WorldWideScience

Sample records for nuclear medical applications

  1. Medical applications in a nuclear research centre

    International Nuclear Information System (INIS)

    Vanhavere, F.; Eggermont, G.

    2001-01-01

    In these days of public aversion to nuclear power, it can be important to point at the medical applications of ionising radiation. Not only the general public, but also the authorities and research centres have to be aware of these medical applications, which are not without risk for public health. Now that funding for nuclear research is declining, an opening to the medical world can give new opportunities to a nuclear research centre. A lot of research could be done where the tools developed for the nuclear power world are very useful. Even new applications for the research reactors like BNCT (boron neutron capture therapy) can be envisaged for the near future. In this contribution an overview will be given of the different techniques used in the medical world with ionising radiation. The specific example of the Belgian Nuclear Research Centre will be given where the mission statement was changed to include a certain number of medical research topics. (authors)

  2. Nuclear data for medical applications

    International Nuclear Information System (INIS)

    Capote, Roberto

    2011-01-01

    Nuclear science plays an increasingly important role in medical applications, in particular the need for radioisotopes in both cancer therapy and diagnostic techniques is very well established. Over the previous thirty years, many laboratories have reported a significant body of experimental data relevant to medical radionuclide production, and international data centres have compiled most of these data. However, till late 90s no systematic effort had been devoted to their standardization and assembly. These needs are being addressed through three IAEA Coordinated Research Projects on Nuclear Data for the Production of Radionuclides that started in 1999. Monitor cross sections to be used in charged particle measurements have been also evaluated (see http://www-nds.iaea.org/medical/monitor reactions.html). A review of IAEA recommended cross sections for the production of medical radioisotopes will be presented. Theoretical modelling of nuclear reactions will be discussed both for nuclear data evaluation and validation. The role of the Recommended Input Parameter Library (RIPL) in defining the input for production codes like EMPIRE and TALYS will be highlighted. (author)

  3. Nuclear data for medical applications: an overview

    International Nuclear Information System (INIS)

    Qaim, S.M.

    2001-01-01

    A brief introduction to nuclear data in medicine is given. The choice of a radioisotope for medical application demands an accurate knowledge of radioactive decay data. Short-lived single photon and β + -emitters are preferred for diagnostic investigations, and longer-lived corpuscular radiation emitting radioisotopes for endoradiotherapy. The nuclear reaction cross section data, on the other hand, are needed for optimising the production routes. Besides radioactive isotopes, the use of ionising radiation in therapy is discussed. External radiation therapy has achieved an important place in medicine. The role of nuclear data is briefly discussed; they are needed for radiation dose calculations. The hitherto rather neglected activation products in proton therapy are considered. The methodology of development of a nuclear data file for medical applications is outlined. (orig.)

  4. Nuclear data for medical applications: an overview

    International Nuclear Information System (INIS)

    Qaim, S.M.

    2002-01-01

    A brief introduction to nuclear data in medicine is given. The choice of a radioisotope for medical application demands an accurate knowledge of radioactive decay data. Short-lived single photon and beta sup + -emitters are preferred for diagnostic investigations, and longer-lived corpuscular radiation emitting radioisotopes for endo radiotherapy. The nuclear reaction cross section data, on the other hand, are needed for optimising the production routes. Besides radioactive isotopes, the use of ionising radiation in therapy is discussed. External radiation therapy has achieved an important place in medicine. The role of nuclear data is briefly discussed; they are needed for radiation dose calculations. The hitherto rather neglected activation products in proton therapy are considered. The methodology of development of a nuclear data file for medical applications is outlined. (author)

  5. Medical application of nuclear science: nuclear medicine and production of radiopharmaceuticals

    International Nuclear Information System (INIS)

    Cornet, L.

    1997-01-01

    Nuclear science in attendance on medicine or from Radium to Radiopharmaceuticals. By a brief historical reminder of the evolution of the radioactivity and development of nuclear science, we could see a very early interest and application of the radioactivity in the medical field. Main steps: Detection of natural radioactivity/Discovery of artificial radioactivity/First treatment of leukaemia and thyroid/First nuclear reactor/First radioisotope laboratory in hospital/First scintigraphy/First radiopharmaceutical/First cyclotron and cyclotron products/First immunoscintigraphy/Biotechnology and radioisotope/Evolution of technics [equipment for diagnosis (imaging, scintigraphy) and therapy]/Evolution of production technics and concept of products (generators of Technetium) and machines, reactor, cyclotron/Evolution of importance and interest of nuclear medicine/Creation of international association of nuclear medicine and producers (example ARPR)/Evolution of safety and pharmaceuticals regulation. After the sixties, period extremely rich in invention of products, characterized by a high fertility specially due to a non-restrictive regulation in terms of safety and pharmaceutical consideration, the evolution of technics, the importance of costs (investment, research, healthcare and the evolution of the regulations) have smoothly but continuously transformed the contexts and different actors. Consequences and facts: Rationalization and standardization of the catalogues, total integration of radiopharmaceuticals into the pharmaceutical laws, stop of nuclear research reactors, increase of number of cyclotrons, transformation of size and role of the producers and nuclear centers, risk in supply of some raw materials like Molybdenum, medical nuclear application as a worldwide business

  6. Data bank applications of a nuclear medical computer system

    International Nuclear Information System (INIS)

    Hale, T.I.; Jucker, A.; Haering, W.; Schmid, B.

    1980-01-01

    Computer systems in nuclear medicine are normally not used for data bank applications. A concept for a PDP-11-34 with RK 05 disc is presented, which serves the needs of data manipulations of a medium sized hospital including management of patient data, pharma stock control etc. besides specific use for nuclear medical work with absolute priority. The program is available upon request. (orig.) [de

  7. Frontier of Advanced Accelerator Applications and Medical Treatments Using Nuclear Techniques. Abstract

    International Nuclear Information System (INIS)

    2015-01-01

    To address the challenges of research-based practice, developing advanced accelerator applications, and medical treatments using nuclear tecniqoes, researchers from Rajamakala University of Technology Lanna, Office of Atoms for Peace, and Chiang Mai University have joined in hosting this conference. Nuclear medicine, amedical specialty, diagnoses and treats diseases in a safe and painless way. Nuclear techniques can determine medical information that may otherwise be unavailable, require surgery, or necessitate more expensive and invasive diagnostic tests. Advance in nuclear techniques also offer the potential to detect abnormalities at earlier stages, leasding to earlier treatment and a more successful prognosis.

  8. Dissemination of medical applications of nuclear energy with virtual reality technology

    International Nuclear Information System (INIS)

    Botelho, Felipe M.; Oliveira, Beatriz A.R.

    2007-01-01

    This work makes use of Virtual Reality technology to disseminate medical applications of nuclear energy, with educational purposes. Virtual Reality is an effective learning tool, since navigation and interaction in virtual worlds can improve motivation in the learning process. With this technology, learning can be achieved in a clearer, joyful and more objective way. Among the existing medical applications of nuclear energy, this work focuses on the use of radiopharmaceuticals. The goal is to simulate this application in a virtual environment, for educational purposes, and to show the absorption of a radiopharmaceutical by the human body, during a diagnostics or treatment procedure. An example has been chosen, for Iodine radiopharmaceutical, which has affinity with the thyroid, and then concentrates in this organ. During the simulation, the concentration of the radioactive Iodine in the thyroid can be emphasized, and in the sequence, the virtual patient can be shown during the imaging procedure. (author)

  9. Applications of nuclear technique in environmental and medical science

    International Nuclear Information System (INIS)

    Shi Xianfeng; Shen Hao; Liu Bo; Sun Minde; Yao Huiying; Zhou Shijun; Mi Yong

    2001-01-01

    The serious environmental pollution problem and application of the nuclear technique in environmental and medical sciences were discussed. The analysed results of the elemental distribution of particles in automobile exhaust, the aerosol particle of different size and the effect of Rare Earth on cells were reported. The authors can obtain some information related to element concentration. It offers a convenient method in inspecting the environmental pollution

  10. Radiation environmental impact assessment of the radioisotope's application on nuclear medical science

    International Nuclear Information System (INIS)

    Liu Hongshi

    2004-01-01

    The radiation environmental impact assessment of the radioisotope's application on nuclear medical science is introduced, including the assessment criteria, the assessment methods and the environmental impact assessment of three wastes emission. (authors)

  11. Medical applications of the nuclear energy

    International Nuclear Information System (INIS)

    Ugarte, Valentin E.

    2001-01-01

    The Nuclear Medicine School Foundation, in Mendoza (Argentina) was created in 1986 by the National Atomic Energy Commission (CNEA) and is supported by the Government of the Mendoza Province, the CNEA, and the National University of Cuyo. The main activities of the school are medical diagnosis using nuclear techniques and the training of physicians and technicians in nuclear medicine. Teletherapy and brachytherapy are also performed. The use of the PET is described in some detail

  12. Nuclear Data for Medical Applications – Recent Developments and Future Requirements

    International Nuclear Information System (INIS)

    Nichols, A.L.; Capote, R.

    2014-01-01

    Cancer treatment represents a major economic and medical issue because of the extensive incidence of the disease worldwide, with a particularly large rate of increase to be found in developing countries. Over the previous twenty years, the International Atomic Energy Agency (IAEA) has dedicated a series of investigations towards identifying and quantifying the production routes and decay characteristics of radioisotopes judged to be of existing and emerging importance in nuclear medicine and radiotherapy. Both the recommendations formulated during the course of these technical debates and the results of recently completed and on-going IAEA coordinated research projects are focused towards the successful evolution of improvements in nuclear data for medical applications throughout the early 21 st century

  13. Medical applications of nuclear physics and heavy-ion beams

    International Nuclear Information System (INIS)

    Alonso, Jose R.

    2000-01-01

    Isotopes and accelerators, hallmarks of nuclear physics, are finding increasingly sophisticated and effective applications in the medical field. Diagnostic and therapeutic uses of radioisotopes are now a $10B/yr business worldwide, with over 10 million procedures and patient studies performed every year. This paper will discuss the use of isotopes for these applications. In addition, beams of protons and heavy ions are being more and more widely used clinically for treatment of malignancies. To be discussed here as well will be the rationale and techniques associated with charged-particle therapy, and the progress in implementation and optimization of these technologies for clinical use

  14. Nuclear energy and its medical application

    International Nuclear Information System (INIS)

    Jain, S.K.

    2010-01-01

    Ionising radiation is used in radiotherapy to treat cancer and to sterilise medical equipment because it destroys cells. Radioactive tracers are used in nuclear medicine because the ionising radiation it emits is easy to detect. There are three main uses of ionising radiation in medicine: treatment, diagnosis and sterilisation. Radiotherapy is used to treat cancers by irradiating them with ionising radiation. Radioactive tracers are used to diagnose and investigate several medical conditions. Ionising radiation is used to sterilise medical equipment as it kills germs and/or bacteria

  15. Seminar Pediatrics. Medical and Technical Applications

    International Nuclear Information System (INIS)

    Montivero, M.; Nespral, D.O.; Alak, Maria del Carmen

    2012-01-01

    The Association of Biology and Nuclear Medicine has organized the 'Seminar Pediatrics - Medical and Technical Applications', held in Buenos Aires in May 2012, in order to collaborate with the scientific growth of nuclear medicine in pediatrics. The main topics covered were: management of pediatric patients and medical application in childhood, dosimetry in pediatric nuclear medicine, scope of radioisotope - studies in nephrourological pathologies, PET in pediatrics, among others.

  16. Radiation protection in medical applications

    International Nuclear Information System (INIS)

    Maldonado M, H.

    2008-12-01

    The justification of the practices is the fundamental principle on which rests the peaceful use of ionizing radiations. They actually contain as aspirations to improve the quality of people's lives, contributing to sustainable development through environmental protection, so that the sources security and the individuals protection will be conditions which are not and should can not be operated. For medical applications is a highly illustrative example of this, since both for the diagnosis and therapy, the goal is to achieve what is sought for the white tissue, secured the least possible damage to the neighboring tissues so that in turn reduce the negative effects for the patient. As a basis for achieving the above, it is essential to have qualified personnel in all areas incidents, for example users, workers, officials and staff members. There are a variety of specialists in the field of medical applications as, nuclear chemistry, nuclear engineering, radiation protection, medical physics, radiation physics and others. Among the human resource in the country must make up the majority are medical radiologists, highlighting gaps in the number of radiotherapy and nuclear medicine but specially in the medical physics, who is in some way from a special viewpoint of the formal school, new to the country. This is true for the number of facilities which are in the country. The radiation protection responsibilities in medical applications focus primarily on two figures: the radiology safety manager, who is primarily dedicated to the protection of occupationally exposed personnel and the public, and the medical physicist whose functions are geared towards the radiological protection of the patient. The principal legislation in the medical applications area has been enacted and is monitored by the Health Secretary and National Commission on Nuclear Safety and Safeguards, entities that have reached agreements to avoid overlap and over-regulation. Medical applications in the

  17. Radioisotopes for medical applications

    International Nuclear Information System (INIS)

    Carr, S.

    1998-01-01

    For more than 3 decades, the Australian Nuclear Science and Technology Organisation has been the country's main supplier of radioisotopes for medical applications. The use of radioisotopes in medicine has revolutionised the diagnosis, management and treatment of many serious diseases such as cancer, heart disease and stroke. It is also beginning to play a key role in neurological disorders such as Parkinson and Alzheimers disease and epilepsy. More recently there has been considerable growth in the application of nuclear medicine to treat sport-related injuries - especially wrist, ankle and knees where more common techniques do not always enable accurate diagnosis. Australia is a recognised leader in nuclear medicine. This can be partially attributed to the close relationship between ANSTO and the medical community in providing opportunities to develop and evaluate new agents to support more effective patient care. A list of commercial isotopes produced in the reactor or the cyclotron and used in medical applications is given. Nuclear medicine plays an important role in the clinical environment and the timely supply of radioisotopes is a key element. ANSTO will continue to be the premier supplier of currently available and developing isotopes to support the health and well being of the Australian community

  18. Radioisotopes for medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Carr, S. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia). Radiopharmaceuticals Division

    1998-03-01

    For more than 3 decades, the Australian Nuclear Science and Technology Organisation has been the country`s main supplier of radioisotopes for medical applications. The use of radioisotopes in medicine has revolutionised the diagnosis, management and treatment of many serious diseases such as cancer, heart disease and stroke. It is also beginning to play a key role in neurological disorders such as Parkinson and Alzheimers disease and epilepsy. More recently there has been considerable growth in the application of nuclear medicine to treat sport-related injuries - especially wrist, ankle and knees where more common techniques do not always enable accurate diagnosis. Australia is a recognised leader in nuclear medicine. This can be partially attributed to the close relationship between ANSTO and the medical community in providing opportunities to develop and evaluate new agents to support more effective patient care. A list of commercial isotopes produced in the reactor or the cyclotron and used in medical applications is given. Nuclear medicine plays an important role in the clinical environment and the timely supply of radioisotopes is a key element. ANSTO will continue to be the premier supplier of currently available and developing isotopes to support the health and well being of the Australian community 2 tabs., 1 fig.

  19. Global Security, Medical Isotopes, and Nuclear Science

    Science.gov (United States)

    Ahle, Larry

    2007-10-01

    Over the past century basic nuclear science research has led to the use of radioactive isotopes into a wide variety of applications that touch our lives everyday. Some are obvious, such as isotopes for medical diagnostics and treatment. Others are less so, such as National/Global security issues. And some we take for granted, like the small amount of 241 Am that is in every smoke detector. At the beginning of this century, we are in a position where the prevalence and importance of some applications of nuclear science are pushing the basic nuclear science community for improved models and nuclear data. Yet, at the same time, the push by the basic nuclear science community to study nuclei that are farther and farther away from stability also offer new opportunities for many applications. This talk will look at several global security applications of nuclear science, summarizing current R&D and need for improved nuclear data It will also look at how applications of nuclear science, such as to medicine, will benefit from the push for more and more powerful radioactive ion beam facilities.

  20. Nuclear applications in life sciences

    International Nuclear Information System (INIS)

    Uenak, P.

    2009-01-01

    Radioactivity has revolutionized life sciences during the last century, and it is still an indispensable tool. Nuclear Medicine, Radiation Biology and Radiotherapy, Dosimetry and Medical Radiation Physics, Nutrition and Environmental Problems Relevant Health are significant application fields of Nuclear Sciences. Nuclear medicine today is a well established branch of medicine. Radionuclides and radiopharmaceuticals play a key role both in diagnostic investigations and therapy-Both cyclotron and reactor produced radionuclides find application, the former more in diagnostic studies and the latter in therapy. New therapy applications such as bor neutron therapy are increasing by time together with the technological improvements in imaging systems such as PET and SPECT. Radionuclides and radiopharmaceuticals play important role in both therapy and imaging. However cyclotron produced radionuclides have been using generally in imaging purposes while reactor produced radionuclides have also therapeutic applications. With the advent of emission tomography, new vistas for probing biochemistry in vivo have been opened. The radio chemist faces an ever-increasing challenge of designing new tracers for diagnostic and therapeutic applications. Rapid, efficient and automated methods of radionuclide and precursor production, labeling of biomolecules, and quality control need to be developed. The purpose of this article is a short interface from Nuclear Medicine, Radiation Biology and Radiotherapy, Dosimetry and Medical Radiation Physics Applications of Nuclear Sciences.

  1. 78 FR 29390 - Applications; SHINE Medical Technologies, Inc.

    Science.gov (United States)

    2013-05-20

    ... NUCLEAR REGULATORY COMMISSION [Proj-0792; NRC-2013-0053] Applications; SHINE Medical Technologies... (ADAMS) Accession No. ML13088A192), SHINE Medical Technologies (SHINE) filed with the U.S. Nuclear... for a medical radioisotope production facility in Janesville, Wisconsin. An exemption from certain...

  2. Global Security, Medical Isotopes, and Nuclear Science

    International Nuclear Information System (INIS)

    Ahle, Larry

    2007-01-01

    Over the past century basic nuclear science research has led to the use of radioactive isotopes into a wide variety of applications that touch our lives everyday. Some are obvious, such as isotopes for medical diagnostics and treatment. Others are less so, such as National/Global security issues. And some we take for granted, like the small amount of 241 Am that is in every smoke detector. At the beginning of this century, we are in a position where the prevalence and importance of some applications of nuclear science are pushing the basic nuclear science community for improved models and nuclear data. Yet, at the same time, the push by the basic nuclear science community to study nuclei that are farther and farther away from stability also offer new opportunities for many applications. This talk will look at several global security applications of nuclear science, summarizing current R and D and need for improved nuclear data It will also look at how applications of nuclear science, such as to medicine, will benefit from the push for more and more powerful radioactive ion beam facilities

  3. Applications of Particle Accelerators in Medical Physics

    CERN Document Server

    Cuttone, G

    2008-01-01

    Particle accelerators are often associated to high energy or nuclear physics. As well pointed out in literature [1] if we kindly analyse the number of installation worldwide we can easily note that about 50% is mainly devoted to medical applications (radiotherapy, medical radioisotopes production, biomedical research). Particle accelerators are also playing an important indirect role considering the improvement of the technical features of medical diagnostic. In fact the use of radionuclide for advanced medical imaging is strongly increasing either in conventional radiography (CT and MRI) and also in nuclear medicine for Spect an PET imaging. In this paper role of particle accelerators for medical applications will be presented together with the main solutions applied.

  4. Medical applications of cyclotrons

    International Nuclear Information System (INIS)

    Jean, R.; Fauchet, M.

    1978-01-01

    Isochronous cyclotrons used to accelerate different charged particles (protons, deuterons, alphas...) at variable energies, have important medical applications, for neutron teletherapy, in vivo or in vitro activation analysis or production of short-lived radioisotopes for nuclear medicine. The characteristics of the cyclotron presently available are described for these three applications (low energy 'compact' cyclotrons, cyclotrons of intermediate and high energies), and their advantages are discussed from the points of view of the medical requirements, the financial investments and the results obtained. (orig.) [de

  5. Necessity of long term nuclear data development for various applications needing nuclear data

    International Nuclear Information System (INIS)

    Fukahori, Tokio

    2001-01-01

    Necessity of long term nuclear data development for accelerator-driven system target design, high-energy radiation shielding, medical application, space and astrophysical applications, etc. is described in this paper. For each application field needing nuclear data, considered were importance of nuclear data in determining the success or failure of the application, important gaps remaining in the nuclear data and feasibility of filling the gaps with a modest research effort. It can be concluded much more international discussions are required. (author)

  6. Nuclear methods in medical physics

    International Nuclear Information System (INIS)

    Jeraj, R.

    2003-01-01

    A common ground for both, reactor and medical physics is a demand for high accuracy of particle transport calculations. In reactor physics, safe operation of nuclear power plants has been asking for high accuracy of calculation methods. Similarly, dose calculation in radiation therapy for cancer has been requesting high accuracy of transport methods to ensure adequate dosimetry. Common to both problems has always been a compromise between achievable accuracy and available computer power leading into a variety of calculation methods developed over the decades. On the other hand, differences of subjects (nuclear reactor vs. humans) and radiation types (neutron/photon vs. photon/electron or ions) are calling for very field-specific approach. Nevertheless, it is not uncommon to see drift of researches from one field to another. Several examples from both fields will be given with the aim to compare the problems, indicating their similarities and discussing their differences. As examples of reactor physics applications, both deterministic and Monte Carlo calculations will be presented for flux distributions of the VENUS and TRIGA Mark II benchmark. These problems will be paralleled to medical physics applications in linear accelerator radiation field determination and dose distribution calculations. Applicability of the adjoint/forward transport will be discussed in the light of both transport problems. Boron neutron capture therapy (BNCT) as an example of the close collaboration between the fields will be presented. At last, several other examples from medical physics, which can and cannot find corresponding problems in reactor physics, will be discussed (e.g., beam optimisation in inverse treatment planning, imaging applications). (author)

  7. Applications of nuclear physics

    Science.gov (United States)

    Hayes, A. C.

    2017-02-01

    Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that underlie the physics involved in designs of nuclear explosions, controlled nuclear energy, and nuclear fusion. The review then moves to focus on modern applications of these concepts, including the basic concepts and diagnostics developed for the forensics of nuclear explosions, the nuclear diagnostics at the National Ignition Facility, nuclear reactor safeguards, and the detection of nuclear material production and trafficking. The review also summarizes recent developments in nuclear geophysics and nuclear medicine. The nuclear geophysics areas discussed include geo-chronology, nuclear logging for industry, the Oklo reactor, and geo-neutrinos. The section on nuclear medicine summarizes the critical advances in nuclear imaging, including PET and SPECT imaging, targeted radionuclide therapy, and the nuclear physics of medical isotope production. Each subfield discussed requires a review article unto itself, which is not the intention of the current review; rather, the current review is intended for readers who wish to get a broad understanding of applied nuclear physics.

  8. Applications of nuclear physics

    International Nuclear Information System (INIS)

    Hayes-Sterbenz, Anna Catherine

    2017-01-01

    Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that underlie the physics involved in designs of nuclear explosions, controlled nuclear energy, and nuclear fusion. The review then moves to focus on modern applications of these concepts, including the basic concepts and diagnostics developed for the forensics of nuclear explosions, the nuclear diagnostics at the National Ignition Facility, nuclear reactor safeguards, and the detection of nuclear material production and trafficking. The review also summarizes recent developments in nuclear geophysics and nuclear medicine. The nuclear geophysics areas discussed include geo-chronology, nuclear logging for industry, the Oklo reactor, and geo-neutrinos. The section on nuclear medicine summarizes the critical advances in nuclear imaging, including PET and SPECT imaging, targeted radionuclide therapy, and the nuclear physics of medical isotope production. Lastly, each subfield discussed requires a review article unto itself, which is not the intention of the current review; rather, the current review is intended for readers who wish to get a broad understanding of applied nuclear physics.

  9. Applications of computational intelligence in nuclear reactors

    International Nuclear Information System (INIS)

    Jayalal, M.L.; Jehadeesan, R.

    2016-01-01

    Computational intelligence techniques have been successfully employed in a wide range of applications which include the domains of medical, bioinformatics, electronics, communications and business. There has been progress in applying of computational intelligence in the nuclear reactor domain during the last two decades. The stringent nuclear safety regulations pertaining to reactor environment present challenges in the application of computational intelligence in various nuclear sub-systems. The applications of various methods of computational intelligence in the domain of nuclear reactors are discussed in this paper. (author)

  10. Summary report of consultants' meeting on nuclear data of charged-particle interactions for medical therapy applications

    International Nuclear Information System (INIS)

    Capote Noy, R.; Vatnitskiy, S.

    2007-01-01

    A summary is given of a Consultants' Meeting assembled to assess the viability of a new IAEA Co-ordinated Research Project (CRP) on Charged-Particle Interaction Data for Radiotherapy. The need for a programme to compile and evaluate charged-particle nuclear data for therapeutic applications was strongly agreed. Both the technical discussions and the expected outcomes of such a project are described, along with detailed recommendations for implementation. The meeting was jointly organized by NAPC/Nuclear Data Section and NAHU/Dosimetry and Medical Radiation Physics Section. (author)

  11. Pseudo-color processing in nuclear medical image

    International Nuclear Information System (INIS)

    Wang Zhiqian; Jin Yongjie

    1992-01-01

    The application of pseudo-color technology in nuclear medical image processing is discussed. It includes selection of the number of pseudo-colors, method of realizing pseudo-color transformation, function of pseudo-color transformation and operation on the function

  12. Some applications of radioactivity and of nuclear reactions

    International Nuclear Information System (INIS)

    2007-01-01

    This document presents various applications of radioactivity. It first addresses the medical field with applications in imagery (principles, used compounds, positron emission tomography, tumour detection, study of brain operation), applications in therapy (biological effects of radiations, principles of radiotherapy, struggle against cancer, notably by proton therapy), and applications in sterilisation and microbiological decontamination of instruments and medical products. It evokes applications in agriculture (irradiation of fruits and vegetables, vegetable conservation), in industry (production of new and stronger materials by irradiation, analysis by activation, thickness, density or homogeneity gauges), in arts (analysis of statues, use of gamma-graphy on dense objects, decontamination by irradiation), and in science (carbon 14 dating). It presents nuclear fission and ways to control it, recalls the main scientific discoveries and their consequences. It describes energy production based on nuclear fission (description of nuclear reactor core, of waste processing), and on nuclear fusion (principle, Tokamak examples with JET and ITER, brief presentation of laser fusion)

  13. Converting energy to medical progress [nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-04-01

    For over 50 years the Office of Biological and Environmental Research (BER) of the United States Department of Energy (DOE) has been investing to advance environmental and biomedical knowledge connected to energy. The BER Medical Sciences program fosters research to develop beneficial applications of nuclear technologies for medical diagnosis and treatment of many diseases. Today, nuclear medicine helps millions of patients annually in the United States. Nearly every nuclear medicine scan or test used today was made possible by past BER-funded research on radiotracers, radiation detection devices, gamma cameras, PET and SPECT scanners, and computer science. The heart of biological research within BER has always been the pursuit of improved human health. The nuclear medicine of tomorrow will depend greatly on today's BER-supported research, particularly in the discovery of radiopharmaceuticals that seek specific molecular and genetic targets, the design of advanced scanners needed to create meaningful images with these future radiotracers, and the promise of new radiopharmaceutical treatments for cancers and genetic diseases.

  14. Converting energy to medical progress [nuclear medicine

    International Nuclear Information System (INIS)

    2001-01-01

    For over 50 years the Office of Biological and Environmental Research (BER) of the United States Department of Energy (DOE) has been investing to advance environmental and biomedical knowledge connected to energy. The BER Medical Sciences program fosters research to develop beneficial applications of nuclear technologies for medical diagnosis and treatment of many diseases. Today, nuclear medicine helps millions of patients annually in the United States. Nearly every nuclear medicine scan or test used today was made possible by past BER-funded research on radiotracers, radiation detection devices, gamma cameras, PET and SPECT scanners, and computer science. The heart of biological research within BER has always been the pursuit of improved human health. The nuclear medicine of tomorrow will depend greatly on today's BER-supported research, particularly in the discovery of radiopharmaceuticals that seek specific molecular and genetic targets, the design of advanced scanners needed to create meaningful images with these future radiotracers, and the promise of new radiopharmaceutical treatments for cancers and genetic diseases

  15. Economical scale of nuclear energy application

    International Nuclear Information System (INIS)

    2001-01-01

    The nuclear energy industry is supported by two wheels of radiation and energy applications. When comparing both, they have some different sides, such as numbers of employees and researchers, numbers and scales of works, effect on society, affecting effects and regions of industrial actions, problems on safety, viewpoint on nuclear proliferation protection and safety guarantee, energy security, relationship to environmental problem, efforts on wastes disposal, and so on. Here described on economical scale of radiation application in fields of industry, agriculture, and medicine and medical treatment, and on economical scale of energy application in nuclear power generation and its instruments and apparatus. (G.K.)

  16. Therapeutic Applications of Monte Carlo Calculations in Nuclear Medicine

    CERN Document Server

    Sgouros, George

    2003-01-01

    This book examines the applications of Monte Carlo (MC) calculations in therapeutic nuclear medicine, from basic principles to computer implementations of software packages and their applications in radiation dosimetry and treatment planning. It is written for nuclear medicine physicists and physicians as well as radiation oncologists, and can serve as a supplementary text for medical imaging, radiation dosimetry and nuclear engineering graduate courses in science, medical and engineering faculties. With chapters is written by recognised authorities in that particular field, the book covers the entire range of MC applications in therapeutic medical and health physics, from its use in imaging prior to therapy to dose distribution modelling targeted radiotherapy. The contributions discuss the fundamental concepts of radiation dosimetry, radiobiological aspects of targeted radionuclide therapy and the various components and steps required for implementing a dose calculation and treatment planning methodology in ...

  17. The medical consequences of nuclear weapons

    International Nuclear Information System (INIS)

    Humphrey, J.; Hartog, M.; Middleton, H.

    1982-01-01

    A pamphlet has been produced by the Medical Campaign Against Nuclear Weapons (MCANW) and by the Medical Association for the Prevention of War (MAPW) to bring the catastrophic effects that the use of nuclear weapons would entail to the attention of the general public, politicians and members of the medical profession. It describes the medical consequences of the effects of blast, heat and ionizing radiation from nuclear weapons, including details from the Hiroshima and Nagasaki atomic bombings. The medical consequences of a nuclear attack including consideration of the casualties, care of the injured, psychological effects and the outcome are also discussed. It is concluded that if for none other than purely medical reasons, nuclear warfare must never be allowed to happen. (UK)

  18. The applications of nanomaterials in nuclear medicine

    International Nuclear Information System (INIS)

    Liu Jinjian; Liu Jianfeng

    2010-01-01

    Over the last decade, nanotechnology and nanomaterials have gained rapid development in medical application, especially in targeted drug delivery and gene transfer vector domain, and nano-materials are also beginning to applied in nuclear medicine. This paper is to make a view of the application research of several types of nanomaterials in nuclear medicine, and discuss some problems and the main direction of future development. (authors)

  19. Radiation hazards from medical applications

    International Nuclear Information System (INIS)

    Beekman, Z.M.

    1981-01-01

    An introduction is presented on the radiation hazards connected with biomedical radiography and nuclear medicine. The frequency of radiodiagnostic efforts was rather high in the Netherlands. This was reduced considerably by abolishing the thorax screening of the population. About diagnostic nuclear medicine less can be said because far fewer numerical data are available. An exposition of genetically and somatically significant doses and how to compute them is given. The drawing up of a profit versus risk evaluation for medical applications of ionizing radiations is recommended. (Auth.)

  20. Medical aspects of nuclear armament

    Energy Technology Data Exchange (ETDEWEB)

    Janse, M.J.; Schene, A.; Koch, K.

    1983-06-18

    The authors highlight a few medical, biological and psycological aspects of the use of nuclear weapons, drawing attention to their viewpoint that doctors should actively participate in the fight against nuclear armament. The short and long-term radiation effects on man and ecology are presented based on the Hiroshima and Nagasaki experiences. The danger of human error within this framework is emphasised and it is suggested that it is the medical profession's duty to point out how the effect of stress and boredom can lead to a nuclear catastrophe. Medical expertise may also help in the identification of unstable personalities among those who have access to nuclear weapons and in the understanding of the psycology of international conflicts and the psychopathology of those leaders who would use nuclear war as an instrument of national policy. Finally the effects of the nuclear war threat on children and teenagers are considered.

  1. Medical aspects of nuclear armament

    International Nuclear Information System (INIS)

    Janse, M.J.; Schene, A.; Koch, K.

    1983-01-01

    The authors highlight a few medical, biological and psycological aspects of the use of nuclear weapons, drawing attention to their viewpoint that doctors should actively participate in the fight against nuclear armament. The short and long-term radiation effects on man and ecology are presented based on the Hiroshima and Nagasaki experiences. The danger of human error within this framework is emphasised and it is suggested that it is the medical profession's duty to point out how the effect of stress and boredom can lead to a nuclear catastrophe. Medical expertise may also help in the identification of unstable personalities among those who have access to nuclear weapons and in the understanding of the psycology of international conflicts and the psychopathology of those leaders who would use nuclear war as an instrument of national policy. Finally the effects of the nuclear war threat on children and teenagers are considered. (C.F.)

  2. Applications of Particle Accelerators in Medical Physics

    OpenAIRE

    Cuttone, G

    2008-01-01

    Particle accelerators are often associated to high energy or nuclear physics. As well pointed out in literature [1] if we kindly analyse the number of installation worldwide we can easily note that about 50% is mainly devoted to medical applications (radiotherapy, medical radioisotopes production, biomedical research). Particle accelerators are also playing an important indirect role considering the improvement of the technical features of medical diagnostic. In fact the use of radionuclide f...

  3. Building a medical system for nuclear facilities

    International Nuclear Information System (INIS)

    Maeda, Mitsuya

    2016-01-01

    To build a medical system for nuclear facilities, I explained what kinds of actions were performed with the TEPCO Fukushima Daiichi Nuclear Power Plant Accident and what kinds of actions are going to be performed in the future. We examined the health and medical care of the emergency workers in nuclear facilities including TEPCO Fukushima Daiichi Nuclear Power Plant from 2014 to 2015 in the Ministry of Health, Labour and Welfare (MHLW). We carried out a detailed hearing from stakeholders of electric companies and medical institutions about the medical system in nuclear facilities carrying out urgent activities. It has been said that the electric company is responsible to maintain the medical system for affected workers in nuclear facilities. However, TEPCO could not find the medical staff, such as doctors, by their own effort at the TEPCO Fukushima Daiichi Nuclear Power Plant Accident. The network of doctors familiar with emergency medical care support dispatched the medical staff after July of 2011. The stakeholders indicated that the following six tasks must be resolved: (1) the fact that no electric company performs the action of bringing up medical staff who can be dispatched into nuclear facilities in emergencies in 2015; (2) bringing up personnel in charge of radiation management and logistics other than the medical staff, such as doctors; (3) cooperation with the community medicine system given the light and shade by nuclear facilities; (4) performing training for the many concurrent wounded based on the scenario of a severe accident; (5) indicating both the condition of the contract and the guarantee of status that is appropriate for dispatched medical staffs; and (6) clarifying the organization of the network of stakeholders. The stakeholders showed the future directionality as follows: (1) To recruit the medical staff expected to be dispatched into nuclear facilities, (2) to carry out the discussion and conveyance training to strengthen cooperation with

  4. An introduction to nuclear physics, with applications in medicine and biology

    International Nuclear Information System (INIS)

    Dyson, N.A.

    1981-01-01

    A concise account of the applications of nuclear physics to medical and biological science is given. Half the book is devoted to the basic aspects of nuclear and radiation physics such as interactions between radiation and matter, nuclear reactions and the production of isotopes, an introduction to α, β and γ-radiation detectors and finally the radiation from nuclear decay. Information is then given on the applications of radioisotopes and neutrons and other accelerator-based applications in medicine and biology. The book is aimed at not only those undergraduates and postgraduates who are devoting their main effort to medical physics, but also to those students who are looking primarily for an introduction to nuclear physics together with an account of some of the ways in which it impinges on the work of other scientists. (U.K.)

  5. Nuclear and Radiochemistry Fundamentals and Applications

    CERN Document Server

    Lieser, Karl Heinrich

    2001-01-01

    This handbook gives a complete and concise description of the up-to-date knowledge of nuclear and radiochemsitry and applications in the various fields of science. I is based on teaching courses and on research for over 40 years. The book is addressed to any researcher whishing sound knowledge about the properties of matter, be it a chemist, a physicist, a medical doctor, a mineralogist or a biologist. They will all find it a valuable source of information about the principles and applications of nuclear and radiochemistry. Research in radiochemistry includes: Study of radioactice matter in na

  6. Various dedicated imaging systems for routine nuclear medical applications

    International Nuclear Information System (INIS)

    Bela Kari; Tamas Gyorke; Erno Mako; Laszlo Nagy; Jozsef Turak; Oszkar Partos

    2004-01-01

    The most essential problems of nuclear medical imaging are resolution, signal/noise ratio (S/N) and sensitivity. Nowadays, the vast majority of the Anger system gamma cameras in clinical application are using parallel projection. The main problem of this projection method is the highly dependence of the image quality on the distance from the collimator surface as well as any improvement in the resolution with the distance -i.e. reduction of image blur- significantly reduces sensitivity. The aim of our research and development work was to create imaging geometry, collimator and detector constructions optimized to particular organs (brain, heart, thyroid), where it is simultaneously possible to increase the resolution and sensitivity. Main concept of the imaging geometry construction is based on the size, location and shape of a particular organ. In case of brain SPECT imaging a multiple head (4 heads in cylinder symmetric approximation) arrangement with extra high intrinsic resolution (<2.5 mm) dedicated detector design provide feasible solution for routine clinical application. The imaging system was essentially designed for Tc-99m and I-123 isotopes. The application field can be easily extended for functional small animal research and new born baby studies. Very positive feedbacks were received from both technical (stability and reproducibility of the technical parameters) and clinical sides in the past 2 years routine applications. A unique, novel conception ultra compact dedicated dual head SPECT system has been created only for 2D, 3D nuclear cardiac applications for Tc-99m and T1-201 labeled radio-pharmaceuticals. The two rectangular detectors (with <2.6 mm intrinsic resolution) are mounted fix in 90 degree geometry and move inside the special formed gantry arrangement. The unique and unusual gantry is designed to keep the detector heads as close as possible to the patient, while the patient is not exposed by any moving part. This special construction also

  7. Proceedings of the Eighth Conference of Nuclear Sciences and Applications

    International Nuclear Information System (INIS)

    2004-02-01

    The publication has been set up as a textbook for researching dealing with radioisotope production during work with Human needs of Nuclear Science and applications. The book consists of the following chapters: chemistry; radioisotope production, trace analysis; environment monitoring; environmental effect; waste management; physics; reactors; nuclear safety and safeguards; materials; radiation protection ; agriculture; hydrology; nuclear medicine; medical applications; radiation chemistry; environmental studies; biological effects of ionizing radiation on agriculture;

  8. Prospects for the applications of computer in the field of domestic nuclear medicinal instrument

    International Nuclear Information System (INIS)

    Zhao Changhe

    1993-01-01

    The current situation and prospects about domestic nuclear medical instrument, as well as the comparisons of computer application in nuclear medical instruments with in other medical instruments from various points of view have all been described in the paper

  9. The national institute of radiation hygiene and the medical application of radiation

    International Nuclear Information System (INIS)

    Baarli, J.

    1988-01-01

    This paper gives a review of the rules and regulations concerning medical application of radiation in Norway. It discusses the intention of the regulations, the way in which the regulations is applied and how the National Institute of Radiation Hygiene as the competent authority assures the application of the regulations. The paper furthermore gives an indication of the areas of radiation application in medicine and the number of location of X-ray equipment, nuclear medical laboratories, radiation therapy equipment, etc. The number of X-ray examinations in Norway per year are also given, together with their distribution among the various types of examinations. Summary results of a quality assurance investigation of nuclear medical laboratories are given, as well as the results of inspections of the various types of equipment used in medical diagnostics

  10. Japan's contribution to nuclear medical research

    International Nuclear Information System (INIS)

    Rahman, M.; Sakamoto, Junichi; Fukui, Tsuguya

    2002-01-01

    We investigated the degree of Japan's contribution to the nuclear medical research in the last decade. Articles published in 1991-2000 in highly reputed nuclear medical journals were accessed through the MEDLINE database. The number of articles having affiliation with a Japanese institution was counted along with publication year. In addition, shares of top-ranking countries were determined along with their trends over time. Of the total number of articles (7,788), Japan's share of articles in selected nuclear medical journals was 11.4% (889 articles) and ranked 2nd in the world after the USA (2,645 articles). The recent increase in the share was statistically significant for Japan (p=0.02, test for trend). Japan's share in nuclear medical research output is much higher than that in other biomedical fields. (author)

  11. Nuclear applications for health

    International Nuclear Information System (INIS)

    Cuaron, A.

    1995-01-01

    Just before the turn of the 20th century, the discoveries of X-rays, in 1895, and of radioactivity, in 1896, opened up whole new worlds of science. For the medical community, the world has been changing ever since, in some countries far more rapidly than in others. Over the past 100 years, the X-ray has become as familiar to most people as the dentist's chair. As we move into the next century, greater attention is being placed upon less known but more far-reaching radiation technologies and nuclear applications that today's physicians are able to use for earlier diagnosis and treatment of serious illness. This article, in question-and-answer format, explains the differences between the various types of nuclear applications for human health and looks at the evolution of the IAEA's related activities. (author)

  12. Radioprotection in the medical applications of the ionizing radiations

    International Nuclear Information System (INIS)

    2001-01-01

    This publication presents information about of the radiological safety in the medical application of the ionizing radiation compiled in 11 chapter and 1 annex. The first four chapters are principally dedicated to technical uses in radioprotection, the external and internal irradiation and the biological radiation effects. The radioprotection principles, the individual monitoring techniques, and the radioprotection systems are developed afterwards in the followings three chapters. The second half of the document is dedicated entirely to the medical practices using ionizing radiations, specially to the radioprotection aspects in radiodiagnosis, nuclear medicine and radiotherapy. The final chapter is dedicated to radiological accidents happened worldwide in the field of the medical applications of the ionizing radiations. The annex, about of the regulatory area, established a set of standards, laws, decrees and other force regulations in radiological safety, related in radiodiagnosis, nuclear medicine and radiotherapy

  13. Non power applications of nuclear technology: The case of Belgium

    International Nuclear Information System (INIS)

    Jaumotte, A.L.

    1998-01-01

    The historical review and oversight of Belgium activities in applications of nuclear technologies has been presented. Especially attention have been paid on industrial applications as sterilization of surgical tools, medical supplies, drugs, food; radiation induced polymerization and composite materials production; nondestructive testing and application of sealed sources in industry. The detailed review has been done on nuclear medicine development in Belgium covering the range of therapeutic applications as well as diagnostic techniques

  14. Clinical Training of Medical Physicists Specializing in Nuclear Medicine

    International Nuclear Information System (INIS)

    2011-01-01

    The application of radiation in human health, for both diagnosis and treatment of disease, is an important component of the work of the IAEA. The responsibility for the increasingly technical aspects of this work is undertaken by the medical physicist. To ensure good practice in this vital area, structured clinical training programmes are required to complement academic learning. This publication is intended to be a guide to the practical implementation of such a programme for nuclear medicine. There is a general and growing awareness that radiation medicine is increasingly dependent on well trained medical physicists who are based in a clinical setting. However an analysis of the availability of medical physicists indicates a large shortfall of qualified and capable professionals. This is particularly evident in developing countries. While strategies to increase educational opportunities are critical to such countries, the need for guidance on structured clinical training was recognized by the members of the Regional Cooperative Agreement for Research, Development and Training related to Nuclear Science and Technology (RCA) for the Asia-Pacific region. Consequently, a technical cooperation regional project (RAS6038) under the RCA programme was formulated to address this need in this region by developing suitable material and establishing its viability. Development of a clinical training guide for medical physicists specialising in nuclear medicine was started in 2009 with the appointment of a core drafting committee of regional and international experts. The publication drew on the experience of clinical training in Australia, Croatia and Sweden and was moderated by physicists working in the Asian region. The present publication follows the approach of earlier IAEA publications in the Training Course Series, specifically Nos 37 and 47, Clinical Training of Medical Physicists Specializing in Radiation Oncology and Clinical Training of Medical Physicists

  15. The text of the Agreement establishing the Asian Regional Co-operative Project on Medical and Biological Applications of Nuclear Techniques

    International Nuclear Information System (INIS)

    1987-04-01

    The full text of the Agreement establishing the Asian Regional Co-operative Project on Medical and Biological Applications of Nuclear Techniques between the Agency and Member States is reproduced. The Agreement entered into force on 20 May 1986 after the Governments of Japan, Bangladesh and the Philippines had notified the Agency of their acceptance of the Agreement

  16. The Application of Nuclear Technology for a Better World

    International Nuclear Information System (INIS)

    Ita, E.B.

    2015-01-01

    Nuclear Technology is widely used in different areas and sector of our economy to better man kind and his environment. Peaceful applications of nuclear technology have several benefits to the world today. It is widely believed that nuclear technology is mainly used mainly for the production of electricity (Nuclear Power Plants – NPPs). Many are not aware of the other numerous benefits of nuclear technology. Nuclear technology can be applied in different fields for numerous benefits. Different sectors Nuclear Technology application can improve the living standard of man and his environment: – Food and Agriculture; – Medicine; – Industrial; – Energy; – Education; — Research and Development; – Environment. The benefits of the application of nuclear technology cannot be over emphasised. These benefits range from the improved quality of purified water we drink, the textiles we wear, improved quality of stored grains for preservation of foods, water analyses, improved transportation system work, drugs production, medical tests and analysis, clean environment through radioisotope techniques etc. The application of nuclear technology also gives a safer, greener, healthier and pollution free environment and atmosphere for human habitation. In my poster, the numerous benefits of the various applications of Nuclear Technology will be clearly enumerated and heighted. (author)

  17. Calculation of nuclear level density parameters of some light deformed medical radionuclides using collective excitation modes of observed nuclear spectra

    International Nuclear Information System (INIS)

    Okuducu, S.; Sarac, H.; Akti, N. N.; Boeluekdemir, M. H.; Tel, E.

    2010-01-01

    In this study the nuclear energy level density based on nuclear collective excitation mechanism has been identified in terms of the low-lying collective level bands at near the neutron binding energy. Nuclear level density parameters of some light deformed medical radionuclides used widely in medical applications have been calculated by using different collective excitation modes of observed nuclear spectra. The calculated parameters have been used successfully in estimation of the neutron-capture cross section basic data for the production of new medical radionuclides. The investigated radionuclides have been considered in the region of mass number 40< A< 100. The method used in the present work assumes equidistance spacing of the collective coupled state bands of the interest radionuclides. The present calculated results have been compared with the compiled values from the literatures for s-wave neutron resonance data.

  18. Non-power application of nuclear energy: Bangladesh perspective

    International Nuclear Information System (INIS)

    Naiyyum Choudhury

    2002-01-01

    Radiation technology offers a very wide scope for utilisation and commercial exploitation in various fields. All over the world, this non-power nuclear energy is being favourably considered for different applications like radiation processing of polymeric materials, non-destructive testing, nuclear and nuclear-related analytical techniques, radiation sterilization of medical products and human tissue allografts, preservation of food by controlling the physiological processes for extending shelf-life and eradication of microbial and insect pests, nuclear technology in agriculture and treatment of sewage sludge. Bangladesh Atomic Energy Commission has taken radiation processing programmes in a big way right from its inception. This paper describes the studies carried out by various research groups in Bangladesh Atomic Energy Commission in the planning and development of non-power nuclear technology for peaceful uses in the fields of food, agriculture, medicine, industry and environment. Both food preservation and medical sterilization of medical products are now being commercially carried out in the Gammatech facility as a joint venture company of BAEC and a private entrepreneur. Bangladesh is soon going to establish a full-fledged Tissue Bank to cater the needs of various tissue allografts for surgical replacement. Recently Government of Bangladesh has allocated US$ 1.00 million for strengthening of the Tissue Banking Laboratory. Application of nuclear techniques in agriculture is also quite intensive. BAEC has made quite a good research contribution on vulcanization of natural rubber latex, wood plastic composites, surface coating curing, polymer modification etc. Bangladesh has also made a very good progress in the fields of non-destructive testing, tracer technology, nuclear analytical techniques and nucleonic control. The impact of non-power nuclear energy in selected areas will no doubt be significant in coming years. (Author)

  19. Medical Applications at CERN and the ENLIGHT Network.

    Science.gov (United States)

    Dosanjh, Manjit; Cirilli, Manuela; Myers, Steve; Navin, Sparsh

    2016-01-01

    State-of-the-art techniques derived from particle accelerators, detectors, and physics computing are routinely used in clinical practice and medical research centers: from imaging technologies to dedicated accelerators for cancer therapy and nuclear medicine, simulations, and data analytics. Principles of particle physics themselves are the foundation of a cutting edge radiotherapy technique for cancer treatment: hadron therapy. This article is an overview of the involvement of CERN, the European Organization for Nuclear Research, in medical applications, with specific focus on hadron therapy. It also presents the history, achievements, and future scientific goals of the European Network for Light Ion Hadron Therapy, whose co-ordination office is at CERN.

  20. Application of medical psychology in the reception of nuclear medicine department

    International Nuclear Information System (INIS)

    Zhan Hao; Xiong Jie; Huang Daijuan; Yuan Bin; Xu Wendai; Zhang Yongxue

    2003-01-01

    Reception of nuclear medicine department is often ignored. In fact, it is an important part of clinical work. If the patient's psychological status is understood, and the psychological knowledge is handles and applied in practice, the quality of work can be improved. The personnel in nuclear medicine should recognize the significance of humanity in medical practice and acquire the communication skill between doctors and patients. They should also understand the four aspects of psychological need of patients: The need of being understood and respected; the need of being greeted, accepted and a sense of belonging; the need of being informed; the need of feeling safe and rehabilitated

  1. Upgradation of nuclear medical equipment in the developing countries and its impact in Bangladesh

    CERN Document Server

    Jahangir, S M; Haque, M A S; Hoq, M; Mawla, Y; Morium, T; Uddin, M R; Xie, Y

    2002-01-01

    Bangladesh has thirteen Nuclear Medical Centres and one Institute of Nuclear Medicine in the country which are being run and maintained by the physicians scientists and engineers of Bangladesh Atomic Energy Commission. The peaceful application of atomic energy was initiated through all these Centres with the use of clinical isotopes for thyroid and kidney studies. The equipment used for these purposes were the thyroid uptake system, rectilinear scanner and the multiprobe renogram system. The first gamma camera was installed in the country in 1980 at the Institute of Nuclear Medicine, Dhaka. That was the turning point for the country in the field of nuclear medicine. Presently all the nuclear medical establishments are equipped least with a gamma camera, thyroid uptake system and a renogram system. In the last two decades there has been a tremendous development in the design of nuclear medical equipment. Most of the old equipments were slow and manually operated. In the beginning of nineties of the past centur...

  2. Cytogenetic analysis for radiation dose assessment in the medical nuclear workers

    International Nuclear Information System (INIS)

    Milacic, S.; Jovicic, D.; Rakic, B.; Djokovic, J.

    2009-01-01

    Radionuclide is used in medicine for laboratory research, laboratory testing for enzymes, hormones, medicines in vitro and in vivo in nuclear medicine (NM) for the diagnosis and treatment of diseases. Commissioners, who performed the application radionuclide (RN), are nuclear medicine specialists, senior medical and radiological technicians, nurses and laboratory technicians. They are daily exposed to ionizing irradiations, from outside sources, as well as inside if they were to contamination. Medical nuclear workers (MNW) are exposed to ionizing irradiation, working with radio nuclides. MNW are periodically reviewed for contamination verified. Cytogenetic analysis of peripheral-blood lymphocytes (Ly) is the most sensitive tests for detecting a clinical biologic response to ionizing radiation. The frequency of chromosomal aberrations (f ca) in peripheral circulating lymphocytes (Ly) correlates with the dose received. (author) [sr

  3. The value of nuclear medical examinations in paediatrics

    International Nuclear Information System (INIS)

    Sixthofer, A.

    1991-02-01

    In 1988 155 children were nuclear medically examined at the university clinic in Innsbruck. The first separations to be made were sex and age. A more precise organization concerning the clinically allocated diagnosis of the patients showed, that nephrological and urological questions were asked in 2/3 of the cases. The second point was the cure of inflammation and tumourous cases of the skeletal system (osteomyelitis, osteosarcoma) followed by the assessment of the practical and morphological disturbances to the thyroid glands. Nuclear medical examinations also, occasionally, used questions from the fields of neurology, gastroenterology, cardiology and pulmonology. Analysis regarding the concordance of nuclear medicine with the clinic expresses the diagnostical precision of nuclear medicine well. Nuclear medical diagnosis corresponded to conclusive clinical diagnosis in 73.75 % of the cases. The classification concerning with clinical relevance of the nuclear medical findings for treatment showed that, in only 7.5 % of all cases there was no influence of the nuclear medical diagnosis on the treatment. The investigation of radiation was done in three age groups (0 to 5 years, 5 to 10 years, 10 to 15 years). The calculations, especially with the kidney examinations, produced definite results, it could be illustrated that the nuclear medical examinations show a smaller amount of radiation as a radiological alternative, on intravenous urogram, for example. (author)

  4. Medical assistance in case of nuclear accident

    International Nuclear Information System (INIS)

    Dodig, D.; Tezak, S.; Kasal, B.; Huic, D.; Medvedec, M.; Loncaric, S.; Grosev, D.; Rozman, B.; Popovic, S.

    1996-01-01

    Medical service is a prerequisite for work license of nuclear installation. Every nuclear installation incorporate in their safety procedure also medical emergency plan. Usually the medical emergency plan consists of several degrees of action: 1. First aid, 2. First medical treatment, 3. Treatment in regional hospital, 4. Treatment in special institution (centre for radiation medicine). This paper discusses organization and activities of Centre for Radiation Medicine and Protection - Clinical Hospital Centre Zagreb

  5. An overview on extremity dosimetry in medical applications

    International Nuclear Information System (INIS)

    Vanhavere, F.; Carinou, E.; Donadille, L.; Ginjaume, M.; Jankowski, J.; Rimpler, A.; Sans Merce, M.

    2008-01-01

    Some activities of EURADOS Working Group 9 (WG9) are presently funded by the European Commission (CONRAD project). The objective of WG9 is to promote and co-ordinate research activities for the assessment of occupational exposures to staff at workplaces in interventional radiology (IR) and nuclear medicine. For some of these applications, the skin of the fingers is the limiting organ for individual monitoring of external radiation. Therefore, sub-group 1 of WG9 deals with the use of extremity dosemeters in medical radiation fields. The wide variety of radiation field characteristics present in a medical environment together with the difficulties in measuring a local dose that is representative for the maximum skin dose, usually with one single detector, makes it difficult to perform accurate extremity dosimetry. Sub-group 1 worked out a thorough literature review on extremity dosimetry issues in diagnostic and therapeutic nuclear medicine and positron emission tomography, interventional radiology and interventional cardiology and brachytherapy. Some studies showed that the annual dose limits could be exceeded if the required protection measures are not taken, especially in nuclear medicine. The continuous progress in new applications and techniques requires an important effort in radiation protection and training. (authors)

  6. Application of nuclear energy in Vietnam

    International Nuclear Information System (INIS)

    Van Thuan, V.

    2006-01-01

    Full text: Radioactive isotopes were introduced to medical treatment in Vietnam very early by M. Curie in 1923. A research reactor has been in operation since 1963 serving up to now an effective base for radioisotope production and nuclear analysis. After reunification of the country, the nuclear technique applications are developing faster and getting widespread. The twenty-year period from 1976 to 1995 was relatively limited by activity of R and D institutions. Nowadays, their interaction with companies demonstrates a dynamic commercialization of nuclear techniques in Vietnam. Investment from government as well as from the private sector has been increased significantly for the last ten years to nuclear medicine and radiotherapy. The radiographic NDT is getting a familiar technique to industry, particularly, in construction of strategy-important industrial and civil projects. NCS are upgraded in different factories, such as mining, ore processing and cement industries. Tracer techniques have shown benefit in oil offshore exploring and in sedimentation management of rivers and harbours. Isotope techniques are playing a competitive role for environmental monitoring and underground water management in the country. Radiation processing is transferred to a commercial scale emphasizing on sterilization of medical products and food preservation. There are still some problems such as public acceptance of radioactive techniques or a lack of both infrastructure and manpower to meet the national demands. However, the government of Vietnam has recently approved the national strategy for peaceful uses of atomic energy, which not only highlights the development of isotope and radiation applications in near future, but also clearly emphasizes the need of nuclear electrical generation by 2017-2020 for the national energy security

  7. Medical consequences of a nuclear plant accident

    International Nuclear Information System (INIS)

    Olsson, S.E.; Reizenstein, P.; Stenke, L.

    1987-01-01

    The report gives background information concerning radiation and the biological medical effects and damages caused by radiation. The report also discusses nuclear power plant accidents and efforts from the medical service in the case of a nuclear power plant accident. (L.F.)

  8. Medical activities at nuclear disaster. Experience in the accident of Fukushima nuclear power plant

    International Nuclear Information System (INIS)

    Hasegawa, Arifumi

    2013-01-01

    The Great East Japan Earthquake brought multiple disaster resulting nuclear accident at Fukushima. Existing medical system for emergency radiation exposure did not work well. Present medical system for the nuclear disaster is maintained temporary with supports by teams from regions other than Fukushima Pref. The radiation protection action must be both for the public and the medical persons. Medical activities for nuclear disaster are still in progress now. Medical system for radiation exposure should be maintained in future for works of decommissioning of reactors. Problems, however, may exist in economy and education of medical personnel. (K.Y.)

  9. What does the neurosurgeon expect from nuclear medical brain examinations

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, H.

    1985-12-01

    The management of neurosurgical diseases includes a number of measures influencing cerebral pressure, blood flow and metabolism such as hypothermia, hyperventilation, haemodilution, cerebral dehydration, administration of ganglion blockers, steroids, barbiturates - to mention only a few factors - the effect of which has not been proven, though. Combined use of current examination procedures and nuclear medical techniques will enable a critical review of some of these substances or measures in the future. Nuclear medical techniques serve to complement current procedures such as computerized tomography and angiography, thus providing new applications for diagnosis of, and clinical research into cerebral haemodynamics and cerebral metabolism. There is a need for more information about the relationship between the function, blood flow and metabolism of the human brain, especially in neurosurgical patients with craniocerebral traumas, tumours and cerebral ischemia.

  10. Clinical Training of Medical Physicists Specializing in Nuclear Medicine (Spanish Edition)

    International Nuclear Information System (INIS)

    2013-01-01

    The application of radiation in human health, for both diagnosis and treatment of disease, is an important component of the work of the IAEA. The responsibility for the increasingly technical aspects of this work is undertaken by the medical physicist. To ensure good practice in this vital area, structured clinical training programmes are required to complement academic learning. This publication is intended to be a guide to the practical implementation of such a programme for nuclear medicine. There is a general and growing awareness that radiation medicine is increasingly dependent on well trained medical physicists who are based in a clinical setting. However an analysis of the availability of medical physicists indicates a large shortfall of qualified and capable professionals. This is particularly evident in developing countries. While strategies to increase educational opportunities are critical to such countries, the need for guidance on structured clinical training was recognized by the members of the Regional Cooperative Agreement for Research, Development and Training related to Nuclear Science and Technology (RCA) for the Asia-Pacific region. Consequently, a technical cooperation regional project (RAS6038) under the RCA programme was formulated to address this need in this region by developing suitable material and establishing its viability. Development of a clinical training guide for medical physicists specialising in nuclear medicine was started in 2009 with the appointment of a core drafting committee of regional and international experts. The publication drew on the experience of clinical training in Australia, Croatia and Sweden and was moderated by physicists working in the Asian region. The present publication follows the approach of earlier IAEA publications in the Training Course Series, specifically Nos 37 and 47, Clinical Training of Medical Physicists Specializing in Radiation Oncology and Clinical Training of Medical Physicists

  11. Clinical Training of Medical Physicists Specializing in Nuclear Medicine (French Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    The application of radiation in human health, for both diagnosis and treatment of disease, is an important component of the work of the IAEA. The responsibility for the increasingly technical aspects of this work is undertaken by the medical physicist. To ensure good practice in this vital area, structured clinical training programmes are required to complement academic learning. This publication is intended to be a guide to the practical implementation of such a programme for nuclear medicine. There is a general and growing awareness that radiation medicine is increasingly dependent on well trained medical physicists who are based in a clinical setting. However an analysis of the availability of medical physicists indicates a large shortfall of qualified and capable professionals. This is particularly evident in developing countries. While strategies to increase educational opportunities are critical to such countries, the need for guidance on structured clinical training was recognized by the members of the Regional Cooperative Agreement for Research, Development and Training related to Nuclear Science and Technology (RCA) for the Asia-Pacific region. Consequently, a technical cooperation regional project (RAS6038) under the RCA programme was formulated to address this need in this region by developing suitable material and establishing its viability. Development of a clinical training guide for medical physicists specialising in nuclear medicine was started in 2009 with the appointment of a core drafting committee of regional and international experts. The publication drew on the experience of clinical training in Australia, Croatia and Sweden and was moderated by physicists working in the Asian region. The present publication follows the approach of earlier IAEA publications in the Training Course Series, specifically Nos 37 and 47, Clinical Training of Medical Physicists Specializing in Radiation Oncology and Clinical Training of Medical Physicists

  12. Radiation protection in medical applications

    International Nuclear Information System (INIS)

    Sacc, R.A.; Rubiolo, J.; Herrero, F.

    1998-01-01

    Full text: The goal of this paper is to identify the areas in which radiation protection is actually needed and the relative importance of protection measures. A correlation between the different medical applications of the ionizing radiations and the associated risks, mainly due to ignorance, has been a constant throughout the history of mankind. At the beginning, the accidents were originated in research nuclear laboratories working on the atomic bomb, while the incidents occurred in medical areas because of virtual ignorance of the harmful effects on humans. The 60's were characterized by the oil fever, which produced innumerable accidents due to the practice of industrial radiography; in the 70's the use of radiations on medical applications was intensified, to such and extent that a new type of victim appeared: the patient. Unfortunately, during 80's and 90's the number of accidents in different medical practices has increased, projecting the occurred in Zaragoza (Spain) on 1990 with a linear accelerator for radiotherapy treatments. In some developed countries, foreseeing the probability of producing biological effects as a result of different radiology practices, more strict security rules are adopted to guarantee the application of the three principles of the radioprotection: justification, optimization and limitation of individual dose. In this way, in the U.S.A., the Joint Commission on Accreditation of Health Care Organization (JCAHO), favors a vigilance politics in the different departments of Radiodiagnostic and Nuclear Medicine to secure an effective management in security, communications and quality control, in which the medical physicists play an important role. One of the requirements for example is to attach the value of entrance exposition dose in the radiological diagnostic report. So, the doses in the different organs are compared with the tabulated doses. Basically, a quality control programme is designed to minimize the risks for patients

  13. Nuclear isomers and their possible applications

    International Nuclear Information System (INIS)

    Jain, Ashok Kumar

    2016-01-01

    Nuclear isomers are the long lived excited states of nuclei having half-lives much larger than the half-lives of normal excited states. They are also known as the meta-stable states of atomic nuclei which are formed in nuclear reactions or, in radioactive decay of nuclei. Typical half-lives of isomers may range from nanoseconds to years. One of the most direct applications of nuclear isomers is in nuclear medicine. Radioisotopes are being widely used for imaging and therapeutic applications. They are particularly suitable for Single Photon Emission Computer Tomography (SPECT) imaging, where a single and relatively low energy γ ray photon is emitted. The most common example is "9"9"mTc (T_1_/_2 = 6 hours) which decays via a 142 keV γ ray photon. Examples of other isomers that are used in medical applications will be presented. Relatively long-lived isomers, such as "1"9"3"mPt and "1"9"5"mPt, for example, are being used in certain cancer treatments. Because of the high multi-pole order of the decaying transitions, most of the decays occur via internal conversion electrons, with subsequent emission of Auger electrons that can be used to kill various cancer cells. There are also some cases where the isomer decays by positron emission and is used for Positron Emission Tomography (PET) imaging

  14. Unusual events in the use of radioactive material at medical applications

    International Nuclear Information System (INIS)

    Czarwinski, R.

    2002-01-01

    In the Federal Republic of Germany unusual events in the use of radioactive materials and in the operation of accelerators outside the nuclear sector are evaluated centrally and published annually. At that evaluation it can be distinguished between the medical and non-medical application of ionising radiation. Around 3000 user of radioactive materials are registered in medicine including research and teaching. That means approximately 25% of all users in Germany. Firstly an overview on the number of unusual events in the last ten years is given for medical applications like afterloading, gamma irradiation, nuclear medicine, radiation sources and accelerators. The analysis of the incidents in the considered medical areas resulted in two categories-human error and technical break down. The main causes for the incidents which could be analysed are presented in the paper. Additionally the radiation exposures resulting from the incidents are considered. The analysis of these unusual events enables in dependence of the known information lessons learned to avoid similar errors. This feedback will be offered. (Author)

  15. Medical profession and nuclear war: a social history

    International Nuclear Information System (INIS)

    Day, B.; Waitzkin, H.

    1985-01-01

    Since World War II, individual physicians and medical organizations in the US have cooperated with the federal government in preparing for nuclear war. While most physicians have maintained a neutral stance, a minority have resisted federal policies. Health professionals participated actively at the wartime laboratories that developed the atomic bomb and in the medical research that followed Hiroshima and Nagasaki. Professional organizations helped with civil defense planning for nuclear conflict during the Cold War of the late 1950s and early 1960s. Medical resistance to nuclear war began in the same period, gained wide attention with the growth of Physicians for Social Responsibility in the early 1960s, declined during the Vietnam War, and vastly increased in the early 1980s. Activism by health professionals usually has responded to government policies that have increased the perceived risk of nuclear conflict. The recent return of civil defense planning has stimulated opposition in medical circles. Ambiguities of medical professionalism limit the scope of activism in the nuclear arena. These ambiguities concern the interplay of organized medicine and government, tensions between science and politics, and the difficulties of day-to-day work in medicine while the arms race continues

  16. Explanation of procedure on site medical emergency response for nuclear accident

    International Nuclear Information System (INIS)

    Liu Yulong; Jiang Zhong

    2012-01-01

    National occupational health standard-Procedure on Site Medical Emergency Response for Nuclear Accident has been approved and issued by the Ministry of Health. This standard is formulated according to the Emergency Response Law of the People's Republic of China, Law of the People 's Republic of China on Prevention and Control of Occupational Diseases, Regulations on Emergency Measures for Nuclear Accidents at Nuclear Power Plants, and Health Emergency Plans for Nuclear and Radiological Accidents of Ministry of Health, supporting the use of On-site Medical Emergency Planning and Preparedness for Nuclear Accidents and Off-site Medical Emergency Planning and Preparedness for Nuclear Accidents. Nuclear accident on-site medical response procedure is a part of the on-site emergency plan. The standard specifies the basic content and requirements of the nuclear accident on-site medical emergency response procedures of nuclear facilities operating units to guide and regulate the work of nuclear accident on-site medical emergency response of nuclear facilities operating units. The criteria-related contents were interpreted in this article. (authors)

  17. Public Health and Medical Preparedness for a Nuclear Detonation: The Nuclear Incident Medical Enterprise

    Science.gov (United States)

    Coleman, C. Norman; Sullivan, Julie M.; Bader, Judith L.; Murrain-Hill, Paula; Koerner, John F.; Garrett, Andrew L.; Weinstock, David M.; Case, Cullen; Hrdina, Chad; Adams, Steven A.; Whitcomb, Robert C.; Graeden, Ellie; Shankman, Robert; Lant, Timothy; Maidment, Bert W.; Hatchett, Richard C.

    2014-01-01

    Resilience and the ability to mitigate the consequences of a nuclear incident are enhanced by (1) effective planning, preparation and training; (2) ongoing interaction, formal exercises, and evaluation among the sectors involved; (3) effective and timely response and communication; and (4) continuous improvements based on new science, technology, experience and ideas. Public health and medical planning require a complex, multi-faceted systematic approach involving federal, state, local, tribal and territorial governments, private sector organizations, academia, industry, international partners, and individual experts and volunteers. The approach developed by the U.S. Department of Health and Human Services Nuclear Incident Medical Enterprise (NIME) is the result of efforts from government and nongovernment experts. It is a “bottom-up” systematic approach built on the available and emerging science that considers physical infrastructure damage, the spectrum of injuries, a scarce resources setting, the need for decision making in the face of a rapidly evolving situation with limited information early on, timely communication and the need for tools and just-in-time information for responders who will likely be unfamiliar with radiation medicine and uncertain and overwhelmed in the face of the large number of casualties and the presence of radioactivity. The components of NIME can be used to support planning for, response to, and recovery from the effects of a nuclear incident. Recognizing that it is a continuous work-in-progress, the current status of the public health and medical preparedness and response for a nuclear incident is provided. PMID:25551496

  18. The physical and physiological aspects of xenon isotopes in nuclear medical applicants

    International Nuclear Information System (INIS)

    Bolmsjoe, M.

    1981-11-01

    A method for trapping radioactive xenon waste from nuclear medical departments has been investigated. Adsorption of xenon acivitaded charcoal was found to be an efficient trapping method. A large gain in capacity was found when the trap was refrigerated, and permitted a large number of patient investigations before break-through of xenon occurred. By heating charcoal traps to 250-350 degrees C, adsorbed xenon gas is freed and is thus made available for re-use. A technique for room-air monitoring of xenon-leakage from patient investigations is described, where the room-air is continously pumped through a small charcoal filter, mounted close to a detector. The low gammaenergy of Xe-133, 81 keV, introduces problems for in vivo measurements due to the small differences in the energies of the primary and Compton-scattered photons. Influence of scatter and of hemispheric cross-talk was studied for cerebral blood-flow measurements. It was shown that substantial artefacts are introduced in the calculation of regional gray matter flow. The applicability of the xenon-washout technique for liver blood-flow measurements in rat was investigated. (author)

  19. Medical Applications

    OpenAIRE

    Biscari, C.; Falbo, L.

    2016-01-01

    The use of accelerators for medical applications has evolved from initial experimentation to turn-key devices commonly operating in hospitals. New applications are continuously being developed around the world, and the hadrontherapy facilities of the newest generation are placed at the frontier between industrial production and advanced R&D. An introduction to the different medical application accelerators is followed by a description of the hadrontherapy facilities, with special emphasis on ...

  20. X Latin American Symposium on Nuclear Physics and Applications. Book of Abstracts

    International Nuclear Information System (INIS)

    2013-12-01

    The 10th Latin American Symposium on Nuclear Physics and Applications will be held on December 1-6, 2013 in Montevideo, Uruguay. The symposium will be preceded by a School on Medical Physics, on November 29-30, 2013. The symposium is organized by the Universidad de la Repùblica, Montevideo, by the National Superconducting Cyclotron Laboratory, Michigan, USA, and by the Thomas Jefferson National Accelerator Facility, Virginia, USA. This is the tenth event in a series which were previously held in Venezuela, Colombia, Mexico, Brazil, Argentina, Peru, Chile and Ecuador. Traditionally, the purpose of these symposia is the dissemination of major theoretical and experimental advances in nuclear science, with emphasis on research topics carried out by Latin American groups or in collaborations involving institutions from Latin America. The topics of the symposium include: Nuclear and Hadron Structure and Interactions Nuclear Reactions and Phases of Nuclear Matter Nuclear and Particle Astrophysics Tests of Fundamental Symmetries and Properties of Neutrinos Nuclear Applications New Facilities and Instrumentation.The 10th Latin American Symposium on Nuclear Physics and Applications will be held on December 1-6, 2013 in Montevideo, Uruguay. The symposium will be preceded by a School on Medical Physics, on November 29-30, 2013. The symposium is organized by the Universidad de la República, Montevideo, by the National Superconducting Cyclotron Laboratory, Michigan, USA, and by the Thomas Jefferson National Accelerator Facility, Virginia, USA. This is the tenth event in a series which were previously held in Venezuela, Colombia, Mexico, Brazil, Argentina, Peru, Chile and Ecuador. Traditionally, the purpose of these symposia is the dissemination of major theoretical and experimental advances in nuclear science, with emphasis on research topics carried out by Latin American groups or in collaborations involving institutions from Latin America. The topics of the symposium include

  1. Medical management of nuclear disaster

    International Nuclear Information System (INIS)

    Kinugasa, Tatsuya

    1996-01-01

    This report briefly describes the measures to be taken other than ordinary duties when an accident happens in nuclear facilities such as atomic power plant, reprocessing plant, etc. Such nuclear disasters are assigned into four groups; (1) accidents in industrial levels, (2) accidents in which the workers are implicated, (3) accidents of which influence to environments should be taken into consideration and (4) accidents to which measures for inhabitants should be taken. Therefore, the measures to be taken at an emergency were also grouped in the following four; (1) treatments for the accident, itself, (2) measures to minimize the effects on the environment, (3) rescues of the victims and emergency cares for them and (4) measures and medical cares to protect the inhabitants from radiation exposure. Presently, medical professionals, especially doctors, nurses etc. are not accustomed to control nuclear contaminations. Therefore, it is needed for radiological professionals to actively provide appropriate advises about the control and measurement of contamination. (M.N.)

  2. Medical applications of synchrotron radiation

    International Nuclear Information System (INIS)

    Thomlinson, W.

    1991-10-01

    Ever since the first diagnostic x-ray was done in the United States on February 3, 1896, the application of ionizing radiation to the field of medicine has become increasingly important. Both in clinical medicine and basic research the use of x-rays for diagnostic imaging and radiotherapy is now widespread. Radiography, angiography, CAT and PETT scanning, mammography, and nuclear medicine are all examples of technologies developed to image the human anatomy. In therapeutic applications, both external and internal sources of radiation are applied to the battle against cancer. The development of dedicated synchrotron radiation sources has allowed exciting advances to take place in many of these applications. The new sources provide tunable, high-intensity monochromatic beams over a wide range of energies which can be tailored to specific programmatic needs. This paper surveys those areas of medical research in which synchrotron radiation facilities are actively involved

  3. Medical applications of synchrotron radiation

    International Nuclear Information System (INIS)

    Thomlinson, W.

    1992-01-01

    Ever since the first diagnostic X-ray was done in the United States on February 3, 1896, the application of ionizing radiation to the field of medicine has become incrasingly important. Both in clinical medicine and basic research the use of X-rays for diagnostic imaging and radiotherapy is now widespread. Radiography, angiography, CAT and PETT scanning, mammography, and nuclear medicine are all examples of technologies developed to image the human anatomy. In therapeutic applications, both external and internal sources of radiation are applied to the battle against cancer. The development of dedicated synchrotron radiation sources has allowed exciting advances to take place in many of these applications. The new sources provide tunable, high-intensity monochromatic beams over a wide range of energies which can be tailored to specific programmatic needs. This paper surveys those areas of medical research in which synchrotron radiation facilities are actively involved. (orig.)

  4. Radiochemistry and its application to nuclear medicine

    International Nuclear Information System (INIS)

    Welch, J.J.

    1990-01-01

    The role of the radiochemist in Nuclear Medicine has increased since the early 1960's. At that time the first medical 99 Mo/ 99m /Tc generator was developed at Brookhaven National Laboratory and the first hospital based cyclotron installed at Washington University. Radiochemists have been involved in both the development and application of generator and accelerator based radiopharmaceuticals. The development of oxygen-15, nitrogen 13, carbon-11 and fluorine-18 simple compound and synthetic precursors will be discussed. In recent years new high current accelerators have been proposed from Nuclear Medicine isotope production. Generator produced radiopharmaceuticals continue to play a major role in Nuclear Medicine. Problems in the development of targetry to produce parent nuclides as well as challenges in generator development will be described

  5. Discussion of environmental impact assessment for the nuclear technology application in hospital

    International Nuclear Information System (INIS)

    Li Shaoting; Xu Zhongyang

    2010-01-01

    Medical use of ionizing radiation has become the greatest artificial radiation in the world. Based on the characteristics of the nuclear technology application in hospital the content of the environmental impact assessment has been stated, including identification of the environmental impact factor, the standard, the environmental impact, control of the pollution as well. The dose of the medical staff which engaged in interventional operation and the accompanies of the patients which received nuclear medicine treatment should be focused on. (authors)

  6. Medical Imaging Informatics in Nuclear Medicine

    NARCIS (Netherlands)

    van Ooijen, Peter; Glaudemans, Andor W.J.M.; Medema, Jitze; van Zanten, Annie K.; Dierckx, Rudi A.J.O.; Ahaus, C.T.B. (Kees)

    2016-01-01

    Medical imaging informatics is gaining importance in medicine both in clinical practice and in scientific research. Besides radiology, nuclear medicine is also a major stakeholder in medical imaging informatics because of the variety of available imaging modalities and the imaging-oriented operation

  7. IAEA nuclear databases for applications

    International Nuclear Information System (INIS)

    Schwerer, Otto

    2003-01-01

    The Nuclear Data Section (NDS) of the International Atomic Energy Agency (IAEA) provides nuclear data services to scientists on a worldwide scale with particular emphasis on developing countries. More than 100 data libraries are made available cost-free by Internet, CD-ROM and other media. These databases are used for practically all areas of nuclear applications as well as basic research. An overview is given of the most important nuclear reaction and nuclear structure databases, such as EXFOR, CINDA, ENDF, NSR, ENSDF, NUDAT, and of selected special purpose libraries such as FENDL, RIPL, RNAL, the IAEA Photonuclear Data Library, and the IAEA charged-particle cross section database for medical radioisotope production. The NDS also coordinates two international nuclear data centre networks and is involved in data development activities (to create new or improve existing data libraries when the available data are inadequate) and in technology transfer to developing countries, e.g. through the installation and support of the mirror web site of the IAEA Nuclear Data Services at IPEN (operational since March 2000) and by organizing nuclear-data related workshops. By encouraging their participation in IAEA Co-ordinated Research Projects and also by compiling their experimental results in databases such as EXFOR, the NDS helps to make developing countries' contributions to nuclear science visible and conveniently available. The web address of the IAEA Nuclear Data Services is http://www.nds.iaea.org and the NDS mirror service at IPEN (Brasil) can be accessed at http://www.nds.ipen.br/ (author)

  8. Nuclear medical examinations

    International Nuclear Information System (INIS)

    Chiba, Kazuo; Yamada, Hideo

    1983-01-01

    Nuclear medical examinations for cerebral vascular diseases were outlined. These procedures developed associated with development of scanners, production of radionuclides and development of labelled compounds. Examination of cerebral circulation with 133 Xe and sup(87m)Kr was replaced by CT. Furthermore, emission CT developed. Each of brain scintiscan, measurement of regional cerebral blood flow, positron emission CT and single photon emission CT was reviewed. (Namekawa, K.)

  9. Applications of Nuclear Physics

    OpenAIRE

    Hayes, Anna C.

    2017-01-01

    Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that und...

  10. Physics of nuclear radiations concepts, techniques and applications

    CERN Document Server

    Rangacharyulu, Chary

    2013-01-01

    Physics of Nuclear Radiations: Concepts, Techniques and Applications makes the physics of nuclear radiations accessible to students with a basic background in physics and mathematics. Rather than convince students one way or the other about the hazards of nuclear radiations, the text empowers them with tools to calculate and assess nuclear radiations and their impact. It discusses the meaning behind mathematical formulae as well as the areas in which the equations can be applied. After reviewing the physics preliminaries, the author addresses the growth and decay of nuclear radiations, the stability of nuclei or particles against radioactive transformations, and the behavior of heavy charged particles, electrons, photons, and neutrons. He then presents the nomenclature and physics reasoning of dosimetry, covers typical nuclear facilities (such as medical x-ray machines and particle accelerators), and describes the physics principles of diverse detectors. The book also discusses methods for measuring energy a...

  11. Some advances in medical applications of low energy accelerators

    Science.gov (United States)

    Valković, V.; Moschini, G.

    1991-05-01

    Medical applications of low energy accelerators include: the use of nuclear analytical methods and procedures for laboratory studies and routine measurements; material productions and modifications to meet special requirements; radioisotope productions and their applications in radiopharmaceuticals as well as in positron emission tomography; and radiotherapy with ions, based on improved understanding of the interaction of charged particles with living tissue. Some of the recent advances in these fields are critically summarized. The plan for an improved charged particle facility in a hospital environment dedicated to applications in biology and medicine is presented.

  12. Radiation sensors for medical, industrial and environmental applications: how to engage with schools and the general public

    Science.gov (United States)

    Seitz, B.; Campos Rivera, N.; Gray, R.; Powell, A.; Thomson, F.

    2018-01-01

    Radiation, radiation detection and radiation protection are topics in physics and its applications which generate a wide interest in the public. This interest is either generated through medical procedures, applications of nuclear energy or nuclear accidents. The technical nature of these topics usually means that they are not well covered in the normal education stream, opening many opportunities to engage with schools and the general public to showcase the latest developments and their applications. The detection of radiation is at the very heart of understanding radiation, its fascination and associated fears. The outreach group of the nuclear physics group at the University of Glasgow demonstrates a number of successful outreach activities centred around radiation detection and described in this paper, focusing on activities delivered to a variety of audiences and related to applied nuclear physics work within our group. These concentrate on the application of novel sensor technologies for nuclear decommissioning, medical imaging modalities and the monitoring of environmental radioactivity. The paper will provide some necessary background material as well as practical instructions for some of the activities developed.

  13. IAEA activities in nuclear medicine and related medical applications of nuclear techniques

    International Nuclear Information System (INIS)

    Dudley, R.A.

    1986-01-01

    One of the objectives of the International Atomic Energy Agency, as specified in its Statute, is to ''enlarge the contribution of atomic energy to peace, health and prosperity throughout the world.'' Its programmes in human health include both the exploitation and measurement of radiation fields (radiotherapy and dosimetry) and the use of radionuclides in an investigative or tracer role (the primary subject of this Symposium). The Agency carries out its programmes by means of several mechanisms. The technical co-operation programme, responding to requests for support from governments of Member States, is the dominant mechanism. Through it, experts may be made available to introduce new skills to a laboratory; essential equipment may be provided; and training may be organized in various forms. A second mechanism is the research contract programme, providing financial support to individual laboratories for particular research projects. A third mechanism is information exchange: scientific meetings, publications and the nuclear abstracts service of the International Nuclear Information System (INIS). In the field covered by this Symposium, the technical content of the projects supported by the Agency using these mechanisms may be classed in several categories. One domain that penetrates all others is instrumentation: selection, quality control and maintenance to prevent or correct breakdowns. Another category of activity, requiring the least sophisticated technology, is radioimmunoassay and related procedures. A third category involves the use of radionuclides in vivo, notably the classic applications of nuclear medicine in diagnosing the health status of individual patients, but including also investigation of the nature and aetiology of disease. A fourth category of project includes the study of the biological role of trace elements, especially by neutron activation analysis

  14. Nuclear medical physics

    International Nuclear Information System (INIS)

    Williams, L.E.

    1987-01-01

    This three-volume set covers the physical basis of nuclear medicine, and is intended as a source of data for practicing scientists and physicians as well as those beginning their careers or simply studying nuclear medical physics. It leads the reader from quantum theory to the production and attenuation of ionizing radiation; considers dosimetry and the most recent assessment of biological effects of such particles; describes in detail detector materials, signal analysis, and gamma cameras; includes extensive discussions of bone mineral measurement as well as magnetic resonance imaging; covers limited angle, rotating camera, and positron tomography; presents quality assurance and statistical theory with an eye toward enhanced departmental operations; and features descriptions of functional imaging and the psychophysical basis of diagnosis

  15. Promoting the development of nuclear technology application in China

    International Nuclear Information System (INIS)

    Wang Naiyan

    2004-01-01

    The application of nuclear technology in China has been playing important parts in the fields of military, industry, agriculture, medical science, life science, material science, environment protection, etc. However, comparing with some advanced countries and to satisfy the need of national economy China still has a long way to go

  16. Medical Applications

    CERN Document Server

    Biscari, C.

    2014-12-19

    The use of accelerators for medical applications has evolved from initial experimentation to turn-key devices commonly operating in hospitals. New applications are continuously being developed around the world, and the hadrontherapy facilities of the newest generation are placed at the frontier between industrial production and advanced R&D. An introduction to the different medical application accelerators is followed by a description of the hadrontherapy facilities, with special emphasis on CNAO, and the report closes with a brief outlook on the future of this field.

  17. Medical Applications

    International Nuclear Information System (INIS)

    Biscari, C; Falbo, L

    2014-01-01

    The use of accelerators for medical applications has evolved from initial experimentation to turn-key devices commonly operating in hospitals. New applications are continuously being developed around the world, and the hadrontherapy facilities of the newest generation are placed at the frontier between industrial production and advanced R&D. An introduction to the different medical application accelerators is followed by a description of the hadrontherapy facilities, with special emphasis on CNAO, and the report closes with a brief outlook on the future of this field

  18. Clinical Training of Medical Physicists Specializing in Nuclear Medicine (Spanish Edition); Capacitacion clinica de fisicos medicos especialistas en medicina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-15

    The application of radiation in human health, for both diagnosis and treatment of disease, is an important component of the work of the IAEA. The responsibility for the increasingly technical aspects of this work is undertaken by the medical physicist. To ensure good practice in this vital area, structured clinical training programmes are required to complement academic learning. This publication is intended to be a guide to the practical implementation of such a programme for nuclear medicine. There is a general and growing awareness that radiation medicine is increasingly dependent on well trained medical physicists who are based in a clinical setting. However an analysis of the availability of medical physicists indicates a large shortfall of qualified and capable professionals. This is particularly evident in developing countries. While strategies to increase educational opportunities are critical to such countries, the need for guidance on structured clinical training was recognized by the members of the Regional Cooperative Agreement for Research, Development and Training related to Nuclear Science and Technology (RCA) for the Asia-Pacific region. Consequently, a technical cooperation regional project (RAS6038) under the RCA programme was formulated to address this need in this region by developing suitable material and establishing its viability. Development of a clinical training guide for medical physicists specialising in nuclear medicine was started in 2009 with the appointment of a core drafting committee of regional and international experts. The publication drew on the experience of clinical training in Australia, Croatia and Sweden and was moderated by physicists working in the Asian region. The present publication follows the approach of earlier IAEA publications in the Training Course Series, specifically Nos 37 and 47, Clinical Training of Medical Physicists Specializing in Radiation Oncology and Clinical Training of Medical Physicists

  19. Nuclear and radiochemistry fundamentals and applications

    CERN Document Server

    Lieser, Karl Heinrich

    2001-01-01

    his new edition of the best-selling handbook gives a complete and concise description of the latest knowledge on nuclear and radiochemistry as well as their applications in the various fields of science. It is based on over 40 years experience in teaching courses and research.The book is aimed at all researchers seeking sound knowledge about the properties of matter, whether chemists, physicists, medical doctors, mineralogists or biologists. All of them will find this a valuable source of information

  20. Medical and policy considerations for nuclear and radiation accidents, incidents and terrorism.

    Science.gov (United States)

    Gale, Robert Peter

    2017-11-01

    The purpose of this review is to address the increasing medical and public concern regarding the health consequences of radiation exposure, a concern shaped not only by fear of another Chernobyl or Fukushima nuclear power facility accident but also by the intentional use of a nuclear weapon, a radiological dispersion device, a radiological exposure device, or an improved nuclear device by rogue states such as North Korea and terrorist organizations such as Al Qaeda and ISIS. The United States has the medical capacity to respond to a limited nuclear or radiation accident or incident but an effective medical response to a catastrophic nuclear event is impossible. Dealing effectively with nuclear and radiation accidents or incidents requires diverse strategies, including policy decisions, public education, and medical preparedness. I review medical consequences of exposures to ionizing radiations, likely concomitant injuries and potential medical intervention. These data should help haematologists and other healthcare professionals understand the principles of medical consequences of nuclear terrorism. However, the best strategy is prevention.

  1. The waste originating from nuclear energy peaceful applications and its management

    International Nuclear Information System (INIS)

    Souza, Jair Albo Marques de

    1997-05-01

    This work presents the waste originating from nuclear energy and its management. It approaches the following main topics: nature and classification of the wastes; security requirements to the waste management; state of the art related to the wastes derivates of the uses of the nuclear energy; wastes in the fuel cycle; wastes of the industrial, medical and research and development applications; costs of the waste management

  2. Clinical applications of PET-CT in nuclear medicine to medical specialists

    International Nuclear Information System (INIS)

    2012-08-01

    This regional training course about Clinical Applications of PET-Tc in nuclear medicine include: imaging, pathology, scintigraphy, computed tomography, radiology, endoscopy, magnetic resonance, biopsy, and histology. It also describes pathologies and diseases of organs and bone structures such as: musculoskeletal and osseous damage, tumors, fibroids, metastasize, neoplasm, adenopathies and cancer of liver, brain, glands, kidney, neck, thorax, lungs, uterus, ovaries, craniums, hypophysis etc

  3. Upgradation of nuclear medical equipment in the developing countries and its impact in Bangladesh

    International Nuclear Information System (INIS)

    Jahangir, Saleh Mahmud; Xie, Y.; Uddin, Md. Rokon; Haque, Mohammod Abu Sayid; Hoq, Mahbubul; Mawla, Yasmeen; Alom, Md. Zahangir; Morium, Tasnim

    2002-11-01

    Bangladesh has thirteen Nuclear Medical Centres and one Institute of Nuclear Medicine in the country which are being run and maintained by the physicians scientists and engineers of Bangladesh Atomic Energy Commission. The peaceful application of atomic energy was initiated through all these Centres with the use of clinical isotopes for thyroid and kidney studies. The equipment used for these purposes were the thyroid uptake system, rectilinear scanner and the multiprobe renogram system. The first gamma camera was installed in the country in 1980 at the Institute of Nuclear Medicine, Dhaka. That was the turning point for the country in the field of nuclear medicine. Presently all the nuclear medical establishments are equipped least with a gamma camera, thyroid uptake system and a renogram system. In the last two decades there has been a tremendous development in the design of nuclear medical equipment. Most of the old equipments were slow and manually operated. In the beginning of nineties of the past century there was an uprising in the computer technology and most of the manually operated machines were brought under computerization. It was basically done with a custom built processor to perform only the specific job and spare the users from doing some extra manual work. But the performances of the recent models of the same computerized equipment are by far the best as compared with the past ones. This report describes the role of the IAEA in the upgradation of medical equipment, PC interfacing, upgrading of old gamma cameras and the technological and socio-economic impact in Bangladesh

  4. European union legislation in medical application of ionizing radiation and radiation protection

    International Nuclear Information System (INIS)

    Vanlic-Razumenic, N.; Pavlovic, R.; Plecas, I.

    1999-01-01

    The most important aspects of the latest EU legislation concerning medical application of ionizing radiation, with the special emphasis on nuclear medicine are presented in this paper. The EU member countries will start to apply this regulation on 13 th May 2000. Our legislation is already adjusted to IAEA standards and ICRP Recommendation. Those regulations are of special concerns in the Radioisotope Laboratory of The Vinca Institute of Nuclear Sciences. (author)

  5. Commentary from Westminster. Medical effects of nuclear war.

    Science.gov (United States)

    Deitch, R

    1983-03-12

    A British Medical Association report on the medical consequences of nuclear war, scheduled for commercial publication in April 1983, could damage the Government's arguments for maintaining a nuclear deterrent. The gist of the BMA's findings is that Britain could not possibly cope with the aftermath of nuclear attack. Although Prime Minister Thatcher has made no comment, both the Home Office and the Department of Health and Social Security have criticized the report's negative conclusions. The BMA is expected to take up the issue at its annual meeting, and the Labour party has called for a Parliamentary debate on the report and its implications.

  6. Pre-grade academic project: Technicature in nuclear applications

    International Nuclear Information System (INIS)

    Daoud, Adrian; Garcia Blesa, Hernan M.; Lerner, Ana M.; Notari, Carla

    2009-01-01

    The increasing use of radiation and radioactive materials in the world today has created a demand of Specialized Nuclear Technicians. Both at the international level and locally in Argentina, such demand is expected to continue being significant for several years, and at present it already exceeds the offer of qualified personnel, which constitutes an interesting stimulus for graduates. For this reason, the Dan Beninson Nuclear Technology Institute has decided to accept the challenge of educating specialized technicians, and has thus designed a new pre-grade career: the Technicature in Nuclear Applications. The basis of this proposal is to design a three year high level specific training program in order to produce highly qualified technicians with a title issued by our Institute, offer the students a unique education with interesting working opportunities and required in all those areas that in one way or other are related to radiation and radioactive materials. No equivalent academic offer is in place today at university level. Due to the renaissance of nuclear activity and the subsequent increasing use of radioisotopes and radiation in technological applications as well as in energy generation, medical applications, agriculture, pharmacology, among others, it has become mandatory to train specialized human resources in this field. Having these goals in mind, our Institute has created this career, with the purpose of satisfying such request which will benefit the whole society. (author)

  7. Radiotracers for medical applications

    International Nuclear Information System (INIS)

    Rayudu, G.A.S.

    1983-01-01

    This book discusses the medical applications of radiotracers. Diagnostic uses and pharmacokinetics of isotopes and radiopharmaceuticals is emphasized. The volume one covers the following topics: Radiohalogenated compounds, including radioiodine; Tc-labeled compounds; and in-house prepared radiopharmaceuticals. The charge particle range vs. energy in every element is tabulated for protons for cyclotrons users. Discussions are also provided on nonimaging radiotracer methods; /sup 11/C, /sup 13/N, /sup 15/O, /sup 67/Ga. /sup 111/In, /sup 75/Se, /sup 123m/Te compounds; radioactive noble gases; and miscellaneous radiotracers for imaging. Vol. II: Pertinent nuclear science data such as radiation dosimetry, radionuclide production modes, radionuclides for therapy, human experimentation regulations and consent forms, and radiotracer laboratory designs are presented. 272 pp., 7 x 10, 1983, ISBN-0-8493-6016-1

  8. Medical imaging. From nuclear medicine to neuro-sciences

    International Nuclear Information System (INIS)

    2003-03-01

    Nuclear medicine and functional imaging were born of the CEA's ambition to promote and develop nuclear applications in the fields of biology and health. Nuclear medicine is based on the use of radioactive isotopes for diagnostic and therapeutic purposes. It could never have developed so rapidly without the progress made in atomic and nuclear physics. One major breakthrough was the discovery of artificial radioelements by Irene and Frederic Joliot in 1934, when a short-lived radioactive isotope was created for the first time ever. Whether natural or synthetic, isotopes possess the same chemical properties as their non-radioactive counterparts. The only difference is that they are unstable and this instability causes disintegration, leading to radiation emission. All we need are suitable detection tools to keep track of them. 'The discovery of artificial radioelements is at the root of the most advanced medical imaging techniques'. The notion of tracer dates back to 1913. Invented by George de Hevesy, it lies at the root of nuclear medicine. By discovering how to produce radioactive isotopes, Irene and Frederic Joliot provided biology researchers with nuclear tools of unrivalled efficiency. Today, nuclear medicine and functional imaging are the only techniques capable of giving us extremely precise information about living organisms in a non-traumatic manner and without upsetting their balance. Positron emission tomography (PET) and nuclear magnetic resonance imaging (MRI) are the main imaging techniques used at the CEA in its neuro-imaging research activities. These techniques are now developing rapidly and becoming increasingly important not only in the neuroscience world, but also for innovative therapies and cancer treatment. (authors)

  9. Planning of emergency medical treatment in nuclear power plant

    International Nuclear Information System (INIS)

    Kusama, Tomoko

    1989-01-01

    Medical staffs and health physicists have shown deep concerning at the emergency plans of nuclear power plants after the TMI nuclear accident. The most important and basic countermeasure for accidents was preparing appropriate and concrete organization and plans for treatment. We have planed emergency medical treatment for radiation workers in a nuclear power plant institute. The emergency medical treatment at institute consisted of two stages, that is on-site emergency treatment at facility medical service. In first step of planning in each stage, we selected and treatment at facility medical service. In first step of planning in each stage, we selected and analyzed all possible accidents in the institute and discussed on practical treatments for some possible accidents. The manuals of concrete procedure of emergency treatment for some accidents were prepared following discussion and facilities and equipment for medical treatment and decontamination were provided. All workers in the institute had periodical training and drilling of on-site emergency treatment and mastered technique of first aid. Decontamination and operation rooms were provided in the facillity medical service. The main functions at the facility medical service have been carried out by industrial nurses. Industrial nurses have been in close co-operation with radiation safety officers and medical doctors in regional hospital. (author)

  10. 41 Polish Seminar on Nuclear Magnetic Resonance and Its Applications - Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    The Report consist of abstracts of 63 communications presented during the 41 Polish Seminar on Nuclear Magnetic Resonance and Its Applications, held on December 1-2, 2008 in Cracow. Presentations cover a variety of research fields, including magnetic resonance imaging in vivo, applications of NMR spectroscopy to medical diagnosis, studies on molecular properties of different materials as well as quantum chemical calculations of NMR parameters.

  11. 41 Polish Seminar on Nuclear Magnetic Resonance and Its Applications - Abstracts

    International Nuclear Information System (INIS)

    2008-01-01

    The Report consist of abstracts of 63 communications presented during the 41 Polish Seminar on Nuclear Magnetic Resonance and Its Applications, held on December 1-2, 2008 in Cracow. Presentations cover a variety of research fields, including magnetic resonance imaging in vivo, applications of NMR spectroscopy to medical diagnosis, studies on molecular properties of different materials as well as quantum chemical calculations of NMR parameters

  12. The role of electromagnetic separators in the production of radiotracers for bio-medical research and nuclear medical application

    CERN Document Server

    Beyer, Gerd-Jürgen

    2003-01-01

    With the growing complexity of positron emission tomography/single photon emission computed tomography imaging and the new developments in systemic radionuclide therapy there is a growing need for radioisotope preparations with higher radiochemical and radionuclidic purity that has not been achievable before. Especially important for the new applications is the specific activity of the radiotracer. Conventional methods in medical isotope production have reached their technical limitations. The role of isotope separators is discussed with examples of typical production and characterization experiments conducted at the ISOLDE and TRIUMF facilities. These preliminary experiments indicate that isotope separators have a definite role to play in the future for the production of radioisotopes for biomedical research and medical application.

  13. Peaceful applications of nuclear explosions

    International Nuclear Information System (INIS)

    Wallin, L.B.

    1975-12-01

    The intension of this report is to give a survey of the field of peaceful applications of nuclear explosions. As an introduction some examples of possibilities of application are given together with a simple description of nuclear explosions under ground. After a summary of what has been done and will be done in this field nationally and internationally, a short discussion of advantages and problems with peaceful application of nuclear explosions follows. The risks of spreading nuclear weapons due to this applications are also touched before the report is finished with an attempt to judge the future development in this field. (M.S.)

  14. Summary Report of Consultants' Meeting on Auger Electron Emission Data Needs for Medical Applications

    International Nuclear Information System (INIS)

    Noy, Roberto Capote; Chung, Hyun Kyung; Bartschat, Klaus; Dong, Chenzhong; Jonsson, Per; Kibedi, Tibor; Kondev, Filip G.; Nikjoo, Hooshang; Palffy, Adriana

    2013-11-01

    A summary is given of a Consultants' Meeting on 'Auger Electron Emission Data Needs for Medical Applications'. Participants assessed and reviewed detailed atomic and nuclear data needs for a number of Auger emitters deemed as potentially suitable for applications in nuclear medicine and radiotherapy. Technical discussions are described in this report, along with recommendations for future work, along with recommendations for future work. Presentations by the consultants at the meeting are available at http://www-nds.iaea.org/index-meeting-crp/CM-Auger-2013/. (author)

  15. Nuclear medical investigations of renal transplants in dogs

    International Nuclear Information System (INIS)

    Chocholka, T.G.K.

    1981-01-01

    Within the frame of this study it was investigated if it is possible - by means of nuclear medicine - to assess transplant function after xenogenic (heterologic) renal transplantation, to early diagnose complications and to observe organ function in follow-up examinations. The examination comprised camera-function-scintiscanning (=CFS), i.e. camera-sequence-scintiscanning (=CSS) and radio-isotope-nephrography (=RING), and the clearance measurement, which were carried out in parallel, as one operation. The clearance measurement based on tissue activity decrease graphs, which were registered by means of a body probe. Hippuran iodine 131 was used as radiopharmaceutical which usually is eliminated by the kidneys. In 112 examinations 33 dogs, who had received a fox kidney transplant, were investigated, starting on the day of surgical intervention until the transplant dysfunction was confirmed. These dogs had been treated in advance with immunosuppressive agents: a control group of 8 dogs, who received renal transplants of dingos, were not treated with immunosuppressants. The CFS as simultaneous realisation of CSS and of RING and the clearance measurement by means of hippuran iodine 131 achieved the examination aims. CSS permitted a sufficient survey over the individual functional phases. RING allows the early diagnosis of complications due to transplantation. The nuclear medical findings of camera-functional-scintiscanning and of clearance measurement show correspondence and they correspond also well to those findings resulting from traditional examination techniques which were applied in parallel. This procedure distinguishes itself not only by the diagnostic liability of nuclear medical examination methods, but also by its uncomplicated application, which permits the careful treatment of the dogs. (orig./MG) [de

  16. Nuclear model developments in FLUKA for present and future applications

    Science.gov (United States)

    Cerutti, Francesco; Empl, Anton; Fedynitch, Anatoli; Ferrari, Alfredo; Ruben, GarciaAlia; Sala, Paola R.; Smirnov, George; Vlachoudis, Vasilis

    2017-09-01

    The FLUKAS code [1-3] is used in research laboratories all around the world for challenging applications spanning a very wide range of energies, projectiles and targets. FLUKAS is also extensively used for in hadrontherapy research studies and clinical planning systems. In this paper some of the recent developments in the FLUKAS nuclear physics models of relevance for very different application fields including medical physics are presented. A few examples are shown demonstrating the effectiveness of the upgraded code.

  17. Medical Radioisotopes Production Without A Nuclear Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Van der Keur, H.

    2010-05-15

    This report is answering the key question: Is it possible to ban the use of research reactors for the production of medical radioisotopes? Chapter 2 offers a summarized overview on the history of nuclear medicine. Chapter 3 gives an overview of the basic principles and understandings of nuclear medicine. The production of radioisotopes and its use in radiopharmaceuticals as a tracer for imaging particular parts of the inside of the human body (diagnosis) or as an agent in radiotherapy. Chapter 4 lists the use of popular medical radioisotopes used in nuclear imaging techniques and radiotherapy. Chapter 5 analyses reactor-based radioisotopes that can be produced by particle accelerators on commercial scale, other alternatives and the advantages of the cyclotron. Chapter 6 gives an overview of recent developments and prospects in worldwide radioisotopes production. Chapter 7 presents discussion, conclusions and recommendations, and is answering the abovementioned key question of this report: Is it possible to ban the use of a nuclear reactor for the production of radiopharmaceuticals? Is a safe and secure production of radioisotopes possible?.

  18. Nuclear battery materials and application of nuclear batteries

    International Nuclear Information System (INIS)

    Hao Shaochang; Lu Zhenming; Fu Xiaoming; Liang Tongxiang

    2006-01-01

    Nuclear battery has lots of advantages such as small volume, longevity, environal stability and so on, therefore, it was widely used in aerospace, deep-sea, polar region, heart pacemaker, micro-electromotor and other fields etc. The application of nuclear battery and the development of its materials promote each other. In this paper the development and the latest research progress of nuclear battery materials has been introduced from the view of radioisotope, electric energy conversion and encapsulation. And the current and potential applications of the nuclear battery are also summarized. (authors)

  19. Nuclear, biological and chemical warfare. Part I: Medical aspects of nuclear warfare.

    Science.gov (United States)

    Kasthuri, A S; Pradhan, A B; Dham, S K; Bhalla, I P; Paul, J S

    1990-04-01

    Casualties in earlier wars were due much more to diseases than to weapons. Mention has been made in history of the use of biological agents in warfare, to deny the enemy food and water and to cause disease. In the first world war chemical agents were used to cause mass casualties. Nuclear weapons were introduced in the second world war. Several countries are now involved in developing nuclear, biological and chemical weapon systems, for the mass annihilation of human beings, animals and plants, and to destroy the economy of their enemies. Recently, natural calamities and accidents in nuclear, chemical and biological laboratories and industries have caused mass instantaneous deaths in civilian population. The effects of future wars will not be restricted to uniformed persons. It is time that physicians become aware of the destructive potential of these weapons. Awareness, immediate protective measures and first aid will save a large number of persons. This series of articles will outline the medical aspects of nuclear, biological and chemical weapon systems in three parts. Part I will deal with the biological effects of a nuclear explosion. The short and long term effects due to blast, heat and associated radiation are highlighted. In Part II, the role of biological agents which cause commoner or new disease patterns is mentioned. Some of the accidents from biological warfare laboratories are a testimony to its potential deleterious effects. Part III deals with medical aspects of chemical warfare agents, which in view of their mass effects can overwhelm the existing medical resources, both civilian and military.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Advanced Nuclear Applications in Medicinr at Chiang Mai University

    International Nuclear Information System (INIS)

    Vilasdechanon, Nonglak

    2015-01-01

    The atomic energy applications in Faculty of Medicine, Chiang Mai University (CMU) are mainly performed by department of Radiology that is divided into three dicisions: 1) Diagnostic Radiology Division for the applications of X-rays, ultrasound, and magnetic resonance, 2) Therapeutic Radiology and Oncology Division for cancer treatments by photon accelrator and external radionuclides therapy or brachytherapy, 3) Nuclear Meddicine Division for clinical dignosis by using radionuclide scintigraphy, targeted molecular imaging and internal radionuclide therapy. In the last decade, many advanced medical images for clinical diagnosis included of digital & computed radiology (DR & CR), digital subtraction angiography (DSA) and images (DSI), computed tomography (CT) with dual X-rays energies, manetic resonance imaging (MRI), and hybrid images of SPECT/CT were established in Radiology Department and PET/CT Cyclitron Center Chiang Mai University (PCCMU), respectively. For cancer treatments, the frontier technologies in radiation oncligy therapy such as tomotherapy, IMRT, 3D conformal radiation treatment, stereotactic radiationtherapy (SRT), stereotactic radiation surgery (SRS), and radiation biology laboratory were implemented in the department as well. As far as fast development of nuclear technology in medicine, future implementation of advanced nuclear applications in medicine strongly need an intergrated knoowledge from many specialties e.g. computer softeare in image reconstruction, accuracy and and precision technology, production of specific radiotracers for molecular imaging and therapy, techniques in radionuclide productions, innovation of new wquipment or materials for radiationprotection and safety, etc. However the most important factors of nuclear applications in medicine are the vision, mission and the value statements of the organization on the high cost in radiology investment and human resources development. We have to emphasize that people who are involved

  1. Nuclear Technology applications

    International Nuclear Information System (INIS)

    Cibils Machado, W. E- mail: wrcibils@adinet.com.uy

    2002-01-01

    The present work tries on the applications of the nuclear technology in the life daily, such as agriculture and feeding, human health, industry, non destructive essays, isotopic hydrology, and the nuclear power stations for electricity production and radioisotopes production

  2. Medical rescue for nuclear or radiologic emergencies

    International Nuclear Information System (INIS)

    Chen Xiaohua; Nie Suifeng

    2011-01-01

    Nuclear or radiologic emergencies are defined as incidents that are caused by radioactive substance or by other sources of radiation and can pose a serious hazard to public health. In case of nuclear or radiologic emergencies, radioactive rays will damage the human body and bring about psychological and mental stress, resulting in a series of social psychological effects. The key to medical rescue for nuclear or radiologic emergencies is to take effective measures which can minimize the body harm resulting from nuclear or radiologic emergencies and maintain social stability. This article reviews the personnel protection, on-the-spot salvage, treatments of various harm, and prevention of public psychological effect following nuclear or radiologic emergencies. (authors)

  3. Nuclear medical examinations in Marfan's syndrome

    International Nuclear Information System (INIS)

    D'haene, E.G.M.

    1985-01-01

    Four patients of one family with the Marfan's syndrome have been examined with nuclear medical techniques. A combination of isotopes, angiography and ECG triggered bloodpoolscintigraphy with echocardiography are very suitable to examine the course of the disease. (Auth.)

  4. Novel scintillators and silicon photomultipliers for nuclear physics and applications

    International Nuclear Information System (INIS)

    Jenkins, David

    2015-01-01

    Until comparatively recently, scintillator detectors were seen as an old-fashioned tool of nuclear physics with more attention being given to areas such as gamma-ray tracking using high-purity germanium detectors. Next-generation scintillator detectors, such as lanthanum bromide, which were developed for the demands of space science and gamma- ray telescopes, are found to have strong applicability to low energy nuclear physics. Their excellent timing resolution makes them very suitable for fast timing measurements and their much improved energy resolution compared to conventional scintillators promises to open up new avenues in nuclear physics research which were presently hard to access. Such 'medium-resolution' spectroscopy has broad interest across several areas of contemporary interest such as the study of nuclear giant resonances. In addition to the connections to space science, it is striking that the demands of contemporary medical imaging have strong overlap with those of experimental nuclear physics. An example is the interest in PET-MRI combined imaging which requires putting scintillator detectors in a high magnetic field environment. This has led to strong advances in the area of silicon photomultipliers, a solid-state replacement for photomultiplier tubes, which are insensitive to magnetic fields. Broad application to nuclear physics of this technology may be foreseen. (paper)

  5. Manual on nuclear gauges. Incorporating: Applications guide, procedures guide, basics guide

    International Nuclear Information System (INIS)

    1996-01-01

    This publication is part of practical radiation safety manual series for different fields of application aimed primarily at persons handling radiation sources on a daily routine basis, which could at same time be used by the competent authorities, supporting their efforts in the radiation protection training of workers or medical assistance personnel or helping on-site management to set up local radiation protection rules. It is dedicated to nuclear gauges: their application and procedures guides

  6. New medical application: nuclear scattering radiography

    International Nuclear Information System (INIS)

    Saudinos, J.

    1977-01-01

    Nuclear scattering of 1 GeV protons is used to obtain three dimensional radiographies with a volume resolution of about 1 mm 3 . The information is different from the one given by X-ray radiographies and in particular one may get radiographies of the hydrogen included in objects. Results on a vertebral column and a 'sella turcica' are presented [fr

  7. Nuclear cratering applications

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, M M [U.S. Atomic Energy Commission, Germantown, MD (United States)

    1969-07-01

    The development of nuclear excavation technology is based on the promise that the relatively inexpensive energy available from thermonuclear explosives can be used to simultaneously break and move age quantities of rock and earth economically and safety. This paper discusses the economic and other advantages of using nuclear excavation for large engineering projects. A brief description of the phenomenology of nuclear excavation is given. Each of the several proposed general applications of nuclear excavation is discussed to include a few specific example of possible nuclear excavation projects. The discussion includes nuclear excavation for harbors, canals, terrain transits, aggregate production, mining and water resource development and conservation. (author)

  8. Nuclear cratering applications

    International Nuclear Information System (INIS)

    Williamson, M.M.

    1969-01-01

    The development of nuclear excavation technology is based on the promise that the relatively inexpensive energy available from thermonuclear explosives can be used to simultaneously break and move age quantities of rock and earth economically and safety. This paper discusses the economic and other advantages of using nuclear excavation for large engineering projects. A brief description of the phenomenology of nuclear excavation is given. Each of the several proposed general applications of nuclear excavation is discussed to include a few specific example of possible nuclear excavation projects. The discussion includes nuclear excavation for harbors, canals, terrain transits, aggregate production, mining and water resource development and conservation. (author)

  9. Nuclear risk: information of medical practitioners in Isere Department. Impact of the booklet: 'doctors and nuclear risk'

    International Nuclear Information System (INIS)

    Jonquet, M.E.

    1990-02-01

    In this thesis, the author first presents 'Isere, pilot department' operation, then the importance of nuclear risks in Isere, considers the role and place of medical practitioners in the management of this risk and in information request of medical personnel. The author also presents the booklet 'Doctors and nuclear risk' and analyzes the results of study on its impact close to medical population. 9 tabs., 25 figs

  10. Recommended numerical nuclear physics data for cutting-edge nuclear technology applications

    International Nuclear Information System (INIS)

    Ganesan, S.; Srivenkatesan, R.; Anek Kumar; Murthy, C.S.R.C.; Dhekne, P.S.

    2005-01-01

    This paper introduces some aspects of online nuclear data services at Mumbai as part of today's technology of sharing knowledge of the recommended numerical nuclear physics data for nuclear applications. The physics foundation for cutting-edge technology applications is significantly strengthened by such knowledge generation and sharing techniques. A BARC server is presently mirroring the nuclear data services of the IAEA, Vienna. The users can get all the nuclear data information much faster from the BARC nuclear data mirror website that is now fully operational. The nuclear community is encouraged to develop the habit of accessing the website for recommended values of nuclear data for use in research and applications. The URL is: www-nds.indcentre.org.in (author)

  11. How the radiologic and nuclear medical communities can improve nuclear security.

    Science.gov (United States)

    Kahn, Laura H; von Hippel, Frank

    2007-04-01

    Highly enriched uranium (HEU) is used to manufacture technetium-99m, the most widely used medical radioisotope in the world. Highly enriched uranium is also used to make nuclear bombs; 50 kg of HEU is enough to make a Hiroshima-type bomb. It is generally agreed that this technology is within the reach of a terrorist group; the main obstacle is acquiring HEU. Currently, as a legacy of the US and Soviet Atoms for Peace Program, there are civilian users of HEU in 40 countries, and about 1,000 kg are still being shipped each year. Unfortunately, the major international manufacturers of technetium-99m have been refusing to convert their production facilities to use low-enriched uranium (LEU), which cannot be used to make a nuclear bomb. Only 1% to 2% of the HEU is consumed in the process of producing technetium-99m. The remainder is accumulating in radioactive waste storage facilities. The radiologic and nuclear medical communities could make a tremendous contribution to a safer world by supporting the replacement of HEU with LEU in the production of technetium-99m. Low-enriched uranium is just as cost effective as HEU for the manufacture of technetium-99m and does not contribute to the risk for nuclear terrorism.

  12. Quality criteria for the indication and interpretation of nuclear medical examinations

    International Nuclear Information System (INIS)

    Reiners, C.; Becker, W.; Boerner, W.

    1984-01-01

    The correct indication presupposes the consideration of the history, signs symptoms and preexisting finding. With repect to minimal radiation exposure the optimal radiopharmaceutical substance has to be selected. Physiological or pharmacokinetic effects should be used to reduce radiation exposure. This would also provided additional information to be obtained by stimulation or suppression tests. If several nuclear medical examination are needed, the correct sequence and timing should be considered. With regard to the correct interpretation of in vivo examination in nuclear medicine, the basic requirement is to strictly differentiate between the mere description of results in the sense of findings and the final summary in the sense of judgement. The specificity of diagnoses can be increased by considering the history, signs, symptoms and premedication. To correctly interprete nuclear medical findings the physician should know the numerous causes of potential misinterpretations. Last but not least a permanent exchange of information between the nuclear medical physician, the X-ray and ultrasounds diagnostician, the clinician and the pathologist will provide increased diagnostic accuracy of nuclear medical in vivo examinations. (orig./MG) [de

  13. Medical lessons learned from chernobyl relative to nuclear detonations and failed nuclear reactors.

    Science.gov (United States)

    Dallas, Cham E

    2012-12-01

    The Chernobyl disaster in 1986 involved the largest airborne release of radioactivity in history, more than 100 times as much radioactivity as the Hiroshima and Nagasaki atomic bombs together. The resulting emergency response, administrative blunders, and subsequent patient outcomes from this large-scale radiological disaster provide a wealth of information and valuable lessons for those who may find themselves having to deal with the staggering consequences of nuclear war. Research findings, administrative strategies (successful and otherwise), and resulting clinical procedures from the Chernobyl experience are reviewed to determine a current utility in addressing the appropriate protocols for a medical response to nuclear war. As various myths are still widely associated with radiation exposure, attention is given to the realities of a mass casualty medical response as it would occur with a nuclear detonation.

  14. Applications of noise analysis to nuclear safety

    International Nuclear Information System (INIS)

    Aguilar Martinez, Omar

    2000-01-01

    Noise Analysis techniques (analysis of the fluctuation of physical parameters) have been successfully applied to the operational vigilance of the technical equipment that plays a decisive role in the production cycle of a very complex industry. Although fluctuation measurements in nuclear installations started almost at the start of the nuclear era (see works by Feynman and Rossi on the development of neutron methodology), only recently have neutron noise diagnostic applications begun to be a part of the standard procedures for the performance of some modern nuclear installations. Following the relevant technical advances made in information sciences and analogical electronics, measuring the fluctuation of physical parameters has become a very effective tool for detecting, guarding and following up possible defects in a nuclear system. As the processing techniques for the fluctuation of a nuclear reactor's physical-neutron parameters have evolved (temporal and frequency analysis, multi-parameter self -regression analysis, etc.), the applications of the theory of non-lineal dynamics and chaos theory have progressed by focusing on the problem from another perspective. This work reports on those nuclear applications of noise analysis that increase nuclear safety in all types of nuclear facilities and that have been carried out by the author over the last decade, such as: -Void Force Critical Set Applications (Zero Power Reactor Applications, Central Institute of Physical Research, Budapest, Hungary); -Research Reactor Applications (Triga Mark III Reactor, National Institute of Nuclear Research, ININ, Mexico); -Power Reactor Applications in a Nuclear Power Plant (First Circuit of Block II, Paks Nuclear Center, Hungary); -Second Loop applications in a Nuclear Power Plant (Block I Paks Nuclear Center, Hungary; Block II Kalinin Nuclear Center, Russia); -Shield System Applications for the Transport of Radioisotopes (Nuclear Technology Center, Havana, Cuba) New trends in

  15. The FLUKA Code: Developments and Challenges for High Energy and Medical Applications

    CERN Document Server

    Böhlen, T T; Chin, M P W; Fassò, A; Ferrari, A; Ortega, P G; Mairani, A; Sala, P R; Smirnov, G; Vlachoudis, V

    2014-01-01

    The FLUKA Monte Carlo code is used extensively at CERN for all beam-machine interactions, radioprotection calculations and facility design of forthcoming projects. Such needs require the code to be consistently reliable over the entire energy range (from MeV to TeV) for all projectiles (full suite of elementary particles and heavy ions). Outside CERN, among various applications worldwide, FLUKA serves as a core tool for the HIT and CNAO hadron-therapy facilities in Europe. Therefore, medical applications further impose stringent requirements in terms of reliability and predictive power, which demands constant refinement of sophisticated nuclear models and continuous code improvement. Some of the latest developments implemented in FLUKA are presented in this paper, with particular emphasis on issues and concerns pertaining to CERN and medical applications.

  16. Knowledge management for sustainable applications of nuclear techniques in Ethiopia: Case study

    International Nuclear Information System (INIS)

    Belete, Z.

    2004-01-01

    Full text: Ethiopia is benefiting from applications of nuclear related technologies in agriculture, livestock, water and energy resource assessment, etc. Nuclear techniques are playing a major role in the health sector in terms of diagnosis and therapeutic applications. Cancer is a major cause of death in industrialized countries, and the number of cases in developing countries like Ethiopia is also growing rapidly. Ethiopia according to WHO estimates had over 52,000 patients newly diagnosed with cancer in the year 2000. In the year 2015, this number is projected to increase to over 83,000. The International Atomic Energy Agency (IAEA), through its technical cooperation program supported the establishment of Radiation Therapy Centre at the premises of Black Lion Hospital. The Centre stated work in 1977 with one medical Physicist, three therapy radiographers, and one radiation oncologist. Currently the Radiotherapy Centre is facing a number of constraints among which shortage of trained staff is the major one. The Centre has a capacity to give inpatient services for 20 patients. However, it is giving only outpatient service (limited to 700 patients per annum) due to shortage of trained manpower in the field. Moreover, brachytherapy, the treatment planning, and the mould room equipment are not utilized at all, while the teletherapy and other equipment are under utilised. Cancer patients awaiting treatment services are increasing from time to time (40,000 -50,000). Occurrence of death due to lack of access to medication is therefore becoming high. Noting this, the Agency provided fellowships and training courses on applications of nuclear techniques for diagnostic and therapeutic purposes in the treatment of cancer to limited staff members of the Radiotherapy Centre. In spite of the effort made by the Agency to train personnel in therapeutic applications of nuclear techniques, the number of trained staff remains low. This in turn affects the sustainable application of

  17. Knowledge management for sustainable applications of nuclear techniques in Ethiopia: Case study

    International Nuclear Information System (INIS)

    Belete, Z.

    2004-01-01

    Full text: Ethiopia is benefiting from applications of nuclear related technologies in agriculture, livestock, water and energy resource assessment, etc. Nuclear techniques are playing a major role in the health sector in terms of diagnosis and therapeutic applications. Cancer is a major cause of death in industrialized countries, and the number of cases in developing countries like Ethiopia is also growing rapidly. Ethiopia according to WHO estimates had over 52,000 patients newly diagnosed with cancer in the year 2000. In the year 2015, this number is projected to increase to over 83,000. The International Atomic Energy Agency (IAEA), through its technical cooperation program supported the establishment of Radiation Therapy Centre at the premises of Black Lion Hospital. The Centre stated work in 1977 with one medical Physicist, three therapy radiographers, and one radiation oncologist. Currently the Radiotherapy Centre is facing a number of constraints among which shortage of trained staff is the major one. The Centre has a capacity to give inpatient services for 20 patients. However, it is giving only outpatient service (limited to 700 patients per annum) due to shortage of trained manpower in the field. Moreover, brachytherapy, the treatment planning, and the mould room equipment are not utilized at all, while the teletherapy and other equipment are under utilised. Cancer patients awaiting treatment services are increasing from time to time (40,000 - 50,000). Occurrence of death due to lack of access to medication is therefore becoming high. Noting this, the Agency provided fellowships and training courses on applications of nuclear techniques for diagnostic and therapeutic purposes in the treatment of cancer to limited staff members of the Radiotherapy Centre. In spite of the effort made by the Agency to train personnel in therapeutic applications of nuclear techniques, the number of trained staff remains low. This in turn affects the sustainable application

  18. Immediate medical consequences of nuclear accidents: lessons from Chernobyl

    International Nuclear Information System (INIS)

    Gale, R.P.

    1987-01-01

    The immediate medical response to the nuclear accident at the Chernobyl nuclear power station involved containment of the radioactivity and evacuation of the nearby population. The next step consisted of assessment of the radiation dose received by individuals, based on biological dosimetry, and treatment of those exposed. Medical care involved treatment of skin burns; measures to support bone marrow failure, gastrointestinal tract injury, and other organ damage (i.e., infection prophylaxis and transfusions) for those with lower radiation dose exposure; and bone marrow transplantation for those exposed to a high dose of radiation. At Chernobyl, two victims died immediately and 29 died of radiation or thermal injuries in the next three months. The remaining victims of the accident are currently well. A nuclear accident anywhere is a nuclear accident everywhere. Prevention and cooperation in response to these accidents are essential goals

  19. Nuclear physics principles and applications

    CERN Document Server

    Lilley, J S

    2001-01-01

    This title provides the latest information on nuclear physics. Based on a course entitled Applications of Nuclear Physics. Written from an experimental point of view this text is broadly divided into two parts, firstly a general introduction to Nuclear Physics and secondly its applications.* Includes chapters on practical examples and problems* Contains hints to solving problems which are included in the appendix* Avoids complex and extensive mathematical treatments* A modern approach to nuclear physics, covering the basic theory, but emphasising the many and important applicat

  20. Medical support to a disabled nuclear platform at sea

    Directory of Open Access Journals (Sweden)

    Vishal Kansal

    2016-01-01

    Full Text Available Indian Navy has recently joined the select band of countries that are operating nuclear powered platforms. Despite the fact, that the present day nuclear technology is quite advanced and safe; accidents on board can still happen. An accident on board a Nuclear Platform at sea can result in ‘Radiation Exposure and Contamination’ to the crew members; which can prove catastrophic. Management of casualties on board a Nuclear platform at sea presents a formidable challenge. The distressed platform being at sea will also bring in many other operational variables like distance from shore, geographical location, weather conditions, availability of rescue assets and trained manpower etc. Consequently, there is a necessity to have a well defined ‘Medical Contingency Plan’ to deal with any such eventuality happening at sea. The successful execution of the contingency plan will depend upon close coordination among diverse authorities like local Service Hospital, Command Medical & Operational Authorities, Naval Dockyard, Radiation Safety Organisations and the Rescue/Hospital Ship crew. The need is to have a holistic review of our existing medical set up and integrate new equipment, training methodologies, operating procedures to have a credible response capability.

  1. Nuclear astrophysics: An application of nuclear physics

    International Nuclear Information System (INIS)

    Fueloep, Z.

    2005-01-01

    Nuclear astrophysics, a fruitful combination of nuclear physics and astrophysics can be viewed as a special application of nuclear physics where the study of nuclei and their reactions are motivated by astrophysical problems. Nuclear astrophysics is also a good example for the state of the art interdisciplinary research. The origin of elements studied by geologists is explored by astrophysicists using nuclear reaction rates provided by the nuclear physics community. Due to the high interest in the field two recent Nuclear Physics Divisional Conferences of the European Physical Society were devoted to nuclear astrophysics and a new conference series entitled 'Nuclear Physics in Astrophysics' has been established. Selected problems of nuclear astrophysics will be presented emphasizing the interplay between nuclear physics and astrophysics. As an example the role of 14 N(p,r) 15 O reaction rate in the determination of the age of globular clusters will be discussed in details

  2. Extracurricular activities of medical school applicants

    Directory of Open Access Journals (Sweden)

    Sang Hyun Kim

    2016-06-01

    Full Text Available Purpose: The purpose of this study was to investigate medical school applicants’ involvements in extracurricular activities including medical volunteering/community services, nonmedical community services, club activities, leadership role, and research. Methods: Extracurricular characteristics were compared for 448 applicants (223 males and 225 females who applied to Kangwon Medical School in 2013 to 2014. Frequency analysis, chi-square test, and simple correlation were conducted with the collected data. Results: The 448 applicants participated in medical volunteer/community services (15.3%, nonmedical community services (39.8%, club activities (22.9%, club officials (10%, and research (13.4%. On average, applicants from foreign universities participated in 0.9 medical volunteer/community service, 0.8 nonmedical community service, 1.7 club activities, and 0.6 research work. On the other hand, applicants from domestic universities reported 0.2 medical volunteer/community service, 1.0 nonmedical community service, 0.7 club activity, and 0.3 research. Conclusion: Involvement in extracurricular activities was extensive for medical school applicants. Participation in extracurricular activities differed between applicants from foreign and domestic universities. Females consistently reported greater participation in extracurricular activities than males. The data can be helpful for admission committees to recruit well-rounded applicants and compare between applicants with similar academic backgrounds.

  3. Medical emergency planning in case of severe nuclear power plant accidents

    International Nuclear Information System (INIS)

    Ohlenschlaeger, L.

    1980-01-01

    This paper is an attempt to discuss a three-step-plan on medical emergency planning in case of severe accidents at nuclear power plants on the basis of own experiences in the regional area as well as on the basis of recommendations of the Federal Minister of the Interior. The medical considerations take account of the severity and extension of an accident whereby the current definitions used in nuclear engineering for accident situations are taken as basis. A comparison between obligatory and actual state is made on the possibilities of medical emergency planning, taking all capacities of staff, facilities, and equipment available in the Federal Republic of Germany into account. To assure a useful and quick utilization of the existing infra-structure as well as nation-wide uniform training of physicians and medical assistants in the field of medical emergency in case of a nuclear catastrophe, a federal law for health protection is regarded urgently necessary. (orig.) [de

  4. Well scintillation counting systems for nuclear medicine applications in developing countries

    International Nuclear Information System (INIS)

    1977-01-01

    This report of a consultants' meeting, organized by the Medical Applications Section of the Division of Life Sciences, IAEA, during the period 23-25 May 1977, examines well scintillation counting systems in the light of the requirements of laboratories in developing countries. It has three facets: 1) identification of the most rewarding applications of nuclear medicine techniques, 2) identification of favourable design attributes of instruments used in such applications, and 3) development of maintenance strategies to assure reliable performance of the instruments once put into service. Some characteristics of commercially available well scintillation counting systems are given

  5. The waste originating from nuclear energy peaceful applications and its management; Os rejeitos provenientes de aplicacoes pacificas da energia nuclear e o seu gerenciamento

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Jair Albo Marques de [E-mail: jairalbo at ax.apc.org (Brazil)] [and others

    1997-05-01

    This work presents the waste originating from nuclear energy and its management. It approaches the following main topics: nature and classification of the wastes; security requirements to the waste management; state of the art related to the wastes derivates of the uses of the nuclear energy; wastes in the fuel cycle; wastes of the industrial, medical and research and development applications; costs of the waste management.

  6. Non-nuclear power application of nuclear technology in Nigeria

    International Nuclear Information System (INIS)

    Funtua, I.I.

    2008-01-01

    Nuclear Technology applications are found in Food and Agriculture, Human Health, Water Resources, Industry, Environment, Education and Research.There are more potentials for the deployment of nuclear technology in more aspects of our life with needed economic development in Nigeria.Nuclear Technology plays and would continue to play vital role in Agriculture, Human health, Water resources and industry in Nigeria.Nuclear technologies have been useful in developmental efforts worldwide and for these to take hold, capacity building programmes must be expanded and the general public must have informed opinions about the benefits and risk associated with the technologies.This presentation gives an overview of nuclear technology applications in Nigeria in the following areas: Food and Agriculture, Human Health, Water Resources, Industry, Education and Research

  7. Teaching of nuclear medicine at medical faculties

    International Nuclear Information System (INIS)

    Dienstbier, Z.

    1987-01-01

    The teaching of nuclear medicine at medical faculties in the CSSR is analyzed. It is shown that the teaching conditions are different at the individual faculties of medicine and the respective conditions are exemplified. (author). 4 tabs

  8. Nuclear war hazards

    International Nuclear Information System (INIS)

    Chazov, E.I.; Il'in, L.A.; Gus'kova, A.K.

    1982-01-01

    An attempt is made to forecast medical and bilogical and aftereffects of nuclear weapons application in a number of situations. In particular, the effects of a single high-yield air or surface nuclear explosion on a city with 1 mln population are considered as well as the aftereffects of the exposure of human beings to local radioactive fallouts outside the ground zero of a surface nuclear explosion. The aftereffects for the population of local and global radioactive fallouts caused by the realization of one of the adopted in the West variants of mass nuclear strives exchange between the hostile sides are estimated. Certain aspects of medical and biological aftereffects of neutron weapons application are discussed

  9. Evaluation of nuclear data for R and D projects; development of database for medical nuclear data

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Tae Suk [Catholic University, Seoul (Korea); Shin, D. O. [Kyung Hee University, Seoul (Korea); Joh, C. W.; Chang, J. S. [Ajou University, Suwon (Korea); Choi, Y. [Sungkyunkwan University, Seoul (Korea); Kim, S. H. [Hanyang University, Seoul (Korea); Park, S. Y. [National Cancer Center, Seoul (Korea); Shin, D. H.; Lee, S [Kyonggi University, Seoul (Korea)

    2002-04-01

    Medical nuclear data used in the country is not provided by academic associations and organizations concerned and even by government organizations concerned. This is aimed to investigate the diagnostic and therapeutic equipments in the clinical use and the domestic present status of nuclear data and physical properties of sealed or unsealed radioactive isotopes and to establish the nuclear database. About 120 domestic centers take nuclear medicine tests and 52 medical centers do radiotherapy. The 30-odd different kinds of radionuclides are usually used in nuclear medicine in the country. The 30-odd kinds of unsealed sources are used for diagnosis and therapy and 10-odd kinds of sealed sources for brachytherapy in the country. The special radiotherapy includes Gamma-knife, linac-based stereotactic radiosurgery, conformal radiotherapy and Intensity modulated radiotherapy. The nuclear data base has been completed on the basis of these data collected and the web site made is available with ease to anyone who want to get nuclear data. 39 refs., 20 figs., 8 tabs. (Author)

  10. Relative risk analysis in regulating the use of radiation-emitting medical devices. A preliminary application

    Energy Technology Data Exchange (ETDEWEB)

    Jones, E.D.; Banks, W.W.; Altenbach, T.J.; Fischer, L.E. [Lawrence Livermore National Lab., CA (United States)

    1995-09-01

    This report describes a preliminary application of an analysis approach for assessing relative risks in the use of radiation- emitting medical devices. Results are presented on human-initiated actions and failure modes that are most likely to occur in the use of the Gamma Knife, a gamma irradiation therapy device. This effort represents an initial step in a US Nuclear Regulatory Commission (NRC) plan to evaluate the potential role of risk analysis in regulating the use of nuclear medical devices. For this preliminary application of risk assessment, the focus was to develop a basic process using existing techniques for identifying the most likely risk contributors and their relative importance. The approach taken developed relative risk rankings and profiles that incorporated the type and quality of data available and could present results in an easily understood form. This work was performed by the Lawrence Livermore National Laboratory for the NRC.

  11. Relative risk analysis in regulating the use of radiation-emitting medical devices. A preliminary application

    International Nuclear Information System (INIS)

    Jones, E.D.; Banks, W.W.; Altenbach, T.J.; Fischer, L.E.

    1995-09-01

    This report describes a preliminary application of an analysis approach for assessing relative risks in the use of radiation- emitting medical devices. Results are presented on human-initiated actions and failure modes that are most likely to occur in the use of the Gamma Knife, a gamma irradiation therapy device. This effort represents an initial step in a US Nuclear Regulatory Commission (NRC) plan to evaluate the potential role of risk analysis in regulating the use of nuclear medical devices. For this preliminary application of risk assessment, the focus was to develop a basic process using existing techniques for identifying the most likely risk contributors and their relative importance. The approach taken developed relative risk rankings and profiles that incorporated the type and quality of data available and could present results in an easily understood form. This work was performed by the Lawrence Livermore National Laboratory for the NRC

  12. Applications of nuclear technology in industry, environment and medicine

    International Nuclear Information System (INIS)

    Vera Ruiz, H.

    1998-01-01

    This article contains information on different applications of nuclear technology, such as: sterilization of single use medical products, radiation serialization of pharmaceutical products,radiation treatment of disposable products, in Europe, radiation treatment of micro-titer plates, several crosslinking processes, radiation vulcanization of natural rubber latex, irradiation of polymers to obtain dressings for burns, ulcers bedsores and skin grafts, production of ground water with accelerated electrons in combination with accelerated electrons in combination with ozone, radiation treatment of hospital wastes. (S. Grainger)

  13. Review of the study and application on nuclear forensic analysis

    International Nuclear Information System (INIS)

    Liu Cheng'an; Song Jiashu; Wu Jun

    2009-01-01

    For the interests of national security, many scientists who work in the field of nuclear forensic analysis have carried out extensive work in the past on the detection of radioactive material and attributions study, developed a series of scientific and technical means to trace and detect illicit circulation of nuclear materials used to weapons and other radioactive materials which impair public security. All these questions relate to physical, chemical, biological attribution of materials. The nuclear forensic analysis has already become a special, up-to-date sphere of learning. The goal of the study of nuclear forensics is to prevent terrorists from acquiring not only nuclear weapons but also mate- rials that can be used to make such weapons, including radioactive materials for nuclear power plants, and medical radioisotope to and provide us as many clues of environmental links as possible that could help us trace the smuggling path, to answer the following questions: What is the material? Where did it come from? How did it pass from legitimate to illicit use? How did it get to where it was interdicted? Who did it? This paper outlines the contents, analysis means and application of nuclear forensics. (authors)

  14. Emergency medical assistance programs for nuclear power reactors

    International Nuclear Information System (INIS)

    Linnemann, R.E.; Mettler, F.A. Jr.

    1977-01-01

    This paper deals with a simple but practical medical support of geographically distributed nuclear reactors in isolated areas. A staff of experts at a centre devote their full attention to accident prevention and preparedness at reactor sites. They establish and maintain emergency medical programs at reactor sites and nearby support hospitals. The emphasis is on first aid and emergency treatment by medical attendants who are not and cannot be experts in radiation but do know how to treat patients. (author)

  15. The IAEA Nuclear Security Programme Combating Nuclear Terrorism

    International Nuclear Information System (INIS)

    2010-01-01

    Discusses the four threats of nuclear terrorism,which are theft of a nuclear weapon, theft of material to make an improvised nuclear explosive device,theft of other radioactive material for an Radiological dispersal device and sabotage of a facility or transport. The IAEA Nuclear Security programme combating Nuclear Terrorism therefore adopts a comprehensive approach. The programme addresses the need to cover nuclear and other radioactive materials, nuclear facilities and transports, non-nuclear, medical and industrial applications of sources

  16. Nuclear data applications in developing countries

    International Nuclear Information System (INIS)

    Mehta, M.K.; Schmidt, J.J.

    1985-01-01

    The peaceful applications of nuclear science and technology currently receive an increasing attention in many developing countries. More than 15 developing countries operate, construct or plan nuclear power reactors, 70 developing countries are using or planning to use nuclear techniques in medicine, agriculture, industry, and for other vital purposes. The generation, application and computer processing of nuclear data constitute important elements of the nuclear infrastructure needed for the successful implementation of nuclear science and technology. Developing countries become increasingly aware of this need, and, with the help and cooperation of the IAEA Nuclear Data Section, are steadily gaining in experience in this field. The paper illustrates this development in typical examples. (orig.)

  17. Materials of the 39 Polish Seminar on Nuclear Magnetic Resonance and Its Applications - Abstracts

    International Nuclear Information System (INIS)

    2006-01-01

    The Report comprises abstracts of 78 communications presented during the 39 Polish Seminar on Nuclear Magnetic Resonance and Its Applications, held on November, 30 - December, 2006 in Cracow (PL). They cover a variety of research fields, including magnetic resonance imaging in vivo, applications of NMR spectroscopy to medical diagnosis, studies on molecular properties of different materials as well as quantum chemical calculations of NMR parameters

  18. Application of a latent variables model for the medical images analysis

    International Nuclear Information System (INIS)

    Campos S, Y.; Ruiz C, S.

    2008-01-01

    In recent years the technological advance has allowed the significant advance in diverse research fields, the medicine has not been exempt of this technology and the use of this technology has allowed a significant advance in the equipment that are used to obtain medical images. The quantity of information that is generated with this equipment has grown in exponential form and it is a difficult task to carry out a quantitative analysis of the data also the manipulation of big quantities of information makes the medical images analysis a complicated task. It is in fact this complexity what motivates this work where one of the main objectives is the analysis of techniques that allow to work with the complexity of the data generated with medical equipment. Likewise, it is wanted to illustrate an application of the peaceful uses of the nuclear energy to treat a medical problem where the diagnostic it depends essentially on the current medical equipment to give an appropriate treatment to the patients. (Author)

  19. Myocardium scintiscanning with thallium-201 in case of idiopathic juvenile arteriosclerosis (description of a case and information on further applications of nuclear-medical diagnostic techniques in pediatric cardiology)

    International Nuclear Information System (INIS)

    Hoer, G.; Maul, F.D.; Munz, D.L.; Vettermann, H.

    1985-01-01

    In the field of pediatrics and the related literature, the analysis of myocardial perfusion and ventricular function using myocardium scintiscanning and radionuclide ventriculography is a subject discussed rather rarely, in contrast to the medical examination of adult patients where this is a well-established method. The authors have so far not found any information on the use of scintiscanning methods for the diagnosis of idiopathic juvenile arteriosclerosis and hence take the opportunity to describe a case of recent application of this method. In addition, findings and results are discussed that speak in favour of the use of further nuclear-medical techniques in pediatric cardiology. (orig./MG) [de

  20. Applications of nuclear energy in future

    International Nuclear Information System (INIS)

    Sitek, J.; Necas, V.

    2012-01-01

    Concepts and international frames of generation IV nuclear reactors. A review of use of nuclear energy for non electric applications especially in areas such as seawater desalination, hydrogen production, district heating and other industrial applications. (Author)

  1. CERN's role in medical applications

    CERN Multimedia

    Antonella Del Rosso

    2014-01-01

    Last week, CERN hosted the first meeting of the International Strategy Committee for medical applications. This Committee will help CERN establish its roadmap in the field of research and development activities for medical applications. Here the CERN Bulletin speaks with the Chair of the Committee as he shares his expectations and his vision.   Dr Michael Baumann is the Director of the Radiation Oncology department at the Carl Gustav Carus University Hospital in Dresden and of the Institute for Radiooncology of the Helmholtz-Zentrum Dresden-Rossendorf (Germany). He has recently been appointed Chair of CERN’s International Strategy Committee for medical applications – the team of experts who will advise the CERN Medical Applications Study Group led by Steve Myers. “CERN has a tremendous record in physics and basic research,” says Baumann. “I think that it has a very important role in steering some of the R&D that cannot be done at universities ...

  2. Human resource development progress to sustain nuclear science and technology applications in Cameroon

    International Nuclear Information System (INIS)

    Simo, A.; Nyobe, J.B.

    2004-01-01

    Full text: Cameroon as a Member of the International Atomic Energy Agency (IAEA) has made full use of the Agency's Technical Co-operation Programme in his effort to promote peaceful applications of nuclear science and technology at national level. This paper presents the progress made in the development of reliable human resources. Results obtained have been achieved through national and regional technical co-operation projects. Over the past twenty years, the development of human resources in nuclear science and technology has focused on the training of national scientists and engineers in various fields such as crop and animal production, human and animal nutrition, human health applications, medical physics, non-destructive testing in industry, groundwater management, maintenance of medical and scientific equipment, radiation protection and radioactive waste management. Efforts made also involve the development of graduate teaching in nuclear sciences at the national universities. However, the lack of adequate training facilities remains a major concern. The development of new training/learning methods is being considered at national level through network linking of national training centres with existing international training institutions, and the use of Information Communication Technologies (ICT) which offer great flexibility with regard to the number of trainees and the actual needs. (author)

  3. Human resource development progress to sustain nuclear science and technology applications in Cameroon

    International Nuclear Information System (INIS)

    Simo, A.; Nyobe, J.B.

    2004-01-01

    Cameroon as a Member of the International Atomic Energy Agency (IAEA) has made full use of the Agency's Technical Co-operation Programme in his effort to promote peaceful applications of nuclear science and technology at national level. This paper presents the progress made in the development of reliable human resources. Results obtained have been achieved through national and regional technical co-operation projects. Over the past twenty years, the development of human resources in nuclear science and technology has focussed on the training of national scientists and engineers in various fields such as crop and animal production, human and animal nutrition, human health applications, medical physics, non destructive testing in industry, groundwater management, maintenance of medical and scientific equipment, radiation protection and radioactive waste management. Efforts made also involve the development of graduate teaching in nuclear sciences at the national universities. However, the lack of adequate training facilities remains a major concern. The development of new training/learning methods is being considered at national level through network linking of national training centres with existing international training institutions, and the use of Information Communication Technologies (ICT) which offer great flexibility with regard to the number of trainees and the actual needs. (author)

  4. Advanced Accelerators for Medical Applications

    Science.gov (United States)

    Uesaka, Mitsuru; Koyama, Kazuyoshi

    We review advanced accelerators for medical applications with respect to the following key technologies: (i) higher RF electron linear accelerator (hereafter “linac”); (ii) optimization of alignment for the proton linac, cyclotron and synchrotron; (iii) superconducting magnet; (iv) laser technology. Advanced accelerators for medical applications are categorized into two groups. The first group consists of compact medical linacs with high RF, cyclotrons and synchrotrons downsized by optimization of alignment and superconducting magnets. The second group comprises laser-based acceleration systems aimed of medical applications in the future. Laser plasma electron/ion accelerating systems for cancer therapy and laser dielectric accelerating systems for radiation biology are mentioned. Since the second group has important potential for a compact system, the current status of the established energy and intensity and of the required stability are given.

  5. Nuclear security of Cuba’s medical facilities

    International Nuclear Information System (INIS)

    Dahlstrom, Danielle

    2016-01-01

    Cuba is a leading hub for medical research and cancer treatment in Latin America and the Caribbean. Physical protection is installed at radiotherapy facilities to detect entry of and delay access to an intruder. This minimizes the likelihood of unauthorized access and maximizes nuclear security.

  6. Low-temperature nuclear heat applications: Nuclear power plants for district heating

    International Nuclear Information System (INIS)

    1987-08-01

    The IAEA reflected the needs of its Member States for the exchange of information in the field of nuclear heat application already in the late 1970s. In the early 1980s, some Member States showed their interest in the use of heat from electricity producing nuclear power plants and in the development of nuclear heating plants. Accordingly, a technical committee meeting with a workshop was organized in 1983 to review the status of nuclear heat application which confirmed both the progress made in this field and the renewed interest of Member States in an active exchange of information about this subject. In 1985 an Advisory Group summarized the Potential of Low-Temperature Nuclear Heat Application; the relevant Technical Document reviewing the situation in the IAEA's Member States was issued in 1986 (IAEA-TECDOC-397). Programme plans were made for 1986-88 and the IAEA was asked to promote the exchange of information, with specific emphasis on the design criteria, operating experience, safety requirements and specifications for heat-only reactors, co-generation plants and power plants adapted for heat application. Because of a growing interest of the IAEA's Member States about nuclear heat employment in the district heating domaine, an Advisory Group meeting was organized by the IAEA on ''Low-Temperature Nuclear Heat Application: Nuclear Power Plants for District Heating'' in Prague, Czechoslovakia in June 1986. The information gained up to 1986 and discussed during this meeting is embodied in the present Technical Document. 22 figs, 11 tabs

  7. Application of a visualization method of image data base in nuclear cardiology

    International Nuclear Information System (INIS)

    Damien, J.; Bruyant, Ph.; Moreno, L.; Gabain, M.; Sayegh, Y.; Bontemps, L.; Itti, R.

    1997-01-01

    Medical imaging is undoubtedly one of the medical branches which benefited at most by the offsprings of computer science development. We present here a visualization software of image data base, making use of the last innovations in the field of multimedia application. The objective of such a software is to provide a reference tool for a given medical specialty offering at the same time, a high quality iconography, a rigorous content of the comments and the matching of graphical interfaces. Applied to nuclear cardiology and implanted on CD ROM, it contains a given number of clinical cases (around 150) which sweep quasi-exhaustively the subject. Each case centered around scintigraphic examination (myocardial tomographs, ventriculographs, SPECT, etc) makes available 'static' pictures (series of cross sections, planispheric images, ECG), animated cartoons (synchronized series, 3D visualization, etc) and also the clinical history of the patient and the records of complementary examinations (coronary-graphic, for instance). Being independent of the image data base which it visualizes, our software is easily applicable to other nuclear medicine specialties (neurology, renal exploration) and also to other modalities. It is multilingual already (French and English) and soon will be supplemented by a code dedicated to knowledge assessment intended to be an efficient tool in education and continuous formation. A Macintosh version will be soon obtainable and a demonstration diskette is free available on request

  8. Soviet medical response to the Chernobyl nuclear accident

    International Nuclear Information System (INIS)

    Linnemann, R.E.

    1987-01-01

    The nuclear accident at Chernobyl was the worst in the history of nuclear power. It tested the organized medical response to mass radiation casualties. This article reviews the Soviet response as reported at the 1986 postaccident review meeting in Vienna and as determined from interviews. The Soviets used three levels of care: rescue and first aid at the plant site; emergency treatment at regional hospitals; and definitive evaluation and treatment in Moscow. Diagnosis, triage, patient disposition, attendant exposure, and preventive actions are detailed. The United States would be well advised to organize its resources definitively to cope with future nonmilitary nuclear accidents

  9. Fields of nuclear power application

    International Nuclear Information System (INIS)

    Laue, H.J.

    1975-01-01

    The paper deals with nuclear power application in fields different from electricity generation, i.e. district heating, sea water desalination, coal gasification and nuclear splitting of water. (RW) [de

  10. The medical implications of nuclear power plant accidents

    International Nuclear Information System (INIS)

    Tyror, J.G.; Pearson, G.W.

    1989-11-01

    This paper examines the UK position regarding the potential for an accident at a nuclear power plant, the safeguards in place to prevent such an accident occurring and the emergency procedures designed to cope with the consequences should one occur. It focuses on the role of the medical services and examines previous accidents to suggest the nature and likely scale of response that may need to be provided. It is apparent that designs of UK nuclear power stations are robust and that the likelihood of a significant accident occurring is extremely remote. Emergency arrangements are, however, in place to deal with the eventuality should it arise and these incorporate sufficient flexibility to accommodate a wide range of accidents. Analysis of previous nuclear accidents at Windscale, Three Mile Island and Chernobyl provide a limited but valuable insight into the diversity and potential scale of response that may be required. It is concluded that above all, the response must be flexible to enable medical services to deal with the wide range of effects that may arise. (author)

  11. Proceedings of 8. national conference on nuclear electronic and nuclear detection technology: Pt.1

    International Nuclear Information System (INIS)

    1996-01-01

    The 8th National Conference on Nuclear Electronics and Nuclear Detection Technology was held during 2-7, 12, 1996 in Zhuhai, Guangdong, China. 184 pieces of papers were collected in the conference proceedings. The contents of the conference proceedings are: nuclear electronics, nuclear detectors, nuclear instruments and its application, nuclear medical electronics, computer applications in nuclear sciences and technology, measurement of nuclear monitoring and nuclear explosion, radiation hardened electronics, liquid scintillation counting techniques and miscellaneous. Reported hereafter is the first part of the proceedings

  12. Radiotracers in medical applications, vols 1-2

    International Nuclear Information System (INIS)

    Rayudu, G.V.S.

    1983-01-01

    These volumes will serve as a basis for instruction and reference for professionals such as radiopharmaceutical chemists, radiopharmacologists, radiopharmacists, radiobiochemists, and others involved in the medical applications of radiotracers. Vol. I: Topics include radiohalogenated compounds, including radioiodine; Tc-labeled compounds; and in-house prepared radiopharmaceuticals. The charge particle range vs. energy in every element is tabulated for protons for cyclotrons users. Discussions are also provided on nonimaging radiotracer methods; 11 C, 13 N, 15 O, 67 Ga. 111 In, 75 Se, /SUP 123m/ Te compounds; radioactive noble gases; and miscellaneous radiotracers for imaging. Vol. II: Pertinent nuclear science data such as radiation dosimetry, radionuclide production modes, radionuclides for therapy, human experimentation regulations and consent forms, and radiotracer laboratory designs are presented

  13. Review of Cyclotrons for the Production of Radioactive Isotopes for Medical and Industrial Applications

    Science.gov (United States)

    Schmor, Paul

    2011-02-01

    Radioactive isotopes are used in a wide range of medical, biological, environmental and industrial applications. Cyclotrons are the primary tool for producing the shorter-lived, proton-rich radioisotopes currently used in a variety of medical applications. Although the primary use of the cyclotron-produced short-lived radioisotopes is in PET/CT (positron emission tomography/computed tomography) and SPECT (single photon emission computed tomography) diagnostic medical procedures, cyclotrons are also producing longer-lived isotopes for therapeutic procedures as well as for other industrial and applied science applications. Commercial suppliers of cyclotrons are responding by providing a range of cyclotrons in the energy range of 3-70MeV for the differing needs of the various applications. These cyclotrons generally have multiple beams servicing multiple targets. This review article presents some of the applications of the radioisotopes and provides a comparison of some of the capabilities of the various current cyclotrons. The use of nuclear medicine and the number of cyclotrons supplying the needed isotopes are increasing. It is expected that there will soon be a new generation of small "tabletop" cyclotrons providing patient doses on demand.

  14. Impact of Nuclear Laboratory Personnel Credentials & Continuing Education on Nuclear Cardiology Laboratory Quality Operations.

    Science.gov (United States)

    Malhotra, Saurabh; Sobieraj, Diana M; Mann, April; Parker, Matthew W

    2017-12-22

    Background/Objectives: The specific credentials and continuing education (CME/CE) of nuclear cardiology laboratory medical and technical staff are important factors in the delivery of quality imaging services that have not been systematically evaluated. Methods: Nuclear cardiology accreditation application data from the Intersocietal Accreditation Commission (IAC) was used to characterize facilities performing myocardial perfusion imaging by setting, size, previous accreditation and credentials of the medical and technical staff. Credentials and CME/CE were compared against initial accreditation decisions (grant or delay) using multivariable logistic regression. Results: Complete data were available for 1913 nuclear cardiology laboratories from 2011-2014. Laboratories with initial positive accreditation decisions had a greater prevalence of Certification Board in Nuclear Cardiology (CBNC) certified medical directors and specialty credentialed technical directors. Certification and credentials of the medical and technical directors, respectively, staff CME/CE compliance, and assistance of a consultant with the application were positively associated with accreditation decisions. Conclusion: Nuclear cardiology laboratories directed by CBNC-certified physicians and NCT- or PET-credentialed technologists were less likely to receive delay decisions for MPI. CME/CE compliance of both the medical and technical directors was associated with accreditation decision. Medical and technical directors' years of experience were not associated with accreditation decision. Copyright © 2017 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  15. 78 FR 52579 - SHINE Medical Technologies, Inc.

    Science.gov (United States)

    2013-08-23

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-608; NRC-2013-0053] SHINE Medical Technologies, Inc... application for a construction permit, submitted by SHINE Medical Technologies, Inc. (SHINE). ADDRESSES... of a two-part application for a construction permit for a medical radioisotope production facility in...

  16. Nuclear science in the 20th century. Nuclear technology applications in material science

    International Nuclear Information System (INIS)

    Pei Junchen; Xu Furong; Zheng Chunkai

    2003-01-01

    The application of nuclear technology to material science has led to a new cross subject, nuclear material science (also named nuclear solid physics) which covers material analysis, material modification and new material synthesis. This paper reviews the development of nuclear technical applications in material science and the basic physics involved

  17. Study on the action guidelines for medical support team for nuclear and radiological emergency

    International Nuclear Information System (INIS)

    Liu Chang'an; Liu Ying; Geng Xiusheng

    2006-01-01

    Objective: To study the action guidelines for medical support team for nuclear and radiological emergency. Methods: It is based on the experience and lessons learned in the course of meeting the emergencies preparedness and response of nuclear and radiological emergencies in China and abroad with the reference of the relevant reports of International Atomic Energy Agency. Results: Essential requirements and practical recommendations for the roles, responsibilities, emergency preparedness, principles and procedures of medical assistance at the scene, as well as the radiological protection of medical support team were provided. Conclusion: The document mentioned above can be applied to direct the establishment, effective medical preparedness and response of the medical support team for nuclear and radiological emergency. (authors)

  18. Recent advances in medical device triage technologies for chemical, biological, radiological, and nuclear events.

    Science.gov (United States)

    Lansdowne, Krystal; Scully, Christopher G; Galeotti, Loriano; Schwartz, Suzanne; Marcozzi, David; Strauss, David G

    2015-06-01

    In 2010, the US Food and Drug Administration (Silver Spring, Maryland USA) created the Medical Countermeasures Initiative with the mission of development and promoting medical countermeasures that would be needed to protect the nation from identified, high-priority chemical, biological, radiological, or nuclear (CBRN) threats and emerging infectious diseases. The aim of this review was to promote regulatory science research of medical devices and to analyze how the devices can be employed in different CBRN scenarios. Triage in CBRN scenarios presents unique challenges for first responders because the effects of CBRN agents and the clinical presentations of casualties at each triage stage can vary. The uniqueness of a CBRN event can render standard patient monitoring medical device and conventional triage algorithms ineffective. Despite the challenges, there have been recent advances in CBRN triage technology that include: novel technologies; mobile medical applications ("medical apps") for CBRN disasters; electronic triage tags, such as eTriage; diagnostic field devices, such as the Joint Biological Agent Identification System; and decision support systems, such as the Chemical Hazards Emergency Medical Management Intelligent Syndromes Tool (CHEMM-IST). Further research and medical device validation can help to advance prehospital triage technology for CBRN events.

  19. Experience and Prospects of Nuclear Heat Application

    International Nuclear Information System (INIS)

    Woite, G.; Konishi, T.; Kupitz, J.

    1998-01-01

    Relevant technical characteristics of nuclear reactors and heat application facilities for district heating, process heat and seawater desalination are presented and discussed. The necessity of matching the characteristics of reactors and heat applications has consequences for their technical and economic viability. The world-wide operating experience with nuclear district heating, process heating, process heat and seawater desalination is summarised and the prospects for these nuclear heat applications are discussed. (author)

  20. Impact of Nuclear Technology to the National Socio-Economy: Technical Support by Nuclear Malaysia

    International Nuclear Information System (INIS)

    Hazmimi Kasim; Ainul Hayati Daud; Jamal Khaer Ibrahim; Alawiah Musa

    2011-01-01

    In Malaysia, the development of nuclear technology began in the year 1972. More than 30 years of application, today, the technology made impact to the national socio-economy through contribution to GDP and; improving quality of life and enhanced societal well-being. The application of nuclear technology both in public and private agencies in industrial, medical and agricultural sectors were considered. In 2008, the impact of nuclear technology shows the contribution of 0.032% to the total GDP. Industry sector shows an increasing trend and is the highest contributor, while agriculture sector remains the lowest. In this regard, Malaysian Nuclear Agency (Nuclear Malaysia) played an important role as a technical support agency in nuclear technology, as a supplier and provider for the service, training and research for the industrial, medical and agricultural sectors. (author)

  1. Evaluation of XRI-UNO CdTe detector for nuclear medical imaging

    International Nuclear Information System (INIS)

    Jambi, L.K.; Lees, J.E.; Bugby, S.L.; Alqahtani, M.S.; Tipper, S.; Perkins, A.C.

    2015-01-01

    Over the last two decades advances in semiconductor detector technology have reached the point where they are sufficiently sensitive to become an alternative to scintillators for high energy gamma ray detection for application in fields such as medical imaging. This paper assessed the Cadmium-Telluride (CdTe) XRI-UNO semiconductor detector produced by X-RAY Imatek for photon energies of interest in nuclear imaging. The XRI-UNO detector was found to have an intrinsic spatial resolution of <0.5mm and a high incident count rate capability up to at least 1680cps. The system spatial resolution, uniformity and sensitivity characteristics are also reported

  2. Nuclear- and radiochemistry. Vol. 2. Modern applications

    International Nuclear Information System (INIS)

    Roesch, Frank

    2016-01-01

    This work is conceived to meet the demand of state-of-the-art literature to teach the fundamentals as well as the modern applications of nuclear chemistry. The work will consist of two volumes: the first one covering the basics of nuclear chemistry such as the relevant parameters of instable atomic nuclei, the various modi of radioactive transmutations, the corresponding types of radiation including their detection and dosimetry, and finally the mechanisms of nuclear reactions. The second volume addresses relevant fields of nuclear chemistry, such as the chemistry of radioactive elements, application of radioactive nuclei in life sciences, nuclear energy, waste managements and environmental aspects, radiochemical separations, radioanalytical and spectroscopic methods, etc. Here, leading experts will contribute up-to-date knowledge on the most important application of nuclear chemistry.

  3. Industrial Applications of Nuclear Energy

    International Nuclear Information System (INIS)

    2017-01-01

    This publication provides a detailed overview of the potential use of nuclear energy for industrial systems and/or processes which have a strong demand for process heat/steam and power, and on the mapping of nuclear power reactors proposed for various industrial applications. It describes the technical concepts for combined nuclear-industrial complexes that are being pursued in various Member States, and presents the concepts that were developed in the past to be applied in connection with some major industries. It also provides an analysis of the energy demand in various industries and outlines the potential that nuclear energy may have in major industrial applications such as process steam for oil recovery and refineries, hydrogen generation, and steel and aluminium production. The audience for this publication includes academia, industry, and government agencies.

  4. Educational Research Centre of the Joint Institute for Nuclear Research and students training on the 'Medical Physics' speciality

    International Nuclear Information System (INIS)

    Ivanova, S.P.; )

    2005-01-01

    The Educational Research Centre (ERC) of the Joint Institute for Nuclear Research is the place of joint activity of the JINR, Moscow State University (MSU) and Moscow Engineering Physical Institute (MEFI) on students training by a broadened circle of specialities with introduction of new educational forms. Active application of medical accelerator beams of the JINR Laboratory of Nuclear Beams becomes a reason for implementation of a new training chair in the MEFI on the JINR base - the Physical methods in applied studies in the medicine chair. For the 'medical physics' trend development in 2003 the workshop on discussion both curricula and teaching methodic by the speciality was held. One the Educational Research Centre main activities is both organization and conducting an international scientific schools and training courses. The International student School 'Nuclear-Physical Methods and Accelerators is the most popular and traditional. The principal aim of these schools and courses is familiarization of students and postgraduates with last achievement and and contemporary problems of applied medical physics. The school audience is a students and postgraduates of ERC, MSU, MEFI, and an institutes of Poland, Hungary, Slovakia, France, Czech and Bulgaria

  5. Nuclear energy an introduction to the concepts, systems, and applications of nuclear processes

    CERN Document Server

    Murray, Raymond L; Murphy, Arthur T; Rosenthal, Daniel I

    1987-01-01

    Nuclear Energy: An Introduction to the Concepts, Systems, and Applications of Nuclear Processes introduces the reader to the concepts, systems, and applications of nuclear processes. It provides a factual description of basic nuclear phenomena, as well as devices and processes that involve nuclear reactions. The problems and opportunities that are inherent in a nuclear age are also highlighted.Comprised of 27 chapters, this book begins with an overview of fundamental facts and principles, with emphasis on energy and states of matter, atoms and nuclei, and nuclear reactions. Radioactivi

  6. Curriculum for education and training of Medical Physicists in Nuclear Medicine

    DEFF Research Database (Denmark)

    Del Guerra, Alberto; Bardies, Manuel; Belcari, Nicola

    2013-01-01

    and Competence approach along the lines recommended by the European Qualifications Framework. The minimum level expected in each topic in the theoretical knowledge and practical experience sections is intended to bring trainees up to the requirements expected of a Medical Physicist entering the field of Nuclear...... Medicine. CONCLUSIONS: This new joint EANM/EFOMP European guideline curriculum is a further step to harmonise specialist training of Medical Physicists in Nuclear Medicine within Europe. It provides a common framework for national Medical Physics societies to develop or benchmark their own curricula....... The responsibility for the implementation and accreditation of these standards and guidelines resides within national training and regulatory bodies....

  7. Medical measures in case of nuclear power plant accidents

    International Nuclear Information System (INIS)

    1986-01-01

    The Laender governments of the Federal Republic of Germany are of the opinion that within the framework of precautionary disaster control, plans have to be set up dealing with nuclear disasters that seem improbable but cannot be completely excluded. Accordingly, recommendations presented by the Federal Government and the Laender governments have been combined into a framework disaster control scheme where the competencies for activities and measures lie with the several Laender governments, as given by the Basic Law. A further recommendation deals with the medical care and service in case of a nuclear disaster, and the practical guide presented here is intended to give the information and instructions needed in order to comply with the legal framework. A working group has been set up in order to work out the rules and facts for optimum medical care. The activities are planned to be based on an emergency station responsible for medical examination, treatment, and transfer of victims. The practical guide has been discussed by the 'Committee for disaster control in the vicinity of nuclear installations' of the SSK, has been approved of by the supreme Land authorities of the Laender concerned, and has been passed by the SSK at its 63rd meeting. With 5 figs., 6 tabs [de

  8. Medical applications of accelerators

    CERN Document Server

    Rossi, Sandro

    1998-01-01

    At Present, about five thousands accelerators are devoted to biomedical applications. They are mainly used in radiotherapy, research and medical radioisotopes production. In this framework oncological hadron-therapy deserves particular attention since it represents a field in rapid evolution thanks to the joint efforts of laboratories with long experiences in particle physics. It is the case of CERN where the design of an optimised synchrotron for medical applications has been pursued. These lectures present these activities with particular attention to the new developments which are scientifically interesting and/or economically promising.

  9. Nuclear physics and medical work in Burma

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1967-02-15

    Useful information connected with environmental radioactivity has already been obtained by the Rangoon Nuclear Physics Laboratory, Burma, the setting up of which was helped by the Agency's Technical Assistance Programme. Other assistance has helped the Rangoon General Hospital to install a scanning unit with which medical diagnosis and treatment can be aided

  10. Developing the Medication Reminder Mobile Application "Seeb".

    Science.gov (United States)

    Saghaeiannejad-Isfahani, Sakineh; Ehteshami, Asghar; Savari, Ebtesam; Samimi, Ali

    2017-06-01

    Today, the structure of comprehensive health care emphasizes self-care more than therapy. Medication therapy is a strong instrument for therapy received through the health setting, especially in medication area. Error in medication administration has produced different problems and they cost billions of dollars every year. Regarding mobile phone extensions, we developed a local medication reminder mobile application called "Seeb" as a suitable solution for decreasing medication errors for Iranians. We conducted a mixed methods study in three Phases: 1) Comparative study of existing mobile applications; 2) developed its object-oriented model; 3) Developed the initial version of "Seeb" that was approved for production. This application was designed for the appropriate medication administration including time and dosages through: recording patient and medication data; scheduling patients' medication; and reporting medication administration on progress. "Seeb" has been designed in compliance with Iranian health information technologists and pharmacists requirements. It is expected to reduce medication error and improve patient adherence to medical prescriptions.

  11. Hungarian medical physics MSc education

    International Nuclear Information System (INIS)

    Legrady, D.; Czifrus, Z.; Zarand, P.; Aszodi, A.; Pesznyak, C.; Major, T.

    2012-01-01

    The medical physics specialisation aims at providing high level interdisciplinary theoretical and practical knowledge and readily applicable skills, which can put into action in both the clinical and the R and D field. The first competence based gradual medical physics course in the B.Sc./M.Sc. system in Hungary was launched two years ago at the Faculty of Natural Sciences of Budapest University of Technology and Economics managed by the Institute of Nuclear Techniques. The MSc programme was compiled on the base of EFOMP, IPEM, AAPM and IAEA recommendations. The course curriculum comprises fundamental physical subjects (atomic and molecular physics, nuclear physics and particle physics) as well as fundamental medical knowledge (anatomy, physiology and radiobiology) required for subjects of diagnostic and therapy. Students of this MSc branch may chose further subjects from a 'compulsory optional' set of subjects, which contains medical imaging, X-ray diagnostics, radiation therapy, magnetic resonance imaging, radiation protection, Monte Carlo calculation and its clinical applications, ultrasound diagnostics and nuclear medicine. (authors)

  12. Nuclear medicine in Ghana

    International Nuclear Information System (INIS)

    Affram, R.K.; Kyere, K.; Amuasi, J.

    1991-01-01

    The background to the introduction and application of radioisotopes in medicine culminating in the establishment of the nuclear Medicine Unit at the Korle Bu Teaching Hospital, Ghana, has been examined. The Unit has been involved in important clinical researches since early 1970s but routine application in patient management has not always been possible because of cost per test and lack of continuous availability of convertible currency for the purchase of radioisotopes which are not presently produced by the National Nuclear Research Institute at Kwabenya. The capabilities and potentials of the Unit are highlighted and a comparison of Nuclear Medicine techniques to other medical diagnostic and imaging methods have been made. There is no organised instruction in the principles of medical imaging and diagnostic methods at both undergraduate and postgraduate levels in Korle Bu Teaching Hospital which has not promoted the use of Nuclear Medicine techniques. The development of a comprehensive medical diagnostic and imaging services is urgently needed. (author). 18 refs., 3 tabs

  13. Accelerator development for medical applications

    International Nuclear Information System (INIS)

    Tanabe, Eiji

    2007-01-01

    Electron linear accelerators have been widely used in medical applications, especially in radiation therapy for cancer treatment. There are more than 7,000 medical electron linear accelerators in the world, treating over 250,000 patients per day. This paper reviews the current status of accelerator applications and technologies in radiation therapy, and presents the anticipated requirements for advanced radiation therapy technology in the foreseeable future. (author)

  14. Nuclear energy I, Non-energetic applications

    International Nuclear Information System (INIS)

    Lartigue G, J.; Navarrete T, M.; Cabrera M, L.; Arandia, P.A.; Arriola S, H.

    1986-01-01

    The nuclear energy is defined as the energy produced or absorbed in the nuclear reactions, therefore, these are divided in endothermic and exothermic. The exothermic nuclear reactions present more interest from the point of view of its applications and they can show in four main forms: radioactivity (from 0 to 4 MeV/reaction; light nucleus fusion ( ∼ 20 MeV/reaction), heavy nucleus fusion (∼ 200 MeV/reaction) and nucleons annihilation ( ∼ 2000 MeV/reaction). Nowadays only the fission has reached the stage of profitable energetic application, finding the other three forms in research and development. The non-energetic applications of the nuclear energy are characterized by they do not require of prior conversion to another form of energy and they are made through the use of radioisotopes as well as through the use of endothermic reaction caused in particle accelerators. In this work are presented some of the non-energetic applications with its theoretical and experimental basis as well as its benefits of each one. (Author)

  15. 40. Polish Seminar on Nuclear Magnetic Resonance and Its Applications. Cracow, 3-4 December 2007. Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    The Report comprises abstracts of 59 communications presented during the 40. Polish Seminar on Nuclear Magnetic Resonance and Its Applications, held on December 3-4, 2007 in Cracow (PL). They cover a variety of research fields, including magnetic resonance imaging in vivo, applications of NMR spectroscopy to medical diagnosis, studies on molecular properties of different materials as well as quantum chemical calculations of NMR parameters.

  16. 40. Polish Seminar on Nuclear Magnetic Resonance and Its Applications. Cracow, 3-4 December 2007. Abstracts

    International Nuclear Information System (INIS)

    2007-01-01

    The Report comprises abstracts of 59 communications presented during the 40. Polish Seminar on Nuclear Magnetic Resonance and Its Applications, held on December 3-4, 2007 in Cracow (PL). They cover a variety of research fields, including magnetic resonance imaging in vivo, applications of NMR spectroscopy to medical diagnosis, studies on molecular properties of different materials as well as quantum chemical calculations of NMR parameters

  17. Collective dose estimation in Portuguese population due to medical exams of diagnostic radiology and nuclear medicine

    International Nuclear Information System (INIS)

    Teles, Pedro; Vaz, Pedro; Paulo, Graciano; Santos, Joana; Pascoal, Ana; Lanca, Isabel; Matela, Nuno; Sousa, Patrick; Carvoeiras, Pedro; Parafita, Rui; Simaozinho, Paula

    2013-01-01

    In order to assess the exposure of the Portuguese population to ionizing radiation due to medical examinations of diagnostic radiology and nuclear medicine, a working group, consisting of 40 institutions, public and private, was created to evaluation the coletive dose in the Portuguese population in 2010. This work was conducted in collaboration with the Dose Datamed European consortium, which aims to assess the exposure of the European population to ionizing radiation due to 20 diagnostic radiology examinations most frequent in Europe (the 'TOP 20') and nuclear medicine examinations. We obtained an average value of collective dose of ≈ 1 mSv/caput, which puts Portugal in the category of countries medium to high exposure to Europe. We hope that this work can be a starting point to bridge the persistent lack of studies in the areas referred to in Portugal, and to enable the characterization periodic exposure of the Portuguese population to ionizing radiation in the context of medical applications

  18. Nuclear Medicine and Application of Nuclear Techniques in Medicine

    International Nuclear Information System (INIS)

    Wiharto, Kunto

    1996-01-01

    The use of nuclear techniques medicine covers not only nuclear medicine and radiology in strict sense but also determination of body mineral content by neutron activation analysis and x-ray fluorescence technique either in vitro or in vivo, application of radioisotopes as tracers in pharmacology and biochemistry, etc. This paper describes the ideal tracer in nuclear medicine, functional and morphological imaging, clinical aspect and radiation protection in nuclear medicine. Nuclear technique offers facilities and chances related to research activities and services in medicine. The development of diagnostic as well as therapeutic methods using monoclonal antibodies labeled with radioisotope will undoubtedly play an important role in the disease control

  19. Mobile robotics application in the nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    Jones, S.L.; White, J.R. [REMOTEC, Inc., Oak Ridge, TN (United States)

    1995-03-01

    Mobile robots have been developed to perform hazardous operations in place of human workers. Applications include nuclear plant inspection/maintenance, decontamination and decommissioning police/military explosive ordinance disposal (EOD), hostage/terrorist negotiations and fire fighting. Nuclear facilities have proven that robotic applications can be cost-effective solutions to reducing personnel exposure and plant downtime. The first applications of mobile robots in the nuclear industry began in the early 1980`s, with the first vehicles being one of a kind machines or adaptations of commercial EOD robots. These activities included efforts by numerous commercial companies, the U.S. Nuclear Regulatory Commission, EPRI, and several national laboratories. Some of these efforts were driven by the recovery and cleanup activities at TMI which demonstrated the potential and need for a remote means of performing surveillance and maintenance tasks in nuclear plants. The use of these machines is now becoming commonplace in nuclear facilities throughout the world. The hardware maturity and the confidence of the users has progressed to the point where the applications of mobile robots is not longer considered a novelty. These machines are being used in applications where the result is to help achieve more aggressive goals for personnel radiation exposure and plant availability, perform tasks more efficiently, and allow plant operators to retrieve information from areas previously considered inaccessible. Typical examples include surveillance in high radiation areas (during operation and outage activities), radiation surveys, waste handling, and decontamination evolutions. This paper will discuss this evolution including specific applications experiences, examples of currently available technology, and the benefits derived from the use of mobile robotic vehicles in commercial nuclear power facilities.

  20. Mobile robotics application in the nuclear industry

    International Nuclear Information System (INIS)

    Jones, S.L.; White, J.R.

    1995-01-01

    Mobile robots have been developed to perform hazardous operations in place of human workers. Applications include nuclear plant inspection/maintenance, decontamination and decommissioning police/military explosive ordinance disposal (EOD), hostage/terrorist negotiations and fire fighting. Nuclear facilities have proven that robotic applications can be cost-effective solutions to reducing personnel exposure and plant downtime. The first applications of mobile robots in the nuclear industry began in the early 1980's, with the first vehicles being one of a kind machines or adaptations of commercial EOD robots. These activities included efforts by numerous commercial companies, the U.S. Nuclear Regulatory Commission, EPRI, and several national laboratories. Some of these efforts were driven by the recovery and cleanup activities at TMI which demonstrated the potential and need for a remote means of performing surveillance and maintenance tasks in nuclear plants. The use of these machines is now becoming commonplace in nuclear facilities throughout the world. The hardware maturity and the confidence of the users has progressed to the point where the applications of mobile robots is not longer considered a novelty. These machines are being used in applications where the result is to help achieve more aggressive goals for personnel radiation exposure and plant availability, perform tasks more efficiently, and allow plant operators to retrieve information from areas previously considered inaccessible. Typical examples include surveillance in high radiation areas (during operation and outage activities), radiation surveys, waste handling, and decontamination evolutions. This paper will discuss this evolution including specific applications experiences, examples of currently available technology, and the benefits derived from the use of mobile robotic vehicles in commercial nuclear power facilities

  1. Mapping air pollution. Application of nuclear techniques

    International Nuclear Information System (INIS)

    Parr, R.M.; Stone, S.F.; Zeisler, R.

    1996-01-01

    Nuclear techniques have important applications in the study of air pollution and many of its components. However, it is in the study of airborne particulate matter (APM) that nuclear analytical techniques find many of their most important applications. This article focuses on those applications, and on the work of the IAEA in this important field of study. 2 figs

  2. 21 CFR 515.10 - Medicated feed mill license applications.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Medicated feed mill license applications. 515.10... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS MEDICATED FEED MILL LICENSE Applications § 515.10 Medicated feed mill license applications. (a) Medicated feed mill license applications (Forms FDA 3448) may...

  3. Radiological protection, safety and security issues in the industrial and medical applications of radiation sources

    Science.gov (United States)

    Vaz, Pedro

    2015-11-01

    The use of radiation sources, namely radioactive sealed or unsealed sources and particle accelerators and beams is ubiquitous in the industrial and medical applications of ionizing radiation. Besides radiological protection of the workers, members of the public and patients in routine situations, the use of radiation sources involves several aspects associated to the mitigation of radiological or nuclear accidents and associated emergency situations. On the other hand, during the last decade security issues became burning issues due to the potential malevolent uses of radioactive sources for the perpetration of terrorist acts using RDD (Radiological Dispersal Devices), RED (Radiation Exposure Devices) or IND (Improvised Nuclear Devices). A stringent set of international legally and non-legally binding instruments, regulations, conventions and treaties regulate nowadays the use of radioactive sources. In this paper, a review of the radiological protection issues associated to the use of radiation sources in the industrial and medical applications of ionizing radiation is performed. The associated radiation safety issues and the prevention and mitigation of incidents and accidents are discussed. A comprehensive discussion of the security issues associated to the global use of radiation sources for the aforementioned applications and the inherent radiation detection requirements will be presented. Scientific, technical, legal, ethical, socio-economic issues are put forward and discussed.

  4. Application of accelerator mass spectrometry in nuclear science

    International Nuclear Information System (INIS)

    Wang Xiaobo; Hu Jinjun; Wang Huijuan; Guan Yongjing; Wang Wei

    2013-01-01

    Accelerator mass spectrometry (AMS) is a promising method to provide extreme sensitivity measurements of the production yields of long-lived radioisotopes, which cannot be detected by other methods. AMS technique plays an important role in the research of nuclear physics, as well as the application field of AMS covered nuclear science and technology, life science, earth science, environmental science, archaeology etc. The newest AMS field is that of actinide, particularly U and Pu, isotopic assay with expanding applications in nuclear safeguards and monitoring, and as a modern bomb-fallout tracer for atmospheric transport and surface sediment movement. This paper reviews the applications of AMS in the research of nuclear energy and nuclear security including the research of half life of radionuclides, cross section of nuclear reaction. (authors)

  5. Catastrophe theory with application in nuclear technology

    International Nuclear Information System (INIS)

    Valeca, Serban Constantin

    2002-01-01

    The monograph is structured on the following seven chapters: 1. Correlation of risk, catastrophe and chaos at the level of polyfunctional systems with nuclear injection; 1.1 Approaching the risk at the level of power systems; 1.2 Modelling the chaos-catastrophe-risk correlation in the structure of integrated classical and nuclear processes; 2. Catastrophe theory applied in ecosystems models and applications; 2.1 Posing the problems in catastrophe theory; 2.2 Application of catastrophe theory in the engineering of the power ecosystems with nuclear injection; 4.. Decision of abatement of the catastrophic risk based on minimal costs; 4.1 The nuclear power systems sensitive to risk-catastrophe-chaos in the structure of minimal costs; 4.2 Evaluating the market structure on the basis of power minimal costs; 4.3 Decisions in power systems built on minimal costs; 5. Models of computing the minimal costs in classical and nuclear power systems; 5.1 Calculation methodologies of power minimal cost; 5.2 Calculation methods of minimal costs in nuclear power sector; 6. Expert and neuro expert systems for supervising the risk-catastrophe-chaos correlation; 6.1 The structure of expert systems; 6.2 Application of the neuro expert program; 7. Conclusions and operational proposals; 7.1 A synthesis of the problems presented in this work; 7.2 Highlighting the novel aspects applicable in the power systems with nuclear injection

  6. 10 CFR 55.21 - Medical examination.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Medical examination. 55.21 Section 55.21 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) OPERATORS' LICENSES Medical Requirements § 55.21 Medical examination. An applicant for a license shall have a medical examination by a physician. A licensee shall have a medical...

  7. National emergency medical assistance program for commercial nuclear power plants

    International Nuclear Information System (INIS)

    Linnemann, R.E.; Berger, M.E.

    1987-01-01

    Radiation Management Consultant's Emergency Medical Assistance Program (EMAP) for nuclear facilities provides a twenty-four hour emergency medical and health physics response capability, training of site and off-site personnel, and three levels of care for radiation accident victims: first air and rescue at an accident site, hospital emergency assessment and treatment, and definitive evaluation and treatment at a specialized medical center. These aspects of emergency preparedness and fifteen years of experience in dealing with medical personnel and patients with real or suspected radiation injury will be reviewed

  8. Analysis and synthesis of nuclear medical letters in the field of nephrological diseases

    International Nuclear Information System (INIS)

    Kley, K.H.

    1979-01-01

    The task of this study consisted in providing the conditions for the automized issue of nuclear nephrological medical letters based on the nuclear medical polyclinic Marburg Selex system working for 8 years now. Part of the task was to develop the structure and coding of the medical letter content appropriately for EDP documentation, as in the Selex system all data for medical letter acquisition are simultaneously acquired on a data carrier for EDP documentation. The analysis of commonly provided medical letters also exhibited in this field the known weaknesses: especially insufficient systematics and the all-over information of interfering redundances. The work describes in detail how the required thesaurus has been worked out and structured into obligatory and optional rough and detailed components. A general form was developed for the findings of paired organs and the special form for nuclear nephrological medical letters was adapted to it. Of the auxiliaries worked out for the doctor in setting up the working instructions to operate the Selex system, scriptate leaflet, short vocabulary album; the two former are presented fully and the latter with typical examples. The result of this work can basically also be applied to other hardware. (orig.) [de

  9. Introduction to the simulation with MCNP Monte Carlo code and its applications in Medical Physics

    International Nuclear Information System (INIS)

    Parreno Z, F.; Paucar J, R.; Picon C, C.

    1998-01-01

    The simulation by Monte Carlo is tool which Medical Physics counts with it for the development of its research, the interest by this tool is growing, as we may observe in the main scientific journals for the years 1995-1997 where more than 27 % of the papers treat over Monte Carlo and/or its applications in the radiation transport.In the Peruvian Institute of Nuclear Energy we are implementing and making use of the MCNP4 and EGS4 codes. In this work are presented the general features of the Monte Carlo method and its more useful applications in Medical Physics. Likewise, it is made a simulation of the calculation of isodose curves in an interstitial treatment with Ir-192 wires in a mammary gland carcinoma. (Author)

  10. Current trend of robotics application in medical

    International Nuclear Information System (INIS)

    Olanrewaju, O A; Faieza, A A; Syakirah, K

    2013-01-01

    The applications of robotics in recent years has emerged beyond the field of manufacturing or industrial robots itself. Robotics applications are now widely used in medical, transport, underwater, entertainment and military sector. In medical field, these applications should be emphasized in view of the increasing challenges due to the variety of findings in the field of medicine which requires new inventions to ease work process. The objective of this review paper is to study and presents the past and on-going research in medical robotics with emphasis on rehabilitation (assistive care) and surgery robotics which are certainly the two main practical fields where robots application are commonly used presently. The study found that, rehabilitation and surgery robotics applications grow extensively with the finding of new invention, as well as research that is being undertaken and to be undertaken. The importance of medical robot in medical industry is intended to offer positive outcomes to assist human business through a complicated task that involves a long period, accuracy, focus and other routines that cannot be accomplished by human ability alone.

  11. Applications of nuclear track detectors

    International Nuclear Information System (INIS)

    Medveczky, L.

    1980-01-01

    The results of a scientific research-work are summarized. Nuclear track detectors were used for new applications or in unusual ways. Photographic films, nuclear emulsions and dielectric track detectors were investigated. The tracks were detected by optical microscopy. Empirical formulation has been derived for the neutron sensitivity of certain dielectric materials. Methods were developed for leak testing of closed alpha emitting sources. New procedures were found for the application and evaluation of track detector materials. The results were applied in the education, personnel dosimetry, radon dosimetry etc. (R.J.)

  12. NCRP report 160 and what it means for medical imaging and nuclear medicine.

    Science.gov (United States)

    Bolus, Norman E

    2013-12-01

    The purpose of this paper is to briefly explain report 160 of the National Council on Radiation Protection and Measurement and the significance of the report to medical imaging as a whole and nuclear medicine specifically. The implications of the findings of report 160 have had repercussions and will continue to affect all of ionizing radiation medical imaging. The nuclear medicine community should have an understanding of why and how report 160 is important. After reading this article, the nuclear medicine technologist will be familiar with the main focus of report 160, the significant change that has occurred since the 1980s in the ionizing radiation exposure of people in the United States, the primary background source of ionizing radiation in the United States, the primary medical exposure to ionizing radiation in the United States, trends in nuclear medicine procedures and patient exposure, and a comparison of population doses between 2006 and the early 1980s as outlined in report 160.

  13. An Evaluation of Free Medical Applications for Android Smartphones

    Directory of Open Access Journals (Sweden)

    Roxana D. CAPRAŞ

    2016-12-01

    Full Text Available ntroduction: The field of healthcare applications (apps currently holds potential to improve the daily medical practice by implementing evidence-based healthcare tools. The purpose of this study was to describe the main characteristics of Android-based healthcare applications available in Google Play and to identify those applications that are evidence-based. Methods: The study was undertaken between the 1st of July and the 30th of August 2016. An evaluation form was developed to characterize the healthcare apps available in Google Play retrieved for the following keywords: (medical apps and (evidence based medical apps respectively. Only the free apps were considered eligible for the purpose of our study. Besides the general characteristics, several criteria with regards to interactivity, functionality, esthetics, contents, benefits, as well as evidence-based aspects were considered. Results: A number of 147 healthcare apps were displayed based on the used keywords and were included in the analysis. 42 of them were excluded due to the need for payment, malfunction after installation or games/animations that used medical terms. The remaining 105 apps were then analyzed by the evaluation criteria established in the research protocol. This study shows that until this point, mobile medical applications are mostly designed for consumers or medical students and less for medical professionals. 2 medical application include evidence based medical information and 19 applications were developed in this direction. The majority of the applications were developed in USA. 60% of the analyzed applications have the capacity of improving the quality of medical care. Conclusions: We found only 2 "ideal" mobile medical applications that brought together all the requirements that every application designed for medical use should fulfill.

  14. Nuclear Medicine Practice in Kenya

    International Nuclear Information System (INIS)

    Ndirangu, T.D.

    2017-01-01

    Nuclear medicine is a medical specialty that relies on the use of nuclear technology in the diagnosis and treatment (therapy) of diseases. Nuclear medicine uses the principle that a certain radiopharmaceutical (tracer) will at a certain point in time have a preferential uptake by a particular body, tissue or cell. This uptake is then imaged by the use of detectors mounted in gamma cameras or PET (positron emission tomography) devices.. Unlike other radiation applications for medical use, nuclear medicine uses open (unsealed) sources of radiation. In a country with an estimated population of 48 million in 2017, Kenya has only two (2) nuclear medicine facilities (units). Being a relatively new medical discipline in Kenya, several measures have been taken by the clinical nuclear medicine team to create awareness at various levels

  15. Nuclear data, cross section libraries and their application in nuclear technology

    International Nuclear Information System (INIS)

    1985-01-01

    These proceedings contain the articles presented at the named seminar. The articles deal with evaluated nuclear data libraries, computer codes for neutron transport and reactor calculations using nuclear data libraries, and the application of nuclear data libraries for the calculation of the interaction of neutron beams with materials. (HSI)

  16. Clean energy : nuclear energy world

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-10-15

    This book explains the nuclear engineering to kids with easy way. There are explanations of birth of nuclear energy such as discover of nuclear and application of modern technology of nuclear energy, principles and structure of nuclear power plant, fuel, nuclear waste management, use of radiation for medical treatment, food supplies, industry, utilization of neutron. It indicates the future of nuclear energy as integral nuclear energy and nuclear fusion energy.

  17. Fiber optic applications in nuclear power plants

    International Nuclear Information System (INIS)

    Collette, P.; Kwapien, D.

    1984-01-01

    Fiber optic technology possesses many desirable attributes for applications in commercial nuclear power plants. The non-electrical nature of fiber optics is an important factor in an industry governed by federal safety regulations such as Class 1E isolation and separation criteria. Immunity from Electromagnetic Interference (EMI), an increasing industry problem area, is another significant characteristic. Because of the extremely wide bandwidth offered, fiber optics better addresses the data acquistion and communication requirements of the complex processes of a nuclear power plant. Potential for fiber optic sensor applications exists within the nuclear industry because their small size and physical flexibility allows access into normally inaccessible areas. They possess high accuracy and allow environmentally sensitive electronics to be remotely located. The purpose of this paper is to explore current applications for fiber optic technology in modern nuclear plants, document examples of present day usage in C-E plants and suggest possible future application areas

  18. Medical Preparedness and Response for a Nuclear or Radiological Emergency. Training Materials

    International Nuclear Information System (INIS)

    2014-01-01

    In almost all nuclear and radiological emergencies, local emergency services (e.g. local medical, law enforcement, and fire brigades) will have the most important role in the early response. Within hours, hospitals may also have an important role to play in the response at the local level. Since nuclear and radiological emergencies are rare, medical responders often have little or no experience in dealing with this type of emergency and inexperience may lead to an inadequate response. For this reason, training in medical preparedness and response for a nuclear or radiological emergency is an important aspect of preparedness and response activities. These materials are designed for use at a training course on medical preparedness and response for a nuclear or radiological emergency. They contain a wide range of lectures and supporting materials, which cover the basic topics and more specific areas of medical preparedness and response. Therefore, in planning their specific courses, organizers are encouraged to choose those lectures and supportive materials from the CD-ROM that best match their training priorities. Materials on the CD-ROM address the following areas: • Terrorism in Perspective; • Malicious Act Scenarios; • Providing Information to the Medical Community and the Public; • Medical Response to a Radiation Mass Casualty Event; • Handling of Contaminated Persons in Malicious Events; • Planning and Preparedness for Medical Response to Malicious Events with Radioactive Material; • Handling the Bodies of Decedents Contaminated with Radioactive Material; • Radiation Emergencies: Scope of the Problem; • Common Sources of Radiation; • Basic Concepts of Ionizing Radiation; • Basic Concepts of Radiation Protection; • Biological Effects of Ionizing Radiation – Basic Notions; • Basics of Radiopathology; • External Radioactive Contamination; • Internal Radioactive Contamination; • Acute Radiation Syndrome; • Cutaneous Radiation

  19. Nuclear applications for development

    International Nuclear Information System (INIS)

    2007-01-01

    Building capacity for the safe application of nuclear technologies produces tangible socioeconomic benefits to developing countries. Identifying killer infections such as extrapulmonary tuberculosis and drug resistant strains of HIV/AIDS in sub-Saharan Africa; Monitoring malaria drug resistance in Myanmar; - Teaching Jordanian farmers how to produce viable crops on salty soils; - Investigating water resources deep beneath the Nubian Desert; - Fighting acid rain in Poland; - Creating an energy strategy for Latin America; - Strengthening the security of nuclear sources in Kazakhstan. These are just some of examples of the practical ways in which the International Atomic Energy Agency (IAEA) fulfils its mandate to 'accelerate and enlarge the contribution of atomic energy to peace, health, and prosperity throughout the world'. And some of the reasons the IAEA's long history of global action was recognized through the Nobel Peace Prize in 2005. This list of activities reflects the diverse needs of Member States. It also demonstrates the enormous potential of nuclear technology and the breadth of expertise that lie within three IAEA technical programmes: Nuclear Sciences and Applications, Nuclear Energy, and Nuclear Safety and Security. More importantly, it speaks to the success of a determined effort to facilitate knowledge sharing and technology transfer through a cross-cutting mechanism known as the technical cooperation programme. Each year, the technical cooperation programme disburses approximately US $90 million, all of which is acquired through voluntary contributions from Member States. The programme concentrates on building capacity through training and education, expert advice, and equipment delivery. It is currently active in more than 110 countries across four geographic regions: Africa, Asia and the Pacific, Europe and Latin America

  20. Extending nuclear energy to non-electrical applications

    Energy Technology Data Exchange (ETDEWEB)

    Ingersoll, D.; Houghton, Z. [NuScale Power, LLC, Corvallis, Oregon (United States); Bromm, R. [Fluor Corp., Greenville, SC (United States); Desportes, C. [Aquatech International, Canonsburg, PA (United States); McKellar, M.; Boardman, R. [Idaho National Laboratory, Idaho Falls, ID (United States)

    2014-07-01

    Electricity represents less than half of all energy consumed in the United States and globally. Although a few commercial nuclear power plants world-wide provide energy to non-electrical applications such as district heating and water desalination, nuclear energy has been largely relegated to base-load electricity production. A new generation of smaller-sized nuclear power plants offers significant promise for extending nuclear energy to many non-electrical applications. The NuScale small modular reactor design is especially well suited for these nontraditional customers due to its small unit size, very robust reactor protection features and a highly flexible and scalable plant design. A series of technical and economic evaluation studies have been conducted to assess the practicality of using a NuScale plant to provide electricity and heat to a variety of non-electrical applications, including water desalination, oil refining, and hydrogen production. The studies serve to highlight the unique design features of the NuScale plant for these applications and provide encouraging conclusions regarding the technical and economic viability of extending clean nuclear energy to a broad range of non-electrical energy consumers. (author)

  1. EXTENDING NUCLEAR ENERGY TO NON-ELECTRICAL APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    R. Boardman; M. McKellar; D. Ingersoll; Z. Houghton; , R. Bromm; C. Desportes

    2014-09-01

    Electricity represents less than half of all energy consumed in the United States and globally. Although a few commercial nuclear power plants world-wide provide energy to non-electrical applications such as district heating and water desalination, nuclear energy has been largely relegated to base-load electricity production. A new generation of smaller-sized nuclear power plants offers significant promise for extending nuclear energy to many non-electrical applications. The NuScale small modular reactor design is especially well suited for these non-traditional customers due to its small unit size, very robust reactor protection features and a highly flexible and scalable plant design. A series of technical and economic evaluation studies have been conducted to assess the practicality of using a NuScale plant to provide electricity and heat to a variety of non-electrical applications, including water desalination, oil refining, and hydrogen production. The studies serve to highlight the unique design features of the NuScale plant for these applications and provide encouraging conclusions regarding the technical and economic viability of extending clean nuclear energy to a broad range of non-electrical energy consumers.

  2. Summary Report of the First Research Coordination Meeting on Nuclear Data for Charged-Particle Monitor Reactions and Medical Isotope Production

    International Nuclear Information System (INIS)

    Nichols, Alan L.; Noy, Roberto Capote

    2013-02-01

    A summary is given of the first IAEA research coordination meeting on ''Nuclear Data for Charged-particle Monitor Reactions and Medical Isotope Production'. Participants reassessed and reviewed the requirements for both cross-section and decay data, based on the earlier findings of three IAEA consultants' meetings (High-precision beta-intensity measurements and evaluations for specific PET radioisotopes, INDC(NDS)-0535, December 2008; Improvements in charged-particle monitor reactions and nuclear data for medical isotope production, INDC(NDS)-0591, September 2011; Intermediate-term nuclear data needs for medical applications: cross sections and decay data, INDC(NDS)-0596, September 2011). While significant emphasis was placed on the needs defined in IAEA report INDC(NDS)-0591, a limited number of relevant items and issues were also considered from the other two technical meetings. Recommendations focused on cross-section studies for a reasonably wide range of targets and projectiles, along with decay data measurements and evaluations for specific radionuclides. Individual presentations and discussions are described in this report, along with listings of the agreed work packages to be undertaken by the participants of the coordinated research project. (author)

  3. [Medical and biological consequences of nuclear disasters].

    Science.gov (United States)

    Stalpers, Lukas J A; van Dullemen, Simon; Franken, N A P Klaas

    2012-01-01

    Medical risks of radiation exaggerated; psychological risks underestimated. The discussion about atomic energy has become topical again following the nuclear accident in Fukushima. There is some argument about the gravity of medical and biological consequences of prolonged exposure to radiation. The risk of cancer following a low dose of radiation is usually estimated by linear extrapolation of the incidence of cancer among survivors of the atomic bombs dropped on Hiroshima and Nagasaki in 1945. The radiobiological linear-quadratic model (LQ-model) gives a more accurate description of observed data, is radiobiologically more plausible and is better supported by experimental and clinical data. On the basis of this model there is less risk of cancer being induced following radiation exposure. The gravest consequence of Chernobyl and Fukushima is not the medical and biological damage, but the psychological and economical impact on rescue workers and former inhabitants.

  4. Nuclear energy I, Non-energetic applications; Energia Nuclear I, Aplicaciones no energeticas

    Energy Technology Data Exchange (ETDEWEB)

    Lartigue G, J; Navarrete T, M; Cabrera M, L; Arandia, P A; Arriola S, H [Facultad de Quimica, 04510 Mexico D.F. (Mexico)

    1986-07-01

    The nuclear energy is defined as the energy produced or absorbed in the nuclear reactions, therefore, these are divided in endothermic and exothermic. The exothermic nuclear reactions present more interest from the point of view of its applications and they can show in four main forms: radioactivity (from 0 to 4 MeV/reaction; light nucleus fusion ( {approx} 20 MeV/reaction), heavy nucleus fusion ({approx} 200 MeV/reaction) and nucleons annihilation ( {approx} 2000 MeV/reaction). Nowadays only the fission has reached the stage of profitable energetic application, finding the other three forms in research and development. The non-energetic applications of the nuclear energy are characterized by they do not require of prior conversion to another form of energy and they are made through the use of radioisotopes as well as through the use of endothermic reaction caused in particle accelerators. In this work are presented some of the non-energetic applications with its theoretical and experimental basis as well as its benefits of each one. (Author)

  5. A review of calixarene applications in nuclear industries

    International Nuclear Information System (INIS)

    Bahram Mokhtari; Iranian Offshore Oil Company, Lavan Island; Kobra Pourabdollah; Naser Dallali

    2011-01-01

    Calixarenes has been subject to extensive research in development of many extractants, transporters, stationary phases, electrode ionophores and optical and electrochemical sensors over the past four decades. In this paper, the nuclear applications of calixarenes are summarized in six fields including complexation studies, solvent extraction, membrane transport, chromatography, luminescent and colorimetric applications, and electroanalytical applications. In the first to fourth sections, the extractability, extraction equilibria and extraction constants of lanthanide, actinide and other nuclear waste cations ions, which were subjected to solvent extraction by the macrocyclic ligands, are reviewed. In two last sections, the analytical applications of calixarene complexes towards nuclear waste cations, including spectroscopic and electroanalytic sensors, are discussed. The examples described in this review illustrate the potential of calixarene derivatives in the rapidly growing field of cations recognition in nuclear wastes. (author)

  6. Quality assurance in medical radiation applications. The medical and dental appointment

    International Nuclear Information System (INIS)

    Ernst-Elz, Andreas

    2017-01-01

    Medical radiation applications cause averaged over the German population an annual exposure of almost 2 mSv. Medical authorities have the assignment to assure and control the diagnostic and therapeutic quality of these applications and to provide recommendations for operators with respect to dose reductions and radiation protection, including guidance for radiotherapy planning aimed to questions of dose and therapy optimization.

  7. Deuteron nuclear data for the design of accelerator-based neutron sources: Measurement, model analysis, evaluation, and application

    Science.gov (United States)

    Watanabe, Yukinobu; Kin, Tadahiro; Araki, Shouhei; Nakayama, Shinsuke; Iwamoto, Osamu

    2017-09-01

    A comprehensive research program on deuteron nuclear data motivated by development of accelerator-based neutron sources is being executed. It is composed of measurements of neutron and gamma-ray yields and production cross sections, modelling of deuteron-induced reactions and code development, nuclear data evaluation and benchmark test, and its application to medical radioisotopes production. The goal of this program is to develop a state-of-the-art deuteron nuclear data library up to 200 MeV which will be useful for the design of future (d,xn) neutron sources. The current status and future plan are reviewed.

  8. Management of Low-Level Radioactive Waste from Research, Hospitals and Nuclear Medical Centers in Egypt - 13469

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, M.A.; Selim, Y.T.; Lasheen, Y.F. [Hot Labs and Waste Management Center, Atomic Energy Authority, 3 Ahmed El-Zomor St., El-Zohour District, Naser City, 11787, Cairo (Egypt)

    2013-07-01

    The application of radioisotopes and radiation sources in medical diagnosis and therapy is an important issue. Physicians can use radioisotopes to diagnose and treat diseases. Methods of treatment, conditioning and management of low level radioactive wastes from the use of radiation sources and radioisotopes in hospitals and nuclear medicine application, are described. Solid Radioactive waste with low-level activity after accumulation, minimization, segregation and measurement, are burned or compressed in a compactor according to the international standards. Conditioned drums are transported to the interim storage site at the Egyptian Atomic Energy Authority (EAEA) represented in Hot Labs and Waste Management Center (HLWMC) for storage and monitoring. (authors)

  9. Application of robotics in nuclear facilities

    International Nuclear Information System (INIS)

    Byrd, J.S.; Fisher, J.J.

    1986-01-01

    Industrial robots and other robotic systems have been successfully applied at the Savannah River nuclear site. These applications, new robotic systems presently under development, general techniques for the employment of robots in nuclear facilities, and future systems are discussed

  10. 78 FR 39342 - SHINE Medical Technologies, Inc.

    Science.gov (United States)

    2013-07-01

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-608; NRC-2013-0053] SHINE Medical Technologies, Inc...: [email protected] . SUPPLEMENTARY INFORMATION: On March 26, 2013, SHINE Medical Technologies (SHINE... has determined that the partial application for a construction permit, submitted by SHINE Medical...

  11. Development of a Risk-Based Decision-Support-Model for Protecting an Urban Medical Center from a Nuclear Explosion

    International Nuclear Information System (INIS)

    Ben-Dor, G.; Shohet, I.M.; Ornai, D.; Brosh, B.

    2014-01-01

    Nuclear explosion is the worst man-made physical threat on the human society. The nuclear explosion includes several consequences, some of them are immediate and others are long term. The major influences are: long duration blast, extreme thermal release, nuclear radiations, and electro-magnetic pulse (EMP). Their damage range is very wide. When nuclear explosion occurs above or in an urban area it is possible that one or more medical centers will be affected. Medical centers include several layers of structures defined by their resistance capacity to the nuclear explosion influences, beginning with the structure's frame and ending with different systems and with vulnerable medical critical infrastructures such as communications, medical gas supply, etc. A comprehensive literature survey revealed that in spite of the necessity and the importance of medical centers in the daily life and especially in emergency and post nuclear explosion, there is a lack of research on this topic

  12. Modeling Medical Services with Mobile Health Applications

    Directory of Open Access Journals (Sweden)

    Zhenfei Wang

    2018-01-01

    Full Text Available The rapid development of mobile health technology (m-Health provides unprecedented opportunities for improving health services. As the bridge between doctors and patients, mobile health applications enable patients to communicate with doctors through their smartphones, which is becoming more and more popular among people. To evaluate the influence of m-Health applications on the medical service market, we propose a medical service equilibrium model. The model can balance the supply of doctors and demand of patients and reflect possible options for both doctors and patients with or without m-Health applications in the medical service market. In the meantime, we analyze the behavior of patients and the activities of doctors to minimize patients’ full costs of healthcare and doctors’ futility. Then, we provide a resolution algorithm through mathematical reasoning. Lastly, based on artificially generated dataset, experiments are conducted to evaluate the medical services of m-Health applications.

  13. Integrating virtual reality applications in nuclear safeguards

    International Nuclear Information System (INIS)

    Barletta, Michael; Crete, Jean-Maurice; Pickett, Susan

    2011-01-01

    Virtual reality (VR) tools have already been developed and deployed in the nuclear industry, including in nuclear power plant construction, project management, equipment and system design, and training. Recognized as powerful tools for, inter alia, integration of data, simulation of activities, design of facilities, validation of concepts and mission planning, their application in nuclear safeguards is still very limited. However, VR tools may eventually offer transformative potential for evolving the future safeguards system to be more fully information-driven. The paper focuses especially on applications in the area of training that have been underway in the Department of Safeguards of the International Atomic Energy Agency. It also outlines future applications envisioned for safeguards information and knowledge management, and information-analytic collaboration. The paper identifies some technical and programmatic pre-requisites for realizing the integrative potential of VR technologies. If developed with an orientation to integrating applications through compatible platforms, software, and models, virtual reality tools offer the long-term potential of becoming a real 'game changer,' enabling a qualitative leap in the efficiency and effectiveness of nuclear safeguards. The IAEA invites Member States, industry, and academia to make proposals as to how such integrating potential in the use of virtual reality technology for nuclear safeguards could be realized. (author)

  14. Seismic Isolation Studies and Applications for Nuclear Facilities

    International Nuclear Information System (INIS)

    Choun, Young Sun

    2005-01-01

    Seismic isolation, which is being used worldwide for buildings, is a well-known technology to protect structures from destructive earthquakes. In spite of the many potential advantages of a seismic isolation, however, the applications of a seismic isolation to nuclear facilities have been very limited because of a lack of sufficient knowledge about the isolation practices. The most important advantage of seismic isolation applications in nuclear power plants is that the safety and reliability of the plants can be remarkably improved through the standardization of the structures and equipment regardless of the seismic conditions of the sites. The standardization of structures and equipment will reduce the capital cost and design/construction schedule for future plants. Also, a seismic isolation can facilitate decoupling of the design and development for equipment, piping, and components due to the use of the generic in-structure response spectra associated with the standardized plant. Moreover, a seismic isolation will improve the plant safety margin against the design basis earthquake (DBE) as well as a beyond design basis seismic event due to its superior seismic performance. A number of seismic isolation systems have been developed and tested since 1970s, and some of them have been applied to conventional structures in several countries of high seismicity. In the nuclear field, there have been many studies on the applicability of such seismic isolation systems, but the application of a seismic isolation is very limited. Currently, there are some discussions on the application of seismic isolation systems to nuclear facilities between the nuclear industries and the regulatory agencies in the U.S.. In the future, a seismic isolation for nuclear facilities will be one of the important issues in the nuclear industry. This paper summarizes the past studies and applications of a seismic isolation in the nuclear industry

  15. Nuclear medicine

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    The area of nuclear medicine, the development of artificially produced radioactive isotopes for medical applications, is relatively recent. Among the subjects covered in a lengthy discussion are the following: history of development; impact of nuclear medicine; understanding the most effective use of radioisotopes; most significant uses of nuclear medicine radioimmunoassays; description of equipment designed for use in the field of nuclear medicine (counters, scanning system, display systems, gamma camera); description of radioisotopes used and their purposes; quality control. Numerous historical photographs are included. 52 refs

  16. Application of fieldbus techniques in nuclear power plants

    International Nuclear Information System (INIS)

    Wang Xu; Chen Hang; Yu Shuxin; Zhang Xinli

    2012-01-01

    The successful application experience of fieldbus techniques in thermal power plants and nuclear power plants are outlined first. And then, the application of fieldbus techniques in domestic 3rd-generation nuclear power plant (NPP) project is discussed. After that, the solution to the potential problems of fieldbus techniques application in NPP is provided. (authors)

  17. Medical isotope applications in Iceland

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1962-10-15

    About $ 12 000 worth of equipment and the services of an expert in the medical applications of radioisotopes were provided by IAEA to the Government of Iceland. The expert was primarily concerned with the establishment of a medical radioisotope laboratory at the State Hospital, Reykjavik. His specific tasks included the setting up of the equipment furnished by IAEA for radioactive measurements in medical work, the establishment of techniques for the routine uses of radioisotopes in medicine, and the training of personnel. The apparatus installed includes a well-type scintillation counter for small samples, a directional scintillation counter, and Geiger counters of different types. The laboratory is thus well equipped for nearly all the conventional applications of radioisotopes in medicine, except those involving very soft beta-ray emitting isotopes

  18. Mineral-PET Kimberlite sorting by nuclear-medical technology

    CERN Document Server

    Ballestrero, S; Cafferty, L; Caveney, R; Connell, SH; Cook, M; Dalton, M; Gopal, H; Ives, N; Lee, C A; Mampe, W; Phoku, M; Roodt, A; Sibande, W; Sellschop, J P F; Topkin, J; Unwucholaa, D A

    2010-01-01

    A revolutionary new technology for diamond bearing rock sorting which has its roots in medical-nuclear physics has been taken through a substantial part of the R&D phase. This has led to the construction of the technology demonstrator. Experiments using the technology demonstrator and experiments at a hospital have established the scientific and technological viability of the project.

  19. Wireless Technology Application to Nuclear Power Plants

    International Nuclear Information System (INIS)

    Lee, Jeong Kweon; Jeong, See Chae; Jeong, Ki Hoon; Oh, Do Young; Kim, Jae Hack

    2009-01-01

    Wireless technologies are getting widely used in various industrial processes for equipment condition monitoring, process measurement and other applications. In case of Nuclear Power Plant (NPP), it is required to review applicability of the wireless technologies for maintaining plant reliability, preventing equipment failure, and reducing operation and maintenance costs. Remote sensors, mobile technology and two-way radio communication may satisfy these needs. The application of the state of the art wireless technologies in NPPs has been restricted because of the vulnerability for the Electromagnetic Interference and Radio Frequency Interference (EMI/RFI) and cyber security. It is expected that the wireless technologies can be applied to the nuclear industry after resolving these issues which most of the developers and vendors are aware of. This paper presents an overview and information on general wireless deployment in nuclear facilities for future application. It also introduces typical wireless plant monitoring system application in the existing NPPs

  20. Implementation of graphical user interfaces in nuclear applications

    International Nuclear Information System (INIS)

    Barmsnes, K.A.; Johnsen, T.; Sundling, C.-V.

    1997-01-01

    During recent years a demand has formed for systems that support design and implementation of graphical user interfaces (GUIs) in the control rooms of nuclear power plants. Picasso-3 is a user interface management system supporting object oriented definition of GUIs in a distributed computing environment. The system is currently being used in a number of different application areas within the nuclear industry, such as retrofitting of display systems in simulators and control rooms, education and training applications, etc. Some examples are given of nuclear applications where the Picasso-3 system has been used

  1. Nuclear analytical chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Brune, D.; Forkman, B.; Persson, B.

    1984-01-01

    This book covers the general theories and techniques of nuclear chemical analysis, directed at applications in analytical chemistry, nuclear medicine, radiophysics, agriculture, environmental sciences, geological exploration, industrial process control, etc. The main principles of nuclear physics and nuclear detection on which the analysis is based are briefly outlined. An attempt is made to emphasise the fundamentals of activation analysis, detection and activation methods, as well as their applications. The book provides guidance in analytical chemistry, agriculture, environmental and biomedical sciences, etc. The contents include: the nuclear periodic system; nuclear decay; nuclear reactions; nuclear radiation sources; interaction of radiation with matter; principles of radiation detectors; nuclear electronics; statistical methods and spectral analysis; methods of radiation detection; neutron activation analysis; charged particle activation analysis; photon activation analysis; sample preparation and chemical separation; nuclear chemical analysis in biological and medical research; the use of nuclear chemical analysis in the field of criminology; nuclear chemical analysis in environmental sciences, geology and mineral exploration; and radiation protection.

  2. Nuclear analytical chemistry

    International Nuclear Information System (INIS)

    Brune, D.; Forkman, B.; Persson, B.

    1984-01-01

    This book covers the general theories and techniques of nuclear chemical analysis, directed at applications in analytical chemistry, nuclear medicine, radiophysics, agriculture, environmental sciences, geological exploration, industrial process control, etc. The main principles of nuclear physics and nuclear detection on which the analysis is based are briefly outlined. An attempt is made to emphasise the fundamentals of activation analysis, detection and activation methods, as well as their applications. The book provides guidance in analytical chemistry, agriculture, environmental and biomedical sciences, etc. The contents include: the nuclear periodic system; nuclear decay; nuclear reactions; nuclear radiation sources; interaction of radiation with matter; principles of radiation detectors; nuclear electronics; statistical methods and spectral analysis; methods of radiation detection; neutron activation analysis; charged particle activation analysis; photon activation analysis; sample preparation and chemical separation; nuclear chemical analysis in biological and medical research; the use of nuclear chemical analysis in the field of criminology; nuclear chemical analysis in environmental sciences, geology and mineral exploration; and radiation protection

  3. Applications of nuclear techniques and research 1990

    International Nuclear Information System (INIS)

    1990-01-01

    The application of nuclear techniques, i.e. those techniques where use is made of isotopes and radiation, continues to contribute to progress in science, technology, agriculture, industry and medicine. Nuclear applications found their way into the IAEA's activities from the very beginning, and their promotion constitutes today a substantial fraction of the IAEA's Technical Co-operation and Research Contract Programmes. The 1990 selection is opened by a review of the role and function of the IAEA's Research Contract Programme, which is one of the Agency's most effective tools for promoting and developing nuclear applications. Applications in agriculture are covered in two articles dealing respectively with issues affecting the acceptance of food irradiation by governments, the food industry and consumers and with the use of radiation to induce plant mutation, a practical tool available to plant breeders in their effort to develop better quality crops. The following article deals with a typical nuclear application in medicine, i.e. the use of radionuclides in the diagnosis of lung diseases and in investigations related to the respiratory function. The use of environmental isotopes to assess the energy potential of geothermal fields is the next subject, a good example of nuclear methods applied to the evaluation of natural resources. The 1990 review concludes with a presentation prepared by the Third World Academy of Sciences on magnetic fusion research activity in the developing countries and its connection with the IAEA's own fusion programme

  4. MO-F-204-00: Preparing for the ABR Diagnostic and Nuclear Medical Physics Exams

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-06-15

    Adequate, efficient preparation for the ABR Diagnostic and Nuclear Medical Physics exams is key to successfully obtain ABR certification. Each part of the ABR exam presents its own challenges: Part I: Determine the scope of basic medical physics study material, efficiently review this material, and solve related written questions/problems. Part II: Understand imaging principles, modalities, and systems, including image acquisition, processing, and display. Understand the relationship between imaging techniques, image quality, patient dose and safety, and solve related written questions/problems. Part III: Gain crucial, practical, clinical medical physics experience. Effectively communicate and explain the practice, performance, and significance of all aspects of clinical medical physics. All parts of the ABR exam require specific skill sets and preparation: mastery of basic physics and imaging principles; written problem solving often involving rapid calculation; responding clearly and succinctly to oral questions about the practice, methods, and significance of clinical medical physics. This symposium focuses on the preparation necessary for each part of the ABR exam. Although there is some overlap, the nuclear exam covers a different body of knowledge than the diagnostic exam. A separate speaker will address those unique aspects of the nuclear exam, and how preparing for a second specialty differs from the first. Medical physicists who recently completed each ABR exam portion will share their experiences, insights, and preparation methods to help attendees best prepare for the challenges of each part of the ABR exam. In accordance with ABR exam security policy, no recalls or exam questions will be discussed. Learning Objectives: How to prepare for Part 1 of the ABR exam by determining the scope of basic medical physics study material and related problem solving/calculations How to prepare for Part 2 of the ABR exam by understanding diagnostic and/or nuclear

  5. MO-F-204-00: Preparing for the ABR Diagnostic and Nuclear Medical Physics Exams

    International Nuclear Information System (INIS)

    2016-01-01

    Adequate, efficient preparation for the ABR Diagnostic and Nuclear Medical Physics exams is key to successfully obtain ABR certification. Each part of the ABR exam presents its own challenges: Part I: Determine the scope of basic medical physics study material, efficiently review this material, and solve related written questions/problems. Part II: Understand imaging principles, modalities, and systems, including image acquisition, processing, and display. Understand the relationship between imaging techniques, image quality, patient dose and safety, and solve related written questions/problems. Part III: Gain crucial, practical, clinical medical physics experience. Effectively communicate and explain the practice, performance, and significance of all aspects of clinical medical physics. All parts of the ABR exam require specific skill sets and preparation: mastery of basic physics and imaging principles; written problem solving often involving rapid calculation; responding clearly and succinctly to oral questions about the practice, methods, and significance of clinical medical physics. This symposium focuses on the preparation necessary for each part of the ABR exam. Although there is some overlap, the nuclear exam covers a different body of knowledge than the diagnostic exam. A separate speaker will address those unique aspects of the nuclear exam, and how preparing for a second specialty differs from the first. Medical physicists who recently completed each ABR exam portion will share their experiences, insights, and preparation methods to help attendees best prepare for the challenges of each part of the ABR exam. In accordance with ABR exam security policy, no recalls or exam questions will be discussed. Learning Objectives: How to prepare for Part 1 of the ABR exam by determining the scope of basic medical physics study material and related problem solving/calculations How to prepare for Part 2 of the ABR exam by understanding diagnostic and/or nuclear

  6. Survey of high-temperature nuclear heat application

    International Nuclear Information System (INIS)

    Kirch, N.; Schaefer, M.

    1984-01-01

    Nuclear heat application at high temperatures can be divided into two areas - use of high-temperature steam up to 550 deg. C and use of high-temperature helium up to about 950 deg. C. Techniques of high-temperature steam and heat production and application are being developed in several IAEA Member States. In all these countries the use of steam for other than electricity production is still in a project definition phase. Plans are being discussed about using steam in chemical industries, oil refineries and for new synfuel producing plants. The use of nuclear generated steam for oil recovery from sands and shale is also being considered. High-temperature nuclear process heat production gives new possibilities for the application of nuclear energy - hard coals, lignites, heavy oils, fuels with problems concerning transport, handling and pollution can be converted into gaseous or liquid energy carriers with no loss of their energy contents. The main methods for this conversion are hydrogasification with hydrogen generated by nuclear heated steam reformers and steam gasification. These techniques will allow countries with large coal resources to replace an important part of their natural gas and oil consumption. Even countries with no fossil fuels can benefit from high-temperature nuclear heat - hydrogen production by thermochemical water splitting, nuclear steel making, ammonia production and the chemical heat-pipe system are examples in this direction. (author)

  7. Program of medical advice in radioprotection of the Argentinean nuclear regulatory authority

    International Nuclear Information System (INIS)

    Perez, M.R.; Gisone, P.; Di Trano, J.L.; Dubher, D.; Michelin, S.

    1998-01-01

    The objective of this program is to have a system with the aim of guaranteing an appropriate medical response in the case of radiological or nuclear accidents and to offer medical advice in aspects related to the biological effects of ionizing radiations

  8. University centres of nuclear competence as TSO's in small non-nuclear countries

    International Nuclear Information System (INIS)

    Jovanovic, Slobodan

    2010-01-01

    Montenegro is small, developing 'non-nuclear' country, the use of radiation sources being modest and limited to ordinary medical and industrial applications. Even though - and taking into account current and near-future status of the field - there is (or will be) significant need in nuclear knowledge. It goes about the following areas: (i) medical applications (diagnostics, radiotherapy, palliation, sterilization of equipment, consumables, blood products, etc.), (ii) environmental protection (radioecology, low and medium activity radioactive waste management, analytical and monitoring services, etc.), (iii) industrial, geological, hydrological, agricultural, biochemical and archaeological applications (non-destructive testing, various gauges, radioisotope labeling, etc.), (iv) scientific and educational applications, (v) radiation protection, emphasizing safety and security of radiation sources, (vi) legislative and regulatory aspects, including complying to international safety/ security norms and joining international conventions in the field, (vii) preparedness and response to radiological and nuclear emergency situations, (viii) combating illicit trafficking of nuclear and radioactive materials, (ix) forensic applications, (x) security systems based on X-ray and other nuclear methods, (xi) introduction of some future topics (e.g. nuclear power for electricity generation and sea water desalination) and (xii) information and communication with media. At present, there is clear a shortage in NK in the country, resulting i.a. from long lasting poor interest of young students for the subject University of Montenegro - the only state university in the country - effectuates practically complete high education in natural and technical sciences. At the Faculty of Natural Sciences and Mathematics, Department of Physics, there is a basic education in nuclear physics, while some post-graduate curricula offer topics in radioecology, medical physics and radiation protection

  9. Effects produced by nuclear weapons from the medical viewpoint

    International Nuclear Information System (INIS)

    Messerschmidt, O.

    1982-01-01

    Recommendations are given for the protection commission of the Minister of the Interior on diagnostics and therapy of the acute radiation syndrome. In summary form, findings from the medical viewpoint are given on the biological effects of nuclear explosions - irrespective of their being produced in peace times by reactor accidents or by use of nuclear weapons in warfare. The statements on the therapy of radiation injuries are a practical aid to the experienced catastrophe physician and suggest to the still unexperienced physician to extend his training for mastering radiation injuries in catastrophes. (orig./HP) [de

  10. Medical countermeasure for Tokyo Electric Power Co. Fukushima Nuclear Power Plant accident

    International Nuclear Information System (INIS)

    Kondo, Hisayoshi

    2013-01-01

    DMAT (Disaster Medical Assistance Team) is a group of professional medical personnel organized to provide rapid-response medical care at the emergent stage of disasters. At the accident of Fukushima Daiichi Nuclear Power Plant, medical response was difficult because many infrastructures were destroyed. Under this situation, emergent medical treatment for heavy irradiation or contamination, cares for habitants and transportation of patients were conducted. Through these activities, it is suggested that rapid response for the radiation exposure should be definitely include in the medical system for usual disasters. (J.P.N.)

  11. Nuclear Reactions for Astrophysics and Other Applications

    Energy Technology Data Exchange (ETDEWEB)

    Escher, J E; Burke, J T; Dietrich, F S; Scielzo, N D; Ressler, J J

    2011-03-01

    Cross sections for compound-nuclear reactions are required for many applications. The surrogate nuclear reactions method provides an indirect approach for determining cross sections for reactions on unstable isotopes, which are difficult or impossible to measure otherwise. Current implementations of the method provide useful cross sections for (n,f) reactions, but need to be improved upon for applications to capture reactions.

  12. Defense nuclear energy systems selection methodology for civil nuclear power applications

    International Nuclear Information System (INIS)

    Scarborough, J.C.

    1986-01-01

    A methodology developed to select a preferred nuclear power system for a US Department of Defense (DOD) application has been used to evaluate preferred nuclear power systems for a remote island community in Southeast Asia. The plant would provide ∼10 MW of electric power, possibly low-temperature process heat for the local community, and would supplement existing island diesel electric capacity. The nuclear power system evaluation procedure was evolved from a disciplined methodology for ranking ten nuclear power designs under joint development by the US Department of Energy (DOE) and DOD. These included six designs proposed by industry for the Secure Military Power Plant Program (now termed Multimegawatt Terrestrial Reactor Program), the SP-100 Program, the North Warning System Program, and the Modular Advanced High-Temperature Gas-Cooled Reactor (HTGR) and Liquid-Metal Reactor (LMR) programs. The 15 evaluation criteria established for the civil application were generally similar to those developed and used for the defense energy systems evaluation, except that the weighting factor applied to each individual criterion differed. The criteria and their weighting (importance) functions for the civil application are described

  13. Review of CdTe medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Entine, G; Garcia, D A; Tow, D E

    1977-02-01

    CdTe sensors are now being used in several areas of nuclear medicine. CdTe probe technics, originally developed to study dental pathology in dog models, are being used clinically to diagnose venous thrombosis of the legs and to detect occult dental infections in patients scheduled for prosthetic cardiovascular and orthopedic surgery. Similar instrumentation is in use in animal research of myocardial infarction and synthetic tooth substitutes. Transmission technics have also been developed to diagnose pulmonary edema and to measure bone mineral changes in space flight. Investigations are also underway in the use of linear or two-dimensional arrays of CdTe gamma sensors for medical imaging. Economic considerations have slowed this work, but the technology appears to be available. Development of photoconductive CdTe X-ray detectors for scintigraphic scanners has also begun. Rapid detector improvement will be needed for success in this field, but the potential usefulness is very great. Together, the present application results are encouraging and wide use of CdTe detectors should occur within only a few years.

  14. Jerome Lewis Duggan: A Nuclear Physicist and a Well-Known, Six-Decade Accelerator Application Conference (CAARI) Organizer

    Science.gov (United States)

    Del McDaniel, Floyd; Doyle, Barney L.

    Jerry Duggan was an experimental MeV-accelerator-based nuclear and atomic physicist who, over the past few decades, played a key role in the important transition of this field from basic to applied physics. His fascination for and application of particle accelerators spanned almost 60 years, and led to important discoveries in the following fields: accelerator-based analysis (accelerator mass spectrometry, ion beam techniques, nuclear-based analysis, nuclear microprobes, neutron techniques); accelerator facilities, stewardship, and technology development; accelerator applications (industrial, medical, security and defense, and teaching with accelerators); applied research with accelerators (advanced synthesis and modification, radiation effects, nanosciences and technology); physics research (atomic and molecular physics, and nuclear physics); and many other areas and applications. Here we describe Jerry’s physics education at the University of North Texas (B. S. and M. S.) and Louisiana State University (Ph.D.). We also discuss his research at UNT, LSU, and Oak Ridge National Laboratory, his involvement with the industrial aspects of accelerators, and his impact on many graduate students, colleagues at UNT and other universities, national laboratories, and industry and acquaintances around the world. Along the way, we found it hard not to also talk about his love of family, sports, fishing, and other recreational activities. While these were significant accomplishments in his life, Jerry will be most remembered for his insight in starting and his industry in maintaining and growing what became one of the most diverse accelerator conferences in the world — the International Conference on the Application of Accelerators in Research and Industry, or what we all know as CAARI. Through this conference, which he ran almost single-handed for decades, Jerry came to know, and became well known by, literally thousands of atomic and nuclear physicists, accelerator

  15. Nuclear power in human medicine

    International Nuclear Information System (INIS)

    Kuczera, Bernhard

    2012-01-01

    The public widely associate nuclear power with the megawatt dimensions of nuclear power plants in which nuclear power is released and used for electricity production. While this use of nuclear power for electricity generation is rejected by part of the population adopting the polemic attitude of ''opting out of nuclear,'' the application of nuclear power in medicine is generally accepted. The appreciative, positive term used in this case is nuclear medicine. Both areas, nuclear medicine and environmentally friendly nuclear electricity production, can be traced back to one common origin, i.e. the ''Atoms for Peace'' speech by U.S. President Eisenhower to the U.N. Plenary Assembly on December 8, 1953. The methods of examination and treatment in nuclear medicine are illustrated in a few examples from the perspective of a nuclear engineer. Nuclear medicine is a medical discipline dealing with the use of radionuclides in humans for medical purposes. This is based on 2 principles, namely that the human organism is unable to distinguish among different isotopes in metabolic processes, and the radioactive substances are employed in amounts so small that metabolic processes will not be influenced. As in classical medicine, the application of these principles serves two complementary purposes: diagnosis and therapy. (orig.)

  16. Laser Isotope Enrichment for Medical and Industrial Applications

    Energy Technology Data Exchange (ETDEWEB)

    Leonard Bond

    2006-07-01

    Laser Isotope Enrichment for Medical and Industrial Applications by Jeff Eerkens (University of Missouri), Jay Kunze (Idaho State University), and Leonard Bond (Idaho National Laboratory) The principal isotope enrichment business in the world is the enrichment of uranium for commercial power reactor fuels. However, there are a number of other needs for separated isotopes. Some examples are: 1) Pure isotopic targets for irradiation to produce medical radioisotopes. 2) Pure isotopes for semiconductors. 3) Low neutron capture isotopes for various uses in nuclear reactors. 4) Isotopes for industrial tracer/identification applications. Examples of interest to medicine are targets to produce radio-isotopes such as S-33, Mo-98, Mo-100, W-186, Sn-112; while for MRI diagnostics, the non-radioactive Xe-129 isotope is wanted. For super-semiconductor applications some desired industrial isotopes are Si-28, Ga-69, Ge-74, Se-80, Te-128, etc. An example of a low cross section isotope for use in reactors is Zn-68 as a corrosion inhibitor material in nuclear reactor primary systems. Neutron activation of Ar isotopes is of interest in industrial tracer and diagnostic applications (e.g. oil-logging). . In the past few years there has been a sufficient supply of isotopes in common demand, because of huge Russian stockpiles produced with old electromagnetic and centrifuge separators previously used for uranium enrichment. Production of specialized isotopes in the USA has been largely accomplished using old ”calutrons” (electromagnetic separators) at Oak Ridge National Laboratory. These methods of separating isotopes are rather energy inefficient. Use of lasers for isotope separation has been considered for many decades. None of the proposed methods have attained sufficient proof of principal status to be economically attractive to pursue commercially. Some of the authors have succeeded in separating sulfur isotopes using a rather new and different method, known as condensation

  17. Laser Isotope Enrichment for Medical and Industrial Applications

    International Nuclear Information System (INIS)

    Leonard Bond

    2006-01-01

    Laser Isotope Enrichment for Medical and Industrial Applications by Jeff Eerkens (University of Missouri), Jay Kunze (Idaho State University), and Leonard Bond (Idaho National Laboratory) The principal isotope enrichment business in the world is the enrichment of uranium for commercial power reactor fuels. However, there are a number of other needs for separated isotopes. Some examples are: (1) Pure isotopic targets for irradiation to produce medical radioisotopes. (2) Pure isotopes for semiconductors. (3) Low neutron capture isotopes for various uses in nuclear reactors. (4) Isotopes for industrial tracer/identification applications. Examples of interest to medicine are targets to produce radio-isotopes such as S-33, Mo-98, Mo-100, W-186, Sn-112; while for MRI diagnostics, the non-radioactive Xe-129 isotope is wanted. For super-semiconductor applications some desired industrial isotopes are Si-28, Ga-69, Ge-74, Se-80, Te-128, etc. An example of a low cross section isotope for use in reactors is Zn-68 as a corrosion inhibitor material in nuclear reactor primary systems. Neutron activation of Ar isotopes is of interest in industrial tracer and diagnostic applications (e.g. oil-logging). . In the past few years there has been a sufficient supply of isotopes in common demand, because of huge Russian stockpiles produced with old electromagnetic and centrifuge separators previously used for uranium enrichment. Production of specialized isotopes in the USA has been largely accomplished using old ''calutrons'' (electromagnetic separators) at Oak Ridge National Laboratory. These methods of separating isotopes are rather energy inefficient. Use of lasers for isotope separation has been considered for many decades. None of the proposed methods have attained sufficient proof of principal status to be economically attractive to pursue commercially. Some of the authors have succeeded in separating sulfur isotopes using a rather new and different method, known as condensation

  18. Non-power application as an entry point to nuclear power program

    International Nuclear Information System (INIS)

    Nahrul Khair Alang Md Rashid

    2009-01-01

    Nuclear power is usually viewed as the flagship of nuclear technology. A nuclear power plant complex, visible and prominence, is iconic of the technology. That image makes its presence common knowledge to the extent that nuclear technology is equated almost totally with nuclear power by the general public. The downside of this visibility is that it becomes easy target in public misinformation programs. The non-power applications however are not visible, and devoid of icon. The non-power applications, therefore, can grow quite smoothly, attracting only little attention in the negative and in the positive senses. According to a study conducted in the USA in 2000 and in Japan in 2002, the socio-economic impact of non-power and power applications of nuclear technology are comparable. Involvement in non-power applications can be a good grounding for moving into power applications. This paper discusses the non-power nuclear technology applications and in what manner it can serve to prepare the introduction of nuclear power program. (Author)

  19. An approach to human-centered design of nuclear medical equipment: the system of caption of the thyroid

    International Nuclear Information System (INIS)

    Santos, Isaac J.A. Luquetti; Silva, Carlos Borges da; Santana, Marcos; Carvalho, Paulo Victor R.; Oliveira, Mauro Vitor de; Mol, Antonio Carlos Mol; Grecco, Claudio Henrique; Augusto, Silas Cordeiro

    2005-01-01

    Technology plays an important role in modern medical centers, making health care increasingly complex, relying on complex technical equipment. This technical complexity is particularly noticeable in the nuclear medicine and can increase the risks for human error. Human error has many causes such as performance shaping factors, organizational factors and user interface design. Poorly design human system interfaces of nuclear medical equipment can increase the risks for human error. If all nuclear medical equipment had been designed with good user interfaces, incidents and accidents could be reduced as well as he time required to learn how to use the equipment. Although some manufacturers of nuclear medical equipment have already integrate human factors principles in their products, there is still a need to steer the development of nuclear medical technology toward more human-centered approach. The aim of this paper is to propose a methodology that contributes to the design, development and evaluation of nuclear medical equipment and human system interface, towards a human-centered approach. This methodology includes the ergonomic approach, based on the operator activity analysis, together with human factors standards and guidelines, questionnaires and user based testing. We describe a case study in which this methodology is being applied in evaluation of the thyroid uptake system, getting essential information and data, that ill be used in development of a new system. (author)

  20. The role of medical physicist in radiation protection

    International Nuclear Information System (INIS)

    Nusslin, F.

    2010-01-01

    Ionizing Radiation is applied in Radiation Therapy, Nuclear medicine and Diagnostic Radiology. Radiation Protection in Medical Application of Ionizing Radiation requires specific Professional Competence in all relevant details of the radiation source instrumentation / equipment clinical dosimetry application procedures quality assurance medical risk-benefit assessment. Application in general include Justification of practices (sufficient benefit to the exposed individuals) Limitation of doses to individuals (occupational / public exposure) Optimization of Protection (magnitude and likelihood of exposures, and the number of individuals exposed will be ALARA. Competence of persons is normally assessed by the State by having a formal mechanism for registration, accreditation or certification of medical physicists in the various specialties (e.g. diagnostic radiology, radiation therapy, nuclear medicine). The patient safety in the use of medical radiation will be increased through: Consistent education and certification of medical team members, whose qualifications are recognized nationally, and who follow consensus practice guidelines that meet established national accrediting standards

  1. Summaries of research projects for fiscal years 1996 and 1997, medical applications and biophysical research

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    The Medical Applications and Biophysical Research Division of the Office of Biological and Environmental Research supports and manages research in several distinct areas of science and technology. The projects described in this book are grouped by the main budgetary areas: General Life Sciences (structural molecular biology), Medical Applications (primarily nuclear medicine) and Measurement Science (analytical chemistry instrumentation), Environmental Management Science Program, and the Small Business Innovation Research Program. The research funded by this division complements that of the other two divisions in the Office of Biological and Environmental Research (OBER): Health Effects and Life Sciences Research, and Environmental Sciences. Most of the OBER programs are planned and administered jointly by the staff of two or all three of the divisions. This summary book provides information on research supported in these program areas during Fiscal Years 1996 and 1997.

  2. Potential refractory alloy requirements for space nuclear power applications

    International Nuclear Information System (INIS)

    Cooper, R.H. Jr.

    1984-01-01

    In reviewing design requirements for refractory alloys for space nuclear applications, several key points are identified. First, the successful utilization of refractory alloys is considered an enabling requirement for the successful deployment of high efficiency, lightweight, and small space nuclear systems. Second, the recapture of refractory alloy nuclear technology developed in the 1960s and early 1970s appears to be a pacing activity in the successful utilization of refractory alloys. Third, the successful application of refractory alloys for space nuclear applications will present a significant challenge to both the materials and the systems design communities

  3. The medical quality control commission for nuclear medicine in Bavaria - an interim report

    International Nuclear Information System (INIS)

    Heidenreich, P.; Lang, B.; Kopp, J.

    2005-01-01

    The medical quality control commission for Nuclear Medicine in Bavaria started work approximately one year ago. Since then more than half of the 209 licensees have been reviewed. The main points in the review results according to technical and clinical problems in quality control are presented. The medical quality control commission is an inevitable, statutorily regulated institution to maintain quality control. Therewith representing an essential part of quality management in both in- and outpatient nuclear medicine and defines herself as an instrument to objectify the performance and competence of Nuclear Medicine specialism. A highly qualified advice to optimize the individual quality standards is offered that should not be given an account of burdensome or bureaucratic tutelage. (orig.)

  4. Application of stereo-imaging technology to medical field.

    Science.gov (United States)

    Nam, Kyoung Won; Park, Jeongyun; Kim, In Young; Kim, Kwang Gi

    2012-09-01

    There has been continuous development in the area of stereoscopic medical imaging devices, and many stereoscopic imaging devices have been realized and applied in the medical field. In this article, we review past and current trends pertaining to the application stereo-imaging technologies in the medical field. We describe the basic principles of stereo vision and visual issues related to it, including visual discomfort, binocular disparities, vergence-accommodation mismatch, and visual fatigue. We also present a brief history of medical applications of stereo-imaging techniques, examples of recently developed stereoscopic medical devices, and patent application trends as they pertain to stereo-imaging medical devices. Three-dimensional (3D) stereo-imaging technology can provide more realistic depth perception to the viewer than conventional two-dimensional imaging technology. Therefore, it allows for a more accurate understanding and analysis of the morphology of an object. Based on these advantages, the significance of stereoscopic imaging in the medical field increases in accordance with the increase in the number of laparoscopic surgeries, and stereo-imaging technology plays a key role in the diagnoses of the detailed morphologies of small biological specimens. The application of 3D stereo-imaging technology to the medical field will help improve surgical accuracy, reduce operation times, and enhance patient safety. Therefore, it is important to develop more enhanced stereoscopic medical devices.

  5. Attitudes of Medical Graduate and Undergraduate Students toward the Learning and Application of Medical Statistics

    Science.gov (United States)

    Wu, Yazhou; Zhang, Ling; Liu, Ling; Zhang, Yanqi; Liu, Xiaoyu; Yi, Dong

    2015-01-01

    It is clear that the teaching of medical statistics needs to be improved, yet areas for priority are unclear as medical students' learning and application of statistics at different levels is not well known. Our goal is to assess the attitudes of medical students toward the learning and application of medical statistics, and discover their…

  6. CVD diamond for nuclear detection applications

    International Nuclear Information System (INIS)

    Bergonzo, P.; Brambilla, A.; Tromson, D.; Mer, C.; Guizard, B.; Marshall, R.D.; Foulon, F.

    2002-01-01

    Chemically vapour deposited (CVD) diamond is a remarkable material for the fabrication of radiation detectors. In fact, there exist several applications where other standard semiconductor detectors do not fulfil the specific requirements imposed by corrosive, hot and/or high radiation dose environments. The improvement of the electronic properties of CVD diamond has been under intensive investigations and led to the development of a few applications that are addressing specific industrial needs. Here, we report on CVD diamond-based detector developments and we describe how this material, even though of a polycrystalline nature, is readily of great interest for applications in the nuclear industry as well as for physics experiments. Improvements in the material synthesis as well as on device fabrication especially concern the synthesis of films that do not exhibit space charge build up effects which are often encountered in CVD diamond materials and that are highly detrimental for detection devices. On a pre-industrial basis, CVD diamond detectors have been fabricated for nuclear industry applications in hostile environments. Such devices can operate in harsh environments and overcome limitations encountered with the standard semiconductor materials. Of these, this paper presents devices for the monitoring of the alpha activity in corrosive nuclear waste solutions, such as those encountered in nuclear fuel assembly reprocessing facilities, as well as diamond-based thermal neutron detectors exhibiting a high neutron to gamma selectivity. All these demonstrate the effectiveness of a demanding industrial need that relies on the remarkable resilience of CVD diamond

  7. Towards more accurate and reliable predictions for nuclear applications

    International Nuclear Information System (INIS)

    Goriely, S.

    2015-01-01

    The need for nuclear data far from the valley of stability, for applications such as nuclear astrophysics or future nuclear facilities, challenges the robustness as well as the predictive power of present nuclear models. Most of the nuclear data evaluation and prediction are still performed on the basis of phenomenological nuclear models. For the last decades, important progress has been achieved in fundamental nuclear physics, making it now feasible to use more reliable, but also more complex microscopic or semi-microscopic models in the evaluation and prediction of nuclear data for practical applications. In the present contribution, the reliability and accuracy of recent nuclear theories are discussed for most of the relevant quantities needed to estimate reaction cross sections and beta-decay rates, namely nuclear masses, nuclear level densities, gamma-ray strength, fission properties and beta-strength functions. It is shown that nowadays, mean-field models can be tuned at the same level of accuracy as the phenomenological models, renormalized on experimental data if needed, and therefore can replace the phenomenogical inputs in the prediction of nuclear data. While fundamental nuclear physicists keep on improving state-of-the-art models, e.g. within the shell model or ab initio models, nuclear applications could make use of their most recent results as quantitative constraints or guides to improve the predictions in energy or mass domain that will remain inaccessible experimentally. (orig.)

  8. A study of RFID application impacts on medical safety.

    Science.gov (United States)

    Chang, She-I; Ou, Chin-Shyh; Ku, Cheng-Yuan; Yang, Morris

    2008-01-01

    With the international reform in medical management systems gaining ground worldwide, hospital management has gradually begun to shift its focus from providing expensive medical treatment to improving medical service quality and patient safety. In this study, we discuss the application of Radio Frequency Identification (RFID) and data integrating technology with the medical service, and examine whether or not this technology can enhance medical safety. We also discuss the possible benefits following the application of the RFID system. The findings show that the application of RFID to hospitals can actually generate benefits, which can be further divided into operational structure benefits, users' structure benefits, and organisational and environmental benefits. However, not all these benefits can achieve medical safety. Among them, only the operator and environmental benefits can play such roles. Nevertheless, the application of RFID can bring hospitals towards the integration of technology benefits and improved medical safety.

  9. Nuclear reactor physics

    CERN Document Server

    Stacey, Weston M

    2010-01-01

    Nuclear reactor physics is the core discipline of nuclear engineering. Nuclear reactors now account for a significant portion of the electrical power generated worldwide, and new power reactors with improved fuel cycles are being developed. At the same time, the past few decades have seen an ever-increasing number of industrial, medical, military, and research applications for nuclear reactors. The second edition of this successful comprehensive textbook and reference on basic and advanced nuclear reactor physics has been completely updated, revised and enlarged to include the latest developme

  10. Basic study for development of nuclear heat application systems

    Energy Technology Data Exchange (ETDEWEB)

    Inaba, Yoshitomo; Fumizawa, Motoo; Hishida, Makoto [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    1996-05-01

    We need to intensely investigate real possibilities of nuclear heat application systems which exploit high potential of nuclear energy as a promising candidate of the future energy resource in the world. In this report, special interest was placed on coal reforming systems because we thought a compact heat source of nuclear power with a very high energy density might compensate the environmental problem caused by burning a great amount of coal. First, we reviewed state-of-the-art technologies for coal reforming technology with a special attention on coal gasification technologies. Based on these basic data, we proposed several nuclear coal reforming systems and discussed advantages and disadvantages of the systems. We also explored a model with which we could analyze nuclear heat application systems all together. In addition, we investigated possibility and effects of nuclear heat utilization systems producing chemical materials from carbon dioxide in flue gas of fossil fuel power plant. As a result, we showed nuclear heat application systems were useful. (author).

  11. Performance management of nuclear medical apparatuses in Osaka University Hospital

    International Nuclear Information System (INIS)

    Ikehara, Katsuhiro; Kusumi, Yoshimi; Hayashi, Makoto; Miharu, Tomoyoshi; Masuda, Kazutaka

    1975-01-01

    Nuclear medical out side-body measuring equipments in Osaka University Hospital consist of scinticamera, scintiscanner and movement-measuring equipment as measuring equipments, and central processing equipment, CRT attached with Polaroid camera, data typewriter, X-Y recorder, and high speed tape reader as data processing equipments. Daily and monthly management items are set up to maintain the best function of these equipments. The data processing room is air-conditioned to keep temperature at 25 0 C and humidity at 60% constantly, and they are confirmed with a temperature and humidity self-recorder. Computer system is used for the homogeneity control and the correction to counting failure of the scinticamera. As the repair of nuclear medical apparatuses needs long period and because of the special circumstances of radioactive drugs, very close cooperation among technicians, doctors and equipment makers is required. (Kobatake, H.)

  12. Linacs for medical and industrial applications

    International Nuclear Information System (INIS)

    Hamm, R.W.

    1986-01-01

    Linear accelerators for medical and industrial applications have become an important commercial business. Microwave electron linacs for cancer radiation therapy and high-energy industrial radiography form the bulk of this market, but these, as well as induction linacs, are now being offered for radiation processing applications such as sterilization of disposable medical products, food preservation and material modifications. The radio frequency quadrupole (RFQ) linac has now made the ion linac also practical for commercial applications in medicine and industry, including radiation therapy, isotope production, neutron production, materials modification, and energy transfer processes. Ion linacs for several of these applications will soon be commercially available. The market for both ion and electron linacs is expected to significantly grow in several exciting and important areas

  13. Industrial applications of nuclear technology

    International Nuclear Information System (INIS)

    Vargas, Celso

    2010-01-01

    Industrial applications of nuclear technology have been very diverse worldwide. This type of technology has begun to introduce in Costa Rica to evaluate and improve different industrial processes. These applications have been classified into two or three categories, according to the criteria used. Nucleonic control systems, the gamma logging and radiotracers are determined. (author) [es

  14. Applications of nuclear technologies for in vivo elemental analysis

    International Nuclear Information System (INIS)

    Cohn, S.H.; Ellis, K.J.; Vartsky, D.; Wielopolski, L.

    1983-01-01

    The objectives of this Department of Energy sponsored program are (1) to improve existing nuclear techniques, and (2) to develop new techniques for the analysis and solution of both medical problems and those associated with environmental pollution. Measurement facilities developed, to date, include a unique whole body counter, (WBC); a total body neutron activation facility (TBNAA); and a partial body activation facility (PBNAA). A variation of the prompt gamma neutron activation technique for measuring total body nitrogen has been developed to study body composition of cancer patients and the effect of nutritional regimens on the composition. These new techniques provide data in numerous clinical studies not previously amenable to investigation. The development and perfection of these techniques provide unique applications of radiation and radioisotopes to the early diagnosis of certain diseases and the evaluation of therapeutic programs. The PBNAA technique has been developed and calibrated for in vivo measurement of metals. Development has gone forward on prompt gamma neutron activation for the measurement of cadmium, x-ray fluorescence (XRF) for measurement of lead, and nuclear resonance scattering (NRS) for measurement of iron. Other techniques are being investigated for in vivo measurement of metals such as silicon and beryllium. Cardinal to all toxicological studies of Cd and other metal pollutants is an accurate and sensitive noninvasive technique for measuring organ burdens. In keeping with the mission of Brookhaven, these facilities have been made available to qualified scientists and members of the medical community throughout the world

  15. Education in nuclear physics, medical physics and radiation protection in medicine and veterinary medicine

    International Nuclear Information System (INIS)

    Popovic, D.; Djuric, G.; Andric, S.

    2001-01-01

    Education in Nuclear Physics, Medical Physics and Radiation Protection in medicine and veterinary medicine studies on Belgrade University is an integral part of the curriculum, incorporated in different courses of graduate and post-graduate studies. During graduate studies students get basic elements of Nuclear Physics through Physics and/or Biophysics courses in the 1 st year, while basic knowledge in Medical Physics and Radiation Protection is implemented in the courses of Radiology, Physical Therapy, Radiation Hygiene, Diagnostic Radiology and Radiation Therapy in the 4 th or 5 th year. Postgraduate studies offer MSc degree in Radiology, Physical Therapy, while courses in Nuclear Physics, Nuclear Instrumentation, Radiation Protection and Radiology are core or optional. On the Faculty of Veterinary Medicine graduated students may continue their professional education and obtain specialization degree in Radiology, Physical Therapy or Radiation Protection. On the Faculty of Medicine there are specialization degrees in Medical Nuclear Physics. Still, a closer analysis reveals a number of problems both from methodological and cognitive point of view. They are related mostly to graduate students ability to apply their knowledge in practise and with the qualifications of the educators, as those engaged in graduate studies lack basic knowledge in biological and medical sciences, while those engaged in post graduate studies mostly lack basic education in physics. Therefore, a reformed curricula resulting from much closer collaboration among educators, universities and professional societies at the national level should be considered. (author)

  16. Medical and biomedical applications of shock waves

    CERN Document Server

    Loske, Achim M

    2017-01-01

    This book provides current, comprehensive, and clear explanations of the physics behind medical and biomedical applications of shock waves. Extracorporeal shock wave lithotripsy is one of the greatest medical advances of our time, and its techniques and clinical devices are continuously evolving. Further research continues to improve the understanding of calculi fragmentation and tissue-damaging mechanisms. Shock waves are also used in orthopedics and traumatology. Possible applications in oncology, cardiology, dentistry, gene therapy, cell transfection, transformation of fungi and bacteria, as well as the inactivation of microorganisms are promising approaches for clinical treatment, industrial applications and research. Medical and Biomedical Applications of Shock Waves is useful as a guide for students, technicians and researchers working in universities and laboratories. Chemists, biologists, physicians and veterinarians, involved in research or clinical practice will find useful advice, but also engineer...

  17. Ionizing radiations: medical and industrial applications

    International Nuclear Information System (INIS)

    Vidal, H.

    1994-01-01

    Medical diagnosis with X-rays is the best known use of ionizing radiations on account of its wide diffusion (about 57 500 units in France). Other medical applications of artificial radionuclides involving a smaller number of installations are also well known, i.e. gamma teletherapy (167 units), brachytherapy (119 units) or therapy using unsealed sources (257 units). The industrial uses of ionising radiation, the diversity of which is very large, are generally less well known. The use of X- and gamma rays for non-destructive testing or food preservation and the use of tracers have some notoriety, but few people know that radioactive sources are involved in the measurement of parameters controlling industrial processes. The number of persons authorized to hold, use and/or sell artificial radionuclides amounts to about 4 800, all applications included. Approximately 650 of them are involved in therapy and 500 in medical research. The aim of this paper, which is not exhaustive, is to review a few typical applications of radionuclides both in the medical and industrial fields. It also supplies data both on the number of people authorized to use each technique and the radionuclides involved. (author). 10 tabs

  18. Nuclear medical technology

    International Nuclear Information System (INIS)

    Daga, Avinash; Sharma, Smita; Sharma, K.S.

    2012-01-01

    Nuclear medical technology helps to use radiopharmaceuticals (drugs that give off radiation) to diagnose and treat illness. A more recent development is Positron Emission Tomography (PET) which is a more precise and sophisticated technique that uses isotopes produced in a cyclotron. F-18 in FDG (fluorodeoxyglucose) is one such positron-emitting radionuclide. Chemically, it is 2-deoxy-2-( 18 F) fluoro-D-glucose, a glucose analog with the positron-emitting radioactive isotope fluorine-18 substituted for the normal hydroxyl group at the 2' position in the glucose molecule. It is introduced, usually by injection, and then it gets accumulated in the target tissue. As it decays it emits a positron, which promptly combines with a nearby electron resulting in the simultaneous emission of two identifiable gamma rays in opposite directions. These are detected by a PET camera when the patient is placed in the PET scanner for a series of one or more scans which may take from 20 minutes to as long as an hour. It gives very precise indication of their origin. 18 F in FDG (fluorodeoxyglucose) has become very important in detection of cancers and the monitoring of progress in their treatment, using PET. (author)

  19. Nuclear weapons and civil defense. The influence of the medical profession in 1955 and 1983

    International Nuclear Information System (INIS)

    Kornfeld, H.

    1983-01-01

    The issue of nuclear war and its medical consequences is discussed from a historical perspective. The Federal Emergency Management Agency has proposed a multi-billion dollar program designed to relocate the population over a period of several days to help residents find protection from lethal fallout. The American Medical Association is called on to make a clear statement to the government that adequate preparation for a nuclear holocaust is impossible and that the medical problems would be awesome and without precedent. Forty-seven references are included

  20. CRC Handbook of Medical Physics, vol. 3

    International Nuclear Information System (INIS)

    Waggener, R.G.; Kereiakes, J.G.; Shalek, R.J.

    1984-01-01

    In this work, the care and testing of measurement and diagnostic instruments are described in detail. Difficulties encountered with therapeutic and diagnostic calibrations are explored and solutions are suggested. VOLUME III Physics Teaching for Radiologic Technologists, Physics Teaching for Diagnostic Radiology Residents, Physics Teaching for Nuclear Medicine Residents, Physics Teaching for Radiotherapy Residents, Degree Programs in Medical Physics, Radiobiology Teaching, Non-Degree Medical Physics Training and American Board of Radiology Certifications, Radioactivity and Production of Medical Isotopes, Practical Medical Physics Consulting, Radiologic Terminology, Nuclear Medicine Imaging Techniques, Description of Radiotherapy Procedures, Medical Applications of Ultrasonography and Thermography, Glossary of Medical and Anatomical Terms Used in Medical Physics, Equipment List for Medical Physics and Acquisition Priority. Bibliography of Reference Materials. Index

  1. Nuclear microscopy in medical research. Investigations into degenerative diseases

    Energy Technology Data Exchange (ETDEWEB)

    Makjanic, J; Thong, P; Watt, F [National University of Singapore (Singapore). Dept. of Physics

    1997-03-01

    The high energy (1-4MeV) focused ion beam (nuclear microbeam) has found uses in many scientific disciplines through a wide variety of ion beam based techniques. Of the many techniques available, the powerful combination of Particle Induced X-Ray Emission (PIXE), Rutherford Backscattering Spectrometry (RBS), and Scanning Transmission Ion Microscopy (STIM) is proving to be extremely useful, particularly in the characterisation and elemental analysis of thin specimens. In this paper we briefly review these ion beam techniques, as well as the hardware required for their application. Finally, we describe the application of the PIXE, RBS and STIM techniques in conjunction with a scanning focused 2MeV proton microbeam (nuclear microscopy). The examples chosen to illustrate the potential of nuclear microscopy are recent investigations into the degenerative diseases atherosclerosis (coronary heart disease), Parkinson`s disease and Alzheimer`s disease. (author)

  2. Virtual reality. Fundamentals and nuclear related applications

    International Nuclear Information System (INIS)

    Ishii, Hirotake

    2010-01-01

    Since the first virtual reality (VR) system was developed by Dr. Ivan Sutherland in the 1960s, various research and development have been conducted to apply VR to many fields. One promising applications is a nuclear-related one. VR is useful for control room design support, operation training, maintenance training, decommissioning planning support, nuclear education, work image sharing, telecollaboration, and even providing an experimental test-bed. In this lecture note, fundamental knowledge of VR is presented first, and various VR applications to nuclear fields are stated along with their advantages. Then appropriate cases for introducing VR are summarized and future prospects are given. (author)

  3. An analysis for formats to the cooperative nuclear nonproliferation agreements

    International Nuclear Information System (INIS)

    Shin, Sung Tack

    1998-01-01

    A country's nuclear program can be designed to support nuclear research, the production of energy, and the production of nuclear materials for medical and industrial applications or for use in nuclear weapons, or any combination of these objectives. One significant concern is the diversion of nuclear materials from peaceful nuclear activities to convert weapons programs. Other concerns include the accidental release and transport of radionuclides. The framework for cooperative monitoring consists of context, agreement, parameters and monitoring options. Nuclear material and energy production activities provide nuclear materials for medical and industrial applications, produce electrical power or heat for general use, and possibly support the production of nuclear materials for weapons. All types of nuclear agreements could increase transparency and/or reduce tensions in a regional setting. This article explains about nuclear agreements of South Pacific Nuclear-Free Zone, Korean Peace Zone, Intermediate-Range Nuclear Forces Treaty, Convention on Early Notification of a Nuclear Accident and Convention on the Physical Protection of Nuclear Materials. (Yi, J. H.)

  4. The regulation of mobile medical applications.

    Science.gov (United States)

    Yetisen, Ali Kemal; Martinez-Hurtado, J L; da Cruz Vasconcellos, Fernando; Simsekler, M C Emre; Akram, Muhammad Safwan; Lowe, Christopher R

    2014-03-07

    The rapidly expanding number of mobile medical applications have the potential to transform the patient-healthcare provider relationship by improving the turnaround time and reducing costs. In September 2013, the U.S. Food and Drug Administration (FDA) issued guidance to regulate these applications and protect consumers by minimising the risks associated with their unintended use. This guidance distinguishes between the subset of mobile medical apps which may be subject to regulation and those that are not. The marketing claims of the application determine the intent. Areas of concern include compliance with regular updates of the operating systems and of the mobile medical apps themselves. In this article, we explain the essence of this FDA guidance by providing examples and evaluating the impact on academia, industry and other key stakeholders, such as patients and clinicians. Our assessment indicates that awareness and incorporation of the guidelines into product development can hasten the commercialisation and market entry process. Furthermore, potential obstacles have been discussed and directions for future development suggested.

  5. Radiation protection and dosimetry issues in the medical applications of ionizing radiation

    International Nuclear Information System (INIS)

    Vaz, Pedro

    2014-01-01

    The technological advances that occurred during the last few decades paved the way to the dissemination of CT-based procedures in radiology, to an increasing number of procedures in interventional radiology and cardiology as well as to new techniques and hybrid modalities in nuclear medicine and in radiotherapy. These technological advances encompass the exposure of patients and medical staff to unprecedentedly high dose values that are a cause for concern due to the potential detrimental effects of ionizing radiation to the human health. As a consequence, new issues and challenges in radiological protection and dosimetry in the medical applications of ionizing radiation have emerged. The scientific knowledge of the radiosensitivity of individuals as a function of age, gender and other factors has also contributed to raising the awareness of scientists, medical staff, regulators, decision makers and other stakeholders (including the patients and the public) for the need to correctly and accurately assess the radiation induced long-term health effects after medical exposure. Pediatric exposures and their late effects became a cause of great concern. The scientific communities of experts involved in the study of the biological effects of ionizing radiation have made a strong case about the need to undertake low dose radiation research and the International System of Radiological Protection is being challenged to address and incorporate issues such as the individual sensitivities, the shape of dose–response relationship and tissue sensitivity for cancer and non-cancer effects. Some of the answers to the radiation protection and dosimetry issues and challenges in the medical applications of ionizing radiation lie in computational studies using Monte Carlo or hybrid methods to model and simulate particle transport in the organs and tissues of the human body. The development of sophisticated Monte Carlo computer programs and voxel phantoms paves the way to an accurate

  6. Medical applications of colloids

    CERN Document Server

    Matijevic, Egon

    2008-01-01

    The first book of its type on the medical and biomedical applications of colloids, although there are some related titles on different topicsDiscusses the effects of uniform particles in drug formulations and releaseEvaluates particle transport and deposition in the human body.

  7. The multiple applications of the nuclear techniques in Argentina

    International Nuclear Information System (INIS)

    Manzini, Alberto C.

    2001-01-01

    A review is given of the use of nuclear technology in Argentina, especially in the field of the production of radioisotopes and radiopharmaceuticals, nuclear medicine, and industrial applications. The applications of ionizing radiation are also reviewed

  8. Position sensitive photon detectors for nuclear physics, particle physics and healthcare applications

    International Nuclear Information System (INIS)

    Seitz, B

    2012-01-01

    Modern experiments in hadronic physics require detector systems capable of identifying and reconstructing all final-state particles and their momentum vectors. Imaging Cherenkov counters (RICH and DIRC) are frequently employed in nuclear and particle physics experiments. These detectors require high-rate, single-photon capable light detection system with sufficient granularity and position resolution. Several candidate systems are available, ranging from multi-anode photomultiplier tubes to micro-channel plate systems to silicon photomultipliers. Each of these detection solutions has particular advantages and disadvantages. Detailed studies of rate dependence, cross-talk, time-resolution and position resolution for a range of available photon detection solutions are presented. These properties make these photon detection systems ideal for radionuclide imaging applications. Cherenkov radiation can also be used for medical imaging applications. Two different applications using the Cherenkov effect for radionuclide imaging will be reviewed.

  9. Nuclear medical determination of left ventricular diastolic function in coronary heart disease

    International Nuclear Information System (INIS)

    Brugger, P.; Laesser, W.K.; Kullich, W.; Stoiberer, I.; Klein, G.

    1985-01-01

    In 64 patients with coronary heart disease, the left ventricular diastolic function was determined by means of a new nuclear medical method (nuclear stethoscope). The investigations revealed an abnormal diastolic filling in 85.9% of the cases on the basis of the parameters peak filling rate and time to peak filling rate as manifestation of a disturbed ventricular function

  10. 78 FR 19537 - SHINE Medical Technologies, Inc.; Exemption

    Science.gov (United States)

    2013-04-01

    ... NUCLEAR REGULATORY COMMISSION [NRC-2013-0053] SHINE Medical Technologies, Inc.; Exemption AGENCY... Technologies, Inc. (SHINE) intends to submit an application to construct a medical isotope production facility... grants SHINE Medical Technologies, Inc. an exemption from the requirement of 10 CFR 2.101(a)(5) limiting...

  11. The national nuclear technology conference, 6-9 September 1998

    International Nuclear Information System (INIS)

    1998-01-01

    The National nuclear technology conference was held under the aegis of industrial and institutional stake holders from 6 to 9 September 1998 in Mmabatho and hosted by the University of North West. Papers were divided into the following theme clusters: safety, waste management and radiation protection; prospects for nuclear energy generation; applications in mining; applications in industry; medical applications; medical technology and training; agriculture, food security and water resources management; redress, education, research and development; policy and legal framework. The 58 papers were published in summary form only

  12. [VR and AR Applications in Medical Practice and Education].

    Science.gov (United States)

    Hsieh, Min-Chai; Lin, Yu-Hsuan

    2017-12-01

    As technology advances, mobile devices have gradually turned into wearable devices. Furthermore, virtual reality (VR), augmented reality (AR), and mixed reality (MR) are being increasingly applied in medical fields such as medical education and training, surgical simulation, neurological rehabilitation, psychotherapy, and telemedicine. Research results demonstrate the ability of VR, AR, and MR to ameliorate the inconveniences that are often associated with traditional medical care, reduce incidents of medical malpractice caused by unskilled operations, and reduce the cost of medical education and training. What is more, the application of these technologies has enhanced the effectiveness of medical education and training, raised the level of diagnosis and treatment, improved the doctor-patient relationship, and boosted the efficiency of medical execution. The present study introduces VR, AR, and MR applications in medical practice and education with the aim of helping health professionals better understand the applications and use these technologies to improve the quality of medical care.

  13. ICT based training on nuclear technology applications in Tanzania

    Energy Technology Data Exchange (ETDEWEB)

    Mdoe, S.L. [Nuclear Technology Applications Directorate, Tanzania Atomic Energy Commission, P.O. Box 743, Arusha (Tanzania)]. E-mail: slcmdoe@yahoo.com; Kimaro, E. [Nuclear Technology Applications Directorate, Tanzania Atomic Energy Commission, P.O. Box 743, Arusha (Tanzania)]. E-mail: taec@habari.co.tz

    2006-07-01

    Peaceful application of nuclear technology has contributed to socio-economic resource development in Tanzania. The Tanzania Atomic Energy Commission has taken some active steps for the incorporation and or adoption of ICT-based training modules in nuclear science and technology and its applications. The overall objective of this programme is to establish a sustainable national capability for using the potential of information communication technologies (ICTs) for training and education in the field of nuclear science and technology. This paper reviews some of the experience which the authors gained in the area of ICT based training in nuclear technology applications, it describes some of the challenges experienced, and some proposals to address the issues involved. (author)

  14. ICT based training on nuclear technology applications in Tanzania

    International Nuclear Information System (INIS)

    Mdoe, S.L.; Kimaro, E.

    2006-01-01

    Peaceful application of nuclear technology has contributed to socio-economic resource development in Tanzania. The Tanzania Atomic Energy Commission has taken some active steps for the incorporation and or adoption of ICT-based training modules in nuclear science and technology and its applications. The overall objective of this programme is to establish a sustainable national capability for using the potential of information communication technologies (ICTs) for training and education in the field of nuclear science and technology. This paper reviews some of the experience which the authors gained in the area of ICT based training in nuclear technology applications, it describes some of the challenges experienced, and some proposals to address the issues involved. (author)

  15. Nuclear energy and energy security

    International Nuclear Information System (INIS)

    Mamasakhlisi, J.

    2010-01-01

    Do Georgia needs nuclear energy? Nuclear energy is high technology and application of such technology needs definite level of industry, science and society development. Nuclear energy is not only source of electricity production - application of nuclear energy increases year-by-year for medical, science and industrial use. As an energy source Georgia has priority to extend hydro-power capacity by reasonable use of all available water resources. In parallel regime the application of energy efficiency and energy conservation measures should be considered but currently this is not prioritized by Government. Meanwhile this should be taken into consideration that attempts to reduce energy consumption by increasing energy efficiency would simply raise demand for energy in the economy as a whole. The Nuclear energy application needs routine calculation and investigation. For this reason Government Commission is already established. But it seems in advance that regional nuclear power plant for South-Caucasus region would be much more attractive for future

  16. Atomic nuclei and nuclear reactions. Theory and application

    International Nuclear Information System (INIS)

    Sitenko, A.G.; Tartakovsky, V.K.; Kenjebaev, K.K.; Shunkeyev, K.Sh.; Ismatov, E.I.; Mukhammedov, S.; Comsan, M.N.H.; Djuraev, Sh.Kh.

    2004-01-01

    Full text: The short description of the book preparation by the collective authors from Ukraine, Kazakhstan, Uzbekistan and Egypt is given. The present book is the expanded course of lectures on the theory of nuclei, nuclear reactions and their applications delivered by the authors for a number of years in the Ukrainian National University, Aktubinsk State University of the Kazakhstan Republic, Tashkent National University, Samarkand and Termez State Universities of Uzbekistan Republic, Egyptian National Universities (Al-Az'har, Menoufeya, Suez-Canal and Tanta) and the Institute of Nuclear Physics of the Academy of Sciences of the Republic of Uzbekistan. The lectures present foundations of the modern concepts of the structure of nuclei, on the nature of nuclear processes and nuclear transformations. Main attention in the book was paid to the presentation of the basics and some modern achievements in the field of the theory of nuclei and nuclear reactions. A number of problems was investigated in original works and were not presented in the physics textbooks. The book presents the non-relativistic theory of nuclear reactions, questions of relativistic nuclear physics were not considered here. Non-relativistic theory of nuclear reactions is based on the notions of collision matrix or S-matrix. In absence of consequent microscopic theory, the scattering matrix can be found phenomenological based on definite assumptions on the character of nuclear interactions. Modern applications of nuclear reactions for the development of nuclear methods of analysis are presented. The delayed and nuclear techniques with nuclear reactor, accelerators and radioisotopic sources are considered. The book is designed as a textbook for bachelor and postgraduate students of physical faculties of universities and engineering-physical institutions, lecturers and researchers, working in the field of nuclear physics. The book gives an up-to-date list of references on nuclear reaction theory and

  17. Nuclear

    International Nuclear Information System (INIS)

    2014-01-01

    This document proposes a presentation and discussion of the main notions, issues, principles, or characteristics related to nuclear energy: radioactivity (presence in the environment, explanation, measurement, periods and activities, low doses, applications), fuel cycle (front end, mining and ore concentration, refining and conversion, fuel fabrication, in the reactor, back end with reprocessing and recycling, transport), the future of the thorium-based fuel cycle (motivations, benefits and drawbacks), nuclear reactors (principles of fission reactors, reactor types, PWR reactors, BWR, heavy-water reactor, high temperature reactor of HTR, future reactors), nuclear wastes (classification, packaging and storage, legal aspects, vitrification, choice of a deep storage option, quantities and costs, foreign practices), radioactive releases of nuclear installations (main released radio-elements, radioactive releases by nuclear reactors and by La Hague plant, gaseous and liquid effluents, impact of releases, regulation), the OSPAR Convention, management and safety of nuclear activities (from control to quality insurance, to quality management and to sustainable development), national safety bodies (mission, means, organisation and activities of ASN, IRSN, HCTISN), international bodies, nuclear and medicine (applications of radioactivity, medical imagery, radiotherapy, doses in nuclear medicine, implementation, the accident in Epinal), nuclear and R and D (past R and D programmes and expenses, main actors in France and present funding, main R and D axis, international cooperation)

  18. Proceedings of 1. Regional Meeting on Nuclear Applications

    International Nuclear Information System (INIS)

    1990-01-01

    This Meeting describes nuclear methods and techniques, emphasizing the development or adaptation of methodologies and instrumentations for national conditions. The works present here comprise several field of nuclear application as agronomy; industry; nuclear medicine; dosimetry; radiological protection and instrumentation. (C.G.C.)

  19. Survey of heat-pipe application under nuclear environment

    International Nuclear Information System (INIS)

    Tsuyuzaki, Noriyoshi; Saito, Takashi; Okamoto, Yoshizo; Hishida, Makoto; Negishi, Kanji.

    1986-11-01

    Heat pipes today are employed in a wide variety of special heat transfer applications including nuclear reactor. In this nuclear technology area in Japan, A headway speed of the heat pipe application technique is not so high because of safety confirmation and investigation under each developing step. Especially, the outline of space craft is a tendency to increase the size. Therefore, the power supply is also tendency to increase the outlet power and keep the long life. Under SP-100 project, the development of nuclear power supply system which power is 1400 - 1600 KW thermal and 100 KW electric power is steadily in progress. Many heat pipes are adopted for thermionic conversion and coolant system in order to construct more safety and light weight system for the project. This paper describes the survey of the heat pipe applications under the present and future condition for nuclear environment. (author)

  20. Medical intervention in case of nuclear or radiation event

    International Nuclear Information System (INIS)

    Blanc, J.; Bourguignon, M.; Carli, P.; Carosella, E.; Challeton de Vathaire, C.; Court, L.; Ducousso, R.; Facon, A.; Fleutot, J.B.; Goldstein, P.; Gourmelon, P.; Herbelet, G.; Kolodie, H.; Lallemand, J.; Martin, J.C.; Menthonnex, P.; Masse, R.; Origny, S.; Pasnon, J.; Peton Klein, D.; Rougy, C.; Schoulz, D.; Romet, G.; Telion, C.; Vrousos, C.

    2002-01-01

    This guide aims to be a practical tool for intervenors in case of nuclear or radiation accident. It proposes many sheets to favor the reactivity and the implementing of adapted measures. It concerns the course of action to take in case of irradiation accident or contamination and the reception in medical structure or a hospital. (A.L.B.)

  1. How to identify, assess and utilise mobile medical applications in clinical practice.

    Science.gov (United States)

    Aungst, T D; Clauson, K A; Misra, S; Lewis, T L; Husain, I

    2014-02-01

    There are thousands of medical applications for mobile devices targeting use by healthcare professionals. However, several factors related to the structure of the existing market for medical applications create significant barriers preventing practitioners from effectively identifying mobile medical applications for individual professional use. To define existing market factors relevant to selection of medical applications and describe a framework to empower clinicians to identify, assess and utilise mobile medical applications in their own practice. Resources available on the Internet regarding mobile medical applications, guidelines and published research on mobile medical applications. Mobile application stores (e.g. iTunes, Google Play) are not effective means of identifying mobile medical applications. Users of mobile devices that desire to implement mobile medical applications into practice need to carefully assess individual applications prior to utilisation. Searching and identifying mobile medical applications requires clinicians to utilise multiple references to determine what application is best for their individual practice methods. This can be done with a cursory exploration of mobile application stores and then moving onto other available resources published in the literature or through Internet resources (e.g. blogs, medical websites, social media). Clinicians must also take steps to ensure that an identified mobile application can be integrated into practice after carefully reviewing it themselves. Clinicians seeking to identify mobile medical application for use in their individual practice should use a combination of app stores, published literature, web-based resources, and personal review to ensure safe and appropriate use. © 2014 John Wiley & Sons Ltd.

  2. Nuclear plant analyzer development and analysis applications

    International Nuclear Information System (INIS)

    Laats, E.T.

    1984-10-01

    The Nuclear Plant Analyzer (NPA) is being developed as the US Nuclear Regulatory Commission's (NRC's) state of the art safety analysis and engineering tool to address key nuclear plant safety issues. This paper describes four applications of the NPA in assisting reactor safety analyses. Two analyses evaluated reactor operating procedures, during off-normal operation, for a pressurized water reactor (PWR) and a boiling water reactor (BWR), respectively. The third analysis was performed in support of a reactor safety experiment conducted in the Semiscale facility. The final application demonstrated the usefulness of atmospheric dispersion computer codes for site emergency planning purposes. An overview of the NPA and how it supported these analyses are the topics of this paper

  3. Calibration services for medical applications of radiation

    Energy Technology Data Exchange (ETDEWEB)

    DeWerd, L.A.

    1993-12-31

    Calibration services for the medical community applications of radiation involve measuring radiation precisely and having traceability to the National Institute of Standards and Technology (NIST). Radiation therapy applications involve the use of ionization chambers and electrometers for external beams and well-type ionization chamber systems as well as radioactive sources for brachytherapy. Diagnostic x-ray applications involve ionization chamber systems and devices to measure other parameters of the x-ray machine, such as non-invasive kVp meters. Calibration laboratories have been established to provide radiation calibration services while maintaining traceability to NIST. New radiation applications of the medical community spur investigation to provide the future calibration needs.

  4. Calibration services for medical applications of radiation

    International Nuclear Information System (INIS)

    DeWerd, L.A.

    1993-01-01

    Calibration services for the medical community applications of radiation involve measuring radiation precisely and having traceability to the National Institute of Standards and Technology (NIST). Radiation therapy applications involve the use of ionization chambers and electrometers for external beams and well-type ionization chamber systems as well as radioactive sources for brachytherapy. Diagnostic x-ray applications involve ionization chamber systems and devices to measure other parameters of the x-ray machine, such as non-invasive kVp meters. Calibration laboratories have been established to provide radiation calibration services while maintaining traceability to NIST. New radiation applications of the medical community spur investigation to provide the future calibration needs

  5. The medical physicist in a nuclear medicine department

    International Nuclear Information System (INIS)

    Trujillo Z, F.E.; Gomez A, E.

    2007-01-01

    The diagnostic studies and therapeutic treatments carried out in a Nuclear Medicine department make use of radioactive material. For such a reason it becomes necessary to take a strict control in the reception, use and waste that are generated of the typical works inside the department. Also, work related with the quality control of the equipment dedicated to produce images and of those not image formers, need to carry out to guarantee its maximum performance; as well as quality of the diagnostic and of the therapy imparted in patients. Additionally its are needed to make originated works of the individual procedures to patient and of the acquisition of radioactive materials and removal of the waste or radioactive contaminations. Presently work the recommendations of the American College of Radiology (ACR), the European Federation of Organizations for Medical Physics (EFOMP) and of the Mexican Official Standards relating to the functions that should be observed in a Nuclear Medicine Department are exposed. The ACR and the EFOMP, conclude in their recommendations that the medical physicist fulfills with the suitable profile and likewise they describe in detail the actions and functions that he should supervise, to carry out, to document and to inform. (Author)

  6. Nuclear Data Needs and Capabilities for Applications

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-27

    In July 2014, DOE NP carried out a review of the US Nuclear Data Program. This led to several recommendations, including that the USNDP should “devise effective and transparent mechanisms to solicit input and feedback from all stakeholders on nuclear data needs and priorities.” The review also recommended that USNDP pursue experimental activities of relevance to nuclear data; the revised 2014 Mission Statement accordingly states that the USNDP uses “targeted experimental studies” to address gaps in nuclear data. In support of these recommendations, DOE NP requested that USNDP personnel organize a Workshop on Nuclear Data Needs and Capabilities for Applications (NDNCA). This Workshop was held at Lawrence Berkeley National Laboratory (LBNL) on 27-29 May 2015. The goal of the NDNCA Workshop was to compile nuclear data needs across a wide spectrum of applied nuclear science, and to provide a summary of associated capabilities (accelerators, reactors, spectrometers, etc.) available for the required measurements. The first two days of the workshop consisted of 25 plenary talks by speakers from 16 different institutions, on nuclear energy (NE), national security (NS), isotope production (IP), and industrial applications (IA). There were also shorter “capabilities” talks that described the experimental facilities and instrumentation available for the measurement of nuclear data. This was followed by a third day of topic-specific “breakout” sessions and a final closeout session. The agenda and copies of these talks are available online at http://bang.berkeley.edu/events/NDNCA/agenda. The importance of nuclear data to both basic and applied nuclear science was reflected in the fact that while the impetus for the workshop arose from the 2014 USNDP review, joint sponsorship for the workshop was provided by the Nuclear Science and Security Consortium, a UC-Berkeley based organization funded by the National Nuclear Security Administration (NNSA).

  7. Nuclear Data Needs and Capabilities for Applications

    International Nuclear Information System (INIS)

    Brown, D.

    2015-01-01

    In July 2014, DOE NP carried out a review of the US Nuclear Data Program. This led to several recommendations, including that the USNDP should 'devise effective and transparent mechanisms to solicit input and feedback from all stakeholders on nuclear data needs and priorities. The review also recommended that USNDP pursue experimental activities of relevance to nuclear data; the revised 2014 Mission Statement accordingly states that the USNDP uses 'targeted experimental studies' to address gaps in nuclear data. In support of these recommendations, DOE NP requested that USNDP personnel organize a Workshop on Nuclear Data Needs and Capabilities for Applications (NDNCA). This Workshop was held at Lawrence Berkeley National Laboratory (LBNL) on 27-29 May 2015. The goal of the NDNCA Workshop was to compile nuclear data needs across a wide spectrum of applied nuclear science, and to provide a summary of associated capabilities (accelerators, reactors, spectrometers, etc.) available for the required measurements. The first two days of the workshop consisted of 25 plenary talks by speakers from 16 different institutions, on Nuclear Energy, national security (NS), isotope production (IP), and industrial applications (IA). There were also shorter 'capabilities' talks that described the experimental facilities and instrumentation available for the measurement of nuclear data. This was followed by a third day of topic-specific 'breakout' sessions and a final closeout session. The agenda and copies of these talks are available online at http://bang.berkeley.edu/events/NDNCA/agenda. The importance of nuclear data to both basic and applied nuclear science was reflected in the fact that while the impetus for the workshop arose from the 2014 USNDP review, joint sponsorship for the workshop was provided by the Nuclear Science and Security Consortium, a UC-Berkeley based organization funded by the National Nuclear Security Administration (NNSA).

  8. Solid state nuclear track detection principles, methods and applications

    CERN Document Server

    Durrani, S A; ter Haar, D

    1987-01-01

    Solid State Nuclear Track Detection: Principles, Methods and Applications is the second book written by the authors after Nuclear Tracks in Solids: Principles and Applications. The book is meant as an introduction to the subject solid state of nuclear track detection. The text covers the interactions of charged particles with matter; the nature of the charged-particle track; the methodology and geometry of track etching; thermal fading of latent damage trails on tracks; the use of dielectric track recorders in particle identification; radiation dossimetry; and solid state nuclear track detecti

  9. Medical Image Processing Server applied to Quality Control of Nuclear Medicine.

    Science.gov (United States)

    Vergara, C.; Graffigna, J. P.; Marino, E.; Omati, S.; Holleywell, P.

    2016-04-01

    This paper is framed within the area of medical image processing and aims to present the process of installation, configuration and implementation of a processing server of medical images (MIPS) in the Fundación Escuela de Medicina Nuclear located in Mendoza, Argentina (FUESMEN). It has been developed in the Gabinete de Tecnologia Médica (GA.TE.ME), Facultad de Ingeniería-Universidad Nacional de San Juan. MIPS is a software that using the DICOM standard, can receive medical imaging studies of different modalities or viewing stations, then it executes algorithms and finally returns the results to other devices. To achieve the objectives previously mentioned, preliminary tests were conducted in the laboratory. More over, tools were remotely installed in clinical enviroment. The appropiate protocols for setting up and using them in different services were established once defined those suitable algorithms. Finally, it’s important to focus on the implementation and training that is provided in FUESMEN, using nuclear medicine quality control processes. Results on implementation are exposed in this work.

  10. Medical Image Processing Server applied to Quality Control of Nuclear Medicine

    International Nuclear Information System (INIS)

    Vergara, C.; Graffigna, J.P.; Holleywell, P.; Marino, E.; Omati, S.

    2016-01-01

    This paper is framed within the area of medical image processing and aims to present the process of installation, configuration and implementation of a processing server of medical images (MIPS) in the Fundación Escuela de Medicina Nuclear located in Mendoza, Argentina (FUESMEN). It has been developed in the Gabinete de Tecnologia Médica (GA.TE.ME), Facultad de Ingeniería-Universidad Nacional de San Juan. MIPS is a software that using the DICOM standard, can receive medical imaging studies of different modalities or viewing stations, then it executes algorithms and finally returns the results to other devices. To achieve the objectives previously mentioned, preliminary tests were conducted in the laboratory. More over, tools were remotely installed in clinical enviroment. The appropiate protocols for setting up and using them in different services were established once defined those suitable algorithms. Finally, it’s important to focus on the implementation and training that is provided in FUESMEN, using nuclear medicine quality control processes. Results on implementation are exposed in this work. (paper)

  11. Application of thermal-hydraulic codes in the nuclear sector

    International Nuclear Information System (INIS)

    Queral, C.; Coriso, M.; Garcia Sedano, P. J.; Ruiz, J. A.; Posada, J. M.; Jimenez Varas, G.; Sol, I.; Herranz, L. E.

    2011-01-01

    Use of thermal-hydraulic codes is extended all over many different aspects of nuclear engineering. This article groups and briefly describes the main features of some of the well known codes as an introduction to their recent applications in the Spain nuclear sector. the broad range and quality of applications highlight the maturity achieved both in industry and research organizations and universities within the Spanish nuclear sector. (Author)

  12. High temperature heat exchange: nuclear process heat applications

    International Nuclear Information System (INIS)

    Vrable, D.L.

    1980-09-01

    The unique element of the HTGR system is the high-temperature operation and the need for heat exchanger equipment to transfer nuclear heat from the reactor to the process application. This paper discusses the potential applications of the HTGR in both synthetic fuel production and nuclear steel making and presents the design considerations for the high-temperature heat exchanger equipment

  13. Nanotechnology and nuclear medicine; research and preclinical applications.

    Science.gov (United States)

    Assadi, Majid; Afrasiabi, Kolsoom; Nabipour, Iraj; Seyedabadi, Mohammad

    2011-01-01

    The birth of nanotechnology in human society was around 2000 years ago and soon found applications in various fields. In this article, we highlight the current status of research and preclinical applications and also future prospects of nanotechnology in medicine and in nuclear medicine. The most important field is cancer. A regular nanotechnology training program for nuclear medicine physicians may be welcome.

  14. Radioactive Emissions from Fission-Based Medical Isotope Production and Their Effect on Global Nuclear Explosion Detection

    International Nuclear Information System (INIS)

    Bowyer, T.; Saey, P.

    2015-01-01

    The use of medical isotopes, such as Tc-99m, is widespread with over 30 million procedures being performed every year, but the fission-based production of isotopes used for medical procedures causes emissions into the environment. This paper will show that gaseous radioactive isotopes of xenon, such as Xe-133, are released in high quantities, because they have a high fission cross section and they are difficult to scrub from the processes used to produce the medical isotopes due to their largely unreactive nature. Unfortunately, the reasons that large amounts of radioactive xenon isotopes are emitted from isotope production are the same as those that make these isotopes the most useful isotopes for the detection of underground nuclear explosions. Relatively recently, the nuclear explosion monitoring community has established a provisional monitoring network for the Comprehensive Nuclear-Test-Ban Treaty (CTBT) that includes radioactive xenon monitoring as a major component. This community has discovered that emissions from medical isotope production present a more serious problem to nuclear explosion monitoring than thought when the network was first conceived. To address the growing problem, a group of scientists in both the monitoring and the isotope production communities have come together to attempt to find scientific and pragmatic ways to address the emissions problems, recognizing that medical isotope production should not be adversely affected, while monitoring for nuclear explosions should remain effective as isotope production grows, changes, and spreads globally. (author)

  15. Nuclear technology

    International Nuclear Information System (INIS)

    1983-03-01

    This report examines nuclear technology in Canada, with emphasis on Quebec, as a means of revitilizing industry. The historical, present day, and future states of Atomic Energy of Canada Limited are examined. Future research programs are discussed in greatest detail. These range from disposal of porcine wastes to new applications for electricity to nuclear medical techniques (to cite only a few examples). The executive summary is written in English. (23 fig., 16 tab.)

  16. IEEE Nuclear Science Symposium and Medical Imaging Conference

    CERN Document Server

    2016-01-01

    The NSS/MIC is a well-established meeting that has continuously provided an exceptional venue to showcase outstanding developments and contributions across the nuclear and medical instrumentation fields. This conference brings together engineers and scientists from around the world to share their knowledge and to gain insight and inspiration from others. The conference will include a distinguished series of short courses, relevant refresher courses, and workshops that will address areas of particular interest.

  17. Present and perspective medical applications of microbial exopolysaccharides

    Directory of Open Access Journals (Sweden)

    Misu - Moscovici

    2015-09-01

    Full Text Available Microbial exopolysaccharides (EPS have found outstanding medical applications since the mid-twentieth century, with the first clinical trials on dextran solutions as plasma expanders. Other EPS entered medicine firstly as conventional pharmaceutical excipients (e.g., xanthan - as suspension stabilizer, or pullulan – in capsules and oral care products. Polysaccharides, initially obtained from plant or animal sources, became easily available for a wide range of applications, especially when they were commercially produced by microbial fermentation. Alginates are used as anti-reflux, dental impressions, or as matrix for tablets. Hyaluronic acid and derivatives are used in surgery, arthritis treatment or wound healing. Bacterial cellulose is applied in wound dressings or scaffolds for tissue engineering. The development of drug controlled-release systems and of micro- and nanoparticulated ones, has opened a new era of medical applications for biopolymers. EPS and their derivatives are well suited potentially non-toxic, biodegradable drug carriers. Such systems concern rating and targeting of controlled release. Their large area of applications is explained by the available manifold series of derivatives, whose useful properties can be thereby controlled. From matrix inclusion to conjugates, different systems have been designed to solubilize, and to assure stable transport in the body, target accumulation and variable rate-release of a drug substance. From controlled drug delivery, EPS potential applications expanded to vaccine adjuvants and diagnostic imaging systems. Other potential applications are related to the bioactive (immunomodulator, antitumor, antiviral characteristics of EPS. The numerous potential applications still wait to be developed into commercial pharmaceuticals and medical devices. Based on previous and recent results in important medical-pharmaceutical domains, one can undoubtedly state that EPS medical applications have a

  18. Microfluidics for medical applications

    NARCIS (Netherlands)

    van den Berg, Albert; van den Berg, A.; Segerink, L.I.; Segerink, Loes Irene; Unknown, [Unknown

    2015-01-01

    Lab-on-a-chip devices for point of care diagnostics have been present in clinics for several years now. Alongside their continual development, research is underway to bring the organs and tissue on-a-chip to the patient, amongst other medical applications of microfluidics. This book provides the

  19. 21 CFR 515.11 - Supplemental medicated feed mill license applications.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Supplemental medicated feed mill license... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS MEDICATED FEED MILL LICENSE Applications § 515.11 Supplemental medicated feed mill license applications. (a) After approval of a medicated feed...

  20. The use of low energy, ion induced nuclear reactions for proton radiotherapy applications

    International Nuclear Information System (INIS)

    Horn, K.M.; Doyle, B.; Segal, M.N.; Adler, R.J.; Glatstein, E.

    1995-01-01

    Medical radiotherapy has traditionally relied upon the use of external photon beams and internally implanted radioisotopes as the chief means of irradiating tumors. However, advances in accelerator technology and the exploitation of novel means of producing radiation may provide useful alternatives to some current modes of medical radiation delivery with reduced total dose to surrounding healthy tissue, reduced expense, or increased treatment accessibility. This paper will briefly overview currently established modes of radiation therapy, techniques still considered experimental but in clinical use, innovative concepts under study that may enable new forms of treatment or enhance existing ones. The potential role of low energy, ion-induced nuclear reactions in radiotherapy applications is examined specifically for the 650 keV d( 3 He,p) 4 He nuclear reaction. This examination will describe the basic physics associated with this reaction's production of 17.4 MeV protons and the processes used to fabricate the necessary materials used in the technique. Calculations of the delivered radiation dose, heat generation, and required exposure times are presented. Experimental data are also presented validating the dose calculations. The design of small, lower cost ion accelerators, as embodied in 'nested'-tandem and radio frequency quadrupole accelerators is examined, as is the potential use of high-output 3 He and deuterium ion sources. Finally, potential clinical applications are discussed in terms of the advantages and disadvantages of this technique with respect to current radiotherapy methods and equipment

  1. The use of low energy, ion induced nuclear reactions for proton radiotherapy applications

    Science.gov (United States)

    Horn, K. M.; Doyle, B.; Segal, M. N.; Hamm, R. W.; Adler, R. J.; Glatstein, E.

    1995-12-01

    Medical radiotherapy has traditionally relied upon the use of external photon beams and internally implanted radioisotopes as the chief means of irradiating tumors. However, advances in accelerator technology and the exploitation of novel means of producing radiation may provide useful alternatives to some current modes of medical radiation delivery — with reduced total dose to surrounding healthy tissue, reduced expense, or increased treatment accessibility. This paper will briefly overview currently established modes of radiation therapy, techniques still considered experimental but in clinical use and innovative concepts under study that may enable new forms of treatment or enhance existing ones. The potential role of low energy, ion-induced nuclear reactions in radiotherapy applications is examined specifically for the 650 keV d( 3He,p) 4 He nuclear reaction. This examination will describe the basic physics associated with this reaction's production of 17.4 MeV protons and the processes used to fabricate the necessary materials used in the technique. Calculations of the delivered radiation dose, heat generation, and required exposure times are presented. Experimental data is also presented validating the dose calculations. The design of small, lower cost ion accelerators, as embodied in "nested"-tandem and radio frequency quadrupole accelerators is examined, as is the potential use of high-output 3He and deuterium ion sources. Finally, potential clinical applications are discussed in terms of the advantages and disadvantages of this technique with respect to current radiotherapy methods and equipment.

  2. Manufacturing radioactive material for medical, research and industrial applications

    International Nuclear Information System (INIS)

    Seidel, C.W.

    1992-01-01

    Hospitals, clinics and other medical complexes are among the most extensive users of radioactive material. Nuclear medicine uses radioactive solutions of Tc-99m, Tl-201, Ga-67, I-123, Xe-133 and other radiopharmaceuticals as diagnostic tools to evaluate dynamic functions of various organs in the body, detect cancerous tumors, sites of infection or other bodily dysfunctions. Examples of monitoring blood flow to the brain of a cocaine addict will be shown. Many different radionuclides are also produced for life science research and industrial applications. Some require long irradiations and are needed only periodically. Radiopharmaceutical manufactures look for reliable suppliers that can produce quality product at a reasonable cost. Worldwide production of the processed and unprocessed radionuclides and the enriched stable nuclides that are the target materials used in the accelerators and reactors around the world will be discussed. (author)

  3. United States Department of Health and Human Services Biodosimetry and radiological/nuclear medical countermeasure programs

    International Nuclear Information System (INIS)

    Homer, Mary J.; Raulli, Robert; Esker, John; Moyer, Brian; Wathen, Lynne; DiCarlo-Cohen, Andrea L.; Maidment, Bert W.; Rios, Carmen; Macchiarini, Francesca; Hrdina, Chad; Prasanna, Pataje G.

    2016-01-01

    The United States Department of Health and Human Services (HHS) is fully committed to the development of medical countermeasures to address national security threats from chemical, biological, radiological, and nuclear agents. Through the Public Health Emergency Medical Countermeasures Enterprise, HHS has launched and managed a multi-agency, comprehensive effort to develop and operationalize medical countermeasures. Within HHS, development of medical countermeasures includes the National Institutes of Health (NIH), (led by the National Institute of Allergy and Infectious Diseases), the Office of the Assistant Secretary of Preparedness and Response/Biomedical Advanced Research and Development Authority (BARDA); with the Division of Medical Countermeasure Strategy and Requirements, the Centers for Disease Control and Prevention, and the Food and Drug Administration as primary partners in this endeavor. This paper describes various programs and coordinating efforts of BARDA and NIH for the development of medical countermeasures for radiological and nuclear threats. (authors)

  4. International meeting 'Selected topics on nuclear methods for non-nuclear applications'. Proceedings

    International Nuclear Information System (INIS)

    Stoyanov, Ch.

    2007-01-01

    The volume includes the presentations given on the International Meeting 'Selected Topics on Nuclear Methods for Non-nuclear Applications'. The meeting was organized by the Project CECOA. The Project 'CEnter for COoerative Activities' (CECOA) of the Institute for Nuclear Research and Nuclear Energy (INRNE) of Bulgarian Academy of Sciences is part of the Program 'Creating of Infrastructure' of Bulgarian Ministry of Science and Education. The CECOA-project unifies the groups of INRNE doing research in the field of nuclear methods. Four Laboratories of INRNE are members of CECOA-project: Moessbauer Spectroscopy and Low Radioactivity Measurements, High-Resolution Gamma-Spectroscopy, Neutron Methods in Condensed Matter, Neutron Optics and Structure Analysis. Taking into account the leading role of education on nuclear physics the Project includes program devoted to the training on nuclear physics. The presented volume contains 23 contributed papers. The contributions are separated in 6 sections. The section 'Nano technology' includes 5 papers. The activity in this field within the Project reveals the collaboration with other Institutes of Bulgarian Academy of Sciences as well as large international contacts. The section 'Radioecology and Radioactive Waste' is two fold. Part of the contributions of the section manifests the connection of the CECOA with small enterprises. The contacts are on the level of common projects concerning the investigations, remediation and release of radioactively contaminated terrain, soils, water, buildings and materials around the former uranium processing industry. Another part of the section is devoted to the application of nuclear methods to the treatment of radioactive waste produced by nuclear power stations. The section 'Neutron Physics' reveals the activity within the Project connected with the study of new materials using polarized neutrons and neutron diffraction methods. The section 'Nuclear Physics' is an introduction to some

  5. Applications of lithium in nuclear energy

    International Nuclear Information System (INIS)

    Oliviera, Glaucia A.C. de; Bustillos, José O.V.; Ferreira, João C.; Bergamaschi, Vanderlei S.; Moraes, Rafaeli M. de; Gimenez, Maíse P.; Miyamoto, Flavia K.; Seneda, José A.

    2017-01-01

    Lithium is a material of great interest in the world, it is found in different minerals on Earth's crust (spodumene, lepidolite, amblygonite and petalite) also in salt pans. This element belongs to alkaline group and has two natural isotopes: Li-6 and Li-7. In the nuclear field, lithium isotopes are used for different purposes. The Li-6 is applied in the production of energy, because its section of shock is larger than the other isotope. The Li-7 regulates the pH in refrigerant material in the primary circuits of the Pressurized Water Nuclear Reactor (PWR). In nuclear reactor, lithium is used as a heat transfer due its boiling temperature (1342°C), making it an excellent thermal conductor. However, to reach all these applications, lithium must have high purity (> 99%). The main processes to reach a high purity level of lithium employee a combination of solvent extraction and ion exchange process, to obtain its salts or ending with chemical electrolysis of its chlorides to obtain its pure metal. This work presents a review of new applications of Lithium in Nuclear Energy and its purification and enrichment processes. (author)

  6. Applications of lithium in nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Oliviera, Glaucia A.C. de; Bustillos, José O.V.; Ferreira, João C.; Bergamaschi, Vanderlei S.; Moraes, Rafaeli M. de; Gimenez, Maíse P.; Miyamoto, Flavia K.; Seneda, José A., E-mail: glaucia.oliveira@ipen.br, E-mail: ovega@ipen.br, E-mail: jcferrei@ipen.br, E-mail: vsberga@ipen.br, E-mail: rafaeli.medeiros.moraes@gmail.com, E-mail: maisepastore@hotmail.com, E-mail: fla.kimiyamoto@gmail.com, E-mail: jaseneda@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN/SP), Paulo, SP (Brazil)

    2017-07-01

    Lithium is a material of great interest in the world, it is found in different minerals on Earth's crust (spodumene, lepidolite, amblygonite and petalite) also in salt pans. This element belongs to alkaline group and has two natural isotopes: Li-6 and Li-7. In the nuclear field, lithium isotopes are used for different purposes. The Li-6 is applied in the production of energy, because its section of shock is larger than the other isotope. The Li-7 regulates the pH in refrigerant material in the primary circuits of the Pressurized Water Nuclear Reactor (PWR). In nuclear reactor, lithium is used as a heat transfer due its boiling temperature (1342°C), making it an excellent thermal conductor. However, to reach all these applications, lithium must have high purity (> 99%). The main processes to reach a high purity level of lithium employee a combination of solvent extraction and ion exchange process, to obtain its salts or ending with chemical electrolysis of its chlorides to obtain its pure metal. This work presents a review of new applications of Lithium in Nuclear Energy and its purification and enrichment processes. (author)

  7. Nuclear energy - myth and reality

    International Nuclear Information System (INIS)

    Sinclair, Michael C.

    1997-01-01

    Socio-political aspects of the use of nuclear energy and radiation are presented. The behaviour of the general population, and many of the world's political organizations who still resist or reject nuclear energy as a viable resource is discussed. The benefits from the production of electricity, medical diagnostics and treatment, engineering accomplishments, and scientific research applications involving the use of nuclear technology and radioactive materials are emphasized

  8. Application of diagnostic reference levels in medical practice

    Energy Technology Data Exchange (ETDEWEB)

    Bourguignon, Michel [Faculty of Medicine of Paris, Deputy Director General, Nuclear Safety Authority (ASN), Paris (France)

    2006-07-01

    Diagnosis reference levels (D.R.L.) are defined in the Council Directive 97/43 EURATOM as 'Dose levels in medical radio diagnosis practices or in the case of radiopharmaceuticals, levels of activity, for typical examinations for groups of standards-sized patients or standards phantoms for broadly defined types of equipment. These levels are expected not to be exceeded for standard procedures when good and normal practice regarding diagnostic and technical performance is applied'. Thus D.R.L. apply only to diagnostic procedures and does not apply to radiotherapy. Radiation protection of patients is based on the application of 2 major radiation protection principles, justification and optimization. The justification principle must be respected first because the best way to protect the patient is not to carry a useless test. Radiation protection of the patient is a continuous process and local dose indicator values in the good range should not prevent the radiologist or nuclear medicine physician to continue to optimize their practice. (N.C.)

  9. Application of diagnostic reference levels in medical practice

    International Nuclear Information System (INIS)

    Bourguignon, Michel

    2006-01-01

    Diagnosis reference levels (D.R.L.) are defined in the Council Directive 97/43 EURATOM as 'Dose levels in medical radio diagnosis practices or in the case of radiopharmaceuticals, levels of activity, for typical examinations for groups of standards-sized patients or standards phantoms for broadly defined types of equipment. These levels are expected not to be exceeded for standard procedures when good and normal practice regarding diagnostic and technical performance is applied'. Thus D.R.L. apply only to diagnostic procedures and does not apply to radiotherapy. Radiation protection of patients is based on the application of 2 major radiation protection principles, justification and optimization. The justification principle must be respected first because the best way to protect the patient is not to carry a useless test. Radiation protection of the patient is a continuous process and local dose indicator values in the good range should not prevent the radiologist or nuclear medicine physician to continue to optimize their practice. (N.C.)

  10. Applications in the nuclear fuel cycle and radiopharmacy

    International Nuclear Information System (INIS)

    Jones, C.J.

    1987-01-01

    Chapter 6 of comprehensive coordination chemistry deals with applications of uranium and thorium in the nuclear fuel cycle. There are sections on the separation and recovery of the two metals from their ores and on the preparation of and re-processing of nuclear fuels. Another section is devoted to the chemistry of gallium, indium and technetium and to pharmaceutical applications of radionuclides for diagnostic imaging. (UK)

  11. Proceedings of the 6. conference days on radioprotection optimization in the nuclear, industrial and medical domains

    International Nuclear Information System (INIS)

    Vial, Eric; Bernier, Marie-Odile; De Vita, Antoine; Pignot, Christine; Bardelay, Chantal; Godet, Jean-Luc; Perrin, Marie-Line; Saad, Nawal; Deboodt, Pascal P.A.; Faure, Sophie; Fusil, Laurence; Alvarez, Manuel; Tourneux, C.; Barbey, Pierre; Pigree, Gilbert; Lemarchand, Maxime; Buchaniec, Remi; Rocourt, Nathalie; Bouden, Helene; Lasselin, Stephanie; Moeneclaey, Ludivine; Rebullida, Delphine; Werquin, Marie Odile; Dubus, Francois; Ponsard, Samuel; Marques, Sophie; K-Zerho, R.; Vacher, F.; Vrammout, D.; Guillot, E.; Fucks, I.; Moukarzel, Marianne; Ryckx, Nick; Verdun, Francis R.; Lefaure, Christian; Balduyck, Sebastien; Cruz Suarez, Rodolfo; ); Bouvy, Christophe; Geets, Jean-Michel; Nactergal, Benoit; Davet, Laurent; Carlier, Pierre; Lereculey, Clement; Livolsi, Paul; PIN, Alain; Ducou le Pointe, Hubert; Le Faou, Yann; Courageot, Estelle; Gaillard-Lecanu, Emmanuelle; Kutschera, Reinald; Le Meur, Gaelle; Lantheaume, Noel; Schiedts, Dominique; Nouveau, Philippe; Walterscheid, Bertrand; Humbert, Edouard; Tranchant, Philippe; Dabat-Blondeau, Charlotte; Renard, Francois; Lucas, Jean-Yves; Fritioff, Karin; Svedberg, Torgny; Carlson, Marie; Hennigor, Staffan; Schieber, Caroline; Andresz, Sylvain; Roch, Patrice; Celier, David; Aubert, Bernard; Etard, Cecile; Bouette, Aurelien; Carette, M.F.; Haddad, S.; Khalil, A.; Foulquier, J.N.; Parrot, A.; Ceyrolle, C.; Bechard, Pascal; Clero, E.; Leuraud, K.; Laurier, D.; Couzinet, M.; LE GUEN, B.; Davesne, Estelle; Blanchardon, Eric; Franck, Didier; Quesne, Benoit; De Vita, Antoine; Chojnacki, Eric; Grandeau, E.; Dumont, N.; Cattelotte, J.; Dine, Pierre Emmanuel; Guersen, Joel; Nwatsock, Joseph Francis; Boyer, Louis; Karmouche, K.; Moyon, J.B.; Cassagnes, L.; Garcier, J.M.; Lortal, B.; Caron, J.; Karst, M.; Rage, Estelle; Caer-Lorho, Sylvaine; Drubay, Damien; Ancelet, Sophie; Laurier, Dominique; Laroche, Pierre; Sans, Philippe; Tournier, Helene; Zvorykin, Sonia

    2014-06-01

    This 6. ALARA conference was jointly organised by the French Society of Radiation Protection (SFRP) and several professional associations (ABR, AFPPE, ARRAD, ATSR, RAMIP, SFPM, SFR). The conference was the occasion to review all aspects relative to the issues of radioprotection optimization and to its implementation to workers, patients and the public in the nuclear, industrial and medical domains. A particular attention must be given to the application of the ALARA principle in all sectors relevant to radioprotection, especially in a context characterized by: big dismantling works under preparation in the French nuclear park, an increased use of X-radiation in the medical domain - involving both patients and medical personnel, new knowledge concerning the health effects of ionizing radiations, and an evolution of European and international radioprotection safety standards. All these aspects were discussed during these conference days. This document brings together the available presentations (slides) together with their corresponding abstracts (in French) and dealing with: 1 - Review of the evolution of workers/patients exposure in France and comparison with international data (E. Vial); 2 - Status of low dose epidemiology (M.O. Bernier); 3 - Radioprotection optimization method at the MELOX plant (A. De Vita); 4 - Elaboration method for the annual dosimetric objective of the French nuclear park (C. Pignot); 5 - Optimisation principle in the new EURATOM Directive (N. Saad); 6 - Integrated management of radiological and non-radiological risks: the inevitable challenge (P. Deboodt); 7 - Radiological and conventional risks: the French Atomic Energy Commission (CEA) integrated approach (S. Faure); 8 - EVEREST (Evolving towards an entry into controlled areas in street clothes, M. Alvarez); 9 - Example of multi-risk management in the medical domain (C. Tourneux); 10 - Radioprotection optimisation in the research domain (P. Barbey); 11 - Child scanning dosimetry

  12. Nuclear medicine. Basic knowledge and clinical applications. 6. rev. and upd. ed.

    International Nuclear Information System (INIS)

    Schicha, H.; Schober, O.

    2007-01-01

    The development of imaging techniques like SPECT, SPECT-CT, PET, PET-CT and MRT has advanced rapidly during the past few years, especially in the case of hybrid technology. These techniques have become indispensable in diagnosis, differential diagnosis, therapy follow-up and prevention. This 6th revised and edited version of 'Nuclear Medicine' takes account of these developments. The general section presents fundamentals of physics, radiopharmaceutical chemistry, measuring techniques, nuclear medical examination techniques, and dosimetry. The special section presents detailed descriptions of all relevant nuclear medical techniques by organ systems and clinical pictures. There are many examples and scintiscans of organs to train the diagnostic eye and give a link to clinical practice. This successful textbook presents complex subject matter in a clear and intelligible way. It addresses newcomers and expert doctors that require training in nuclear medical methods. It has also become a standard textbook in university medicine studies and in the training of radiological assistants. (orig.)

  13. Unintentional exposure to radiation during pregnancy from nuclear medical diagnostic procedures

    International Nuclear Information System (INIS)

    Moka, D.

    2005-01-01

    The administration of radiopharmaceuticals during pregnancy is contraindicated due to a lack of vital indications. However, if prenatal exposure to radiation should occur in the framework of a nuclear medical diagnostic procedure then fortunately no longterm side-effects would normally be expected. Radiation damage in the preimplantation phase leads to early abortion. However, if the further course of pregnancy remains uncomplicated then no subsequent side-effects need be expected. On a conservative estimate, it would require doses exceeding 50 mGy to cause radiation damage within the uterus after the preimplantation phase. However, the standard radioactivities applied for diagnostic purposes in nuclear medicine, can be obtained with doses of less than 20 mGy. On the basis of current knowledge, therefore, there is no reason to terminate pregnancy on medical grounds after diagnostic exposure to radiopharmaceuticals. (orig.)

  14. Knowledge based systems for nuclear applications in Germany

    International Nuclear Information System (INIS)

    Schmidt, F.

    1987-01-01

    Several national and international research programs which are dealing with artificial intelligence and other innovative computer applications are in progress in Germany. However in contrast to the development of computer applications in the past, the new research programs are not very much determined from needs of the nuclear industry. Thus, applications of AI techniques in German nuclear industry are not very innovative in the sense of artificial intelligence. They may be divided into two categories: 1. projects which are aimed to explore the new technologies, 2. projects which are aimed to open new areas of work. This situation changes due to the fact that supercomputers with large memory, workstations with cheap disc devices and fast networks are becoming available. These hardware devices allow the connection of locally available knowledge and data bases with powerful central computer capacity. Using such hardware tools new applications can be developed in nuclear engineering using even existing software tools. These new applications may be characterized as integrated systems. The Integral Planning Simulation System IPSS which is under development at the University of Stuttgart is such a system

  15. Applicability of compton imaging in nuclear decommissioning activities

    International Nuclear Information System (INIS)

    Ljubenov, V.Lj.; Marinkovic, P.M.

    2002-01-01

    During the decommissioning of nuclear facilities significant part of the activities is related to the radiological characterization, waste classification and management. For these purposes a relatively new imaging technique, based on information from the gamma radiation that undergoes Compton scattering, is applicable. Compton imaging systems have a number of advantages for nuclear waste characterization, such as identifying hot spots in mixed waste in order to reduce the volume of high-level waste requiring extensive treatment or long-term storage, imaging large contaminated areas and objects etc. Compton imaging also has potential applications for monitoring of production, transport and storage of nuclear materials and components. This paper discusses some system design requirements and performance specifications for these applications. The advantages of Compton imaging are compared to competing imaging techniques. (author)

  16. Review of biotechnology applications to nuclear waste treatment

    International Nuclear Information System (INIS)

    Ashley, N.V.; Roach, D.J.W.

    1990-01-01

    This paper gives an overview of the feasibility of the application of biotechnology to nuclear waste treatment. Many living and dead organisms accumulate heavy metals and radionuclides. The controlled use of this phenomenon forms the basis for the application of biotechnology to the removal of radionuclides from nuclear waste streams. An overview of biotechnology areas, namely the use of biopolymers and biosorption using biomass applicable to the removal of radionuclides from industrial nuclear effluents is given. The potential of biomagnetic separation technology, genetic engineering and monoclonal antibody technology is also to be examined. The most appropriate technologies to develop for radionuclide removal in the short term appear to be those based on biosorption of radionuclides by biomass and the use of modified and unmodified biopolymers in the medium term. (author)

  17. Proposed medical applications of the National Accelerator Centre facilities

    International Nuclear Information System (INIS)

    Jones, D.T.L.

    1982-01-01

    The National Accelerator Centre is at present under construction at Faure, near Cape Town. The complex will house a 200 MeV separated-sector cyclotron which will provide high quality beams for nuclear physics and related diciplines as well as high intensity beams for medical use. The medical aspects catered for will include particle radiotherapy, isotope production and possibly proton radiography. A 30-bed hospital is to be constructed on the site. Building operations are well advanced and the medical facilities should be available for use by the end of 1984

  18. A study on expert system applications for nuclear power plant

    International Nuclear Information System (INIS)

    Huh, Young Hwan; Kim, Yeong Jin; Park, Nam Seog; Dong, In Sook; Choi, In Seon

    1987-12-01

    The application of artificial intelligence techniques to nuclear power plants such as expert systems is rapidly emerging. expert systems can contribute significantly to the availability and the improved operation and safety of nuclear power plants. The objective of the project is to develop an expert system in a selected application area in the nuclear power plants. This project will last for 3 years. The first year's tasks are: - Information collection and literature survey on expert systems. - Analysis of several applicable areas for applying AI technologies to the nuclear power plants. - Conceptual design of a few selected domains. - Selection of hardware and software tools for the development of the expert system

  19. Mammalian synthetic biology: emerging medical applications.

    Science.gov (United States)

    Kis, Zoltán; Pereira, Hugo Sant'Ana; Homma, Takayuki; Pedrigi, Ryan M; Krams, Rob

    2015-05-06

    In this review, we discuss new emerging medical applications of the rapidly evolving field of mammalian synthetic biology. We start with simple mammalian synthetic biological components and move towards more complex and therapy-oriented gene circuits. A comprehensive list of ON-OFF switches, categorized into transcriptional, post-transcriptional, translational and post-translational, is presented in the first sections. Subsequently, Boolean logic gates, synthetic mammalian oscillators and toggle switches will be described. Several synthetic gene networks are further reviewed in the medical applications section, including cancer therapy gene circuits, immuno-regulatory networks, among others. The final sections focus on the applicability of synthetic gene networks to drug discovery, drug delivery, receptor-activating gene circuits and mammalian biomanufacturing processes. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  20. Nuclear magnetic resonance (NMR): principles and applications

    International Nuclear Information System (INIS)

    Quibilan, E.I.

    The basis for the phenomenon of nuclear magnetic resonance (NMR) is the ability of certain nuclei possessing both intrinsic angular momentum or ''spin'' I and magnetic moment to absorb electromagnetic energy in the radio frequency range. In principle, there are approximately 200 nuclei which may be investigated using the NMR technique. The NMR spectrum consists of intensity peaks along an axis calibrated in terms of the steady magnetic field or the frequency of the radiofrequency electromagnetic radiation. Analysis of the number, spacing, position and intensity of the lines in an NMR spectrum consists of intensity peaks along an axis calibrated in terms of the steady magnetic field or the frequency of the radiofrequency electromagnetic radiation. Analysis of the number, spacing, position and intensity of the lines in an NMR spectrum provides a variety of qualitative and quantitative analytical applications. The most obvious applications consist of the measurements of nuclear properties, such as spin number and nuclear magnetic moment. In liquids, the fine structure of resonance spectra provides a tool for chemical identification and molecular structure analysis. Other applications include the measurements of self-diffusion coefficients, magnetic fields and field homogeneity, inter-nuclear distances, and, in some cases, the water content of biological materials. (author)

  1. Radionuclides for nuclear medicine: a nuclear physicists' view

    DEFF Research Database (Denmark)

    Cantone, M.; Haddad, F.; Harissopoulos, S.

    2013-01-01

    NuPECC (the Nuclear Physics European Collaboration Committee, an expert committee of the European Science Foundation) has the mission to strengthen European Collaboration in nuclear science through the promotion of nuclear physics and its trans-disciplinary use and application. NuPECC is currently...... working on a report on “Nuclear Physics for Medicine” and has set up a working group to review the present status and prospects of radionuclides for nuclear medicine. An interim report will be presented to seek comments and constructive input from EANM members. In particular it is investigated how nuclear...... physics Methods and nuclear physics facilities are supporting the development and supply of medical radionuclides and how this support could be further strengthened in future. Aspects that will be addressed: •In recent years, the reactor-based supply chain of 99Mo/99mTc generators was repeatedly...

  2. Medical program in radiation protection from the Argentine Nuclear Regulatory Authority

    International Nuclear Information System (INIS)

    Perez, M. R.; Gisone, P.; Di Trano, J.L.; Dubner, D.L.; Michelin, S.C.

    1998-01-01

    This program is carried out by the Radio pathology Laboratory, belonging to the Nuclear Regulatory Authority. The program includes the following aspects: 1) planning and organization of medical response in radiological emergencies. A three-level system of medical assistance has been developed considering: a- determination of each level of care and their potential roles; b- choice of medical facilities for medical assistance; c- preparedness for medical response (equipment s, logistic support, human resources, training). 2) scientific research activities related to radio pathology subjects: a- hematological indicators in radioinduced aplasia; b- biological and biophysical dosimeters; c- radiation effects on the developing brain. 3) edition of practical guidelines for diagnostic and treatment: a- external and internal radioactive contamination; b- acute radiation syndrome; c- radiological burns. 4) medical advising in radioprotection (risk assessment in radiation workers, medical exposures, potential effects of prenatal irradiation). 5) international interactions: activities related with the constitution of a Latin American radio pathology network, linkage with international reference centers. (author) [es

  3. Nuclear medicine

    International Nuclear Information System (INIS)

    Blanquet, Paul; Blanc, Daniel.

    1976-01-01

    The applications of radioisotopes in medical diagnostics are briefly reviewed. Each organ system is considered and the Nuclear medicine procedures pertinent to that system are discussed. This includes, the principle of the test, the detector and the radiopharmaceutical used, the procedure followed and the clinical results obtained. The various types of radiation detectors presently employed in Nuclear Medicine are surveyed, including scanners, gamma cameras, positron cameras and procedures for obtaining tomographic presentation of radionuclide distributions [fr

  4. Development and application of nuclear power operation database

    International Nuclear Information System (INIS)

    Shao Juying; Fang Zhaoxia

    1996-01-01

    The article describes the development of the Nuclear Power Operation Database which include Domestic and Overseas Nuclear Event Scale Database, Overseas Nuclear Power Operation Abnormal Event Database, Overseas Nuclear Power Operation General Reliability Database and Qinshan Nuclear Power Operation Abnormal Event Database. The development includes data collection and analysis, database construction and code design, database management system selection. The application of the database to provide support to the safety analysis of the NPPs which have been in commercial operation is also introduced

  5. Application of Nuclear Application Programs to APR1400 Simulator

    International Nuclear Information System (INIS)

    Hwang, Do Hyun; Lee, Myeong Soo; Hong, Jin Hyuk

    2012-01-01

    Advanced Power Reactor 1400MWe (APR1400) simulator has been developed and installed at Kori Training Center for operators of ShinKori no.3, 4 nuclear power plant by Korea Hydro and Nuclear Power,s Central Research Institute (KHNP CRI). NAPS (Nuclear Application Programs) is a computerbased system which provides operators with past and real-time information for monitoring and controlling NSSS (Nuclear Steam Supply System), BOP (Balance Of Plant) and Electric system. NAPS consists of several programs such as COLSS (Core Operating Limit Supervisory System), SPADES+ (Safety Parameter Display and Evaluation System), CEA (Control Element Assembly) Application Program, and so on. Each program makes calculations based on its own algorithm and provides information available for operation. In order to use NAPS programs with a simulator even though they are being used in a real plant, they should be modified to add several simulation functions such as reset, snap, run/freeze and backtrack required by ANSI/ANS-3.5 to the original NAPS functionality. On top of that, interfacing programs should be developed for the data communication between respective NAPS programs and simulator sever. The purpose of this paper is to provide the overall architecture of the communication system between NAPS and simulator model, and to describe the method to apply NAPS to APR1400 simulator

  6. Application of nuclear irradiation to traditional chinese medicine

    International Nuclear Information System (INIS)

    Liang Jianping; Li Xuehu; Lu Xihong; Tao Lei; Wang Shuyang

    2010-01-01

    The application of nuclear irradiation in the field of traditional Chinese medicine has received much attention. In this paper we reviewed the application of nuclear radiation on the cultivation, breeding and disinfection of traditional Chinese medicine, and pointed out that the combination of radiation-induced mutagenesis and biological technology would promise broad prospects for increasing the cellular mutation rate and speeding up the genetic improvement of traditional Chinese medicine. (authors)

  7. Nuclear Medicine Physics: A Handbook for Teachers and Students. Endorsed by: American Association of Physicists in Medicine (AAPM), Asia–Oceania Federation of Organizations for Medical Physics (AFOMP), Australasian College of Physical Scientists and Engineers in Medicine (ACPSEM), European Federation of Organisations for Medical Physics (EFOMP), Federation of African Medical Physics Organisations (FAMPO), World Federation of Nuclear Medicine and Biology (WFNMB)

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, D. L.; Humm, J. L.; Todd-Pokropek, A.; Aswegen, A. van [eds.

    2014-12-15

    This publication provides the basis for the education of medical physicists initiating their university studies in the field of nuclear medicine. The handbook includes 20 chapters and covers topics relevant to nuclear medicine physics, including basic physics for nuclear medicine, radionuclide production, imaging and non-imaging detectors, quantitative nuclear medicine, internal dosimetry in clinical practice and radionuclide therapy. It provides, in the form of a syllabus, a comprehensive overview of the basic medical physics knowledge required for the practice of medical physics in modern nuclear medicine.

  8. Market potential for non-electric applications of nuclear energy

    International Nuclear Information System (INIS)

    2002-01-01

    The objective of this report is to assess the market potential for the non-electric applications of nuclear energy in the near (before 2020) and long (2020-2050) terms. The main non-electric applications are defined here as district heating, desalination (of sea, brackish and waste water), industrial heat supply, ship propulsion and the energy supply for spacecraft. This report is principally devoted to these applications, although a less detailed assessment of some innovative applications (e.g. hydrogen production and coal gasification) is also provided. While the technical details of these applications are covered briefly, emphasis is placed on the economic and other factors that may promote or hinder the penetration of the nuclear option into the market for non-electric energy services. The report is intentionally targeted towards expected demands. It is for this reason that its sections are structured by demand categories and not according to possible reactor types. At the same time, the orientation on the demand side can result in overlaps at the supply side, because the same nuclear reactor can often serve more than one type of demand. Such cases are noted as appropriate. Each section characterizes a specific non-electric application in terms of its market size, its prospects for nuclear technologies and the economic competitiveness of the technologies

  9. Nuclear energy - myth and reality

    Energy Technology Data Exchange (ETDEWEB)

    Sinclair, Michael C. [Illinois Dept. of Nuclear Safety, IL (United States). Emergency Planning Section

    1997-12-31

    Socio-political aspects of the use of nuclear energy and radiation are presented. The behaviour of the general population, and many of the world`s political organizations who still resist or reject nuclear energy as a viable resource is discussed. The benefits from the production of electricity, medical diagnostics and treatment, engineering accomplishments, and scientific research applications involving the use of nuclear technology and radioactive materials are emphasized

  10. Applications of neutron radiography for the nuclear power industry

    Energy Technology Data Exchange (ETDEWEB)

    Craft, Aaron E.; Barton, John P.

    2016-11-01

    The World Conference on Neutron Radiography (WCNR) and International Topical Meeting on Neutron Radiography (ITMNR) series have been running over 35 years. The most recent event, ITMNR-8, focused on industrial applications and was the first time this series was hosted in China. In China, more than twenty new nuclear power plants are in construction and plans have been announced to increase the nuclear capacity further by a factor of three within fifteen years. There are additional prospects in many other nations. Neutron tests were vital during previous developments of materials and components for nuclear power applications, as reported in this conference series. For example a majority of the 140 papers in the Proceedings of the First WCNR are for the benefit of the nuclear power industry. Included are reviews of the diverse techniques being applied in Europe, Japan, the United States, and at many other centers. Many of those techniques are being utilized and advanced to the present time. Neutron radiography of irradiated nuclear fuel provides more comprehensive information about the internal condition of irradiated nuclear fuel than any other non-destructive technique to date. Applications include examination of nuclear waste, nuclear fuels, cladding, control elements, and other critical components. In this paper, the techniques developed and applied internationally for the nuclear power industry since the earliest years are reviewed, and the question is asked whether neutron test techniques can be of value in development of the present and future generations of nuclear power plants world-wide.

  11. Medical problems of survivors of nuclear war

    International Nuclear Information System (INIS)

    Abrams, H.L.; Von Kaenel, W.E.

    1981-01-01

    The nature of the medical problems that may confront survivors of a nuclear war are discussed with emphasis on infection and the spread of communicable disease. Factors which will increase the risk and severity of infection include: radiation, trauma and burns, malnutrition and starvation, dehydration, exposure, and hardship. Factors which will increase the spread of disease include: crowded shelter conditions, poor sanitation, insects, corpses, free-roaming diseased animals. Shortages of physicians, the destruction of laboratories, and the general disorganization sure to follow the attack will also contribute to the problems. The authors recommend further study in this area

  12. Medical History in the Hellenic Journal of Nuclear Medicine.

    Science.gov (United States)

    Otte, Andreas

    2017-01-01

    The Hellenic Journal of Nuclear Medicine is about to celebrate its 20th anniversary end of 2017. On board of the editorial team since 2003, this journal has influenced me like a good friend over the many past years. From time to time, the journal has published interesting and valuable historical notes. They show that nuclear medicine has a history and that medicine is its basis. They also teach us today, and some of the ancient perspectives and approaches are still valid. The reader of HJNM may be interested in these historical contributions, as they are timeless. Therefore, it was our idea to summarize these in the following pages. Where there is a link to the free article, this is noted. Upon opening all articles, you will find out that these are a book or so of its own. In thanks to the editor-in-chief of the Journal for his continuing support on the historical section. Below we refer to the historical papers of the Journal: History of Nuclear Medicine. Nuclear Medicine and History of Science and Philosophy: Atomic Theory of the Matter. G.N. Sfakianakis, 2001; 4(3); 155-60. Editorial. Pioneers of nuclear medicine, Madame Curie. P.C. Grammaticos. 2004; 7(1); 29-30. http://nuclmed.web.auth.gr/ magazine/eng/jan04/editorial.htm Editor's note. Hippocrates' Oath. The editor. 2004; 7(1); 31. Editorial. Useful known and unknown views of the father of modern medicine, Hippocrates and his teacher Democritus. P. Grammaticos, A. Diamantis. 2008; 11(1): 2-4. http://nuclmed.web.auth.gr/magazine/eng/jan08/2.pdf Special Article. The contribution of Maria Sklodowska-Curie and Pierre Curie to Nuclear and Medical Physics. A hundred and ten years after the discovery of radium. A. Diamantis, E. Magiorkinis, 2008; 11(1): 33-8. http://nuclmed.web.auth.gr/magazine/ eng/jan08/33.pdf Brief Historical Review. Lymphatic system and lymphoscintigraphy. P. Valsamaki. 2009; 12(1): 87-89. http://nuclmed.web. auth.gr/magazine/eng/jan09/89.pdf (In Greek) Historical Review. The philosophic and

  13. Nuclear imaging in the realm of medical imaging

    International Nuclear Information System (INIS)

    Deconinck, Frank

    2003-01-01

    In medical imaging, information concerning the anatomy or biological processes of a patient is detected and presented on film or screen for interpretation by a reader. The information flow from patient to reader optimally implies: - the emission, transmission or reflection of information carriers, typically photons or sound waves, which have to be correctly modulated by patient information through interactions in the patient; - their detection by adequate imaging equipment preserving essential spectral, spatial and/or temporal information; - the presentation of the information in the most perceivable way; - the observation by an unbiased and trained expert. In reality, only an approximation to this optimal situation is achieved. It is the goal of R and D in the medical imaging field to approach the optimum as much as possible within societal constraints such as patient risk and comfort, economics, etc. First, the basic physical concepts underlying the imaging process will be introduced. Different imaging modalities will then be situated in the realm of medical imaging with some emphasis on nuclear imaging

  14. TH-E-9A-01: Medical Physics 1.0 to 2.0, Session 4: Computed Tomography, Ultrasound and Nuclear Medicine

    International Nuclear Information System (INIS)

    Samei, E; Nelson, J; Hangiandreou, N

    2014-01-01

    communication, use optimization (dose and technique factors), automated analysis and data management (automated QC methods, protocol tracking, dose monitoring, issue tracking), and meaningful QC considerations. US 2.0: Ultrasound imaging is evolving at a rapid pace, adding new imaging functions and modes that continue to enhance its clinical utility and benefits to patients. The ultrasound talk will look ahead 10–15 years and consider how medical physicists can bring maximal value to the clinical ultrasound practices of the future. The roles of physics in accreditation and regulatory compliance, image quality and exam optimization, clinical innovation, and education of staff and trainees will all be considered. A detailed examination of expected technology evolution and impact on image quality metrics will be presented. Clinical implementation of comprehensive physics services will also be discussed. Nuclear Medicine 2.0: Although the basic science of nuclear imaging has remained relatively unchanged since its inception, advances in instrumentation continue to advance the field into new territories. With a great number of these advances occurring over the past decade, the role and testing strategies of clinical nuclear medicine physicists must evolve in parallel. The Nuclear Medicine 2.0 presentation is designed to highlight some of the recent advances from a clinical medical physicist perspective and provide ideas and motivation for designing better evaluation strategies. Topics include improvement of traditional physics metrics and analytics, testing implications of hybrid imaging and advanced detector technologies, and strategies for effective implementation into the clinic. Learning Objectives: Become familiar with new physics metrics and analytics in nuclear medicine, CT, and ultrasound. To become familiar with the major new developments of clinical physics support. To understand the physics testing implications of new technologies, hardware, software, and applications

  15. TH-E-9A-01: Medical Physics 1.0 to 2.0, Session 4: Computed Tomography, Ultrasound and Nuclear Medicine

    Energy Technology Data Exchange (ETDEWEB)

    Samei, E; Nelson, J [Duke University Medical Center, Durham, NC (United States); Hangiandreou, N [Mayo Clinic, Rochester, MN (United States)

    2014-06-15

    communication, use optimization (dose and technique factors), automated analysis and data management (automated QC methods, protocol tracking, dose monitoring, issue tracking), and meaningful QC considerations. US 2.0: Ultrasound imaging is evolving at a rapid pace, adding new imaging functions and modes that continue to enhance its clinical utility and benefits to patients. The ultrasound talk will look ahead 10–15 years and consider how medical physicists can bring maximal value to the clinical ultrasound practices of the future. The roles of physics in accreditation and regulatory compliance, image quality and exam optimization, clinical innovation, and education of staff and trainees will all be considered. A detailed examination of expected technology evolution and impact on image quality metrics will be presented. Clinical implementation of comprehensive physics services will also be discussed. Nuclear Medicine 2.0: Although the basic science of nuclear imaging has remained relatively unchanged since its inception, advances in instrumentation continue to advance the field into new territories. With a great number of these advances occurring over the past decade, the role and testing strategies of clinical nuclear medicine physicists must evolve in parallel. The Nuclear Medicine 2.0 presentation is designed to highlight some of the recent advances from a clinical medical physicist perspective and provide ideas and motivation for designing better evaluation strategies. Topics include improvement of traditional physics metrics and analytics, testing implications of hybrid imaging and advanced detector technologies, and strategies for effective implementation into the clinic. Learning Objectives: Become familiar with new physics metrics and analytics in nuclear medicine, CT, and ultrasound. To become familiar with the major new developments of clinical physics support. To understand the physics testing implications of new technologies, hardware, software, and applications

  16. Nuclear detectors: principles and applications

    International Nuclear Information System (INIS)

    Belhadj, Marouane

    1999-01-01

    Nuclear technology is a vast domain. It has several applications, for instance in hydrology, it is used in the analysis of underground water, dating by carbon 14, Our study consists on representing the nuclear detectors based on their principle of functioning and their electronic constitution. However, because of some technical problems, we have not made a deepen study on their applications that could certainly have a big support on our subject. In spite of the existence of an equipment of high performance and technology in the centre, it remains to resolve the problem of control of instruments. Therefore, the calibration of these equipment remains the best guaranteed of a good quality of the counting. Besides, it allows us to approach the influence of the external and internal parameters on the equipment and the reasons of errors of measurements, to introduce equivalent corrections. (author). 22 refs

  17. Radioisotope Production for Medical and Physics Applications

    Science.gov (United States)

    Mausner, Leonard

    2012-10-01

    Radioisotopes are critical to the science and technology base of the US. Discoveries and applications made as a result of the availability of radioisotopes span widely from medicine, biology, physics, chemistry and homeland security. The clinical use of radioisotopes for medical diagnosis is the largest sector of use, with about 16 million procedures a year in the US. The use of ^99Mo/^99mTc generator and ^18F make up the majority, but ^201Tl, ^123I, ^111In, and ^67Ga are also used routinely to perform imaging of organ function. Application of radioisotopes for therapy is dominated by use of ^131I for thyroid malignancies, ^90Y for some solid tumors, and ^89Sr for bone cancer, but production of several more exotic species such as ^225Ac and ^211At are of significant current research interest. In physics ^225Ra is of interest for CP violation studies, and the actinides ^242Am, ^249Bk, and ^254Es are needed as targets for experiments to create superheavy elements. Large amounts of ^252Cf are needed as a fission source for the CARIBU experiment at ANL. The process of radioisotope production is multidisciplinary. Nuclear physics input based on nuclear reaction excitation function data is needed to choose an optimum target/projectile in order to maximize desired isotope production and minimize unwanted byproducts. Mechanical engineering is needed to address issues of target heating, induced mechanical stress and material compatibility of target and claddings. Radiochemists are involved as well since chemical separation to purify the desired final radioisotope product from the bulk target and impurities is also usually necessary. Most neutron rich species are produced at a few government and university reactors. Other radioisotopes are produced in cyclotrons in the commercial sector, university/hospital based facilities, and larger devices at the DOE labs. The landscape of US facilities, the techniques involved, and current supply challenges will be reviewed.

  18. Review for the military application of nuclear energy

    International Nuclear Information System (INIS)

    Park, M. J.

    1998-01-01

    In order to understand the broad technology of nuclear energy, we have explored how our present knowledge of nuclear energy has been developed, and how some of this knowledge is applied. Techniques learned from nuclear physics are used the build fearsome weapons of mass destruction, whose proliferation is a constant threat to our future. To develop military applications of nuclear technology systematically, high level human resources and creative brains should be sufficiently trained and secured

  19. New nuclear facilities and their analytical applications in China

    International Nuclear Information System (INIS)

    Zhang, Z.Y.; He, X.; Ma, Y.H.; Ding, Y.Y.; Chai, Z.F.

    2014-01-01

    Nuclear analytical techniques are a family of modern analytical methods that are based on nuclear reactions, nuclear effects, nuclear radiations, nuclear spectroscopy, nuclear parameters, and nuclear facilities. Because of their combined characteristics of sensitivity and selectivity, they are widely used in projects ranging from life sciences to deep-space exploration. In this review article, new nuclear facilities and their analytical applications in China are selectively reviewed, covering the following aspects: large scientific facilities, national demands, and key scientific issues with the emphasis on the new achievements. (orig.)

  20. Generic procedures for medical response during a nuclear or radiological emergency. Emergency preparedness and response

    International Nuclear Information System (INIS)

    2005-04-01

    The aim of this publication is to serve as a practical resource for planning the medical response to a nuclear or radiological emergency. It fulfils in part functions assigned to the IAEA under Article 5.a(ii) of the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (Assistance Convention), namely, to collect and disseminate to States Parties and Member States information concerning methodologies, techniques and available results of research relating to such emergencies. Effective medical response is a necessary component of the overall response to nuclear or radiological (radiation) emergencies. In general, the medical response may represent a difficult challenge for the authorities due to the complexity of the situation, often requiring specialized expertise, and special organizational arrangements and materials. To be effective, adequate planning and preparedness are needed. This manual, if implemented, should help to contribute to coherent international response. The manual provides the practical tools and generic procedures for use by emergency medical personnel during an emergency situation. It also provides guidance to be used at the stage of preparedness for development of medical response capabilities. The manual also addresses mass casualty emergencies resulting from malicious acts involving radioactive material. This part was supported by the Nuclear Security Fund. The manual was developed based on a number of assumptions about national and local capabilities. Therefore, it must be reviewed and revised as part of the planning process to match the potential accidents, threats, local conditions and other unique characteristics of the facility where it may be used

  1. Nuclear energy an introduction to the concepts, systems, and applications of nuclear processes

    CERN Document Server

    Murray, Raymond L

    1993-01-01

    This expanded, revised, and updated fourth edition of Nuclear Energy maintains the tradition of providing clear and comprehensive coverage of all aspects of the subject, with emphasis on the explanation of trends and developments. As in earlier editions, the book is divided into three parts that achieve a natural flow of ideas: Basic Concepts, including the fundamentals of energy, particle interactions, fission, and fusion; Nuclear Systems, including accelerators, isotope separators, detectors, and nuclear reactors; and Nuclear Energy and Man, covering the many applications of radionuclides, r

  2. Measuring emotional intelligence of medical school applicants.

    Science.gov (United States)

    Carrothers, R M; Gregory, S W; Gallagher, T J

    2000-05-01

    To discuss the development, pilot testing, and analysis of a 34-item semantic differential instrument for measuring medical school applicants' emotional intelligence (the EI instrument). The authors analyzed data from the admission interviews of 147 1997 applicants to a six-year BS/MD program that is composed of three consortium universities. They compared the applicants' scores on traditional admission criteria (e.g., GPA and traditional interview assessments) with their scores on the EI instrument (which comprised five dimensions of emotional intelligence), breaking the data out by consortium university (each of which has its own educational ethos) and gender. They assessed the EI instrument's reliability and validity for assessing noncognitive personal and interpersonal qualities of medical school applicants. The five dimensions of emotional intelligence (maturity, compassion, morality, sociability, and calm disposition) indicated fair to excellent internal consistency: reliability coefficients were .66 to .95. Emotional intelligence as measured by the instrument was related to both being female and matriculating at the consortium university that has an educational ethos that values the social sciences and humanities. Based on this pilot study, the 34-item EI instrument demonstrates the ability to measure attributes that indicate desirable personal and interpersonal skills in medical school applicants.

  3. EPRI expert system activities for nuclear utility industry application

    International Nuclear Information System (INIS)

    Naser, J.A.

    1990-01-01

    This paper reports on expert systems which have reached a level of maturity where they offer considerable benefits for the nuclear utility industry. The ability of expert systems to enhance expertise makes them an important tool for the nuclear utility industry in the areas of engineering, operations and maintenance. Benefits of expert system applications include comprehensive and consistent reasoning, reduction of time required for activities, retention of human expertise and ability to utilize multiple experts knowledge for an activity. The Electric Power Research Institute (EPRI) has been performing four basic activities to help the nuclear industry take advantage of this expert system technology. The first is the development of expert system building tools which are tailored to nuclear utility industry applications. The second is the development of expert system applications. The third is work in developing a methodology for verification and validation of expert systems. The last is technology transfer activities to help the nuclear utility industry benefit from expert systems. The purpose of this paper is to describe the EPRI activities

  4. Medical, energetic, environmental applications

    International Nuclear Information System (INIS)

    2007-01-01

    The boron neutron capture therapy (BNCT) project at ENEA is mainly based on the TAPIRO experimental nuclear reactor and (more recently) also on the TRIGA reactor, both located at ENEA Casaccia. TAPIRO has two facilities: an epithermal column (EPIMED) constructed for research on deep tumours, such as glioblastoma, and a thermal column (HYTHOR) mainly used in collaboration with the Legnaro National Laboratory (LNL) of the National Institute of Nuclear Physics (INFN) and with the University of Padua for in vivo radiobiological studies and neutron microdosimetry. The feasibility of using the thermal column of the TRIGA reactor to treat explanted livers with BNCT is being studied. The collaboration with INFN Pavia and the University of Pavia on applying BNCT to lung tumours continued. In 2007 the final agreement from the Italian Agency for Environmental Protection and Technical Services (APAT) was obtained and the reactor operating conditions with the EPIMED facility were established. As described in the 2006 Progress Report, the epithermal neutron beam (neutron energy between 1 eV and 10 keV) entering the reactor hall has been shielded by a bunker of limited volume, appropriate for beam characterisation with the reactor operating at a maximum 10% of nominal power (5 kW). The use of nuclear power in space is technically feasible but, due to the remote risk of an accident at launch or in the event of an uncontrolled re-entry, it still remains politically unacceptable. Nevertheless, small and safe nuclear reactors could generate 30-60 kW of electrical power for a period of 10-15 years even in the case of a deep space mission, where conventional energy conversion devices are useless or inefficient. Furthermore, the standard space systems for electrical power generation (photoelectric conversion and radioactive thermal generator) are unable to sustain similar performances even in orbital conditions. A carefully designed nuclear reactor for space application could also be

  5. Applications of nuclear data on short-lived fission products

    International Nuclear Information System (INIS)

    Rudstam, G.; Aagaard, P.; Aleklett, K.; Lund, E.

    1981-01-01

    The study of short-lived fission products gives information about the nuclear structure on the neutron-rich side of stability. The data are also of interest for various applications both to basic science and to nuclear technology. Some of these applications, taken up by the OSIRIS group at Studsvik, are described in the present contribution. (orig.)

  6. Nuclear science and technology: perspective prospects for Philippine development

    International Nuclear Information System (INIS)

    Aleta, C.R.

    1996-01-01

    The paper provides some historical perspectives on nuclear energy utilization and development in the Philippines. Highlights on applications in agriculture, medicine, industry, environment and regulations are mentioned. Current activities include gamma sterilization, food irradiation, sterile insect technique for pest eradication, medical applications, isotope techniques, radiation protection activities and nuclear power. Prospective contribution of national development through the use of radiation and nuclear techniques include those for water resources assessment, environmental and pollution studies, electricity generation and nuclear desalination. The regulatory aspects in support of the nuclear energy development are also discussed. (author)

  7. U.S. Forward Operating Base Applications of Nuclear Power

    International Nuclear Information System (INIS)

    Griffith, George W.

    2015-01-01

    This paper provides a high level overview of current nuclear power technology and the potential use of nuclear power at military bases. The size, power ranges, and applicability of nuclear power units for military base power are reviewed. Previous and current reactor projects are described to further define the potential for nuclear power for military power.

  8. Radiological protection, safety and security issues in the industrial and medical applications of radiation sources

    International Nuclear Information System (INIS)

    Vaz, Pedro

    2015-01-01

    The use of radiation sources, namely radioactive sealed or unsealed sources and particle accelerators and beams is ubiquitous in the industrial and medical applications of ionizing radiation. Besides radiological protection of the workers, members of the public and patients in routine situations, the use of radiation sources involves several aspects associated to the mitigation of radiological or nuclear accidents and associated emergency situations. On the other hand, during the last decade security issues became burning issues due to the potential malevolent uses of radioactive sources for the perpetration of terrorist acts using RDD (Radiological Dispersal Devices), RED (Radiation Exposure Devices) or IND (Improvised Nuclear Devices). A stringent set of international legally and non-legally binding instruments, regulations, conventions and treaties regulate nowadays the use of radioactive sources. In this paper, a review of the radiological protection issues associated to the use of radiation sources in the industrial and medical applications of ionizing radiation is performed. The associated radiation safety issues and the prevention and mitigation of incidents and accidents are discussed. A comprehensive discussion of the security issues associated to the global use of radiation sources for the aforementioned applications and the inherent radiation detection requirements will be presented. Scientific, technical, legal, ethical, socio-economic issues are put forward and discussed. - Highlights: • The hazards associated to the use of radioactive sources must be taken into account. • Security issues are of paramount importance in the use of radioactive sources. • Radiation sources can be used to perpetrate terrorist acts (RDDs, INDs, REDs). • DSRS and orphan sources trigger radiological protection, safety and security concerns. • Regulatory control, from cradle to grave, of radioactive sources is mandatory.

  9. The terrorist threat nuclear, radiological, biological, chemical - a medical approach

    International Nuclear Information System (INIS)

    Revel, M.C. de; Gourmelon, M.C.S.; Vidal, P.C.; Renaudeau, P.C.S.

    2005-01-01

    Since September 11, 2001, the fear of a large scale nuclear, biological and/or chemical terrorism is taken again into consideration at the highest level of national policies of risk prevention. The advent of international terrorism implies a cooperation between the military defense and the civil defense. The nuclear, radiological, biological and chemical (NRBC) experts of the health service of army and of civil defense will have to work together in case of major terror attack. This book presents this cooperation between civil and military experts in the NRBC domain: risk analysis, national defense plans, crisis management, syndromes and treatments. The different aspects linked with the use of nuclear, biological and chemical weapons are analyzed by the best experts from French medical and research institutes. All topics of each NRBC domain are approached: historical, basic, diagnostic, therapeutic and preventive. (J.S.)

  10. Training and education in nuclear medicine at the Medical Faculty of the University of Zagreb

    International Nuclear Information System (INIS)

    Ivancevic, D.; Popovic, S.; Simonovic, I.; Vlatkovic, M.

    1986-01-01

    Training for specialization in nuclear medicine in Yugoslavia includes 12 months of training in departments of clinical medicine and 24 months of training in departments of nuclear medicine. Since 1974 many physicians have passed the specialist examination in Zagreb. A postgraduate study in nuclear medicine began at the Medical Faculty of the University of Zagreb in 1979. It includes four semesters of courses and research on a selected subject leading to the degree of Magister (Master of Science). Most of the training is conducted by the Institute of Nuclear Medicine at the University Hospital, Rebro, in Zagreb, which has the necessary teaching staff, equipment and space. Forty-four students have completed this postgraduate study. Nuclear medicine in a developing country faces several problems. Scarcity of expensive equipment and radiopharmaceuticals calls for modifications of methods, home made products and instrument maintenance. These, mostly economic, factors are given special emphasis during training. Nuclear power generation may solve some of the country's energy problems; therefore, specialists in nuclear medicine must obtain additional knowledge about the medical care and treatment of persons who might be subject to irradiation and contamination in nuclear power plants. Lower economic resources in developing countries require better trained personnel, stressing the need for organized training and education in nuclear medicine. With some support the Institute of Nuclear Medicine will be able to offer various forms of training and education in nuclear medicine for physicians, chemists, physicists, technologists and other personnel from developing countries. (author)

  11. BOOK REVIEW: Light, Visible and Invisible and its Medical Applications

    Science.gov (United States)

    Newing, Angela

    2000-09-01

    This book is based on various lectures given by Professor Newing over the last few years covering the centenaries of the discovery of x-rays, radioactivity, the electron and radium. It is a splendid follow-up read after studying the more formal presentations in A-level textbooks. The theory of each technique is touched on and the reader is provided with a full list of references for deeper analysis. Intermittently within the text are paragraphs of historical and developmental details, illustrated by contemporary drawings and photographs. These passages, which appear in a different typeface, add greatly to the enjoyment of the book, but could be skipped by an impatient reader seeking to gain an appropriate review knowledge of the subject of medical radiation physics. The areas of physiological measurement and medical engineering are not covered, neither is medical computing. Chapters discuss the diagnostic and therapeutic applications of x-rays. Different methods of scanning are outlined and the appropriateness of techniques brought up-to-date. Treatment with ionizing radiations is expanded to touch on electron radiotherapy, neutron therapy and brachytherapy. Phototherapy and photochemotherapy are considered in the section on treatments using non-ionizing radiations. The story starts with evidence from the ancient worlds of Egypt and Greece, accelerating through the nineteenth and twentieth centuries to the many treatments around today. The laser is shown to be a versatile and exact tool, available in a complete range of wavelengths for different surgical uses. The scientific principles and current applications of nuclear medicine, ultrasound and MRI are described. For each type of procedure, the author includes comments on advantages, disadvantages and operational safety. Dosimetry and quality assurance are touched upon. The book reflects Professor Newing's enthusiasm for her role as a medical physicist both as practitioner and teacher. To any students studying

  12. Microprocessors applications in the nuclear industry

    International Nuclear Information System (INIS)

    Ethridge, C.D.

    1980-01-01

    Microprocessors in the nuclear industry, particularly at the Los Alamos Scientific Laboratory, have been and are being utilized in a wide variety of applications ranging from data acquisition and control for basic physics research to monitoring special nuclear material in long-term storage. Microprocessor systems have been developed to support weapons diagnostics measurements during underground weapons testing at the Nevada Test Site. Multiple single-component microcomputers are now controlling the measurement and recording of nuclear reactor operating power levels. The CMOS microprocessor data-acquisition instrumentation has operated on balloon flights to monitor power plant emissions. Target chamber mirror-positioning equipment for laser fusion facilities employs microprocessors

  13. Nuclear measurements, techniques and instrumentation industrial applications plasma physics and nuclear fusion. 1980-1994. International Atomic Energy Agency publications

    International Nuclear Information System (INIS)

    1995-04-01

    This catalogue lists all sales publications of the International Atomic Energy Agency dealing with Nuclear Measurements, Techniques and Instrumentation, with Industrial Applications (of Nuclear Physics and Engineering), and with Plasma Physics and Nuclear Fusion, issued during the period 1980-1994. Most publications are in English. Proceedings of conferences, symposia, and panels of experts may contain some papers in other languages (French, Russian, or Spanish), but all papers have abstracts in English. Price quotes are in Austrian Schillings, do not include local taxes, and are subject to change without notice. Contents cover the three main categories of (i) Nuclear Measurements, Techniques and Instrumentation (Physics, Chemistry, Dosimetry Techniques, Nuclear Analytical Techniques, Research Reactors and Particle Accelerator Applications, Nuclear Data); (ii) Industrial Applications (Radiation Processing, Radiometry, Tracers); and (iii) Plasma Physics and Nuclear Fusion

  14. Nuclear measurements, techniques and instrumentation industrial applications plasma physics and nuclear fusion, 1980-1993. International Atomic Energy Agency publications

    International Nuclear Information System (INIS)

    1994-01-01

    This catalogue lists all sales publications of the International Atomic Energy Agency dealing with Nuclear Measurements, Techniques and Instrumentation, with Industrial Applications (of Nuclear Physics and Engineering), and with Plasma Physics and Nuclear Fusion, issued during the period 1980-1993. Most publications are in English. Proceedings of conferences, symposia, and panels of experts may contain some papers in other languages (French, Russian, or Spanish), but all papers have abstracts in English. Price quotes are in Austrian Schillings, do not include local taxes, and are subject to change without notice. Contents cover the three main categories of (I) Nuclear Measurements, Techniques and Instrumentation (Physics, Chemistry, Dosimetry Techniques, Nuclear Analytical Techniques, Research Reactors and Particle Accelerator Applications, Nuclear Data); (ii) Industrial Applications (Radiation Processing, Radiometry, Tracers); and (iii) Plasma Physics and Nuclear Fusion

  15. Defining nuclear medical file formal based on DICOM standard

    International Nuclear Information System (INIS)

    He Bin; Jin Yongjie; Li Yulan

    2001-01-01

    With the wide application of computer technology in medical area, DICOM is becoming the standard of digital imaging and communication. The author discusses how to define medical imaging file formal based on DICOM standard. It also introduces the format of ANMIS system the authors defined the validity and integrality of this format

  16. 76 FR 81994 - UniStar Nuclear Energy; Combined License Application for Calvert Cliffs Nuclear Power Plant, Unit...

    Science.gov (United States)

    2011-12-29

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 52-016; NRC-2008-0250] UniStar Nuclear Energy; Combined License Application for Calvert Cliffs Nuclear Power Plant, Unit 3; Exemption 1.0 Background: UniStar Nuclear Energy (UNE) submitted to the U.S. Nuclear Regulatory Commission (NRC or the Commission ) a...

  17. ICPMS for nuclear applications: merits, limitations and prospective developments

    International Nuclear Information System (INIS)

    Boulyga, S.; Poths, J.; Balsley, S.; Donohue, D.; ); Kappel, S.; Prohaska, T.

    2009-01-01

    Full text: Inductively coupled plasma mass spectrometry (ICPMS) is gaining increasing recognition for analysis of nuclear and related samples in safeguards, forensics and environmental monitoring. The most challenging applications of ICPMS include isotopic analysis of microsamples, age determination of nuclear materials as well as comprehensive analysis of nuclear samples. This presentation will discuss particular advantages and limitations of presently available ICPMS instrumentation for such applications. It will also highlight the current need for an improvement of ICPMS performance aimed at obtaining significantly more specific and accurate isotopic information. (author)

  18. Identification and Evaluation of Medical Translator Mobile Applications Using an Adapted APPLICATIONS Scoring System.

    Science.gov (United States)

    Khander, Amrin; Farag, Sara; Chen, Katherine T

    2017-12-22

    With an increasing number of patients requiring translator services, many providers are turning to mobile applications (apps) for assistance. However, there have been no published reviews of medical translator apps. To identify and evaluate medical translator mobile apps using an adapted APPLICATIONS scoring system. A list of apps was identified from the Apple iTunes and Google Play stores, using the search term, "medical translator." Apps not found on two different searches, not in an English-based platform, not used for translation, or not functional after purchase, were excluded. The remaining apps were evaluated using an adapted APPLICATIONS scoring system, which included both objective and subjective criteria. App comprehensiveness was a weighted score defined by the number of non-English languages included in each app relative to the proportion of non-English speakers in the United States. The Apple iTunes and Google Play stores. Medical translator apps identified using the search term "medical translator." Main Outcomes and Measures: Compilation of medical translator apps for provider usage. A total of 524 apps were initially found. After applying the exclusion criteria, 20 (8.2%) apps from the Google Play store and 26 (9.2%) apps from the Apple iTunes store remained for evaluation. The highest scoring apps, Canopy Medical Translator, Universal Doctor Speaker, and Vocre Translate, scored 13.5 out of 18.7 possible points. A large proportion of apps initially found did not function as medical translator apps. Using the APPLICATIONS scoring system, we have identified and evaluated medical translator apps for providers who care for non-English speaking patients.

  19. Optical Fibre Pressure Sensors in Medical Applications

    Directory of Open Access Journals (Sweden)

    Sven Poeggel

    2015-07-01

    Full Text Available This article is focused on reviewing the current state-of-the-art of optical fibre pressure sensors for medical applications. Optical fibres have inherent advantages due to their small size, immunity to electromagnetic interferences and their suitability for remote monitoring and multiplexing. The small dimensions of optical fibre-based pressure sensors, together with being lightweight and flexible, mean that they are minimally invasive for many medical applications and, thus, particularly suited to in vivo measurement. This means that the sensor can be placed directly inside a patient, e.g., for urodynamic and cardiovascular assessment. This paper presents an overview of the recent developments in optical fibre-based pressure measurements with particular reference to these application areas.

  20. Optical Fibre Pressure Sensors in Medical Applications.

    Science.gov (United States)

    Poeggel, Sven; Tosi, Daniele; Duraibabu, DineshBabu; Leen, Gabriel; McGrath, Deirdre; Lewis, Elfed

    2015-07-15

    This article is focused on reviewing the current state-of-the-art of optical fibre pressure sensors for medical applications. Optical fibres have inherent advantages due to their small size, immunity to electromagnetic interferences and their suitability for remote monitoring and multiplexing. The small dimensions of optical fibre-based pressure sensors, together with being lightweight and flexible, mean that they are minimally invasive for many medical applications and, thus, particularly suited to in vivo measurement. This means that the sensor can be placed directly inside a patient, e.g., for urodynamic and cardiovascular assessment. This paper presents an overview of the recent developments in optical fibre-based pressure measurements with particular reference to these application areas.

  1. Optical Fibre Pressure Sensors in Medical Applications

    Science.gov (United States)

    Poeggel, Sven; Tosi, Daniele; Duraibabu, DineshBabu; Leen, Gabriel; McGrath, Deirdre; Lewis, Elfed

    2015-01-01

    This article is focused on reviewing the current state-of-the-art of optical fibre pressure sensors for medical applications. Optical fibres have inherent advantages due to their small size, immunity to electromagnetic interferences and their suitability for remote monitoring and multiplexing. The small dimensions of optical fibre-based pressure sensors, together with being lightweight and flexible, mean that they are minimally invasive for many medical applications and, thus, particularly suited to in vivo measurement. This means that the sensor can be placed directly inside a patient, e.g., for urodynamic and cardiovascular assessment. This paper presents an overview of the recent developments in optical fibre-based pressure measurements with particular reference to these application areas. PMID:26184228

  2. Development of indigenous technology at CNEN in the fields of nuclear medicine, nuclear detectors, instrumentation, radioisotope production and application of nuclear techniques

    International Nuclear Information System (INIS)

    Mafra, O.

    1990-01-01

    The main objectives of the program developed at CNEN in the field of nuclear medicine, nuclear detectors, instrumentation, radioisotope production and application of nuclear technique are described. (E.G.) [pt

  3. Reinforcing the protection against ionizing radiation in medical uses through following the progress in modern medical physics

    International Nuclear Information System (INIS)

    Zheng Junzheng; Li Junli

    2008-01-01

    The medical application of ionizing radiation has the longest history, the most extensive uses and the strongest effect among the multiple applications of ionizing radiation technology. With the development of diagnostic radiology and radiotherapy, for instances, the radiology, the interventional radiology, the nuclear medicine, and the radiation oncology; the infrastructures and teambuilding of medical physics in China has been becoming more and more important and urgent. Fortunately, people in relevant fields have already recognized this situation and made lots of progresses in the recent years, for example, the 221 st Xiangshan Science Conference took 'The Development of Medical Physics' as its main topic in 2004; in recent years, a series of regulations and national standards regarding to the quality assurance and radiological protection of medical exposure and the teambuilding of the relevant departments in hospital have been successively issued; the subject of Medical Physics was opened as both undergraduate and graduated courses in more and more universities (Tsinghua University, Peking University etc); the Committee on Medical Physics was enrolled as a new member of the Chinese Physical Society. Modern medical physics should include 4 parts, medical imaging physics, nuclear medicine physics, radiation oncology physics, and health physics. Protection against ionizing radiation needs to fully cover the development of medical physics, which includes the protection against ianizing radiation in medical uses. This article emphasizes the improvement of the ionizing radiation protection in medical uses, for marking of 30th anniversary of the Journal of Radiation Protection. (authors)

  4. Biomagnetics and bioimaging for medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, Shoogo [Department of Biomedical Engineering, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)]. E-mail: ueno@medes.m.u-tokyo.ac.jp; Sekino, Masaki [Department of Biomedical Engineering, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2006-09-15

    This paper reviews medical applications of the recently developed techniques in biomagnetics and bioimaging such as transcranial magnetic stimulation, magnetoencephalography, magnetic resonance imaging, cancer therapy based on magnetic stimulation, and magnetic control of cell orientation and cell growth. These techniques are leading medicine and biology into a new horizon through the novel applications of magnetism.

  5. Biomagnetics and bioimaging for medical applications

    International Nuclear Information System (INIS)

    Ueno, Shoogo; Sekino, Masaki

    2006-01-01

    This paper reviews medical applications of the recently developed techniques in biomagnetics and bioimaging such as transcranial magnetic stimulation, magnetoencephalography, magnetic resonance imaging, cancer therapy based on magnetic stimulation, and magnetic control of cell orientation and cell growth. These techniques are leading medicine and biology into a new horizon through the novel applications of magnetism

  6. Applications of VLSI circuits to medical imaging

    International Nuclear Information System (INIS)

    O'Donnell, M.

    1988-01-01

    In this paper the application of advanced VLSI circuits to medical imaging is explored. The relationship of both general purpose signal processing chips and custom devices to medical imaging is discussed using examples of fabricated chips. In addition, advanced CAD tools for silicon compilation are presented. Devices built with these tools represent a possible alternative to custom devices and general purpose signal processors for the next generation of medical imaging systems

  7. Proceedings of the sixth conference of nuclear sciences and applications. Vol. 1-4

    International Nuclear Information System (INIS)

    1996-03-01

    The six conference on nuclear sciences and applications was held on 15-20 March, 1996 in Cairo. The specialists discussed nuclear Sciences. The applications of nuclear engineering, chemistry, radioactive waste management, nuclear fuel and nuclear material were discussed at the proceeing.More than 1000 paper

  8. Proceedings of the sixth conference of nuclear sciences and applications. Vol. 1-4

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The six conference on nuclear sciences and applications was held on 15-20 March, 1996 in Cairo. The specialists discussed nuclear Sciences. The applications of nuclear engineering, chemistry, radioactive waste management, nuclear fuel and nuclear material were discussed at the proceeing.More than 1000 paper.

  9. Polyetheretherketone (PEEK) for medical applications.

    Science.gov (United States)

    Panayotov, Ivan Vladislavov; Orti, Valérie; Cuisinier, Frédéric; Yachouh, Jacques

    2016-07-01

    Polyetheretherketone (PEEK) is a polyaromatic semi-crystalline thermoplastic polymer with mechanical properties favorable for bio-medical applications. Polyetheretherketone forms: PEEK-LT1, PEEK-LT2, and PEEK-LT3 have already been applied in different surgical fields: spine surgery, orthopedic surgery, maxillo-facial surgery etc. Synthesis of PEEK composites broadens the physicochemical and mechanical properties of PEEK materials. To improve their osteoinductive and antimicrobial capabilities, different types of functionalization of PEEK surfaces and changes in PEEK structure were proposed. PEEK based materials are becoming an important group of biomaterials used for bone and cartilage replacement as well as in a large number of diverse medical fields. The current paper describes the structural changes and the surface functionalization of PEEK materials and their most common biomedical applications. The possibility to use these materials in 3D printing process could increase the scientific interest and their future development as well.

  10. Nuclear measurements, techniques and instrumentation, industrial applications, plasma physics and nuclear fusion 1986-1996. International Atomic Energy Agency publications

    International Nuclear Information System (INIS)

    1997-03-01

    This catalogue lists all sales publications of the International Atomic Energy Agency dealing with Nuclear Measurements, Techniques, and Instrumentation, Industrial Applications, Plasma Physics and Nuclear Fusion, issued during the period 1986-1996. Most publications are in English. Proceedings of conferences, symposia and panels of experts may contain some papers in languages other than English (French, Russian or Spanish), but all of these papers have abstracts in English. Contents cover the three main areas of (i) Nuclear Measurements, Techniques and Instrumentation (Physics, Dosimetry Techniques, Nuclear Analytical Techniques, Research Reactor and Particle Accelerator Applications, and Nuclear Data), (ii) Industrial Applications (Radiation Processing, Radiometry, and Tracers), and (iii) Plasma Physics and Controlled Thermonuclear Fusion

  11. Nuclear applications non-energies in Mexico: interdependence between the technological development and the life quality

    International Nuclear Information System (INIS)

    Paredes G, L. C.

    2009-10-01

    The nuclear techniques have offered important benefits to the health care, the life quality of the people and the environment, as well as to the development of science and technology. Particularly the nuclear techniques through the investigation, have helped to obtain excellent technological advances in medicine, through specialized studies of diagnosis and treatment of diseases in humans and animals, the materials sterilization of medical use, the foods production and in the improvement of physical properties of polymers, the industrial processes control, the chemistry analysis of samples in precise, superficial or volumetric form, the identification and characterization of materials, as well as the understanding of the relation man-cosmos. These techniques have a high potential of application in medicine, nutrition, genetics, molecular biology, pharmacology, nuclear physics, nuclear chemistry, environmental chemistry, agriculture, livestock, hydrology, geology and industrial manufacture. This work includes the main applications and their ample potential of use in Mexico where the radioisotopes demand as open sources is of 89% for the health sector, 9% for industry and 2% for research. The annual national demand of distributed radioisotopes to public and private hospitals for the period 2000-2008 shows a constant growth and on the last three years it is approximated to 3.3% annual. As a result of the nuclear techniques application in the health sector at national level on the last 110 years, have been increased the correct diagnosis of diseases, the success in surgeries and the diseases treatment, it is has diminished the period of hospital stays and the medicine dose, thus like the generation of new knowledge of metabolic processes derived from the use of drugs for some diseases. For Mexico, the health sector reports the major important benefits, being expected to short and medium term an increase in the demand of these methodologies in other sectors. (Author)

  12. BR2 reactor: medical and industrial applications

    International Nuclear Information System (INIS)

    Ponsard, B.

    2005-01-01

    The radioisotopes are produced for various applications in the nuclear medicine (diagnostic, therapy, palliation of metastatic bone pain), industry (radiography of welds, ...), agriculture (radiotracers, ...) and basic research. Due to the availability of high neutron fluxes (thermal neutron flux up to 10 15 n/cm 2 .s), the BR2 reactor is considered as a major facility through its contribution for a continuous supply of products such 99 Mo ( 99 mTc), 131 I, 133 Xe, 192 Ir, 186 Re, 153 Sm, 90 Y, 32 P, 188 W ( 188 Re), 203 Hg, 82 Br, 41 Ar, 125 I, 177 Lu, 89 Sr, 60 Co, 169 Yb, 147 Nd, and others. Neutron Transmutation Doped (NTD) silicon is produced for the semiconductor industry in the SIDONIE (Silicon Doping by Neutron Irradiation Experiment) facility, which is designed to continuously rotate and traverse the silicon through the neutron flux. These combined movements produce exceptional dopant homogeneity in batches of silicon measuring 4 and 5-inches in diameter by up to 750 mm in length. The main objectives of work performed were to provide a reliable and qualitative supply of radioisotopes and NTD-silicon to the customers in accordance with a quality system that has been certified to the requirements of the EN ISO 9001: 2000. This new Quality System Certificate has been obtained in November 2003 for the Production of radioisotopes for medical and industrial applications and the Production of Neutron Transmutation Doped (NTD) Silicon in the BR2 reactor

  13. Augmented reality. Fundamentals and nuclear related applications

    International Nuclear Information System (INIS)

    Ishii, Hirotake

    2010-01-01

    In recent years, Augmented Reality (AR) has attracted considerable interest from both academia and industry. Virtual Reality enables users to interact only with virtual objects in a virtual environment, but AR enables users to interact with both virtual objects and real objects in the real world. This feature supports application of AR to various fields such as education, driving, entertainment, and navigation. Especially, by application of AR to support workers in nuclear power plants, it is expected that working time and human error can be decreased. However, many problems remain unsolved to apply AR to real fields. In this lecture note, fundamental knowledge of AR is presented first including the overview of elemental technologies to realize AR. Then various AR applications to nuclear fields are described. Finally, future prospects are given. (author)

  14. Characterisation of Geiger-mode avalanche photodiodes for medical imaging applications

    Energy Technology Data Exchange (ETDEWEB)

    Britvitch, I. [Swiss Federal Institute of Technology, CH-8092 Zurich (Switzerland)]. E-mail: Ilia.britvitch@psi.ch; Johnson, I. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Renker, D. [Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Stoykov, A. [Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Lorenz, E. [Swiss Federal Institute of Technology, CH-8092 Zurich (Switzerland); Max Planck Institute for Physics, 80805 Munich (Germany)

    2007-02-01

    Recently developed multipixel Geiger-mode avalanche photodiodes (G-APDs) are very promising candidates for the detection of light in medical imaging instruments (e.g. positron emission tomography) as well as in high-energy physics experiments and astrophysical applications. G-APDs are especially well suited for morpho-functional imaging (multimodality PET/CT, SPECT/CT, PET/MRI, SPECT/MRI). G-APDs have many advantages compared to conventional photosensors such as photomultiplier tubes because of their compact size, low-power consumption, high quantum efficiency and insensitivity to magnetic fields. Compared to avalanche photodiodes and PIN diodes, they are advantageous because of their high gain, reduced sensitivity to pick up and the so-called nuclear counter effect and lower noise. We present measurements of the basic G-APD characteristics: photon detection efficiency, gain, inter-cell crosstalk, dynamic range, recovery time and dark count rate.

  15. Characterisation of Geiger-mode avalanche photodiodes for medical imaging applications

    International Nuclear Information System (INIS)

    Britvitch, I.; Johnson, I.; Renker, D.; Stoykov, A.; Lorenz, E.

    2007-01-01

    Recently developed multipixel Geiger-mode avalanche photodiodes (G-APDs) are very promising candidates for the detection of light in medical imaging instruments (e.g. positron emission tomography) as well as in high-energy physics experiments and astrophysical applications. G-APDs are especially well suited for morpho-functional imaging (multimodality PET/CT, SPECT/CT, PET/MRI, SPECT/MRI). G-APDs have many advantages compared to conventional photosensors such as photomultiplier tubes because of their compact size, low-power consumption, high quantum efficiency and insensitivity to magnetic fields. Compared to avalanche photodiodes and PIN diodes, they are advantageous because of their high gain, reduced sensitivity to pick up and the so-called nuclear counter effect and lower noise. We present measurements of the basic G-APD characteristics: photon detection efficiency, gain, inter-cell crosstalk, dynamic range, recovery time and dark count rate

  16. Summary of nuclear-excavation applications

    International Nuclear Information System (INIS)

    Toman, John

    1970-01-01

    Although many nuclear-excavation applications have been proposed, few have been seriously considered and none have been brought to fruition. This paper summarizes and discusses specific examples of a canal, a harbor, a highway cut and a nuclear quarry, all of which have been studied in some detail. It is believed that useful demonstration projects - such as a deep-water harbor and a nuclear quarry - can be safely accomplished with existing technology. Current assessments of the feasibility of constructing a sea-level canal in either Panama or Colombia appear to be favorable from a technical viewpoint. The concept of close spacing in row-charge designs has made it possible to greatly reduce the estimated required salvo yields for both proposed canals. Salvo yields have been reduced from 35 Mt to 13 Mt in Colombia and 11 Mt in Panama. As a result, the seismic motions predicted for large cities in these countries are similar to motions produced in populated areas in the United States by nuclear tests and earthquakes in which no real damage to residential or high-rise structures was noted. (author)

  17. Summary of nuclear-excavation applications

    Energy Technology Data Exchange (ETDEWEB)

    Toman, John [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-01

    Although many nuclear-excavation applications have been proposed, few have been seriously considered and none have been brought to fruition. This paper summarizes and discusses specific examples of a canal, a harbor, a highway cut and a nuclear quarry, all of which have been studied in some detail. It is believed that useful demonstration projects - such as a deep-water harbor and a nuclear quarry - can be safely accomplished with existing technology. Current assessments of the feasibility of constructing a sea-level canal in either Panama or Colombia appear to be favorable from a technical viewpoint. The concept of close spacing in row-charge designs has made it possible to greatly reduce the estimated required salvo yields for both proposed canals. Salvo yields have been reduced from 35 Mt to 13 Mt in Colombia and 11 Mt in Panama. As a result, the seismic motions predicted for large cities in these countries are similar to motions produced in populated areas in the United States by nuclear tests and earthquakes in which no real damage to residential or high-rise structures was noted. (author)

  18. Cooperation between National Defense Medical College and Fukushima Medical University in thyroid ultrasound examination after the Fukushima Daiichi nuclear power plant disaster

    International Nuclear Information System (INIS)

    Yamamoto, Yoritsuna; Fujita, Masanori; Tachibana, Shoich; Morita, Koji; Hamano, Kunihisa; Hamada, Koji; Uchida, Kosuke; Tanaka, Yuji

    2013-01-01

    Fukushima Daiichi Nuclear Power Plant was utterly destroyed by The Great East Japan Earthquake which happened on March 11, 2011, and followed by radioactive contamination to the surrounding areas. Based on the known radioactive iodine ("1"3"1I) which led to thyroid cancer in children after the Chernobyl nuclear power plant disaster in 1986, children living in Fukushima should be carefully observed for the development of thyroid cancer. Fukushima Prefecture and Fukushima Medical University started ''Fukushima Health Management Survey'' in May 2011, which includes screening for thyroid cancer by ultrasonography (Thyroid Ultrasound Examination). Thyroid Ultrasound Examination would cover roughly 360,000 residents aged 0 to 18 years of age at the time of the nuclear disaster. The initial screening is to be performed within the first three years after the accident, followed by complete thyroid examinations from 2014 onwards, and the residents will be monitored regularly thereafter. As Thyroid Ultrasound Examination is being mainly performed by medical staff at Fukushima Medical University, there is insufficient manpower to handle the large number of potential examinees. Thus, specialists of thyroid diseases from all over Japan have begun to support this examination. Six endocrinologists including the authors belonging to the National Defense Medical College are cooperating in part of this examination. This paper briefly reports the outline of Thyroid Ultrasound Examination and our cooperation. (author)

  19. Current Status of Non-Electric Applications of Nuclear Energy

    International Nuclear Information System (INIS)

    Shin, Young Joon; Lee, Jun; Lee, Tae Hoon

    2009-05-01

    IAEA Technical Meeting(I3-TM-37394) on 'Non-Electric Applications of Nuclear Energy' has been successfully held from March 3 to 6 in 2009 at KAERI/INTEC. The 24 experts from 12 countries participated in this meeting and provided 17 presentations and their opinions and comments in desalination, hydrogen production, and heat application sessions. All of the participants from 12 countries agreed that nuclear power should be the potential carbon-free energy source to replace crude oil and reduce greenhouse gas emissions in the fields of non-electric applications such as desalination, hydrogen production, district heating, and industrial processes applications

  20. Medical applications with synchrotron radiation in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, T.; Itai, Y. [Univ. of Tsukuba, Inst. of Clinical Medicine, Tsukuba (Japan); Hyodo, K.; Ando, M. [KEK, Tsukuba (Japan); Akatsuka, T. [Yamagata Univ., Faculty of Engineering, Yamagata (Japan); Uyama, C. [National Cardiovascular Centre, Suita (Japan)

    1998-05-01

    In Japan, various medical applications of synchrotron X-ray imaging, such as angiography, monochromatic X-ray computed tomography (CT), radiography and radiation therapy, are being developed. In particular, coronary arteriography (CAG) is quite an important clinical application of synchrotron radiation. Using a two-dimensional imaging method, the first human intravenous CAG was carried out at KEK in May 1996; however, further improvements of image quality are required in clinical practice. On the other hand, two-dimensional aortographic CAG revealed canine coronary arteries as clearly as those on selective CAG, and coronary arteries less than 0.2 mm in diameter. Among applications of synchrotron radiation to X-ray CT, phase-contrast X-ray CT and fluorescent X-ray CT are expected to be very interesting future applications of synchrotron radiation. For actual clinical applications of synchrotron radiation, a medical beamline and a laboratory are now being constructed at SPring-8 in Harima. 55 refs.

  1. 78 FR 37324 - Preparation of Environmental Reports for Nuclear Power Plant License Renewal Applications

    Science.gov (United States)

    2013-06-20

    ... Environmental Reports for Nuclear Power Plant License Renewal Applications AGENCY: Nuclear Regulatory Commission... for Nuclear Power Plant License Renewal Applications.'' This regulatory guide provides guidance to... renewal of a nuclear power plant operating license. Applicants should use this regulatory guide when...

  2. Safety Framework for Nuclear Power Source Applications in Outer Space

    International Nuclear Information System (INIS)

    2009-01-01

    Nuclear power sources (NPS) for use in outer space have been developed and used in space applications where unique mission requirements and constraints on electrical power and thermal management precluded the use of non-nuclear power sources. Such missions have included interplanetary missions to the outer limits of the Solar System, for which solar panels were not suitable as a source of electrical power because of the long duration of these missions at great distances from the Sun. According to current knowledge and capabilities, space NPS are the only viable energy option to power some space missions and significantly enhance others. Several ongoing and foreseeable missions would not be possible without the use of space NPS. Past, present and foreseeable space NPS applications include radioisotope power systems (for example, radioisotope thermoelectric generators and radioisotope heater units) and nuclear reactor systems for power and propulsion. The presence of radioactive materials or nuclear fuels in space NPS and their consequent potential for harm to people and the environment in Earth's biosphere due to an accident require that safety should always be an inherent part of the design and application of space NPS. NPS applications in outer space have unique safety considerations compared with terrestrial applications. Unlike many terrestrial nuclear applications, space applications tend to be used infrequently and their requirements can vary significantly depending upon the specific mission. Mission launch and outer space operational requirements impose size, mass and other space environment limitations not present for many terrestrial nuclear facilities. For some applications, space NPS must operate autonomously at great distances from Earth in harsh environments. Potential accident conditions resulting from launch failures and inadvertent re-entry could expose NPS to extreme physical conditions. These and other unique safety considerations for the use of

  3. Viewpoints on Medical Image Processing: From Science to Application

    Science.gov (United States)

    Deserno (né Lehmann), Thomas M.; Handels, Heinz; Maier-Hein (né Fritzsche), Klaus H.; Mersmann, Sven; Palm, Christoph; Tolxdorff, Thomas; Wagenknecht, Gudrun; Wittenberg, Thomas

    2013-01-01

    Medical image processing provides core innovation for medical imaging. This paper is focused on recent developments from science to applications analyzing the past fifteen years of history of the proceedings of the German annual meeting on medical image processing (BVM). Furthermore, some members of the program committee present their personal points of views: (i) multi-modality for imaging and diagnosis, (ii) analysis of diffusion-weighted imaging, (iii) model-based image analysis, (iv) registration of section images, (v) from images to information in digital endoscopy, and (vi) virtual reality and robotics. Medical imaging and medical image computing is seen as field of rapid development with clear trends to integrated applications in diagnostics, treatment planning and treatment. PMID:24078804

  4. Viewpoints on Medical Image Processing: From Science to Application.

    Science.gov (United States)

    Deserno Né Lehmann, Thomas M; Handels, Heinz; Maier-Hein Né Fritzsche, Klaus H; Mersmann, Sven; Palm, Christoph; Tolxdorff, Thomas; Wagenknecht, Gudrun; Wittenberg, Thomas

    2013-05-01

    Medical image processing provides core innovation for medical imaging. This paper is focused on recent developments from science to applications analyzing the past fifteen years of history of the proceedings of the German annual meeting on medical image processing (BVM). Furthermore, some members of the program committee present their personal points of views: (i) multi-modality for imaging and diagnosis, (ii) analysis of diffusion-weighted imaging, (iii) model-based image analysis, (iv) registration of section images, (v) from images to information in digital endoscopy, and (vi) virtual reality and robotics. Medical imaging and medical image computing is seen as field of rapid development with clear trends to integrated applications in diagnostics, treatment planning and treatment.

  5. Canadian involvement in international nuclear cooperation

    International Nuclear Information System (INIS)

    Jennekens, Jon.

    1981-01-01

    Since 1945 Canada has been actively involved in the development of an international consensus on measures to prevent the proliferation of nuclear weapons. In parallel with this involvement, Canada has entered into cooperation agreements with several countries under which nuclear materials, equipment and facilities have been supplied in connection with the medical, industrial, agricultural and electrical power applications of nuclear energy. This paper summarizes the actions taken by Canada to encourage the peaceful uses of nuclear energy and to avoid the spread of nuclear weapons [fr

  6. Canadian involvement in international nuclear cooperation

    International Nuclear Information System (INIS)

    Jennekens, J.

    1981-01-01

    Since 1945 Canada has been actively involved in the development of an international consensus on measures to prevent the proliferation of nuclear weapons. In parallel with this involvement, Canada has entered into cooperative agreements with several countries under which nuclear materials, equipment and facilities have been supplied in connection with the medical, industrial, agricultural and electrical power applications of nuclear energy. This paper summarizes the actions taken by Canada to encourage the peaceful uses of nuclear energy and to avoid the spread of nuclear weapons. (author)

  7. Market Potential for Non-electric Applications of Nuclear Energy

    International Nuclear Information System (INIS)

    Konishi, T.; Kononov, S.; Kupitz, J.; McDonald, A.; Rogner, H.H.; Nisan, S.

    2002-01-01

    The paper presents results of a recent IAEA study to assess the market potential for non-electric applications of nuclear energy in the near (before 2020) and long term (2020-2050). The applications covered are district heating, desalination, industrial heat supply, ship propulsion, energy supply for spacecraft, and, to a lesser extent, 'innovative' applications such as hydrogen production, coal gasification, etc. While technical details are covered only briefly, emphasis is placed on economics and other factors that may promote or hinder the penetration of nuclear options in the markets for non-electric energy services. The study makes a distinction between the market size (demand for a given service) and the market potential for nuclear penetration (which may be smaller because of technical or non-technical constraints). Near-term nuclear prospects are assessed on the basis of on-going projects in the final stages of design or under construction. For the long term, use has been made of a qualitative scale ranging from 0 to 2 for five critical areas: market structure, demand pressure, technical basis, economic competitiveness, and public acceptance. The paper presents the resulting evaluation of long-term prospects for nuclear energy entering into non-electric markets. (authors)

  8. Medical image informatics infrastructure design and applications.

    Science.gov (United States)

    Huang, H K; Wong, S T; Pietka, E

    1997-01-01

    Picture archiving and communication systems (PACS) is a system integration of multimodality images and health information systems designed for improving the operation of a radiology department. As it evolves, PACS becomes a hospital image document management system with a voluminous image and related data file repository. A medical image informatics infrastructure can be designed to take advantage of existing data, providing PACS with add-on value for health care service, research, and education. A medical image informatics infrastructure (MIII) consists of the following components: medical images and associated data (including PACS database), image processing, data/knowledge base management, visualization, graphic user interface, communication networking, and application oriented software. This paper describes these components and their logical connection, and illustrates some applications based on the concept of the MIII.

  9. Design of a Course on the Medical Consequences of Nuclear War.

    Science.gov (United States)

    Cassel, Christine; And Others

    1982-01-01

    A course is described in which students were to: learn about nuclear weapons and their medical, social, and ecological consequences; identify principles of social ethics defining health professionals' roles; and define professional activities consistent with these principles. Student attitudes toward the course and its content were measured. (MSE)

  10. Lists I and II, nuclear medical diagnostics. As of January 18, 1983

    International Nuclear Information System (INIS)

    1983-01-01

    The information booklet presents the guidelines of the Federal Association of Panel Doctors, concerning the minimum equipment required for nuclear medical diagnostics practices (nuclear medical equipment guidelines), in the amended version of May 18, 1981; it also contains the list I (modern commercially available equipment) and the list II (older types of equipment). The devices specified in these lists are products of firms that are members of the ZVEI, and are in compliance with the guidelines of the Panel Doctors' Association. Combinations of older computer equipment/cameras with up-to-date equipment, also come up to the standards given in the guidelines if specifically mentioned therein. The list of manufacturers gives addresses of the manufacturers of the equipment stated in list I and II. An appendix up-dates the information to the date of October 1, 1986. (orig./HP) [de

  11. Economics on nuclear techniques application in industry

    International Nuclear Information System (INIS)

    Kato, Masao

    1979-01-01

    The economics of the application of nuclear techniques to industry is discussed. Nuclear techniques were applied to gauging (physical measurement), analysis, a radioactive tracer method, electrolytic dissociation, and radiography and were found to be very economical. They can be applied to manufacturing, mining, oceano-engineering, environmental engineering, and construction, all of which have a great influence on economics. However, because the application of a radioactive tracer technique does not have a direct influence on economics, it is difficult to estimate how beneficial it is. The cost-benefit ratio method recommended by IAEA was used for economical calculations. Examples of calculations made in gauging and analysis are given. (Ueda, J.)

  12. Nuclear medicine training and practice in Turkey.

    Science.gov (United States)

    Ozcan, Zehra; Bozkurt, M Fani; Erbas, Belkıs; Durak, Hatice

    2017-05-01

    Nuclear medicine applications in Turkey started in the early 1950s, grew as an independent medical discipline and finally were recognized by the Ministry of Health in 1973. Later on, the professional organization of nuclear medicine physicians and other related professionals including radiopharmacists and technologists under the Turkish Society of Nuclear Medicine were established in 1975. Recently after completing more than a half century in Turkey, nuclear medicine has proved to be a strong and evolving medical field with more than 600 physicians serving for the changing needs of clinical practice throughout these years. This article describes past and present facts in this field and attempts to provide insights into the future which hopefully will be brighter than before.

  13. Radioisotopes production and applications

    International Nuclear Information System (INIS)

    Dash, Ashutosh

    2015-01-01

    Application of radioisotopes for both medical and industrial applications constitutes one of the most important peaceful uses of atomic energy. The striking diffusion and the exciting perspective of radioisotope for a plethora of medical and industrial applications are mainly attributable to the penetrating and ionization properties of radiation emanating from radioisotopes. The revolutionary medical applications of radioisotopes for the diagnosis and treatment of a multitude of diseases are causing a rapid expansion of the nuclear medicine field. While the industrial uses of radioisotopes are not expanding as quickly, also require large amounts of radioisotopes. Production of radioisotopes is not only the first step, but also the most crucial for the success as well as sustainable growth of radioisotope applications. With the rapid growth and expanding areas of applications, the demands for isotopes have increased several folds. A number of radioisotopes of different physical half-life, energy of the particle or gamma emission, specific activity and chemistry are now regularly produced both at commercial centers as well as at selected nuclear science research institutes utilizing reactors and cyclotrons to meet the ever growing need

  14. Promoting nuclear medicine in developing countries

    International Nuclear Information System (INIS)

    Ganatra, R.; Nofal, M.

    1986-01-01

    After a short review of the applications of nuclear medicine in diagnosis and treatment of diseases or in medical research the ways and the means of IAEA's support in helping developing countries to set up nuclear medicine capabilities in their hospitals are described. Some trends and new directions in the field of nuclear medicine and the problems related to the implementation of these techniques in developing countries are presented

  15. Applications of artificial neural networks in medical science.

    Science.gov (United States)

    Patel, Jigneshkumar L; Goyal, Ramesh K

    2007-09-01

    Computer technology has been advanced tremendously and the interest has been increased for the potential use of 'Artificial Intelligence (AI)' in medicine and biological research. One of the most interesting and extensively studied branches of AI is the 'Artificial Neural Networks (ANNs)'. Basically, ANNs are the mathematical algorithms, generated by computers. ANNs learn from standard data and capture the knowledge contained in the data. Trained ANNs approach the functionality of small biological neural cluster in a very fundamental manner. They are the digitized model of biological brain and can detect complex nonlinear relationships between dependent as well as independent variables in a data where human brain may fail to detect. Nowadays, ANNs are widely used for medical applications in various disciplines of medicine especially in cardiology. ANNs have been extensively applied in diagnosis, electronic signal analysis, medical image analysis and radiology. ANNs have been used by many authors for modeling in medicine and clinical research. Applications of ANNs are increasing in pharmacoepidemiology and medical data mining. In this paper, authors have summarized various applications of ANNs in medical science.

  16. The multiple applications of the nuclear techniques in Argentina; Las multiples aplicaciones de la tecnologia nuclear en Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Manzini, Alberto C [Comision Nacional de Energia Atomica, Buenos Aires (Argentina). Programa de Radioisotopos y Aplicaciones

    2001-07-01

    A review is given of the use of nuclear technology in Argentina, especially in the field of the production of radioisotopes and radiopharmaceuticals, nuclear medicine, and industrial applications. The applications of ionizing radiation are also reviewed.

  17. EBSD applications in the steel and nuclear industries

    International Nuclear Information System (INIS)

    Nave, M.D.

    2005-01-01

    EBSD has established itself as an invaluable tool for materials science problem-solving in the steel and nuclear industries. In the steel industry, it increases our understanding of the deformation and recrystallization processes that influence the formability of steel sheets. It is also used to improve welding procedures and identify phases that accelerate corrosion. In the nuclear industry, EBSD plays a central role in extending the life of fuel cladding materials by shedding new light on the mechanisms of hydride formation. It is also used in efforts to improve the processing of material used for the storage of nuclear waste. This presentation provides an overview of EBSD applications within these two industries, emphasizing the broad applicability and practical usefulness of the technique. (author)

  18. Advanced applications of water cooled nuclear power plants

    International Nuclear Information System (INIS)

    2008-07-01

    By August 2007, there were 438 nuclear power plants (NPPs) in operation worldwide, with a total capacity of 371.7 GW(e). Further, 31 units, totaling 24.1 GW(e), were under construction. During 2006 nuclear power produced 2659.7 billion kWh of electricity, which was 15.2% of the world's total. The vast majority of these plants use water-cooled reactors. Based on information provided by its Member States, the IAEA projects that nuclear power will grow significantly, producing between 2760 and 2810 billion kWh annually by 2010, between 3120 and 3840 billion kWh annually by 2020, and between 3325 and 5040 billion kWh annually by 2030. There are several reasons for these rising expectations for nuclear power: - Nuclear power's lengthening experience and good performance: The industry now has more than 12 000 reactor years of experience, and the global average nuclear plant availability during 2006 reached 83%; - Growing energy needs: All forecasts project increases in world energy demand, especially as population and economic productivity grow. The strategies are country dependent, but usually involve a mix of energy sources; - Interest in advanced applications of nuclear energy, such as seawater desalination, steam for heavy oil recovery and heat and electricity for hydrogen production; - Environmental concerns and constraints: The Kyoto Protocol has been in force since February 2005, and for many countries (most OECD countries, the Russian Federation, the Baltics and some countries of the Former Soviet Union and Eastern Europe) greenhouse gas emission limits are imposed; - Security of energy supply is a national priority in essentially every country; and - Nuclear power is economically competitive and provides stability of electricity price. In the near term most new nuclear plants will be evolutionary water cooled reactors (Light Water Reactors (LWRs) and Heavy Water Reactors (HWRs), often pursuing economies of scale. In the longer term, innovative designs that

  19. Application of radionuclides in nuclear technology

    International Nuclear Information System (INIS)

    Boeck, H.

    1983-07-01

    Four main applications of radionuclides in nuclear technology are presented which are level-, density- and thickness gauging and moisture determination. Each method is surveyed for its general principle, various designs, accuracy, errors and practical designs. (Author)

  20. Non-electric applications of nuclear power: Seawater desalination, hydrogen production and other industrial applications. Proceedings of an international conference

    International Nuclear Information System (INIS)

    2009-01-01

    Today, nuclear power plants contribute about 16% to the world's electricity generation. Because electricity represents less than one third of the primary energy uses, nuclear energy provides only about 6% of total energy consumption in the world. If nuclear energy were used for purposes other than electricity generation, it could play a more significant role in global energy supply. This could have also a significant impact on global goals for reduced greenhouse gas emissions for a cleaner environment. Nuclear power is the only large-scale carbon-free energy source that, in the near and medium term, has the potential to significantly displace limited and uncertain fossil fuels. To do this, however, nuclear power must move beyond its historical role as solely a producer of electricity to other non-electric applications. These applications include seawater desalination, district heating, heat for industrial processes, and electricity and heat for hydrogen production among others. These applications have tremendous potential in ensuring future worldwide energy and water security for sustainable development. In recent years, various agencies involved in nuclear energy development programmes have carried out studies on non-electric applications of nuclear power and useful reports have been published. The IAEA launched a programme on co-generation applications in the 1990's in which a number of Member States have been and continue to be actively involved. This programme, however is primarily concerned with seawater desalination, and district and process heating, utilizing the existing reactors as a source of heat and electricity. In recent years the scope of the Agency's programme has been widened to include other more promising applications such as nuclear hydrogen production and higher temperature process heat applications. OECD/NEA (OECD Nuclear Energy Agency), EURATOM (European Atomic Energy Community) and GIF (Generation IV International Forum) have also evinced

  1. Applications of Nuclear Science for Stewardship Science

    International Nuclear Information System (INIS)

    Cizewski, Jolie A

    2013-01-01

    Stewardship science is research important to national security interests that include stockpile stewardship science, homeland security, nuclear forensics, and non-proliferation. To help address challenges in stewardship science and workforce development, the Stewardship Science Academic Alliances (SSAA) was inaugurated ten years ago by the National Nuclear Security Administration of the U. S. Department of Energy. The goal was to enhance connections between NNSA laboratories and the activities of university scientists and their students in research areas important to NNSA, including low-energy nuclear science. This paper presents an overview of recent research in low-energy nuclear science supported by the Stewardship Science Academic Alliances and the applications of this research to stewardship science.

  2. Medical applications for biomaterials in Bolivia

    CERN Document Server

    Arias, Susan

    2015-01-01

    This book investigates the potential medical benefits natural biomaterials can offer in developing countries by analyzing the case of Bolivia. The book explores the medical and health related applications of Bolivian commodities: quinoa, barley, sugarcane, corn, sorghum and sunflower seeds. This book helps readers better understand some of the key health concerns facing countries like Bolivia and how naturally derived biomaterials and therapeutics could help substantially alleviate many of their problems.

  3. The recent status of nuclear technology development in Thailand

    International Nuclear Information System (INIS)

    Laoharojanaphand, Sirinart; Cherdchu, Chainarong; Sumitra, Tatchai; Sudprasert, Wanwisa; Chankow, Nares; Tiyapan, Kanokrat; Onjun, Thawatchai; Bhanthumnavin, Duangduen

    2016-01-01

    Thailand has started the peaceful utilization of nuclear program in 1961. The program has developed considerably in various aspects. Laws and regulations were established while applications in medical, agriculture, industry as well as research and education have been accomplished successfully in the country. As for the energy production, Thailand has realized the importance of nuclear power generation several years back. However, the implementation has been delayed. There are four main nuclear organizations namely The Thai Atomic Energy Commission - the country's policy holder, the Office of Atoms for Peace (OAP) - the nuclear regulatory bodies, Thailand Institute of Nuclear Technology (TINT: Public Organization) - the research and services provider in nuclear field and the Nuclear Society of Thailand the non-governmental organization. Major research in nuclear technology is actively carried out at TINT. Filed of research include medical and public health, agricultural, material and industrial, environmental and advanced technology like neutron scattering and nuclear fusion. Nuclear density gauge has been utilized in many industries including petrochemical production and refineries. TINT is also providing services on nuclear radiography to industrial and clients. Additionally, x-ray techniques have been utilized in many manufacturers for quality and process control. Nuclear applications for medical purpose have been utilized in Thailand several years back both for diagnostic and therapeutic purposes. To ensure safe and peaceful use of nuclear technology and for the safety of the general public in Thailand, OAP has launched laws, regulations and ministerial announcements. Thailand has only one multi-purposes nuclear research reactor and no NPP. Yet we have realized the importance of nuclear power generation several years back. (N.T.)

  4. Radioiodination and Bio evaluation of Some Cardiovascular Drugs for Nuclear Medicine Application

    International Nuclear Information System (INIS)

    El-Sharawy, D.M.M.

    2013-01-01

    Nuclear medicine specialists use safe, painless, and cost-effective techniques to image the body and treat disease. Nuclear medicine imaging is unique, because it provides doctors with information about both structure and function. It is a way to gather medical information that would otherwise be unavailable, require surgery, or necessitate more expensive diagnostic tests. Today, nuclear medicine offers procedures that are essential in many medical specialties, from pediatrics to cardiology to psychiatry. Radiopharmacy is the science that deals largely with the preparation, compounding, Quality Control (QC), and dispensing of radiopharmaceuticals and radioisotopes for human use. Radio pharmacists are the personnel who perform these functions at large hospitals or medical centers. They are involved in manufacturing cold kits and in developing new agents and procedures. In this thesis it was studied the labeling of Deltiazem , Nefidipine and Valsartan with iodine -125 via an electrophilic substitution reaction. The biological distribution of these tracers were studied and was found the possibility of their use in cardiovascular disorders.

  5. Applications of nuclear physics: Future trends

    International Nuclear Information System (INIS)

    Eichler, R.

    2005-01-01

    Nuclear physics and energy research depends on and advances science and technology outside of the nuclear field. Perhaps the most commonly perceived benefits to society from nuclear and particle physics are those derived from particle beam technology. Charged particle accelerators play an increasing role in applications in industry and medicine. Neutrons produced with a high power proton accelerator in a spallation process are used from basic research, radiography in automotive industry (example fuel cell development) to transmutation of highly radioactive fission products. Production and acceleration of ultra cold neutrons provide intense and almost mono-energetic neutrons to study soft matter. Heavier radioisotopes are used in a wide field ranging from medicine to semiconductor industry (ion implantation for doping or coating technologies). Concrete examples and future trends will be given. Detailed understanding of ion physics at low energy allows the design of compact accelerator mass spectroscopy (close to table top size). The ability to measure concentrations of specific radioactive isotopes even below the natural radioactivity widens the scope of applications from archaeology, climate research to food industry. Such a compact device is close to commercialisation. (author)

  6. Medication-use evaluation with a Web application.

    Science.gov (United States)

    Burk, Muriel; Moore, Von; Glassman, Peter; Good, Chester B; Emmendorfer, Thomas; Leadholm, Thomas C; Cunningham, Francesca

    2013-12-15

    A Web-based application for coordinating medication-use evaluation (MUE) initiatives within the Veterans Affairs (VA) health care system is described. The MUE Tracker (MUET) software program was created to improve VA's ability to conduct national medication-related interventions throughout its network of 147 medical centers. MUET initiatives are centrally coordinated by the VA Center for Medication Safety (VAMedSAFE), which monitors the agency's integrated databases for indications of suboptimal prescribing or drug therapy monitoring and adverse treatment outcomes. When a pharmacovigilance signal is detected, VAMedSAFE identifies "trigger groups" of at-risk veterans and uploads patient lists to the secure MUET application, where locally designated personnel (typically pharmacists) can access and use the data to target risk-reduction efforts. Local data on patient-specific interventions are stored in a centralized database and regularly updated to enable tracking and reporting for surveillance and quality-improvement purposes; aggregated data can be further analyzed for provider education and benchmarking. In a three-year pilot project, the MUET program was found effective in promoting improved prescribing of erythropoiesis-stimulating agents (ESAs) and enhanced laboratory monitoring of ESA-treated patients in all specified trigger groups. The MUET initiative has since been expanded to target other high-risk drugs, and efforts are underway to refine the tool for broader utility. The MUET application has enabled the increased standardization of medication safety initiatives across the VA system and may serve as a useful model for the development of pharmacovigilance tools by other large integrated health care systems.

  7. Medical physics 2013. Abstracts

    International Nuclear Information System (INIS)

    Treuer, Harald

    2013-01-01

    The proceedings of the medical physics conference 2013 include abstract of lectures and poster sessions concerning the following issues: Tele-therapy - application systems, nuclear medicine and molecular imaging, neuromodulation, hearing and technical support, basic dosimetry, NMR imaging -CEST (chemical exchange saturation transfer), medical robotics, magnetic particle imaging, audiology, radiation protection, phase contrast - innovative concepts, particle therapy, brachytherapy, computerized tomography, quantity assurance, hybrid imaging techniques, diffusion and lung NMR imaging, image processing - visualization, cardiac and abdominal NMR imaging.

  8. Internet applications in nuclear power plant operation management

    International Nuclear Information System (INIS)

    Munoz, M.

    2000-01-01

    The use of the Internet is quickly becoming widespread in practically all areas of business and industry. The nuclear industry should not remain indifferent to this new trend. This paper analyses some of the Internet applications that can be easily adapted to nuclear power plant operation management, including. (Author)

  9. Nuclear Application Programs Development and Integration for a Simulator

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyun-Joon; Lee, Tae-Woo [KEPCO Engineering and Construction Co., Deajeon (Korea, Republic of)

    2016-10-15

    KEPCO E and C participated in the NAPS (Nuclear Application Programs) development project for BNPP (Barakah Nuclear Power Plant) simulator. The 3KEY MASTER™ was adopted for this project, which is comprehensive simulation platform software developed by WSC (Western Services Corporation) for the development, and control of simulation software. The NAPS based on actual BNPP project was modified in order to meet specific requirements for nuclear power plant simulators. Considerations regarding software design for BNPP simulator and interfaces between the 3KM platform and application programs are discussed. The repeatability is one of functional requirements for nuclear power plant simulators. In order to migrate software from actual plants to simulators, software functions for storing and retrieving plant conditions and program variables should be implemented. In addition, software structures need to be redesigned to meet the repeatability, and source codes developed for actual plants would have to be optimized to reflect simulator’s characteristics as well. The synchronization is an important consideration to integrate external application programs into the 3KM simulator.

  10. User experience integrated life-style cloud-based medical application.

    Science.gov (United States)

    Serban, Alexandru; Lupşe, Oana Sorina; Stoicu-Tivadar, Lăcrămioara

    2015-01-01

    Having a modern application capable to automatically collect and process data from users, based on information and lifestyle answers is one of current challenges for researchers and medical science. The purpose of the current study is to integrate user experience design (UXD) in a cloud-based medical application to improve patient safety, quality of care and organizational efficiency. The process consists of collecting traditional and new data from patients and users using online questionnaires. A questionnaire dynamically asks questions about the user's current diet and lifestyle. After the user will introduce the data, the application will formulate a presumptive nutritional plan and will suggest different medical recommendations regarding a healthy lifestyle, and calculates a risk factor for diseases. This software application, by design and usability will be an efficient tool dedicated for fitness, nutrition and health professionals.

  11. Selection and construction of nuclear and radiation emergency medical center in a region

    International Nuclear Information System (INIS)

    Wang Guojun; He Xu; Liao Li; Gao Dong

    2014-01-01

    Three level of first-class comprehensive hospital is an important force of nuclear and radiation accident rescue, has a very rich experience in response to nuclear and radiation accidents and deal with large quantities of the sick and wounded. With the foundation and the ability of the construction and operation of medical emergency rescue center. This paper according to the median model location theory of emergency center, combined with the specific situation of the nuclear and radiation accident in Hunan Province, reference location, rescue experience, emergency allocation of resources, teaching and research capacity, establish regional medical emergency center of nuclear and radiation accidents based on three level of first-class comprehensive hospital, break the traditional concept that the center must be provincial capital,form a multi-level, three-dimensional, network of emergency hospital rescue system. The main duties of the center are accident emergency response, on-site treatment and technical guidance of accident, psychological grooming. The author propose building measures according to the duties of the center: increase national and provincial financial investment, carry out training, drills and first aid knowledge missionaries regularly, innovative materials management, speed up the construction of information platform, establish and improve the hospital rescue system, improve organization institution and system of plans, reengineering rescue process. (authors)

  12. Nuclear Analytical Techniques for Commercial Applications in China

    International Nuclear Information System (INIS)

    Chai, Z.; Zhang, Z.; Feng, S.; Yang, J.; Ouyang, H.; Feng, X.; Mao, X.

    2013-01-01

    Since the establishment of the first Chinese nuclear reactor and accelerator in 1958, the nuclear analytical techniques (NATs) in China have dramatically developed in past half century. Nowadays 10 research nuclear reactors and over 100 small accelerators are available in China. Roughly, about 50 % of the machine time is applied for commercial purpose at the moment. The versatile nuclear analytical methods, mainly NAA, PIXE, XRF, etc., in China have been and are being applied widely and extensively in the following three fields: scientific, training, and commercial. This paper will briefly describe the past experience and present status about NATs for commercial applications. Some practical examples to demonstrate the role of NATs in this aspect will be given as well. Basically, the NATs used for the commercial applications in China can be divided into two types, i.e. off-line and on-line. The former mainly includes instrumental neutron activation analysis (INAA) for compositional determination, particle induced X-ray emission (PIXE) also for compositional analysis, accelerator-based mass-spectrometry (AMS) for analysis of C-14, Be-7, Cl-36 and other long-lived radioactive nuclides, solid state nuclear track detector

  13. Medical applications of diamond particles & surfaces

    OpenAIRE

    Roger J Narayan; Ryan D. Boehm; Anirudha V. Sumant

    2011-01-01

    Diamond has been considered for use in several medical applications due to its unique mechanical, chemical, optical, and biological properties. In this paper, methods for preparing synthetic diamond surfaces and particles are described. In addition, recent developments involving the use of diamond in prostheses, sensing, imaging, and drug delivery applications are reviewed. These developments suggest that diamond-containing structures will provide significant improvements in the diagnosis and...

  14. Neutral networks and their application in nuclear power plants

    International Nuclear Information System (INIS)

    Zhao Fuyu; Li Tiejun; Liao Zhongyue

    1994-01-01

    The neutral theory has been applied to various fields and many achievements have been obtained in many aspects, and the theory has also applied to nuclear engineering. In this paper, a few patterns of neutral networks and application in nuclear power plant is surveyed so as to bring the researching direction to nuclear work's attention at home

  15. Nano materials for Medical and Dental Applications

    International Nuclear Information System (INIS)

    Yub Kwon, T.; Oh, D.S.; Narayanan, R.

    2015-01-01

    Welcome to this special issue. Nano science and nano technology concepts are applicable across all fields of science and a more widespread application of nano materials and nano technologies is imminent or already occurring in many areas, including health care. Today is scientists take those cutting-edge technologies and concepts and apply them to medicine and dentistry. They are finding a wide variety of ways to make medical and dental materials at the nano scale to take advantage of their enhanced physical and biological properties.The purpose of this special issue is to publish high-quality research papers as well as review articles addressing recent advances in the field of nano materials for medical and dental applications. A particular interest is given to papers exploring or discussing nano materials and nano technologies related to delivery system, bonding substitutes, and surface modification techniques applicable in these areas. For this special issue, several investigators were invited to contribute original research findings that can stimulate continuing efforts to understand the cutting-edge applications of nano materials in medicine and dentistry.

  16. PREFACE: EPS Euroconference XIX Nuclear Physics Divisional Conference: New Trends in Nuclear Physics Applications and Technology

    Science.gov (United States)

    2006-06-01

    It was with great pleasure that the Department of Nuclear and Theoretical Physics of the University of Pavia and the INFN (Istituto Nazionale di Fisica Nucleare) Structure of Pavia organised the XIX Nuclear Physics Divisional Conference of the European Physical Society, which was held in the historical buildings of the University of Pavia from 5-9 September 2005. The Conference was devoted to the discussion of the most recent experimental and theoretical achievements in the field of Nuclear Physics applications, as well as of the latest developments in technological tools related to Nuclear Physics research. The University of Pavia has a long tradition in Physics and in Applied Physics, being the site where Alessandro Volta developed his "pila", the precursor of the modern battery. This is the place where the first experiments with electricity were conducted and where the term "capacitance" used for capacitors was invented. Today the University hosts a Triga Mark II nuclear reactor, which is used by the Departments of the University of Pavia and by other Universities and private companies as well. Moreover, Pavia is the site selected for the construction of the CNAO complex "Centro Nazionale di Adroterapia Oncologica" (National Centre for Oncological Hadrontherapy), planned for 2005-2008 which represents a unique facility in Italy and will be among the first complexes of this type in Europe. The Conference has gathered together experts in various fields from different countries and has been the occasion to review the present status and to discuss the new emerging trends in Nuclear Physics and its applications to multidisciplinary researches and the development of new technologies. The following topics were treated: Nuclear Techniques in Medicine and Life Sciences (Cancer Therapy, new Imaging and Diagnostics Tools, Radioisotope production, Radiation Protection and Dosimetry). Applications of Nuclear Techniques in Art, Archaeometry and other Interdisciplinary fields

  17. Master on Nuclear Engineering and Applications (MINA): instrument of knowledge management in the nuclear sector

    International Nuclear Information System (INIS)

    Herranz, L. E.; Garcia Cuesta, J. C.; Falcon, S.; Casas, J. A.

    2013-01-01

    Knowledge Management in nuclear industry is indespensable to ensure excellence in performance and safety of nuclear installations. The Master on Nuclear Engineering and Applications (MINA) is a Spanish education venture which foundations and evolution have meant and adaptation to the European Education system and to the domestic and international changes occured in the nuclear environment. This paper summarizes the most relevant aspects of such transformation, its motivation and the final outcome. Finally, it discusses the potential benefit of a closer collaboration among the existing national education ventures in the frame of Nuclear Engineering. (Author)

  18. World-wide termination of nuclear energy application

    International Nuclear Information System (INIS)

    Quirin, W.

    1991-01-01

    It is easy to require the widely discussed termination of nuclear energy application, but it is hardly possible to realise it, unless one is prepared to accept enormous economic and ecological problems. The article investigates, whether the other energy carriers or energy saving methods, respectively, would be in a position to replace the nuclear energy. Thereby the aspects of securing the supply and its economy are of considerable importance. The author describes furthermore the effects of terminating nuclear energy on the growing world population and the economy of trading countries. Ecological problems that may also be aggravated are dealt with, too. (orig.) [de

  19. Application of ceramic and glass materials in nuclear power plants

    International Nuclear Information System (INIS)

    Hamnabard, Z.

    2008-01-01

    Ceramic and glass are high temperature materials that can be used in many fields of application in nuclear industries. First, it is known that nuclear fuel UO 2 is a ceramic material. Also, ability to absorb neutrons without forming long lived radio-nuclides make the non-oxide ceramics attractive as an absorbent for neutron radiation arising in nuclear power plants. Glass-ceramic materials are a new type of ceramic that produced by the controlled nucleation and crystallization of glass, and have several advantages such as very low or null porosity, uniformity of microstructure, high chemical resistance etc. over conventional powder processed ceramics. These ceramic materials are synthesized in different systems based on their properties and applications. In nuclear industries, those are resistant to leaching and radiation damage for thousands of years, Such as glass-ceramics designed for radioactive waste immobilization and machinable glass-ceramics are used. This article introduces requirements of different glass and ceramic materials used in nuclear power plants and have been focused on developments in properties and application of them

  20. A special designed library for medical imaging applications

    International Nuclear Information System (INIS)

    Lymberopoulos, D.; Kotsopoulos, S.; Zoupas, V.; Yoldassis, N.; Spyropoulos, C.

    1994-01-01

    The present paper deals with a sophisticated and flexible library of medical purpose image processing routines. It contains modules for simple as well as advanced gray or colour image processing. This library offers powerful features for medical image processing and analysis applications, thus providing the physician with a means of analyzing and estimating medical images in order to accomplish their diagnostic procedures

  1. Nuclear plant analyzer development and analysis applications

    International Nuclear Information System (INIS)

    Laats, E.T.

    1984-01-01

    The Nuclear Plant Analyzer (NPA) is being developed as the U.S. Nuclear Regulatory Commission's (NRC's) state of the art safety analysis and engineering tool to address key nuclear plant safety issues. The NPA integrates the NRC's computerized reactor behavior simulation codes such as RELAP5 and TRAC-BWR, both of which are well-developed computer graphics programs, and large repositories of reactor design and experimental data. Utilizing the complex reactor behavior codes as well as the experiment data repositories enables simulation applications of the NPA that are generally not possible with more simplistic, less mechanistic reactor behavior codes. These latter codes are used in training simulators or with other NPA-type software packages and are limited to displaying calculated data only. This paper describes four applications of the NPA in assisting reactor safety analyses. Two analyses evaluated reactor operating procedures, during off-normal operation, for a pressurized water reactor (PWR) and a boiling water reactor (BWR), respectively. The third analysis was performed in support of a reactor safety experiment conducted in the Semiscale facility. The final application demonstrated the usefulness of atmospheric dispersion computer codes for site emergency planning purposes. An overview of the NPA and how it supported these analyses are the topics of this paper

  2. Clinical applications of nuclear cardiology studies in the reforms epoch of health systems

    International Nuclear Information System (INIS)

    Mut, Fernando; Beretta, Mario

    2003-01-01

    The appropriate evaluation of the ischemic heart disease due to it seriousness and high prevalence, limited by the expenses that arise from the illness, constitutes a challenge in our times for the daily practice. At the present time, nuclear cardiology competes with several non invasive techniques in the evaluation of the perfusion and the myocardial viability, being this requested in function of the real necessity of each patient. The applications that nuclear cardiology offers for the study of the myocardial perfusion are multiple. Clinical situations are reviewed in this article, such as the coronary illness, states previous to the non cardiac surgery, states after cardiac catheterization, coronary angioplasty, revascularization surgery, and evaluation of patient under long term medical treatment. The study of the myocardial perfusion allows that the coronary illness can be classified according to a low, intermediate or high probability, providing a wide prognosis information in relation to the extension and severity of the ischemia. In this study there are also remarked practical limits as for the selection of patients in order to achieve that the studies of nuclear cardiology offer an appropriate evaluation of the well-known or suspected coronary illness. (The author)

  3. International Nuclear Science and Technology Conference 2016

    International Nuclear Information System (INIS)

    2017-01-01

    Conference Nuclear technology has played an important role in many aspects of our lives, including agriculture, medicine and healthcare, materials, environment, forensics, energy, and frontier advancement. The International Nuclear Science and Technology Conference (INST) aims to bring together scientists, engineers, academics and students to share knowledge and experiences about all aspects of nuclear sciences. INST2016 was the second of the INST conference series organized by Thailand Institute of Nuclear Technology. INST has evolved from a national conference series on nuclear science and technology that was held every two years in Bangkok for over a twenty-year period. INST2016 was held from 4 - 6 August 2016 in Bangkok, Thailand, under the central theme “Nuclear for Better Life”. The conference working language was English. The oral and poster research presentations covered seven major topics: • Nuclear physics and engineering (PHY) • Nuclear and radiation safety (SAF) • Medical and nutritional applications (MED) • Environmental applications (ENV) • Radiation processing and industrial applications (IND) • Agriculture and food applications (AGR) • Instrumentation and other related topics (INS) The welcome addresses, committees, program of the conference and the list of presentations can be found in the PDF. (paper)

  4. 15 CFR Notes Applicable to State... - Notes applicable to State of Understanding related to Medical Equipment:

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Notes applicable to State of Understanding related to Medical Equipment: applicable Notes applicable to State of Understanding related to Medical Equipment: Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) BUREAU OF INDUSTRY AND SECURITY,...

  5. Proposed advanced satellite applications utilizing space nuclear power systems

    International Nuclear Information System (INIS)

    Bailey, P.G.; Isenberg, L.

    1990-01-01

    A review of the status of space nuclear reactor systems and their possible applications is presented. Such systems have been developed over the past twenty years and are capable of use in various military and civilian applications in the 5-1000 kWe power range. The capabilities and limitations of the currently proposed nuclear reactor systems are summarized. Safety issues are shown to be identified, and if properly addressed should not pose a hindrance. Applications are summarized for the federal and civilian community. These applications include both low and high altitude satellite surveillance missions, communications satellites, planetary probes, low and high power lunar and planetary base power systems, broad-band global telecommunications, air traffic control, and high-definition television

  6. Industrial application of nuclear techniques in Australia

    International Nuclear Information System (INIS)

    Easey, J.F.

    1981-01-01

    The applications of nuclear techniques in Australia was reviewed - the work has been to aid: mining and mineral sector, the manufacturing, chemical and petroleum industries, hydrology and sedimentology

  7. Nuclear medicine training and practice in Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Ozcan, Zehra [Ege University School of Medicine, Department of Nuclear Medicine, Izmir (Turkey); Bozkurt, M. Fani; Erbas, Belkis [Hacettepe University School of Medicine, Department of Nuclear Medicine, Ankara (Turkey); Durak, Hatice [Dokuz Eyluel University School of Medicine, Department of Nuclear Medicine, Izmir (Turkey)

    2017-05-15

    Nuclear medicine applications in Turkey started in the early 1950s, grew as an independent medical discipline and finally were recognized by the Ministry of Health in 1973. Later on, the professional organization of nuclear medicine physicians and other related professionals including radiopharmacists and technologists under the Turkish Society of Nuclear Medicine were established in 1975. Recently after completing more than a half century in Turkey, nuclear medicine has proved to be a strong and evolving medical field with more than 600 physicians serving for the changing needs of clinical practice throughout these years. This article describes past and present facts in this field and attempts to provide insights into the future which hopefully will be brighter than before. (orig.)

  8. Nuclear medicine training and practice in Turkey

    International Nuclear Information System (INIS)

    Ozcan, Zehra; Bozkurt, M. Fani; Erbas, Belkis; Durak, Hatice

    2017-01-01

    Nuclear medicine applications in Turkey started in the early 1950s, grew as an independent medical discipline and finally were recognized by the Ministry of Health in 1973. Later on, the professional organization of nuclear medicine physicians and other related professionals including radiopharmacists and technologists under the Turkish Society of Nuclear Medicine were established in 1975. Recently after completing more than a half century in Turkey, nuclear medicine has proved to be a strong and evolving medical field with more than 600 physicians serving for the changing needs of clinical practice throughout these years. This article describes past and present facts in this field and attempts to provide insights into the future which hopefully will be brighter than before. (orig.)

  9. Biomedical application of the nuclear microprobe

    International Nuclear Information System (INIS)

    Lindh, U.

    1987-01-01

    The Studsvik Nuclear Microprobe (SMP) has mainly been devoted to applications in the biomedical field. Its ultimate resolution is reached at 2.9x2.9 μm 2 with a proton current of 100 pA. With this performance the SMP has been used in a wide range of disciplines covering environmental hygiene, toxicology, various aspects of internal medicine and trace element physiology. Examples of recent applications in these fields are described. (orig.)

  10. Applications of nuclear safety probabilistic risk assessment to nuclear security for optimized risk mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Donnelly, S.K.; Harvey, S.B. [Amec Foster Wheeler, Toronto, Ontario (Canada)

    2016-06-15

    Critical infrastructure assets such as nuclear power generating stations are potential targets for malevolent acts. Probabilistic methodologies can be applied to evaluate the real-time security risk based upon intelligence and threat levels. By employing this approach, the application of security forces and other protective measures can be optimized. Existing probabilistic safety analysis (PSA) methodologies and tools employed. in the nuclear industry can be adapted to security applications for this purpose. Existing PSA models can also be adapted and enhanced to consider total plant risk, due to nuclear safety risks as well as security risks. By creating a Probabilistic Security Model (PSM), safety and security practitioners can maximize the safety and security of the plant while minimizing the significant costs associated with security upgrades and security forces. (author)

  11. Nuclear at Niagara. 32nd Annual Canadian Nuclear Society conference and 35th CNS/CNA student conference

    International Nuclear Information System (INIS)

    2011-01-01

    The 32nd Annual Canadian Nuclear Society Conference and 35th CNS/CNA Student Conference was held in Niagara Falls, Ontario, Canada on June 5-8, 2011. The theme of the conference, 'Nuclear at Niagara', brought together scientists, engineers, technologists, senior management, government officials, and students interested in all aspects of nuclear science and technology and its applications, including nuclear power generation, fuel production, uranium mining and refining, management of radioactive wastes and used fuel. Other topics include medical and industrial uses of radionuclides, occupational and environmental radiation protection, the science and technology of nuclear fusion, and associated activities in research and development. and applications of energy from the atom. The central objective of this conference was to exchange views on how nuclear science and technology can best serve the needs of humanity, now and in the future. Over 400 delegates from across Canada and other nuclear countries were in attendance.

  12. Annual report of the nuclear physics section of the institute of applied nuclear physics (July 1, 1976 - June 30, 1977)

    International Nuclear Information System (INIS)

    Bechtold, V.; Ottmar, H.

    1977-10-01

    The activities of the Nuclear Physics Section of the Institute of Applied Nuclear Physics from mid 1976 to mid 1977 are surveyed. The research program comprises both contributions to fundamental and applied nuclear research. The activities on the application of nuclear methods mainly concentrate on the measurements of cross sections of neutron-induced nuclear reactions for the fast breeder project, the application of gamma-ray spectrometry to nuclear fuel assay problems, the development of a proton microbeam for elemental analysis, and the production of 123 J for medical application. The study of nuclear reactions induced by α particles, 6 Li ions and fast neutrons, and the measurement of optical hyperfine structure using high-resolution laser spectroscopy form the major part of the fundamental research work. In addition, the operation of the two accelerators of the institute, an isochronous cyclotron and a 3 MV Van de Graaff accelerator, are briefly reviewed. (orig.) [de

  13. Extremity dosimetry in medical applications within Europe: an overview of doses and monitoring practices

    International Nuclear Information System (INIS)

    Donadille, Laurent; Carinou, E.; Ginjaume, M.; Jankowski, J.; Rimpler, A.; Sans Merce, M.; Vanhavere, F.

    2008-01-01

    Full text: Some activities of the EURADOS Working Group 9 (WG9) related to the radiation protection dosimetry of medical staff were funded by the European Commission in the framework of the CONRAD project, Work Package 7. The objective of WG9 was to promote and co-ordinate research activities for the assessment of occupational exposure to staff at workplaces in therapeutic and diagnostic radiology and nuclear medicine. At these workplaces, from the point of view of the individual monitoring for external radiation, the skin of the fingers is generally the limiting organ. Subgroup 1 of WG9 had as main objective the study of the use of extremity dosemeters in medical radiation fields. The wide variety of radiation field characteristics present in medicine together with the difficulties of measuring a local dose which should be representative for the maximum skin dose using one single detector, makes it difficult to perform extremity dosimetry with an accuracy similar to that of whole-body one. A recent intercomparison organised by WG9 showed that some types of dosemeters significantly underestimate or overestimate skin doses. Subgroup 1 carried out a thorough literature review on extremity dosimetry issues. It covered diagnostic and therapeutic nuclear medicine and PET, interventional radiology and cardiology, and brachytherapy. It has notably pointed out the consensus about the requirement of regular extremity dose monitoring for nuclear medicine and PET, and the great difficulty of measuring extremity doses for procedures in interventional radiology and cardiology, activities for which routine extremity dose monitoring has been found to be poor. Furthermore, information on the status of extremity dosimetry in medical applications and associated monitoring practices was gathered from 7 European countries: France, Germany, Greece, Ireland, Poland, Spain and Switzerland. Interpretation of the data was not easy because of the wide range of procedures involved and also

  14. Nuclear radiation application to nanotechnology

    International Nuclear Information System (INIS)

    Chakarvarti, S.K.

    2012-01-01

    Out of the numerous uses and applications of nuclear radiation, in particular heavy ions, the interaction of radiation with materials have culminated into a gamut of fine tools and technologies for taming the synergetic potential of the interaction. One such field of the immense importance is nanotechnology through nuclear radiation via use of ion-crafted polymeric membranes- so called 'Template Synthesis'. This talk will be addressed to the users of membranes - organic (polymeric) in general, formed through irradiation of polymeric foils with heavy and energetic ions followed by chemical processing leading finally to what is known as 'Track Etch Membranes (TEMs)', and present the review of the innovative uses of these membranes from filtration to electro-kinetic based applications and nano-/micro fabrication of devices- the potent aspect of emerging technologies. The emphasis would be on the dependence of useful and novel usages including applications in nano devices' fabrication. A membrane, with its most comprehensive and clear definition, is an intervening phase separating two phases and/or acting as an active or passive barrier to the transport of matter between phases. The very existence of a membrane relies upon the functionality domain of the pores contained therein. The geometrical traits and morphology of the pore ensembles dictate the applications, which any membrane can serve to. There are variety of membranes being developed and used in myriad of applications in diverse fields of science and technology. The range of commercially available membrane materials is quiet diverse and varies widely in terms of composition, and physical structure. The creation of pores, whether through natural self-assembling phenomenon or man-made processes, might itself be an issue of interest but these are the pore-traits which are fundamentally more important, whether the membrane is being used for sieving-one of the ever most important applications the mankind has been

  15. [Standards in Medical Informatics: Fundamentals and Applications].

    Science.gov (United States)

    Suárez-Obando, Fernando; Camacho Sánchez, Jhon

    2013-09-01

    The use of computers in medical practice has enabled novel forms of communication to be developed in health care. The optimization of communication processes is achieved through the use of standards to harmonize the exchange of information and provide a common language for all those involved. This article describes the concept of a standard applied to medical informatics and its importance in the development of various applications, such as computational representation of medical knowledge, disease classification and coding systems, medical literature searches and integration of biological and clinical sciences. Copyright © 2013 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  16. Collective dose estimation in Portuguese population due to medical exams of diagnostic radiology and nuclear medicine; Estimativa da dose coletiva na populacao portuguesa devido a exames medicos de radiologia de diagnostico e de medicina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Teles, Pedro; Vaz, Pedro [Instituto Tecnologico e Nuclear, Sacavem (Portugal). Instituto Superior Tecnico; Sousa, M. Carmen de [Instituto Portugues de Oncologia de Coimbra (Portugal); Paulo, Graciano; Santos, Joana [Escola Superior de Tecnologia da Saude de Coimbra (Portugal); Pascoal, Ana [Kings College Hospital, London (United Kingdom). Kings Health Partners; Cardoso, Gabriela; Santos, Ana isabel [Hospital Garcia de Orta, Almada (Portugal); Lanca, Isabel [Administracao Regional de Saude, Coimbra (Portugal); Matela, Nuno [Universidade de Lisboa (Portugal). Fac. de Ciencias. Instituto de Biofisica e Engenharia Biomedica; Janeiro, Luis [Escola superior de Saude da Cruz Vermelha Portuguesa, Lisboa (Portugal); Sousa, Patrick [Laboratorio de Instrumentacao e Fisica Experimental de Particulas, Lisboa (Portugal); Carvoeiras, Pedro; Parafita, Rui [Medical Consult, SA, Lisboa (Portugal); Simaozinho, Paula [Administracao Regional de Saude, Faro (Portugal)

    2013-11-01

    In order to assess the exposure of the Portuguese population to ionizing radiation due to medical examinations of diagnostic radiology and nuclear medicine, a working group, consisting of 40 institutions, public and private, was created to evaluation the coletive dose in the Portuguese population in 2010. This work was conducted in collaboration with the Dose Datamed European consortium, which aims to assess the exposure of the European population to ionizing radiation due to 20 diagnostic radiology examinations most frequent in Europe (the 'TOP 20') and nuclear medicine examinations. We obtained an average value of collective dose of Almost-Equal-To 1 mSv/caput, which puts Portugal in the category of countries medium to high exposure to Europe. We hope that this work can be a starting point to bridge the persistent lack of studies in the areas referred to in Portugal, and to enable the characterization periodic exposure of the Portuguese population to ionizing radiation in the context of medical applications.

  17. Monitoring nuclear application from A to Z in Jilin province of China

    International Nuclear Information System (INIS)

    Xie Zhongyan

    2001-01-01

    Full text: National and Provincial Regulations for Radioactive Waste Management. Nuclear applications are supervised and regulated on low levels in China, implemented by central government and provincial governments respectively. Central government is in charge of examination and approval for major nuclear applications while provincial governments are in charge of medium and small-scale nuclear applications and implementation of all the daily nuclear applications supervision and storage. Approaches for Managing - Monitoring Nuclear Applications from A to Z In Jilin. Radiation Environment Supervision Institute of Jilin Province (RESDP), on behalf of provincial government, is in charge of nuclear applications which entail submit and enrollment. The nuclear application programs cannot be permitted unless the Environmental Impact Assessment (EIA) is up to the standards. The programs should be monitored by RESUP from beginning to the end. In the process of implementing of the programs, the monitoring organization should sample timely. The government must be kept well-informed about radioactive wastes produced in the programs which, should transferred to the radioactive waste storage. Implemented programs supposed to decommission must get the agreement of RRSTJP through EIA to ensure the safety of radiation environment. Waste Storage, Transportation and Disposal Measures in Jilin Province. There is a modem radioactive waste storeroom in Jilin, which stores the radioactive wastes collected from all over Jilin everyday. The storeroom, which is located in a beautiful mountain place with ecological monitoring system is safety. The storeroom, with necessary facilities, becomes an model engineering for urban waste storerooms of China. Achievements of Whole Coarse Supervision of Nuclear Applications Nuclear applications are kept under efficient supervision all the time so that environmental safety is guaranteed. The amount of radioactive waste decreased by the means of economy

  18. A special designed library for medical imaging applications

    Energy Technology Data Exchange (ETDEWEB)

    Lymberopoulos, D; Kotsopoulos, S; Zoupas, V; Yoldassis, N [Departmeent of Electrical Engineering, University of Patras, Patras 26 110 Greece (Greece); Spyropoulos, C [School of Medicine, Regional University Hospital, University of Patras, Patras 26 110 Greece (Greece)

    1994-12-31

    The present paper deals with a sophisticated and flexible library of medical purpose image processing routines. It contains modules for simple as well as advanced gray or colour image processing. This library offers powerful features for medical image processing and analysis applications, thus providing the physician with a means of analyzing and estimating medical images in order to accomplish their diagnostic procedures. 6 refs, 1 figs.

  19. Physicians confront the apocalypse: the American medical profession and the threat of nuclear war

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, P.

    1985-08-02

    Physicians figured prominently in the resurgence of nuclear weapons activism and cultural awareness that swept the US in the early 1980s. This discussion seeks to place this activism in historical context. It explores the American medical profession's shifting engagement with the issue of nuclear war. Attention is focused on the period 1945 to 1954, with a brief evaluation of the period 1954 to 1963, the years to which the activism of the 1980s may be traced. Radiation studies are reviewed including Hiroshima and Nagasaki survivors. Radiological studies were begun within days of Japan's surrender. The delayed effects of radiation exposure on some 14,000 persons in Hiroshima and Nagasaki include hemorrhage, leukocyte destruction, bone marrow damage, anemia, sterility, and the suppression of menstruation. In contrast, the American medical profession in the late 1940s focused much attention on the atom's potential medical benefits, especially the diagnostic and treatment value of radioisotopes. 90 references.

  20. Physicians confront the apocalypse: the American medical profession and the threat of nuclear war

    International Nuclear Information System (INIS)

    Boyer, P.

    1985-01-01

    Physicians figured prominently in the resurgence of nuclear weapons activism and cultural awareness that swept the US in the early 1980s. This discussion seeks to place this activism in historical context. It explores the American medical profession's shifting engagement with the issue of nuclear war. Attention is focused on the period 1945 to 1954, with a brief evaluation of the period 1954 to 1963, the years to which the activism of the 1980s may be traced. Radiation studies are reviewed including Hiroshima and Nagasaki survivors. Radiological studies were begun within days of Japan's surrender. The delayed effects of radiation exposure on some 14,000 persons in Hiroshima and Nagasaki include hemorrhage, leukocyte destruction, bone marrow damage, anemia, sterility, and the suppression of menstruation. In contrast, the American medical profession in the late 1940s focused much attention on the atom's potential medical benefits, especially the diagnostic and treatment value of radioisotopes. 90 references

  1. Position paper on main areas of nuclear chemistry research and application

    International Nuclear Information System (INIS)

    2001-01-01

    Nuclear chemistry, with its specialized areas of nuclear chemistry, radiochemistry, and radiation chemistry, mainly covers these fields: basic research in nuclear chemistry; actinide chemistry; radioanalysis; nuclear chemistry in the life sciences, geosciences, and cosmic chemistry; radiotracers in technology; nuclear power technology; nuclear waste management; tritium chemistry in fusion technology, and radiation protection and radioecology. In the more than one hundred years of history of this branch of science and technology, which was opened up by the discovery of radioactivity and of the radioelements, pioneering discoveries and developments have been made in many sectors. Far beyond the confines of this area of work, they have achieved overriding importance in applications in many fields of technology and industry and in the life sciences. Research and application in nuclear chemistry continue to be highly relevant to society, ecology, and the economy, and the potential of science and technology in this field in Germany is acknowledged internationally. In the light of this vast area of activity, and against the need to maintain competence in nuclear chemistry for the use of nuclear power, irrespective of the status of this continued use in Germany, nuclear chemistry is indispensable to the solution of future problems. The Nuclear Chemistry Group of the Gesellschaft Deutscher Chemiker therefore uses this position paper to draw attention to the urgent need to keep up and further advance nuclear chemistry applications in a variety of areas of science and technology, also as a public duty of thorough education and research. (orig.) [de

  2. Perspectives of heat transfer enhancement in nuclear reactors toward nanofluids applications

    International Nuclear Information System (INIS)

    Rocha, Marcelo S.; Cabral, Eduardo L.L.; Sabundjian, Gaiane

    2013-01-01

    Nanofluids are colloidal suspensions of nanoparticles in a base fluid with interesting physical properties and large potential for heat transfer enhancement in thermal systems among other applications. There are an increasing number of nanofluids investigations concerning many aspects of synthesis and fabrication technologies, physical properties, and special applications. Results demonstrate that physical properties like high thermal conductivities and high critical heat flux (CHF) of some nanofluids classifies them as potential working fluids for high heat flux transportation in special systems, including thermal management of microelectronic devices (MEMS) and nuclear reactors. Understanding the importance of such investigations for the knowledge development of nuclear engineering a new research is being conducted at the Nuclear Engineering Center (CEN) of the Nuclear and Energy Research Institute (IPEN/CNEN-SP) to analyze the application potentiality of some nanofluids in nuclear systems for heat transfer enhancement under ionizing radiation influence. In this work a revision of theoretical and experimental studies of nanofluids is performed and its potentiality for using in future generations of nuclear reactors is highlighted showing the status of the research at present. (author)

  3. Licensed reactor nuclear safety criteria applicable to DOE reactors

    International Nuclear Information System (INIS)

    1991-04-01

    The Department of Energy (DOE) Order DOE 5480.6, Safety of Department of Energy-Owned Nuclear Reactors, establishes reactor safety requirements to assure that reactors are sited, designed, constructed, modified, operated, maintained, and decommissioned in a manner that adequately protects health and safety and is in accordance with uniform standards, guides, and codes which are consistent with those applied to comparable licensed reactors. This document identifies nuclear safety criteria applied to NRC [Nuclear Regulatory Commission] licensed reactors. The titles of the chapters and sections of USNRC Regulatory Guide 1.70, Standard Format and Content of Safety Analysis Reports for Nuclear Power Plants, Rev. 3, are used as the format for compiling the NRC criteria applied to the various areas of nuclear safety addressed in a safety analysis report for a nuclear reactor. In each section the criteria are compiled in four groups: (1) Code of Federal Regulations, (2) US NRC Regulatory Guides, SRP Branch Technical Positions and Appendices, (3) Codes and Standards, and (4) Supplemental Information. The degree of application of these criteria to a DOE-owned reactor, consistent with their application to comparable licensed reactors, must be determined by the DOE and DOE contractor

  4. Commercial grade item (CGI) dedication of generators for nuclear safety related applications

    International Nuclear Information System (INIS)

    Das, R.K.; Hajos, L.G.

    1993-01-01

    The number of nuclear safety related equipment suppliers and the availability of spare and replacement parts designed specifically for nuclear safety related application are shrinking rapidly. These have made it necessary for utilities to apply commercial grade spare and replacement parts in nuclear safety related applications after implementing proper acceptance and dedication process to verify that such items conform with the requirements of their use in nuclear safety related application. The general guidelines for the commercial grade item (CGI) acceptance and dedication are provided in US Nuclear Regulatory Commission (NRC) Generic Letters and Electric Power Research Institute (EPRI) Report NP-5652, Guideline for the Utilization of Commercial Grade Items in Nuclear Safety Related Applications. This paper presents an application of these generic guidelines for procurement, acceptance, and dedication of a commercial grade generator for use as a standby generator at Salem Generating Station Units 1 and 2. The paper identifies the critical characteristics of the generator which once verified, will provide reasonable assurance that the generator will perform its intended safety function. The paper also delineates the method of verification of the critical characteristics through tests and provide acceptance criteria for the test results. The methodology presented in this paper may be used as specific guidelines for reliable and cost effective procurement and dedication of commercial grade generators for use as standby generators at nuclear power plants

  5. Chiral unitary theory: Application to nuclear problems

    Indian Academy of Sciences (India)

    Chiral unitary theory: Application to nuclear problems ... Physics Department, Nara Women University, Nara, Japan. 5 ... RCNP, Osaka University, Osaka, Japan ...... We acknowledge partial financial support from the DGICYT under contract ...

  6. Current status of medical training for facing chemical, biological and nuclear disasters

    International Nuclear Information System (INIS)

    Guerra Cepena, Eulises; Gell Labannino, Adia; Perez Perez, Aristides

    2013-01-01

    A descriptive, longitudinal and prospective study was conducted in 200 sixth year-medical students from the Faculty 2 of Medical University in Santiago de Cuba during 2011-2012, with the purpose of determining some of deficiencies affecting their performance during chemical, biological or nuclear disasters, for which an unstructured survey and an observation guide were applied. In the series demotivation of some students regarding the topic, poor theoretical knowledge of the topic, the ignorance of ways to access information and the little use of this topic in college scientific events were evidenced, which also involved the little systematization of the content on disasters and affected the objectives of medical training with comprehensive profile

  7. Current status of personnel exposure at nuclear power plants and other medical, industrial and educational facilities in JAPAN

    International Nuclear Information System (INIS)

    Sasaki, Fumiaki

    1991-01-01

    The state of radiation exposure of the workers engaging in radiation works in Japanese nuclear power stations, the factors of the radiation exposure of the workers engaging in radiation works, the countermeasures for reducing exposure in nuclear power stations, the state of radiation exposure of doctors, the workers engaging in radiation works, researchers and others in medical, industrial, research and educational and other facilities in Japan, the factors of their radiation exposure and the countermeasures for reducing the exposure, and the comparison of the exposure in nuclear power stations with that in medical, industrial, research and educational facilities are reported. (K.I.)

  8. Proceedings of the twentieth national conference on solid state nuclear track detectors and their applications: abstracts

    International Nuclear Information System (INIS)

    2017-01-01

    Solid State Nuclear Track Detectors (SSNTDs) - A class of passive detectors, developed by R.L. Fleischer, P.B. Price and R.M. Walker in the early 1960s have found numerous applications in various fields of science and technology. SSNTDs have been recognized as very potential and effective tools in exploring various areas of research. The intrinsic features of SSNTDs like low cost , availability, versatility and their remarkable stability have contributed to applications in a wide range of fields opening up new vistas which were practically unthinkable and unbelievable about a decade or two ago. Apart from the direct applications of far reaching consequences in nuclear physics, other areas as diverse as bio-medical sciences, cosmic rays and space physics, environmental research, geochronology and geophysics, materials sciences, lunar science, meteorites and tektites; microanalysis, mine safety, nuclear technology, uranium prospecting and most recently nano/micro technology etc., have been greatly influenced by SSNTDs. They have a very important role to play in radiation measurement, micro technology and dosimetry and thus are potential enough in spreading awareness about the radiation environment and its impact on the general public and the academic peers. In order to disseminate the knowledge generated in this fast growing field, there is a need to bring material science and radiation community on a common platform and discuss various operational and radiation protection aspects. Papers relevant to INIS are indexed separately

  9. The Swedish radiation protection institute's regulations and general advice on nuclear medicine; issued on April 28, 2000

    International Nuclear Information System (INIS)

    2000-04-01

    These regulations and general advice are applicable to nuclear medicine within human medical care. The regulations are also applicable to activities where radioactive substances are administered to individuals in connection to medical or biomedical research and medical examinations for insurance or legal purposes

  10. Semantic Technologies for Nuclear Knowledge Modelling and Applications

    International Nuclear Information System (INIS)

    Beraha, D.; Gladyshev, M.

    2016-01-01

    Full text: The IAEA has been engaged in working with Member States to preserve and enhance nuclear knowledge, and in supporting wide dissemination of safety related technical and technological information enhancing nuclear safety. The knowledge organization systems (ontologies, taxonomies, thesauri, etc.) provide one of the means to model and structure a given knowledge domain. The significance of knowledge organization systems (KOS) has been greatly enhanced by the evolution of the semantic technologies, enabling machines to “understand” the concepts described in a KOS, and to use them in a variety of applications. Over recent years semantic technologies have emerged as efficient means to improve access to information and knowledge. The Semantic Web Standards play an important role in creating an infrastructure of interoperable data sources based on principles of Linked Data. The status of utilizing semantic technologies in the nuclear domain is shortly reviewed, noting that such technologies are in their early stage of adoption, and considering some aspects which are specific to nuclear knowledge management. Several areas are described where semantic technologies are already deployed, and other areas are indicated where applications based on semantic technologies will have a strong impact on nuclear knowledge management in the near future. (author

  11. Integrated medication management in mHealth applications.

    Science.gov (United States)

    Ebner, Hubert; Modre-Osprian, Robert; Kastner, Peter; Schreier, Günter

    2014-01-01

    Continuous medication monitoring is essential for successful management of heart failure patients. Experiences with the recently established heart failure network HerzMobil Tirol show that medication monitoring limited to heart failure specific drugs could be insufficient, in particular for general practitioners. Additionally, some patients are confused about monitoring only part of their prescribed drugs. Sometimes medication will be changed without informing the responsible physician. As part of the upcoming Austrian electronic health record system ELGA, the eMedication system will collect prescription and dispensing data of drugs and these data will be accessible to authorized healthcare professionals on an inter-institutional level. Therefore, we propose two concepts on integrated medication management in mHealth applications that integrate ELGA eMedication and closed-loop mHealth-based telemonitoring. As a next step, we will implement these concepts and analyze--in a feasibility study--usability and practicability as well as legal aspects with respect to automatic data transfer from the ELGA eMedication service.

  12. An overview of equivalent doses in eye lens of occupational radiation workers in medical, industrial and nuclear areas

    International Nuclear Information System (INIS)

    Lima, A.R.; Silva, F.C.A. da; Hunt, J.G.

    2013-01-01

    Some epidemiological evidences were recently reviewed by the ICRP and it was suggested that, for the eye lens, the absorbed dose threshold for induction of late detriments is about 0.5 Gy. On this basis, on 2011, the ICRP has recommended changes to the occupational dose limit in planned exposure situations, reducing the eye lens dose equivalent limit of 150 mSv to 20 mSv per year, on average, during the period of 5 years, with exposure not exceeding 50 mSv in a single year. Following the ICRP recommendation, the Brazilian Commission of Nuclear Energy (CNEN) adopted immediately the new limit to the eyes lens. This study aimed to show an overview about the doses in eye lens of occupational radiation workers in situations of planned exposures in the medical, industrial and nuclear areas, emphasizing the greatest radiological risks applications. It was observed that there are some limitations, such as example, to use individual monitor calibrated on Hp(3), to assess the equivalent dose in the eye lens. This limitation obstructs some experimental studies and monitoring of the levels of radiation received in the eye lens of radiation workers. Recent studies have showed that the lenses of eyes monitoring of workers, mainly in the planned exposure, must be follow-up. However, such researches were obtained only in medical exposures, mainly in interventional medicine procedures. Studies with planned exposure on nuclear and industrial areas are really needed and will be very important due to the new recommended by ICRP dose limits. (author)

  13. Issues and insights of PRA methodology in nuclear and space applications

    International Nuclear Information System (INIS)

    Hsu, F.

    2005-01-01

    This paper presents some important issues and technical insights on the scope, conceptual framework, and essential elements of nuclear power plant Probabilistic Risk Assessments (PRAs) and that of the PRAs in general applications of the aerospace industry, such as the Space Shuttle PRA being conducted by NASA. Discussions are focused on various lessons learned in nuclear power plant PRA applications and their potential applicability to the PRAs in the aerospace and launch vehicle systems. Based on insights gained from PRA projects for nuclear power plants and from the current Space Shuttle PRA effort, the paper explores the commonalities and the differences between the conduct of the different PRAs and the key issues and risk insights derived from extensive modeling practices in both industries of nuclear and space. (author)

  14. Introduction to nuclear science, second edition

    CERN Document Server

    Bryan, Jeff C.

    2013-01-01

    This book was written to provide students who have limited backgrounds in the physical sciences and math with an accessible textbook on nuclear science. Expanding on the foundation of the bestselling first edition, Introduction to Nuclear Science, Second Edition provides a clear and complete introduction to nuclear chemistry and physics, from basic concepts to nuclear power and medical applications. Incorporating suggestions from professors using this book for their courses, the author has created a new text that is approximately 60 percent larger and more comprehensive and flexible than the first.New to This Edition: Thorough review of nuclear forensics, radiology, gamma cameras, and decay through proton or neutron emission More detailed explanations of the necessary mathematics A chapter on dosimetry of radiation fields Expanded discussion of applications, introduced earlier in the text More in-depth coverage of nuclear reactors, including a new chapter examining more reactor types, their safety systems,...

  15. Nuclear reactor development in China for non-electrical applications

    International Nuclear Information System (INIS)

    Sun Yuliang; Zhong Daxin; Dong Duo; Xu Yuanhui

    1998-01-01

    In parallel to its vigorous program of nuclear power generation, China has attached great importance to the development of nuclear reactors for non-electrical applications. The Institute of Nuclear Energy Technology (INET) in Beijing has been developing technologies of the water-cooled heating reactor and the modular high temperature gas-cooled reactor. In 1989, a 5 MW water cooled test reactor was erected. Currently, an industrial demonstration nuclear heating plant is being projected. Feasibility studies are being made of sea-water desalination using the INET developed nuclear heating reactor as heat source. Also, a 10 MW high temperature gas-cooled test reactor is being constructed at INET in the framework of China's national high-tech program. The paper gives an overview of China's energy market situation. With respect to China's technology development of high temperature gas-cooled reactors and water cooled heating reactors, the paper describes some general requirements on the technical development, reviews the national programs and activities, describes briefly the design and safety features of the reactor concepts, discusses aspects of application potentials. (author)

  16. Multivariate methods in nuclear waste remediation: Needs and applications

    International Nuclear Information System (INIS)

    Pulsipher, B.A.

    1992-05-01

    The United States Department of Energy (DOE) has developed a strategy for nuclear waste remediation and environmental restoration at several major sites across the country. Nuclear and hazardous wastes are found in underground storage tanks, containment drums, soils, and facilities. Due to the many possible contaminants and complexities of sampling and analysis, multivariate methods are directly applicable. However, effective application of multivariate methods will require greater ability to communicate methods and results to a non-statistician community. Moreover, more flexible multivariate methods may be required to accommodate inherent sampling and analysis limitations. This paper outlines multivariate applications in the context of select DOE environmental restoration activities and identifies several perceived needs

  17. Applications of the gas chromatography in the nuclear science and technology

    International Nuclear Information System (INIS)

    Gasco Sanchez, L.

    1972-01-01

    This paper is a review on the applications of the gas chromatography in the nuclear science and technology published up to December 1971. Its contents has been classified under the following heads; I) Radiogaschromatography, II) Isotope separation, III) Preparation of labelled molecules, IV) Nuclear fuel cycle, V) Nuclear reactor technology, VI) Irradiation chemistry, VIl) Separation of me tal compounds in gas phase, VIII) Applications of the gas chromatography carried out at the Junta de Energia Nuclear, Spain. Arapter VIII only includes the investigations carried out from January 1969 to December 1971. Previous investigations in this field has been published elsewhere. (Author)

  18. Superalloy applications in the nuclear field

    International Nuclear Information System (INIS)

    Ramanathan, L.V.; Padilha, A.F.

    1984-01-01

    The process conditions in the areas of nuclear fuel processing, fabrication, utilization, reprocessing and disposal are severe, demanding therefore the use of materials with high temperature mechanical strength and corrosion resistance. A number of refractory metal containing superalloys have found application in the diferrent areas of the nuclear field. The main aspects of the microstructure, strengthening mechanisms and corrosion resistance of 3 superalloys, namely Incoloy 825, Inconel 718 and Hastelloy C have been discussed. The role of the refractory metal elements in influencing the mechanical strength and corrosion resistance of superalloys has been emphasised. (Author) [pt

  19. Medical applications of model-based dynamic thermography

    Science.gov (United States)

    Nowakowski, Antoni; Kaczmarek, Mariusz; Ruminski, Jacek; Hryciuk, Marcin; Renkielska, Alicja; Grudzinski, Jacek; Siebert, Janusz; Jagielak, Dariusz; Rogowski, Jan; Roszak, Krzysztof; Stojek, Wojciech

    2001-03-01

    The proposal to use active thermography in medical diagnostics is promising in some applications concerning investigation of directly accessible parts of the human body. The combination of dynamic thermograms with thermal models of investigated structures gives attractive possibility to make internal structure reconstruction basing on different thermal properties of biological tissues. Measurements of temperature distribution synchronized with external light excitation allow registration of dynamic changes of local temperature dependent on heat exchange conditions. Preliminary results of active thermography applications in medicine are discussed. For skin and under- skin tissues an equivalent thermal model may be determined. For the assumed model its effective parameters may be reconstructed basing on the results of transient thermal processes. For known thermal diffusivity and conductivity of specific tissues the local thickness of a two or three layer structure may be calculated. Results of some medical cases as well as reference data of in vivo study on animals are presented. The method was also applied to evaluate the state of the human heart during the open chest cardio-surgical interventions. Reference studies of evoked heart infarct in pigs are referred, too. We see the proposed new in medical applications technique as a promising diagnostic tool. It is a fully non-invasive, clean, handy, fast and affordable method giving not only qualitative view of investigated surfaces but also an objective quantitative measurement result, accurate enough for many applications including fast screening of affected tissues.

  20. Applications of the United States Nuclear Regulatory Commission nuclear plant analyzer

    International Nuclear Information System (INIS)

    Laats, E.T.

    1984-01-01

    The Nuclear Plant Analyzer (NPA) is being developed as the US NRC's state of the art safety analysis and engineering tool to address key nuclear plant safety issues. The NPA integrates the NRC's computerized reactor behavior codes such as RELAP5 and TRAC-BWR, both of which are well-developed computer graphics programs and large repositories of reactor design and experimental data. Utilizing these complex reactor behavior codes, as well as the experiment data repositories, enables simulation applications of the NPA that are generally not possible with more simplistic, less mechanistic reactor behavior codes used in training simulators or with simulators that are limited to displaying calculated data only. This paper describes four applications of the NPA simulation capabilities in assisting reactor safety analyses. Two analyses evaluated reactor operating procedures, during off-normal operation, for a pressurized water reactor (PWR) and a boiling water reactor (BWR), respectively. The third analysis was performed in support of a reactor safety experiment conducted in the Semiscale facility. The final application demonstrated the usefulness of atmospheric dispersion computer codes for site emergency planning purposes. An overview of the NPA simulation capabilities and how it supported these analyses are the topics of this paper

  1. Nuclear at Niagara. 32nd Annual Canadian Nuclear Society conference and 35th CNS/CNA student conference

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    The 32nd Annual Canadian Nuclear Society Conference and 35th CNS/CNA Student Conference was held in Niagara Falls, Ontario, Canada on June 5-8, 2011. The theme of the conference, 'Nuclear at Niagara', brought together scientists, engineers, technologists, senior management, government officials, and students interested in all aspects of nuclear science and technology and its applications, including nuclear power generation, fuel production, uranium mining and refining, management of radioactive wastes and used fuel. Other topics include medical and industrial uses of radionuclides, occupational and environmental radiation protection, the science and technology of nuclear fusion, and associated activities in research and development. and applications of energy from the atom. The central objective of this conference was to exchange views on how nuclear science and technology can best serve the needs of humanity, now and in the future. Over 400 delegates from across Canada and other nuclear countries were in attendance.

  2. Proceedings of the national conference on nuclear applications, hazards and safety measures

    International Nuclear Information System (INIS)

    2012-01-01

    The conference focuses on nuclear power plants in India, particle accelerators, environmental radiation and detection, nuclear accidents, nuclear disaster management, nuclear energy applications, nuclear medicine, social and economic impact of nuclear energy, bioleaching of radioactive ores, high energy particles physics etc. Papers relevant to INIS are indexed separately

  3. Nuclear radiation applications in hydrological investigations

    International Nuclear Information System (INIS)

    Rao, S.M.

    1978-01-01

    The applications of radiation sources for the determination of water and soil properties in hydrological investigations are many and varied. These include snow gauging, soil moisture and density determinations, measurement of suspended sediment concentrations in natural streams and nuclear well logging for groundwater exploitation. Besides the above, many radiation physics aspects play an important role in the development of radiotracer techniques, particularly in sediment transport studies. The article reviews the above applications with reference to their limitations and advantages. (author)

  4. Artificial intelligence and other innovative computer applications in the nuclear industry

    International Nuclear Information System (INIS)

    Majumdar, M.C.; Majumdar, D.; Sackett, J.I.

    1987-01-01

    This book reviews the applications of artificial intelligence and computers in the nuclear industry and chemical plants. The topics discussed are: Robots applications and reliability in maintenance of nuclear power plants; Advanced information technology and expert systems; Knowledge base alarm systems; Emergency planning and response of accidents; and reactor safety assessment

  5. Application of electrostatic accelerators for nuclear physics studies

    International Nuclear Information System (INIS)

    Kuz'minov, B.D.; Romanov, V.A.; Usachev, L.N.

    1983-01-01

    The data are reviewed on dynamics of the development of single- and two-stage electrostatic accelerators (ESA) used as a tool or nuclear physics studies in the range of low and medium energies. The ESA wide possibilities are shown on examples of the most specific studies in the field of nuclear physics, work on measurement of nuclear constants to safisfy the nuclear power needs and applied studies on nuclear microanalysis. It is concluded that the contribution of studies performed using ESA to the development of nowadays concepts on nuclear structure and nuclear reaction kinetics is immeasurably higher than of any other nuclear-physics tool. ESA turned out to be also exceptionally useful for solving applied problems and investigations in different fields of knowledge. Carrying over the technique of investigations using ESA and nuclear physics concepts to atomic and molecular problems has found its application in optical spectroscopy in Lamb shift investigations in strongly ionized heavy ions, in various experiments on atom-atom and atom-molecular scattering, in stUdies of collisions and charge exchange. ESA contributed to the progress in such scientific fields as astraphysics, nuclear physics, solid-state physics, material science and biophysics

  6. China general nuclear power corporation--The recent research and application of the modular technology in nuclear power engineering

    International Nuclear Information System (INIS)

    Lu Qinwu

    2014-01-01

    Modular design and construction is one of the distinctive features of the 3"r"d generation nuclear power technology. In order to promote the technological innovations in nuclear power engineering design and construction and develop the self-owned modular technology, China General Nuclear Power Corporation (CGN) has carried out the R and D and application of the modular technology based on the CPR1000-type nuclear power plants, and has made the national-level achievements in the establishment of modular design technology system, development of 3D modular design system and application of modular construction of containment steel liner in the demonstration projects. (author)

  7. The CEA nuclear microprobe. Description, possibilities, application examples

    International Nuclear Information System (INIS)

    Engelmann, C.; Bardy, J.

    1986-05-01

    The nuclear microprobe installed on one of the beam lines of a 4 MV Van de Graaff located in the Research Center of Bruyeres-le-Chatel is described. The various possibilities, particularly the imaging system, and the performances of the instrument are exposed. Two typical application examples concerning, the first, the determination of the deuterium and tritium in glass microballons, the second, the detection and the localization of carbon and oxygen in the superficial layer of lithium hydride pellets, are given. Preliminary results of some other application examples are also presented. The advantages of the nuclear microprobe over the other ponctual analysis techniques are emphasized. 7 refs, 19 figs [fr

  8. Nuclear applications for health: Keeping pace with progress

    International Nuclear Information System (INIS)

    Cuaron, A.

    1994-01-01

    Over the past 100 years, the X-ray has become as familiar to most people as the dentist's chair. As we move into the next century, greater attention is being placed upon less known but more far-reaching radiation technologies and nuclear applications that today's physicians are able to use for earlier diagnosis and treatment of serious illness. Many of these tools stand at the core of the IARA's own programmes in the filed of human health. This article, in question-and-answer format, explains the differences between the various types of nuclear applications for human health, and looks at the evolution of, and strategies for, the IAEA's related activities

  9. Regulatory aspect of nuclear application and radioactive waste management in Indonesia

    International Nuclear Information System (INIS)

    Mohammad Ridwan

    2002-01-01

    Experience over more than 56 years in the field of nuclear application has shown that such technology is generally safely used. Nevertheless, there have been instances, when safety systems have been circumvented and serious radiological accident have occurred, and have resulted with fatal consequences. During the last 56 years, such radiological accidents, in total, caused 101 person dead, and it is very interesting to note that this figure is more than double the dead caused by nuclear accident as the result of nuclear fuel failure, such as in nuclear power plant, in submarine or in enrichment plant, which has only 47 fatalities. The article 8 of the convention on nuclear safety, stipulates inter alia that the contracting party shall established a regulatory body separated from the promotional or the executing organization of nuclear energy. Indonesia is not operating any nuclear power. At present, it is only operating three research reactors, and some laboratories connected with this reactor, such as one nuclear fuel fabrication plant for research reactors, one experimental fuel fabrication plant for nuclear power, one isotope production facility, radiometalurgy laboratory and some other research facilities. However, in anticipation of the expansion of nuclear programme in Indonesia, and looking into the various accident in the nuclear application, the Indonesian Government has, since April 10, 1997, enacted the new act, Act No. 10/1997 on Nuclear Energy. The new Act addresses several key requirements for the successful conduct of Indonesia nuclear programme, including the establishment of both the Executing Body responsible for nuclear research and development, mining and processing nuclear fuels and materials, production of radio-isotopes and management of radioactive wastes and the independent Nuclear Energy Control Board, which has the power to regulate, to license and to inspect all facets of any activity utilizing nuclear energy. It also sets out the basic

  10. Application of condition based maintenance to nuclear power plants

    International Nuclear Information System (INIS)

    Sonoda, Yukio; Nakano, Tomohito; Shimizu, Shunichi; Iida, Jun; Atomura, Masakazu; Abe, Masahiro

    2002-01-01

    Device Karte management system which supports application of condition based maintenance to nuclear power plants has been developed. The purpose of this system is to support maintenance personnel in device inspection scheduling based on operating condition monitoring and maintenance histories. There are four functions: field database, degradation estimation, inspection time decision and maintenance planning. The authors have been applying this system to dozens of devices of Onagawa Nuclear Power Station Unit No. 1 for one year. This paper represents the system concept and its application experiences. (author)

  11. Potential of low-temperature nuclear heat applications

    International Nuclear Information System (INIS)

    1986-12-01

    At present, more than one third of the fossil fuel currently used is being consumed to produce space heating and to meet industrial needs in many countries of the world. Imported oil still represents a large portion of this fossil fuel and despite its present relatively low price future market evolutions with consequent upward cost revisions cannot be excluded. Thus the displacement of the fossil fuel by cheaper low-temperature heat produced in nuclear power plants is a matter which deserves careful consideration. Technico-economic studies in many countries have shown that the use of nuclear heat is fully competitive with most of fossil-fuelled plants, the higher investment costs being offset by lower production cost. Another point in favour of heat generation by nuclear source is its indisputable advantage in terms of benefits to the environment. The IAEA activity plans for 1985-86 concentrate on information exchange with specific emphasis on the design criteria, operating experience, safety requirements and specifications of heat-only reactors, co-generation plants and existing power plants backfitted for additional heat applications. The information gained up to 1985 was discussed during the Advisory Group Meeting on the Potential of Low-Temperature Nuclear Heat Applications held in the Federal Institute for Reactor Research, Wuerenlingen, Switzerland in September 1985 and, is included in the present Technical Document

  12. Economic Analysis of Nuclear Energy

    International Nuclear Information System (INIS)

    Lee, Man Ki; Moon, K. H.; Kim, S. S.; Lim, C. Y.; Song, K. D.; Lee, H. M.; Oh, K. B.

    2003-12-01

    This study consists of various issues as follows; electricity price regulation in the liberalized electricity market, establishment of carbon emission limit in national electricity sector, the role of nuclear power as an future energy supply option, the future prospect of CO2 capture and sequestration and current research status of that area in Korea, and Preliminary economic feasibility study of MIP(Medical Isotopes Producer). In the price regulation in the liberalized electricity market, the characteristic of liberalized electricity market in terms of regulation was discussed. The current status and future projection of GHG emission in Korean electricity sector was also investigated. After that, how to set the GHG emission limit in the national electricity sector was discussed. The characteristic of nuclear technology and the research in progress were summarized with the suggestion of the possible new application of nuclear power. The current status and future prospect of the CO2 capture and sequestration research was introduced and current research status of that area in Korea was investigated. Preliminary economic feasibility study of MIP(Medical Isotopes Producer), using liquid nuclear fuel to produce medical isotopes of Mo-99 and Sr-89, was performed

  13. Nuclear Medicine in Turkey

    International Nuclear Information System (INIS)

    Durak, H.

    2001-01-01

    Nuclear Medicine is a medical specialty that uses radionuclides for the diagnosis and treatment of diseases and it is one of the most important peaceful applications of nuclear sciences. Nuclear Medicine has a short history both in Turkey and in the world. The first use of I-131 for the treatment of thyrotoxicosis in Turkey was in 1958 at the Istanbul University Cerrahpasa Medical School. In 1962, Radiobiological Institute in Ankara University Medical School was established equipped with well-type counters, radiometers, scalers, external counters and a rectilinear scanner. In 1965, multi-probe external detection systems, color dot scanners and in 1967, anger scintillation camera had arrived. In 1962, wet lab procedures and organ scanning, in 1965 color dot scanning, dynamic studies (blood flow - renograms) and in 1967 analogue scintillation camera and dynamic camera studies have started. In 1974, nuclear medicine was established as independent medical specialty. Nuclear medicine departments have started to get established in 1978. In 1974, The Turkish Society of Nuclear Medicine (TSNM) was established with 10 members. The first president of TSNM was Prof. Dr. Yavuz Renda. Now, in the year 2000, TSNM has 349 members. Turkish Society of Nuclear Medicine is a member of European Association of Nuclear Medicine (EANM), World Federation of Nuclear Medicine and Biology (WFNMB) and WFNMB Asia-Oceania. Since 1974, TSNM has organized 13 national Nuclear Medicine congresses, 4 international Nuclear Oncology congresses and 13 nuclear medicine symposiums. In 1-5 October 2000, 'The VII th Asia and Oceania Congress of Nuclear Medicine and Biology' was held in Istanbul, Turkey. Since 1992, Turkish Journal of Nuclear Medicine is published quarterly and it is the official publication of TSNM. There are a total of 112 Nuclear Medicine centers in Turkey. There are 146 gamma cameras. (52 Siemens, 35 GE, 16 Elscint, 14 Toshiba, 10 Sopha, 12 MIE, 8 Philips, 9 Others) Two cyclotrons are

  14. Applications of computational tools in biosciences and medical engineering

    CERN Document Server

    Altenbach, Holm

    2015-01-01

     This book presents the latest developments and applications of computational tools related to the biosciences and medical engineering. It also reports the findings of different multi-disciplinary research projects, for example, from the areas of scaffolds and synthetic bones, implants and medical devices, and medical materials. It is also shown that the application of computational tools often requires mathematical and experimental methods. Computational tools such as the finite element methods, computer-aided design and optimization as well as visualization techniques such as computed axial tomography open up completely new research fields that combine the fields of engineering and bio/medical. Nevertheless, there are still hurdles since both directions are based on quite different ways of education. Often even the “language” can vary from discipline to discipline.

  15. Pre-Medical Preparation in Microbiology among Applicants and Matriculants in Osteopathic Medical School in the United States.

    Science.gov (United States)

    Ramos, Raddy L; Guercio, Erik; Martinez, Luis R

    2017-01-01

    It is recognized that medical school curricula contain significant microbiology-related content as part of the training of future physicians who will be responsible stewards of antimicrobials. Surprisingly, osteopathic and allopathic medical schools do not require pre-medical microbiology coursework, and the extent to which medical students have completed microbiology coursework remains poorly understood. In this report, we show that fewer than 3% of applicants and matriculants to osteopathic medical school (OMS) have completed an undergraduate major or minor in microbiology, and fewer than 17% of applicants and matriculants to OMS have completed one or more microbiology-related courses. These data demonstrate limited pre-medical microbiology-related knowledge among osteopathic medical students, which may be associated with an increase in perceived stress when learning this content or during clinical rotations as well as a potential lack of interest in pursuing a career in infectious diseases.

  16. Thermosyphon evaporator for nuclear waste management application

    Energy Technology Data Exchange (ETDEWEB)

    Menon, Rajani; Singh, A K; Rana, D S [Waste Management Projects Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    Nuclear plant equipment are associated with radioactive material which needs to be safely contained under all conditions of operation. Because of large radioactivity associated with the operations of nuclear waste management plants, the equipment are not accessible to human intervention. Hence, the design of the equipment needs to incorporate features for high reliability and safety so as to avoid unnecessary outage. As far as possible the equipment must be maintenance free. Wherever maintenance is inevitable, it has to be designed to be carried out without exposure of personnel to radiation, preventing spread of radiation or contamination. This paper outlines the design features of a thermosyphon evaporator for nuclear application. (author). 2 figs., 1 tab.

  17. Functionalized Nanodiamonds for Biological and Medical Applications.

    Science.gov (United States)

    Lai, Lin; Barnard, Amanda S

    2015-02-01

    Nanodiamond is a promising material for biological and medical applications, owning to its relatively inexpensive and large-scale synthesis, unique structure, and superior optical properties. However, most biomedical applications, such as drug delivery and bio-imaging, are dependent upon the precise control of the surfaces, and can be significantly affected by the type, distribution and stability of chemical funtionalisations of the nanodiamond surface. In this paper, recent studies on nanodiamonds and their biomedical applications by conjugating with different chemicals are reviewed, while highlighting the critical importance of surface chemical states for various applications.

  18. Advances in Nuclear Power Process Heat Applications

    International Nuclear Information System (INIS)

    2012-05-01

    Following an IAEA coordinated research project, this publication compiles the findings of research and development activities related to practical nuclear process heat applications. An overview of current progress on high temperature gas cooled reactors coupling schemes for different process heat applications, such as hydrogen production and desalination is included. The associated safety aspects are also highlighted. The summary report documents the results and conclusions of the project.

  19. Multilevel Modeling and Policy Development: Guidelines and Applications to Medical Travel

    Science.gov (United States)

    Garcia-Garzon, Eduardo; Zhukovsky, Peter; Haller, Elisa; Plakolm, Sara; Fink, David; Petrova, Dafina; Mahalingam, Vaishali; Menezes, Igor G.; Ruggeri, Kai

    2016-01-01

    Medical travel has expanded rapidly in recent years, resulting in new markets and increased access to medical care. Whereas several studies investigated the motives of individuals seeking healthcare abroad, the conventional analytical approach is limited by substantial caveats. Classical techniques as found in the literature cannot provide sufficient insight due to the nested nature of data generated. The application of adequate analytical techniques, specifically multilevel modeling, is scarce to non-existent in the context of medical travel. This study introduces the guidelines for application of multilevel techniques in public health research by presenting an application of multilevel modeling in analyzing the decision-making patterns of potential medical travelers. Benefits and potential limitations are discussed. PMID:27252672

  20. Multilevel Modeling and Policy Development: Guidelines and Applications to Medical Travel.

    Science.gov (United States)

    Garcia-Garzon, Eduardo; Zhukovsky, Peter; Haller, Elisa; Plakolm, Sara; Fink, David; Petrova, Dafina; Mahalingam, Vaishali; Menezes, Igor G; Ruggeri, Kai

    2016-01-01

    Medical travel has expanded rapidly in recent years, resulting in new markets and increased access to medical care. Whereas several studies investigated the motives of individuals seeking healthcare abroad, the conventional analytical approach is limited by substantial caveats. Classical techniques as found in the literature cannot provide sufficient insight due to the nested nature of data generated. The application of adequate analytical techniques, specifically multilevel modeling, is scarce to non-existent in the context of medical travel. This study introduces the guidelines for application of multilevel techniques in public health research by presenting an application of multilevel modeling in analyzing the decision-making patterns of potential medical travelers. Benefits and potential limitations are discussed.