    Bolus, Norman E

    2013-12-01

    The purpose of this paper is to briefly explain report 160 of the National Council on Radiation Protection and Measurement and the significance of the report to medical imaging as a whole and nuclear medicine specifically. The implications of the findings of report 160 have had repercussions and will continue to affect all of ionizing radiation medical imaging. The nuclear medicine community should have an understanding of why and how report 160 is important. After reading this article, the nuclear medicine technologist will be familiar with the main focus of report 160, the significant change that has occurred since the 1980s in the ionizing radiation exposure of people in the United States, the primary background source of ionizing radiation in the United States, the primary medical exposure to ionizing radiation in the United States, trends in nuclear medicine procedures and patient exposure, and a comparison of population doses between 2006 and the early 1980s as outlined in report 160.

  12. Medical Imaging.

    Science.gov (United States)

    Barker, M. C. J.

    1996-01-01

    Discusses four main types of medical imaging (x-ray, radionuclide, ultrasound, and magnetic resonance) and considers their relative merits. Describes important recent and possible future developments in image processing. (Author/MKR)

  13. Evaluation of XRI-UNO CdTe detector for nuclear medical imaging

    International Nuclear Information System (INIS)

    Jambi, L.K.; Lees, J.E.; Bugby, S.L.; Alqahtani, M.S.; Tipper, S.; Perkins, A.C.

    2015-01-01

    Over the last two decades advances in semiconductor detector technology have reached the point where they are sufficiently sensitive to become an alternative to scintillators for high energy gamma ray detection for application in fields such as medical imaging. This paper assessed the Cadmium-Telluride (CdTe) XRI-UNO semiconductor detector produced by X-RAY Imatek for photon energies of interest in nuclear imaging. The XRI-UNO detector was found to have an intrinsic spatial resolution of <0.5mm and a high incident count rate capability up to at least 1680cps. The system spatial resolution, uniformity and sensitivity characteristics are also reported

  14. Medical Image Processing Server applied to Quality Control of Nuclear Medicine

    International Nuclear Information System (INIS)

    Vergara, C.; Graffigna, J.P.; Holleywell, P.; Marino, E.; Omati, S.

    2016-01-01

    This paper is framed within the area of medical image processing and aims to present the process of installation, configuration and implementation of a processing server of medical images (MIPS) in the Fundación Escuela de Medicina Nuclear located in Mendoza, Argentina (FUESMEN). It has been developed in the Gabinete de Tecnologia Médica (GA.TE.ME), Facultad de Ingeniería-Universidad Nacional de San Juan. MIPS is a software that using the DICOM standard, can receive medical imaging studies of different modalities or viewing stations, then it executes algorithms and finally returns the results to other devices. To achieve the objectives previously mentioned, preliminary tests were conducted in the laboratory. More over, tools were remotely installed in clinical enviroment. The appropiate protocols for setting up and using them in different services were established once defined those suitable algorithms. Finally, it’s important to focus on the implementation and training that is provided in FUESMEN, using nuclear medicine quality control processes. Results on implementation are exposed in this work. (paper)

  15. Medical Image Processing Server applied to Quality Control of Nuclear Medicine.

    Science.gov (United States)

    Vergara, C.; Graffigna, J. P.; Marino, E.; Omati, S.; Holleywell, P.

    2016-04-01

    This paper is framed within the area of medical image processing and aims to present the process of installation, configuration and implementation of a processing server of medical images (MIPS) in the Fundación Escuela de Medicina Nuclear located in Mendoza, Argentina (FUESMEN). It has been developed in the Gabinete de Tecnologia Médica (GA.TE.ME), Facultad de Ingeniería-Universidad Nacional de San Juan. MIPS is a software that using the DICOM standard, can receive medical imaging studies of different modalities or viewing stations, then it executes algorithms and finally returns the results to other devices. To achieve the objectives previously mentioned, preliminary tests were conducted in the laboratory. More over, tools were remotely installed in clinical enviroment. The appropiate protocols for setting up and using them in different services were established once defined those suitable algorithms. Finally, it’s important to focus on the implementation and training that is provided in FUESMEN, using nuclear medicine quality control processes. Results on implementation are exposed in this work.

  16. E-learning for medical imaging specialists: introducing blended learning in a nuclear medicine specialist course.

    Science.gov (United States)

    Haslerud, Torjan; Tulipan, Andreas Julius; Gray, Robert M; Biermann, Martin

    2017-07-01

    While e-learning has become an important tool in teaching medical students, the training of specialists in medical imaging is still dominated by lecture-based courses. To assess the potential of e-learning in specialist education in medical imaging. An existing lecture-based five-day course in Clinical Nuclear Medicine (NM) was enhanced by e-learning resources and activities, including practical exercises. An anonymized survey was conducted after participants had completed and passed the multiple choice electronic course examination. Twelve out of 15 course participants (80%) responded. Overall satisfaction with the new course format was high, but 25% of the respondents wanted more interactive elements such as discussions and practical exercises. The importance of lecture handouts and supplementary online material such as selected original articles and professional guidelines was affirmed by all the respondents (92% fully, 8% partially), while 75% fully and 25% partially agreed that the lectures had been interesting and relevant. E-learning represents a hitherto unrealized potential in the education of medical specialists. It may expedite training of medical specialists while at the same time containing costs.

  17. Local anesthetics and nuclear medical bone images of the equine fore limb

    International Nuclear Information System (INIS)

    Gaughan, E.M.; Wallace, R.J.; Kallfelz, F.A.

    1990-01-01

    The effects of two local anesthetic agents on the diagnostic quality of nuclear medical bone images (NMBIs) of distal parts of the equine fore limb were investigated. Local effects on bone uptake of technetium 99m methylene diphosphonate (99mTc-MDP) 4 and 24 hours after perineural and intraarticular injection of mepivacaine hydrochloride and bupivacaine hydrochloride were evaluated in the carpal and metacarpophalangeal regions of 12 horses and ponies. Neither mepivacaine hydrochloride nor bupivacaine hydrochloride significantly altered the diagnostic quality of the NMBIs. The injection and subsequent action of local anesthetics do not appear to influence local bone uptake of 99mTc-MDP significantly

  18. Nuclear imaging

    International Nuclear Information System (INIS)

    Miller, J.H.; Reid, B.S.

    1985-01-01

    Nuclear imaging, utilizing relatively low photon energy emitting isotopes, allows an assessment of anatomic configuration and organ function. This method of imaging is predicted on the utilization of physiologically active radioisotope-labeled compounds or biologically active radioisotopes. Localization of such isotopes in normal or abnormal concentrations may be due to varying physiological or pathological mechanisms

  19. Diagnostic medical imaging systems. X-ray radiography and angiography, computerized tomography, nuclear medicine, NMR imaging, sonography, integrated image information systems. 3. rev. and enl. ed.

    International Nuclear Information System (INIS)

    Morneburg, H.

    1995-01-01

    This third edition is based on major review and updating work. Many recent developments have been included, as for instance novel systems for fluoroscopy and mammography, spiral CT and electron beam CT, nuclear medical tomography ( SPECT and PET), novel techniques for fast NMR imaging, spectral and colour coded duplex sonography, as well as a new chapter on integrated image information systems, including network installations. (orig.) [de

  20. Nuclear medical physics

    International Nuclear Information System (INIS)

    Williams, L.E.

    1987-01-01

    This three-volume set covers the physical basis of nuclear medicine, and is intended as a source of data for practicing scientists and physicians as well as those beginning their careers or simply studying nuclear medical physics. It leads the reader from quantum theory to the production and attenuation of ionizing radiation; considers dosimetry and the most recent assessment of biological effects of such particles; describes in detail detector materials, signal analysis, and gamma cameras; includes extensive discussions of bone mineral measurement as well as magnetic resonance imaging; covers limited angle, rotating camera, and positron tomography; presents quality assurance and statistical theory with an eye toward enhanced departmental operations; and features descriptions of functional imaging and the psychophysical basis of diagnosis

  1. Recent progress in medical imaging technology

    International Nuclear Information System (INIS)

    Endo, Masahiro

    2004-01-01

    Medical imaging is name of methods for diagnosis and therapy, which make visible with physical media such as X-ray, structures and functions of man's inside those are usually invisible. These methods are classified by the physical media into ultrasound imaging, magnetic resonance imaging, nuclear medicine imaging and X-ray imaging etc. Having characteristics different from one another, these are used complementarily in medical fields though in some case being competitive. Medical imaging is supported by highly progressed technology, which is called medical imaging technology. This paper describes a survey of recent progress of medical imaging technology in magnetic resonance imaging, nuclear medicine imaging and X-ray imaging. (author)

  2. Imaging in nuclear medicine

    CERN Document Server

    Hoeschen, Christoph

    2013-01-01

    This volume addresses a wide range of issues in the field of nuclear medicine imaging, with an emphasis on the latest research findings. Initial chapters set the scene by considering the role of imaging in nuclear medicine from the medical perspective and discussing the implications of novel agents and applications for imaging. The physics at the basis of the most modern imaging systems is described, and the reader is introduced to the latest advances in image reconstruction and noise correction. Various novel concepts are then discussed, including those developed within the framework of the EURATOM FP7 MADEIRA research project on the optimization of imaging procedures in order to permit a reduction in the radiation dose to healthy tissues. Advances in quality control and quality assurance are covered, and the book concludes by listing rules of thumb for imaging that will be of use to both beginners and experienced researchers.

  3. Medical Imaging with Neural Networks

    International Nuclear Information System (INIS)

    Pattichis, C.; Cnstantinides, A.

    1994-01-01

    The objective of this paper is to provide an overview of the recent developments in the use of artificial neural networks in medical imaging. The areas of medical imaging that are covered include : ultrasound, magnetic resonance, nuclear medicine and radiological (including computerized tomography). (authors)

  4. Medical Imaging with Neural Networks

    Energy Technology Data Exchange (ETDEWEB)

    Pattichis, C [Department of Computer Science, University of Cyprus, Kallipoleos 75, P.O.Box 537, Nicosia (Cyprus); Cnstantinides, A [Department of Electrical Engineering, Imperial College of Science, Technology and Medicine, London SW7 2BT (United Kingdom)

    1994-12-31

    The objective of this paper is to provide an overview of the recent developments in the use of artificial neural networks in medical imaging. The areas of medical imaging that are covered include : ultrasound, magnetic resonance, nuclear medicine and radiological (including computerized tomography). (authors). 61 refs, 4 tabs.

  5. Combination of radiological and nuclear medical imaging in animals: an overview about the today's possibilities

    International Nuclear Information System (INIS)

    Behe, M.; Keil, B.; Kiessling, A.; Heverhagen, J.T.; Alfke, H.; Boehm, I.; Gotthardt, M.

    2007-01-01

    Molecular imaging of small animals has made considerable progress in the last years. Various research fields are interested in imaging small animals due to the lower numbers of animals per experiment. This has advantages with respect to financial, ethical and research aspects. Non-invasive imaging allows examination of one animal several times during the same experiment. This makes it possible to follow a pathological process in the same animal over time. However, the radiological methods used such as magnetic resonance imaging or computed tomography as well as the nuclear medicine methods such as single photon emission computed tomography or positron emission tomography suffer from disadvantages. Molecular aspects are limited in the radiological methods while anatomical localization is difficult in nuclear medicine. The fusion of these methods leads to additional information. This review shows today's possibilities with their advantages as well as disadvantages. (orig.)

  6. Imaging in nuclear medicine

    International Nuclear Information System (INIS)

    Giussani, Augusto; Hoeschen, Christoph

    2013-01-01

    Presents the most recent developments in nuclear medicine imaging, with emphasis on the latest research findings. Considers the latest advances in imaging systems, image reconstruction, noise correction, and quality assurance. Discusses novel concepts, including those developed within the framework of the EURATOM FP7 MADEIRA project. Lists rules of thumb for imaging of use to both beginners and experienced researchers. This volume addresses a wide range of issues in the field of nuclear medicine imaging, with an emphasis on the latest research findings. Initial chapters set the scene by considering the role of imaging in nuclear medicine from the medical perspective and discussing the implications of novel agents and applications for imaging. The physics at the basis of the most modern imaging systems is described, and the reader is introduced to the latest advances in image reconstruction and noise correction. Various novel concepts are then discussed, including those developed within the framework of the EURATOM FP7 MADEIRA research project on the optimization of imaging procedures in order to permit a reduction in the radiation dose to healthy tissues. Advances in quality control and quality assurance are covered, and the book concludes by listing rules of thumb for imaging that will be of use to both beginners and experienced researchers.

  7. Imaging in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Giussani, Augusto [BfS - Federal Office for Radiation Protection, Oberschleissheim (Germany). Dept. of Radiation Protection and Health; Hoeschen, Christoph (eds.) [Helmholtz Zentrum Muenchen - German Research Center for Environmental Health, Neuherberg (Germany). Research Unit Medical Raditation Physics and Diagnostics

    2013-08-01

    Presents the most recent developments in nuclear medicine imaging, with emphasis on the latest research findings. Considers the latest advances in imaging systems, image reconstruction, noise correction, and quality assurance. Discusses novel concepts, including those developed within the framework of the EURATOM FP7 MADEIRA project. Lists rules of thumb for imaging of use to both beginners and experienced researchers. This volume addresses a wide range of issues in the field of nuclear medicine imaging, with an emphasis on the latest research findings. Initial chapters set the scene by considering the role of imaging in nuclear medicine from the medical perspective and discussing the implications of novel agents and applications for imaging. The physics at the basis of the most modern imaging systems is described, and the reader is introduced to the latest advances in image reconstruction and noise correction. Various novel concepts are then discussed, including those developed within the framework of the EURATOM FP7 MADEIRA research project on the optimization of imaging procedures in order to permit a reduction in the radiation dose to healthy tissues. Advances in quality control and quality assurance are covered, and the book concludes by listing rules of thumb for imaging that will be of use to both beginners and experienced researchers.

  8. Active contour segmentation in dynamic medical imaging: application to nuclear cardiology

    International Nuclear Information System (INIS)

    Debreuve, Eric

    2000-01-01

    In emission imaging, nuclear medicine provides functional information about the organ of interest. In transmission imaging, it provides anatomical information whose goal may be the correction of physical phenomena that corrupt emission images. With both emission and transmission images, it is useful to know how to extract, either automatically or semi-automatically, the organs of interest and the body outline in the case of a large field of view. This is the aim of segmentation. We developed two active contour segmentation methods. They were implemented using level sets. The key point is the evolution velocity definition. First, we were interested in static transmission imaging of the thorax. The evolution velocity was heuristically defined and depended only on the acquired projections. The segmented transmission map was computed w/o reconstruction and could be advantageously used for attenuation correction. Then, we studied the segmentation of cardiac gated sequences. The developed space-time segmentation method results from the minimization of a variational criterion which takes into account the whole sequence. The computed segmentation could be used for calculating physiological parameters. As an illustration, we computed the ejection fraction. Finally, we exploited some level set properties to develop a non-rigid, non-parametric, and geometric registration method. We applied it for kinetic compensation of cardiac gated sequences. The registered images were then added together providing an image with noise characteristics similar to a cardiac static image but w/o motion-induced blurring. (author)

  9. Medical imaging and the Internet

    International Nuclear Information System (INIS)

    Jones, D.N.; Carr, P.

    1995-01-01

    A brief introduction to the INTERNET and its benefits for those involved in nuclear medical imaging is given. In Australia, depending on the type of institution/department involved, connection to the INTERNET may be obtained via the Australian Academic and Research Network or through a commercial provider. The recent proliferation of WWW servers has also resulted in multiple medical imaging databases and teaching resources becoming available to the user. Some Newsgroups and WWW addresses related to radiology are provided. 3 refs

  10. Medical Imaging System

    Science.gov (United States)

    1991-01-01

    The MD Image System, a true-color image processing system that serves as a diagnostic aid and tool for storage and distribution of images, was developed by Medical Image Management Systems, Huntsville, AL, as a "spinoff from a spinoff." The original spinoff, Geostar 8800, developed by Crystal Image Technologies, Huntsville, incorporates advanced UNIX versions of ELAS (developed by NASA's Earth Resources Laboratory for analysis of Landsat images) for general purpose image processing. The MD Image System is an application of this technology to a medical system that aids in the diagnosis of cancer, and can accept, store and analyze images from other sources such as Magnetic Resonance Imaging.

  11. Development of a radioiodinated triazolopyrimidine probe for nuclear medical imaging of fatty acid binding protein 4.

    Directory of Open Access Journals (Sweden)

    Kantaro Nishigori

    Full Text Available Fatty acid binding protein 4 (FABP4 is the most well-characterized FABP isoform. FABP4 regulates inflammatory pathways in adipocytes and macrophages and is involved in both inflammatory diseases and tumor formation. FABP4 expression was recently reported for glioblastoma, where it may participate in disease malignancy. While FABP4 is a potential molecular imaging target, with the exception of a tritium labeled probe there are no reports of other nuclear imaging probes that target this protein. Here we designed and synthesized a nuclear imaging probe, [123I]TAP1, and evaluated its potential as a FABP4 targeting probe in in vitro and in vivo assays. We focused on the unique structure of a triazolopyrimidine scaffold that lacks a carboxylic acid to design the TAP1 probe that can undergo facilitated delivery across cell membranes. The affinity of synthesized TAP1 was measured using FABP4 and 8-anilino-1-naphthalene sulfonic acid. [125I]TAP1 was synthesized by iododestannylation of a precursor, followed by affinity and selectivity measurements using immobilized FABPs. Biodistributions in normal and C6 glioblastoma-bearing mice were evaluated, and excised tumors were subjected to autoradiography and immunohistochemistry. TAP1 and [125I]TAP1 showed high affinity for FABP4 (Ki = 44.5±9.8 nM, Kd = 69.1±12.3 nM. The FABP4 binding affinity of [125I]TAP1 was 11.5- and 35.5-fold higher than for FABP3 and FABP5, respectively. In an in vivo study [125I]TAP1 displayed high stability against deiodination and degradation, and moderate radioactivity accumulation in C6 tumors (1.37±0.24% dose/g 3 hr after injection. The radioactivity distribution profile in tumors partially corresponded to the FABP4 positive area and was also affected by perfusion. The results indicate that [125I]TAP1 could detect FABP4 in vitro and partly in vivo. As such, [125I]TAP1 is a promising lead compound for further refinement for use in in vivo FABP4 imaging.

  12. Digital medical imaging

    International Nuclear Information System (INIS)

    Goeringer, F.; Mun, S.K.; Kerlin, B.D.

    1989-01-01

    In formulating an implementation strategy for digital medical imaging, three interrelated thrusts have emerged for the defense medical establishment. These thrusts: totally filmless medical imaging on the battlefield, teleradiology, and DIN/PACS for peacetime military health care are discussed. They have implications in their fully developed form as resource savers and quality improvers for the unique aspects of military health care

  13. Medical ultrasound imaging

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    2007-01-01

    The paper gives an introduction to current medical ultrasound imaging systems. The basics of anatomic and blood flow imaging are described. The properties of medical ultrasound and its focusing are described, and the various methods for two- and three-dimensional imaging of the human anatomy...

  14. Sub-millimeter nuclear medical imaging with high sensitivity in positron emission tomography using β+γ coincidences

    Science.gov (United States)

    Lang, C.; Habs, D.; Parodi, K.; Thirolf, P. G.

    2014-01-01

    We present a nuclear medical imaging technique, employing triple-γ trajectory intersections from β+-γ coincidences, able to reach sub-millimeter spatial resolution in 3 dimensions with a reduced requirement of reconstructed intersections per voxel compared to a conventional PET reconstruction analysis. This 'γ-PET' technique draws on specific β+-decaying isotopes, simultaneously emitting an additional photon. Exploiting the triple coincidence between the positron annihilation and the third photon, it is possible to separate the reconstructed 'true' events from background. In order to characterize this technique, Monte-Carlo simulations and image reconstructions have been performed. The achievable spatial resolution has been found to reach ca. 0.4 mm (FWHM) in each direction for the visualization of a 22Na point source. Only 40 intersections are sufficient for a reliable sub-millimeter image reconstruction of a point source embedded in a scattering volume of water inside a voxel volume of about 1 mm3 ('high-resolution mode'). Moreover, starting with an injected activity of 400 MBq for 76Br, the same number of only about 40 reconstructed intersections are needed in case of a larger voxel volume of 2 x 2 x 3 mm3 ('high-sensitivity mode'). Requiring such a low number of reconstructed events significantly reduces the required acquisition time for image reconstruction (in the above case to about 140 s) and thus may open up the perspective for a quasi real-time imaging.

  15. Java advanced medical image toolkit

    International Nuclear Information System (INIS)

    Saunder, T.H.C.; O'Keefe, G.J.; Scott, A.M.

    2002-01-01

    Full text: The Java Advanced Medical Image Toolkit (jAMIT) has been developed at the Center for PET and Department of Nuclear Medicine in an effort to provide a suite of tools that can be utilised in applications required to perform analysis, processing and visualisation of medical images. jAMIT uses Java Advanced Imaging (JAI) to combine the platform independent nature of Java with the speed benefits associated with native code. The object-orientated nature of Java allows the production of an extensible and robust package which is easily maintained. In addition to jAMIT, a Medical Image VO API called Sushi has been developed to provide access to many commonly used image formats. These include DICOM, Analyze, MINC/NetCDF, Trionix, Beat 6.4, Interfile 3.2/3.3 and Odyssey. This allows jAMIT to access data and study information contained in different medical image formats transparently. Additional formats can be added at any time without any modification to the jAMIT package. Tools available in jAMIT include 2D ROI Analysis, Palette Thresholding, Image Groping, Image Transposition, Scaling, Maximum Intensity Projection, Image Fusion, Image Annotation and Format Conversion. Future tools may include 2D Linear and Non-linear Registration, PET SUV Calculation, 3D Rendering and 3D ROI Analysis. Applications currently using JAMIT include Antibody Dosimetry Analysis, Mean Hemispheric Blood Flow Analysis, QuickViewing of PET Studies for Clinical Training, Pharamcodynamic Modelling based on Planar Imaging, and Medical Image Format Conversion. The use of jAMIT and Sushi for scripting and analysis in Matlab v6.1 and Jython is currently being explored. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc

  16. Processing of medical images

    International Nuclear Information System (INIS)

    Restrepo, A.

    1998-01-01

    Thanks to the innovations in the technology for the processing of medical images, to the high development of better and cheaper computers, and, additionally, to the advances in the systems of communications of medical images, the acquisition, storage and handling of digital images has acquired great importance in all the branches of the medicine. It is sought in this article to introduce some fundamental ideas of prosecution of digital images that include such aspects as their representation, storage, improvement, visualization and understanding

  17. Medical imaging technology

    CERN Document Server

    Haidekker, Mark A

    2013-01-01

    Biomedical imaging is a relatively young discipline that started with Conrad Wilhelm Roentgen’s discovery of the x-ray in 1885. X-ray imaging was rapidly adopted in hospitals around the world. However, it was the advent of computerized data and image processing that made revolutionary new imaging modalities possible. Today, cross-sections and three-dimensional reconstructions of the organs inside the human body is possible with unprecedented speed, detail and quality. This book provides an introduction into the principles of image formation of key medical imaging modalities: X-ray projection imaging, x-ray computed tomography, magnetic resonance imaging, ultrasound imaging, and radionuclide imaging. Recent developments in optical imaging are also covered. For each imaging modality, the introduction into the physical principles and sources of contrast is provided, followed by the methods of image formation, engineering aspects of the imaging devices, and a discussion of strengths and limitations of the modal...

  18. Nuclear medical examinations

    International Nuclear Information System (INIS)

    Chiba, Kazuo; Yamada, Hideo

    1983-01-01

    Nuclear medical examinations for cerebral vascular diseases were outlined. These procedures developed associated with development of scanners, production of radionuclides and development of labelled compounds. Examination of cerebral circulation with 133 Xe and sup(87m)Kr was replaced by CT. Furthermore, emission CT developed. Each of brain scintiscan, measurement of regional cerebral blood flow, positron emission CT and single photon emission CT was reviewed. (Namekawa, K.)

  19. Medical imaging systems

    Science.gov (United States)

    Frangioni, John V

    2013-06-25

    A medical imaging system provides simultaneous rendering of visible light and diagnostic or functional images. The system may be portable, and may include adapters for connecting various light sources and cameras in open surgical environments or laparascopic or endoscopic environments. A user interface provides control over the functionality of the integrated imaging system. In one embodiment, the system provides a tool for surgical pathology.

  20. Classification in Medical Imaging

    DEFF Research Database (Denmark)

    Chen, Chen

    Classification is extensively used in the context of medical image analysis for the purpose of diagnosis or prognosis. In order to classify image content correctly, one needs to extract efficient features with discriminative properties and build classifiers based on these features. In addition...... on characterizing human faces and emphysema disease in lung CT images....

  1. Quantitative information in medical imaging

    International Nuclear Information System (INIS)

    Deconinck, F.

    1985-01-01

    When developing new imaging or image processing techniques, one constantly has in mind that the new technique should provide a better, or more optimal answer to medical tasks than existing techniques do 'Better' or 'more optimal' imply some kind of standard by which one can measure imaging or image processing performance. The choice of a particular imaging modality to answer a diagnostic task, such as the detection of coronary artery stenosis is also based on an implicit optimalisation of performance criteria. Performance is measured by the ability to provide information about an object (patient) to the person (referring doctor) who ordered a particular task. In medical imaging the task is generally to find quantitative information on bodily function (biochemistry, physiology) and structure (histology, anatomy). In medical imaging, a wide range of techniques is available. Each technique has it's own characteristics. The techniques discussed in this paper are: nuclear magnetic resonance, X-ray fluorescence, scintigraphy, positron emission tomography, applied potential tomography, computerized tomography, and compton tomography. This paper provides a framework for the comparison of imaging performance, based on the way the quantitative information flow is altered by the characteristics of the modality

  2. Software programmable multi-mode interface for nuclear-medical imaging

    International Nuclear Information System (INIS)

    Zubal, I.G.; Rowe, R.W.; Bizais, Y.J.C.; Bennett, G.W.; Brill, A.B.

    1982-01-01

    An innovative multi-port interface allows gamma camera events (spatial coordinates and energy) to be acquired concurrently with a sampling of physiological patient data. The versatility of the interface permits all conventional static, dynamic, and tomographic imaging modes, in addition to multi-hole coded aperture acquisition. The acquired list mode data may be analyzed or gated on the basis of various camera, isotopic, or physiological parameters

  3. Imaging systems for medical diagnostics

    International Nuclear Information System (INIS)

    Krestel, E.

    1990-01-01

    This book provides physicians and clinical physicists with detailed information on today's imaging modalities and assists them in selecting the optimal system for each clinical application. Physicists, engineers and computer specialists engaged in research and development and sales departments will also find this book to be of considerable use. It may also be employed at universities, training centers and in technical seminars. The physiological and physical fundamentals are explained in part 1. The technical solutions contained in part 2 illustrate the numerous possibilities available in X-ray diagnostics, computed tomography, nuclear medical diagnostics, magnetic resonance imaging, sonography and biomagnetic diagnostics. (orig.)

  4. Medical Imaging and Infertility.

    Science.gov (United States)

    Peterson, Rebecca

    2016-11-01

    Infertility affects many couples, and medical imaging plays a vital role in its diagnosis and treatment. Radiologic technologists benefit from having a broad understanding of infertility risk factors and causes. This article describes the typical structure and function of the male and female reproductive systems, as well as congenital and acquired conditions that could lead to a couple's inability to conceive. Medical imaging procedures performed for infertility diagnosis are discussed, as well as common interventional options available to patients. © 2016 American Society of Radiologic Technologists.

  5. Nuclear imaging system

    International Nuclear Information System (INIS)

    Barrett, H.H.; Horrigan, F.A.

    1975-01-01

    This invention relates to a nuclear imaging system for mapping the source of high energy nuclear particles from a living organ which has selectively absorbed a radioactive compound by spatially coding the energy from the source in a Fresnel pattern on a detector and decoding the detector output to prouce an image of the source. The coding is produced by a Fresnel zone plate interposed between the nuclear energy source and the detector whose position is adjustable with respect to the detector to focus the slices of the nuclear source on the detector. By adjusting the zone plate to a plurality of positions, data from a plurality of cross-sectional slices are produced from which a three-dimensional image of the nuclear source may be obtained. (Patent Office Record)

  6. Nuclear imaging in pediatrics

    International Nuclear Information System (INIS)

    Siddiqui, A.R.

    1985-01-01

    The author's intent is to familiarize practicing radiologists with the technical aspects and interpretation of nuclear medicine procedures in children and to illustrate the indications for nuclear medicine procedures in pediatric problems. Pediatric doses, dosimetry, sedation, and injection techniques, organ systems, oncology and infection, testicular scanning and nuclear crystography, pediatric endocrine and skeletal systems, ventilation and perfusion imaging of both congenital and acquired pediatric disorders, cardiovascular problems, gastrointestinal, hepatobiliary, reticuloendothelial studies, and central nervous system are all topics which are included and discussed

  7. Superconductors and medical imaging

    International Nuclear Information System (INIS)

    Aubert, Guy

    2011-01-01

    After difficult beginnings in the 1970's, magnetic resonance imaging (MRI) has evolved to become nowadays the jewel in the crown of medical technology. Superconductors have been a key factor for the extraordinary expansion of MRI which in turn represents about 75 % of their total market. After recalling some basic principles, this article traces their common history and refers to future developments. (author)

  8. Nuclear medical technology

    International Nuclear Information System (INIS)

    Daga, Avinash; Sharma, Smita; Sharma, K.S.

    2012-01-01

    Nuclear medical technology helps to use radiopharmaceuticals (drugs that give off radiation) to diagnose and treat illness. A more recent development is Positron Emission Tomography (PET) which is a more precise and sophisticated technique that uses isotopes produced in a cyclotron. F-18 in FDG (fluorodeoxyglucose) is one such positron-emitting radionuclide. Chemically, it is 2-deoxy-2-( 18 F) fluoro-D-glucose, a glucose analog with the positron-emitting radioactive isotope fluorine-18 substituted for the normal hydroxyl group at the 2' position in the glucose molecule. It is introduced, usually by injection, and then it gets accumulated in the target tissue. As it decays it emits a positron, which promptly combines with a nearby electron resulting in the simultaneous emission of two identifiable gamma rays in opposite directions. These are detected by a PET camera when the patient is placed in the PET scanner for a series of one or more scans which may take from 20 minutes to as long as an hour. It gives very precise indication of their origin. 18 F in FDG (fluorodeoxyglucose) has become very important in detection of cancers and the monitoring of progress in their treatment, using PET. (author)

  9. Mobile medical image retrieval

    Science.gov (United States)

    Duc, Samuel; Depeursinge, Adrien; Eggel, Ivan; Müller, Henning

    2011-03-01

    Images are an integral part of medical practice for diagnosis, treatment planning and teaching. Image retrieval has gained in importance mainly as a research domain over the past 20 years. Both textual and visual retrieval of images are essential. In the process of mobile devices becoming reliable and having a functionality equaling that of formerly desktop clients, mobile computing has gained ground and many applications have been explored. This creates a new field of mobile information search & access and in this context images can play an important role as they often allow understanding complex scenarios much quicker and easier than free text. Mobile information retrieval in general has skyrocketed over the past year with many new applications and tools being developed and all sorts of interfaces being adapted to mobile clients. This article describes constraints of an information retrieval system including visual and textual information retrieval from the medical literature of BioMedCentral and of the RSNA journals Radiology and Radiographics. Solutions for mobile data access with an example on an iPhone in a web-based environment are presented as iPhones are frequently used and the operating system is bound to become the most frequent smartphone operating system in 2011. A web-based scenario was chosen to allow for a use by other smart phone platforms such as Android as well. Constraints of small screens and navigation with touch screens are taken into account in the development of the application. A hybrid choice had to be taken to allow for taking pictures with the cell phone camera and upload them for visual similarity search as most producers of smart phones block this functionality to web applications. Mobile information access and in particular access to images can be surprisingly efficient and effective on smaller screens. Images can be read on screen much faster and relevance of documents can be identified quickly through the use of images contained in

  10. Nuclear imaging: Advances and trends

    International Nuclear Information System (INIS)

    Herk, G. van

    1986-01-01

    In this article, nuclear imaging instruments that are likely to be of interest to the nuclear medicine community of developing countries are emphasized. The advances, trends, developments, and future directions in the field of nuclear imaging are mentioned

  11. Medical imaging systems

    Science.gov (United States)

    Frangioni, John V [Wayland, MA

    2012-07-24

    A medical imaging system provides simultaneous rendering of visible light and fluorescent images. The system may employ dyes in a small-molecule form that remains in a subject's blood stream for several minutes, allowing real-time imaging of the subject's circulatory system superimposed upon a conventional, visible light image of the subject. The system may also employ dyes or other fluorescent substances associated with antibodies, antibody fragments, or ligands that accumulate within a region of diagnostic significance. In one embodiment, the system provides an excitation light source to excite the fluorescent substance and a visible light source for general illumination within the same optical guide that is used to capture images. In another embodiment, the system is configured for use in open surgical procedures by providing an operating area that is closed to ambient light. More broadly, the systems described herein may be used in imaging applications where a visible light image may be usefully supplemented by an image formed from fluorescent emissions from a fluorescent substance that marks areas of functional interest.

  12. Medical aspects of nuclear armament

    International Nuclear Information System (INIS)

    Janse, M.J.; Schene, A.; Koch, K.

    1983-01-01

    The authors highlight a few medical, biological and psycological aspects of the use of nuclear weapons, drawing attention to their viewpoint that doctors should actively participate in the fight against nuclear armament. The short and long-term radiation effects on man and ecology are presented based on the Hiroshima and Nagasaki experiences. The danger of human error within this framework is emphasised and it is suggested that it is the medical profession's duty to point out how the effect of stress and boredom can lead to a nuclear catastrophe. Medical expertise may also help in the identification of unstable personalities among those who have access to nuclear weapons and in the understanding of the psycology of international conflicts and the psychopathology of those leaders who would use nuclear war as an instrument of national policy. Finally the effects of the nuclear war threat on children and teenagers are considered. (C.F.)

  13. Medical aspects of nuclear armament

    Energy Technology Data Exchange (ETDEWEB)

    Janse, M.J.; Schene, A.; Koch, K.

    1983-06-18

    The authors highlight a few medical, biological and psycological aspects of the use of nuclear weapons, drawing attention to their viewpoint that doctors should actively participate in the fight against nuclear armament. The short and long-term radiation effects on man and ecology are presented based on the Hiroshima and Nagasaki experiences. The danger of human error within this framework is emphasised and it is suggested that it is the medical profession's duty to point out how the effect of stress and boredom can lead to a nuclear catastrophe. Medical expertise may also help in the identification of unstable personalities among those who have access to nuclear weapons and in the understanding of the psycology of international conflicts and the psychopathology of those leaders who would use nuclear war as an instrument of national policy. Finally the effects of the nuclear war threat on children and teenagers are considered.

  14. Nuclear methods in medical physics

    International Nuclear Information System (INIS)

    Jeraj, R.

    2003-01-01

    A common ground for both, reactor and medical physics is a demand for high accuracy of particle transport calculations. In reactor physics, safe operation of nuclear power plants has been asking for high accuracy of calculation methods. Similarly, dose calculation in radiation therapy for cancer has been requesting high accuracy of transport methods to ensure adequate dosimetry. Common to both problems has always been a compromise between achievable accuracy and available computer power leading into a variety of calculation methods developed over the decades. On the other hand, differences of subjects (nuclear reactor vs. humans) and radiation types (neutron/photon vs. photon/electron or ions) are calling for very field-specific approach. Nevertheless, it is not uncommon to see drift of researches from one field to another. Several examples from both fields will be given with the aim to compare the problems, indicating their similarities and discussing their differences. As examples of reactor physics applications, both deterministic and Monte Carlo calculations will be presented for flux distributions of the VENUS and TRIGA Mark II benchmark. These problems will be paralleled to medical physics applications in linear accelerator radiation field determination and dose distribution calculations. Applicability of the adjoint/forward transport will be discussed in the light of both transport problems. Boron neutron capture therapy (BNCT) as an example of the close collaboration between the fields will be presented. At last, several other examples from medical physics, which can and cannot find corresponding problems in reactor physics, will be discussed (e.g., beam optimisation in inverse treatment planning, imaging applications). (author)

  15. Nuclear magnetic resonance imaging

    International Nuclear Information System (INIS)

    Young, I.R.

    1984-01-01

    In a method of imaging a body in which nuclear magnetic resonance is excited in a region including part of the body, and the free induction decay signal is measured, a known quantity of a material of known nuclear magnetic resonance properties, for example a bag of water, is included in the region so as to enhance the measured free induction decay signal. This then reduces the generation of noise during subsequent processing of the signal. (author)

  16. Wavelets in medical imaging

    International Nuclear Information System (INIS)

    Zahra, Noor e; Sevindir, Huliya A.; Aslan, Zafar; Siddiqi, A. H.

    2012-01-01

    The aim of this study is to provide emerging applications of wavelet methods to medical signals and images, such as electrocardiogram, electroencephalogram, functional magnetic resonance imaging, computer tomography, X-ray and mammography. Interpretation of these signals and images are quite important. Nowadays wavelet methods have a significant impact on the science of medical imaging and the diagnosis of disease and screening protocols. Based on our initial investigations, future directions include neurosurgical planning and improved assessment of risk for individual patients, improved assessment and strategies for the treatment of chronic pain, improved seizure localization, and improved understanding of the physiology of neurological disorders. We look ahead to these and other emerging applications as the benefits of this technology become incorporated into current and future patient care. In this chapter by applying Fourier transform and wavelet transform, analysis and denoising of one of the important biomedical signals like EEG is carried out. The presence of rhythm, template matching, and correlation is discussed by various method. Energy of EEG signal is used to detect seizure in an epileptic patient. We have also performed denoising of EEG signals by SWT.

  17. Wavelets in medical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Zahra, Noor e; Sevindir, Huliya A.; Aslan, Zafar; Siddiqi, A. H. [Sharda University, SET, Department of Electronics and Communication, Knowledge Park 3rd, Gr. Noida (India); University of Kocaeli, Department of Mathematics, 41380 Kocaeli (Turkey); Istanbul Aydin University, Department of Computer Engineering, 34295 Istanbul (Turkey); Sharda University, SET, Department of Mathematics, 32-34 Knowledge Park 3rd, Greater Noida (India)

    2012-07-17

    The aim of this study is to provide emerging applications of wavelet methods to medical signals and images, such as electrocardiogram, electroencephalogram, functional magnetic resonance imaging, computer tomography, X-ray and mammography. Interpretation of these signals and images are quite important. Nowadays wavelet methods have a significant impact on the science of medical imaging and the diagnosis of disease and screening protocols. Based on our initial investigations, future directions include neurosurgical planning and improved assessment of risk for individual patients, improved assessment and strategies for the treatment of chronic pain, improved seizure localization, and improved understanding of the physiology of neurological disorders. We look ahead to these and other emerging applications as the benefits of this technology become incorporated into current and future patient care. In this chapter by applying Fourier transform and wavelet transform, analysis and denoising of one of the important biomedical signals like EEG is carried out. The presence of rhythm, template matching, and correlation is discussed by various method. Energy of EEG signal is used to detect seizure in an epileptic patient. We have also performed denoising of EEG signals by SWT.

  18. Hybrid Imaging: A New Frontier in Medical Imaging

    OpenAIRE

    Bijan Bijan

    2010-01-01

    Introduction of hybrid imaging in the arena of medical imaging calls for re-strategizing in current practice. Operating PET-CT and upcoming PET-MRI is a turf battle between Radiologists, Nuclear Medicine Physicians, Oncologists, Cardiologists and other related fields.

  19. Nuclear magnetic resonance imaging

    International Nuclear Information System (INIS)

    1983-06-01

    This report summarises the aspects of nuclear magnetic resonance imaging (NMRI) considered by the National Health Technology Advisory Panel and makes recommendations on its introduction in Australia with particular regard to the need for thorough evaluation of its cost effectiveness. Topics covered are: principles of the technique, equipment required, installation, costs, reliability, performance parameters, clinical indications, training and staff requirements, and safety considerations

  20. Machine learning and medical imaging

    CERN Document Server

    Shen, Dinggang; Sabuncu, Mert

    2016-01-01

    Machine Learning and Medical Imaging presents state-of- the-art machine learning methods in medical image analysis. It first summarizes cutting-edge machine learning algorithms in medical imaging, including not only classical probabilistic modeling and learning methods, but also recent breakthroughs in deep learning, sparse representation/coding, and big data hashing. In the second part leading research groups around the world present a wide spectrum of machine learning methods with application to different medical imaging modalities, clinical domains, and organs. The biomedical imaging modalities include ultrasound, magnetic resonance imaging (MRI), computed tomography (CT), histology, and microscopy images. The targeted organs span the lung, liver, brain, and prostate, while there is also a treatment of examining genetic associations. Machine Learning and Medical Imaging is an ideal reference for medical imaging researchers, industry scientists and engineers, advanced undergraduate and graduate students, a...

  1. Medical image registration for analysis

    International Nuclear Information System (INIS)

    Petrovic, V.

    2006-01-01

    Full text: Image registration techniques represent a rich family of image processing and analysis tools that aim to provide spatial correspondences across sets of medical images of similar and disparate anatomies and modalities. Image registration is a fundamental and usually the first step in medical image analysis and this paper presents a number of advanced techniques as well as demonstrates some of the advanced medical image analysis techniques they make possible. A number of both rigid and non-rigid medical image alignment algorithms of equivalent and merely consistent anatomical structures respectively are presented. The algorithms are compared in terms of their practical aims, inputs, computational complexity and level of operator (e.g. diagnostician) interaction. In particular, the focus of the methods discussion is placed on the applications and practical benefits of medical image registration. Results of medical image registration on a number of different imaging modalities and anatomies are presented demonstrating the accuracy and robustness of their application. Medical image registration is quickly becoming ubiquitous in medical imaging departments with the results of such algorithms increasingly used in complex medical image analysis and diagnostics. This paper aims to demonstrate at least part of the reason why

  2. Shared Medical Imaging Repositories.

    Science.gov (United States)

    Lebre, Rui; Bastião, Luís; Costa, Carlos

    2018-01-01

    This article describes the implementation of a solution for the integration of ownership concept and access control over medical imaging resources, making possible the centralization of multiple instances of repositories. The proposed architecture allows the association of permissions to repository resources and delegation of rights to third entities. It includes a programmatic interface for management of proposed services, made available through web services, with the ability to create, read, update and remove all components resulting from the architecture. The resulting work is a role-based access control mechanism that was integrated with Dicoogle Open-Source Project. The solution has several application scenarios like, for instance, collaborative platforms for research and tele-radiology services deployed at Cloud.

  3. Frontiers in medical imaging technology

    International Nuclear Information System (INIS)

    Iinuma, Takeshi

    1992-01-01

    At present many medical images are used for diagnostics and treatment. After the advent of X-ray computer tomography (XCT), the violent development of medical images has continued. Medical imaging technology can be defined as the field of technology that deals with the production, processing, display, transmission, evaluation and so on of medical images, and it can be said that the present development of medical imaging diagnostics has been led by medical imaging technology. In this report, the most advanced technology of medical imaging is explained. The principle of XCT is shown. The feature of XCT is that it can image the delicate difference in the X-ray absorption factor of the cross section being measured. The technical development has been advanced to reduce the time for imaging and to heighten the resolution. The technology which brings about a large impact to future imaging diagnostics is computed radiography. Magnetic resonance imaging is the method of imaging the distribution of protons in human bodies. Positron CT is the method of measurement by injecting a positron-emitting RI. These methods are explained. (K.I.)

  4. Medical alert bracelet (image)

    Science.gov (United States)

    People with diabetes should always wear a medical alert bracelet or necklace that emergency medical workers will be able to find. Medical identification products can help ensure proper treatment in an ...

  5. Trends in medical image processing

    International Nuclear Information System (INIS)

    Robilotta, C.C.

    1987-01-01

    The function of medical image processing is analysed, mentioning the developments, the physical agents, and the main categories, as conection of distortion in image formation, detectability increase, parameters quantification, etc. (C.G.C.) [pt

  6. Nuclear data for medical applications

    International Nuclear Information System (INIS)

    Capote, Roberto

    2011-01-01

    Nuclear science plays an increasingly important role in medical applications, in particular the need for radioisotopes in both cancer therapy and diagnostic techniques is very well established. Over the previous thirty years, many laboratories have reported a significant body of experimental data relevant to medical radionuclide production, and international data centres have compiled most of these data. However, till late 90s no systematic effort had been devoted to their standardization and assembly. These needs are being addressed through three IAEA Coordinated Research Projects on Nuclear Data for the Production of Radionuclides that started in 1999. Monitor cross sections to be used in charged particle measurements have been also evaluated (see http://www-nds.iaea.org/medical/monitor reactions.html). A review of IAEA recommended cross sections for the production of medical radioisotopes will be presented. Theoretical modelling of nuclear reactions will be discussed both for nuclear data evaluation and validation. The role of the Recommended Input Parameter Library (RIPL) in defining the input for production codes like EMPIRE and TALYS will be highlighted. (author)

  7. Image processing technology for nuclear facilities

    International Nuclear Information System (INIS)

    Lee, Jong Min; Lee, Yong Beom; Kim, Woong Ki; Park, Soon Young

    1993-05-01

    Digital image processing technique is being actively studied since microprocessors and semiconductor memory devices have been developed in 1960's. Now image processing board for personal computer as well as image processing system for workstation is developed and widely applied to medical science, military, remote inspection, and nuclear industry. Image processing technology which provides computer system with vision ability not only recognizes nonobvious information but processes large information and therefore this technique is applied to various fields like remote measurement, object recognition and decision in adverse environment, and analysis of X-ray penetration image in nuclear facilities. In this report, various applications of image processing to nuclear facilities are examined, and image processing techniques are also analysed with the view of proposing the ideas for future applications. (Author)

  8. General perspectives for molecular nuclear imaging

    International Nuclear Information System (INIS)

    Chung, June Key

    2004-01-01

    Molecular imaging provides a visualization of normal as well as abnormal cellular processes at a molecular or genetic level rather than at an anatomical level. Conventional medical imaging methods utilize the imaging signals produced by nonspecific physico-chemical interaction. However, molecular imaging methods utilize the imaging signals derived from specific cellular or molecular events. Because molecular and genetic changes precede anatomical change in the course of disease development, molecular imaging can detect early events in disease progression. In the near future, through molecular imaging we can understand basic mechanisms of disease, and diagnose earlier and, subsequently, treat earlier intractable disease such as cancer, neuro-degenerative diseases, and immunologic disorders. In beginning period, nuclear medicine started as a molecular imaging, and has had a leading role in the field of molecular imaging. But recently molecular imaging has been rapidly developed. Besides nuclear imaging, molecular imaging methods such as optical imaging, magnetic resonance imaging are emerging. Each imaging modalities have their advantages and weaknesses. The opportunities from molecular imaging look bright. We should try nuclear medicine continues to have a leading role in molecular imaging

  9. Medical management of nuclear disaster

    International Nuclear Information System (INIS)

    Kinugasa, Tatsuya

    1996-01-01

    This report briefly describes the measures to be taken other than ordinary duties when an accident happens in nuclear facilities such as atomic power plant, reprocessing plant, etc. Such nuclear disasters are assigned into four groups; (1) accidents in industrial levels, (2) accidents in which the workers are implicated, (3) accidents of which influence to environments should be taken into consideration and (4) accidents to which measures for inhabitants should be taken. Therefore, the measures to be taken at an emergency were also grouped in the following four; (1) treatments for the accident, itself, (2) measures to minimize the effects on the environment, (3) rescues of the victims and emergency cares for them and (4) measures and medical cares to protect the inhabitants from radiation exposure. Presently, medical professionals, especially doctors, nurses etc. are not accustomed to control nuclear contaminations. Therefore, it is needed for radiological professionals to actively provide appropriate advises about the control and measurement of contamination. (M.N.)

  10. Image processing in medical ultrasound

    DEFF Research Database (Denmark)

    Hemmsen, Martin Christian

    This Ph.D project addresses image processing in medical ultrasound and seeks to achieve two major scientific goals: First to develop an understanding of the most significant factors influencing image quality in medical ultrasound, and secondly to use this knowledge to develop image processing...... multiple imaging setups. This makes the system well suited for development of new processing methods and for clinical evaluations, where acquisition of the exact same scan location for multiple methods is important. The second project addressed implementation, development and evaluation of SASB using...... methods for enhancing the diagnostic value of medical ultrasound. The project is an industrial Ph.D project co-sponsored by BK Medical ApS., with the commercial goal to improve the image quality of BK Medicals scanners. Currently BK Medical employ a simple conventional delay-and-sum beamformer to generate...

  11. Advances in medical image computing.

    Science.gov (United States)

    Tolxdorff, T; Deserno, T M; Handels, H; Meinzer, H-P

    2009-01-01

    Medical image computing has become a key technology in high-tech applications in medicine and an ubiquitous part of modern imaging systems and the related processes of clinical diagnosis and intervention. Over the past years significant progress has been made in the field, both on methodological and on application level. Despite this progress there are still big challenges to meet in order to establish image processing routinely in health care. In this issue, selected contributions of the German Conference on Medical Image Processing (BVM) are assembled to present latest advances in the field of medical image computing. The winners of scientific awards of the German Conference on Medical Image Processing (BVM) 2008 were invited to submit a manuscript on their latest developments and results for possible publication in Methods of Information in Medicine. Finally, seven excellent papers were selected to describe important aspects of recent advances in the field of medical image processing. The selected papers give an impression of the breadth and heterogeneity of new developments. New methods for improved image segmentation, non-linear image registration and modeling of organs are presented together with applications of image analysis methods in different medical disciplines. Furthermore, state-of-the-art tools and techniques to support the development and evaluation of medical image processing systems in practice are described. The selected articles describe different aspects of the intense development in medical image computing. The image processing methods presented enable new insights into the patient's image data and have the future potential to improve medical diagnostics and patient treatment.

  12. Paediatric nuclear medicine imaging.

    Science.gov (United States)

    Biassoni, Lorenzo; Easty, Marina

    2017-09-01

    Nuclear medicine imaging explores tissue viability and function by using radiotracers that are taken up at cellular level with different mechanism. This imaging technique can also be used to assess blood flow and transit through tubular organs. Nuclear medicine imaging has been used in paediatrics for decades and this field is continuously evolving. The data presented comes from clinical experience and some milestone papers on the subject. Nuclear medicine imaging is well-established in paediatric nephro-urology in the context of urinary tract infection, ante-natally diagnosed hydronephrosis and other congenital renal anomalies. Also, in paediatric oncology, I-123-meta-iodobenzyl-guanidine has a key role in the management of children with neuroblastic tumours. Bone scintigraphy is still highly valuable to localize the source of symptoms in children and adolescents with bone pain when other imaging techniques have failed. Thyroid scintigraphy in neonates with congenital hypothyroidism is the most accurate imaging technique to confirm the presence of ectopic functioning thyroid tissue. Radionuclide transit studies of the gastro-intestinal tract are potentially useful in suspected gastroparesis or small bowel or colonic dysmotility. However, until now a standardized protocol and a validated normal range have not been agreed, and more work is necessary. Research is ongoing on whether magnetic resonance imaging (MRI), with its great advantage of great anatomical detail and no ionizing radiations, can replace nuclear medicine imaging in some clinical context. On the other hand, access to MRI is often difficult in many district general hospitals and general anaesthesia is frequently required, thus adding to the complexity of the examination. Patients with bone pain and no cause for it demonstrated on MRI can benefit from bone scintigraphy with single photon emission tomography and low-dose computed tomography. This technique can identify areas of mechanical stress at

  13. Intelligent distributed medical image management

    Science.gov (United States)

    Garcia, Hong-Mei C.; Yun, David Y.

    1995-05-01

    The rapid advancements in high performance global communication have accelerated cooperative image-based medical services to a new frontier. Traditional image-based medical services such as radiology and diagnostic consultation can now fully utilize multimedia technologies in order to provide novel services, including remote cooperative medical triage, distributed virtual simulation of operations, as well as cross-country collaborative medical research and training. Fast (efficient) and easy (flexible) retrieval of relevant images remains a critical requirement for the provision of remote medical services. This paper describes the database system requirements, identifies technological building blocks for meeting the requirements, and presents a system architecture for our target image database system, MISSION-DBS, which has been designed to fulfill the goals of Project MISSION (medical imaging support via satellite integrated optical network) -- an experimental high performance gigabit satellite communication network with access to remote supercomputing power, medical image databases, and 3D visualization capabilities in addition to medical expertise anywhere and anytime around the country. The MISSION-DBS design employs a synergistic fusion of techniques in distributed databases (DDB) and artificial intelligence (AI) for storing, migrating, accessing, and exploring images. The efficient storage and retrieval of voluminous image information is achieved by integrating DDB modeling and AI techniques for image processing while the flexible retrieval mechanisms are accomplished by combining attribute- based and content-based retrievals.

  14. Medical Imaging 4: Image formation

    International Nuclear Information System (INIS)

    Schneider, R.H.

    1990-01-01

    This book contains papers relating to the 1990 meeting of The International Society for Optical Engineering. Included are the following papers: Effect of protective layer on Resolution Properties of Photostimulable Phosphor Detector for Digital Radiographic System, Neural Network Scatter Correction Technique for Digital Radiography, Use of Computer Radiography for Portal Imaging

  15. Medical imaging 4

    International Nuclear Information System (INIS)

    Loew, M.H.

    1990-01-01

    This book is covered under the following topics: human visual pattern recognition, fractals, rules, and segments, three-dimensional image processing, MRI, MRI and mammography, clinical applications 1, angiography, image processing systems, image processing poster session

  16. Nuclear Medicine Image Display. Chapter 14

    Energy Technology Data Exchange (ETDEWEB)

    Bergmann, H. [Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna (Austria)

    2014-12-15

    The final step in a medical imaging procedure is to display the image(s) on a suitable display system where it is presented to the medical specialist for diagnostic interpretation. The display of hard copy images on X ray film or photographic film has largely been replaced today by soft copy image display systems with cathode ray tube (CRT) or liquid crystal display (LCD) monitors as the image rendering device. Soft copy display requires a high quality display monitor and a certain amount of image processing to optimize the image both with respect to the properties of the display device and to some psychophysiological properties of the human visual system. A soft copy display system, therefore, consists of a display workstation providing some basic image processing functions and the display monitor as the intrinsic display device. Display devices of lower quality may be used during intermediate steps of the acquisition and analysis of a patient study. Display monitors with a quality suitable for diagnostic reading by the specialist medical doctor are called primary devices, also known as diagnostic devices. Monitors with lower quality but good enough to be used for positioning, processing of studies, presentation of images in the wards, etc. are referred to as secondary devices or clinical devices. Nuclear medicine images can be adequately displayed even for diagnostic purposes on secondary devices. However, the increasing use of X ray images on which to report jointly with images from nuclear medicine studies, such as those generated by dual modality imaging, notably by positron emission tomography (PET)/computed tomography (CT) and single photon emission computed tomography (SPECT)/CT, requires display devices capable of visualizing high resolution grey scale images at diagnostic quality, i.e. primary display devices. Both grey scale and colour display devices are used, the latter playing an important role in the display of processed nuclear medicine images and

  17. Nuclear Medicine Image Display. Chapter 14

    International Nuclear Information System (INIS)

    Bergmann, H.

    2014-01-01

    The final step in a medical imaging procedure is to display the image(s) on a suitable display system where it is presented to the medical specialist for diagnostic interpretation. The display of hard copy images on X ray film or photographic film has largely been replaced today by soft copy image display systems with cathode ray tube (CRT) or liquid crystal display (LCD) monitors as the image rendering device. Soft copy display requires a high quality display monitor and a certain amount of image processing to optimize the image both with respect to the properties of the display device and to some psychophysiological properties of the human visual system. A soft copy display system, therefore, consists of a display workstation providing some basic image processing functions and the display monitor as the intrinsic display device. Display devices of lower quality may be used during intermediate steps of the acquisition and analysis of a patient study. Display monitors with a quality suitable for diagnostic reading by the specialist medical doctor are called primary devices, also known as diagnostic devices. Monitors with lower quality but good enough to be used for positioning, processing of studies, presentation of images in the wards, etc. are referred to as secondary devices or clinical devices. Nuclear medicine images can be adequately displayed even for diagnostic purposes on secondary devices. However, the increasing use of X ray images on which to report jointly with images from nuclear medicine studies, such as those generated by dual modality imaging, notably by positron emission tomography (PET)/computed tomography (CT) and single photon emission computed tomography (SPECT)/CT, requires display devices capable of visualizing high resolution grey scale images at diagnostic quality, i.e. primary display devices. Both grey scale and colour display devices are used, the latter playing an important role in the display of processed nuclear medicine images and

  18. Molecular nuclear cardiac imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Soo; Paeng, Jin Chul [College of Medicine, Seoul National Univ., Seoul (Korea, Republic of)

    2004-04-01

    Molecular nuclear cardiac imaging has included Tc-99m Annexin imaging to visualize myocardial apoptosis, but is now usually associated with gene therapy and cell-based therapy. Cardiac gene therapy was not successful so far but cardiac reporter gene imaging was made possible using HSV-TK (herpes simplex virus thymidine kinase) and F-18 FHBG (fluoro-hydroxymethylbutyl guanine) or I-124 FIAU (fluoro-deoxyiodo-arabino-furanosyluracil). Gene delivery was performed by needle injection with or without catheter guidance. TK expression did not last longer than 2 weeks in myocardium. Cell-based therapy of ischemic heart or failing heart looks promising, but biodistribution and differentiation of transplanted cells are not known. Reporter genes can be transfected to the stem/progenitor cells and cells containing these genes can be transplanted to the recipients using catheter-based purging or injection. Repeated imaging should be available and if promoter are varied to let express reporter transgenes, cellular (trans)differentiation can be studied. NIS (sodium iodide symporter) or D2R receptor genes are promising in this aspect.

  19. Molecular nuclear cardiac imaging

    International Nuclear Information System (INIS)

    Lee, Dong Soo; Paeng, Jin Chul

    2004-01-01

    Molecular nuclear cardiac imaging has included Tc-99m Annexin imaging to visualize myocardial apoptosis, but is now usually associated with gene therapy and cell-based therapy. Cardiac gene therapy was not successful so far but cardiac reporter gene imaging was made possible using HSV-TK (herpes simplex virus thymidine kinase) and F-18 FHBG (fluoro-hydroxymethylbutyl guanine) or I-124 FIAU (fluoro-deoxyiodo-arabino-furanosyluracil). Gene delivery was performed by needle injection with or without catheter guidance. TK expression did not last longer than 2 weeks in myocardium. Cell-based therapy of ischemic heart or failing heart looks promising, but biodistribution and differentiation of transplanted cells are not known. Reporter genes can be transfected to the stem/progenitor cells and cells containing these genes can be transplanted to the recipients using catheter-based purging or injection. Repeated imaging should be available and if promoter are varied to let express reporter transgenes, cellular (trans)differentiation can be studied. NIS (sodium iodide symporter) or D2R receptor genes are promising in this aspect

  20. Nuclear image display controller

    International Nuclear Information System (INIS)

    Roth, D.A.

    1985-01-01

    In a nuclear imaging system the digitized x and y coordinates of gamma ray photon emission events address memory locations corresponding to the coordinates. The respective locations are incremented each time they are addressed so at the end of a selected time or event count period the locations contain digital values or raw data corresponding to the intensity of pixels comprising an image frame. The raw data for a frame is coupled to one input of an arithmetic logic unit (ALU) whose output is coupled to a display controller memory. The output of the controller memory is coupled to another ALU input with a feedback bus and is also coupled to a further signal processing circuit which includes means for converting processed data to analog video signals for television display. The ALU is selectively controlled to let raw image data pass through to the display controllor memory or alternately to add (or subtract) raw data for the last image frame developed to the raw data for preceding frames held in the display controller to thereby produce the visual effect on the television screen of an isotope flowing through anatomy

  1. Nuclear imaging drug development tools

    International Nuclear Information System (INIS)

    Buchanan, L.; Jurek, P.; Redshaw, R.

    2007-01-01

    This article describes the development of nuclear imaging as an enabling technology in the pharmaceutical industry. Molecular imaging is maturing into an important tool with expanding applications from validating that a drug reaches the intended target through to market launch of a new drug. Molecular imaging includes anatomical imaging of organs or tissues, computerized tomography (CT), magnetic resonance imaging (MRI) and ultrasound.

  2. Visual perception and medical imaging

    International Nuclear Information System (INIS)

    Jaffe, C.C.

    1985-01-01

    Medical imaging represents a particularly distinct discipline for image processing since it uniquely depends on the ''expert observer'' and yet models of the human visual system are totally inadequate at the complex level to allow satisfactory prediction of observer response to a given image modification. An illustration of the difficulties in assessing observer performance is shown by a series of optical illustrations which demonstrate that net cognitive behavior is not readily predictable. Although many of these phenomena are often considered as exceptional visual events, the setting of complex images makes it difficult to entirely exclude at least partial operation of these impairments during performance of the diagnostic medical imaging task

  3. Automated medical image segmentation techniques

    Directory of Open Access Journals (Sweden)

    Sharma Neeraj

    2010-01-01

    Full Text Available Accurate segmentation of medical images is a key step in contouring during radiotherapy planning. Computed topography (CT and Magnetic resonance (MR imaging are the most widely used radiographic techniques in diagnosis, clinical studies and treatment planning. This review provides details of automated segmentation methods, specifically discussed in the context of CT and MR images. The motive is to discuss the problems encountered in segmentation of CT and MR images, and the relative merits and limitations of methods currently available for segmentation of medical images.

  4. Medical hyperspectral imaging: a review

    Science.gov (United States)

    Lu, Guolan; Fei, Baowei

    2014-01-01

    Abstract. Hyperspectral imaging (HSI) is an emerging imaging modality for medical applications, especially in disease diagnosis and image-guided surgery. HSI acquires a three-dimensional dataset called hypercube, with two spatial dimensions and one spectral dimension. Spatially resolved spectral imaging obtained by HSI provides diagnostic information about the tissue physiology, morphology, and composition. This review paper presents an overview of the literature on medical hyperspectral imaging technology and its applications. The aim of the survey is threefold: an introduction for those new to the field, an overview for those working in the field, and a reference for those searching for literature on a specific application. PMID:24441941

  5. Medical Radioisotopes Production Without A Nuclear Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Van der Keur, H.

    2010-05-15

    This report is answering the key question: Is it possible to ban the use of research reactors for the production of medical radioisotopes? Chapter 2 offers a summarized overview on the history of nuclear medicine. Chapter 3 gives an overview of the basic principles and understandings of nuclear medicine. The production of radioisotopes and its use in radiopharmaceuticals as a tracer for imaging particular parts of the inside of the human body (diagnosis) or as an agent in radiotherapy. Chapter 4 lists the use of popular medical radioisotopes used in nuclear imaging techniques and radiotherapy. Chapter 5 analyses reactor-based radioisotopes that can be produced by particle accelerators on commercial scale, other alternatives and the advantages of the cyclotron. Chapter 6 gives an overview of recent developments and prospects in worldwide radioisotopes production. Chapter 7 presents discussion, conclusions and recommendations, and is answering the abovementioned key question of this report: Is it possible to ban the use of a nuclear reactor for the production of radiopharmaceuticals? Is a safe and secure production of radioisotopes possible?.

  6. Physics and engineering of medical imaging

    International Nuclear Information System (INIS)

    Guzzardi, R.

    1987-01-01

    The ever-developing technology of medical imaging has a continuous and significant impact on the practice of medicine as well as on clinical research activity. The information and level of accuracy obtained by an imaging methodology is a complex result of a multidisciplinary effort of physics, engineering, electronics, chemistry and medicine. In this book, the state of the art is described for NMR, ultrasound, X-ray CT, nuclear medicine, positron tomography and other imaging modalities. For every imaging modality, the most important clinical applications are described together with the delineation of problems and future needs. Furthermore, specific sections of the book are devoted to general aspects of medical imaging, such as reconstruction techniques, 2-D and 3-D display, quality control, archiving, market trends and correlative assessment

  7. Physics and engineering of medical imaging

    International Nuclear Information System (INIS)

    Guzzardi, R.

    1987-01-01

    The ever-growing development in the technology of Medical Imaging has a continuous and significant impact in the practice of Medicine as well as in the clinical research activity. The information and accuracy obtained by whatever imaging methodology is a complex result of a multidisciplinary effort of several sciences, such as Physics, Engineering, Electronics, Chemistry and Medicine. In this book, the state-of-the-art is described of the technology at the base of NMR, Ultrasound, X-ray CT, Nuclear Medicine, Positron Tomography and other Imaging Modalities such as Thermography or Biomagnetism, considering both the research and industrial point of view. For every imaging modality the most important clinical applications are described, together with the delineation of problems and future needs. Furthermore, specific sections of the book are devoted to general aspects of Medical Imaging, such as Reconstruction Techniques, 2-D and 3-D Display, Quality Control, Archiving, Market Trends and Correlative Assessment. (Auth.)

  8. Development of nuclear imaging instrument and software

    International Nuclear Information System (INIS)

    Kim, Jang Hee; Chung Jae Myung; Nam, Sang Won; Chang, Hyung Uk

    1999-03-01

    In the medical diagnosis, the nuclear medical instrument using the radioactive isotope are commonly utilized. In the foreign countries, the medical application and development of the most advanced nuclear medical instrument such as Single Photon Emission Computer Tomography (SPECT) and position emission tomograph (PET), have been extensively carried out. However, in Korea, such highly expensive instruments have been all, imported, paying foreign currency. Since 1997, much efforts, the development of the radio nuclide medical instrument, the drive of the domestic production, etc. have been made to establish our own technologies and to balance the international payments under the support of the Ministry of Science and Technology. At present time, 180 nuclear imaging instruments are now in operation and 60 of them are analog camera. In analog camera, the vector X-Y monitor is need for are image display. Since the analog camera, signal can not be process in the digital form, we have difficulties to transfer and store the image data. The image displayed at the monitor must be stored in the form of polaroid or X ray film. In order to discard these disadvantages, if we developed the computer interface system, the performance analog camera will be comparable with that of the digital camera. The final objective of the research is that using the interface system developed in this research, we reconstruct the image data transmitted to the personal computer in the form of the generalized data file

  9. Medical image processing

    CERN Document Server

    Dougherty, Geoff

    2011-01-01

    This book is designed for end users in the field of digital imaging, who wish to update their skills and understanding with the latest techniques in image analysis. This book emphasizes the conceptual framework of image analysis and the effective use of image processing tools. It uses applications in a variety of fields to demonstrate and consolidate both specific and general concepts, and to build intuition, insight and understanding. Although the chapters are essentially self-contained they reference other chapters to form an integrated whole. Each chapter employs a pedagogical approach to e

  10. Generative Interpretation of Medical Images

    DEFF Research Database (Denmark)

    Stegmann, Mikkel Bille

    2004-01-01

    This thesis describes, proposes and evaluates methods for automated analysis and quantification of medical images. A common theme is the usage of generative methods, which draw inference from unknown images by synthesising new images having shape, pose and appearance similar to the analysed images......, handling of non-Gaussian variation by means of cluster analysis, correction of respiratory noise in cardiac MRI, and the extensions to multi-slice two-dimensional time-series and bi-temporal three-dimensional models. The medical applications include automated estimation of: left ventricular ejection...

  11. [Medical image compression: a review].

    Science.gov (United States)

    Noreña, Tatiana; Romero, Eduardo

    2013-01-01

    Modern medicine is an increasingly complex activity , based on the evidence ; it consists of information from multiple sources : medical record text , sound recordings , images and videos generated by a large number of devices . Medical imaging is one of the most important sources of information since they offer comprehensive support of medical procedures for diagnosis and follow-up . However , the amount of information generated by image capturing gadgets quickly exceeds storage availability in radiology services , generating additional costs in devices with greater storage capacity . Besides , the current trend of developing applications in cloud computing has limitations, even though virtual storage is available from anywhere, connections are made through internet . In these scenarios the optimal use of information necessarily requires powerful compression algorithms adapted to medical activity needs . In this paper we present a review of compression techniques used for image storage , and a critical analysis of them from the point of view of their use in clinical settings.

  12. Machine Learning for Medical Imaging.

    Science.gov (United States)

    Erickson, Bradley J; Korfiatis, Panagiotis; Akkus, Zeynettin; Kline, Timothy L

    2017-01-01

    Machine learning is a technique for recognizing patterns that can be applied to medical images. Although it is a powerful tool that can help in rendering medical diagnoses, it can be misapplied. Machine learning typically begins with the machine learning algorithm system computing the image features that are believed to be of importance in making the prediction or diagnosis of interest. The machine learning algorithm system then identifies the best combination of these image features for classifying the image or computing some metric for the given image region. There are several methods that can be used, each with different strengths and weaknesses. There are open-source versions of most of these machine learning methods that make them easy to try and apply to images. Several metrics for measuring the performance of an algorithm exist; however, one must be aware of the possible associated pitfalls that can result in misleading metrics. More recently, deep learning has started to be used; this method has the benefit that it does not require image feature identification and calculation as a first step; rather, features are identified as part of the learning process. Machine learning has been used in medical imaging and will have a greater influence in the future. Those working in medical imaging must be aware of how machine learning works. © RSNA, 2017.

  13. Compressive sensing in medical imaging.

    Science.gov (United States)

    Graff, Christian G; Sidky, Emil Y

    2015-03-10

    The promise of compressive sensing, exploitation of compressibility to achieve high quality image reconstructions with less data, has attracted a great deal of attention in the medical imaging community. At the Compressed Sensing Incubator meeting held in April 2014 at OSA Headquarters in Washington, DC, presentations were given summarizing some of the research efforts ongoing in compressive sensing for x-ray computed tomography and magnetic resonance imaging systems. This article provides an expanded version of these presentations. Sparsity-exploiting reconstruction algorithms that have gained popularity in the medical imaging community are studied, and examples of clinical applications that could benefit from compressive sensing ideas are provided. The current and potential future impact of compressive sensing on the medical imaging field is discussed.

  14. Essentials of nuclear medicine imaging

    CERN Document Server

    Mettler, Fred A. Jr

    2012-01-01

    Essentials of Nuclear Medicine Imaging, by Drs. Fred A Mettler and Milton J Guiberteau, provides the practical and comprehensive guidance you need to master key nuclear imaging techniques. From physics, instrumentation, quality control, and legal requirements to hot topics such as sodium fluoride, radiopharmaceuticals, and recommended pediatric administered doses and guidelines, this sixth edition covers the fundamentals and recent developments in the practice of nuclear medicine.

  15. Nuclear imaging of the chest

    International Nuclear Information System (INIS)

    Bahk, Y.W.

    1998-01-01

    This book provides up-to-the minute information on the diagnostic nuclear imaging of chest disorders. The authors have endeavored to integrate and consolidate the many different subspecialities in order to enable a holistic understanding of chest diseases from the nuclear medicine standpoint. Highlights of the book include in addition to the cardiac scan the description of aerosol lung imaging in COPD and other important pulmonary diseases and the updates on breast and lung cancer imaging, as well as imaging of the bony thorax and esophagus. It is required reading not only for nuclear medicine practitioners and researchers but also for all interested radiologists, traumatologists, pulmonologists, oncologists and cardiologists. (orig.)

  16. Nuclear medicine. Medical technology research

    International Nuclear Information System (INIS)

    Lerch, H.; Jigalin, A.

    2005-01-01

    Aim, method: the scientific publications in the 2003 and 2004 issues of the journal Nuklearmedizin were analyzed retrospectively with regard to the proportion of medical technology research. Results: out of a total of 73 articles examined, 9 (12%) were classified as medical technology research, that is, 8/15 of the original papers (16%) and one of the case reports (5%). Of these 9 articles, 44% (4/9) focused on the combination of molecular and morphological imaging with direct technical appliance or information technology solutions. Conclusion: medical technology research is limited in the journal's catchment area. The reason for this is related to the interdependency between divergent development dynamics in the medical technology industry's locations, the many years that the area of scintigraphic technology has been underrepresented, research policy particularly in discrepancies in the promotion of molecular imaging and a policy in which health is not perceived as a predominantly good and positive economic factor, but more as a curb to economic development. (orig.)

  17. Nuclear medicine imaging instrumentations for molecular imaging

    International Nuclear Information System (INIS)

    Chung, Yong Hyun; Song, Tae Yong; Choi, Yong

    2004-01-01

    Small animal models are extensively utilized in the study of biomedical sciences. Current animal experiments and analysis are largely restricted to in vitro measurements and need to sacrifice animals to perform tissue or molecular analysis. This prevents researchers from observing in vivo the natural evolution of the process under study. Imaging techniques can provide repeatedly in vivo anatomic and molecular information noninvasively. Small animal imaging systems have been developed to assess biological process in experimental animals and increasingly employed in the field of molecular imaging studies. This review outlines the current developments in nuclear medicine imaging instrumentations including fused multi-modality imaging systems for small animal imaging

  18. Converting energy to medical progress [nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-04-01

    For over 50 years the Office of Biological and Environmental Research (BER) of the United States Department of Energy (DOE) has been investing to advance environmental and biomedical knowledge connected to energy. The BER Medical Sciences program fosters research to develop beneficial applications of nuclear technologies for medical diagnosis and treatment of many diseases. Today, nuclear medicine helps millions of patients annually in the United States. Nearly every nuclear medicine scan or test used today was made possible by past BER-funded research on radiotracers, radiation detection devices, gamma cameras, PET and SPECT scanners, and computer science. The heart of biological research within BER has always been the pursuit of improved human health. The nuclear medicine of tomorrow will depend greatly on today's BER-supported research, particularly in the discovery of radiopharmaceuticals that seek specific molecular and genetic targets, the design of advanced scanners needed to create meaningful images with these future radiotracers, and the promise of new radiopharmaceutical treatments for cancers and genetic diseases.

  19. Converting energy to medical progress [nuclear medicine

    International Nuclear Information System (INIS)

    2001-01-01

    For over 50 years the Office of Biological and Environmental Research (BER) of the United States Department of Energy (DOE) has been investing to advance environmental and biomedical knowledge connected to energy. The BER Medical Sciences program fosters research to develop beneficial applications of nuclear technologies for medical diagnosis and treatment of many diseases. Today, nuclear medicine helps millions of patients annually in the United States. Nearly every nuclear medicine scan or test used today was made possible by past BER-funded research on radiotracers, radiation detection devices, gamma cameras, PET and SPECT scanners, and computer science. The heart of biological research within BER has always been the pursuit of improved human health. The nuclear medicine of tomorrow will depend greatly on today's BER-supported research, particularly in the discovery of radiopharmaceuticals that seek specific molecular and genetic targets, the design of advanced scanners needed to create meaningful images with these future radiotracers, and the promise of new radiopharmaceutical treatments for cancers and genetic diseases

  20. Introduction to Medical Image Analysis

    DEFF Research Database (Denmark)

    Paulsen, Rasmus Reinhold; Moeslund, Thomas B.

    of the book is to present the fascinating world of medical image analysis in an easy and interesting way. Compared to many standard books on image analysis, the approach we have chosen is less mathematical and more casual. Some of the key algorithms are exemplified in C-code. Please note that the code...

  1. Medical image telecommunication

    International Nuclear Information System (INIS)

    Handmaker, H.; Bennington, J.L.; Lloyd, R.W.; Caspe, R.A.

    1986-01-01

    After years of waiting for Picture Archiving and Communication Systems (PACS) to become technologically mature and readily available at competitive costs, it appears that the ingredients are now available for producing at least the telecommunication component of the PACS. They are as follows: 1. A variety of pathways now exist for long-distance high-speed digital data transmission at acceptable costs. 2. Developments in computer technology and keen competition in the microcomputer and video display markets have markedly reduced to costs for components of digital data terminals. 3. The volume of native digitally acquired images is expanding yearly, whereas at the same time the pressure for converting images acquired in analog format to digital format is increasing. 4. The advantages of and potential for processing and storing imaging data in digital format are becoming more widely recognized. These factors, individually and collectively, favor the successful applications of image telecommunication to the field of diagnostic imaging. The authors have attempted to provide an overview of the subject and the basics of this emerging technology

  2. Developments in medical imaging techniques

    International Nuclear Information System (INIS)

    Kramer, Cornelis

    1979-01-01

    A review of the developments in medical imaging in the past 25 years shows a strong increase in the number of physical methods which have become available for obtaining images of diagnostic value. It is shown that despite this proliferation of methods the equipment used for obtaining the images can be based on a common structure. Also the resulting images can be characterized by a few relevant parameters which indicate their information content. On the basis of this common architecture a study is made of the potential capabilities of the large number of medical imaging techniques available now and in the future. Also the requirements and possibilities for handling the images obtained and for controlling the diagnostic systems are investigated [fr

  3. Evaluation Of Medical Fluoroscopy Imaging

    International Nuclear Information System (INIS)

    Hartana, Budi; Santoso

    2000-01-01

    It has been done to evaluate image system of medical fluoroscopic machine by Leeds Test Object (LTO). Two x-ray potentials of 70 kV and 40-60 kV were used to evaluate image by LTO on monitor and oscilloscope. Performance of imaging system decreased for some parameters of video signal, linearity of television scan, contras threshold of 4.5%, distortion integral of 65.1%, and focus uniformity decrease to edge image. Comparison of field diameter of television image to intensifier field vertically and horizontally were respectively 221:230 and 205:230, symmetrically vignetting, spatial resolution limit is 1.26 lp/mm

  4. Imaging techniques for medical diagnosis

    International Nuclear Information System (INIS)

    Gudden, F.

    1982-01-01

    In the last few decades, science, engineering and medicine have combinded to improve the quality of our lives to a level previously unimagined. Within the framework of medical engineering - the field of activity of the Medical Engineering Group of Siemens AG - diagnostic image-generating systems have played an important role in effecting these changes and improvements. The importance of these systems to the success of the Group is clearly evident. Diagnostic imaging systems account for 65% of the sales achieved by this Group. In this article an overview is presented of the major innovations and the aims of developments in the field of imaging systems. (orig.)

  5. Novel medical image enhancement algorithms

    Science.gov (United States)

    Agaian, Sos; McClendon, Stephen A.

    2010-01-01

    In this paper, we present two novel medical image enhancement algorithms. The first, a global image enhancement algorithm, utilizes an alpha-trimmed mean filter as its backbone to sharpen images. The second algorithm uses a cascaded unsharp masking technique to separate the high frequency components of an image in order for them to be enhanced using a modified adaptive contrast enhancement algorithm. Experimental results from enhancing electron microscopy, radiological, CT scan and MRI scan images, using the MATLAB environment, are then compared to the original images as well as other enhancement methods, such as histogram equalization and two forms of adaptive contrast enhancement. An image processing scheme for electron microscopy images of Purkinje cells will also be implemented and utilized as a comparison tool to evaluate the performance of our algorithm.

  6. Medical imaging V

    International Nuclear Information System (INIS)

    Loew, M.H.

    1991-01-01

    This book is covered under the following topics: preprocessing and enhancement 1-3; segmentation, feature extraction, and detection 1-2; hardware and software systems for display; and user interface; MRI; MRI and PET; 3-D; image reconstruction, modeling, description, and coding; and knowledge-based methods

  7. Medical Imaging Informatics.

    Science.gov (United States)

    Hsu, William; El-Saden, Suzie; Taira, Ricky K

    2016-01-01

    Imaging is one of the most important sources of clinically observable evidence that provides broad coverage, can provide insight on low-level scale properties, is noninvasive, has few side effects, and can be performed frequently. Thus, imaging data provides a viable observable that can facilitate the instantiation of a theoretical understanding of a disease for a particular patient context by connecting imaging findings to other biologic parameters in the model (e.g., genetic, molecular, symptoms, and patient survival). These connections can help inform their possible states and/or provide further coherent evidence. The field of radiomics is particularly dedicated to this task and seeks to extract quantifiable measures wherever possible. Example properties of investigation include genotype characterization, histopathology parameters, metabolite concentrations, vascular proliferation, necrosis, cellularity, and oxygenation. Important issues within the field include: signal calibration, spatial calibration, preprocessing methods (e.g., noise suppression, motion correction, and field bias correction), segmentation of target anatomic/pathologic entities, extraction of computed features, and inferencing methods connecting imaging features to biological states.

  8. Nuclear medicine imaging system

    Science.gov (United States)

    Bennett, Gerald W.; Brill, A. Bertrand; Bizais, Yves J. C.; Rowe, R. Wanda; Zubal, I. George

    1986-01-01

    A nuclear medicine imaging system having two large field of view scintillation cameras mounted on a rotatable gantry and being movable diametrically toward or away from each other is disclosed. In addition, each camera may be rotated about an axis perpendicular to the diameter of the gantry. The movement of the cameras allows the system to be used for a variety of studies, including positron annihilation, and conventional single photon emission, as well as static orthogonal dual multi-pinhole tomography. In orthogonal dual multi-pinhole tomography, each camera is fitted with a seven pinhole collimator to provide seven views from slightly different perspectives. By using two cameras at an angle to each other, improved sensitivity and depth resolution is achieved. The computer system and interface acquires and stores a broad range of information in list mode, including patient physiological data, energy data over the full range detected by the cameras, and the camera position. The list mode acquisition permits the study of attenuation as a result of Compton scatter, as well as studies involving the isolation and correlation of energy with a range of physiological conditions.

  9. Luminescence in medical image science

    Energy Technology Data Exchange (ETDEWEB)

    Kandarakis, I.S., E-mail: kandarakis@teiath.gr

    2016-01-15

    Radiation detection in Medical Imaging is mostly based on the use of luminescent materials (scintillators and phosphors) coupled to optical sensors. Materials are employed in the form of granular screens, structured (needle-like) crystals and single crystal transparent blocks. Storage phosphors are also incorporated in some x-ray imaging plates. Description of detector performance is currently based on quality metrics, such as the Luminescence efficiency, the Modulation Transfer Function (MTF), the Noise Power Spectrum (NPS) and the Detective Quantum Efficiency (DQE) can be defined and evaluated. The aforementioned metrics are experimental evaluated for various materials in the form of screens. A software was designed (MINORE v1) to present image quality measurements in a graphical user interface (GUI) environment. Luminescence efficiency, signal and noise analysis are valuable tools for the evaluation of luminescent materials as candidates for medical imaging detectors. - Highlights: • Luminescence based medical imaging detectors. • Image science: MTF, NPS, DQE. • Phosphors screens light emission efficiency experimental evaluation. • Theoretical models for estimation of phosphor screen properties. • Software for medical image quality metrics.

  10. Nuclear Medicine Imaging

    Science.gov (United States)

    ... necesita saber acerca de... Estudios de Imagen de Medicina Nuclear Un procedimiento de medicina nuclear se describe algunas veces como unos rayos- ... través del cuerpo del paciente. Los procedimientos de medicina nuclear utilizan pequeñas cantidades de mate- riales radiactivos, ...

  11. Medical gamma ray imaging

    Science.gov (United States)

    Osborne, Louis S.; Lanza, Richard C.

    1984-01-01

    A method and apparatus for determining the distribution of a position-emitting radioisotope into an object, the apparatus consisting of a wire mesh radiation converter, an ionizable gas for propagating ionization events caused by electrodes released by the converter, a drift field, a spatial position detector and signal processing circuitry for correlating near-simultaneous ionization events and determining their time differences, whereby the position sources of back-to-back collinear radiation can be located and a distribution image constructed.

  12. Stereoscopic medical imaging collaboration system

    Science.gov (United States)

    Okuyama, Fumio; Hirano, Takenori; Nakabayasi, Yuusuke; Minoura, Hirohito; Tsuruoka, Shinji

    2007-02-01

    The computerization of the clinical record and the realization of the multimedia have brought improvement of the medical service in medical facilities. It is very important for the patients to obtain comprehensible informed consent. Therefore, the doctor should plainly explain the purpose and the content of the diagnoses and treatments for the patient. We propose and design a Telemedicine Imaging Collaboration System which presents a three dimensional medical image as X-ray CT, MRI with stereoscopic image by using virtual common information space and operating the image from a remote location. This system is composed of two personal computers, two 15 inches stereoscopic parallax barrier type LCD display (LL-151D, Sharp), one 1Gbps router and 1000base LAN cables. The software is composed of a DICOM format data transfer program, an operation program of the images, the communication program between two personal computers and a real time rendering program. Two identical images of 512×768 pixcels are displayed on two stereoscopic LCD display, and both images show an expansion, reduction by mouse operation. This system can offer a comprehensible three-dimensional image of the diseased part. Therefore, the doctor and the patient can easily understand it, depending on their needs.

  13. Medical Image Data Compression

    OpenAIRE

    Šebek, Jiří

    2012-01-01

    Práce zkoumá, jak se projeví účinek různých komprimačních algoritmů na obrazových datech v medicíně. Snaží se najít algoritmus nebo skupinu algoritmů, které budou mít největší kompresní účinek. Kromě použití klasických algoritmů je snaha využít vlastností medicínských dat (tj. že obsahují hodně podobných obrazových bodů) pro jejich lepší kompresi. Ověříme si účinnek delta kódování na výsledný kompresní poměr a na závěr uvedeme naši nejlepší nalezenou metodu. The efficiency of various compr...

  14. Images of nuclear power plants

    International Nuclear Information System (INIS)

    Hashiguchi, Katsuhisa; Misumi, Jyuji; Yamada, Akira; Sakurai, Yukihiro; Seki, Fumiyasu; Shinohara, Hirofumi; Misumi, Emiko; Kinjou, Akira; Kubo, Tomonori.

    1995-01-01

    This study was conducted to check and see, using Hayashi's quantification method III, whether or not the respondents differed in their images of a nuclear power plant, depending on their demographic variables particularly occupations. In our simple tabulation, we compared subject groups of nuclear power plant employees with general citizens, nurses and students in terms of their images of a nuclear power plant. The results were that while the nuclear power plant employees were high in their evaluations of facts about a nuclear power plant and in their positive images of a nuclear power plant, general citizens, nurses and students were overwhelmingly high in their negative images of a nuclear power plant. In our analysis on category score by means of the quantification method III, the first correlation axis was the dimension of 'safety'-'danger' and the second correlation axis was the dimension of 'subjectivity'-'objectivity', and that the first quadrant was the area of 'safety-subjectivity', the second quadrant was the area of 'danger-subjectivity', the third quadrant as the area of 'danger-objectivity', and the forth quadrant was the area of 'safety-objectivity'. In our analysis of sample score, 16 occupation groups was compared. As a result, it was found that the 16 occupation groups' images of a nuclear power plant were, in the order of favorableness, (1) section chiefs in charge, maintenance subsection chiefs, maintenance foremen, (2) field leaders from subcontractors, (3) maintenance section members, operation section members, (4) employees of those subcontractors, (5) general citizens, nurses and students. On the 'safety-danger' dimension, nuclear power plant workers on the one hand and general citizens, nurses and students on the other were clearly divided in terms of their images of a nuclear power plant. Nuclear power plant workers were concentrated in the area of 'safety' and general citizens, nurses and students in the area of 'danger'. (J.P.N.)

  15. Army medical imaging system: ARMIS

    International Nuclear Information System (INIS)

    Siedband, M.P.; Kramp, D.C.

    1987-01-01

    Recent advances of stimulable phosphor screens, data cards using optical storage means, and new personal computers with image processing capability have made possible the design of economical filmless medical imaging systems. The addition of communication links means that remote interpretation of images is also possible. The Army Medical Imaging System uses stimulable phosphor screens, digital readout, a small computer, an optical digital data card device, and a DIN/PACS link. Up to 200 images can be stored in the computer hard disk for rapid recall and reading by the radiologist. The computer permits image processing, annotation, insertion of text, and control of the system. Each device contains an image storage RAM and communicates with the computer via the small computer systems interface. Data compression is used to reduce the required storage capacity and transmission times of the 1-mB images. The credit card-size optical data cards replace film and can store 12 or more images. The data cards can be read on an independent viewer. The research is supported by the U.S. Army Biomedical Research and Development Laboratory

  16. Invitation to medical image processing

    International Nuclear Information System (INIS)

    Kitasaka, Takayuki; Suenaga, Yasuhito; Mori, Kensaku

    2010-01-01

    This medical essay explains the present state of CT image processing technology about its recognition, acquisition and visualization for computer-assisted diagnosis (CAD) and surgery (CAS), and future view. Medical image processing has a series of history of its original start from the discovery of X-ray to its application to diagnostic radiography, its combination with the computer for CT, multi-detector raw CT, leading to 3D/4D images for CAD and CAS. CAD is performed based on the recognition of normal anatomical structure of human body, detection of possible abnormal lesion and visualization of its numerical figure into image. Actual instances of CAD images are presented here for chest (lung cancer), abdomen (colorectal cancer) and future body atlas (models of organs and diseases for imaging), a recent national project: computer anatomy. CAS involves the surgical planning technology based on 3D images, navigation of the actual procedure and of endoscopy. As guidance to beginning technological image processing, described are the national and international community like related academic societies, regularly conducting congresses, textbooks and workshops, and topics in the field like computed anatomy of an individual patient for CAD and CAS, its data security and standardization. In future, protective medicine is in authors' view based on the imaging technology, e.g., daily life CAD of individuals ultimately, as exemplified in the present body thermometer and home sphygmometer, to monitor one's routine physical conditions. (T.T.)

  17. Physics instrumentation for medical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Townsend, D. W. [Geneva University Hospital, Geneva (Switzerland)

    1993-04-15

    The first Nobel Physics Prize, awarded in 1901, went to Wilhelm Röntgen for his discovery of X-rays in 1895. This, and the most recent physics Nobel, to Georges Charpak last year for his detector developments, span several generations of applied science. As well as helping to launch the science of atomic physics, Röntgen's discovery also marked the dawn of a medical science - radiography - using beams of various kinds to image what otherwise cannot be seen. Ever since, physicists and radiologists have worked hand in hand to improve imaging techniques and widen their medical applications.

  18. Physics instrumentation for medical imaging

    International Nuclear Information System (INIS)

    Townsend, D.W.

    1993-01-01

    The first Nobel Physics Prize, awarded in 1901, went to Wilhelm Röntgen for his discovery of X-rays in 1895. This, and the most recent physics Nobel, to Georges Charpak last year for his detector developments, span several generations of applied science. As well as helping to launch the science of atomic physics, Röntgen's discovery also marked the dawn of a medical science - radiography - using beams of various kinds to image what otherwise cannot be seen. Ever since, physicists and radiologists have worked hand in hand to improve imaging techniques and widen their medical applications

  19. Evidence based medical imaging (EBMI)

    International Nuclear Information System (INIS)

    Smith, Tony

    2008-01-01

    Background: The evidence based paradigm was first described about a decade ago. Previous authors have described a framework for the application of evidence based medicine which can be readily adapted to medical imaging practice. Purpose: This paper promotes the application of the evidence based framework in both the justification of the choice of examination type and the optimisation of the imaging technique used. Methods: The framework includes five integrated steps: framing a concise clinical question; searching for evidence to answer that question; critically appraising the evidence; applying the evidence in clinical practice; and, evaluating the use of revised practices. Results: This paper illustrates the use of the evidence based framework in medical imaging (that is, evidence based medical imaging) using the examples of two clinically relevant case studies. In doing so, a range of information technology and other resources available to medical imaging practitioners are identified with the intention of encouraging the application of the evidence based paradigm in radiography and radiology. Conclusion: There is a perceived need for radiographers and radiologists to make greater use of valid research evidence from the literature to inform their clinical practice and thus provide better quality services

  20. Motion correction in medical imaging.

    OpenAIRE

    Smith, Rhodri

    2017-01-01

    It is estimated that over half of current adults within Great Britain under the age of 65 will be diagnosed with cancer at some point in their lifetime. Medical Imaging forms an essential part of cancer clinical protocols and is able to furnish morphological, metabolic and functional information. The imaging of molecular interactions of biological processes in vivo with Positron Emission Tomography (PET) is informative not only for disease detection but also therapeutic response. The qualitat...

  1. Medical assistance in case of nuclear accident

    International Nuclear Information System (INIS)

    Dodig, D.; Tezak, S.; Kasal, B.; Huic, D.; Medvedec, M.; Loncaric, S.; Grosev, D.; Rozman, B.; Popovic, S.

    1996-01-01

    Medical service is a prerequisite for work license of nuclear installation. Every nuclear installation incorporate in their safety procedure also medical emergency plan. Usually the medical emergency plan consists of several degrees of action: 1. First aid, 2. First medical treatment, 3. Treatment in regional hospital, 4. Treatment in special institution (centre for radiation medicine). This paper discusses organization and activities of Centre for Radiation Medicine and Protection - Clinical Hospital Centre Zagreb

  2. The medical consequences of nuclear weapons

    International Nuclear Information System (INIS)

    Humphrey, J.; Hartog, M.; Middleton, H.

    1982-01-01

    A pamphlet has been produced by the Medical Campaign Against Nuclear Weapons (MCANW) and by the Medical Association for the Prevention of War (MAPW) to bring the catastrophic effects that the use of nuclear weapons would entail to the attention of the general public, politicians and members of the medical profession. It describes the medical consequences of the effects of blast, heat and ionizing radiation from nuclear weapons, including details from the Hiroshima and Nagasaki atomic bombings. The medical consequences of a nuclear attack including consideration of the casualties, care of the injured, psychological effects and the outcome are also discussed. It is concluded that if for none other than purely medical reasons, nuclear warfare must never be allowed to happen. (UK)

  3. Nuclear medicine imaging. An encyclopedic dictionary

    International Nuclear Information System (INIS)

    Thie, Joseph A.

    2012-01-01

    The rapidly growing and somewhat complex area of nuclear medicine imaging receives only limited attention in broad-based medical dictionaries. This encyclopedic dictionary is intended to fill the gap. More than 400 entries of between one and three paragraphs are included, defining and carefully explaining terms in an appropriate degree of detail. The dictionary encompasses concepts used in planar, SPECT, and PET imaging protocols and covers both scanner operations and popular data analysis approaches. In spite of the mathematical complexities in the acquisition and analysis of images, the explanations given are kept simple and easy to understand; in addition, many helpful concrete examples are provided. Nuclear Medicine Imaging: An Encyclopedic Dictionary will be ideal for those who wish to obtain a rapid grasp of a concept beyond a definition of a few words but do not want to resort to a time-consuming search of the reference literature. The almost tutorial-like style accommodates the needs of students, nuclear medicine technologists, and varieties of other medical professionals who interface with specialists within nuclear medicine.

  4. Introduction to Medical Image Analysis

    DEFF Research Database (Denmark)

    Paulsen, Rasmus Reinhold; Moeslund, Thomas B.

    This book is a result of a collaboration between DTU Informatics at the Technical University of Denmark and the Laboratory of Computer Vision and Media Technology at Aalborg University. It is partly based on the book ”Image and Video Processing”, second edition by Thomas Moeslund. The aim...... of the book is to present the fascinating world of medical image analysis in an easy and interesting way. Compared to many standard books on image analysis, the approach we have chosen is less mathematical and more casual. Some of the key algorithms are exemplified in C-code. Please note that the code...

  5. Knowledge in Radiation Protection: a Survey of Professionals in Medical Imaging, Radiation Therapy and Nuclear Medicine Units in Yaounde

    International Nuclear Information System (INIS)

    Ongolo-Zogo, P.; Nguehouo, M.B.; Yomi, J.; Nko'o Amven, S.

    2013-01-01

    Medical use of ionizing radiation is now the most common radiation source of the population at the global level. The knowledge and practices of health professionals working with X-rays determine the level and quality of implementation of internationally and nationally recommended measures for radiation protection of patients and workers. The level of implementation and enforcement of international recommendations in African countries is an issue of concern due to weak laws and regulations and regulatory bodies. We report the results of a cross-sectional survey of health professionals working with ionizing radiation in Yaounde, the capital city of Cameroon. More than 50% of these professionals have a moderate level of knowledge of the norms and principles of radiation protection and more than 80% have never attended a continuing professional development workshop on radiation protection. (authors)

  6. Images compression in nuclear medicine

    International Nuclear Information System (INIS)

    Rebelo, M.S.; Furuie, S.S.; Moura, L.

    1992-01-01

    The performance of two methods for images compression in nuclear medicine was evaluated. The LZW precise, and Cosine Transformed, approximate, methods were analyzed. The results were obtained, showing that the utilization of approximated method produced images with an agreeable quality for visual analysis and compression rates, considerably high than precise method. (C.G.C.)

  7. IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE 15-20 OCTOBER 2000 PALAIS DES CONGRES, LYON, FRANCE

    CERN Multimedia

    2000-01-01

    The IEEE NSS & MIC will be held this year in Europe for the first time in its more than 40 year history. Some 280 oral and 400 poster presentations on radiation detectors, instrumentation and imaging will be given over the five days of the conferences. In addition there is a rich programme of keynote talks, topical workshops, short courses and an industrial exhibition with more than 50 exhibitors. SHORT COURSES Following a long and successful tradition, several tutorial short courses, delivered by known experts in the specific fields, are being offered to registered students. There are still places available to attend the courses on Solid State Detectors, Particle Identification and Detectors for Astrophysics. These intensive one-day tutorials will be given on Sunday October 15. Full details and registration information can be found on the conference web site or from the Short Courses Organiser, Fabio Sauli, CERN. A limited amount of financial support is available for motivated scholars who may not ot...

  8. The future of medical imaging

    International Nuclear Information System (INIS)

    Maidment, A. D. A.

    2010-01-01

    The organisers of this conference have kindly provided me with the forum to look forward and examine the future of medical imaging. My view of the future is informed by my own research directions; thus, I illustrate my vision of the future with results from my own research, and from the research that has motivated me over the last few years. As such, the results presented are specific to the field of breast imaging; however, I believe that the trends presented have general applicability, and hope that this discourse will motivate new research. My vision of the future can be summarised in accordance with three broad trends: (1) increased prevalence of low-dose tomographic X-ray imaging; (2) continuing advances in functional and molecular X-ray imaging; and (3) novel image-based bio-marker discovery. (authors)

  9. Historic images in nuclear medicine

    DEFF Research Database (Denmark)

    Hess, Søren; Høilund-Carlsen, Poul Flemming; Alavi, Abass

    2014-01-01

    In 1976, 2 major molecular imaging events coincidentally took place: Clinical Nuclear Medicine was first published in June, and in August researchers at the Hospital of the University of Pennsylvania created the first images in humans with F-FDG. FDG was initially developed as part of an evolution...... set in motion by fundamental research studies with positron-emitting tracers in the 1950s by Michel Ter-Pegossian and coworkers at the Washington University. Today, Clinical Nuclear Medicine is a valued scientific contributor to the molecular imaging community, and FDG PET is considered the backbone...

  10. Moonshot Acceleration Factor: Medical Imaging.

    Science.gov (United States)

    Sevick-Muraca, Eva M; Frank, Richard A; Giger, Maryellen L; Mulshine, James L

    2017-11-01

    Medical imaging is essential to screening, early diagnosis, and monitoring responses to cancer treatments and, when used with other diagnostics, provides guidance for clinicians in choosing the most effective patient management plan that maximizes survivorship and quality of life. At a gathering of agency officials, patient advocacy organizations, industry/professional stakeholder groups, and clinical/basic science academicians, recommendations were made on why and how one should build a "cancer knowledge network" that includes imaging. Steps to accelerate the translation and clinical adoption of cancer discoveries to meet the goals of the Cancer Moonshot include harnessing computational power and architectures, developing data sharing policies, and standardizing medical imaging and in vitro diagnostics. Cancer Res; 77(21); 5717-20. ©2017 AACR . ©2017 American Association for Cancer Research.

  11. Medical consequences of a nuclear plant accident

    International Nuclear Information System (INIS)

    Olsson, S.E.; Reizenstein, P.; Stenke, L.

    1987-01-01

    The report gives background information concerning radiation and the biological medical effects and damages caused by radiation. The report also discusses nuclear power plant accidents and efforts from the medical service in the case of a nuclear power plant accident. (L.F.)

  12. Medical applications in a nuclear research centre

    International Nuclear Information System (INIS)

    Vanhavere, F.; Eggermont, G.

    2001-01-01

    In these days of public aversion to nuclear power, it can be important to point at the medical applications of ionising radiation. Not only the general public, but also the authorities and research centres have to be aware of these medical applications, which are not without risk for public health. Now that funding for nuclear research is declining, an opening to the medical world can give new opportunities to a nuclear research centre. A lot of research could be done where the tools developed for the nuclear power world are very useful. Even new applications for the research reactors like BNCT (boron neutron capture therapy) can be envisaged for the near future. In this contribution an overview will be given of the different techniques used in the medical world with ionising radiation. The specific example of the Belgian Nuclear Research Centre will be given where the mission statement was changed to include a certain number of medical research topics. (authors)

  13. Artificial intelligence as a diagnostic adjunct in cardiovascular nuclear imaging

    International Nuclear Information System (INIS)

    Duncan, J.S.

    1988-01-01

    The radiologist and/or nuclear medicine physician is literally bombarded with information from today's diagnostic imaging technologies. As a consequence of this, whereas a decade ago the emphasis in medical image analysis was on improving the extraction of diagnostic information by developing and using more sophisticated imaging modalities, today those working on the development of medical imaging technology are struggling to find ways to handle all gathered information effectively. This chapter gives an introduction to the area of artificial intelligence, with an emphasis on the research ongoing in cardiovascular nuclear imaging. This chapter has reviewed the place of artificial intelligence in cardiovascular nuclear imaging. It is intended to provide a general sense of this new and emerging field, an insight into some of its specific methodologies and applications, and a closer look at the several AI approaches currently being applied in cardiovascular nuclear imaging

  14. Medical imaging, PACS, and imaging informatics: retrospective.

    Science.gov (United States)

    Huang, H K

    2014-01-01

    Historical reviews of PACS (picture archiving and communication system) and imaging informatics development from different points of view have been published in the past (Huang in Euro J Radiol 78:163-176, 2011; Lemke in Euro J Radiol 78:177-183, 2011; Inamura and Jong in Euro J Radiol 78:184-189, 2011). This retrospective attempts to look at the topic from a different angle by identifying certain basic medical imaging inventions in the 1960s and 1970s which had conceptually defined basic components of PACS guiding its course of development in the 1980s and 1990s, as well as subsequent imaging informatics research in the 2000s. In medical imaging, the emphasis was on the innovations at Georgetown University in Washington, DC, in the 1960s and 1970s. During the 1980s and 1990s, research and training support from US government agencies and public and private medical imaging manufacturers became available for training of young talents in biomedical physics and for developing the key components required for PACS development. In the 2000s, computer hardware and software as well as communication networks advanced by leaps and bounds, opening the door for medical imaging informatics to flourish. Because many key components required for the PACS operation were developed by the UCLA PACS Team and its collaborative partners in the 1980s, this presentation is centered on that aspect. During this period, substantial collaborative research efforts by many individual teams in the US and in Japan were highlighted. Credits are due particularly to the Pattern Recognition Laboratory at Georgetown University, and the computed radiography (CR) development at the Fuji Electric Corp. in collaboration with Stanford University in the 1970s; the Image Processing Laboratory at UCLA in the 1980s-1990s; as well as the early PACS development at the Hokkaido University, Sapporo, Japan, in the late 1970s, and film scanner and digital radiography developed by Konishiroku Photo Ind. Co. Ltd

  15. Machine Learning in Medical Imaging.

    Science.gov (United States)

    Giger, Maryellen L

    2018-03-01

    Advances in both imaging and computers have synergistically led to a rapid rise in the potential use of artificial intelligence in various radiological imaging tasks, such as risk assessment, detection, diagnosis, prognosis, and therapy response, as well as in multi-omics disease discovery. A brief overview of the field is given here, allowing the reader to recognize the terminology, the various subfields, and components of machine learning, as well as the clinical potential. Radiomics, an expansion of computer-aided diagnosis, has been defined as the conversion of images to minable data. The ultimate benefit of quantitative radiomics is to (1) yield predictive image-based phenotypes of disease for precision medicine or (2) yield quantitative image-based phenotypes for data mining with other -omics for discovery (ie, imaging genomics). For deep learning in radiology to succeed, note that well-annotated large data sets are needed since deep networks are complex, computer software and hardware are evolving constantly, and subtle differences in disease states are more difficult to perceive than differences in everyday objects. In the future, machine learning in radiology is expected to have a substantial clinical impact with imaging examinations being routinely obtained in clinical practice, providing an opportunity to improve decision support in medical image interpretation. The term of note is decision support, indicating that computers will augment human decision making, making it more effective and efficient. The clinical impact of having computers in the routine clinical practice may allow radiologists to further integrate their knowledge with their clinical colleagues in other medical specialties and allow for precision medicine. Copyright © 2018. Published by Elsevier Inc.

  16. NANOPARTICLES IN NUCLEAR IMAGING

    Directory of Open Access Journals (Sweden)

    Dr. Vicky V Mody PhD

    2011-01-01

    Full Text Available The present review article summarizes the current state radiolabeled nanoparticles for molecular imaging applications mainly targeting cancer. Due to their enormous flexibility, and versatility the radiolabeled nanoparticles have shown their potential in the diagnosis and therapy. As the matter of fact, these radiolabeled imaging agents enable the visualization of the cellular function and the follow-up of the molecular process in living organisms. Moreover, the rapidly advancing field of nanotechnology has provided various innovative radionuclides and delivery systems, such as liposomes, magnetic agents, polymers, dendrimers, quantum dots, and carbon nanotubes to cope up with the hurdles which have been posed by various disease states.

  17. Building a medical system for nuclear facilities

    International Nuclear Information System (INIS)

    Maeda, Mitsuya

    2016-01-01

    To build a medical system for nuclear facilities, I explained what kinds of actions were performed with the TEPCO Fukushima Daiichi Nuclear Power Plant Accident and what kinds of actions are going to be performed in the future. We examined the health and medical care of the emergency workers in nuclear facilities including TEPCO Fukushima Daiichi Nuclear Power Plant from 2014 to 2015 in the Ministry of Health, Labour and Welfare (MHLW). We carried out a detailed hearing from stakeholders of electric companies and medical institutions about the medical system in nuclear facilities carrying out urgent activities. It has been said that the electric company is responsible to maintain the medical system for affected workers in nuclear facilities. However, TEPCO could not find the medical staff, such as doctors, by their own effort at the TEPCO Fukushima Daiichi Nuclear Power Plant Accident. The network of doctors familiar with emergency medical care support dispatched the medical staff after July of 2011. The stakeholders indicated that the following six tasks must be resolved: (1) the fact that no electric company performs the action of bringing up medical staff who can be dispatched into nuclear facilities in emergencies in 2015; (2) bringing up personnel in charge of radiation management and logistics other than the medical staff, such as doctors; (3) cooperation with the community medicine system given the light and shade by nuclear facilities; (4) performing training for the many concurrent wounded based on the scenario of a severe accident; (5) indicating both the condition of the contract and the guarantee of status that is appropriate for dispatched medical staffs; and (6) clarifying the organization of the network of stakeholders. The stakeholders showed the future directionality as follows: (1) To recruit the medical staff expected to be dispatched into nuclear facilities, (2) to carry out the discussion and conveyance training to strengthen cooperation with

  18. Filter's importance in nuclear cardiology imaging

    International Nuclear Information System (INIS)

    Jesus, Maria C. de; Lima, Ana L.S.; Santos, Joyra A. dos; Megueriam, Berdj A.

    2008-01-01

    Full text: Nuclear Medicine is a medical speciality which employs tomography procedures for the diagnosis, treatment and prevention of diseases. One of the most commonly used apparatus is the Single Photon Emission Computed Tomography (SPECT). To perform exams, a very small amount of a radiopharmaceutical must be given to the patient. Then, a gamma camera is placed in convenient positions to perform the photon counting, which is used to reconstruct a full 3 dimensional distribution of the radionuclide inside the body or organ. This reconstruction provides a 3-dimensional image in spatial coordinates, of the body or organ under study, allowing the physician to give the diagnostic. Image reconstruction is usually worked in the frequency domain, due to a great simplification introduced by the Fourier decomposition of image spectra. After the reconstruction, an inverse Fourier transform must be applied to trace back the image into spatial coordinates. To optimize this reconstruction procedure, digital filters are used to remove undesirable components of frequency, which can 'shadow' relevant physical signatures of diseases. Unfortunately, the efficiency of the applied filter is strongly dependent on its own mathematical parameters. In this work we demonstrate how filters interfere on image quality in cardiology examinations with SPECT, concerning perfusion and myocardial viability and the importance of the medical physicist in the choice of the right filters avoiding some serious problems that could occur in the inadequate processing of an image damaging the medical diagnosis. (author)

  19. Cerenkov luminescence imaging of medical isotopes.

    Science.gov (United States)

    Ruggiero, Alessandro; Holland, Jason P; Lewis, Jason S; Grimm, Jan

    2010-07-01

    The development of novel multimodality imaging agents and techniques represents the current frontier of research in the field of medical imaging science. However, the combination of nuclear tomography with optical techniques has yet to be established. Here, we report the use of the inherent optical emissions from the decay of radiopharmaceuticals for Cerenkov luminescence imaging (CLI) of tumors in vivo and correlate the results with those obtained from concordant immuno-PET studies. In vitro phantom studies were used to validate the visible light emission observed from a range of radionuclides including the positron emitters (18)F, (64)Cu, (89)Zr, and (124)I; beta-emitter (131)I; and alpha-particle emitter (225)Ac for potential use in CLI. The novel radiolabeled monoclonal antibody (89)Zr-desferrioxamine B [DFO]-J591 for immuno-PET of prostate-specific membrane antigen (PSMA) expression was used to coregister and correlate the CLI signal observed with the immuno-PET images and biodistribution studies. Phantom studies confirmed that Cerenkov radiation can be observed from a range of positron-, beta-, and alpha-emitting radionuclides using standard optical imaging devices. The change in light emission intensity versus time was concordant with radionuclide decay and was also found to correlate linearly with both the activity concentration and the measured PET signal (percentage injected dose per gram). In vivo studies conducted in male severe combined immune deficient mice bearing PSMA-positive, subcutaneous LNCaP tumors demonstrated that tumor-specific uptake of (89)Zr-DFO-J591 could be visualized by both immuno-PET and CLI. Optical and immuno-PET signal intensities were found to increase over time from 24 to 96 h, and biodistribution studies were found to correlate well with both imaging modalities. These studies represent the first, to our knowledge, quantitative assessment of CLI for measuring radiotracer uptake in vivo. Many radionuclides common to both nuclear

  20. Nuclear imaging in epilepsy

    International Nuclear Information System (INIS)

    Chun, Kyung Ah

    2007-01-01

    Correct localization of epileptogenic zone is important for the successful epilepsy surgery. Both ictal perfusion single photon emission computed tomography (SPECT) and interictal F-18 fluorodeoxyglucose positron emission tomography (FDG-PET) can provide useful information in the presurgical localization of intractable partial epilepsy. These imaging modalities have excellent diagnostic sensitivity in medial temporal lobe epilepsy and provide good presurgical information in neocortical epilepsy. Also provide functional information about cellular functions to better understand the neurobiology of epilepsy and to better define the ictal onset zone, symptomatogenic zone, propagation pathways, functional deficit zone and surround inhibition zones. Multimodality imaging and developments in analysis methods of ictal perfusion SPECT and new PET ligand other than FDG help to better define the localization

  1. Nuclear imaging in epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Kyung Ah [Yeungnam University Hospital, Daegu (Korea, Republic of)

    2007-04-15

    Correct localization of epileptogenic zone is important for the successful epilepsy surgery. Both ictal perfusion single photon emission computed tomography (SPECT) and interictal F-18 fluorodeoxyglucose positron emission tomography (FDG-PET) can provide useful information in the presurgical localization of intractable partial epilepsy. These imaging modalities have excellent diagnostic sensitivity in medial temporal lobe epilepsy and provide good presurgical information in neocortical epilepsy. Also provide functional information about cellular functions to better understand the neurobiology of epilepsy and to better define the ictal onset zone, symptomatogenic zone, propagation pathways, functional deficit zone and surround inhibition zones. Multimodality imaging and developments in analysis methods of ictal perfusion SPECT and new PET ligand other than FDG help to better define the localization.

  2. Radioisotopes and medical imaging in Sri Lanka

    International Nuclear Information System (INIS)

    Jayasinghe, J.M.A.C.

    1993-01-01

    The article deals with the use of X-rays and magnetic resonance imaging in medical diagnosis in its introduction. Then it elaborates on the facilities in the field of medical imaging for diagnosis, in Sri Lanka. The use of Technetium-99m in diagnostic medicine as well as the future of medical imaging in Sri Lanka is also dealt with

  3. Software for medical image based phantom modelling

    International Nuclear Information System (INIS)

    Possani, R.G.; Massicano, F.; Coelho, T.S.; Yoriyaz, H.

    2011-01-01

    Latest treatment planning systems depends strongly on CT images, so the tendency is that the dosimetry procedures in nuclear medicine therapy be also based on images, such as magnetic resonance imaging (MRI) or computed tomography (CT), to extract anatomical and histological information, as well as, functional imaging or activities map as PET or SPECT. This information associated with the simulation of radiation transport software is used to estimate internal dose in patients undergoing treatment in nuclear medicine. This work aims to re-engineer the software SCMS, which is an interface software between the Monte Carlo code MCNP, and the medical images, that carry information from the patient in treatment. In other words, the necessary information contained in the images are interpreted and presented in a specific format to the Monte Carlo MCNP code to perform the simulation of radiation transport. Therefore, the user does not need to understand complex process of inputting data on MCNP, as the SCMS is responsible for automatically constructing anatomical data from the patient, as well as the radioactive source data. The SCMS was originally developed in Fortran- 77. In this work it was rewritten in an object-oriented language (JAVA). New features and data options have also been incorporated into the software. Thus, the new software has a number of improvements, such as intuitive GUI and a menu for the selection of the energy spectra correspondent to a specific radioisotope stored in a XML data bank. The new version also supports new materials and the user can specify an image region of interest for the calculation of absorbed dose. (author)

  4. Structural analysis in medical imaging

    International Nuclear Information System (INIS)

    Dellepiane, S.; Serpico, S.B.; Venzano, L.; Vernazza, G.

    1987-01-01

    The conventional techniques in Pattern Recognition (PR) have been greatly improved by the introduction of Artificial Intelligence (AI) approaches, in particular for knowledge representation, inference mechanism and control structure. The purpose of this paper is to describe an image understanding system, based on the integrated approach (AI - PR), developed in the author's Department to interpret Nuclear Magnetic Resonance (NMR) images. The system is characterized by a heterarchical control structure and a blackboard model for the global data-base. The major aspects of the system are pointed out, with particular reference to segmentation, knowledge representation and error recovery (backtracking). The eye slices obtained in the case of two patients have been analyzed and the related results are discussed

  5. Teaching of nuclear medicine at medical faculties

    International Nuclear Information System (INIS)

    Dienstbier, Z.

    1987-01-01

    The teaching of nuclear medicine at medical faculties in the CSSR is analyzed. It is shown that the teaching conditions are different at the individual faculties of medicine and the respective conditions are exemplified. (author). 4 tabs

  6. Nuclear medical examinations in Marfan's syndrome

    International Nuclear Information System (INIS)

    D'haene, E.G.M.

    1985-01-01

    Four patients of one family with the Marfan's syndrome have been examined with nuclear medical techniques. A combination of isotopes, angiography and ECG triggered bloodpoolscintigraphy with echocardiography are very suitable to examine the course of the disease. (Auth.)

  7. Japan's contribution to nuclear medical research

    International Nuclear Information System (INIS)

    Rahman, M.; Sakamoto, Junichi; Fukui, Tsuguya

    2002-01-01

    We investigated the degree of Japan's contribution to the nuclear medical research in the last decade. Articles published in 1991-2000 in highly reputed nuclear medical journals were accessed through the MEDLINE database. The number of articles having affiliation with a Japanese institution was counted along with publication year. In addition, shares of top-ranking countries were determined along with their trends over time. Of the total number of articles (7,788), Japan's share of articles in selected nuclear medical journals was 11.4% (889 articles) and ranked 2nd in the world after the USA (2,645 articles). The recent increase in the share was statistically significant for Japan (p=0.02, test for trend). Japan's share in nuclear medical research output is much higher than that in other biomedical fields. (author)

  8. Structure of the medical digital image

    International Nuclear Information System (INIS)

    Baltadzhiev, D.

    1997-01-01

    In up-to-date medical practice diagnostic imaging techniques are the most powerful tools available to clinicians. The modern medical equipment is entirely based on digital technology. In this article the principle of generating medical images is presented. The concept for gray scale where medical images are commonly presented is described. The patterns of gray images transformation into colour scale are likewise outlined. Basic notions from medical imaging terminology such as image matrix, pixel, spatial and contrast resolution power, bit, byte and the like are explained. Also an example is given of how the binary system treats images. On the basis of digital technology the obtained medical images lend themselves readily to additional processing, reconstruction (including 3D) and storage for subsequent utilization. The ceaseless progress of computerized communications promote easy and prompt access for clinicians to the diagnostic images needed as well as realization of expert consultations by teleconference contact (author)

  9. Cloud computing in medical imaging.

    Science.gov (United States)

    Kagadis, George C; Kloukinas, Christos; Moore, Kevin; Philbin, Jim; Papadimitroulas, Panagiotis; Alexakos, Christos; Nagy, Paul G; Visvikis, Dimitris; Hendee, William R

    2013-07-01

    Over the past century technology has played a decisive role in defining, driving, and reinventing procedures, devices, and pharmaceuticals in healthcare. Cloud computing has been introduced only recently but is already one of the major topics of discussion in research and clinical settings. The provision of extensive, easily accessible, and reconfigurable resources such as virtual systems, platforms, and applications with low service cost has caught the attention of many researchers and clinicians. Healthcare researchers are moving their efforts to the cloud, because they need adequate resources to process, store, exchange, and use large quantities of medical data. This Vision 20/20 paper addresses major questions related to the applicability of advanced cloud computing in medical imaging. The paper also considers security and ethical issues that accompany cloud computing.

  10. Medical applications of the nuclear energy

    International Nuclear Information System (INIS)

    Ugarte, Valentin E.

    2001-01-01

    The Nuclear Medicine School Foundation, in Mendoza (Argentina) was created in 1986 by the National Atomic Energy Commission (CNEA) and is supported by the Government of the Mendoza Province, the CNEA, and the National University of Cuyo. The main activities of the school are medical diagnosis using nuclear techniques and the training of physicians and technicians in nuclear medicine. Teletherapy and brachytherapy are also performed. The use of the PET is described in some detail

  11. Medical physics personnel for medical imaging: requirements, conditions of involvement and staffing levels-French recommendations

    International Nuclear Information System (INIS)

    Isambert, Aurelie; Valero, Marc; Rousse, Carole; Blanchard, Vincent; Le Du, Dominique; Guilhem, Marie-Therese; Dieudonne, Arnaud; Pierrat, Noelle; Salvat, Cecile

    2015-01-01

    The French regulations concerning the involvement of medical physicists in medical imaging procedures are relatively vague. In May 2013, the ASN and the SFPM issued recommendations regarding Medical Physics Personnel for Medical Imaging: Requirements, Conditions of Involvement and Staffing Levels. In these recommendations, the various areas of activity of medical physicists in radiology and nuclear medicine have been identified and described, and the time required to perform each task has been evaluated. Criteria for defining medical physics staffing levels are thus proposed. These criteria are defined according to the technical platform, the procedures and techniques practised on it, the number of patients treated and the number of persons in the medical and paramedical teams requiring periodic training. The result of this work is an aid available to each medical establishment to determine their own needs in terms of medical physics. (authors)

  12. Medical physics personnel for medical imaging: requirements, conditions of involvement and staffing levels-French recommendations.

    Science.gov (United States)

    Isambert, Aurélie; Le Du, Dominique; Valéro, Marc; Guilhem, Marie-Thérèse; Rousse, Carole; Dieudonné, Arnaud; Blanchard, Vincent; Pierrat, Noëlle; Salvat, Cécile

    2015-04-01

    The French regulations concerning the involvement of medical physicists in medical imaging procedures are relatively vague. In May 2013, the ASN and the SFPM issued recommendations regarding Medical Physics Personnel for Medical Imaging: Requirements, Conditions of Involvement and Staffing Levels. In these recommendations, the various areas of activity of medical physicists in radiology and nuclear medicine have been identified and described, and the time required to perform each task has been evaluated. Criteria for defining medical physics staffing levels are thus proposed. These criteria are defined according to the technical platform, the procedures and techniques practised on it, the number of patients treated and the number of persons in the medical and paramedical teams requiring periodic training. The result of this work is an aid available to each medical establishment to determine their own needs in terms of medical physics. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Imaging methods in medical diagnosis

    International Nuclear Information System (INIS)

    Krestel, E.

    1981-01-01

    Pictures of parts of the human body or of the human body (views, superposition pictures, pictures of body layers, or photographs) are considerable helps for the medical diagnostics. Physics, electrotechnique, and machine construction make the picture production possible. Modern electronics and optics offer facilities of picture processing which influences the picture quality. Picture interpretation is the the physican's task. The picture-delivering methods applied in medicine include the conventional X-ray diagnostics, X-ray computer tomography, nuclear diagnostics, sonography with ultas sound, and endoscopy. Their rapid development and immprovement was caused by the development of electronics during the past 20 years. A method presently in discussion and development is the Kernspin-tomography. (orig./MG) [de

  14. Roles of medical image processing in medical physics

    International Nuclear Information System (INIS)

    Arimura, Hidetaka

    2011-01-01

    Image processing techniques including pattern recognition techniques play important roles in high precision diagnosis and radiation therapy. The author reviews a symposium on medical image information, which was held in the 100th Memorial Annual Meeting of the Japan Society of Medical Physics from September 23rd to 25th. In this symposium, we had three invited speakers, Dr. Akinobu Shimizu, Dr. Hideaki Haneishi, and Dr. Hirohito Mekata, who are active engineering researchers of segmentation, image registration, and pattern recognition, respectively. In this paper, the author reviews the roles of the medical imaging processing in medical physics field, and the talks of the three invited speakers. (author)

  15. New perspectives in nuclear imaging

    International Nuclear Information System (INIS)

    Wagner, H.N. Jr.

    1981-01-01

    In nuclear medicine, biodistribution is studied by quantitative nuclear imaging; chemistry is translated into radio-pharmacology; physics into instrumentation; and biology into physiology. Nuclear medicine can be thought of as applied physiology and physiological chemistry. The modern nuclear chemist is concerned with molecules, with relating chemical structure to biological distributions, as for iminodiacetate compounds. Using mixed ligand analysis, the hepatobiliary agent, HIDA, developed by Loberg, proved an anionic bis-complex with a charge of minus one. Further studies elsewhere showed that the co-ordination number of technetium was 5 and that an oxo-oxygen was in the apical position. From a series of analogues the amount of the complexes excreted in the bile was found to be directly proportional to the natural log of the molecular weight to charge ratio. The trend is towards the synthesis of labelled compounds whose biodistribution depends on their chemical interaction with structurally specific binding sites, i.e. receptors, enzymes or binding sites of active transport systems. Other examples include amino acids for pancreatic imaging; deoxyglucose for studies of regional brain and heart metabolism; fatty acids for studies of the heart; steroid hormones for breast tumours; and muscarinic compounds for study of the cholinergic system of the heart. Most of these compounds are labelled with 11 C, 18 F or 13 N, available only from cyclotrons, but the extension to the more widely available 123 I and sup(99m)Tc is also proceeding rapidly, stimulated chiefly by the success with the positron-emitting compounds. Advances in nuclear imaging include the development of both positron and single photon emission tomography. Biodistribution studies in man permit measurement of regional as well as global function. Improved perception is being augmented by improved quantification and automation

  16. Medical imaging and augmented reality. Proceedings

    International Nuclear Information System (INIS)

    Dohi, Takeyoshi; Sakuma, Ichiro; Liao, Hongen

    2008-01-01

    This book constitutes the refereed proceedings of the 4th International Workshop on Medical Imaging and Augmented Reality, MIAR 2008, held in Tokyo, Japan, in August 2008. The 44 revised full papers presented together with 3 invited papers were carefully reviewed and selected from 90 submissions. The papers are organized in topical sections on surgical planning and simulation, medical image computing, image analysis, shape modeling and morphometry, image-guided robotics, image-guided intervention, interventional imaging, image registration, augmented reality, and image segmentation. (orig.)

  17. Medical imaging and augmented reality. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Dohi, Takeyoshi [Tokyo Univ. (Japan). Dept. of Mechano-Informatics; Sakuma, Ichiro [Tokyo Univ. (Japan). Dept. of Precision Engineering; Liao, Hongen (eds.) [Tokyo Univ. (Japan). Dept. of Bioengineering

    2008-07-01

    This book constitutes the refereed proceedings of the 4th International Workshop on Medical Imaging and Augmented Reality, MIAR 2008, held in Tokyo, Japan, in August 2008. The 44 revised full papers presented together with 3 invited papers were carefully reviewed and selected from 90 submissions. The papers are organized in topical sections on surgical planning and simulation, medical image computing, image analysis, shape modeling and morphometry, image-guided robotics, image-guided intervention, interventional imaging, image registration, augmented reality, and image segmentation. (orig.)

  18. Medical Image Tamper Detection Based on Passive Image Authentication.

    Science.gov (United States)

    Ulutas, Guzin; Ustubioglu, Arda; Ustubioglu, Beste; V Nabiyev, Vasif; Ulutas, Mustafa

    2017-12-01

    Telemedicine has gained popularity in recent years. Medical images can be transferred over the Internet to enable the telediagnosis between medical staffs and to make the patient's history accessible to medical staff from anywhere. Therefore, integrity protection of the medical image is a serious concern due to the broadcast nature of the Internet. Some watermarking techniques are proposed to control the integrity of medical images. However, they require embedding of extra information (watermark) into image before transmission. It decreases visual quality of the medical image and can cause false diagnosis. The proposed method uses passive image authentication mechanism to detect the tampered regions on medical images. Structural texture information is obtained from the medical image by using local binary pattern rotation invariant (LBPROT) to make the keypoint extraction techniques more successful. Keypoints on the texture image are obtained with scale invariant feature transform (SIFT). Tampered regions are detected by the method by matching the keypoints. The method improves the keypoint-based passive image authentication mechanism (they do not detect tampering when the smooth region is used for covering an object) by using LBPROT before keypoint extraction because smooth regions also have texture information. Experimental results show that the method detects tampered regions on the medical images even if the forged image has undergone some attacks (Gaussian blurring/additive white Gaussian noise) or the forged regions are scaled/rotated before pasting.

  19. Nuclear data for medical applications: an overview

    International Nuclear Information System (INIS)

    Qaim, S.M.

    2002-01-01

    A brief introduction to nuclear data in medicine is given. The choice of a radioisotope for medical application demands an accurate knowledge of radioactive decay data. Short-lived single photon and beta sup + -emitters are preferred for diagnostic investigations, and longer-lived corpuscular radiation emitting radioisotopes for endo radiotherapy. The nuclear reaction cross section data, on the other hand, are needed for optimising the production routes. Besides radioactive isotopes, the use of ionising radiation in therapy is discussed. External radiation therapy has achieved an important place in medicine. The role of nuclear data is briefly discussed; they are needed for radiation dose calculations. The hitherto rather neglected activation products in proton therapy are considered. The methodology of development of a nuclear data file for medical applications is outlined. (author)

  20. Nuclear data for medical applications: an overview

    International Nuclear Information System (INIS)

    Qaim, S.M.

    2001-01-01

    A brief introduction to nuclear data in medicine is given. The choice of a radioisotope for medical application demands an accurate knowledge of radioactive decay data. Short-lived single photon and β + -emitters are preferred for diagnostic investigations, and longer-lived corpuscular radiation emitting radioisotopes for endoradiotherapy. The nuclear reaction cross section data, on the other hand, are needed for optimising the production routes. Besides radioactive isotopes, the use of ionising radiation in therapy is discussed. External radiation therapy has achieved an important place in medicine. The role of nuclear data is briefly discussed; they are needed for radiation dose calculations. The hitherto rather neglected activation products in proton therapy are considered. The methodology of development of a nuclear data file for medical applications is outlined. (orig.)

  1. Tooling Techniques Enhance Medical Imaging

    Science.gov (United States)

    2012-01-01

    mission. The manufacturing techniques developed to create the components have yielded innovations advancing medical imaging, transportation security, and even energy efficiency.

  2. Applications of VLSI circuits to medical imaging

    International Nuclear Information System (INIS)

    O'Donnell, M.

    1988-01-01

    In this paper the application of advanced VLSI circuits to medical imaging is explored. The relationship of both general purpose signal processing chips and custom devices to medical imaging is discussed using examples of fabricated chips. In addition, advanced CAD tools for silicon compilation are presented. Devices built with these tools represent a possible alternative to custom devices and general purpose signal processors for the next generation of medical imaging systems

  3. Diagnostic reference levels in medical imaging

    International Nuclear Information System (INIS)

    Rosenstein, M.

    2001-01-01

    The paper proposes additional advice to national or local authorities and the clinical community on the application of diagnostic reference levels as a practical tool to manage radiation doses to patients in diagnostic radiology and nuclear medicine. A survey was made of the various approaches that have been taken by authoritative bodies to establish diagnostic reference levels for medical imaging tasks. There are a variety of ways to implement the idea of diagnostic reference levels, depending on the medical imaging task of interest, the national or local state of practice and the national or local preferences for technical implementation. The existing International Commission on Radiological Protection (ICRP) guidance is reviewed, the survey information is summarized, a set of unifying principles is espoused and a statement of additional advice that has been proposed to ICRP Committee 3 is presented. The proposed advice would meet a need for a unifying set of principles to provide a framework for diagnostic reference levels but would allow flexibility in their selection and use. While some illustrative examples are given, the proposed advice does not specify the specific quantities to be used, the numerical values to be set for the quantities or the technical details of how national or local authorities should implement diagnostic reference levels. (author)

  4. Mesh Processing in Medical Image Analysis

    DEFF Research Database (Denmark)

    The following topics are dealt with: mesh processing; medical image analysis; interactive freeform modeling; statistical shape analysis; clinical CT images; statistical surface recovery; automated segmentation; cerebral aneurysms; and real-time particle-based representation....

  5. Medical rescue for nuclear or radiologic emergencies

    International Nuclear Information System (INIS)

    Chen Xiaohua; Nie Suifeng

    2011-01-01

    Nuclear or radiologic emergencies are defined as incidents that are caused by radioactive substance or by other sources of radiation and can pose a serious hazard to public health. In case of nuclear or radiologic emergencies, radioactive rays will damage the human body and bring about psychological and mental stress, resulting in a series of social psychological effects. The key to medical rescue for nuclear or radiologic emergencies is to take effective measures which can minimize the body harm resulting from nuclear or radiologic emergencies and maintain social stability. This article reviews the personnel protection, on-the-spot salvage, treatments of various harm, and prevention of public psychological effect following nuclear or radiologic emergencies. (authors)

  6. Nuclear energy and its medical application

    International Nuclear Information System (INIS)

    Jain, S.K.

    2010-01-01

    Ionising radiation is used in radiotherapy to treat cancer and to sterilise medical equipment because it destroys cells. Radioactive tracers are used in nuclear medicine because the ionising radiation it emits is easy to detect. There are three main uses of ionising radiation in medicine: treatment, diagnosis and sterilisation. Radiotherapy is used to treat cancers by irradiating them with ionising radiation. Radioactive tracers are used to diagnose and investigate several medical conditions. Ionising radiation is used to sterilise medical equipment as it kills germs and/or bacteria

  7. Nuclear physics and medical work in Burma

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1967-02-15

    Useful information connected with environmental radioactivity has already been obtained by the Rangoon Nuclear Physics Laboratory, Burma, the setting up of which was helped by the Agency's Technical Assistance Programme. Other assistance has helped the Rangoon General Hospital to install a scanning unit with which medical diagnosis and treatment can be aided

  8. Global Security, Medical Isotopes, and Nuclear Science

    Science.gov (United States)

    Ahle, Larry

    2007-10-01

    Over the past century basic nuclear science research has led to the use of radioactive isotopes into a wide variety of applications that touch our lives everyday. Some are obvious, such as isotopes for medical diagnostics and treatment. Others are less so, such as National/Global security issues. And some we take for granted, like the small amount of 241 Am that is in every smoke detector. At the beginning of this century, we are in a position where the prevalence and importance of some applications of nuclear science are pushing the basic nuclear science community for improved models and nuclear data. Yet, at the same time, the push by the basic nuclear science community to study nuclei that are farther and farther away from stability also offer new opportunities for many applications. This talk will look at several global security applications of nuclear science, summarizing current R&D and need for improved nuclear data It will also look at how applications of nuclear science, such as to medicine, will benefit from the push for more and more powerful radioactive ion beam facilities.

  9. Global Security, Medical Isotopes, and Nuclear Science

    International Nuclear Information System (INIS)

    Ahle, Larry

    2007-01-01

    Over the past century basic nuclear science research has led to the use of radioactive isotopes into a wide variety of applications that touch our lives everyday. Some are obvious, such as isotopes for medical diagnostics and treatment. Others are less so, such as National/Global security issues. And some we take for granted, like the small amount of 241 Am that is in every smoke detector. At the beginning of this century, we are in a position where the prevalence and importance of some applications of nuclear science are pushing the basic nuclear science community for improved models and nuclear data. Yet, at the same time, the push by the basic nuclear science community to study nuclei that are farther and farther away from stability also offer new opportunities for many applications. This talk will look at several global security applications of nuclear science, summarizing current R and D and need for improved nuclear data It will also look at how applications of nuclear science, such as to medicine, will benefit from the push for more and more powerful radioactive ion beam facilities

  10. Artificial intelligence and medical imaging. Expert systems and image analysis

    International Nuclear Information System (INIS)

    Wackenheim, A.; Zoellner, G.; Horviller, S.; Jacqmain, T.

    1987-01-01

    This paper gives an overview on the existing systems for automated image analysis and interpretation in medical imaging, especially in radiology. The example of ORFEVRE, the system for the analysis of CAT-scan images of the cervical triplet (c3-c5) by image analysis and subsequent expert-system is given and discussed in detail. Possible extensions are described [fr

  11. Image registration method for medical image sequences

    Science.gov (United States)

    Gee, Timothy F.; Goddard, James S.

    2013-03-26

    Image registration of low contrast image sequences is provided. In one aspect, a desired region of an image is automatically segmented and only the desired region is registered. Active contours and adaptive thresholding of intensity or edge information may be used to segment the desired regions. A transform function is defined to register the segmented region, and sub-pixel information may be determined using one or more interpolation methods.

  12. A survey of medical diagnostic imaging technologies

    Energy Technology Data Exchange (ETDEWEB)

    Heese, V.; Gmuer, N.; Thomlinson, W.

    1991-10-01

    The fields of medical imaging and medical imaging instrumentation are increasingly important. The state-of-the-art continues to advance at a very rapid pace. In fact, various medical imaging modalities are under development at the National Synchrotron Light Source (such as MECT and Transvenous Angiography.) It is important to understand how these techniques compare with today's more conventional imaging modalities. The purpose of this report is to provide some basic information about the various medical imaging technologies currently in use and their potential developments as a basis for this comparison. This report is by no means an in-depth study of the physics and instrumentation of the various imaging modalities; instead, it is an attempt to provide an explanation of the physical bases of these techniques and their principal clinical and research capabilities.

  13. A survey of medical diagnostic imaging technologies

    Energy Technology Data Exchange (ETDEWEB)

    Heese, V.; Gmuer, N.; Thomlinson, W.

    1991-10-01

    The fields of medical imaging and medical imaging instrumentation are increasingly important. The state-of-the-art continues to advance at a very rapid pace. In fact, various medical imaging modalities are under development at the National Synchrotron Light Source (such as MECT and Transvenous Angiography.) It is important to understand how these techniques compare with today`s more conventional imaging modalities. The purpose of this report is to provide some basic information about the various medical imaging technologies currently in use and their potential developments as a basis for this comparison. This report is by no means an in-depth study of the physics and instrumentation of the various imaging modalities; instead, it is an attempt to provide an explanation of the physical bases of these techniques and their principal clinical and research capabilities.

  14. A survey of medical diagnostic imaging technologies

    International Nuclear Information System (INIS)

    Heese, V.; Gmuer, N.; Thomlinson, W.

    1991-10-01

    The fields of medical imaging and medical imaging instrumentation are increasingly important. The state-of-the-art continues to advance at a very rapid pace. In fact, various medical imaging modalities are under development at the National Synchrotron Light Source (such as MECT and Transvenous Angiography.) It is important to understand how these techniques compare with today's more conventional imaging modalities. The purpose of this report is to provide some basic information about the various medical imaging technologies currently in use and their potential developments as a basis for this comparison. This report is by no means an in-depth study of the physics and instrumentation of the various imaging modalities; instead, it is an attempt to provide an explanation of the physical bases of these techniques and their principal clinical and research capabilities

  15. [Image fusion in medical radiology].

    Science.gov (United States)

    Burger, C

    1996-07-20

    Image fusion supports the correlation between images of two or more studies of the same organ. First, the effect of differing geometries during image acquisitions, such as a head tilt, is compensated for. As a consequence, congruent images can easily be obtained. Instead of merely putting them side by side in a static manner and burdening the radiologist with the whole correlation task, image fusion supports him with interactive visualization techniques. This is especially worthwhile for small lesions as they can be more precisely located. Image fusion is feasible today. Easy and robust techniques are readily available, and furthermore DICOM, a rapidly evolving data exchange standard, diminishes the once severe compatibility problems for image data originating from systems of different manufacturers. However, the current solutions for image fusion are not yet established enough for a high throughput of fusion studies. Thus, for the time being image fusion is most appropriately confined to clinical research studies.

  16. Medical image informatics infrastructure design and applications.

    Science.gov (United States)

    Huang, H K; Wong, S T; Pietka, E

    1997-01-01

    Picture archiving and communication systems (PACS) is a system integration of multimodality images and health information systems designed for improving the operation of a radiology department. As it evolves, PACS becomes a hospital image document management system with a voluminous image and related data file repository. A medical image informatics infrastructure can be designed to take advantage of existing data, providing PACS with add-on value for health care service, research, and education. A medical image informatics infrastructure (MIII) consists of the following components: medical images and associated data (including PACS database), image processing, data/knowledge base management, visualization, graphic user interface, communication networking, and application oriented software. This paper describes these components and their logical connection, and illustrates some applications based on the concept of the MIII.

  17. Machine learning approaches in medical image analysis

    DEFF Research Database (Denmark)

    de Bruijne, Marleen

    2016-01-01

    Machine learning approaches are increasingly successful in image-based diagnosis, disease prognosis, and risk assessment. This paper highlights new research directions and discusses three main challenges related to machine learning in medical imaging: coping with variation in imaging protocols......, learning from weak labels, and interpretation and evaluation of results....

  18. Medical revolution in Argentina.

    Science.gov (United States)

    Ballarin, V L; Isoardi, R A

    2010-01-01

    The paper discusses the major Argentineans contributors, medical physicists and scientists, in medical imaging and the development of medical imaging in Argentina. The following are presented: history of medical imaging in Argentina: the pioneers; medical imaging and medical revolution; nuclear medicine imaging; ultrasound imaging; and mathematics, physics, and electronics in medical image research: a multidisciplinary endeavor.

  19. An overview of medical image data base

    International Nuclear Information System (INIS)

    Nishihara, Eitaro

    1992-01-01

    Recently, the systematization using computers in medical institutions has advanced, and the introduction of hospital information system has been almost completed in the large hospitals with more than 500 beds. But the objects of the management of the hospital information system are text information, and do not include the management of images of enormous quantity. By the progress of image diagnostic equipment, the digitization of medical images has advanced, but the management of images in hospitals does not utilize the merits of digital images. For the purpose of solving these problems, the picture archiving and communication system (PACS) was proposed about ten years ago, which makes medical images into a data base, and enables the on-line access to images from various places in hospitals. The studies have been continued to realize it. The features of medical image data, the present status of utilizing medical image data, the outline of the PACS, the image data base for the PACS, the problems in the realization of the data base and the technical trend, and the state of actual construction of the PACS are reported. (K.I.)

  20. Medical application of nuclear science: nuclear medicine and production of radiopharmaceuticals

    International Nuclear Information System (INIS)

    Cornet, L.

    1997-01-01

    Nuclear science in attendance on medicine or from Radium to Radiopharmaceuticals. By a brief historical reminder of the evolution of the radioactivity and development of nuclear science, we could see a very early interest and application of the radioactivity in the medical field. Main steps: Detection of natural radioactivity/Discovery of artificial radioactivity/First treatment of leukaemia and thyroid/First nuclear reactor/First radioisotope laboratory in hospital/First scintigraphy/First radiopharmaceutical/First cyclotron and cyclotron products/First immunoscintigraphy/Biotechnology and radioisotope/Evolution of technics [equipment for diagnosis (imaging, scintigraphy) and therapy]/Evolution of production technics and concept of products (generators of Technetium) and machines, reactor, cyclotron/Evolution of importance and interest of nuclear medicine/Creation of international association of nuclear medicine and producers (example ARPR)/Evolution of safety and pharmaceuticals regulation. After the sixties, period extremely rich in invention of products, characterized by a high fertility specially due to a non-restrictive regulation in terms of safety and pharmaceutical consideration, the evolution of technics, the importance of costs (investment, research, healthcare and the evolution of the regulations) have smoothly but continuously transformed the contexts and different actors. Consequences and facts: Rationalization and standardization of the catalogues, total integration of radiopharmaceuticals into the pharmaceutical laws, stop of nuclear research reactors, increase of number of cyclotrons, transformation of size and role of the producers and nuclear centers, risk in supply of some raw materials like Molybdenum, medical nuclear application as a worldwide business

  1. Nuclear magnetic resonance imaging method

    International Nuclear Information System (INIS)

    Johnson, G.; MacDonald, J.; Hutchison, S.; Eastwood, L.M.; Redpath, T.W.T.; Mallard, J.R.

    1984-01-01

    A method of deriving three dimensional image information from an object using nuclear magnetic resonance signals comprises subjecting the object to a continuous, static magnetic field and carrying out the following set of sequential steps: 1) exciting nuclear spins in a selected volume (90deg pulse); 2) applying non-aligned first, second and third gradients of the magnetic field; 3) causing the spins to rephase periodically by reversal of the first gradient to produce spin echoes, and applying pulses of the second gradient prior to every read-out of an echo signal from the object, to differently encode the spin in the second gradient direction for each read-out signal. The above steps 1-3 are then successively repeated with different values of gradient of the third gradient, there being a recovery interval between the repetition of successive sets of steps. Alternate echoes only are read out, the other echoes being time-reversed and ignored for convenience. The resulting signals are appropriately sampled, set out in an array and subjected to three dimensional Fourier transformation. (author)

  2. A digital library for medical imaging activities

    Science.gov (United States)

    dos Santos, Marcelo; Furuie, Sérgio S.

    2007-03-01

    This work presents the development of an electronic infrastructure to make available a free, online, multipurpose and multimodality medical image database. The proposed infrastructure implements a distributed architecture for medical image database, authoring tools, and a repository for multimedia documents. Also it includes a peer-reviewed model that assures quality of dataset. This public repository provides a single point of access for medical images and related information to facilitate retrieval tasks. The proposed approach has been used as an electronic teaching system in Radiology as well.

  3. Mathematics and computer science in medical imaging

    International Nuclear Information System (INIS)

    Viergever, M.A.; Todd-Pokroper, A.E.

    1987-01-01

    The book is divided into two parts. Part 1 gives an introduction to and an overview of the field in ten tutorial chapters. Part 2 contains a selection of invited and proffered papers reporting on current research. Subjects covered in depth are: analytical image reconstruction, regularization, iterative methods, image structure, 3-D display, compression, architectures for image processing, statistical pattern recognition, and expert systems in medical imaging

  4. Medical imaging technology reviews and computational applications

    CERN Document Server

    Dewi, Dyah

    2015-01-01

    This book presents the latest research findings and reviews in the field of medical imaging technology, covering ultrasound diagnostics approaches for detecting osteoarthritis, breast carcinoma and cardiovascular conditions, image guided biopsy and segmentation techniques for detecting lung cancer, image fusion, and simulating fluid flows for cardiovascular applications. It offers a useful guide for students, lecturers and professional researchers in the fields of biomedical engineering and image processing.

  5. Medical imaging and augmented reality. Proceedings

    International Nuclear Information System (INIS)

    Yang Guang-Zhong; Jiang Tianzi; Shen Dinggang; Gu Lixu; Yang Jie

    2006-01-01

    This book constitutes the refereed proceedings of the Third International Workshop on Medical Imaging and Augmented Reality, MIAR 2006, held in Shanghai, China, in August 2006. The 45 revised full papers presented together with 4 invited papers were carefully reviewed and selected from 87 submissions. The papers are organized in topical sections on shape modeling and morphometry, patient specific modeling and quantification, surgical simulation and skills assessment, surgical guidance and navigation, image registration, PET image reconstruction, and image segmentation. (orig.)

  6. Adaptive Beamforming for Medical Ultrasound Imaging

    DEFF Research Database (Denmark)

    Holfort, Iben Kraglund

    This dissertation investigates the application of adaptive beamforming for medical ultrasound imaging. The investigations have been concentrated primarily on the Minimum Variance (MV) beamformer. A broadband implementation of theMV beamformer is described, and simulated data have been used...... to demonstrate the performance. The MV beamformer has been applied to different sets of ultrasound imaging sequences; synthetic aperture ultrasound imaging and plane wave ultrasound imaging. And an approach for applying MV optimized apodization weights on both the transmitting and the receiving apertures...

  7. [Medical and biological consequences of nuclear disasters].

    Science.gov (United States)

    Stalpers, Lukas J A; van Dullemen, Simon; Franken, N A P Klaas

    2012-01-01

    Medical risks of radiation exaggerated; psychological risks underestimated. The discussion about atomic energy has become topical again following the nuclear accident in Fukushima. There is some argument about the gravity of medical and biological consequences of prolonged exposure to radiation. The risk of cancer following a low dose of radiation is usually estimated by linear extrapolation of the incidence of cancer among survivors of the atomic bombs dropped on Hiroshima and Nagasaki in 1945. The radiobiological linear-quadratic model (LQ-model) gives a more accurate description of observed data, is radiobiologically more plausible and is better supported by experimental and clinical data. On the basis of this model there is less risk of cancer being induced following radiation exposure. The gravest consequence of Chernobyl and Fukushima is not the medical and biological damage, but the psychological and economical impact on rescue workers and former inhabitants.

  8. Applied medical image processing a basic course

    CERN Document Server

    Birkfellner, Wolfgang

    2014-01-01

    A widely used, classroom-tested text, Applied Medical Image Processing: A Basic Course delivers an ideal introduction to image processing in medicine, emphasizing the clinical relevance and special requirements of the field. Avoiding excessive mathematical formalisms, the book presents key principles by implementing algorithms from scratch and using simple MATLAB®/Octave scripts with image data and illustrations on an accompanying CD-ROM or companion website. Organized as a complete textbook, it provides an overview of the physics of medical image processing and discusses image formats and data storage, intensity transforms, filtering of images and applications of the Fourier transform, three-dimensional spatial transforms, volume rendering, image registration, and tomographic reconstruction.

  9. Image processing for medical diagnosis using CNN

    International Nuclear Information System (INIS)

    Arena, Paolo; Basile, Adriano; Bucolo, Maide; Fortuna, Luigi

    2003-01-01

    Medical diagnosis is one of the most important area in which image processing procedures are usefully applied. Image processing is an important phase in order to improve the accuracy both for diagnosis procedure and for surgical operation. One of these fields is tumor/cancer detection by using Microarray analysis. The research studies in the Cancer Genetics Branch are mainly involved in a range of experiments including the identification of inherited mutations predisposing family members to malignant melanoma, prostate and breast cancer. In bio-medical field the real-time processing is very important, but often image processing is a quite time-consuming phase. Therefore techniques able to speed up the elaboration play an important rule. From this point of view, in this work a novel approach to image processing has been developed. The new idea is to use the Cellular Neural Networks to investigate on diagnostic images, like: Magnetic Resonance Imaging, Computed Tomography, and fluorescent cDNA microarray images

  10. Physics for Medical Imaging Applications

    CERN Document Server

    Caner, Alesssandra; Rahal, Ghita

    2007-01-01

    The book introduces the fundamental aspects of digital imaging and covers four main themes: Ultrasound techniques and imaging applications; Magnetic resonance and MPJ in hospital; Digital imaging with X-rays; and Emission tomography (PET and SPECT). Each of these topics is developed by analysing the underlying physics principles and their implementation, quality and safety aspects, clinical performance and recent advancements in the field. Some issues specific to the individual techniques are also treated, e.g. choice of radioisotopes or contrast agents, optimisation of data acquisition and st

  11. Leadership and power in medical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yielder, Jill [School of Health and Community Studies, Unitec New Zealand, Private Bag 92 025, Mt Albert, Auckland (New Zealand)]. E-mail: jyielder@unitec.ac.nz

    2006-11-15

    This article examines the concept of professional leadership in medical imaging. It explores the context of power issues in which such leadership is located, the differences between leadership and management, the qualities needed for effective leadership and how an individual's psychology may affect it. The article concludes that in the current climate of change and development, the medical imaging profession needs strong and appropriate leadership to profile the profession effectively and to lead it through to a more autonomous future.

  12. Leadership and power in medical imaging

    International Nuclear Information System (INIS)

    Yielder, Jill

    2006-01-01

    This article examines the concept of professional leadership in medical imaging. It explores the context of power issues in which such leadership is located, the differences between leadership and management, the qualities needed for effective leadership and how an individual's psychology may affect it. The article concludes that in the current climate of change and development, the medical imaging profession needs strong and appropriate leadership to profile the profession effectively and to lead it through to a more autonomous future

  13. Multispectral imaging for medical diagnosis

    Science.gov (United States)

    Anselmo, V. J.

    1977-01-01

    Photography technique determines amount of morbidity present in tissue. Imaging apparatus incorporates numerical filtering. Overall system operates in near-real time. Information gained from this system enables physician to understand extent of injury and leads to accelerated treatment.

  14. Feature Detector and Descriptor for Medical Images

    Science.gov (United States)

    Sargent, Dusty; Chen, Chao-I.; Tsai, Chang-Ming; Wang, Yuan-Fang; Koppel, Daniel

    2009-02-01

    The ability to detect and match features across multiple views of a scene is a crucial first step in many computer vision algorithms for dynamic scene analysis. State-of-the-art methods such as SIFT and SURF perform successfully when applied to typical images taken by a digital camera or camcorder. However, these methods often fail to generate an acceptable number of features when applied to medical images, because such images usually contain large homogeneous regions with little color and intensity variation. As a result, tasks like image registration and 3D structure recovery become difficult or impossible in the medical domain. This paper presents a scale, rotation and color/illumination invariant feature detector and descriptor for medical applications. The method incorporates elements of SIFT and SURF while optimizing their performance on medical data. Based on experiments with various types of medical images, we combined, adjusted, and built on methods and parameter settings employed in both algorithms. An approximate Hessian based detector is used to locate scale invariant keypoints and a dominant orientation is assigned to each keypoint using a gradient orientation histogram, providing rotation invariance. Finally, keypoints are described with an orientation-normalized distribution of gradient responses at the assigned scale, and the feature vector is normalized for contrast invariance. Experiments show that the algorithm detects and matches far more features than SIFT and SURF on medical images, with similar error levels.

  15. Overview of deep learning in medical imaging.

    Science.gov (United States)

    Suzuki, Kenji

    2017-09-01

    The use of machine learning (ML) has been increasing rapidly in the medical imaging field, including computer-aided diagnosis (CAD), radiomics, and medical image analysis. Recently, an ML area called deep learning emerged in the computer vision field and became very popular in many fields. It started from an event in late 2012, when a deep-learning approach based on a convolutional neural network (CNN) won an overwhelming victory in the best-known worldwide computer vision competition, ImageNet Classification. Since then, researchers in virtually all fields, including medical imaging, have started actively participating in the explosively growing field of deep learning. In this paper, the area of deep learning in medical imaging is overviewed, including (1) what was changed in machine learning before and after the introduction of deep learning, (2) what is the source of the power of deep learning, (3) two major deep-learning models: a massive-training artificial neural network (MTANN) and a convolutional neural network (CNN), (4) similarities and differences between the two models, and (5) their applications to medical imaging. This review shows that ML with feature input (or feature-based ML) was dominant before the introduction of deep learning, and that the major and essential difference between ML before and after deep learning is the learning of image data directly without object segmentation or feature extraction; thus, it is the source of the power of deep learning, although the depth of the model is an important attribute. The class of ML with image input (or image-based ML) including deep learning has a long history, but recently gained popularity due to the use of the new terminology, deep learning. There are two major models in this class of ML in medical imaging, MTANN and CNN, which have similarities as well as several differences. In our experience, MTANNs were substantially more efficient in their development, had a higher performance, and required a

  16. Multi-channel medical imaging system

    Science.gov (United States)

    Frangioni, John V

    2013-12-31

    A medical imaging system provides simultaneous rendering of visible light and fluorescent images. The system may employ dyes in a small-molecule form that remain in the subject's blood stream for several minutes, allowing real-time imaging of the subject's circulatory system superimposed upon a conventional, visible light image of the subject. The system may provide an excitation light source to excite the fluorescent substance and a visible light source for general illumination within the same optical guide used to capture images. The system may be configured for use in open surgical procedures by providing an operating area that is closed to ambient light. The systems described herein provide two or more diagnostic imaging channels for capture of multiple, concurrent diagnostic images and may be used where a visible light image may be usefully supplemented by two or more images that are independently marked for functional interest.

  17. Segmentation of elongated structures in medical images

    NARCIS (Netherlands)

    Staal, Jozef Johannes

    2004-01-01

    The research described in this thesis concerns the automatic detection, recognition and segmentation of elongated structures in medical images. For this purpose techniques have been developed to detect subdimensional pointsets (e.g. ridges, edges) in images of arbitrary dimension. These

  18. Improved Interactive Medical-Imaging System

    Science.gov (United States)

    Ross, Muriel D.; Twombly, Ian A.; Senger, Steven

    2003-01-01

    An improved computational-simulation system for interactive medical imaging has been invented. The system displays high-resolution, three-dimensional-appearing images of anatomical objects based on data acquired by such techniques as computed tomography (CT) and magnetic-resonance imaging (MRI). The system enables users to manipulate the data to obtain a variety of views for example, to display cross sections in specified planes or to rotate images about specified axes. Relative to prior such systems, this system offers enhanced capabilities for synthesizing images of surgical cuts and for collaboration by users at multiple, remote computing sites.

  19. Nuclear medicine imaging of diabetic foot infection

    International Nuclear Information System (INIS)

    Capriotti, Gabriela; D'Alessandria, Calogero; Signore, Alberto; Chianelli, Marco; Prandini, Napoleone

    2005-01-01

    Full text: Osteomyelitis of the foot is the most frequent complication in diabetic patients. Nuclear medicine plays an important role in diagnosis and for therapy follow-up, using different tracers. We reviewed 57 papers on diabetic foot imaging (published from 1982 to 2004, 50 original papers and 7 reviews), for a total of 2889 lesions. Data analysis has been carried out to establish which imaging technique could be used as a 'gold standard' for diagnosis of infection and to evaluate the extent of disease and to monitor the efficacy of therapy. Data analysis revealed that three-phase bone-scan is sensitive but not specific whereas specificity and diagnostic accuracy of 99m Tc-WBC scintigraphy is higher than 111 In- WBC scintigraphy. In the forefoot leukocyte scintigraphy may be useful for diagnosis of osteomyelitis and for monitoring the response to medical treatment. In the mid/hind foot the leukocytes uptake is not related only to the presence of infected region, but it is attributed to inflammation, fractures and reparative processes. Other radiopharmaceuticals such as 99m Tc/ 111 In-HIG, radiolabelled antibody and their fragments, showed high sensibility, but lower specificity than WBC (96.8/66.5, 95.8/70.2, 91.3/62 vs 85.8/84.5). Conclusion: It emerged that in the forefoot when clinical suspicious of osteomyelitis is low and medical treatment is contemplated, three-phase bon scan is the procedure of choice. A positive test is not diagnostic for osteomyelitis, and radiolabelled WBC scintigraphy is necessary. In the mid/hind foot, diagnosis of neuropathic joint with infection is problematic. Radiolabelled WBC imaging is probably the most accurate test for determining the presence of infection. Although a negative study strongly indicate the absence of osteomyelitis, it is important to note that a positive result requires a complementary study with marrow agent. (author)

  20. Use of organoboranes in modern medical imaging

    International Nuclear Information System (INIS)

    Kabalka, G.W.

    1991-01-01

    Isotopically labeled materials have proven to be invaluable in chemical, medical, and biological research. Organoboranes are beginning to play a significant role in the synthesis of medically important materials which contain both stable and short-lived isotopes. The organic compounds of boron possess characteristics which make them ideal intermediates in radiopharmaceutical pathways; these include the facts that boron reactions tolerate a wide variety of physiologically active functionality and that the reactions proceed rapidly and in high yields. Boranes have found important applications in modern medical imaging techniques such as positron emission tomography (PET) and magnetic resonance imaging (MRI). (author)

  1. Submillimeter medical imaging in emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Lang, C.; Thirolf, P.G. [LMU, Muenchen (Germany); Habs, D. [LMU, Muenchen (Germany); MPQ, Garching (Germany); Zoglauer, A. [SSL, Berkeley (United States)

    2012-07-01

    We present a nuclear medical imaging technique, capable to reach submillimeter spatial resolution in 3 dimensions with a short exposure time and a low radioactive dose compared to conventional PET. This '{gamma}-PET' technique takes advantage of specific e{sup +} sources which simultaneously with the {beta}{sup +} decay emit an additional photon. Exploiting the triple coincidence between the positron annihilation and the additional emitted {gamma}, it is possible to separate the reconstructed 'true' events from background. Thus the spatial uncertainty introduced by the motion of the e{sup +} or by Compton scattering within the patient can be strongly reduced in the direction normal to the annihilation. MC-simulations and image reconstruction studies have been performed using the library MEGAlib, which we modified to realize an event reconstruction using the {beta}{sup +}{gamma} coincidences. The simulated geometry consists of 4 LaBr{sub 3} scintillator crystals (5 x 5 x 3 cm{sup 3}) read out by a 2D-segmented photomultiplier (64 pixels, each 6 x 6 mm{sup 2}) and 4 double-sided silicon strip detectors (each with 2 x 128 strips, active area of 5 x 5 cm{sup 2}, thickness 0.5 mm), positioned around an H{sub 2}O sphere of 6 cm diameter. Inside are two {sup 22}Na point-like test sources, placed at a distance of 0.4 mm. The resolution results in 0.2 mm (FWHM) in each direction, surpassing the performance of conventional PET by about an order of magnitude.

  2. Cascaded Window Memoization for Medical Imaging

    OpenAIRE

    Khalvati , Farzad; Kianpour , Mehdi; Tizhoosh , Hamid ,

    2011-01-01

    Part 12: Medical Applications of ANN and Ethics of AI; International audience; Window Memoization is a performance improvement technique for image processing algorithms. It is based on removing computational redundancy in an algorithm applied to a single image, which is inherited from data redundancy in the image. The technique employs a fuzzy reuse mechanism to eliminate unnecessary computations. This paper extends the window memoization technique such that in addition to exploiting the data...

  3. Quantification of heterogeneity observed in medical images

    OpenAIRE

    Brooks, Frank J; Grigsby, Perry W

    2013-01-01

    Background There has been much recent interest in the quantification of visually evident heterogeneity within functional grayscale medical images, such as those obtained via magnetic resonance or positron emission tomography. In the case of images of cancerous tumors, variations in grayscale intensity imply variations in crucial tumor biology. Despite these considerable clinical implications, there is as yet no standardized method for measuring the heterogeneity observed via these imaging mod...

  4. Bioassay Phantoms Using Medical Images and Computer Aided Manufacturing

    International Nuclear Information System (INIS)

    Xu, X. Geroge

    2011-01-01

    A radiation bioassay program relies on a set of standard human phantoms to calibrate and assess radioactivity levels inside a human body for radiation protection and nuclear medicine imaging purposes. However, the methodologies in the development and application of anthropomorphic phantoms, both physical and computational, had mostly remained the same for the past 40 years. We herein propose a 3-year research project to develop medical image-based physical and computational phantoms specifically for radiation bioassay applications involving internally deposited radionuclides. The broad, long-term objective of this research was to set the foundation for a systematic paradigm shift away from the anatomically crude phantoms in existence today to realistic and ultimately individual-specific bioassay methodologies. This long-term objective is expected to impact all areas of radiation bioassay involving nuclear power plants, U.S. DOE laboratories, and nuclear medicine clinics.

  5. Hello World Deep Learning in Medical Imaging.

    Science.gov (United States)

    Lakhani, Paras; Gray, Daniel L; Pett, Carl R; Nagy, Paul; Shih, George

    2018-05-03

    There is recent popularity in applying machine learning to medical imaging, notably deep learning, which has achieved state-of-the-art performance in image analysis and processing. The rapid adoption of deep learning may be attributed to the availability of machine learning frameworks and libraries to simplify their use. In this tutorial, we provide a high-level overview of how to build a deep neural network for medical image classification, and provide code that can help those new to the field begin their informatics projects.

  6. New substances for medical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Carrard, G [comp.

    1982-03-01

    AAEC scientists have developed a new radiopharmaceutical of commerical potential which can be applied to the diagnosis of diseases involving abnormal functioning of the liver, bile duct or gall bladder. It is technetium-bromo-BIMIDA. Other investigations include the enhancement of images from gallium-67 citrate in tumours and the interaction between iron dextran and technetium-pyro-phosphate.

  7. Quantitative imaging features: extension of the oncology medical image database

    Science.gov (United States)

    Patel, M. N.; Looney, P. T.; Young, K. C.; Halling-Brown, M. D.

    2015-03-01

    Radiological imaging is fundamental within the healthcare industry and has become routinely adopted for diagnosis, disease monitoring and treatment planning. With the advent of digital imaging modalities and the rapid growth in both diagnostic and therapeutic imaging, the ability to be able to harness this large influx of data is of paramount importance. The Oncology Medical Image Database (OMI-DB) was created to provide a centralized, fully annotated dataset for research. The database contains both processed and unprocessed images, associated data, and annotations and where applicable expert determined ground truths describing features of interest. Medical imaging provides the ability to detect and localize many changes that are important to determine whether a disease is present or a therapy is effective by depicting alterations in anatomic, physiologic, biochemical or molecular processes. Quantitative imaging features are sensitive, specific, accurate and reproducible imaging measures of these changes. Here, we describe an extension to the OMI-DB whereby a range of imaging features and descriptors are pre-calculated using a high throughput approach. The ability to calculate multiple imaging features and data from the acquired images would be valuable and facilitate further research applications investigating detection, prognosis, and classification. The resultant data store contains more than 10 million quantitative features as well as features derived from CAD predictions. Theses data can be used to build predictive models to aid image classification, treatment response assessment as well as to identify prognostic imaging biomarkers.

  8. Radiology and Enterprise Medical Imaging Extensions (REMIX).

    Science.gov (United States)

    Erdal, Barbaros S; Prevedello, Luciano M; Qian, Songyue; Demirer, Mutlu; Little, Kevin; Ryu, John; O'Donnell, Thomas; White, Richard D

    2018-02-01

    Radiology and Enterprise Medical Imaging Extensions (REMIX) is a platform originally designed to both support the medical imaging-driven clinical and clinical research operational needs of Department of Radiology of The Ohio State University Wexner Medical Center. REMIX accommodates the storage and handling of "big imaging data," as needed for large multi-disciplinary cancer-focused programs. The evolving REMIX platform contains an array of integrated tools/software packages for the following: (1) server and storage management; (2) image reconstruction; (3) digital pathology; (4) de-identification; (5) business intelligence; (6) texture analysis; and (7) artificial intelligence. These capabilities, along with documentation and guidance, explaining how to interact with a commercial system (e.g., PACS, EHR, commercial database) that currently exists in clinical environments, are to be made freely available.

  9. The Orthanc Ecosystem for Medical Imaging.

    Science.gov (United States)

    Jodogne, Sébastien

    2018-05-03

    This paper reviews the components of Orthanc, a free and open-source, highly versatile ecosystem for medical imaging. At the core of the Orthanc ecosystem, the Orthanc server is a lightweight vendor neutral archive that provides PACS managers with a powerful environment to automate and optimize the imaging flows that are very specific to each hospital. The Orthanc server can be extended with plugins that provide solutions for teleradiology, digital pathology, or enterprise-ready databases. It is shown how software developers and research engineers can easily develop external software or Web portals dealing with medical images, with minimal knowledge of the DICOM standard, thanks to the advanced programming interface of the Orthanc server. The paper concludes by introducing the Stone of Orthanc, an innovative toolkit for the cross-platform rendering of medical images.

  10. Medical image segmentation using genetic algorithms.

    Science.gov (United States)

    Maulik, Ujjwal

    2009-03-01

    Genetic algorithms (GAs) have been found to be effective in the domain of medical image segmentation, since the problem can often be mapped to one of search in a complex and multimodal landscape. The challenges in medical image segmentation arise due to poor image contrast and artifacts that result in missing or diffuse organ/tissue boundaries. The resulting search space is therefore often noisy with a multitude of local optima. Not only does the genetic algorithmic framework prove to be effective in coming out of local optima, it also brings considerable flexibility into the segmentation procedure. In this paper, an attempt has been made to review the major applications of GAs to the domain of medical image segmentation.

  11. Deep Learning in Medical Image Analysis.

    Science.gov (United States)

    Shen, Dinggang; Wu, Guorong; Suk, Heung-Il

    2017-06-21

    This review covers computer-assisted analysis of images in the field of medical imaging. Recent advances in machine learning, especially with regard to deep learning, are helping to identify, classify, and quantify patterns in medical images. At the core of these advances is the ability to exploit hierarchical feature representations learned solely from data, instead of features designed by hand according to domain-specific knowledge. Deep learning is rapidly becoming the state of the art, leading to enhanced performance in various medical applications. We introduce the fundamentals of deep learning methods and review their successes in image registration, detection of anatomical and cellular structures, tissue segmentation, computer-aided disease diagnosis and prognosis, and so on. We conclude by discussing research issues and suggesting future directions for further improvement.

  12. Medical problems of survivors of nuclear war

    International Nuclear Information System (INIS)

    Abrams, H.L.; Von Kaenel, W.E.

    1981-01-01

    The nature of the medical problems that may confront survivors of a nuclear war are discussed with emphasis on infection and the spread of communicable disease. Factors which will increase the risk and severity of infection include: radiation, trauma and burns, malnutrition and starvation, dehydration, exposure, and hardship. Factors which will increase the spread of disease include: crowded shelter conditions, poor sanitation, insects, corpses, free-roaming diseased animals. Shortages of physicians, the destruction of laboratories, and the general disorganization sure to follow the attack will also contribute to the problems. The authors recommend further study in this area

  13. Use of mobile devices for medical imaging.

    Science.gov (United States)

    Hirschorn, David S; Choudhri, Asim F; Shih, George; Kim, Woojin

    2014-12-01

    Mobile devices have fundamentally changed personal computing, with many people forgoing the desktop and even laptop computer altogether in favor of a smaller, lighter, and cheaper device with a touch screen. Doctors and patients are beginning to expect medical images to be available on these devices for consultative viewing, if not actual diagnosis. However, this raises serious concerns with regard to the ability of existing mobile devices and networks to quickly and securely move these images. Medical images often come in large sets, which can bog down a network if not conveyed in an intelligent manner, and downloaded data on a mobile device are highly vulnerable to a breach of patient confidentiality should that device become lost or stolen. Some degree of regulation is needed to ensure that the software used to view these images allows all relevant medical information to be visible and manipulated in a clinically acceptable manner. There also needs to be a quality control mechanism to ensure that a device's display accurately conveys the image content without loss of contrast detail. Furthermore, not all mobile displays are appropriate for all types of images. The smaller displays of smart phones, for example, are not well suited for viewing entire chest radiographs, no matter how small and numerous the pixels of the display may be. All of these factors should be taken into account when deciding where, when, and how to use mobile devices for the display of medical images. Copyright © 2014 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  14. An open architecture for medical image workstation

    Science.gov (United States)

    Liang, Liang; Hu, Zhiqiang; Wang, Xiangyun

    2005-04-01

    Dealing with the difficulties of integrating various medical image viewing and processing technologies with a variety of clinical and departmental information systems and, in the meantime, overcoming the performance constraints in transferring and processing large-scale and ever-increasing image data in healthcare enterprise, we design and implement a flexible, usable and high-performance architecture for medical image workstations. This architecture is not developed for radiology only, but for any workstations in any application environments that may need medical image retrieving, viewing, and post-processing. This architecture contains an infrastructure named Memory PACS and different kinds of image applications built on it. The Memory PACS is in charge of image data caching, pre-fetching and management. It provides image applications with a high speed image data access and a very reliable DICOM network I/O. In dealing with the image applications, we use dynamic component technology to separate the performance-constrained modules from the flexibility-constrained modules so that different image viewing or processing technologies can be developed and maintained independently. We also develop a weakly coupled collaboration service, through which these image applications can communicate with each other or with third party applications. We applied this architecture in developing our product line and it works well. In our clinical sites, this architecture is applied not only in Radiology Department, but also in Ultrasonic, Surgery, Clinics, and Consultation Center. Giving that each concerned department has its particular requirements and business routines along with the facts that they all have different image processing technologies and image display devices, our workstations are still able to maintain high performance and high usability.

  15. A hierarchical SVG image abstraction layer for medical imaging

    Science.gov (United States)

    Kim, Edward; Huang, Xiaolei; Tan, Gang; Long, L. Rodney; Antani, Sameer

    2010-03-01

    As medical imaging rapidly expands, there is an increasing need to structure and organize image data for efficient analysis, storage and retrieval. In response, a large fraction of research in the areas of content-based image retrieval (CBIR) and picture archiving and communication systems (PACS) has focused on structuring information to bridge the "semantic gap", a disparity between machine and human image understanding. An additional consideration in medical images is the organization and integration of clinical diagnostic information. As a step towards bridging the semantic gap, we design and implement a hierarchical image abstraction layer using an XML based language, Scalable Vector Graphics (SVG). Our method encodes features from the raw image and clinical information into an extensible "layer" that can be stored in a SVG document and efficiently searched. Any feature extracted from the raw image including, color, texture, orientation, size, neighbor information, etc., can be combined in our abstraction with high level descriptions or classifications. And our representation can natively characterize an image in a hierarchical tree structure to support multiple levels of segmentation. Furthermore, being a world wide web consortium (W3C) standard, SVG is able to be displayed by most web browsers, interacted with by ECMAScript (standardized scripting language, e.g. JavaScript, JScript), and indexed and retrieved by XML databases and XQuery. Using these open source technologies enables straightforward integration into existing systems. From our results, we show that the flexibility and extensibility of our abstraction facilitates effective storage and retrieval of medical images.

  16. Medical images storage using discrete cosine transform

    International Nuclear Information System (INIS)

    Arhouma, Ali M.; Ajaal, Tawfik; Marghani, Khaled

    2010-01-01

    The advances in technology during the last decades have made the use of digital images as one of the common things in everyday life. While the application of digital images in communicating information is very important, the cost of storing and transmitting images is much larger compared to storage and transmission of text. The main problem with all of the images was the fact that they take large size of memory space, large transmission bandwidth and long transmission time. Image data compression is needed to reduce the storage space,transmission bandwidth and transmission time. Medical image compression plays a key role as hospitals move towards filmless imaging and go completely digital. Image compression allows Picture Archiving and Communication Systems (PACS) to reduce the file size on their storage requirements while maintaining relevant diagnostic information. The reduced image file size yield reduced transmission times. Even as the capacity of storage media continues to increase, it is expected that the volume of uncompressed data produced by hospitals will exceed capacity of storage and drive up costs. This paper proposes a Discrete Cosine Transform (DCT) algorithm which can help to solve the image storage and transmission time problem in hospitals. Discrete cosine transform (DCT) has become the most popular technique for image compression over the past several years. One of the major reasons for its popularity is its selection as the standard for JPEG. DCTs are most commonly used for non-analytical applications such as image processing and digital signal-processing (DSP) applications such as video conferencing, fax systems, video disks, and high-definition television HDTV. They also can be used on a matrix of practically any dimension. The proposed (DCT) algorithm improves the performance of medical image compression while satisfying both the medical image quality, and the high compression ratio. Application of DCT coding algorithm to actual still images

  17. Nonreference Medical Image Edge Map Measure

    Directory of Open Access Journals (Sweden)

    Karen Panetta

    2014-01-01

    Full Text Available Edge detection is a key step in medical image processing. It is widely used to extract features, perform segmentation, and further assist in diagnosis. A poor quality edge map can result in false alarms and misses in cancer detection algorithms. Therefore, it is necessary to have a reliable edge measure to assist in selecting the optimal edge map. Existing reference based edge measures require a ground truth edge map to evaluate the similarity between the generated edge map and the ground truth. However, the ground truth images are not available for medical images. Therefore, a nonreference edge measure is ideal for medical image processing applications. In this paper, a nonreference reconstruction based edge map evaluation (NREM is proposed. The theoretical basis is that a good edge map keeps the structure and details of the original image thus would yield a good reconstructed image. The NREM is based on comparing the similarity between the reconstructed image with the original image using this concept. The edge measure is used for selecting the optimal edge detection algorithm and optimal parameters for the algorithm. Experimental results show that the quantitative evaluations given by the edge measure have good correlations with human visual analysis.

  18. Radiation biology of medical imaging

    CERN Document Server

    Kelsey, Charles A; Sandoval, Daniel J; Chambers, Gregory D; Adolphi, Natalie L; Paffett, Kimberly S

    2014-01-01

    This book provides a thorough yet concise introduction to quantitative radiobiology and radiation physics, particularly the practical and medical application. Beginning with a discussion of the basic science of radiobiology, the book explains the fast processes that initiate damage in irradiated tissue and the kinetic patterns in which such damage is expressed at the cellular level. The final section is presented in a highly practical handbook style and offers application-based discussions in radiation oncology, fractionated radiotherapy, and protracted radiation among others. The text is also supplemented by a Web site.

  19. A Hybrid Technique for Medical Image Segmentation

    Directory of Open Access Journals (Sweden)

    Alamgir Nyma

    2012-01-01

    Full Text Available Medical image segmentation is an essential and challenging aspect in computer-aided diagnosis and also in pattern recognition research. This paper proposes a hybrid method for magnetic resonance (MR image segmentation. We first remove impulsive noise inherent in MR images by utilizing a vector median filter. Subsequently, Otsu thresholding is used as an initial coarse segmentation method that finds the homogeneous regions of the input image. Finally, an enhanced suppressed fuzzy c-means is used to partition brain MR images into multiple segments, which employs an optimal suppression factor for the perfect clustering in the given data set. To evaluate the robustness of the proposed approach in noisy environment, we add different types of noise and different amount of noise to T1-weighted brain MR images. Experimental results show that the proposed algorithm outperforms other FCM based algorithms in terms of segmentation accuracy for both noise-free and noise-inserted MR images.

  20. Multispectral system for medical fluorescence imaging

    International Nuclear Information System (INIS)

    Andersson, P.S.; Montan, S.; Svanberg, S.

    1987-01-01

    The principles of a powerful multicolor imaging system for tissue fluorescence diagnostics are discussed. Four individually spectrally filtered images are formed on a matrix detector by means of a split-mirror arrangement. The four images are processed in a computer, pixel by pixel, by means of mathematical operations, leading to an optimized contrast image, which enhances a selected feature. The system is being developed primarily for medical fluorescence imaging, but has wide applications in fluorescence, reflectance, and transmission monitoring related to a wide range of industrial and environmental problems. The system operation is described for the case of linear imaging on a diode array detector. Laser-induced fluorescence is used for cancer tumor and arteriosclerotic plaque demarcation using the contrast enhancement capabilities of this imaging system. Further examples of applications include fluorescing minerals and flames

  1. Imaging plates for nuclear radiations

    International Nuclear Information System (INIS)

    Abe, Ken; Takebe, Masahiro

    1997-01-01

    Full text. The imaging plate (IP, hereafter) is a new opto-electronic X-ray film developed by Fuji Photo Film Co. Ltd., formed with a large area of thin flexible plastic plate coated with photo-estimulable storage phosphor (e.g. Ba F Br: Eu 2+ ). Recently, it has been found highly sensitive to soft X-ray (SR), soft electrons, and also usual alpha, beta, gamma rays and others, e.g. cosmic rays, energy heavy ions, and moreover neutrons through suitable converters inside or outside of the IP. Many types of IP are now used in various fields, such as medical examinations, auto-radiography in vivo/ in situ/ in vitro, X-ray/neutron diffraction/ radiography, electron microscopy. RI contamination, assay of ore. The IP has other striking performances, e.e. extremely low intrinsic noises, a high position resolution, high detection efficiency (100-1000 times) as high as an X-ray film), extremely wide dynamic range of dose (more than 10 5 ). Besides the thermal fading yet left unresolved materially, the only feature lacking and that one has ben longing for is the radiation identification by itself. We found out that the IP has a full potential ability of radiation identification in itself. One evidence found is that the ratio of the twin peaks of the PSL (photo-stimulated luminescence) excitation spectra indicates simply the particle energies, studied and now established. Another is that the photo-beaching provides the fluorescent responses different enough to discriminate the radiations, yet in progress with cyclotron experiments, into the usage of double labeled bio tracers

  2. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Professions Site Index A-Z Children's (Pediatric) Nuclear Medicine Children’s (pediatric) nuclear medicine imaging uses small amounts ... Children's Nuclear Medicine? What is Children's (Pediatric) Nuclear Medicine? Nuclear medicine is a branch of medical imaging ...

  3. General Nuclear Medicine

    Science.gov (United States)

    ... Resources Professions Site Index A-Z General Nuclear Medicine Nuclear medicine imaging uses small amounts of radioactive ... of General Nuclear Medicine? What is General Nuclear Medicine? Nuclear medicine is a branch of medical imaging ...

  4. Children's (Pediatric) Nuclear Medicine

    Science.gov (United States)

    ... Professions Site Index A-Z Children's (Pediatric) Nuclear Medicine Children’s (pediatric) nuclear medicine imaging uses small amounts ... Children's Nuclear Medicine? What is Children's (Pediatric) Nuclear Medicine? Nuclear medicine is a branch of medical imaging ...

  5. Intelligent medical image processing by simulated annealing

    International Nuclear Information System (INIS)

    Ohyama, Nagaaki

    1992-01-01

    Image processing is being widely used in the medical field and already has become very important, especially when used for image reconstruction purposes. In this paper, it is shown that image processing can be classified into 4 categories; passive, active, intelligent and visual image processing. These 4 classes are explained at first through the use of several examples. The results show that the passive image processing does not give better results than the others. Intelligent image processing, then, is addressed, and the simulated annealing method is introduced. Due to the flexibility of the simulated annealing, formulated intelligence is shown to be easily introduced in an image reconstruction problem. As a practical example, 3D blood vessel reconstruction from a small number of projections, which is insufficient for conventional method to give good reconstruction, is proposed, and computer simulation clearly shows the effectiveness of simulated annealing method. Prior to the conclusion, medical file systems such as IS and C (Image Save and Carry) is pointed out to have potential for formulating knowledge, which is indispensable for intelligent image processing. This paper concludes by summarizing the advantages of simulated annealing. (author)

  6. Nuclear Medicine Imaging Devices. Chapter 11

    Energy Technology Data Exchange (ETDEWEB)

    Lodge, M. A.; Frey, E. C. [Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, MD (United States)

    2014-12-15

    Imaging forms an important part of nuclear medicine and a number of different imaging devices have been developed. This chapter describes the principles and technological characteristics of the main imaging devices used in nuclear medicine. The two major categories are gamma camera systems and positron emission tomography (PET) systems. The former are used to image γ rays emitted by any nuclide, while the latter exploit the directional correlation between annihilation photons emitted by positron decay. The first section of this chapter discusses the principal components of gamma cameras and how they are used to form 2-D planar images as well as 3-D tomographic images (single photon emission computed tomography (SPECT)). The second section describes related instrumentation that has been optimized for PET data acquisition. A major advance in nuclear medicine was achieved with the introduction of multi-modality imaging systems including SPECT/computed tomography (CT) and PET/CT. In these systems, the CT images can be used to provide an anatomical context for the functional nuclear medicine images and allow for attenuation compensation. The third section in this chapter provides a discussion of the principles of these devices.

  7. Shape analysis in medical image analysis

    CERN Document Server

    Tavares, João

    2014-01-01

    This book contains thirteen contributions from invited experts of international recognition addressing important issues in shape analysis in medical image analysis, including techniques for image segmentation, registration, modelling and classification, and applications in biology, as well as in cardiac, brain, spine, chest, lung and clinical practice. This volume treats topics such as, anatomic and functional shape representation and matching; shape-based medical image segmentation; shape registration; statistical shape analysis; shape deformation; shape-based abnormity detection; shape tracking and longitudinal shape analysis; machine learning for shape modeling and analysis; shape-based computer-aided-diagnosis; shape-based medical navigation; benchmark and validation of shape representation, analysis and modeling algorithms. This work will be of interest to researchers, students, and manufacturers in the fields of artificial intelligence, bioengineering, biomechanics, computational mechanics, computationa...

  8. Medical Image Registration and Surgery Simulation

    DEFF Research Database (Denmark)

    Bro-Nielsen, Morten

    1996-01-01

    This thesis explores the application of physical models in medical image registration and surgery simulation. The continuum models of elasticity and viscous fluids are described in detail, and this knowledge is used as a basis for most of the methods described here. Real-time deformable models......, and the use of selective matrix vector multiplication. Fluid medical image registration A new and faster algorithm for non-rigid registration using viscous fluid models is presented. This algorithm replaces the core part of the original algorithm with multi-resolution convolution using a new filter, which...... growth is also presented. Using medical knowledge about the growth processes of the mandibular bone, a registration algorithm for time sequence images of the mandible is developed. Since this registration algorithm models the actual development of the mandible, it is possible to simulate the development...

  9. Infection imaging in nuclear medicine

    African Journals Online (AJOL)

    osteomyelitis, particularly in children without previous trauma to their ... Anatomical imaging (such as X-rays, ... bacterial pneumonia, whereas diffuse ... imaging is superior to Ga-67 for the detection ... Clinical value of FDG PET in patients with.

  10. Imaging systems in nuclear medicine and image evaluation

    International Nuclear Information System (INIS)

    Beck, R.; Charleston, D.; Metz, C.

    1980-01-01

    This project deals with imaging systems in nuclear medicine and image evaluation and is presented as four subprojects. The goal of the first subproject is to improve diagnositc image quality by development of a general computer code for optimizing collimator design. The second subproject deals with a secondary emission and fluorescence technique for thyroid scanning while the third subproject emphasizes the need for more sophisticated image processing systems such as coherent optical spatial filtering systems and digital image processing. The fourth subproject presents a new approach for processing image data by taking into account the energy of each detected gamma-ray photon

  11. 21 CFR 892.2040 - Medical image hardcopy device.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical image hardcopy device. 892.2040 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2040 Medical image hardcopy device. (a) Identification. A medical image hardcopy device is a device that produces a visible printed record of a medical...

  12. Aligning Islamic Spirituality to Medical Imaging.

    Science.gov (United States)

    Zainuddin, Zainul Ibrahim

    2017-10-01

    This paper attempts to conceptualize Islamic spirituality in medical imaging that deals with the humanistic and technical dimensions. It begins with establishing an understanding concerning spirituality, an area that now accepted as part of patient-centred care. This is followed by discussions pertaining to Islamic spirituality, related to the practitioner, patient care and the practice. Possible avenues towards applying Islamic spirituality in medical imaging are proposed. It is hoped that the resultant harmonization between Islamic spirituality and the practice will trigger awareness and interests pertaining to the role of a Muslim practitioner in advocating and enhancing Islamic spirituality.

  13. APES Beamforming Applied to Medical Ultrasound Imaging

    DEFF Research Database (Denmark)

    Blomberg, Ann E. A.; Holfort, Iben Kraglund; Austeng, Andreas

    2009-01-01

    Recently, adaptive beamformers have been introduced to medical ultrasound imaging. The primary focus has been on the minimum variance (MV) (or Capon) beamformer. This work investigates an alternative but closely related beamformer, the Amplitude and Phase Estimation (APES) beamformer. APES offers...... added robustness at the expense of a slightly lower resolution. The purpose of this study was to evaluate the performance of the APES beamformer on medical imaging data, since correct amplitude estimation often is just as important as spatial resolution. In our simulations we have used a 3.5 MHz, 96...... element linear transducer array. When imaging two closely spaced point targets, APES displays nearly the same resolution as the MV, and at the same time improved amplitude control. When imaging cysts in speckle, APES offers speckle statistics similar to that of the DAS, without the need for temporal...

  14. Reducing noise component on medical images

    Science.gov (United States)

    Semenishchev, Evgeny; Voronin, Viacheslav; Dub, Vladimir; Balabaeva, Oksana

    2018-04-01

    Medical visualization and analysis of medical data is an actual direction. Medical images are used in microbiology, genetics, roentgenology, oncology, surgery, ophthalmology, etc. Initial data processing is a major step towards obtaining a good diagnostic result. The paper considers the approach allows an image filtering with preservation of objects borders. The algorithm proposed in this paper is based on sequential data processing. At the first stage, local areas are determined, for this purpose the method of threshold processing, as well as the classical ICI algorithm, is applied. The second stage uses a method based on based on two criteria, namely, L2 norm and the first order square difference. To preserve the boundaries of objects, we will process the transition boundary and local neighborhood the filtering algorithm with a fixed-coefficient. For example, reconstructed images of CT, x-ray, and microbiological studies are shown. The test images show the effectiveness of the proposed algorithm. This shows the applicability of analysis many medical imaging applications.

  15. Medical Image Denoising Using Mixed Transforms

    Directory of Open Access Journals (Sweden)

    Jaleel Sadoon Jameel

    2018-02-01

    Full Text Available  In this paper,  a mixed transform method is proposed based on a combination of wavelet transform (WT and multiwavelet transform (MWT in order to denoise medical images. The proposed method consists of WT and MWT in cascade form to enhance the denoising performance of image processing. Practically, the first step is to add a noise to Magnetic Resonance Image (MRI or Computed Tomography (CT images for the sake of testing. The noisy image is processed by WT to achieve four sub-bands and each sub-band is treated individually using MWT before the soft/hard denoising stage. Simulation results show that a high peak signal to noise ratio (PSNR is improved significantly and the characteristic features are well preserved by employing mixed transform of WT and MWT due to their capability of separating noise signals from image signals. Moreover, the corresponding mean square error (MSE is decreased accordingly compared to other available methods.

  16. HVS-based medical image compression

    Energy Technology Data Exchange (ETDEWEB)

    Kai Xie [Institute of Image Processing and Pattern Recognition, Shanghai Jiaotong University, 200030 Shanghai (China)]. E-mail: xie_kai2001@sjtu.edu.cn; Jie Yang [Institute of Image Processing and Pattern Recognition, Shanghai Jiaotong University, 200030 Shanghai (China); Min Zhuyue [CREATIS-CNRS Research Unit 5515 and INSERM Unit 630, 69621 Villeurbanne (France); Liang Lixiao [Institute of Image Processing and Pattern Recognition, Shanghai Jiaotong University, 200030 Shanghai (China)

    2005-07-01

    Introduction: With the promotion and application of digital imaging technology in the medical domain, the amount of medical images has grown rapidly. However, the commonly used compression methods cannot acquire satisfying results. Methods: In this paper, according to the existed and stated experiments and conclusions, the lifting step approach is used for wavelet decomposition. The physical and anatomic structure of human vision is combined and the contrast sensitivity function (CSF) is introduced as the main research issue in human vision system (HVS), and then the main designing points of HVS model are presented. On the basis of multi-resolution analyses of wavelet transform, the paper applies HVS including the CSF characteristics to the inner correlation-removed transform and quantization in image and proposes a new HVS-based medical image compression model. Results: The experiments are done on the medical images including computed tomography (CT) and magnetic resonance imaging (MRI). At the same bit rate, the performance of SPIHT, with respect to the PSNR metric, is significantly higher than that of our algorithm. But the visual quality of the SPIHT-compressed image is roughly the same as that of the image compressed with our approach. Our algorithm obtains the same visual quality at lower bit rates and the coding/decoding time is less than that of SPIHT. Conclusions: The results show that under common objective conditions, our compression algorithm can achieve better subjective visual quality, and performs better than that of SPIHT in the aspects of compression ratios and coding/decoding time.

  17. HVS-based medical image compression

    International Nuclear Information System (INIS)

    Kai Xie; Jie Yang; Min Zhuyue; Liang Lixiao

    2005-01-01

    Introduction: With the promotion and application of digital imaging technology in the medical domain, the amount of medical images has grown rapidly. However, the commonly used compression methods cannot acquire satisfying results. Methods: In this paper, according to the existed and stated experiments and conclusions, the lifting step approach is used for wavelet decomposition. The physical and anatomic structure of human vision is combined and the contrast sensitivity function (CSF) is introduced as the main research issue in human vision system (HVS), and then the main designing points of HVS model are presented. On the basis of multi-resolution analyses of wavelet transform, the paper applies HVS including the CSF characteristics to the inner correlation-removed transform and quantization in image and proposes a new HVS-based medical image compression model. Results: The experiments are done on the medical images including computed tomography (CT) and magnetic resonance imaging (MRI). At the same bit rate, the performance of SPIHT, with respect to the PSNR metric, is significantly higher than that of our algorithm. But the visual quality of the SPIHT-compressed image is roughly the same as that of the image compressed with our approach. Our algorithm obtains the same visual quality at lower bit rates and the coding/decoding time is less than that of SPIHT. Conclusions: The results show that under common objective conditions, our compression algorithm can achieve better subjective visual quality, and performs better than that of SPIHT in the aspects of compression ratios and coding/decoding time

  18. Nuclear Medicine Imaging of Neuroendocrine Tumors

    NARCIS (Netherlands)

    Brabander, Tessa; Kwekkeboom, Dik J.; Feelders, Richard A.; Brouwers, Adrienne H.; Teunissen, Jaap J. M.; Papotti, M; DeHerder, WW

    2015-01-01

    An important role is reserved for nuclear imaging techniques in the imaging of neuroendocrine tumors (NETs). Somatostatin receptor scintigraphy (SRS) with In-111-DTPA-octreotide is currently the most important tracer in the diagnosis, staging and selection for peptide receptor radionuclide therapy

  19. From analogue to apps--developing an app to prepare children for medical imaging procedures.

    Science.gov (United States)

    Williams, Gigi; Greene, Siobhan

    2015-01-01

    The Royal Children's Hospital (RCH) in Melbourne has launched a world-first app for children that will help reduce anxiety and the need for anesthesia during medical imaging procedures. The free, game-based app, "Okee in Medical Imaging", helps children aged from four to eight years to prepare for all medical imaging procedures--X-ray, CT, MRI, ultrasound, nuclear medicine, and fluoroscopy. The app is designed to reduce anticipatory fear of imaging procedures, while helping to ensure that children attend imaging appointments equipped with the skills required for efficient and effective scans to be performed. This paper describes how the app was developed.

  20. Medical image segmentation using improved FCM

    Institute of Scientific and Technical Information of China (English)

    ZHANG XiaoFeng; ZHANG CaiMing; TANG WenJing; WEI ZhenWen

    2012-01-01

    Image segmentation is one of the most important problems in medical image processing,and the existence of partial volume effect and other phenomena makes the problem much more complex. Fuzzy Cmeans,as an effective tool to deal with PVE,however,is faced with great challenges in efficiency.Aiming at this,this paper proposes one improved FCM algorithm based on the histogram of the given image,which will be denoted as HisFCM and divided into two phases.The first phase will retrieve several intervals on which to compute cluster centroids,and the second one will perform image segmentation based on improved FCM algorithm.Compared with FCM and other improved algorithms,HisFCM is of much higher efficiency with satisfying results.Experiments on medical images show that HisFCM can achieve good segmentation results in less than 0.1 second,and can satisfy real-time requirements of medical image processing.

  1. Resolution enhancement in medical ultrasound imaging.

    Science.gov (United States)

    Ploquin, Marie; Basarab, Adrian; Kouamé, Denis

    2015-01-01

    Image resolution enhancement is a problem of considerable interest in all medical imaging modalities. Unlike general purpose imaging or video processing, for a very long time, medical image resolution enhancement has been based on optimization of the imaging devices. Although some recent works purport to deal with image postprocessing, much remains to be done regarding medical image enhancement via postprocessing, especially in ultrasound imaging. We face a resolution improvement issue in the case of medical ultrasound imaging. We propose to investigate this problem using multidimensional autoregressive (AR) models. Noting that the estimation of the envelope of an ultrasound radio frequency (RF) signal is very similar to the estimation of classical Fourier-based power spectrum estimation, we theoretically show that a domain change and a multidimensional AR model can be used to achieve super-resolution in ultrasound imaging provided the order is estimated correctly. Here, this is done by means of a technique that simultaneously estimates the order and the parameters of a multidimensional model using relevant regression matrix factorization. Doing so, the proposed method specifically fits ultrasound imaging and provides an estimated envelope. Moreover, an expression that links the theoretical image resolution to both the image acquisition features (such as the point spread function) and a postprocessing feature (the AR model) order is derived. The overall contribution of this work is threefold. First, it allows for automatic resolution improvement. Through a simple model and without any specific manual algorithmic parameter tuning, as is used in common methods, the proposed technique simply and exclusively uses the ultrasound RF signal as input and provides the improved B-mode as output. Second, it allows for the a priori prediction of the improvement in resolution via the knowledge of the parametric model order before actual processing. Finally, to achieve the

  2. Public Health and Medical Preparedness for a Nuclear Detonation: The Nuclear Incident Medical Enterprise

    Science.gov (United States)

    Coleman, C. Norman; Sullivan, Julie M.; Bader, Judith L.; Murrain-Hill, Paula; Koerner, John F.; Garrett, Andrew L.; Weinstock, David M.; Case, Cullen; Hrdina, Chad; Adams, Steven A.; Whitcomb, Robert C.; Graeden, Ellie; Shankman, Robert; Lant, Timothy; Maidment, Bert W.; Hatchett, Richard C.

    2014-01-01

    Resilience and the ability to mitigate the consequences of a nuclear incident are enhanced by (1) effective planning, preparation and training; (2) ongoing interaction, formal exercises, and evaluation among the sectors involved; (3) effective and timely response and communication; and (4) continuous improvements based on new science, technology, experience and ideas. Public health and medical planning require a complex, multi-faceted systematic approach involving federal, state, local, tribal and territorial governments, private sector organizations, academia, industry, international partners, and individual experts and volunteers. The approach developed by the U.S. Department of Health and Human Services Nuclear Incident Medical Enterprise (NIME) is the result of efforts from government and nongovernment experts. It is a “bottom-up” systematic approach built on the available and emerging science that considers physical infrastructure damage, the spectrum of injuries, a scarce resources setting, the need for decision making in the face of a rapidly evolving situation with limited information early on, timely communication and the need for tools and just-in-time information for responders who will likely be unfamiliar with radiation medicine and uncertain and overwhelmed in the face of the large number of casualties and the presence of radioactivity. The components of NIME can be used to support planning for, response to, and recovery from the effects of a nuclear incident. Recognizing that it is a continuous work-in-progress, the current status of the public health and medical preparedness and response for a nuclear incident is provided. PMID:25551496

  3. The medical physicist in a nuclear medicine department

    International Nuclear Information System (INIS)

    Trujillo Z, F.E.; Gomez A, E.

    2007-01-01

    The diagnostic studies and therapeutic treatments carried out in a Nuclear Medicine department make use of radioactive material. For such a reason it becomes necessary to take a strict control in the reception, use and waste that are generated of the typical works inside the department. Also, work related with the quality control of the equipment dedicated to produce images and of those not image formers, need to carry out to guarantee its maximum performance; as well as quality of the diagnostic and of the therapy imparted in patients. Additionally its are needed to make originated works of the individual procedures to patient and of the acquisition of radioactive materials and removal of the waste or radioactive contaminations. Presently work the recommendations of the American College of Radiology (ACR), the European Federation of Organizations for Medical Physics (EFOMP) and of the Mexican Official Standards relating to the functions that should be observed in a Nuclear Medicine Department are exposed. The ACR and the EFOMP, conclude in their recommendations that the medical physicist fulfills with the suitable profile and likewise they describe in detail the actions and functions that he should supervise, to carry out, to document and to inform. (Author)

  4. Imaging of Nuclear Weapon Trainers

    Energy Technology Data Exchange (ETDEWEB)

    Schwellenbach, David [National Security Technologies, LLC. (NSTec), Mercury, NV (United States)

    2017-12-06

    The Configurable Muon Tracker (CMT) is an adaptation of the existing drift tube detector commercially available from Decision Sciences International Corporation (DSIC). NSTec engineered the CMT around commercially available drift tube assemblies to make a detector that is more versatile than previous drift tube assemblies. The CMT became operational in February 2013. Traditionally, cosmic-ray muon trackers rely on near-vertical trajectory muons for imaging. Since there are scenarios where imaging using vertical trajectory muons is not practical, NSTec designed the CMT specifically for quick configurability to track muons from any trajectory. The CMT was originally designed to be changed from vertical imaging mode to horizontal imaging mode in a few hours with access to a crane or other lifting equipment. In FY14, locations for imaging weapon trainers and SNM were identified and it was determined that lifting equipment would not typically be available in experimental areas. The CMT was further modified and a portable lifting system was developed to allow reconfiguration of the CMT without access to lifting equipment at the facility. This system was first deployed at Los Alamos National Laboratory’s W-division, where several trainers were imaged in both horizontal and vertical modes. Real-time images have been compared in both modes showing that imaging can be done in both modes with the expected longer integration time for horizontal mode. Further imaging and post processing of the data is expected to continue into early FY15.

  5. The semiotics of medical image Segmentation.

    Science.gov (United States)

    Baxter, John S H; Gibson, Eli; Eagleson, Roy; Peters, Terry M

    2018-02-01

    As the interaction between clinicians and computational processes increases in complexity, more nuanced mechanisms are required to describe how their communication is mediated. Medical image segmentation in particular affords a large number of distinct loci for interaction which can act on a deep, knowledge-driven level which complicates the naive interpretation of the computer as a symbol processing machine. Using the perspective of the computer as dialogue partner, we can motivate the semiotic understanding of medical image segmentation. Taking advantage of Peircean semiotic traditions and new philosophical inquiry into the structure and quality of metaphors, we can construct a unified framework for the interpretation of medical image segmentation as a sign exchange in which each sign acts as an interface metaphor. This allows for a notion of finite semiosis, described through a schematic medium, that can rigorously describe how clinicians and computers interpret the signs mediating their interaction. Altogether, this framework provides a unified approach to the understanding and development of medical image segmentation interfaces. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Gestalt descriptions embodiments and medical image interpretation

    DEFF Research Database (Denmark)

    Friis, Jan Kyrre Berg Olsen

    2017-01-01

    In this paper I will argue that medical specialists interpret and diagnose through technological mediations like X-ray and fMRI images, and by actualizing embodied skills tacitly they are determining the identity of objects in the perceptual field. The initial phase of human interpretation of vis...

  7. A virtual laboratory for medical image analysis

    NARCIS (Netherlands)

    Olabarriaga, Sílvia D.; Glatard, Tristan; de Boer, Piter T.

    2010-01-01

    This paper presents the design, implementation, and usage of a virtual laboratory for medical image analysis. It is fully based on the Dutch grid, which is part of the Enabling Grids for E-sciencE (EGEE) production infrastructure and driven by the gLite middleware. The adopted service-oriented

  8. Fast fluid registration of medical images

    DEFF Research Database (Denmark)

    Bro-Nielsen, Morten; Gramkow, Claus

    1996-01-01

    This paper offers a new fast algorithm for non-rigid viscous fluid registration of medical images that is at least an order of magnitude faster than the previous method by (Christensen et al., 1994). The core algorithm in the fluid registration method is based on a linear elastic deformation...

  9. Beat-Frequency/Microsphere Medical Ultrasonic Imaging

    Science.gov (United States)

    Yost, William T.; Cantrell, John H.; Pretlow, Robert A., III

    1995-01-01

    Medical ultrasonic imaging system designed to provide quantitative data on various flows of blood in chambers, blood vessels, muscles, and tissues of heart. Sensitive enough to yield readings on flows of blood in heart even when microspheres used as ultrasonic contrast agents injected far from heart and diluted by circulation of blood elsewhere in body.

  10. Curve Matching with Applications in Medical Imaging

    DEFF Research Database (Denmark)

    Bauer, Martin; Bruveris, Martins; Harms, Philipp

    2015-01-01

    In the recent years, Riemannian shape analysis of curves and surfaces has found several applications in medical image analysis. In this paper we present a numerical discretization of second order Sobolev metrics on the space of regular curves in Euclidean space. This class of metrics has several...

  11. Lesion Contrast Enhancement in Medical Ultrasound Imaging

    DEFF Research Database (Denmark)

    Stetson, Paul F.; Sommer, F.G.; Macovski, A.

    1997-01-01

    Methods for improving the contrast-to-noise ratio (CNR) of low-contrast lesions in medical ultrasound imaging are described. Differences in the frequency spectra and amplitude distributions of the lesion and its surroundings can be used to increase the CNR of the lesion relative to the background...

  12. Medical image reconstruction. A conceptual tutorial

    International Nuclear Information System (INIS)

    Zeng, Gengsheng Lawrence

    2010-01-01

    ''Medical Image Reconstruction: A Conceptual Tutorial'' introduces the classical and modern image reconstruction technologies, such as two-dimensional (2D) parallel-beam and fan-beam imaging, three-dimensional (3D) parallel ray, parallel plane, and cone-beam imaging. This book presents both analytical and iterative methods of these technologies and their applications in X-ray CT (computed tomography), SPECT (single photon emission computed tomography), PET (positron emission tomography), and MRI (magnetic resonance imaging). Contemporary research results in exact region-of-interest (ROI) reconstruction with truncated projections, Katsevich's cone-beam filtered backprojection algorithm, and reconstruction with highly undersampled data with l 0 -minimization are also included. (orig.)

  13. A study on the optimization of referring method about medical images using MIH (Medical Image History)

    International Nuclear Information System (INIS)

    Kim, Sun Chil; Kim, Jung Min

    2002-01-01

    The recent development of embodiment technology of the medical images makes most medical institutions introduce PACS (Picture Archiving and Communication System) in haste. However lots of PACS solutions, currently developed and distributed, haven't been able to serve the convenience of users and to satisfy user's demand because of economic limitations and administrator-oriented con-siderations in the process of development. So we have developed MIH (Medical Image History), by which we can search and refer to the patient's medical images and information with few restrictions of time and space for diagnosis and treatment. The program will contribute to the improvement in the medical environment and meet the clients' need. We'll make more effort to develop the application which insures the better quality of medical images. MIH manages the patient's image files and medical records like film chart in connection with time. This trial will contribute to the reduction of the economical loss caused by unnecessary references and improve the quality in the medical services. The demand on the development of the program which refers to the medical data quickly and keeps them stable will be continued by the medical institute. This will satisfy the client's demand and improve the service to the patients in that the program will be modified from the standpoint of the users. MIH is trying to keep user-oriented policy and to apply the benefit of the analog system to the digital environment. It is necessary to lead the public to the better understanding that the systematic management and referring of the medical images is as important as the quality of the images

  14. A study on the optimization of referring method about medical images using MIH (Medical Image History)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun Chil; Kim, Jung Min [College of Health Sciences, Korea University, Seoul (Korea, Republic of)

    2002-09-15

    The recent development of embodiment technology of the medical images makes most medical institutions introduce PACS (Picture Archiving and Communication System) in haste. However lots of PACS solutions, currently developed and distributed, haven't been able to serve the convenience of users and to satisfy user's demand because of economic limitations and administrator-oriented con-siderations in the process of development. So we have developed MIH (Medical Image History), by which we can search and refer to the patient's medical images and information with few restrictions of time and space for diagnosis and treatment. The program will contribute to the improvement in the medical environment and meet the clients' need. We'll make more effort to develop the application which insures the better quality of medical images. MIH manages the patient's image files and medical records like film chart in connection with time. This trial will contribute to the reduction of the economical loss caused by unnecessary references and improve the quality in the medical services. The demand on the development of the program which refers to the medical data quickly and keeps them stable will be continued by the medical institute. This will satisfy the client's demand and improve the service to the patients in that the program will be modified from the standpoint of the users. MIH is trying to keep user-oriented policy and to apply the benefit of the analog system to the digital environment. It is necessary to lead the public to the better understanding that the systematic management and referring of the medical images is as important as the quality of the images.

  15. The development of nuclear medicine molecular imaging: An era of multiparametric imaging

    International Nuclear Information System (INIS)

    Zhu Yuyuan; Huang Gang

    2010-01-01

    Nuclear medical molecular imaging is developing toward a multimodality and multitracer future. Abundant complementary data generated from different tracers in different modalities are successfully serving the biological research and clinical treatment. Among the others, PER-MRI has the greatest potential and will be a research of interest in the near future. This article focused on the evolution history on nuclear medicine from single modality to multimodality, single tracer to multitracer. It also gave a brief summary to the identifications, differences, pros and consofmultimodality, multitracer, multiparametric molecular imaging. Issues, problems and challenges concerned with her development and recognition are also discussed. (authors)

  16. Biological and medical consequences of nuclear accidents

    International Nuclear Information System (INIS)

    Latarjet, R.

    1988-01-01

    The study of the medical and biological consequences of the nuclear accidents is a vast program. The Chernobyl accident has caused some thirty deceases: Some of them were rapid and the others occurred after a certain time. The particularity of these deaths was that the irradiation has been associated to burns and traumatisms. The lesson learnt from the Chernobyl accident is to treat the burn and the traumatism before treating the irradiation. Contrary to what the research workers believe, the first wave of deaths has passed between 15 and 35 days and it has not been followed by any others. But the therapeutic lesson drawn from the accident confirm the research workers results; for example: the radioactive doses band that determines where the therapy could be efficacious or not. the medical cares dispensed to the irradiated people in the hospital of Moscow has confirmed that the biochemical equilibrium of proteinic elements of blood has to be maintained, and the transfusion of the purified elements are very important to restore a patient to health, and the sterilization of the medium (room, food, bedding,etc...) of the patient is indispensable. Therefore, it is necessary to establish an international cooperation for providing enough sterilized rooms and specialists in the irradiation treatment. The genetic consequences and cancers from the Chernobyl accident have been discussed. It is impossible to detect these consequences because of their negligible percentages. (author)

  17. Interpretation of medical images by model guided analysis

    International Nuclear Information System (INIS)

    Karssemeijer, N.

    1989-01-01

    Progress in the development of digital pictorial information systems stimulates a growing interest in the use of image analysis techniques in medicine. Especially when precise quantitative information is required the use of fast and reproducable computer analysis may be more appropriate than relying on visual judgement only. Such quantitative information can be valuable, for instance, in diagnostics or in irradiation therapy planning. As medical images are mostly recorded in a prescribed way, human anatomy guarantees a common image structure for each particular type of exam. In this thesis it is investigated how to make use of this a priori knowledge to guide image analysis. For that purpose models are developed which are suited to capture common image structure. The first part of this study is devoted to an analysis of nuclear medicine images of myocardial perfusion. In ch. 2 a model of these images is designed in order to represent characteristic image properties. It is shown that for these relatively simple images a compact symbolic description can be achieved, without significant loss of diagnostically importance of several image properties. Possibilities for automatic interpretation of more complex images is investigated in the following chapters. The central topic is segmentation of organs. Two methods are proposed and tested on a set of abdominal X-ray CT scans. Ch. 3 describes a serial approach based on a semantic network and the use of search areas. Relational constraints are used to guide the image processing and to classify detected image segments. In teh ch.'s 4 and 5 a more general parallel approach is utilized, based on a markov random field image model. A stochastic model used to represent prior knowledge about the spatial arrangement of organs is implemented as an external field. (author). 66 refs.; 27 figs.; 6 tabs

  18. Neural networks: Application to medical imaging

    Science.gov (United States)

    Clarke, Laurence P.

    1994-01-01

    The research mission is the development of computer assisted diagnostic (CAD) methods for improved diagnosis of medical images including digital x-ray sensors and tomographic imaging modalities. The CAD algorithms include advanced methods for adaptive nonlinear filters for image noise suppression, hybrid wavelet methods for feature segmentation and enhancement, and high convergence neural networks for feature detection and VLSI implementation of neural networks for real time analysis. Other missions include (1) implementation of CAD methods on hospital based picture archiving computer systems (PACS) and information networks for central and remote diagnosis and (2) collaboration with defense and medical industry, NASA, and federal laboratories in the area of dual use technology conversion from defense or aerospace to medicine.

  19. Getting a Clear Picture on Medical Imaging

    International Nuclear Information System (INIS)

    Madsen, Michael Amdi

    2014-01-01

    Diseases take on all shapes and forms, and some are easier to detect than others. Obvious outward growths like rashes and warts are quick to spot, but for some diseases and conditions more information is needed. Fortunately, nuclear medicine doctors today can use a wide range of modern imaging and diagnosis techniques and technologies to identify a variety of health conditions. SPECT, PET, MRI, CT, ECHO, fluoroscopy — the list of diagnosis techniques go on, but do you know what they actually are? Imaging techniques can be broken down into two basic categories: those that simply show the anatomy, known as radiology, and those that look at the physiology, on how the body functions, which is known as functional imaging. This article presents a breakdown of the two imaging disciplines and how some of the most common techniques work

  20. Multimodality image registration. A special development in medical imaging has been strongly influenced by a small but highly qualified software think-tank

    International Nuclear Information System (INIS)

    Diemling, M.

    2007-01-01

    The importance of image fusion and registration in the field of medical diagnostics will be shown. After some details and background of image registration, as well as the history of nuclear medicine imaging - given by the example of HERMES Medical Solutions of Stockholm, Sweden - the reader finds seven cases illustrating the clinical importance of this method. These cases were collected from various fields of applications of medical imaging, they are carefully documented and illustrated. (orig.)

  1. Myocardial viability assessment using nuclear imaging

    International Nuclear Information System (INIS)

    Matsunari, Ichiro; Hisada, Kinichi; Taki, Junichi; Nakajima, Kenichi; Tonami, Norihisa

    2003-01-01

    Myocardial assessment continues to be an issue in patients with coronary artery disease and left ventricular dysfunction. Nuclear imaging has long played an important role in this field. In particular, PET imaging using 18 F-fluorodeoxyglucose is regarded as the metabolic gold standard of tissue viability, which has been supported by a wide clinical experience. Viability assessment using SPECT techniques has gained more wide-spread clinical acceptance than PET, because it is more widely available at lower cost. Moreover, technical advances in SPECT technology such as gated-SPECT further improve the diagnostic accuracy of the test. However, other imaging techniques such as dobutamine echocardiography have recently emerged as competitors to nuclear imaging. It is also important to note that they sometimes may work in a complementary fashion to nuclear imaging, indicating that an appropriate use of these techniques may significantly improve their overall accuracy. In keeping these circumstances in mind, further efforts are necessary to further improve the diagnostic performance of nuclear imaging as a reliable viability test. (author) 107 refs

  2. The origins and future of nuclear magnetic resonance imaging

    International Nuclear Information System (INIS)

    Wehrli, F.W.

    1992-01-01

    What began as a curiosity of physics has become the preeminent method of diagnostic medical imaging and may displace x-ray-based techniques in the 21st century. During the past two decades nuclear magnetic resonance has revolutionized chemistry, biochemistry, biology and, more recently, diagnostic medicine. Nuclear magnetic resonance imaging, (MRI) as it is commonly called, is fundamentally different from x-ray-based techniques in terms of the principles of spatial encoding and mechanisms of signal and contrast generation involved. MRI has a far richer ultimate potential than any other imaging technique known today, and its technology and applications are still far from maturation, which may not occur until early in the 21st century. 23 refs., 6 figs

  3. Quantitative Analysis in Nuclear Medicine Imaging

    CERN Document Server

    2006-01-01

    This book provides a review of image analysis techniques as they are applied in the field of diagnostic and therapeutic nuclear medicine. Driven in part by the remarkable increase in computing power and its ready and inexpensive availability, this is a relatively new yet rapidly expanding field. Likewise, although the use of radionuclides for diagnosis and therapy has origins dating back almost to the discovery of natural radioactivity itself, radionuclide therapy and, in particular, targeted radionuclide therapy has only recently emerged as a promising approach for therapy of cancer and, to a lesser extent, other diseases. As effort has, therefore, been made to place the reviews provided in this book in a broader context. The effort to do this is reflected by the inclusion of introductory chapters that address basic principles of nuclear medicine imaging, followed by overview of issues that are closely related to quantitative nuclear imaging and its potential role in diagnostic and therapeutic applications. ...

  4. A special designed library for medical imaging applications

    International Nuclear Information System (INIS)

    Lymberopoulos, D.; Kotsopoulos, S.; Zoupas, V.; Yoldassis, N.; Spyropoulos, C.

    1994-01-01

    The present paper deals with a sophisticated and flexible library of medical purpose image processing routines. It contains modules for simple as well as advanced gray or colour image processing. This library offers powerful features for medical image processing and analysis applications, thus providing the physician with a means of analyzing and estimating medical images in order to accomplish their diagnostic procedures

  5. Medical image transmission via communication satellite: evaluation of ultrasonographic images.

    Science.gov (United States)

    Suzuki, H; Horikoshi, H; Shiba, H; Shimamoto, S

    1996-01-01

    As compared with terrestrial circuits, communication satellites possess superior characteristics such as wide area coverage, broadcasting functions, high capacity, and resistance to disasters. Utilizing the narrow band channel (64 kbps) of the stationary communication satellite JCSAT1 located at an altitude of 36,000 km above the equator, we investigated satelliterelayed dynamic medical images transmitted by video signals, using hepatic ultrasonography as a model. We conclude that the "variable playing speed transmission scheme" proposed by us is effective for the transmission of dynamic images in the narrow band channel. This promises to permit diverse utilization and applications for purposes such as the transmission of other types of ultrasonic images as well as remotely directed medical diagnosis and treatment.

  6. Advantages of semiconductor CZT for medical imaging

    Science.gov (United States)

    Wagenaar, Douglas J.; Parnham, Kevin; Sundal, Bjorn; Maehlum, Gunnar; Chowdhury, Samir; Meier, Dirk; Vandehei, Thor; Szawlowski, Marek; Patt, Bradley E.

    2007-09-01

    Cadmium zinc telluride (CdZnTe, or CZT) is a room-temperature semiconductor radiation detector that has been developed in recent years for a variety of applications. CZT has been investigated for many potential uses in medical imaging, especially in the field of single photon emission computed tomography (SPECT). CZT can also be used in positron emission tomography (PET) as well as photon-counting and integration-mode x-ray radiography and computed tomography (CT). The principal advantages of CZT are 1) direct conversion of x-ray or gamma-ray energy into electron-hole pairs; 2) energy resolution; 3) high spatial resolution and hence high space-bandwidth product; 4) room temperature operation, stable performance, high density, and small volume; 5) depth-of-interaction (DOI) available through signal processing. These advantages will be described in detail with examples from our own CZT systems. The ability to operate at room temperature, combined with DOI and very small pixels, make the use of multiple, stationary CZT "mini-gamma cameras" a realistic alternative to today's large Anger-type cameras that require motion to obtain tomographic sampling. The compatibility of CZT with Magnetic Resonance Imaging (MRI)-fields is demonstrated for a new type of multi-modality medical imaging, namely SPECT/MRI. For pre-clinical (i.e., laboratory animal) imaging, the advantages of CZT lie in spatial and energy resolution, small volume, automated quality control, and the potential for DOI for parallax removal in pinhole imaging. For clinical imaging, the imaging of radiographically dense breasts with CZT enables scatter rejection and hence improved contrast. Examples of clinical breast images with a dual-head CZT system are shown.

  7. Nuclear cardiac imaging: Principles and applications

    Energy Technology Data Exchange (ETDEWEB)

    Iskandrian, A.S.

    1987-01-01

    This book is divided into 11 chapters. The first three provide a short description of the instrumentation, radiopharmaceuticals, and imaging techniques used in nuclear cardiology. Chapter 4 discusses exercise testing. Chapter 5 gives the theory, technical aspects, and interpretations of thallium-201 myocardial imaging and radionuclide ventriculography. The remaining chapters discuss the use of these techniques in patients with coronary artery disease, acute myocardial infarction, valvular heart disease, and other forms of cardiac disease. The author intended to emphasize the implications of nuclear cardiology procedures on patient care management and to provide a comprehensive bibliography.

  8. Nuclear cardiac imaging: Principles and applications

    International Nuclear Information System (INIS)

    Iskandrian, A.S.

    1987-01-01

    This book is divided into 11 chapters. The first three provide a short description of the instrumentation, radiopharmaceuticals, and imaging techniques used in nuclear cardiology. Chapter 4 discusses exercise testing. Chapter 5 gives the theory, technical aspects, and interpretations of thallium-201 myocardial imaging and radionuclide ventriculography. The remaining chapters discuss the use of these techniques in patients with coronary artery disease, acute myocardial infarction, valvular heart disease, and other forms of cardiac disease. The author intended to emphasize the implications of nuclear cardiology procedures on patient care management and to provide a comprehensive bibliography

  9. Data Analysis Strategies in Medical Imaging.

    Science.gov (United States)

    Parmar, Chintan; Barry, Joseph D; Hosny, Ahmed; Quackenbush, John; Aerts, Hugo Jwl

    2018-03-26

    Radiographic imaging continues to be one of the most effective and clinically useful tools within oncology. Sophistication of artificial intelligence (AI) has allowed for detailed quantification of radiographic characteristics of tissues using predefined engineered algorithms or deep learning methods. Precedents in radiology as well as a wealth of research studies hint at the clinical relevance of these characteristics. However, there are critical challenges associated with the analysis of medical imaging data. While some of these challenges are specific to the imaging field, many others like reproducibility and batch effects are generic and have already been addressed in other quantitative fields such as genomics. Here, we identify these pitfalls and provide recommendations for analysis strategies of medical imaging data including data normalization, development of robust models, and rigorous statistical analyses. Adhering to these recommendations will not only improve analysis quality, but will also enhance precision medicine by allowing better integration of imaging data with other biomedical data sources. Copyright ©2018, American Association for Cancer Research.

  10. HEP technologies to address medical imaging challenges

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    Developments in detector technologies aimed at solving challenges in present and future CERN experiments, particularly at the LHC, have triggered exceptional advances in the performance of medical imaging devices, allowing for a spectacular progress in in-vivo molecular imaging procedures, which are opening the way for tailored therapies of major diseases. This talk will briefly review the recent history of this prime example of technology transfer from HEP experiments to society, will describe the technical challenges being addressed by some ongoing projects, and will present a few new ideas for further developments and their foreseeable impact.

  11. Medical Imaging Informatics: Towards a Personalized Computational Patient.

    Science.gov (United States)

    Ayache, N

    2016-05-20

    Medical Imaging Informatics has become a fast evolving discipline at the crossing of Informatics, Computational Sciences, and Medicine that is profoundly changing medical practices, for the patients' benefit.

  12. Deep learning in medical imaging: General overview

    Energy Technology Data Exchange (ETDEWEB)

    Lee, June Goo; Jun, Sang Hoon; Cho, Young Won; Lee, Hyun Na; KIm, Guk Bae; Seo, Joon Beom; Kim, Nam Kug [University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of)

    2017-08-01

    The artificial neural network (ANN)–a machine learning technique inspired by the human neuronal synapse system–was introduced in the 1950s. However, the ANN was previously limited in its ability to solve actual problems, due to the vanishing gradient and overfitting problems with training of deep architecture, lack of computing power, and primarily the absence of sufficient data to train the computer system. Interest in this concept has lately resurfaced, due to the availability of big data, enhanced computing power with the current graphics processing units, and novel algorithms to train the deep neural network. Recent studies on this technology suggest its potentially to perform better than humans in some visual and auditory recognition tasks, which may portend its applications in medicine and health care, especially in medical imaging, in the foreseeable future. This review article offers perspectives on the history, development, and applications of deep learning technology, particularly regarding its applications in medical imaging.

  13. Deep learning in medical imaging: General overview

    International Nuclear Information System (INIS)

    Lee, June Goo; Jun, Sang Hoon; Cho, Young Won; Lee, Hyun Na; KIm, Guk Bae; Seo, Joon Beom; Kim, Nam Kug

    2017-01-01

    The artificial neural network (ANN)–a machine learning technique inspired by the human neuronal synapse system–was introduced in the 1950s. However, the ANN was previously limited in its ability to solve actual problems, due to the vanishing gradient and overfitting problems with training of deep architecture, lack of computing power, and primarily the absence of sufficient data to train the computer system. Interest in this concept has lately resurfaced, due to the availability of big data, enhanced computing power with the current graphics processing units, and novel algorithms to train the deep neural network. Recent studies on this technology suggest its potentially to perform better than humans in some visual and auditory recognition tasks, which may portend its applications in medicine and health care, especially in medical imaging, in the foreseeable future. This review article offers perspectives on the history, development, and applications of deep learning technology, particularly regarding its applications in medical imaging

  14. Instrumentation of the ESRF medical imaging facility

    CERN Document Server

    Elleaume, H; Berkvens, P; Berruyer, G; Brochard, T; Dabin, Y; Domínguez, M C; Draperi, A; Fiedler, S; Goujon, G; Le Duc, G; Mattenet, M; Nemoz, C; Pérez, M; Renier, M; Schulze, C; Spanne, P; Suortti, P; Thomlinson, W; Estève, F; Bertrand, B; Le Bas, J F

    1999-01-01

    At the European Synchrotron Radiation Facility (ESRF) a beamport has been instrumented for medical research programs. Two facilities have been constructed for alternative operation. The first one is devoted to medical imaging and is focused on intravenous coronary angiography and computed tomography (CT). The second facility is dedicated to pre-clinical microbeam radiotherapy (MRT). This paper describes the instrumentation for the imaging facility. Two monochromators have been designed, both are based on bent silicon crystals in the Laue geometry. A versatile scanning device has been built for pre-alignment and scanning of the patient through the X-ray beam in radiography or CT modes. An intrinsic germanium detector is used together with large dynamic range electronics (16 bits) to acquire the data. The beamline is now at the end of its commissioning phase; intravenous coronary angiography is intended to start in 1999 with patients and the CT pre-clinical program is underway on small animals. The first in viv...

  15. Statistical physics of medical ultrasonic images

    International Nuclear Information System (INIS)

    Wagner, R.F.; Insana, M.F.; Brown, D.G.; Smith, S.W.

    1987-01-01

    The physical and statistical properties of backscattered signals in medical ultrasonic imaging are reviewed in terms of: 1) the radiofrequency signal; 2) the envelope (video or magnitude) signal; and 3) the density of samples in simple and in compounded images. There is a wealth of physical information in backscattered signals in medical ultrasound. This information is contained in the radiofrequency spectrum - which is not typically displayed to the viewer - as well as in the higher statistical moments of the envelope or video signal - which are not readily accessed by the human viewer of typical B-scans. This information may be extracted from the detected backscattered signals by straightforward signal processing techniques at low resolution

  16. Deep Learning in Medical Imaging: General Overview

    Science.gov (United States)

    Lee, June-Goo; Jun, Sanghoon; Cho, Young-Won; Lee, Hyunna; Kim, Guk Bae

    2017-01-01

    The artificial neural network (ANN)–a machine learning technique inspired by the human neuronal synapse system–was introduced in the 1950s. However, the ANN was previously limited in its ability to solve actual problems, due to the vanishing gradient and overfitting problems with training of deep architecture, lack of computing power, and primarily the absence of sufficient data to train the computer system. Interest in this concept has lately resurfaced, due to the availability of big data, enhanced computing power with the current graphics processing units, and novel algorithms to train the deep neural network. Recent studies on this technology suggest its potentially to perform better than humans in some visual and auditory recognition tasks, which may portend its applications in medicine and healthcare, especially in medical imaging, in the foreseeable future. This review article offers perspectives on the history, development, and applications of deep learning technology, particularly regarding its applications in medical imaging. PMID:28670152

  17. Deep Learning in Medical Imaging: General Overview.

    Science.gov (United States)

    Lee, June-Goo; Jun, Sanghoon; Cho, Young-Won; Lee, Hyunna; Kim, Guk Bae; Seo, Joon Beom; Kim, Namkug

    2017-01-01

    The artificial neural network (ANN)-a machine learning technique inspired by the human neuronal synapse system-was introduced in the 1950s. However, the ANN was previously limited in its ability to solve actual problems, due to the vanishing gradient and overfitting problems with training of deep architecture, lack of computing power, and primarily the absence of sufficient data to train the computer system. Interest in this concept has lately resurfaced, due to the availability of big data, enhanced computing power with the current graphics processing units, and novel algorithms to train the deep neural network. Recent studies on this technology suggest its potentially to perform better than humans in some visual and auditory recognition tasks, which may portend its applications in medicine and healthcare, especially in medical imaging, in the foreseeable future. This review article offers perspectives on the history, development, and applications of deep learning technology, particularly regarding its applications in medical imaging.

  18. Molecular nuclear imaging for targeting and trafficking

    International Nuclear Information System (INIS)

    Bom, Hee Seung; Min, Jung Jun; Jeong, Hwan-Jeong

    2006-01-01

    Noninvasive molecular targeting in living subjects is highly demanded for better understanding of such diverse topics as the efficient delivery of drugs, genes, or radionuclides for the diagnosis or treatment of diseases. Progress in molecular biology, genetic engineering and polymer chemistry provides various tools to target molecules and cells in vivo. We used chitosan as a polymer, and 99m Tc as a radionuclide. We developed 99m Tc-galactosylated chitosan to target asialoglycoprotein receptors for nuclear imaging. We also developed 99m Tc-HYNIC-chitosan-transferrin to target inflammatory cells, which was more effective than 67 Ga-citrate for imaging inflammatory lesions. For an effective delivery of molecules, a longer circulation time is needed. We found that around 10% PEGylation was most effective to prolong the circulation time of liposomes for nuclear imaging of 99m Tc-HMPAO-labeled liposomes in rats. Using various characteristics of molecules, we can deliver drugs into targets more effectively. We found that 99m Tc-labeled biodegradable pullulan-derivatives are retained in tumor tissue in response to extracellular ion-strength. For the trafficking of various cells or bacteria in an intact animal, we used optical imaging techniques or radiolabeled cells. We monitored tumor-targeting bacteria by bioluminescent imaging techniques, dentritic cells by radiolabeling and neuronal stem cells by sodium-iodide symporter reporter gene imaging. In summary, we introduced recent achievements of molecular nuclear imaging technologies in targeting receptors for hepatocyte or inflammatory cells and in trafficking bacterial, immune and stem cells using molecular nuclear imaging techniques

  19. Medical activities at nuclear disaster. Experience in the accident of Fukushima nuclear power plant

    International Nuclear Information System (INIS)

    Hasegawa, Arifumi

    2013-01-01

    The Great East Japan Earthquake brought multiple disaster resulting nuclear accident at Fukushima. Existing medical system for emergency radiation exposure did not work well. Present medical system for the nuclear disaster is maintained temporary with supports by teams from regions other than Fukushima Pref. The radiation protection action must be both for the public and the medical persons. Medical activities for nuclear disaster are still in progress now. Medical system for radiation exposure should be maintained in future for works of decommissioning of reactors. Problems, however, may exist in economy and education of medical personnel. (K.Y.)

  20. Study warns of radiation risk in medical imaging

    Science.gov (United States)

    Gwynne, Peter

    2009-10-01

    A study of a million US patients suggests that some who undergo medical imaging could be exposed to more ionizing radiation than those who work with radioactive materials in nuclear power plants. The study, reported in The New England Journal of Medicine (361 849), implies that current exposure to radiation from conventional X-ray equipment as well as computed tomography (CT) and positron-emission tomography (PET) scanners could lead to tens of thousands of extra cases of cancer in the US alone.

  1. A recommender system for medical imaging diagnostic.

    Science.gov (United States)

    Monteiro, Eriksson; Valente, Frederico; Costa, Carlos; Oliveira, José Luís

    2015-01-01

    The large volume of data captured daily in healthcare institutions is opening new and great perspectives about the best ways to use it towards improving clinical practice. In this paper we present a context-based recommender system to support medical imaging diagnostic. The system relies on data mining and context-based retrieval techniques to automatically lookup for relevant information that may help physicians in the diagnostic decision.

  2. CERN crystals used in medical imaging

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    This crystal is a type of material known as a scintillator. When a high energy charged particle or photon passes through a scintillator it glows. These materials are widely used in particle physics for particle detection, but their uses are being realized in further fields, such as Positron Emission Tomography (PET), an area of medical imaging that monitors the regions of energy use in the body.

  3. Nuclear magnetic resonance imaging of the thorax

    International Nuclear Information System (INIS)

    Gamsu, G.; Webb, W.R.; Sheldon, P.; Kaufman, L.; Crooks, L.E.; Birnberg, F.A.; Goodman, P.; Hinchcliffe, W.A.; Hedgecock, M.

    1983-01-01

    Nuclear magnetic resonance (NMR) images of the thorax were obtained in ten normal volunteers, nine patients with advanced bronchogenic carcinoma, and three patients with benign thoracic abnormalities. In normal volunteers, mediastinal and hilar structures were seen with equal frequency on NMR images and computed tomographic scans. The hila were especially well displayed on spin-echo images. Spin-echo images showed mediastinal invasion by tumor, vascular and bronchial compression and invasion, and hilar and mediastinal adenopathy. Tumor and benign abnormalities could be separated from mediastinal and hilar fat because of their longer T1 times. Lung masses and nodules as small as 1.5 cm could be seen on the spin-echo images. NMR imaging shows promise for assessment of benign and malignant mediastinal, hilar, and lung abnormalities

  4. Positron in nuclear medicine imaging

    International Nuclear Information System (INIS)

    Basu, S.

    2012-01-01

    The last two decades have witnessed a rapid expansion of clinical indications of positron emission tomography (PET) based imaging in assessing a wide range of disorders influencing their clinical management. This is primarily based upon a large dataset of evidence that has been generated over the years. The impact has been most remarkable in the field of cancer, where it takes a pivotal role in the decision making (at initial diagnosis, early response assessment and following completion of therapeutic intervention) of a number of important malignancies. The concept of PET based personalized cancer medicine is an evolving and attractive proposition that has gained significant momentum in recent years. The non-oncological applications of PET and PET/CT are in (A) Cardiovascular Diseases (e.g. Myocardial Viability, Flow reserve with PET Perfusion Imaging and atherosclerosis imaging); (B) Neuropsychiatric disorders (e.g. Dementia, Epileptic Focus detection, Parkinson's Disease, Hyperkinetic Movement Disorders and Psychiatric diseases); (C) Infection and Inflammatory Disorders (e.g. Pyrexia of Unknown origin, complicated Diabetic Foot, Periprosthetic Infection, Tuberculosis, Sarcoidosis, Vasculitic disorders etc). Apart from these, there are certain novel clinical applications where it is undergoing critical evaluation in various large and small scale studies across several centres across the world. The modality represents a classical example of a successful translational research of recent times with a revolutionary and far-reaching impact in the field of medicine. (author)

  5. Bayesian image restoration for medical images using radon transform

    International Nuclear Information System (INIS)

    Shouno, Hayaru; Okada, Masato

    2010-01-01

    We propose an image reconstruction algorithm using Bayesian inference for Radon transformed observation data, which often appears in the field of medical image reconstruction known as computed tomography (CT). In order to apply our Bayesian reconstruction method, we introduced several hyper-parameters that control the ratio between prior information and the fidelity of the observation process. Since the quality of the reconstructed image is influenced by the estimation accuracy of these hyper-parameters, we propose an inference method for them based on the marginal likelihood maximization principle as well as the image reconstruction method. We are able to demonstrate a reconstruction result superior to that obtained using the conventional filtered back projection method. (author)

  6. Quantification of heterogeneity observed in medical images

    International Nuclear Information System (INIS)

    Brooks, Frank J; Grigsby, Perry W

    2013-01-01

    There has been much recent interest in the quantification of visually evident heterogeneity within functional grayscale medical images, such as those obtained via magnetic resonance or positron emission tomography. In the case of images of cancerous tumors, variations in grayscale intensity imply variations in crucial tumor biology. Despite these considerable clinical implications, there is as yet no standardized method for measuring the heterogeneity observed via these imaging modalities. In this work, we motivate and derive a statistical measure of image heterogeneity. This statistic measures the distance-dependent average deviation from the smoothest intensity gradation feasible. We show how this statistic may be used to automatically rank images of in vivo human tumors in order of increasing heterogeneity. We test this method against the current practice of ranking images via expert visual inspection. We find that this statistic provides a means of heterogeneity quantification beyond that given by other statistics traditionally used for the same purpose. We demonstrate the effect of tumor shape upon our ranking method and find the method applicable to a wide variety of clinically relevant tumor images. We find that the automated heterogeneity rankings agree very closely with those performed visually by experts. These results indicate that our automated method may be used reliably to rank, in order of increasing heterogeneity, tumor images whether or not object shape is considered to contribute to that heterogeneity. Automated heterogeneity ranking yields objective results which are more consistent than visual rankings. Reducing variability in image interpretation will enable more researchers to better study potential clinical implications of observed tumor heterogeneity

  7. Quantification of heterogeneity observed in medical images.

    Science.gov (United States)

    Brooks, Frank J; Grigsby, Perry W

    2013-03-02

    There has been much recent interest in the quantification of visually evident heterogeneity within functional grayscale medical images, such as those obtained via magnetic resonance or positron emission tomography. In the case of images of cancerous tumors, variations in grayscale intensity imply variations in crucial tumor biology. Despite these considerable clinical implications, there is as yet no standardized method for measuring the heterogeneity observed via these imaging modalities. In this work, we motivate and derive a statistical measure of image heterogeneity. This statistic measures the distance-dependent average deviation from the smoothest intensity gradation feasible. We show how this statistic may be used to automatically rank images of in vivo human tumors in order of increasing heterogeneity. We test this method against the current practice of ranking images via expert visual inspection. We find that this statistic provides a means of heterogeneity quantification beyond that given by other statistics traditionally used for the same purpose. We demonstrate the effect of tumor shape upon our ranking method and find the method applicable to a wide variety of clinically relevant tumor images. We find that the automated heterogeneity rankings agree very closely with those performed visually by experts. These results indicate that our automated method may be used reliably to rank, in order of increasing heterogeneity, tumor images whether or not object shape is considered to contribute to that heterogeneity. Automated heterogeneity ranking yields objective results which are more consistent than visual rankings. Reducing variability in image interpretation will enable more researchers to better study potential clinical implications of observed tumor heterogeneity.

  8. Development of technology for medical image fusion

    International Nuclear Information System (INIS)

    Yamaguchi, Takashi; Amano, Daizou

    2012-01-01

    With entry into a field of medical diagnosis in mind, we have developed positron emission tomography (PET) ''MIP-100'' system, of which spatial resolution is far higher than the conventional one, using semiconductor detectors for preclinical imaging for small animals. In response to the recently increasing market demand to fuse functional images by PET and anatomical ones by CT or MRI, we have been developing software to implement image fusion function that enhances marketability of the PET Camera. This paper describes the method of fusing with high accuracy the PET images and anatomical ones by CT system. It also explains that a computer simulation proved the image overlay accuracy to be ±0.3 mm as a result of the development, and that effectiveness of the developed software is confirmed in case of experiment to obtain measured data. Achieving such high accuracy as ±0.3 mm by the software allows us to present fusion images with high resolution (<0.6 mm) without degrading the spatial resolution (<0.5 mm) of the PET system using semiconductor detectors. (author)

  9. Medical Imaging for the Tracking of Micromotors.

    Science.gov (United States)

    Vilela, Diana; Cossío, Unai; Parmar, Jemish; Martínez-Villacorta, Angel M; Gómez-Vallejo, Vanessa; Llop, Jordi; Sánchez, Samuel

    2018-02-27

    Micro/nanomotors are useful tools for several biomedical applications, including targeted drug delivery and minimally invasive microsurgeries. However, major challenges such as in vivo imaging need to be addressed before they can be safely applied on a living body. Here, we show that positron emission tomography (PET), a molecular imaging technique widely used in medical imaging, can also be used to track a large population of tubular Au/PEDOT/Pt micromotors. Chemisorption of an iodine isotope onto the micromotor's Au surface rendered them detectable by PET, and we could track their movements in a tubular phantom over time frames of up to 15 min. In a second set of experiments, micromotors and the bubbles released during self-propulsion were optically tracked by video imaging and bright-field microscopy. The results from direct optical tracking agreed with those from PET tracking, demonstrating that PET is a suitable technique for the imaging of large populations of active micromotors in opaque environments, thus opening opportunities for the use of this mature imaging technology for the in vivo localization of artificial swimmers.

  10. The quest for standards in medical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gibaud, Bernard, E-mail: bernard.gibaud@irisa.fr [INSERM, VisAGeS U746 Unit/Project, Faculty of Medicine, Campus de Villejean, F-35043 Rennes (France); INRIA, VisAGeS U746 Unit/Project, IRISA, Campus de Beaulieu, F-35042 Rennes (France); University of Rennes I-CNRS UMR 6074, IRISA, Campus de Beaulieu, F-35042 Rennes (France)

    2011-05-15

    This article focuses on standards supporting interoperability and system integration in the medical imaging domain. We introduce the basic concepts and actors and we review the most salient achievements in this domain, especially with the DICOM standard, and the definition of IHE integration profiles. We analyze and discuss what was successful, and what could still be more widely adopted by industry. We then sketch out a perspective of what should be done next, based on our vision of new requirements for the next decade. In particular, we discuss the challenges of a more explicit sharing of image and image processing semantics, and we discuss the help that semantic web technologies (and especially ontologies) may bring to achieving this goal.

  11. The quest for standards in medical imaging

    International Nuclear Information System (INIS)

    Gibaud, Bernard

    2011-01-01

    This article focuses on standards supporting interoperability and system integration in the medical imaging domain. We introduce the basic concepts and actors and we review the most salient achievements in this domain, especially with the DICOM standard, and the definition of IHE integration profiles. We analyze and discuss what was successful, and what could still be more widely adopted by industry. We then sketch out a perspective of what should be done next, based on our vision of new requirements for the next decade. In particular, we discuss the challenges of a more explicit sharing of image and image processing semantics, and we discuss the help that semantic web technologies (and especially ontologies) may bring to achieving this goal.

  12. Medical imaging informatics simulators: a tutorial.

    Science.gov (United States)

    Huang, H K; Deshpande, Ruchi; Documet, Jorge; Le, Anh H; Lee, Jasper; Ma, Kevin; Liu, Brent J

    2014-05-01

    A medical imaging informatics infrastructure (MIII) platform is an organized method of selecting tools and synthesizing data from HIS/RIS/PACS/ePR systems with the aim of developing an imaging-based diagnosis or treatment system. Evaluation and analysis of these systems can be made more efficient by designing and implementing imaging informatics simulators. This tutorial introduces the MIII platform and provides the definition of treatment/diagnosis systems, while primarily focusing on the development of the related simulators. A medical imaging informatics (MII) simulator in this context is defined as a system integration of many selected imaging and data components from the MIII platform and clinical treatment protocols, which can be used to simulate patient workflow and data flow starting from diagnostic procedures to the completion of treatment. In these processes, DICOM and HL-7 standards, IHE workflow profiles, and Web-based tools are emphasized. From the information collected in the database of a specific simulator, evidence-based medicine can be hypothesized to choose and integrate optimal clinical decision support components. Other relevant, selected clinical resources in addition to data and tools from the HIS/RIS/PACS and ePRs platform may also be tailored to develop the simulator. These resources can include image content indexing, 3D rendering with visualization, data grid and cloud computing, computer-aided diagnosis (CAD) methods, specialized image-assisted surgical, and radiation therapy technologies. Five simulators will be discussed in this tutorial. The PACS-ePR simulator with image distribution is the cradle of the other simulators. It supplies the necessary PACS-based ingredients and data security for the development of four other simulators: the data grid simulator for molecular imaging, CAD-PACS, radiation therapy simulator, and image-assisted surgery simulator. The purpose and benefits of each simulator with respect to its clinical relevance

  13. Development of 3-D Medical Image VIsualization System

    African Journals Online (AJOL)

    User

    uses standard 2-D medical imaging inputs and generates medical images of human body parts ... light wave from points on the 3-D object(s) in ... tools, and communication bandwidth cannot .... locations along the track that correspond with.

  14. Radically Reducing Radiation Exposure during Routine Medical Imaging

    Science.gov (United States)

    Exposure to radiation from medical imaging in the United States has increased dramatically. NCI and several partner organizations sponsored a 2011 summit to promote efforts to reduce radiation exposure from medical imaging.

  15. Three-dimensional analysis and display of medical images

    International Nuclear Information System (INIS)

    Bajcsy, R.

    1985-01-01

    Until recently, the most common medical images were X-rays on film analyzed by an expert, ususally a radiologist, who used, in addition to his/her visual perceptual abilities, knowledge obtained through medical studies, and experience. Today, however, with the advent of various imaging techniques, X-ray computerized axial tomographs (CAT), positron emission tomographs (PET), ultrasound tomographs, nuclear magnetic resonance tomographs (NMR), just to mention a few, the images are generated by computers and displayed on computer-controlled devices; so it is appropriate to think about more quantitative and perhaps automated ways of data analysis. Furthermore, since the data are generated by computer, it is only natural to take advantage of the computer for analysis purposes. In addition, using the computer, one can analyze more data and relate different modalities from the same subject, such as, for example, comparing the CAT images with PET images from the same subject. In the next section (The PET Scanner) the authors shall only briefly mention with appropriate references the modeling of the positron emission tomographic scanner, since this imaging technique is not as widely described in the literature as the CAT scanner. The modeling of the interpreter is not going to be mentioned, since it is a topic that by itself deserves a full paper; see, for example, Pizer [1981]. The thrust of this chapter is on modeling the organs that are being imaged and the matching techniques between the model and the data. The image data is from CAT and PET scans. Although the authors believe that their techniques are applicable to any organ of the human body, the examples are only from the brain

  16. Algorithms of image processing in nuclear medicine

    International Nuclear Information System (INIS)

    Oliveira, V.A.

    1990-01-01

    The problem of image restoration from noisy measurements as encountered in Nuclear Medicine is considered. A new approach for treating the measurements wherein they are represented by a spatial noncausal interaction model prior to maximum entropy restoration is given. This model describes the statistical dependence among the image values and their neighbourhood. The particular application of the algorithms presented here relates to gamma ray imaging systems, and is aimed at improving the resolution-noise suppression product. Results for actual gamma camera data are presented and compared with more conventional techniques. (author)

  17. Nuclear magnetic resonance imaging in pharmaceutical research

    International Nuclear Information System (INIS)

    Sarkar, S.K.

    1991-01-01

    Nuclear magnetic resonance imaging has important applications in pharmaceutical research since it allows specific tissue and disease characterization in animal models noninvasively with excellent anatomical resolution and therefore provides improved ability to monitor the efficacy of novel drugs. The utility of NMR imaging in renal studies to monitor the mechanism of drug action and renal function in rats is described. The extension of the resolution of an NMR image to microscopic domain at higher magnetic field strengths and the utility of NMR microimaging in cerebrovascular and tumour metastasis studies in mice are discussed. (author). 40 refs., 14 figs

  18. Image cytometry: nuclear and chromosomal DNA quantification.

    Science.gov (United States)

    Carvalho, Carlos Roberto; Clarindo, Wellington Ronildo; Abreu, Isabella Santiago

    2011-01-01

    Image cytometry (ICM) associates microscopy, digital image and software technologies, and has been particularly useful in spatial and densitometric cytological analyses, such as DNA ploidy and DNA content measurements. Basically, ICM integrates methodologies of optical microscopy calibration, standard density filters, digital CCD camera, and image analysis softwares for quantitative applications. Apart from all system calibration and setup, cytological protocols must provide good slide preparations for efficient and reliable ICM analysis. In this chapter, procedures for ICM applications employed in our laboratory are described. Protocols shown here for human DNA ploidy determination and quantification of nuclear and chromosomal DNA content in plants could be used as described, or adapted for other studies.

  19. The value of nuclear medical examinations in paediatrics

    International Nuclear Information System (INIS)

    Sixthofer, A.

    1991-02-01

    In 1988 155 children were nuclear medically examined at the university clinic in Innsbruck. The first separations to be made were sex and age. A more precise organization concerning the clinically allocated diagnosis of the patients showed, that nephrological and urological questions were asked in 2/3 of the cases. The second point was the cure of inflammation and tumourous cases of the skeletal system (osteomyelitis, osteosarcoma) followed by the assessment of the practical and morphological disturbances to the thyroid glands. Nuclear medical examinations also, occasionally, used questions from the fields of neurology, gastroenterology, cardiology and pulmonology. Analysis regarding the concordance of nuclear medicine with the clinic expresses the diagnostical precision of nuclear medicine well. Nuclear medical diagnosis corresponded to conclusive clinical diagnosis in 73.75 % of the cases. The classification concerning with clinical relevance of the nuclear medical findings for treatment showed that, in only 7.5 % of all cases there was no influence of the nuclear medical diagnosis on the treatment. The investigation of radiation was done in three age groups (0 to 5 years, 5 to 10 years, 10 to 15 years). The calculations, especially with the kidney examinations, produced definite results, it could be illustrated that the nuclear medical examinations show a smaller amount of radiation as a radiological alternative, on intravenous urogram, for example. (author)

  20. Knowledge of medical imaging radiation dose and risk among doctors

    International Nuclear Information System (INIS)

    Brown, Nicholas; Jones, Lee

    2013-01-01

    The growth of computed tomography (CT) and nuclear medicine (NM) scans has revolutionised healthcare but also greatly increased population radiation doses. Overuse of diagnostic radiation is becoming a feature of medical practice, leading to possible unnecessary radiation exposures and lifetime-risks of developing cancer. Doctors across all medical specialties and experience levels were surveyed to determine their knowledge of radiation doses and potential risks associated with some diagnostic imaging. A survey relating to knowledge and understanding of medical imaging radiation was distributed to doctors at 14 major Queensland public hospitals, as well as fellows and trainees in radiology, emergency medicine and general practice. From 608 valid responses, only 17.3% correctly estimated the radiation dose from CT scans and almost 1 in 10 incorrectly believed that CT radiation is not associated with any increased lifetime risk of developing cancer. There is a strong inverse relationship between a clinician's experience and their knowledge of CT radiation dose and risks, even among radiologists. More than a third (35.7%) of doctors incorrectly believed that typical NM imaging either does not use ionising radiation or emits doses equal to or less than a standard chest radiograph. Knowledge of CT and NM radiation doses is poor across all specialties, and there is a significant inverse relationship between experience and awareness of CT dose and risk. Despite having a poor understanding of these concepts, most doctors claim to consider them prior to requesting scans and when discussing potential risks with patients.

  1. Nuclear Medicine Physics: A Handbook for Teachers and Students. Endorsed by: American Association of Physicists in Medicine (AAPM), Asia–Oceania Federation of Organizations for Medical Physics (AFOMP), Australasian College of Physical Scientists and Engineers in Medicine (ACPSEM), European Federation of Organisations for Medical Physics (EFOMP), Federation of African Medical Physics Organisations (FAMPO), World Federation of Nuclear Medicine and Biology (WFNMB)

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, D. L.; Humm, J. L.; Todd-Pokropek, A.; Aswegen, A. van [eds.

    2014-12-15

    This publication provides the basis for the education of medical physicists initiating their university studies in the field of nuclear medicine. The handbook includes 20 chapters and covers topics relevant to nuclear medicine physics, including basic physics for nuclear medicine, radionuclide production, imaging and non-imaging detectors, quantitative nuclear medicine, internal dosimetry in clinical practice and radionuclide therapy. It provides, in the form of a syllabus, a comprehensive overview of the basic medical physics knowledge required for the practice of medical physics in modern nuclear medicine.

  2. Twofold processing for denoising ultrasound medical images.

    Science.gov (United States)

    Kishore, P V V; Kumar, K V V; Kumar, D Anil; Prasad, M V D; Goutham, E N D; Rahul, R; Krishna, C B S Vamsi; Sandeep, Y

    2015-01-01

    Ultrasound medical (US) imaging non-invasively pictures inside of a human body for disease diagnostics. Speckle noise attacks ultrasound images degrading their visual quality. A twofold processing algorithm is proposed in this work to reduce this multiplicative speckle noise. First fold used block based thresholding, both hard (BHT) and soft (BST), on pixels in wavelet domain with 8, 16, 32 and 64 non-overlapping block sizes. This first fold process is a better denoising method for reducing speckle and also inducing object of interest blurring. The second fold process initiates to restore object boundaries and texture with adaptive wavelet fusion. The degraded object restoration in block thresholded US image is carried through wavelet coefficient fusion of object in original US mage and block thresholded US image. Fusion rules and wavelet decomposition levels are made adaptive for each block using gradient histograms with normalized differential mean (NDF) to introduce highest level of contrast between the denoised pixels and the object pixels in the resultant image. Thus the proposed twofold methods are named as adaptive NDF block fusion with hard and soft thresholding (ANBF-HT and ANBF-ST). The results indicate visual quality improvement to an interesting level with the proposed twofold processing, where the first fold removes noise and second fold restores object properties. Peak signal to noise ratio (PSNR), normalized cross correlation coefficient (NCC), edge strength (ES), image quality Index (IQI) and structural similarity index (SSIM), measure the quantitative quality of the twofold processing technique. Validation of the proposed method is done by comparing with anisotropic diffusion (AD), total variational filtering (TVF) and empirical mode decomposition (EMD) for enhancement of US images. The US images are provided by AMMA hospital radiology labs at Vijayawada, India.

  3. Lossy image compression for digital medical imaging systems

    Science.gov (United States)

    Wilhelm, Paul S.; Haynor, David R.; Kim, Yongmin; Nelson, Alan C.; Riskin, Eve A.

    1990-07-01

    Image compression at rates of 10:1 or greater could make PACS much more responsive and economically attractive. This paper describes a protocol for subjective and objective evaluation of the fidelity of compressed/decompressed images to the originals and presents the results ofits application to four representative and promising compression methods. The methods examined are predictive pruned tree-structured vector quantization, fractal compression, the discrete cosine transform with equal weighting of block bit allocation, and the discrete cosine transform with human visual system weighting of block bit allocation. Vector quantization is theoretically capable of producing the best compressed images, but has proven to be difficult to effectively implement. It has the advantage that it can reconstruct images quickly through a simple lookup table. Disadvantages are that codebook training is required, the method is computationally intensive, and achieving the optimum performance would require prohibitively long vector dimensions. Fractal compression is a relatively new compression technique, but has produced satisfactory results while being computationally simple. It is fast at both image compression and image reconstruction. Discrete cosine iransform techniques reproduce images well, but have traditionally been hampered by the need for intensive computing to compress and decompress images. A protocol was developed for side-by-side observer comparison of reconstructed images with originals. Three 1024 X 1024 CR (Computed Radiography) images and two 512 X 512 X-ray CT images were viewed at six bit rates (0.2, 0.4, 0.6, 0.9, 1.2, and 1.5 bpp for CR, and 1.0, 1.3, 1.6, 1.9, 2.2, 2.5 bpp for X-ray CT) by nine radiologists at the University of Washington Medical Center. The CR images were viewed on a Pixar II Megascan (2560 X 2048) monitor and the CT images on a Sony (1280 X 1024) monitor. The radiologists' subjective evaluations of image fidelity were compared to

  4. Medical image archive node simulation and architecture

    Science.gov (United States)

    Chiang, Ted T.; Tang, Yau-Kuo

    1996-05-01

    It is a well known fact that managed care and new treatment technologies are revolutionizing the health care provider world. Community Health Information Network and Computer-based Patient Record projects are underway throughout the United States. More and more hospitals are installing digital, `filmless' radiology (and other imagery) systems. They generate a staggering amount of information around the clock. For example, a typical 500-bed hospital might accumulate more than 5 terabytes of image data in a period of 30 years for conventional x-ray images and digital images such as Magnetic Resonance Imaging and Computer Tomography images. With several hospitals contributing to the archive, the storage required will be in the hundreds of terabytes. Systems for reliable, secure, and inexpensive storage and retrieval of digital medical information do not exist today. In this paper, we present a Medical Image Archive and Distribution Service (MIADS) concept. MIADS is a system shared by individual and community hospitals, laboratories, and doctors' offices that need to store and retrieve medical images. Due to the large volume and complexity of the data, as well as the diversified user access requirement, implementation of the MIADS will be a complex procedure. One of the key challenges to implementing a MIADS is to select a cost-effective, scalable system architecture to meet the ingest/retrieval performance requirements. We have performed an in-depth system engineering study, and developed a sophisticated simulation model to address this key challenge. This paper describes the overall system architecture based on our system engineering study and simulation results. In particular, we will emphasize system scalability and upgradability issues. Furthermore, we will discuss our simulation results in detail. The simulations study the ingest/retrieval performance requirements based on different system configurations and architectures for variables such as workload, tape

  5. Novel gaseous detectors for medical imaging

    International Nuclear Information System (INIS)

    Danielsson, M.; Fonte, P.; Francke, T.; Iacobaeus, C.; Ostling, J.; Peskov, V.

    2004-01-01

    We have developed and successfully tested prototypes of two new types of gaseous detectors for medical imaging purposes. The first one is called the Electronic Portal Imaging Device (EPID). It is oriented on monitoring and the precise alignment of the therapeutic cancer treatment beam (pulsed gamma radiation) with respect to the patient's tumor position. The latest will be determined from an X-ray image of the patient obtained in the time intervals between the gamma pulses. The detector is based on a 'sandwich' of hole-type gaseous detectors (GEM and glass microcapillary plates) with metallic gamma and X-ray converters coated with CsI layers. The second detector is an X-ray image scanner oriented on mammography and other radiographic applications. It is based on specially developed by us high rate RPCs that are able to operate at rates of 10 5 Hz/mm 2 with a position resolution better than 50 μm at 1 atm. The quality of the images obtained with the latest version of this device were in most cases more superior than those obtained from commercially available detectors

  6. X-ray detectors in medical imaging

    International Nuclear Information System (INIS)

    Spahn, Martin

    2013-01-01

    Healthcare systems are subject to continuous adaptation, following trends such as the change of demographic structures, the rise of life-style related and chronic diseases, and the need for efficient and outcome-oriented procedures. This also influences the design of new imaging systems as well as their components. The applications of X-ray imaging in the medical field are manifold and have led to dedicated modalities supporting specific imaging requirements, for example in computed tomography (CT), radiography, angiography, surgery or mammography, delivering projection or volumetric imaging data. Depending on the clinical needs, some X-ray systems enable diagnostic imaging while others support interventional procedures. X-ray detector design requirements for the different medical applications can vary strongly with respect to size and shape, spatial resolution, frame rates and X-ray flux, among others. Today, integrating X-ray detectors are in common use. They are predominantly based on scintillators (e.g. CsI or Gd 2 O 2 S) and arrays of photodiodes made from crystalline silicon (Si) or amorphous silicon (a-Si) or they employ semiconductors (e.g. Se) with active a-Si readout matrices. Ongoing and future developments of X-ray detectors will include optimization of current state-of-the-art integrating detectors in terms of performance and cost, will enable the usage of large size CMOS-based detectors, and may facilitate photon counting techniques with the potential to further enhance performance characteristics and foster the prospect of new clinical applications

  7. Nuclear imaging using Fuji Computed Radiography

    International Nuclear Information System (INIS)

    Yodono, Hiraku; Tarusawa, Nobuko; Katto, Keiichi; Miyakawa, Takayoshi; Watanabe, Sadao; Shinozaki, Tatsuyo

    1988-01-01

    We studied the feasibility of the Fuji Computed Radiography system (FCR) in nuclear medicine. The basic principle of the system is the conversion of the X-ray energy pattern into digital signals utilizing scanning laser stimulated luminescence. A Rollo phantom filled with 12 mCi of Tc-99m pertechnetate was used in this study. In imaging by the FCR, a low energy high resolution parallel hole collimator for a gamma camera was placed over the phantom and photons through the collimator were stored on a single imaging plate (IP) or 3 IPs covered by the lead plate, 0.3 mm in thickness. For imaging, it took 30 minutes by a single IP and 20 minutes by 3 IPs with the lead plate respectively. Each image of the phantom by the FCR was compared with that of obtained by a gamma camera. The image by a single IP was inferior in quality than that of by a gamma camera. However using 3 IPs with the lead plate, same quality image as by a gamma camera was obtained. The image by 3 IPs is similar to that of by 3 IPs with the lead plate. Based on the results, we performed liver and lung imaging by FCR using 3 IPs. The imaging time is twenty minutes. The images obtained with FCR are as good as the scinticamera image. However it has two major flawes in that the sensitivity is poor and the imaging time is long. Furthermore, at present this method can only be employed for static imaging. However we feel that future improvements in the FCR system will overcome these problems. (author)

  8. Knowledge of medical imaging radiation dose and risk among doctors.

    Science.gov (United States)

    Brown, Nicholas; Jones, Lee

    2013-02-01

    The growth of computed tomography (CT) and nuclear medicine (NM) scans has revolutionised healthcare but also greatly increased population radiation doses. Overuse of diagnostic radiation is becoming a feature of medical practice, leading to possible unnecessary radiation exposures and lifetime-risks of developing cancer. Doctors across all medical specialties and experience levels were surveyed to determine their knowledge of radiation doses and potential risks associated with some diagnostic imaging. A survey relating to knowledge and understanding of medical imaging radiation was distributed to doctors at 14 major Queensland public hospitals, as well as fellows and trainees in radiology, emergency medicine and general practice. From 608 valid responses, only 17.3% correctly estimated the radiation dose from CT scans and almost 1 in 10 incorrectly believed that CT radiation is not associated with any increased lifetime risk of developing cancer. There is a strong inverse relationship between a clinician's experience and their knowledge of CT radiation dose and risks, even among radiologists. More than a third (35.7%) of doctors incorrectly believed that typical NM imaging either does not use ionising radiation or emits doses equal to or less than a standard chest radiograph. Knowledge of CT and NM radiation doses is poor across all specialties, and there is a significant inverse relationship between experience and awareness of CT dose and risk. Despite having a poor understanding of these concepts, most doctors claim to consider them prior to requesting scans and when discussing potential risks with patients. © 2012 The Authors. Journal of Medical Imaging and Radiation Oncology © 2012 The Royal Australian and New Zealand College of Radiologists.

  9. Radiation protection in medical imaging and radiation oncology

    CERN Document Server

    Stoeva, Magdalena S

    2016-01-01

    Radiation Protection in Medical Imaging and Radiation Oncology focuses on the professional, operational, and regulatory aspects of radiation protection. Advances in radiation medicine have resulted in new modalities and procedures, some of which have significant potential to cause serious harm. Examples include radiologic procedures that require very long fluoroscopy times, radiolabeled monoclonal antibodies, and intravascular brachytherapy. This book summarizes evidence supporting changes in consensus recommendations, regulations, and health physics practices associated with these recent advances in radiology, nuclear medicine, and radiation oncology. It supports intelligent and practical methods for protection of personnel, the public, and patients. The book is based on current recommendations by the International Commission on Radiological Protection and is complemented by detailed practical sections and professional discussions by the world’s leading medical and health physics professionals. It also ...

  10. Novel imaging techniques for the nuclear microprobe

    International Nuclear Information System (INIS)

    Saint, A.

    1998-01-01

    Many of the developments of the scanning electron microscope (SEM) have been paralleled during the development of the scanning nuclear microprobe. Secondary electrons were used in the early development of both devices to provide specimen imaging due to the large numbers of secondaries produced per incident charged particle. Other imaging contrast techniques have also been developed on both machines. These include X-ray analysis, scattering contrast, transmission microscopy, channelling induced charge and others. The 'cross-section dependent' imaging techniques such as PIXE, RBS, NRA, etc., rely on the beam current on target for a given resolution. This has prompted research and development of brighter ion sources to maintain probe resolution at high beam current. Higher beam current bring problems with beam damage to the specimen. Low beam current techniques however rely on high countrate data collection systems, but this is only for spectroscopy. To produce an image we can increase beam currents to produce live-time images for specimen manipulation and observation. The work presented here will focus on some developments in live-time imaging with a nuclear micro probe that have taken place recently at the School of Physics, Microanalytical Research Centre (MARC), University of Melbourne

  11. Nuclear medicine imaging in endocarditis

    International Nuclear Information System (INIS)

    Ivancevic, V.; Munz, D.L.

    1999-01-01

    Infective endocarditis is a serious disease which requires early diagnosis and adequate therapy. Echocardiography plays a key role in diagnosis and follow-up. Subacute infective endocarditis, however, is often difficult to prove echocardiographically due to its more subtle morphological changes. Also, echocardiography cannot reliably differentiate florid vegetations from residual structural changes of the affected valves in cured patients. Therefor, scintigraphy of infection and inflammation has been investigated as a complementary tool in diagnosis and follow-up of infective endocarditis. Immunoscintigraphy with the 99m Tc labelled anti granulocyte antibody in SPECT technique is complementary to echocardiography and seems to assess the floridity of the underlying inflammatory process. The combined use of both imaging modalities allows detection of virtually all cases of subacute infective endocarditis. SPECT immunoscintigraphy with the anti granulocyte antibody seems useful in doubtful cases of infective endocarditis, especially, if echocardiography is non-diagnostic and valve pathology pre-existing. the method may be used for follow-up and monitoring antibiotic therapy

  12. Nuclear medicine imaging in endocarditis

    Energy Technology Data Exchange (ETDEWEB)

    Ivancevic, V.; Munz, D.L. (Univ. Hospital Charite' , Humboldt Univ., Berlin (Germany). Clinic for Nuclear Medicine)

    1999-03-01

    Infective endocarditis is a serious disease which requires early diagnosis and adequate therapy. Echocardiography plays a key role in diagnosis and follow-up. Subacute infective endocarditis, however, is often difficult to prove echocardiographically due to its more subtle morphological changes. Also, echocardiography cannot reliably differentiate florid vegetations from residual structural changes of the affected valves in cured patients. Therefor, scintigraphy of infection and inflammation has been investigated as a complementary tool in diagnosis and follow-up of infective endocarditis. Immunoscintigraphy with the [sup 99m]Tc labelled anti granulocyte antibody in SPECT technique is complementary to echocardiography and seems to assess the floridity of the underlying inflammatory process. The combined use of both imaging modalities allows detection of virtually all cases of subacute infective endocarditis. SPECT immunoscintigraphy with the anti granulocyte antibody seems useful in doubtful cases of infective endocarditis, especially, if echocardiography is non-diagnostic and valve pathology pre-existing. the method may be used for follow-up and monitoring antibiotic therapy.

  13. Induced-Fission Imaging of Nuclear Material

    International Nuclear Information System (INIS)

    Hausladen, Paul; Blackston, Matthew A.; Mullens, James Allen; McConchie, Seth M.; Mihalczo, John T.; Bingham, Philip R.; Ericson, Milton Nance; Fabris, Lorenzo

    2010-01-01

    This paper presents initial results from development of the induced-fission imaging technique, which can be used for the purpose of measuring or verifying the distribution of fissionable material in an unopened container. The technique is based on stimulating fissions in nuclear material with 14 MeV neutrons from an associated-particle deuterium-tritium (D-T) generator and counting the subsequent induced fast fission neutrons with an array of fast organic scintillation detectors. For each source neutron incident on the container, the neutron creation time and initial trajectory are known from detection of the associated alpha particle of the d + t → α + n reaction. Many induced fissions will lie along (or near) the interrogating neutron path, allowing an image of the spatial distribution of prompt induced fissions, and thereby fissionable material, to be constructed. A variety of induced-fission imaging measurements have been performed at Oak Ridge National Laboratory with a portable, low-dose D-T generator, including single-view radiographic measurements and three-dimensional tomographic measurements. Results from these measurements will be presented along with the neutron transmission images that have been performed simultaneously. This new capability may have applications to a number of areas in which there may be a need to confirm the presence or configuration of nuclear materials, such as nuclear material control and accountability, quality assurance, treaty confirmation, or homeland security applications.

  14. Medical image information system 2001. Development of the medical image information system to risk management- Medical exposure management

    International Nuclear Information System (INIS)

    Kuranishi, Makoto; Kumagai, Michitomo; Shintani, Mitsuo

    2000-01-01

    This paper discusses the methods and systems for optimizing the following supplements 10 and 17 for national health and medical care. The supplements 10 and 17 of DICOM (digital imaging and communications in medicine) system, which is now under progress for the purpose to keep compatibility within medical image information system as an international standard, are important for making the cooperation between HIS (hospital information system)/RIS (radiation information system) and modality (imaging instruments). Supplement 10 concerns the system to send the information of patients and their orders through HIS/RIS to modality and 17, the information of modality performed procedure step (MPPS) to HIS/RIS. The latter defines to document patients' exposure, a part of which has not been recognized in Japan. Thus the medical information system can be useful for risk-management of medical exposure in future. (K.H.)

  15. Medical image information system 2001. Development of the medical image information system to risk management- Medical exposure management

    Energy Technology Data Exchange (ETDEWEB)

    Kuranishi, Makoto; Kumagai, Michitomo; Shintani, Mitsuo [Toyama Medical and Pharmaceutical Univ. (Japan). Hospital

    2000-12-01

    This paper discusses the methods and systems for optimizing the following supplements 10 and 17 for national health and medical care. The supplements 10 and 17 of DICOM (digital imaging and communications in medicine) system, which is now under progress for the purpose to keep compatibility within medical image information system as an international standard, are important for making the cooperation between HIS (hospital information system)/RIS (radiation information system) and modality (imaging instruments). Supplement 10 concerns the system to send the information of patients and their orders through HIS/RIS to modality and 17, the information of modality performed procedure step (MPPS) to HIS/RIS. The latter defines to document patients' exposure, a part of which has not been recognized in Japan. Thus the medical information system can be useful for risk-management of medical exposure in future. (K.H.)

  16. Analysis of renal nuclear medicine images

    International Nuclear Information System (INIS)

    Jose, R.M.J.

    2000-01-01

    Nuclear medicine imaging of the renal system involves producing time-sequential images showing the distribution of a radiopharmaceutical in the renal system. Producing numerical and graphical data from nuclear medicine studies requires defining regions of interest (ROIs) around various organs within the field of view, such as the left kidney, right kidney and bladder. Automating this process has several advantages: a saving of a clinician's time; enhanced objectivity and reproducibility. This thesis describes the design, implementation and assessment of an automatic ROI generation system. The performance of the system described in this work is assessed by comparing the results to those obtained using manual techniques. Since nuclear medicine images are inherently noisy, the sequence of images is reconstructed using the first few components of a principal components analysis in order to reduce the noise in the images. An image of the summed reconstructed sequence is then formed. This summed image is segmented by using an edge co-occurrence matrix as a feature space for simultaneously classifying regions and locating boundaries. Two methods for assigning the regions of a segmented image to organ class labels are assessed. The first method is based on using Dempster-Shafer theory to combine uncertain evidence from several sources into a single evidence; the second method makes use of a neural network classifier. The use of each technique in classifying the regions of a segmented image are assessed in separate experiments using 40 real patient-studies. A comparative assessment of the two techniques shows that the neural network produces more accurate region labels for the kidneys. The optimum neural system is determined experimentally. Results indicate that combining temporal and spatial information with a priori clinical knowledge produces reasonable ROIs. Consistency in the neural network assignment of regions is enhanced by taking account of the contextual

  17. Quantification of Structure from Medical Images

    DEFF Research Database (Denmark)

    Qazi, Arish Asif

    based on diffusion tensor imaging, a technique widely used for analysis of the white matter of the central nervous system in the living human brain. An inherent drawback of the traditional diffusion tensor model is its limited ability to provide detailed information about multi-directional fiber......In this thesis, we present automated methods that quantify information from medical images; information that is intended to assist and enable clinicians gain a better understanding of the underlying pathology. The first part of the thesis presents methods that analyse the articular cartilage......, and information beyond that of traditional morphometric measures. The thesis also proposes a fully automatic and generic statistical framework for identifying biologically interpretable regions of difference (ROD) between two groups of biological objects, attributed by anatomical differences or changes relating...

  18. Medical imaging projects meet at CERN

    CERN Multimedia

    CERN Bulletin

    2013-01-01

    ENTERVISION, the Research Training Network in 3D Digital Imaging for Cancer Radiation Therapy, successfully passed its mid-term review held at CERN on 11 January. This multidisciplinary project aims at qualifying experts in medical imaging techniques for improved hadron therapy.   ENTERVISION provides training in physics, medicine, electronics, informatics, radiobiology and engineering, as well as a wide range of soft skills, to 16 researchers of different backgrounds and nationalities. The network is funded by the European Commission within the Marie Curie Initial Training Network, and relies on the EU-funded research project ENVISION to provide a training platform for the Marie Curie researchers. The two projects hold their annual meetings jointly, allowing the young researchers to meet senior scientists and to have a full picture of the latest developments in the field beyond their individual research project. ENVISION and ENTERVISION are both co-ordinated by CERN, and the Laboratory hosts t...

  19. Viewpoints on Medical Image Processing: From Science to Application.

    Science.gov (United States)

    Deserno Né Lehmann, Thomas M; Handels, Heinz; Maier-Hein Né Fritzsche, Klaus H; Mersmann, Sven; Palm, Christoph; Tolxdorff, Thomas; Wagenknecht, Gudrun; Wittenberg, Thomas

    2013-05-01

    Medical image processing provides core innovation for medical imaging. This paper is focused on recent developments from science to applications analyzing the past fifteen years of history of the proceedings of the German annual meeting on medical image processing (BVM). Furthermore, some members of the program committee present their personal points of views: (i) multi-modality for imaging and diagnosis, (ii) analysis of diffusion-weighted imaging, (iii) model-based image analysis, (iv) registration of section images, (v) from images to information in digital endoscopy, and (vi) virtual reality and robotics. Medical imaging and medical image computing is seen as field of rapid development with clear trends to integrated applications in diagnostics, treatment planning and treatment.

  20. Viewpoints on Medical Image Processing: From Science to Application

    Science.gov (United States)

    Deserno (né Lehmann), Thomas M.; Handels, Heinz; Maier-Hein (né Fritzsche), Klaus H.; Mersmann, Sven; Palm, Christoph; Tolxdorff, Thomas; Wagenknecht, Gudrun; Wittenberg, Thomas

    2013-01-01

    Medical image processing provides core innovation for medical imaging. This paper is focused on recent developments from science to applications analyzing the past fifteen years of history of the proceedings of the German annual meeting on medical image processing (BVM). Furthermore, some members of the program committee present their personal points of views: (i) multi-modality for imaging and diagnosis, (ii) analysis of diffusion-weighted imaging, (iii) model-based image analysis, (iv) registration of section images, (v) from images to information in digital endoscopy, and (vi) virtual reality and robotics. Medical imaging and medical image computing is seen as field of rapid development with clear trends to integrated applications in diagnostics, treatment planning and treatment. PMID:24078804

  1. Defining nuclear medical file formal based on DICOM standard

    International Nuclear Information System (INIS)

    He Bin; Jin Yongjie; Li Yulan

    2001-01-01

    With the wide application of computer technology in medical area, DICOM is becoming the standard of digital imaging and communication. The author discusses how to define medical imaging file formal based on DICOM standard. It also introduces the format of ANMIS system the authors defined the validity and integrality of this format

  2. A comparative study on medical image segmentation methods

    Directory of Open Access Journals (Sweden)

    Praylin Selva Blessy SELVARAJ ASSLEY

    2014-03-01

    Full Text Available Image segmentation plays an important role in medical images. It has been a relevant research area in computer vision and image analysis. Many segmentation algorithms have been proposed for medical images. This paper makes a review on segmentation methods for medical images. In this survey, segmentation methods are divided into five categories: region based, boundary based, model based, hybrid based and atlas based. The five different categories with their principle ideas, advantages and disadvantages in segmenting different medical images are discussed.

  3. Display of nuclear medicine imaging studies

    International Nuclear Information System (INIS)

    Singh, B.; Kataria, S.K.; Samuel, A.M.

    2002-08-01

    Nuclear medicine imaging studies involve evaluation of a large amount of image data. Digital signal processing techniques have introduced processing algorithms that increase the information content of the display. Nuclear medicine imaging studies require interactive selection of suitable form of display and pre-display processing. Static imaging study requires pre-display processing to detect focal defects. Point operations (histogram modification) along with zoom and capability to display more than one image in one screen is essential. This album mode of display is also applicable to dynamic, MUGA and SPECT data. Isometric display or 3-D graph of the image data is helpful in some cases e.g. point spread function, flood field data. Cine display is used on a sequence of images e.g. dynamic, MUGA and SPECT imaging studies -to assess the spatial movement of tracer with time. Following methods are used at the investigator's discretion for inspection of the 3-D object. 1) Display of orthogonal projections, 2) Display of album of user selected coronal/ sagital/ transverse orthogonal slices, 3) Display of three orthogonal slices through user selected point, 4) Display of a set of orthogonal slices generated in the user-selected volume, 5) Generation and display of 3-D shaded surface. 6) Generation of volume data and display along with the 3-D shaded surface, 7) Side by side display orthogonal slices of two 3-D objects. Displaying a set of two-dimensional slices of a 3-D reconstructed object through shows all the defects but lacks the 3-D perspective. Display of shaded surface lacks the ability to show the embedded defects. Volume display -combining the 3-D surface and gray level volume data is perhaps the best form of display. This report describes these forms of display along with the theory. (author)

  4. Medical image diagnosis of liver cancer using artificial intelligence

    International Nuclear Information System (INIS)

    Kondo, Tadashi; Ueno, Junji; Takao, Shoichiro

    2010-01-01

    A revised Group Method of Data Handling (GMDH)-type neural network algorithm using artificial intelligence technology for medical image diagnosis is proposed and is applied to medical image diagnosis of liver cancer. In this algorithm, the knowledge base for medical image diagnosis are used for organizing the neural network architecture for medical image diagnosis. Furthermore, the revised GMDH-type neural network algorithm has a feedback loop and can identify the characteristics of the medical images accurately using feedback loop calculations. The optimum neural network architecture fitting the complexity of the medical images is automatically organized so as to minimize the prediction error criterion defined as Prediction Sum of Squares (PSS). It is shown that the revised GMDH-type neural network can be easily applied to the medical image diagnosis. (author)

  5. Diagnostic imaging in undergraduate medical education: an expanding role

    International Nuclear Information System (INIS)

    Miles, K.A.

    2005-01-01

    Radiologists have been involved in anatomy instruction for medical students for decades. However, recent technical advances in radiology, such as multiplanar imaging, 'virtual endoscopy', functional and molecular imaging, and spectroscopy, offer new ways in which to use imaging for teaching basic sciences to medical students. The broad dissemination of picture archiving and communications systems is making such images readily available to medical schools, providing new opportunities for the incorporation of diagnostic imaging into the undergraduate medical curriculum. Current reforms in the medical curriculum and the establishment of new medical schools in the UK further underline the prospects for an expanding role for imaging in medical education. This article reviews the methods by which diagnostic imaging can be used to support the learning of anatomy and other basic sciences

  6. Generation of nuclear magnetic resonance images

    International Nuclear Information System (INIS)

    Beckmann, N.X.

    1986-01-01

    Two generation techniques of nuclear magnetic resonance images, the retro-projection and the direct transformation method are studied these techniques are based on the acquisition of NMR signals which phases and frequency components are codified in space by application of magnetic field gradients. The construction of magnet coils is discussed, in particular a suitable magnet geometry with polar pieces and air gap. The obtention of image contrast by T1 and T2 relaxation times reconstructed from generated signals using sequences such as spin-echo, inversion-recovery and stimulated echo, is discussed. The mathematical formalism of matrix solution for Bloch equations is also presented. (M.C.K.)

  7. High speed imaging system for nuclear diagnostics

    International Nuclear Information System (INIS)

    Eyer, H.H.

    1976-01-01

    A high speed imaging system based on state-of-the-art photosensor arrays has been designed for use in nuclear diagnostics. The system is comprised of a front-end rapid-scan solid-state camera, a high speed digitizer, and a PCM line driver in a downhole package and a memory buffer system in a uphole trailer. The downhole camera takes a ''snapshot'' of a nuclear device created flux stream, digitizes the image and transmits it to the uphole memory system before being destroyed. The memory system performs two functions: it retains the data for local display and processing by a microprocessor, and it buffers the data for retransmission at slower rates to the LLL computational facility (NADS). The impetus for such a system as well as its operation are discussed. Also discussed are new systems under development which incorporate higher data rates and more resolution

  8. High speed imaging system for nuclear diagnostics

    International Nuclear Information System (INIS)

    Eyer, H.H.

    1976-01-01

    A high speed imaging system based on state-of-the-art photosensor arrays has been designed for use in nuclear diagnostics. The system is comprised of a front-end rapid-scan solid-state camera, a high speed digitizer, and a PCM line driver in a downhole package and a memory buffer system in an uphole trailer. The downhole camera takes a ''snapshot'' of a nuclear device created flux stream, digitizes the image and transmits it to the uphole memory system before being destroyed. The memory system performs two functions: it retains the data for local display and processing by a microprocessor, and it buffers the data for retransmission at slower rates to the LLL computational facility (NADS). The impetus for such a system as well as its operation is discussed. Also discussed are new systems under development which incorporate higher data rates and more resolution

  9. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Resources Professions Site Index A-Z Children's (Pediatric) Nuclear Medicine Children’s (pediatric) nuclear medicine imaging uses small ... of Children's Nuclear Medicine? What is Children's (Pediatric) Nuclear Medicine? Nuclear medicine is a branch of medical ...

  10. Nuclear imaging of the skeletal system

    International Nuclear Information System (INIS)

    Yong Whee Bahk

    1992-01-01

    Bone scintigraphy is one of the most valuable nuclear imaging procedure, especially remarkable for its high sensitivity in disclosing bone metastasis of cancer long before radiographic demonstration. Bone scintigraphy is also useful in the diagnosis of covert fracture, occult trauma, bone contusion, early acute osteomyelitis, acute pyogenic arthritis and avascular bone necrosis. Measurements of bone clearance of radiopharmaceuticals, absorptiometry and quantitative bone scintigraphy are applied to the study of metabolic bone disorders such as osteoporosis and osteomalacia

  11. Nuclear magnetic resonance spectroscopy and imaging

    International Nuclear Information System (INIS)

    Jiang Weiping; Wang Qi; Zhou Xin

    2013-01-01

    This paper briefly introduces the basic principle of nuclear magnetic resonance (NMR). Protein's structures and functions and dynamics studied by liquid NMR are elaborated; methods for enhancing the resolution of solid state NMR and its applications are discussed; the principle of magnetic resonance imaging (MRI) is interpreted, and applications in different aspects are reviewed. Finally, the progress of NMR is commented. (authors)

  12. Nuclear imaging of the skeletal system

    Energy Technology Data Exchange (ETDEWEB)

    Bahk, Yong Whee

    1993-12-31

    Bone scintigraphy is one of the most valuable nuclear imaging procedure, especially remarkable for its high sensitivity in disclosing bone metastasis of cancer long before radiographic demonstration. Bone scintigraphy is also useful in the diagnosis of covert fracture, occult trauma, bone contusion, early acute osteomyelitis, acute pyogenic arthritis and avascular bone necrosis. Measurements of bone clearance of radiopharmaceuticals, absorptiometry and quantitative bone scintigraphy are applied to the study of metabolic bone disorders such as osteoporosis and osteomalacia

  13. The present and future of medical imaging physics

    International Nuclear Information System (INIS)

    Bao Shanglian; Zhang Huailing; Huang Feizeng

    2004-01-01

    The physics of medical imaging is one of the main branches of medical physics, which trains medical physicists for the R and D of medical imaging equipment, clinical application of this equipment as well as R and D in medical physics. The development of medical imaging physics is one of the biggest programs aimed at making China a world manufacturer both in hardware and software. However, there is no formal medical physics in China as yet. The scale of education and training, and the level of manufacture of medical imaging equipment are very low compared with developed countries. It is therefore imperative for China to accelerate the rate of development to satisfy her requirements. Amongst other priorities, building up the education and training system in medical physics and setting up a staff of medical physicists in hospitals is the most urgent thing

  14. Images of mycobacterium for nuclear reactions

    International Nuclear Information System (INIS)

    Lima, C.T.S.; Crispim, V.R.; Silva, M.G.

    2007-01-01

    According to the World Health Organization (WHO) tuberculosis is responsible for 2.9 million deaths annually worldwide. The necessity for optimizing time to detect the tuberculosis bacillus (mycobacterium tuberculosis) in the sputum samples of affected individuals (TB patients) led to the development of a methodology based on the doping with boron of the bacillus, submission of the samples to thermal neutron beam and ionizing particles, generating nuclear reactions of the types: 10 B (n,α) 7 Li and 10 B(α, p) 13 C. Images of these bacilli are obtained by means of the nuclear tracks produced in the CR-39 detector for particles products of these nuclear reactions, α and p. When the CR-39 is submitted to a chemical attack the traces are developed and the images of the microorganisms registered in the detector can be observed with a conventional light microscope, characterizing them by morphology. The use of this methodology results in images of the mycobacterium tuberculosis becoming more defined and enlarged than those obtained by bacilloscopy, in which the sample is submitted to the method of coloration of Ziehl-Neelsen (ZN) and observed in light microscopy. (author)

  15. A special designed library for medical imaging applications

    Energy Technology Data Exchange (ETDEWEB)

    Lymberopoulos, D; Kotsopoulos, S; Zoupas, V; Yoldassis, N [Departmeent of Electrical Engineering, University of Patras, Patras 26 110 Greece (Greece); Spyropoulos, C [School of Medicine, Regional University Hospital, University of Patras, Patras 26 110 Greece (Greece)

    1994-12-31

    The present paper deals with a sophisticated and flexible library of medical purpose image processing routines. It contains modules for simple as well as advanced gray or colour image processing. This library offers powerful features for medical image processing and analysis applications, thus providing the physician with a means of analyzing and estimating medical images in order to accomplish their diagnostic procedures. 6 refs, 1 figs.

  16. Contributions to HEVC Prediction for Medical Image Compression

    OpenAIRE

    Guarda, André Filipe Rodrigues

    2016-01-01

    Medical imaging technology and applications are continuously evolving, dealing with images of increasing spatial and temporal resolutions, which allow easier and more accurate medical diagnosis. However, this increase in resolution demands a growing amount of data to be stored and transmitted. Despite the high coding efficiency achieved by the most recent image and video coding standards in lossy compression, they are not well suited for quality-critical medical image compressi...

  17. Image Quality Characteristics of Handheld Display Devices for Medical Imaging

    Science.gov (United States)

    Yamazaki, Asumi; Liu, Peter; Cheng, Wei-Chung; Badano, Aldo

    2013-01-01

    Handheld devices such as mobile phones and tablet computers have become widespread with thousands of available software applications. Recently, handhelds are being proposed as part of medical imaging solutions, especially in emergency medicine, where immediate consultation is required. However, handheld devices differ significantly from medical workstation displays in terms of display characteristics. Moreover, the characteristics vary significantly among device types. We investigate the image quality characteristics of various handheld devices with respect to luminance response, spatial resolution, spatial noise, and reflectance. We show that the luminance characteristics of the handheld displays are different from those of workstation displays complying with grayscale standard target response suggesting that luminance calibration might be needed. Our results also demonstrate that the spatial characteristics of handhelds can surpass those of medical workstation displays particularly for recent generation devices. While a 5 mega-pixel monochrome workstation display has horizontal and vertical modulation transfer factors of 0.52 and 0.47 at the Nyquist frequency, the handheld displays released after 2011 can have values higher than 0.63 at the respective Nyquist frequencies. The noise power spectra for workstation displays are higher than 1.2×10−5 mm2 at 1 mm−1, while handheld displays have values lower than 3.7×10−6 mm2. Reflectance measurements on some of the handheld displays are consistent with measurements for workstation displays with, in some cases, low specular and diffuse reflectance coefficients. The variability of the characterization results among devices due to the different technological features indicates that image quality varies greatly among handheld display devices. PMID:24236113

  18. Machine Learning Interface for Medical Image Analysis.

    Science.gov (United States)

    Zhang, Yi C; Kagen, Alexander C

    2017-10-01

    TensorFlow is a second-generation open-source machine learning software library with a built-in framework for implementing neural networks in wide variety of perceptual tasks. Although TensorFlow usage is well established with computer vision datasets, the TensorFlow interface with DICOM formats for medical imaging remains to be established. Our goal is to extend the TensorFlow API to accept raw DICOM images as input; 1513 DaTscan DICOM images were obtained from the Parkinson's Progression Markers Initiative (PPMI) database. DICOM pixel intensities were extracted and shaped into tensors, or n-dimensional arrays, to populate the training, validation, and test input datasets for machine learning. A simple neural network was constructed in TensorFlow to classify images into normal or Parkinson's disease groups. Training was executed over 1000 iterations for each cross-validation set. The gradient descent optimization and Adagrad optimization algorithms were used to minimize cross-entropy between the predicted and ground-truth labels. Cross-validation was performed ten times to produce a mean accuracy of 0.938 ± 0.047 (95 % CI 0.908-0.967). The mean sensitivity was 0.974 ± 0.043 (95 % CI 0.947-1.00) and mean specificity was 0.822 ± 0.207 (95 % CI 0.694-0.950). We extended the TensorFlow API to enable DICOM compatibility in the context of DaTscan image analysis. We implemented a neural network classifier that produces diagnostic accuracies on par with excellent results from previous machine learning models. These results indicate the potential role of TensorFlow as a useful adjunct diagnostic tool in the clinical setting.

  19. Technical progress in nuclear medical heart diagnosis

    International Nuclear Information System (INIS)

    Standke, R.; Hoer, G.

    1989-01-01

    The rapid development in nuclear cardiology worldwide can hardly be surveyed from the point of view of one center. In connection with the general nuclear cardiologic development this study describes a multiparameter analysis of regional left ventricular function during exercise, and the method of sectoranalysis for quantification of myocardial SPECT. Finally a one-step procedure to quantify left ventricular function and myocardial perfusion is presented. (orig.) [de

  20. Crystal diffraction lens for medical imaging

    International Nuclear Information System (INIS)

    Smither, R. K.; Roa, D. E.

    2000-01-01

    A crystal diffraction lens for focusing energetic gamma rays has been developed at Argonne National Laboratory for use in medical imaging of radioactivity in the human body. A common method for locating possible cancerous growths in the body is to inject radioactivity into the blood stream of the patient and then look for any concentration of radioactivity that could be associated with the fast growing cancer cells. Often there are borderline indications of possible cancers that could be due to statistical functions in the measured counting rates. In order to determine if these indications are false or real, one must resort to surgical means and take tissue samples in the suspect area. They are developing a system of crystal diffraction lenses that will be incorporated into a 3-D imaging system with better sensitivity (factors of 10 to 100) and better spatial resolution (a few mm in both vertical and horizontal directions) than most systems presently in use. The use of this new imaging system will allow one to eliminate 90% of the false indications and both locate and determine the size of the cancer with mm precision. The lens consists of 900 single crystals of copper, 4 mm x 4 mm on a side and 2--4 mm thick, mounted in 13 concentric rings

  1. Commentary from Westminster. Medical effects of nuclear war.

    Science.gov (United States)

    Deitch, R

    1983-03-12

    A British Medical Association report on the medical consequences of nuclear war, scheduled for commercial publication in April 1983, could damage the Government's arguments for maintaining a nuclear deterrent. The gist of the BMA's findings is that Britain could not possibly cope with the aftermath of nuclear attack. Although Prime Minister Thatcher has made no comment, both the Home Office and the Department of Health and Social Security have criticized the report's negative conclusions. The BMA is expected to take up the issue at its annual meeting, and the Labour party has called for a Parliamentary debate on the report and its implications.

  2. Application of mathematical morphology in discrimination nuclear track images

    International Nuclear Information System (INIS)

    Zhang Qingxian; Ge Liangquan; Xiao Caijin

    2008-01-01

    Solid nuclear tracks test is an important and usual method in radioactivity test. But how to divide the overlapped tracks is the key of the processing of digital images of the nuclear tracks. Mathematical Morphology is used in processing of digital images of the nuclear tracks. As a result, the method has been programmed by c++ and used in experiments. It is successful in processing of digital images of the nuclear tracks. (authors)

  3. Emergency medical assistance programs for nuclear power reactors

    International Nuclear Information System (INIS)

    Linnemann, R.E.; Mettler, F.A. Jr.

    1977-01-01

    This paper deals with a simple but practical medical support of geographically distributed nuclear reactors in isolated areas. A staff of experts at a centre devote their full attention to accident prevention and preparedness at reactor sites. They establish and maintain emergency medical programs at reactor sites and nearby support hospitals. The emphasis is on first aid and emergency treatment by medical attendants who are not and cannot be experts in radiation but do know how to treat patients. (author)

  4. Nuclear magnetic resonance imaging of the kidney

    International Nuclear Information System (INIS)

    Hricak, H.; Crooks, L.; Sheldon, P.; Kaufman, L.

    1983-01-01

    The role of nuclear magnetic resonance (NMR) imaging of the kidney was analyzed in 18 persons (6 normal volunteers, 3 patients with pelvocaliectasis, 2 with peripelvic cysts, 1 with renal sinus lipomatosis, 3 with renal failure, 1 with glycogen storage disease, and 2 with polycystic kidney disease). Ultrasound and/or computed tomography (CT) studies were available for comparison in every case. In the normal kidney distinct anatomical structures were clearly differentiated by NMR. The best anatomical detail ws obtained with spin echo (SE) imaging, using a pulse sequence interval of 1,000 msec and an echo delay time of 28 msec. However, in the evaluation of normal and pathological conditions, all four intensity images (SE 500/28, SE 500/56, SE 1,000/28, and SE 1,000/56) have to be analyzed. No definite advantage was found in using SE imaging with a pulse sequence interval of 1,500 msec. Inversion recovery imaging enhanced the differences between the cortex and medulla, but it had a low signal-to-noise level and, therefore, a suboptimal overall resolution. The advantages of NMR compared with CT and ultrasound are discussed, and it is concluded that NMR imaging will prove to be a useful modality in the evaluation of renal disease

  5. Tissues segmentation based on multi spectral medical images

    Science.gov (United States)

    Li, Ya; Wang, Ying

    2017-11-01

    Each band image contains the most obvious tissue feature according to the optical characteristics of different tissues in different specific bands for multispectral medical images. In this paper, the tissues were segmented by their spectral information at each multispectral medical images. Four Local Binary Patter descriptors were constructed to extract blood vessels based on the gray difference between the blood vessels and their neighbors. The segmented tissue in each band image was merged to a clear image.

  6. Planning of emergency medical treatment in nuclear power plant

    International Nuclear Information System (INIS)

    Kusama, Tomoko

    1989-01-01

    Medical staffs and health physicists have shown deep concerning at the emergency plans of nuclear power plants after the TMI nuclear accident. The most important and basic countermeasure for accidents was preparing appropriate and concrete organization and plans for treatment. We have planed emergency medical treatment for radiation workers in a nuclear power plant institute. The emergency medical treatment at institute consisted of two stages, that is on-site emergency treatment at facility medical service. In first step of planning in each stage, we selected and treatment at facility medical service. In first step of planning in each stage, we selected and analyzed all possible accidents in the institute and discussed on practical treatments for some possible accidents. The manuals of concrete procedure of emergency treatment for some accidents were prepared following discussion and facilities and equipment for medical treatment and decontamination were provided. All workers in the institute had periodical training and drilling of on-site emergency treatment and mastered technique of first aid. Decontamination and operation rooms were provided in the facillity medical service. The main functions at the facility medical service have been carried out by industrial nurses. Industrial nurses have been in close co-operation with radiation safety officers and medical doctors in regional hospital. (author)

  7. Three dimensional image presentation techniques in medical imaging

    International Nuclear Information System (INIS)

    Pizer, S.M.; Fuchs, H.

    1987-01-01

    Medical images can be presented three-dimensionally by techniques that either calculate the effect of reflections from surfaces predefined from slices or project a three-space of luminosities computed from voxel intensities onto the visual receptors. Sliced-based reflective displays are the most common type. Means of producing surface descriptions both via voxel sets and via slice contours are reviewed. Advantages of and means of transparent display to allow the appreciation of the 3D relationships among objects are set forth. Ways to produce additional depth cues by stereoscopy and the kinetic depth effect are discussed, and the importance of interactive modification of viewpoint, clipping plane, displayed objects, etc. are explained. A new device, UNC's Pixel-planes, for accomplishing this in real time are illustrated. Voxel intensity based display methods avoid the need for time-consuming predefinition of object surfaces and thus can allow exploration of 3D image data. Varifocal mirror hardware and fast computation of one or more projections based on object probabilities are two of the more important approaches. While 3D display provides important information about 3D relationships, it cannot provide the kind of appreciation of subtle grey-scale changes that 2D display can. Methods that can combine these two kinds of information by superimposing 2D grey-scale slices on or in the context of 3D displays are discussed. Applications of these techniques for both diagnosis and radiotherapy planning are used as illustrations and guides to the usefulness of these techniques with CT, MRI, and other 3D medical imaging modalities. 24 refs.; 5 figs

  8. The medical consequences of nuclear war

    International Nuclear Information System (INIS)

    Geiger, H.J.

    1983-01-01

    The author says no one person can successfully communicate what the reality of a nuclear war would be, let alone something smaller, like the reality of a single or a small number of thermonuclear explosions. The author focuses on the effects of a single explosion and what would happen if it occurred in New York City

  9. New medical application: nuclear scattering radiography

    International Nuclear Information System (INIS)

    Saudinos, J.

    1977-01-01

    Nuclear scattering of 1 GeV protons is used to obtain three dimensional radiographies with a volume resolution of about 1 mm 3 . The information is different from the one given by X-ray radiographies and in particular one may get radiographies of the hydrogen included in objects. Results on a vertebral column and a 'sella turcica' are presented [fr

  10. Medical Isotope Production at TRIUMF - from Imaging to Treatment

    Science.gov (United States)

    Hoehr, C.; Bénard, F.; Buckley, K.; Crawford, J.; Gottberg, A.; Hanemaayer, V.; Kunz, P.; Ladouceur, K.; Radchenko, V.; Ramogida, C.; Robertson, A.; Ruth, T.; Zacchia, N.; Zeisler, S.; Schaffer, P.

    TRIUMF has a long history of medical isotope production. For more than 40 years, the Life Sciences Division at TRIUMF has produced isotopes for Positron Emission Tomography (PET) for the local hospitals. Recently, the division has taken on the challenge to expand the facility's isotope repertoire to isotopes for imaging to treatment. At the smallest cyclotron at TRIUMF with energy of 13 MeV, radiometals are being produced in a liquid target which is typically used for PET isotope production. This effort makes radiometals available for early stage research and preclinical trials. At beam energy of 24 MeV, we produce 99mTc from 100Mo with a cyclotron, the most common isotope for Single-Photon-Emission-Computed-Tomography (SPECT) and the most common isotope for nuclear imaging. The use of a cyclotron bypasses the common production route via a nuclear reactor as well as enriched uranium. And finally, at our 500 MeV cyclotron we have demonstrated the production of α emitters useful for targeted alpha therapy. Herein, these efforts are summarized.

  11. Medical image transmission via communication satellite. Evaluation of bone scintigraphy

    International Nuclear Information System (INIS)

    Suzuki, Hideki; Inoue, Tomio; Endo, Keigo; Shimamoto, Shigeru.

    1995-01-01

    As compared with terrestrial circuits, the communication satellite possesses superior characteristics such as wide area coverage, broadcasting, high capacity, and robustness to disasters. Utilizing the narrow band channel (64 kbps) of the geostationary satellite JCSAT 1 located at the altitude of 36,000 km above the equator, the authors investigated satellite-relayed medical imagings by video signals, with bone scintigraphy as a model. Each bone scintigraphy was taken by a handy-video camera, digitalized and transmitted from faculty of technology located at 25 kilometers apart from our department. Clear bone scintigraphy was obtained via satellite, as seen on the view box. Eight nuclear physicians evaluated 20 cases of bone scintigraphy. ROC (Receiver Operating Characteristic) analysis was performed between the scintigraphies on view box and via satellite by the rating method. The area under the ROC curve was 91.6±2.6% via satellite, and 93.2±2.4% on the view box and there was no significant difference between them. These results suggest that the satellite communication is very useful and effective system to send nuclear imagings to distant institutes. (author)

  12. [Medical image transmission via communication satellite: evaluation of bone scintigraphy].

    Science.gov (United States)

    Suzuki, H; Inoue, T; Endo, K; Shimamoto, S

    1995-10-01

    As compared with terrestrial circuits, the communication satellite possesses superior characteristics such as wide area coverage, broadcasting, high capacity, and robustness to disasters. Utilizing the narrow band channel (64 kbps) of the geostationary satellite JCSAT1 located at the altitude of 36,000 km above the equator, the authors investigated satellite-relayed medical images by video signals, with bone scintigraphy as a model. Each bone scintigraphy was taken by a handy-video camera, digitalized and transmitted from faculty of technology located at 25 kilometers apart from our department. Clear bone scintigraphy was obtained via satellite, as seen on the view box. Eight nuclear physicians evaluated 20 cases of bone scintigraphy. ROC (Receiver Operating Characteristic) analysis was performed between the scintigraphies on view box and via satellite by the rating method. The area under the ROC curve was 91.6 +/- 2.6% via satellite, and 93.2 +/- 2.4% on the view box and there was no significant difference between them. These results suggest that the satellite communication is very useful and effective system to send nuclear imagings to distant institutes.

  13. Knowledge-based analysis and understanding of 3D medical images

    International Nuclear Information System (INIS)

    Dhawan, A.P.; Juvvadi, S.

    1988-01-01

    The anatomical three-dimensional (3D) medical imaging modalities, such as X-ray CT and MRI, have been well recognized in the diagnostic radiology for several years while the nuclear medicine modalities, such as PET, have just started making a strong impact through functional imaging. Though PET images provide the functional information about the human organs, they are hard to interpret because of the lack of anatomical information. The authors objective is to develop a knowledge-based biomedical image analysis system which can interpret the anatomical images (such as CT). The anatomical information thus obtained can then be used in analyzing PET images of the same patient. This will not only help in interpreting PET images but it will also provide a means of studying the correlation between the anatomical and functional imaging. This paper presents the preliminary results of the knowledge based biomedical image analysis system for interpreting CT images of the chest

  14. Application of stereo-imaging technology to medical field.

    Science.gov (United States)

    Nam, Kyoung Won; Park, Jeongyun; Kim, In Young; Kim, Kwang Gi

    2012-09-01

    There has been continuous development in the area of stereoscopic medical imaging devices, and many stereoscopic imaging devices have been realized and applied in the medical field. In this article, we review past and current trends pertaining to the application stereo-imaging technologies in the medical field. We describe the basic principles of stereo vision and visual issues related to it, including visual discomfort, binocular disparities, vergence-accommodation mismatch, and visual fatigue. We also present a brief history of medical applications of stereo-imaging techniques, examples of recently developed stereoscopic medical devices, and patent application trends as they pertain to stereo-imaging medical devices. Three-dimensional (3D) stereo-imaging technology can provide more realistic depth perception to the viewer than conventional two-dimensional imaging technology. Therefore, it allows for a more accurate understanding and analysis of the morphology of an object. Based on these advantages, the significance of stereoscopic imaging in the medical field increases in accordance with the increase in the number of laparoscopic surgeries, and stereo-imaging technology plays a key role in the diagnoses of the detailed morphologies of small biological specimens. The application of 3D stereo-imaging technology to the medical field will help improve surgical accuracy, reduce operation times, and enhance patient safety. Therefore, it is important to develop more enhanced stereoscopic medical devices.

  15. Nuclear medical approaches to clinical research

    International Nuclear Information System (INIS)

    Otte, Andreas; Nguyen, Tristan

    2009-01-01

    In the frame of the master course Clinical research management at the scientific college Lahr in cooperation with the Albert-Ludwigs-University Freiburg three contributions are presented: Functional imaging - supported clinical studies in the sleep research. A comparison of NMR imaging versus SPECT and PET (advantages and disadvantages). Clinical studies with ionizing radiation and the radiation fear of the public. The new radioimmunotherapeutic agent Zevalin and the challenges at the market.

  16. MO-F-204-00: Preparing for the ABR Diagnostic and Nuclear Medical Physics Exams

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-06-15

    Adequate, efficient preparation for the ABR Diagnostic and Nuclear Medical Physics exams is key to successfully obtain ABR certification. Each part of the ABR exam presents its own challenges: Part I: Determine the scope of basic medical physics study material, efficiently review this material, and solve related written questions/problems. Part II: Understand imaging principles, modalities, and systems, including image acquisition, processing, and display. Understand the relationship between imaging techniques, image quality, patient dose and safety, and solve related written questions/problems. Part III: Gain crucial, practical, clinical medical physics experience. Effectively communicate and explain the practice, performance, and significance of all aspects of clinical medical physics. All parts of the ABR exam require specific skill sets and preparation: mastery of basic physics and imaging principles; written problem solving often involving rapid calculation; responding clearly and succinctly to oral questions about the practice, methods, and significance of clinical medical physics. This symposium focuses on the preparation necessary for each part of the ABR exam. Although there is some overlap, the nuclear exam covers a different body of knowledge than the diagnostic exam. A separate speaker will address those unique aspects of the nuclear exam, and how preparing for a second specialty differs from the first. Medical physicists who recently completed each ABR exam portion will share their experiences, insights, and preparation methods to help attendees best prepare for the challenges of each part of the ABR exam. In accordance with ABR exam security policy, no recalls or exam questions will be discussed. Learning Objectives: How to prepare for Part 1 of the ABR exam by determining the scope of basic medical physics study material and related problem solving/calculations How to prepare for Part 2 of the ABR exam by understanding diagnostic and/or nuclear

  17. MO-F-204-00: Preparing for the ABR Diagnostic and Nuclear Medical Physics Exams

    International Nuclear Information System (INIS)

    2016-01-01

    Adequate, efficient preparation for the ABR Diagnostic and Nuclear Medical Physics exams is key to successfully obtain ABR certification. Each part of the ABR exam presents its own challenges: Part I: Determine the scope of basic medical physics study material, efficiently review this material, and solve related written questions/problems. Part II: Understand imaging principles, modalities, and systems, including image acquisition, processing, and display. Understand the relationship between imaging techniques, image quality, patient dose and safety, and solve related written questions/problems. Part III: Gain crucial, practical, clinical medical physics experience. Effectively communicate and explain the practice, performance, and significance of all aspects of clinical medical physics. All parts of the ABR exam require specific skill sets and preparation: mastery of basic physics and imaging principles; written problem solving often involving rapid calculation; responding clearly and succinctly to oral questions about the practice, methods, and significance of clinical medical physics. This symposium focuses on the preparation necessary for each part of the ABR exam. Although there is some overlap, the nuclear exam covers a different body of knowledge than the diagnostic exam. A separate speaker will address those unique aspects of the nuclear exam, and how preparing for a second specialty differs from the first. Medical physicists who recently completed each ABR exam portion will share their experiences, insights, and preparation methods to help attendees best prepare for the challenges of each part of the ABR exam. In accordance with ABR exam security policy, no recalls or exam questions will be discussed. Learning Objectives: How to prepare for Part 1 of the ABR exam by determining the scope of basic medical physics study material and related problem solving/calculations How to prepare for Part 2 of the ABR exam by understanding diagnostic and/or nuclear

  18. Helping Your Heart with Nuclear Imaging

    International Nuclear Information System (INIS)

    Madsen, Michael Amdi

    2014-01-01

    The IAEA is helping in the fight against cardiovascular diseases (CVDs) by assisting its Member States in using nuclear science and technology to track and monitor CVDs. Nuclear imaging techniques allow doctors to look inside a patient’s body and see how organs function without running the risk of surgery. CVDs kill more people than just about anything else on the planet. The World Health Organization (WHO) estimates that roughly 30 per cent of all deaths in 2008 were caused by CVDs. That number is increasing, and by 2030 the WHO estimates that more than 23 million people will die annually from CVDs. For comparison, that is equivalent to roughly the entire population of a medium-sized country

  19. Muon trackers for imaging a nuclear reactor

    Science.gov (United States)

    Kume, N.; Miyadera, H.; Morris, C. L.; Bacon, J.; Borozdin, K. N.; Durham, J. M.; Fuzita, K.; Guardincerri, E.; Izumi, M.; Nakayama, K.; Saltus, M.; Sugita, T.; Takakura, K.; Yoshioka, K.

    2016-09-01

    A detector system for assessing damage to the cores of the Fukushima Daiichi nuclear reactors by using cosmic-ray muon tomography was developed. The system consists of a pair of drift-tube tracking detectors of 7.2× 7.2-m2 area. Each muon tracker consists of 6 x-layer and 6 y-layer drift-tube detectors. Each tracker is capable of measuring muon tracks with 12 mrad angular resolutions, and is capable of operating under 50-μ Sv/h radiation environment by removing gamma induced background with a novel time-coincidence logic. An estimated resolution to observe nuclear fuel debris at Fukushima Daiichi is 0.3 m when the core is imaged from outside the reactor building.

  20. Medical profession and nuclear war: a social history

    International Nuclear Information System (INIS)

    Day, B.; Waitzkin, H.

    1985-01-01

    Since World War II, individual physicians and medical organizations in the US have cooperated with the federal government in preparing for nuclear war. While most physicians have maintained a neutral stance, a minority have resisted federal policies. Health professionals participated actively at the wartime laboratories that developed the atomic bomb and in the medical research that followed Hiroshima and Nagasaki. Professional organizations helped with civil defense planning for nuclear conflict during the Cold War of the late 1950s and early 1960s. Medical resistance to nuclear war began in the same period, gained wide attention with the growth of Physicians for Social Responsibility in the early 1960s, declined during the Vietnam War, and vastly increased in the early 1980s. Activism by health professionals usually has responded to government policies that have increased the perceived risk of nuclear conflict. The recent return of civil defense planning has stimulated opposition in medical circles. Ambiguities of medical professionalism limit the scope of activism in the nuclear arena. These ambiguities concern the interplay of organized medicine and government, tensions between science and politics, and the difficulties of day-to-day work in medicine while the arms race continues

  1. Energy functionals for medical image segmentation: choices and consequences

    OpenAIRE

    McIntosh, Christopher

    2011-01-01

    Medical imaging continues to permeate the practice of medicine, but automated yet accurate segmentation and labeling of anatomical structures continues to be a major obstacle to computerized medical image analysis. Though there exists numerous approaches for medical image segmentation, one in particular has gained increasing popularity: energy minimization-based techniques, and the large set of methods encompassed therein. With these techniques an energy function must be chosen, segmentations...

  2. Developments in medical image processing and computational vision

    CERN Document Server

    Jorge, Renato

    2015-01-01

    This book presents novel and advanced topics in Medical Image Processing and Computational Vision in order to solidify knowledge in the related fields and define their key stakeholders. It contains extended versions of selected papers presented in VipIMAGE 2013 – IV International ECCOMAS Thematic Conference on Computational Vision and Medical Image, which took place in Funchal, Madeira, Portugal, 14-16 October 2013.  The twenty-two chapters were written by invited experts of international recognition and address important issues in medical image processing and computational vision, including: 3D vision, 3D visualization, colour quantisation, continuum mechanics, data fusion, data mining, face recognition, GPU parallelisation, image acquisition and reconstruction, image and video analysis, image clustering, image registration, image restoring, image segmentation, machine learning, modelling and simulation, object detection, object recognition, object tracking, optical flow, pattern recognition, pose estimat...

  3. A high performance parallel approach to medical imaging

    International Nuclear Information System (INIS)

    Frieder, G.; Frieder, O.; Stytz, M.R.

    1988-01-01

    Research into medical imaging using general purpose parallel processing architectures is described and a review of the performance of previous medical imaging machines is provided. Results demonstrating that general purpose parallel architectures can achieve performance comparable to other, specialized, medical imaging machine architectures is presented. A new back-to-front hidden-surface removal algorithm is described. Results demonstrating the computational savings obtained by using the modified back-to-front hidden-surface removal algorithm are presented. Performance figures for forming a full-scale medical image on a mesh interconnected multiprocessor are presented

  4. National emergency medical assistance program for commercial nuclear power plants

    International Nuclear Information System (INIS)

    Linnemann, R.E.; Berger, M.E.

    1987-01-01

    Radiation Management Consultant's Emergency Medical Assistance Program (EMAP) for nuclear facilities provides a twenty-four hour emergency medical and health physics response capability, training of site and off-site personnel, and three levels of care for radiation accident victims: first air and rescue at an accident site, hospital emergency assessment and treatment, and definitive evaluation and treatment at a specialized medical center. These aspects of emergency preparedness and fifteen years of experience in dealing with medical personnel and patients with real or suspected radiation injury will be reviewed

  5. Topics in medical image processing and computational vision

    CERN Document Server

    Jorge, Renato

    2013-01-01

      The sixteen chapters included in this book were written by invited experts of international recognition and address important issues in Medical Image Processing and Computational Vision, including: Object Recognition, Object Detection, Object Tracking, Pose Estimation, Facial Expression Recognition, Image Retrieval, Data Mining, Automatic Video Understanding and Management, Edges Detection, Image Segmentation, Modelling and Simulation, Medical thermography, Database Systems, Synthetic Aperture Radar and Satellite Imagery.   Different applications are addressed and described throughout the book, comprising: Object Recognition and Tracking, Facial Expression Recognition, Image Database, Plant Disease Classification, Video Understanding and Management, Image Processing, Image Segmentation, Bio-structure Modelling and Simulation, Medical Imaging, Image Classification, Medical Diagnosis, Urban Areas Classification, Land Map Generation.   The book brings together the current state-of-the-art in the various mul...

  6. Registration of deformed multimodality medical images

    International Nuclear Information System (INIS)

    Moshfeghi, M.; Naidich, D.

    1989-01-01

    The registration and combination of images from different modalities have several potential applications, such as functional and anatomic studies, 3D radiation treatment planning, surgical planning, and retrospective studies. Image registration algorithms should correct for any local deformations caused by respiration, heart beat, imaging device distortions, and so forth. This paper reports on an elastic matching technique for registering deformed multimodality images. Correspondences between contours in the two images are used to stretch the deformed image toward its goal image. This process is repeated a number of times, with decreasing image stiffness. As the iterations continue, the stretched image better approximates its goal image

  7. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Nuclear Medicine? Nuclear medicine is a branch of medical imaging that uses small amounts of radioactive material to ... a radiologist or other physician. To locate a medical imaging or radiation oncology provider in your community, you ...

  8. Quantitative Nuclear Medicine Imaging: Concepts, Requirements and Methods

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-01-15

    The absolute quantification of radionuclide distribution has been a goal since the early days of nuclear medicine. Nevertheless, the apparent complexity and sometimes limited accuracy of these methods have prevented them from being widely used in important applications such as targeted radionuclide therapy or kinetic analysis. The intricacy of the effects degrading nuclear medicine images and the lack of availability of adequate methods to compensate for these effects have frequently been seen as insurmountable obstacles in the use of quantitative nuclear medicine in clinical institutions. In the last few decades, several research groups have consistently devoted their efforts to the filling of these gaps. As a result, many efficient methods are now available that make quantification a clinical reality, provided appropriate compensation tools are used. Despite these efforts, many clinical institutions still lack the knowledge and tools to adequately measure and estimate the accumulated activities in the human body, thereby using potentially outdated protocols and procedures. The purpose of the present publication is to review the current state of the art of image quantification and to provide medical physicists and other related professionals facing quantification tasks with a solid background of tools and methods. It describes and analyses the physical effects that degrade image quality and affect the accuracy of quantification, and describes methods to compensate for them in planar, single photon emission computed tomography (SPECT) and positron emission tomography (PET) images. The fast paced development of the computational infrastructure, both hardware and software, has made drastic changes in the ways image quantification is now performed. The measuring equipment has evolved from the simple blind probes to planar and three dimensional imaging, supported by SPECT, PET and hybrid equipment. Methods of iterative reconstruction have been developed to allow for

  9. Signal Processing in Medical Ultrasound B-mode Imaging

    International Nuclear Information System (INIS)

    Song, Tai Kyong

    2000-01-01

    Ultrasonic imaging is the most widely used modality among modern imaging device for medical diagnosis and the system performance has been improved dramatically since early 90's due to the rapid advances in DSP performance and VLSI technology that made it possible to employ more sophisticated algorithms. This paper describes 'main stream' digital signal processing functions along with the associated implementation considerations in modern medical ultrasound imaging systems. Topics covered include signal processing methods for resolution improvement, ultrasound imaging system architectures, roles and necessity of the applications of DSP and VLSI technology in the development of the medical ultrasound imaging systems, and array signal processing techniques for ultrasound focusing

  10. Digital fluoroscopy: a new development in medical imaging

    International Nuclear Information System (INIS)

    Maher, K.P.; Malone, J.F.; Dublin Inst. of Technology

    1986-01-01

    Medical fluoroscopy is briefly reviewed and video-image digitization is described. Image processing requirements and image processors available for digital fluoroscopy are discussed in detail. Specific reference is made to an application of digital fluoroscopy in the imaging of blood-vessels. This application involves an image substraction technique which is referred to as digital subtraction angiography (DSA). A number of DSA images of relevance to the discussion are included. (author)

  11. Immediate medical consequences of nuclear accidents: lessons from Chernobyl

    International Nuclear Information System (INIS)

    Gale, R.P.

    1987-01-01

    The immediate medical response to the nuclear accident at the Chernobyl nuclear power station involved containment of the radioactivity and evacuation of the nearby population. The next step consisted of assessment of the radiation dose received by individuals, based on biological dosimetry, and treatment of those exposed. Medical care involved treatment of skin burns; measures to support bone marrow failure, gastrointestinal tract injury, and other organ damage (i.e., infection prophylaxis and transfusions) for those with lower radiation dose exposure; and bone marrow transplantation for those exposed to a high dose of radiation. At Chernobyl, two victims died immediately and 29 died of radiation or thermal injuries in the next three months. The remaining victims of the accident are currently well. A nuclear accident anywhere is a nuclear accident everywhere. Prevention and cooperation in response to these accidents are essential goals

  12. Near-infrared spectroscopic tissue imaging for medical applications

    Science.gov (United States)

    Demos, Stavros [Livermore, CA; Staggs, Michael C [Tracy, CA

    2006-12-12

    Near infrared imaging using elastic light scattering and tissue autofluorescence are explored for medical applications. The approach involves imaging using cross-polarized elastic light scattering and tissue autofluorescence in the Near Infra-Red (NIR) coupled with image processing and inter-image operations to differentiate human tissue components.

  13. Method for Surface Scanning in Medical Imaging and Related Apparatus

    DEFF Research Database (Denmark)

    2015-01-01

    A method and apparatus for surface scanning in medical imaging is provided. The surface scanning apparatus comprises an image source, a first optical fiber bundle comprising first optical fibers having proximal ends and distal ends, and a first optical coupler for coupling an image from the image...

  14. Medical image of the week: thoracic splenosis

    Directory of Open Access Journals (Sweden)

    Gardner G

    2018-05-01

    Full Text Available No abstract available. Article truncated after 150 words. A 38-year-old man with a history of a motor vehicle collision about 20 years prior to presentation which resulted in multiple left-sided rib fractures, a left-sided pneumothorax requiring chest tube placement, and a high-grade splenic laceration necessitating an emergent splenectomy that presents to outpatient pulmonary clinic for evaluation of pulmonary nodules at the request of his primary care physician. He is asymptomatic. He has a 20-pack-year of smoking history and currently smokes 6 cigarettes per day. He denies any significant exposures or recent infections. He has a family history significant for heart disease and depression, but no history of malignancy. His vital signs and physical examination are normal. He had a CT of the chest performed with representative images from the study shown in Figure 1. A nuclear medicine scan was subsequently requested which demonstrated uptake of the technetium 99m-labeled sulfur colloid in the soft tissue nodules adjacent to left …

  15. The design of diagnostic imaging and nuclear medicine facilities in a major new teaching hospital

    International Nuclear Information System (INIS)

    Causer, D.A.

    2010-01-01

    Full text: The design of the layout and radiation shielding for diagnostic imaging and nuclear medicine facilities in a modern teaching hospital requires the collaboration of persons from a number of professions including architects, engineers, radiologists, nuclear medicine physi cians, medical imaging technologists and medical physicists. This paper discusses the design of such facilities, including PET/CT and T-131 ablation therapy suites for a major new tertiary hospital in Perth. The importance of involving physicists on the planning team from the earliest stages of the design process is stressed, design plans presented, and some of the problems which may present themselves and their solutions are illustrated.

  16. Data bank applications of a nuclear medical computer system

    International Nuclear Information System (INIS)

    Hale, T.I.; Jucker, A.; Haering, W.; Schmid, B.

    1980-01-01

    Computer systems in nuclear medicine are normally not used for data bank applications. A concept for a PDP-11-34 with RK 05 disc is presented, which serves the needs of data manipulations of a medium sized hospital including management of patient data, pharma stock control etc. besides specific use for nuclear medical work with absolute priority. The program is available upon request. (orig.) [de

  17. Eigenimage filtering of nuclear medicine image sequences

    International Nuclear Information System (INIS)

    Windham, J.P.; Froelich, J.W.; Abd-Allah, M.

    1985-01-01

    In many nuclear medicine imaging sequences the localization of radioactivity in organs other than the target organ interferes with imaging of the desired anatomical structure or physiological process. A filtering technique has been developed which suppresses the interfering process while enhancing the desired process. This technique requires the identification of temporal sequential signatures for both the interfering and desired processes. These signatures are placed in the form of signature vectors. Signature matrices, M/sub D/ and M/sub U/, are formed by taking the outer product expansion of the temporal signature vectors for the desired and interfering processes respectively. By using the transformation from the simultaneous diagonalization of these two signature matrices a weighting vector is obtained. The technique is shown to maximize the projection of the desired process while minimizing the interfering process based upon an extension of Rayleigh's Principle. The technique is demonstrated for first pass renal and cardiac flow studies. This filter offers a potential for simplifying and extending the accuracy of diagnostic nuclear medicine procedures

  18. An Improved FCM Medical Image Segmentation Algorithm Based on MMTD

    Directory of Open Access Journals (Sweden)

    Ningning Zhou

    2014-01-01

    Full Text Available Image segmentation plays an important role in medical image processing. Fuzzy c-means (FCM is one of the popular clustering algorithms for medical image segmentation. But FCM is highly vulnerable to noise due to not considering the spatial information in image segmentation. This paper introduces medium mathematics system which is employed to process fuzzy information for image segmentation. It establishes the medium similarity measure based on the measure of medium truth degree (MMTD and uses the correlation of the pixel and its neighbors to define the medium membership function. An improved FCM medical image segmentation algorithm based on MMTD which takes some spatial features into account is proposed in this paper. The experimental results show that the proposed algorithm is more antinoise than the standard FCM, with more certainty and less fuzziness. This will lead to its practicable and effective applications in medical image segmentation.

  19. Soviet medical response to the Chernobyl nuclear accident

    International Nuclear Information System (INIS)

    Linnemann, R.E.

    1987-01-01

    The nuclear accident at Chernobyl was the worst in the history of nuclear power. It tested the organized medical response to mass radiation casualties. This article reviews the Soviet response as reported at the 1986 postaccident review meeting in Vienna and as determined from interviews. The Soviets used three levels of care: rescue and first aid at the plant site; emergency treatment at regional hospitals; and definitive evaluation and treatment in Moscow. Diagnosis, triage, patient disposition, attendant exposure, and preventive actions are detailed. The United States would be well advised to organize its resources definitively to cope with future nonmilitary nuclear accidents

  20. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Tell your doctor about your child’s recent illnesses, medical conditions, medications and allergies. Depending on the type ... Nuclear Medicine? Nuclear medicine is a branch of medical imaging that uses small amounts of radioactive material ...

  1. Medical image of the week: moyamoya disease

    Directory of Open Access Journals (Sweden)

    Pak S

    2017-11-01

    Full Text Available No abstract available. Article truncated at 150 words. A 52-year-old, right-handed, Caucasian woman with a history of hypertension and morbid obesity presented with acute onset of word-finding difficulty and slurred speech. Her medical and family history was negative for cerebral vascular event, coronary artery disease or smoking. Computed tomography of the patient's brain showed narrow caliber middle cerebral artery vasculature bilaterally. This abnormal finding prompted further investigation with cerebral angiogram. The angiogram showed bilateral high-grade stenosis of the anterior and middle cerebral arteries, worse on the left (Figure 1. Magnetic resonance imaging revealed multiple left sided punctate infarcts in the frontal and parietal lobes (Figure 2. Diagnosis of ischemic stroke secondary to moyamoya disease was established. This patient was not a candidate for fibrinolytic therapy since it had been more than 4 hours from initial presentation. She was treated with aspirin, clopidogrel, and atorvastatin for secondary prevention of ischemic stroke. Two months after her discharge date, the patient …

  2. Medical image of the week: disseminated coccidioidomycosis

    Directory of Open Access Journals (Sweden)

    Ynosencio T

    2017-02-01

    Full Text Available No abstract available. Article truncated at 150 words. A 67-year-old African American man with no significant past medical history presented with shortness of breath and flu-like symptoms. On exam, he was noted to be profoundly hypoxemic with imaging showing diffuse thoracic changes (Figure 1 and a diffuse papular rash (Figure 2. Initial workup included coccidioidomycosis serologies which returned positive with a titer of 1:128. While exposure to coccidioidomycosis is very common in southern Arizona, dissemination is a rare occurrence. The incidence is estimated between 0.2 and 4.7 percent. Patients at highest risk include those that are immunosuppressed or that are of African or Filipino ancestry. Common extra-pulmonary sites include skin or subcutaneous tissue, meninges of brain or spinal cord, and bones. Even rarer sites include the eyes, liver, prostate, mediastinum, and kidneys. Treatment is usually the same as with pulmonary infection which is an azole agent. However, if the patient’s symptoms are severe or if the lesions involve …

  3. Nuclear imaging evaluation of galactosylation of chitosan

    International Nuclear Information System (INIS)

    Jeong, Hwan Jeong; Kim, Eun Mi; Kim, Chang Guhn; Park, In Kyu; Cho, Chong Su; Bom, Hee Seung

    2004-01-01

    Chitosan has been studied as a non-viral gene delivery vector, drug delivery carrier, metal chelater, food additive, and radiopharmaceutical, among other things. Recently, galactose-graft chitosan was studied as a non-viral gene and drug delivery vector to target hepatocytes. The aim of this study was to investigate the usefulness of nuclear imaging for in vivo evaluation of targeting the hepatocyte by galactose grafting. Galactosyl methylated chitosan (GMC) was produced by methylation to lactobionic acid coupled chitosan Cytotoxicity of 99 mTc-GMC was determined by MTT assay. Rabbits were injected via their auricular vein with 99 mTc-GMC and 99 mTc-methylated chitosan (MC), the latter of which does not contain a galactose group, and images were acquired with a gamma camera equipped with a parallel hole collimator. The composition of the galactose group in galactosylated chitosan (GC), as well as the tri-, di-, or mono-methylation of GMC, was confirmed by NMR spectroscopy. The results of MTT assay indicated that 99 mTc-GMC was non-toxic. 99 mTc-GMC specifically accumulated in the liver within 10 minutes of injection and maintained high hepatic uptake. In contrast, 99 mTc-MC showed faint liver uptake. 99 mTc-GMC scintigraphy of rabbits showed that the galactose ligand principally targeted the liver while the chitosan functionalities led to excretion through the urinary system. Bioconjugation with a specific ligand endows some degree of targetability to an administered molecule or drug, as in the case of galactose for hepatocyte in vivo, and evaluating said targetability is a clear example of the great benefit proffered by nuclear imaging

  4. Nuclear medical examinations of patients with transplants

    International Nuclear Information System (INIS)

    Gratz, K.F.; Schober, O.; Schwarzrock, R.; Ringe, B.; Haverich, A.; Medizinische Hochschule Hannover; Medizinische Hochschule Hannover

    1987-01-01

    Present experience concerning the contribution of nuclear medicine to the follow-up of transplanted organs, such as kidneys, livers, and hearts, is based on analyses of the course of more than 1100 transplanted kidneys, 200 orthotopic livers, and 100 orthotopic transplanted hearts. In the kidneys, 99m Tc-DTPA is used to assess both perfusion and glomerular filtration rate, e.g. rejection and acute tubular necrosis. In combination with ultrasound nuclear medicine procedures serve in the detection of surgical complications, e.g. urinary leakage, vascular occlusion. In the follow-up of liver transplanted patients cholescintigraphy with 99m Tc-DISPA (or JODIDA) is a test for the patency and integrity of bile ducts or hepaticoenterostomy in the grafted patient, e.g. bile leakage, stenosis. The nutritive hepatic flow is estimated by colloid uptake measurements 99m Tc-MMS and the corresponding RES function. Despite inherent limitations the arterial-to-total perfusion ratio is measured with 99m Tc-DTPA, e.g. rejection, vascular problem. Rejection monitoring in orthotopic transplanted hearts includes routine MUGA (multiple gated blood acquisition) studies. The left ventricular ejection fraction is of major value compared to regional parameters of mortality (Fourier analysis) e.g. rejection, infection. 111 In-oxine granulocyte scans and methods for the detection of bleeding are of minor importance and relevance in the follow-up of transplanted organs. The article discusses the value of the diagnostic procedures in terms of statistical parameters, such as sensitivity, specifity, and accuracy. (orig./MG) [de

  5. Molecular Imaging and nuclear medicine: expectations and requirements

    International Nuclear Information System (INIS)

    Rollo, F.D.

    2003-01-01

    Molecular Imaging with Nuclear Medicine offers earlier, more accurate and more specific diagnosis, as well as targeted molecular therapy, providing significant improvements in clinical outcomes. (orig.)

  6. Medical response to a nuclear accident

    International Nuclear Information System (INIS)

    Nenot, J.C.

    1990-01-01

    The medical handling of a severely irradiated casualty is similar to the treatment of aplasia when caused by medical diseases. The diagnosis and prognosis depend on the level of the dose absorbed by the bone marrow, which is one of the most sensitive organ to radiation, as well on the distribution of the exposure within the body and its distribution in time. Spontaneous repair from isolated patches may be sufficient for the repopulation of deserted marrow; in such cases, bone marrow grafting should not be considered as it would be hazardous. In most case the hematopoietic deficiency will be corrected by substitution therapy, mainly based on transfusions of red cells and platelets, completed with a severe prevention - and treatment when necessary - of infection resulting from immune deficiency. When large groups of individuals are involved, special attention should be given to early diagnosis through an appropriate triage, dividing the victims into main categories such as the individuals with combined injuries, the individuals likely to have received high doses and the individuals likely to have received low doses. The first classification into dose levels categories can be based on clinical signs and hematological symptoms

  7. Elastix : a toolbox for intensity-based medical image registration

    NARCIS (Netherlands)

    Klein, S.; Staring, M.; Murphy, K.; Viergever, M.A.; Pluim, J.P.W.

    2010-01-01

    Medical image registration is an important task in medical image processing. It refers to the process of aligning data sets, possibly from different modalities (e.g., magnetic resonance and computed tomography), different time points (e.g., follow-up scans), and/or different subjects (in case of

  8. A Survey on Deep Learning in Medical Image Analysis

    NARCIS (Netherlands)

    Litjens, G.J.; Kooi, T.; Ehteshami Bejnordi, B.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; Laak, J.A.W.M. van der; Ginneken, B. van; Sanchez, C.I.

    2017-01-01

    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared

  9. A framework for integration of heterogeneous medical imaging networks.

    Science.gov (United States)

    Viana-Ferreira, Carlos; Ribeiro, Luís S; Costa, Carlos

    2014-01-01

    Medical imaging is increasing its importance in matters of medical diagnosis and in treatment support. Much is due to computers that have revolutionized medical imaging not only in acquisition process but also in the way it is visualized, stored, exchanged and managed. Picture Archiving and Communication Systems (PACS) is an example of how medical imaging takes advantage of computers. To solve problems of interoperability of PACS and medical imaging equipment, the Digital Imaging and Communications in Medicine (DICOM) standard was defined and widely implemented in current solutions. More recently, the need to exchange medical data between distinct institutions resulted in Integrating the Healthcare Enterprise (IHE) initiative that contains a content profile especially conceived for medical imaging exchange: Cross Enterprise Document Sharing for imaging (XDS-i). Moreover, due to application requirements, many solutions developed private networks to support their services. For instance, some applications support enhanced query and retrieve over DICOM objects metadata. This paper proposes anintegration framework to medical imaging networks that provides protocols interoperability and data federation services. It is an extensible plugin system that supports standard approaches (DICOM and XDS-I), but is also capable of supporting private protocols. The framework is being used in the Dicoogle Open Source PACS.

  10. High Bit-Depth Medical Image Compression With HEVC.

    Science.gov (United States)

    Parikh, Saurin S; Ruiz, Damian; Kalva, Hari; Fernandez-Escribano, Gerardo; Adzic, Velibor

    2018-03-01

    Efficient storing and retrieval of medical images has direct impact on reducing costs and improving access in cloud-based health care services. JPEG 2000 is currently the commonly used compression format for medical images shared using the DICOM standard. However, new formats such as high efficiency video coding (HEVC) can provide better compression efficiency compared to JPEG 2000. Furthermore, JPEG 2000 is not suitable for efficiently storing image series and 3-D imagery. Using HEVC, a single format can support all forms of medical images. This paper presents the use of HEVC for diagnostically acceptable medical image compression, focusing on compression efficiency compared to JPEG 2000. Diagnostically acceptable lossy compression and complexity of high bit-depth medical image compression are studied. Based on an established medically acceptable compression range for JPEG 2000, this paper establishes acceptable HEVC compression range for medical imaging applications. Experimental results show that using HEVC can increase the compression performance, compared to JPEG 2000, by over 54%. Along with this, a new method for reducing computational complexity of HEVC encoding for medical images is proposed. Results show that HEVC intra encoding complexity can be reduced by over 55% with negligible increase in file size.

  11. Image analysis and modeling in medical image computing. Recent developments and advances.

    Science.gov (United States)

    Handels, H; Deserno, T M; Meinzer, H-P; Tolxdorff, T

    2012-01-01

    Medical image computing is of growing importance in medical diagnostics and image-guided therapy. Nowadays, image analysis systems integrating advanced image computing methods are used in practice e.g. to extract quantitative image parameters or to support the surgeon during a navigated intervention. However, the grade of automation, accuracy, reproducibility and robustness of medical image computing methods has to be increased to meet the requirements in clinical routine. In the focus theme, recent developments and advances in the field of modeling and model-based image analysis are described. The introduction of models in the image analysis process enables improvements of image analysis algorithms in terms of automation, accuracy, reproducibility and robustness. Furthermore, model-based image computing techniques open up new perspectives for prediction of organ changes and risk analysis of patients. Selected contributions are assembled to present latest advances in the field. The authors were invited to present their recent work and results based on their outstanding contributions to the Conference on Medical Image Computing BVM 2011 held at the University of Lübeck, Germany. All manuscripts had to pass a comprehensive peer review. Modeling approaches and model-based image analysis methods showing new trends and perspectives in model-based medical image computing are described. Complex models are used in different medical applications and medical images like radiographic images, dual-energy CT images, MR images, diffusion tensor images as well as microscopic images are analyzed. The applications emphasize the high potential and the wide application range of these methods. The use of model-based image analysis methods can improve segmentation quality as well as the accuracy and reproducibility of quantitative image analysis. Furthermore, image-based models enable new insights and can lead to a deeper understanding of complex dynamic mechanisms in the human body

  12. Medical image processing on the GPU - past, present and future.

    Science.gov (United States)

    Eklund, Anders; Dufort, Paul; Forsberg, Daniel; LaConte, Stephen M

    2013-12-01

    Graphics processing units (GPUs) are used today in a wide range of applications, mainly because they can dramatically accelerate parallel computing, are affordable and energy efficient. In the field of medical imaging, GPUs are in some cases crucial for enabling practical use of computationally demanding algorithms. This review presents the past and present work on GPU accelerated medical image processing, and is meant to serve as an overview and introduction to existing GPU implementations. The review covers GPU acceleration of basic image processing operations (filtering, interpolation, histogram estimation and distance transforms), the most commonly used algorithms in medical imaging (image registration, image segmentation and image denoising) and algorithms that are specific to individual modalities (CT, PET, SPECT, MRI, fMRI, DTI, ultrasound, optical imaging and microscopy). The review ends by highlighting some future possibilities and challenges. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Synthetic Aperture Imaging in Medical Ultrasound

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Gammelmark, Kim; Pedersen, Morten

    2004-01-01

    with high precision, and the imaging is easily extended to real-time 3D scanning. This paper presents the work done at the Center for Fast Ultrasound Imaging in the area of SA imaging. Three areas that benefit from SA imaging are described. Firstly a preliminary in-vivo evaluation comparing conventional B...

  14. [Managing digital medical imaging projects in healthcare services: lessons learned].

    Science.gov (United States)

    Rojas de la Escalera, D

    2013-01-01

    Medical imaging is one of the most important diagnostic instruments in clinical practice. The technological development of digital medical imaging has enabled healthcare services to undertake large scale projects that require the participation and collaboration of many professionals of varied backgrounds and interests as well as substantial investments in infrastructures. Rather than focusing on systems for dealing with digital medical images, this article deals with the management of projects for implementing these systems, reviewing various organizational, technological, and human factors that are critical to ensure the success of these projects and to guarantee the compatibility and integration of digital medical imaging systems with other health information systems. To this end, the author relates several lessons learned from a review of the literature and the author's own experience in the technical coordination of digital medical imaging projects. Copyright © 2012 SERAM. Published by Elsevier Espana. All rights reserved.

  15. Gadgetron: An Open Source Framework for Medical Image Reconstruction

    DEFF Research Database (Denmark)

    Hansen, Michael Schacht; Sørensen, Thomas Sangild

    2013-01-01

    This work presents a new open source framework for medical image reconstruction called the “Gadgetron.” The framework implements a flexible system for creating streaming data processing pipelines where data pass through a series of modules or “Gadgets” from raw data to reconstructed images...... with a set of dedicated toolboxes in shared libraries for medical image reconstruction. This includes generic toolboxes for data-parallel (e.g., GPU-based) execution of compute-intensive components. The basic framework architecture is independent of medical imaging modality, but this article focuses on its...

  16. Lossless medical image compression with a hybrid coder

    Science.gov (United States)

    Way, Jing-Dar; Cheng, Po-Yuen

    1998-10-01

    The volume of medical image data is expected to increase dramatically in the next decade due to the large use of radiological image for medical diagnosis. The economics of distributing the medical image dictate that data compression is essential. While there is lossy image compression, the medical image must be recorded and transmitted lossless before it reaches the users to avoid wrong diagnosis due to the image data lost. Therefore, a low complexity, high performance lossless compression schematic that can approach the theoretic bound and operate in near real-time is needed. In this paper, we propose a hybrid image coder to compress the digitized medical image without any data loss. The hybrid coder is constituted of two key components: an embedded wavelet coder and a lossless run-length coder. In this system, the medical image is compressed with the lossy wavelet coder first, and the residual image between the original and the compressed ones is further compressed with the run-length coder. Several optimization schemes have been used in these coders to increase the coding performance. It is shown that the proposed algorithm is with higher compression ratio than run-length entropy coders such as arithmetic, Huffman and Lempel-Ziv coders.

  17. Digital Signal Processing for Medical Imaging Using Matlab

    CERN Document Server

    Gopi, E S

    2013-01-01

    This book describes medical imaging systems, such as X-ray, Computed tomography, MRI, etc. from the point of view of digital signal processing. Readers will see techniques applied to medical imaging such as Radon transformation, image reconstruction, image rendering, image enhancement and restoration, and more. This book also outlines the physics behind medical imaging required to understand the techniques being described. The presentation is designed to be accessible to beginners who are doing research in DSP for medical imaging. Matlab programs and illustrations are used wherever possible to reinforce the concepts being discussed.  ·         Acts as a “starter kit” for beginners doing research in DSP for medical imaging; ·         Uses Matlab programs and illustrations throughout to make content accessible, particularly with techniques such as Radon transformation and image rendering; ·         Includes discussion of the basic principles behind the various medical imaging tec...

  18. Mineral-PET Kimberlite sorting by nuclear-medical technology

    CERN Document Server

    Ballestrero, S; Cafferty, L; Caveney, R; Connell, SH; Cook, M; Dalton, M; Gopal, H; Ives, N; Lee, C A; Mampe, W; Phoku, M; Roodt, A; Sibande, W; Sellschop, J P F; Topkin, J; Unwucholaa, D A

    2010-01-01

    A revolutionary new technology for diamond bearing rock sorting which has its roots in medical-nuclear physics has been taken through a substantial part of the R&D phase. This has led to the construction of the technology demonstrator. Experiments using the technology demonstrator and experiments at a hospital have established the scientific and technological viability of the project.

  19. Nuclear security of Cuba’s medical facilities

    International Nuclear Information System (INIS)

    Dahlstrom, Danielle

    2016-01-01

    Cuba is a leading hub for medical research and cancer treatment in Latin America and the Caribbean. Physical protection is installed at radiotherapy facilities to detect entry of and delay access to an intruder. This minimizes the likelihood of unauthorized access and maximizes nuclear security.

  20. Medical intervention in case of nuclear or radiation event

    International Nuclear Information System (INIS)

    Blanc, J.; Bourguignon, M.; Carli, P.; Carosella, E.; Challeton de Vathaire, C.; Court, L.; Ducousso, R.; Facon, A.; Fleutot, J.B.; Goldstein, P.; Gourmelon, P.; Herbelet, G.; Kolodie, H.; Lallemand, J.; Martin, J.C.; Menthonnex, P.; Masse, R.; Origny, S.; Pasnon, J.; Peton Klein, D.; Rougy, C.; Schoulz, D.; Romet, G.; Telion, C.; Vrousos, C.

    2002-01-01

    This guide aims to be a practical tool for intervenors in case of nuclear or radiation accident. It proposes many sheets to favor the reactivity and the implementing of adapted measures. It concerns the course of action to take in case of irradiation accident or contamination and the reception in medical structure or a hospital. (A.L.B.)

  1. Diagnostic information management system for the evaluation of medical images

    Energy Technology Data Exchange (ETDEWEB)

    Higa, Toshiaki; Torizuka, Kanji; Minato, Kotaro; Komori, Masaru; Hirakawa, Akina

    1985-04-01

    A practical, small and low-cost diagnostic information management system has been developed for a comparative study of various medical imaging procedures, including ordinary radiography, X-ray computed tomography, emission computed tomography, and so forth. The purpose of the system is to effectively manage the original image data files and diagnostic descriptions during the various imaging procedures. A diagnostic description of each imaging procedure for each patient is made on a hand-sort punched-card with line-drawings and ordinary medical terminology and then coded and computerized using Index for Roentgen Diagnoses (American College of Radiology). A database management software (DB Master) on a personal computer (Apple II) is used for searching for patients' records on hand-sort punched-cards and finally original medical images. Discussed are realistic use of medical images and an effective form of diagnostic descriptions.

  2. Diagnostic information management system for the evaluation of medical images

    International Nuclear Information System (INIS)

    Higa, Toshiaki; Torizuka, Kanji; Minato, Kotaro; Komori, Masaru; Hirakawa, Akina.

    1985-01-01

    A practical, small and low-cost diagnostic information management system has been developed for a comparative study of various medical imaging procedures, including ordinary radiography, X-ray computed tomography, emission computed tomography, and so forth. The purpose of the system is to effectively manage the original image data files and diagnostic descriptions during the various imaging procedures. A diagnostic description of each imaging procedure for each patient is made on a hand-sort punched-card with line-drawings and ordinary medical terminology and then coded and computerized using Index for Roentgen Diagnoses (American College of Radiology). A database management software (DB Master) on a personal computer (Apple II) is used for searching for patients' records on hand-sort punched-cards and finally original medical images. Discussed are realistic use of medical images and an effective form of diagnostic descriptions. (author)

  3. Medical management of radiation/nuclear emergencies

    International Nuclear Information System (INIS)

    Bhatnagar, Aseem

    2014-01-01

    The medical issues in a radioactive fallout eventuality include radioprotectors, radioactivity de corporators, hemopoietic system regenerators, community and individual dosage issues, logistic and scale-up issues, regulatory issues. These issues are further compounded by the fact that published literature is (and will be) sparse and outdated, and pharma majors are unlikely to involve themselves in the R and D as well as in the supply chain. Self-developed out-of-box solutions are therefore needed. INMAS, DRDO has recently made progress on all these fronts. Many of these products have already been approved by DCGI and others are in an advanced development stage. Radioprotector has been and is an Achilles heals for the concerned scientists and a number of state agencies for a long time. However, it is a difficult area to work in for a number of reasons. New research in this area shall be highlighted. Finally, clinical trials, which are considered a norm and the final step before introduction of new drugs, are not strictly possible in case of decorporating agents and radioprotectors. Ways and means to collect safety-efficacy data shall be discussed

  4. A Data Acquisition System for Medical Imaging

    International Nuclear Information System (INIS)

    Abellan, Carlos; Cachemiche, Jean-Pierre; Rethore, Frederic; Morel, Christian

    2013-06-01

    A data acquisition system for medical imaging applications is presented. Developed at CPPM, it provides high performance generic data acquisition and processing capabilities. The DAQ system is based on the PICMG xTCA standard and is composed of 1 up to 10 cards in a single rack, each one with 2 Altera Stratix IV FPGAs and a Fast Mezzanine Connector (FMC). Several mezzanines have been produced, each one with different functionalities. Some examples are: a mezzanine capable of receiving 36 optical fibres with up to 180 Gbps sustained data rates or a mezzanine with 12 x 5 Gbps input links, 12 x 5 Gbps output links and an SFP+ connector for control purposes. Several rack sizes are also available, thus making the system scalable from a one card desktop system useful for development purpose up to a full featured rack mounted DAQ for high end applications. Depending on the application, boards may exchange data at speeds of up to 25.6 Gbps bidirectional sustained rates in a double star topology through back-plane connections. Also, front panel optical fibres can be used when higher rates are required by the application. The system may be controlled by a standard Ethernet connection, thus providing easy integration with control computers and avoiding the need for drivers. Two control systems are foreseen. A Socket connection provides easy interaction with automation software regardless of the operating system used for the control PC. Moreover a web server may run on the Envision cards and provide an easy intuitive user interface. The system and its different components will be introduced. Some preliminary measurements with high speed signal links will be presented as well as the signal conditioning used to allow these rates. (authors)

  5. Cellular dosimetry in nuclear medicine imaging: training

    International Nuclear Information System (INIS)

    Gardin, I.; Faraggi, M.; Stievenart, J.L.; Le Guludec, D.; Bok, B.

    1998-01-01

    The radionuclides used in nuclear medicine imaging emit not only diagnostically useful photons, but also energy electron emissions, responsible for dose heterogeneity at the cellular level. The mean dose delivered to the cell nucleus by electron emissions of 99m Tc, 123 I, 111 In, 67 Ga, and 201 Tl, has been calculated, for the cell nucleus, a cytoplasmic and a cell membrane distribution of radioactivity. This model takes into account both the self-dose which results from the radionuclide located in the target cell, and the cross-dose, which comes from the surrounding cells. The results obtained by cellular dosimetry (D cel ) have been compared with those obtained with conventional dosimetry (D conv ), by assuming the same amount of radioactivity per cell. Cellular dosimetry shows, for a cytoplasmic and a cell membrane distributions of radioactivity, that the main contribution to the dose to the cell nucleus, comes from the surrounding cells. On the other hand, for a cell nucleus distribution of radioactivity, the self-dose is not negligible and may be the main contribution. The comparison between cellular and conventional dosimetry shows that D cel /D conv ratio ranges from 0.61 and O.89, in case of a cytoplasmic and a cell membrane distributions of radioactivity, depending on the radionuclide and cell dimensions. Thus, conventional dosimetry slightly overestimates the mean dose to the cell nucleus. On the other hand, D cel /D conv ranges from 1.1 to 75, in case of a cell nucleus distribution of radioactivity. Conventional dosimetry may strongly underestimates the absorbed dose to the nucleus, when radioactivity is located in the nucleus. The study indicates that in nuclear medicine imaging, cellular dosimetry may lead to a better understanding of biological effects of radiopharmaceuticals. (authors)

  6. Nuclear medicine imaging of bone infections

    International Nuclear Information System (INIS)

    Love, C.; Palestro, C.J.

    2016-01-01

    Osteomyelitis is a broad group of infectious diseases that involve the bone and/or bone marrow. It can arise haematogenously, via extension from a contiguous infection, or by direct inoculation during surgery or trauma. The diagnosis is not always obvious and imaging tests are frequently performed as part of the diagnostic work-up. Commonly performed radionuclide tests include technetium-99m ("9"9"mTc)-diphosphonate bone scintigraphy (bone), and gallium-67 ("6"7Ga) and in vitro labelled leukocyte (white blood cell; WBC) imaging. Although they are useful, each of these tests has limitations. Bone scintigraphy is sensitive but not specific, especially when underlying osseous abnormalities are present. "6"7Ga accumulates in tumour, trauma, and in aseptic inflammation; furthermore, there is typically an interval of 1–3 days between radiopharmaceutical injection of and imaging. Currently, this agent is used primarily for spinal infections. Except for the spine, WBC imaging is the nuclear medicine test of choice for diagnosing complicating osteomyelitis. The in vitro leukocyte labelling process requires skilled personnel, is laborious, and is not always available. Complementary marrow imaging is usually required to maximise accuracy. Not surprisingly, alternative radiopharmaceuticals are continuously being investigated. Radiolabelled anti-granulocyte antibodies and antibody fragments, investigated as in vivo leukocyte labelling agents, have their own limitations and are not widely available. "1"1"1In-biotin is useful for diagnosing spinal infections. Radiolabelled synthetic fragments of ubiquicidin, a naturally occurring human antimicrobial peptide that targets bacteria, have shown promise as infection specific radiopharmaceuticals. 2-["1"8F]-fluoro-2-deoxy-D-glucose (FDG) positron-emission tomography (PET) with or without computed tomography (CT) is very useful in musculoskeletal infection. Sensitivities of more than 95% and specificities ranging from 75–99% have

  7. The future of three-dimensional medical imaging

    International Nuclear Information System (INIS)

    Peter, T.M.

    1996-01-01

    The past 15 years have witnessed an explosion in medical imaging technology, and none more so than in the tomographic imaging modalities of CT and MRI. Prior to 1975, 3-D imaging was largely performed in the minds of radiologists and surgeons, assisted by the modalities of conventional x-ray tomography and stereoscopic radiography. However today, with the advent of imaging techniques which ower their existence to computer technology, three-dimensional image acquisition is fast becoming the norm and the clinician finally has access to sets of data that represent the entire imaged volume. Stereoscopic image visualization has already begun to reappear as a viable means of visualizing 3 D medical images. The future of 3-D imaging is exciting and will undoubtedly move further in the direction of virtual reality. (author)

  8. Performance evaluation of emerging JPEGXR compression standard for medical images

    International Nuclear Information System (INIS)

    Basit, M.A.

    2012-01-01

    Medical images require loss less compression as a small error due to lossy compression may be considered as a diagnostic error. JPEG XR is the latest image compression standard designed for variety of applications and has a support for lossy and loss less modes. This paper provides in-depth performance evaluation of latest JPEGXR with existing image coding standards for medical images using loss less compression. Various medical images are used for evaluation and ten images of each organ are tested. Performance of JPEGXR is compared with JPEG2000 and JPEGLS using mean square error, peak signal to noise ratio, mean absolute error and structural similarity index. JPEGXR shows improvement of 20.73 dB and 5.98 dB over JPEGLS and JPEG2000 respectively for various test images used in experimentation. (author)

  9. Nuclear imaging of hepatic impact injury on rabbits

    International Nuclear Information System (INIS)

    Jin Rongbing; Wen Jianliang; Tang Weijia; Ma Xiaolin

    2002-01-01

    Objective: To investigate the effect and clinic application value of nuclear imaging on hepatic impact experiment. Methods: Experimental rabbits were impact injured on liver with BIM-IV bio-impact machine. Liver imaging was performed with sodium phytate labeled by 99m Tc. Liver blood pool imaging was performed with labeled red blood cells. The results of imaging were similar with the results of anatomy. Results: There were significant difference between normal liver and injured liver. Radio diminution and defect were showed on injured liver areas in labeled hepatic cells. Many types of abnormal radioactivity distribution were observed in liver pool imaging. The results of liver imaging and liver blood pool imaging were corresponded to the results of anatomy. Conclusion: Changes of hepatic cell structures and function after injury could be showed by nuclear imaging. Nuclear imaging was valuable in determining injured liver position or injured degree

  10. An efficient similarity measure technique for medical image registration

    Indian Academy of Sciences (India)

    In this paper, an efficient similarity measure technique is proposed for medical image registration. The proposed approach is based on the Gerschgorin circles theorem. In this approach, image registration is carried out by considering Gerschgorin bounds of a covariance matrix of two compared images with normalized ...

  11. High-performance method of morphological medical image processing

    Directory of Open Access Journals (Sweden)

    Ryabykh M. S.

    2016-07-01

    Full Text Available the article shows the implementation of grayscale morphology vHGW algorithm for selection borders in the medical image. Image processing is executed using OpenMP and NVIDIA CUDA technology for images with different resolution and different size of the structuring element.

  12. Mesh Processing in Medical-Image Analysis-a Tutorial

    DEFF Research Database (Denmark)

    Levine, Joshua A.; Paulsen, Rasmus Reinhold; Zhang, Yongjie

    2012-01-01

    Medical-image analysis requires an understanding of sophisticated scanning modalities, constructing geometric models, building meshes to represent domains, and downstream biological applications. These four steps form an image-to-mesh pipeline. For research in this field to progress, the imaging...

  13. Intrasubject registration for change analysis in medical imaging

    NARCIS (Netherlands)

    Staring, M.

    2008-01-01

    Image matching is important for the comparison of medical images. Comparison is of clinical relevance for the analysis of differences due to changes in the health of a patient. For example, when a disease is imaged at two time points, then one wants to know if it is stable, has regressed, or

  14. Personalizing Medicine Through Hybrid Imaging and Medical Big Data Analysis

    Directory of Open Access Journals (Sweden)

    Laszlo Papp

    2018-06-01

    Full Text Available Medical imaging has evolved from a pure visualization tool to representing a primary source of analytic approaches toward in vivo disease characterization. Hybrid imaging is an integral part of this approach, as it provides complementary visual and quantitative information in the form of morphological and functional insights into the living body. As such, non-invasive imaging modalities no longer provide images only, but data, as stated recently by pioneers in the field. Today, such information, together with other, non-imaging medical data creates highly heterogeneous data sets that underpin the concept of medical big data. While the exponential growth of medical big data challenges their processing, they inherently contain information that benefits a patient-centric personalized healthcare. Novel machine learning approaches combined with high-performance distributed cloud computing technologies help explore medical big data. Such exploration and subsequent generation of knowledge require a profound understanding of the technical challenges. These challenges increase in complexity when employing hybrid, aka dual- or even multi-modality image data as input to big data repositories. This paper provides a general insight into medical big data analysis in light of the use of hybrid imaging information. First, hybrid imaging is introduced (see further contributions to this special Research Topic, also in the context of medical big data, then the technological background of machine learning as well as state-of-the-art distributed cloud computing technologies are presented, followed by the discussion of data preservation and data sharing trends. Joint data exploration endeavors in the context of in vivo radiomics and hybrid imaging will be presented. Standardization challenges of imaging protocol, delineation, feature engineering, and machine learning evaluation will be detailed. Last, the paper will provide an outlook into the future role of hybrid

  15. Clinical Training of Medical Physicists Specializing in Nuclear Medicine

    International Nuclear Information System (INIS)

    2011-01-01

    The application of radiation in human health, for both diagnosis and treatment of disease, is an important component of the work of the IAEA. The responsibility for the increasingly technical aspects of this work is undertaken by the medical physicist. To ensure good practice in this vital area, structured clinical training programmes are required to complement academic learning. This publication is intended to be a guide to the practical implementation of such a programme for nuclear medicine. There is a general and growing awareness that radiation medicine is increasingly dependent on well trained medical physicists who are based in a clinical setting. However an analysis of the availability of medical physicists indicates a large shortfall of qualified and capable professionals. This is particularly evident in developing countries. While strategies to increase educational opportunities are critical to such countries, the need for guidance on structured clinical training was recognized by the members of the Regional Cooperative Agreement for Research, Development and Training related to Nuclear Science and Technology (RCA) for the Asia-Pacific region. Consequently, a technical cooperation regional project (RAS6038) under the RCA programme was formulated to address this need in this region by developing suitable material and establishing its viability. Development of a clinical training guide for medical physicists specialising in nuclear medicine was started in 2009 with the appointment of a core drafting committee of regional and international experts. The publication drew on the experience of clinical training in Australia, Croatia and Sweden and was moderated by physicists working in the Asian region. The present publication follows the approach of earlier IAEA publications in the Training Course Series, specifically Nos 37 and 47, Clinical Training of Medical Physicists Specializing in Radiation Oncology and Clinical Training of Medical Physicists

  16. Current status on image processing in medical fields in Japan

    International Nuclear Information System (INIS)

    Atsumi, Kazuhiko

    1979-01-01

    Information on medical images are classified in the two patterns. 1) off-line images on films-x-ray films, cell image, chromosome image etc. 2) on-line images detected through sensors, RI image, ultrasonic image, thermogram etc. These images are divided into three characteristic, two dimensional three dimensional and dynamic images. The research on medical image processing have been reported in several meeting in Japan and many fields on images have been studied on RI, thermogram, x-ray film, x-ray-TV image, cancer cell, blood cell, bacteria, chromosome, ultrasonics, and vascular image. Processing on TI image useful and easy because of their digital displays. Software on smoothing, restoration (iterative approximation), fourier transformation, differentiation and subtration. Image on stomach and chest x-ray films have been processed automatically utilizing computer system. Computed Tomography apparatuses have been already developed in Japan and automated screening instruments on cancer cells and recently on blood cells classification have been also developed. Acoustical holography imaging and moire topography have been also studied in Japan. (author)

  17. Medical support to a disabled nuclear platform at sea

    Directory of Open Access Journals (Sweden)

    Vishal Kansal

    2016-01-01

    Full Text Available Indian Navy has recently joined the select band of countries that are operating nuclear powered platforms. Despite the fact, that the present day nuclear technology is quite advanced and safe; accidents on board can still happen. An accident on board a Nuclear Platform at sea can result in ‘Radiation Exposure and Contamination’ to the crew members; which can prove catastrophic. Management of casualties on board a Nuclear platform at sea presents a formidable challenge. The distressed platform being at sea will also bring in many other operational variables like distance from shore, geographical location, weather conditions, availability of rescue assets and trained manpower etc. Consequently, there is a necessity to have a well defined ‘Medical Contingency Plan’ to deal with any such eventuality happening at sea. The successful execution of the contingency plan will depend upon close coordination among diverse authorities like local Service Hospital, Command Medical & Operational Authorities, Naval Dockyard, Radiation Safety Organisations and the Rescue/Hospital Ship crew. The need is to have a holistic review of our existing medical set up and integrate new equipment, training methodologies, operating procedures to have a credible response capability.

  18. Whole mount nuclear fluorescent imaging: convenient documentation of embryo morphology.

    Science.gov (United States)

    Sandell, Lisa L; Kurosaka, Hiroshi; Trainor, Paul A

    2012-11-01

    Here, we describe a relatively inexpensive and easy method to produce high quality images that reveal fine topological details of vertebrate embryonic structures. The method relies on nuclear staining of whole mount embryos in combination with confocal microscopy or conventional wide field fluorescent microscopy. In cases where confocal microscopy is used in combination with whole mount nuclear staining, the resulting embryo images can rival the clarity and resolution of images produced by scanning electron microscopy (SEM). The fluorescent nuclear staining may be performed with a variety of cell permeable nuclear dyes, enabling the technique to be performed with multiple standard microscope/illumination or confocal/laser systems. The method may be used to document morphology of embryos of a variety of organisms, as well as individual organs and tissues. Nuclear stain imaging imposes minimal impact on embryonic specimens, enabling imaged specimens to be utilized for additional assays. Copyright © 2012 Wiley Periodicals, Inc.

  19. NMR clinical imaging and spectroscopy: Its impact on nuclear medicine

    International Nuclear Information System (INIS)

    1990-01-01

    This is a collection of four papers describing aspects of past and future use of nuclear magnetic resonance as a clinical diagnostic tool. The four papers are entitled (1) What Does NMR Offer that Nuclear Medicine Does Not? by Jerry W. Froelich, (2) Oncological Imaging: Now, Future and Impact Jerry W. Froelich, (3) Magnetic Resonance Spectroscopy/Spectroscopic Imaging and Nuclear Medicine: Past, Present and Future by H. Cecil Charles, and (4) MR Cardiology: Now, Future and Impact by Robert J. Herfkens

  20. Internal radiation dosimetry using nuclear medicine imaging in radionuclide therapy

    International Nuclear Information System (INIS)

    Kim, Kyeong Min; Byun, Byun Hyun; Cheon, Gi Jeong; Lim, Sang Moo

    2007-01-01

    Radionuclide therapy has been an important field in nuclear medicine. In radionuclide therapy, relevant evaluation of internally absorbed dose is essential for the achievement of efficient and sufficient treatment of incurable disease, and can be accomplished by means of accurate measurement of radioactivity in body and its changes with time. Recently, the advances of nuclear medicine imaging and multi modality imaging processing techniques can provide chance of more accurate and easier measurement of the measures commented above, in cooperation of conventional imaging based approaches. In this review, basic concept for internal dosimetry using nuclear medicine imaging is summarized with several check points which should be considered in real practice

  1. Practical guide to quality assurance in medical imaging

    International Nuclear Information System (INIS)

    Moores, M.; Watkinson, S.; Pearcy, J.; Henshaw, E.T.

    1987-01-01

    This volume forms an important part of the response to a growing need to ensure the same and cost-effective use of ionizing radiations for the benefit of both staff and patients. The authors provide guidance to implementing and running quality assurance programs in medical imaging departments. The treatment provides an overview of all the tests which need to be carried out in medical imaging, and the text contains step-by-step guidance as to how to perform and interpret the results of medical imaging

  2. Use of medical imaging as an epidemiologic tracer

    International Nuclear Information System (INIS)

    Dartigues, J.F.

    1987-01-01

    Medical imaging is a source of data for clinical and epidemiological research just like any other factual information obtained during medical treatment. Medical imaging data, like any other information, are not really useful unless they are obtained in rigorously controlled and determined conditions, defined a priori in the research protocol. In order to be use as an epidemiologic tracer (that is, as a meaning of finding a given pathology in a given population and during a given time period), the imaging data have to be valid, reliable, and representative, of easy access and obtained at a low cost [fr

  3. Population Pharmacokinetics of Tracers: A New Tool for Medical Imaging?

    Science.gov (United States)

    Gandia, Peggy; Jaudet, Cyril; Chatelut, Etienne; Concordet, Didier

    2017-02-01

    Positron emission tomography-computed tomography is a medical imaging method measuring the activity of a radiotracer chosen to accumulate in cancer cells. A recent trend of medical imaging analysis is to account for the radiotracer's pharmacokinetic properties at a voxel (three-dimensional-pixel) level to separate the different tissues. These analyses are closely linked to population pharmacokinetic-pharmacodynamic modelling. Kineticists possess the cultural background to improve medical imaging analysis. This article stresses the common points with population pharmacokinetics and highlights the methodological locks that need to be lifted.

  4. Effects produced by nuclear weapons from the medical viewpoint

    International Nuclear Information System (INIS)

    Messerschmidt, O.

    1982-01-01

    Recommendations are given for the protection commission of the Minister of the Interior on diagnostics and therapy of the acute radiation syndrome. In summary form, findings from the medical viewpoint are given on the biological effects of nuclear explosions - irrespective of their being produced in peace times by reactor accidents or by use of nuclear weapons in warfare. The statements on the therapy of radiation injuries are a practical aid to the experienced catastrophe physician and suggest to the still unexperienced physician to extend his training for mastering radiation injuries in catastrophes. (orig./HP) [de

  5. Signal and image processing in medical applications

    CERN Document Server

    Kumar, Amit; Rahim, B Abdul; Kumar, D Sravan

    2016-01-01

    This book highlights recent findings on and analyses conducted on signals and images in the area of medicine. The experimental investigations involve a variety of signals and images and their methodologies range from very basic to sophisticated methods. The book explains how signal and image processing methods can be used to detect and forecast abnormalities in an easy-to-follow manner, offering a valuable resource for researchers, engineers, physicians and bioinformatics researchers alike.

  6. The research progress of nuclear medicine on cardiovascular molecular imaging

    International Nuclear Information System (INIS)

    Yin Xiaohua; Zhang Yongxue

    2007-01-01

    Cardiovascular molecular imaging is a rapidly evolving discipline and its clinical application is promising. Nuclear medicine is playing a leading role in this field with its special superiority of noninvasive, quantifiability, high sensitivity and specificity. It provides broad opportunities for exploring the pathophysiologic process of cardiovascular diseases and monitoring its gene therapy in the molecular level. In this review, we mainly discuss some basic knowledge on cardiovascular molecular imaging, and then focus on the applied research prospect of nuclear medicine radionuclide imaging. (authors)

  7. Ordering of diagnostic information in encoded medical images. Accuracy progression

    Science.gov (United States)

    Przelaskowski, A.; Jóźwiak, R.; Krzyżewski, T.; Wróblewska, A.

    2008-03-01

    A concept of diagnostic accuracy progression for embedded coding of medical images was presented. Implementation of JPEG2000 encoder with a modified PCRD optimization algorithm was realized and initially verified as a tool for accurate medical image streaming. Mean square error as a distortion measure was replaced by other numerical measures to revise quality progression according to diagnostic importance of successively encoded image information. A faster increment of image diagnostic importance during reconstruction of initial packets of code stream was reached. Modified Jasper code was initially tested on a set of mammograms containing clusters of microcalcifications and malignant masses, and other radiograms. Teleradiologic applications were considered as the first area of interests.

  8. Watermarking patient data in encrypted medical images

    Indian Academy of Sciences (India)

    Due to the advancement of technology, internet has become an ... area including important information and must be stored without any distortion. .... Although someone with the knowledge of encryption key can obtain a decrypted image and ... ical image management, in: Engineering in Medicine and Biology Society.

  9. A cloud collaborative medical image platform oriented by social network

    Science.gov (United States)

    Muniz, Frederico B.; Araújo, Luciano V.; Nunes, Fátima L. S.

    2017-03-01

    Computer-aided diagnosis systems using medical images and three-dimensional models as input data have greatly expanded and developed, but in terms of building suitable image databases to assess them, the challenge remains. Although there are some image databases available for this purpose, they are generally limited to certain types of exams or contain a limited number of medical cases. The objective of this work is to present the concepts and the development of a collaborative platform for sharing medical images and three-dimensional models, providing a resource to share and increase the number of images available for researchers. The collaborative cloud platform, called CATALYZER, aims to increase the availability and sharing of graphic objects, including 3D images, and their reports that are essential for research related to medical images. A survey conducted with researchers and health professionals indicated that this could be an innovative approach in the creation of medical image databases, providing a wider variety of cases together with a considerable amount of shared information among its users.

  10. An interactive medical image segmentation framework using iterative refinement.

    Science.gov (United States)

    Kalshetti, Pratik; Bundele, Manas; Rahangdale, Parag; Jangra, Dinesh; Chattopadhyay, Chiranjoy; Harit, Gaurav; Elhence, Abhay

    2017-04-01

    Segmentation is often performed on medical images for identifying diseases in clinical evaluation. Hence it has become one of the major research areas. Conventional image segmentation techniques are unable to provide satisfactory segmentation results for medical images as they contain irregularities. They need to be pre-processed before segmentation. In order to obtain the most suitable method for medical image segmentation, we propose MIST (Medical Image Segmentation Tool), a two stage algorithm. The first stage automatically generates a binary marker image of the region of interest using mathematical morphology. This marker serves as the mask image for the second stage which uses GrabCut to yield an efficient segmented result. The obtained result can be further refined by user interaction, which can be done using the proposed Graphical User Interface (GUI). Experimental results show that the proposed method is accurate and provides satisfactory segmentation results with minimum user interaction on medical as well as natural images. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. What does the neurosurgeon expect from nuclear medical brain examinations

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, H.

    1985-12-01

    The management of neurosurgical diseases includes a number of measures influencing cerebral pressure, blood flow and metabolism such as hypothermia, hyperventilation, haemodilution, cerebral dehydration, administration of ganglion blockers, steroids, barbiturates - to mention only a few factors - the effect of which has not been proven, though. Combined use of current examination procedures and nuclear medical techniques will enable a critical review of some of these substances or measures in the future. Nuclear medical techniques serve to complement current procedures such as computerized tomography and angiography, thus providing new applications for diagnosis of, and clinical research into cerebral haemodynamics and cerebral metabolism. There is a need for more information about the relationship between the function, blood flow and metabolism of the human brain, especially in neurosurgical patients with craniocerebral traumas, tumours and cerebral ischemia.

  12. Performance management of nuclear medical apparatuses in Osaka University Hospital

    International Nuclear Information System (INIS)

    Ikehara, Katsuhiro; Kusumi, Yoshimi; Hayashi, Makoto; Miharu, Tomoyoshi; Masuda, Kazutaka

    1975-01-01

    Nuclear medical out side-body measuring equipments in Osaka University Hospital consist of scinticamera, scintiscanner and movement-measuring equipment as measuring equipments, and central processing equipment, CRT attached with Polaroid camera, data typewriter, X-Y recorder, and high speed tape reader as data processing equipments. Daily and monthly management items are set up to maintain the best function of these equipments. The data processing room is air-conditioned to keep temperature at 25 0 C and humidity at 60% constantly, and they are confirmed with a temperature and humidity self-recorder. Computer system is used for the homogeneity control and the correction to counting failure of the scinticamera. As the repair of nuclear medical apparatuses needs long period and because of the special circumstances of radioactive drugs, very close cooperation among technicians, doctors and equipment makers is required. (Kobatake, H.)

  13. Methodology for quantitative evaluation of diagnostic medical imaging

    International Nuclear Information System (INIS)

    Metz, C.

    1980-01-01

    This report deals with the evaluation of the performance of diagnostic medical imaging procedures using the Receiver Operating Characteristic or ROC analysis. The development of new tests for the statistical significance of apparent differences between ROC curves is discussed

  14. FUZZY BASED CONTRAST STRETCHING FOR MEDICAL IMAGE ENHANCEMENT

    Directory of Open Access Journals (Sweden)

    T.C. Raja Kumar

    2011-07-01

    Full Text Available Contrast Stretching is an important part in medical image processing applications. Contrast is the difference between two adjacent pixels. Fuzzy statistical values are analyzed and better results are produced in the spatial domain of the input image. The histogram mapping produces the resultant image with less impulsive noise and smooth nature. The probabilities of gray values are generated and the fuzzy set is determined from the position of the input image pixel. The result indicates the good performance of the proposed fuzzy based stretching. The inverse transform of the real values are mapped with the input image to generate the fuzzy statistics. This approach gives a flexible image enhancement for medical images in the presence of noises.

  15. Applications of nuclear technique in environmental and medical science

    International Nuclear Information System (INIS)

    Shi Xianfeng; Shen Hao; Liu Bo; Sun Minde; Yao Huiying; Zhou Shijun; Mi Yong

    2001-01-01

    The serious environmental pollution problem and application of the nuclear technique in environmental and medical sciences were discussed. The analysed results of the elemental distribution of particles in automobile exhaust, the aerosol particle of different size and the effect of Rare Earth on cells were reported. The authors can obtain some information related to element concentration. It offers a convenient method in inspecting the environmental pollution

  16. Simultaneous acquisition of physiological data and nuclear medicine images

    International Nuclear Information System (INIS)

    Rosenthal, M.S.; Klein, H.A.; Orenstein, S.R.

    1988-01-01

    A technique has been developed that allows the simultaneous acquisition of both image and physiological data into a standard nuclear medicine computer system. The physiological data can be displayed along with the nuclear medicine images allowing temporal correlation between the two. This technique has been used to acquire images of gastroesophageal reflux simultaneously with the intraluminal esophageal pH. The resulting data are displayed either as a standard dynamic sequence with the physiological data appearing in a corner of the image or as condensed dynamic images

  17. The terrorist threat nuclear, radiological, biological, chemical - a medical approach

    International Nuclear Information System (INIS)

    Revel, M.C. de; Gourmelon, M.C.S.; Vidal, P.C.; Renaudeau, P.C.S.

    2005-01-01

    Since September 11, 2001, the fear of a large scale nuclear, biological and/or chemical terrorism is taken again into consideration at the highest level of national policies of risk prevention. The advent of international terrorism implies a cooperation between the military defense and the civil defense. The nuclear, radiological, biological and chemical (NRBC) experts of the health service of army and of civil defense will have to work together in case of major terror attack. This book presents this cooperation between civil and military experts in the NRBC domain: risk analysis, national defense plans, crisis management, syndromes and treatments. The different aspects linked with the use of nuclear, biological and chemical weapons are analyzed by the best experts from French medical and research institutes. All topics of each NRBC domain are approached: historical, basic, diagnostic, therapeutic and preventive. (J.S.)

  18. A Kalman filter technique applied for medical image reconstruction

    International Nuclear Information System (INIS)

    Goliaei, S.; Ghorshi, S.; Manzuri, M. T.; Mortazavi, M.

    2011-01-01

    Medical images contain information about vital organic tissues inside of human body and are widely used for diagnoses of disease or for surgical purposes. Image reconstruction is essential for medical images for some applications such as suppression of noise or de-blurring the image in order to provide images with better quality and contrast. Due to vital rule of image reconstruction in medical sciences the corresponding algorithms with better efficiency and higher speed is desirable. Most algorithms in image reconstruction are operated on frequency domain such as the most popular one known as filtered back projection. In this paper we introduce a Kalman filter technique which is operated in time domain for medical image reconstruction. Results indicated that as the number of projection increases in both normal collected ray sum and the collected ray sum corrupted by noise the quality of reconstructed image becomes better in terms of contract and transparency. It is also seen that as the number of projection increases the error index decreases.

  19. MEDICAL IMAGE COMPRESSION USING HYBRID CODER WITH FUZZY EDGE DETECTION

    Directory of Open Access Journals (Sweden)

    K. Vidhya

    2011-02-01

    Full Text Available Medical imaging techniques produce prohibitive amounts of digitized clinical data. Compression of medical images is a must due to large memory space required for transmission and storage. This paper presents an effective algorithm to compress and to reconstruct medical images. The proposed algorithm first extracts edge information of medical images by using fuzzy edge detector. The images are decomposed using Cohen-Daubechies-Feauveau (CDF wavelet. The hybrid technique utilizes the efficient wavelet based compression algorithms such as JPEG2000 and Set Partitioning In Hierarchical Trees (SPIHT. The wavelet coefficients in the approximation sub band are encoded using tier 1 part of JPEG2000. The wavelet coefficients in the detailed sub bands are encoded using SPIHT. Consistent quality images are produced by this method at a lower bit rate compared to other standard compression algorithms. Two main approaches to assess image quality are objective testing and subjective testing. The image quality is evaluated by objective quality measures. Objective measures correlate well with the perceived image quality for the proposed compression algorithm.

  20. Medical measures in case of nuclear power plant accidents

    International Nuclear Information System (INIS)

    1986-01-01

    The Laender governments of the Federal Republic of Germany are of the opinion that within the framework of precautionary disaster control, plans have to be set up dealing with nuclear disasters that seem improbable but cannot be completely excluded. Accordingly, recommendations presented by the Federal Government and the Laender governments have been combined into a framework disaster control scheme where the competencies for activities and measures lie with the several Laender governments, as given by the Basic Law. A further recommendation deals with the medical care and service in case of a nuclear disaster, and the practical guide presented here is intended to give the information and instructions needed in order to comply with the legal framework. A working group has been set up in order to work out the rules and facts for optimum medical care. The activities are planned to be based on an emergency station responsible for medical examination, treatment, and transfer of victims. The practical guide has been discussed by the 'Committee for disaster control in the vicinity of nuclear installations' of the SSK, has been approved of by the supreme Land authorities of the Laender concerned, and has been passed by the SSK at its 63rd meeting. With 5 figs., 6 tabs [de

  1. Synchrotrons and their applications in medical imaging and therapy

    International Nuclear Information System (INIS)

    Lewis, R.

    2004-01-01

    Full text: Australasia's first synchrotron is being built on the campus of Monash University near Melbourne. Is it of any relevance to the medical imaging and radiation therapy communities? The answer is an unequivocal yes. Synchrotrons overcome many of the problems with conventional X-ray sources and as a result make it possible to demonstrate extraordinary advances in both X-ray imaging and indeed in radio-therapy. Synchrotron imaging offers us a window into what is possible and the results are spectacular. Specific examples include lung images that reveal alveolar structure and computed tomography of single cells. For therapy treatments are being pioneered that seem to be effective on high grade gliomas. An overview of the status of medical applications using synchrotrons will be given and the proposed Australian medical imaging and therapy facilities will be described and some of the proposed research highlighted. Copyright (2004) Australasian College of Physical Scientists and Engineers in Medicine

  2. Segmentation of medical images using explicit anatomical knowledge

    Science.gov (United States)

    Wilson, Laurie S.; Brown, Stephen; Brown, Matthew S.; Young, Jeanne; Li, Rongxin; Luo, Suhuai; Brandt, Lee

    1999-07-01

    Knowledge-based image segmentation is defined in terms of the separation of image analysis procedures and representation of knowledge. Such architecture is particularly suitable for medical image segmentation, because of the large amount of structured domain knowledge. A general methodology for the application of knowledge-based methods to medical image segmentation is described. This includes frames for knowledge representation, fuzzy logic for anatomical variations, and a strategy for determining the order of segmentation from the modal specification. This method has been applied to three separate problems, 3D thoracic CT, chest X-rays and CT angiography. The application of the same methodology to such a range of applications suggests a major role in medical imaging for segmentation methods incorporating representation of anatomical knowledge.

  3. Video image processing for nuclear safeguards

    International Nuclear Information System (INIS)

    Rodriguez, C.A.; Howell, J.A.; Menlove, H.O.; Brislawn, C.M.; Bradley, J.N.; Chare, P.; Gorten, J.

    1995-01-01

    The field of nuclear safeguards has received increasing amounts of public attention since the events of the Iraq-UN conflict over Kuwait, the dismantlement of the former Soviet Union, and more recently, the North Korean resistance to nuclear facility inspections by the International Atomic Energy Agency (IAEA). The role of nuclear safeguards in these and other events relating to the world's nuclear material inventory is to assure safekeeping of these materials and to verify the inventory and use of nuclear materials as reported by states that have signed the nuclear Nonproliferation Treaty throughout the world. Nuclear safeguards are measures prescribed by domestic and international regulatory bodies such as DOE, NRC, IAEA, and EURATOM and implemented by the nuclear facility or the regulatory body. These measures include destructive and non destructive analysis of product materials/process by-products for materials control and accountancy purposes, physical protection for domestic safeguards, and containment and surveillance for international safeguards

  4. Evaluation of nuclear data for R and D projects; development of database for medical nuclear data

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Tae Suk [Catholic University, Seoul (Korea); Shin, D. O. [Kyung Hee University, Seoul (Korea); Joh, C. W.; Chang, J. S. [Ajou University, Suwon (Korea); Choi, Y. [Sungkyunkwan University, Seoul (Korea); Kim, S. H. [Hanyang University, Seoul (Korea); Park, S. Y. [National Cancer Center, Seoul (Korea); Shin, D. H.; Lee, S [Kyonggi University, Seoul (Korea)

    2002-04-01

    Medical nuclear data used in the country is not provided by academic associations and organizations concerned and even by government organizations concerned. This is aimed to investigate the diagnostic and therapeutic equipments in the clinical use and the domestic present status of nuclear data and physical properties of sealed or unsealed radioactive isotopes and to establish the nuclear database. About 120 domestic centers take nuclear medicine tests and 52 medical centers do radiotherapy. The 30-odd different kinds of radionuclides are usually used in nuclear medicine in the country. The 30-odd kinds of unsealed sources are used for diagnosis and therapy and 10-odd kinds of sealed sources for brachytherapy in the country. The special radiotherapy includes Gamma-knife, linac-based stereotactic radiosurgery, conformal radiotherapy and Intensity modulated radiotherapy. The nuclear data base has been completed on the basis of these data collected and the web site made is available with ease to anyone who want to get nuclear data. 39 refs., 20 figs., 8 tabs. (Author)

  5. Medical imaging and the principal phacomatoses

    International Nuclear Information System (INIS)

    Bertrand, J.L.; Salamand, P.; Arnault, G.; Solacroup, J.C.; Martin, J.P.; Proust, J.

    1988-01-01

    Because of involvement of several or more embryonic tissue layers, manifestations of phacomatoses are widely variable. Different imaging methods can be used to determine the various localizations of these conditions: cerebral, thoracic and abdominal [fr

  6. Ontology modularization to improve semantic medical image annotation.

    Science.gov (United States)

    Wennerberg, Pinar; Schulz, Klaus; Buitelaar, Paul

    2011-02-01

    Searching for medical images and patient reports is a significant challenge in a clinical setting. The contents of such documents are often not described in sufficient detail thus making it difficult to utilize the inherent wealth of information contained within them. Semantic image annotation addresses this problem by describing the contents of images and reports using medical ontologies. Medical images and patient reports are then linked to each other through common annotations. Subsequently, search algorithms can more effectively find related sets of documents on the basis of these semantic descriptions. A prerequisite to realizing such a semantic search engine is that the data contained within should have been previously annotated with concepts from medical ontologies. One major challenge in this regard is the size and complexity of medical ontologies as annotation sources. Manual annotation is particularly time consuming labor intensive in a clinical environment. In this article we propose an approach to reducing the size of clinical ontologies for more efficient manual image and text annotation. More precisely, our goal is to identify smaller fragments of a large anatomy ontology that are relevant for annotating medical images from patients suffering from lymphoma. Our work is in the area of ontology modularization, which is a recent and active field of research. We describe our approach, methods and data set in detail and we discuss our results. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. A review of m-health in medical imaging.

    Science.gov (United States)

    Perera, Chandrashan Mahendra; Chakrabarti, Rahul

    2015-02-01

    The increasing capabilities of camera-equipped mobile phones have led to a growing body of evidence regarding their use in medical imaging across a broad range of medical specialties. This article reviews the current evidence for the use of mobile health (m-health) in medical imaging. We performed a structured review of the published literature regarding m-health in medical imaging using the Medline, PubMed, and Web of Science databases (January 2002-August 2013). The two authors independently extracted data regarding type of specialty, purpose, and study design of publications. In total, 235 articles were identified. The majority of studies were case reports or noncomparative product validation studies. The greatest volume of publications originated in the fields of radiology (21%), dermatology (15%), laboratory techniques (15%), and plastic surgery (12%). Among these studies, m-health was used as diagnostic aids, for patient monitoring, and to improve communication between health practitioners. With the growing use of mobile phones for medical imaging, considerations need to be given to informed consent, privacy, image storage and transfer, and guidelines for healthcare workers and patients. There are several novel uses of mobile devices for medical imaging that show promise across a variety of areas and subspecialties of healthcare. Currently, studies are mostly exploratory in nature. To validate these devices, studies with higher methodological rigor are required.

  8. Dissemination of medical applications of nuclear energy with virtual reality technology

    International Nuclear Information System (INIS)

    Botelho, Felipe M.; Oliveira, Beatriz A.R.

    2007-01-01

    This work makes use of Virtual Reality technology to disseminate medical applications of nuclear energy, with educational purposes. Virtual Reality is an effective learning tool, since navigation and interaction in virtual worlds can improve motivation in the learning process. With this technology, learning can be achieved in a clearer, joyful and more objective way. Among the existing medical applications of nuclear energy, this work focuses on the use of radiopharmaceuticals. The goal is to simulate this application in a virtual environment, for educational purposes, and to show the absorption of a radiopharmaceutical by the human body, during a diagnostics or treatment procedure. An example has been chosen, for Iodine radiopharmaceutical, which has affinity with the thyroid, and then concentrates in this organ. During the simulation, the concentration of the radioactive Iodine in the thyroid can be emphasized, and in the sequence, the virtual patient can be shown during the imaging procedure. (author)

  9. View interpolation for medical images on autostereoscopic displays

    NARCIS (Netherlands)

    Zinger, S.; Ruijters, D.; Do, Q.L.; With, de P.H.N.

    2012-01-01

    We present an approach for efficient rendering and transmitting views to a high-resolution autostereoscopic display for medical purposes. Displaying biomedical images on an autostereoscopic display poses different requirements than in a consumer case. For medical usage, it is essential that the

  10. Medical image of the week: prozac eyes

    Directory of Open Access Journals (Sweden)

    Shetty S

    2015-12-01

    Full Text Available A 59-year-old man with a past medical history significant for hypertension, obesity and depression underwent an overnight polysomnogram for high clinical suspicion for obstructive sleep apnea. His current medications include doxepin, fluoxetine, bupropion, ambien and amlodipine. A snapshot during NREM sleep is shown (Figure 1. Fluoxetine (Prozac® is a potent selective serotonin reuptake inhibitor (SSRI.“Omnipause” neurons in the brainstem inhibit saccadic eye movements. NREM eye movements result from the potentiation of serotonergic neurons that inhibit these neurons (1. These eye movements occur during all stages of NREM sleep. These atypical eye movements have been reported to be present with a lower incidence with use of other antidepressants, benzodiazepines and neuroleptics and they tend to persist even after discontinuation of the medication (2. The clinical significance of these eye movements is unknown.

  11. Organization and visualization of medical images in radiotherapy

    International Nuclear Information System (INIS)

    Lorang, T.

    2001-05-01

    In modern radiotherapy, various imaging equipment is used to acquire views from inside human bodies. Tomographic imaging equipment is acquiring stacks of cross-sectional images, software implementations derive three-dimensional volumes from planar images to allow for visualization of reconstructed cross-sections at any orientation and location and higher-level visualization systems allow for transparent views and surface rendering. Of upcoming interest in radiotherapy is mutual information, the integration of information from multiple imaging equipment res. from the same imaging equipment at different time stamps and varying acquisition parameters. Huge amounts of images are acquired nowadays at radiotherapy centers, requiring organization of images with respect to patient, acquisition and equipment to allow for visualization of images in a comparative and integrative manner. Especially for integration of image information from different equipment, geometrical information is required to allow for registration of images res. volumes. DICOM 3.0 has been introduced as a standard for information interchange with respect to medical imaging. Geometric information of cross-sections, demographic information of patients and medical information of acquisitions and equipment are covered by this standard, allowing for a high-level automation with respect to organization and visualization of medical images. Reconstructing cross-sectional images from volumes at any orientation and location is required for the purpose of registration and multi-planar views. Resampling and addressing of discrete volume data need be implemented efficiently to allow for simultaneous visualization of multiple cross-sectional images, especially with respect to multiple, non-isotropy volume data sets. (author)

  12. EMITEL: E-Encyclopaedia and E-Dictionary of Medical Imaging Technologies

    International Nuclear Information System (INIS)

    Medvedec, M.; Kovacevic, N.; Magjarevic, R.

    2011-01-01

    EMITEL (European Medical Imaging Technology e-Encyclopaedia for Lifelong Learning) is an electronic encyclopaedia and multilingual dictionary related to medical imaging technologies. It is a result of the multi-annual international project which involved more than 250 contributors from 35 countries, aiming to foster development of medical physics and biomedical/clinical engineering by a lifelong e-learning web tool for all interested individuals or groups. Currently, the encyclopaedia is equivalent to about 2100 hard copy pages and includes about 3300 terms with an explanatory article for each term. The dictionary provides bidirectional cross-translation of terms between any two among 28 languages from its current database. Dictionary entries are divided into seven groups: diagnostic radiology, nuclear medicine, radiotherapy, magnetic resonance imaging, ultrasound imaging, radiation protection and general terms. Croatian language was implemented in EMITEL dictionary in April 2010. There were 17 Croatian translators and reviewers from 8 institutions and 3 cities, ranging from medical physics experts to linguist. The basic terminological principles of translation were final intelligibility of terms, desirable Croatian origin and linguistic appropriateness. Croatian contribution in the actual phase of EMITEL project attempted to improve the quality and efficiency of the specific professional, scientific and teaching terminology. A sort of novel, consistent and verified pool of terms of emerging medical imaging technologies was built up, as a one small part of the process of developing information technologies and socio-cultural transition from the industrial society into the society of knowledge. (author)

  13. Plane Wave Medical Ultrasound Imaging Using Adaptive Beamforming

    DEFF Research Database (Denmark)

    Holfort, Iben Kraglund; Gran, Fredrik; Jensen, Jørgen Arendt

    2008-01-01

    In this paper, the adaptive, minimum variance (MV) beamformer is applied to medical ultrasound imaging. The Significant resolution and contrast gain provided by the adaptive, minimum variance (MV) beamformer, introduces the possibility of plane wave (PW) ultrasound imaging. Data is obtained using...

  14. Improved Software to Browse the Serial Medical Images for Learning.

    Science.gov (United States)

    Kwon, Koojoo; Chung, Min Suk; Park, Jin Seo; Shin, Byeong Seok; Chung, Beom Sun

    2017-07-01

    The thousands of serial images used for medical pedagogy cannot be included in a printed book; they also cannot be efficiently handled by ordinary image viewer software. The purpose of this study was to provide browsing software to grasp serial medical images efficiently. The primary function of the newly programmed software was to select images using 3 types of interfaces: buttons or a horizontal scroll bar, a vertical scroll bar, and a checkbox. The secondary function was to show the names of the structures that had been outlined on the images. To confirm the functions of the software, 3 different types of image data of cadavers (sectioned and outlined images, volume models of the stomach, and photos of the dissected knees) were inputted. The browsing software was downloadable for free from the homepage (anatomy.co.kr) and available off-line. The data sets provided could be replaced by any developers for their educational achievements. We anticipate that the software will contribute to medical education by allowing users to browse a variety of images. © 2017 The Korean Academy of Medical Sciences.

  15. Student Perspectives of Imaging Anatomy in Undergraduate Medical Education

    Science.gov (United States)

    Machado, Jorge Americo Dinis; Barbosa, Joselina Maria Pinto; Ferreira, Maria Amelia Duarte

    2013-01-01

    Radiological imaging is gaining relevance in the acquisition of competencies in clinical anatomy. The aim of this study was to evaluate the perceptions of medical students on teaching/learning of imaging anatomy as an integrated part of anatomical education. A questionnaire was designed to evaluate the perceptions of second-year students…

  16. An overview of medical image processing methods

    African Journals Online (AJOL)

    USER

    2010-06-14

    Jun 14, 2010 ... Since human life is worthier than all things, efforts on virtual animation and visualization of human body's viscera, without surgical interference to diagnose a disease is very important. Recently, modern medical instruments are able to produce views which can be used for better diagnoses and accurate.

  17. Medical image security using modified chaos-based cryptography approach

    Science.gov (United States)

    Talib Gatta, Methaq; Al-latief, Shahad Thamear Abd

    2018-05-01

    The progressive development in telecommunication and networking technologies have led to the increased popularity of telemedicine usage which involve storage and transfer of medical images and related information so security concern is emerged. This paper presents a method to provide the security to the medical images since its play a major role in people healthcare organizations. The main idea in this work based on the chaotic sequence in order to provide efficient encryption method that allows reconstructing the original image from the encrypted image with high quality and minimum distortion in its content and doesn’t effect in human treatment and diagnosing. Experimental results prove the efficiency of the proposed method using some of statistical measures and robust correlation between original image and decrypted image.

  18. In-vivo synthetic aperture flow imaging in medical ultrasound

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Jensen, Jørgen Arendt

    2003-01-01

    A new method for acquiring flow images using synthetic aperture techniques in medical ultrasound is presented. The new approach makes it possible to have a continuous acquisition of flow data throughout the whole image simultaneously, and this can significantly improve blood velocity estimation.......2% and a mean relative bias of 3.4% using 24 pulse emissions at a flow angle of 45 degrees. The 24 emissions can be used for making a full-color flow map image. An in-vivo image of How in the carotid artery for a 29-year-old male also is presented. The full image is acquired using 24 emissions....

  19. Applicability of compton imaging in nuclear decommissioning activities

    International Nuclear Information System (INIS)

    Ljubenov, V.Lj.; Marinkovic, P.M.

    2002-01-01

    During the decommissioning of nuclear facilities significant part of the activities is related to the radiological characterization, waste classification and management. For these purposes a relatively new imaging technique, based on information from the gamma radiation that undergoes Compton scattering, is applicable. Compton imaging systems have a number of advantages for nuclear waste characterization, such as identifying hot spots in mixed waste in order to reduce the volume of high-level waste requiring extensive treatment or long-term storage, imaging large contaminated areas and objects etc. Compton imaging also has potential applications for monitoring of production, transport and storage of nuclear materials and components. This paper discusses some system design requirements and performance specifications for these applications. The advantages of Compton imaging are compared to competing imaging techniques. (author)

  20. Heuristics and Cognitive Error in Medical Imaging.

    Science.gov (United States)

    Itri, Jason N; Patel, Sohil H

    2018-05-01

    The field of cognitive science has provided important insights into mental processes underlying the interpretation of imaging examinations. Despite these insights, diagnostic error remains a major obstacle in the goal to improve quality in radiology. In this article, we describe several types of cognitive bias that lead to diagnostic errors in imaging and discuss approaches to mitigate cognitive biases and diagnostic error. Radiologists rely on heuristic principles to reduce complex tasks of assessing probabilities and predicting values into simpler judgmental operations. These mental shortcuts allow rapid problem solving based on assumptions and past experiences. Heuristics used in the interpretation of imaging studies are generally helpful but can sometimes result in cognitive biases that lead to significant errors. An understanding of the causes of cognitive biases can lead to the development of educational content and systematic improvements that mitigate errors and improve the quality of care provided by radiologists.

  1. System for digitalization of medical images based on DICOM standard

    Directory of Open Access Journals (Sweden)

    Čabarkapa Slobodan

    2009-01-01

    Full Text Available According to DICOM standard, which defines both medical image information and user information, a new system for digitalizing medical images is involved as a part of the main system for archiving and retrieving medical databases. The basic characteristics of this system are described in this paper. Furthermore, the analysis of some important DICOM header's tags which are used in this system, are presented, too. Having chosen the appropriate tags in order to preserve important information, the efficient system has been created. .

  2. Processing of hyperspectral medical images applications in dermatology using Matlab

    CERN Document Server

    Koprowski, Robert

    2017-01-01

    This book presents new methods of analyzing and processing hyperspectral medical images, which can be used in diagnostics, for example for dermatological images. The algorithms proposed are fully automatic and the results obtained are fully reproducible. Their operation was tested on a set of several thousands of hyperspectral images and they were implemented in Matlab. The presented source code can be used without licensing restrictions. This is a valuable resource for computer scientists, bioengineers, doctoral students, and dermatologists interested in contemporary analysis methods.

  3. Medical lessons learned from chernobyl relative to nuclear detonations and failed nuclear reactors.

    Science.gov (United States)

    Dallas, Cham E

    2012-12-01

    The Chernobyl disaster in 1986 involved the largest airborne release of radioactivity in history, more than 100 times as much radioactivity as the Hiroshima and Nagasaki atomic bombs together. The resulting emergency response, administrative blunders, and subsequent patient outcomes from this large-scale radiological disaster provide a wealth of information and valuable lessons for those who may find themselves having to deal with the staggering consequences of nuclear war. Research findings, administrative strategies (successful and otherwise), and resulting clinical procedures from the Chernobyl experience are reviewed to determine a current utility in addressing the appropriate protocols for a medical response to nuclear war. As various myths are still widely associated with radiation exposure, attention is given to the realities of a mass casualty medical response as it would occur with a nuclear detonation.

  4. Medical Imaging in Differentiating the Diabetic Charcot Foot from Osteomyelitis.

    Science.gov (United States)

    Short, Daniel J; Zgonis, Thomas

    2017-01-01

    Diabetic Charcot neuroarthropathy (DCN) poses a great challenge to diagnose in the early stages and when plain radiographs do not depict any initial signs of osseous fragmentation or dislocation in a setting of a high clinical index of suspicion. Medical imaging, including magnetic resonance imaging, computed tomography, and advanced bone scintigraphy, has its own unique clinical indications when treating the DCN with or without concomitant osteomyelitis. This article reviews different clinical case scenarios for choosing the most accurate medical imaging in differentiating DCN from osteomyelitis. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Automatic medical image annotation and keyword-based image retrieval using relevance feedback.

    Science.gov (United States)

    Ko, Byoung Chul; Lee, JiHyeon; Nam, Jae-Yeal

    2012-08-01

    This paper presents novel multiple keywords annotation for medical images, keyword-based medical image retrieval, and relevance feedback method for image retrieval for enhancing image retrieval performance. For semantic keyword annotation, this study proposes a novel medical image classification method combining local wavelet-based center symmetric-local binary patterns with random forests. For keyword-based image retrieval, our retrieval system use the confidence score that is assigned to each annotated keyword by combining probabilities of random forests with predefined body relation graph. To overcome the limitation of keyword-based image retrieval, we combine our image retrieval system with relevance feedback mechanism based on visual feature and pattern classifier. Compared with other annotation and relevance feedback algorithms, the proposed method shows both improved annotation performance and accurate retrieval results.

  6. The medical physicist in a nuclear medicine department; El fisico medico en un departamento de medicina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Trujillo Z, F.E.; Gomez A, E. [Instituto nacional de Cancerologia, 14000 Mexico D.F. (Mexico)

    2007-07-01

    The diagnostic studies and therapeutic treatments carried out in a Nuclear Medicine department make use of radioactive material. For such a reason it becomes necessary to take a strict control in the reception, use and waste that are generated of the typical works inside the department. Also, work related with the quality control of the equipment dedicated to produce images and of those not image formers, need to carry out to guarantee its maximum performance; as well as quality of the diagnostic and of the therapy imparted in patients. Additionally its are needed to make originated works of the individual procedures to patient and of the acquisition of radioactive materials and removal of the waste or radioactive contaminations. Presently work the recommendations of the American College of Radiology (ACR), the European Federation of Organizations for Medical Physics (EFOMP) and of the Mexican Official Standards relating to the functions that should be observed in a Nuclear Medicine Department are exposed. The ACR and the EFOMP, conclude in their recommendations that the medical physicist fulfills with the suitable profile and likewise they describe in detail the actions and functions that he should supervise, to carry out, to document and to inform. (Author)

  7. User Oriented Platform for Data Analytics in Medical Imaging Repositories.

    Science.gov (United States)

    Valerio, Miguel; Godinho, Tiago Marques; Costa, Carlos

    2016-01-01

    The production of medical imaging studies and associated data has been growing in the last decades. Their primary use is to support medical diagnosis and treatment processes. However, the secondary use of the tremendous amount of stored data is generally more limited. Nowadays, medical imaging repositories have turned into rich databanks holding not only the images themselves, but also a wide range of metadata related to the medical practice. Exploring these repositories through data analysis and business intelligence techniques has the potential of increasing the efficiency and quality of the medical practice. Nevertheless, the continuous production of tremendous amounts of data makes their analysis difficult by conventional approaches. This article proposes a novel automated methodology to derive knowledge from medical imaging repositories that does not disrupt the regular medical practice. Our method is able to apply statistical analysis and business intelligence techniques directly on top of live institutional repositories. It is a Web-based solution that provides extensive dashboard capabilities, including complete charting and reporting options, combined with data mining components. Moreover, it enables the operator to set a wide multitude of query parameters and operators through the use of an intuitive graphical interface.

  8. Patients radiation protection in medical imaging. Conference proceedings

    International Nuclear Information System (INIS)

    2011-12-01

    This document brings together the available presentations given at the conference organised by the French society of radiation protection about patients radiation protection in medical imaging. Twelve presentations (slides) are compiled in this document and deal with: 1 - Medical exposure of the French population: methodology and results (Bernard Aubert, IRSN); 2 - What indicators for the medical exposure? (Cecile Etard, IRSN); 3 - Guidebook of correct usage of medical imaging examination (Philippe Grenier, Pitie-Salpetriere hospital); 4 - Radiation protection optimization in pediatric imaging (Hubert Ducou-Le-Pointe, Aurelien Bouette (Armand-Trousseau children hospital); 5 - Children's exposure to image scanners: epidemiological survey (Marie-Odile Bernier, IRSN); 6 - Management of patient's irradiation: from image quality to good practice (Thierry Solaire, General Electric); 7 - Dose optimization in radiology (Cecile Salvat (Lariboisiere hospital); 8 - Cancer detection in the breast cancer planned screening program - 2004-2009 era (Agnes Rogel, InVS); 9 - Mammographic exposures - radiobiological effects - radio-induced DNA damages (Catherine Colin, Lyon Sud hospital); 10 - Breast cancer screening program - importance of non-irradiating techniques (Anne Tardivon, Institut Curie); 11 - Radiation protection justification for the medical imaging of patients over the age of 50 (Michel Bourguignon, ASN); 12 - Search for a molecular imprint for the discrimination between radio-induced and sporadic tumors (Sylvie Chevillard, CEA)

  9. FAST: framework for heterogeneous medical image computing and visualization.

    Science.gov (United States)

    Smistad, Erik; Bozorgi, Mohammadmehdi; Lindseth, Frank

    2015-11-01

    Computer systems are becoming increasingly heterogeneous in the sense that they consist of different processors, such as multi-core CPUs and graphic processing units. As the amount of medical image data increases, it is crucial to exploit the computational power of these processors. However, this is currently difficult due to several factors, such as driver errors, processor differences, and the need for low-level memory handling. This paper presents a novel FrAmework for heterogeneouS medical image compuTing and visualization (FAST). The framework aims to make it easier to simultaneously process and visualize medical images efficiently on heterogeneous systems. FAST uses common image processing programming paradigms and hides the details of memory handling from the user, while enabling the use of all processors and cores on a system. The framework is open-source, cross-platform and available online. Code examples and performance measurements are presented to show the simplicity and efficiency of FAST. The results are compared to the insight toolkit (ITK) and the visualization toolkit (VTK) and show that the presented framework is faster with up to 20 times speedup on several common medical imaging algorithms. FAST enables efficient medical image computing and visualization on heterogeneous systems. Code examples and performance evaluations have demonstrated that the toolkit is both easy to use and performs better than existing frameworks, such as ITK and VTK.

  10. GN Ramachandran's Contributions to Medical Imaging

    Indian Academy of Sciences (India)

    CT), MRI. ... It is now routinely employed in modernCT (Computed Tomography) and MRI (MagneticResonance Imaging) scans. In this article,we review the salient features of this technique,that allows the 'reconstruction of an object fromits ...

  11. Aliphatic polyesters for medical imaging and theranostic applications.

    Science.gov (United States)

    Nottelet, Benjamin; Darcos, Vincent; Coudane, Jean

    2015-11-01

    Medical imaging is a cornerstone of modern medicine. In that context the development of innovative imaging systems combining biomaterials and contrast agents (CAs)/imaging probes (IPs) for improved diagnostic and theranostic applications focuses intense research efforts. In particular, the classical aliphatic (co)polyesters poly(lactide) (PLA), poly(lactide-co-glycolide) (PLGA) and poly(ɛ-caprolactone) (PCL), attract much attention due to their long track record in the medical field. This review aims therefore at providing a state-of-the-art of polyester-based imaging systems. In a first section a rapid description of the various imaging modalities, including magnetic resonance imaging (MRI), optical imaging, computed tomography (CT), ultrasound (US) and radionuclide imaging (SPECT, PET) will be given. Then, the two main strategies used to combine the CAs/IPs and the polyesters will be discussed. In more detail we will first present the strategies relying on CAs/IPs encapsulation in nanoparticles, micelles, dendrimers or capsules. We will then present chemical modifications of polyesters backbones and/or polyester surfaces to yield macromolecular imaging agents. Finally, opportunities offered by these innovative systems will be illustrated with some recent examples in the fields of cell labeling, diagnostic or theranostic applications and medical devices. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Nuclear medicine imaging and data processing

    International Nuclear Information System (INIS)

    Bell, P.R.; Dillon, R.S.

    1978-01-01

    The Oak Ridge Imaging System (ORIS) is a software operating system structure around the Digital Equipment Corporation's PDP-8 minicomputer which provides a complete range of image manipulation procedures. Through its modular design it remains open-ended for easy expansion to meet future needs. Already included in the system are image access routines for use with the rectilinear scanner or gamma camera (both static and flow studies); display hardware design and corresponding software; archival storage provisions; and, most important, many image processing techniques. The image processing capabilities include image defect removal, smoothing, nonlinear bounding, preparation of functional images, and transaxial emission tomography reconstruction from a limited number of views

  13. Medical image of the week: polysomnogram artifact

    Directory of Open Access Journals (Sweden)

    Bartell J

    2015-02-01

    Full Text Available A 54 year-old man with a past medical history of attention deficit hyperactivity disorder (ADHD, low back pain, and paroxysmal supraventricular tachycardia presented to the sleep laboratory for evaluation of sleep disordered breathing. Pertinent medications include fluoxetine, ambien, and clonazepam. His Epworth sleepiness score was 18. He had a total sleep time of 12 min. On the night of his sleep study, the patient was restless and repeatedly changed positions in bed. Figures 1 and 2 show the artifact determined to be lead displacement of O1M2 after the patient shifted in bed, inadvertently removing one of his scalp electrodes. The sine waves are 60 Hz in frequency. Once the problem was identified, the lead was quickly replaced to its proper position.

  14. Medical Imaging Image Quality Assessment with Monte Carlo Methods

    International Nuclear Information System (INIS)

    Michail, C M; Fountos, G P; Kalyvas, N I; Valais, I G; Kandarakis, I S; Karpetas, G E; Martini, Niki; Koukou, Vaia

    2015-01-01

    The aim of the present study was to assess image quality of PET scanners through a thin layer chromatography (TLC) plane source. The source was simulated using a previously validated Monte Carlo model. The model was developed by using the GATE MC package and reconstructed images obtained with the STIR software for tomographic image reconstruction, with cluster computing. The PET scanner simulated in this study was the GE DiscoveryST. A plane source consisted of a TLC plate, was simulated by a layer of silica gel on aluminum (Al) foil substrates, immersed in 18F-FDG bath solution (1MBq). Image quality was assessed in terms of the Modulation Transfer Function (MTF). MTF curves were estimated from transverse reconstructed images of the plane source. Images were reconstructed by the maximum likelihood estimation (MLE)-OSMAPOSL algorithm. OSMAPOSL reconstruction was assessed by using various subsets (3 to 21) and iterations (1 to 20), as well as by using various beta (hyper) parameter values. MTF values were found to increase up to the 12th iteration whereas remain almost constant thereafter. MTF improves by using lower beta values. The simulated PET evaluation method based on the TLC plane source can be also useful in research for the further development of PET and SPECT scanners though GATE simulations. (paper)

  15. Medical image of the week: aspergilloma

    Directory of Open Access Journals (Sweden)

    Hsu W

    2014-05-01

    Full Text Available No abstract available. Article truncated after 150 words. A 69-year-old woman, a current smoker, with very severe chronic obstructive pulmonary disease and prior atypical mycobacterium, was found unresponsive by her family and intubated in the field by emergency medical services for respiratory distress. Her CT thorax showed severe emphysematous disease, apical bullous disease, and a large left upper lobe cavitation with debris (Figure 1. She was treated with broad-spectrum antibiotics and anti-fungal medications. Hemoptysis was never seen. Sputum cultures over a span of two weeks repeatedly showed Aspergillus fumigatus and outside medical records confirmed the patient had a known history of stable aspergilloma not requiring therapy. Aspergillomas usually arises in cavitary areas of the lung damaged by previous infections. The fungus ball is a combination of colonization by Aspergillus hyphae and cellular debris. Individuals with aspergillomas are usually asymptomatic or have mild symptoms (chronic cough and do not require treatment unless it begins to invade into the cavity ...

  16. The Nuclear Magnetic Resonance and its utilization in image formation

    International Nuclear Information System (INIS)

    Bonagamba, T.J.; Tannus, A.; Panepucci, H.

    1987-01-01

    Some aspects about Nuclear Magnetic Resonance (as Larmor Theorem, radio frequency pulse, relaxation of spins system) and its utilization in two dimensional image processing with the necessity of a tomography plane are studied. (C.G.C.) [pt

  17. FY08 Annual Report for Nuclear Resonance Fluorescence Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Glen A.; Caggiano, Joseph A.

    2009-01-06

    FY08 annual report for project the "Nuclear Resonance Fluorescence Imaging" project. Reviews accomplishments of last 3 years, including U-235 signature search, comparison of different photon sources, and examination of NRF measurements using monochromatic photon source.

  18. The medical implications of nuclear power plant accidents

    International Nuclear Information System (INIS)

    Tyror, J.G.; Pearson, G.W.

    1989-11-01

    This paper examines the UK position regarding the potential for an accident at a nuclear power plant, the safeguards in place to prevent such an accident occurring and the emergency procedures designed to cope with the consequences should one occur. It focuses on the role of the medical services and examines previous accidents to suggest the nature and likely scale of response that may need to be provided. It is apparent that designs of UK nuclear power stations are robust and that the likelihood of a significant accident occurring is extremely remote. Emergency arrangements are, however, in place to deal with the eventuality should it arise and these incorporate sufficient flexibility to accommodate a wide range of accidents. Analysis of previous nuclear accidents at Windscale, Three Mile Island and Chernobyl provide a limited but valuable insight into the diversity and potential scale of response that may be required. It is concluded that above all, the response must be flexible to enable medical services to deal with the wide range of effects that may arise. (author)

  19. Molecular–Genetic Imaging: A Nuclear Medicine–Based Perspective

    Directory of Open Access Journals (Sweden)

    Ronald G. Blasberg

    2002-07-01

    Full Text Available Molecular imaging is a relatively new discipline, which developed over the past decade, initially driven by in situ reporter imaging technology. Noninvasive in vivo molecular–genetic imaging developed more recently and is based on nuclear (positron emission tomography [PET], gamma camera, autoradiography imaging as well as magnetic resonance (MR and in vivo optical imaging. Molecular–genetic imaging has its roots in both molecular biology and cell biology, as well as in new imaging technologies. The focus of this presentation will be nuclear-based molecular–genetic imaging, but it will comment on the value and utility of combining different imaging modalities. Nuclear-based molecular imaging can be viewed in terms of three different imaging strategies: (1 “indirect” reporter gene imaging; (2 “direct” imaging of endogenous molecules; or (3 “surrogate” or “bio-marker” imaging. Examples of each imaging strategy will be presented and discussed. The rapid growth of in vivo molecular imaging is due to the established base of in vivo imaging technologies, the established programs in molecular and cell biology, and the convergence of these disciplines. The development of versatile and sensitive assays that do not require tissue samples will be of considerable value for monitoring molecular–genetic and cellular processes in animal models of human disease, as well as for studies in human subjects in the future. Noninvasive imaging of molecular–genetic and cellular processes will complement established ex vivo molecular–biological assays that require tissue sampling, and will provide a spatial as well as a temporal dimension to our understanding of various diseases and disease processes.

  20. Current research in nuclear medicine and molecular imaging in Italy: highlights of the 10th National Congress of the Italian Association of Nuclear Medicine and Molecular Imaging.

    Science.gov (United States)

    Cuocolo, A

    2011-06-01

    The 10th National Congress of the Italian Association of Nuclear Medicine and Molecular Imaging (AIMN) took place in Rimini on March 18-21, 2011 under the chairmanship of Professor Stefano Fanti. The program was of excellent quality and put a further step for the settlement of the standardized AIMN congress structure. A large industrial exhibition demonstrated the latest technological innovations and developments within the field. The congress was a great success with more than 1100 total participants and more than 360 abstracts received. Of these, 40 abstracts were accepted for oral and 285 for poster presentations. The original investigations presented were related to different areas of nuclear medicine and molecular imaging, with particular focus on advances in instrumentation and data processing, progress in radiochemistry and pharmacy, novel diagnostics and therapeutics, and new insights in well established areas of clinical application, such as oncology, cardiology, neurology, psychiatry, endocrinology, paediatrics, and infection and inflammation. Noteworthy, several presentations at this congress, focusing on quantitative interpretation of the imaging data and on pragmatic endpoints, such as adverse outcomes, identified when nuclear medicine procedures achieved clinical effectiveness for patient care and patient management and further demonstrated that nuclear medicine plays a crucial role in the contemporary medical scenario. This highlights lecture is only a brief summary of the large amount of data presented and discussed, which can be found in much greater detail in the congress abstract book, published as volume 55, supplement 1 of the Q J Nucl Med Mol Imaging in April 2011.

  1. Radiation protection in newer medical imaging techniques: PET/CT

    International Nuclear Information System (INIS)

    2008-01-01

    A major part of patient exposure now arises from practices that barely existed two decades ago, and the technological basis for their successful dissemination only began to flourish in the last decade or so. Hybrid imaging systems, such as the combination of computed tomography (CT) and positron emission tomography (PET), are an example of a technique that has only been introduced in the last decade. PET/CT has established a valuable place for itself in medical research and diagnosis. However, it is an application that can result in high patient and staff doses. For practitioners and regulators, it is evident that innovation has been driven both by the imaging industry and by an increasing array of new applications generated and validated in the clinical environment. Regulation, industrial standardization, safety procedures and advice on best practices lag (inevitably) behind the industrial and clinical innovations. This series of Safety Reports (Nos 58, 60 and 61) is designed to help fill the growing vacuum, by bringing up to date and timely advice from experienced practitioners to bear on the problems involved. The advice in this report has been developed within the IAEA's statutory responsibility to establish standards for the protection of people against exposure to ionizing radiation and to provide for the worldwide application of these standards. The Fundamental Safety Principles and the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS) were issued by the IAEA and co-sponsored by organizations including the Food and Agriculture Organization of the United Nations (FAO), the International Labour Organisation (ILO), the OECD Nuclear Energy Agency (OECD/NEA), the Pan American Health Organization (PAHO) and the World Health Organization (WHO), and require the radiation protection of patients undergoing medical exposures through justification of the procedures involved and through

  2. Communication networks for medical image transmission

    International Nuclear Information System (INIS)

    Lemke, H.U.

    1993-01-01

    Digital communication networks are of increasing importance for data exchange in health care environments. They may be used to transmit multi-media data, such as text, images, graphics, signals and sound. The essential characteristics of modern network technologies are summarized in this article and are seen in the context of local, metropolitan and wide area networks. Standardized technologies discussed are Ethernet, token oriented systems, FDDI, DQDB and ATM. Off-line communication media based on magnetic optical disk, such as ISandC, are briefly introduced. The conclusion reached is that therapy planning for radiation therapy or hyperthermia can make use of communication technologies, for example, to transmit patient images, modelling data and results of distribution calculations of physical phenomena. (orig.) [de

  3. Medical Imaging of Mummies and Bog Bodies

    DEFF Research Database (Denmark)

    Lynnerup, Niels

    2010-01-01

    Mummies are human remains with preservation of non-bony tissue. Mummification by natural influences results in so-called natural mummies, while mummification induced by active (human) intervention results in so-called artificial mummies, although many cultures practiced burial rites which to some...... and bog bodies could be studied non-destructively. This article describes the history of mummy radiography and CT scanning, and some of the problems and opportunities involved in applying these techniques, derived for clinical use, on naturally and artificially preserved ancient human bodies. Unless...... severely degraded, bone is quite readily visualized, but accurate imaging of preserved soft tissues, and pathological lesions therein, may require considerable post-image capture processing of CT data....

  4. Nuclear Waste Imaging and Spent Fuel Verification by Muon Tomography

    OpenAIRE

    Jonkmans, G.; Anghel, V. N. P.; Jewett, C.; Thompson, M.

    2012-01-01

    This paper explores the use of cosmic ray muons to image the contents of shielded containers and detect high-Z special nuclear materials inside them. Cosmic ray muons are a naturally occurring form of radiation, are highly penetrating and exhibit large scattering angles on high Z materials. Specifically, we investigated how radiographic and tomographic techniques can be effective for non-invasive nuclear waste characterization and for nuclear material accountancy of spent fuel inside dry stor...

  5. Blackboard architecture for medical image interpretation

    Science.gov (United States)

    Davis, Darryl N.; Taylor, Christopher J.

    1991-06-01

    There is a growing interest in using sophisticated knowledge-based systems for biomedical image interpretation. We present a principled attempt to use artificial intelligence methodologies in interpreting lateral skull x-ray images. Such radiographs are routinely used in cephalometric analysis to provide quantitative measurements useful to clinical orthodontists. Manual and interactive methods of analysis are known to be error prone and previous attempts to automate this analysis typically fail to capture the expertise and adaptability required to cope with the variability in biological structure and image quality. An integrated model-based system has been developed which makes use of a blackboard architecture and multiple knowledge sources. A model definition interface allows quantitative models, of feature appearance and location, to be built from examples as well as more qualitative modelling constructs. Visual task definition and blackboard control modules allow task-specific knowledge sources to act on information available to the blackboard in a hypothesise and test reasoning cycle. Further knowledge-based modules include object selection, location hypothesis, intelligent segmentation, and constraint propagation systems. Alternative solutions to given tasks are permitted.

  6. Medical image of the week: Boerhaave syndrome

    Directory of Open Access Journals (Sweden)

    Parsa N

    2016-06-01

    Full Text Available No abstract available. Article truncated at 150 words. A 41-year-old woman with a history of gastroesophageal reflux disease (GERD, asthma and iron deficiency anemia presented with complaints of right sided chest pain, nausea and emesis for several days prior to hospital presentation. She had also been experiencing progressive dysphagia to solids for a month preceding admission. CT chest imaging revealed mega-esophagus (Figure 1A with rupture into the right lung parenchyma and resultant abscess formation (Figure 1B and 1C. A subsequent echocardiogram also confirmed mitral valve endocarditis. An image-guided chest tube was placed in the abscess for drainage. Endoscopy was attempted but visualization was difficult due to the presence of retained food. Given her low albumin and poor nutritional state, a jejunostomy tube was placed. Follow up CT imaging with contrast through a nasogastric tube confirmed extravasation of esophageal contrast into the right lung parenchyma (Figure 1D. Blood and sputum cultures grew Candida glabrata. She was initially started on ...

  7. Medical image compression with fast Hartley transform

    International Nuclear Information System (INIS)

    Paik, C.H.; Fox, M.D.

    1988-01-01

    The purpose of data compression is storage and transmission of images with minimization of memory for storage and bandwidth for transmission, while maintaining robustness in the presence of transmission noise or storage medium errors. Here, the fast Hartley transform (FHT) is used for transformation and a new thresholding method is devised. The FHT is used instead of the fast Fourier transform (FFT), thus providing calculation at least as fast as that of the fastest algorithm of FFT. This real numbered transform requires only half the memory array space for saving of transform coefficients and allows for easy implementation on very large-scale integrated circuits because of the use of the same formula for both forward and inverse transformation and the conceptually straightforward algorithm. Threshold values were adaptively selected according to the correlation factor of each block of equally divided blocks of the image. Therefore, this approach provided a coding scheme that included maximum information with minimum image bandwidth. Overall, the results suggested that the Hartley transform adaptive thresholding approach results in improved fidelity, shorter decoding time, and greater robustness in the presence of noise than previous approaches

  8. Recent advances in radiology and medical imaging

    International Nuclear Information System (INIS)

    Steiner, R.E.; Sherwood, T.

    1986-01-01

    The first chapter, on the radiology of arthritis, is an overview. The second and seventh chapters are on the chest the former, on adult respiratory distress syndrome, is a brief summary, and the latter, on digital radiography of the chest with the prototype slit-scanning technique. The third chapter reviews computed tomography of the lumbar spine. The following two chapters are on MR imaging, one on the central nervous system (covering demyelinating diseases, cardiovascular disease, infections, and tumors), with excellent illustrations; and one on MR imaging of the body. The illustrations are good. The following chapter is on extracardiac digital subtraction angiography (DSA), with an interesting table comparing and contrasting conventional angiography with both intraveneous and intraarterial DSA. The eighth chapter on pediatric imaging fits a world of experience. Chapter 9 is an update on contrast media, while the next chapter is on barium infusion examination of the small intestine. The final three chapters are concerned with the present state of angioplasty, interventional radiology in the urinary tract

  9. Threedimensional imaging of organ structures by nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Waters, W.; Smolorz, J.; Wellner, U.

    1985-01-01

    A simple method for threedimensional imaging of organ structures is presented. The method is based on a special acquisition mode in a nuclear resonance tomograph, exciting layers of 20 cm thickness at different angulations. The display is done by cinematography (which is usually used in nuclear cardiology) projecting the structures in a rotating movement. (orig.) [de

  10. ORIS: the Oak Ridge Imaging System program listings. [Nuclear medicine imaging with rectilinear scanner and gamma camera

    Energy Technology Data Exchange (ETDEWEB)

    Bell, P. R.; Dougherty, J. M.

    1978-04-01

    The Oak Ridge Imaging System (ORIS) is a general purpose access, storage, processing and display system for nuclear medicine imaging with rectilinear scanner and gamma camera. This volume contains listings of the PDP-8/E version of ORIS Version 2. The system is designed to run under the Digital Equipment Corporation's OS/8 monitor in 16K or more words of core. System and image file mass storage is on RK8E disk; longer-time image file storage is provided on DECtape. Another version of this program exists for use with the RF08 disk, and a more limited version is for DECtape only. This latter version is intended for non-medical imaging.

  11. Real-Time Implementation of Medical Ultrasound Strain Imaging System

    International Nuclear Information System (INIS)

    Jeong, Mok Kun; Kwon, Sung Jae; Bae, Moo Ho

    2008-01-01

    Strain imaging in a medical ultrasound imaging system can differentiate the cancer or tumor in a lesion that is stiffer than the surrounding tissue. In this paper, a strain imaging technique using quasistatic compression is implemented that estimates the displacement between pre- and postcompression ultrasound echoes and obtains strain by differentiating it in the spatial direction. Displacements are computed from the phase difference of complex baseband signals obtained using their autocorrelation, and errors associated with converting the phase difference into time or distance are compensated for by taking into the center frequency variation. Also, to reduce the effect of operator's hand motion, the displacements of all scanlines are normalized with the result that satisfactory strain image quality has been obtained. These techniques have been incorporated into implementing a medical ultrasound strain imaging system that operates in real time.

  12. Coded Aperture Nuclear Scintigraphy: A Novel Small Animal Imaging Technique

    Directory of Open Access Journals (Sweden)

    Dawid Schellingerhout

    2002-10-01

    Full Text Available We introduce and demonstrate the utility of coded aperture (CA nuclear scintigraphy for imaging small animals. CA imaging uses multiple pinholes in a carefully designed mask pattern, mounted on a conventional gamma camera. System performance was assessed using point sources and phantoms, while several animal experiments were performed to test the usefulness of the imaging system in vivo, with commonly used radiopharmaceuticals. The sensitivity of the CA system for 99mTc was 4.2 × 103 cps/Bq (9400 cpm/μCi, compared to 4.4 × 104 cps/Bq (990 cpm/μCi for a conventional collimator system. The system resolution was 1.7 mm, as compared to 4–6 mm for the conventional imaging system (using a high-sensitivity low-energy collimator. Animal imaging demonstrated artifact-free imaging with superior resolution and image quality compared to conventional collimator images in several mouse and rat models. We conclude that: (a CA imaging is a useful nuclear imaging technique for small animal imaging. The advantage in signal-to-noise can be traded to achieve higher resolution, decreased dose or reduced imaging time. (b CA imaging works best for images where activity is concentrated in small volumes; a low count outline may be better demonstrated using conventional collimator imaging. Thus, CA imaging should be viewed as a technique to complement rather than replace traditional nuclear imaging methods. (c CA hardware and software can be readily adapted to existing gamma cameras, making their implementation a relatively inexpensive retrofit to most systems.

  13. Advanced Laser-Compton Gamma-Ray Sources for Nuclear Materials Detection, Assay and Imaging

    Science.gov (United States)

    Barty, C. P. J.

    2015-10-01

    Highly-collimated, polarized, mono-energetic beams of tunable gamma-rays may be created via the optimized Compton scattering of pulsed lasers off of ultra-bright, relativistic electron beams. Above 2 MeV, the peak brilliance of such sources can exceed that of the world's largest synchrotrons by more than 15 orders of magnitude and can enable for the first time the efficient pursuit of nuclear science and applications with photon beams, i.e. Nuclear Photonics. Potential applications are numerous and include isotope-specific nuclear materials management, element-specific medical radiography and radiology, non-destructive, isotope-specific, material assay and imaging, precision spectroscopy of nuclear resonances and photon-induced fission. This review covers activities at the Lawrence Livermore National Laboratory related to the design and optimization of mono-energetic, laser-Compton gamma-ray systems and introduces isotope-specific nuclear materials detection and assay applications enabled by them.

  14. Radiation Exposure by Nuclear Medicine Imaging Procedures: Case Study

    International Nuclear Information System (INIS)

    Kopjar, N.; Marovic, G.; Prlic, I.; Sencar, J.; Zeljezic, D.; Ramic, S.

    2013-01-01

    Using high-resolution gamma spectrometry, we investigated the activity concentrations of thallium radioisotopes in a urine sample collected during a period of 24 h following nuclear medicine cardiac imaging. As part of a thallium stress test the subject of the study received a radiopharmaceutical preparation with 201Tl (activity 111 MBq). In order to assess whether the cardiac imaging procedure resulted in lymphocyte genome damage, we studied the frequency of sister chromatid exchanges (SCE) and lymphocyte cell kinetics in the blood samples collected before and after the cardiac imaging. The highest activity concentration (538960.9 ± 405.9 Bq/L u rine) was estimated for 201Tl, followed by 1770.54 ± 3.57 Bq/L u rine for 202Tl, and 422.035 ± 2.091 Bq/Lurine for 200Tl. The applied radiopharmaceutical contained 99.595 % of 201Tl, 0.078 % of 200Tl and 0.327 % of 202Tl. The estimated effective dose received through a single exposure to the radiopharmaceutical and calculated for a period of two days was mostly affected by 201Tl (0.0453 mSv). Due to its half-life of 12.2 days, the contribution of 202Tl (0.0008 mSv) to the effective dose was also significant. Results of the cytogenetic analysis indicate that a single diagnostic exposure to thallium caused an increase of SCE frequency and decrease of the proliferation rate index (PRI). Both parameters normalized steadily 14 days after the cardiac imaging procedure, which is also in accord with data obtained in previous studies. Our results indicate the presence of impurities in the radiopharmaceutical which should contain only 201Tl. This calls for a stricter process of quality control for radiopharmaceuticals used in nuclear medical diagnostic procedures. In this particular case, we emphasize 'contamination' with 202Tl, whose contribution to the effective dose cannot be ignored if one takes into account that it has the longest half-life of all three thallium radioisotopes detected in the urine sample.(author)

  15. Medical image of the week: sleep bruxism

    Directory of Open Access Journals (Sweden)

    Bartell J

    2015-03-01

    Full Text Available No abstract available. Article truncated at 150 words. A 42 year-old man with a past medical history of insomnia, post-traumatic stress disorder, depression and both migraine and tension headaches was referred for an overnight sleep study. He had presented to the sleep clinic with symptoms of obstructive sleep apnea. Medications included sumatriptan, amitryptiline, sertraline, and trazodone. His sleep study showed: sleep efficiency of 58.2%, apnea-hypopnea index of 33 events per hour, and arousal index of 14.5/hr. Periodic limb movement index was 29.2/hr. The time spent in the sleep stages included N1 (3.6%, N2 (72.5%, N3 (12.9%, and REM (10.9%. Figure 1 is representative of the several brief waveforms seen on his EEG and chin EMG. Sleep bruxism (SB is a type of sleep-related movement disorder that is characterized by involuntary masticatory muscle contraction resulting in grinding and clenching of the teeth and typically associated with arousals from sleep (1,2. The American academy of sleep medicine (AASM criteria for ...

  16. Imaging in hematology. Part 2: Computed tomography, magnetic resonance imaging and nuclear imaging

    International Nuclear Information System (INIS)

    Zhechev, Y.

    2003-01-01

    A dramatic increase of the role of imaging in diagnosis of blood diseases occurred with the development of computed tomography (CT) and magnetic resonance imaging (MRI). At present CT of the chest, abdomen, and pelvis is routinely employed in diagnostic and staging evaluation. The bone marrow may be imaged by one of several methods, including scintigraphy, CT and MRI. Nuclear imaging at diagnosis can clarify findings of uncertain significance on conventional staging and may be very useful in the setting of large masses to follow responses to therapy nad to evaluate the residual tumor in a large mass that has responded to treatment. Recent developments such as helical CT, single proton emission computed tomography (SPECT) and positron-emission tomography (PET) have continued to advance diagnosis and therapy

  17. The library without walls: images, medical dictionaries, atlases, medical encyclopedias free on web.

    Science.gov (United States)

    Giglia, E

    2008-09-01

    The aim of this article was to present the ''reference room'' of the Internet, a real library without walls. The reader will find medical encyclopedias, dictionaries, atlases, e-books, images, and will also learn something useful about the use and reuse of images in a text and in a web site, according to the copyright law.

  18. Nuclear magnetic resonance imaging of the heart

    International Nuclear Information System (INIS)

    Smolorz, J.; Linden, A.; Schicha, H.; Sechtem, U.

    1988-01-01

    NMR imaging is a noninvasive technique that has been shown to provide high-quality images of the heart. Due to the signal characteristics of flowing blood, inherent contrast between blood pool and myocardium is achieved without the use of contrast media. This paper briefly describes technical aspects of NMR imaging of the heart, normal cardiovascular anatomy, applications of the technique in patients with ischemic heart disease, and the potential of NMR imaging for functional studies in various forms of heart disease. (orig.)

  19. The Handbook of Medical Image Perception and Techniques

    Science.gov (United States)

    Samei, Ehsan; Krupinski, Elizabeth

    2014-07-01

    1. Medical image perception Ehsan Samei and Elizabeth Krupinski; Part I. Historical Reflections and Theoretical Foundations: 2. A short history of image perception in medical radiology Harold Kundel and Calvin Nodine; 3. Spatial vision research without noise Arthur Burgess; 4. Signal detection theory, a brief history Arthur Burgess; 5. Signal detection in radiology Arthur Burgess; 6. Lessons from dinners with the giants of modern image science Robert Wagner; Part II. Science of Image Perception: 7. Perceptual factors in reading medical images Elizabeth Krupinski; 8. Cognitive factors in reading medical images David Manning; 9. Satisfaction of search in traditional radiographic imaging Kevin Berbaum, Edmund Franken, Robert Caldwell and Kevin Schartz; 10. The role of expertise in radiologic image interpretation Calvin Nodine and Claudia Mello-Thoms; 11. A primer of image quality and its perceptual relevance Robert Saunders and Ehsan Samei; 12. Beyond the limitations of human vision Maria Petrou; Part III. Perception Metrology: 13. Logistical issues in designing perception experiments Ehsan Samei and Xiang Li; 14. ROC analysis: basic concepts and practical applications Georgia Tourassi; 15. Multi-reader ROC Steve Hillis; 16. Recent developments in FROC methodology Dev Chakraborty; 17. Observer models as a surrogate to perception experiments Craig Abbey and Miguel Eckstein; 18. Implementation of observer models Matthew Kupinski; Part IV. Decision Support and Computer Aided Detection: 19. CAD: an image perception perspective Maryellen Giger and Weijie Chen; 20. Common designs of CAD studies Yulei Jiang; 21. Perceptual effect of CAD in reading chest images Matthew Freedman and Teresa Osicka; 22. Perceptual issues in mammography and CAD Michael Ulissey; 23. How perceptual factors affect the use and accuracy of CAD for interpretation of CT images Ronald Summers; 24. CAD: risks and benefits for radiologists' decisions Eugenio Alberdi, Andrey Povyakalo, Lorenzo Strigini and

  20. Dictionary Pruning with Visual Word Significance for Medical Image Retrieval.

    Science.gov (United States)

    Zhang, Fan; Song, Yang; Cai, Weidong; Hauptmann, Alexander G; Liu, Sidong; Pujol, Sonia; Kikinis, Ron; Fulham, Michael J; Feng, David Dagan; Chen, Mei

    2016-02-12

    Content-based medical image retrieval (CBMIR) is an active research area for disease diagnosis and treatment but it can be problematic given the small visual variations between anatomical structures. We propose a retrieval method based on a bag-of-visual-words (BoVW) to identify discriminative characteristics between different medical images with Pruned Dictionary based on Latent Semantic Topic description. We refer to this as the PD-LST retrieval. Our method has two main components. First, we calculate a topic-word significance value for each visual word given a certain latent topic to evaluate how the word is connected to this latent topic. The latent topics are learnt, based on the relationship between the images and words, and are employed to bridge the gap between low-level visual features and high-level semantics. These latent topics describe the images and words semantically and can thus facilitate more meaningful comparisons between the words. Second, we compute an overall-word significance value to evaluate the significance of a visual word within the entire dictionary. We designed an iterative ranking method to measure overall-word significance by considering the relationship between all latent topics and words. The words with higher values are considered meaningful with more significant discriminative power in differentiating medical images. We evaluated our method on two public medical imaging datasets and it showed improved retrieval accuracy and efficiency.