WorldWideScience

Sample records for nuclear matter symmetry

  1. Nuclear symmetry energy and stability of matter in neutron stars

    International Nuclear Information System (INIS)

    Kubis, Sebastian

    2007-01-01

    It is shown that the nuclear symmetry energy is the key quantity in the stability consideration in neutron star matter. The symmetry energy controls the position of crust-core transition and also may lead to new effects in the inner core of neutron star

  2. The symmetry energy in nuclei and in nuclear matter

    NARCIS (Netherlands)

    Van Isacker, P.; Dieperink, A. E. L.

    2006-01-01

    We discuss to what extent information on ground-state properties of finite nuclei (energies and radii) can be used to obtain constraints on the symmetry energy in nuclear matter and its dependence on the density. The starting point is a generalized Weizsacker formula for ground-state energies. In

  3. The symmetry energy in nuclei and in nuclear matter

    NARCIS (Netherlands)

    Dieperink, A. E. L.; Van Isacker, P.

    We discuss to what extent information on ground-state properties of finite nuclei ( energies and radii) can be used to obtain constraints on the symmetry energy in nuclear matter and its dependence on the density. The starting point is a generalized Weizsacker formula for ground-state energies. In

  4. Pure Neutron Matter Constraints and Nuclear Symmetry Energy

    International Nuclear Information System (INIS)

    Fattoyev, F J; Newton, W G; Xu, Jun; Li, Bao-An

    2013-01-01

    In this review, we will discuss the results of our recent work [1] to study the general optimization of the pure isovector parameters of the popular relativistic mean-field (RMF) and Skyrme-Hartree-Fock (SHF) nuclear energy-density functionals (EDFs), using constraints on the pure neutron matter (PNM) equation of state (EoS) from recent ab initio calculations. By using RMF and SHF parameterizations that give equivalent predictions for ground-state properties of doubly magic nuclei and properties of symmetric nuclear matter (SNM) and PNM, we found that such optimization leads to broadly consistent symmetry energy J and its slope parameter L at saturation density within a tight range of α(J) sym , (b) the symmetry energy at supra-saturation densities, and (c) the radius of neutron stars.

  5. Charge symmetry breaking nuclear forces and the properties of nuclear matter

    International Nuclear Information System (INIS)

    Haensel, P.

    1977-01-01

    The charge symmetry breaking (CSB) component of the nuclear forces yields the charge asymmetric term Esub(a)(N-Z)/A in the nuclear binding energy of nuclear matter. Calculation performed with several models of the CSB nuclear forces, and accounting for the strong short-range two-body correlations, gives Esub(a) approximately -0.2 MeV at the normal nuclear density. The charge asymmetry of the effective nucleon-nucleon interaction is determined primarily by the CSB nuclear forces at the neutron excess, observed in finite nuclei. The exclusion principle and dispersion (self-consistency) effects of the nuclear medium decrease this charge asymmetry. (author)

  6. Empirical information on nuclear matter fourth-order symmetry energy from an extended nuclear mass formula

    Directory of Open Access Journals (Sweden)

    Rui Wang

    2017-10-01

    Full Text Available We establish a relation between the equation of state of nuclear matter and the fourth-order symmetry energy asym,4(A of finite nuclei in a semi-empirical nuclear mass formula by self-consistently considering the bulk, surface and Coulomb contributions to the nuclear mass. Such a relation allows us to extract information on nuclear matter fourth-order symmetry energy Esym,4(ρ0 at normal nuclear density ρ0 from analyzing nuclear mass data. Based on the recent precise extraction of asym,4(A via the double difference of the “experimental” symmetry energy extracted from nuclear masses, for the first time, we estimate a value of Esym,4(ρ0=20.0±4.6 MeV. Such a value of Esym,4(ρ0 is significantly larger than the predictions from mean-field models and thus suggests the importance of considering the effects of beyond the mean-field approximation in nuclear matter calculations.

  7. Quark condensates in nuclear matter in the global color symmetry model of QCD

    International Nuclear Information System (INIS)

    Liu Yuxin; Gao Dongfeng; Guo Hua

    2003-01-01

    With the global color symmetry model being extended to finite chemical potential, we study the density dependence of the local and nonlocal scalar quark condensates in nuclear matter. The calculated results indicate that the quark condensates increase smoothly with the increasing of nuclear matter density before the critical value (about 12ρ 0 ) is reached. It also manifests that the chiral symmetry is restored suddenly as the density of nuclear matter reaches its critical value. Meanwhile, the nonlocal quark condensate in nuclear matter changes nonmonotonously against the space-time distance among the quarks

  8. Analytical relations between nuclear symmetry energy and single-nucleon potentials in isospin asymmetric nuclear matter

    International Nuclear Information System (INIS)

    Xu Chang; Li Baoan; Chen Liewen; Ko, Che Ming

    2011-01-01

    Using the Hugenholtz-Van Hove theorem, we derive general expressions for the quadratic and quartic symmetry energies in terms of the isoscalar and isovector parts of single-nucleon potentials in isospin asymmetric nuclear matter. These expressions are useful for gaining deeper insights into the microscopic origins of the uncertainties in our knowledge on nuclear symmetry energies especially at supra-saturation densities. As examples, the formalism is applied to two model single-nucleon potentials that are widely used in transport model simulations of heavy-ion reactions.

  9. Chiral symmetry, scalar field and confinement: from nucleon structure to nuclear matter

    International Nuclear Information System (INIS)

    Chanfray, Guy; Ericson, Magda

    2010-01-01

    We discuss the relevance of the scalar modes appearing in chiral theories with spontaneous symmetry breaking such as the NJL model for nuclear matter studies. We show that it depends on the relative role of chiral symmetry breaking and confinement in the nucleon mass origin. It is only in the case of a mixed origin that nuclear matter can be stable and reach saturation. We describe models of nucleon structure where this balance is achieved. We show how chiral constarints and confinement modify the QCD sum rules for the mass evolution in nuclear matter.

  10. Chiral symmetry and nuclear matter equation of state

    Indian Academy of Sciences (India)

    In other words, we want to probe if, in the context of a two-body force model, the empirical ... action occurs by the surrounding nucleons through Pauli blocking and the nuclear mean field. Nuclear ... sigma and delta have been considered.

  11. Correlations between the nuclear matter symmetry energy, its slope, and curvature

    International Nuclear Information System (INIS)

    Santos, B M; Delfino, A; Dutra, M; Lourenço, O

    2015-01-01

    By using point-coupling versions of finite range nuclear relativistic mean field models containing cubic and quartic self interactionsin the scalar field σ, a nonrelativistic limit is achieved. This approach allows for an analytical expression for the symmetry energy (J) as a function of its slope (L) in a unified form, namely, L = 3J + f(m*, ρ o , B o , K o ), where the quantities m*, p o , B o and K o are bulk parameters at the nuclear matter saturation density ρ o . This result establishes a linear correlation between L and J which is reinforced by exact relativistic calculations we have performed. An analogous analytical correlation can also be found for J, L and the symmetry energy curvature (K sym ). Based on these results, we propose a graphic constraint in L × J plane which finite range models should satisfy. (paper)

  12. Combining the modified Skyrme-like model and the local density approximation to determine the symmetry energy of nuclear matter

    Science.gov (United States)

    Liu, Jian; Ren, Zhongzhou; Xu, Chang

    2018-07-01

    Combining the modified Skyrme-like model and the local density approximation model, the slope parameter L of symmetry energy is extracted from the properties of finite nuclei with an improved iterative method. The calculations of the iterative method are performed within the framework of the spherical symmetry. By choosing 200 neutron rich nuclei on 25 isotopic chains as candidates, the slope parameter is constrained to be 50 MeV nuclear matter can be obtained together.

  13. Quantum nuclear pasta and nuclear symmetry energy

    Science.gov (United States)

    Fattoyev, F. J.; Horowitz, C. J.; Schuetrumpf, B.

    2017-05-01

    Complex and exotic nuclear geometries, collectively referred to as "nuclear pasta," are expected to appear naturally in dense nuclear matter found in the crusts of neutron stars and supernovae environments. The pasta geometries depend on the average baryon density, proton fraction, and temperature and are critically important in the determination of many transport properties of matter in supernovae and the crusts of neutron stars. Using a set of self-consistent microscopic nuclear energy density functionals, we present the first results of large scale quantum simulations of pasta phases at baryon densities 0.03 ≤ρ ≤0.10 fm-3 , proton fractions 0.05 ≤Yp≤0.40 , and zero temperature. The full quantum simulations, in particular, allow us to thoroughly investigate the role and impact of the nuclear symmetry energy on pasta configurations. We use the Sky3D code that solves the Skyrme Hartree-Fock equations on a three-dimensional Cartesian grid. For the nuclear interaction we use the state-of-the-art UNEDF1 parametrization, which was introduced to study largely deformed nuclei, hence is suitable for studies of the nuclear pasta. Density dependence of the nuclear symmetry energy is simulated by tuning two purely isovector observables that are insensitive to the current available experimental data. We find that a minimum total number of nucleons A =2000 is necessary to prevent the results from containing spurious shell effects and to minimize finite size effects. We find that a variety of nuclear pasta geometries are present in the neutron star crust, and the result strongly depends on the nuclear symmetry energy. The impact of the nuclear symmetry energy is less pronounced as the proton fractions increase. Quantum nuclear pasta calculations at T =0 MeV are shown to get easily trapped in metastable states, and possible remedies to avoid metastable solutions are discussed.

  14. Neutron matter, symmetry energy and neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Stefano, Gandolfi [Los Alamos National Laboratory (LANL); Steiner, Andrew W [ORNL

    2016-01-01

    Recent progress in quantum Monte Carlo with modern nucleon-nucleon interactions have enabled the successful description of properties of light nuclei and neutron-rich matter. Of particular interest is the nuclear symmetry energy, the energy cost of creating an isospin asymmetry, and its connection to the structure of neutron stars. Combining these advances with recent observations of neutron star masses and radii gives insight into the equation of state of neutron-rich matter near and above the saturation density. In particular, neutron star radius measurements constrain the derivative of the symmetry energy.

  15. Dark matter and global symmetries

    Directory of Open Access Journals (Sweden)

    Yann Mambrini

    2016-09-01

    Full Text Available General considerations in general relativity and quantum mechanics are known to potentially rule out continuous global symmetries in the context of any consistent theory of quantum gravity. Assuming the validity of such considerations, we derive stringent bounds from gamma-ray, X-ray, cosmic-ray, neutrino, and CMB data on models that invoke global symmetries to stabilize the dark matter particle. We compute up-to-date, robust model-independent limits on the dark matter lifetime for a variety of Planck-scale suppressed dimension-five effective operators. We then specialize our analysis and apply our bounds to specific models including the Two-Higgs-Doublet, Left–Right, Singlet Fermionic, Zee–Babu, 3-3-1 and Radiative See-Saw models. Assuming that (i global symmetries are broken at the Planck scale, that (ii the non-renormalizable operators mediating dark matter decay have O(1 couplings, that (iii the dark matter is a singlet field, and that (iv the dark matter density distribution is well described by a NFW profile, we are able to rule out fermionic, vector, and scalar dark matter candidates across a broad mass range (keV–TeV, including the WIMP regime.

  16. Symmetry energy in nuclear surface

    International Nuclear Information System (INIS)

    Danielewicz, P.; Lee, Jenny

    2009-01-01

    Interplay between the dependence of symmetry energy on density and the variation of nucleonic densities across nuclear surface is discussed. That interplay gives rise to the mass dependence of the symmetry coefficient in an energy formula. Charge symmetry of the nuclear interactions allows to introduce isoscalar and isovector densities that are approximately independent of the magnitude of neutron-proton asymmetry. (author)

  17. Symmetries in nuclear structure

    CERN Document Server

    Allaart, K; Dieperink, A

    1983-01-01

    The 1982 summer school on nuclear physics, organized by the Nuclear Physics Division of the Netherlands' Physical Society, was the fifth in a series that started in 1963. The number of students attending has always been about one hundred, coming from about thirty countries. The theme of this year's school was symmetry in nuclear physics. This book covers the material presented by the enthusi­ astic speakers, who were invited to lecture on this subject. We think they have succeeded in presenting us with clear and thorough introductory talks at graduate or higher level. The time schedule of the school and the location allowed the participants to make many informal contacts during many social activities, ranging from billiards to surf board sailing. We hope and expect that the combination of a relaxed atmosphere during part of the time and hard work during most of the time, has furthered the interest in, and understanding of, nuclear physics. The organization of the summer school was made possible by substantia...

  18. Probing the density content of the nuclear symmetry energy

    Indian Academy of Sciences (India)

    Abstract. The nature of equation of state for the neutron star matter is crucially governed by the density dependence of the nuclear symmetry energy. We attempt to probe the behaviour of the nuclear symmetry energy around the saturation density by exploiting the empirical values for volume and surface symmetry energy ...

  19. Dark matter reflection of particle symmetry

    Science.gov (United States)

    Khlopov, Maxim Yu.

    2017-05-01

    In the context of the relationship between physics of cosmological dark matter and symmetry of elementary particles, a wide list of dark matter candidates is possible. New symmetries provide stability of different new particles and their combination can lead to a multicomponent dark matter. The pattern of symmetry breaking involves phase transitions in the very early Universe, extending the list of candidates by topological defects and even primordial nonlinear structures.

  20. Nuclear Symmetry Energy with QCD Sum Rule

    International Nuclear Information System (INIS)

    Jeong, K.S.; Lee, S.H.

    2013-01-01

    We calculate the nucleon self-energies in an isospin asymmetric nuclear matter using QCD sum rule. Taking the difference of these for the neutron and proton enables us to express an important part of the nuclear symmetry energy in terms of local operators. Calculating the operator product expansion up to mass dimension six operators, we find that the main contribution to the difference comes from the iso-vector scalar and vector operators, which is reminiscent to the case of relativistic mean field type theories where mesons with aforementioned quantum numbers produce the difference and provide the dominant mechanism for nuclear symmetry energy. (author)

  1. Scale-chiral symmetry, ω meson, and dense baryonic matter

    Science.gov (United States)

    Ma, Yong-Liang; Rho, Mannque

    2018-05-01

    It is shown that explicitly broken scale symmetry is essential for dense skyrmion matter in hidden local symmetry theory. Consistency with the vector manifestation fixed point for the hidden local symmetry of the lowest-lying vector mesons and the dilaton limit fixed point for scale symmetry in dense matter is found to require that the anomalous dimension (|γG2| ) of the gluon field strength tensor squared (G2 ) that represents the quantum trace anomaly should be 1.0 ≲|γG2|≲3.5 . The magnitude of |γG2| estimated here will be useful for studying hadron and nuclear physics based on the scale-chiral effective theory. More significantly, that the dilaton limit fixed point can be arrived at with γG2≠0 at some high density signals that scale symmetry can arise in dense medium as an "emergent" symmetry.

  2. Thermodynamics of neutron-rich nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    López, Jorge A., E-mail: jorgelopez@utep.edu [Department of Physics, University of Texas at El Paso, El Paso, Texas 79968, U.S.A (United States); Porras, Sergio Terrazas, E-mail: sterraza@uacj.mx; Gutiérrez, Araceli Rodríguez, E-mail: al104010@alumnos.uacj.mx [Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chihuahua, México (Mexico)

    2016-07-07

    This manuscript presents methods to obtain properties of neutron-rich nuclear matter from classical molecular dynamics. Some of these are bulk properties of infinite nuclear matter, phase information, the Maxwell construction, spinodal lines and symmetry energy.

  3. Kaon condensates, nuclear symmetry energy and cooling of neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Kubis, S. E-mail: kubis@alf.ifj.edu.pl; Kutschera, M

    2003-06-02

    The cooling of neutron stars by URCA processes in the kaon-condensed neutron star matter for various forms of nuclear symmetry energy is investigated. The kaon-nucleon interactions are described by a chiral Lagrangian. Nuclear matter energy is parametrized in terms of the isoscalar contribution and the nuclear symmetry energy in the isovector sector. High density behaviour of nuclear symmetry energy plays an essential role in determining the composition of the kaon-condensed neutron star matter which in turn affects the cooling properties. We find that the symmetry energy which decreases at higher densities makes the kaon-condensed neutron star matter fully protonized. This effect inhibits strongly direct URCA processes resulting in slower cooling of neutron stars as only kaon-induced URCA cycles are present. In contrast, for increasing symmetry energy direct URCA processes are allowed in the almost whole density range where the kaon condensation exists.

  4. Kaon condensates, nuclear symmetry energy and cooling of neutron stars

    International Nuclear Information System (INIS)

    Kubis, S.; Kutschera, M.

    2003-01-01

    The cooling of neutron stars by URCA processes in the kaon-condensed neutron star matter for various forms of nuclear symmetry energy is investigated. The kaon-nucleon interactions are described by a chiral Lagrangian. Nuclear matter energy is parametrized in terms of the isoscalar contribution and the nuclear symmetry energy in the isovector sector. High density behaviour of nuclear symmetry energy plays an essential role in determining the composition of the kaon-condensed neutron star matter which in turn affects the cooling properties. We find that the symmetry energy which decreases at higher densities makes the kaon-condensed neutron star matter fully protonized. This effect inhibits strongly direct URCA processes resulting in slower cooling of neutron stars as only kaon-induced URCA cycles are present. In contrast, for increasing symmetry energy direct URCA processes are allowed in the almost whole density range where the kaon condensation exists

  5. Imprints of Nuclear Symmetry Energy on Properties of Neutron Stars

    International Nuclear Information System (INIS)

    Li Baoan; Chen Liewen; Gearheart, Michael; Hooker, Joshua; Krastev, Plamen G; Lin Weikang; Newton, William G; Wen Dehua; Xu Chang; Ko Cheming; Xu Jun

    2011-01-01

    Significant progress has been made in recent years in constraining the density dependence of nuclear symmetry energy using terrestrial nuclear laboratory data. Around and below the nuclear matter saturation density, the experimental constraints start to merge in a relatively narrow region. At supra-saturation densities, there are, however, still large uncertainties. After summarizing the latest experimental constraints on the density dependence of nuclear symmetry energy, we highlight a few recent studies examining imprints of nuclear symmetry energy on the binding energy, energy release during hadron-quark phase transitions as well as the ω-mode frequency and damping time of gravitational wave emission of neutron stars.

  6. Symmetry energy of nucleonic matter with tensor correlations

    Science.gov (United States)

    Hen, Or; Li, Bao-An; Guo, Wen-Jun; Weinstein, L. B.; Piasetzky, Eli

    2015-02-01

    The nuclear symmetry energy (Esym(ρ ) ) is a vital ingredient of our understanding of many processes, from heavy-ion collisions to neutron stars structure. While the total nuclear symmetry energy at nuclear saturation density (ρ0) is relatively well determined, its value at supranuclear densities is not. The latter can be better constrained by separately examining its kinetic and potential terms and their density dependencies. The kinetic term of the symmetry energy, Esymkin(ρ0) , equals the difference in the per-nucleon kinetic energy between pure neutron matter (PNM) and symmetric nuclear matter (SNM), often calculated using a simple Fermi gas model. However, experiments show that tensor force induced short-range correlations (SRC) between proton-neutron pairs shift nucleons to high momentum in SNM, where there are equal numbers of neutrons and protons, but have almost no effect in PNM. We present an approximate analytical expression for Esymkin(ρ0) of correlated nucleonic matter. In our model, Esymkin(ρ0) =-10 MeV, which differs significantly from +12.5 MeV for the widely-used free Fermi gas model. This result is consistent with our analysis of recent data on the free proton-to-neutron ratios measured in intermediate energy nucleus-nucleus collisions as well as with microscopic many-body calculations, and previous phenomenological extractions. We then use our calculated Esymkin(ρ ) in combination with the known total symmetry energy and its density dependence at saturation density to constrain the value and density dependence of the potential part and to extrapolate the total symmetry energy to supranuclear densities.

  7. Nuclear probes of fundamental symmetries

    International Nuclear Information System (INIS)

    Adelberger, E.G.

    1983-01-01

    Nuclear experiments which probe the parity (P) and time-reversal (T) symmetries and lepton-number conservation are reviewed. The P-violating NN interaction, studied in the NN system and in light nuclei, provides an unique window on ΔS=0 hadronic weak processes. Results are in accord with expectations. Sensitive searches for T-violation via detailed balance, T-odd correlations in γ and β-decay, and a possible neutron electric dipole moment (EDM) are discussed. No T-violation is observed. The EDM limit is almost good enough to eliminate one of the leading theoretical explanations for CP violation. Experimental studies of double β-decay are reviewed. Although ββ nu nu decay has been convincingly detected in geochemical experiments there is no evidence for the lepton number violating ββ decay mode

  8. Clustering and Symmetry Energy in a Low Density Nuclear Gas

    International Nuclear Information System (INIS)

    Kowalski, S.; Natowitz, J.B.; Shlomo, S.; Wada, R.; Hagel, K.; Wang, J.; Materna, T.; Chen, Z.; Ma, Y.G.; Qin, L.; Botvina, A.S.; Fabris, D.; Lunardon, M.; Moretto, S.; Nebbia, G.; Pesente, S.; Rizzi, V.; Viesti, G.; Cinausero, M.; Prete, G.; Keutgen, T.; El Masri, Y.; Majka, Z.; Ono, A.

    2007-01-01

    Temperature and density dependent symmetry energy coefficients have been derived from isoscaling analyses of the yields of nuclei with A= 64 Zn projectiles with 92 Mo and 197 Au target nuclei. The symmetry energies at low density are larger than those obtained in mean field calculations, reflecting the clustering of low density nuclear matter. They are in quite good agreement with results of a recently proposed Virial Equation of State calculation

  9. Nuclear symmetries at low isospin

    International Nuclear Information System (INIS)

    Juillet, Olivier

    1999-01-01

    With the development of radioactive beams, an area of intense research in nuclear physics concerns the structure of exotic systems with roughly equal numbers of protons and neutrons. These nuclei might in fact develop a proton-neutron superfluidity whose importance compared to pairing correlations between like nucleons is currently investigated. The work presented in this thesis suggests to look at such a competition in an algebraic framework based on a Wigner SU(4) symmetry that combines the pseudo-spin and isospin degrees of freedom. After a detailed review of group theory in quantum mechanics, the validity of the pseudo-SU(4) classification is shown via a direct analysis of realistic shell model states. Its consequences on binding energies and β decay are also studied. Moreover, a simplified boson realisation with zero orbital angular momentum is used to find some physical features of N=Z nuclei such as the condensation of α-like structures or the destruction of isoscalar superfluid correlations by the spin-orbit potential. Finally, another bosonization scheme that includes quadrupole degrees of freedom (IBM-4 model) is tested for the first time by diagonalization of a full Hamiltonian deduced from a realistic shell model interaction. The quality of the results, especially for odd-odd nuclei, allows one to consider this boson approximation as an alternative to standard fermionic approaches for the collective structure of the exotic line N∼Z=28-50. (author) [fr

  10. Probing the nuclear symmetry energy with heavy-ion collisions

    Directory of Open Access Journals (Sweden)

    De Filippo E.

    2015-01-01

    Full Text Available Heavy ion collisions (HIC have been widely used to extract the parametrization of symmetry energy term of nuclear equation of state as a function of barionic density. HIC in fact are a unique tool in terrestrial laboratories to explore the symmetry energy around the saturation density (ρ0 = 0.16fm−3 from sub-saturation densities (Fermi energies towards compressed nuclear matter (ρ > 2 − 3ρ0 that can be reached at relativistic energies, as a function of different conditions of temperature, mass asymmetry and isospin. One of the main study at present is to reach a coherent description of EOS of asymmetric nuclear matter from heavy ion collisions of stable and exotic nuclei, nuclear structure studies and astrophysical observations. In this work an overview of the current status of the research is shortly reviewed together with new perspectives aimed to reduce the present experimental and theoretical uncertainties.

  11. Isospin dependent properties of asymmetric nuclear matter

    OpenAIRE

    Chowdhury, P. Roy; Basu, D. N.; Samanta, C.

    2009-01-01

    The density dependence of nuclear symmetry energy is determined from a systematic study of the isospin dependent bulk properties of asymmetric nuclear matter using the isoscalar and the isovector components of density dependent M3Y interaction. The incompressibility $K_\\infty$ for the symmetric nuclear matter, the isospin dependent part $K_{asy}$ of the isobaric incompressibility and the slope $L$ are all in excellent agreement with the constraints recently extracted from measured isotopic de...

  12. Nuclear matter in neutron star crust

    International Nuclear Information System (INIS)

    Kido, Toshihiko; Maruyama, Toshiki; Chiba, Satoshi; Niita, Koji

    2000-01-01

    Properties of nuclear matter below the nuclear saturation density is analyzed by numerical simulations with the periodic boundary condition. The equation of state at these densities is softened by the formation of cluster(s) internal density of which is nearly equal to the saturation density. The structure of nuclear matter shows some exotic shapes with variation of the density. Furthermore, it is found that the symmetry parameter a sym (ρ) is not a linear function of density at low density region. (author)

  13. Symmetry Parameter Constraints from a Lower Bound on Neutron-matter Energy

    Energy Technology Data Exchange (ETDEWEB)

    Tews, Ingo [Institute for Nuclear Theory, University of Washington, Seattle, WA 98195-1550 (United States); Lattimer, James M. [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800 (United States); Ohnishi, Akira [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan); Kolomeitsev, Evgeni E., E-mail: itews@uw.edu, E-mail: james.lattimer@stonybrook.edu, E-mail: ohnishi@yukawa.kyoto-u.ac.jp, E-mail: e.kolomeitsev@gsi.de [Faculty of Natural Sciences, Matej Bel University, Tajovskeho 40, SK-97401 Banska Bystrica (Slovakia)

    2017-10-20

    We propose the existence of a lower bound on the energy of pure neutron matter (PNM) on the basis of unitary-gas considerations. We discuss its justification from experimental studies of cold atoms as well as from theoretical studies of neutron matter. We demonstrate that this bound results in limits to the density-dependent symmetry energy, which is the difference between the energies of symmetric nuclear matter and PNM. In particular, this bound leads to a lower limit to the volume symmetry energy parameter S {sub 0}. In addition, for assumed values of S {sub 0} above this minimum, this bound implies both upper and lower limits to the symmetry energy slope parameter L , which describes the lowest-order density dependence of the symmetry energy. A lower bound on neutron-matter incompressibility is also obtained. These bounds are found to be consistent with both recent calculations of the energies of PNM and constraints from nuclear experiments. Our results are significant because several equations of state that are currently used in astrophysical simulations of supernovae and neutron star mergers, as well as in nuclear physics simulations of heavy-ion collisions, have symmetry energy parameters that violate these bounds. Furthermore, below the nuclear saturation density, the bound on neutron-matter energies leads to a lower limit to the density-dependent symmetry energy, which leads to upper limits to the nuclear surface symmetry parameter and the neutron-star crust–core boundary. We also obtain a lower limit to the neutron-skin thicknesses of neutron-rich nuclei. Above the nuclear saturation density, the bound on neutron-matter energies also leads to an upper limit to the symmetry energy, with implications for neutron-star cooling via the direct Urca process.

  14. Temperature effects on the nuclear symmetry energy and symmetry free energy with an isospin and momentum dependent interaction

    International Nuclear Information System (INIS)

    Xu, Jun; Ma, Hong-Ru; Chen, Lie-Wen; Li, Bao-An

    2007-01-01

    Within a self-consistent thermal model using an isospin and momentum dependent interaction (MDI) constrained by the isospin diffusion data in heavy-ion collisions, we investigate the temperature dependence of the symmetry energy E sym (ρ,T) and symmetry free energy F sym (ρ,T) for hot, isospin asymmetric nuclear matter. It is shown that the symmetry energy E sym (ρ,T) generally decreases with increasing temperature while the symmetry free energy F sym (ρ,T) exhibits opposite temperature dependence. The decrement of the symmetry energy with temperature is essentially due to the decrement of the potential energy part of the symmetry energy with temperature. The difference between the symmetry energy and symmetry free energy is found to be quite small around the saturation density of nuclear matter. While at very low densities, they differ significantly from each other. In comparison with the experimental data of temperature dependent symmetry energy extracted from the isotopic scaling analysis of intermediate mass fragments (IMF's) in heavy-ion collisions, the resulting density and temperature dependent symmetry energy E sym (ρ,T) is then used to estimate the average freeze-out density of the IMF's

  15. Incompressibility of asymmetric nuclear matter

    International Nuclear Information System (INIS)

    Chen, Liewen; Cai, Baojun; Shen, Chun; Ko, Cheming; Xu, Jun; Li, Baoan

    2010-01-01

    Using an isospin- and momentum-dependent modified Gogny (MDI) interaction, the Skyrme-Hartree-Fock (SHF) approach, and a phenomenological modified Skyrme-like (MSL) model, we have studied the incompressibility K sat (δ) of isospin asymmetric nuclear matter at its saturation density. Our results show that in the expansion of K sat (δ) in powers of isospin asymmetry δ, i.e., K sat (δ) = K 0 + K sat,2 δ 2 + K sat,4 δ 4 + O(δ 6 ), the magnitude of the 4th-order K sat,4 parameter is generally small. The 2nd-order K sat,2 parameter thus essentially characterizes the isospin dependence of the incompressibility of asymmetric nuclear matter at saturation density. Furthermore, the K sat,2 can be expressed as K sat,2 = K sym – 6L – J 0 /K 0 L in terms of the slope parameter L and the curvature parameter K sym of the symmetry energy and the third-order derivative parameter J 0 of the energy of symmetric nuclear matter at saturation density, and we find the higher order J 0 contribution to K sat,2 generally cannot be neglected. Also, we have found a linear correlation between K sym and L as well as between J 0 /K 0 and K 0 . Using these correlations together with the empirical constraints on K 0 and L, the nuclear symmetry energy E sym (ρ0) at normal nuclear density, and the nucleon effective mass, we have obtained an estimated value of K sat,2 = -370 ± 120 MeV for the 2nd-order parameter in the isospin asymmetry expansion of the incompressibility of asymmetric nuclear matter at its saturation density. (author)

  16. Pion condensation in symmetric nuclear matter

    International Nuclear Information System (INIS)

    Kabir, K.; Saha, S.; Nath, L.M.

    1987-09-01

    Using a model which is based essentially on the chiral SU(2)xSU(2) symmetry of the pion-nucleon interaction, we examine the possibility of pion condensation in symmetric nucleon matter. We find that the pion condensation is not likely to occur in symmetric nuclear matter for any finite value of the nuclear density. Consequently, no critical opalescence phenomenon is expected to be seen in the pion-nucleus interaction. (author). 20 refs

  17. Pion condensation in symmetric nuclear matter

    Science.gov (United States)

    Kabir, K.; Saha, S.; Nath, L. M.

    1988-01-01

    Using a model which is based essentially on the chiral SU(2)×SU(2) symmetry of the pion-nucleon interaction, we examine the possibility of pion condensation in symmetric nucleon matter. We find that the pion condensation is not likely to occur in symmetric nuclear matter for any finite value of the nuclear density. Consequently, no critical opalescence phenomenom is expected to be seen in the pion-nucleus interaction.

  18. Nuclear lattice simulations using symmetry-sign extrapolation

    Energy Technology Data Exchange (ETDEWEB)

    Laehde, Timo A.; Luu, Thomas [Forschungszentrum Juelich, Institute for Advanced Simulation, Institut fuer Kernphysik, and Juelich Center for Hadron Physics, Juelich (Germany); Lee, Dean [North Carolina State University, Department of Physics, Raleigh, NC (United States); Meissner, Ulf G. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Bonn (Germany); Forschungszentrum Juelich, Institute for Advanced Simulation, Institut fuer Kernphysik, and Juelich Center for Hadron Physics, Juelich (Germany); Forschungszentrum Juelich, JARA - High Performance Computing, Juelich (Germany); Epelbaum, Evgeny; Krebs, Hermann [Ruhr-Universitaet Bochum, Institut fuer Theoretische Physik II, Bochum (Germany); Rupak, Gautam [Mississippi State University, Department of Physics and Astronomy, Mississippi State, MS (United States)

    2015-07-15

    Projection Monte Carlo calculations of lattice Chiral Effective Field Theory suffer from sign oscillations to a varying degree dependent on the number of protons and neutrons. Hence, such studies have hitherto been concentrated on nuclei with equal numbers of protons and neutrons, and especially on the alpha nuclei where the sign oscillations are smallest. Here, we introduce the ''symmetry-sign extrapolation'' method, which allows us to use the approximate Wigner SU(4) symmetry of the nuclear interaction to systematically extend the Projection Monte Carlo calculations to nuclear systems where the sign problem is severe. We benchmark this method by calculating the ground-state energies of the {sup 12}C, {sup 6}He and {sup 6}Be nuclei, and discuss its potential for studies of neutron-rich halo nuclei and asymmetric nuclear matter. (orig.)

  19. Nuclear matter revisited

    International Nuclear Information System (INIS)

    Negele, J.W.; Zabolitzky, J.G.

    1978-01-01

    It is stated that at the Workshop on Nuclear and Dense Matter held at the University of Illinois in May 1977 significant progress was reported that largely resolves many of the questions raised in this journal Vol. 6, p.149, 1976. These include perturbative versus variational methods as applied to nuclear matter, exact solutions for bosons, what is known as the fermion 'homework problem', and various other considerations regarding nuclear matter, including the use of variational methods as opposed to perturbation theory. (15 references) (U.K.)

  20. Asymmetric nuclear matter in a modified quark meson coupling model

    International Nuclear Information System (INIS)

    Mishra, R.N.; Sahoo, H.S.; Panda, P.K.; Barik, N.

    2014-01-01

    In an earlier attempt we have successfully used this model in developing the nuclear equation of state and analysed various other bulk properties of symmetric nuclear matter with the dependence of quark masses. In the present work we want to apply the model to analyze asymmetric nuclear matter with the variation of the asymmetry parameter y p as well as analyze the effects of symmetry energy and the slope of the symmetry energy L

  1. Understanding the major uncertainties in the nuclear symmetry energy at suprasaturation densities

    International Nuclear Information System (INIS)

    Xu Chang; Li Baoan

    2010-01-01

    Within the interacting Fermi gas model for isospin asymmetric nuclear matter, effects of the in-medium three-body interaction and the two-body short-range tensor force owing to the ρ meson exchange, as well as the short-range nucleon correlation on the high-density behavior of the nuclear symmetry energy, are demonstrated respectively in a transparent way. Possible physics origins of the extremely uncertain nuclear symmetry energy at suprasaturation densities are discussed.

  2. Nuclear symmetry energy and the neutron skin in neutron-rich nuclei

    NARCIS (Netherlands)

    Dieperink, AEL; Dewulf, Y; Van Neck, D; Waroquier, M; Rodin, [No Value

    2003-01-01

    The symmetry energy for nuclear matter and its relation to the neutron. skin in finite nuclei is discussed. The symmetry energy as a function of density obtained in a self-consistent Green function approach is presented and compared to the results of other recent theoretical approaches. A partial

  3. Nuclear matter physics at NICA

    Energy Technology Data Exchange (ETDEWEB)

    Senger, P. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany)

    2016-08-15

    The exploration of the QCD phase diagram is one of the most exciting and challenging projects of modern nuclear physics. In particular, the investigation of nuclear matter at high baryon densities offers the opportunity to find characteristic structures such as a first-order phase transition with a region of phase coexistence and a critical endpoint. The experimental discovery of these prominent landmarks of the QCD phase diagram would be a major breakthrough in our understanding of the properties of nuclear matter. Equally important is the quantitative experimental information on the properties of hadrons in dense matter which may shed light on chiral symmetry restoration and the origin of hadron masses. Worldwide, substantial efforts at the major heavy-ion accelerators are devoted to the clarification of these fundamental questions, and new dedicated experiments are planned at future facilities like CBM at FAIR in Darmstadt and MPD at NICA/JINR in Dubna. In this article the perspectives for MPD at NICA will be discussed. (orig.)

  4. Nuclear Symmetry Energy and the Breaking of the Isospin Symmetry: How Do They Reconcile with Each Other?

    Science.gov (United States)

    Roca-Maza, X; Colò, G; Sagawa, H

    2018-05-18

    We analyze and propose a solution to the apparent inconsistency between our current knowledge of the equation of state of asymmetric nuclear matter, the energy of the isobaric analog state (IAS) in a heavy nucleus such as ^{208}Pb, and the isospin symmetry breaking forces in the nuclear medium. This is achieved by performing state-of-the-art Hartree-Fock plus random phase approximation calculations of the IAS that include all isospin symmetry breaking contributions. To this aim, we propose a new effective interaction that is successful in reproducing the IAS excitation energy without compromising other properties of finite nuclei.

  5. Nuclear symmetry energy in density dependent hadronic models

    International Nuclear Information System (INIS)

    Haddad, S.

    2008-12-01

    The density dependence of the symmetry energy and the correlation between parameters of the symmetry energy and the neutron skin thickness in the nucleus 208 Pb are investigated in relativistic Hadronic models. The dependency of the symmetry energy on density is linear around saturation density. Correlation exists between the neutron skin thickness in the nucleus 208 Pb and the value of the nuclear symmetry energy at saturation density, but not with the slope of the symmetry energy at saturation density. (author)

  6. Using MT2 to distinguish dark matter stabilization symmetries

    International Nuclear Information System (INIS)

    Agashe, Kaustubh; Kim, Doojin; Zhu Lijun; Walker, Devin G. E.

    2011-01-01

    We examine the potential of using colliders to distinguish models with parity (Z 2 ) stabilized dark matter (DM) from models in which the DM is stabilized by other symmetries, taking the latter to be a Z 3 symmetry for illustration. The key observation is that a heavier mother particle charged under a Z 3 stabilization symmetry can decay into one or two DM particles along with standard model particles. This can be contrasted with the decay of a mother particle charged under a parity symmetry; typically, only one DM particle appears in the decay chain. The arXiv:1003.0899 studied the distributions of visible invariant mass from the decay of a single such mother particle in order to highlight the resulting distinctive signatures of Z 3 symmetry versus parity symmetry stabilized dark matter candidates. We now describe a complementary study which focuses on decay chains of the two mother particles which are necessarily present in these events. We also include in our analysis the missing energy/momentum in the event. For the Z 3 symmetry stabilized mothers, the resulting inclusive final state can have two, three or four DM particles. In contrast, models with Z 2 symmetry can have only two. We show that the shapes and edges of the distribution of M T2 -type variables, along with ratio of the visible momentum/energy on the two sides of the event, are powerful in distinguishing these different scenarios. Finally we conclude by outlining future work which focuses on reducing combinatoric ambiguities from reconstructing multijet events. Increasing the reconstruction efficiency can allow better reconstruction of events with two or three dark matter candidates in the final state.

  7. Nuclear matter theory

    International Nuclear Information System (INIS)

    Negele, J.W.

    1977-01-01

    Recent advances in variational and perturbative theories are surveyed which offer genuine promise that nuclear matter will soon become a viable tool for investigating nuclear interactions. The basic elements of the hypernetted chain expansion for Jastrow variational functions are briefly reviewed, and comparisons of variational and perturbative results for a series of increasingly complicated systems are presented. Prospects for investigating realistic forces are assessed and the unresolved, open problems are summarized

  8. Role of chiral symmetry in nuclear physics

    International Nuclear Information System (INIS)

    Rho, M.

    1985-01-01

    Spurred by some recent experiments in electron scattering, the author reassesses the role that chiral symmetry plays in nuclear structure. Though difficult to formulate precisely, some of the ideas put forward many years ago, combined with the recent revival of the Skyrmion picture of the nucleon, are seen to be more relevant now than ever. Three relevant experiments and theoretical interpretations are discussed: M1 transitions in p(n,γ)d and d(e,e')np; axial charge transition in 16 N → 16 O + e + neutrino; and Gamow-Teller transitions and isobar currents. (Auth.)

  9. Dibaryons and nuclear matter

    International Nuclear Information System (INIS)

    Besliu, C.; Popa, L.; Popa, V.

    1992-01-01

    We discuss some recent ideas concerning the structure and the properties of the dibaryonic resonances, with special emphasis on their behaviour when produced in dense nuclear matter. Some features of their de-excitation mechanism and consequent experimentally identifiable signatures are predicted. (Author)

  10. Isospin dependent properties of asymmetric nuclear matter

    Science.gov (United States)

    Chowdhury, P. Roy; Basu, D. N.; Samanta, C.

    2009-07-01

    The density dependence of nuclear symmetry energy is determined from a systematic study of the isospin dependent bulk properties of asymmetric nuclear matter using the isoscalar and isovector components of the density dependent M3Y interaction. The incompressibility K∞ for the symmetric nuclear matter, the isospin dependent part Kasy of the isobaric incompressibility, and the slope L are all in excellent agreement with the constraints recently extracted from measured isotopic dependence of the giant monopole resonances in even-A Sn isotopes, from the neutron skin thickness of nuclei, and from analyses of experimental data on isospin diffusion and isotopic scaling in intermediate energy heavy-ion collisions. This work provides a fundamental basis for the understanding of nuclear matter under extreme conditions and validates the important empirical constraints obtained from recent experimental data.

  11. Charged tensor matter fields and Lorentz symmetry violation via spontaneous symmetry breaking

    International Nuclear Information System (INIS)

    Colatto, L.P.; Penna, A.L.A.; Santos, W.C.

    2003-10-01

    We consider a model with a charged vector field along with a Cremmer-Scherk-Kalb-Ramond (CSKR) matter field coupled to a U(1) gauge potential. We obtain a natural Lorentz symmetry violation due to the local U(1) spontaneous symmetry breaking mechanism triggered by the imaginary part of the vector matter. The choice of the unitary gauge leads to the decoupling of the gauge-Kr sector from the Higgs-Kr sector. The excitation spectrum is carefully analyzed and the physical modes are identified. We propose an identification of the neutral massive spin-1 Higgs-like field with the massive Z' boson of the so-called mirror matter models. (author)

  12. Correlations between isospin dynamics and Intermediate Mass Fragments emission time scales: a probe for the symmetry energy in asymmetric nuclear matter

    International Nuclear Information System (INIS)

    De Filippo, E; Cardella, G; Guidara, E La; Pagano, A; Papa, M; Amorini, F; Colonna, M; Gianì, S; Grassi, L; Han, J; Maiolino, C; Auditore, L; Minniti, T; Baran, V; Berceanu, I; Geraci, E; Grzeszczuk, A; Guazzoni, P; Lanzalone, G; Lombardo, I

    2013-01-01

    We show new data from the 64 Ni+ 124 Sn and 58 Ni+ 112 Sn reactions studied in direct kinematics with the CHIMERA detector at INFN-LNS and compared with the reverse kinematics reactions at the same incident beam energy (35 A MeV). Analyzing the data with the method of relative velocity correlations, fragments coming from statistical decay of an excited projectile-like (PLF) or target-like (TLF) fragments are discriminated from the ones coming from dynamical emission in the early stages of the reaction. By comparing data of the reverse kinematics experiment with a stochastic mean field (SMF) + GEMINI calculations our results show that observables from neck fragmentation mechanism add valuable constraints on the density dependence of symmetry energy. An indication is found for a moderately stiff symmetry energy potential term of EOS.

  13. SURFACE SYMMETRY ENERGY OF NUCLEAR ENERGY DENSITY FUNCTIONALS

    Energy Technology Data Exchange (ETDEWEB)

    Nikolov, N; Schunck, N; Nazarewicz, W; Bender, M; Pei, J

    2010-12-20

    We study the bulk deformation properties of the Skyrme nuclear energy density functionals. Following simple arguments based on the leptodermous expansion and liquid drop model, we apply the nuclear density functional theory to assess the role of the surface symmetry energy in nuclei. To this end, we validate the commonly used functional parametrizations against the data on excitation energies of superdeformed band-heads in Hg and Pb isotopes, and fission isomers in actinide nuclei. After subtracting shell effects, the results of our self-consistent calculations are consistent with macroscopic arguments and indicate that experimental data on strongly deformed configurations in neutron-rich nuclei are essential for optimizing future nuclear energy density functionals. The resulting survey provides a useful benchmark for further theoretical improvements. Unlike in nuclei close to the stability valley, whose macroscopic deformability hangs on the balance of surface and Coulomb terms, the deformability of neutron-rich nuclei strongly depends on the surface-symmetry energy; hence, its proper determination is crucial for the stability of deformed phases of the neutron-rich matter and description of fission rates for r-process nucleosynthesis.

  14. Majorana dark matter with B+L gauge symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Chao, Wei [Amherst Center for Fundamental Interactions, Department of Physics,University of Massachusetts-Amherst,Amherst, MA 01003 United States (United States); Center for Advanced Quantum Studies,Department of Physics, Beijing Normal University,Beijing, 100875 (China); Guo, Huai-Ke [Amherst Center for Fundamental Interactions, Department of Physics,University of Massachusetts-Amherst,Amherst, MA 01003 United States (United States); Zhang, Yongchao [Service de Physique Théorique, Université Libre de Bruxelles,Boulevard du Triomphe, CP225, 1050 Brussels (Belgium)

    2017-04-07

    We present a new model that extends the Standard Model (SM) with the local B+L symmetry, and point out that the lightest new fermion ζ, introduced to cancel anomalies and stabilized automatically by the B+L symmetry, can serve as the cold dark matter candidate. We study constraints on the model from Higgs measurements, electroweak precision measurements as well as the relic density and direct detections of the dark matter. Numerical results reveal that the pseudo-vector coupling of ζ with Z and the Yukawa coupling with the SM Higgs are highly constrained by the latest results of LUX, while there are viable parameter space that could satisfy all the constraints and give testable predictions.

  15. Hirschegg '95: Dynamical properties of hadrons in nuclear matter. Proceedings

    International Nuclear Information System (INIS)

    Feldmeier, H.; Noerenberg, W.

    1995-01-01

    The following topics were dealt with: Chiral symmetry, chiral condensates, in-medium effective chiral Lagrangians, Δ's in nuclei, nonperturbative QCD, electron scattering from nuclear matter, nuclear shadowing, QCD sum rules, deconfinement, ultrarelativistic heavy ion collisions, nuclear dimuon and electron pair production, photoproduction from nuclei, subthreshold K + production, kaon polarization in nuclear matter, charged pion production in relativistic heavy ion collisions, the Nambu-Jona-Lasinio model, the SU(3) L xSU(3) R sigma model, nonequilibrium dense nuclear matter, pion pair production at finite temperature. (HSI)

  16. Kaons in nuclear matter

    International Nuclear Information System (INIS)

    Kolomeitsev, E.E.

    1997-02-01

    The subject of the doctoral thesis is examination of the properties of kaons in nuclear matter. A specific method is explained that has been developed for the scientific objectives of the thesis and permits description of the kaon-nucleon interactions and kaon-nucleon scattering in a vacuum. The main challenge involved was to find approaches that would enable application of the derived relations out of the kaon mass shell, connected with the second objective, namely to possibly find methods which are independent of models. The way chosen to achieve this goal relied on application of reduction formulas as well as current algebra relations and the PCAC hypothesis. (orig./CB) [de

  17. Condensed Matter Nuclear Science

    Science.gov (United States)

    Biberian, Jean-Paul

    2006-02-01

    1. General. A tribute to gene Mallove - the "Genie" reactor / K. Wallace and R. Stringham. An update of LENR for ICCF-11 (short course, 10/31/04) / E. Storms. New physical effects in metal deuterides / P. L. Hagelstein ... [et al.]. Reproducibility, controllability, and optimization of LENR experiments / D. J. Nagel -- 2. Experiments. Electrochemistry. Evidence of electromagnetic radiation from Ni-H systems / S. Focardi ... [et al.]. Superwave reality / I. Dardik. Excess heat in electrolysis experiments at energetics technologies / I. Dardik ... [et al.]. "Excess heat" during electrolysis in platinum/K[symbol]CO[symbol]/nickel light water system / J. Tian ... [et al.]. Innovative procedure for the, in situ, measurement of the resistive thermal coefficient of H(D)/Pd during electrolysis; cross-comparison of new elements detected in the Th-Hg-Pd-D(H) electrolytic cells / F. Celani ... [et al.]. Emergence of a high-temperature superconductivity in hydrogen cycled Pd compounds as an evidence for superstoihiometric H/D sites / A. Lipson ... [et al.]. Plasma electrolysis. Calorimetry of energy-efficient glow discharge - apparatus design and calibration / T. B. Benson and T. O. Passell. Generation of heat and products during plasma electrolysis / T. Mizuno ... [et al.]. Glow discharge. Excess heat production in Pd/D during periodic pulse discharge current in various conditions / A. B. Karabut. Beam experiments. Accelerator experiments and theoretical models for the electron screening effect in metallic environments / A. Huke, K. Czerski, and P. Heide. Evidence for a target-material dependence of the neutron-proton branching ratio in d+d reactions for deuteron energies below 20keV / A. Huke ... [et al.]. Experiments on condensed matter nuclear events in Kobe University / T. Minari ... [et al.]. Electron screening constraints for the cold fusion / K. Czerski, P. Heide, and A. Huke. Cavitation. Low mass 1.6 MHz sonofusion reactor / R. Stringham. Particle detection. Research

  18. Relativistic nuclear physics: symmetry and the correlation depletion principle

    International Nuclear Information System (INIS)

    Baldin, A.M.

    1996-01-01

    The author's view on the role of symmetry in fundamental physics is presented. The concept of the 'symmetry of solutions' is analyzed. It is stressed that it is impossible to deduce the basic laws of relativistic nuclear physics from the QCD Lagrangians without recourse to additional hypotheses about the symmetry of solutions (Green functions). The test of these hypotheses is the major prospect of the study of hadron and nuclear collisions. Special importance is given to the Correlation Depletions Principle that makes it possible to construct mathematical models of relativistic nuclear physics, and analyze, by using simple terms, topologically complicated events of nucleus-nucleus collisions. 15 refs., 4 figs

  19. Nuclear matter and electron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Sick, I [Dept. fuer Physik und Astronomie, Univ. Basel (Switzerland)

    1998-06-01

    We show that inclusive electron scattering at large momentum transfer allows a measurement of short-range properties of nuclear matter. This provides a very valuable constraint in selecting the calculations appropriate for predicting nuclear matter properties at the densities of astrophysical interest. (orig.)

  20. Chiral thermodynamics of nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Fiorilla, Salvatore

    2012-10-23

    The equation of state of nuclear matter is calculated at finite temperature in the framework of in-medium chiral perturbation theory up to three-loop order. The dependence of its thermodynamic properties on the isospin-asymmetry is investigated. The chiral quark condensate is evaluated for symmetric nuclear matter. Its behaviour as a function of density and temperature sets important nuclear physics constraints for the QCD phase diagram.

  1. Chiral thermodynamics of nuclear matter

    International Nuclear Information System (INIS)

    Fiorilla, Salvatore

    2012-01-01

    The equation of state of nuclear matter is calculated at finite temperature in the framework of in-medium chiral perturbation theory up to three-loop order. The dependence of its thermodynamic properties on the isospin-asymmetry is investigated. The chiral quark condensate is evaluated for symmetric nuclear matter. Its behaviour as a function of density and temperature sets important nuclear physics constraints for the QCD phase diagram.

  2. Pion condensation in symmetric nuclear matter

    International Nuclear Information System (INIS)

    Shamsunnahar, T.; Saha, S.; Kabir, K.; Nath, L.M.

    1991-01-01

    We have investigated the possibility of pion condensation in symmetric nuclear matter using a model of pion-nucleon interaction based essentially on chiral SU(2) x SU(2) symmetry. We have found that pion condensation is not possible for any finite value of the density. Consequently, no critical opalescence phenomenon is likely to be seen in pion-nucleus scattering nor is it likely to be possible to explain the EMC effect in terms of an increased number of pions in the nucleus. (author)

  3. Momentum dependence of the symmetry potential and its influence on nuclear reactions

    International Nuclear Information System (INIS)

    Feng Zhaoqing

    2011-01-01

    A Skyrme-type momentum-dependent nucleon-nucleon force distinguishing isospin effect is parametrized and further implemented in the Lanzhou quantum molecular dynamics model, which leads to a splitting of nucleon effective mass in nuclear matter. Based on the isospin- and momentum-dependent transport model, we investigate the influence of momentum-dependent symmetry potential on several isospin-sensitive observables in heavy-ion collisions. It is found that symmetry potentials with and without the momentum dependence but corresponding to the same density dependence of the symmetry energy result in different distributions of the observables. The midrapidity neutron/proton ratios at high transverse momenta and the excitation functions of the total π - /π + and K 0 /K + yields are particularly sensitive to the momentum dependence of the symmetry potential.

  4. Phase transitions in nuclear matter

    International Nuclear Information System (INIS)

    Glendenning, N.K.

    1984-11-01

    The rather general circumstances under which a phase transition in hadronic matter at finite temperature to an abnormal phase in which baryon effective masses become small and in which copious baryon-antibaryon pairs appear is emphasized. A preview is also given of a soliton model of dense matter, in which at a density of about seven times nuclear density, matter ceases to be a color insulator and becomes increasingly color conducting. 22 references

  5. Probing nuclear matter with dileptons

    International Nuclear Information System (INIS)

    Schroeder, L.S.

    1986-06-01

    Dileptons are shown to be of interest in helping probe extreme conditions of temperature and density in nuclear matter. The current state of experimental knowledge about dileptons is briefly described, and their use in upcoming experiments with light ions at CERN SPS are reviewed, including possible signatures of quark matter formation. Use of dileptons in an upcoming experiment with a new spectrometer at Berkeley is also discussed. This experiment will probe the nuclear matter equation of state at high temperature and density. 16 refs., 8 figs

  6. Dark Matter candidate in Inert Doublet Model with additional local gauge symmetry U (1)

    International Nuclear Information System (INIS)

    Gaitán, R.; De Oca, J.H. Montes; Garcés, E. A.; Cabral-Rosetti, L. G.

    2016-01-01

    We consider the Inert Doublet Model (IDM) with an additional local gauge symmetry U (1) and a complex singlet scalar to break the symmetry U (1). The continuous symmetry U (1) is introduced to control the CP-conserving interaction instead of some discrete symmetries as usually. We present the mass spectrum for neutral scalar and gauge bosons and the values of the charges under U (1) for which the model could have a candidate to dark matter. (paper)

  7. Nuclear physics, symmetries, and quantum chaos

    International Nuclear Information System (INIS)

    Bunakov, V.E.

    1999-01-01

    The reasons why the problem of chaos is of great topical interest in modern physics are briefly summarized, and it is indicated that ambiguities in the concept of quantum chaos present the greatest difficulties in these realms. The theory of random matrices and strength functions are generalized to demonstrate that chaotization of a system is associated with the violation of its symmetries. A criterion of quantum chaoticity is formulated in terms of the spreading width Γ spr . In the classical limit, this criterion reduces to Lyapunov's stability criteria. It is shown that the proposed criterion is applicable to standard problems of the modern theory of dynamical chaos

  8. Symmetries in molecular and nuclear physics

    International Nuclear Information System (INIS)

    Iachello, F.

    1987-01-01

    Algebric techniques (interacting boson and boson-fermion models) used in the study of nuclear structures, and are able to predict properties of complex nuclei with high accuracy described. (M.C.K.) [pt

  9. Spectral properties of nuclear matter

    International Nuclear Information System (INIS)

    Bozek, P

    2006-01-01

    We review self-consistent spectral methods for nuclear matter calculations. The in-medium T-matrix approach is conserving and thermodynamically consistent. It gives both the global and the single-particle properties the system. The T-matrix approximation allows to address the pairing phenomenon in cold nuclear matter. A generalization of nuclear matter calculations to the super.uid phase is discussed and numerical results are presented for this case. The linear response of a correlated system going beyond the Hartree-Fock+ Random-Phase-Approximation (RPA) scheme is studied. The polarization is obtained by solving a consistent Bethe-Salpeter (BS) equation for the coupling of dressed nucleons to an external field. We find that multipair contributions are important for the spin(isospin) response when the interaction is spin(isospin) dependent

  10. Extreme states in nuclear matter

    International Nuclear Information System (INIS)

    Rafelski, J.; Frankfurt Univ.

    1981-01-01

    Theory of hot nuclear fireballs consisting of all possible finite size hadronic constituents in chemical and thermal equilibrium is presented. As a complement of this hadronic gas phase characterized by maximal temperature and energy density, the quark bag description of the hadronic fireball is considered. Preliminary calculations of temperatures and mean transverse momenta of particles emitted in high multiplicity relativistic nuclear collisions together with some considereations on the observability of quark matter are offered. (orig.)

  11. Kaons in nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Heiselberg, H [NORDITA, Copenhagen (Denmark)

    1998-06-01

    The kaon energy in a nuclear medium and its dependence on kaon-nucleon and nucleon-nucleon correlations is discussed. The transition from the Lenz potential at low densities to the Hartree potential at high densities can be calculated analytically by making a Wigner-Seitz cell approximation and employing a square well potential. As the Hartree potential is less attractive than the Lenz one, kaon condensation inside cores of neutron stars appears to be less likely than previously estimated. (orig.)

  12. Instability in relativistic nuclear matter

    International Nuclear Information System (INIS)

    Tezuka, Hirokazu.

    1979-11-01

    The stability of the Fermi gas state in the nuclear matter which satisfies the saturation property is considered relativistically. It is shown that the Fermi gas state is stable at very low density and at high density, but it is unstable for density fluctuation in the intermediate density region including the normal density. (author)

  13. Some remarks on chiral symmetry in dense matter

    International Nuclear Information System (INIS)

    Kaellman, C.G.; Montonen, C.

    1982-01-01

    The restoration of chiral symmetry in quantum chromodynamics as the temperature T and the chemical potential vertical stroke μ vertical stroke are increased is discussed qualitatively and using effective field theories. The latter are shown not to give reliable quantitative estimates. It is argued that a dilute gas of instantons cannot be the main dynamical agent responsible for the breakdown of chiral symmetry. (orig.)

  14. Quantum field theory and symmetries in nuclear physics

    International Nuclear Information System (INIS)

    Baldin, A.M.

    2000-01-01

    Nuclear physics embraces a wide area of knowledge ranging from fundamental problems of matter structure up to the origin of the universe. Applied aspects of this science bear a direct relation to the most urgent problems of people's life - ecology and energetics. The present talk deals with one of these aspects, namely, a possible description of the properties of nuclear matter by means of the methods of modern mathematical physics which N.N. Bogolyubov has greatly contributed to

  15. Dirac dark matter and b →s ℓ+ℓ- with U(1) gauge symmetry

    Science.gov (United States)

    Celis, Alejandro; Feng, Wan-Zhe; Vollmann, Martin

    2017-02-01

    We revisit the possibility of a Dirac fermion dark matter candidate in the light of current b →s ℓ+ℓ- anomalies by investigating a minimal extension of the Standard Model with a horizontal U(1 ) ' local symmetry. Dark matter stability is protected by a remnant Z2 symmetry arising after spontaneous symmetry breaking of U(1 ) '. The associated Z' gauge boson can accommodate current hints of new physics in b →s ℓ+ℓ- decays, and acts as a vector portal between dark matter and the visible sector. We find that the model is severely constrained by a combination of precision measurements at flavor factories, LHC searches for dilepton resonances, as well as direct and indirect dark matter searches. Despite this, viable regions of the parameter space accommodating the observed dark matter relic abundance and the b →s ℓ+ℓ-anomalies still persist for dark matter and Z ' masses in the TeV range.

  16. Meson theory and nuclear matter

    International Nuclear Information System (INIS)

    Skyrme, T.H.R.

    1994-01-01

    An attempt is made to justify the use of the concept of a 'mesic fluid' in connection with the structure of nuclear matter. A transformation is made of the usual symmetric pseudo-scalar meson theory to bring into evidence certain saturation properties, which provide a natural basis for the use of a 'self-consistent' field in the discussion of nuclear structure. Fluctuations about this semi-classical saturated state will give rise to residual interparticle forces within the nucleus, and are also briefly considered in relation to electromagnetic interactions. (author). 5 refs

  17. Radiative origin of all quark and lepton masses through dark matter with flavor symmetry.

    Science.gov (United States)

    Ma, Ernest

    2014-03-07

    The fundamental issue of the origin of mass for all quarks and leptons (including Majorana neutrinos) is linked to dark matter, odd under an exactly conserved Z2 symmetry which may or may not be derivable from an U(1)D gauge symmetry. The observable sector interacts with a proposed dark sector which consists of heavy neutral singlet Dirac fermions and suitably chosen new scalars. Flavor symmetry is implemented in a renormalizable context with just the one Higgs doublet (ϕ(+), ϕ(0)) of the standard model in such a way that all observed fermions obtain their masses radiatively through dark matter.

  18. Hidden U (1 ) gauge symmetry realizing a neutrinophilic two-Higgs-doublet model with dark matter

    Science.gov (United States)

    Nomura, Takaaki; Okada, Hiroshi

    2018-04-01

    We propose a neutrinophilic two-Higgs-doublet model with hidden local U (1 ) symmetry, where active neutrinos are Dirac type, and a fermionic dark matter (DM) candidate is naturally induced as a result of remnant symmetry even after the spontaneous symmetry breaking. In addition, a physical Goldstone boson arises as a consequence of two types of gauge singlet bosons and contributes to the DM phenomenologies as well as an additional neutral gauge boson. Then, we analyze the relic density of DM within the safe range of direct detection searches and show the allowed region of dark matter mass.

  19. Self-Energy of Decuplet Baryons in Nuclear Matter

    OpenAIRE

    Ouellette, Stephen M.; Seki, Ryoichi

    1997-01-01

    We calculate, in chiral perturbation theory, the change in the self-energy of decuplet baryons in nuclear matter. These self-energy shifts are relevant in studies of meson-nucleus scattering and of neutron stars. Our results are leading order in an expansion in powers of the ratio of characteristic momenta to the chiral symmetry-breaking scale (or the nucleon mass). Included are contact diagrams generated by 4-baryon operators, which were neglected in earlier studies for the $\\Delta$ isomulti...

  20. Quark mean field theory and consistency with nuclear matter

    International Nuclear Information System (INIS)

    Dey, J.; Tomio, L.; Dey, M.; Frederico, T.

    1989-01-01

    1/N c expansion in QCD (with N c the number of colours) suggests using a potential from meson sector (e.g. Richardson) for baryons. For light quarks a σ field has to be introduced to ensure chiral symmetry breaking ( χ SB). It is found that nuclear matter properties can be used to pin down the χ SB-modelling. All masses, M Ν , m σ , m ω are found to scale with density. The equations are solved self consistently. (author)

  1. Nuclear magnetic resonance in low-symmetry superconductors

    Science.gov (United States)

    Cavanagh, D. C.; Powell, B. J.

    2018-01-01

    We consider the nuclear spin-lattice relaxation rate 1 /T1 in superconductors with accidental nodes, i.e., zeros of the order parameter that are not enforced by its symmetries. Such nodes in the superconducting gap are not constrained by symmetry to a particular position on the Fermi surface. We show, analytically and numerically, that a Hebel-Slichter-like peak occurs even in the absence of an isotropic component of the superconducting gap. For a gap with symmetry-required nodes the Fermi velocity at the node must point along the node. For accidental nodes this is not, in general, the case. This leads to additional terms in spectral function and hence the density of states. These terms lead to a logarithmic divergence in 1 /T1T at T →Tc- in models neglecting disorder and interactions [except for those leading to superconductivity; here T is temperature, Tc-=limδ→0(Tc-δ ) , and Tc is the critical temperature]. This contrasts with the usual Hebel-Slichter peak which arises from the coherence factors due to the isotropic component of the gap and leads to a divergence in 1 /T1T somewhat below Tc. The divergence in superconductors with accidental nodes is controlled by either disorder or additional electron-electron interactions. However, for reasonable parameters, neither of these effects removes the peak altogether. This provides a simple experimental method to distinguish between symmetry-required and accidental nodes.

  2. Density content of nuclear symmetry energy from nuclear observables

    Indian Academy of Sciences (India)

    mail: ... The asymmetry arises due to the requirements that ... nuclear binding energies and the nuclear drip lines and has a crucial role in determining ... neutron-skin thickness based on covariance analysis [6] once again yields a strong cor-.

  3. Nuclear physics: the core of matter, the fuel of stars

    International Nuclear Information System (INIS)

    Schiffer, J.P.

    1999-01-01

    Dramatic progress has been made in all branches of physics since the National Research Council's 1986 decadal survey of the field. The Physics in a New Era series explores these advances and looks ahead to future goals. The series includes assessments of the major subfields and reports on several smaller subfields, and preparation has begun on an overview volume on the unity of physics, its relationships to other fields, and its contributions to national needs. Nuclear Physics is the latest volume of the series. The book describes current activity in understanding nuclear structure and symmetries, the behavior of matter at extreme densities, the role of nuclear physics in astrophysics and cosmology, and the instrumentation and facilities used by the field. It makes recommendations on the resources needed for experimental and theoretical advances in the coming decade. Nuclear physics addresses the nature of matter making up 99.9 percent of the mass of our everyday world. It explores the nuclear reactions that fuel the stars, including our Sun, which provides the energy for all life on Earth. The field of nuclear physics encompasses some 3,000 experimental and theoretical researchers who work at universities and national laboratories across the United States, as well as the experimental facilities and infrastructure that allow these researchers to address the outstanding scientific questions facing us. This report provides an overview of the frontiers of nuclear physics as we enter the next millennium, with special attention to the state of the science in the United States.The current frontiers of nuclear physics involve fundamental and rapidly evolving issues. One is understanding the structure and behavior of strongly interacting matter in terms of its basic constituents, quarks and gluons, over a wide range of conditions - from normal nuclear matter to the dense cores of neutron stars, and to the Big Bang that was the birth of the universe. Another is to describe

  4. Density slope of the nuclear symmetry energy from the neutron skin thickness of heavy nuclei

    International Nuclear Information System (INIS)

    Chen Liewen; Ko Che Ming; Xu Jun; Li Baoan

    2010-01-01

    Expressing explicitly the parameters of the standard Skyrme interaction in terms of the macroscopic properties of asymmetric nuclear matter, we show in the Skyrme-Hartree-Fock approach that unambiguous correlations exist between observables of finite nuclei and nuclear matter properties. We find that existing data on neutron skin thickness Δr np of Sn isotopes give an important constraint on the symmetry energy E sym (ρ 0 ) and its density slope L at saturation density ρ 0 . Combining these constraints with those from recent analyses of isospin diffusion and the double neutron/proton ratio in heavy-ion collisions at intermediate energies leads to a more stringent limit on L approximately independent of E sym (ρ 0 ). The implication of these new constraints on the Δr np of 208 Pb as well as the core-crust transition density and pressure in neutron stars is discussed.

  5. Quasiparticle interaction in nuclear matter

    International Nuclear Information System (INIS)

    Poggioli, R.S.; Jackson, A.D.

    1975-07-01

    A microscopic calculation of the quasiparticle interaction in nuclear matter is detailed. In order to take especial care of the contributions from the low momentum states, a model space is introduced. Excluded from the model space, the high momentum states are absorbed into the model interaction. Brueckner theory suggests the choice of a truncated G-matrix as a good approximation for this model interaction. A simple perturbative approach is attempted within the model space. The calculated quasiparticle interaction is consistent with experimental results. (11 tables, 14 figures)

  6. Neutrino masses, dark matter and leptogenesis with U(1) B - L gauge symmetry

    Science.gov (United States)

    Geng, Chao-Qiang; Okada, Hiroshi

    2018-06-01

    We propose a model with an U(1) B - L gauge symmetry, in which small neutrino masses, dark matter and the matter-antimatter asymmetry in the Universe can be simultaneously explained. In particular, the neutrino masses are generated radiatively, while the matter-antimatter asymmetry is led by the leptogenesis mechanism, at TeV scale. We also explore allowed regions of the model parameters and discuss some phenomenological effects, including lepton flavor violating processes.

  7. Quantum hadrodynamic and nuclear matter

    International Nuclear Information System (INIS)

    Serot, B.D.

    1984-01-01

    The properties of infinite nuclear matter are studied in the model relativistic quantum field theory of Walecka. Neutral scalar and vector meson exchange reproduces the basic Lorentz structure of the observed nucleon-nucleon interaction, and the consequences of this structure are studied in detail. In the mean-field approximation, nuclear saturation involves a cancellation between large attractive and repulsive components in the average potential energy. The attractive scalar field decreases the nucleon mass significantly, and the strong vector repulsion implies a stiff high-density equation of state. Corrections to the mean-field approach arising from vacuum fluctuations, self-consistent nucleon exchange, and two-nucleon correlations are examined. These have a small effect on the condensed meson fields but may produce significant changes in the binding energy. Corrections to the mean-field equation of state are small at high density

  8. Phase transition from nuclear matter to color superconducting quark matter

    Energy Technology Data Exchange (ETDEWEB)

    Bentz, W. E-mail: bentz@keyaki.cc.u-tokai.ac.jp; Horikawa, T.; Ishii, N.; Thomas, A.W

    2003-06-02

    We construct the nuclear and quark matter equations of state at zero temperature in an effective quark theory (the Nambu-Jona-Lasinio model), and discuss the phase transition between them. The nuclear matter equation of state is based on the quark-diquark description of the single nucleon, while the quark matter equation of state includes the effects of scalar diquark condensation (color superconductivity). The effect of diquark condensation on the phase transition is discussed in detail.

  9. Nuclear interactions and hadronic matter

    International Nuclear Information System (INIS)

    Petrovici, Mihai; Pop, Amalia; Stoicea, Gabriel; Berceanu, Ionela; Moisa, Dorin; Petris, Mariana; Simion, Victor; Aiftimiei, Cristina; Cruceru, Ilie; Ciobanu, Mircea; Catanescu, Vasile; Caragheorgheopol; Gheorghe

    2002-01-01

    The new generation of heavy ion accelerators and complex experimental devices, developed in the last two decades, give access to new information concerning the dynamics of nuclear collisions and allow to obtain and study in the laboratory the nuclear matter under extreme conditions of density and temperature. Of special interest is the intermediate energy region where the reactions are dominated by the competition between the mean field and nucleon-nucleon interaction. Fundamental aspects of nuclear reaction studies are probed at different instants of a nuclear collision. One can learn about the transport properties of nuclear matter in pure nucleonic regime and understand the modification of the nucleon-nucleon cross section due to various in-medium effects: density effects, effective mass, quantum effects, three-body interactions. With increasing energy, fast particle emission associated with direct nucleon-nucleon collisions in the first steps of the reaction come into play too. At higher energy, flow measurements are crucial tests of the influence of medium effects by probing the elastic part of the nucleon-nucleon collisions. On the other side, at higher incident energies, the characteristics of the nuclear equation of state (EoS) can be studied if local thermal and chemical equilibrium turns out to be established. Understanding of the properties of the nuclear matter in extreme conditions is a fundamental goal. The EoS is also an essential ingredient in the description of the massive stars leading to supernova explosion and neutron star formation. Experimental studies of such aspects needs experimental devices of high complexity which can detect and identify event by event all products coming out from heavy ion interactions at intermediate, relativistic and ultra-relativistic energies, having as complete as possible information on their mass, charge, velocity vector. CHIMERA and FOPI are such devices for intermediate and relativistic energy, respectively. Our

  10. Normal or abnormal isospin-fractionation as a qualitative probe of nuclear symmetry energy at supradensities

    International Nuclear Information System (INIS)

    Guo, Wenmei; Yong, Gaochan; Wang, Yongjia; Li, Qingfeng; Zhang, Hongfei; Zuo, Wei

    2014-01-01

    Within two different frameworks of isospin-dependent transport model, effect of nuclear symmetry energy at supradensities on the isospin-fractionation (IsoF) was investigated. With positive/negative symmetry potential at supradensities (i.e., values of symmetry energy increase/decrease with density above saturation density), for energetic nucleons, the value of neutron to proton ratio of free nucleons is larger/smaller than that of bound nucleon fragments. Compared with extensively studied quantitative observables of nuclear symmetry energy, the normal or abnormal isospin-fractionation of energetic nucleons can be a qualitative probe of nuclear symmetry energy at supradensities

  11. Dark matter stability and one-loop neutrino mass generation based on Peccei-Quinn symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Suematsu, Daijiro [Kanazawa University, Institute for Theoretical Physics, Kanazawa (Japan)

    2018-01-15

    We propose a model which is a simple extension of the KSVZ invisible axion model with an inert doublet scalar. Peccei-Quinn symmetry forbids tree-level neutrino mass generation and its remnant Z{sub 2} symmetry guarantees dark matter stability. The neutrino masses are generated by one-loop effects as a result of the breaking of Peccei-Quinn symmetry through a nonrenormalizable interaction. Although the low energy effective model coincides with an original scotogenic model which contains right-handed neutrinos with large masses, it is free from the strong CP problem. (orig.)

  12. Dark matter stability and one-loop neutrino mass generation based on Peccei-Quinn symmetry

    Science.gov (United States)

    Suematsu, Daijiro

    2018-01-01

    We propose a model which is a simple extension of the KSVZ invisible axion model with an inert doublet scalar. Peccei-Quinn symmetry forbids tree-level neutrino mass generation and its remnant Z_2 symmetry guarantees dark matter stability. The neutrino masses are generated by one-loop effects as a result of the breaking of Peccei-Quinn symmetry through a nonrenormalizable interaction. Although the low energy effective model coincides with an original scotogenic model which contains right-handed neutrinos with large masses, it is free from the strong CP problem.

  13. Soft CP violation and the global matter-antimatter symmetry of the universe

    Science.gov (United States)

    Senjanovic, G.; Stecker, F. W.

    1980-01-01

    Scenarios for baryon production are considered within the context of SU(5) and SO(10) grand unified theories where CP violation arises spontaneously. The spontaneous CP symmetry breaking then results in a matter-antimatter domain structure in the universe. Two possible, distinct types of theories of soft CP violation are defined. In the first type the CP nonconservation originates only from the breaking of SU(2) sub L X U(1) symmetry, and in the second type, even at the unification temperature scale, CP violation can emerge as a result of symmetry breaking by the vacuum expectation values of the superheavy Higgs sector scalars.

  14. Collider and dark matter searches in the inert doublet model from Peccei-Quinn symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Alexandre [Departamento de Ciências Exatas e da Terra, Universidade Federal de São Paulo,Diadema-SP, 09972-270 (Brazil); Camargo, Daniel A.; Dias, Alex G. [Universidade Federal do ABC, Centro de Ciências Naturais e Humanas,09210-580, Santo André-SP (Brazil); Longas, Robinson [Instituto de Física, Universidad de Antioquia,Calle 70 No. 52-21, Medellín (Colombia); Nishi, Celso C. [Universidade Federal do ABC, Centro de Matemática, Computação e Cognição Naturais,09210-580, Santo André-SP (Brazil); Queiroz, Farinaldo S. [Max-Planck-Institut fur Kernphysik,Saupfercheckweg 1, 69117 Heidelberg (Germany)

    2016-10-04

    Weakly Interacting Massive Particles (WIMPs) and axions are arguably the most compelling dark matter candidates in the literature. Could they coexist as dark matter particles? More importantly, can they be incorporated in a well motivated framework in agreement with experimental data? In this work, we show that this two component dark matter can be realized in the Inert Doublet Model in an elegant and natural manner by virtue of the spontaneous breaking of a Peccei-Quinn U(1){sub PQ} symmetry into a residual ℤ{sub 2} symmetry. The WIMP stability is guaranteed by the ℤ{sub 2} symmetry and a new dark matter component, the axion, arises. There are two interesting outcomes: (i) vector-like quarks needed to implement the Peccei-Quinn symmetry in the model may act as a portal between the dark sector and the SM fields with a supersymmetry-type phenomenology at colliders; (ii) two-component Inert Doublet Model re-opens the phenomenologically interesting 100–500 GeV mass region. We show that the model can successfully realize a two component dark matter framework and at the same time avoid low and high energy physics constraints such as monojet and dijet plus missing energy, as well as indirect and direct dark matter detection bounds.

  15. Dark matter model with non-Abelian gauge symmetry

    International Nuclear Information System (INIS)

    Zhang Hao; Li Chongsheng; Cao Qinghong; Li Zhao

    2010-01-01

    We propose a dark-matter model in which the dark sector is gauged under a new SU(2) group. The dark sector consists of SU(2) dark gauge fields, two triplet dark Higgs fields, and two dark fermion doublets (dark-matter candidates in this model). The dark sector interacts with the standard model sector through kinetic and mass mixing operators. The model explains both PAMELA and Fermi LAT data very well and also satisfies constraints from both the dark-matter relic density and standard model precision observables. The phenomenology of the model at the LHC is also explored.

  16. Nuclear matter from effective quark-quark interaction.

    Science.gov (United States)

    Baldo, M; Fukukawa, K

    2014-12-12

    We study neutron matter and symmetric nuclear matter with the quark-meson model for the two-nucleon interaction. The Bethe-Bruckner-Goldstone many-body theory is used to describe the correlations up to the three hole-line approximation with no extra parameters. At variance with other nonrelativistic realistic interactions, the three hole-line contribution turns out to be non-negligible and to have a substantial saturation effect. The saturation point of nuclear matter, the compressibility, the symmetry energy, and its slope are within the phenomenological constraints. Since the interaction also reproduces fairly well the properties of the three-nucleon system, these results indicate that the explicit introduction of the quark degrees of freedom within the considered constituent quark model is expected to reduce the role of three-body forces.

  17. Probing the nuclear symmetry energy at high densities with nuclear reactions

    Science.gov (United States)

    Leifels, Y.

    2017-11-01

    The nuclear equation of state is a topic of highest current interest in nuclear structure and reactions as well as in astrophysics. The symmetry energy is the part of the equation of state which is connected to the asymmetry in the neutron/proton content. During recent years a multitude of experimental and theoretical efforts on different fields have been undertaken to constraint its density dependence at low densities but also above saturation density (ρ_0=0.16 fm ^{-3} . Conventionally the symmetry energy is described by its magnitude S_v and the slope parameter L , both at saturation density. Values of L = 44 -66MeV and S_v=31 -33MeV have been deduced in recent compilations of nuclear structure, heavy-ion reaction and astrophysics data. Apart from astrophysical data on mass and radii of neutron stars, heavy-ion reactions at incident energies of several 100MeV are the only means do access the high density behaviour of the symmetry energy. In particular, meson production and collective flows upto about 1 AGeV are predicted to be sensitive to the slope of the symmetry energy as a function of density. From the measurement of elliptic flow of neutrons with respect to charged particles at GSI, a more stringent constraint for the slope of the symmetry energy at supra-saturation densities has been deduced. Future options to reach even higher densities will be discussed.

  18. Nuclear matter as an MIT bag crystal

    International Nuclear Information System (INIS)

    Zhang, Q.; Derreth, C.; Schaefer, A.; Greiner, W.

    1986-01-01

    An MIT bag crystal model of nuclear matter is formulated. The energy bands of the quarks are calculated as a function of the overlap between adjacent bags. A clear indication of substantial overlap is found. Accordingly, infinite nuclear matter is more similar to a quark gas than to a nucleonic structure. (author)

  19. Quasiparticle pole strength in nuclear matter

    International Nuclear Information System (INIS)

    Poggioli, R.S.; Jackson, A.D.

    1975-01-01

    It is argued that single-particle-like behavior in nuclear matter is much less probable than Brueckner theory suggests. In particular, the quasiparticle pole strength is evaluated for nuclear matter and it is shown that, contrary to the spirit of Brueckner theory, low momentum states play a crucial role in determining the magnitude of z/sub k/sub F/. (auth)

  20. Structure of the subsaturated nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Toshiki; Maruyama, Tomoyuki; Chiba, Satoshi; Iwamoto, Akira [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Niita, Koji; Oyamatsu, Kazuhiro

    1998-07-01

    Quantum molecular dynamics is applied to study the ground state and excited state properties of nuclear matter at subsaturation densities. The structure of nuclear matter at subsaturation density shows some exotic shapes with variation of the density. However, the structure in our result is rather irregular compared to those of previous works due to the existence of local minimum configurations. (author)

  1. Distinguishing Dark Matter Stabilization Symmetries at Hadron Colliders with Mass Variables

    CERN Document Server

    Kim, Heejoo

    2017-01-01

    Cosmological and astrophysical observations, yet all gravitational, suggest that there exists stable matter, so-called dark matter (DM), in our universe, which is exerting gravity but hardly detectable in relevant experiments. The stability of DM indicates that DM needs to be either massless or protected by a new symmetry (henceforth called DM stabilizing symmetry) preventing its decay. It turns out that cosmological consideration suggests that massless particles be unlikely to constitute a dominant portion of the DM, motivating DM candidates with a sizable mass. While a massive particle, in general, may decay into lighter particles, the charge conservation associated with the symmetry ensures the stability of DM. There is a tremendous amount of effort in the search for DM candidates and it also comprises collider experiments. DM is, by definition, hard to be detected at colliders such as the LHC. So, its existence may be inferred from (visible) Standard Model (SM) particles emitted from a decay chain of a...

  2. Properties of nuclear and neutron matter using D1 Gogny force

    International Nuclear Information System (INIS)

    Mansour, H.M.M.; Ramadan, Kh.A.; Hammad, M.

    2004-01-01

    In the present work, we investigate the equation of state of hot and cold nuclear and neutron matter using the Gogny effective interaction. The binding energy per particle, symmetry energies, free energy, and pressure are calculated as a function of the density ρ, fm -3 , for the nuclear and neutron matter. The results are comparable with previous theoretical estimates using the Seyler-Blanchard effective interaction and the famous calculation of Friedman and Pandharipande using a realistic interaction

  3. Isospin-dependent properties of asymmetric nuclear matter in relativistic mean field models

    Science.gov (United States)

    Chen, Lie-Wen; Ko, Che Ming; Li, Bao-An

    2007-11-01

    Using various relativistic mean-field models, including nonlinear ones with meson field self-interactions, models with density-dependent meson-nucleon couplings, and point-coupling models without meson fields, we have studied the isospin-dependent bulk and single-particle properties of asymmetric nuclear matter. In particular, we have determined the density dependence of nuclear symmetry energy from these different relativistic mean-field models and compared the results with the constraints recently extracted from analyses of experimental data on isospin diffusion and isotopic scaling in intermediate energy heavy-ion collisions as well as from measured isotopic dependence of the giant monopole resonances in even-A Sn isotopes. Among the 23 parameter sets in the relativistic mean-field model that are commonly used for nuclear structure studies, only a few are found to give symmetry energies that are consistent with the empirical constraints. We have also studied the nuclear symmetry potential and the isospin splitting of the nucleon effective mass in isospin asymmetric nuclear matter. We find that both the momentum dependence of the nuclear symmetry potential at fixed baryon density and the isospin splitting of the nucleon effective mass in neutron-rich nuclear matter depend not only on the nuclear interactions but also on the definition of the nucleon optical potential.

  4. The Symmetry, or Lack of it, Between Matter and Antimatter

    International Nuclear Information System (INIS)

    Quinn, Helen R

    2001-01-01

    The subject of antimatter and its relationship to matter began with Dirac, with the publication of his famous equation in 1928.[1] Today it remains an active area of particle physics. The dominant issue for a number of major experimental programs is to decipher the nature of the difference in the laws of physics for matter and for antimatter. This has been a central issue of my work in the past few years, and a recurring theme in earlier work. Hence when I was asked to review a subject of my choice for this conference, this was the obvious choice for me; a very different focus from any other talk here. (Also, it allows me along the way make reference to both pieces of work for which I was cited in my Dirac award, though neither is central to this story.) Given this opportunity, I decided to start with the early history of the subject, both in honor of Dirac and his essential role in it, and because it is fascinating to look back and see how understanding evolves

  5. Imprints of the nuclear symmetry energy on gravitational waves from deformed pulsars

    International Nuclear Information System (INIS)

    Li, Baoan; Krastev, P.G.

    2010-01-01

    The density dependence of nuclear symmetry energy is a critical input for understanding many interesting phenomena in astrophysics and cosmology. We report here effects of the nuclear symmetry energy partially constrained by terrestrial laboratory experiments on the strength of gravitational waves (GWs) from deformed pulsars at both low and high rotational frequencies. (author)

  6. On the Possible Links Between Electroweak Symmetry Breaking and Dark Matter

    International Nuclear Information System (INIS)

    Hambye, Thomas; Tytgat, Michel H. G.

    2009-01-01

    The mechanism behind electroweak symmetry breaking (EWSB) and the nature of dark matter (DM) are currently very important issues in particle physics. Usually, in most models, these two issues are not or poorly connected. However, since a natural dark matter candidate is a weakly interacting massive particle or WIMP, with mass around the electroweak scale, it is clearly of interest to investigate the possibility that DM and EWSB are closely related. In the context of a very simple extension of the Standard Model, the Inert Doublet Model, we show that dark matter could play a crucial role in the breaking of the electroweak symmetry. In this model, dark matter is the lightest component of an inert scalar doublet which can induce dynamically electroweak symmetry breaking at one loop level. Moreover, in a large fraction of the parameter space of this model, the mass of the dark matter particle is essentially determined by the electroweak scale, so that the fact that the WIMP DM mass is around the electroweak scale is not a coincidence.

  7. Broken symmetries at the origin of matter, at the origin of life and at the origin of culture

    International Nuclear Information System (INIS)

    Klinken, J. van

    1998-01-01

    In earliest cosmic history the universe started with matter and not with antimatter. Shortly after the beginning the electroweak interaction - prominent in nuclear β decay - acted as a left-hander. Much later, in pre biotic evolution, optically left-handed amino acids determined the unique signature of following terrestrial organic life. Again ae- ons later, homo sapiens appears as predominantly right handed and creates cultures with many broken symmetries. Along these pathways of history it was essential that choices were made - left or right, matter or antimatter - but on several instances it seemed less relevant which choice were made. We think that biochirality occurred by global chance; perhaps by local necessity, but without causal links to the PCT theorem. In other cases - e.g. the standardization to right-handed screws - the choice will have been made by causal necessity. (author)

  8. Broken symmetries at the origin of matter, at the origin of life and at the origin of culture

    Energy Technology Data Exchange (ETDEWEB)

    Klinken, J. van [Kernfysisch Versneller Instituut, University of Groningen, Groningen (Netherlands)

    1998-01-01

    In earliest cosmic history the universe started with matter and not with antimatter. Shortly after the beginning the electroweak interaction - prominent in nuclear {beta} decay - acted as a left-hander. Much later, in pre biotic evolution, optically left-handed amino acids determined the unique signature of following terrestrial organic life. Again ae- ons later, homo sapiens appears as predominantly right handed and creates cultures with many broken symmetries. Along these pathways of history it was essential that choices were made - left or right, matter or antimatter - but on several instances it seemed less relevant which choice were made. We think that biochirality occurred by global chance; perhaps by local necessity, but without causal links to the PCT theorem. In other cases - e.g. the standardization to right-handed screws - the choice will have been made by causal necessity. (author) 14 refs, 8 figs, 1 tab

  9. Hyperon interactions in nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Dhar, Madhumita; Lenske, Horst [Institut fuer Theoretische Physik, Universitaet Giessen (Germany)

    2014-07-01

    Baryon-baryon interactions within the SU(3)-octet are investigated in free space and nuclear matter. A meson exchange model is used for determining the interaction. The Bethe-Salpeter equations are solved in a 3-D reduction scheme. In-medium effects have been incorporated by including a two particle Pauli projection operator in the scattering equation. The coupling of the various channels of total strangeness S=-1,-2 and conserved total charge is studied in detail. Calculations and the corresponding results are compared for using the isospin and the particle basis. Matrix elements are compared in detail, in particular discussing mixing effects of different hyperon channels. Special attention is paid to the physical thresholds. The density dependence of interaction is clearly seen in the variation of the in-medium low-energy parameters. The approach is compared to descriptions derived from chiral-EFT and other meson-exchange models e.g. the Nijmegen and the Juelich model.

  10. Inhomogeneous chiral symmetry breaking in isospin-asymmetric strong-interaction matter

    Energy Technology Data Exchange (ETDEWEB)

    Nowakowski, Daniel

    2017-07-01

    In this thesis we investigate the effects of an isospin asymmetry on inhomogeneous chiral symmetry breaking phases, which are characterized by spatially modulated quarkantiquark condensates. In order to determine the relevance of such phases for the phase diagram of strong-interaction matter, a two-flavor Nambu-Jona-Lasinio model is used to study the properties of the ground state of the system. Confirming the presence of inhomogeneous chiral symmetry breaking in isospin-asymmetric matter for a simple Chiral Density Wave, we generalize the modulation of the quark-antiquark pairs to more complicated shapes and study the effects of different degrees of flavor-mixing on the inhomogeneous phase at non-zero isospin asymmetry. Then, we investigate the occurrence of crystalline chiral symmetry breaking phases in charge-neutral matter, from which we determine the influence of crystalline phases on a quark star by calculating mass-radius sequences. Finally, our model is extended through color-superconducting phases and we study the interplay of these phases with inhomogeneous chiral-symmetry breaking at non-vanishing isospin asymmetry, before we discuss our findings.

  11. Quark mean field theory and consistency with nuclear matter

    International Nuclear Information System (INIS)

    Dey, J.; Dey, M.; Frederico, T.; Tomio, L.

    1990-09-01

    1/N c expansion in QCD (with N c the number of colours) suggests using a potential from meson sector (e.g. Richardson) for baryons. For light quarks a σ field has to be introduced to ensure chiral symmetry breaking ( χ SB). It is found that nuclear matter properties can be used to pin down the χ SB-modelling. All masses, M N , m σ , m ω are found to scale with density. The equations are solved self consistently. (author). 29 refs, 2 tabs

  12. No pion condensate in nuclear matter due to fluctuations

    International Nuclear Information System (INIS)

    Kleinert, H.

    1981-01-01

    We show that if pion condensation occurs in a mean-field theory of infinite nuclear matter, fluctuations completely prevent the formation of a condensate as well as of the associated Goldstone mode. Thus if an increase of opalescence should ever be observed experimentally, it is these fluctuations which are measured rather than the scattering on the Goldstone modes. They preserve isotopic symmetry and increase very smoothly as the density passes the formerly critical density. There are no discontinuities in any thermodynamic quantitiy. (orig.)

  13. Nuclear matter in relativistic mean field theory with isovector scalar meson.

    Energy Technology Data Exchange (ETDEWEB)

    Kubis, S.; Kutschera, M. [Institute of Nuclear Physics, Cracow (Poland)

    1996-12-01

    Relativistic mean field (RMF) theory of nuclear matter with the isovector scalar mean field corresponding to the {delta}-meson [a{sub 0}(980)] is studied. While the {delta}-meson field vanishes in symmetric nuclear matter, it can influence properties of asymmetric nuclear matter in neutron stars. The RMF contribution due to {delta}-field to the nuclear symmetry energy is negative. To fit the empirical value, E{sub s}{approx}30 MeV, a stronger {rho}-meson coupling is required than in absence of the {delta}-field. The energy per particle of neutron star matter is than larger at high densities than the one with no {delta}-field included. Also, the proton fraction of {beta}-stable matter increases. Splitting of proton and neutron effective masses due to the {delta}-field can affect transport properties of neutron star matter. (author). 4 refs, 6 figs.

  14. Nuclear matter in relativistic mean field theory with isovector scalar meson

    International Nuclear Information System (INIS)

    Kubis, S.; Kutschera, M.

    1996-12-01

    Relativistic mean field (RMF) theory of nuclear matter with the isovector scalar mean field corresponding to the δ-meson [a 0 (980)] is studied. While the δ-meson field vanishes in symmetric nuclear matter, it can influence properties of asymmetric nuclear matter in neutron stars. The RMF contribution due to δ-field to the nuclear symmetry energy is negative. To fit the empirical value, E s ∼30 MeV, a stronger ρ-meson coupling is required than in absence of the δ-field. The energy per particle of neutron star matter is than larger at high densities than the one with no δ-field included. Also, the proton fraction of β-stable matter increases. Splitting of proton and neutron effective masses due to the δ-field can affect transport properties of neutron star matter. (author). 4 refs, 6 figs

  15. Nuclear matter from chiral effective field theory

    International Nuclear Information System (INIS)

    Drischler, Christian

    2017-01-01

    Nuclear matter is an ideal theoretical system that provides key insights into the physics of different length scales. While recent ab initio calculations of medium-mass to heavy nuclei have demonstrated that realistic saturation properties in infinite matter are crucial for reproducing experimental binding energies and charge radii, the nuclear-matter equation of state allows tight constraints on key quantities of neutron stars. In the present thesis we take advantage of both aspects. Chiral effective field theory (EFT) with pion and nucleon degrees of freedom has become the modern low-energy approach to nuclear forces based on the symmetries of quantum chromodynamics, the fundamental theory of strong interactions. The systematic chiral expansion enables improvable calculations associated with theoretical uncertainty estimates. In recent years, chiral many-body forces were derived up to high orders, allowing consistent calculations including all many-body contributions at next-to-next-to-next-to-leading order (N 3 LO). Many further advances have driven the construction of novel chiral potentials with different regularization schemes. Here, we develop advanced methods for microscopic calculations of the equation of state of homogeneous nuclear matter with arbitrary proton-to-neutron ratio at zero temperature. Specifically, we push the limits of many-body perturbation theory (MBPT) considerations to high orders in the chiral and in the many-body expansion. To address the challenging inclusion of three-body forces, we introduce a new partial-wave method for normal ordering that generalizes the treatment of these contributions. We show improved predictions for the neutron-matter equation of state with consistent N 3 LO nucleon-nucleon (NN) plus three-nucleon (3N) potentials using MBPT up to third order and self-consistent Green's function theory. The latter also provides nonperturbative benchmarks for the many-body convergence. In addition, we extend the normal

  16. Nuclear matter from chiral effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Drischler, Christian

    2017-11-15

    Nuclear matter is an ideal theoretical system that provides key insights into the physics of different length scales. While recent ab initio calculations of medium-mass to heavy nuclei have demonstrated that realistic saturation properties in infinite matter are crucial for reproducing experimental binding energies and charge radii, the nuclear-matter equation of state allows tight constraints on key quantities of neutron stars. In the present thesis we take advantage of both aspects. Chiral effective field theory (EFT) with pion and nucleon degrees of freedom has become the modern low-energy approach to nuclear forces based on the symmetries of quantum chromodynamics, the fundamental theory of strong interactions. The systematic chiral expansion enables improvable calculations associated with theoretical uncertainty estimates. In recent years, chiral many-body forces were derived up to high orders, allowing consistent calculations including all many-body contributions at next-to-next-to-next-to-leading order (N{sup 3}LO). Many further advances have driven the construction of novel chiral potentials with different regularization schemes. Here, we develop advanced methods for microscopic calculations of the equation of state of homogeneous nuclear matter with arbitrary proton-to-neutron ratio at zero temperature. Specifically, we push the limits of many-body perturbation theory (MBPT) considerations to high orders in the chiral and in the many-body expansion. To address the challenging inclusion of three-body forces, we introduce a new partial-wave method for normal ordering that generalizes the treatment of these contributions. We show improved predictions for the neutron-matter equation of state with consistent N{sup 3}LO nucleon-nucleon (NN) plus three-nucleon (3N) potentials using MBPT up to third order and self-consistent Green's function theory. The latter also provides nonperturbative benchmarks for the many-body convergence. In addition, we extend the

  17. Nuclear moments as a probe of electronic structure in material, exotic nuclear structure and fundamental symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Matsuta, K., E-mail: matsuta@vg.phys.sci.osaka-u.ac.jp; Minamisono, T.; Mihara, M.; Fukuda, M. [Osaka Univ., Dept. of Physics (Japan); Zhu, Shengyun [CIAE (China); Masuda, Y. [High Energy Accelerator Research Organization (KEK) (Japan); Hatanaka, K. [Osaka Univ., RCNP (Japan); Yuan Daqing; Zheng Yongnan; Zuo Yi; Fang Ping; Zhou Dongmei [CIAE (China); Ohtsubo, T. [Niigata Univ., Dept. of Physics (Japan); Izumikawa, T. [Niigata Univ., RI Center (Japan); Momota, S. [Kochi Univ. of Technology (Japan); Nishimura, D. [Tokyo Univ. of Science (Japan); Matsumiya, R. [Osaka Univ., RCNP (Japan); Kitagawa, A.; Sato, S.; Kanazawa, M. [Nat. Inst. Radiological Sciences (Japan); Collaboration: Osaka-CIAE-NIRS-Niigata-Kochi-LBL Collaboration; and others

    2013-05-15

    We report our studies in various fields of Physics through nuclear moments utilizing the {beta}-NMR technique, including material sciences, nuclear structures and fundamental symmetries. Especially, we focus on the recent progress in the studies on the electronic structure in Pt through Knight shifts of various impurities, lattice locations of impurities, electric field gradients, the analysis of nuclear spin in terms of its components, anomaly in the spin expectation value for {sup 9}C-{sup 9}Li mirror pair, the G-parity conservation law, and the Ramsey resonance on UCN for future neutron EDM measurements.

  18. Isospin and momentum dependence of liquid-gas phase transition in hot asymmetric nuclear matter

    International Nuclear Information System (INIS)

    Xu, Jun; Ma, Hongru; Chen, Liewen; Li, Baoan

    2008-01-01

    The liquid-gas phase transition in hot neutron-rich nuclear matter is investigated within a self-consistent thermal model using different interactions with or without isospin and/or momentum dependence. The boundary of the phase-coexistence region is shown to be sensitive to the density dependence of the nuclear symmetry energy as well as the isospin and momentum dependence of the nuclear interaction. (author)

  19. Symmetric nuclear matter with Skyrme interaction

    International Nuclear Information System (INIS)

    Manisa, K.; Bicer, A.; Atav, U.

    2010-01-01

    The equation of state (EOS) and some properties of symmetric nuclear matter, such as the saturation density, saturation energy and incompressibility, are obtained by using Skyrme's density-dependent effective nucleon-nucleon interaction.

  20. Skyrmions, dense matter and nuclear forces

    International Nuclear Information System (INIS)

    Pethick, C.J.

    1984-12-01

    A simple introduction to a number of properties of Skyrme's chiral soliton model of baryons is given. Some implications of the model for dense matter and for nuclear interactions are discussed. (orig.)

  1. Soliton matter as a model of dense nuclear matter

    International Nuclear Information System (INIS)

    Glendenning, N.K.

    1985-01-01

    We employ the hybrid soliton model of the nucleon consisting of a topological meson field and deeply bound quarks to investigate the behavior of the quarks in soliton matter as a function of density. To organize the calculation, we place the solitons on a spatial lattice. The model suggests the transition of matter from a color insulator to a color conductor above a critical density of a few times normal nuclear density. 9 references, 5 figures

  2. Quark seesaw mechanism, dark U (1 ) symmetry, and the baryon-dark matter coincidence

    Science.gov (United States)

    Gu, Pei-Hong; Mohapatra, Rabindra N.

    2017-09-01

    We attempt to understand the baryon-dark matter coincidence problem within the quark seesaw extension of the standard model where parity invariance is used to solve the strong C P problem. The S U (2 )L×S U (2 )R×U (1 )B -L gauge symmetry of this model is extended by a dark U (1 )X group plus inclusion of a heavy neutral vector-like fermion χL ,R charged under the dark group which plays the role of dark matter. All fermions are Dirac type in this model. Decay of heavy scalars charged under U (1 )X leads to simultaneous asymmetry generation of the dark matter and baryons after sphaleron effects are included. The U (1 )X group not only helps to stabilize the dark matter but also helps in the elimination of the symmetric part of the dark matter via χ -χ ¯ annihilation. For dark matter mass near the proton mass, it explains why the baryon and dark matter abundances are of similar magnitude (the baryon-dark matter coincidence problem). This model is testable in low threshold (sub-keV) direct dark matter search experiments.

  3. Gravitational matter-antimatter asymmetry and four-dimensional Yang-Mills gauge symmetry

    Science.gov (United States)

    Hsu, J. P.

    1981-01-01

    A formulation of gravity based on the maximum four-dimensional Yang-Mills gauge symmetry is studied. The theory predicts that the gravitational force inside matter (fermions) is different from that inside antimatter. This difference could lead to the cosmic separation of matter and antimatter in the evolution of the universe. Moreover, a new gravitational long-range spin-force between two fermions is predicted, in addition to the usual Newtonian force. The geometrical foundation of such a gravitational theory is the Riemann-Cartan geometry, in which there is a torsion. The results of the theory for weak fields are consistent with previous experiments.

  4. Past and present of nuclear matter

    International Nuclear Information System (INIS)

    Ritter, H.G.

    1994-05-01

    The subject of nuclear matter is interesting for many fields of physics ranging from condensed matter to lattice QCD. Knowing its properties is important for our understanding of neutron stars, supernovae and cosmology. Experimentally, we have the most precise information on ground state nuclear matter from the mass formula and from the systematics of monopole vibrations. This gives us the ground state density, binding energy and the compression modulus k at ground state density. However, those methods can not be extended towards the regime we are most interested in, the regime of high density and high temperature. Additional information can be obtained from the observation of neutron stars and of supernova explosions. In both cases information is limited by the rare events that nature provides for us. High energy heavy ion collisions, on the other hand, allow us to perform controlled experiments in the laboratory. For a very short period in time we can create a system that lets us study nuclear matter properties. Density and temperature of the system depend on the mass of the colliding nuclei, on their energy and on the impact parameter. The system created in nuclear collisions has at best about 200 constituents not even close to infinite nuclear matter, and it lasts only for collision times of ∼ 10 -22 sec, not an ideal condition for establishing any kind of equilibrium. Extended size and thermal and chemical equilibrium, however, axe a priori conditions of nuclear matter. As a consequence we need realistic models that describe the collision dynamics and non-equilibrium effects in order to relate experimental observables to properties of nuclear matter. The study of high energy nuclear collisions started at the Bevalac. I will try to summarize the results from the Bevalac studies, the highlights of the continuing program, and extension to higher energies without claiming to be complete

  5. Nuclear matter as a nonlinear optical medium

    International Nuclear Information System (INIS)

    Hefter, E.F.; Papini, G.

    1986-01-01

    This paper is concerned with the question whether nuclear matter should be considered as a nonlinear optical medium. Taking, in a pragmatic way, quality and quantity of the results of well-established linear and nonlinear approaches as the main criterion, an affirmative answer is seen to be consistent with long-standing practices adhered to in nuclear physics

  6. Nuclear matter in all its states

    International Nuclear Information System (INIS)

    Bonche, P.; Cugnon, J.; Babinet, R.; Mathiot, J.F.; Van Hove, L.; Buenerd, M.; Galin, J.; Lemaire, M.C.; Meyer, J.

    1986-01-01

    This report includes the nine lectures which have been presented at the Joliot-Curie School of Nuclear Physics in 1985. The subjects covered are the following: thermodynamic description of excited nuclei; heavy ion reactions at high energy (theoretical approach); heavy ion reactions at high energy (experimental approach); relativistic nuclear physics and quark effects in nuclei; quark matter; nuclear compressibility and its experimental determinations; hot nuclei; anti p-nucleus interaction; geant resonances at finite temperature [fr

  7. Relativity damps OPEP in nuclear matter

    International Nuclear Information System (INIS)

    Banerjee, M.K.

    1998-06-01

    Using a relativistic Dirac-Brueckner analysis the OPEP contribution to the ground state energy of nuclear matter is studied. In the study the pion is derivative-coupled. The author finds that the role of the tensor force in the saturation mechanism is substantially reduced compared to its dominant role in a usual nonrelativistic treatment. He shows that the damping of derivative-coupled OPEP is actually due to the decrease of M * /M with increasing density. He points out that if derivative-coupled OPEP is the preferred form of nuclear effective lagrangian nonrelativistic treatment of nuclear matter is in trouble. Lacking the notion of M * it cannot replicate the damping. He suggests an examination of the feasibility of using pseudoscalar coupled πN interaction before reaching a final conclusion about nonrelativistic treatment of nuclear matter

  8. Properties of nuclear matter from macroscopic–microscopic mass formulas

    Directory of Open Access Journals (Sweden)

    Ning Wang

    2015-12-01

    Full Text Available Based on the standard Skyrme energy density functionals together with the extended Thomas–Fermi approach, the properties of symmetric and asymmetric nuclear matter represented in two macroscopic–microscopic mass formulas: Lublin–Strasbourg nuclear drop energy (LSD formula and Weizsäcker–Skyrme (WS* formula, are extracted through matching the energy per particle of finite nuclei. For LSD and WS*, the obtained incompressibility coefficients of symmetric nuclear matter are K∞=230±11 MeV and 235±11 MeV, respectively. The slope parameter of symmetry energy at saturation density is L=41.6±7.6 MeV for LSD and 51.5±9.6 MeV for WS*, respectively, which is compatible with the liquid-drop analysis of Lattimer and Lim [4]. The density dependence of the mean-field isoscalar and isovector effective mass, and the neutron–proton effective masses splitting for neutron matter are simultaneously investigated. The results are generally consistent with those from the Skyrme Hartree–Fock–Bogoliubov calculations and nucleon optical potentials, and the standard deviations are large and increase rapidly with density. A better constraint for the effective mass is helpful to reduce uncertainties of the depth of the mean-field potential.

  9. Symmetry rules for the indirect nuclear spin-spin coupling tensor revisited

    Science.gov (United States)

    Buckingham, A. D.; Pyykkö, P.; Robert, J. B.; Wiesenfeld, L.

    The symmetry rules of Buckingham and Love (1970), relating the number of independent components of the indirect spin-spin coupling tensor J to the symmetry of the nuclear sites, are shown to require modification if the two nuclei are exchanged by a symmetry operation. In that case, the anti-symmetric part of J does not transform as a second-rank polar tensor under symmetry operations that interchange the coupled nuclei and may be called an anti-tensor. New rules are derived and illustrated by simple molecular models.

  10. Effect of the momentum dependence of nuclear symmetry potential on the transverse and elliptic flows

    International Nuclear Information System (INIS)

    Zhang, Lei; Du, Yun; Zuo, Guang-Hua; Gao, Yuan; Yong, Gao-Chan

    2012-01-01

    In the framework of the isospin-dependent Boltzmann-Uehling-Uhlenbeck transport model, the effect of the momentum dependence of nuclear symmetry potential on nuclear transverse and elliptic flows in the neutron-rich reaction 132 Sn+ 124 Sn at a beam energy of 400MeV/nucleon is studied. We find that the momentum dependence of nuclear symmetry potential affects the rapidity distribution of the free neutron to proton ratio, the neutron and the proton transverse flows as a function of rapidity. The momentum dependence of nuclear symmetry potential affects the neutron-proton differential transverse flow more evidently than the difference of neutron and proton transverse flows as well as the difference of proton and neutron elliptic flows. It is thus better to probe the symmetry energy by using the difference of neutron and proton flows since the momentum dependence of nuclear symmetry potential is still an open question. And it is better to probe the momentum dependence of nuclear symmetry potential by using the neutron-proton differential transverse flow the rapidity distribution of the free neutron to proton ratio. (orig.)

  11. Ambiguities about infinite nuclear matter

    International Nuclear Information System (INIS)

    Fabre de la Ripelle, M.

    1978-01-01

    Exact solutions of the harmonic-oscillator and infinite hyperspherical well are given for the ground state of a infinitely heavy (N=Z) nucleus. The density of matter is a steadily decreasing function. The kinetic energy per particle is 12% smaller than the one predicted by the Fermi sea

  12. Effects of isospin and momentum dependent interactions on thermal properties of asymmetric nuclear matter

    International Nuclear Information System (INIS)

    Xu Jun; Ma Hongru; Chen Liewen; Li Baoan

    2008-01-01

    Thermal properties of asymmetric nuclear matter are studied within a self-consistent thermal model using an isospin and momentum-dependent interaction (MDI) constrained by the isospin diffusion data in heavy-ion collisions, a momentum-independent interaction (MID), and an isoscalar momentum-dependent interaction (eMDYI). In particular, we study the temperature dependence of the isospin-dependent bulk and single-particle properties, the mechanical and chemical instabilities, and liquid-gas phase transition in hot asymmetric nuclear matter. Our results indicate that the temperature dependence of the equation of state and the symmetry energy are not so sensitive to the momentum dependence of the interaction. The symmetry energy at fixed density is found to generally decrease with temperature and for the MDI interaction the decrement is essentially due to the potential part. It is further shown that only the low momentum part of the single-particle potential and the nucleon effective mass increases significantly with temperature for the momentum-dependent interactions. For the MDI interaction, the low momentum part of the symmetry potential is significantly reduced with increasing temperature. For the mechanical and chemical instabilities as well as the liquid-gas phase transition in hot asymmetric nuclear matter, our results indicate that the boundaries of these instabilities and the phase-coexistence region generally shrink with increasing temperature and are sensitive to the density dependence of the symmetry energy and the isospin and momentum dependence of the nuclear interaction, especially at higher temperatures

  13. Isospin-dependent properties of asymmetric nuclear matter in relativistic mean-field models

    OpenAIRE

    Chen, Lie-Wen; Ko, Che Ming; Li, Bao-An

    2007-01-01

    Using various relativistic mean-field models, including the nonlinear ones with meson field self-interactions, those with density-dependent meson-nucleon couplings, and the point-coupling models without meson fields, we have studied the isospin-dependent bulk and single-particle properties of asymmetric nuclear matter. In particular, we have determined the density dependence of nuclear symmetry energy from these different relativistic mean-field models and compare the results with the constra...

  14. Kaon Condensation in Neutron Stars and High Density Behaviour of Nuclear Symmetry Energy

    International Nuclear Information System (INIS)

    Kubis, S.; Kutschera, M.

    1999-01-01

    We study the influence of a high density behaviour of the nuclear symmetry energy on a kaon condensation in neutron stars. We find that the symmetry energy typical for several realistic nuclear potentials, which decreases at high densities, inhibits kaon condensation for weaker kaon-nucleon couplings at any density. There exists a threshold coupling above which the kaon condensate forms at densities exceeding some critical value. This is in contrast to the case of rising symmetry energy, as e.g. for relativistic mean field models, when the kaon condensate can form for any coupling at a sufficiently high density. Properties of the condensate are also different in both cases. (author)

  15. Kaon Condensation in Neutron Stars and High Density Behaviour of Nuclear Symmetry Energy

    International Nuclear Information System (INIS)

    Kubis, S.; Kutschera, M.

    1999-04-01

    We study the influence of a high density behaviour of the nuclear symmetry energy on a kaon condensation in neutron stars. We find that the symmetry energy typical for several realistic nuclear potentials, which decreases at high densities, inhibits kaon condensation for weaker kaon-nucleon couplings at any density. There exists a threshold coupling above which the kaon condensate forms at densities exceeding some critical value. This is in contrast to the case of rising symmetry energy, as e.g. for relativistic mean field models, when the kaon condensate can form for any coupling at a sufficiently high density. Properties of the condensate are also different in both cases

  16. Symmetry breaking, and the effect of matter density on neutrino oscillation

    Science.gov (United States)

    Mohseni Sadjadi, H.; Khosravi Karchi, A. P.

    2018-04-01

    A proposal for the neutrino mass, based on neutrino-scalar field interaction, is introduced. The scalar field is also non-minimally coupled to the Ricci scalar, and hence relates the neutrino mass to the matter density. In a dense region, the scalar field obeys the Z2 symmetry, and the neutrino is massless. In a dilute region, the Z2 symmetry breaks and neutrino acquires mass from the non-vanishing expectation value of the scalar field. We consider this scenario in the framework of a spherical dense object whose outside is a dilute region. In this background, we study the neutrino flavors oscillation, along with the consequences of the theory on oscillation length and MSW effect. This preliminary model may shed some lights on the existing anomalies within the neutrino data, concerning the different oscillating behavior of the neutrinos in regions with different densities.

  17. Magnetic properties of strongly asymmetric nuclear matter

    International Nuclear Information System (INIS)

    Kutschera, M.; Wojcik, W.

    1988-01-01

    We investigate stability of neutron matter containing a small proton admixture with respect to spin fluctuations. We establish conditions under which strongly asymmetric nuclear matter could acquire a permanent magnetization. It is shown that if the protons are localized, the system becomes unstable to spin fluctuations for arbitrarily weak proton-neutron spin interactions. For non-localized protons there exists a threshold value of the spin interaction above which the system can develop a spontaneous polarization. 12 refs., 2 figs. (author)

  18. Experimental effects of dynamics and thermodynamics in nuclear reactions on the symmetry energy as seen by the CHIMERA 4 π detector

    Energy Technology Data Exchange (ETDEWEB)

    De Filippo, E.; Pagano, A. [INFN, Catania (Italy)

    2014-02-15

    Heavy-ion collisions have been widely used in the last decade to constrain the parameterizations of the symmetry energy term of the nuclear equation of state (EOS) for asymmetric nuclear matter as a function of baryonic density. In the Fermi energy domain one is faced with variations of the density within a narrow range of values around the saturation density ρ{sub 0}=0.16 fm{sup -3} down towards sub-saturation densities. The experimental observables which are sensitive to the symmetry energy are constructed starting from the detected light particles, clusters and heavy fragments that, in heavy-ion collisions, are generally produced by different emission mechanisms at different stages and time scales of the reaction. In this review the effects of dynamics and thermodynamics on the symmetry energy in nuclear reactions are discussed and characterized using an overview of the data taken so far with the CHIMERA multi detector array. (orig.)

  19. Equation of state of dense nuclear matter and neutron star structure from nuclear chiral interactions

    Science.gov (United States)

    Bombaci, Ignazio; Logoteta, Domenico

    2018-02-01

    Aims: We report a new microscopic equation of state (EOS) of dense symmetric nuclear matter, pure neutron matter, and asymmetric and β-stable nuclear matter at zero temperature using recent realistic two-body and three-body nuclear interactions derived in the framework of chiral perturbation theory (ChPT) and including the Δ(1232) isobar intermediate state. This EOS is provided in tabular form and in parametrized form ready for use in numerical general relativity simulations of binary neutron star merging. Here we use our new EOS for β-stable nuclear matter to compute various structural properties of non-rotating neutron stars. Methods: The EOS is derived using the Brueckner-Bethe-Goldstone quantum many-body theory in the Brueckner-Hartree-Fock approximation. Neutron star properties are next computed solving numerically the Tolman-Oppenheimer-Volkov structure equations. Results: Our EOS models are able to reproduce the empirical saturation point of symmetric nuclear matter, the symmetry energy Esym, and its slope parameter L at the empirical saturation density n0. In addition, our EOS models are compatible with experimental data from collisions between heavy nuclei at energies ranging from a few tens of MeV up to several hundreds of MeV per nucleon. These experiments provide a selective test for constraining the nuclear EOS up to 4n0. Our EOS models are consistent with present measured neutron star masses and particularly with the mass M = 2.01 ± 0.04 M⊙ of the neutron stars in PSR J0348+0432.

  20. Charmonium formation and suppression in nuclear matter

    International Nuclear Information System (INIS)

    Xu Jiajun; Wang Jia; Zhuang Chao; Zhuang Pengfei

    2005-01-01

    The coupling Schroedinger equations describing the evolution of cc-bar states in nuclear matter are analytically and systematically solved via perturbation method, and the correlation between charmonium formation and nuclear absorption is investigated. After calculating J/Ψ and Ψ' suppression in nucleon-nucleus collisions and comparing with experiment data, it is found that the formation time effect plays an important rule in charmonium suppression, especially in Ψ' suppression. (authors)

  1. Constraining the EOS of Neutron-Rich Nuclear Matter and Properties of Neutron Stars with Heavy-Ion Reactions

    International Nuclear Information System (INIS)

    Li Baoan; Worley, Aaron; Chen, L.-W.; Ko, Che Ming; Krastev, Plamen G.; Wen Dehua; Xiao Zhigang; Zhang Ming; Xu Jun; Yong Gaochan

    2009-01-01

    Heavy-ion reactions especially those induced by radioactive beams provide useful information about the density dependence of the nuclear symmetry energy, thus the Equation of State of neutron-rich nuclear matter, relevant for many astrophysical studies. The latest developments in constraining the symmetry energy at both sub- and supra-saturation densities from analyses of the isopsin diffusion and the π - /π + ratio in heavy-ion collisions using the IBUU04 transport model are discussed. Astrophysical ramifications of the partially constrained symmetry energy on properties of neutron star crusts, gravitational waves emitted by deformed pulsars and the w-mode oscillations of neutron stars are presented briefly.

  2. Lorentz Symmetry Violations from Matter-Gravity Couplings with Lunar Laser Ranging

    Science.gov (United States)

    Bourgoin, A.; Le Poncin-Lafitte, C.; Hees, A.; Bouquillon, S.; Francou, G.; Angonin, M.-C.

    2017-11-01

    The standard-model extension (SME) is an effective field theory framework aiming at parametrizing any violation to the Lorentz symmetry (LS) in all sectors of physics. In this Letter, we report the first direct experimental measurement of SME coefficients performed simultaneously within two sectors of the SME framework using lunar laser ranging observations. We consider the pure gravitational sector and the classical point-mass limit in the matter sector of the minimal SME. We report no deviation from general relativity and put new realistic stringent constraints on LS violations improving up to 3 orders of magnitude previous estimations.

  3. Shedding Light on the EOS-Gravity Degeneracy and Constraining the Nuclear Symmetry Energy from the Gravitational Binding Energy of Neutron Stars

    Directory of Open Access Journals (Sweden)

    He Xiao-Tao

    2016-01-01

    Full Text Available A thorough understanding of properties of neutron stars requires both a reliable knowledge of the equation of state (EOS of super-dense nuclear matter and the strong-field gravity theories simultaneously. To provide information that may help break this EOS-gravity degeneracy, we investigate effects of nuclear symmetry energy on the gravitational binding energy of neutron stars within GR and the scalar-tensor subset of alternative gravity models. We focus on effects of the slope L of nuclear symmetry energy at saturation density and the high-density behavior of nuclear symmetry energy. We find that the variation of either the density slope L or the high-density behavior of nuclear symmetry energy leads to large changes in the binding energy of neutron stars. The difference in predictions using the GR and the scalar-tensor theory appears only for massive neutron stars, and even then is significantly smaller than the difference resulting from variations in the symmetry energy.

  4. Compression modes and the nuclear matter incompressibility ...

    Indian Academy of Sciences (India)

    We review the current status of the nuclear matter ( = and no Coulomb interaction) incompressibility coefficient, , and describe the theoretical and the experimental methods used to determine from properties of compression modes in nuclei. In particular we consider the long standing problem of the conflicting ...

  5. High Momentum Probes of Nuclear Matter

    Energy Technology Data Exchange (ETDEWEB)

    Fries, R.

    2009-07-24

    We discuss how the chemical composition of QCD jets is altered by final state interactions in surrounding nuclear matter. We describe this process through conversions of leading jet particles. We find that conversions lead to an enhancement of kaons at high transverse momentum in Au+Au collisions at RHIC, while their azimuthal asymmetry v{sub 2} is suppressed.

  6. Nuclear and quark matter at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Biro, Tamas S. [H.A.S. Wigner Research Centre for Physics, Budapest (Hungary); Jakovac, Antal [Roland Eotvos University, Budapest (Hungary); Schram, Zsolt [University of Debrecen, Institute for Theoretical Physics, Debrecen (Hungary)

    2017-03-15

    We review important ideas on nuclear and quark matter description on the basis of high-temperature field theory concepts, like resummation, dimensional reduction, interaction scale separation and spectral function modification in media. Statistical and thermodynamical concepts are spotted in the light of these methods concentrating on the -partially still open- problems of the hadronization process. (orig.)

  7. Covariant density functional theory for nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Badarch, U.

    2007-07-01

    The present thesis is organized as follows. In Chapter 2 we study the Nucleon-Nucleon (NN) interaction in Dirac-Brueckner (DB) approach. We start by considering the NN interaction in free-space in terms of the Bethe-Salpeter (BS) equation to the meson exchange potential model. Then we present the DB approach for nuclear matter by extending the BS equation for the in-medium NN interaction. From the solution of the three-dimensional in-medium BS equation, we derive the DB self-energies and total binding energy which are the main results of the DB approach, which we later incorporate in the field theoretical calculation of the nuclear equation of state. In Chapter 3, we introduce the basic concepts of density functional theory in the context of Quantum Hadrodynamics (QHD-I). We reach the main point of this work in Chapter 4 where we introduce the DDRH approach. In the DDRH theory, the medium dependence of the meson-nucleon vertices is expressed as functionals of the baryon field operators. Because of the complexities of the operator-valued functionals we decide to use the mean-field approximation. In Chapter 5, we contrast microscopic and phenomenological approaches to extracting density dependent meson-baryon vertices. Chapter 6 gives the results of our studies of the EOS of infinite nuclear matter in detail. Using formulas derived in Chapters 4 and 5 we calculate the properties of symmetric and asymmetric nuclear matter and pure neutron matter. (orig.)

  8. Shock waves in relativistic nuclear matter, I

    International Nuclear Information System (INIS)

    Gleeson, A.M.; Raha, S.

    1979-02-01

    The relativistic Rankine-Hugoniot relations are developed for a 3-dimensional plane shock and a 3-dimensional oblique shock. Using these discontinuity relations together with various equations of state for nuclear matter, the temperatures and the compressibilities attainable by shock compression for a wide range of laboratory kinetic energy of the projectile are calculated. 12 references

  9. Condensed matter studies by nuclear methods

    International Nuclear Information System (INIS)

    Krolas, K.; Tomala, K.

    1988-01-01

    The separate abstract was prepared for 1 of the papers in this volume. The remaining 13 papers dealing with the use but not with advances in the use of nuclear methods in studies of condensed matter, were considered outside the subject scope of INIS. (M.F.W.)

  10. Covariant density functional theory for nuclear matter

    International Nuclear Information System (INIS)

    Badarch, U.

    2007-01-01

    The present thesis is organized as follows. In Chapter 2 we study the Nucleon-Nucleon (NN) interaction in Dirac-Brueckner (DB) approach. We start by considering the NN interaction in free-space in terms of the Bethe-Salpeter (BS) equation to the meson exchange potential model. Then we present the DB approach for nuclear matter by extending the BS equation for the in-medium NN interaction. From the solution of the three-dimensional in-medium BS equation, we derive the DB self-energies and total binding energy which are the main results of the DB approach, which we later incorporate in the field theoretical calculation of the nuclear equation of state. In Chapter 3, we introduce the basic concepts of density functional theory in the context of Quantum Hadrodynamics (QHD-I). We reach the main point of this work in Chapter 4 where we introduce the DDRH approach. In the DDRH theory, the medium dependence of the meson-nucleon vertices is expressed as functionals of the baryon field operators. Because of the complexities of the operator-valued functionals we decide to use the mean-field approximation. In Chapter 5, we contrast microscopic and phenomenological approaches to extracting density dependent meson-baryon vertices. Chapter 6 gives the results of our studies of the EOS of infinite nuclear matter in detail. Using formulas derived in Chapters 4 and 5 we calculate the properties of symmetric and asymmetric nuclear matter and pure neutron matter. (orig.)

  11. Quark mobility in extended nuclear matter

    International Nuclear Information System (INIS)

    Sivers, D.

    1988-01-01

    The propagation of an energetic quark through extended nuclear matter is analyzed in terms of a simple model in which localization of color is imposed through chromoelectric flux tubes. A mobile quark in the nuclear medium creates a disturbance which affects neighboring nucleons. The model suggests that the spatial properties of the disturbance involve a competition among different dynamical mechanisms. Experimental measurements involving the target fragmentation region in deep-inelastic leptoproduction on large nuclei may help specify some of the important features of nuclear dynamics. copyright 1988 Academic Press, Inc

  12. Accessing the nuclear symmetry energy in Ca+Ca collisions

    Directory of Open Access Journals (Sweden)

    Chbihi A.

    2012-07-01

    Full Text Available The status of the analysis of the INDRA-VAMOS experiement performed at GANIL, using the reactions 40,48Ca+40,48Ca reactions at 35AMeV, are presented. Isotopic distributions of fragments produced in multifragmentation events provide information on the importance of the surface term contribution in the symmetry energy by comparison to AMD predictions.

  13. The public and nuclear matters

    International Nuclear Information System (INIS)

    O'Riordan, Timothy

    1987-01-01

    The nuclear industry has an image problem and is facing a major crisis of public confidence. The solution lies not merely in better public relations and advertising campaigns, but in a fundamental reassessment of electricity management, a comprehensive re-examination of the economics of electricity use and generation and, in all probability, a shift towards more public-friendly reactor designs. Over the next decade the industry faces two great forces: the power of public opinion and the momentum of inherent technological advance. Somehow these two elements have to be guided so that they complement each other. This article aims to show how this might be achieved. (author)

  14. Effects of isospin and momentum-dependent interactions on thermal properties of nuclear matter

    International Nuclear Information System (INIS)

    Xu Jun; Ma Hongru; Chen Liewen; Li Baoan

    2009-01-01

    In this article, three models with different isospin and momentum dependence are used to study the thermodynamical properties of asymmetric nuclear matter. They are isospin and momentum-dependent MDI interaction constrained by the isospin diffusion data of heavy ion collision, the momentum-independent MID interaction and the isoscalar momentum-dependent eMDYI interaction. Temperature effects of symmetry energy, mechanical and chemical instability and liquid-gas phase transition are analyzed. It is found that for MDI model the temperature effects of the symmetry energy attribute from both the kinetic and potential energy, while only potential part contributes to the decreasing of the symmetry energy for MID and eMDYI models. We also find that the mechanical instability, chemical instability and liquid-gas phase transition are all sensitive to the isospin and momentum dependence and the density dependence of the symmetry energy. (authors)

  15. Hyperon interaction in free space and nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Dhar, Madhumita; Lenske, Horst [Institute for Theoretical Physics, Justus- Liebig-University Giessen (Germany)

    2015-07-01

    Baryon-baryon interactions within the SU(3)-octet are investigated in free space and nuclear matter.A meson exchange model based on SU(3) symmetry is used for determining the interaction. The Bethe-Salpeter equations are solved in a 3-D reduction scheme. In-medium effect has been incorporated by including a two particle Pauli projector operator in the scattering equation. The coupling of the various channels of total strangeness S and conserved total charge is studied in detail. Special attention is paid to the physical thresholds. The density dependence of interaction is clearly seen in the variation of the in-medium low-energy parameters. The approach is compared to descriptions derived from chiral-EFT and other meson-exchange models e.g. the Nijmegen and the Juelich model.

  16. Confinement and deconfinement of quarks in nuclear matter

    International Nuclear Information System (INIS)

    Baym, G.

    1982-01-01

    Nuclear matter at high baryon density or excitation energy is expected to undergo a transition to deconfined quark matter, a new state of matter, whose production and detection would be an exciting and basic advance in nuclear physics. These lectures summarize current understanding of quark matter and the deconfinement transition. Beginning with a review of elementary models of confinement, the basic properties of quark matter are described, estimates of the transition from hadronic to quark matter are made, and various ways one might see quark matter experimentally by production in nuclear collisions or in the form of metastable exotic nuclear objects are discussed. (author)

  17. Nuclear tetrahedral symmetry: possibly present throughout the periodic table.

    Science.gov (United States)

    Dudek, J; Goźdź, A; Schunck, N; Miśkiewicz, M

    2002-06-24

    More than half a century after the fundamental, spherical shell structure in nuclei had been established, theoretical predictions indicated that the shell gaps comparable or even stronger than those at spherical shapes may exist. Group-theoretical analysis supported by realistic mean-field calculations indicate that the corresponding nuclei are characterized by the TD(d) ("double-tetrahedral") symmetry group. Strong shell-gap structure is enhanced by the existence of the four-dimensional irreducible representations of TD(d); it can be seen as a geometrical effect that does not depend on a particular realization of the mean field. Possibilities of discovering the TD(d) symmetry in experiment are discussed.

  18. Asymmetric nuclear matter and neutron star properties

    International Nuclear Information System (INIS)

    Engvik, L.; Hjorth-Jensen, M.; Osnes, E.; Bao, G.; Oestgaard, E.

    1994-06-01

    Properties of neutron stars such as mass and radius, using a relativistic Dirac-Brueckner-Hartree-Fock approach, are calculated. Modern meson-exchange potential models are used to evaluate the G-matrix for asymmetric nuclear matter. For pure neutron matter the maximum mass is found to be M max ∼ 2.4M for a radius R ∼ 12 km. With a proton fraction of 30% the result is M max ∼ 2.1M for a radius R ∼ 10.5 km, close to the experimental values. The implications are discussed. 20 refs., 3 figs

  19. Wanted! Nuclear Data for Dark Matter Astrophysics

    International Nuclear Information System (INIS)

    Gondolo, P.

    2014-01-01

    Astronomical observations from small galaxies to the largest scales in the universe can be consistently explained by the simple idea of dark matter. The nature of dark matter is however still unknown. Empirically it cannot be any of the known particles, and many theories postulate it as a new elementary particle. Searches for dark matter particles are under way: production at high-energy accelerators, direct detection through dark matter-nucleus scattering, indirect detection through cosmic rays, gamma rays, or effects on stars. Particle dark matter searches rely on observing an excess of events above background, and a lot of controversies have arisen over the origin of observed excesses. With the new high-quality cosmic ray measurements from the AMS-02 experiment, the major uncertainty in modeling cosmic ray fluxes is in the nuclear physics cross sections for spallation and fragmentation of cosmic rays off interstellar hydrogen and helium. The understanding of direct detection backgrounds is limited by poor knowledge of cosmic ray activation in detector materials, with order of magnitude differences between simulation codes. A scarcity of data on nucleon spin densities blurs the connection between dark matter theory and experiments. What is needed, ideally, are more and better measurements of spallation cross sections relevant to cosmic rays and cosmogenic activation, and data on the nucleon spin densities in nuclei

  20. Strange mesons in dense nuclear matter

    International Nuclear Information System (INIS)

    Senger, P.

    2000-10-01

    Experimental data on the production of kaons and antikaons in heavy ion collisions at relativistic energies are reviewed with respect to in-medium effects. The K - /K + ratios measured in nucleus-nucleus collisions are 1-2 orders of magnitude larger than in proton-proton collisions. The azimuthal angle distributions of K + mesons indicate a repulsive kaon-nucleon potential. Microscopic transport calculations consistently explain both the yields and the emission patterns of kaons and antikaons when assuming that their properties are modified in dense nuclear matter. The K + production excitation functions measured in light and heavy collision systems provide evidence for a soft nuclear equation-of-state. (orig.)

  1. Nuclear matter and its equation of state

    International Nuclear Information System (INIS)

    Stock, R.

    1985-11-01

    We can estimate the nuclear bulk compressibility from the excitation energy of the monopole vibration mode, which represents a density oscillation about rho 0 , of extremely small magnitude (a few percent) only. A description of the monopole excitation energy systematics has been obtained by assuming a parabolic shape about rho 0 for the energy-density relation of cold nuclear matter. This implies a linear pressure response to small density changes inside nuclear matter. It enables one to define a nuclear 'sound' mode and the sound velocity turns out to be vsub(s)proportional0.2 c. All of this could be known only for small excursions from rho 0 as long as we were unable to subject nuclei to extreme stresses. The study of head-on collisions of heavy nuclei at high energy has removed this limitation. In these reactions we are reproducing under laboratory conditions the extremely violent transformations of matter occuring in the cosmic and stellar evolution. From the quark-gluon stage of the Big Bang, prior to hadronic freeze-out, to the supernova these cosmic events require an understanding of matter bulk properties over an enormous range of density, from about 10 times rho 0 down to about 10 -3 rho 0 . We will approach them through the compression-expansion-freeze-out cycle of central nucleus-nucleus collisions in the energy range from 50 MeV per projectile nucleon, corresponding to the compression barrier, upwards to 225 GeV/A (the top energy of the CERN SPS), and further into the TeV/A range by observation of events induced by cosmic ray nuclei. In this article I describe some of the results recently obtained at the BEVALAC, i.e. in the GeV/A domain. (orig./HSI)

  2. Triton-3He relative and differential flows and the high density behavior of nuclear symmetry

    International Nuclear Information System (INIS)

    Yong, Gaochan; Li, Baoan; Chen, Liewen

    2010-01-01

    Using a transport model coupled with a phase-space coalescence after-burner we study the triton- 3 He relative and differential transverse flows in semi-central 132 Sn + 124 Sn reactions at a beam energy of 400 MeV/nucleon. We find that the triton- 3 He pairs carry interesting information about the density dependence of the nuclear symmetry energy. The t- 3 He relative flow can be used as a particularly powerful probe of the high-density behavior of the nuclear symmetry energy. (author)

  3. Neutrinophilic two Higgs doublet model with dark matter under an alternative U(1)_{B-L} gauge symmetry

    Science.gov (United States)

    Nomura, Takaaki; Okada, Hiroshi

    2018-03-01

    We propose a Dirac type active neutrino with rank two mass matrix and a Majorana fermion dark matter candidate with an alternative local U(1)_{B-L} extension of neutrinophilic two Higgs doublet model. Our dark matter candidate can be stabilized due to charge assignment under the gauge symmetry without imposing extra discrete Z_2 symmetry and the relic density is obtained from an Z' boson exchanging process. Taking into account collider constraints on the Z' boson mass and coupling, we estimate the relic density.

  4. Description of a nucleon in nuclear matter

    International Nuclear Information System (INIS)

    Bunatian, G.G.

    1992-01-01

    The nonlinear cloudy bag model, CBM, is generalized to describe a nucleon in nuclear matter at various densities ρ and temperatures T. The influence of the nuclear medium on the bag-nucleon in the framework of CBM is due to the modification of the equation describing the CBM pion field π. These changes are accounted for in the CBM by including in the CBM lagrangian the pion polarization operator π(ρ,T). The free pion propagator D is replaced in a nuclear medium by D(ρ,T). The changing of the pion field π and propagator D leads via the CBM equations to the modification of the bag size R and quark momentum p, determined simultaneously from these equations, and then to modifications of other bag-nucleon characteristics: the total energy E, r.m.s. radii, magnetic moment μ, polarizability α and so on, which all are expressed as the expectation values of the corresponding operators in the bag-nucleon state. The quantity π(ρ,T) was studied in the works whose results are used in this investigation. The nucleon size R in the nuclear matter at normal density ρ o and zero temperature decreases by 5% and the quarks momentum p also decreases, however, insignificantly, by 1-2%. On the other hand, the values of the r.m.s. radii increases by 15% for a proton and by 100% for a neutron. The author has also found that the polarizability of a nucleon in nuclear matter is roughly two times as much as in free space

  5. The 132Sn giant dipole resonance as a constraint on nuclear matter properties

    Science.gov (United States)

    Roach, Brandon; Bonasera, Giacomo; Shlomo, Shalom

    2015-10-01

    Nuclear giant resonances provide a sensitive method for constraining the properties of nuclear matter (NM) - many of which have large uncertainties - and thereby improve the nuclear energy-density functional. In this work, self-consistent Hartree-Fock random-phase approximation (HF-RPA) theory was employed to calculate the strength function and energy of the isovector giant dipole resonance (IVGDR) in the doubly-magic 132Sn nucleus. Several (17) commonly-used Skyrme-type interactions were employed. The correlations between the IVGDR centroid energy and each nuclear matter property were explored, as were correlations between the nuclear matter properties and the 132Sn neutron skin thickness rn -rp . Experimental data for the IVGDR centroid energy was used to constrain the symmetry energy density, the symmetry energy, and its first and second derivatives, respectively, of NM. Further investigation, particularly of nuclides far from stability, will be needed to extend the nuclear energy-density functional to the extremes of density and neutron abundance found in neutron stars and astrophysical nucleosynthesis environments.

  6. Can the nuclear symmetry potential at supra-saturation densities be negative?

    International Nuclear Information System (INIS)

    Yong Gaochan

    2010-01-01

    In the framework of an isospin-dependent Boltzmann-Uehling-Uhlenbeck (IBUU) transport model, for the central 197 Au+ 197 Au reaction at an incident beam energy of 400 MeV/nucleon, the effect of nuclear symmetry potential at supra-saturation densities on the preequilibrium clusters emission is studied. It is found that for the positive symmetry potential at supra-saturation densities the neutron-to-proton ratio of lighter clusters with mass number A≤3[(n/p) A≤3 ] is larger than that of the heavier clusters with mass number A>3[(n/p) A>3 ], whereas for the negative symmetry potential at supra-saturation densities the (n/p) A≤3 is smaller than the (n/p) A>3 . This may be considered as a probe of the negative symmetry potential at supra-saturation densities.

  7. Dark discrete gauge symmetries

    International Nuclear Information System (INIS)

    Batell, Brian

    2011-01-01

    We investigate scenarios in which dark matter is stabilized by an Abelian Z N discrete gauge symmetry. Models are surveyed according to symmetries and matter content. Multicomponent dark matter arises when N is not prime and Z N contains one or more subgroups. The dark sector interacts with the visible sector through the renormalizable kinetic mixing and Higgs portal operators, and we highlight the basic phenomenology in these scenarios. In particular, multiple species of dark matter can lead to an unconventional nuclear recoil spectrum in direct detection experiments, while the presence of new light states in the dark sector can dramatically affect the decays of the Higgs at the Tevatron and LHC, thus providing a window into the gauge origin of the stability of dark matter.

  8. Interdependence of different symmetry energy elements

    Science.gov (United States)

    Mondal, C.; Agrawal, B. K.; De, J. N.; Samaddar, S. K.; Centelles, M.; Viñas, X.

    2017-08-01

    Relations between the nuclear symmetry energy coefficient and its density derivatives are derived. The relations hold for a class of interactions with quadratic momentum dependence and a power-law density dependence. The structural connection between the different symmetry energy elements as obtained seems to be followed by almost all reasonable nuclear energy density functionals, both relativistic and nonrelativistic, suggesting a universality in the correlation structure. This, coupled with known values of some well-accepted constants related to nuclear matter, helps in constraining values of different density derivatives of the nuclear symmetry energy, shedding light on the isovector part of the nuclear interaction.

  9. Properties of the cloudy bag in nuclear matter

    International Nuclear Information System (INIS)

    Bunatyan, G.G.

    1986-01-01

    Because of the pion mode softening, the pion field of the clody bag in the nuclear matter increases if the nuclear density increases. This causes in its turn the decreasing of the bag size and at a sufficiently large density of the nuclear matter lead to absolute instability of the cloudy bag-nucleon, which means the transition of the nuclear matter in another nonnucleon phase

  10. Viable dark matter via radiative symmetry breaking in a scalar singlet Higgs portal extension of the standard model.

    Science.gov (United States)

    Steele, T G; Wang, Zhi-Wei; Contreras, D; Mann, R B

    2014-05-02

    We consider the generation of dark matter mass via radiative electroweak symmetry breaking in an extension of the conformal standard model containing a singlet scalar field with a Higgs portal interaction. Generating the mass from a sequential process of radiative electroweak symmetry breaking followed by a conventional Higgs mechanism can account for less than 35% of the cosmological dark matter abundance for dark matter mass M(s)>80 GeV. However, in a dynamical approach where both Higgs and scalar singlet masses are generated via radiative electroweak symmetry breaking, we obtain much higher levels of dark matter abundance. At one-loop level we find abundances of 10%-100% with 106 GeVdark matter mass. The dynamical approach also predicts a small scalar-singlet self-coupling, providing a natural explanation for the astrophysical observations that place upper bounds on dark matter self-interaction. The predictions in all three approaches are within the M(s)>80 GeV detection region of the next generation XENON experiment.

  11. A new model for nuclear matter

    International Nuclear Information System (INIS)

    Skyrme, T.H.R.

    1994-01-01

    The different values obtained for nuclear radii from electromagnetic interactions as compared with specifically nuclear interactions suggested a model of nuclear matter in which the meson field is supposed to condense into an incompressible fluid and the nucleonic sources are confined to its interior by a strong interaction between the sources and the fluid as a whole. The sources are also coupled to spin and charge fluctuations in the fluid, whose exchange leads to further internucleonic forces. It is necessary to postulate that the fluid have a comparatively low density; as a result rotational levels of the fluid are high, leading to a small probability of exchange of angular momentum (and charge coupled to it) with the sources. The values of the anomalous electrical interactions of nucleons deduced are in rough agreement with the facts. The nuclear structure indicated is a shell model embedded in the mesic fluid whose oscillations, strongly coupled to the nucleons, give rise to the collective features of nuclear structure as in the theory of Bohr and Mottelson. It is suggested that this picture of the mesic field may indicate where to look for solutions of the meson field equations. (author). 9 refs

  12. Neutrino neutral current interactions in nuclear matter

    International Nuclear Information System (INIS)

    Horowitz, C.J.; Wehrberger, K.

    1991-01-01

    Detailed knowledge of neutrino transport properties in matter is crucial for an understanding of the evolution of supernovae and of neutron star cooling. We investigate screening of neutrino scattering from a dense degenerate gas of electrons, protons and neutrons. We take into account correlations induced by the Coulomb interactions of the electrons and protons, and the strong interactions of the protons and neutrons. Nuclear matter is described by the σω model of quantum hadrodynamics. Results are presented for typical astrophysical scenarios. The differential cross section is strongly reduced at large energy transfer, where electrons dominate, and slightly reduced for small energy transfer, where nucleons dominate. At large densities, the nucleon effective mass is considerably lower than the free mass, and the region dominated by nucleons extends to larger energy transfer than for free nucleons. (orig.)

  13. Strangeness in hot and dense nuclear matter

    International Nuclear Information System (INIS)

    Nappi, E.

    2009-01-01

    Ultra-relativistic heavy-ion collisions are believed to provide the extreme conditions of energy densities able to lead to a transition to a short-lived state, called Quark-Gluon Plasma (QGP), where the quarks are no longer bound inside hadrons. The studies performed so far, formerly at SPS (CERN) and later at RHIC (BNL) allowed to achieve a multitude of crucial results consistent with the hypothesis that a new phase of the QCD matter has been indeed created. However, the emerging picture is that of the formation of a strongly interacting medium with negligibly small viscosity, a perfect liquid, rather than the ideal perturbative QCD parton-gas predicted by most theorists. The head-on collision between lead nuclei at the unprecedented energies of the forthcoming Large Hadron Collider (LHC) at CERN, due to start in 2008, will allow to measure the properties of compressed and excited nuclear matter at even higher initial densities and temperatures, far above the predicted QCD phase transition point. The longer duration of the quark-gluon plasma phase and the much more abundant production of hard probes, which depend much less on details of the later hadronic phase, will likely provide a consistent and uncontroversial experimental evidence of the QGP formation. Among the signals what witness the charge in the nature of the state of nuclear matter, the chemical equilibrium value of the strangeness plays a key role since it is directly sensitive to the matter properties and provides information on the link between the partonic and the hadronic phases. The aim of this course is to overview the underlying goals, the current status and the prospect of the physics of the nucleus-nucleus collisions at ultrarelativistic energies. Among the experimental methods adopted to investigate the challenging signatures of the QGP formation, emphasis on those related to the strangeness flavour will be given.

  14. Phase transition in dense nuclear matter with quark and gluon condensates

    International Nuclear Information System (INIS)

    Ellis, J.; Kapusta, J.I.; Olive, K.A.

    1991-01-01

    Nuclear matter is expected to modify the expectation values of the quark and gluon condensates. We utilize the chiral and scale symmetries of QCD to describe the interaction between these condensates and hadrons. We solve the resulting equations self-consistently in the relativistic mean field approximation. In order that these QCD condensates be driven towards zero at high density their coupling to sigma and vector mesons must be such that the masses of these mesons do not decrease with density. In this case a physically sensible phase transition to quark matter ensures. (orig.)

  15. Kaon dynamics in dense nuclear matter

    International Nuclear Information System (INIS)

    David, Ch.

    1998-01-01

    In this thesis a list of cross sections concerning the kaons and antikaons production, has been presented. A new method for the parametrisation of particles rescattering cross sections, based on the neural networks has been developed. Because of the influence of the nuclear matter on kaons properties, the effect of the optical potential parameters has been studied. In particular a term has been added to the vector part of this potential to determine the relative importance of this part compared to the scalar part. A new parametrisation of the resonance lifetime has been proposed. (A.L.B.)

  16. History of the nuclear matter safety and control law

    International Nuclear Information System (INIS)

    Dean, G.

    1994-01-01

    In this text we give the history of the law creation on the control and safety of nuclear matter. Initially based on the CEA regulation single owner of nuclear matter, the development of nuclear energy has conducted the French government to edict law in relation with IAEA and Euratom recommendations

  17. Pseudo-Goldstone modes in isospin-asymmetric nuclear matter

    International Nuclear Information System (INIS)

    Cohen, T.D.; Broniowski, W.

    1995-01-01

    The authors analyze the chiral limit in dense isospin-asymmetric nuclear matter. It is shown that the pseudo-Goldstone modes in this system are qualitatively different from the case of isospin-symmetric matter

  18. Hadronic spectral functions in nuclear matter

    International Nuclear Information System (INIS)

    Post, M.; Leupold, S.; Mosel, U.

    2004-01-01

    We study the in-medium properties of mesons (π,η,ρ) and baryon resonances in cold nuclear matter within a coupled-channel analysis. The meson self energies are generated by particle-hole excitations. Thus multi-peak spectra are obtained for the mesonic spectral functions. In turn this leads to medium-modifications of the baryon resonances. Special care is taken to respect the analyticity of the spectral functions and to take into account effects from short-range correlations both for positive and negative parity states. Our model produces sensible results for pion and Δ dynamics in nuclear matter. We find a strong interplay of the ρ meson and the D 13 (1520), which moves spectral strength of the ρ spectrum to smaller invariant masses and leads to a broadening of the baryon resonance. The optical potential for the η meson resulting from our model is rather attractive whereas the in-medium properties modifications of the S 11 (1535) are found to be quite small

  19. Sound modes in hot nuclear matter

    International Nuclear Information System (INIS)

    Kolomietz, V. M.; Shlomo, S.

    2001-01-01

    The propagation of the isoscalar and isovector sound modes in a hot nuclear matter is considered. The approach is based on the collisional kinetic theory and takes into account the temperature and memory effects. It is shown that the sound velocity and the attenuation coefficient are significantly influenced by the Fermi surface distortion (FSD). The corresponding influence is much stronger for the isoscalar mode than for the isovector one. The memory effects cause a nonmonotonous behavior of the attenuation coefficient as a function of the relaxation time leading to a zero-to-first sound transition with increasing temperature. The mixing of both the isoscalar and the isovector sound modes in an asymmetric nuclear matter is evaluated. The condition for the bulk instability and the instability growth rate in the presence of the memory effects is studied. It is shown that both the FSD and the relaxation processes lead to a shift of the maximum of the instability growth rate to the longer-wavelength region

  20. D mesons in asymmetric nuclear matter

    International Nuclear Information System (INIS)

    Mishra, Amruta; Mazumdar, Arindam

    2009-01-01

    We calculate the in-medium D and D meson masses in isospin-asymmetric nuclear matter in an effective chiral model. The D and D mass modifications arising from their interactions with the nucleons and the scalar mesons in the effective hadronic model are seen to be appreciable at high densities and have a strong isospin dependence. These mass modifications can open the channels of the decay of the charmonium states (Ψ ' ,χ c ,J/Ψ) to DD pairs in dense hadronic matter. The isospin asymmetry in the doublet D=(D 0 ,D + ) is seen to be particularly appreciable at high densities and should show in observables such as their production and flow in asymmetric heavy-ion collisions in the compressed baryonic matter experiments in the future facility of FAIR, GSI. The results of the present work are compared to calculations of the D(D) in-medium masses in the literature using the QCD sum rule approach, quark meson coupling model, and coupled channel approach as well as to those from studies of quarkonium dissociation using heavy-quark potentials from lattice QCD at finite temperatures

  1. Big Bang synthesis of nuclear dark matter

    International Nuclear Information System (INIS)

    Hardy, Edward; Lasenby, Robert; March-Russell, John; West, Stephen M.

    2015-01-01

    We investigate the physics of dark matter models featuring composite bound states carrying a large conserved dark “nucleon” number. The properties of sufficiently large dark nuclei may obey simple scaling laws, and we find that this scaling can determine the number distribution of nuclei resulting from Big Bang Dark Nucleosynthesis. For plausible models of asymmetric dark matter, dark nuclei of large nucleon number, e.g. ≳10 8 , may be synthesised, with the number distribution taking one of two characteristic forms. If small-nucleon-number fusions are sufficiently fast, the distribution of dark nuclei takes on a logarithmically-peaked, universal form, independent of many details of the initial conditions and small-number interactions. In the case of a substantial bottleneck to nucleosynthesis for small dark nuclei, we find the surprising result that even larger nuclei, with size ≫10 8 , are often finally synthesised, again with a simple number distribution. We briefly discuss the constraints arising from the novel dark sector energetics, and the extended set of (often parametrically light) dark sector states that can occur in complete models of nuclear dark matter. The physics of the coherent enhancement of direct detection signals, the nature of the accompanying dark-sector form factors, and the possible modifications to astrophysical processes are discussed in detail in a companion paper.

  2. Self-consistent green function calculations for isospin asymmetric nuclear matter

    International Nuclear Information System (INIS)

    Mansour, Hesham; Gad, Khalaf; Hassaneen, Khaled S.A.

    2010-01-01

    The one-body potentials for protons and neutrons are obtained from the self-consistent Green-function calculations of asymmetric nuclear matter, in particular their dependence on the degree of proton/neutron asymmetry. Results of the binding energy per nucleon as a function of the density and asymmetry parameter are presented for the self-consistent Green function approach using the CD-Bonn potential. For the sake of comparison, the same calculations are performed using the Brueckner-Hartree-Fock approximation. The contribution of the hole-hole terms leads to a repulsive contribution to the energy per nucleon which increases with the nuclear density. The incompressibility for asymmetric nuclear matter has been also investigated in the framework of the self-consistent Green-function approach using the CD-Bonn potential. The behavior of the incompressibility is studied for different values of the nuclear density and the neutron excess parameter. The nuclear symmetry potential at fixed nuclear density is also calculated and its value decreases with increasing the nucleon energy. In particular, the nuclear symmetry potential at saturation density changes from positive to negative values at nucleon kinetic energy of about 200 MeV. For the sake of comparison, the same calculations are performed using the Brueckner-Hartree-Fock approximation. The proton/neutron effective mass splitting in neutron-rich matter has been studied. The predicted isospin splitting of the proton/neutron effective mass splitting in neutron-rich matter is such that m n * ≥ m p * . (author)

  3. Recent Progress in Constraining the Equation of State of Dense Neutron-Rich Nuclear Matter with Heavy-Ion Reactions

    International Nuclear Information System (INIS)

    Li Baoan; Chen Liewen; Wen Dehua; Xiao Zhigang; Xu Chang; Yong Gaochan; Zhang Ming

    2010-01-01

    The nuclear symmetry energy E sym (ρ) is the most uncertain part of the Equation of State (EOS) of dense neutron-rich nuclear matter. In this talk, we discuss the underlying physics responsible for the uncertain E sym (ρ) especially at supra-saturation densities, the circumstantial evidence for a super-soft E sym (ρ) from analyzing π - /π + ratio in relativistic heavy-ion collisions and its impacts on astrophysics and cosmology.

  4. Symmetry and symmetry breaking

    International Nuclear Information System (INIS)

    Balian, R.; Lambert, D.; Brack, A.; Lachieze-Rey, M.; Emery, E.; Cohen-Tannoudji, G.; Sacquin, Y.

    1999-01-01

    The symmetry concept is a powerful tool for our understanding of the world. It allows a reduction of the volume of information needed to apprehend a subject thoroughly. Moreover this concept does not belong to a particular field, it is involved in the exact sciences but also in artistic matters. Living beings are characterized by a particular asymmetry: the chiral asymmetry. Although this asymmetry is visible in whole organisms, it seems it comes from some molecules that life always produce in one chirality. The weak interaction presents also the chiral asymmetry. The mass of particles comes from the breaking of a fundamental symmetry and the void could be defined as the medium showing as many symmetries as possible. The texts put together in this book show to a great extent how symmetry goes far beyond purely geometrical considerations. Different aspects of symmetry ideas are considered in the following fields: the states of matter, mathematics, biology, the laws of Nature, quantum physics, the universe, and the art of music. (A.C.)

  5. PREFACE: 10th Summer School on Theoretical Physics 'Symmetry and Structural Properties of Condensed Matter'

    Science.gov (United States)

    Lulek, Tadeusz; Wal, Andrzej; Lulek, Barbara

    2010-03-01

    This volume contains the Proceedings of the Tenth Summer School on Theoretical Physics under the banner title 'Symmetry and Structural Properties of Condensed Matter' (SSPCM 2009). The School was organized by Rzeszow University of Technology, Poland, in cooperation with AGH University of Science and Technology, Cracow, Poland, and took place on 2-9 September 2009 in Myczkowce, Poland. With this meeting we have reached the round number ten of the series of biannual SSPCM schools, which started in 1990 and were focused on some advanced mathematical methods of condensed matter physics. The first five meetings were held in Zajaczkowo near Poznan, under the auspices of The Institute of Physics of Adam Mickiewicz University, and the last five in Myczkowce near Rzeszów, in the south-eastern part of Poland. Within these two decades several young workers who started at kindergarten lectures at SSPCM, have now reached their PhD degrees, professorships and authority. Proceedings of the first seven SSPCM meetings were published as separate volumes by World Scientific, and the last two as volumes 30 and 104 of Journal of Physics: Conference Series. The present meeting is also the third of the last schools which put the emphasis on quantum informatics. The main topics of our jubilee SSPCM'09 are the following: Information processing, entanglement, and tensor calculus, Integrable models and unitary symmetry, Finite systems and nanophysics. The Proceedings are divided into three parts accordingly. The school gathered together 55 participants from seven countries and several scientific centers in Poland, accommodating again advanced research with young collaborators and students. Acknowledgements The Organizing Committee would like to express its gratitude to all participants for their many activities during the School and for creating a friendly and inspiring atmosphere within our SSPCM society. Special thanks are due to all lecturers for preparing and presenting their talks and

  6. Searching for dark matter signals in the left-right symmetric gauge model with CP symmetry

    International Nuclear Information System (INIS)

    Guo Wanlei; Wu Yueliang; Zhou Yufeng

    2010-01-01

    We investigate the singlet scalar dark matter (DM) candidate in a left-right symmetric gauge model with two Higgs bidoublets in which the stabilization of the DM particle is induced by the discrete symmetries P and CP. According to the observed DM abundance, we predict the DM direct and indirect detection cross sections for the DM mass range from 10 to 500 GeV. We show that the DM indirect detection cross section is not sensitive to the light Higgs mixing and Yukawa couplings except for the resonance regions. The predicted spin-independent DM-nucleon elastic scattering cross section is found to be significantly dependent on the above two factors. Our results show that the future DM direct search experiments can cover the most parts of the allowed parameter space. The PAMELA antiproton data can only exclude two very narrow regions in the two Higgs bidoublets model. It is very difficult to detect the DM direct or indirect signals in the resonance regions due to the Breit-Wigner resonance effect.

  7. Vector Mesons in Cold Nuclear Matter

    International Nuclear Information System (INIS)

    Rodrigues, Tulio E; Arruda-Neto, Joāo Dias de Toledo

    2013-01-01

    The attenuation of vector mesons in cold nuclear matter is studied through the mechanism of incoherent photoproduction off complex nuclei. The latter is described via the time-dependent multi-collisional Monte Carlo (MCMC) intranuclear cascade model. The results for the transparency ratios of ω mesons reproduce previous measurements of CB-ELSA/TAPS with an inelastic ωN cross section around 40 mb for ρ ω ∼ 1.1 GeV/c. The corresponding in-medium width (nuclear rest frame) is extracted dinamically from the algorithm and depends on the average nuclear density p N and target nucleus: ∼ 49.2 MeV/c 2 for carbon (p N ≈ 0.114 far −3 ) and ∼ 77.3 MeV/c 2 for lead (p N ≈ 0.137 far −−3 ). The calculations fail to reproduce the huge absorption observed at JLab assuming the same inelastic cross section and the discrepancy between the two experiments remains a challenge.

  8. Spectroscopic criteria for identification of nuclear tetrahedral and octahedral symmetries: Illustration on a rare earth nucleus

    Science.gov (United States)

    Dudek, J.; Curien, D.; Dedes, I.; Mazurek, K.; Tagami, S.; Shimizu, Y. R.; Bhattacharjee, T.

    2018-02-01

    We formulate criteria for identification of the nuclear tetrahedral and octahedral symmetries and illustrate for the first time their possible realization in a rare earth nucleus 152Sm. We use realistic nuclear mean-field theory calculations with the phenomenological macroscopic-microscopic method, the Gogny-Hartree-Fock-Bogoliubov approach, and general point-group theory considerations to guide the experimental identification method as illustrated on published experimental data. Following group theory the examined symmetries imply the existence of exotic rotational bands on whose properties the spectroscopic identification criteria are based. These bands may contain simultaneously states of even and odd spins, of both parities and parity doublets at well-defined spins. In the exact-symmetry limit those bands involve no E 2 transitions. We show that coexistence of tetrahedral and octahedral deformations is essential when calculating the corresponding energy minima and surrounding barriers, and that it has a characteristic impact on the rotational bands. The symmetries in question imply the existence of long-lived shape isomers and, possibly, new waiting point nuclei—impacting the nucleosynthesis processes in astrophysics—and an existence of 16-fold degenerate particle-hole excitations. Specifically designed experiments which aim at strengthening the identification arguments are briefly discussed.

  9. Resonant Interaction, Approximate Symmetry, and Electromagnetic Interaction (EMI) in Low Energy Nuclear Reactions (LENR)

    Science.gov (United States)

    Chubb, Scott

    2007-03-01

    Only recently (talk by P.A. Mosier-Boss et al, in this session) has it become possible to trigger high energy particle emission and Excess Heat, on demand, in LENR involving PdD. Also, most nuclear physicists are bothered by the fact that the dominant reaction appears to be related to the least common deuteron(d) fusion reaction,d+d ->α+γ. A clear consensus about the underlying effect has also been illusive. One reason for this involves confusion about the approximate (SU2) symmetry: The fact that all d-d fusion reactions conserve isospin has been widely assumed to mean the dynamics is driven by the strong force interaction (SFI), NOT EMI. Thus, most nuclear physicists assume: 1. EMI is static; 2. Dominant reactions have smallest changes in incident kinetic energy (T); and (because of 2), d+d ->α+γ is suppressed. But this assumes a stronger form of SU2 symmetry than is present; d+d ->α+γ reactions are suppressed not because of large changes in T but because the interaction potential involves EMI, is dynamic (not static), the SFI is static, and because the two incident deuterons must have approximate Bose Exchange symmetry and vanishing spin. A generalization of this idea involves a resonant form of reaction, similar to the de-excitation of an atom. These and related (broken gauge) symmetry EMI effects on LENR are discussed.

  10. Equation of state of asymmetric nuclear matter using re-projected nucleon–nucleon potentials

    Science.gov (United States)

    Asadi Aghbolaghi, Z.; Bigdeli, M.

    2018-06-01

    In this paper, we have calculated the equation of state of asymmetric nuclear matter using the lowest order constrained variational approach and Argonne family potentials with and without three-nucleon interaction (TNI) contribution. In particular, we have used the AV18 potential and the re-projected potentials, AV8‧, and AV6‧. We have also calculated the saturation properties of symmetric nuclear matter, and the nuclear symmetry energy using AV18+TNI, AV8‧+TNI and AV6‧+TNI potentials. The inclusion of TNI has modified the agreement with experiment. We have also made a comparison between our results and those of other many-body calculations.

  11. Hadron structure in a simple model of quark/nuclear matter

    International Nuclear Information System (INIS)

    Horowitz, C.J.; Moniz, E.J.; Negele, J.W.

    1985-01-01

    We study a simple model for one-dimensional hadron matter with many of the essential features needed for examining the transition from nuclear to quark matter and the limitations of models based upon hadron rather than quark degrees of freedom. The dynamics are generated entirely by the quark confining force and exchange symmetry. Using Monte Carlo techniques, the ground-state energy, single-quark momentum distribution, and quark correlation function are calculated for uniform matter as a function of density. The quark confinement scale in the medium increases substantially with increasing density. This change is evident in the correlation function and momentum distribution, in qualitative agreement with the changes observed in deep-inelastic lepton scattering. Nevertheless, the ground-state energy is smooth throughout the transition to quark matter and is described remarkably well by an effective hadron theory based on a phenomenological hadron-hadron potential

  12. A way forward in the study of the symmetry energy: experiment, theory, and observation

    Energy Technology Data Exchange (ETDEWEB)

    Horowitz, Charles; Brown, E F.; Kim, Y; Lynch, W G.; Michaels, Robert; Ono, A; Piekarewicz, Jorge; Tsang, M B.; Wolter, H H.

    2014-07-01

    The symmetry energy describes how the energy of nuclear matter rises as one goes away from equal numbers of neutrons and protons. This is very important to describe neutron rich matter in astrophysics. This article reviews our knowledge of the symmetry energy from theoretical calculations, nuclear structure measurements, heavy ion collisions, and astronomical observations. We then present a roadmap to make progress in areas of relevance to the symmetry energy that promotes collaboration between astrophysics and the nuclear physics communities.

  13. Saturation properties of asymmetric nuclear matter to be obtained from unstable nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Oyamatsu, Kazuhiro [Aichi Shukutoku Univ., Dept. of Media Production and Theories, Nagakute, Aichi (Japan); Iida, Kei [Institute of Physical and Chemical Research, Wako, Saitama (Japan)

    2002-09-01

    We examine relations among the parameters characterizing the phenomenological equation of state (EOS) of nearly symmetric, uniform nuclear matter near the saturation density from experimental data on radii and masses of stable nuclei. The EOS parameters of interest are the symmetry energy S{sub 0}, the symmetry energy density-derivative coefficient L and the incompressibility K{sub 0} at the normal nuclear density. The calculations of the nuclear properties were performed with a simplified Thomas-Fermi model. We find a constraint on (K{sub 0}, L) values from the slope of the saturation line (the line joining the saturation points of asymmetric matter EOS with fixed proton abundance). A strong correlation between S{sub 0} and L, which was discussed in the Skyrme Hartree-Fock theory for relatively small L values, is found to hold for such larger values as a relativistic mean field theory predicts. In the light of the uncertainties in the (K{sub 0}, L) values, we calculate radii of unstable nuclei as expected to be produced in future facilities. We find that the matter radii depend strongly on L almost independently of K{sub 0}, and that systematic detection of the radii of such nuclei will help to determine the L value. (author)

  14. Anomalous leptonic U(1) symmetry: Syndetic origin of the QCD axion, weak-scale dark matter, and radiative neutrino mass

    Science.gov (United States)

    Ma, Ernest; Restrepo, Diego; Zapata, Óscar

    2018-01-01

    The well-known leptonic U(1) symmetry of the Standard Model (SM) of quarks and leptons is extended to include a number of new fermions and scalars. The resulting theory has an invisible QCD axion (thereby solving the strong CP problem), a candidate for weak-scale dark matter (DM), as well as radiative neutrino masses. A possible key connection is a color-triplet scalar, which may be produced and detected at the Large Hadron Collider.

  15. Dynamic Isovector Reorientation of Deuteron as a Probe to Nuclear Symmetry Energy.

    Science.gov (United States)

    Ou, Li; Xiao, Zhigang; Yi, Han; Wang, Ning; Liu, Min; Tian, Junlong

    2015-11-20

    We present the calculations on a novel reorientation effect of deuteron attributed to isovector interaction in the nuclear field of heavy target nuclei. The correlation angle determined by the relative momentum vector of the proton and the neutron originating from the breakup deuteron, which is experimentally detectable, exhibits significant dependence on the isovector nuclear potential but is robust against the variation of the isoscaler sector. In terms of sensitivity and cleanness, the breakup reactions induced by the polarized deuteron beam at about 100 MeV/u provide a more stringent constraint to the symmetry energy at subsaturation densities.

  16. Simulation study for the nuclear matter below the saturation density

    International Nuclear Information System (INIS)

    Kido, Toshihiko; Maruyama, Toshiki; Chiba, Satoshi; Niita, Koji

    1999-01-01

    The infinite nuclear matter that consists of numerous protons and neutrons is described by using periodic boundary conditions. The motion of each nucleon in the fundamental cell is decided by a Molecular Dynamics. The ground states or the excited states of the nuclear matter are simulated. (author)

  17. On the thermal properties of polarized nuclear matter

    International Nuclear Information System (INIS)

    Hassan, M.Y.M.; Montasser, S.S.; Ramadan, S.

    1979-08-01

    The thermal properties of polarized nuclear matter are calculated using Skyrme III interaction modified by Dabrowski for polarized nuclear matter. The temperature dependence of the volume, isospin, spin and spin isospin pressure and energies are determined. The temperature, isospin, spin and spin isospin dependence of the equilibrium Fermi momentum is also discussed. (author)

  18. On the spin saturation and thermal properties of nuclear matter

    International Nuclear Information System (INIS)

    Hassan, M.Y.M.; Ramadan, S.

    1983-12-01

    The binding energy and the incompressibility of nuclear matter with degree of spin saturation D is calculated using the Skyrme interaction and two forms of a velocity dependent effective potential. The effect of the degree of spin saturation D on the thermal properties of nuclear matter is also discussed. It is found that generally the pressure decreases with increasing D. (author)

  19. Phase transitions in nuclear matter and consequences for neutron stars

    International Nuclear Information System (INIS)

    Kaempfer, B.

    1983-04-01

    Estimates of the minimal bombarding energy necessary to reach the quark gluon phase in heavy ion collisions are presented within a hydrodynamical scenario. Further, the consequences of first-order phase transitions from nuclear/neutron matter to pion-condensed matter or quark matter are discussed for neutron stars. (author)

  20. Probing the nuclear matter at high baryon and isospin density with heavy ion collisions

    International Nuclear Information System (INIS)

    Di Toro, M.; Colonna, M.; Ferini, G.

    2010-01-01

    Heavy Ion Collisions (HIC) represent a unique tool to probe the in-medium nuclear interaction in regions away from saturation. High Energy Collisions are studied in order to access nuclear matter properties at high density. Particular attention is devoted to the selection of observables sensitive to the poorly known symmetry energy at high baryon density, of large fundamental interest, even for the astrophysics implications. Using fully consistent covariant transport simulations built on effective field theories we are testing isospin observables ranging from nucleon/cluster emissions, collective flows (in particular the elliptic, squeeze out, part) and meson production. The possibility to shed light on the controversial neutron/proton effective mass splitting in asymmetric matter is also stressed. The "symmetry" repulsion at high baryon density will also lead to an "earlier" hadron-deconfinement transition in n-rich matter. The phase transition of hadronic to quark matter at high baryon and isospin density is analyzed. Nonlinear relativistic mean field models are used to describe hadronic matter, and the MIT bag model is adopted for quark matter. The boundaries of the mixed phase and the related critical points for symmetric and asymmetric matter are obtained. Isospin effects appear to be rather significant. The binodal transition line of the (T,ρ B ) diagram is lowered in a region accessible to heavy ion collisions in the energy range of the new planned FAIR/NICA facilities. Some observable effects of the mixed phase are suggested, in particular a neutron distillation mechanism. Theoretically a very important problem appears to be the suitable treatment of the isovector part of the interaction in effective QCD lagrangian approaches. (author)

  1. A fermionic molecular dynamics technique to model nuclear matter

    International Nuclear Information System (INIS)

    Vantournhout, K.; Jachowicz, N.; Ryckebusch, J.

    2009-01-01

    Full text: At sub-nuclear densities of about 10 14 g/cm 3 , nuclear matter arranges itself in a variety of complex shapes. This can be the case in the crust of neutron stars and in core-collapse supernovae. These slab like and rod like structures, designated as nuclear pasta, have been modelled with classical molecular dynamics techniques. We present a technique, based on fermionic molecular dynamics, to model nuclear matter at sub-nuclear densities in a semi classical framework. The dynamical evolution of an antisymmetric ground state is described making the assumption of periodic boundary conditions. Adding the concepts of antisymmetry, spin and probability distributions to classical molecular dynamics, brings the dynamical description of nuclear matter to a quantum mechanical level. Applications of this model vary from investigation of macroscopic observables and the equation of state to the study of fundamental interactions on the microscopic structure of the matter. (author)

  2. On the properties of nuclear matter with an excess of neutrons, spin-up neutrons and spin-up protons using effective nucleon-nucleon potential

    International Nuclear Information System (INIS)

    Hassan, M.Y.; Ramadan, S.

    1978-01-01

    The binding energy of nuclear matter with an excess of neutrons, with spin-up neutrons and spin-up protons (characterized by the corresponding parameters αsub(tau)=(N-Z)/A, αsub(n)=(N(up)-N(down))/A, and αsub(p)=(Z(up)-Z(down))/A) contains three symmetry energies: the isospin symmetry energy epsilon sub(tau), the spin symmetry energy epsilon sub(sigma) and the spin-isospin symmetry energy epsilon sub(sigma tau). These energies are calculated using velocity-dependent effective potential of s-wave interaction, which was developed by Dzhibuti and Mamasakhlisov. The spin, isospin and spin-isospin dependent parts of the single-particle potential in nuclear matter are also calculated using the same effective nucleon-nucleon potentials. The spin-spin part of the optical model potential is estimated. (author)

  3. Nucleons, Nuclear Matter and Quark Matter: A unified NJL approach

    Energy Technology Data Exchange (ETDEWEB)

    S. Lawley; W. Bentz; A.W. Thomas

    2006-02-10

    We use an effective quark model to describe both hadronic matter and deconfined quark matter. By calculating the equations of state and the corresponding neutron star properties, we show that the internal properties of the nucleon have important implications for the properties of these systems.

  4. Nucleons, nuclear matter and quark matter: a unified NJL approach

    Energy Technology Data Exchange (ETDEWEB)

    Lawley, S [Special Research Centre for the Subatomic Structure of Matter, University of Adelaide, Adelaide SA 5005 (Australia); Bentz, W [Department of Physics, School of Science, Tokai University Hiratsuka-shi, Kanagawa 259-1292 (Japan); Thomas, A W [Jefferson Lab, 12000 Jefferson Avenue, Newport News, VA 23606 (United States)

    2006-05-01

    We use an effective quark model to describe both hadronic matter and deconfined quark matter. By calculating the equations of state and the corresponding neutron star properties, we show that the internal properties of the nucleon have important implications for the properties of these systems.

  5. Dark energy and dark matter from hidden symmetry of gravity model with a non-Riemannian volume form

    Energy Technology Data Exchange (ETDEWEB)

    Guendelman, Eduardo [Ben-Gurion University of the Negev, Department of Physics, Beersheba (Israel); Nissimov, Emil; Pacheva, Svetlana [Bulgarian Academy of Sciences, Institute for Nuclear Research and Nuclear Energy, Sofia (Bulgaria)

    2015-10-15

    We show that dark energy and dark matter can be described simultaneously by ordinary Einstein gravity interacting with a single scalar field provided the scalar field Lagrangian couples in a symmetric fashion to two different spacetime volume forms (covariant integration measure densities) on the spacetime manifold - one standard Riemannian given by √(-g) (square root of the determinant of the pertinent Riemannian metric) and another non-Riemannian volume form independent of the Riemannian metric, defined in terms of an auxiliary antisymmetric tensor gauge field of maximal rank. Integration of the equations of motion of the latter auxiliary gauge field produce an a priori arbitrary integration constant that plays the role of a dynamically generated cosmological constant or dark energy. Moreover, the above modified scalar field action turns out to possess a hidden Noether symmetry whose associated conserved current describes a pressureless ''dust'' fluid which we can identify with the dark matter completely decoupled from the dark energy. The form of both the dark energy and dark matter that results from the above class of models is insensitive to the specific form of the scalar field Lagrangian. By adding an appropriate perturbation, which breaks the above hidden symmetry and along with this couples dark matter and dark energy, we also suggest a way to obtain growing dark energy in the present universe's epoch without evolution pathologies. (orig.)

  6. Antikaons in infinite nuclear matter and nuclei

    International Nuclear Information System (INIS)

    Moeller, M.

    2007-01-01

    In this work we studied the properties of antikaons and hyperons in infinite cold nuclear matter. The in-medium antikaon-nucleon scattering amplitude and self-energy has been calculated within a covariant many-body framework in the first part. Nuclear saturation effects have been taken into account in terms of scalar and vector nucleon mean-fields. In the second part of the work we introduced a non-local method for the description of kaonic atoms. The many-body approach of anti KN scattering can be tested by the application to kaonic atoms. A self-consistent and covariant many-body approach has been used for the determination of the antikaon spectral function and anti KN scattering amplitudes. It considers s-, p- and d-waves and the application of an in-medium projector algebra accounts for proper mixing of partial waves in the medium. The on-shell reduction scheme is also implemented by means of the projector algebra. The Bethe-Salpeter equation has been rewritten, so that the free-space anti KN scattering can be used as the interaction kernel for the in-medium scattering equation. The latter free-space scattering is based on a realistic coupled-channel dynamics and chiral SU(3) Lagrangian. Our many-body approach is generalized for the presence of large scalar and vector nucleon mean-fields. It is supplemented by an improved renormalization scheme, that systematically avoids the occurrence of medium-induced power-divergent structures and kinematical singularities. A modified projector basis has been introduced, that allows for a convenient inclusion of nucleon mean-fields. The description of the results in terms of the 'physical' basis is done with the help of a recoupling scheme based on the projector algebra properties. (orig.)

  7. Coherent scattering of neutrinos by 'nuclear pasta' in dense matter

    International Nuclear Information System (INIS)

    Sonoda, Hidetaka

    2007-01-01

    We examine coherent scattering cross section of neutrino and nucleon systems via weak-neutral current at subnuclear densities, which will be important in supernova cores. Below melting density and temparature of nuclei, nuclear shape becomes rodlike and slablike; this is called nuclear 'pasta'. Transition of structure will greatly influence coherent effects which can not easily be predicted. We calculate static structure factor of nuclear matter using data of several nuclear models, and discuss the effects of existence of nuclear pasta on neutrino opacity in hot dense matter

  8. Phases of kinky holographic nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Elliot-Ripley, Matthew; Sutcliffe, Paul; Zamaklar, Marija [Department of Mathematical Sciences, Durham University,South Road, Durham (United Kingdom)

    2016-10-17

    Holographic QCD at finite baryon number density and zero temperature is studied within the five-dimensional Sakai-Sugimoto model. We introduce a new approximation that models a smeared crystal of solitonic baryons by assuming spatial homogeneity to obtain an effective kink theory in the holographic direction. The kink theory correctly reproduces a first order phase transition to lightly bound nuclear matter. As the density is further increased the kink splits into a pair of half-kink constituents, providing a concrete realization of the previously suggested dyonic salt phase, where the bulk soliton splits into constituents at high density. The kink model also captures the phenomenon of baryonic popcorn, in which a first order phase transition generates an additional soliton layer in the holographic direction. We find that this popcorn transition takes place at a density below the dyonic salt phase, making the latter energetically unfavourable. However, the kink model predicts only one pop, rather than the sequence of pops suggested by previous approximations. In the kink model the two layers produced by the single pop form the surface of a soliton bag that increases in size as the baryon chemical potential is increased. The interior of the bag is filled with abelian electric potential and the instanton charge density is localized on the surface of the bag. The soliton bag may provide a holographic description of a quarkyonic phase.

  9. Kaons in nuclear matter; Kaonen in Kernmaterie

    Energy Technology Data Exchange (ETDEWEB)

    Kolomeitsev, E.E.

    1997-02-01

    The subject of the doctoral thesis is examination of the properties of kaons in nuclear matter. A specific method is explained that has been developed for the scientific objectives of the thesis and permits description of the kaon-nucleon interactions and kaon-nucleon scattering in a vacuum. The main challenge involved was to find approaches that would enable application of the derived relations out of the kaon mass shell, connected with the second objective, namely to possibly find methods which are independent of models. The way chosen to achieve this goal relied on application of reduction formulas as well as current algebra relations and the PCAC hypothesis. (orig./CB) [Deutsch] Die Arbeit befasst sich mit der Untersuchung der Eigenschaften von Kao nen in Kernmaterie. Zu diesem Zweck wurde ein Verfahren entwickelt, di e Kaon- Nukleon- Wechselwirkung und Kaon- Nukleon- Streuung im Vakuumzu beschreiben. Die Hauptherausforderung bestand darin, dass die abgel eiteten Relationen ausserhalb der Kaonen- Massenschale anwendbar werde n. Eine Nebenforderung war, dass die vorgeschlagenen Verfahren moeglic hst modell- unabhaengig sind. Um dieses Ziel zu erreichen, wurden Redu ktionsformeln, Stromalgebra- Relationen und die PCAC- Hypothese angewe ndet.

  10. Track theory and nuclear photographic emulsions for Dark Matter searches

    International Nuclear Information System (INIS)

    Ditlov, V.A.

    2013-01-01

    This work is devoted to the analysis of possibilities of nuclear emulsions for Dark Matter search, particles of which can produce slow recoil-nuclei. Tracks of such recoil-nuclei in developed nuclear emulsion consist from several emulsion grains. The analysis was carried out with Monte-Carlo calculations made on the basis of the Track Theory and the various factors influencing Dark Matter particles registration efficiency were investigated. Problems, which should be solved for optimal utilization of nuclear emulsions in Dark Matter search, were formulated. B ody - Highlights: ► Specific features of Dark Matter Search in nuclear photographic emulsions. ► Track theory for WIMP search in nuclear emulsions. ► Primary efficiency for single WIMP registration. ► Properties of primary WIMP registration efficiency. ► Primary registration efficiency of WIMP flow

  11. On the symmetry of nuclear identity between relativistic primary and secondary nuclei

    International Nuclear Information System (INIS)

    Lerman, L.

    2002-01-01

    Do secondary hadrons, freshly created in the collision of a relativistic heavy ion nucleus, have the same properties of nuclear interaction as those of an otherwise identical primary? To explore this question two types of experiments were performed, one in fact and one in fiction. The first was the scanning and measurement of an emulsion stack exposed to a 1.8 A GeV 40 Ar beam from Lawrence Berkeley Laboratory's Bevatron. This emulsion experiment is the first full-stack scan of a major exposure ever performed and includes 1418 stars of primary interactions, 1850 secondary stars, and tens of thousands of shower and slow heavily ionizing particles. As such it constitutes a dataset uniquely powerful in exploring questions of symmetry between primary and secondary populations. One of the emulsion results is the experimental determination (and to a particularly high accuracy for Z=2) that total (geometric) cross-section does not change with generation for the secondaries under study. The 'fictional' experiments are a set of Monte-Carlo simulations based on the transport code RHIP, itself built upon the results of the emulsions experiment. RHIP is designed to attack a number of problems ranging from particle physics to NASA's need to model the nuclear cascades induced by Galactic Cosmic Rays impinging on manned spacecraft. The major version of RHIP dealt with here is BFHL, a detailed modeling of a 1.8 A GeV 40 Ar beam on cylindrically symmetric sets of Cu targets. BFHL was then applied to the Copper Calorimetry Experiments also performed at Lawrence Berkeley Laboratory. The exhaustive simulation and analysis presented here shows that all but one of the variables considered can neither quantitatively nor qualitatively explain the results of the Copper Calorimetry Experiments. Amongst many others these failures of fit include all transport variables, the total cross-section (i.e. short mean free path), and a higher than normal Pt for shower particles. Instead, the Copper

  12. Circumstantial Evidence for a Soft Nuclear Symmetry Energy at Suprasaturation Densities

    International Nuclear Information System (INIS)

    Xiao Zhigang; Zhang Ming; Li Baoan; Chen Liewen; Yong Gaochan

    2009-01-01

    Within an isospin- and momentum-dependent hadronic transport model, it is shown that the recent FOPI data on the π - /π + ratio in central heavy-ion collisions at SIS/GSI energies [Willy Reisdorf et al., Nucl. Phys. A 781, 459 (2007)] provide circumstantial evidence suggesting a rather soft nuclear symmetry energy E sym (ρ) at ρ≥2ρ 0 compared to the Akmal-Pandharipande-Ravenhall prediction. Some astrophysical implications and the need for further experimental confirmations are discussed

  13. Isospin splitting of nucleon effective mass and symmetry energy in isotopic nuclear reactions

    Science.gov (United States)

    Guo, Ya-Fei; Chen, Peng-Hui; Niu, Fei; Zhang, Hong-Fei; Jin, Gen-Ming; Feng, Zhao-Qing

    2017-10-01

    Within an isospin and momentum dependent transport model, the dynamics of isospin particles (nucleons and light clusters) in Fermi-energy heavy-ion collisions are investigated for constraining the isospin splitting of nucleon effective mass and the symmetry energy at subsaturation densities. The impacts of the isoscalar and isovector parts of the momentum dependent interaction on the emissions of isospin particles are explored, i.e., the mass splittings of and (). The single and double neutron to proton ratios of free nucleons and light particles are thoroughly investigated in the isotopic nuclear reactions of 112Sn+112Sn and 124Sn+124Sn at incident energies of 50 and 120 MeV/nucleon, respectively. It is found that both the effective mass splitting and symmetry energy impact the kinetic energy spectra of the single ratios, in particular at the high energy tail (larger than 20 MeV). The isospin splitting of nucleon effective mass slightly impacts the double ratio spectra at the energy of 50 MeV/nucleon. A soft symmetry energy with stiffness coefficient of γ s=0.5 is constrained from the experimental data with the Fermi-energy heavy-ion collisions. Supported by Major State Basic Research Development Program in China (2014CB845405, 2015CB856903), National Natural Science Foundation of China (11722546, 11675226, 11675066, U1332207) and Youth Innovation Promotion Association of Chinese Academy of Sciences

  14. Reflection on penal policy in nuclear matters

    International Nuclear Information System (INIS)

    Cisse, A.

    1996-01-01

    This document expresses ethical reflexions as far as nuclear energy development is concerned. The potential diversion of the peaceful use of nuclear energy results in the necessity of a criminal policy which would control the nuclear regulations. For each potential nuclear infringement, systems of laws are established either to prevent damages or to penalize them. (TEC)

  15. Neutron optical potentials in unstable nuclei and the equation of state of asymmetric nuclear matter

    International Nuclear Information System (INIS)

    Oyamatsu, K.; Iida, K.

    2003-01-01

    Neutron single particle potential is one of the basic macroscopic properties to describe structure and reactions of nuclei in nuclear reactors and in the universe. However, the potential is quite uncertain for unstable nuclei primarily because the equation of state (EOS) of asymmetric nuclear matter is not known well. The present authors studied systematically the empirical EOS of asymmetric nuclear matter using a macroscopic nuclear model; about two hundred EOS's having empirically allowed values of L (symmetry energy density derivative coefficient) and K 0 (incompressibility) were obtained from the fittings to masses and radii of stable nuclei. It was suggested that the L value could be determined from global (Z, A) dependence of nuclear radii. In the present study, the single particle potential is examined assuming kinetic energies of non-interacting Fermi gases. The potential in a nucleus can be calculated easily, once the density distribution is solved using the effective nuclear interaction (EOS). Neutron and proton single particle potentials are calculated systematically for 80 Ni using the two hundred EOS's. It is found that the neutron-proton potential difference has clear and appreciable L dependence, while the potential for each species does not show such simple dependence on L. (author)

  16. Clustering phenomena in nuclear matter below the saturation density

    International Nuclear Information System (INIS)

    Takemoto, Hiroki; Fukushima, Masahiro; Chiba, Satoshi; Horiuchi, Hisashi; Akaishi, Yoshinori; Tohsaki, Akihiro

    2004-01-01

    We investigate density-fluctuated states of nuclear matter as a result of clustering below the saturation density ρ 0 by description in terms of the Bloch function. The Bloch description has the advantage of a unified representation for a density-fluctuated state from an aggregate of uncorrelated clusters in extremely low-density regions to the plane-wave state of uniform matter in relatively high-density regions. We treat the density-fluctuated states due to α and 16 O clustering in symmetric nuclear matter and due to 10 He clustering in asymmetric nuclear matter. The density-fluctuated states develop as the density of matter decreases below each critical density around 0.2-0.4 ρ 0 which depends on what kind of effective force we use

  17. Folding model study of the charge-exchange scattering to the isobaric analog state and implication for the nuclear symmetry energy

    International Nuclear Information System (INIS)

    Khoa, Dao T.; Thang, Dang Ngoc; Loc, Bui Minh

    2014-01-01

    The Fermi transition (ΔL = ΔS = 0 and ΔT = 1) between the nuclear isobaric analog states (IAS), induced by the charge-exchange (p, n) or ( 3 He, t) reaction, can be considered as ''elastic'' scattering of proton or 3 He by the isovector term of the optical potential (OP) that flips the projectile isospin. The accurately measured (p, n) or ( 3 He, t) scattering cross section to the IAS can be used, therefore, to probe the isospin dependence of the proton or 3 He optical potential. Within the folding model, the isovector part of the OP is determined exclusively by the neutron-proton difference in the nuclear densities and the isospin dependence of the effective nucleon-nucleon (NN) interaction. Because the isovector coupling explicitly links the isovector part of the proton or 3 He optical potential to the cross section of the charge-exchange (p, n) or ( 3 He, t) scattering to the IAS, the isospin dependence of the effective (in-medium) NN interaction can be well tested in the folding model analysis of these charge-exchange reactions. On the other hand, the same isospin- and density-dependent NN interaction can also be used in a Hartree-Fock calculation of asymmetric nuclear matter, to estimate the nuclear matter energy and its asymmetry part (the nuclear symmetry energy). As a result, the fine-tuning of the isospin dependence of the effective NN interaction against the measured (p, n) or ( 3 He, t) cross sections should allow us to make some realistic prediction of the nuclear symmetry energy and its density dependence. (orig.)

  18. Folding model study of the charge-exchange scattering to the isobaric analog state and implication for the nuclear symmetry energy

    Energy Technology Data Exchange (ETDEWEB)

    Khoa, Dao T.; Thang, Dang Ngoc [VINATOM, Institute for Nuclear Science and Technique, Hanoi (Viet Nam); Loc, Bui Minh [VINATOM, Institute for Nuclear Science and Technique, Hanoi (Viet Nam); University of Pedagogy, Ho Chi Minh City (Viet Nam)

    2014-02-15

    The Fermi transition (ΔL = ΔS = 0 and ΔT = 1) between the nuclear isobaric analog states (IAS), induced by the charge-exchange (p, n) or ({sup 3}He, t) reaction, can be considered as ''elastic'' scattering of proton or {sup 3}He by the isovector term of the optical potential (OP) that flips the projectile isospin. The accurately measured (p, n) or ({sup 3}He, t) scattering cross section to the IAS can be used, therefore, to probe the isospin dependence of the proton or {sup 3}He optical potential. Within the folding model, the isovector part of the OP is determined exclusively by the neutron-proton difference in the nuclear densities and the isospin dependence of the effective nucleon-nucleon (NN) interaction. Because the isovector coupling explicitly links the isovector part of the proton or {sup 3}He optical potential to the cross section of the charge-exchange (p, n) or ({sup 3}He, t) scattering to the IAS, the isospin dependence of the effective (in-medium) NN interaction can be well tested in the folding model analysis of these charge-exchange reactions. On the other hand, the same isospin- and density-dependent NN interaction can also be used in a Hartree-Fock calculation of asymmetric nuclear matter, to estimate the nuclear matter energy and its asymmetry part (the nuclear symmetry energy). As a result, the fine-tuning of the isospin dependence of the effective NN interaction against the measured (p, n) or ({sup 3}He, t) cross sections should allow us to make some realistic prediction of the nuclear symmetry energy and its density dependence. (orig.)

  19. Monotonous braking of high energy hadrons in nuclear matter

    International Nuclear Information System (INIS)

    Strugalski, Z.

    1979-01-01

    Propagation of high energy hadrons in nuclear matter is discussed. The possibility of the existence of the monotonous energy losses of hadrons in nuclear matter is considered. In favour of this hypothesis experimental facts such as pion-nucleus interactions (proton emission spectra, proton multiplicity distributions in these interactions) and other data are presented. The investigated phenomenon in the framework of the hypothesis is characterized in more detail

  20. Many-body theory of nuclear and neutron star matter

    Energy Technology Data Exchange (ETDEWEB)

    Pandharipande, V R; Akmal, A; Ravenhall, D G [Dept. of Physics, Univ. of Illinois at Urbana-Champaign, Urbana, IL (United States)

    1998-06-01

    We present results obtained for nuclei, nuclear and neutron star matter, and neutron star structure obtained with the recent Argonne v{sub 18} two- nucleon and Urbana IX three-nucleon interactions including relativistic boost corrections. These interactions predict that matter will undergo a transition to a spin layered phase with neutral pion condensation. We also consider the possibility of a transition to quark matter. (orig.)

  1. Many-body theory of nuclear and neutron star matter

    International Nuclear Information System (INIS)

    Pandharipande, V.R.; Akmal, A.; Ravenhall, D.G.

    1998-01-01

    We present results obtained for nuclei, nuclear and neutron star matter, and neutron star structure obtained with the recent Argonne v 18 two- nucleon and Urbana IX three-nucleon interactions including relativistic boost corrections. These interactions predict that matter will undergo a transition to a spin layered phase with neutral pion condensation. We also consider the possibility of a transition to quark matter. (orig.)

  2. Nuclear incompressibility: from finite nuclei to nuclear matter

    International Nuclear Information System (INIS)

    Treiner, J.; Krivine, H.; Bohigas, O.

    1981-01-01

    The recent increase of experimental data concerning the Giant Monopole Resonance Energy Esub(M) gives information on the incompressibility modulus of nuclear matter, provided one can extrapolate the incompressibility of a nucleus Ksub(A) defined by Esub(M)=[h 2 /m KA/ 2 >]sup(1/2), to the infinite medium. We discuss the theoretical interpretation of the coefficients of an Asup(-1/3) - expansion of Ksub(A) by studying the asymptotic behaviour of two RPA sum rules (corresponding to the scaling and the constrained model), evaluated using self-consistent Thomas-Fermi calculations. We show that the scaling model is the most suitable one as it leads to a rapidly converging Asup(-1/3)-expansion of the corresponding incompressibility Ksub(A)sup(S), whereas this is not the case with the constrained model. Some semi-empirical relations between the coefficients of the expansion of Ksub(A)sup(S) are established, which reduce to one the number of free-parameters in a best fit analysis of the experimental data. This reduction is essential due to the still limited number and accuracy of experimental data. We then show the compatibility of the data given by the various experimental groups with this parametrization and obtain a value of Ksub(nm)=220+-20 MeV, in good agreement with more microscopic analysis

  3. Nuclear Matter Bulk Parameter Scales and Correlations

    International Nuclear Information System (INIS)

    Santos, B. M.; Delfino, A.; Dutra, M.; Lourenço, O.

    2015-01-01

    We study the arising of correlations among some isovector bulk parameters in nonrelativistic and relativistic hadronic mean-field models. For the former, we investigate correlations in the nonrelativistic (NR) limit of relativistic point-coupling models. We provide analytical correlations, for the NR limit model, between the symmetry energy and its derivatives, namely, the symmetry energy slope, curvature, skewness and fourth order derivative, discussing the conditions in which they are linear ones. We also show that some correlations presented in the NR limit model are reproduced for relativistic models presenting cubic and quartic self-interactions in its scalar field. As a direct application of such linear correlations, we remark its association with possible crossing points in the density dependence of the linearly correlated bulk parameter. (author)

  4. The role of meson dynamics in nuclear matter saturation

    International Nuclear Information System (INIS)

    Goncalves, E.

    1988-01-01

    The problem of the saturation of nuclea matter in the non-relativistic limit of the model proposed by J.D. Walecka is studied. In the original context nuclear matter saturation is obtained as a direct consequence of relativistic effects and both scalar and vector mesons are treated statically. In the present work we investigate the effect of the meson dynamics for the saturation using a Born-Oppenheimer approximation for the ground state. An upper limit for the saturation curve of nuclear matter and are able to decide now essential is the relativistic treatment of the nucleons for this problem, is obtained. (author) [pt

  5. Photons in dense nuclear matter: Random-phase approximation

    Science.gov (United States)

    Stetina, Stephan; Rrapaj, Ermal; Reddy, Sanjay

    2018-04-01

    We present a comprehensive and pedagogic discussion of the properties of photons in cold and dense nuclear matter based on the resummed one-loop photon self-energy. Correlations among electrons, muons, protons, and neutrons in β equilibrium that arise as a result of electromagnetic and strong interactions are consistently taken into account within the random phase approximation. Screening effects, damping, and collective excitations are systematically studied in a fully relativistic setup. Our study is relevant to the linear response theory of dense nuclear matter, calculations of transport properties of cold dense matter, and investigations of the production and propagation of hypothetical vector bosons such as the dark photons.

  6. The thermal curve of nuclear matter

    International Nuclear Information System (INIS)

    Ma, Y.G.; Peter, J.; Siwek, A.; Bocage, F.; Bougault, R.; Brou, R.; Colin, J.; Cussol, D.; Durand, D.; Genouin-Duhamel, E.; Gulminelli, F.; Lecolley, J.F.; Lefort, T.; Le Neindre, N.; Lopez, O.; Louvel, M.; Nguyen, A.D.; Steckmeyer, J.C.; Tamain, B.; Vient, E.

    1997-01-01

    Earlier measurements of nuclear matter thermal curve of liquid to gas phase transition presented two limitation: only one temperature measuring method was available and the mass number of the formed nuclei decreased from 190 to 50 when the excitation energy increased. To avoid these limitations experiments with the multidetector INDRA at GANIL were carried-out. Among the quasi-projectiles issued from the 36 Ar collisions at 52, 74, 95 A.MeV on the 58 Ni, nuclei of close masses were selected. The excitation energy was determined by the calorimetry of the charged products emitted by quasi-projectiles while the temperature was measured by three different methods. Very different apparent temperatures were obtained for the same excitation energy/nucleon. Only one curve displays a slope variation but no indication of plateau. With the quasi-projectiles obtained from the collisions of 129 Xe at 50 MeV/u on a 119 Sn target behaviors similar to those of 36 Ar were observed in the covered domain of excitation energy. To solve this puzzle and recover the initial temperatures of interest the only mean was to do a theoretical simulation in which one follows the de-excitation of the nuclei formed at different excitation energies and look for the thermal curve able to reproduce the observed temperatures. Two extreme possibilities were taken into account concerning the de-excitation process: either a sequential process established at E * /A≤ 3 MeV/u or a sudden multifragmentation in several hot fragments, most probably at E * /A≥ 10 MeV/u. In both cases it was possible to reproduce the whole set of experimental results concerning the 36 Ar projectile. The initial temperature increases steadily as a function of excitation energy showing no plateau or singular points. The results indicate that, being a system without external pressure, in its passage from the liquid phase to the gas phase the nucleus does not display necessarily a temperature plateau. Discussions on

  7. Triton-3He relative and differential flows as probes of the nuclear symmetry energy at supra-saturation densities

    International Nuclear Information System (INIS)

    Yong Gaochan; Li Baoan; Chen Liewen; Zhang Xunchao

    2009-01-01

    Using a transport model coupled with a phase-space coalescence afterburner, we study the triton- 3 He (t- 3 He) ratio with both relative and differential transverse flows in semicentral 132 Sn+ 124 Sn reactions at a beam energy of 400 MeV/nucleon. The neutron-proton ratios with relative and differential flows are also discussed as a reference. We find that similar to the neutron-proton pairs, the t- 3 He pairs also carry interesting information regarding the density dependence of the nuclear symmetry energy. Moreover, the nuclear symmetry energy affects more strongly the t- 3 He relative and differential flows than the π - /π + ratio in the same reaction. The t- 3 He relative flow can be used as a particularly powerful probe of the high-density behavior of the nuclear symmetry energy.

  8. Pion condensation and density isomerism in nuclear matter

    International Nuclear Information System (INIS)

    Hecking, P.; Weise, W.

    1979-01-01

    The possible existence of density isomers in nuclear matter, induced by pion condensation, is discussed; the nuclear equation of state is treated within the framework of the sigma model. Repulsive short-range baryon-baryon correlations, the admixture of Δ (1232) isobars and finite-range pion-baryon vertex form factors are taken into account. The strong dependence of density isomerism on the high density extrapolation of the equation of state for normal nuclear matter is also investigated. We find that, once finite range pion-baryon vertices are introduced, the appearance of density isomers becomes unlikely

  9. The determination of nuclear matter temperature and density

    International Nuclear Information System (INIS)

    Wolf, K.L.

    1981-01-01

    The purpose of this paper is to review some of the things we have learned about nuclear matter under extreme conditions during the past few years in relativistic heavy ion studies. High energy heavy-ion collisions provide a unique mechanism for exploring the dependence of the nuclear potential energy epsilon(rho,T) on the degree of compression and excitation, and may even show the existence of new phases of matter. Thus the determination of the nuclear equation of state remains the ultimate goal of many researchers in this field. (orig.)

  10. QCD sum rule for nucleon in nuclear matter

    International Nuclear Information System (INIS)

    Mallik, S.; Sarkar, Sourav

    2010-01-01

    We consider the two-point function of nucleon current in nuclear matter and write a QCD sum rule to analyse the residue of the nucleon pole as a function of nuclear density. The nucleon self-energy needed for the sum rule is taken as input from calculations using phenomenological N N potential. Our result shows a decrease in the residue with increasing nuclear density, as is known to be the case with similar quantities. (orig.)

  11. From quantum to semiclassical kinetic equations: Nuclear matter estimates

    International Nuclear Information System (INIS)

    Galetti, D.; Mizrahi, S.S.; Nemes, M.C.; Toledo Piza, A.F.R. de

    1985-01-01

    Starting from the exact microscopic time evolution of the quantum one body density associated with a many fermion system semiclassical approximations are derived to it. In the limit where small momentum transfer two body collisions are dominant we get a Fokker-Planck equation and work out friction and diffusion tensors explicitly for nuclear matter. If arbitrary momentum transfers are considered a Boltzmann equation is derived and used to calculate the viscosity coefficient of nuclear matter. A derivation is given of the collision term used by Landau to describe the damping of zero sound waves at low temperature in Plasmas. Memory effects are essential for this. The damping of zero sound waves in nuclear matter is also calculated and the value so obtained associated with the bulk value of the damping of giant resonances in finite nuclei. The bulk value is estimated to be quite small indicating the importance of the nuclear surface for the damping. (Author) [pt

  12. Nuclear theory progress report

    International Nuclear Information System (INIS)

    1991-01-01

    This report discusses research performed at University of Washington in nuclear theory. Some of the topics discussed are: nuclear astrophysics; symmetry; time reversal invariance; quark matter; superallowed beta decay; exclusive reactions; nuclear probes; soliton model; relativistic heavy ion collisions; supernova explosions; neutrino processes in dense matter; field theories; weak interaction physics; and nuclear structure

  13. Interplay between chiral symmetry breaking and color superconductivity in dense quark matter

    International Nuclear Information System (INIS)

    Kitazawa, Masakiyo

    2003-01-01

    We investigate the QCD phase diagram in finite temperature and density in a simple Nambu-Jona-Lasinio model with the vector interaction. It is shown that the repulsive density-density interaction coming from the vector term enhances competition between the chiral symmetry breaking (χSB) and color superconducting (CSC) phase transition: When the vector coupling is increased, the first order transition between the χSB and CSC phase becomes weaker, and the coexisting phase in which both the chiral and color-gauge symmetries are dynamically broken comes to exist in a wider region in the T-μ plane. We find that the critical line of the first order transition can have two endpoints for an intermediate range of the vector coupling. (author)

  14. Broken symmetries at the origin of matter, at the origin of life and at the origin of culture

    NARCIS (Netherlands)

    van Klinken, J.

    1998-01-01

    In earliest cosmic history the university started with matter and not with antimatter. Shortly after the beginning the electroweak interaction prominent in nuclear beta decay - acted as a lefthander. Much later, in prebiotic evolution, optically left-handed amino acids determined the unique

  15. Tensor Fermi liquid parameters in nuclear matter from chiral effective field theory

    Science.gov (United States)

    Holt, J. W.; Kaiser, N.; Whitehead, T. R.

    2018-05-01

    We compute from chiral two- and three-body forces the complete quasiparticle interaction in symmetric nuclear matter up to twice nuclear matter saturation density. Second-order perturbative contributions that account for Pauli blocking and medium polarization are included, allowing for an exploration of the full set of central and noncentral operator structures permitted by symmetries and the long-wavelength limit. At the Hartree-Fock level, the next-to-next-to-leading order three-nucleon force contributes to all noncentral interactions, and their strengths grow approximately linearly with the nucleon density up to that of saturated nuclear matter. Three-body forces are shown to enhance the already strong proton-neutron effective tensor interaction, while the corresponding like-particle tensor force remains small. We also find a large isovector cross-vector interaction but small center-of-mass tensor interactions in the isoscalar and isovector channels. The convergence of the expansion of the noncentral quasiparticle interaction in Landau parameters and Legendre polynomials is studied in detail.

  16. Symmetry Energy as a Function of Density and Mass

    International Nuclear Information System (INIS)

    Danielewicz, Pawel; Lee, Jenny

    2007-01-01

    Energy in nuclear matter is, in practice, completely characterized at different densities and asymmetries, when the density dependencies of symmetry energy and of energy of symmetric matter are specified. The density dependence of the symmetry energy at subnormal densities produces mass dependence of nuclear symmetry coefficient and, thus, can be constrained by that latter dependence. We deduce values of the mass dependent symmetry coefficients, by using excitation energies to isobaric analog states. The coefficient systematic, for intermediate and high masses, is well described in terms of the symmetry coefficient values of a a V = (31.5-33.5) MeV for the volume coefficient and a a S = (9-12) MeV for the surface coefficient. These two further correspond to the parameter values describing density dependence of symmetry energy, of L∼95 MeV and K sym ∼25 MeV

  17. Relationship between the symmetry energy and the single-nucleon potential in isospin-asymmetric nucleonic matter

    International Nuclear Information System (INIS)

    Xu, Chang; Li, Bao-An; Chen, Lie-Wen

    2014-01-01

    In this contribution, we review the most important physics presented originally in our recent publications. Some new analyses, insights and perspectives are also provided. We showed recently that the symmetry energy E sym (ρ) and its density slope L(ρ) at an arbitrary density ρ can be expressed analytically in terms of the magnitude and momentum dependence of the single-nucleon potentials using the Hugenholtz-Van Hove (HVH) theorem. These relationships provide new insights about the fundamental physics governing the density dependence of nuclear symmetry energy. Using the isospin and momentum (k) dependent MDI interaction as an example, the contribution of different terms in the single-nucleon potential to the E sym (ρ) and L(ρ) are analyzed in detail at different densities. It is shown that the behavior of E sym is mainly determined by the first-order symmetry potential U sym,1 (ρ, k) of the single-nucleon potential. The density slope L(ρ) depends not only on the first-order symmetry potential U sym,1 (ρ, k) but also on the second-order one U sym,2 (ρ, k). Both the U sym,1 (ρ, k) and U sym,2 (ρ, k) at normal density ρ 0 are constrained by the isospin- and momentum-dependent nucleon optical potential extracted from the available nucleon-nucleus scattering data. The U sym,2 (ρ, k) especially at high density and momentum affects significantly the L(ρ), but it is theoretically poorly understood and currently there is almost no experimental constraints known. (orig.)

  18. Relationship between the symmetry energy and the single-nucleon potential in isospin-asymmetric nucleonic matter

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Chang [Nanjing University, Department of Physics, Nanjing (China); Li, Bao-An [Texas A and M University-Commerce, Department of Physics and Astronomy, Commerce, Texas (United States); Chen, Lie-Wen [Shanghai Jiao Tong University, Department of Physics and Astronomy and Shanghai Key Laboratory for Particle Physics and Cosmology, Shanghai (China)

    2014-02-15

    In this contribution, we review the most important physics presented originally in our recent publications. Some new analyses, insights and perspectives are also provided. We showed recently that the symmetry energy E{sub sym} (ρ) and its density slope L(ρ) at an arbitrary density ρ can be expressed analytically in terms of the magnitude and momentum dependence of the single-nucleon potentials using the Hugenholtz-Van Hove (HVH) theorem. These relationships provide new insights about the fundamental physics governing the density dependence of nuclear symmetry energy. Using the isospin and momentum (k) dependent MDI interaction as an example, the contribution of different terms in the single-nucleon potential to the E{sub sym} (ρ) and L(ρ) are analyzed in detail at different densities. It is shown that the behavior of E{sub sym} is mainly determined by the first-order symmetry potential U{sub sym,1}(ρ, k) of the single-nucleon potential. The density slope L(ρ) depends not only on the first-order symmetry potential U{sub sym,1}(ρ, k) but also on the second-order one U{sub sym,2}(ρ, k). Both the U{sub sym,1}(ρ, k) and U{sub sym,2}(ρ, k) at normal density ρ {sub 0} are constrained by the isospin- and momentum-dependent nucleon optical potential extracted from the available nucleon-nucleus scattering data. The U{sub sym,2}(ρ, k) especially at high density and momentum affects significantly the L(ρ), but it is theoretically poorly understood and currently there is almost no experimental constraints known. (orig.)

  19. Microscopic nuclear structure models and methods: chiral symmetry, wobbling motion and γ –bands

    International Nuclear Information System (INIS)

    Sheikh, Javid A; Bhat, Gowhar H; Dar, Waheed A; Jehangir, Sheikh; Ganai, Prince A

    2016-01-01

    A systematic investigation of the nuclear observables related to the triaxial degree of freedom is presented using the multi-quasiparticle triaxial projected shell model (TPSM) approach. These properties correspond to the observation of γ -bands, chiral doublet bands and the wobbling mode. In the TPSM approach, γ -bands are built on each quasiparticle configuration and it is demonstrated that some observations in high-spin spectroscopy that have remained unresolved for quite some time could be explained by considering γ -bands based on two-quasiparticle configurations. It is shown in some Ce-, Nd- and Ge-isotopes that the two observed aligned or s-bands originate from the same intrinsic configuration with one of them as the γ -band based on a two-quasiparticle configuration. In the present work, we have also performed a detailed study of γ -bands observed up to the highest spin in dysposium, hafnium, mercury and uranium isotopes. Furthermore, several measurements related to chiral symmetry breaking and wobbling motion have been reported recently. These phenomena, which are possible only for triaxial nuclei, have been investigated using the TPSM approach. It is shown that doublet bands observed in lighter odd–odd Cs-isotopes can be considered as candidates for chiral symmetry breaking. Transverse wobbling motion recently observed in 135 Pr has also been investigated and it is shown that TPSM approach provides a reasonable description of the measured properties. (invited comment)

  20. Simulations of cold nuclear matter at sub-saturation densities

    Energy Technology Data Exchange (ETDEWEB)

    Giménez Molinelli, P.A., E-mail: pagm@df.uba.ar [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, Ciudad Universitaria, Buenos Aires 1428 (Argentina); Nichols, J.I. [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, Ciudad Universitaria, Buenos Aires 1428 (Argentina); López, J.A. [Department of Physics, University of Texas at El Paso, El Paso, TX 79968 (United States); Dorso, C.O. [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, Ciudad Universitaria, Buenos Aires 1428 (Argentina)

    2014-03-01

    Ideal nuclear matter is expected to undergo a first order phase transition at the thermodynamic limit. At such phase transitions the size of density fluctuations (bubbles or droplets) scale with the size of the system. This means that simulations of nuclear matter at sub-saturation densities will inexorably suffer from what is vaguely referred to as “finite size effects”. It is usually thought that these finite size effects can be diminished by imposing periodic boundary conditions and making the system large enough, but as we show in this work, that is actually not the case at sub-saturation densities. In this paper we analyze the equilibrium configurations of molecular dynamics simulations of a classical model for symmetric ideal (uncharged) nuclear matter at sub-saturation densities and low temperatures, where phase coexistence is expected at the thermodynamic limit. We show that the most stable configurations in this density range are almost completely determined by artificial aspects of the simulations (i.e. boundary conditions) and can be predicted analytically by surface minimization. This result is very general and is shown to hold true for several well known semi-classical models of nuclear interaction and even for a simple Lennard-Jones potential. Also, in the limit of very large systems, when “small size” effects can be neglected, those equilibrium configurations seem to be restricted to a few structures reminiscent to the “Pasta Phases” expected in Neutron Star matter, but arising from a completely different origin: In Neutron Star matter, the non-homogeneous structures arise from a competition between nuclear and Coulomb interactions while for ideal nuclear matter they emerge from finite (yet not “small”) size effects. The role of periodic boundary conditions and finite size effects in Neutron Star matter simulations are reexamined.

  1. Fields, symmetries, and quarks

    International Nuclear Information System (INIS)

    Mosel, U.

    1989-01-01

    'Fields, symmetries, and quarks' covers elements of quantum field theory, symmetries, gauge field theories and phenomenological descriptions of hadrons, with special emphasis on topics relevant to nuclear physics. It is aimed at nuclear physicists in general and at scientists who need a working knowledge of field theory, symmetry principles of elementary particles and their interactions and the quark structure of hadrons. The book starts out with an elementary introduction into classical field theory and its quantization. As gauge field theories require a working knowledge of global symmetries in field theories this topic is then discussed in detail. The following part is concerned with the general structure of gauge field theories and contains a thorough discussion of the still less widely known features of Non-Abelian gauge field theories. Quantum Chromodynamics (QCD), which is important for the understanding of hadronic matter, is discussed in the next section together with the quark compositions of hadrons. The last two chapters give a detailed discussion of phenomenological bag-models. The MIT bag is discussed, so that all theoretical calculations can be followed step by step. Since in all other bag-models the calculational methods and steps are essentially identical, this chapter should enable the reader to actually perform such calculations unaided. A last chapter finally discusses the topological bag-models which have become quite popular over the last few years. (orig.)

  2. Pion absorption in excited nuclear matter

    International Nuclear Information System (INIS)

    Schmidt, H.R.; Albrecht, R.; Bock, R.; Gutbrod, H.H.; Kolb, B.W.; Lund, I.; Awes, T.C.; Baktash, C.; Ferguson, R.L.; Lee, I.Y.; Plasil, F.; Saini, S.; Tincknell, M.; Young, G.R.; Beckmann, P.; Berger, F.; Clewing, G.; Dragon, L.; Glasow, R.; Kampert, K.H.; Peitzmann, T.; Purschke, M.; Santo, R.; Claesson, G.; Eklund, A.; Garpman, S.; Gustafsson, H.A.; Idh, J.; Oskarsson, A.; Otterlund, I.; Persson, S.; Stenlund, E.; Franz, A.; Jacobs, P.; Poskanzer, A.M.; Ritter, H.G.; Kristiansson, P.; Loehner, H.; Obenshain, F.E.; Sorensen, S.P.; Siemiarczuk, T.

    1992-02-01

    The target dependence and azimuthal correlations of protons and plons are investigated for pA reactions at 4.9, 60 and 200 GeV. The experimental observations can be understood qualitatively under the assumption that pions are absorbed in excited target spectator matter. (orig.)

  3. General aspects of the nucleon-nucleon interaction and nuclear matter properties

    Energy Technology Data Exchange (ETDEWEB)

    Plohl, Oliver

    2008-07-25

    The subject of the present thesis is at first the investigation of model independent properties of the nucleon-nucleon (NN) interaction in the vacuum concerning the relativistic structure and the implications for nuclear matter properties. Relativistic and non-relativistic meson-exchange potentials, phenomenological potentials s well as potentials based on effective field theory (EFT) are therefore mapped on a relativistic operator basis given by the Clifford Algebra. This allows to compare the various approaches at the level of covariant amplitudes where a remarkable agreement is found. Furthermore, the relativistic self-energy is determined in the Hartree-Fock (HF) approximation. The appearance of a scalar and vector field of several hundred MeV magnitude is a general feature of relativistic descriptions of nuclear matter. Within QCD sum rules these fields arise due to the density dependence of chiral condensates. We find that independent of the applied NN interaction large scalar and vector fields are generated when the symmetries of the Lorentz group are restored. In the framework of chiral EFT (chEFT) it is shown, that these fields are generated by short-range next-to-leading order (NLO) contact terms, which are connected to the spin-orbit interaction. To estimate the effect arising from NN correlations the equation of state of nuclear and neutron matter is calculated in the Brueckner-HF (BHF) approximation applying chEFT. Although, as expected, a clear over-binding is found (at NLO a saturating behavior is observed), the symmetry energy shows realistic properties when compared to phenomenological potentials (within the same approximation) and other approaches. The investigation of the pion mass dependence within chEFT at NLO shows that the magnitude of the scalar and vector fields persists in the chiral limit - nuclear matter is still bound. In contrast to the case of a pion mass larger than the physical one the binding energy and saturation density are

  4. General aspects of the nucleon-nucleon interaction and nuclear matter properties

    International Nuclear Information System (INIS)

    Plohl, Oliver

    2008-01-01

    The subject of the present thesis is at first the investigation of model independent properties of the nucleon-nucleon (NN) interaction in the vacuum concerning the relativistic structure and the implications for nuclear matter properties. Relativistic and non-relativistic meson-exchange potentials, phenomenological potentials s well as potentials based on effective field theory (EFT) are therefore mapped on a relativistic operator basis given by the Clifford Algebra. This allows to compare the various approaches at the level of covariant amplitudes where a remarkable agreement is found. Furthermore, the relativistic self-energy is determined in the Hartree-Fock (HF) approximation. The appearance of a scalar and vector field of several hundred MeV magnitude is a general feature of relativistic descriptions of nuclear matter. Within QCD sum rules these fields arise due to the density dependence of chiral condensates. We find that independent of the applied NN interaction large scalar and vector fields are generated when the symmetries of the Lorentz group are restored. In the framework of chiral EFT (chEFT) it is shown, that these fields are generated by short-range next-to-leading order (NLO) contact terms, which are connected to the spin-orbit interaction. To estimate the effect arising from NN correlations the equation of state of nuclear and neutron matter is calculated in the Brueckner-HF (BHF) approximation applying chEFT. Although, as expected, a clear over-binding is found (at NLO a saturating behavior is observed), the symmetry energy shows realistic properties when compared to phenomenological potentials (within the same approximation) and other approaches. The investigation of the pion mass dependence within chEFT at NLO shows that the magnitude of the scalar and vector fields persists in the chiral limit - nuclear matter is still bound. In contrast to the case of a pion mass larger than the physical one the binding energy and saturation density are

  5. $J/\\Psi$ mass shift in nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Gastao Krein, Anthony Thomas, Kazuo Tsushima

    2011-02-01

    The $J/\\Psi$ mass shift in cold nuclear matter is computed using an effective Lagrangian approach. The mass shift is computed by evaluating $D$ and $D^*$ meson loop contributions to the $J/\\Psi$ self-energy employing medium-modified meson masses. The modification of the $D$ and $D^*$ masses in nuclear matter is obtained using the quark-meson coupling model. The loop integrals are regularized with dipole form factors and the sensitivity of the results to the values of form-factor cutoff masses is investigated. The $J/\\Psi$ mass shift arising from the modification of the $D$ and $D^*$ loops at normal nuclear matter density is found to range from $-16$~MeV to $-24$~MeV under a wide variation of values of the cutoff masses. Experimental perspectives for the formation of a bound state of $J/\\Psi$ to a nucleus are investigated.

  6. Equation of state of nuclear matter of nucleons and dibaryons

    International Nuclear Information System (INIS)

    Mrowczynski, St.

    1985-01-01

    The nuclear matter is considered consisting of nucleons and dibaryons, i.e. elementary particles of double baryon charge. The equation of state of such matter at zero temperature is found. The ideal gas approximation is considered and then the role of interaction is discussed which is included by means of delta-like potential. The peculiarities and possible phisical consequences of the equation of state are considered

  7. Modified quark-meson coupling model for nuclear matter

    International Nuclear Information System (INIS)

    Jin, X.; Jennings, B.K.

    1996-01-01

    The quark-meson coupling model for nuclear matter, which describes nuclear matter as nonoverlapping MIT bags bound by the self-consistent exchange of scalar and vector mesons, is modified by introducing medium modification of the bag constant. We model the density dependence of the bag constant in two different ways: One invokes a direct coupling of the bag constant to the scalar meson field, and the other relates the bag constant to the in-medium nucleon mass. Both models feature a decreasing bag constant with increasing density. We find that when the bag constant is significantly reduced in nuclear medium with respect to its free-space value, large canceling isoscalar Lorentz scalar and vector potentials for the nucleon in nuclear matter emerge naturally. Such potentials are comparable to those suggested by relativistic nuclear phenomenology and finite-density QCD sum rules. This suggests that the reduction of bag constant in nuclear medium may play an important role in low- and medium-energy nuclear physics. copyright 1996 The American Physical Society

  8. The neutron/proton ratio of squeezed-out nucleons and the high density behavior of the nuclear symmetry energy

    International Nuclear Information System (INIS)

    Yong Gaochan; Li Baoan; Chen Liewen

    2007-01-01

    Within a transport model it is shown that the neutron/proton ratio of squeezed-out nucleons perpendicular to the reaction plane, especially at high transverse momenta, in heavy-ion reactions induced by high energy neutron-rich nuclei can be a useful tool for studying the high density behavior of the nuclear symmetry energy

  9. Energy-range relations for hadrons in nuclear matter

    Science.gov (United States)

    Strugalski, Z.

    1985-01-01

    Range-energy relations for hadrons in nuclear matter exist similarly to the range-energy relations for charged particles in materials. When hadrons of GeV kinetic energies collide with atomic nuclei massive enough, events occur in which incident hadron is stopped completely inside the target nucleus without causing particle production - without pion production in particular. The stoppings are always accompanied by intensive emission of nucleons with kinetic energy from about 20 up to about 400 MeV. It was shown experimentally that the mean number of the emitted nucleons is a measure of the mean path in nuclear matter in nucleons on which the incident hadrons are stopped.

  10. Thermal properties of nuclear matter under the periodic boundary condition

    International Nuclear Information System (INIS)

    Otuka, Naohiko; Ohnishi, Akira

    1999-01-01

    We present the thermal properties of nuclear matter under the periodic boundary condition by the use of our hadronic nucleus-nucleus cascade model (HANDEL) which is developed to treat relativistic heavy-ion collisions from BNL-AGS to CERN-SPS. We first show some results of p-p scattering calculation in our new version which is improved in order to treat isospin ratio and multiplicity more accurately. We then display the results of calculation of nuclear matter with baryon density ρ b = 0.77 fm 3 at some energy densities. Time evolution of particle abundance and temperature are shown. (author)

  11. Lectures notes on phase transformations in nuclear matter

    CERN Document Server

    López, Jorge A

    2000-01-01

    The atomic nucleus, despite of being one of the smallest objects found in nature, appears to be large enough to experience phase transitions. The book deals with the liquid and gaseous phases of nuclear matter, as well as with the experimental routes to achieve transformation between them.Theoretical models are introduced from the ground up and with increasing complexity to describe nuclear matter from a statistical and thermodynamical point of view. Modern critical phenomena, heavy ion collisions and computational techniques are presented while establishing a linkage to experimental data.The

  12. Effects of the nuclear symmetry energy on gravitational waves from the axial W-modes of isolated neutron stars

    International Nuclear Information System (INIS)

    Wen, Dehua; Li, Baoan; Krastev, P.G.

    2010-01-01

    The frequencies and damping times of the axial w-mode oscillations of neutron stars are investigated using a nuclear equation of state (EOS) partially constrained by the available terrestrial laboratory data. It is found that the nuclear symmetry energy E sym (ρ), especially its high density behavior, plays an important role in determining both the eigen-frequencies and the damping times of these oscillations. (author)

  13. α particles and the ''pasta'' phase in nuclear matter

    International Nuclear Information System (INIS)

    Avancini, S. S.; Barros, C. C. Jr.; Menezes, D. P.; Providencia, C.

    2010-01-01

    The effects of the α particles in nuclear matter at low densities are investigated within three different parametrizations of relativistic models at finite temperature. Both homogeneous and inhomogeneous matter (pasta phase) are described for neutral nuclear matter with fixed proton fractions and stellar matter subject to β equilibrium and trapped neutrinos. In homogeneous matter, α particles are present only at densities below 0.02 fm -3 and their presence decreases with increase of the temperature and, for a fixed temperature, the α particle fraction decreases for smaller proton fractions. A repulsive interaction is important to mimic the dissolution of the clusters in homogeneous matter. The effect of the α particles on the pasta structure is very small except close to the critical temperatures and/or proton fractions, when it may still predict a pasta phase while no pasta phase would occur in the absence of light clusters. It is shown that for densities above 0.01 fm 3 the α-particle fraction in the pasta phase is much larger than that in homogeneous matter.

  14. Quark distributions in nuclear matter and the EMC effect

    Energy Technology Data Exchange (ETDEWEB)

    Mineo, H.; Bentz, W. E-mail: bentz@keyaki.cc.u-tokai.ac.jp; Ishii, N.; Thomas, A.W.; Yazaki, K

    2004-05-03

    Quark light cone momentum distributions in nuclear matter and the structure function of a bound nucleon are investigated in the framework of the Nambu-Jona-Lasinio model. This framework describes the nucleon as a relativistic quark-diquark state, and the nuclear matter equation of state by using the mean field approximation. The scalar and vector mean fields in the nuclear medium couple to the quarks in the nucleon and their effect on the spin independent nuclear structure function is investigated in detail. Special emphasis is placed on the important effect of the vector mean field and on a formulation which guarantees the validity of the number and momentum sum rules from the outset.

  15. Supernovae and high density nuclear matter

    International Nuclear Information System (INIS)

    Kahana, S.

    1986-01-01

    The role of the nuclear equation of state (EOS) in producing prompt supernova explosions is examined. Results of calculations of Baron, Cooperstein, and Kahana incorporating general relativity and a new high density EOS are presented, and the relevance of these calculations to laboratory experiments with heavy ions considered. 31 refs., 6 figs., 2 tabs

  16. Supernovae and high density nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Kahana, S.

    1986-01-01

    The role of the nuclear equation of state (EOS) in producing prompt supernova explosions is examined. Results of calculations of Baron, Cooperstein, and Kahana incorporating general relativity and a new high density EOS are presented, and the relevance of these calculations to laboratory experiments with heavy ions considered. 31 refs., 6 figs., 2 tabs.

  17. Instability in relativistic mean-field theories of nuclear matter

    International Nuclear Information System (INIS)

    Friman, B.L.; Henning, P.A.

    1988-01-01

    We investigate the stability of the nuclear matter ground state with respect to small-perturbations of the meson fields in relativistic mean-field theories. The popular σ-ω model is shown to have an instability at about twice the nuclear density, which gives rise to a new ground state with periodic spin alignment. Taking into account the contributions of the Dirac sea properly, this instability vanishes. Consequences for relativistic heavy-ion-collisions are discussed briefly. (orig.)

  18. Instability in relativistic mean-field theories of nuclear matter

    International Nuclear Information System (INIS)

    Friman, B.L.; Henning, P.A.

    1988-01-01

    We investigate the stability of the nuclear matter ground state with respect to small perturbations of the meson fields in relativistic mean-field theories. The popular σ-ω model is shown to have an instability at about twice the nuclear density, which gives rise to a new ground state with periodic spin alignment. Taking into account the contributions of the Dirac sea properly, this instability vanishes. Consequences for relativistic heavy-ion collisions are discussed briefly. (orig.)

  19. Measurements Matter in Nuclear Safeguards & Security

    International Nuclear Information System (INIS)

    Aregbe, Y.; Jakopic, R.; Richter, S.; Schillebeeckx, P.; Hult, M.

    2015-01-01

    The deliverable of any laboratory is a measurement result with stated uncertainty and traceability (ISO/IEC 17025: 2005). Measurement results, particularly in safeguards, have to be accurate, comparable and traceable to a stated reference, preferably to the SI. Results provided by operator-, safeguards- or network laboratories have to be in compliance with specific quality goals for nuclear material and environmental sample analysis. Metrological quality control tools are prerequisites to build up confidence in measurement results that have to be translated into meaningful safeguards conclusions or to demonstrate conformity of findings with declared processes. The European Commission—Joint Research Centre (EC–JRC) has dedicated facilities, laboratories and projects to provide certified nuclear reference materials (CRM), to develop reference methods and to organize inter-laboratory comparisons (ILC) in compliance with ISO Guide 34, ISO17025 and ISO17043, including respective training. Recent examples are: – cooperation with the JAEA to investigate on the application of Neutron Resonance Densitometry (NRD) to quantify the amount of special nuclear material in particlelike debris of melted fuel as formed in the nuclear accident in Fukushima – training in metrology and gamma-ray spectrometry for EURATOM safeguards inspectors – development of uranium reference particle standards under a new EC support task to the IAEA. Currently, the JRC puts major efforts in producing CRMs and conformity assessment tools for “age-dating” of uranium and plutonium samples. They are needed for method validation in determining the date of the last chemical separation of uranium or plutonium from their daughter nuclides. These type of CRMs are not only needed in nuclear safeguards and forensics, but could support in the future a possible new type of “verification mechanism” as part of the Fissile Material Cut-off Treaty (FMCT), since measurements and measurement standards

  20. Superallowed Beta Decay Studies at TRIUMF --- Nuclear Structure and Fundamental Symmetries

    Science.gov (United States)

    Zganjar, E. F.; Achtzehn, T.; Albers, D.; Andreoiu, C.; Andreyev, A. N.; Austin, R. A. E.; Ball, G. C.; Behr, J. A.; Biosvert, G. C.; Bricault, P.; Bishop, S.; Chakrawarthy, R. S.; Churchman, R.; Cross, D.; Cunningham, E.; D'Auria, J. M.; Dombsky, M.; Finlay, P.; Garrett, P. E.; Grinyer, G. F.; Hackman, G.; Hanemaayer, V.; Hardy, J. C.; Hodgson, D. F.; Hyland, B.; Iacob, V.; Klages, P.; Koopmans, K. A.; Kulp, W. D.; Lassen, J.; Lavoie, J. P.; Leslie, J. R.; Linder, T.; MacDonald, J. A.; Mak, H.-B.; Melconian, D.; Morton, A. C.; Ormand, W. E.; Osborne, C. J.; Pearson, C. J.; Pearson, M. R.; Phillips, A. A.; Piechaczek, A.; Ressler, J.; Sarazin, F.; Savard, G.; Schumaker, M. A.; Scraggs, H. C.; Svensson, C. E.; Valiente-Dobon, J. J.; Towner, I. S.; Waddington, J. C.; Walker, P. M.; Wendt, K.; Wood, J. L.

    2007-04-01

    Precision measurement of the beta -decay half-life, Q-value, and branching ratio between nuclear analog states of Jpi = 0+ and T=1 can provide critical and fundamental tests of the Standard Model's description of electroweak interactions. A program has been initiated at TRIUMF-ISAC to measure the ft values of these superallowed beta transitions. Two Tz = 0, A > 60 cases, 74Rb and 62Ga, are presented. These are particularly relevant because they can provide critical tests of the calculated nuclear structure and isospin-symmetry breaking corrections that are predicted to be larger for heavier nuclei, and because they demonstrate the advance in the experimental precision on ft at TRIUMF-ISAC from 0.26% for 74Rb in 2002 to 0.05% for 62Ga in 2006. The high precision world data on experimental ft and corrected Ft values are discussed and shown to be consistent with CVC at the 10-4 level, yielding an average Ft = 3073.70(74) s. This Ft leads to Vud = 0.9737(4) for the up-down element of the Standard Model's CKM matrix. With this value and the Particle Data Group's 2006 values for Vus and Vub, the unitarity condition for the CKM matrix is met. Additional measurements and calculations are needed, however, to reduce the uncertainties in that evaluation. That objective is the focus of the continuing program on superallowed-beta decay at TRIUMF-ISAC.

  1. Symmetry and geometry of the N-body problem. Application to the nuclear physics

    International Nuclear Information System (INIS)

    Chau, H.T.P.

    2002-10-01

    One of the main goals of classical and quantum physics is to solve the many-body problem. In nuclear theory, several methods have been developed and provide accurate results. In this thesis, we remind how symmetry can be used to obtain analytical solutions of the quantum many-body problem. We emphasize that unitary Lie algebras play a crucial role in quantum mechanics and propose and implement a method to build irreducible representations of this algebra from its highest-weight state. Calculations of bosonic and fermionic spectra are performed with realistic and with random interactions. Studies with rotational invariant two-body random interactions have unveiled high degree of order (a marked statistical preference is found for ground states with angular momentum equal to zero). In the second chapter of this thesis, it is argued that the spectral properties of this kind of interaction depend on the choice of the valence space. In particular, we propose a geometrical method to predict the properties of the ground state in certain cases. We also present numerical results when the geometrical approach can not be applied. In the third chapter, we study the link between quantum chaos and nuclear spectra calculated with realistic interactions. (author)

  2. Charge symmetry of the nuclear force as off-shell constraint

    International Nuclear Information System (INIS)

    Sauer, P.U.

    1975-01-01

    Off-shell changes are generated in the 1 S 0 nucleon-nucleon interaction using the Reid soft-core potential and unitary transformations of short range. Charge symmetry is assumed for the nuclear force. The same off-shell variations of the Reid potential are employed as the hadronic part of the proton-proton interaction and as neutron-neutron interaction. The Reid potential fits the experimental proton-proton data. It also accounts for the neutron-neutron scattering length with satisfying accuracy. The off-shell behavior of the Reid potential is varied in two different ways. First, off-shell changes consistent with the experimental proton-proton data can be selected. (auth) are performed which preserve the fit to the proton-proton data. Most transformed potentials of the type attempted here are unable to yield the correct experimental value of the neutron-neutron scattering length and have to be rejected. A simple practical rule is given according to which the off-shell changes consistent with the neutron-neutron scattering length can be selected. Second, off-shell changes are performed which leave the neutron-neutron scattering length unaltered. Transformed potentials of this type have usually been employed in nuclear-structure calculations. The potentials which exhibit large off-shell effects in nuclear structure are unable to account for the experimental proton-proton data. Their off-shell effects are therefore of no physical significance, and the potentials have to be rejected. A simple practical rule is given according to which the off-shell changes consistent with the experimental proton-proton data can be selected. (U.S.)

  3. Three-dimensional structure of low-density nuclear matter

    International Nuclear Information System (INIS)

    Okamoto, Minoru; Maruyama, Toshiki; Yabana, Kazuhiro; Tatsumi, Toshitaka

    2012-01-01

    We numerically explore the pasta structures and properties of low-density nuclear matter without any assumption on the geometry. We observe conventional pasta structures, while a mixture of the pasta structures appears as a metastable state at some transient densities. We also discuss the lattice structure of droplets.

  4. Three-dimensional calculation of inhomogeneous nuclear matter

    International Nuclear Information System (INIS)

    Okamoto, Minoru; Maruyama, Toshiki; Yabana, Kazuhiro; Tatsumi, Toshitaka

    2012-01-01

    We numerically explore the pasta structures and properties of low-density symmetric nuclear matter without any assumption on the geometry. We observe conventional pasta structures, while a mixture of the pasta appears as a meta-stable state at some transient densities. We also analyze the lattice structure of droplets.

  5. Three-dimensional calculation of inhomogeneous nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Minoru; Maruyama, Toshiki; Yabana, Kazuhiro; Tatsumi, Toshitaka [Graduate School of Pure and Applied Science, University of Tsukuba (Japan); Advanced Science Research Center, Japan Atomic Energy Agency (Japan); Graduate School of Pure and Applied Science, University of Tsukuba (Japan); Department of Physics, Kyoto University (Japan)

    2012-11-12

    We numerically explore the pasta structures and properties of low-density symmetric nuclear matter without any assumption on the geometry. We observe conventional pasta structures, while a mixture of the pasta appears as a meta-stable state at some transient densities. We also analyze the lattice structure of droplets.

  6. Three-dimensional structure of low-density nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Minoru, E-mail: okamoto@nucl.ph.tsukuba.ac.jp [Graduate School of Pure and Applied Science, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8571 (Japan); Advanced Science Research Center, Japan Atomic Energy Agency, Shirakata Shirane 2-4, Tokai, Ibaraki 319-1195 (Japan); Maruyama, Toshiki, E-mail: maruyama.toshiki@jaea.go.jp [Advanced Science Research Center, Japan Atomic Energy Agency, Shirakata Shirane 2-4, Tokai, Ibaraki 319-1195 (Japan); Graduate School of Pure and Applied Science, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8571 (Japan); Yabana, Kazuhiro, E-mail: yabana@nucl.ph.tsukuba.ac.jp [Graduate School of Pure and Applied Science, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8571 (Japan); Center of Computational Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8571 (Japan); Tatsumi, Toshitaka, E-mail: tatsumi@ruby.scphys.kyoto-u.ac.jp [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan)

    2012-07-09

    We numerically explore the pasta structures and properties of low-density nuclear matter without any assumption on the geometry. We observe conventional pasta structures, while a mixture of the pasta structures appears as a metastable state at some transient densities. We also discuss the lattice structure of droplets.

  7. Binding Energy and Compression Modulus of Infinite Nuclear Matter ...

    African Journals Online (AJOL)

    ... MeV at the normal nuclear matter saturation density consistent with the best available density-dependent potentials derived from the G-matrix approach. The results of the incompressibility modulus, k∞ is in excellent agreement with the results of other workers. Journal of the Nigerian Association of Mathematical Physics, ...

  8. QUANTUM TRANSPORT-THEORY OF NUCLEAR-MATTER

    NARCIS (Netherlands)

    BOTERMANS, W; MALFLIET, R

    1990-01-01

    Quantum kinetic equations are derived using the Keldysh Green's function formalism to describe non-equilibrium processes in nuclear matter and nucleus-nucleus collisions. A general transport equation is proposed which includes energy spreading effects. We discuss a number of specific kinetic

  9. Nuclear matter equation of state and σ-meson parameters

    Indian Academy of Sciences (India)

    We try to determine phenomenologically the extent of in-medium modification of -meson parameters so that the saturation observables of the nuclear matter equation of state (EOS) are reproduced. To calculate the EOS we have used Brueckner–Bethe–Goldstone formalism with Bonn potential as two-body interaction.

  10. Charm and Hidden Charm Scalar Resonances in Nuclear Matter

    NARCIS (Netherlands)

    Tolos, Laura; Molina, Raquel; Gamermann, Daniel; Oset, Eulogio

    2009-01-01

    We study the properties of the scalar charm resonances D(s0)(2317) and D(0)(2400), and the theoretical hidden charm state X(3700) in nuclear matter. We find that for the D(s0)(2317) and X(3700) resonances, with negligible and small width at zero density, respectively, the width becomes about 100 MeV

  11. Bimanual training in stroke: How do coupling and symmetry-breaking matter?

    Directory of Open Access Journals (Sweden)

    Berton Eric

    2011-01-01

    Full Text Available Abstract Background The dramatic consequences of stroke on patient autonomy in daily living activities urged the need for new reliable therapeutic strategies. Recently, bimanual training has emerged as a promising tool to improve the functional recovery of upper-limbs in stroke patients. However, who could benefit from bimanual therapy and how it could be used as a part of a more complete rehabilitation protocol remain largely unknown. A possible reason explaining this situation is that coupling and symmetry-breaking mechanisms, two fundamental principles governing bimanual behaviour, have been largely under-explored in both research and rehabilitation in stroke. Discussion Bimanual coordination emerges as an active, task-specific assembling process where the limbs are constrained to act as a single unit by virtue of mutual coupling. Consequently, exploring, assessing, re-establishing and exploiting functional bimanual synergies following stroke, require moving beyond the classical characterization of performance of each limb in separate and isolated fashion, to study coupling signatures at both neural and behavioural levels. Grounded on the conceptual framework of the dynamic system approach to bimanual coordination, we debated on two main assumptions: 1 stroke-induced impairment of bimanual coordination might be anticipated/understood by comparing, in join protocols, changes in coupling strength and asymmetry of bimanual discrete movements observed in healthy people and those observed in stroke; 2 understanding/predicting behavioural manifestations of decrease in bimanual coupling strength and/or increase in interlimb asymmetry might constitute an operational prerequisite to adapt therapy and better target training at the specific needs of each patient. We believe that these statements draw new directions for experimental and clinical studies and contribute in promoting bimanual training as an efficient and adequate tool to facilitate the

  12. Spin polarized states in strongly asymmetric nuclear matter

    International Nuclear Information System (INIS)

    Isayev, A.A.; Yang, J.

    2004-01-01

    The possibility of appearance of spin polarized states in strongly asymmetric nuclear matter is analyzed within the framework of a Fermi liquid theory with the Skyrme effective interaction. The zero temperature dependence of the neutron and proton spin polarization parameters as functions of density is found for SLy4 and SLy5 effective forces. It is shown that at some critical density strongly asymmetric nuclear matter undergoes a phase transition to the state with the oppositely directed spins of neutrons and protons while the state with the same direction of spins does not appear. In comparison with neutron matter, even small admixture of protons strongly decreases the threshold density of spin instability. It is clarified that protons become totally polarized within a very narrow density domain while the density profile of the neutron spin polarization parameter is characterized by the appearance of long tails near the transition density

  13. Matter in extremis: Ultrarelativistic nuclear collisions at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, Peter; Wang, Xin-Nian

    2004-08-20

    We review the physics of nuclear matter at high energy density and the experimental search for the Quark-Gluon Plasma at the Relativistic Heavy Ion Collider (RHIC). The data obtained in the first three years of the RHIC physics program provide several lines of evidence that a novel state of matter has been created in the most violent, head-on collisions of Au nuclei at {radical}s = 200 GeV. Jet quenching and global measurements show that the initial energy density of the strongly interacting medium generated in the collision is about two orders of magnitude larger than that of cold nuclear matter, well above the critical density for the deconfinement phase transition predicted by lattice QCD. The observed collective flow patterns imply that the system thermalizes early in its evolution, with the dynamics of its expansion consistent with ideal hydrodynamic flow based on a Quark-Gluon Plasma equation of state.

  14. Matter in extremis: Ultrarelativistic nuclear collisions at RHIC

    International Nuclear Information System (INIS)

    Jacobs, Peter; Wang, Xin-Nian

    2004-01-01

    We review the physics of nuclear matter at high energy density and the experimental search for the Quark-Gluon Plasma at the Relativistic Heavy Ion Collider (RHIC). The data obtained in the first three years of the RHIC physics program provide several lines of evidence that a novel state of matter has been created in the most violent, head-on collisions of Au nuclei at √s = 200 GeV. Jet quenching and global measurements show that the initial energy density of the strongly interacting medium generated in the collision is about two orders of magnitude larger than that of cold nuclear matter, well above the critical density for the deconfinement phase transition predicted by lattice QCD. The observed collective flow patterns imply that the system thermalizes early in its evolution, with the dynamics of its expansion consistent with ideal hydrodynamic flow based on a Quark-Gluon Plasma equation of state

  15. Comparative study of three-nucleon potentials in nuclear matter

    Science.gov (United States)

    Lovato, Alessandro; Benhar, Omar; Fantoni, Stefano; Schmidt, Kevin E.

    2012-02-01

    A new generation of local three-body potentials providing an excellent description of the properties of light nuclei, as well as of the neutron-deuteron doublet scattering length, has been recently derived. We have performed a comparative analysis of the equations of state of both pure neutron matter (PNM) and symmetric nuclear matter (SNM) at zero temperature obtained using these models of three-nucleon forces. In particular, we have carried out both variational and auxiliary field diffusion Monte Carlo calculations of the equation of state of PNM, while in the case of SNM we have only the variational approach has been considered. None of the considered potentials simultaneously explains the empirical equilibrium density and binding energy of symmetric nuclear matter. However, two of them provide reasonable values of the saturation density. The ambiguity concerning the treatment of the contact term of the chiral inspired potentials is discussed.

  16. Low-mass neutron stars: universal relations, the nuclear symmetry energy and gravitational radiation

    Science.gov (United States)

    O. Silva, Hector; Berti, Emanuele; Sotani, Hajime

    2016-03-01

    Compact objects such as neutron stars are ideal astrophysical laboratories to test our understanding of the fundamental interactions in the regime of supranuclear densities, unachievable by terrestrial experiments. Despite recent progress, the description of matter (i.e., the equation of state) at such densities is still debatable. This translates into uncertainties in the bulk properties of neutron stars, masses and radii for instance. Here we will consider low-mass neutron stars. Such stars are expected to carry important information on nuclear matter near the nuclear saturation point. It has recently been shown that the masses and surface redshifts of low-mass neutron stars smoothly depend on simple functions of the central density and of a characteristic parameter η associated with the choice of equation of state. Here we extend these results to slowly-rotating and tidally deformed stars and obtain empirical relations for various quantities, such as the moment of inertia, quadrupole moment and ellipticity, tidal and rotational Love numbers, and rotational apsidal constants. We discuss how these relations might be used to constrain the equation of state by future observations in the electromagnetic and gravitational-wave spectra.

  17. Quasilocal variables in spherical symmetry: Numerical applications to dark matter and dark energy sources

    International Nuclear Information System (INIS)

    Sussman, Roberto A.

    2009-01-01

    A numerical approach is considered for spherically symmetric spacetimes that generalize Lemaitre-Tolman-Bondi dust solutions to nonzero pressure ('LTB spacetimes'). We introduce quasilocal (QL) variables that are covariant LTB objects satisfying evolution equations of Friedman-Lemaitre-Robertson-Walker (FLRW) cosmologies. We prove rigorously that relative deviations of the local covariant scalars from the QL scalars are nonlinear, gauge invariant and covariant perturbations on a FLRW formal background given by the QL scalars. The dynamics of LTB spacetimes is completely determined by the QL scalars and these exact perturbations. Since LTB spacetimes are compatible with a wide variety of ''equations of state,'' either single fluids or mixtures, a large number of known solutions with dark matter and dark energy sources in a FLRW framework (or with linear perturbations) can be readily examined under idealized but nontrivial inhomogeneous conditions. Coordinate choices and initial conditions are derived for a numerical treatment of the perturbation equations, allowing us to study nonlinear effects in a variety of phenomena, such as gravitational collapse, nonlocal effects, void formation, dark matter and dark energy couplings, and particle creation. In particular, the embedding of inhomogeneous regions can be performed by a smooth matching with a suitable FLRW solution, thus generalizing the Newtonian 'top hat' models that are widely used in astrophysical literature. As examples of the application of the formalism, we examine numerically the formation of a black hole in an expanding Chaplygin gas FLRW universe, as well as the evolution of density clumps and voids in an interactive mixture of cold dark matter and dark energy.

  18. Nonlinear mean field theory for nuclear matter and surface properties

    International Nuclear Information System (INIS)

    Boguta, J.; Moszkowski, S.A.

    1983-01-01

    Nuclear matter properties are studied in a nonlinear relativistic mean field theory. We determine the parameters of the model from bulk properties of symmetric nuclear matter and a reasonable value of the effective mass. In this work, we stress the nonrelativistic limit of the theory which is essentially equivalent to a Skyrme hamiltonian, and we show that most of the results can be obtained, to a good approximation, analytically. The strength of the required parameters is determined from the binding energy and density of nuclear matter and the effective nucleon mass. For realistic values of the parameters, the nonrelativistic approximation turns out to be quite satisfactory. Using reasonable values of the parameters, we can account for other key properties of nuclei, such as the spin-orbit coupling, surface energy, and diffuseness of the nuclear surface. Also the energy dependence of the nucleon-nucleus optical model is accounted for reasonably well except near the Fermi surface. It is found, in agreement with empirical results, that the Landau parameter F 0 is quite small in normal nuclear matter. Both density dependence and momentum dependence of the NN interaction, but especially the former, are important for nuclear saturation. The required scalar and vector coupling constants agree fairly well with those obtained from analyses of NN scattering phase shifts with one-boson-exchange models. The mean field theory provides a semiquantitative justification for the weak Skyrme interaction in odd states. The strength of the required nonlinear term is roughly consistent with that derived using a new version of the chiral mean field theory in which the vector mass as well as the nucleon mass is generated by the sigma-field. (orig.)

  19. Low mass dilepton production at the SPS probing hot and dense nuclear matter

    CERN Document Server

    Pérez de los Heros, C; Baur, R; Breskin, Amos; Chechik, R; Drees, A; Jacob, C; Faschingbauer, U; Fisher, P H; Fraenkel, Zeev; Fuchs, C; Gatti, E; Glässel, P; Günzel, T F; Hess, F; Irmscher, D; Lenkeit, B C; Olsen, L H; Panebratsev, Yu A; Pfeiffer, A; Ravinovich, I; Rehak, P; Schön, A; Schükraft, Jürgen; Sampietro, M; Shimansky, S S; Shor, A; Specht, H J; Steiner, V; Tapprogge, Stefan; Tel-Zur, G; Tserruya, Itzhak; Ullrich, T S; Wurm, J P; Yurevich, V I

    1996-01-01

    CERES and HELIOS-3 have detected a significant enhancement of low--mass dileptons in nuclear collisions at 200 GeV/nucleon with respect to the expected ``conventional'' sources. The onset of the excess, starting at a mass of $\\sim2m_{\\pi}$, and the possibility of a quadratic dependence on the event multiplicity suggest the opening of the $\\pi^+\\pi^-\\rightarrow e^+e^-(\\mu^+\\mu^-)$ annihilation channel. This would be the first observation of thermal radiation from dense hadronic matter. Possible interpretations of these results are presented, including the reduction of the $\\rho$ mass due to partial restoration of chiral symmetry in the dense fireball formed in the collision.

  20. Variational theory of nuclear and neutron matter

    International Nuclear Information System (INIS)

    Pandharipande, V.R.; Wiringa, R.B.

    1989-06-01

    In these lectures we will discuss attempts to solve the A = 3 to ∞ nuclear many-body problems with the variational method. We choose the form of a variational wave function Χ v (1, 2 hor-ellipsis A) to describe the ground state. The Χ v and the ground-state energy E v are obtained by minimizing E v = left-angle Χ v |H|Χ v right-angle/left-angle Χ v |Χ v right-angle with respect to variations in Χ v . If the form of the variational wave function is chosen properly we can expect Χ v ∼ Χ 0 and E v ∼ E 0 where Χ 0 and E 0 are the exact ground-state wave function and energy. In general E v ≥ E 0 in variational calculations. 63 refs., 11 figs

  1. Nuclear theory progress report, April 1991--April 1992

    International Nuclear Information System (INIS)

    1992-01-01

    This report discusses research in nuclear theory on the following topics: nuclear astrophysics; quantum chromodynamics; quark matter; symmetry breaking; heavy ion reactions; hadronic form factors; neutrino processes; nuclear structure; weak interaction physics; and other related topics

  2. Climate Change, Nuclear Power and Nuclear Proliferation: Magnitude Matters

    Energy Technology Data Exchange (ETDEWEB)

    Robert J. Goldston

    2010-03-03

    Integrated energy, environment and economics modeling suggests electrical energy use will increase from 2.4 TWe today to 12 TWe in 2100. It will be challenging to provide 40% of this electrical power from combustion with carbon sequestration, as it will be challenging to provide 30% from renewable energy sources. Thus nuclear power may be needed to provide ~30% by 2100. Calculations of the associated stocks and flows of uranium, plutonium and minor actinides indicate that the proliferation risks at mid-century, using current light-water reactor technology, are daunting. There are institutional arrangements that may be able to provide an acceptable level of risk mitigation, but they will be difficult to implement. If a transition is begun to fast-spectrum reactors at mid-century, without a dramatic change in the proliferation risks of such systems, at the end of the century proliferation risks are much greater, and more resistant to mitigation. The risks of nuclear power should be compared with the risks of the estimated 0.64oC long-term global surface-average temperature rise predicted if nuclear power were replaced with coal-fired power plants without carbon sequestration. Fusion energy, if developed, would provide a source of nuclear power with much lower proliferation risks than fission.

  3. Climate Change, Nuclear Power and Nuclear Proliferation: Magnitude Matters

    International Nuclear Information System (INIS)

    Goldston, Robert J.

    2010-01-01

    Integrated energy, environment and economics modeling suggests electrical energy use will increase from 2.4 TWe today to 12 TWe in 2100. It will be challenging to provide 40% of this electrical power from combustion with carbon sequestration, as it will be challenging to provide 30% from renewable energy sources. Thus nuclear power may be needed to provide ∼30% by 2100. Calculations of the associated stocks and flows of uranium, plutonium and minor actinides indicate that the proliferation risks at mid-century, using current light-water reactor technology, are daunting. There are institutional arrangements that may be able to provide an acceptable level of risk mitigation, but they will be difficult to implement. If a transition is begun to fast-spectrum reactors at mid-century, without a dramatic change in the proliferation risks of such systems, at the end of the century proliferation risks are much greater, and more resistant to mitigation. The risks of nuclear power should be compared with the risks of the estimated 0.64 C long-term global surface-average temperature rise predicted if nuclear power were replaced with coal-fired power plants without carbon sequestration. Fusion energy, if developed, would provide a source of nuclear power with much lower proliferation risks than fission.

  4. Variational method for infinite nuclear matter with noncentral forces

    International Nuclear Information System (INIS)

    Takano, M.; Yamada, M.

    1998-01-01

    Approximate energy expressions are proposed for infinite zero-temperature nuclear matter by taking into account noncentral forces. They are explicitly expressed as functionals of spin- (isospin-) dependent radial distribution functions, tensor distribution functions and spin-orbit distribution functions, and can be used conveniently in the variational method. A notable feature of these expressions is that they automatically guarantee the necessary conditions on the spin-isospin-dependent structure functions. The Euler-Lagrange equations are derived from these energy expressions and numerically solved for neutron matter and symmetric nuclear matter. The results show that the noncentral forces bring down the total energies too much with too dense saturation densities. Since the main reason for these undesirable results seems to be the long tails of the noncentral distribution functions, an effective theory is proposed by introducing a density-dependent damping function into the noncentral potentials to suppress the long tails of the non-central distribution functions. By adjusting the value of a parameter included in the damping function, we can reproduce the saturation point (both the energy and density) of symmetric nuclear matter with the Hamada-Johnston potential. (Copyright (1998) World Scientific Publishing Co. Pte. Ltd)

  5. Pion condensation in a theory consistent with bulk properties of nuclear matter

    International Nuclear Information System (INIS)

    Glendenning, N.K.

    1980-01-01

    A relativistic field theory of nuclear matter is solved for the self-consistent field strengths inthe mean-field approximation. The theory is constrained to reproduce the bulk properties of nuclear matter. A weak pion condensate is compatible with this constraint. At least this is encouraging as concerns the possible existence of a new phase of nuclear matter. In contrast, the Lee-Wick density isomer is probably not compatible with the properties of nuclear matter. 3 figures

  6. Flavour, Electroweak Symmetry Breaking and Dark Matter: state of the art and future prospects

    CERN Document Server

    Ricciardi, Giulia; Bertuzzo, Enrico; Carmona, Adrian; Dermisek, Radovan; Huber, Tobias; Hurth, Tobias; Grossman, Yuval; Kersten, Joern; Lunghi, Enrico; Mahmoudi, Farvah; Masiero, Antonio; Neubert, Matthias; Shepherd, William; Velasco-Sevilla, Liliana

    2015-01-01

    With the discovery of the Higgs boson the Standard Model has become a complete and comprehensive theory, which has been verified with unparalleled precision and in principle might be valid at all scales. However, several reasons remain why we firmly believe that there should be physics beyond the Standard Model. Experiments such as the LHC, new $B$ factories, and earth- and space-based astro-particle experiments provide us with unique opportunities to discover a coherent framework for many of the long-standing puzzles of our field. Here we explore several significant interconnections between the physics of the Higgs boson, the physics of flavour, and the experimental clues we have about dark matter.

  7. Dark Matter and Super Symmetry: Exploring and Explaining the Universe with Simulations at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Gutsche, Oliver [Fermilab

    2016-07-10

    The Large Hadron Collider (LHC) at CERN in Geneva, Switzerland, is one of the largest machines on this planet. It is built to smash protons into each other at unprecedented energies to reveal the fundamental constituents of our universe. The 4 detectors at the LHC record multi-petabyte datasets every year. The scientific analysis of this data requires equally large simulation datasets of the collisions based on the theory of particle physics, the Standard Model. The goal is to verify the validity of the Standard Model or of theories that extend the Model like the concepts of Supersymmetry and an explanation of Dark Matter. I will give an overview of the nature of simulations needed to discover new particles like the Higgs boson in 2012, and review the different areas where simulations are indispensable: from the actual recording of the collisions to the extraction of scientific results to the conceptual design of improvements to the LHC and its experiments.

  8. Variational theory of nuclear and neutron matter

    Energy Technology Data Exchange (ETDEWEB)

    Pandharipande, V.R.; Wiringa, R.B. (Illinois Univ., Urbana, IL (USA). Dept. of Physics; Argonne National Lab., IL (USA))

    1989-06-01

    In these lectures we will discuss attempts to solve the A = 3 to {infinity} nuclear many-body problems with the variational method. We choose the form of a variational wave function {Chi}{sub v}(1, 2{hor ellipsis}A) to describe the ground state. The {Chi}{sub v} and the ground-state energy E{sub v} are obtained by minimizing E{sub v} = {l angle}{Chi}{sub v}{vert bar}H{vert bar}{Chi}{sub v}{r angle}/{l angle}{Chi}{sub v}{vert bar}{Chi}{sub v}{r angle} with respect to variations in {Chi}{sub v}. If the form of the variational wave function is chosen properly we can expect {Chi}{sub v} {approx} {Chi}{sub 0} and E{sub v} {approx} E{sub 0} where {Chi}{sub 0} and E{sub 0} are the exact ground-state wave function and energy. In general E{sub v} {ge} E{sub 0} in variational calculations. 63 refs., 11 figs.

  9. Nuclear matter descriptions including quark structure of the hadrons

    International Nuclear Information System (INIS)

    Huguet, R.

    2008-07-01

    It is nowadays well established that nucleons are composite objects made of quarks and gluons, whose interactions are described by Quantum chromodynamics (QCD). However, because of the non-perturbative character of QCD at the energies of nuclear physics, a description of atomic nuclei starting from quarks and gluons is still not available. A possible alternative is to construct effective field theories based on hadronic degrees of freedom, in which the interaction is constrained by QCD. In this framework, we have constructed descriptions of infinite nuclear matter in relativistic mean field theories taking into account the quark structure of hadrons. In a first approach, the in medium modifications of mesons properties is dynamically obtained in a Nambu-Jona-Lasinio (NJL) quark model. This modification is taken into account in a relativistic mean field theory based on a meson exchange interaction between nucleons. The in-medium modification of mesons masses and the properties of infinite nuclear matter have been studied. In a second approach, the long and short range contributions to the in-medium modification of the nucleon are determined. The short range part is obtained in a NJL quark model of the nucleon. The long range part, related to pions exchanges between nucleons, has been determined in the framework of Chiral Perturbation theory. These modifications have been used to constrain the couplings of a point coupling relativistic mean field model. A realistic description of the saturation properties of nuclear matter is obtained. (author)

  10. Review of the theory of infinite nuclear matter

    International Nuclear Information System (INIS)

    Llano, M. de; Tolmachev, V.V.

    1975-01-01

    Given a two-body force, there seems to be two distinct starting points in the many-body perturbation-theoretic problem of computing the energy per nucleon of infinite (as well as finite) nuclear matter: ordinary Hartree-Fock theory and the Brueckner theory. The former theory, treated almost exclusively with plane-wave solutions, has long-ago fallen into disuse, to yield to the latter, apparently more sophisticated, theory. After a brief outline of many-fermion diagramatic techniques, the Brueckner-Bethe-Goldstone series expansion in terms of the density is discussed as a low density, non-ideal Fermi gas theory, whose convergence is analyzed. A calculation based on particle-hole Green's function techniques shows that a nucleon gas condenses to the liquid phase at about 3% of the empirical nuclear matter saturation density. The analogy between the BBG expansion and the virial expansion for a classical or quantum gas is studied with special emphasis on the apparent impossibility of analytical-continuing the latter gas theory to densities in the liquid regime, as first elucidated by Lee and Yang. It is finally argued that ordinary HF theory may provide a good starting point for the eventual understanding of nuclear matter as it gives (in the finite nuclear problem, at any rate) not only the basic liquid properties of a definite density and a surface but also provides independent-particle aspects, avoiding at the same time the idea of n-body clusters appropriate only for dilute gases. This program has to date not been carried out for infinite nuclear matter, mainly because of insufficient knowledge regarding low-energy, non-plane-wave solutions of the HF equations, in the thermodynamic limit [pt

  11. Climate Change, Nuclear Power and Nuclear Proliferation: Magnitude Matters

    International Nuclear Information System (INIS)

    Goldston, Robert J.

    2011-01-01

    Integrated energy, environment and economics modeling suggests that worldwide electrical energy use will increase from 2.4 TWe today to ∼12 TWe in 2100. It will be challenging to provide 40% of this electrical power from combustion with carbon sequestration, as it will be challenging to provide 30% from renewable energy sources derived from natural energy flows. Thus nuclear power may be needed to provide ∼30%, 3600 GWe, by 2100. Calculations of the associated stocks and flows of uranium, plutonium and minor actinides indicate that the proliferation risks at mid-century, using current light-water reactor technology, are daunting. There are institutional arrangements that may be able to provide an acceptable level of risk mitigation, but they will be difficult to implement. If a transition is begun to fast-spectrum reactors at mid-century, without a dramatic change in the proliferation risks of such systems, at the end of the century global nuclear proliferation risks are much greater, and more resistant to mitigation. Fusion energy, if successfully demonstrated to be economically competitive, would provide a source of nuclear power with much lower proliferation risks than fission.

  12. Climate Change, Nuclear Power and Nuclear Proliferation: Magnitude Matters

    Energy Technology Data Exchange (ETDEWEB)

    Robert J. Goldston

    2011-04-28

    Integrated energy, environment and economics modeling suggests that worldwide electrical energy use will increase from 2.4 TWe today to ~12 TWe in 2100. It will be challenging to provide 40% of this electrical power from combustion with carbon sequestration, as it will be challenging to provide 30% from renewable energy sources derived from natural energy flows. Thus nuclear power may be needed to provide ~30%, 3600 GWe, by 2100. Calculations of the associated stocks and flows of uranium, plutonium and minor actinides indicate that the proliferation risks at mid-century, using current light-water reactor technology, are daunting. There are institutional arrangements that may be able to provide an acceptable level of risk mitigation, but they will be difficult to implement. If a transition is begun to fast-spectrum reactors at mid-century, without a dramatic change in the proliferation risks of such systems, at the end of the century global nuclear proliferation risks are much greater, and more resistant to mitigation. Fusion energy, if successfully demonstrated to be economically competitive, would provide a source of nuclear power with much lower proliferation risks than fission.

  13. Symmetric and asymmetric nuclear matter in the relativistic approach

    International Nuclear Information System (INIS)

    Huber, H.; Weber, F.; Weigel, M.K.

    1995-01-01

    Symmetric and asymmetric nuclear matter is studied in the framework of the relativistic Brueckner-Hartree-Fock and in the relativistic version of the so-called Λ 00 approximation. The equations are solved self-consistently in the full Dirac space, so avoiding the ambiguities in the choice of the effective scattering amplitude in matter. The calculations were performed for some modern meson-exchange potentials constructed by Brockmann and Machleidt. In some cases we used also the Groningen potentials. First, we examine the outcome for symmetric matter with respect to other calculations, which restrict themselves to positive-energy states only. The main part is devoted to the properties of asymmetric matter. In this case we obtain additionally to the good agreement with the parameters of symmetric matter, also a quite satisfactory agreement with the semiempirical macroscopic coefficients of asymmetric matter. Furthermore, we tested the assumption of a quadratic dependence of the asymmetry energy for a large range of asymmetries. Included is also the dependence of nucleon self-energies on density and neutron excess. For the purpose of comparison we discuss further the similarities and differences with relativistic Hartree and Hartree-Fock calculations and nonrelativistic Skyrme calculations

  14. Universe symmetries

    International Nuclear Information System (INIS)

    Souriau, J.M.

    1984-01-01

    The sky uniformity can be noticed in studying the repartition of objects far enough. The sky isotropy description uses space rotations. The group theory elements will allow to give a meaning at the same time precise and general to the word a ''symmetry''. Universe models are reviewed, which must have both of the following qualities: - conformity with the physic known laws; - rigorous symmetry following one of the permitted groups. Each of the models foresees that universe evolution obeys an evolution equation. Expansion and big-bang theory are recalled. Is universe an open or closed space. Universe is also electrically neutral. That leads to a work hypothesis: the existing matter is not given data of universe but it appeared by evolution from nothing. Problem of matter and antimatter is then raised up together with its place in universe [fr

  15. THE COOLING OF THE CASSIOPEIA A NEUTRON STAR AS A PROBE OF THE NUCLEAR SYMMETRY ENERGY AND NUCLEAR PASTA

    Energy Technology Data Exchange (ETDEWEB)

    Newton, William G.; Hooker, Joshua; Li, Bao-An [Department of Physics and Astronomy, Texas A and M University-Commerce, Commerce, TX 75429-3011 (United States); Murphy, Kyleah [Umpqua Community College, Roseburg, OR 97470 (United States)

    2013-12-10

    X-ray observations of the neutron star (NS) in the Cas A supernova remnant over the past decade suggest the star is undergoing a rapid drop in surface temperature of ≈2%-5.5%. One explanation suggests the rapid cooling is triggered by the onset of neutron superfluidity in the core of the star, causing enhanced neutrino emission from neutron Cooper pair breaking and formation (PBF). Using consistent NS crust and core equations of state (EOSs) and compositions, we explore the sensitivity of this interpretation to the density dependence of the symmetry energy L of the EOS used, and to the presence of enhanced neutrino cooling in the bubble phases of crustal ''nuclear pasta''. Modeling cooling over a conservative range of NS masses and envelope compositions, we find L ≲ 70 MeV, competitive with terrestrial experimental constraints and other astrophysical observations. For masses near the most likely mass of M ≳ 1.65 M {sub ☉}, the constraint becomes more restrictive 35 ≲ L ≲ 55 MeV. The inclusion of the bubble cooling processes decreases the cooling rate of the star during the PBF phase, matching the observed rate only when L ≲ 45 MeV, taking all masses into consideration, corresponding to NS radii ≲ 11 km.

  16. From nuclear reactions to neutron stars

    Indian Academy of Sciences (India)

    2014-04-30

    Apr 30, 2014 ... An equation of state (EoS) for symmetric nuclear matter is constructed using the density-dependent M3Y effective interaction and extended for isospin asymmetric nuclear matter. Theoretically obtained values of symmetric nuclear matter incompressibility, isobaric incompressibility, symmetry energy and its ...

  17. Application of an effective gauge-invariant model to nuclear matter in the relativistic Hartree-Fock approximation

    Energy Technology Data Exchange (ETDEWEB)

    Bernardos, P. [Universidad de Cantabria, Departamento de Matematica Aplicada y Ciencias de la Computacion, 39005, Santander (Spain); Fomenko, V.N. [St Petersburg University for Railway Engineering, Department of Mathematics, 190031, St Petersburg (Russian Federation); Marcos, S.; Niembro, R. [Universidad de Cantabria, Departamento de Fisica Moderna, 39005, Santander (Spain); Lopez-Quelle, M. [Universidad de Cantabria, Departamento de Fisica Aplicada, 39005, Santander (Spain); Savushkin, L.N. [St Petersburg University for Telecommunications, Department of Physics, 191186, St Petersburg (Russian Federation)

    2001-02-01

    An effective nuclear model describing {omega}-, {rho}- and axial-mesons as gauge fields is applied to nuclear matter in the relativistic Hartree-Fock approximation. The isoscalar two-pion exchange is simulated by a scalar field s similar to that used in the conventional relativistic mean-field approach. Two more scalar fields are essential ingredients of the present treatment: the {sigma}-field, the chiral partner of the pion, and the {sigma}-field, the Higgs field for the {omega}-meson. Two versions of the model are used depending on whether the {sigma}-field is considered as a dynamical variable or 'frozen', by taking its mass as infinite. The model contains four free parameters in the first case and three in the second one which are fitted to the nuclear matter saturation conditions. The nucleon and meson effective masses, compressibility modulus and symmetry energy are calculated. The results prove the reliability of the Dirac-Hartree-Fock approach within the linear realization of the chiral symmetry. (author)

  18. Relativistic nuclear matter with alternative derivative coupling models

    International Nuclear Information System (INIS)

    Delfino, A.; Coelho, C.T.; Malheiro, M.

    1994-01-01

    Effective Lagrangians involving nucleons coupled to scalar and vector fields are investigated within the framework of relativistic mean-field theory. The study presents the traditional Walecka model and different kinds of scalar derivative coupling suggested by Zimanyi and Moszkowski. The incompressibility (presented in an analytical form), scalar potential, and vector potential at the saturation point of nuclear matter are compared for these models. The real optical potential for the models are calculated and one of the models fits well the experimental curve from-50 to 400 MeV while also gives a soft equation of state. By varying the coupling constants and keeping the saturation point of nuclear matter approximately fixed, only the Walecka model presents a first order phase transition of finite temperature at zero density. (author)

  19. Determination of nuclear-matter temperature and density

    International Nuclear Information System (INIS)

    Wolf, K.L.

    1980-01-01

    Some of the things learned about nuclear matter under extreme conditions during the past few years in relativistic heavy ion studies are reviewed. Two developments are discussed. The completion of analyses and publication of results from the impact parameter selected, single-particle inclusive experiments have proven to be important. Preliminary results from the new generation of two-particle correlation and particle-exclusive measurements, especially those using streamer chambers, look even more definitive. Also the measurement of more exotic ejectiles with long mean free paths in nuclear matter promises to provide more basic information. Calculations are offering real guidance and are providing explanations of high energy collisions. The Monte Carlo and intranuclear cascade calculations discussed are especially informative

  20. Strangeness in nuclear matter at DAΦNE

    International Nuclear Information System (INIS)

    Gianotti, P.

    1998-01-01

    The low energy kaons from the φ meson produced at DAΦNE offer a unique opportunity to study strangeness in nuclear matter. The interaction of kaons with hadronic matter can be investigated at DAΦNE using three main approaches: study of hypernuclei production and decay, kaons scattering on nucleons, kaonic atoms formation. These studies explore kaon-nucleon and hyperon-nucleon forces at very low energy, the nuclear shell model in presence of strangeness quantum number and eventual quarks deconfinement phenomena. The experiments devoted to study this physical program at DAΦNE are FINUDA and DEAR. The physics topics of both experiments are illustrated together with a detailed descriptions of the two detectors

  1. Investigation of the organic matter in inactive nuclear tank liquids

    International Nuclear Information System (INIS)

    Schenley, R.L.; Griest, W.H.

    1990-08-01

    Environmental Protection Agency (EPA) methodology for regulatory organics fails to account for the organic matter that is suggested by total organic carbon (TOC) analysis in the Oak Ridge National Laboratory (ORNL) inactive nuclear waste-tank liquids and sludges. Identification and measurement of the total organics are needed to select appropriate waste treatment technologies. An initial investigation was made of the nature of the organics in several waste-tank liquids. This report details the analysis of ORNL wastes

  2. Mass shift of σ-meson in nuclear matter

    Indian Academy of Sciences (India)

    Mass shift of σ-meson in nuclear matter. J R MORONES-IBARRA1, MÓNICA MENCHACA MACIEL1,∗. ,. AYAX SANTOS-GUEVARA2 and FELIPE ROBLEDO PADILLA1. 1Facultad de Ciencias Físico-Matemáticas, Universidad Autónoma de Nuevo León, UANL,. Av. Universidad S/N Ciudad Universitaria, San Nicolás de los ...

  3. Properties of the ρ meson in dense nuclear matter

    International Nuclear Information System (INIS)

    Herrmann, M.

    1992-05-01

    In order to reach a description of the ρ meson, which is in accordance with the principles of the gauge invariance of the electromagnetic interaction, the vector-dominance hypothesis, and the unitarity a model for the ρ meson in the vacuum is developed. Thereafter follows the calculation of the properties of the ρ meson in nuclear matter. First the connection between the spectral function of the ρ meson and the dilepton production rate for an equilibrium state is derived. Then the model for the pion in nuclear matter is described. Following approximations are applied: The description of the pion-baryon interaction pursues non-relativistically and both the width of the delta resonance and the short-range repulsive delta-nucleon interaction is neglected. The self-energy of the ρ meson in nuclear matter following from this description is formally derived from the requirement to couple the ρ meson to a conserved current. The corrections for the 3-point and 4-point vertex resulting from this are calculated and discussed. Thereafter the physical consequences of the changed self-energy of the ρ meson in nuclear matter are considered. By means of the spectral function it is shown that up to the two-fold of the ground-state density the position of the resonance is nearly not changed. At still higher densities the resonances is a little shifted to higher energies. In the range of an invariant mass of about 400 meV a strong increasement concentrated on a small range results. This is caused by coupling to a naked delta-hole state and a pion. Finally the possibilities are discussed to apply the results of this thesis to the prediction of experimental data. Thereby it is proved to be necessary to base on a simulation of the heavy ion reaction. (orig./HSI) [de

  4. Conversion width of Σ-hyperon in nuclear matter

    International Nuclear Information System (INIS)

    Filimonov, V.A.

    1983-01-01

    Width G of ΣN→ΛN conversion for Σ - hyperon in nuclear matter on the base of one-boson exchange model is calculated. Essential compensation of contributions of diffe-- rent mesons to amplitude of the conversiop is shown to take place. As a result G decreases approximately twice as compaped with the value from exchange only by π-meson. Without accout of Pauli principle it is obtained G=15-25 MeV

  5. Comments on nucleon mean free paths in nuclear matter

    International Nuclear Information System (INIS)

    Blann, M.

    1977-01-01

    It is suggested that recent evidence cited for a fourfold increase in the mean free path of nucleons in nuclear matter results from an error in formulation of the exciton model. The literature cited as being in support of the longer mean free path is reviewed and found to be in disagreement with the new value, and in quite reasonable agreement with results used over the past 30 years. (Auth.)

  6. Time characteristics for the spinodal decomposition in nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Idier, D.; Farine, M.; Benhassine, B.; Remaud, B.; Sebille, F.

    1992-12-31

    Dynamics of the fluctuation growth are studied. Time characteristics are key quantities to determine the conditions under which spinodal decomposition could be observed. Dynamical instabilities arising from fluctuations in spinodal zone for nuclear matter are studied using Skyrme type interactions within a pseudo-particle model. Typical times for cluster formation are extracted. The numerical treatment is based on the Vlasov phase space transport equation. (K.A.) 11 refs.; 7 figs.

  7. Time characteristics for the spinodal decomposition in nuclear matter

    International Nuclear Information System (INIS)

    Idier, D.; Farine, M.; Benhassine, B.; Remaud, B.; Sebille, F.

    1992-01-01

    Dynamics of the fluctuation growth are studied. Time characteristics are key quantities to determine the conditions under which spinodal decomposition could be observed. Dynamical instabilities arising from fluctuations in spinodal zone for nuclear matter are studied using Skyrme type interactions within a pseudo-particle model. Typical times for cluster formation are extracted. The numerical treatment is based on the Vlasov phase space transport equation. (K.A.) 11 refs.; 7 figs

  8. Infinite nuclear matter based for mass of atomic nuclei

    International Nuclear Information System (INIS)

    Satpathy, L.

    1987-01-01

    The ground-state energy of an atomic nucleus with asymmetry β is considered to be equivalent to the energy of a perfect sphere made up of infinite nuclear matter of the same asymmetry plus a residual energy eta, called the local energy. Eta represents the energy due to shell, deformation, diffuseness and exchange Coulomb effects, etc. Using this picture and the generalised Hugenholtz-Van Hove theorem of many-body theory, the previously proposed mass relation is derived in a transport way in which eta drops away in a very natural manner. The validity of this mass relation is studied globally using the latest mass table. The model is suitable for the extraction of the saturation properties of nuclear matter. The binding energy per nucleon and the saturation Fermi momentum of nuclear matter obtained through this model are 18.33 MeV and 1.48 fm -1 respectively. It is shown in several representative cases in the Periodic Table that the masses of nuclei in the far unknown region can be reliably predicted. (author)

  9. Skyrme interaction to second order in nuclear matter

    Science.gov (United States)

    Kaiser, N.

    2015-09-01

    Based on the phenomenological Skyrme interaction various density-dependent nuclear matter quantities are calculated up to second order in many-body perturbation theory. The spin-orbit term as well as two tensor terms contribute at second order to the energy per particle. The simultaneous calculation of the isotropic Fermi-liquid parameters provides a rigorous check through the validity of the Landau relations. It is found that published results for these second order contributions are incorrect in most cases. In particular, interference terms between s-wave and p-wave components of the interaction can contribute only to (isospin or spin) asymmetry energies. Even with nine adjustable parameters, one does not obtain a good description of the empirical nuclear matter saturation curve in the low density region 0\\lt ρ \\lt 2{ρ }0. The reason for this feature is the too strong density-dependence {ρ }8/3 of several second-order contributions. The inclusion of the density-dependent term \\frac{1}{6}{t}3{ρ }1/6 is therefore indispensable for a realistic description of nuclear matter in the Skyrme framework.

  10. Symmetry-Adapted Ro-vibrational Basis Functions for Variational Nuclear Motion Calculations: TROVE Approach.

    Science.gov (United States)

    Yurchenko, Sergei N; Yachmenev, Andrey; Ovsyannikov, Roman I

    2017-09-12

    We present a general, numerically motivated approach to the construction of symmetry-adapted basis functions for solving ro-vibrational Schrödinger equations. The approach is based on the property of the Hamiltonian operator to commute with the complete set of symmetry operators and, hence, to reflect the symmetry of the system. The symmetry-adapted ro-vibrational basis set is constructed numerically by solving a set of reduced vibrational eigenvalue problems. In order to assign the irreducible representations associated with these eigenfunctions, their symmetry properties are probed on a grid of molecular geometries with the corresponding symmetry operations. The transformation matrices are reconstructed by solving overdetermined systems of linear equations related to the transformation properties of the corresponding wave functions on the grid. Our method is implemented in the variational approach TROVE and has been successfully applied to many problems covering the most important molecular symmetry groups. Several examples are used to illustrate the procedure, which can be easily applied to different types of coordinates, basis sets, and molecular systems.

  11. Infinite nuclear matter model and mass formulae for nuclei

    International Nuclear Information System (INIS)

    Satpathy, L.

    2016-01-01

    The matter composed of the nucleus is a quantum-mechanical interacting many-fermionic system. However, the shell and classical liquid drop have been taken as the two main features of nuclear dynamics, which have guided the evolution of nuclear physics. These two features can be considered as the macroscopic manifestation of the microscopic dynamics of the nucleons at fundamental level. Various mass formulae have been developed based on either of these features over the years, resulting in many ambiguities and uncertainties posing many challenges in this field. Keeping this in view, Infinite Nuclear Matter (INM) model has been developed during last couple of decades with a many-body theoretical foundation employing the celebrated Hugenholtz-Van Hove theorem, quite appropriate for the interacting quantum-mechanical nuclear system. A mass formula called INM mass formula based on this model yields rms deviation of 342 keV being the lowest in literature. Some of the highlights of its result includes its determination of INM density in agreement with the electron scattering data leading to the resolution of the long standing 'r 0 -paradox' it predicts new magic numbers giving rise to new island of stability in the drip-line regions. This is the manifestation of a new phenomenon where shell-effect over comes the repulsive component of nucleon-nucleon force resulting in the broadening of the stability peninsula. Shell quenching in N= 82,and N= 126 shells, and several islands of inversion have been predicted. The model determines the empirical value of the nuclear compression modulus, using high precission 4500 data comprising nuclear masses, neutron and proton separation energies. The talk will give a critical review of the field of mass formula and our understanding of nuclear dynamics as a whole

  12. Symmetry analysis of many-body wave functions, with applications to the nuclear shell model

    International Nuclear Information System (INIS)

    Novoselsky, A.; Katriel, J.

    1995-01-01

    The weights of the different permutational symmetry components of a nonsymmetry-adapted many-particle wave function are evaluated in terms of the expectation values of the symmetric-group class sums. This facilitates the evaluation of the weights without the construction of a complete set of symmetry adapted functions. Subspace projection operators are introduced, to be used when prior knowledge about the symmetry-species composition of a wave function is available. The permutational weight analysis of a recursively angular-momentum coupled (shell model) wave function is presented as an illustration

  13. Neutron-proton bremsstrahlung from intermediate energy heavy-ion reactions as a probe of the nuclear symmetry energy?

    International Nuclear Information System (INIS)

    Yong, G.-C.; Li Baoan; Chen Liewen

    2008-01-01

    Hard photons from neutron-proton bremsstrahlung in intermediate energy heavy-ion reactions are examined as a potential probe of the nuclear symmetry energy within a transport model. Effects of the symmetry energy on the yields and spectra of hard photons are found to be generally smaller than those due to the currently existing uncertainties of both the in-medium nucleon-nucleon cross sections and the photon production probability in the elementary process pn→pnγ. Very interestingly, nevertheless, the ratio of hard photon spectra R 1/2 (γ) from two reactions using isotopes of the same element is not only approximately independent of these uncertainties but also quite sensitive to the symmetry energy. For the head-on reactions of 132 Sn + 124 Sn and 112 Sn + 112 Sn at E beam /A=50 MeV, for example, the R 1/2 (γ) displays a rise up to 15% when the symmetry energy is reduced by about 20% at ρ=1.3ρ 0 which is the maximum density reached in these reactions

  14. Finite size effects in neutron star and nuclear matter simulations

    Energy Technology Data Exchange (ETDEWEB)

    Giménez Molinelli, P.A., E-mail: pagm@df.uba.ar; Dorso, C.O.

    2015-01-15

    In this work we study molecular dynamics simulations of symmetric nuclear and neutron star matter using a semi-classical nucleon interaction model. Our aim is to gain insight on the nature of the so-called “finite size effects”, unavoidable in this kind of simulations, and to understand what they actually affect. To do so, we explore different geometries for the periodic boundary conditions imposed on the simulation cell: cube, hexagonal prism and truncated octahedron. For nuclear matter simulations we show that, at sub-saturation densities and low temperatures, the solutions are non-homogeneous structures reminiscent of the “nuclear pasta” phases expected in neutron star matter simulations, but only one structure per cell and shaped by specific artificial aspects of the simulations—for the same physical conditions (i.e. number density and temperature) different cells yield different solutions. The particular shape of the solution at low enough temperature and a given density can be predicted analytically by surface minimization. We also show that even if this behavior is due to the imposition of periodic boundary conditions on finite systems, this does not mean that it vanishes for very large systems, and it is actually independent of the system size. We conclude that, for nuclear matter simulations, the cells' size sets the only characteristic length scale for the inhomogeneities, and the geometry of the periodic cell determines the shape of those inhomogeneities. To model neutron star matter we add a screened Coulomb interaction between protons, and perform simulations in the three cell geometries. Our simulations indeed produce the well known nuclear pasta, with (in most cases) several structures per cell. However, we find that for systems not too large results are affected by finite size in different ways depending on the geometry of the cell. In particular, at the same certain physical conditions and system size, the hexagonal prism yields a

  15. Covariant description of dynamical processes in relativistic nuclear matter

    International Nuclear Information System (INIS)

    Celenza, L.S.; Pantziris, A.; Shakin, C.M.

    1992-01-01

    We report results of covariant calculations of density-dependent polarization processes in relativistic nuclear matter. We consider the polarization induced by those mesons that play an important role in the boson-exchange model of nuclear forces (σ,π,ρ,ω). After obtaining the polarization operators, we construct the propagators for these mesons. The covariant nature of the calculation greatly clarifies the structure of the polarization operators and associated Green's functions. (In addition to the meson momentum, these quantities depend upon another four-vector, η μ , that describes the uniform motion of the medium.) In the case of the pion, we show that the same results are obtained for pseudovector or pseudoscalar coupling to the nucleon, if the associated Lagrangians are related by chiral transformations. Of particular interest are the extremely large values found for the polarization operators of the omega and sigma mesons. It is also found that the coupling of the sigma and omega fields through the polarization process is also extremely large. (Because of these results one cannot usefully consider the sigma and omega fields as independent degrees of freedom in nuclear matter.) We describe methods for reorganizing the calculation of ring diagrams in which we group those diagrams that exhibit strong cancellations. We also comment on the implication of our results for nuclear structure studies

  16. Towards a chiral effective field theory of nuclear matter

    International Nuclear Information System (INIS)

    Mallik, S.

    2008-01-01

    As a preliminary attempt to formulate an effective theory of nuclear matter, we undertake to calculate the effective pole parameters of nucleon in such a medium. We begin with the virial expansion of these parameters to leading order in nucleon number density in terms of the on-shell NN scattering amplitude. We then proceed to calculate the same parameters in the effective theory, getting a formula for the nucleon mass-shift to leading order, that was known already to give too large a value to be acceptable at normal nuclear density. At this point the virial expansion suggests a modification of this formula, which we carry out following Weinberg's method for the two-nucleon system in the effective theory. The results are encouraging enough to attempt a complete, next-to-leading order calculation of the off-shell nucleon spectral function in nuclear medium. (author)

  17. The effective action approach applied to nuclear matter (1)

    International Nuclear Information System (INIS)

    Tran Huu Phat; Nguyen Tuan Anh.

    1996-11-01

    Within the framework of the Walecka model (QHD-I) the application of the Cornwall-Jackiw-Tomboulis (CJT) effective action to nuclear matter is presented. The main feature is the treating of the meson condensates for the system of finite nuclear density. The system of couple Schwinger-Dyson (SD) equations is derived. It is shown that SD equations for sigma-omega mixings are absent in this formalism. Instead, the energy density of the nuclear ground state does explicitly contain the contributions from the ring diagrams, amongst others. In the bare-vertex approximation, the expression for energy density is written down for numerical computation in the next paper. (author). 14 refs, 3 figs

  18. Thermodynamic instabilities in hot and dense nuclear matter

    Directory of Open Access Journals (Sweden)

    Lavagno A.

    2016-01-01

    Full Text Available We study the presence of thermodynamic instabilities in a hot and dense nuclear medium where a nuclear phase transition can take place. Similarly to the low density nuclear liquid-gas phase transition, we show that such a phase transition is characterized by pure hadronic matter with both mechanical instability (fluctuations on the baryon density that by chemical-diffusive instability (fluctuations on the strangeness concentration. The analysis is performed by requiring the global conservation of baryon number and zero net strangeness in the framework of an effective relativistic mean field theory with the inclusion of the Δ(1232-isobars, hyperons and the lightest pseudoscalar and vector meson degrees of freedom. It turns out that in this situation hadronic phases with different values of strangeness content may coexist, altering significantly meson-antimeson ratios.

  19. Dense baryon matter with isospin and chiral imbalance in the framework of a NJL4 model at large Nc: Duality between chiral symmetry breaking and charged pion condensation

    Science.gov (United States)

    Khunjua, T. G.; Klimenko, K. G.; Zhokhov, R. N.

    2018-03-01

    In this paper the phase structure of dense quark matter has been investigated at zero temperature in the presence of baryon, isospin and chiral isospin chemical potentials in the framework of massless (3 +1 )-dimensional Nambu-Jona-Lasinio model with two quark flavors. It has been shown that in the large-Nc limit (Nc is the number of colors of quarks) there exists a duality correspondence between the chiral symmetry breaking phase and the charged pion condensation one. The key conclusion of our studies is the fact that chiral isospin chemical potential generates charged pion condensation in dense quark matter with isotopic asymmetry.

  20. Properties of rho and eta mesons in nuclear matter

    International Nuclear Information System (INIS)

    Herrmann, M.; Sauermann, C.; Friman, B.L.; Technische Hochschule Darmstadt; Noerenberg, W.; Technische Hochschule Darmstadt

    1993-10-01

    The properties of ρ- and η-mesons in nuclear matter are studied within the scope of hadronic models. Unknown model parameters are obtained from fits to scattering data. - The treatment of the ρ-meson includes the coupling to two pions which, in matter, are strongly mixed with delta-particle-nucleon-hole states. The ρ-meson self-energy is evaluated in a current conserving approximation with in-medium pion propagators and vertex corrections. While the position of the original peak in the spectral function remains almost unchanged, its width grows rapidly with increasing density. Consequently, the ρ-meson strength function is strongly dispersed at high densities. Due to vertex corrections a new peak at a mass around 3m π emerges with increasing density, while the spectral function around the two-pion threshold is found to be smooth at all densities. The η-meson is strongly mixed with N * (1535)-particle-nucleon-hole states in nuclear matter. The corresponding dispersion relations with an upper and a lower branch look similar to those of the (π, ΔN -1 )-modes. However, since the N * is an S-wave resonance in the ηN-channel, the repulsion of the two branches survives at zero momentum. (orig.)

  1. Rare isotopes and the sound of dilute nuclear matter

    Science.gov (United States)

    Papakonstantinou, P.

    2018-04-01

    Dilute baryonic matter, at densities below the normal saturation density of symmetric matter, is found on the crust of neutron stars and in collapsing supernova matter, its properties determining the evolution of those stellar objects. It is also readily found on the surface of ordinary and exotic atomic nuclei and lives fleetingly in the form of space-extended resonances of excited nucleons. Liminal states of nuclear matter, between saturation and full evaporation or clusterization, are manifest in the structure of symmetric nuclei through clustering and of very asymmetric rare species in haloes and the neutron skin; they stand literally at the threshold of a nucleus's response to hadronic probes, including processes which hinder or enable fusion. In this contribution I focus on excited states, and in particular exotic or not-so-exotic dipole excitation modes of N = Z nuclei and neutron-rich species, including new theoretical results on threshold strength. Modes of special interest are vibrations of and within diffuse surface layers and alpha-cluster oscillations. The modeling of such processes is relevant, directly or indirectly, for the description of reactions at astrophysical energies.

  2. Nucleon-nucleon correlations in dense nuclear matter

    International Nuclear Information System (INIS)

    Alm, T.

    1993-02-01

    In this thesis new results on the problematics of the formation of nucleon-nucleon correlations in nuclear matter could be presented. Starting from a general study of the two-particle problem in matter we studied the occurrence of a suprafluid phase (pair condensate of nucleons). The Gorkov decoupling by means of anomalous Green functions was generalized, so that also Cooper pairs with spin 1 (triplet pairing) can be described. A generalized gap equation resulted, which permits to determine the order parameters of the suprafluied phase in arbitrary channels of the nucleon-nucleon scattering states. This equation was solvd in the 1 S 0 -, in the 3 P 2 - 3 F 2 , and in the 3 S 1 - 3 D 1 channel under application of realistic nucleon-nucleon potentials. The behaviour of the resulting gap parameters in the single channels was studied as function of density and temperature. (orig.) [de

  3. On the properties of nuclear matter with an excess of neutrons, of spin-up neutrons and of spin-up protons using the Skyrme interaction

    International Nuclear Information System (INIS)

    Hassan, M.Y.M.; Ramadan, S.

    1983-11-01

    The binding energy of nuclear matter with an excess of neutrons, of spin-up neutrons, and of spin-up protons (characterized by the corresponding parameters, αsub(tau)=(N-Z/A), αsub(n)=(Nup-Ndown)/A, and αsub(rho)=(Zup-Zdown)/A), contains three symmetry energies: the isospin symmetry energy Esub(tau), the spin symmetry energy Esub(σ), and spin-isospin symmetry energy Esub(σtau). General expressions for Esub(σ), Esub(tau) and Esub(σtau) are given in the case of the Skyrme interaction. These values are compared with previous results obtained by Dabrowski and Haensel (DH) with Brueckner-Gammel-Thaler, the Hamada-Johnston, and the Reid soft core nucleon-nucleon potentials. The spin, isospin and spin-isospin dependent parts of the single-particle potential in nuclear matter are also calculated using the Skyrme interaction. The spin, isospin and spin-isospin incompressibility are calculated using the Skyrme interaction. The spin-spin part of the optical model potential is estimated. The results are compared with those of Dabrowski and Haensel (DH) and Hassan and Ramadan. (author)

  4. Influence of the nuclear symmetry energy on the collective flows of charged pions

    Science.gov (United States)

    Gao, Yuan; Yong, Gao-Chan; Zhang, Lei; Zuo, Wei

    2018-01-01

    Based on the isospin-dependent Boltzmann-Uehling-Uhlenbeck (IBUU) transport model, we studied charged pion transverse and elliptic flows in semicentral 197Au+197Au collisions at 600 MeV/nucleon. It is found that π+-π- differential transverse flow and the difference of π+ and π- transverse flows almost show no effects of the symmetry energy. Their corresponding elliptic flows are largely affected by the symmetry energy, especially at high transverse momenta. The isospin-dependent pion elliptic flow at high transverse momenta thus provides a promising way to probe the high-density behavior of the symmetry energy in heavy-ion collisions at the Facility for Antiproton and Ion Research (FAIR) at GSI, Darmstadt or at the Cooling Storage Ring (CSR) at HIRFL, Lanzhou.

  5. Equidistant structure and effective nucleon mass in nuclear matter

    International Nuclear Information System (INIS)

    Tezuka, Hirokazu.

    1981-11-01

    The effective nucleon mass of the Equidistant Multi-Layer Structure (EMULS) is discussed self-consistently. In the density region where the Fermi gas state in nuclear matter is unstable against the density fluctuation, the EMULS gives lower binding energy. It is, however, shown that such a structure with an ordinary nucleon mass collapses due to too strong attraction. We point out that such a collapse can be avoided by taking account of an effective nucleon mass affected by the localization of nucleons. (author)

  6. Thermostatic properties of semi-infinite polarized nuclear matter

    International Nuclear Information System (INIS)

    Abd-Alla, M.; Hassan, M.Y.M.; Ramadan, S.

    1988-03-01

    The surface and curvature properties of semi-infinite polarized nuclear matter (SPNM) are calculated using an expansion for the Fermi integrals up to T 2 . A density matrix expansion is obtained for a modified form of Seyler-Blanchard interaction. New parameters that characterize the surface and curvature properties of SPNM are introduced. The level density parameter is extracted from the low temperature expansion of the free energy and compared with previous calculations. A reasonable agreement is obtained for the parameters calculated before. (author). 78 refs, 1 fig., 5 tabs

  7. Onset of superfluidity in hot asymmetric nuclear matter

    International Nuclear Information System (INIS)

    Alm, T.; Roepke, G.; Friman, B.L.

    1991-05-01

    The onset of superfluidity in hot asymmetric nuclear matter is studied within a generalized Beth-Uhlenbeck approach. The finite tempeature t-matrix is of the Bethe-Goldstone type and contains hole-hole propagation not considered in the Brueckner G-matrix approach. It is shown that the phase contour for the onset of superfluidity in this approach is identical to that obtained within Gorkov's approach to BCS theory. Results for the realistic Paris potential imply that the critical temperature in the neutron-proton triplet channel is on the order of 6-8 MeV and thus much larger than that for singlet pairing. (orig.)

  8. Mass shift of σ-meson in nuclear matter

    International Nuclear Information System (INIS)

    Morones-Ibarra, J.R.; Maciel, Mónica Menchaca; Padilla, Felipe Robledo; Santos-Guevara, Ayax

    2013-01-01

    The propagation of σ-meson in nuclear matter is studied in the Walecka model, by assuming that sigma couples to a pair of nucleon-antinucleon states to particle-hole states. The in-medium effect of σ-ω mixing is also studied. For completeness, the coupling of sigma to two virtual pions was also considered. It is found that the σ-meson mass decreases with respect to its value in vacuum and that the contribution of the σ-ω mixing effect on the mass shift is relatively small. (author)

  9. I. Nuclear and neutron matter calculations with isobars. II. A model calculation of Fermi liquid parameters for liquid 3He

    International Nuclear Information System (INIS)

    Ainsworth, T.L.

    1983-01-01

    The Δ(1232) plays an important role in determining the properties of nuclear and neutron matter. The effects of the Δ resonance are incorporated explicitly by using a coupled channel formalism. A method for constraining a lowest order variational calculation, appropriate when nucleon internal degrees of freedom are made explicity, is presented. Different N-N potentials were calculated and fit to phase shift data and deuteron properties. The potentials were constructed to test the relative importance of the Δ resonance on nuclear properties. The symmetry energy and incompressibility of nuclear matter are generally reproduced by this calculation. Neutron matter results lead to appealing neutron star models. Fermi liquid parameters for 3 He are calculated with a model that includes both direct and induced terms. A convenient form of the direct interaction is obtained in terms of the parameters. The form of the direct interaction ensures that the forward scattering sum rule (Pauli principle) is obeyed. The parameters are adjusted to fit the experimentally determined F 0 /sup s/, F 0 /sup a/, and F 1 /sup s/ Landau parameters. Higher order Landau parameters are calculated by the self-consistent solution of the equations; comparison to experiment is good. The model also leads to a preferred value for the effective mass of 3 He. Of the three parameters only one shows any dependence on pressure. An exact sum rule is derived relating this parameter to a specific summation of Landau parameters

  10. Self-consistent determination of quasiparticle properties in nuclear matter

    International Nuclear Information System (INIS)

    Oset, E.; Palanques-Mestre, A.

    1981-01-01

    The self-energy of nuclear matter is calculated by directing the attention to the energy and momentum dependent pieces which determine the quasiparticle properties. A microscopic approach is followed which starts from the boson exchange picture for the NN interaction, then the π-and p-mesons are shown to play a major role in the nucleon renormalization. The calculation is done self-consistently and the effective mass and pole strength determined as a function of the nuclear density and momentum. Particular emphasis is put on the non-static character of the interaction and its consequences. Finally a comparison is made with other calculations and with experimental results. The consequences of the nucleon renormalization in pion condensation are also examined with the result that the critical density is pushed up appreciably. (orig.)

  11. Is a condensed state of nuclear matter possible?

    International Nuclear Information System (INIS)

    D'yakonov, D.I.; Mirlin, A.D.

    1988-01-01

    Nucleon chiral models naturally lead to the concept of ''generalized'' or ''classical'' nucleons which are characterized by a definite orientation in spin-isospin space. Nucleons and Δ resonances are different rotational states of generalized nucleons. Interaction of two generalized nucleons is sharply anisotropic and at a definite relative orientation leads to very strong attraction. This gives an idea of possible existence of a condensed state of nuclear matter, i.e. of a crystal or Fermi liquid with a short-range order which consists of N and Δ coherent superpositions. The variational estimate shows that at densities a few times that of the standard nuclear density this condensed state may be energetically favourable

  12. Determination of the equation of state of asymmetric nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Tsang, Manyee Betty [Michigan State Univ., East Lansing, MI (United States)

    2016-12-30

    A new Time Projection Chamber (TPC), called the SπRIT (SAMURAI pion Reconstruction Ion Tracker) TPC was constructed and used successfully in two experiments with the SAMURAI spectrometer at RIKEN, Japan to study the equation of state of neutron rich matter. As a result of the project, the SπRIT collaboration, an international collaboration consisting of groups from US, Japan, Korea, Poland, China and Germany, has been formed to pursue the science opportunities provided by the SπRIT TPC. After completion of the TPC and the two experiments, the collaboration continues to develop the software to analyze the SπRIT experiments and extract constraints of symmetry energy at supra-saturation densities. Over 250 TB of data have been obtained in the last SπRIT TPC experimental campaign. Construction of the TPC provided opportunities for the scientists to develop new designs for the light-weight and thin-walled field cage for the large pad plane and for the gating grid. Two PhD students (1 US and 1 Korea) graduated in 2016 based on their research on the TPC. At least four more doctoral theses (2 US, 1 Japan and 1 Korea) based on physics from the SπRIT experiments are expected.

  13. Effects of the liquid-gas phase transition and cluster formation on the symmetry energy

    International Nuclear Information System (INIS)

    Typel, S.; Wolter, H.H.; Roepke, G.; Blaschke, D.

    2014-01-01

    Various definitions of the symmetry energy are introduced for nuclei, dilute nuclear matter below saturation density and stellar matter, which is found in compact stars or core-collapse supernovae. The resulting differences are exemplified by calculations in a theoretical approach based on a generalized relativistic density functional for dense matter. It contains nucleonic clusters as explicit degrees of freedom with medium-dependent properties that are derived for light clusters from a quantum statistical approach. With such a model the dissolution of clusters at high densities can be described. The effects of the liquid-gas phase transition in nuclear matter and of cluster formation in stellar matter on the density dependence of the symmetry energy are studied for different temperatures. It is observed that correlations and the formation of inhomogeneous matter at low densities and temperatures causes an increase of the symmetry energy as compared to calculations assuming a uniform uncorrelated spatial distribution of constituent baryons and leptons. (orig.)

  14. Nuclear matter calculations with a pseudoscalar-pseudovector chiral model

    Energy Technology Data Exchange (ETDEWEB)

    Niembro, R.; Marcos, S.; Bernardos, P. [University of Cantabria, Faculty of Sciences, Department of Modern Physics, 39005 Santander (Spain); Fomenko, V.N. [St Petersburg University for Railway Engineering, Department of Mathematics, 197341 St Petersburg (Russian Federation); Savushkin, L.N. [St Petersburg University for Telecomunications, Department of Physics, 191065 St Petersburg (Russian Federation); Lopez-Quelle, M. [University of Cantabria, Faculty of Sciences, Department of Applied Physics, 39005 Santander, Spain (Spain)

    1998-10-01

    A mixed pseudoscalar-pseudovector {pi}N coupling relativistic Lagrangian is obtained from a pure pseudoscalar chiral one, by transforming the nucleon field according to a generalized Weinberg transformation, which depends on a mixing parameter. The interaction is generated by the {sigma}, {omega} and {pi} meson exchanges. Within the Hartree-Fock context, pion polarization effects, including the {delta} isobar, are considered in the random phase approximation in nuclear matter. These effects are interpreted, in a non-relativistic framework, as a modification of the range and intensity of a Yukawa-type potential by means of a simple function which takes into account the nucleon-hole and {delta}-hole excitations. Results show stability of relativistic nuclear matter against pion condensation. Compression modulus is diminished by the combined effects of the nucleon and {delta} polarization towards the usually accepted experimental values. The {pi}N interaction strength used in this paper is less than the conventional one to ensure the viability of the model. The fitting parameters of the model are the scalar meson mass m{sub {sigma}} and the {omega}-N coupling constant g{sub {omega}}. (author)

  15. Strange quark matter in the Universe and accelerator nuclear beams

    International Nuclear Information System (INIS)

    Okonov, Eh.

    1995-01-01

    An almost symmetric mixture of u, d and s-quarks - Strange Quark Matter (SQM) is strongly argued to be the ground and absolutely stable of the matter. Astrophysical objects, supposed to be the SQM states, could be formed as the result of the Big Bang (in the early Universe) and the conversion of neutron stars into strange ones. Such objects are considered to be favourable candidates as black holes. The unique possibility to produce the SQM under terrestrial conditions (at accelerator laboratories) are violent relativistic nucleus-nucleus collisions so called 'little big bang'. The expected singulares of SQM are reviewed which could be revealed from astrophysical observations of peculiarities of large SQM objects as well as from accelerator experiments with searching smaller SQM states including the simplest one - metastable six-quark H dihyperon. The first results of the Dubna search experiments, with considerable heating of matter and formation a dense strangeness abundant fireball (mixed phase?) in central nuclear collisions, is presented. Under these favourable conditions a candidate for H dihyperon is observed and an upper limit of production cross sections of this SQM state is estimated. Some prospects and advantages of further searches for light SQM states, using the JINR new superconducting accelerator - Nuclotron with energy 5-6 GeV per nucleon, are briefly outlined. 19 refs., 7 figs

  16. Discovery potential for directional dark matter detection with nuclear emulsions

    Science.gov (United States)

    Guler, A. M.; NEWSdm Collaboration

    2017-06-01

    Direct Dark Matter searches are nowadays one of the most exciting research topics. Several Experimental efforts are concentrated on the development, construction, and operation of detectors looking for the scattering of target nuclei with Weakly Interactive Massive Particles (WIMPs). In this field a new frontier can be opened by directional detectors able to reconstruct the direction of the WIMP-recoiled nucleus thus allowing to extend dark matter searches beyond the neutrino floor. Exploiting directionality would also give a proof of the galactic origin of dark matter making it possible to have a clear and unambiguous signal to background separation. The angular distribution of WIPM-scattered nuclei is indeed expected to be peaked in the direction of the motion of the Solar System in the Galaxy, i.e. toward the Cygnus constellation, while the background distribution is expected to be isotropic. Current directional experiments are based on the use of gas TPC whose sensitivity is limited by the small achievable detector mass. In this paper we show the potentiality in terms of exclusion limit of a directional experiment based on the use of a solid target made by newly developed nuclear emulsions and read-out systems reaching sub-micrometric resolution.

  17. Boiling Patterns of Iso-asymmetric Nuclear Matter

    International Nuclear Information System (INIS)

    Tõke, Jan

    2013-01-01

    Limits of thermodynamic metastability of self-bound neutron-rich nuclear matter are explored within the framework of microcanonical thermodynamics of interacting Fermi Gas model in Thomas-Fermi approximation. It is found that as the excitation energy per nucleon of the system is increased beyond a certain limiting value, the system loses metastability and becomes unstable with respect to joint fluctuations in excitation energy per nucleon and in isospin per nucleon. As a result, part of the system is forced to boil off in a form of iso-rich non-equilibrated vapors. Left behind in such a process, identifiable with distillation, is a more iso-symmetric metastable residue at a temperature characteristic of its residual isospin content. With a progressing increase in the initial excitation energy per nucleon, more neutron-rich matter is boiled off and a more iso-symmetric residue is left behind with progressively increasing characteristic temperature. Eventually, when all excess neutrons are shed, the system boils uniformly with a further supply of excitation energy, leaving behind a smaller and smaller residue at a characteristic boiling-point temperature of iso-symmetric matter.

  18. Antiferromagnetism of nuclear matter in the model with effective Gogny interaction

    International Nuclear Information System (INIS)

    Isayev, A.A.; Yang, J.

    2006-01-01

    The possibility of ferromagnetic (FM) antiferromagnetic (AFM) phase transitions in symmetric nuclear matter is analyzed within the framework of a Fermi-liquid theory with the effective Gogny interaction. It is shown that at some critical density nuclear matter undergoes a phase transition to the AFM spin state. The self-consistent equations of spin-polarized nuclear matter have no solutions corresponding to FM spin ordering and, hence, the FM transition does not appear. The AFM spin state properties are investigated [ru

  19. New relativistic effective interaction for finite nuclei, infinite nuclear matter, and neutron stars

    Science.gov (United States)

    Kumar, Bharat; Patra, S. K.; Agrawal, B. K.

    2018-04-01

    We carry out the study of finite nuclei, infinite nuclear matter, and neutron star properties with the newly developed relativistic force, the Institute of Physics Bhubaneswar-I (IOPB-I). Using this force, we calculate the binding energies, charge radii, and neutron-skin thickness for some selected nuclei. From the ground-state properties of superheavy nuclei (Z =120 ), it is noticed that considerable shell gaps appear at neutron numbers N =172 , 184, and 198, manifesting the magicity at these numbers. The low-density behavior of the equation of state for pure neutron matter is compatible with other microscopic models. Along with the nuclear symmetry energy, its slope and curvature parameters at the saturation density are consistent with those extracted from various experimental data. We calculate the neutron star properties with the equation of state composed of nucleons and leptons in β -equilibrium, which are in good agreement with the x-ray observations by Steiner [Astrophys. J. 722, 33 (2010), 10.1088/0004-637X/722/1/33] and Nättilä [Astron. Astrophys. 591, A25 (2016), 10.1051/0004-6361/201527416]. Based on the recent observation of GW170817 with a quasi-universal relation, Rezzolla et al. [Astrophys. J. Lett. 852, L25 (2018), 10.3847/2041-8213/aaa401] have set a limit for the maximum mass that can be supported against gravity by a nonrotating neutron star in the range 2.01 ±0.04 ≲M (M⊙)≲2.16 ±0.03 . We find that the maximum mass of the neutron star for the IOPB-I parametrization is 2.15 M⊙ . The radius and tidal deformability of a canonical neutron star of mass 1.4 M⊙ are 13.2 km and 3.9 ×1036g cm2s2 , respectively.

  20. Imprints of the nuclear symmetry energy on gravitational waves from the axial w-modes of neutron stars

    International Nuclear Information System (INIS)

    Wen Dehua; Li Baoan; Krastev, Plamen G.

    2009-01-01

    The eigenfrequencies of the axial w-modes of oscillating neutron stars are studied using the continued fraction method with an equation of state (EOS) partially constrained by the recent terrestrial nuclear laboratory data. It is shown that the density dependence of the nuclear symmetry energy E sym (ρ) affects significantly both the frequencies and the damping times of these modes. Besides confirming the previously found universal behavior of the mass-scaled eigenfrequencies as functions of the compactness of neutron stars, we explored several alternative universal scaling functions. Moreover, the w II -mode is found to exist only for neutron stars having a compactness of M/R≥0.1078 independent of the EOS used.

  1. J/psi production in proton-nucleus collisions at ALICE: cold nuclear matter really matters

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    Heavy quarkonia are expected to be sensitive to the properties of strongly interacting matter, at both low and high temperatures. In nucleus-nucleus collisions, a phase transition to a deconfined state of quarks and gluons (Quark-Gluon Plasma) is thought to take place once the temperature of the system exceeds a critical temperature of the order of 150-200 MeV. The deconfined state can induce a suppression of charmonium (due to color screening, dominant at SPS and RHIC energies), which can be overturned at LHC energy by the (re)combination of the large number of free c and cbar quarks, taking place when the system cools down below the critical temperature. Cold nuclear matter also has an influence on heavy quarkonia. Such effects can be studied in proton-nucleus collisions, where no deconfined state is expected to be created. At LHC energy, they mainly include nuclear shadowing, gluon saturation, break-up of the quarkonium states, and parton energy loss in the initial and final state. The study of these eff...

  2. Hyperon interaction in free space and nuclear matter within a SU(3) based meson exchange model

    Energy Technology Data Exchange (ETDEWEB)

    Dhar, Madhumita

    2016-06-15

    To establish the connection between free space and in-medium hyperon-nucleon interactions is the central issue of this thesis. The guiding principle is flavor SU(3) symmetry which is exploited at various levels. In first step hyperon-nucleon and hyperon- hyperon interaction boson exchange potential in free space are introduced. A new parameter set applicable for the complete baryon octet has been derived leading to an updated one-boson- exchange model, utilizing SU(3) flavor symmetry, optimizing the number of free parameters involved, and revising the set of mesons included. The scalar, pseudoscalar, and vector SU(3) meson octets are taken into account. T-matrices are calculated by solving numerically coupled linear systems of Lippmann-Schwinger equations obtained from a 3-D reduced Bethe-Salpeter equation. Coupling constants were determined by χ{sup 2} fits to the world set of scattering data. A good description of the few available data is achieved within the imposed SU(3) constraints. Having at hand a consistently derived vacuum interaction we extend the approach next to investigations of the in-medium properties of hyperon interaction, avoiding any further adjustments. Medium effect in infinite nuclear matter are treated microscopically by recalculating T-matrices by an medium-modified system of Lippmann-Schwinger equations. A particular important role is played by the Pauli projector accounting for the exclusion principle. The presence of a background medium induces a weakening of the vacuum interaction amplitudes. Especially coupled channel mixing is found to be affected sensitively by medium. Investigation on scattering lengths and effective range parameters are revealing the density dependence of the interaction on a quantitative level.

  3. Double beta decay, neutrino physics, nuclear structure and isospin and spin-isospin symmetries

    International Nuclear Information System (INIS)

    Krmpotic, F.

    1989-12-01

    Prominent features of the double beta decay processes are reviewed. Emphasis is placed on the neutrino masses and the quasiparticle random phase approximation (GRPA). The suppression mechanism for the ββ-decay transition rates, proposed by Vogel and Zirnbauer, is found to be closely related to the restoration of SU(4) symmetry. It is suggested that the extreme sensitivity of the ββ-decay amplitude on the proton-neutron coupling is a consequence of the explicit violation of the SU(4) symmetry and therefore an artifact of the model. A prescription is given for fixing this interaction strength within the GRPA itself, which in this way acquires predicting power on both single and double β-decay lifetimes. (author) [pt

  4. A Study of Nuclear Recoil Backgrounds in Dark Matter Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Westerdale, Shawn S. [Princeton Univ., NJ (United States)

    2016-01-01

    Despite the great success of the Standard Model of particle physics, a preponderance of astrophysical evidence suggests that it cannot explain most of the matter in the universe. This so-called dark matter has eluded direct detection, though many theoretical extensions to the Standard Model predict the existence of particles with a mass on the $1-1000$ GeV scale that interact only via the weak nuclear force. Particles in this class are referred to as Weakly Interacting Massive Particles (WIMPs), and their high masses and low scattering cross sections make them viable dark matter candidates. The rarity of WIMP-nucleus interactions makes them challenging to detect: any background can mask the signal they produce. Background rejection is therefore a major problem in dark matter detection. Many experiments greatly reduce their backgrounds by employing techniques to reject electron recoils. However, nuclear recoil backgrounds, which produce signals similar to what we expect from WIMPs, remain problematic. There are two primary sources of such backgrounds: surface backgrounds and neutron recoils. Surface backgrounds result from radioactivity on the inner surfaces of the detector sending recoiling nuclei into the detector. These backgrounds can be removed with fiducial cuts, at some cost to the experiment's exposure. In this dissertation we briefly discuss a novel technique for rejecting these events based on signals they make in the wavelength shifter coating on the inner surfaces of some detectors. Neutron recoils result from neutrons scattering from nuclei in the detector. These backgrounds may produce a signal identical to what we expect from WIMPs and are extensively discussed here. We additionally present a new tool for calculating ($\\alpha$, n)yields in various materials. We introduce the concept of a neutron veto system designed to shield against, measure, and provide an anti-coincidence veto signal for background neutrons. We discuss the research and

  5. A study of nuclear recoil backgrounds in dark matter detectors

    Science.gov (United States)

    Westerdale, Shawn S.

    Despite the great success of the Standard Model of particle physics, a preponderance of astrophysical evidence suggests that it cannot explain most of the matter in the universe. This so-called dark matter has eluded direct detection, though many theoretical extensions to the Standard Model predict the existence of particles with a mass on the 1-1000 GeV scale that interact only via the weak nuclear force. Particles in this class are referred to as Weakly Interacting Massive Particles (WIMPs), and their high masses and low scattering cross sections make them viable dark matter candidates. The rarity of WIMP-nucleus interactions makes them challenging to detect: any background can mask the signal they produce. Background rejection is therefore a major problem in dark matter detection. Many experiments greatly reduce their backgrounds by employing techniques to reject electron recoils. However, nuclear recoil backgrounds, which produce signals similar to what we expect from WIMPs, remain problematic. There are two primary sources of such backgrounds: surface backgrounds and neutron recoils. Surface backgrounds result from radioactivity on the inner surfaces of the detector sending recoiling nuclei into the detector. These backgrounds can be removed with fiducial cuts, at some cost to the experiment's exposure. In this dissertation we briefly discuss a novel technique for rejecting these events based on signals they make in the wavelength shifter coating on the inner surfaces of some detectors. Neutron recoils result from neutrons scattering off of nuclei in the detector. These backgrounds may produce a signal identical to what we expect from WIMPs and are extensively discussed here. We additionally present a new tool for calculating (alpha, n) yields in various materials. We introduce the concept of a neutron veto system designed to shield against, measure, and provide an anti-coincidence veto signal for background neutrons. We discuss the research and development

  6. Symmetry and symmetry breaking in quantum mechanics

    International Nuclear Information System (INIS)

    Chomaz, Philippe

    1998-01-01

    In the world of infinitely small, the world of atoms, nuclei and particles, the quantum mechanics enforces its laws. The discovery of Quanta, this unbelievable castration of the Possible in grains of matter and radiation, in discrete energy levels compels us of thinking the Single to comprehend the Universal. Quantum Numbers, magic Numbers and Numbers sign the wave. The matter is vibration. To describe the music of the world one needs keys, measures, notes, rules and partition: one needs quantum mechanics. The particles reduce themselves not in material points as the scholars of the past centuries thought, but they must be conceived throughout the space, in the accomplishment of shapes of volumes. When Einstein asked himself whether God plays dice, there was no doubt among its contemporaries that if He exists He is a geometer. In a Nature reduced to Geometry, the symmetries assume their role in servicing the Harmony. The symmetries allow ordering the energy levels to make them understandable. They impose there geometrical rules to the matter waves, giving them properties which sometimes astonish us. Hidden symmetries, internal symmetries and newly conceived symmetries have to be adopted subsequently to the observation of some order in this world of Quanta. In turn, the symmetries provide new observables which open new spaces of observation

  7. Differential isospin-fractionation in dilute asymmetric nuclear matter

    International Nuclear Information System (INIS)

    Li Baoan; Chen Liewen; Ma Hongru; Xu Jun; Yong Gaochan

    2007-01-01

    The differential isospin-fractionation (IsoF) during the liquid-gas phase transition in dilute asymmetric nuclear matter is studied as a function of nucleon momentum. Within a self-consistent thermal model it is shown that the neutron/proton ratio of the gas phase becomes smaller than that of the liquid phase for energetic nucleons, although the gas phase is overall more neutron-rich. Clear indications of the differential IsoF consistent with the thermal model predictions are demonstrated within a transport model for heavy-ion reactions. Future comparisons with experimental data will allow us to extract critical information about the momentum dependence of the isovector strong interaction

  8. Two-body correlation functions in dilute nuclear matter

    International Nuclear Information System (INIS)

    Isayev, A A

    2006-01-01

    Finding the distinct features of the crossover from the regime of large overlapping Cooper pairs to the limit of non-overlapping pairs of fermions (Shafroth pairs) in multicomponent Fermi systems remains one of the actual problems in a quantum many-body theory. Here this transition is studied by calculating the two-body density, spin and isospin correlation functions in dilute asymmetric nuclear matter. It is shown that criterion of the crossover (Phys. Rev. Lett. 95, 090402 (2005)), consisting in the change of the sign of the density correlation function at low momentum transfer, fails to describe correctly the density-driven BEC-BCS transition at finite isospin asymmetry or finite temperature. As an unambiguous signature of the BEC-BCS transition, there can be used the presence (BCS regime) or absence (BEC regime) of the singularity in the momentum distribution of the quasiparticle density of states

  9. Study of the Λ(1116 interaction in cold nuclear matter

    Directory of Open Access Journals (Sweden)

    Arnold Oliver

    2014-03-01

    Full Text Available The interaction of Λ hyperons with baryonic nuclear matter at saturation density is expected to be attractive. The interaction strength was extracted from hypernuclei data. A different approach to obtain the potential depth of the Λ mean-field potential is to compare experimental data with transport simulations. We analyze experimental data of Λ hyperons measured with the HADES detector in p+93Nb reactions with a kinetic beam energy of 3.5 GeV carried by the proton. The high statistic of measured Λ hyperons allows us to perform a double differential analysis in Lorentz-invariant observables of transverse momentum and rapidity. We present the analysis method and a comparison with simulations.

  10. Effective pion--nucleon interaction in nuclear matter

    International Nuclear Information System (INIS)

    Celenza, L.S.; Liu, L.C.; Nutt, W.; Shakin, C.M.

    1976-01-01

    We discuss the modification of the interaction between a pion and a nucleon in the presence of an infinite medium of nucleons (nuclear matter). The theory presented here is covariant and is relevant to the calculation of the pion--nucleus optical potential. The specific effects considered are the modifications of the nucleon propagator due to the Pauli principle and the modification of the pion and nucleon propagators due to collisions with nucleons of the medium. We also discuss in detail the pion self-energy in the medium, paying close attention to off-shell effects. These latter effects are particularly important because of the rapid variation with energy of the fundamental pion--nucleon interaction. Numerical results are presented, the main feature being the appearance of a significant damping width for the (3, 3) resonance

  11. Static and Covariant Meson-Exchange Interactions in Nuclear Matter

    International Nuclear Information System (INIS)

    Carlson, B.V.; Hirata, D.

    2011-01-01

    The Dirac version of static meson exchange interactions provides a good description of low-energy NN scattering as well as very reasonable saturation properties in Dirac-Brueckner calculations of nuclear matter. We include retardation terms to make these interactions covariant and readjust the coupling constants so as to maintain a reasonable description of NN scattering. In this case, we find the Dirac-Brueckner approximation to nuclear matter to be extremely overbound. The Bonn meson-exchange interactions provide a good fit to low-energy nucleon-nucleon scattering and the deuteron binding energy using a static interaction and the Thompson form of the reduced two-nucleon interaction. We have readjusted the coupling constants of the these interactions to obtain almost equivalent fits to the scattering data and deuteron binding energy with a static interaction and the Blankenbecler-Sugar form of the reduced two-nucleon propagator and using both forms of the propagator with a covariant interaction. Dirac-Brueckner calculations using the static interactions furnish saturation properties similar to those found for the Bonn interactions. The covariant interactions, on the contrary, yield extreme overbinding and do not show signs of saturation before our calculations diverge. One of the advantages claimed for Dirac mean field calculations over nonrelativistic ones has been the fact that they yield reasonable saturation properties without the necessity of a three-body interaction. This is usually credited to the three-body effects introduced by virtual scattering through the Dirac sea states. These are included, in part, through the Dirac form of the self-energy in our calculations. However, we have explicitly excluded their contribution to the Brueckner scattering kernel. Dirac-Brueckner calculations in which both the positive and negative energy states are included in the scattering kernel result in less binding than those that include only the positive-energy ones

  12. 3D2 pairing in asymmetric nuclear matter

    International Nuclear Information System (INIS)

    Alm, T.

    1996-01-01

    The superfluid 3 D 2 pairing instability in isospin-asymmetric nuclear matter is studied, using the Paris nucleon-nucleon interaction as an input. It is found that the critical temperature associated with the transition to the superfluid phase becomes strongly suppressed with increasing isospin asymmetry, and vanishes for asymmetry parameter values α (≡(n n -n p )/(n n +n p )) that are larger than several percent. It is shown that for neutron star models based on relativistic, field-theoretical equations of state, a large fraction of their interior may exist in a 3 D 2 -paired superfluid phase. The implications of such a 3 D 2 superfluid in massive neutron stars is discussed with respect to observable pulsar phenomena. Another interesting phenomenon, discussed in the paper, concerns the numerical finding of two critical superfluid temperatures for a given density in the case of isospin-asymmetric matter. Using the BCS cut-off ansatz, a mathematical expression for the critical temperature is derived which confirms this finding analytically. (orig.)

  13. Short-range correlations in quark and nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Froemel, Frank

    2007-06-15

    In the first part of this thesis, the role of short-range correlations in quark matter is explored within the framework of the Nambu-Jona-Lasinio model. Starting from a next-to-leading order expansion in the inverse number of the quark colors, a fully self-consistent model constructed that employs the close relations between spectral functions and self-energies. In contrast to the usual quasiparticle approximations, this approach allows the investigation of the collisional broadening of the quark spectral function. Numerical calculations at various chemical potentials and zero temperature show that the short-range correlations do not only induce a finite width of the spectral function but also have some influence on the structure of the chiral phase transition. In the second part of this thesis, the temperature and density dependence of the nucleon spectral function in symmetric nuclear matter is investigated. The short-range correlations can be well described by a simple, self-consistent model on the one-particle-two-hole and two-particle-one-hole level (1p2h, 2p1h). The thermodynamically consistent description of the mean-field properties of the nucleons is ensured by incorporating a Skyrme-type potential. Calculations at temperatures and densities that can also be found in heavy-ion collisions or supernova explosions and the formation of neutron stars show that the correlations saturate at high temperatures and densities. (orig.)

  14. Many body effects in nuclear matter QCD sum rules

    Science.gov (United States)

    Drukarev, E. G.; Ryskin, M. G.; Sadovnikova, V. A.

    2017-12-01

    We calculate the single-particle nucleon characteristics in symmetric nuclear matter with inclusion of the 3N and 4N interactions. We calculated the contribution of the 3N interactions earlier, now we add that of the 4N ones. The contribution of the 4N forces to nucleon self energies is expressed in terms of the nonlocal scalar condensate (d = 3) and of the configurations of the vector-scalar and the scalar-scalar quark condensates (d = 6) in which two diquark operators act on two different nucleons of the matter.These four-quark condensates are obtained in the model-independent way. The density dependence of the nucleon effective mass, of the vector self energy and of the single-particle potential energy are obtained. We traced the dependence of the nucleon characteristics on the actual value of the pion-nucleon sigma term. We obtained also the nucleon characteristics in terms of the quasifree nucleons, with the noninteracting nucleons surrounded by their pion clouds as the starting point. This approach leads to strict hierarchy of the many body forces.

  15. Emergence of Symmetries from Entanglement

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    Maximal Entanglement appears to be a key ingredient for the emergence of symmetries. We first illustrate this phenomenon using two examples: the emergence of conformal symmetry in condensed matter systems and  the relation of tensor networks to holography. We further present a Principle of Maximal Entanglement that seems to dictate to a large extend the structure of gauge symmetry.

  16. Symmetries in nuclei

    International Nuclear Information System (INIS)

    Arima, A.

    2003-01-01

    (1) There are symmetries in nature, and the concept of symmetry has been used in art and architecture. The symmetry is evaluated high in the European culture. In China, the symmetry is broken in the paintings but it is valued in the architecture. In Japan, however, the symmetry has been broken everywhere. The serious and interesting question is why these differences happens? (2) In this lecture, I reviewed from the very beginning the importance of the rotational symmetry in quantum mechanics. I am sorry to be too fundamental for specialists of nuclear physics. But for people who do not use these theories, I think that you could understand the mathematical aspects of quantum mechanics and the relation between the angular momentum and the rotational symmetry. (3) To the specialists of nuclear physics, I talked about my idea as follows: dynamical treatment of collective motions in nuclei by IBM, especially the meaning of the degeneracy observed in the rotation bands top of γ vibration and β vibration, and the origin of pseudo-spin symmetry. Namely, if there is a symmetry, a degeneracy occurs. Conversely, if there is a degeneracy, there must be a symmetry. I discussed some details of the observed evidence and this correspondence is my strong belief in physics. (author)

  17. Symmetry-breaking and high-spin states

    Energy Technology Data Exchange (ETDEWEB)

    Khanna, F C [Alberta Univ., Edmonton, AB (Canada). Dept. of Physics; [TRIUMF, Vancouver, BC (Canada)

    1992-08-01

    Spontaneous symmetry breaking in nuclear matter would require Nambu-Goldstone bosons in the system. A model calculation gives the nature of these excitations. In finite nuclei the excitations will be a mixture of rotational, surface vibrations and pseudo-Goldstone bosons. A search for such excitations would be fruitful. (author). 5 refs.

  18. 75 FR 10833 - In the Matter of Entergy Nuclear Operations; Vermont Yankee Nuclear Power Station; Demand for...

    Science.gov (United States)

    2010-03-09

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 05000271; License No. DPR-28; EA-10-034; NRC-2010-0089] In the Matter of Entergy Nuclear Operations; Vermont Yankee Nuclear Power Station; Demand for... this Demand for Information, the following information, in writing, and under oath or affirmation: 1...

  19. Chiral symmetry and strangeness at SIS energies

    International Nuclear Information System (INIS)

    Lutz, M.F.M.

    2003-11-01

    In this talk we review the consequences of the chiral SU(3) symmetry for strangeness propagation in nuclear matter. Objects of crucial importance are the meson-baryon scattering amplitudes obtained within the chiral coupled-channel effective field theory. Results for antikaon and hyperon-resonance spectral functions in cold nuclear matter are presented and discussed. The importance of the Σ(1385) resonance for the subthreshold antikaon production in heavy-ion reaction at SIS is pointed out. The in-medium properties of the latter together with an antikaon spectral function based on chiral SU(3) dynamics suggest a significant enhancement of the π Λ → anti Κ N reaction in nuclear matter. (orig.)

  20. Investigation of nuclear matter properties by means of high energy nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Stock, R.

    1985-09-01

    We review recent advances towards an understanding of high density nuclear matter, as created in central collisions of nuclei at high energy. In particular, information obtained for the nuclear matter equation of state will be discussed. The lectures focus on the Bevalac energy domain of 0.4 to 2 GeV per projectile nucleon. (orig.)

  1. Pion Condensation and Alternating Layer Spin Model in Symmetric Nuclear Matter : Use of Extended Effective Nuclear Forces : Nuclear Physics

    OpenAIRE

    Teiji, KUNIHIRO; Tatsuyuki, TAKATSUKA; Ryozo, TAMAGAKI; Department of National Sciences, Ryukoku University; College of Humanities and Social Sciences, Iwate University; Department of Physics, Kyoto University

    1985-01-01

    Pion condensation in the symmetric nuclear matter is investigated on the basis of the ALS (alternating-layer-spin) model which provides a good description for the π^0 condensation. We perform energy calculations in a realistic way where the isobar (Δ)-mixing, the short range effects and the exchange energy of the interaction are taken into account. The Δ-mixing effect is built in the model state as previously done in the neutron matter. We preferentially employ G-0 force of Sprung and Banerje...

  2. Toward the fundamental theory of nuclear matter physics: The microscopic theory of nuclear collective dynamics

    International Nuclear Information System (INIS)

    Sakata, F.; Marumori, T.; Hashimoto, Y.; Tsukuma, H.; Yamamoto, Y.; Terasaki, J.; Iwasawa, Y.; Itabashi, H.

    1992-01-01

    Since the research field of nuclear physics is expanding rapidly, it is becoming more imperative to develop the microscopie theory of nuclear matter physics which provides us with a unified understanding of diverse phenomena exhibited by nuclei. An estabishment of various stable mean-fields in nuclei allows us to develop the microscopie theory of nuclear collective dynamics within the mean-field approximation. The classical-level theory of nuclear collective dynamics is developed by exploiting the symplectic structure of the timedependent Hartree-Fock (TDHF)-manifold. The importance of exploring the single-particle dynamics, e.g. the level-crossing dynamics in connection with the classical order-to-chaos transition mechanism is pointed out. Since the classical-level theory os directly related to the full quantum mechanical boson expansion theory via the symplectic structure of the TDHF-manifold, the quantum theory of nuclear collective dynamics is developed at the dictation of what os developed on the classical-level theory. The quantum theory thus formulated enables us to introduce the quantum integrability and quantum chaoticity for individual eigenstates. The inter-relationship between the classical-level and quantum theories of nuclear collective dynamics might play a decisive role in developing the quantum theory of many-body problems. (orig.)

  3. Symmetries of the nuclear average field hamiltonian and a search for possible exotic equilibrium deformations in superdeformed nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Li Xunjun; Dudek, J.; Romain, P. (Centre de Recherches Nucleaires, IN2P3-CNRS, Univ. Louis Pasteur, 67 - Strasbourg (France))

    1991-11-21

    Symmetry properties of the general average-field hamiltonian-matrix resulting from the geometrical symmetries of the hamiltonian itself are derived and discussed. The corresponding numerical algorithms are constructed. Total energy calculations for superdeformed nuclei are then extended to include the usually neglected deformation modes {alpha}{sub {lambda}=3{mu}{ne}0} in the expansion of the nuclear surface expression R({theta}, {phi}; {l brace}{alpha}{r brace})=c({l brace}{alpha}{r brace})R{sub 0}(1+{Sigma}{sub {lambda}} {Sigma}{sub {mu}=-{lambda}}{sup {lambda}} {alpha}{sub {lambda}{mu}}{sup *}{Upsilon}{sub {lambda}{mu}}({theta}, {phi})). The general trends in the shell-energy dependence on {alpha}{sub {lambda}=3{mu}} and the implied instabilities in the superdeformed configurations of the rare earth nuclei are studied using the Strutinsky formula with the macroscopic part taken in the form of the folded-Yukawa plus exponential interaction. A possibility of new (double superdeformed minimum) structures coexisting in some nuclei and resulting from the proton shell effects is predicted and illustrated. No significant neutron effects are found in the rare earth superdeformed nuclei considered. (orig.).

  4. Symmetries in nature

    International Nuclear Information System (INIS)

    Mainzer, K.

    1988-01-01

    Symmetry, disymmetry, chirality etc. are well-known topics in chemistry. But they cannot only be found on the molecular level of matter. Atoms and elementary particles in physics are also characterized by particular symmetry groups. Even living organisms and populations on the macroscopic level have functional properties of symmetry. The whole physical, chemical, and biological evolution seems to be regulated by the emergence of new symmetries and the breaking down of old ones. One is reminded of Heisenberg's famous statement: 'Die letzte Wurzel der Erscheinungen ist also nicht die Materie, sondern das mathematische Gesetz, die Symmetrie, die mathematische Form' (Wandlungen in den Grundlagen der Naturwissenschaften, 1959). Historically the belief in symmetry and simplicity of nature has a long philosophical tradition from the Pythagoreans, Plato and Greek astronomers to Kepler and modern scientists. Today, 'symmetries in nature' is a common topic of mathematics, physics, chemistry, and biology. A lot of Nobel prizes were given in honour of inquiries concerning symmetries in nature. The fascination of symmetries is not only motivated by science, but by art and religion too. Therefore 'symmetris in nature' is an interdisciplinary topic which may help to overcome C.P. Snow's 'Two Cultures' of natural sciences and humanities. (author) 17 refs., 21 figs

  5. Symmetries in nature

    Energy Technology Data Exchange (ETDEWEB)

    Mainzer, K

    1988-05-01

    Symmetry, disymmetry, chirality etc. are well-known topics in chemistry. But they cannot only be found on the molecular level of matter. Atoms and elementary particles in physics are also characterized by particular symmetry groups. Even living organisms and populations on the macroscopic level have functional properties of symmetry. The whole physical, chemical, and biological evolution seems to be regulated by the emergence of new symmetries and the breaking down of old ones. One is reminded of Heisenberg's famous statement: 'Die letzte Wurzel der Erscheinungen ist also nicht die Materie, sondern das mathematische Gesetz, die Symmetrie, die mathematische Form' (Wandlungen in den Grundlagen der Naturwissenschaften, 1959). Historically the belief in symmetry and simplicity of nature has a long philosophical tradition from the Pythagoreans, Plato and Greek astronomers to Kepler and modern scientists. Today, 'symmetries in nature' is a common topic of mathematics, physics, chemistry, and biology. A lot of Nobel prizes were given in honour of inquiries concerning symmetries in nature. The fascination of symmetries is not only motivated by science, but by art and religion too. Therefore 'symmetris in nature' is an interdisciplinary topic which may help to overcome C.P. Snow's 'Two Cultures' of natural sciences and humanities. (author) 17 refs., 21 figs.

  6. System size and beam energy effects on probing the high-density behavior of nuclear symmetry energy with pion ratio

    International Nuclear Information System (INIS)

    Zhang Ming; Xiao Zhigang; Li Baoan; Chen Liewen; Yong Gaochan; Zhu Shengjiang

    2010-01-01

    Based on the isospin-and momentum-dependent hadronic transport model IBUU04, we have investigated the π - /π + ratio in the following three reactions: 48 Ca+ 48 Ca, 124 Sn + 124 Sn and 197 Au + 197 Au with nearly the same isospin asymmetry but different masses, at the bombarding energies from 0.25 to 0.6 AGeV. It is shown that the sensitivity of probing the E sym (ρ) with π - /π + increases with increasing the system size or decreasing the beam energy, showing a correlation to the degree of isospin fractionation. Therefore, with a given isospin asymmetry, heavier system at energies near the pion threshold is preferential to study the behavior of nuclear symmetry energy at supra-saturation densities.

  7. The Nuclear Installations (Excepted Matter) Regulations 1978 (Statutory Instrument No. 1779, 4 December 1978)

    International Nuclear Information System (INIS)

    1979-01-01

    These Regulations prescribe, for the purposes of the definition of 'excepted matter' in the Nuclear Installations Act 1965, certain specified quantities and forms of nuclear matter, and supersede the Nuclear Installations (excepted Matter) Regulations 1965. They bring the definition of excepted matter in those Regulations into line with the decisions of 27 October 1977 of the OECD Nuclear Energy Agency's Steering Committee excluding certain kinds and quantities of nuclear substances from the scope of the Paris Convention on Third Party Liability in the Field of Nuclear Energy. Compared with the 1965 Regulations, the principal changes in relation to consignments are that activity limits and packing requirements now take account of the most recent IAEA Regulations. (NEA) [fr

  8. Charge independence and charge symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Miller, G A [Washington Univ., Seattle, WA (United States). Dept. of Physics; van Oers, W T.H. [Manitoba Univ., Winnipeg, MB (Canada). Dept. of Physics; [TRIUMF, Vancouver, BC (Canada)

    1994-09-01

    Charge independence and charge symmetry are approximate symmetries of nature, violated by the perturbing effects of the mass difference between up and down quarks and by electromagnetic interactions. The observations of the symmetry breaking effects in nuclear and particle physics and the implications of those effects are reviewed. (author). 145 refs., 3 tabs., 11 figs.

  9. Charge independence and charge symmetry

    International Nuclear Information System (INIS)

    Miller, G.A.

    1994-09-01

    Charge independence and charge symmetry are approximate symmetries of nature, violated by the perturbing effects of the mass difference between up and down quarks and by electromagnetic interactions. The observations of the symmetry breaking effects in nuclear and particle physics and the implications of those effects are reviewed. (author). 145 refs., 3 tabs., 11 figs

  10. Temperature dependence of single-particle properties in nuclear matter

    International Nuclear Information System (INIS)

    Zuo, W.; Lu, G.C.; Li, Z.H.; Lombardo, U.; Schulze, H.-J.

    2006-01-01

    The single-nucleon potential in hot nuclear matter is investigated in the framework of the Brueckner theory by adopting the realistic Argonne V 18 or Nijmegen 93 two-body nucleon-nucleon interaction supplemented by a microscopic three-body force. The rearrangement contribution to the single-particle potential induced by the ground state correlations is calculated in terms of the hole-line expansion of the mass operator and provides a significant repulsive contribution in the low-momentum region around and below the Fermi surface. Increasing temperature leads to a reduction of the effect, while increasing density makes it become stronger. The three-body force suppresses somewhat the ground state correlations due to its strong short-range repulsion, increasing with density. Inclusion of the three-body force contribution results in a quite different temperature dependence of the single-particle potential at high enough densities as compared to that adopting the pure two-body force. The effects of three-body force and ground state correlations on the nucleon effective mass are also discussed

  11. Importance of Broken Gauge Symmetry in Addressing Three, Key, Unanswered Questions Posed by Low Nuclear Reactions (LENR's)

    Science.gov (United States)

    Chubb, Scott

    2003-03-01

    Three, Key, Unanswered Questions posed by LENR's are: 1. How do we explain the lack of high energy particles (HEP's)? 2. Can we understand and prioritize the way coupling can occur between nuclear- and atomic- lengthscales, and 3. What are the roles of Surface-Like (SL), as opposed to Bulk-Like (BL), processes in triggering nuclear phenomena. One important source of confusion associated with each of these questions is the common perception that the quantum mechanical phases of different particles are not correlated with each other. When the momenta p of interacting particles is large, and reactions occur rapidly (between HEP's, for example), this is a valid assumption. But when the relative difference in p becomes vanishingly small, between one charge, and many others, as a result of implicit electromagnetic coupling, each charge can share a common phase, relative to the others, modulo 2nπ, where n is an integer, even when outside forces are introduced. The associated forms of broken gauge symmetry, distinguish BL from SL phenomena, at room temperature, also explain super- and normal- conductivity in solids, and can be used to address the Three, Key, Unanswered Questions posed by LENR's.

  12. Neutrino propagation in neutron matter and the nuclear equation of state

    CERN Document Server

    Margueron, J; Nguyen Van Giai; Jiang, W

    2001-01-01

    We study the propagation of neutrinos inside dense matter under the conditions prevailing in a proto-neutron star. Equations of state obtained with different nuclear effective interactions (Skyrme type and Gogny type) are first discussed. It is found that for many interactions, spin and/or isospin instabilities occur at densities larger than the saturation density of nuclear matter. From this study we select two representative interactions, SLy230b and D1P. We calculate the response functions in pure neutron matter where nuclear correlations are described at the Hartree-Fock plus RPA level. These response functions allow us to evaluate neutrino mean free paths corresponding to neutral current processes.

  13. Temperature effects on nuclear pseudospin symmetry in the Dirac-Hartree-Bogoliubov formalism

    OpenAIRE

    Lisboa, R.; Alberto, P.; Carlson, B. V.; Malheiro, M.

    2017-01-01

    We present finite temperature Dirac-Hartree-Bogoliubov (FTDHB) calculations for the tin isotope chain to study the dependence of pseudospin on the nuclear temperature. In the FTDHB calculation, the density dependence of the self-consistent relativistic mean fields, the pairing, and the vapor phase that takes into account the unbound nucleon states are considered self-consistently. The mean field potentials obtained in the FTDHB calculations are fit by Woods-Saxon (WS) potentials to examine ho...

  14. Dynamical symmetries of molecular states in atomic, nuclear and hadron physics

    International Nuclear Information System (INIS)

    Iachello, F.; Cseh, J.; Levai, G.

    1995-01-01

    The algebraic description of dipole degrees of freedom is discussed. These degrees of freedom are relevant to two and few-body systems, as well as in the collective motion of many-body systems. Applications to molecular, nuclear and hadron spectroscopy are presented. Different internal degrees of freedom can also be coupled to the spatial ones, leading to realistic models of several complex systems. (author)

  15. Scalar field dark matter with spontaneous symmetry breaking and the 3.5 keV line

    Science.gov (United States)

    Cosme, Catarina; Rosa, João G.; Bertolami, O.

    2018-06-01

    We show that the present dark matter abundance can be accounted for by an oscillating scalar field that acquires both mass and a non-zero expectation value from interactions with the Higgs field. The dark matter scalar field can be sufficiently heavy during inflation, due to a non-minimal coupling to gravity, so as to avoid the generation of large isocurvature modes in the CMB anisotropies spectrum. The field begins oscillating after reheating, behaving as radiation until the electroweak phase transition and afterwards as non-relativistic matter. The scalar field becomes unstable, although sufficiently long-lived to account for dark matter, due to mass mixing with the Higgs boson, decaying mainly into photon pairs for masses below the MeV scale. In particular, for a mass of ∼7 keV, which is effectively the only free parameter, the model predicts a dark matter lifetime compatible with the recent galactic and extragalactic observations of a 3.5 keV X-ray line.

  16. Can tonne-scale direct detection experiments discover nuclear dark matter?

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, Alistair; Kirk, Russell; Monroe, Jocelyn; West, Stephen M., E-mail: Alistair.Butcher.2010@live.rhul.ac.uk, E-mail: Russell.Kirk.2008@live.rhul.ac.uk, E-mail: Jocelyn.Monroe@rhul.ac.uk, E-mail: Stephen.West@rhul.ac.uk [Department of Physics, Royal Holloway University of London, Egham, Surrey, TW20 0EX (United Kingdom)

    2017-10-01

    Models of nuclear dark matter propose that the dark sector contains large composite states consisting of dark nucleons in analogy to Standard Model nuclei. We examine the direct detection phenomenology of a particular class of nuclear dark matter model at the current generation of tonne-scale liquid noble experiments, in particular DEAP-3600 and XENON1T. In our chosen nuclear dark matter scenario distinctive features arise in the recoil energy spectra due to the non-point-like nature of the composite dark matter state. We calculate the number of events required to distinguish these spectra from those of a standard point-like WIMP state with a decaying exponential recoil spectrum. In the most favourable regions of nuclear dark matter parameter space, we find that a few tens of events are needed to distinguish nuclear dark matter from WIMPs at the 3 σ level in a single experiment. Given the total exposure time of DEAP-3600 and XENON1T we find that at best a 2 σ distinction is possible by these experiments individually, while 3 σ sensitivity is reached for a range of parameters by the combination of the two experiments. We show that future upgrades of these experiments have potential to distinguish a large range of nuclear dark matter models from that of a WIMP at greater than 3 σ .

  17. Can tonne-scale direct detection experiments discover nuclear dark matter?

    International Nuclear Information System (INIS)

    Butcher, Alistair; Kirk, Russell; Monroe, Jocelyn; West, Stephen M.

    2017-01-01

    Models of nuclear dark matter propose that the dark sector contains large composite states consisting of dark nucleons in analogy to Standard Model nuclei. We examine the direct detection phenomenology of a particular class of nuclear dark matter model at the current generation of tonne-scale liquid noble experiments, in particular DEAP-3600 and XENON1T. In our chosen nuclear dark matter scenario distinctive features arise in the recoil energy spectra due to the non-point-like nature of the composite dark matter state. We calculate the number of events required to distinguish these spectra from those of a standard point-like WIMP state with a decaying exponential recoil spectrum. In the most favourable regions of nuclear dark matter parameter space, we find that a few tens of events are needed to distinguish nuclear dark matter from WIMPs at the 3 σ level in a single experiment. Given the total exposure time of DEAP-3600 and XENON1T we find that at best a 2 σ distinction is possible by these experiments individually, while 3 σ sensitivity is reached for a range of parameters by the combination of the two experiments. We show that future upgrades of these experiments have potential to distinguish a large range of nuclear dark matter models from that of a WIMP at greater than 3 σ .

  18. Effects of medium-induced ρ-ω meson mixing on the equation of state in isospin-asymmetric nuclear matter

    International Nuclear Information System (INIS)

    Jiang Weizhou; Li Baoan

    2009-01-01

    We reexamine effects of the ρ-ω meson mixing mediated by nucleon polarizations on the symmetry energy in isospin-asymmetric nuclear matter. Taking into account the rearrangement term neglected in previous studies by others, we evaluate the ρ-ω mixing angle in a novel way within the relativistic mean-field models with and without chiral limits. It is found that the symmetry energy is significantly softened at high densities contrary to the finding in earlier studies. As the first step of going beyond the lowest-order calculations, we also solve the Dyson equation for the ρ-ω mixing. In this case, it is found that the symmetry energy is not only significantly softened by the ρ-ωmixing at suprasaturation densities, similar to the lowest-order ρ-ω mixing, but interestingly also softened at subsaturation densities. In addition, the softening of the symmetry energy at subsaturation densities can be partly suppressed by the nonlinear self-interaction of the σ meson.

  19. Hyperons in nuclear matter from SU(3) chiral effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Petschauer, S.; Kaiser, N. [Technische Universitaet Muenchen, Physik Department, Garching (Germany); Haidenbauer, J. [Institut fuer Kernphysik, Forschungszentrum Juelich, Institute for Advanced Simulation, Juelich Center for Hadron Physics, Juelich (Germany); Meissner, Ulf G. [Institut fuer Kernphysik, Forschungszentrum Juelich, Institute for Advanced Simulation, Juelich Center for Hadron Physics, Juelich (Germany); Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Bonn (Germany); Weise, W. [Technische Universitaet Muenchen, Physik Department, Garching (Germany); Villa Tambosi, ECT, Villazzano (Trento) (Italy)

    2016-01-15

    Brueckner theory is used to investigate the properties of hyperons in nuclear matter. The hyperon-nucleon interaction is taken from chiral effective field theory at next-to-leading order with SU(3) symmetric low-energy constants. Furthermore, the underlying nucleon-nucleon interaction is also derived within chiral effective field theory. We present the single-particle potentials of Λ and Σ hyperons in symmetric and asymmetric nuclear matter computed with the continuous choice for intermediate spectra. The results are in good agreement with the empirical information. In particular, our calculation gives a repulsive Σ-nuclear potential and a weak Λ-nuclear spin-orbit force. (orig.)

  20. Symmetry energy II: Isobaric analog states

    Science.gov (United States)

    Danielewicz, Pawel; Lee, Jenny

    2014-02-01

    Using excitation energies to isobaric analog states (IAS) and charge invariance, we extract nuclear symmetry coefficients, representing a mass formula, on a nucleus-by-nucleus basis. Consistently with charge invariance, the coefficients vary weakly across an isobaric chain. However, they change strongly with nuclear mass and range from aa˜10 MeV at mass A˜10 to aa˜22 MeV at A˜240. Variation with mass can be understood in terms of dependence of nuclear symmetry energy on density and the rise in importance of low densities within nuclear surface in smaller systems. At A≳30, the dependence of coefficients on mass can be well described in terms of a macroscopic volume-surface competition formula with aaV≃33.2 MeV and aaS≃10.7 MeV. Our further investigation shows, though, that the fitted surface symmetry coefficient likely significantly underestimates that for the limit of half-infinite matter. Following the considerations of a Hohenberg-Kohn functional for nuclear systems, we determine how to find in practice the symmetry coefficient using neutron and proton densities, even when those densities are simultaneously affected by significant symmetry-energy and Coulomb effects. These results facilitate extracting the symmetry coefficients from Skyrme-Hartree-Fock (SHF) calculations, that we carry out using a variety of Skyrme parametrizations in the literature. For the parametrizations, we catalog novel short-wavelength instabilities. In our further analysis, we retain only those parametrizations which yield systems that are adequately stable both in the long- and short-wavelength limits. In comparing the SHF and IAS results for the symmetry coefficients, we arrive at narrow (±2.4 MeV) constraints on the symmetry-energy values S(ρ) at 0.04≲ρ≲0.13 fm. Towards normal density the constraints significantly widen, but the normal value of energy aaV and the slope parameter L are found to be strongly correlated. To narrow the constraints, we reach for the

  1. Nuclear and Condensed Matter Physics: VI Regional CRRNSM Conference. AIP Conference Proceedings, No. 513 [APCPCS

    International Nuclear Information System (INIS)

    Messina, A.

    2000-01-01

    This book contains 102 scientific contributions in the areas of nuclear and condensed matter physics. The conference was attended by 144 physicists, most of them belonging to the Sicilian Universities of Palermo, Catania and Messina

  2. S-matrix approach to the equation of state of dilute nuclear matter

    Indian Academy of Sciences (India)

    2014-04-01

    matrix framework, a method is presented to calculate the equation of state of dilute warm nuclear matter. The result is a model-independent virial series for the pressure and density that systematically includes contributions from ...

  3. Influence of flow constraints on the properties of the critical endpoint of symmetric nuclear matter

    Science.gov (United States)

    Ivanytskyi, A. I.; Bugaev, K. A.; Sagun, V. V.; Bravina, L. V.; Zabrodin, E. E.

    2018-06-01

    We propose a novel family of equations of state for symmetric nuclear matter based on the induced surface tension concept for the hard-core repulsion. It is shown that having only four adjustable parameters the suggested equations of state can, simultaneously, reproduce not only the main properties of the nuclear matter ground state, but the proton flow constraint up its maximal particle number densities. Varying the model parameters we carefully examine the range of values of incompressibility constant of normal nuclear matter and its critical temperature, which are consistent with the proton flow constraint. This analysis allows us to show that the physically most justified value of nuclear matter critical temperature is 15.5-18 MeV, the incompressibility constant is 270-315 MeV and the hard-core radius of nucleons is less than 0.4 fm.

  4. Nuclear matter saturation in a U(1) circle-times chiral model

    International Nuclear Information System (INIS)

    Lin, Wei

    1989-01-01

    The mean-field approximation in the U(1) circle-times chiral model for nuclear matter maturation is reviewed. Results show that it cannot be the correct saturation mechanism. It is argued that in this chiral model, other than the fact the ω mass can depend on the density of nuclear matter, saturation is still quite like the Walecka picture. 16 refs., 3 figs

  5. Softness of Nuclear Matter and the Production of Strange Particles in Neutron Stars

    Institute of Scientific and Technical Information of China (English)

    陈伟; 文德华; 刘良钢

    2003-01-01

    In the various models, we study the influences of the softness of nuclear matter, the vacuum fluctuation ofnucleons and σ mesons on the production of strange particles in neutron stars. Wefind that the stiffer the nuclear matter is, the more easily the strange particles is produced in neutron stars. The vacuum fluctuation of nucleons has large effect on strange particle production while that of σ meson has little effect on it.

  6. Role of isospin in nuclear-matter liquid-gas phase transition

    International Nuclear Information System (INIS)

    Ducoin, C.

    2006-10-01

    Nuclear matter presents a phase transition of the liquid-gas type. This well-known feature is due to the nuclear interaction profile (mean-range attractive, short-range repulsive). Symmetric-nuclear-matter thermodynamics is thus analogous to that of a Van der Waals fluid. The study shows up to be more complex in the case of asymmetric matter, composed of neutrons and protons in an arbitrary proportion. Isospin, which distinguishes both constituents, gives a measure of this proportion. Studying asymmetric matter, isospin is an additional degree of freedom, which means one more dimension to consider in the space of observables. The nuclear liquid-gas transition is associated with the multi-fragmentation phenomenon observed in heavy-ion collisions, and to compact-star physics: the involved systems are neutron rich, so they are affected by the isospin degree of freedom. The present work is a theoretical study of isospin effects which appear in the asymmetric nuclear matter liquid-gas phase transition. A mean-field approach is used, with a Skyrme nuclear effective interaction. We demonstrate the presence of a first-order phase transition for asymmetric matter, and study the isospin distillation phenomenon associated with this transition. The case of phase separation at thermodynamic equilibrium is compared to spinodal decomposition. Finite size effects are addressed, as well as the influence of the electron gas which is present in the astrophysical context. (author)

  7. Some Recent Progress on Quark Pairings in Dense Quark and Nuclear Matter

    International Nuclear Information System (INIS)

    Pang Jinyi; Wang Jincheng; Wang Qun

    2012-01-01

    In this review article we give a brief overview on some recent progress in quark pairings in dense quark/nuclear matter mostly developed in the past five years. We focus on following aspects in particular: the BCS-BEC crossover in the CSC phase, the baryon formation and dissociation in dense quark/nuclear matter, the Ginzburg-Landau theory for three-flavor dense matter with U A (1) anomaly, and the collective and Nambu-Goldstone modes for the spin-one CSC. (physics of elementary particles and fields)

  8. Non-Abelian behavior of α bosons in cold symmetric nuclear matter

    International Nuclear Information System (INIS)

    Zheng Hua; Bonasera, Aldo

    2011-01-01

    The ground-state energy of infinite symmetric nuclear matter is usually described by strongly interacting nucleons obeying the Pauli exclusion principle. We can imagine a unitary transformation which groups four nonidentical nucleons (i.e., with different spin and isospin) close in coordinate space. Those nucleons, being nonidentical, do not obey the Pauli principle, thus their relative momenta are negligibly small (just to fulfill the Heisenberg principle). Such a cluster can be identified with an α boson. But in dense nuclear matter, those α particles still obey the Pauli principle since are constituted of fermions. The ground state energy of nuclear matter α clusters is the same as for nucleons, thus it is degenerate. We could think of α particles as vortices which can now braid, for instance making 8 Be which leave the ground state energy unchanged. Further braiding to heavier clusters ( 12 C, 16 O,...) could give a different representation of the ground state at no energy cost. In contrast d-like clusters (i.e., N=Z odd-odd nuclei, where N and Z are the neutron and proton number, respectively) cannot describe the ground state of nuclear matter and can be formed at high excitation energies (or temperatures) only. We show that even-even, N=Z, clusters could be classified as non-Abelian states of matter. As a consequence an α condensate in nuclear matter might be hindered by the Fermi motion, while it could be possible a condensate of 8 Be or heavier clusters.

  9. Impact Parameter Dependence of π"-/π"+ Ratio in Probing the Nuclear Symmetry Energy Using Heavy-Ion Collisions

    International Nuclear Information System (INIS)

    He, Guo-Qiang; Wei, Gao-Feng; Lu, Yi-Xin; Cao, Xin-Wei

    2016-01-01

    The impact parameter dependence of π"-/π"+ ratio is examined in heavy-ion collisions at 400 MeV/nucleon within a transport model. It is shown that the sensitivity of π"-/π"+ ratio on symmetry energy shows a transition from central to peripheral collisions; that is, the stiffer symmetry energy leads to a larger π"-/π"+ ratio in peripheral collisions while the softer symmetry energy always leads this ratio to be larger in central collisions. After checking the kinematic energy distribution of π"-/π"+ ratio, we found this transition of sensitivity of π"-/π"+ ratio to symmetry energy is mainly from less energetic pions; that is, the softer symmetry energy gets the less energetic pions to form a smaller π"-/π"+ ratio in peripheral collisions while these pions generate a larger π"-/π"+ ratio in central collisions. Undoubtedly, the softer symmetry energy can also lead more energetic pions to form a larger π"-/π"+ ratio in peripheral collisions. Nevertheless, considering that most of pions are insufficiently energetic at this beam energy, we therefore suggest the π"-/π"+ ratio as a probe of the high-density symmetry energy effective only in central at most to midcentral collisions, thereby avoiding the possible information of low-density symmetry energy carried in π"-/π"+ ratio from peripheral collisions.

  10. Symmetry breaking nuclear quadrupole coupling tensor orientation for cesium-133 nuclei located in a mirror plane

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Ho; Kim, Jin Eun [Dept. of Chemistry (BK21 plus) and Research Institute of Natural Science, Gyeongsang National University, Jinju (Korea, Republic of); Lee, Kang Yeol [School of Mechanical Engineering, Korea University, Seoul (Korea, Republic of)

    2016-11-15

    Simultaneous multiple data set fits of all transition peaks of {sup 133}Cs nuclei enabled us to obtain accurate cesium-133 nuclear magnetic resonance (NMR) parameters and Euler angles between the principal axis systems of the chemical shift (CS) and quadrupole coupling (Q) tensors of {sup 133}Cs nuclei in Cs{sub 2}CrO{sub 4} . Although in a previous study of Cs{sub 2}CrO{sub 4} by Power et al. (W. P. Power, S. Mooibroek, R. E. Wasylishen, T. S. Cameron, J. Phys. Chem. 1994, 98, 1552), one central transition was observed for cesium sites 1 and 2 in the {sup 133}Cs NMR spectra and one Euler angle between the CS tensors and Q tensors was obtained as 52° and 7° for cesium sites 1 and 2, respectively, the present single-crystal {sup 133}Cs NMR measurements found two Euler angles (10(2)°, 51.9(1)°, 0°) for site 1 and two central transition peaks for site 2. Three principal components of the CS tensor for Cs1 are oriented along the crystallographic a, b, and c axes, whereas none of the principal components of the Q tensor for Cs1 are oriented along the crystal axes. The principal component V{sub 22} of the Q tensor for Cs1 is tilted 10° from the b axis in the bc plane, and the other two components are not located in the ac plane. Therefore, we have found that the requirement that “the quadrupole coupling tensor for a nucleus located in a mirror plane has one principal axis perpendicular to the mirror plane” cannot be applied to Cs1. On the other hand, δ{sub 11} and V{sub 22} for Cs2 are aligned along the b axis, and the other components of the CS and Q tensors deviate at an angle of 1.4(1)° and 10.1(1)°, respectively, from the a and c axes in the ac plane. A distortion-free powder {sup 133}Cs NMR spectrum of Cs{sub 2}CrO{sub 4} was measured using a solid-state spin echo technique.

  11. EM Transition Sum Rules Within the Framework of sdg Proton-Neutron Interacting Boson Model, Nuclear Pair Shell Model and Fermion Dynamical Symmetry Model

    Science.gov (United States)

    Zhao, Yumin

    1997-07-01

    By the techniques of the Wick theorem for coupled clusters, the no-energy-weighted electromagnetic sum-rule calculations are presented in the sdg neutron-proton interacting boson model, the nuclear pair shell model and the fermion-dynamical symmetry model. The project supported by Development Project Foundation of China, National Natural Science Foundation of China, Doctoral Education Fund of National Education Committee, Fundamental Research Fund of Southeast University

  12. Sound-like collective mode excitation with pion absorption in nuclear matter

    International Nuclear Information System (INIS)

    Qiu Xijiun; Shen Jianguo; Huang Lingfang

    1985-01-01

    The relativistic mean field theory consistent with bulk properties of nuclear matter is extended to study the excitations of the sound-like collective modes in nuclear matter. Corresponding relativistic mean field equations are solved numerically and self-consistently. The effective mass of nucleon, the speed of the sound and the amplitude of the sound-like solution are calculated. When the nuclear density is near or greater than the saturation density, the sound-like non-trivial solution could be found

  13. [Nuclear theory

    International Nuclear Information System (INIS)

    Haxton, W.

    1990-01-01

    This report discusses research in nuclear physics. Topics covered in this paper are: symmetry principles; nuclear astrophysics; nuclear structure; quark-gluon plasma; quantum chromodynamics; symmetry breaking; nuclear deformation; and cold fusion

  14. The matter of probability controlling melting of nuclear ship reactor

    International Nuclear Information System (INIS)

    Pihowicz, W.; Sobczyk, S.

    2008-01-01

    In the first part of this work beside description of split power, power of radioactivity disintegration and afterpower and its ability to extinguish, the genera condition of melting nuclear reactor core and its detailed versions were described. This paper also include the description of consequences melting nuclear reactor core both in case of stationary and mobile (ship) reactor and underline substantial differences. Next, fulfilled with succeed, control under melting of stationary nuclear reactor core was characterized.The middle part describe author's idea of controlling melting of nuclear ship reactor core. It is based on: - the suggestion of prevention pressure's untightness in safety tank of nuclear ship reactor by '' corium '' - and the suggestion of preventing walls of this tank from melting by '' corium ''. In the end the technological and construction barriers of the prevention from melting nuclear ship reactor and draw conclusions was presented. (author)

  15. Some comments on the behaviour of the excited nuclear matter formed in nuclear collisions at high energies

    International Nuclear Information System (INIS)

    Besliu, Calin; Jipa, Alexandru; Argintaru, Dan

    2003-01-01

    In the last years many experiments have been performed in different laboratories to investigate the behaviour of the nuclear matter formed in nuclear collisions at high energies. Therefore, many experimental results are available at present. For explaining these experimental results a lot of models have been proposed. A very large number of concepts have been used. Taking into account some own experimental results obtained in proton-nucleus and nucleus-nucleus collisions at energies between a few A GeV and a few hundred A GeV we comments in the frame a phenomenological geometric picture the main experimental results on charged particle multiplicities, participants, cross sections, momentum spectra, temperature slopes, nuclear matter flow, size and structure of the participant regions, antiparticle to particle ratios and chemical potential. Some jumps in the dependencies of some interesting physical quantities on the available energies in the centre of mass system can be reported. Trends to behaviours like-saturation of some physical quantities are observed, too. Therefore, some connections with the possible phase transitions in nuclear matter are included. A few specific signals of different phase transitions in nuclear matter are suggested. (authors)

  16. Symmetry guide to ferroaxial transitions

    Czech Academy of Sciences Publication Activity Database

    Hlinka, Jiří; Přívratská, J.; Ondrejkovič, Petr; Janovec, Václav

    2016-01-01

    Roč. 116, č. 17 (2016), 1-6, č. článku 177602. ISSN 0031-9007 R&D Projects: GA ČR GA15-04121S Institutional support: RVO:68378271 Keywords : symmetry * symmetry breaking * ferroaxial Transitions * property tensors * Aizu species Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 8.462, year: 2016

  17. Entropy Production in Field Theories without Time-Reversal Symmetry: Quantifying the Non-Equilibrium Character of Active Matter

    Directory of Open Access Journals (Sweden)

    Cesare Nardini

    2017-04-01

    Full Text Available Active-matter systems operate far from equilibrium because of the continuous energy injection at the scale of constituent particles. At larger scales, described by coarse-grained models, the global entropy production rate S quantifies the probability ratio of forward and reversed dynamics and hence the importance of irreversibility at such scales: It vanishes whenever the coarse-grained dynamics of the active system reduces to that of an effective equilibrium model. We evaluate S for a class of scalar stochastic field theories describing the coarse-grained density of self-propelled particles without alignment interactions, capturing such key phenomena as motility-induced phase separation. We show how the entropy production can be decomposed locally (in real space or spectrally (in Fourier space, allowing detailed examination of the spatial structure and correlations that underly departures from equilibrium. For phase-separated systems, the local entropy production is concentrated mainly on interfaces, with a bulk contribution that tends to zero in the weak-noise limit. In homogeneous states, we find a generalized Harada-Sasa relation that directly expresses the entropy production in terms of the wave-vector-dependent deviation from the fluctuation-dissipation relation between response functions and correlators. We discuss extensions to the case where the particle density is coupled to a momentum-conserving solvent and to situations where the particle current, rather than the density, should be chosen as the dynamical field. We expect the new conceptual tools developed here to be broadly useful in the context of active matter, allowing one to distinguish when and where activity plays an essential role in the dynamics.

  18. Testing the Standard Model and Fundamental Symmetries in Nuclear Physics with Lattice QCD and Effective Field Theory

    Energy Technology Data Exchange (ETDEWEB)

    Walker-Loud, Andre [College of William and Mary, Williamsburg, VA (United States)

    2016-10-14

    The research supported by this grant is aimed at probing the limits of the Standard Model through precision low-energy nuclear physics. The work of the PI (AWL) and additional personnel is to provide theory input needed for a number of potentially high-impact experiments, notably, hadronic parity violation, Dark Matter direct detection and searches for permanent electric dipole moments (EDMs) in nucleons and nuclei. In all these examples, a quantitative understanding of low-energy nuclear physics from the fundamental theory of strong interactions, Quantum Chromo-Dynamics (QCD), is necessary to interpret the experimental results. The main theoretical tools used and developed in this work are the numerical solution to QCD known as lattice QCD (LQCD) and Effective Field Theory (EFT). This grant is supporting a new research program for the PI, and as such, needed to be developed from the ground up. Therefore, the first fiscal year of this grant, 08/01/2014-07/31/2015, has been spent predominantly establishing this new research effort. Very good progress has been made, although, at this time, there are not many publications to show for the effort. After one year, the PI accepted a job at Lawrence Berkeley National Laboratory, so this final report covers just a single year of five years of the grant.

  19. Modification of the omega-meson lifetime in nuclear matter

    NARCIS (Netherlands)

    Kotulla, M.; Trnka, D.; Muehlich, P.; Anton, G.; Bacelar, J. C. S.; Bartholomy, O.; Bayadilov, D.; Beloglazov, Y. A.; Bogendoerfer, R.; Castelijns, R.; Crede, V.; Dutz, H.; Ehmanns, A.; Elsner, D.; Ewald, R.; Fabry, I.; Fuchs, M.; Essig, K.; Funke, Ch.; Gothe, R.; Gregor, R.; Gridnev, A. B.; Gutz, E.; Hoeffgen, S.; Hoffmeister, P.; Horn, I.; Hoessl, J.; Jaegle, I.; Junkersfeld, J.; Kalinowsky, H.; Klein, Frank; Klein, Fritz; Klempt, E.; Konrad, M.; Kopf, B.; Krusche, B.; Langheinrich, J.; Loehner, H.; Lopatin, I. V.; Lotz, J.; Lugert, S.; Menze, D.; Messchendorp, J. G.; Mertens, T.; Metag, V.; Mosel, U.; Nanova, M.; Novotny, R.; Ostrick, M.; Pant, L. M.; van Pee, H.; Pfeiffer, M.; Roy, A.; Radkov, A.; Schadmand, S.; Schmidt, Ch.; Schmieden, H.; Schoch, B.; Shende, S.; Suft, G.; Sumachev, V. V.; Szczepanek, T.; Suele, A.; Thoma, U.; Varma, R.; Walther, D.; Weinheimer, Ch.; Wendel, Ch.

    2008-01-01

    Information on hadron properties in the nuclear medium has been derived from the photoproduction of omega mesons on the nuclei C, Ca, Nb, and Pb using the Crystal Barrel/TAPS detector at the ELSA tagged photon facility in Bonn. The dependence of the omega-meson cross section on the nuclear mass

  20. Tritium in organic matter around Krsko Nuclear Power Plant

    International Nuclear Information System (INIS)

    Kristof, Romana; Zorko, Benjamin; Kozar Logar, Jasmina; Kosenina, Suzana

    2017-01-01

    The aim of the research was to obtain first results of tritium in the organic matter of environmental samples in the vicinity of Krsko NPP. The emphasis was on the layout of suitable sampling network of crops and fruits in nearby agricultural area. Method for determination of tritium in organic matter in the form of Tissue Free Water Tritium (TFWT) and Organically Bound Tritium (OBT) has been implemented. Capabilities of the methods were tested on real environmental samples and its findings were compared to modeled activities of tritium from atmospheric releases and literature based results of TFWT and OBT. (author)

  1. Dynamical symmetries for fermions

    International Nuclear Information System (INIS)

    Guidry, M.

    1989-01-01

    An introduction is given to the Fermion Dynamical Symmetry Model (FDSM). The analytical symmetry limits of the model are then applied to the calculation of physical quantities such as ground-state masses and B(E 2 ) values in heavy nuclei. These comparisons with data provide strong support for a new principle of collective motion, the Dynamical Pauli Effect, and suggest that dynamical symmetries which properly account for the pauli principle are much more persistent in nuclear structure than the corresponding boson symmetries. Finally, we present an assessment of criticisms which have been voiced concerning the FDSM, and a discussion of new phenomena and ''exotic spectroscopy'' which may be suggested by the model. 14 refs., 8 figs., 4 tabs

  2. The future of the nuclear industry: a matter of communication

    Energy Technology Data Exchange (ETDEWEB)

    De Waal, H S

    1993-11-01

    Since the very first successes achieved by the early scientists the infant nuclear industry was plagued by an atmosphere of uncertainty, conflict, anxiety and expectations. After the initial euphoria the Chernobyl accident shocked public opinion and perspectives changed. Nuclear energy is experience by the public in three dimensions. Firstly there are the technical realities of the reactor and its fantastically reduced source of power. Secondly, there is a psychological and political meaning, including the association of modern technology with authority, government, and control. The third dimension is the product of old myths about `divine secrets`, mad scientists dreadful pollution and cosmic apocalypse. To a large extent the nuclear industry is at fault for these emotional connotations. An early lapse in the communication process can be blamed for many of the misconceptions. The nuclear industry lost an opportunity by sticking to `vagueness`. Recent trends show that a pattern of conditional acceptance is present in public opinion with regard to the nuclear industry. Possible solutions, including better communication, aggressive marketing, and the training of scientists to become communicators, are discussed. A study was done of community attitudes around Koeberg, and it is concluded that the public must be convinced of the fact that nuclear power is clean, safe, cheap and accepted as such by the industrially developed word. 62 refs., 13 figs.

  3. The future of the nuclear industry: a matter of communication

    International Nuclear Information System (INIS)

    De Waal, H.S.

    1993-11-01

    Since the very first successes achieved by the early scientists the infant nuclear industry was plagued by an atmosphere of uncertainty, conflict, anxiety and expectations. After the initial euphoria the Chernobyl accident shocked public opinion and perspectives changed. Nuclear energy is experience by the public in three dimensions. Firstly there are the technical realities of the reactor and its fantastically reduced source of power. Secondly, there is a psychological and political meaning, including the association of modern technology with authority, government, and control. The third dimension is the product of old myths about 'divine secrets', mad scientists dreadful pollution and cosmic apocalypse. To a large extent the nuclear industry is at fault for these emotional connotations. An early lapse in the communication process can be blamed for many of the misconceptions. The nuclear industry lost an opportunity by sticking to 'vagueness'. Recent trends show that a pattern of conditional acceptance is present in public opinion with regard to the nuclear industry. Possible solutions, including better communication, aggressive marketing, and the training of scientists to become communicators, are discussed. A study was done of community attitudes around Koeberg, and it is concluded that the public must be convinced of the fact that nuclear power is clean, safe, cheap and accepted as such by the industrially developed word. 62 refs., 13 figs

  4. Numerical design of RNnν symmetry-based RF pulse schemes for recoupling and decoupling of nuclear spin interactions at high MAS frequencies

    International Nuclear Information System (INIS)

    Herbst, Christian; Herbst, Jirada; Leppert, Joerg; Ohlenschlaeger, Oliver; Goerlach, Matthias; Ramachandran, Ramadurai

    2009-01-01

    An approach for the efficient implementation of RN n ν symmetry-based pulse schemes that are often employed for recoupling and decoupling of nuclear spin interactions in biological solid state NMR investigations is demonstrated at high magic-angle spinning frequencies. RF pulse sequences belonging to the RN n ν symmetry involve the repeated application of the pulse sandwich {R φ R -φ }, corresponding to a propagator U RF = exp(-i4φI z ), where φ = πν/N and R is typically a pulse that rotates the nuclear spins through 180 o about the x-axis. In this study, broadband, phase-modulated 180 o pulses of constant amplitude were employed as the initial 'R' element and the phase-modulation profile of this 'R' element was numerically optimised for generating RN n ν symmetry-based pulse schemes with satisfactory magnetisation transfer characteristics. At representative MAS frequencies, RF pulse sequences were implemented for achieving 13 C- 13 C double-quantum dipolar recoupling and through bond scalar coupling mediated chemical shift correlation and evaluated via numerical simulations and experimental measurements. The results from these investigations are presented here

  5. Variational Calculation for the Equation of State of Hot Asymmetric Nuclear Matter

    International Nuclear Information System (INIS)

    Togashi, Hajime; Kanzawa, Hiroaki; Takano, Masatoshi

    2010-01-01

    We calculate the equation of state (EOS) of asymmetric nuclear matter at finite temperatures with the cluster variational method based on the realistic nuclear Hamiltonian composed of the AV18 and UIX nuclear potentials. The free energy is calculated with an extension of the variational method proposed by Schmidt and Pandharipande. The obtained thermodynamic quantities such as entropy, internal energy, pressure and chemical potential derived from the free energy are reasonable. It is also found that the present variational calculation is self-consistent. These thermodynamic quantities are essential ingredients in our project for constructing a new nuclear EOS applicable to supernova simulations.

  6. Antiferromagnetic spin phase transition in nuclear matter with effective Gogny interaction

    International Nuclear Information System (INIS)

    Isayev, A.A.; Yang, J.

    2004-01-01

    The possibility of ferromagnetic and antiferromagnetic phase transitions in symmetric nuclear matter is analyzed within the framework of a Fermi liquid theory with the effective Gogny interaction. It is shown that at some critical density nuclear matter with the D1S effective force undergoes a phase transition to the antiferromagnetic spin state (opposite directions of neutron and proton spins). The self-consistent equations of spin polarized nuclear matter with the D1S force have no solutions corresponding to ferromagnetic spin ordering (the same direction of neutron and proton spins) and, hence, the ferromagnetic transition does not appear. The dependence of the antiferromagnetic spin polarization parameter as a function of density is found at zero temperature

  7. Sigma-omega meson coupling and properties of nuclei and nuclear matter

    International Nuclear Information System (INIS)

    Haidari, Maryam M.; Sharma, Madan M.

    2008-01-01

    We have constructed a Lagrangian model with a coupling of σ and ω mesons in the relativistic mean-field theory. Properties of finite nuclei and nuclear matter are explored with the new Lagrangian model SIG-OM. The study shows that an excellent description of binding energies and charge radii of nuclei over a large range of isospin is achieved with SIG-OM. With an incompressibility of nuclear matter K=265 MeV, it is also able to describe the breathing-mode isoscalar giant monopole resonance energies appropriately. It is shown that the high-density behaviour of the equation of state of nuclear and neutron matter with the σ-ω coupling is much softer than that of the non-linear scalar coupling model

  8. Sixth Meeting on CPT and Lorentz Symmetry

    CERN Document Server

    CPT and Lorentz Symmetry

    2014-01-01

    This book contains the Proceedings of the Sixth Meeting on CPT and Lorentz Symmetry, held at Indiana University in Bloomington on June 17–21, 2013. The Meeting focused on tests of these fundamental symmetries and on related theoretical issues, including scenarios for possible violations. Topics covered at the meeting include searches for CPT and Lorentz violations involving: accelerator and collider experiments; atomic, nuclear, and particle decays; birefringence, dispersion, and anisotropy in cosmological sources; clock-comparison measurements; electromagnetic resonant cavities and lasers; tests of the equivalence principle; gauge and Higgs particles; high-energy astrophysical observations; laboratory tests of gravity; matter interferometry; neutrino oscillations and propagation; oscillations and decays of neutral mesons; particle–antiparticle comparisons; post-newtonian gravity in the solar system and beyond; second- and third-generation particles; space-based missions; spectroscopy of hydrogen and ant...

  9. Collective effects on transport coefficients of relativistic nuclear matter. Pt. 2

    International Nuclear Information System (INIS)

    Mornas, L.

    1993-04-01

    The transport coefficients (thermal conductivity, shear and bulk viscosities) of symmetric nuclear matter and neutron matter are calculated in the Walecka model with a Boltzmann-Uehling-Uhlenbeck collision term by means of a Chapman-Enskog expansion in first order. The order of magnitude of the influence of collective effects induced by the presence of the mean σ and ω fields on these coefficients is evaluated. (orig.). 9 figs

  10. Precision spectroscopy of pionic atoms and chiral symmetry in nuclei

    International Nuclear Information System (INIS)

    Itahashi, Kenta; Ahn, DeukSoon; Berg, Georg P.A.; Dozono, Masanori; Etoh, Daijiro; Fujioka, Hiroyuki; Fukuda, Naoki; Fukunishi, Nobuhisa; Geissel, Hans; Haettner, Emma; Hashimoto, Tadashi; Hayano, Ryugo S.; Hirenzaki, Satoru; Horii, Hiroshi; Ikeno, Natsumi; Inabe, Naoto; Iwasaki, Masahiko; Kameda, Daisuke; Kawase, Shouichiro; Kisamori, Keiichi; Kiyokawa, Yu; Kubo, Toshiyuki; Kusaka, Kensuke; Matsushita, Masafumi; Michimasa, Shin’ichiro; Mishima, Go; Miya, Hiroyuki; Murai, Daichi; Nagahiro, Hideko; Nishi, Takahiro; Ota, Shinsuke; Sakamoto, Naruhiko; Sekiguchi, Kimiko; Suzuki, Hiroshi; Suzuki, Ken; Takaki, Motonobu; Takeda, Hiroyuki; Tanaka, Yoshiki K.; Uesaka, Tomohiro; Wada, Yasumori; Watanabe, Yuni N.; Weick, Helmut; Yamakami, Hiroki; Yanagisawa, Yoshiyuki; Yoshida, Koichi

    2016-01-01

    We conduct an experimental project to make spectroscopy of deeply bound pionic atoms systematically over wide range of nuclei. We aim at studying the strong interaction in the low energy region, which has close connection to spontaneous chiral symmetry breaking and its partial restoration in nuclear matter. First experimental results show improved spectral resolution and much better statistical sensitivity than previous experiments. Present status of the experiment is reported.

  11. Proton impurity in the neutron matter: a nuclear polaron problem

    Energy Technology Data Exchange (ETDEWEB)

    Kutschera, M [Institute of Nuclear Physics, Cracow (Poland); Wojcik, W [Politechnika Krakowska, Cracow (Poland)

    1992-10-01

    We study interactions of a proton impurity with density oscillations of the neutron matter in a Debye approximation. The proton-phonon coupling is of the deformation-potential type at long wavelengths. It is weak at low density and increases with the neutron matter density. We calculate the proton`s effective mass perturbatively for a weak coupling, and use a canonical transformation technique for stronger couplings. The proton`s effective mass grows significantly with density, and at higher densities the proton impurity can be localized. This behaviour is similar to that of the polaron in solids. We obtain properties of the localized proton in the strong coupling regime from variational calculations, treating the neutron in the Thomas-Fermi approximation. (author). 14 refs, 8 figs.

  12. Tensor quasiparticle interaction and spin-isospin sound in nuclear matter

    International Nuclear Information System (INIS)

    Haensel, P.

    1979-01-01

    The effect of the tensor components of the quasiparticle interaction in nuclear matter on the spin-isospin sound type excitations is studied. Numerical results are obtained using a simplified model of the quasiparticle interaction in nuclear matter. The quasiparticle distribution matrix corresponding to the spin-isospin sound is found to be qualitatively different from that obtained for purely central quasiparticle interaction. The macroscopic effects, however, are restricted to a small change in the phase velocity of the spin-isospin sound. (Auth.)

  13. Nuclear matter properties using different sets of parameters in the Gogny interaction

    International Nuclear Information System (INIS)

    Ramadan, Kh.A.; Mansour, H.M.M.

    2002-01-01

    In the present work we use the finite range density dependent effective Gogny interaction to study the equation of state of polarized nuclear matter. Six sets of the interaction parameters are used and a comparison is made with the calculations of Friedman and Pandharipande using a realistic interaction. One of the parameter sets (D1) gives similar results for the properties of polarized nuclear matter while the other parameter sets (D1S, D250, D260, D280 and D300) yield results which are reasonably comparable with the realistic interaction calculation of Friedman and Pandharipande. (author)

  14. Symmetric and asymmetric nuclear matter in the Thomas-Fermi model at finite temperatures

    International Nuclear Information System (INIS)

    Strobel, K.; Weber, F.; Weigel, M.K.

    1999-01-01

    The properties of warm symmetric and asymmetric nuclear matter are investigated in the frame of the Thomas-Fermi approximation using a recent modern parameterization of the effective nucleon-nucleon interaction of Myers and Swiatecki. Special attention is paid to the liquid-gas phase transition, which is of special interest in modern nuclear physics. We have determined the critical temperature, critical density and the so-called flash temperature. Furthermore, the equation of state for cold neutron star matter is calculated. (orig.)

  15. The stability of nuclear matter in the Nambu-Jona-Lasinio model

    Energy Technology Data Exchange (ETDEWEB)

    Bentz, W. E-mail: bentz@keyaki.cc.u-tokai.ac.jp; Thomas, A.W. E-mail: athomas@physics.adelaide.edu.au

    2001-12-17

    Using the Nambu-Jona-Lasinio model to describe the nucleon as a quark-diquark state, we discuss the stability of nuclear matter in a hybrid model for the ground state at finite nucleon density. It is shown that a simple extension of the model to simulate the effects of confinement leads to a scalar polarizability of the nucleon. This, in turn, leads to a less attractive effective interaction between the nucleons, helping to achieve saturation of the nuclear matter ground state. It is also pointed out that that the same effect naturally leads to a suppression of 'Z-graph' contributions with increasing scalar potential.

  16. Radiative muon capture and induced pseudoscalar coupling constant in nuclear matter

    International Nuclear Information System (INIS)

    Cheoun, Myung Ki; Kim, K S; Choi, T K

    2003-01-01

    Radiative muon capture is studied to investigate the induced pseudoscalar coupling constant g P in nuclear matter. According to the recent TRIUMF experiment for μ - p → nν μ γ, the g P was surprisingly larger than the value obtained from μ - p → nν μ experiment by as much as 44%. The result may affect seriously theoretical interpretations of the experimental results for the radiative muon captures in finite nuclei. In view of the recent TRIUMF result, the radiative muon capture in nuclear matter is revisited in a framework of the relativistic mean field theory

  17. Nuclear matter with a pseudo-particle model: static bulk and surface properties

    International Nuclear Information System (INIS)

    Idier, D.; Benhassine, B.; Farine, M.; Remaud, B.; Sebille, F.

    1993-01-01

    Direct calculations of cold and hot nuclear matter (bulk and surface properties) are carried out within the frame of a pseudo-particle model using a gaussian decomposition of the distribution function. Comparisons with Hartree-Fock calculations, for a large class of effective interactions, show that such a model is reliable to reproduce accurately the equation of state of nuclear matter for large ranges of densities and temperatures. The number of gaussians per nucleon and the gaussian widths are critical parameters in that semi-classical model. (orig.)

  18. Nuclear matter with pseudo-particle model: static bulk and surface properties

    Energy Technology Data Exchange (ETDEWEB)

    Idier, D.; Benhassine, B.; Farine, M.; Remaud, B.; Sebille, F.

    1993-12-31

    Direct calculations of cold and hot nuclear matter (bulk and surface properties) are carried out within the frame of a pseudo-particle model using a Gaussian decomposition of the distribution function. Comparisons with Hartree-Fock calculations, for a large class of effective interactions, show that such a model is reliable to reproduce accurately the equation of state of nuclear matter for large ranges of densities and temperatures. The number of Gaussian per nucleon and the Gaussian widths are critical parameters in that semi-classical model. (author) 13 refs.; 9 figs.; 2 tabs.

  19. Nuclear matter with pseudo-particle model: static bulk and surface properties

    International Nuclear Information System (INIS)

    Idier, D.; Benhassine, B.; Farine, M.; Remaud, B.; Sebille, F.

    1993-01-01

    Direct calculations of cold and hot nuclear matter (bulk and surface properties) are carried out within the frame of a pseudo-particle model using a Gaussian decomposition of the distribution function. Comparisons with Hartree-Fock calculations, for a large class of effective interactions, show that such a model is reliable to reproduce accurately the equation of state of nuclear matter for large ranges of densities and temperatures. The number of Gaussian per nucleon and the Gaussian widths are critical parameters in that semi-classical model. (author) 13 refs.; 9 figs.; 2 tabs

  20. Nuclear matter with a pseudo-particle model: static bulk and surface properties

    Energy Technology Data Exchange (ETDEWEB)

    Idier, D. (Lab. de Physique Nucleaire CNRS/IN2P3, Univ. de Nantes (France)); Benhassine, B. (Lab. de Physique Nucleaire CNRS/IN2P3, Univ. de Nantes (France)); Farine, M. (Lab. de Physique Nucleaire CNRS/IN2P3, Univ. de Nantes (France)); Remaud, B. (Lab. de Physique Nucleaire CNRS/IN2P3, Univ. de Nantes (France)); Sebille, F. (Lab. de Physique Nucleaire CNRS/IN2P3, Univ. de Nantes (France))

    1993-11-15

    Direct calculations of cold and hot nuclear matter (bulk and surface properties) are carried out within the frame of a pseudo-particle model using a gaussian decomposition of the distribution function. Comparisons with Hartree-Fock calculations, for a large class of effective interactions, show that such a model is reliable to reproduce accurately the equation of state of nuclear matter for large ranges of densities and temperatures. The number of gaussians per nucleon and the gaussian widths are critical parameters in that semi-classical model. (orig.)

  1. Equation of state and stability of hot asymmetric nuclear matter

    International Nuclear Information System (INIS)

    Samaddar, S.K.

    1989-01-01

    The nuclear incompressibility as obtained from different sources, from nuclei, high energy nuclear collisions, supernova and neutron stars are briefly reviewed. All these data in general favour a compression modulus, K α ∼ 300 Mev with a minimum uncertainty ∼ 50 MeV. Using a finite rang e density and momentum dependent two-body effective interaction, variation of nucl ear incompressibility with temperature, asymmetry and density is discussed in a non-relativistic mean field approach. The same formalism has also been used to study the limiting temperatures of infinite as well as finite nuclear systems in the astrophysical context as well as in high energy heavy ion collisions. (autho r). 16 refs., 6 figs., 1 tab

  2. Sub-saturation matter in compact stars: Nuclear modelling in the framework of the extended Thomas-Fermi theory

    Energy Technology Data Exchange (ETDEWEB)

    Aymard, François; Gulminelli, Francesca [CNRS and ENSICAEN, UMR6534, LPC, 14050 Caen cédex (France); Margueron, Jérôme [Institut de Physique Nucléaire de Lyon, Université Claude Bernard Lyon 1, IN2P3-CNRS, F-69622 Villeurbanne Cedex (France)

    2015-02-24

    A recently introduced analytical model for the nuclear density profile [1] is implemented in the Extended Thomas-Fermi (ETF) energy density functional. This allows to (i) shed a new light on the issue of the sign of surface symmetry energy in nuclear mass formulas, as well as to (ii) show the importance of the in-medium corrections to the nuclear cluster energies in thermodynamic conditions relevant for the description of core-collapse supernovae and (proto)-neutron star crust.

  3. Hyperons in nuclear matter from SU(3) chiral effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Petschauer, Stefan; Kaiser, Norbert [Technische Universitaet Muenchen (Germany); Haidenbauer, Johann [Forschungszentrum Juelich (Germany); Meissner, Ulf G. [Forschungszentrum Juelich (Germany); Universitaet Bonn (Germany); Weise, Wolfram [Technische Universitaet Muenchen (Germany); ECT, Trento (Italy)

    2016-07-01

    Brueckner theory is used to investigate the properties of hyperons in nuclear matter. The hyperon-nucleon interaction is taken from chiral effective field theory at next-to-leading order with SU(3) symmetric low-energy constants. Furthermore, the underlying nucleon-nucleon interaction is also derived within chiral effective field theory. We present the single-particle potentials of Λ and Σ hyperons in symmetric and asymmetric nuclear matter computed with the continuous choice for intermediate spectra. The results are in good agreement with the empirical information. In particular, our calculation gives a repulsive Σ-nuclear potential and a weak Λ-nuclear spin-orbit force. The splittings among the Σ{sup +}, Σ{sup 0} and Σ{sup -} potentials have a non-linear dependence on the isospin asymmetry which goes beyond the usual parametrization in terms of an isovector Lane potential.

  4. Symmetry energy, unstable nuclei and neutron star crusts

    Energy Technology Data Exchange (ETDEWEB)

    Iida, Kei [Kochi University, Department of Natural Science, Kochi (Japan); RIKEN Nishina Center, Saitama (Japan); Oyamatsu, Kazuhiro [RIKEN Nishina Center, Saitama (Japan); Aichi Shukutoku University, Department of Human Informatics, Aichi (Japan)

    2014-02-15

    The phenomenological approach to inhomogeneous nuclear matter is useful to describe fundamental properties of atomic nuclei and neutron star crusts in terms of the equation of state of uniform nuclear matter. We review a series of researches that we have developed by following this approach. We start with more than 200 equations of state that are consistent with empirical masses and charge radii of stable nuclei and then apply them to describe matter radii and masses of unstable nuclei, proton elastic scattering and total reaction cross sections off unstable nuclei, and nuclei in neutron star crusts including nuclear pasta. We finally discuss the possibility of constraining the density dependence of the symmetry energy from experiments on unstable nuclei and even observations of quasi-periodic oscillations in giant flares of soft gamma-ray repeaters. (orig.)

  5. Relativistic and non-relativistic studies of nuclear matter

    NARCIS (Netherlands)

    Banerjee, MK; Tjon, JA

    2002-01-01

    We point out that the differences between the results of the non-relativistic lowest order Brueckner theory (LOBT) and the relativistic Dirac-Brueckner analysis predominantly arise from two sources. Besides effects from a nucleon mass modification M* in nuclear medium we have in a relativistic

  6. Pinning down nuclear. To the core of the matter

    International Nuclear Information System (INIS)

    Boeck, Helmut; Gerstmayr, Michael; Radde, Eileen

    2014-01-01

    The nuclear disaster in Fukushima shocked the world tremendously. The call to pull out of nuclear energy is getting louder - and more often than not by politicians trying to lure the favour of voters. Through the media there are half-truths and false information floating about the global consequences of the disaster and sensational prognoses for the future, all of which are in turn unsettling for the general public. Are the opposers to nuclear energy playing with the fear of the public or is the threat real? This book tells, in a captivating manner - authenticated with examples and incidents not known by many - what the threat for the area actually looks like. They confront the level of truth in the frightening scenarios and inform about the situation in case of emergency. Furthermore, they examine factors that preceded the disaster and broach the subject of the incredible hunger for energy, which dominates the world and continues to drive the commercial use of nuclear energy. Also the ghost of Chernobyl and its aftermath, which has been dismissed from our minds, is re-examined based on current knowledge. The book impresses with insider know-how, latest detailed knowledge, amazing facts and an entertaining narrative style.

  7. Fluctuation effects on bubble growth in hot nuclear matter

    International Nuclear Information System (INIS)

    Santiago, A.J.; Chung, K.C.

    1991-01-01

    The evolution of bubbles with arbitrary density in an infinite nuclear system is studied in a simplified treatment. Kinetic pressure fluctuations on the bubble surface are considered. The critical radius, evolution time and probability for bubble expansion are shown to depend significantly on the initial bubble density. (author)

  8. Pinning down nuclear. To the core of the matter

    Energy Technology Data Exchange (ETDEWEB)

    Boeck, Helmut; Gerstmayr, Michael [Technische Univ., Vienna (Austria); International Atomic Energy Agency, Vienna (Austria); Radde, Eileen [Nuclear Engineering Seibersdorf GmbH (Austria); International Atomic Energy Agency, Vienna (Austria)

    2014-07-01

    The nuclear disaster in Fukushima shocked the world tremendously. The call to pull out of nuclear energy is getting louder - and more often than not by politicians trying to lure the favour of voters. Through the media there are half-truths and false information floating about the global consequences of the disaster and sensational prognoses for the future, all of which are in turn unsettling for the general public. Are the opposers to nuclear energy playing with the fear of the public or is the threat real? This book tells, in a captivating manner - authenticated with examples and incidents not known by many - what the threat for the area actually looks like. They confront the level of truth in the frightening scenarios and inform about the situation in case of emergency. Furthermore, they examine factors that preceded the disaster and broach the subject of the incredible hunger for energy, which dominates the world and continues to drive the commercial use of nuclear energy. Also the ghost of Chernobyl and its aftermath, which has been dismissed from our minds, is re-examined based on current knowledge. The book impresses with insider know-how, latest detailed knowledge, amazing facts and an entertaining narrative style.

  9. 77 FR 11168 - In the Matter of Exelon Corporation; Constellation Energy Group, Inc.; Nine Mile Nuclear Station...

    Science.gov (United States)

    2012-02-24

    ... and NPF-69] In the Matter of Exelon Corporation; Constellation Energy Group, Inc.; Nine Mile Nuclear..., LLC (Exelon Ventures), and Constellation Energy Nuclear Group, LLC (CENG), acting on behalf of itself... Nuclear Advisory Committee of Constellation Energy Nuclear Group, LLC, shall prepare an Annual Report...

  10. Introduction to Chiral Symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Volker [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-05-09

    These lectures are an attempt to a pedagogical introduction into the elementary concepts of chiral symmetry in nuclear physics. We will also discuss some effective chiral models such as the linear and nonlinear sigma model as well as the essential ideas of chiral perturbation theory. We will present some applications to the physics of ultrarelativistic heavy ion collisionsd.

  11. Introduction to chiral symmetry

    International Nuclear Information System (INIS)

    Koch, V.

    1996-01-01

    These lectures are an attempt to a pedagogical introduction into the elementary concepts of chiral symmetry in nuclear physics. Effective chiral models such as the linear and nonlinear sigma model will be discussed as well as the essential ideas of chiral perturbation theory. Some applications to the physics of ultrarelativistic heavy ion collisions will be presented

  12. Wigner-Kirkwood expansion of the phase-space density for half infinite nuclear matter

    International Nuclear Information System (INIS)

    Durand, M.; Schuck, P.

    1987-01-01

    The phase space distribution of half infinite nuclear matter is expanded in a ℎ-series analogous to the low temperature expansion of the Fermi function. Besides the usual Wigner-Kirkwood expansion, oscillatory terms are derived. In the case of a Woods-Saxon potential, a smallness parameter is defined, which determines the convergence of the series and explains the very rapid convergence of the Wigner-Kirkwood expansion for average (nuclear) binding energies

  13. Halftime - a balance in matters nuclear of the grand coalition

    International Nuclear Information System (INIS)

    Heller, W.

    2007-01-01

    On November 11, 2005, the coalition partners, CDU/CSU and SPD, signed the agreement establishing a coalition in the German federal parliament under the heading of ''Together for Germany''. Among other things, this raised the question of what would happen in the fields of energy policy and nuclear power. After 2 years of a grand coalition, it is time to draw some interim conclusions. The coalition agreement contains statements to the effect that energy policy means fundamental economic, structural and climate policies, and that secure, low-cost, non-polluting energy supplies are elementary prerequisites of a modern, capable national economy. A sustainable overall energy policy concept should be based on a balanced energy mix. This overall concept, one of the results of ''energy summit'' talks with Federal Chancellor Merkel, was announced for the end of 2007. The 3 energy summit discussions with Federal Chancellor Merkel deliberately avoided the subject of nuclear power. There is no debate about the implications of nuclear energy. This in no way improved the status of nuclear power in Germany. What remains is hope for the second half of this government's term of office. The beginning of that term is marked by the McKinsey study, initiated by the Federation of German Industries (BDI), on ''Cost and Potential of Avoiding Greenhouse Gas Emissions in Germany,'' which says that operating German nuclear power plants for 60 or even 45 years would result in a CO2 avoidance potential for 2020 which would be approximately 90 million tons higher, and in avoidance costs lower by 4.5 billion euro per year. (orig.)

  14. Symmetry witnesses

    Science.gov (United States)

    Aniello, Paolo; Chruściński, Dariusz

    2017-07-01

    A symmetry witness is a suitable subset of the space of selfadjoint trace class operators that allows one to determine whether a linear map is a symmetry transformation, in the sense of Wigner. More precisely, such a set is invariant with respect to an injective densely defined linear operator in the Banach space of selfadjoint trace class operators (if and) only if this operator is a symmetry transformation. According to a linear version of Wigner’s theorem, the set of pure states—the rank-one projections—is a symmetry witness. We show that an analogous result holds for the set of projections with a fixed rank (with some mild constraint on this rank, in the finite-dimensional case). It turns out that this result provides a complete classification of the sets of projections with a fixed rank that are symmetry witnesses. These particular symmetry witnesses are projectable; i.e. reasoning in terms of quantum states, the sets of ‘uniform’ density operators of corresponding fixed rank are symmetry witnesses too.

  15. ERK5 and cell proliferation: nuclear localization is what matters

    Directory of Open Access Journals (Sweden)

    Nestor Gomez

    2016-09-01

    Full Text Available ERK5, the last MAP kinase family member discovered, is activated by the upstream kinase MEK5 in response to growth factors and stress stimulation. MEK5-ERK5 pathway has been associated to different cellular processes, playing a crucial role in cell proliferation in normal and cancer cells by mechanisms that are both dependent and independent of its kinase activity. Thus, nuclear ERK5 activates transcription factors by either direct phosphorylation or acting as co-activator thanks to a unique transcriptional activation TAD domain located at its C-terminal tail. Consequently, ERK5 has been proposed as an interesting target to tackle different cancers, and either inhibitors of ERK5 activity or silencing the protein have shown antiproliferative activity in cancer cells and to block tumour growth in animal models. Here, we review the different mechanisms involved in ERK5 nuclear translocation and their consequences. Inactive ERK5 resides in the cytosol, forming a complex with Hsp90-Cdc37 superchaperone. In a canonical mechanism, MEK5-dependent activation results in ERK5 C-terminal autophosphorylation, Hsp90 dissociation and nuclear translocation. This mechanism integrates signals such as growth factors and stresses that activate the MEK5-ERK5 pathway. Importantly, two other mechanisms, MEK5-independent, have been recently described. These mechanisms allow nuclear shuttling of kinase-inactive forms of ERK5. Although lacking kinase activity, these forms activate transcription by interacting with transcription factors through the TAD domain. Both mechanisms also require Hsp90 dissociation previous to nuclear translocation. One mechanism involves phosphorylation of the C-terminal tail of ERK5 by kinases that are activated during mitosis, such as Cyclin-dependent kinase-1. The second mechanism involves overexpression of chaperone Cdc37, an oncogene that is overexpressed in cancers such as prostate adenocarcinoma, where it collaborates with ERK5 to promote

  16. Spin-rotation symmetry breaking and triplet superconducting state in doped topological insulator CuxBi2Se3

    Science.gov (United States)

    Zheng, Guo-Qing

    Spontaneous symmetry breaking is an important concept for understanding physics ranging from the elementary particles to states of matter. For example, the superconducting state breaks global gauge symmetry, and unconventional superconductors can break additional symmetries. In particular, spin rotational symmetry is expected to be broken in spin-triplet superconductors. However, experimental evidence for such symmetry breaking has not been obtained so far in any candidate compounds. We report 77Se nuclear magnetic resonance measurements which showed that spin rotation symmetry is spontaneously broken in the hexagonal plane of the electron-doped topological insulator Cu0.3Bi2Se3 below the superconducting transition temperature Tc =3.4 K. Our results not only establish spin-triplet (odd parity) superconductivity in this compound, but also serve to lay a foundation for the research of topological superconductivity (Ref.). We will also report the doping mechanism and superconductivity in Sn1-xInxTe.

  17. Theory of dressed bosons and nuclear matter distributions

    International Nuclear Information System (INIS)

    Tomaselli, M.; Liu, L.C.; Tanihata, I.

    2002-09-01

    The structure of nuclei with large neutron or proton-neutron excess, i.e., with large isospin components, is investigated in the Boson Dynamic Correlation Model where the valence particle pairs are dressed by their interactions with the microscopic clusters of the core. The mixed-mode states of the model are the eigenstates of a set of nonlinear equations. We solve these equations in terms of the cluster factorizations that are introduced to compute the n-boson matrix elements. Our calculation of the energy levels of 18 O reveals a strong mixing between the valence and core clusters which leads to a large reduction of the spectroscopic factors as calculated in Shell-Model approximations. The coupling of valence- to core-clusters gives a new insight into the halo formation in neutron-rich nuclei, namely, the halo is also a consequence of the excitation of the core protons. The calculated matter distributions of 6 He and 6 Li exhibit strong similarities, which indicate that halo formation in nuclei with proton-neutron excess must be postulated. The matter distributions of these two isotopes reproduce well the differential cross sections obtained in the proton elastic scattering experiments performed at GSI in inverse kinematics at an energy of 0.7 GeV/u. (orig.)

  18. Historical trend of nuclear matter calculation and its recent developments

    International Nuclear Information System (INIS)

    Kohno, Michio

    2006-01-01

    He guide line to understand nuclear properties on the basis of nuclear force was started in the 1950's by the Brueckner theory. The theory established the fundamental framework to formulate the picture to consider both the two nucleon and tensor correlations as well as Pauli effect inside the nuclei. In the 1960's the theory was developed to obtain ground state energy on the perturbation many-body theory. The growth and refinement of the Brueckner theory in the 1970's and after are overviewed and the computer code developments in the 1980's are mentioned. Concerning the many-body correlation problem Italian group has calculated up to three-body correlations in the Brueckner theory. At present, effective interaction nuclear theory is coming into a new level and actively studied by the introduction of low momentum interaction based on the renormalization group theory, by full application of the coupled cluster method, by the application of Skyrme Hartree-Fock method in wide range and by the reconsideration of the energy density functional method in relation to the relativistic mean field method. Owing to the recent remarkable progress of computers, calculations which were impossible to be executed in old days are now done rather easily. (S. Funahashi)

  19. The effects of the tensor coupling term in the Zimanyi-Moszkowski model for unpolarized nuclear matter

    International Nuclear Information System (INIS)

    Ru-Keng Su; Li Li; Hong-Qiu Song

    1998-01-01

    The effects of the tensor coupling term on nuclear matter in the Zimanyi-Moszkowki (ZM) model are investigated. It is shown that the tensor coupling term in the ZM model leaves the thermodynamical properties of nuclear matter almost unchanged. The corrections of tensor coupling to the critical point of the liquid-gas phase transition are given. (author)

  20. Computational methods for the nuclear and neutron matter problems. Progress report

    International Nuclear Information System (INIS)

    Kalos, M.H.

    1979-01-01

    A brief report is given of progress on the development of Monte Carlo methods for the treatment of both simplified and realistic models of extensive neutron and nuclear matter and, eventually, of finite nuclei. A wide class of algorithms that may allow the efficient sampling of the integrands required in calculating the energy expectations with useful trial wave functions was devised

  1. Single Particle Potential of a Σ Hyperon in Nuclear Matter. II Rearrangement Effects

    International Nuclear Information System (INIS)

    Dabrowski, J.

    2000-01-01

    The rearrangement contribution to the real part of the single particle potential of a Σ hyperon in nuclear matter, U Σ , is investigated. The isospin and spin dependent parts of U Σ are considered. Results obtained for four models of the Nijmegen baryon-baryon interaction are presented and discussed. (author)

  2. Extension of Hartree-Fock theory including tensor correlation in nuclear matter

    Science.gov (United States)

    Hu, Jinniu; Toki, Hiroshi; Ogawa, Yoko

    2013-10-01

    We study the properties of nuclear matter in the extension of Hartree-Fock theory including tensor correlation using a realistic nucleon-nucleon (NN) interaction. The nuclear wave function consists of the Hartree-Fock and two-particle-two-hole (2p-2h) states, following the concept of the tensor-optimized shell model (TOSM) for light nuclei. The short range repulsion and strong tensor force of realistic NN interaction provide high momentum components, which are taken into account in a many-body framework by introducing 2p-2h states. Single particle states are determined by the variational principle of the total energy with respect to 2p-2h amplitudes and Hartree-Fock (HF) single-particle states. The resulting differential equation is almost identical with that of Brueckner-Hartree-Fock (BHF) theory by taking two-body scattering terms only. We calculate the equation of state (EOS) of nuclear matter in this framework with the Bonn potential as a realistic NN interaction. We found similar results to BHF theory with slightly repulsive effects in the total energy. The relativistic effect is discussed for the EOSs of nuclear matter in both non-relativistic and relativistic frameworks. The momentum distribution has large components at high momenta due to 2p-2h excitations. We also obtain the EOSs of pure neutron matter, where the tensor effect is small in the iso-vector channel.

  3. Evidences for a new state of the nuclear matter: quark gluon plasma in liquid phase

    International Nuclear Information System (INIS)

    Jipa, Alexandru

    2005-01-01

    The experimental results obtained in the last years at the RHIC BNL (USA) allowed to obtain an important experimental result, namely the observation of the quark gluon plasma formation in nucleus-nucleus collisions at 200 A GeV in CMS. Evidences for this new state of nuclear matter are presented in this work. The results of the BRAHMS Experiment are detailed. (author)

  4. Time scales for spinodal decomposition in nuclear matter with pseudo-particle model

    Energy Technology Data Exchange (ETDEWEB)

    Idier, D.; Benhassine, B.; Farine, M.; Remaud, B.; Sebille, F.

    1993-12-31

    Dynamical instabilities arising from fluctuations in the spinodal zone for nuclear matter are studied using a large variety of zero range interactions in the frame of a pseudo-particle model. Scale times for spinodal decomposition are extracted and a possible link with decomposition in real heavy-ion collisions is discussed. (author) 12 refs.; 6 figs.; 1 tab.

  5. Time scales for spinodal decomposition in nuclear matter with pseudo-particle model

    International Nuclear Information System (INIS)

    Idier, D.; Benhassine, B.; Farine, M.; Remaud, B.; Sebille, F.

    1993-01-01

    Dynamical instabilities arising from fluctuations in the spinodal zone for nuclear matter are studied using a large variety of zero range interactions in the frame of a pseudo-particle model. Scale times for spinodal decomposition are extracted and a possible link with decomposition in real heavy-ion collisions is discussed. (author) 12 refs.; 6 figs.; 1 tab

  6. Time scales for spinodal decomposition in nuclear matter with pseudoparticle models

    International Nuclear Information System (INIS)

    Idier, D.; Benhassine, B.; Farine, M.; Remaud, B.; Sebille, F.

    1993-01-01

    Dynamical instabilities arising from fluctuations in the spinodal zone for nuclear matter are studied using a large variety of zero range interactions in the frame of a pseudoparticle model. Scale times for spinodal decomposition are extracted and a possible link with decomposition in real heavy-ion collisions is discussed

  7. Time scales for spinodal decomposition in nuclear matter with pseudoparticle models

    Energy Technology Data Exchange (ETDEWEB)

    Idier, D.; Benhassine, B.; Farine, M.; Remaud, B.; Sebille, F. (Laboratoire de Physique Nucleaire CNRS/IN2P3, Universite de Nantes, 2, rue de la Houssiniere, 44072 Nantes (France))

    1993-08-01

    Dynamical instabilities arising from fluctuations in the spinodal zone for nuclear matter are studied using a large variety of zero range interactions in the frame of a pseudoparticle model. Scale times for spinodal decomposition are extracted and a possible link with decomposition in real heavy-ion collisions is discussed.

  8. Mirror symmetry

    CERN Document Server

    Voisin, Claire

    1999-01-01

    This is the English translation of Professor Voisin's book reflecting the discovery of the mirror symmetry phenomenon. The first chapter is devoted to the geometry of Calabi-Yau manifolds, and the second describes, as motivation, the ideas from quantum field theory that led to the discovery of mirror symmetry. The other chapters deal with more specialized aspects of the subject: the work of Candelas, de la Ossa, Greene, and Parkes, based on the fact that under the mirror symmetry hypothesis, the variation of Hodge structure of a Calabi-Yau threefold determines the Gromov-Witten invariants of its mirror; Batyrev's construction, which exhibits the mirror symmetry phenomenon between hypersurfaces of toric Fano varieties, after a combinatorial classification of the latter; the mathematical construction of the Gromov-Witten potential, and the proof of its crucial property (that it satisfies the WDVV equation), which makes it possible to construct a flat connection underlying a variation of Hodge structure in the ...

  9. Nuclear recoil energy scale in liquid xenon with application to the direct detection of dark matter

    International Nuclear Information System (INIS)

    Sorensen, Peter; Dahl, Carl Eric

    2011-01-01

    We show for the first time that the quenching of electronic excitation from nuclear recoils in liquid xenon is well-described by Lindhard theory, if the nuclear recoil energy is reconstructed using the combined (scintillation and ionization) energy scale proposed by Shutt et al. We argue for the adoption of this perspective in favor of the existing preference for reconstructing nuclear recoil energy solely from primary scintillation. We show that signal partitioning into scintillation and ionization is well described by the Thomas-Imel box model. We discuss the implications for liquid xenon detectors aimed at the direct detection of dark matter.

  10. QCD evolution equations for high energy partons in nuclear matter

    CERN Document Server

    Kinder-Geiger, Klaus; Geiger, Klaus; Mueller, Berndt

    1994-01-01

    We derive a generalized form of Altarelli-Parisi equations to decribe the time evolution of parton distributions in a nuclear medium. In the framework of the leading logarithmic approximation, we obtain a set of coupled integro- differential equations for the parton distribution functions and equations for the virtuality (``age'') distribution of partons. In addition to parton branching processes, we take into account fusion and scattering processes that are specific to QCD in medium. Detailed balance between gain and loss terms in the resulting evolution equations correctly accounts for both real and virtual contributions which yields a natural cancellation of infrared divergences.

  11. Nuclear matter at high density: Phase transitions, multiquark states, and supernova outbursts

    International Nuclear Information System (INIS)

    Krivoruchenko, M. I.; Nadyozhin, D. K.; Rasinkova, T. L.; Simonov, Yu. A.; Trusov, M. A.; Yudin, A. V.

    2011-01-01

    Phase transition from hadronic matter to quark-gluon matter is discussed for various regimes of temperature and baryon number density. For small and medium densities, the phase transition is accurately described in the framework of the Field Correlation Method, whereas at high density predictions are less certain and leave room for the phenomenological models. We study formation of multiquark states (MQS) at zero temperature and high density. Relevant MQS components of the nuclear matter can be described using a previously developed formalism of the quark compound bags (QCB). Partialwave analysis of nucleon-nucleon scattering indicates the existence of 6QS which manifest themselves as poles of P matrix. In the framework of the QCB model, we formulate a self-consistent system of coupled equations for the nucleon and 6QS propagators in nuclear matter and the G matrix. The approach provides a link between high-density nuclear matter with the MQS components and the cumulative effect observed in reactions on the nuclei, which requires the admixture of MQS in the wave functions of nuclei kinematically. 6QS determines the natural scale of the density for a possible phase transition into theMQS phase of nuclear matter. Such a phase transition can lead to dynamic instability of newly born protoneutron stars and dramatically affect the dynamics of supernovae. Numerical simulations show that the phase transition may be a good remedy for the triggering supernova explosions in the spherically symmetric supernovamodels. A specific signature of the phase transition is an additional neutrino peak in the neutrino light curve. For a Galactic core-collapse supernova, such a peak could be resolved by the present neutrino detectors. The possibility of extracting the parameters of the phase of transition from observation of the neutrino signal is discussed also.

  12. Nuclear matter at high density: Phase transitions, multiquark states, and supernova outbursts

    Energy Technology Data Exchange (ETDEWEB)

    Krivoruchenko, M. I.; Nadyozhin, D. K.; Rasinkova, T. L.; Simonov, Yu. A.; Trusov, M. A., E-mail: trusov@itep.ru; Yudin, A. V. [Institute for Theoretical and Experimental Physics (Russian Federation)

    2011-03-15

    Phase transition from hadronic matter to quark-gluon matter is discussed for various regimes of temperature and baryon number density. For small and medium densities, the phase transition is accurately described in the framework of the Field Correlation Method, whereas at high density predictions are less certain and leave room for the phenomenological models. We study formation of multiquark states (MQS) at zero temperature and high density. Relevant MQS components of the nuclear matter can be described using a previously developed formalism of the quark compound bags (QCB). Partialwave analysis of nucleon-nucleon scattering indicates the existence of 6QS which manifest themselves as poles of P matrix. In the framework of the QCB model, we formulate a self-consistent system of coupled equations for the nucleon and 6QS propagators in nuclear matter and the G matrix. The approach provides a link between high-density nuclear matter with the MQS components and the cumulative effect observed in reactions on the nuclei, which requires the admixture of MQS in the wave functions of nuclei kinematically. 6QS determines the natural scale of the density for a possible phase transition into theMQS phase of nuclear matter. Such a phase transition can lead to dynamic instability of newly born protoneutron stars and dramatically affect the dynamics of supernovae. Numerical simulations show that the phase transition may be a good remedy for the triggering supernova explosions in the spherically symmetric supernovamodels. A specific signature of the phase transition is an additional neutrino peak in the neutrino light curve. For a Galactic core-collapse supernova, such a peak could be resolved by the present neutrino detectors. The possibility of extracting the parameters of the phase of transition from observation of the neutrino signal is discussed also.

  13. Inversion of single-particle levels in nuclear Hartree-Fock and Brueckner-HF calculations with broken symmetry

    International Nuclear Information System (INIS)

    Becker, R.L.; Svenne, J.P.

    1975-12-01

    Energy levels of states connected by a symmetry of the Hamiltonian normally should be degenerate. In self-consistent field theories, when only one of a pair of single-particle levels connected by a symmetry of the full Hamiltonian is occupied, the degeneracy is split and the unoccupied level often lies below the occupied one. Inversions of neutron-proton (charge) and time-reversal doublets in odd nuclei, charge doublets in even nuclei with a neutron excess, and spin-orbit doublets in spherical configurations with spin-unsaturated shells are examined. The origin of the level inversion is investigated, and the following explanation offered. Unoccupied single-particle levels, from a calculation in an A-particle system, should be interpreted as levels of the (A + 1)-particle system. When the symmetry-related level, occupied in the A-particle system, is also calculated in the (A + 1)-particle system it is degenerate with or lies lower than the other. That is, when both levels are calculated in the (A + 1)-particle system, they are not inverted. It is demonstrated that the usual prescription to occupy the lowest-lying orbitals should be modified to refer to the single-particle energies calculated in the (A + 1)- or the (A - 1)-particle system. This observation is shown to provide a justification for avoiding an oscillation of occupancy between symmetry-related partners in successive iterations leading to a self-consistency. It is pointed out that two degenerate determinants arise from occupying one or the other partner of an initially degenerate pair of levels and then iterating to self-consistency. The existence of the degenerate determinants indicates the need for introducing correlations, either by mixing the two configurations or by allowing additional symmetry-breaking (resulting in a more highly deformed non-degenerate configuration). 2 figures, 3 tables, 43 references

  14. Nuclear ``pasta'' structures in low-density nuclear matter and properties of the neutron-star crust

    Science.gov (United States)

    Okamoto, Minoru; Maruyama, Toshiki; Yabana, Kazuhiro; Tatsumi, Toshitaka

    2013-08-01

    In the neutron-star crust, nonuniform structure of nuclear matter—called the “pasta” structure—is expected. From recent studies of giant flares in magnetars, these structures might be related to some observables and physical quantities of the neutron-star crust. To investigate the above quantities, we numerically explore the pasta structure with a fully three-dimensional geometry and study the properties of low-density nuclear matter, based on the relativistic mean-field model and the Thomas-Fermi approximation. We observe typical pasta structures for fixed proton number fraction and two of them for cold catalyzed matter. We also discuss the crystalline configuration of “pasta.”

  15. Cold Nuclear Matter Effects on J/psi Production: Intrinsic and Extrinsic Transverse Momentum Effects

    Energy Technology Data Exchange (ETDEWEB)

    Ferreiro, E.G.; /Santiago de Compostela U.; Fleuret, F.; /Ecole Polytechnique; Lansberg, J.P.; /Heidelberg U.; Rakotozafindrabe, A.; /SPhN, DAPNIA, Saclay

    2010-08-26

    Cold nuclear matter effects on J/{psi} production in proton-nucleus and nucleus-nucleus collisions are evaluated taking into account the specific J/{psi}-production kinematics at the partonic level, the shadowing of the initial parton distributions and the absorption in the nuclear matter. We consider two different parton processes for the c{bar c}-pair production: one with collinear gluons and a recoiling gluon in the final state and the other with initial gluons carrying intrinsic transverse momentum. Our results are compared to RHIC observables. The smaller values of the nuclear modification factor R{sub AA} in the forward rapidity region (with respect to the mid rapidity region) are partially explained, therefore potentially reducing the need for recombination effects.

  16. Quantum Matter : Life beyond symmetries

    Indian Academy of Sciences (India)

    Collaborators. •. Phys. Rev. Lett. 115, 116803 (2015). •. Phys. Rev. Lett. 115, 267209 (2015). •. Phys. Rev. B 93, 195143 (2016). •. arXiv: 1603.05109 (2016). References. • Y. B. Kim, U. Toronto. • K. Dhochak, ICTS. • S. Sanyal, ICTS. • A. Nanda, ICTS. Funding. •. SERB, Early Career Grant. •. MPI-Partner Group ...

  17. Intrinsic neutron background of nuclear emulsions for directional Dark Matter searches

    Science.gov (United States)

    Alexandrov, A.; Asada, T.; Buonaura, A.; Consiglio, L.; D'Ambrosio, N.; De Lellis, G.; Di Crescenzo, A.; Di Marco, N.; Di Vacri, M. L.; Furuya, S.; Galati, G.; Gentile, V.; Katsuragawa, T.; Laubenstein, M.; Lauria, A.; Loverre, P. F.; Machii, S.; Monacelli, P.; Montesi, M. C.; Naka, T.; Pupilli, F.; Rosa, G.; Sato, O.; Strolin, P.; Tioukov, V.; Umemoto, A.; Yoshimoto, M.

    2016-07-01

    Recent developments of the nuclear emulsion technology led to the production of films with nanometric silver halide grains suitable to track low energy nuclear recoils with submicrometric length. This improvement opens the way to a directional Dark Matter detection, thus providing an innovative and complementary approach to the on-going WIMP searches. An important background source for these searches is represented by neutron-induced nuclear recoils that can mimic the WIMP signal. In this paper we provide an estimation of the contribution to this background from the intrinsic radioactive contamination of nuclear emulsions. We also report the neutron-induced background as a function of the read-out threshold, by using a GEANT4 simulation of the nuclear emulsion, showing that it amounts to about 0.06 per year per kilogram, fully compatible with the design of a 10 kg × year exposure.

  18. Hyperon interaction in free space and nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Dhar, Madhumita [Justus-Liebig University Giessen (Germany); Lenske, Horst [Justus-Liebig University Giessen (Germany); GSI, Darmstadt (Germany)

    2016-07-01

    A new approach to the SU(3) flavour symmetric meson-exchange model is introduced to describe free space baryon-baryon interaction. The Bethe-Salpeter equations are solved in a 3-D reduction scheme. The coupling of the various channels of total strangeness S and conserved total charge Q is studied in detail. Special attention is paid to the physical thresholds. The derived vacuum interaction has then been used to derive nuclear medium effect by employing the Pauli projector operator in 3-D reduced Bethe-Salpeter equation. The in-medium properties of the interaction are clearly seen in the variation of the in-medium low-energy parameters as a function of density.

  19. SIGNATURES OF DARK MATTER BURNING IN NUCLEAR STAR CLUSTERS

    International Nuclear Information System (INIS)

    Casanellas, Jordi; Lopes, IlIdio

    2011-01-01

    In order to characterize how dark matter (DM) annihilation inside stars changes the aspect of a stellar cluster, we computed the evolution until the ignition of the He burning of stars from 0.7 M sun to 3.5 M sun within halos of DM with different characteristics. We found that, when a cluster is surrounded by a dense DM halo, the positions of the cluster' stars in the H-R diagram have a brighter and hotter turnoff point than in the classical scenario without DM, therefore giving the cluster a younger appearance. The high DM densities required to produce these effects are expected only in very specific locations, such as near the center of our Galaxy. In particular, if DM is formed by the 8 GeV weakly interacting massive particles recently invoked to reconcile the results from direct detection experiments, then this signature is predicted for halos of DM with a density ρ χ = 3 x 10 5 GeV cm -3 . A DM density gradient inside the stellar cluster would result in a broader main sequence, turnoff, and red giant branch regions. Moreover, we found that for very high DM halo densities the bottom of the isochrones in the H-R diagram rises to higher luminosities, leading to a characteristic signature on the stellar cluster. We argue that this signature could be used to indirectly probe the presence of DM particles in the location of a cluster.

  20. Methods of investigation of nuclear matter under the conditions characteristics for transition to quark-gluon plasma

    CERN Document Server

    Leksin, G A

    2002-01-01

    Features of deep inelastic nuclear reactions proceeding on dense fluctuations of nuclear matter (fluctons) are briefly considered. Fluctons, which can be many-quark bags or drops of quark-gluon plasma, are studied. Their properties are discussed, viz., characteristic parameters of nuclear matter inside a flucton - temperature and density close to the critical values for a phase transition. These values can be reached or exceeded if the flucton-flucton collision events are separated. The separation method is discussed

  1. Isospin effects on collective nuclear dynamics

    CERN Document Server

    Di Toro, M; Baran, V; Larionov, A B

    1999-01-01

    We suggest several ways to study properties of the symmetry term in the nuclear equation of state, EOS, from collective modes in beta-unstable nuclei. After a general discussion on compressibility and saturation density in asymmetric nuclear matter we show some predictions on the collective response based on the solution of generalized Landau dispersion relations. Isoscalar-isovector coupling, disappearance of collectivity and possibility of new instabilities in low and high density regions are discussed with accent on their relation to the symmetry term of effective forces. The onset of chemical plus mechanical instabilities in a dilute asymmetric nuclear matter is discussed with reference to new features in fragmentation reactions.

  2. Supersoft Symmetry Energy Encountering Non-Newtonian Gravity in Neutron Stars

    International Nuclear Information System (INIS)

    Wen Dehua; Li Baoan; Chen Liewen

    2009-01-01

    Considering the non-Newtonian gravity proposed in grand unification theories, we show that the stability and observed global properties of neutron stars cannot rule out the supersoft nuclear symmetry energies at suprasaturation densities. The degree of possible violation of the inverse-square law of gravity in neutron stars is estimated using an equation of state of neutron-rich nuclear matter consistent with the available terrestrial laboratory data.

  3. Particle production in hot and dense nuclear matter

    International Nuclear Information System (INIS)

    Eklund, A.

    1992-08-01

    The charged particle production in heavy ion reactions at 200 A GeV has been studied for projectiles of 16 O and 32 S on targets of Al, Cu, Ag and Au. Up to 700 charged particles are measured in the pseudorapidity region -1.7 32 S+Au. The measured particle density is used to estimate the energy density attained in central collisions and gives a values of ≅2 GeV/fm 3 . This is close to the energy density predicted for the phase transition from hadronic matter to a quark-gluon plasma. To measure the large number of charged particle produced, finely granulated detector systems are employed. Streamer tube detectors with pad readout and large area, multi-step avalanche chambers with optical readout have been developed for the measurements. The widths of the pseudorapidity distributions of charged particles increase with decreasing centrality of the collision as well as with increasing mass of the target nucleus. This behaviour is assumed to be due to the target fragmentation. The Monte-Carlo model for nucleus-nucleus collisions, VENUS 3.11, which includes rescattering, is in reasonable agreement with the data. The yield of charged particles for central collisions of the heavy targets with 33 S is found to be proportional to the target mass, A, at target rapidity. At midrapidity it is approximately proportional to A 0.3 . At midrapidity the charged particle measurements are supplemented by measurements of the transverse energy. The dimensionless, normalized variances of the multiplicity and transverse energy distributions are, to a large extent, governed by the collision geometry. The change in the normalized variance when studying the charged particle distribution in a narrow angular region is explained as being of statistical nature. (au)

  4. Nuclear-Recoil Energy Scale in CDMS II Silicon Dark-Matter Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Agnese, R.; et al.

    2018-03-07

    The Cryogenic Dark Matter Search (CDMS II) experiment aims to detect dark matter particles that elastically scatter from nuclei in semiconductor detectors. The resulting nuclear-recoil energy depositions are detected by ionization and phonon sensors. Neutrons produce a similar spectrum of low-energy nuclear recoils in such detectors, while most other backgrounds produce electron recoils. The absolute energy scale for nuclear recoils is necessary to interpret results correctly. The energy scale can be determined in CDMS II silicon detectors using neutrons incident from a broad-spectrum $^{252}$Cf source, taking advantage of a prominent resonance in the neutron elastic scattering cross section of silicon at a recoil (neutron) energy near 20 (182) keV. Results indicate that the phonon collection efficiency for nuclear recoils is $4.8^{+0.7}_{-0.9}$% lower than for electron recoils of the same energy. Comparisons of the ionization signals for nuclear recoils to those measured previously by other groups at higher electric fields indicate that the ionization collection efficiency for CDMS II silicon detectors operated at $\\sim$4 V/cm is consistent with 100% for nuclear recoils below 20 keV and gradually decreases for larger energies to $\\sim$75% at 100 keV. The impact of these measurements on previously published CDMS II silicon results is small.

  5. Nuclear pasta in hot dense matter and its implications for neutrino scattering

    Science.gov (United States)

    Roggero, Alessandro; Margueron, Jérôme; Roberts, Luke F.; Reddy, Sanjay

    2018-04-01

    The abundance of large clusters of nucleons in neutron-rich matter at subnuclear density is found to be greatly reduced by finite-temperature effects when matter is close to β equilibrium, compared to the case where the electron fraction is fixed at Ye>0.1 , as often considered in the literature. Large nuclei and exotic nonspherical nuclear configurations called pasta, favored in the vicinity of the transition to uniform matter at T =0 , dissolve at a relatively low temperature Tu as protons leak out of nuclei and pasta. For matter at β equilibrium with a negligible neutrino chemical potential we find that Tuβ≃4 ±1 MeV for realistic equations of state. This is lower than the maximum temperature Tmaxβ≃9 ±1 MeV at which nuclei can coexist with a gas of nucleons and can be explained by a change in the nature of the transition to uniform matter called retrograde condensation. An important new finding is that coherent neutrino scattering from nuclei and pasta makes a modest contribution to the opacity under the conditions encountered in supernovas and neutron star mergers. This is because large nuclear clusters dissolve at most relevant temperatures, and at lower temperatures, when clusters are present, Coulomb correlations between them suppress coherent neutrino scattering off individual clusters. Implications for neutrino signals from galactic supernovas are briefly discussed.

  6. Description of a nucleon in nuclear matter using the chiral bag model

    International Nuclear Information System (INIS)

    Bunatyan, G.G.

    1990-01-01

    The chiral bag (cloudy bag) model, which contains an essentially nonlinear interaction of quarks with both the classical and quantum pion field, is extended for description of a nucleon in nuclear matter. The dependence on the density and temperature of the medium is studied. The pion field in nuclear matter differs considerably from the free field, and this leads to a modification of the nucleon bag. Increase of the density ρ and temperature T causes strengthening of the pion field and growth of its thermodynamic fluctuations. At sufficiently high densities ρ approx-gt ρ CB and temperatures T≥T cr this leads to instability of the three-quark nucleon bag. Under such conditions nuclear matter cannot be composed only of nucleons, and one should expect the appearance of a different, non-nucleon, phase. Estimates of the critical density and temperature are obtained: ρ CB ∼ (1.5-2)ρ 0 and T cr ∼ 200 MeV (where ρ 0 is the conventional nuclear density)

  7. Chiral approach to nuclear matter: Role of explicit short-range NN-terms

    International Nuclear Information System (INIS)

    Fritsch, S.; Kaiser, N.

    2004-01-01

    We extend a recent chiral approach to nuclear matter by including the most general (momentum-independent) NN-contact interaction. Iterating this two-parameter contact vertex with itself and with one-pion exchange the emerging energy per particle exhausts all terms possible up to and including fourth order in the small momentum expansion. Two (isospin-dependent) cut-offs Λ 0,1 are introduced to regularize the (linear) divergences of some three-loop in-medium diagrams. The equation of state of pure neutron matter, anti E n (k n ), can be reproduced very well up to quite high neutron densities of ρ n =0.5 fm -3 by adjusting the strength of a repulsive nn-contact interaction. Binding and saturation of isospin-symmetric nuclear matter is a generic feature of our perturbative calculation. Fixing the maximum binding energy per particle to - anti E(k f0 )=15.3 MeV we find that any possible equilibrium density ρ 0 lies below ρ 0 max =0.191 fm -3 . The additional constraint from the neutron matter equation of state leads however to a somewhat too low saturation density of ρ 0 =0.134 fm -3 . We also investigate the effects of the NN-contact interaction on the complex single-particle potential U(p,k f )+iW(p,k f ). We find that the effective nucleon mass at the Fermi surface is bounded from below by M * (k f0 ) ≥1.4 M. This property keeps the critical temperature of the liquid-gas phase transition at somewhat too high values T c ≥21 MeV. The downward bending of the asymmetry energy A(k f ) above nuclear-matter saturation density is a generic feature of the approximation to fourth order. We furthermore investigate the effects of the NN-contact interaction on the (vector-∇ρ) 2 -term in the nuclear energy density functional E[ρ,τ]. Altogether, there is within this complete fourth-order calculation no ''magic'' set of adjustable short-range parameters with which one could reproduce simultaneously and accurately all semi-empirical properties of nuclear matter. In

  8. Symmetry inheritance of scalar fields

    International Nuclear Information System (INIS)

    Ivica Smolić

    2015-01-01

    Matter fields do not necessarily have to share the symmetries with the spacetime they live in. When this happens, we speak of the symmetry inheritance of fields. In this paper we classify the obstructions of symmetry inheritance by the scalar fields, both real and complex, and look more closely at the special cases of stationary and axially symmetric spacetimes. Since the symmetry noninheritance is present in the scalar fields of boson stars and may enable the existence of the black hole scalar hair, our results narrow the possible classes of such solutions. Finally, we define and analyse the symmetry noninheritance contributions to the Komar mass and angular momentum of the black hole scalar hair. (paper)

  9. 75 FR 74750 - In the Matter of Toshiba America Nuclear Energy Corporation and All Other Persons Who Seek or...

    Science.gov (United States)

    2010-12-01

    ... NUCLEAR REGULATORY COMMISSION [EA-10-152; Project No. 52-0001; NRC-2010-0368] In the Matter of Toshiba America Nuclear Energy Corporation and All Other Persons Who Seek or Obtain Access to Safeguards... protect SGI (73 FR 63546). The NRC is issuing this Order to Toshiba America Nuclear Energy Corporation...

  10. 76 FR 11522 - In the Matter of Progress Energy Florida, Inc. (Combined License Application, Levy County Nuclear...

    Science.gov (United States)

    2011-03-02

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 52-029-COL, 52-030-COL] In the Matter of Progress Energy Florida, Inc. (Combined License Application, Levy County Nuclear Power Plant, Units 1 and 2... by the Nuclear Regulatory Commission staff in this case. Mr. Dehmel has not previously performed any...

  11. 78 FR 14361 - In the Matter of Luminant Generation Company LLC, Comanche Peak Nuclear Power Plant, Units 1 and...

    Science.gov (United States)

    2013-03-05

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0310; Docket Nos. 50-445 and 50-446; License Nos. NPF-87 and NPF-89] In the Matter of Luminant Generation Company LLC, Comanche Peak Nuclear Power Plant, Units... Nuclear Power Plant, Units 1 and 2 (CPNPP), and its Independent Spent Fuel Storage Installation Facility...

  12. Interplay of short-range correlations and nuclear symmetry energy in hard-photon production from heavy-ion reactions at Fermi energies

    Science.gov (United States)

    Yong, Gao-Chan; Li, Bao-An

    2017-12-01

    Within an isospin- and momentum-dependent transport model for nuclear reactions at intermediate energies, we investigate the interplay of the nucleon-nucleon short-range correlations (SRCs) and nuclear symmetry energy Esym(ρ ) on hard-photon spectra in collisions of several Ca isotopes on 112Sn and 124Sn targets at a beam energy of 45 MeV/nucleon. It is found that over the whole spectra of hard photons studied, effects of the SRCs overwhelm those owing to the Esym(ρ ) . The energetic photons come mostly from the high-momentum tails (HMTs) of single-nucleon momentum distributions in the target and projectile. Within the neutron-proton dominance model of SRCs based on the consideration that the tensor force acts mostly in the isosinglet and spin-triplet nucleon-nucleon interaction channel, there are equal numbers of neutrons and protons, thus a zero isospin asymmetry in the HMTs. Therefore, experimental measurements of the energetic photons from heavy-ion collisions at Fermi energies have the great potential to help us better understand the nature of SRCs without any appreciable influence by the uncertain Esym(ρ ) . These measurements will be complementary to but also have some advantages over the ongoing and planned experiments using hadronic messengers from reactions induced by high-energy electrons or protons. Because the underlying physics of SRCs and Esym(ρ ) are closely correlated, a better understanding of the SRCs will, in turn, help constrain the nuclear symmetry energy more precisely in a broad density range.

  13. Risk assessment model for nuclear accident emergency protection countermeasure based on fuzzy matter-element analysis

    International Nuclear Information System (INIS)

    Xin Jing; Tang Huaqing; Zhang Yinghua; Zhang Limin

    2009-01-01

    A risk assessment model of nuclear accident emergency protection countermeasure based on fuzzy matter-element analysis and Euclid approach degree is proposed in the paper. The weight of assessed index is determined by information entropy and the scoring by experts, which could not only make full use of the inherent information of the indexes adequately, but reduce subjective assumption in the course of assessment effectively. The applied result shows that it is reasonable that the model is adopted to make risk assessment for nuclear accident emergency protective countermeasure,and it could be a kind of effective analytical method and decision making basis to choose the optimum protection countermeasure. (authors)

  14. BOOK REVIEW: Symmetry Breaking

    Science.gov (United States)

    Ryder, L. H.

    2005-11-01

    have to be rather clever to recognize that the particle interactions were rotationally invariant. Nambu and Goldstone showed that the spontaneous breakdown of a (continuous) symmetry implied the existence of massless scalar particles, referred to as Nambu Goldstone bosons, or simply Goldstone bosons. Meanwhile Anderson, in his study of (non-relativistic) superconductivity, showed that the exclusion of magnetic flux (Meissner effect) corresponds to a finite range for the electromagnetic field and hence to a `massive photon'. In a relativistic context Englert, Brout, Guralnik and more particularly Higgs showed that a spontaneous breaking of a gauge symmetry resulted in a massive, instead of a massless, gauge particle and no Goldstone particle; in the jargon of the day, the massless gauge particle had `eaten' the massless Goldstone boson and become massive; exactly Anderson's observation. It is this phenomenon which has been invoked so successfully to explain the masses of the W and Z bosons of weak interactions. Spontaneous symmetry breaking, therefore, has played a major role in the development of the Standard Model of particle physics, and it has also proved an important tool in condensed matter physics, for example in the understanding of phase transitions. At the same time, however, in the understanding of most (or all) particle physicists, and perhaps also condensed matter physicists, the notion of spontaneous symmetry breaking has been inexorably linked to that of a degenerate vacuum. This is the background and the starting point for Strocchi's book. Recognizing the power and importance of the concept of spontaneous symmetry breaking in theoretical physics, he defines it in a more refined and general way than usual. `Despite the many popular accounts', he writes, `the phenomenon of spontaneous symmetry breaking is deep and subtle and it is not without [reason] that it has been fully understood only in recent times.' Strocchi's main emphasis is on the fact that the

  15. Formation and disintegration of high-density nuclear matter in heavy-ion collisions

    International Nuclear Information System (INIS)

    Kitazoe, Yasuhiro; Matsuoka, Kazuo; Sano, Mitsuo

    1976-01-01

    The formation of high-density nuclear matter which may be expected to be attained in high-energy heavy-ion collisions and the subsequent disintegration of dense matter are investigated by means of the hydrodynamics. Head-on collisions of identical nuclei are considered in the nonrelativistic approximation. The compressed density cannot exceed 4 times of the normal one so long as the freedom of only nucleons is considered, and can become higher than 4 times when other freedoms such as the productions of mesons and also nucleon isobars are additionally taken into account. The angular distributions for ejected particles predominate both forwards and backwards at low collision energies, corresponding to the formation of nuclear density less than 2 times of the normal density and become isotropic at the point of 2 times of the normal one. As the collision energy increases further, lateral ejection is intensified gradually. (auth.)

  16. From meson- and photon-nucleon scattering to vector mesons in nuclear matter

    International Nuclear Information System (INIS)

    Wolf, Gy.; Lutz, M.F.M.; Friman, B.

    2003-01-01

    A relativistic and unitary approach to pion- and photon-nucleon scattering taking into account the πN, ρN, ωN, ηN, πΔ, KΛ and KΣ channels is presented. The scheme dynamically generates the s- and d-wave baryon resonances N(1535), N(1650), N(1520) and N(1700) and as well as Δ(1620) and Δ(1700) in terms of quasi-local two-body interaction terms. A fair description of the experimental data relevant to the properties of slow vector mesons in nuclear matter is obtained. The resulting s-wave ρ- and ω-meson-nucleon scattering amplitudes which define the leading density modification of the ρ- and ω-meson spectral functions in nuclear matter are presented. (author)

  17. Inhomogeneous condensates in dilute nuclear matter and BCS-BEC crossovers

    International Nuclear Information System (INIS)

    Stein, Martin; Sedrakian, Armen; Huang, Xu-Guang; Clark, John W; Röpke, Gerd

    2014-01-01

    We report on recent progress in understanding pairing phenomena in low-density nuclear matter at small and moderate isospin asymmetry. A rich phase diagram has been found comprising various superfluid phases that include a homogeneous and phase-separated BEC phase of deuterons at low density and a homogeneous BCS phase, an inhomogeneous LOFF phase, and a phase-separated BCS phase at higher densities. The transition from the BEC phases to the BCS phases is characterized in terms of the evolution, from strong to weak coupling, of the condensate wavefunction and the second moment of its density distribution in r-space. We briefly discuss approaches to higher-order clustering in low-density nuclear matter.

  18. Two-loop corrections for nuclear matter in the Walecka model

    International Nuclear Information System (INIS)

    Furnstahl, R.J.; Perry, R.J.; Serot, B.D.; Department of Physics, The Ohio State University, Columbus, Ohio 43210; Physics Department and Nuclear Theory Center, Indiana University, Bloomington, Indiana 47405)

    1989-01-01

    Two-loop corrections for nuclear matter, including vacuum polarization, are calculated in the Walecka model to study the loop expansion as an approximation scheme for quantum hadrodynamics. Criteria for useful approximation schemes are discussed, and the concepts of strong and weak convergence are introduced. The two-loop corrections are evaluated first with one-loop parameters and mean fields and then by minimizing the total energy density with respect to the scalar field and refitting parameters to empirical nuclear matter saturation properties. The size and nature of the corrections indicate that the loop expansion is not convergent at two-loop order in either the strong or weak sense. Prospects for alternative approximation schemes are discussed

  19. Mean free paths for high energy hadron collisions in nuclear matter

    International Nuclear Information System (INIS)

    Strugalski, Z.

    1983-01-01

    The mean free paths for various collisions of high energy pion in nuclear matter are determined experimentally using pion-xenon nucleus collision events at 3.5 GeV/c momentum. The relation between the mean free path lambdasub(i) for hadron-nucleon particle producing collisions in nuclear matter and corresponding cross section σsub(i) for particle producing collisions of this hadron with free nucleon is derived and discussed. This relation is lambdasub(i)=k/σsub(i), where lambdasub(i) is in nucleons per fm 2 and σ sub(i) - in fm 2 per nucleon, correspondingly, k=3.00+-0.26 is a coefficient accounting for the display of the nucleon inner structure in hadron-nucleus collisions

  20. Relativistic mean-field approximation with density-dependent screening meson masses in nuclear matter

    International Nuclear Information System (INIS)

    Sun, Baoxi; Lu, Xiaofu; Shen, Pengnian; Zhao, Enguang

    2003-01-01

    The Debye screening masses of the σ, ω and neutral ρ mesons and the photon are calculated in the relativistic mean-field approximation. As the density of the nucleon increases, all the screening masses of mesons increase. A different result with Brown–Rho scaling is shown, which implies a reduction in the mass of all the mesons in the nuclear matter, except the pion. Replacing the masses of the mesons with their corresponding screening masses in the Walecka-1 model, five saturation properties of the nuclear matter are fixed reasonably, and then a density-dependent relativistic mean-field model is proposed without introducing the nonlinear self-coupling terms of mesons. (author)

  1. Analysis of the doubly heavy baryons in the nuclear matter with the QCD sum rules

    International Nuclear Information System (INIS)

    Wang, Zhi-Gang

    2012-01-01

    In this article, we study the doubly heavy baryon states Ξ cc , Ω cc , Ξ bb and Ω bb in the nuclear matter using the QCD sum rules, and derive three coupled QCD sum rules for the masses, vector self-energies and pole residues. The predictions for the mass-shifts in the nuclear matter ΔM Ξ cc =-1.11simGeV, ΔM Ω cc =-0.33∝GeV, ΔM Ξ bb =-3.37∝GeV and ΔM Ω bb =-1.05∝GeV can be confronted with experimental data in the future. (orig.)

  2. NDM06: 2. symposium on neutrinos and dark matter in nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Akerib, D; Arnold, R; Balantekin, A; Barabash, A; Barnabe, H; Baroni, S; Baussan, E; Bellini, F; Bobisut, F; Bongrand, M; Brofferio, Ch; Capolupo, A; Enrico, Carrara; Caurier, E; Cermak, P; Chardin, G; Civitarese, O; Couchot, F; Kerret, H de; Heros, C de los; Detwiler, J; Dracos, M; Drexlin, G; Efremenko, Y; Ejiri, H; Falchini, E; Fatemi-Ghomi, N; Finger, M Ch; Finger Miroslav, Ch; Fiorillo, G; Fiorini, E; Fracasso, S; Frekers, D; Fushimi, K I; Gascon, J; Genest, M H; Georgadze, A; Giuliani, A; Goeger-Neff, M; Gomez-Cadenas, J J; Greenfield, M; H de Jesus, J; Hallin, A; Hannestad, St; Hirai, Sh; Hoessl, J; Ianni, A; Ieva, M B; Ishihara, N; Jullian, S; Kaim, S; Kajino, T; Kayser, B; Kochetov, O; Kopylov, A; Kortelainen, M; Kroeninger, K; Lachenmaier, T; Lalanne, D; Lanfranchi, J C; Lazauskas, R; Lemrani, A R; Li, J; Mansoulie, B; Marquet, Ch; Martinez, J; Mirizzi, A; Morfin Jorge, G; Motz, H; Murphy, A; Navas, S; Niedermeier, L; Nishiura, H; Nomachi, M; Nones, C.; Ogawa, H; Ogawa, I; Ohsumi, H; Palladino, V; Paniccia, M; Perotto, L; Petcov, S; Pfister, S; Piquemal, F; Poves, A; Praet, Ch; Raffelt, G; Ramberg, E; Rashba, T; Regnault, N; Ricol, J St; Rodejohann, W; Rodin, V; Ruz, J; Sander, Ch; Sarazin, X; Scholberg, K; Sigl, G; Simkovic, F; Sousa, A; Stanev, T; Strolger, L; Suekane, F; Thomas, J; Titov, N; Toivanen, J; Torrente-Lujan, E; Tytler, D; Vala, L; Vignaud, D; Vitiello, G; Vogel, P; Volkov, G; Volpe, C; Wong, H; Yilmazer, A

    2006-07-01

    This second symposium on neutrinos and dark matter is aimed at discussing research frontiers and perspectives on currently developing subjects. It has been organized around 6 topics: 1) double beta decays, theory and experiments (particularly: GERDA, MOON, SuperNEMO, CUORE, CANDLES, EXO, and DCBA), 2) neutrinos and nuclear physics, 3) single beta decays and nu-responses, 4) neutrino astrophysics, 5) solar neutrino review, and 6) neutrino oscillations. This document is made up of the slides of the presentations.

  3. Observation of Δ+→pπ0 decay in nuclear matter

    International Nuclear Information System (INIS)

    Matulewicz, T.; Aphecetche, L.; Charbonnier, Y.; Delagrange, H.; Martinez, G.; Schutz, Y.; Marques, F.M.

    1997-01-01

    The Δ baryonic resonances production and decay in nuclear matter have been studied. The heavy ion reaction of 180 A MeV Ar beam on Ca target was used to create the Δ resonances (at SIS GSI Darmstadt). The decay of Δ was measured by means of neutral pion π 0 decay product, two gamma quanta, registration. The Δ resonance invariant mass distribution has been determined

  4. NDM06: 2. symposium on neutrinos and dark matter in nuclear physics

    International Nuclear Information System (INIS)

    Akerib, D.; Arnold, R.; Balantekin, A.; Barabash, A.; Barnabe, H.; Baroni, S.; Baussan, E.; Bellini, F.; Bobisut, F.; Bongrand, M.; Brofferio, Ch.; Capolupo, A.; Carrara Enrico; Caurier, E.; Cermak, P.; Chardin, G.; Civitarese, O.; Couchot, F.; Kerret, H. de; Heros, C. de los; Detwiler, J.; Dracos, M.; Drexlin, G.; Efremenko, Y.; Ejiri, H.; Falchini, E.; Fatemi-Ghomi, N.; Finger, M.Ch.; Finger Miroslav, Ch.; Fiorillo, G.; Fiorini, E.; Fracasso, S.; Frekers, D.; Fushimi, K.I.; Gascon, J.; Genest, M.H.; Georgadze, A.; Giuliani, A.; Goeger-Neff, M.; Gomez-Cadenas, J.J.; Greenfield, M.; H de Jesus, J.; Hallin, A.; Hannestad, St.; Hirai, Sh.; Hoessl, J.; Ianni, A.; Ieva, M.B.; Ishihara, N.; Jullian, S.; Kaim, S.; Kajino, T.; Kayser, B.; Kochetov, O.; Kopylov, A.; Kortelainen, M.; Kroeninger, K.; Lachenmaier, T.; Lalanne, D.; Lanfranchi, J.C.; Lazauskas, R.; Lemrani, A.R.; Li, J.; Mansoulie, B.; Marquet, Ch.; Martinez, J.; Mirizzi, A.; Morfin Jorge, G.; Motz, H.; Murphy, A.; Navas, S.; Niedermeier, L.; Nishiura, H.; Nomachi, M.; Nones, C.; Ogawa, H.; Ogawa, I.; Ohsumi, H.; Palladino, V.; Paniccia, M.; Perotto, L.; Petcov, S.; Pfister, S.; Piquemal, F.; Poves, A.; Praet, Ch.; Raffelt, G.; Ramberg, E.; Rashba, T.; Regnault, N.; Ricol, J.St.; Rodejohann, W.; Rodin, V.; Ruz, J.; Sander, Ch.; Sarazin, X.; Scholberg, K.; Sigl, G.; Simkovic, F.; Sousa, A.; Stanev, T.; Strolger, L.; Suekane, F.; Thomas, J.; Titov, N.; Toivanen, J.; Torrente-Lujan, E.; Tytler, D.; Vala, L.; Vignaud, D.; Vitiello, G.; Vogel, P.; Volkov, G.; Volpe, C.; Wong, H.; Yilmazer, A.

    2006-01-01

    This second symposium on neutrinos and dark matter is aimed at discussing research frontiers and perspectives on currently developing subjects. It has been organized around 6 topics: 1) double beta decays, theory and experiments (particularly: GERDA, MOON, SuperNEMO, CUORE, CANDLES, EXO, and DCBA), 2) neutrinos and nuclear physics, 3) single beta decays and nu-responses, 4) neutrino astrophysics, 5) solar neutrino review, and 6) neutrino oscillations. This document is made up of the slides of the presentations

  5. Hot metastable state of abnormal matter in relativistic nuclear field theory

    International Nuclear Information System (INIS)

    Glendenning, N.K.

    1987-01-01

    Because of their non-linearity, the field equations of relativistic nuclear field theory admit of additional solutions besides the normal state of matter. One of these is a finite-temperature abnormal phase. Over a narrow range in temperature, matter can exist in the abnormal phase at zero pressure. This is a hot metastable state, for which there is a barrier against decay, because the field configuration is different than in the normal state, the baryon masses are far removed from their vacuum masses, there is an abundance of pairs also far removed from their vacuum masses, and a correspondingly high entropy. The abundance of baryon-antibaryon pairs is the glue that holds this matter together. The signals associated with this novel state are quite unusual. A fragment of such matter will cool by emitting a spectrum of black-body radiation, consisting principally of photons, lepton pairs and pions, rather than by baryon emission, because the latter are far removed from their vacuum masses. If produced at the upper end of its temperature range, a large fraction of the original energy, more than half in the examples studied here, is radiated in this way. The baryons and light elements produced in the eventual decay, after the abnormal matter has cooled to a domain where its pressure becomes positive, will account for only a fraction of the original energy. The energy domain of this state depends sensitively on the coupling constants, and within a reasonable range as determined by nuclear matter properties, can lie in the range of GeV to tens of GeV per nucleon. (orig.)

  6. Approximate symmetries of Hamiltonians

    Science.gov (United States)

    Chubb, Christopher T.; Flammia, Steven T.

    2017-08-01

    We explore the relationship between approximate symmetries of a gapped Hamiltonian and the structure of its ground space. We start by considering approximate symmetry operators, defined as unitary operators whose commutators with the Hamiltonian have norms that are sufficiently small. We show that when approximate symmetry operators can be restricted to the ground space while approximately preserving certain mutual commutation relations. We generalize the Stone-von Neumann theorem to matrices that approximately satisfy the canonical (Heisenberg-Weyl-type) commutation relations and use this to show that approximate symmetry operators can certify the degeneracy of the ground space even though they only approximately form a group. Importantly, the notions of "approximate" and "small" are all independent of the dimension of the ambient Hilbert space and depend only on the degeneracy in the ground space. Our analysis additionally holds for any gapped band of sufficiently small width in the excited spectrum of the Hamiltonian, and we discuss applications of these ideas to topological quantum phases of matter and topological quantum error correcting codes. Finally, in our analysis, we also provide an exponential improvement upon bounds concerning the existence of shared approximate eigenvectors of approximately commuting operators under an added normality constraint, which may be of independent interest.

  7. Symmetries in fundamental physics

    CERN Document Server

    Sundermeyer, Kurt

    2014-01-01

    Over the course of the last century it has become clear that both elementary particle physics and relativity theories are based on the notion of symmetries. These symmetries become manifest in that the "laws of nature" are invariant under spacetime transformations and/or gauge transformations. The consequences of these symmetries were analyzed as early as in 1918 by Emmy Noether on the level of action functionals. Her work did not receive due recognition for nearly half a century, but can today be understood as a recurring theme in classical mechanics, electrodynamics and special relativity, Yang-Mills type quantum field theories, and in general relativity. As a matter of fact, as shown in this monograph, many aspects of physics can be derived solely from symmetry considerations. This substantiates the statement of E.P.Wigner "... if we knew all the laws of nature, or the ultimate Law of nature, the invariance properties of these laws would not furnish us new information." Thanks to Wigner we now also underst...

  8. Symmetries in fundamental physics

    CERN Document Server

    Sundermeyer, Kurt

    2014-01-01

    Over the course of the last century it has become clear that both elementary particle physics and relativity theories are based on the notion of symmetries. These symmetries become manifest in that the "laws of nature" are invariant under spacetime transformations and/or gauge transformations. The consequences of these symmetries were analyzed as early as in 1918 by Emmy Noether on the level of action functionals. Her work did not receive due recognition for nearly half a century, but can today be understood as a recurring theme in classical mechanics, electrodynamics and special relativity, Yang-Mills type quantum field theories, and in general relativity. As a matter of fact, as shown in this monograph, many aspects of physics can be derived solely from symmetry considerations. This substantiates the statement of E.P. Wigner "... if we knew all the laws of nature, or the ultimate Law of nature, the invariance properties of these laws would not furnish us new information." Thanks to Wigner we now also unders...

  9. Global security and the impacts in nuclear matter control: Nuclear Security Summit 2016

    International Nuclear Information System (INIS)

    Lima, Martonio Mont’Alverne Barreto; Barreto, Midred Cavalcante

    2017-01-01

    Due to the current international security instability, especially resulting from traffic and nuclear terrorism threat proliferation, the Nuclear Security Summits were conceived with the objective of increasing the cooperation between States, institutions and international organisms, as well as conducting a global community in following the guidelines and action plans which have produced curious results such as the reduction and the removal of enriched uranium in some countries, the reinforcement of safeguard installations that store radioactive materials and the establishment of Excellence Centers, qualification, training and technological development in the fight against nuclear weaponry traffic. (author)

  10. Global security and the impacts in nuclear matter control: Nuclear Security Summit 2016

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Martonio Mont’Alverne Barreto; Barreto, Midred Cavalcante, E-mail: barreto@unifor.br, E-mail: midredcb@hotmail.com [Universidade de Fortaleza (UNIFOR), CE (Brazil)

    2017-07-01

    Due to the current international security instability, especially resulting from traffic and nuclear terrorism threat proliferation, the Nuclear Security Summits were conceived with the objective of increasing the cooperation between States, institutions and international organisms, as well as conducting a global community in following the guidelines and action plans which have produced curious results such as the reduction and the removal of enriched uranium in some countries, the reinforcement of safeguard installations that store radioactive materials and the establishment of Excellence Centers, qualification, training and technological development in the fight against nuclear weaponry traffic. (author)

  11. Effects of Brown-Rho scalings in nuclear matter, neutron stars and finite nuclei

    Science.gov (United States)

    Kuo, T. T. S.; Dong, Huan

    2011-01-01

    We have carried out calculations for nuclear matter, neutron stars and finite nuclei using NN potentials with and without the medium-dependent modifications based on the Brown-Rho (BR) scalings. Using the Vlow-k low-momentum interactions derived from such potentials, the equations of state (EOS) for symmetric and asymmetric nuclear matter, for densities up to ~ 5ρ0, are calculated using a RPA method where the particle-particle hole-hole ring diagrams are summed to all orders. The medium effects from both a linear BR scaling (BR1) and a non-linear one (BR2) are considered, and they both are essential for our EOSs to reproduce the nuclear matter saturation properties. For densities ρ below ρ0, results from BR1 and BR2 are close to each other. For higher densities, the EOS given by BR2 is more desirable and is well reproduced by that given by the interaction (Vlow-k+TBF) where Vlow-k is the unsealed low-momentum interaction and TBF is an empirical Skyrme three-body force. The moment of inertia of neutron stars is ~ 60 and ~ 25Modotkm2 respectively with and without the inclusion of the above BR2 medium effects. Effects from the BR scaling are important for the long half-life, ~ 5000yrs, of the 14C - 14N β-decay.

  12. The single-particle potential of nuclear matter in the LOCV framework

    Energy Technology Data Exchange (ETDEWEB)

    Modarres, M., E-mail: mmodares@ut.ac.ir [Physics Department, University of Tehran, North-Kargar Ave., 1439955961 Tehran (Iran, Islamic Republic of); Rajabi, A. [Physics Department, Shahid Rajaei Teacher Training University, Lavizan, 16788 Tehran (Iran, Islamic Republic of)

    2011-10-01

    The density and momentum dependence of single-particle potential (SPP) and effective mass of symmetric nuclear matter are studied in the framework of lowest order constrained variational (LOCV) method. The Reid68, the Reid68-{Delta} and the Av{sub 18} interactions are considered as the input nucleon-nucleon potentials. It is shown that the SPP of nuclear matter, at fixed density, is an increasing function of nucleon momentum, and it has different behavior for the Reid type potentials with respect to Av{sub 18} interaction. We find good agreements between our LOCV SPP and those coming from others many-body techniques such as the (Dirac-)Brueckner-Hartree-Foch ((D)BHF), the fermion hypernetted chain (FHNC), mean field (MF), etc. On the other hand SPP dramatically depends on the density at low and high nucleon momentums. While the effective mass of nuclear matter increases as we increase the nucleon momentum, it decreases at the Fermi surface. Again, good agreements are observed between our calculated effective mass and those coming from the methods mentioned above.

  13. Effective interactions and mean field theory: from nuclear matter to nuclei

    International Nuclear Information System (INIS)

    Cochet, B.

    2005-07-01

    The Skyrme force is a zero-range force that allows the construction of the mean field inside the nucleus in a simple way. Skyrme forces are reasonably predictive but some features of the infinite nuclear matter or the mass of heavy nuclei are not well computed. The aim of this work is to propose an expanded parametrization of the Skyrme force in order to improve its predictive power. The first part is dedicated to the construction of the expansion of the parametrization. We recall how the effective forces are linked to the nucleon-nucleon interaction then we show the limits of the standard Skyrme forces and we propose a relatively natural improvements based on the integration of spin and isospin instabilities. The second part deals with the validation of the model, first by describing infinite nuclear matter then by studying β-balanced nuclear matter which has enabled us to reproduce some features of neutron stars like mass and radius. The computation of properties of nuclei like binding energy, mass, radii depends strongly on the adjustment procedure. (A.C.)

  14. Quark-Meson-Coupling (QMC) model for finite nuclei, nuclear matter and beyond

    Science.gov (United States)

    Guichon, P. A. M.; Stone, J. R.; Thomas, A. W.

    2018-05-01

    The Quark-Meson-Coupling model, which self-consistently relates the dynamics of the internal quark structure of a hadron to the relativistic mean fields arising in nuclear matter, provides a natural explanation to many open questions in low energy nuclear physics, including the origin of many-body nuclear forces and their saturation, the spin-orbit interaction and properties of hadronic matter at a wide range of densities up to those occurring in the cores of neutron stars. Here we focus on four aspects of the model (i) a full comprehensive survey of the theory, including the latest developments, (ii) extensive application of the model to ground state properties of finite nuclei and hypernuclei, with a discussion of similarities and differences between the QMC and Skyrme energy density functionals, (iii) equilibrium conditions and composition of hadronic matter in cold and warm neutron stars and their comparison with the outcome of relativistic mean-field theories and, (iv) tests of the fundamental idea that hadron structure changes in-medium.

  15. Finite size effects in liquid-gas phase transition of asymmetric nuclear matter

    International Nuclear Information System (INIS)

    Pawlowski, P.

    2001-01-01

    Full text: Since the nuclear equation of state has been studied in astrophysical context as an element of neutron star or super-nova theories - a call for an evidence was produced in experimental nuclear physics. Heavy-ion collisions became a tool of study on thermodynamic properties of nuclear matter. A particular interest has been inspired here by critical behavior of nuclear systems, as a phase transition of liquid-gas type. A lot of efforts was put to obtain an experimental evidence of such a phenomenon in heavy-ion collisions. With the use of radioactive beams and high performance identification systems in a near future it will be possible to extend experimental investigation to asymmetric nuclear systems, where neutron-to-proton ratio is far from the stability line. This experimental development needs a corresponding extension of theoretical studies. To obtain a complete theory of the liquid-gas phase transition in small nuclear systems, produced in violent heavy-ion collisions, one should take into account two facts. First, that the nuclear matter forming nuclei is composed of protons and neutrons; this complicates the formalism of phase transitions because one has to deal with two separate, proton and neutron, densities and chemical potentials. The second and more important is that the surface effects are very strong in a system composed of a few hundreds of nucleons. This point is especially difficult to hold, because surface becomes an additional, independent state parameter, depending strongly on the geometrical configuration of the system, and introducing a non-local term in the equation of state. In this presentation we follow the recent calculation by Lee and Mekjian on the finite-size effects in small (A = 10 2 -10 3 ) asymmetric nuclear systems. A zero-range isospin-dependent Skyrme force is used to obtain a density and isospin dependent potential. The potential is then completed by additional terms giving contributions from surface and Coulomb

  16. Fifty years of symmetry operations

    International Nuclear Information System (INIS)

    Wigner, E.P.

    1978-01-01

    The author begins by discussing the application of symmetry principles in classical physics, which began 150 years ago. He then offers a few remarks on the essence of these principles and their role in the structure of physics; events, laws of nature, and invariance principles - kinematic and then dynamic - are treated. After this general discussion of the various types of symmetries, he considers the fundamental differences in their application in classical and quantum physics; the symmetry principles have greater effectiveness in quantum theory. After a few critical remarks of a general nature on the invariance principles, the author reviews the application of symmetry principles in various areas of quantum mechanics: atomic spectra, molecular physics, solid state physics, nuclear physics, and particle physics. He notes that the role of the different symmetries recognized to be approximate provide the most interesting conclusions

  17. Symmetry, Symmetry Breaking and Topology

    Directory of Open Access Journals (Sweden)

    Siddhartha Sen

    2010-07-01

    Full Text Available The ground state of a system with symmetry can be described by a group G. This symmetry group G can be discrete or continuous. Thus for a crystal G is a finite group while for the vacuum state of a grand unified theory G is a continuous Lie group. The ground state symmetry described by G can change spontaneously from G to one of its subgroups H as the external parameters of the system are modified. Such a macroscopic change of the ground state symmetry of a system from G to H correspond to a “phase transition”. Such phase transitions have been extensively studied within a framework due to Landau. A vast range of systems can be described using Landau’s approach, however there are also systems where the framework does not work. Recently there has been growing interest in looking at such non-Landau type of phase transitions. For instance there are several “quantum phase transitions” that are not of the Landau type. In this short review we first describe a refined version of Landau’s approach in which topological ideas are used together with group theory. The combined use of group theory and topological arguments allows us to determine selection rule which forbid transitions from G to certain of its subgroups. We end by making a few brief remarks about non-Landau type of phase transition.

  18. Measurement of Quark Energy Loss in Cold Nuclear Matter at Fermilab E906/SeaQuest

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Po-Ju [Univ. of Colorado, Boulder, CO (United States)

    2017-01-01

    Parton energy loss is a process within QCD that draws considerable interest. The measurement of parton energy loss can provide valuable information for other hard-scattering processes in nuclei, and also serves as an important tool for exploring the properties of the quark-gluon plasma (QGP). Quantifying the energy loss in cold nuclear matter will help to set a baseline relative to energy loss in the QGP. With the Drell-Yan process, the energy loss of incoming quarks in cold nuclear matter can be ideally investigated since the final state interaction is expected to be minimal. E906/SeaQuest is a fixed-target experiment using the 120 GeV proton beam from the Fermilab Main Injector and has been collecting data from p+p, p+d, p+C, p+Fe, and p+W collisions. Within the E906 kinematic coverage of Drell-Yan production via the dimuon channel, the quark energy loss can be measured in a regime where other nuclear effects are expected to be small. In this thesis, the study of quark ener gy loss from different cold nuclear targets is presented.

  19. Nuclear matter studies with density-dependent meson-nucleon coupling constants

    International Nuclear Information System (INIS)

    Banerjee, M.K.; Tjon, J.A.; Banerjee, M.K.; Tjon, J.A.

    1997-01-01

    Due to the internal structure of the nucleon, we should expect, in general, that the effective meson nucleon parameters may change in nuclear medium. We study such changes by using a chiral confining model of the nucleon. We use density-dependent masses for all mesons except the pion. Within a Dirac-Brueckner analysis, based on the relativistic covariant structure of the NN amplitude, we show that the effect of such a density dependence in the NN interaction on the saturation properties of nuclear matter, while not large, is quite significant. Due to the density dependence of the g σNN , as predicted by the chiral confining model, we find, in particular, a looping behavior of the binding energy at saturation as a function of the saturation density. A simple model is described, which exhibits looping and which is shown to be mainly caused by the presence of a peak in the density dependence of the medium modified σN coupling constant at low density. The effect of density dependence of the coupling constants and the meson masses tends to improve the results for E/A and density of nuclear matter at saturation. From the present study we see that the relationship between binding energy and saturation density may not be as universal as found in nonrelativistic studies and that more model dependence is exhibited once medium modifications of the basic nuclear interactions are considered. copyright 1997 The American Physical Society

  20. Molecular symmetry and spectroscopy

    CERN Document Server

    Bunker, Philip; Jensen, Per

    2006-01-01

    The first edition, by P.R. Bunker, published in 1979, remains the sole textbook that explains the use of the molecular symmetry group in understanding high resolution molecular spectra. Since 1979 there has been considerable progress in the field and a second edition is required; the original author has been joined in its writing by Per Jensen. The Material of the first edition has been reorganized and much has been added. The molecular symmetry group is now introduced early on, and the explanation of how to determine nuclear spin statistical weights has been consolidated in one chapter, after groups, symmetry groups, character tables and the Hamiltonian have been introduced. A description of the symmetry in the three-dimensional rotation group K(spatial), irreducible spherical tensor operators, and vector coupling coefficients is now included. The chapters on energy levels and selection rules contain a great deal of material that was not in the first edition (much of it was undiscovered in 1979), concerning ...