WorldWideScience

Sample records for nuclear material control

  1. Global nuclear material control model

    International Nuclear Information System (INIS)

    Dreicer, J.S.; Rutherford, D.A.

    1996-01-01

    The nuclear danger can be reduced by a system for global management, protection, control, and accounting as part of a disposition program for special nuclear materials. The development of an international fissile material management and control regime requires conceptual research supported by an analytical and modeling tool that treats the nuclear fuel cycle as a complete system. Such a tool must represent the fundamental data, information, and capabilities of the fuel cycle including an assessment of the global distribution of military and civilian fissile material inventories, a representation of the proliferation pertinent physical processes, and a framework supportive of national or international perspective. They have developed a prototype global nuclear material management and control systems analysis capability, the Global Nuclear Material Control (GNMC) model. The GNMC model establishes the framework for evaluating the global production, disposition, and safeguards and security requirements for fissile nuclear material

  2. Nuclear material control in Spain

    International Nuclear Information System (INIS)

    Velilla, A.

    1988-01-01

    A general view about the safeguards activities in Spain is presented. The national system of accounting for and control of nuclear materials is described. The safeguards agreements signed by Spain are presented and the facilities and nuclear materials under these agreements are listed. (E.G.) [pt

  3. Nuclear material control in Brazil

    International Nuclear Information System (INIS)

    Marzo, M.A.S.; Iskin, M.C.L.; Palhares, L.C.; Almeida, S.G. de.

    1988-01-01

    A general view about the safeguards activities in Brazil is presented. The national system of accounting for and control of nuclear materials is described. The safeguards agreements signed by Brazil are presented, the facilities and nuclear material under these agreements are listed, and the dificulties on the pratical implementation are discussed. (E.G.) [pt

  4. International control of nuclear materials

    International Nuclear Information System (INIS)

    Koponen, Hannu

    1989-01-01

    Nuclear materials are subject to both national and international safeguards control. The International Atomic Energy Agency (IAEA) takes care of the international safeguards control. The control activities, which are discussed in this article, are carried out according to the agreements between various countries and the IAEA

  5. Protection and control of nuclear materials

    International Nuclear Information System (INIS)

    Jalouneix, J.; Winter, D.

    2007-01-01

    In the framework of the French regulation on nuclear materials possession, the first liability is the one of operators who have to know at any time the quantity, quality and localization of any nuclear material in their possession. This requires an organization of the follow up and of the inventory of these materials together with an efficient protection against theft or sabotage. The French organization foresees a control of the implementation of this regulation at nuclear facilities and during the transport of nuclear materials by the minister of industry with the sustain of the institute of radiation protection and nuclear safety (IRSN). This article presents this organization: 1 - protection against malevolence; 2 - national protection and control of nuclear materials: goals, administrative organization, legal and regulatory content (authorization, control, sanctions), nuclear materials protection inside facilities (physical protection, follow up and inventory, security studies), protection of nuclear material transports (physical protection, follow up), control of nuclear materials (inspection at facilities, control of nuclear material measurements, inspection of nuclear materials during transport); 3 - international commitments of France: non-proliferation treaty, EURATOM regulation, international convention on the physical protection of nuclear materials, enforcement in France. (J.S.)

  6. Control of Nuclear Materials and Special Equipment (Nuclear Safety Regulations)

    International Nuclear Information System (INIS)

    Cizmek, A.; Prah, M.; Medakovic, S.; Ilijas, B.

    2008-01-01

    Based on Nuclear Safety Act (OG 173/03) the State Office for Nuclear Safety (SONS) in 2008 adopted beside Ordinance on performing nuclear activities (OG 74/06) and Ordinance on special conditions for individual activities to be performed by expert organizations which perform activities in the area of nuclear safety (OG 74/06) the new Ordinance on the control of nuclear material and special equipment (OG 15/08). Ordinance on the control of nuclear material and special equipment lays down the list of nuclear materials and special equipment as well as of nuclear activities covered by the system of control of production of special equipment and non-nuclear material, the procedure for notifying the intention to and filing the application for a license to carry out nuclear activities, and the format and contents of the forms for doing so. This Ordinance also lays down the manner in which nuclear material records have to be kept, the procedure for notifying the State administration organization (regulatory body) responsible for nuclear safety by the nuclear material user, and the keeping of registers of nuclear activities, nuclear material and special equipment by the State administration organization (regulatory body) responsible for nuclear safety, as well as the form and content of official nuclear safety inspector identification card and badge.(author)

  7. Development of nuclear material accountancy control system

    International Nuclear Information System (INIS)

    Hirosawa, Naonori; Kashima, Sadamitsu; Akiba, Mitsunori

    1992-01-01

    PNC is developing a wide area of nuclear fuel cycle. Therefore, much nuclear material with a various form exists at each facility in the Works, and the controls of the inventory changes and the physical inventories of nuclear material are important. Nuclear material accountancy is a basic measure in safeguards system based on Non-Proliferation Treaty (NPT). In the light of such importance of material accountancy, the data base of nuclear material control and the material accountancy report system for all facilities has been developed by using the computer. By this system, accountancy report to STA is being presented certainly and timely. Property management and rapid corresponding to various inquiries can be carried out by the data base system which has free item searching procedure. (author)

  8. Nuclear material control in the United States

    International Nuclear Information System (INIS)

    Jaeger, C.; Waddoups, I.

    1995-01-01

    The Department of Energy has defined a safeguards system to be an integrated system of physical protection, material accounting and material control subsystems designed to deter, prevent, detect, and respond to unauthorized possession, use, or sabotage of SNM. In practice, safeguards involve the development and application of techniques and procedures dealing with the establishment and continued maintenance of a system of activities. The system must also include administrative controls and surveillance to assure that the procedures and techniques of the system are effective and are being carried out. The control of nuclear material is critical to the safeguarding of nuclear materials within the United States. The U.S. Department of Energy includes as part of material control four functional performance areas. They include access controls, material surveillance, material containment and detection/assessment. This paper will address not only these areas but also the relationship between material control and other safeguards and security functions

  9. Measurement control program for nuclear material accounting

    International Nuclear Information System (INIS)

    Brouns, R.J.; Roberts, F.P.; Merrill, J.A.; Brown, W.B.

    1980-06-01

    A measurement control program for nuclear material accounting monitors and controls the quality of the measurments of special nuclear material that are involved in material balances. The quality is monitored by collecting data from which the current precision and accuracy of measurements can be evaluated. The quality is controlled by evaluations, reviews, and other administrative measures for control of selection or design of facilities, equipment and measurement methods and the training and qualification of personnel who perform SNM measurements. This report describes the most important elements of a program by which management can monitor and control measurement quality

  10. Croatian National System of Nuclear Materials Control

    International Nuclear Information System (INIS)

    Biscan, R.

    1998-01-01

    In the process of economic and technological development of Croatia by using or introducing nuclear power or in the case of international co-operation in the field of peaceful nuclear activities, including international exchange of nuclear material, Croatia should establish and implement National System of Nuclear Materials Control. Croatian National System of accounting for and control of all nuclear material will be subjected to safeguards under requirements of Agreement and Additional Protocol between the Republic of Croatia and the International Atomic Energy Agency (IAEA) for the Application of Safeguards in Connection with the Treaty on the Non-Proliferation of Nuclear Weapons (NPT). The decision by NPT parties at the 1995 NPT Review and Extension Conference to endorse the Fullscope IAEA Safeguards Standard (FSS) as a necessary precondition of nuclear supply means that states are obliged to ensure that the recipient country has a FSS agreement in place before any nuclear transfer can take place (Ref. 1). The FSS standard of nuclear supply is a central element of the Nuclear Suppliers Group (NSG) Guidelines which the NSG adopted in 1992 and should be applied to members and non-members of the NSG. The FSS standard of nuclear supply in general allows for NPT parties or countries which have undertaken the same obligations through other treaty arrangements, to receive favourable treatment in nuclear supply arrangements. However, the Iraqi experience demonstrate that trade in nuclear and dual-use items, if not properly monitored, can contribute to a nuclear weapons program in countries acting contrary to their non-proliferation obligation. Multilateral nuclear export control mechanisms, including the FSS supply standard, provide the basis for co-ordination and standardisation of export control measures. (author)

  11. 10 CFR 74.51 - Nuclear material control and accounting for strategic special nuclear material.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Nuclear material control and accounting for strategic special nuclear material. 74.51 Section 74.51 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Formula Quantities of Strategic Special Nuclear...

  12. Global nuclear material flow/control model

    International Nuclear Information System (INIS)

    Dreicer, J.S.; Rutherford, D.S.; Fasel, P.K.; Riese, J.M.

    1997-01-01

    This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The nuclear danger can be reduced by a system for global management, protection, control, and accounting as part of an international regime for nuclear materials. The development of an international fissile material management and control regime requires conceptual research supported by an analytical and modeling tool which treats the nuclear fuel cycle as a complete system. The prototype model developed visually represents the fundamental data, information, and capabilities related to the nuclear fuel cycle in a framework supportive of national or an international perspective. This includes an assessment of the global distribution of military and civilian fissile material inventories, a representation of the proliferation pertinent physical processes, facility specific geographic identification, and the capability to estimate resource requirements for the management and control of nuclear material. The model establishes the foundation for evaluating the global production, disposition, and safeguards and security requirements for fissile nuclear material and supports the development of other pertinent algorithmic capabilities necessary to undertake further global nuclear material related studies

  13. Regulation on control of nuclear fuel materials

    International Nuclear Information System (INIS)

    Ikeda, Kaname

    1976-01-01

    Some comment is made on the present laws and the future course of consolidating the regulation of nuclear fuel materials. The first part gives the definitions of the nuclear fuel materials in the laws. The second part deals with the classification and regulation in material handling. Refinement undertaking, fabrication undertaking, reprocessing undertaking, the permission of the government to use the materials, the permission of the government to use the materials under international control, the restriction of transfer and receipt, the reporting, and the safeguard measures are commented. The third part deals with the strengthening of regulation. The nuclear fuel safety deliberation special committee will be established at some opportunity of revising the ordinance. The nuclear material safeguard special committee has been established in the Atomic Energy Commission. The last part deals with the future course of legal consolidation. The safety control will be strengthened. The early investigation of waste handling is necessary, because low level solid wastes are accumulating at each establishment. The law for transporting nuclear materials must be consolidated as early as possible to correspond to foreign transportation laws. Physical protection is awaiting the conclusions of the nuclear fuel safeguard special committee. The control and information systems for the safeguard measures must be consolidated in the laws. (Iwakiri, K.)

  14. Nuclear material control systems for nuclear power plants

    International Nuclear Information System (INIS)

    1975-06-01

    Paragraph 70.51(c) of 10 CFR Part 70 requires each licensee who is authorized to possess at any one time special nuclear material in a quantity exceeding one effective kilogram to establish, maintain, and follow written material control and accounting procedures that are sufficient to enable the licensee to account for the special nuclear material in his possession under license. While other paragraphs and sections of Part 70 provide specific requirements for nuclear material control systems for fuel cycle plants, such detailed requirements are not included for nuclear power reactors. This guide identifies elements acceptable to the NRC staff for a nuclear material control system for nuclear power reactors. (U.S.)

  15. Control of nuclear materials and materials in Argentina

    International Nuclear Information System (INIS)

    Arbor G, A.; Fernandes M, S.

    1988-01-01

    A general view about the safeguards activities in Argentina is presented. The national system of accounting for and control of nuclear materials is described. The safeguards agreement signed by Argentina are presented. (E.G.) [pt

  16. Fuzzy controllers in nuclear material accounting

    International Nuclear Information System (INIS)

    Zardecki, A.

    1994-01-01

    Fuzzy controllers are applied to predicting and modeling a time series, with particular emphasis on anomaly detection in nuclear material inventory differences. As compared to neural networks, the fuzzy controllers can operate in real time; their learning process does not require many iterations to converge. For this reason fuzzy controllers are potentially useful in time series forecasting, where the authors want to detect and identify trends in real time. They describe an object-oriented implementation of the algorithm advanced by Wang and Mendel. Numerical results are presented both for inventory data and time series corresponding to chaotic situations, such as encountered in the context of strange attractors. In the latter case, the effects of noise on the predictive power of the fuzzy controller are explored

  17. Control of nuclear material specified equipment and specified material

    International Nuclear Information System (INIS)

    1982-04-01

    The goal and application field of NE 2.02 regulatory guide of CNEN (Comissao Nacional de Energia Nuclear), are described. This regulatory guide is about nuclear material management, specified equipment and specified material. (E.G.) [pt

  18. 10 CFR 74.41 - Nuclear material control and accounting for special nuclear material of moderate strategic...

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Nuclear material control and accounting for special nuclear material of moderate strategic significance. 74.41 Section 74.41 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Special Nuclear Material...

  19. The system of nuclear material control of Kazakhstan

    International Nuclear Information System (INIS)

    Yeligbayeva, G.Zh.

    2001-01-01

    Full text: The State system for nuclear material control consists of three integral components. The efficiency of each is to guarantee the non-proliferation regime in Kazakhstan. The components are the following: accounting, export and import control and physical protection of nuclear materials. First, the implementation of the goals of accounting and control bring into force, by the organization of the system for accounting and measurement of nuclear materials to determine present quantity. Organizing the accounting for nuclear material at facilities will ensure the efficiency of accountancy and reporting information. This defines the effectiveness of the state system for the accounting for the Kazakhstan's nuclear materials. Currently, Kazakhstan's nuclear material is fully safeguarded in designated secure locations. Kazakhstan has a nuclear power plant, 4 research reactors and a fuel fabrication plant. The governmental information system for nuclear materials control consist of two level: Governmental level - KAEA collects reports from facilities and prepares the reports for International Atomic Energy Agency, keeping of supporting documents and other necessary information, a data base of export and import, a data base of nuclear material inventory. Facility level - registration and processing information from key measurement points, formation the facility's nuclear materials accounting database. All facilities have computerized systems. Currently, all facilities are safeguarded under IAEA safeguarding standards, through IAEA inspections. Annually, IAEA verifies all nuclear materials at all Kazakhstan nuclear facilities. The government reporting system discloses the existence of all nuclear material and its transfer intended for interaction through the export control system and the nuclear control accounting system. Nuclear material export is regulated by the regulations of the Nuclear Export Control Law. The standard operating procedure is the primary means for

  20. Management review of nuclear material control and accounting systems

    International Nuclear Information System (INIS)

    1975-06-01

    Section 70.58, ''Fundamental Nuclear Material Controls,'' of 10 CFR Part 70, ''Special Nuclear Materials,'' requires, in paragraph 70.58(c), that certain licensees authorized to possess more than one effective kilogram of special nuclear material establish a management system to provide for the development, revision, implementation, and enforcement of nuclear material control and accounting procedures. Such a system must provide for a review of the nuclear material control system at least every 12 months. This guide describes the purpose and scope, personnel qualifications, depth of detail, and procedures that are acceptable to the NRC staff for the management review of nuclear material control systems required under paragraph 70.58(c) of 10 CFR Part 70. (U.S.)

  1. 78 FR 38739 - Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants

    Science.gov (United States)

    2013-06-27

    ... Systems for Nuclear Power Plants AGENCY: Nuclear Regulatory Commission. ACTION: Regulatory guide; issuance... Guide (RG) 5.29, ``Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants... material control and accounting. This guide applies to all nuclear power plants. ADDRESSES: Please refer to...

  2. U.S. national nuclear material control and accounting system

    International Nuclear Information System (INIS)

    Taylor, S; Terentiev, V G

    1998-01-01

    Issues related to nuclear material control and accounting and illegal dealing in these materials were discussed at the April 19--20, 1996 Moscow summit meeting (G7 + Russia). The declaration from this meeting reaffirmed that governments are responsible for the safety of all nuclear materials in their possession and for the effectiveness of the national control and accounting system for these materials. The Russian delegation at this meeting stated that ''the creation of a nuclear materials accounting, control, and physical protection system has become a government priority''. Therefore, in order to create a government nuclear material control and accounting system for the Russian Federation, it is critical to study the structure, operating principles, and regulations supporting the control and accounting of nuclear materials in the national systems of nuclear powers. In particular, Russian specialists have a definite interest in learning about the National Nuclear Material Control and Accounting System of the US, which has been operating successfully as an automated system since 1968

  3. Hungarian national nuclear material control and accounting system

    International Nuclear Information System (INIS)

    Lendvai, O.

    1985-01-01

    The Hungarian system for nuclear materials control and accounting is briefly described. Sections include a historical overview, a description of nuclear activities and an outline of the organizational structure of the materials management system. Subsequent sections discuss accounting, verification and international relations

  4. Material control and accountability in nuclear fuel cycle

    International Nuclear Information System (INIS)

    Rumyantsev, A.N.

    2006-01-01

    It is proposed to unify the complexes, used in the systems for control and accountability of nuclear materials, and to use the successful experience of developing these complexes. It is shown that the problem of control, accountability and physical protection may by achieved by using the developed complex Probabilistic expert-advising system, permitting to analyse the safety in nuclear fuel cycles [ru

  5. Methodologies for nuclear material accounting and control: challenges and expectations

    International Nuclear Information System (INIS)

    Ramakumar, K.L.

    2007-01-01

    Nuclear Material Accounting and Control (NUMAC) represents one of the most important and indispensable responsibilities of any nuclear installation. The emphasis is to ensure that the nuclear material being handled in the nuclear installation is properly accounted for with the expected accuracy and confidence levels. A number of analytical methods based on both destructive and non-destructive assay techniques are available at the disposal of the nuclear analytical scientists for this purpose and they have been enumerated extensively in literature. Instead of recounting the analytical methodologies available, an attempt has been made in this paper to highlight some of the challenges. (author)

  6. The nuclear materials control system: Safeguards - circa 1957

    International Nuclear Information System (INIS)

    Thomas, C.C. Jr.

    1992-01-01

    In the late 1950s, the Westinghouse Electric Corporation undertook a nuclear materials control study for the Division of International Affairs of the US Atomic Energy Commission (AEC). The objective of the study was to develop a Nuclear Materials Control System (NMCS) that could be used under the US bilateral agreements or by the International Atomic Energy Agency. Phase I was a system study to determine the requirements for an NMCS for an assumed nuclear fuel complex. This paper summarizes aspects of Phase I studies addressing facility types, measurement points, and instrumentation needs and Phase II studies covering chemistry/chemical engineering, nuclear, special devices, and security devices and techniques. 1 fig

  7. Basic components of a national control system for nuclear materials

    International Nuclear Information System (INIS)

    Rabot, G.

    1986-01-01

    The paper presents the different aspects related to the organization and the functioning of a national control and accounting system for nuclear materials. The legal aspects and the relations with the IAEA are included

  8. Accounting systems for special nuclear material control. Technical report

    International Nuclear Information System (INIS)

    Korstad, P.A.

    1980-05-01

    Nuclear material accounting systems were examined and compared to financial double-entry accounting systems. Effective nuclear material accounting systems have been designed using the principles of double-entry financial accounting. The modified double-entry systems presently employed are acceptable if they provide adequate control over the recording and summarizing of transactions. Strong internal controls, based on principles of financial accounting, can help protect nuclear materials and produce accurate, reliable accounting data. An electronic data processing system can more accurately maintain large volumes of data and provide management with more current, reliable information

  9. An accountancy system for nuclear materials control in research centres

    International Nuclear Information System (INIS)

    Buttler, R.; Bueker, H.; Vallee, J.

    1979-01-01

    The Nuclear Accountancy and Control System (NACS) was developed at KFA Juelich in accordance with the requirements of the Non-Proliferation Treaty. The main features are (1) recording of nuclear material in inventory items. These are combined to form batches wherever suitable; (2) extrapolation of accounting data as a replacement for detailed measurement of inventory items data. Recording and control of nuclear material are carried out on two levels with access to a common data bank. The lower level deals with nuclear materials handling plus internal management while on the upper level there is a central control point which is responsible for nuclear safeguarding within the entire research centre. By keeping the organizational and technical infrastructure it was possible to develop a system which is both economical and operator-oriented. In this system the emphasis of nuclear safeguarding is placed on the acquisition of the nuclear material inventory. As much consideration has been given to the interests of the various operational levels and organizational units as to internal and national regulations. Since it is part of the safeguarding and control system, access to the NACS must be restricted to a limited number of users only. Furthermore, it must include facilities for manual control in the form of records. Authorization for access must correspond with the various tasks of different user groups. All necessary data are acquired decentrally in the organizational units and entered via a terminal. It is available to the user groups on both levels through a central data bank. To meet all requirements, the NACS has been designed as an integrated, computer-assisted information system for the automated processing of extensive and multi-level nuclear materials data. As part of the preventive measures entailed with nuclear safeguarding, the accountancy system enables the operator of a nuclear plant to furnish proof of non-diversion of nuclear material. (author)

  10. Control of Nuclear Material in Republic of Croatia

    International Nuclear Information System (INIS)

    Cizmek, A.; Medakovic, S.; Prah, M.; Novosel, N.

    2008-01-01

    State Office for Nuclear Safety (SONS) is established based on 'Nuclear Safety Act' (Official Gazette No. 173/2003) as an independent state organization responsible for all questions in connection with safe use of nuclear energy and technology, for expert matters of preparedness in the case of nuclear emergency, as well as for international co-operation in these fields (regulatory body). In the second half of year 2006, stationary detection systems for nuclear and other radioactive materials were installed on Border Crossing Bregana, Croatia. Yantar 2U, which is the commercial name of the system, is integrated automatic system capable of detection of nuclear and other radioactive materials prepared for fixed-site customs applications (Russian origin). Installed system contains portal monitors, camera, communication lines and communication boxes and server. Two fully functional separate systems has been installed on BC Bregana, one on truck entrance and another one on car entrance. In this article the operational experience of installed system is presented. This includes statistical analysis of recorded alarms, evaluation of procedures for operational stuff and maintenance and typical malfunction experience, as well as some of the recommendation for future use of detection systems. Ordinance on the control of nuclear material and special equipment (Official Gazette No. 15/08) lays down the list of nuclear materials and special equipment as well as the list of other activities related to the production of special equipment and non-nuclear materials; the contents of the declaration of intent form for export/import of goods, the form for notifying export/import of goods, the form for notifying transport of nuclear material, the form for notifying the activity related to producing of special equipment and non-nuclear material, as well as of the form of the report on nuclear material balance in the user's material balance area. This Ordinance lays down the method of

  11. Accounting for and control of nuclear material at the Central Institute of Nuclear Research, Rossendorf

    International Nuclear Information System (INIS)

    Heidel, S.; Rossbander, W.; Helming, M.

    1983-01-01

    A survey is given of the system of accounting for and control of nuclear material at the Central Institute for Nuclear Research, Rossendorf. It includes 3 material balance areas. Control is implemented at both the institute and the MBA levels on the basis of concepts which are coordinated with the national control authority of the IAEA. The system applied enables national and international nuclear material control to be carried out effectively and economically at a minimum of interference with operational procedures. (author)

  12. Material control and accounting at Exxon Nuclear, I

    International Nuclear Information System (INIS)

    Schneider, R.A.

    1985-01-01

    The nuclear material control and accounting system at Exxon Nuclear will be described in detail. Subjects discussed will include: the basis of the MC and A system, the nuclear materials accounting systems (NMRS and NICS), physical inventory taking, IAEA inspection experience, safeguards organization, measurements and measurement control, MUF evaluation, accounting forms and reports and use of tamper-indicating seals. The general requirements for material accounting and control in this type of a bulk-handling facility are described. The way those requirements are met for the subject areas shown above is illustrated using a reference (Model Plant) version of the Exxon Nuclear plant The difference between the item-accounting procedures used at reactor facilities and the bulk-accounting procedures used at fuel fabrication facilities is discussed in detail

  13. Role of nuclear material accounting and control on nuclear security. Countermeasure against insider threat

    International Nuclear Information System (INIS)

    Osabe, Takeshi

    2014-01-01

    Possibility on unauthorized removal (theft) of nuclear material by a facility insider is a recognized as a serious threat. An insider could take advantage or knowledge of control system and access to nuclear material to intercept facility's system designed to protect theft of nuclear material by an insider. This paper will address how the facility level Nuclear Material Accounting and Control (NMAC) System should be designed and implemented to enhance deterring and detect theft of nuclear material by a facility insider. (author)

  14. Transcending sovereignty. In the management and control of nuclear material

    International Nuclear Information System (INIS)

    Scheinman, Lawrence

    2001-01-01

    Effective control of nuclear material is fundamentally important to the credibility and reliability of the nuclear non-proliferation regime. Under the Treaty on the Non-Proliferation of Nuclear Weapons (NPT), international safeguards are applied to non-nuclear- weapon State Parties for the purpose of verifying compliance with their undertakings not to seek to acquire nuclear weapons or explosive devices by assuring that safeguarded nuclear activities and material are not diverted from their intended peaceful use. Reflecting the sovereign State basis upon which the international system rests, the control and protection of nuclear materials within the State are the responsibility of the national authority. This division of responsibility between international verification of non-diversion on the one hand and national responsibility for material protection on the other has worked quite well over time. But it has not created a seamless web of fully effective control over nuclear material. 34 In so far as safeguards are concerned, six points are to be made: 1. INFCIRC/153 Agreements: Completion by all NPT Parties of the required safeguards agreements with the IAEA. Fifty States Party to the NPT still have not entered into treaty-obligated safeguards agreements with the IAEA. 2. Adherence by all States having full-scope safeguards INFCIRC/540. As noted, very few States have thus far negotiated and implemented the strengthened safeguards arrangements. 3. United Nations Security Council action to take its 1992 assertions (related to compliance and enforcement) on proliferation and safeguards a step further. 4. Non-NPT Party support for international Safeguards. 5. Safeguards financing. 6. IAEA Access to export license information

  15. Nuclear materials control and accountability criteria for upgrades measures

    Energy Technology Data Exchange (ETDEWEB)

    Erkkila, B.H.; Hatcher, C.R.

    1998-11-01

    As a result of major political and societal changes in the past several years, methods of nuclear material control may no longer be as effective as in the past in Russia, the Newly Independent States (NIS), and the Baltic States (BS). The objective of the Department of Energy (DOE) Material Protection, Control, and Accounting Program (MPC and A) is to reduce the threat of nuclear proliferation by collaborating with Russia, NIS, and BS governments to promote western-style MPC and A. This cooperation will improve the MPC and A on all weapons useable nuclear materials and will establish a sustainable infrastructure to provide future support and maintenance for these technology-based improvements. Nuclear materials of proliferation concern include materials of the types and quantities that can be most easily and directly used in a nuclear weapon. Sabotage of nuclear material is an event of great concern and potentially disastrous consequences to both the US and the host country. However, sabotage is currently beyond the scope of program direction and cannot be used to justify US-funded MPC and A upgrades. Judicious MPC and A upgrades designed to protect against insider and outsider theft scenarios would also provide addition, although not comprehensive, protection against saboteurs. This paper provides some suggestions to establish consistency in prioritizing system-enhancement efforts at nuclear material facilities. The suggestions in this paper are consistent with DOE policy and directions and should be used as a supplement to any policy directives issued by NN-40, DOE Russia/NIS Task Force.

  16. Nuclear materials control and accountability criteria for upgrades measures

    International Nuclear Information System (INIS)

    Erkkila, B.H.; Hatcher, C.R.

    1998-01-01

    As a result of major political and societal changes in the past several years, methods of nuclear material control may no longer be as effective as in the past in Russia, the Newly Independent States (NIS), and the Baltic States (BS). The objective of the Department of Energy (DOE) Material Protection, Control, and Accounting Program (MPC and A) is to reduce the threat of nuclear proliferation by collaborating with Russia, NIS, and BS governments to promote western-style MPC and A. This cooperation will improve the MPC and A on all weapons useable nuclear materials and will establish a sustainable infrastructure to provide future support and maintenance for these technology-based improvements. Nuclear materials of proliferation concern include materials of the types and quantities that can be most easily and directly used in a nuclear weapon. Sabotage of nuclear material is an event of great concern and potentially disastrous consequences to both the US and the host country. However, sabotage is currently beyond the scope of program direction and cannot be used to justify US-funded MPC and A upgrades. Judicious MPC and A upgrades designed to protect against insider and outsider theft scenarios would also provide addition, although not comprehensive, protection against saboteurs. This paper provides some suggestions to establish consistency in prioritizing system-enhancement efforts at nuclear material facilities. The suggestions in this paper are consistent with DOE policy and directions and should be used as a supplement to any policy directives issued by NN-40, DOE Russia/NIS Task Force

  17. Quality indexes for selecting control materials of the nuclear reactors

    International Nuclear Information System (INIS)

    Martinez-Val, J.M.; Pena, J.; Esteban Naudin, A.

    1981-01-01

    Quality indexes are established and valued for selecting control materials, The requirements for accomplishing such purposes are explained with detailed analysis: absortion cross section must be as high as possible, adequate reactivity evolution versus depletion, good resistance to radiation, appropiate thermal stability, mechanical resistance and ductility, chemical compatibility with the environment, good heat transfer properties, abundant in the nature and low costs. At present Westinghouse desire to commercialize hafnium as control material shows the exciting task of looking for new materials controlling nuclear reactors. (auth.)

  18. Y2K experiences in the nuclear material control area

    International Nuclear Information System (INIS)

    Yagi, T.; Suzuki, T.

    1999-01-01

    Though the Y2K problem was treated by each organization, it became systematic in Japan when Advanced Information and Telecommunication Society Promotion Head-quarters was established recognizing the importance and urgency of the issue. The summary of the action and some experiences concerning Y2K issues in the nuclear materials control area are presented

  19. Determination of internationally controlled materials according to provisions of the law for the regulations of nuclear source materials, nuclear fuel materials and reactors

    International Nuclear Information System (INIS)

    1977-01-01

    According to the provisions of The Law, those stipulated as internationally controlled materials are nuclear source materials, nuclear fuel materials, moderating materials, reactors and facilities, transferred from such as the U.S.A., the U.K. and Canada on the agreements of peaceful uses of atomic energy, and nuclear fuel materials accruing therefrom. (Mori, K.)

  20. Nuclear Material Control and Accountability System Effectiveness Tool (MSET)

    International Nuclear Information System (INIS)

    Powell, Danny H.; Elwood, Robert H. Jr.; Roche, Charles T.; Campbell, Billy J.; Hammond, Glenn A.; Meppen, Bruce W.; Brown, Richard F.

    2011-01-01

    A nuclear material control and accountability (MC and A) system effectiveness tool (MSET) has been developed in the United States for use in evaluating material protection, control, and accountability (MPC and A) systems in nuclear facilities. The project was commissioned by the National Nuclear Security Administration's Office of International Material Protection and Cooperation. MSET was developed by personnel with experience spanning more than six decades in both the U.S. and international nuclear programs and with experience in probabilistic risk assessment (PRA) in the nuclear power industry. MSET offers significant potential benefits for improving nuclear safeguards and security in any nation with a nuclear program. MSET provides a design basis for developing an MC and A system at a nuclear facility that functions to protect against insider theft or diversion of nuclear materials. MSET analyzes the system and identifies several risk importance factors that show where sustainability is essential for optimal performance and where performance degradation has the greatest impact on total system risk. MSET contains five major components: (1) A functional model that shows how to design, build, implement, and operate a robust nuclear MC and A system (2) A fault tree of the operating MC and A system that adapts PRA methodology to analyze system effectiveness and give a relative risk of failure assessment of the system (3) A questionnaire used to document the facility's current MPC and A system (provides data to evaluate the quality of the system and the level of performance of each basic task performed throughout the material balance area (MBA)) (4) A formal process of applying expert judgment to convert the facility questionnaire data into numeric values representing the performance level of each basic event for use in the fault tree risk assessment calculations (5) PRA software that performs the fault tree risk assessment calculations and produces risk importance

  1. 10 CFR 74.31 - Nuclear material control and accounting for special nuclear material of low strategic significance.

    Science.gov (United States)

    2010-01-01

    ... and maintain a measurement system which assures that all quantities in the material accounting records...) In each inventory period, control total material control and accounting measurement uncertainty so... 10 Energy 2 2010-01-01 2010-01-01 false Nuclear material control and accounting for special...

  2. Some technical aspects of the nuclear material accounting and control at nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Miller, O.A.; Babaev, N.S.; Gryazev, V.M.; Gadzhiev, G.I.; Gabeskiriya, V.Ya.

    1977-01-01

    The possibilities of nuclear material accounting and control are discussed at nuclear facilities of fuel cycle (WWER-type reactor, fuel fabrication plant, reprocessing plant and uranium enrichment facility) and zero energy fast reactor facility. It is shown that for nuclear material control the main method is the accounting with the application isotopic correlations at the reprocessing plant and enrichment facility. Possibilities and limitations of the application of destructive and non-destructive methods are discussed for nuclear material determinations at fuel facilities and their role in the accounting and safeguards systems as well as possibilities of the application of neutron method at a zero energy fast reactor facility [ru

  3. Regulation on control of nuclear materials of the 31 Oct 1986

    International Nuclear Information System (INIS)

    1986-01-01

    The new regulation on accounting for and control of nuclear materials was issued on 31 October 1986 and put into force on 1 February 1987. The following provisions are included: aim and scope, responsibility for nuclear material accounting and control, rights and obligations of the nuclear material control officer, licensing, facility's instructions for nuclear material control, accounting, records, reporting, unusual events, inspections, nuclear material transfers, exemptions and termination of IAEA safeguards, final provisions, and definitions of terms

  4. Development and demonstration program for dynamic nuclear materials control

    International Nuclear Information System (INIS)

    Augustson, R.H.; Baron, N.; Ford, R.F.; Ford, W.; Hagen, J.; Li, T.K.; Marshall, R.S.; Reams, V.S.; Severe, W.R.; Shirk, D.G.

    1978-01-01

    A significant portion of the Los Alamos Scientific Laboratory Safeguards Program is directed toward the development and demonstration of dynamic nuclear materials control. The building chosen for the demonstration system is the new Plutonium Processing Facility in Los Alamos, which houses such operations as metal-to-oxide conversion, fuel pellet fabrication, and scrap recovery. A DYnamic MAterials Control (DYMAC) system is currently being installed in the facility as an integral part of the processing operation. DYMAC is structured around interlocking unit-process accounting areas. It relies heavily on nondestructive assay measurements made in the process line to draw dynamic material balances in near real time. In conjunction with the nondestructive assay instrumentation, process operators use interactive terminals to transmit additional accounting and process information to a dedicated computer. The computer verifies and organizes the incoming data, immediately updates the inventory records, monitors material in transit using elapsed time, and alerts the Nuclear Materials Officer in the event that material balances exceed the predetermined action limits. DYMAC is part of the United States safeguards system under control of the facility operator. Because of its advanced features, the system will present a new set of inspection conditions to the IAEA, whose response is the subject of a study being sponsored by the US-IAEA Technical Assistance Program. The central issue is how the IAEA can use the increased capabilities of such a system and still maintain independent verification

  5. Survey procedure: Control and accountability of nuclear materials

    International Nuclear Information System (INIS)

    Van Ness, H.

    1987-02-01

    This procedure outlines the method by which the Department of Energy (DOE) San Francisco Operations Office (SAN) will plan and execute periodic field surveys of the Material Control and Accountability (MC and A) program and practices at designated contractors' facilities. The surveys will be conducted in accordance with DOE Order 5630.7, Control and Accountability of Nuclear Materials Surveys (7/8/81) to ascertain compliance with applicable DOE Orders and SAN Management Directives in the 5630 series, as well as the adequacy of the contractor's program and procedures. Surveys will be conducted by the Safeguards and Security Division of DOE-SAN. The survey team will review and evaluate the adequacy of the contractor's procedures and practices for nuclear material control and accounting by means of physical inventory, internal control, measurement and statistics, material control indicators, records and reports, and personnel training. The survey will include an audit of records and reports, observation of inventory procedures, an independent test of the inventory and a review and evaluation of the inventory differences, accidental losses, and normal operational losses as applicable to the facility to be surveyed

  6. Nuclear materials control and accountability internal audit program

    International Nuclear Information System (INIS)

    Barham, M.A.; Abbott, R.R.

    1991-01-01

    This paper reports that the Department of Energy Order (DOE) 5633.3, Control and Accountability for Nuclear Materials, includes several requirements for development and implementation of an internal audit program. Martin Marietta Energy System, Inc., manages five sites in Tennessee, Kentucky, and Ohio for the DOE Field Office, Oak Ridge and has a Central Nuclear Materials Control and Accountability (NMC and A) Manager with matrixed responsibility for the NMC and A program at the five sites. The Energy Systems Central NMC and A Manager has developed an NMC and A Internal Audit Handbook which defines the functional responsibilities, performance criteria, and reporting and documentation requirements for the Energy Systems NMC and A Internal Audit Program. The initial work to develop and implement these standards was tested at the K-25 Site when the site hired an internal auditor to meet the DOE requirements for an NMC and A Internal Audit program

  7. Methods of Verification, Accountability and Control of Special Nuclear Material

    International Nuclear Information System (INIS)

    Stewart, J.E.

    1999-01-01

    This session demonstrates nondestructive assay (NDA) measurement, surveillance and analysis technology required to protect, control and account (MPC and A) for special nuclear materials (SNM) in sealed containers. These measurements, observations and analyses comprise state-of-the art, strengthened, SNM safeguards systems. Staff member specialists, actively involved in research, development, training and implementation worldwide, will present six NDA verification systems and two software tools for integration and analysis of facility MPC and A data

  8. Robotic control architecture development for automated nuclear material handling systems

    International Nuclear Information System (INIS)

    Merrill, R.D.; Hurd, R.; Couture, S.; Wilhelmsen, K.

    1995-02-01

    Lawrence Livermore National Laboratory (LLNL) is engaged in developing automated systems for handling materials for mixed waste treatment, nuclear pyrochemical processing, and weapon components disassembly. In support of these application areas there is an extensive robotic development program. This paper will describe the portion of this effort at LLNL devoted to control system architecture development, and review two applications currently being implemented which incorporate these technologies

  9. Control and accountancy of nuclear materials in a uranium enrichment plant

    International Nuclear Information System (INIS)

    Hurt, N.H.

    1985-01-01

    A nuclear material control and accountancy system has been developed by Goodyear Atomic Corporation to meet safeguards and security requirements. It comprises three major elements: physical security, nuclear material control, and nuclear material accounting. This safeguards system is called Dynamic Material Control and Accountancy System (DYMCAS). The system approaches real-time computer control on a transaction-by-transaction basis

  10. Nuclear material control and accountancy planning and performance testing

    International Nuclear Information System (INIS)

    Mike Enhinger; Dennis Wilkey; Rod Martin; Ken Byers; Brian Smith

    1999-01-01

    An overview of performance testing as used at U.S. Department of Energy facilities is provided. Performance tests are performed on specific aspects of the regulations or site policy. The key issues in establishing a performance testing program are: identifying what needs to be tested; determining how to test; establishing criteria to evaluate test results. The program elements of performance testing program consist of: planning; coordination; conduct; evaluation. A performance test may be conducted of personnel or equipment. The DOE orders for nuclear material control and accountancy are divided into three functional areas: program administration, material accounting, and material control. Examples performance tests may be conducted on program administration, accounting, measurement and measurement control, inventory, and containment [ru

  11. Nuclear Forensic Science: Analysis of Nuclear Material Out of Regulatory Control

    Science.gov (United States)

    Kristo, Michael J.; Gaffney, Amy M.; Marks, Naomi; Knight, Kim; Cassata, William S.; Hutcheon, Ian D.

    2016-06-01

    Nuclear forensic science seeks to identify the origin of nuclear materials found outside regulatory control. It is increasingly recognized as an integral part of a robust nuclear security program. This review highlights areas of active, evolving research in nuclear forensics, with a focus on analytical techniques commonly employed in Earth and planetary sciences. Applications of nuclear forensics to uranium ore concentrates (UOCs) are discussed first. UOCs have become an attractive target for nuclear forensic researchers because of the richness in impurities compared to materials produced later in the fuel cycle. The development of chronometric methods for age dating nuclear materials is then discussed, with an emphasis on improvements in accuracy that have been gained from measurements of multiple radioisotopic systems. Finally, papers that report on casework are reviewed, to provide a window into current scientific practice.

  12. Nuclear Security Recommendations on Nuclear and other Radioactive Material out of Regulatory Control: Recommendations (Spanish Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    This publication presents recommendations for the nuclear security of nuclear and other radioactive material that is out of regulatory control. It is based on national experiences and practices and guidance publications in the field of security as well as the nuclear security related international instruments. The recommendations include guidance for States with regard to the nuclear security of nuclear and other radioactive material that has been reported as being out of regulatory control as well as for material that is lost, missing or stolen but has not been reported as such, or has been otherwise discovered. In addition, these recommendations adhere to the detection and assessment of alarms and alerts and to a graded response to criminal or unauthorized acts with nuclear security implications.

  13. Nuclear Security Recommendations on Nuclear and Other Radioactive Material out of Regulatory Control: Recommendations (Arabic Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    This publication presents recommendations for the nuclear security of nuclear and other radioactive material that is out of regulatory control. It is based on national experiences and practices and guidance publications in the ? field of security as well as the nuclear security related international instruments. The recommendations include guidance for States with regard to the nuclear security of nuclear and other radioactive material that has been reported as being out of regulatory control as well as for material that is lost, missing or stolen but has not been reported as such, or has been otherwise discovered. In addition, these recommendations adhere to the detection and assessment of alarms and alerts and to a graded response to criminal or unauthorized acts with nuclear security implications.

  14. Nuclear Security Recommendations on Nuclear and Other Radioactive Material out of Regulatory Control: Recommendations

    International Nuclear Information System (INIS)

    2011-01-01

    This publication presents recommendations for the nuclear security of nuclear and other radioactive material that is out of regulatory control. It is based on national experiences and practices and guidance publications in the field of security as well as the nuclear security related international instruments. The recommendations include guidance for States with regard to the nuclear security of nuclear and other radioactive material that has been reported as being out of regulatory control as well as for material that is lost, missing or stolen but has not been reported as such, or has been otherwise discovered. In addition, these recommendations adhere to the detection and assessment of alarms and alerts and to a graded response to criminal or unauthorized acts with nuclear security implications

  15. Nuclear Security Recommendations on Nuclear and Other Radioactive Material out of Regulatory Control: Recommendations (Russian Edition)

    International Nuclear Information System (INIS)

    2011-01-01

    This publication presents recommendations for the nuclear security of nuclear and other radioactive material that is out of regulatory control. It is based on national experiences and practices and guidance publications in the field of security as well as the nuclear security related international instruments. The recommendations include guidance for States with regard to the nuclear security of nuclear and other radioactive material that has been reported as being out of regulatory control as well as for material that is lost, missing or stolen but has not been reported as such, or has been otherwise discovered. In addition, these recommendations adhere to the detection and assessment of alarms and alerts and to a graded response to criminal or unauthorized acts with nuclear security implications.

  16. Nuclear material control and accounting safeguards in the United States

    International Nuclear Information System (INIS)

    Woltermann, H.A.; Rudy, C.R.; Rakel, D.A.; DeVer, E.A.

    1982-01-01

    Material control and accounting (MC and A) of special nuclear material (SNM) must supplement physical security to protect SNM from unlawful use such as terrorist activities. This article reviews MC and A safeguards of SNM in the United States. The following topics are covered: a brief perspective and history of MC and A safeguards, current MC and A practices, measurement methods for SNM, historical MC and A performance, a description of near-real-time MC and A systems, and conclusions on the status of MC and A in the United States

  17. Nuclear security recommendations on nuclear and other radioactive material out of regulatory control: Recommendations

    International Nuclear Information System (INIS)

    2011-01-01

    The purpose of this publication is to provide guidance to States in strengthening their nuclear security regimes, and thereby contributing to an effective global nuclear security framework, by providing: - Recommendations to States and their competent authorities on the establishment or improvement of the capabilities of their nuclear security regimes, for carrying out effective strategies to deter, detect and respond to a criminal act, or an unauthorized act, with nuclear security implications, involving nuclear or other radioactive material that is out of regulatory control; - Recommendations to States in support of international cooperation aimed at ensuring that any nuclear or other radioactive material that is out of regulatory control, whether originating from within the State or from outside that State, is placed under regulatory control and the alleged offenders are, as appropriate, prosecuted or extradited

  18. Use of Nuclear Material Accounting and Control for Nuclear Security Purposes at Facilities. Implementing Guide

    International Nuclear Information System (INIS)

    2015-01-01

    Nuclear material accounting and control (NMAC) works in a complementary fashion with the international safeguards programme and physical protection systems to help prevent, deter or detect the unauthorized acquisition and use of nuclear materials. These three methodologies are employed by Member States to defend against external threats, internal threats and both state actors and non-state actors. This publication offers guidance for implementing NMAC measures for nuclear security at the nuclear facility level. It focuses on measures to mitigate the risk posed by insider threats and describes elements of a programme that can be implemented at a nuclear facility in coordination with the physical protection system for the purpose of deterring and detecting unauthorized removal of nuclear material

  19. Systems of accounting for and control of nuclear material

    International Nuclear Information System (INIS)

    1975-01-01

    The implementation of safeguards agreements has always involved governmental organizations to a greater or lesser extent, according to the practices of the State concerned. When the Safeguards Committee 1970 defined the structure and content of agreements required in connection with the Treaty on the Non-Proliferation of Nuclear Weapons, particular attention was paid to the contacts between States and the Agency during the implementation of such agreements. The basic idea was that in each State a national organization would, as far as possible, lay the foundations for international safeguards. Accordingly, NPT safeguards agreements contain the obligation of the State to establish and maintain a 'State's system of accountancy for and control of nuclear material'. The Agency document describing the structure and content of NPT safeguards agreements, INFCIRC/153, also known as the 'Blue Book', lays down the basic requirements for a State's system of accounting for and control of nuclear material - SSAC for short. The same document stipulates that the Agency in its safeguards work should take due account of the technical effectiveness of the SSAC. In practice, the effectiveness of SSACs may differ widely. To take due account of their effectiveness, the Agency has to analyse them, note the elements included in them and the requirements they meet, and consider the particular situations they are designed to cope with

  20. Determination of internationally controlled materials according to provisions of the law for the regulations of nuclear source materials, nuclear fuel materials and reactors

    International Nuclear Information System (INIS)

    1984-01-01

    The internationally controlled materials determined according to the law for nuclear source materials, etc. are the following: nuclear source materials, nuclear fuel materials, moderating materials, facilities including reactors, etc. sold, transferred, etc. to Japan according to the agreements for peaceful uses of atomic energy between Japan, and the United States, the United Kingdom, Canada, Australia and France by the respective governments and those organs under them; nuclear fuel materials resulting from usage of the above sold and transferred materials, facilities; nuclear fuel materials sold to Japan according to agreements set by the International Atomic Energy Agency; nuclear fuel materials involved with the safeguards in nuclear weapons non-proliferation treaty with IAEA. (Mori, K.)

  1. Upgrading nuclear material protection, control and accounting in Russia

    International Nuclear Information System (INIS)

    Caravelli, Jack; Behan, Chris; Fishbone, Les

    2001-01-01

    Full text: I. Program goal and organization - In this paper we review the Cooperative US-Russia Program of Nuclear Material Protection, Control and Accounting (MPC and A), whose goal is to reduce the risk of nuclear weapons proliferation by strengthening systems of MPC and A; thereby the Program enhances US national security. Based on this goal, the technical objective is to enhance, through US technical cooperation, the effectiveness of MPC and A systems at Russian sites with weapons-usable nuclear material, i.e. plutonium and highly enriched uranium. The Program exists because the extensive social, political and economic changes in Russia arising from the dissolution of the Soviet Union have increased the risk that these materials would be subject to theft or other misuse, with potentially grave consequences. On the US side, the MPC and A Program is administered by the US Department of Energy (DOE) National Nuclear Security Administration through the DOE national laboratories and other contractors. On the Russian side, the Program is administered by the Russian Ministry of Atomic Energy (Minatom) through its nuclear sites, by the regulatory agency Gosatomnadzor, and by nuclear sites not under Minatom. To carry out the Program objective, the DOE national laboratories consummate contracts with the Russian sites to implement agreed MPC and A upgrades. Deciding on what upgrades to perform depends on a cooperative analysis of site characteristics, materials, and vulnerabilities by joint US and Russian teams. Once the upgrades are agreed, the DOE laboratories supply technical and financial support and equipment to the Russian sites. The staff of the Russian sites do the work, and the US team members monitor the work through some combination - according to contract - of direct observation and reports, photographs and videotape supplied by the staff of the Russian sites. II. MPC and A task areas - Information in this review covers a selection of topical areas, with a

  2. Safeguarding nuclear materials in the former Soviet Republics through computerized materials protection, control and accountability

    International Nuclear Information System (INIS)

    Roumiantsev, A.N.; Ostroumov, Y.A.; Whiteson, R.; Seitz, S.L.; Landry, R.P.; Martinez, B.J.; Boor, M.G.; Anderson, L.K.; Gary, S.P.

    1997-01-01

    The threat of nuclear weapons proliferation is a problem of global concern. International efforts at nonproliferation focus on preventing acquisition of weapons-grade nuclear materials by unauthorized states, organizations, or individuals. Nonproliferation can best be accomplished through international cooperation in the application of advanced science and technology to the management and control of nuclear materials. Computerized systems for nuclear material protection, control, and accountability (MPC and A) are a vital component of integrated nuclear safeguards programs. This paper describes the progress of scientists in the United States and former Soviet Republics in creating customized, computerized MPC and A systems. The authors discuss implementation of the Core Material Accountability System (CoreMAS), which was developed at Los Alamos National Laboratory by the US Department of Energy and incorporates, in condensed and integrated form, the most valuable experience gained by US nuclear enterprises in accounting for and controlling nuclear materials. The CoreMAS approach and corresponding software package have been made available to sites internationally. CoreMAS provides methods to evaluate their existing systems and to examine advantages and disadvantages of customizing CoreMAS or improving their own existing systems. The sites can also address crucial issues of software assurance, data security, and system performance; compare operational experiences at sites with functioning computerized systems; and reasonably evaluate future efforts. The goal of the CoreMAS project is to introduce facilities at sites all over the world to modern international MPC and A practices and to help them implement effective, modern, computerized MPC and A systems to account for their nuclear materials, and thus reduce the likelihood of theft or diversion. Sites are assisted with MPC and A concepts and the implementation of an effective computerized MPC and A system

  3. German Democratic Republic State system of accounting for and control of nuclear material

    International Nuclear Information System (INIS)

    Roehnsch, W.; Gegusch, M.

    1976-01-01

    The system of accountancy for and control of nuclear material in the German Democratic Republic (GDR) with its legal bases and components is embedded in the overall State system of protection in the peaceful uses of nuclear energy. As the competent State authority, the Nuclear Safety and Radiation Protection Board of the GDR is also responsible for meeting the GDR's national and international tasks in the control of nuclear material. At enterprise level, the observance of all safety regulations for nuclear material, including the regulations for the control, is within the responsibility of managers of establishments, which are in any way concerned with the handling of nuclear material. To support managers and to function as internal control authorities, nuclear material officers have been appointed in these establishments. Design information, operating data, physical inventory of nuclear material and the respective enterprise records and reports are subject to State control by the Nuclear Material Inspectorate of the Nuclear Safety and Radiation Protection Board. This Inspectorate keeps the central records on nuclear material, forwards reports and information to, and maintains the necessary contacts with, the IAEA. For the nuclear material in the GDR four material balance areas have been established for control purposes. To rationalize central recording and reporting, electronic data processing is increasingly made use of. In a year-long national and international control of nuclear material, the State control system has stood the test and successfully co-operates with the IAEA. (author)

  4. Nuclear materials

    International Nuclear Information System (INIS)

    1996-01-01

    In 1998, Nuclear Regulatory Authority of the Slovak Republic (NRA SR) performed 38 inspections, 25 of them were performed in co-operation with IAEA inspectors. There is no fresh nuclear fuel at Bohunice A-1 NPP at present. Fresh fuel of Bohunice V-1 and V-2 NPPs is inspected in the fresh fuel storage.There are 327 fresh fuel assemblies in Mochovce NPP fresh fuel storage. In addition to that, are also 71 small users of nuclear materials in Slovakia. In most cases they use: covers made of depleted uranium for non-destructive works, detection of level in production plants, covers for therapeutical sources at medical facilities. In. 1995, NRA SR issued 4 new licences for nuclear material withdrawal. In the next part manipulation with nuclear materials, spent fuel stores and illegal trafficking in nuclear materials are reported

  5. Sample size optimization in nuclear material control. 1

    International Nuclear Information System (INIS)

    Gladitz, J.

    1982-01-01

    Equations have been derived and exemplified which allow the determination of the minimum variables sample size for given false alarm and detection probabilities of nuclear material losses and diversions, respectively. (author)

  6. Some basic criteria for using of accountancy common system and nuclear material control

    International Nuclear Information System (INIS)

    Marzo, M.A.; Biaggio, A.L.

    1994-01-01

    Some basic criteria used by the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials, using in the Accountancy and Control Common System of Nuclear Materials (SCCC) are presented and the control elements are described. The SCCC is a safeguard system used for all nuclear materials present in all nuclear activities executed by Brazil and Argentina. (C.G.C.). 4 refs, 1 tab

  7. Corrosion degradation of materials in nuclear reactors and its control

    International Nuclear Information System (INIS)

    Kain, Vivekanand

    2016-01-01

    As in every industry, nuclear industry also faces the challenge of corrosion degradation due to the exposure of the materials to the working environment. The aggressiveness of the environment is enhanced by the presence of radiation and high temperature and high-pressure environment. Radiation has influence on both the materials (changes in microstructure and microchemistry) and the aqueous environment (radiolysis producing oxidizing conditions). A survey of all the light water reactors in the world showed that stress corrosion cracking (SCC) and flow accelerated corrosion (FAC) account for more than two third of all the corrosion degradation cases. This paper visits these two forms of corrosion in nuclear power plants and illustrates cases from Indian nuclear power plants. Remedial measures against these two forms of corrosion that are possible to be employed and the actual measures employed in Indian nuclear power plants are discussed. Key features of SCC in different types of nuclear power plants are discussed. Main reasons for irradiation assisted stress corrosion cracking (IASCC) are presented and discussed. The signature patterns of single and dual phase FAC captured from components replaced from Indian nuclear power plants are presented. The development of a correlation between the scallop size and rate of single phase FAC - based on the database developed in Indian nuclear power plants is presented. Based on these two forms of degradation in nuclear reactors, design of materials that would resist these forms of degradation is presented. (author)

  8. Regulations on nuclear materials control of the People's Republic of China

    International Nuclear Information System (INIS)

    1996-01-01

    The present 'Regulations on Nuclear Materials Control of the People's Republic of China' were promulgated by the State Council on June 15, 1987, which are enacted to ensure safe and lawful use of nuclear materials, to prevent theft, sabotage, lose, unlawful diversion and unlawful use, to protect the security of the State and the Public and to facilitate the development of nuclear undertakings. The nuclear materials controlled are: 1. Uranium-235 (materials and products); 2. Uranium-233 (material and products); 3. Plutonium-239 (materials and products); 4. tritium (materials and products); 5. lithium-6 (materials and products); 6. Other nuclear materials requiring control. The present regulations are not applicable to the control of uranium ore and its primary products. The control measures for nuclear products transferred to the armed forces shall be laid down by the national defence department

  9. Prescriptive concepts for advanced nuclear materials control and accountability systems

    International Nuclear Information System (INIS)

    Whitty, W.J.; Strittmatter, R.B.; Ford, W.; Tisinger, R.M.; Meyer, T.H.

    1987-06-01

    Networking- and distributed-processing hardware and software have the potential of greatly enhancing nuclear materials control and accountability (MC and A) systems, from both safeguards and process operations perspectives, while allowing timely integrated safeguards activities and enhanced computer security at reasonable cost. A hierarchical distributed system is proposed consisting of groups of terminal and instruments in plant production and support areas connected to microprocessors that are connected to either larger microprocessors or minicomputers. These micros and/or minis are connected to a main machine, which might be either a mainframe or a super minicomputer. Data acquisition, preliminary input data validation, and transaction processing occur at the lowest level. Transaction buffering, resource sharing, and selected data processing occur at the intermediate level. The host computer maintains overall control of the data base and provides routine safeguards and security reporting and special safeguards analyses. The research described outlines the distribution of MC and A system requirements in the hierarchical system and distributed processing applied to MC and A. Implications of integrated safeguards and computer security concepts for the distributed system design are discussed. 10 refs., 4 figs

  10. Application of controllable unit approach (CUA) to performance-criterion-based nuclear material control and accounting

    International Nuclear Information System (INIS)

    Foster, K.W.; Rogers, D.R.

    1979-01-01

    The Nuclear Regulatory Commission is considering the use of maximum-loss performance criteria as a means of controlling SNM in nuclear plants. The Controllable Unit Approach to material control and accounting (CUA) was developed by Mound to determine the feasibility of controlling a plant to a performance criterion. The concept was tested with the proposed Anderson, SC, mixed-oxide plant, and it was shown that CUA is indeed a feasible method for controlling a complex process to a performance criterion. The application of CUA to an actual low-enrichment plant to assist the NRC in establishing performance criteria for uranium processes is discussed. 5 refs

  11. Decree 2805 by means of which the National Accounting and Control of Basic Nuclear Materials and Special Fusionable Materials System, is established

    International Nuclear Information System (INIS)

    1979-01-01

    This Decree has for object to establish a National Accounting and Control of Basic Nuclear Materials and Special Fusionable Materials System, under the supervision of the National Council for the Nuclear Industry Development. Its aims are to account nuclear materials, to control nuclear activities, to preserve and control nuclear information, to keep technical relationship with specialized organizations, and to garant nuclear safeguards [es

  12. Border Control of Nuclear and Other Radioactive Materials

    International Nuclear Information System (INIS)

    Medakovic, S.; Cizmek, A.; Prah, M.

    2007-01-01

    In the second half of year 2006, stationary detection systems for nuclear and other radioactive materials were installed on Border Crossing Bregana, Croatia. Yantar 2U, which is the commercial name of the system, is integrated automatic system capable of detection of nuclear and other radioactive materials prepared for fixed-site customs applications (Russian origin). Installed system contains portal monitors, camera, communication lines and communication boxes and server. Two fully functional separate systems has been installed on BC Bregana, one on truck entrance and another one on car entrance. In this article the operational experience of installed system is presented. This includes statistical analysis of recorded alarms, evaluation of procedures for operational stuff and maintenance and typical malfunction experience, as well as some of the recommendation for future use of detection systems.(author)

  13. Establishing control over nuclear materials and radiation sources in Georgia

    International Nuclear Information System (INIS)

    Basilia, G.

    2010-01-01

    Regulatory control over radiation sources in Georgia was lost after disintegration of the Soviet Union. A number of radiation accidents and illegal events occurred in Georgia. From 1999 Nuclear and Radiation Safety Service of the Ministry of Environmental Protection and Natural Resources is responsible for regulatory control over radiation sources in Georgia. US NRC Regulatory Assistance Program in Georgia Assist the Service in establishing long term regulatory control over sources. Main focuses of US NRC program are country-wide inventory, create National Registry of sources, safe storage of disused sources, upgrade legislation and regulation, implementation licensing and inspection activities

  14. VACOSS - variable coding seal system for nuclear material control

    International Nuclear Information System (INIS)

    Kennepohl, K.; Stein, G.

    1977-12-01

    VACOSS - Variable Coding Seal System - is intended to seal: rooms and containers with nuclear material, nuclear instrumentation and equipment of the operator, instrumentation and equipment at the supervisory authority. It is easy to handle, reusable, transportable and consists of three components: 1. Seal. The light guide in fibre optics with infrared light emitter and receiver serves as lead. The statistical treatment of coded data given in the seal via adapter box guarantees an extremely high degree of access reliability. It is possible to store the data of two undue seal openings together with data concerning time and duration of the opening. 2. The adapter box can be used for input or input and output of data indicating the seal integrity. 3. The simulation programme is located in the computing center of the supervisory authority and permits to determine date and time of opening by decoding the seal memory data. (orig./WB) [de

  15. Nuclear Security Systems and Measures for the Detection of Nuclear and Other Radioactive Material out of Regulatory Control. Implementing Guide

    International Nuclear Information System (INIS)

    2013-01-01

    Nuclear terrorism and the illicit trafficking of nuclear and other radioactive material threaten the security of all States. There are large quantities of diverse radioactive material in existence, which are used in areas such as health, the environment, agriculture and industry. The possibility that nuclear and other radioactive material may be used for terrorist acts cannot be ruled out in the current global situation. States have responded to this risk by engaging in a collective commitment to strengthen the protection and control of such material, and to establish capabilities for detection and response to nuclear and other radioactive material out of regulatory control. Through its nuclear security programme, the IAEA supports States to establish, maintain and sustain an effective nuclear security regime. The IAEA has adopted a comprehensive approach to nuclear security. This approach recognizes that an effective national nuclear security regime builds on: the implementation of relevant international legal instruments; information protection; physical protection; material accounting and control; detection of and response to trafficking in nuclear and other radioactive material; national response plans; and contingency measures. Within its nuclear security programme, the IAEA aims to assist States in implementing and sustaining such a regime in a coherent and integrated manner. Each State carries the full responsibility for nuclear security, specifically: to provide for the security of nuclear and other radioactive material and associated facilities and activities; to ensure the security of such material in use, storage or in transport; to combat illicit trafficking; and to detect and respond to nuclear security events. This is an Implementing Guide on nuclear security systems and measures for the detection of nuclear and other radioactive material out of regulatory control. The objective of the publication is to provide guidance to Member States for the

  16. Nuclear power plant control and instrumentation 1993. Working material

    International Nuclear Information System (INIS)

    1994-01-01

    The regular meeting of the International Working Group on Nuclear Power Plant Control and Instrumentation (IWG-NPPCI) was organized in order to summarize operating experience of nuclear power plant control systems, gain a general overview of activities in development of modern control systems and receive recommendations on the further directions and particular measures within the Agency's programme. The meeting was held at the Merlin-Gerin Headquarters in Paris and was attended by twenty one national delegates and observers from 17 countries. The present volume contains: (1) report on the meeting of the IWG-NPPCI, Paris, 21-22 October 1993, (2) report by the scientific secretary on the major activities of IAEA during 1991-1993 in the NPPCI area, and (3) reports of the national representatives to the International Working Group on NPPCI. The papers and discussions with practical experience and described actual problems encountered. Emphasis was placed on the technical, industrial and economic aspects of the introduction of modern control systems and on the improvement of plant availability and safety. Refs, figs and tabs

  17. Resolution 62/96 Regulation for the accounting and control of the nuclear materials

    International Nuclear Information System (INIS)

    1996-01-01

    The present Regulation is a complementary disposition of the ordinance number 208 of May 24 National System of Accounting and Control of Nuclear Materials and it has as objective to establish the relative norms to this System. As for the responsibilities it establish that the National Center of Nuclear Security (CNSN) it is the responsible for the execution from the relative tasks to the National System of Accounting and Control of Nuclear Materials. It establishes the regulations for the following aspects: licenses and authorizations for the transportation of the nuclear material and important components, Of the ceasing of the Accounting and Control, Of the Accounting and Control of the Nuclear Materials, Control of the Important Components, The Inspections, International Organism of the Atomic Energy Safeguards

  18. A system design for the nuclear material accounting reports control based on the intra-net

    International Nuclear Information System (INIS)

    Jeon, I.; Park, S. J.; Min, K. S.

    2003-01-01

    The 34 nuclear facilities, including the nuclear power plants, were on operating in Korea and the Technology Center for Nuclear Control(TCNC) has been submit the nuclear material accounting reports to the government and IAEA. At the start point of this work, all reports were controlled via manually and at now, they were controlled based on the client/server system. The fast progress of the computer and internet communication changes the environment of computing from disk operating system to web based system using internet. So, a new system to access the safeguards information and nuclear material accounting system more convenient was needed. In this thesis, a safeguards information control system including the nuclear material accounting reports at the state level based on the web was designed. The oracle RDBMS (Relational Data Base Management System) was adopted for data base management. And all users can access this program via inter-net using their own computer

  19. Approach to a generalized real-time nuclear materials control system

    International Nuclear Information System (INIS)

    Jarsch, V.; Onnen, S.; Polster, F.J.; Woit, J.

    1978-01-01

    Untrained users and a large amount of--at first glance incompatible--processes and materials are the environment of computer-aided nuclear materials control systems. To find an efficient model of the real processes and materials descriptions and to allow the operating personnel to communicate with the system in his everyday symbolism are goals in the development of the concept presented in this paper. According to this concept a real-time minicomputer-based materials control system is being implemented in the Nuclear Research Center of Karlsruhe. The chosen approach satisfies the heterogeneous requirements of the various institutes of the Center and is also applicable to other nuclear plants

  20. Material control and accounting at Exxon Nuclear, II

    International Nuclear Information System (INIS)

    Schneider, R.A.

    1985-01-01

    In this session the measurements and the associated measurement control program used at the Model Plant are described. The procedures for evaluating MUF and sigma MUF are also discussed. The use of material composition codes and their role in IAEA safeguards under the US/IAEA Safeguards Agreement are described. In addition, the various accounting forms used at the plant are described and the use of tamper-indicating seals is discussed

  1. Annual Report ABACC 2003 - Brazilian-Argentine Agency for the Accounting and Control of Nuclear Materials

    International Nuclear Information System (INIS)

    2003-01-01

    This Report describes the actions of the Brazil-Argentine of Accounting and Control of Nuclear Materials (ABACC), during the year of 2003. The developed work allowed to concluded that there is no event indicating that any nuclear material non-accounted for were deviated for non permitted activities by the Agreement for Peaceful Use of Nuclear Energy between Argentine and Brazil and by the Four Parties Agreement among these countries, the ABACC and the International Atomic Energy Agency (IAEA)

  2. The nuclear materials control and accountability internal audit program at the Oak Ridge Y-12 plant

    International Nuclear Information System (INIS)

    Lewis, T.J.

    1987-01-01

    The internal audit program of the Nuclear Material Control and Accountability (NMCandA) Department at the Oak Ridge Y-12 Plant, through inventory-verification audits, inventory-observation audits, procedures audits, and records audits, evaluates the adequacy of material accounting and control systems and procedures throughout the Plant; appraises and verifies the accuracy and reliability of accountability records and reports; assures the consistent application of generally accepted accounting principles in accounting for nuclear materials; and assures compliance with the Department of Energy (DOE) and NMCandA procedures and requirements. The internal audit program has significantly strengthened the control and accountability of nuclear materials through improving the system of internal control over nuclear materials, increasing the awareness of materials control and accountability concerns within the Plant's material balance areas (MBAs), strengthening the existence of audit trails within the overall accounting system for nuclear materials, improving the accuracy and timeliness of data submitted to the nuclear materials accountability system, auditing the NMCandA accounting system to ensure its accuracy and reliability, and ensuring that all components of that system (general ledgers, subsidiary ledgers, inventory listings, etc.) are in agreement among themselves

  3. Nuclear material control and accountancy in a radiochemical plant

    International Nuclear Information System (INIS)

    Crawford, J. M.

    1999-01-01

    The measurement systems in use at Savannah River Site, SRS, to determine material balance around dissolution of fuel, separation and purification of actinides to a nitrate product are described. To ensure that volume accuracy's are as expected, SRS has implemented a volumetric measurement control program to control errors and to detect anomalies. The program consists of periodic instrument calibrations, comparison of in-tank density measurements. An analytical quality control program is in place at SRS to provide assurance that analysis are reliable and to estimate and monitor method performance. Checks include the analysis of standard prior to the use of each method each shift the method is used. At SRS cumulative inventory difference is compared to the combined errors for the balance. The results from current evaluations for uranium and plutonium balances are presented [ru

  4. Decree No. 208 On National Accounting and Control System of the Nuclear Materials

    International Nuclear Information System (INIS)

    1996-01-01

    The present Decree establishes the arrangements to formalize the National Accounting and Control System of the Nuclear Materials, the which one has the objectives of contributing to an efficient and economic management of the nuclear materials in the national territory; to establish the arrangements directed to detect any employment, lost or unauthorized movement of the nuclear material; and to establish the measures of necessary control to give fulfillment to the international commitments assumed by the Cuban State in relationship to the nuclear materials, important components, or both. It also establishes the following responsibilities: The Ministry of Science Technology and Environment is the Organism of the Central Administration of the State responsible for the supervision and control of the dispositions and it delegates in the National Center of Nuclear Security the execution of the functions assigned to this Ministry

  5. Applications of Kalman Filtering to nuclear material control

    International Nuclear Information System (INIS)

    Pike, D.H.; Morrison, G.W.; Westley, G.W.

    1977-10-01

    The feasibility of using modern state estimation techniques (specifically Kalman Filtering and Linear Smoothing) to detect losses of material from material balance areas is evaluated. It is shown that state estimation techniques are not only feasible but in most situations are superior to existing methods of analysis. The various techniques compared include Kalman Filtering, linear smoothing, standard control charts, and average cumulative summation (CUSUM) charts. Analysis results indicated that the standard control chart is the least effective method for detecting regularly occurring losses. An improvement in the detection capability over the standard control chart can be realized by use of the CUSUM chart. Even more sensitivity in the ability to detect losses can be realized by use of the Kalman Filter and the linear smoother. It was found that the error-covariance matrix can be used to establish limits of error for state estimates. It is shown that state estimation techniques represent a feasible and desirable method of theft detection. The technique is usually more sensitive than the CUSUM chart in detecting losses. One kind of loss which is difficult to detect using state estimation techniques is a single isolated loss. State estimation procedures are predicated on dynamic models and are well-suited for detecting losses which occur regularly over several accounting periods. A single isolated loss does not conform to this basic assumption and is more difficult to detect

  6. Systematic Approach to Training and Professional Development Specialists of Physical Protection, Accounting and Control of Nuclear Materials in Ukraine

    International Nuclear Information System (INIS)

    Klos, Nataliia

    2014-01-01

    Conclusion: 1. Ukraine has created the State system for professional training, retraining and professional development of specialists in physical protection, accounting and control of nuclear materials. 2. Ukraine has founded profession physical protection, accounting and control of nuclear materials

  7. Annual report 2001. ABACC 10 years - Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials, RJ, Brazil

    International Nuclear Information System (INIS)

    2001-01-01

    This document represents the 2001 Annual report. ABACC 10 years - Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials during the year of 2000, covering safeguards, accounting and control of nuclear materials

  8. Annual report 2000. ABACC - Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials, RJ, Brazil

    International Nuclear Information System (INIS)

    2000-01-01

    This document reports the general activities of the ABACC - Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials during the year of 2000, covering safeguards, accounting and control of nuclear materials

  9. Annual report 2004 of ABACC - Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials, RJ, Brazil

    International Nuclear Information System (INIS)

    2004-01-01

    This document reports the general activities of the ABACC - Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials during the year of 2004, covering safeguards, accounting and control of nuclear materials

  10. Comprehensive nuclear materials

    CERN Document Server

    Allen, Todd; Stoller, Roger; Yamanaka, Shinsuke

    2012-01-01

    Comprehensive Nuclear Materials encapsulates a panorama of fundamental information on the vast variety of materials employed in the broad field of nuclear technology. The work addresses, in five volumes, 3,400 pages and over 120 chapter-length articles, the full panorama of historical and contemporary international research in nuclear materials, from Actinides to Zirconium alloys, from the worlds' leading scientists and engineers. It synthesizes the most pertinent research to support the selection, assessment, validation and engineering of materials in extreme nuclear environments. The work discusses the major classes of materials suitable for usage in nuclear fission, fusion reactors and high power accelerators, and for diverse functions in fuels, cladding, moderator and control materials, structural, functional, and waste materials.

  11. Quality control of three main materials for civil construction of nuclear power plant

    International Nuclear Information System (INIS)

    Wang Feng

    2011-01-01

    The construction and operation of nuclear power plant is a systematic engineering. To ensure quality and safety of nuclear power plants, each work from design to operation can have certain impact on the quality and safety of the project. The quality of each related work shall be controlled. Starting from the quality control over raw materials for the civil construction of nuclear power plant, this article mainly analyzes how to control the quality and manage the three main materials of steel, concrete and modular parts in the civil construction. (author)

  12. Risk Informed Approach for Nuclear Security Measures for Nuclear and Other Radioactive Material out of Regulatory Control. Implementing Guide

    International Nuclear Information System (INIS)

    2015-01-01

    This publication provides guidance to States for developing a risk informed approach and for conducting threat and risk assessments as the basis for the design and implementation of sustainable nuclear security systems and measures for prevention of, detection of, and response to criminal and intentional unauthorised acts involving nuclear and other radioactive material out of regulatory control. It describes concepts and methodologies for a risk informed approach, including identification and assessment of threats, targets, and potential consequences; threat and risk assessment methodologies, and the use of risk informed approaches as the basis for informing the development and implementation of nuclear security systems and measures. The publication is an Implementing Guide within the IAEA Nuclear Security Series and is intended for use by national policy makers, law enforcement agencies and experts from competent authorities and other relevant organizations involved in the establishment, implementation, maintenance or sustainability of nuclear security systems and measures related to nuclear and other radioactive material out of regulatory control

  13. Non-proliferation through effective international control, with particular reference to peaceful uses of nuclear material as a result of nuclear disarmament and international control of plutonium

    International Nuclear Information System (INIS)

    Imai, Ryukichi

    1993-01-01

    The role of nuclear factors in the international political situation has changed. The emphasis is now on the new circumstance of the post cold-war world. Non-proliferation is dealt with through effective international control, with particular reference to peaceful uses of nuclear material as a result of nuclear weapons dismantling and international control of plutonium

  14. Nuclear material control and accounting by process simulation with smalltalk

    International Nuclear Information System (INIS)

    O'Rourke, P.E.; Soper, P.D.

    1986-01-01

    Smalltalk, an object oriented computer language, enables programmers to build data structures and code which explicitly reflect the structure and working of a facility in an easily understood fashion. This paper discusses demonstration material control and accounting system that has been written in Smalltalk for the IBM PC-XT computer using the methods environment from Digitalk, Inc. The system is designed to track uranium through a processing facility. The objects are generic and not specific to any facility, objects like vault positions or tanks are created from classes of objects called uranium accounts. Uranium account objects are connected by a list of transfer rules which should reflect the operation of the facility. If operations or equipment are changed, only those rules or objects which simulate the affected components must be changed. By the nature of Smalltalk code, other objects will not be affected by these changes

  15. The nuclear materials contraband

    International Nuclear Information System (INIS)

    Williams, P.; Woessner, P.

    1996-01-01

    Several seizures of nuclear materials carried by contraband have been achieved. Some countries or criminal organizations could manufacture atomic bombs and use them. This alarming situation is described into details. Only 40% of drugs are seized by the American police and probably less in western Europe. The nuclear materials market is smaller than the drugs'one but the customs has also less experience to intercept the uranium dispatch for instance more especially as the peddlers are well organized. A severe control of the international transports would certainly allow to seize a large part of nuclear contraband materials but some dangerous isotopes as uranium 235 or plutonium 239 are little radioactive and which prevents their detection by the Geiger-Mueller counters. In France, some regulations allow to control the materials used to manufacture the nuclear weapons, and diminish thus the risk of a nuclear materials contraband. (O.L.). 4 refs., 2 figs

  16. Destructive and nondestructive methods for controlling nuclear materials for the purpose of safeguards in the CSSR

    International Nuclear Information System (INIS)

    Krivanek, M.; Krtil, J.; Moravec, J.; Pacak, P.; Sus, F.

    1977-01-01

    Central Control Laboratory (CCL) of the Nuclear Research Institute was charged with the control of nuclear materials in CSSR within the framework of the safeguards system. The CCL has been directed by the Department of nuclear safety and safeguards of CAEC according to a long-term plan, elaborated for controlling nuclear material in CSSR. The CCL has mainly been performing independent, rapid, accurate, and reliable analyses of nuclear materials, using destructive as well as non-destructive methods; the analyses of samples taken in MBA's in CSSR are mentioned, concerning the determinations of U, Pu, and Th contents, isotopic compositions of U and Pu, and burn up. The results of the analyses have served for the material and isotopic balances of fissile materials and the control of fuel reprocessing under laboratory conditions. The methods for sampling and sample transport as well as sample treatment before the analysis are described. The experience is given, obtained at CCL during a routine application of chemical methods for highly precise determinations of U, Pu, and Th (titration-based methods), mass-spectrometric determinations of U and Pu (isotopic composition, IDA using 233 U and 242 Pu), and burn-up determinations based on radioactive fissile products (Cs, Ru, Ce) and stable Nd isotopes. Some non-destructive methods for controlling nuclear materials (passive gamma-spectrometry) are discussed

  17. U.S. N.R.C. special safeguards study on nuclear material control and accounting

    International Nuclear Information System (INIS)

    Smith, G.D.

    1976-01-01

    In Feb. 1975, NRC directed that an effort be made to determine a safeguards program for Pu recycle. This paper summarizes results of individual contractor evaluations of upgrading material control and accounting concepts as applied to strategically important special nuclear material and describes staff interpretations of these results as applied to future high-throughput fuel-cycle facilities. Real-time material control, design for physical inventory, Pu isotopics control and calorimetry, and material control and accounting for highly enriched uranium fuel materials were the concepts studied. 1 table, 15 references

  18. STUDY ON STATE SYSTEMS OF ACCOUNTING AND CONTROL OF NUCLEAR MATERIALS IN SOME COUNTRIES

    International Nuclear Information System (INIS)

    ZIDAN, W.I.; EL-GAMMAL, W.A.

    2008-01-01

    All Safeguards agreements between the International Atomic Energy Agency (IAEA) and its Member States require the State to establish and maintain a system of accounting for and control of nuclear material subject to safeguards (SSAC) in order to keep track on nuclear materials subject to such agreements. SSACs implementation in 34 IAEA member States varying in their size of nuclear activities, international treaties and nuclear power plants ownership were studied. The study is oriented to state legal framework, SSAC authority, dependency, objectives and functions

  19. Act No. 80-572 on protection and control of nuclear materials

    International Nuclear Information System (INIS)

    1980-01-01

    This Act lays down that the import, export, possession, transfer, use and transport of nuclear materials defined by the Act are subject to licensing and control under conditions to be determined by Decree. The purpose of this control is to avoid loss, theft or diversion of such materials. Any person who obtains fraudulently nuclear material referred to in the Act or who carries out activities involving such material without the required licence shall be subject to severe penalties. Finally, it is provided that the Government shall report to Parliament each year on operation of the provisions of this Act. (NEA) [fr

  20. Concerning major items in government ordinance requiring modification of part of enforcement regulation for law relating to control of nuclear material, nuclear fuel and nuclear reactor

    International Nuclear Information System (INIS)

    1989-01-01

    The report describes major items planned to be incorporated into the enforcement regulations for laws relating to control of nuclear material, nuclear fuel and nuclear reactor. The modifications have become necessary for the nation to conclude a nuclear material protection treaty with other countries. The modification include the definitions of 'special nuclear fuel substances' and 'special nuclear fuel substances' and 'special nuclear fuel substances subject to protection'. The modifications require that protective measures be taken when handling and transporting special nuclear fuel substances subject to protection. Transport of special nuclear fuel substances requires approval from the Prime Minister or Transport Minister. Transport of special nuclear fuel substances subject to protection should be conducted after notifying the prefectural Public Safety Commission. Transport of special nuclear fuel substances subject to protection requires the conclusion of arrangements among responsible persons and approval of them from the Prime Minister. (N.K.)

  1. Annual Report 2007 - ABACC - Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials

    International Nuclear Information System (INIS)

    2007-01-01

    This document reports activities during the year 2007 related to: technical activities as application of safeguards; management of the Quadripartite Agreement and the SCCC - Common System for Accounting and Control of Nuclear Materials; training; technical cooperation; outlook for 2008 and; institutional, administrative and financial activities; technical glossary; list of brazilian facilities; list of argentine facilities and a list of institution of nuclear area

  2. A saddle-point for data verification and materials accountancy to control nuclear material

    International Nuclear Information System (INIS)

    Beedgen, R.

    1983-01-01

    Materials accountancy is one of the main elements in international safeguards to determine whether or not nuclear material has been diverted in nuclear plants. The inspector makes independent measurements to verify the plant-operator's data before closing the materials balance with the operator's data. All inspection statements are in principle probability statements because of random errors in measuring the material and verification on a random sampling basis. Statistical test procedures help the inspector to decide under this uncertainty. In this paper a statistical test procedure representing a saddle-point is presented that leads to the highest guaranteed detection probability taking all concealing strategies into account. There are arguments favoring a separate statistical evaluation of data verification and materials accountancy. Following these considerations, a bivariate test procedure is explained that evaluates verification and accountancy separately. (orig.) [de

  3. Application of telerobotic control to remote processing of nuclear material

    International Nuclear Information System (INIS)

    Merrill, R.D.; Grasz, E.L.; Herget, C.J.; Gavel, D.T.; Addis, R.B.; DeMinico, G.A.

    1991-01-01

    In processing radioactive material there are certain steps which have customarily required operators working at glove box enclosures. This can subject the operators to low level radiation dosages and the risk of accidental contamination, as well as generate significant radioactive waste to accommodate the human interaction. An automated system is being developed to replace the operator at the glove box and thus remove the human from these risks, and minimize waste. Although most of the processing can be automated with very little human operator interaction, there are some tasks where intelligent intervention is necessary to adapt to unexpected circumstances and events. These activities will require that the operator be able to interact with the process using a remote manipulator in a manner as natural as if the operator were actually in the work cell. This robot-based remote manipulation system, or telerobot, must provide the operator with an effective means of controlling the robot arm, gripper and tools. This paper describes the effort in progress in Lawrence Livermore National Laboratory to achieve this capability. 8 refs

  4. 10 CFR 74.33 - Nuclear material control and accounting for uranium enrichment facilities authorized to produce...

    Science.gov (United States)

    2010-01-01

    ... and special nuclear material in the accounting records are based on measured values; (3) A measurement... 10 Energy 2 2010-01-01 2010-01-01 false Nuclear material control and accounting for uranium... Section 74.33 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL...

  5. Regulation of nuclear materials control and accountability and inspection practices in the Russian Federation

    International Nuclear Information System (INIS)

    Volodin, Y.G.; Dimitriev, A.M.; Krouptchatnikov, B.N.

    1999-01-01

    Review and assessment of the resent state orders and directives regulating nuclear materials control and accountability, defining responsibilities and incorporation of different agencies in nuclear materials control and accountability (MC and A) area in Russia, related actions to stipulate tasks in developing the State System of Accounting for and Control of Nuclear Materials (SSAC) and a role of the Federal Nuclear and Radiation Safety Authority of Russia (Gosatomnadzor) in this process is presented. Main principles, elements and practical results of Gosatomnadzor inspection activities are reported. Elements of the SSAC, status of works in establishment of the SSAC and in implementation of fragments of the SSAC, an international assistance in up-grading MC and A systems at some of the Russian facilities and in establishing the SSAC in Russia is outlined. (author)

  6. Piles used for the nuclear control of materials; Empilements pour le controle nucleaire des materiaux

    Energy Technology Data Exchange (ETDEWEB)

    Raievski, V; Sautiez, B; Bailly du Bois, B; Tretiakoff, O; Thome, P; Vidal, R; Koppel Martelly, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    The devices which make it possible to check on the nuclear qualities of the materials used in reactor construction are described. These verifications bear on substantial masses of materials, following the last stage of their machining. The components found in all these are a graphite pile into which the material to be investigated is inserted, a source of neutrons made up of an Ra-Be system, and a proportional BF{sub 3} counter. The devices described here bear on checking graphite, beryllium oxide and uranium absorption, as well as on a verification of the {sup 235}U content of fuel elements. (author)Fren. [French] On decrit des dispositifs permettant de controler les qualites nucleaires de materiaux utilises dans la construction des piles. Ce controle s'effectue sur des masses importantes de materiaux apres la phase finale d'usinage. Ces dispositifs ont en commun un empilement de graphite recevant le materiau a etudier, une source de neutrons de Ra-Be et un compteur proportionnel a BF{sub 3}. Les dispositifs decrits concernent le controle de l'absorption du graphite, de la glucine et de l'uranium, ainsi que le controle de la teneur en {sup 235}U des elements de combustion. (auteur)

  7. Control and Management of Small Quantity Nuclear Material (SQNM) on Safeguards

    International Nuclear Information System (INIS)

    Park, Jae Hwan; Shin, Byung Woo; Park, Jae Beom

    2009-01-01

    Small Quantity Nuclear Material (SQNM) is defined as the nuclear material that is below the amount approved in atomic energy act. SQNM generally lists depleted uranium (DU) used as a catalyst or shielding material in exposure devices in industries. The SQNM users have a duty to report information on possessing and using SQNM regularly to the government. All nuclear materials must be included in IAEA reporting lists according to safeguards agreement and additional protocol regardless of amount. However, it is difficult to investigate the status of nuclear material possessed in industries because SQNM is excepted regulation item list in atomic energy act. Most SQNM user industries are small companies so they have some problems like the loss of nuclear material after bankruptcy. Even though the damage of radiation leakage is very low, loss or careless management of nuclear material causes confusion. Thus, developing a control and management system for SQNM is essential. This paper discusses the present condition and prospect of control and management SQNM in Korea

  8. The first stage of BFS integrated system for nuclear materials control and accounting. Final report

    International Nuclear Information System (INIS)

    1996-09-01

    The BFS computerized accounting system is a network-based one. It runs in a client/server mode. The equipment used in the system includes a computer network consisting of: One server computer system, including peripheral hardware and three client computer systems. The server is located near the control room of the BFS-2 facility outside of the 'stone sack' to ensure access during operation of the critical assemblies. Two of the client computer systems are located near the assembly tables of the BFS-1 and BFS-2 facilities while the third one being the Fissile Material Storage. This final report details the following topics: Computerized nuclear material accounting methods; The portal monitoring system; Test and evaluation of item control technology; Test and evaluation of radiation based nuclear material measurement equipment; and The integrated demonstration of nuclear material control and accounting methods

  9. Auditing nuclear materials statements

    International Nuclear Information System (INIS)

    Anon.

    1973-01-01

    A standard that may be used as a guide for persons making independent examinations of nuclear materials statements or reports regarding inventory quantities on hand, receipts, production, shipment, losses, etc. is presented. The objective of the examination of nuclear materials statements by the independent auditor is the expression of an opinion on the fairness with which the statements present the nuclear materials position of a nuclear materials facility and the movement of such inventory materials for the period under review. The opinion is based upon an examination made in accordance with auditing criteria, including an evaluation of internal control, a test of recorded transactions, and a review of measured discards and materials unaccounted for (MUF). The standard draws heavily upon financial auditing standards and procedures published by the American Institute of Certified Public Accountants

  10. A survey of infrared technology for special nuclear materials control and accounting

    International Nuclear Information System (INIS)

    Stanbro, W.D.; Leonard, R.S.; Steverson, C.A.; Angerman, M.I.

    1992-03-01

    This report reviews some aspects of current infrared measurement technology and suggests two applications in which it may be used in nuclear safeguards. These applications include both materials control and materials accounting. In each case, the measurements rely on passive detection of infrared radiation generated from the heat produced by the radioactive decay of plutonium. Both imaging and non-imaging techniques are discussed

  11. Automated personal identification: a new technique for controlling access to nuclear materials and facilities

    International Nuclear Information System (INIS)

    Eccles, D.R.

    1975-01-01

    Special nuclear materials must be protected against the threat of diversion or theft, and nuclear facilities against the threat of industrial sabotage. Implicit in this protection is the means of controlling access to protected areas, material access areas, and vital areas. With the advent of automated personal identification technology, the processes of access control can be automated to yield both higher security and reduced costs. This paper first surveys the conventional methods of access control; next, automated personal identification concepts are presented and various systems approaches are highlighted; finally, Calspan's FINGERSCAN /sub TM/ system for identity verification is described

  12. Methods for nuclear material control used in the basic production of a typical radiochemical plant

    International Nuclear Information System (INIS)

    Kositsyn, V.F.; Mukhortov, N.F.; Korovin, Yu.I.; Rudenko, V.S.; Petrov, A.M.

    1999-01-01

    Techniques for destructive and non-destructive assay of the component and isotopic composition of nuclear materials are described, namely gravimetric, titrimetric, coulometric, mass spectrometry, as well as those based on registration of neutron and γ radiations. Their metrologic characteristics are described. The techniques described are suggested to be used for nuclear material (NM) control and accounting purposes at the model radiochemical plant for processing irradiated fuel subassemblies from power reactors. The measurement control program is also described. This program is intended for the measurement quality assurance in the framework of NM control and accountancy system [ru

  13. The national system of nuclear material control development and challenges. Vol. 3

    International Nuclear Information System (INIS)

    Badawy, I.

    1996-01-01

    This paper presents the major factors which may affect the implementation of the National System of Nuclear Material Accounting and Safeguards in Egypt. Developments of this National System-being a division of the Nuclear Regulatory Body in the country-are discussed. Also, recent requirements of the International Atomic Energy Agency within the policy of strengthening its regime of international nuclear control are reviewed. The challenges facing the National System are indicated taking in consideration the anticipated growth in the nuclear field in Egypt by the year 2000 and after. 2 figs

  14. The national system of nuclear material control development and challenges. Vol. 3

    Energy Technology Data Exchange (ETDEWEB)

    Badawy, I [National Centre for Nuclear Safety and Radiation Control, Atomic Energy Authority, Cairo (Egypt)

    1996-03-01

    This paper presents the major factors which may affect the implementation of the National System of Nuclear Material Accounting and Safeguards in Egypt. Developments of this National System-being a division of the Nuclear Regulatory Body in the country-are discussed. Also, recent requirements of the International Atomic Energy Agency within the policy of strengthening its regime of international nuclear control are reviewed. The challenges facing the National System are indicated taking in consideration the anticipated growth in the nuclear field in Egypt by the year 2000 and after. 2 figs.

  15. Building control for nuclear materials R and D facility

    International Nuclear Information System (INIS)

    Hart, O.

    1979-01-01

    The new plutonium research and development facility at LASL was the first facility to be completed in the United States under the new environmental requirements. To insure that these new requirements are met, a redundant computer system is used to monitor and control the building. This paper describes the supervisory control and data acquisition system that was implemented to perform that function

  16. Nuclear material operations manual

    International Nuclear Information System (INIS)

    Tyler, R.P.

    1981-02-01

    This manual provides a concise and comprehensive documentation of the operating procedures currently practiced at Sandia National Laboratories with regard to the management, control, and accountability of nuclear materials. The manual is divided into chapters which are devoted to the separate functions performed in nuclear material operations-management, control, accountability, and safeguards, and the final two chapters comprise a document which is also issued separately to provide a summary of the information and operating procedures relevant to custodians and users of radioactive and nuclear materials. The manual also contains samples of the forms utilized in carrying out nuclear material activities. To enhance the clarity of presentation, operating procedures are presented in the form of playscripts in which the responsible organizations and necessary actions are clearly delineated in a chronological fashion from the initiation of a transaction to its completion

  17. Nuclear material operations manuals

    International Nuclear Information System (INIS)

    Tyler, R.P.

    1979-06-01

    This manual is intended to provide a concise and comprehensive documentation of the operating procedures currently practiced at Sandia Laboratories with regard to the management, control, and accountability of radioactive and nuclear materials. The manual is divided into chapters which are devoted to the separate functions performed in nuclear material operations-management, control, accountability, and safeguards, and the final two chapters comprise a document which is also issued separately to provide a summary of the information and operating procedures relevant to custodians and users of radioactive and nuclear materials. The manual also contains samples of the forms utilized in carrying out nuclear material activities. To enhance the clarity of presentation, operating procedures are presented in the form of playscripts in which the responsible organizations and necessary actions are clearly delineated in a chronological fashion from the initiation of a transaction to its completion

  18. Nuclear material operations manual

    International Nuclear Information System (INIS)

    Tyler, R.P.; Gassman, L.D.

    1978-04-01

    This manual is intended to provide a concise and comprehensive documentation of the operating procedures currently practiced at Sandia Laboratories with regard to the management, control, and accountability of radioactive and nuclear materials. The manual is divided into chapters which are devoted to the separate functions performed in nuclear material operations--management, control, accountability, and safeguards, and the final two chapters comprise a document which is also issued separately to provide a summary of the information and operating procedures relevant to custodians and users of radioactive and nuclear materials. The manual also contains samples of the forms utilized in carrying out nuclear material activities. To enhance the clarity of presentation, operating procedures are presented in the form of ''play-scripts'' in which the responsible organizations and necessary actions are clearly delineated in a chronological fashion from the initiation of a transaction to its completion

  19. Federal Automated Information System of Nuclear Material Control and Accounting: Uniform System of Reporting Documents

    International Nuclear Information System (INIS)

    Pitel, M V; Kasumova, L; Babcock, R A; Heinberg, C

    2003-01-01

    One of the fundamental regulations of the Russian State System for Nuclear Material Accounting and Control (SSAC), ''Basic Nuclear Material Control and Accounting Rules,'' directed that a uniform report system be developed to support the operation of the SSAC. According to the ''Regulation on State Nuclear Material Control and Accounting,'' adopted by the Russian Federation Government, Minatom of Russia is response for the development and adoption of report forms, as well as the reporting procedure and schedule. The report forms are being developed in tandem with the creation of an automated national nuclear material control and accounting system, the Federal Information System (FIS). The forms are in different stages of development and implementation. The first report forms (the Summarized Inventory Listing (SIL), Summarized Inventory Change Report (SICR) and federal and agency registers of nuclear material) have already been created and implemented. The second set of reports (nuclear material movement reports and the special anomaly report) is currently in development. A third set of reports (reports on import/export operations, and foreign nuclear material temporarily located in the Russian Federation) is still in the conceptual stage. To facilitate the development of a unified document system, the FIS must establish a uniform philosophy for the reporting system and determine the requirements for each reporting level, adhering to the following principles: completeness--the unified report system provides the entire range of information that the FIS requires to perform SSAC tasks; requisite level of detail; hierarchical structure--each report is based on the information provided in a lower-level report and is the source of information for reports at the next highest level; consistency checking--reports can be checked against other reports. A similar philosophy should eliminate redundancy in the different reports, support a uniform approach to the contents of

  20. Determination of internationally controlled materials according to provisions of the law for the regulations of nuclear source materials, nuclear fuel materials and reactors

    International Nuclear Information System (INIS)

    1981-01-01

    This rule is established under the provisions of the law concerning the regulation of nuclear raw materials, nuclear fuel materials and reactors, and the former notification No. 26, 1961, is hereby abolished. Internationally regulated goods under the law are as follows: nuclear raw materials, nuclear fuel materials and moderator materials transferred by sale or other means from the governments of the U.S., U.K., Canada, Australia and France or the persons under their jurisdictions according to the agreements concluded between the governments of Japan and these countries, respectively, the nuclear fuel materials recovered from these materials or produced by their usage, nuclear reactors, the facilities and heavy water transferred by sale or other means from these governments or the persons under their jurisdictions, the nuclear fuel materials produced by the usage of such reactors, facilities and heavy water, the nuclear fuel materials sold by the International Atomic Energy Agency under the contract between the Japanese government and the IAEA, the nuclear fuel materials recovered from these materials or produced by their usage, the heavy water produced by the facilities themselves transferred from the Canadian government, Canadian governmental enterprises or the persons under the jurisdiction of the Canadian government or produced by the usage of these facilities, etc. (Okada, K.)

  1. Licensing authority's control of radiation sources and nuclear materials in Brazil

    International Nuclear Information System (INIS)

    Binns, D.A.C.

    2002-01-01

    Full text: The Brazilian Nuclear Energy Commission is the national licensing authority and among its responsibilities is the control of nuclear materials and radiation sources. This control is carried out in three different ways: 1) Control of the import and export of nuclear materials and radiation sources. To be able to import or export any nuclear material or radiation source, the user has to have an explicit permission of the licensing authority. This is controlled by electronic means in which the user has to fill a special form found on the licensing authority's home page, where he has to fill in his name, license number, license number of his radiation protection officer and data of the material to be imported or exported. These data are checked with a data base that contains all the information of the licensed users and qualified personnel before authorization is emitted. The airport authorities have already installed x-ray machines to check all baggages entering or leaving the country. 2) Transport and transfer permit for radiation sources. In order to transport and/or transfer radiations sources and nuclear materials within the country, the user(s) have to submit an application to the licensing authority. The user(s) fill out an application form where he fills in his company's name, licensing I.D., radiation protection officer's name and I.D and identification of the sources involved. These information are checked with the licensing operations data before the operations is permitted. 3) Inspections and radiation monitoring systems. Routine and regulatory inspections are continuously carried out where the user's radiation sources and nuclear materials inventory are checked. Also the physical security and protection of these materials are verified. The installation of monitoring systems is an item that is being discussed with the airport authorities so as to increase the possibilities of detecting any illegal transport of these materials. (author)

  2. Development of a computerized nuclear materials control and accounting system for a fuel reprocessing plant

    International Nuclear Information System (INIS)

    Crawford, J.M.; Ehinger, M.H.; Joseph, C.; Madeen, M.L.

    1979-07-01

    A computerized nuclear materials control and accounting system (CNMCAS) for a fuel reprocessing plant is being developed by Allied-General Nuclear Services at the Barnwell Nuclear Fuel Plant. Development work includes on-line demonstration of near real-time measurement, measurement control, accounting, and processing monitoring/process surveillance activities during test process runs using natural uranium. A technique for estimating in-process inventory is also being developed. This paper describes development work performed and planned, plus significant design features required to integrate CNMCAS into an advanced safeguards system

  3. Development of a computerized nuclear materials control and accounting system for a fuel reprocessing plant

    International Nuclear Information System (INIS)

    Crawford, J.M.; Ehinger, M.H.; Joseph, C.; Madeen, M.L.

    1979-01-01

    A computerized nuclear materials control and accounting system (CNMCAS) for a fuel reprocessing plant is being developed by Allied-General Nuclear Services at the Barnwell Nuclear Fuel Plant. Development work includes on-line demonstration of near real-time measurement, measurement control, accounting, and processing monitoring/process surveillance activities during test process runs using natural uranium. A technique for estimating in-process inventory is also being developed. This paper describes development work performed and planned, plus significant design features required to integrate CNMCAS into an advanced safeguards system. 2 refs

  4. Nuclear material control at IEA-R1 nuclear research reactor

    International Nuclear Information System (INIS)

    1988-01-01

    The control measurements system and verification of physical inventory for fuel elements used in the operation of IEA-R1 nuclear research reactor are described. The computer code used for burn-up calculation are shown. (E.G.) [pt

  5. Implementing of the nuclear materials accounting and control computerized system at JINR

    International Nuclear Information System (INIS)

    Dobryanskij, V.M.; Kalyakin, N.N.; Koltin, G.P.; Samojlov, V.N.; Cheker, A.V.; Shestakov, B.A.

    2000-01-01

    The results of the development of the computerized nuclear materials accounting system at the Joint Institute for Nuclear Research (JINR) are submitted. This work was carried out under Russian-American Nuclear Materials Protection, Control and Accounting (MPCandA) Program. The System was implemented at the Institute, it was attested to work with sensitive information. The computerized information nuclear materials accounting and control system, named MTIS (Materials Tracking Information System), is intended for the automated accounting of the nuclear materials used in JINR, tracking their moving, changes of their inventory amounts, preparation of the required documentation, and also for information support of the measures spent in the JINR on MPCandA program. MTIS can prepare reports for federal level and can also generate data to be reported for internal purposes. MTIS includes as one of the subsystems a program module to prepare reporting information to the Federal Information System (FIS). The system MTIS provides control of access to the database (DB), protection of the information against the non-authorized access, division of the data into the sensitive and non-sensitive data. (author)

  6. Development of technologies for national control of and accountancy for nuclear materials

    International Nuclear Information System (INIS)

    Choi, Young Myung; Kwack, E. H.; Kim, B. K.

    2002-03-01

    The aim of this project is to establish a rigid foundation of national safeguards and to develop the new technologies for the nuclear control. This project is composed of four different technologies; 1. Monitoring technology for nuclear materials, 2. Detection technology for a single particle, 3. Safeguards information management technology, 4. Physical protection technology. Various studies such as a remote verification system for CANDU spent fuel in dry storage canister, a spent fuel verification system using an optical fiber scintillator, and development of softwares for safeguards and physical protection were performed in the frist phase('99-'01). As a result of this research, it has been identified that the developed technologies could be a crucial means of the control for the nuclear material and facilities related. We are planing to accomplish a steady national safeguard system in the second phase('02-'06). This research will help to elevate the transparency and credibility in national nuclear activities by improving the relative technologies

  7. RETIMAC: a real-time material control concept for strategic special nuclear material

    International Nuclear Information System (INIS)

    Shea, T.E.

    1975-01-01

    As one possible means to upgrade licensee safeguards systems, the NRC is exploring a real-time material control concept. The concept incorporates process controls, material containment provisions, and extensive instrumentation. Plants incorporating this concept would be better able to prevent, deter, and detect diversion, and to assure that diversion has not gone undetected. A substantial methods development, evaluation, and preliminary standards development program is under way to develop the basis for future policy decisions

  8. Order of 26 March 1982 on the protection and control of nuclear materials during transport

    International Nuclear Information System (INIS)

    1982-01-01

    This Order was made in implementation of Act No. 80-572 of 25th July 1980 on protection and control of nuclear materials and in particular, of Decree No. 81-512 of 12th May 1981, which was itself made in pursuance of the Act. In accordance with the Decree, this Order determines the rules applicable to the protection and control of nuclear materials in course of carriage, especially in connection with the supervision of the conditions in which such transport is carried out and the authorities warned in case of an incident, accident or any occurrence whatsoever which is likely to delay or jeopardize execution of the planned transport operation or protection of the nuclear material concerned. (NEA) [fr

  9. Main requirements and criteria for State nuclear material control and accounting

    International Nuclear Information System (INIS)

    Ryazanov, B.G.; Goryunov, V.K.; Erastov, V.V.

    1999-01-01

    The paper presents comments and substantiation of the main requirements and criteria for the State nuclear materials (NM) control and accounting system in the draft of the federal Main regulations of NM control and accounting. The State NM control and accounting system structure and design principles, the list of nuclear and special non-nuclear materials which are subject to the control and accounting, NM control and accounting principles are considered. Measurement system for the values for NM control and accounting and measurement assurance program, NM transfer procedures, physical inventory taking, closing a material balance and evaluation of inventory difference and balance closure of bulk form NM are shown. Accounting units in the inventory, the system accounting report documentation and preliminary notifications, the NM control and accounting arrangement, the federal and departmental control in the State NM control and accounting system, the State NM control and accounting system supervision and requirement to the personnel carrying out the NM control and accounting are discussed [ru

  10. Raising awareness about protection and control of nuclear materials held by 'small-scale holders'

    International Nuclear Information System (INIS)

    Ladsous, D.; Coulie, E.; Giorgio, M.

    2013-01-01

    In France, the activities carried out by the 'small-scale holders' of nuclear materials are organized by a specific regulatory system which defines in a detailed way their obligations and the means of control of the government. The first part of the article presents the legal framework relating to the use of nuclear materials by small-scale holders in civilian fields. The importance of the declaration of the nuclear material inventory is clearly emphasized and must be prepared and transmitted to the Institute for Radiological Protection and Nuclear Safety (IRSN) every year. The second part describes how this declaration is used to provide basic information for the competent Ministry and the inspectors to check the correct application of the regulatory requirements relating to physical protection and to the control of nuclear materials. Finally, the last part presents the on-site inspections carried out by sworn and accredited inspectors under the authority of the competent Authority, which provide an overall picture and allow an evaluation of the risks of theft, loss or diversion of these materials. (authors)

  11. Proceedings of the Tripartite Seminar on Nuclear Material Accounting and Control at Radiochemical Plants

    International Nuclear Information System (INIS)

    1999-01-01

    The problems of creation and operation of nuclear materials (NM) control and accounting systems and their components at radiochemical plants were discussed in seminar during November 2-6 of 1998. There were 63 Russian and 25 foreign participants in seminar. The seminar programme includes following sessions and articles: the aspects of State NM control and accountancy; NM control and accounting in radiochemical plants and at separate stages of reprocessing of spent nuclear fuel and irradiated fuel elements of commercial reactors; NM control and accountancy in storage facilities of radiochemical plants; NM control and accounting computerization, material balance assessment, preparation of reports; qualitative and quantitative measurements in NM control and accounting at radiochemical plants destructive analysis techniques [ru

  12. Nuclear materials control technology in the post-cold war world: Radiation-based methods and information management systems

    International Nuclear Information System (INIS)

    Tape, J.W.; Eccleston, G.W.; Ensslin, N.; Markin, J.T.

    1993-01-01

    The end of the cold war is providing both opportunities and requirements for improving the control of nuclear materials around the world. The dismantlement of nuclear weapons and the growth of nuclear power, including the use of plutonium in light water reactors and breeder reactor programs, coupled with enhanced proliferation concerns, drive the need for improved nuclear materials control. We describe nuclear materials control and the role of technology in making controls more effective and efficient. The current use and anticipated development in selected radiation-based methods and related information management systems am described briefly

  13. Nuclear material accountancy for and control of in Czech and Slovak Federal Republic

    International Nuclear Information System (INIS)

    Hladik, I.

    1991-01-01

    The Czechoslovak State System of Accounting for and Control of (SSAC) is described. It is discussed the organizational chart and role of the Czechoslovak Atomic Energy Commission as the State Authority in the Safeguards as well as its functions in the related fields (nuclear safety, physical protection) are mentioned. The individual nuclear facilities from the nuclear material accountancy point of view are shortly described and the necessity of well functioned facility level accountancy system is expressed. The cooperation between the SSAC and IAEA is mentioned and experience gained is briefly summarized

  14. Status of national system of accounting for and control of nuclear materials in Turkey

    International Nuclear Information System (INIS)

    Yucel, A.

    1999-01-01

    Regulating the nuclear activities in Turkey is at the responsibility of Turkish Atomic Energy Authority (TAEA). Under the TAEA Act, the Authority is responsible for national security and protection of the peaceful uses of nuclear energy. After signing the Safeguards Agreement with the IAEA for the application of safeguards in connection with the NPT, a State System of Accounting for and Control of Nuclear Materials (SSAC) has been established. This paper covers national safeguards activities and implementation of SSAC and activities for upgrading of national system. These activities are the part of the IAEA programme on strengthening the effectiveness and improving the efficiency of the safeguards system and on combating illicit trafficking of nuclear materials and other radioactive sources. (author)

  15. Regional training course on state systems of accounting for and control of nuclear material

    International Nuclear Information System (INIS)

    2001-01-01

    The publication is an outline of the subjects that are included in a regional training course organized in Buenos Aires (Argentina) by the IAEA with the cooperation of the Argentine Government and the Brazilian-Argentine Agency for the Accounting and Control of Nuclear Materials (ABACC) from September 24 to October 5, 2001

  16. 5 CFR 842.405 - Air traffic controllers, firefighters, law enforcement officers, and nuclear materials couriers.

    Science.gov (United States)

    2010-01-01

    ... 5 Administrative Personnel 2 2010-01-01 2010-01-01 false Air traffic controllers, firefighters, law enforcement officers, and nuclear materials couriers. 842.405 Section 842.405 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS (CONTINUED) FEDERAL EMPLOYEES RETIREMENT SYSTEM-BASIC ANNUITY Computations ...

  17. Annual Report ABACC 2009 - Brazilian-Argentine Agency for the Accounting and Control of Nuclear Materials

    International Nuclear Information System (INIS)

    2009-01-01

    This document reports the actives during the year 2009 related to: technical activities as application of safeguards; management of the Quadripartite Agreement and the SCCC - Common System for Accounting and Control of Nuclear Materials; training; technical cooperation; institutional, administrative and financial activities; perspectives for 2010; list of inspectors; list of Brazilian and Argentine facilities subject to the Quadripartite Agreement

  18. Annual report - ABACC (accounting and nuclear materials control Brazil-Argentina agency) - 1998

    International Nuclear Information System (INIS)

    1999-01-01

    The annual activities report of 1998 of accounting and nuclear materials control Brazil-Argentina agency introduces the next main topics: institutional activities - safeguards agreements implementation and administration; technical activities - planning and evaluation, operation, technical support, information accounting and treatment, technical cooperation, technical capacity invigoration; administrative and financial activities

  19. Specific Methods of Information Security for Nuclear Materials Control and Accounting Automate Systems

    Directory of Open Access Journals (Sweden)

    Konstantin Vyacheslavovich Ivanov

    2013-02-01

    Full Text Available The paper is devoted to specific methods of information security for nuclear materials control and accounting automate systems which is not required of OS and DBMS certifications and allowed to programs modification for clients specific without defenses modification. System ACCORD-2005 demonstrates the realization of this method.

  20. Development of an integrated system for nuclear material accountancy and control at JAERI

    International Nuclear Information System (INIS)

    Nishimura, Hideo; Nishizawa, Satoshi

    1993-01-01

    This paper describes the design concept and the current status of an integrated system for nuclear material accountancy and control, which is under development at JAERI. We, at JAERI, have decided to update the current system for material accountancy and control and to develop the integrated new system with a consolidated data base in order to augment transparency, credibility and promptness of the system, to materialize a prudent control of obligations required by bilateral nuclear cooperation agreements, and to give information for the physical protection, safely handling, property control and cost-effective use of nuclear material and for public relations. The system is composed of two work-stations operated by UNIX, one for implementation and the other for development, and many terminals located at the headquarters, administrative offices, and research facilities and laboratories. It is connected with a mainframe computer. There are many files on the data base to record inventory changes, book and physical inventories, and statistics on material balances. These files are controlled by a commercial data base management system which enables us to make access to data on the files with a simple query language, spread sheet type software or an application program. (author)

  1. Savannah River Plant's Accountability Inventory Management System (AIMS) (Nuclear materials inventory control)

    International Nuclear Information System (INIS)

    Croom, R.G.

    1976-06-01

    The Accountability Inventory Management System (AIMS) is a new computer inventory control system for nuclear materials at the Savannah River Plant, Aiken, South Carolina. The system has two major components, inventory files and system parameter files. AIMS, part of the overall safeguards program, maintains an up-to-date record of nuclear material by location, produces reports required by ERDA in addition to onplant reports, and is capable of a wide range of response to changing input/output requirements through use of user-prepared parameter cards, as opposed to basic system reprogramming

  2. Order of 31 July 1987 on protection and control of nuclear materials carried by air

    International Nuclear Information System (INIS)

    1987-01-01

    This Order is part of a series of texts on protection and control of nuclear materials which include: the Act of 25 July 1980 and the Decree of 12 May 1981 made in its implementation and, as regards the specific aspect of protection and control of materials during transport, the Order of 26 March 1982 amended in 1986. The 1987 Order lays down the conditions which must be complied with by approved carriers (the French or the foreign holders of a licence under the above-mentioned Act of 1980) in case of transport of such materials by air [fr

  3. Some ideas for next-generation controlled nuclear materials accountability techniques

    International Nuclear Information System (INIS)

    Brough, W.; Parrish, C.

    1994-08-01

    Current DOE regulations for Controlled Nuclear Materials (CNM) management have particular accounting problems that have become more evident as computer systems have been designed and programmed to automate the materials accounting functions. Some valuable detailed accounting information is lost with current accounting procedures and some aspects of the procedures are more complicated than need be. In February, 1988, the authors first recommended that the basic concepts of CNM accountability be reviewed, with particular emphasis on developing an Isotopic accountability system as opposed to the present Material-type accountability system. A parallel effort to review the materials measurement program would also be desirable

  4. The Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC) as safeguard regional agency

    International Nuclear Information System (INIS)

    Alvim, C.F.

    1994-01-01

    The Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials - ABACC applies regional safeguards on nuclear materials in Brazil and Argentina. The framework of international agreements concerning ABACC is presented, and the characteristics and requirements that a regional nuclear safeguards organization must fulfill are discussed. (author). 2 refs, 1 tab

  5. Evolution of the physical protection and control of nuclear materials in Brazil

    International Nuclear Information System (INIS)

    Paschoa, A.S.; Renha, G.; Mafra, O.Y.

    2005-01-01

    Full text: Brazil started protecting its nuclear materials soon after the end of the World War II, when the Combined Development Trust intended to control the world supply of uranium and thorium. This happened in 1944, but on December 27, 1946, an amendment to the report of Committee II of the United Nations established that the international ownership of the unexplored uranium and thorium would not be mandatory. Brazil nationalized its thorium and uranium reserves in 1951. The Brazil-Germany agreement signed in 1975 enhanced the need for Brazilian nuclear safeguards and security. The physical protection (PP) and control of nuclear materials (CNM) became activities under the supervision of the Brazilian military forces. The System for Protection of the Brazilian Nuclear Program (SIPRON), established on 7 October 1980, took over the responsibilities for PP and other aspects of the Brazilian nuclear program. The central organ of SIPRON was the Brazilian National Security Council (CSN). The Brazilian Nuclear Energy Commission (CNEN) was in charge of coordinating, among others, the PP sector. Earlier that year - on 3 March 1980 - the Convention on the Physical Protection of Nuclear Material (CPPNM) was signed simultaneously in New York and Vienna. The Brazilian congress approved the CPPNM on 27 November 1984, and the Brazilian government deposited the ratification letter on 17 October 1985. On 16 April 1991 the Brazilian government issued a decree to enforce the CPPNM in the Brazilian territory. CNEN published the regulatory documents NE - 2.01 on 19 April 1996, and NN - 2.02 on 21 September 1999 for PP, and CNM, respectively. CNEN has the ultimate responsibility to enforce these regulations. The operational aspects of PP and CNM in Brazil are still improving. Potential nuclear terrorism for example needs to be examined. Activities concerning training personnel and implementing PP and CNM will be described in the paper. (author)

  6. Process information displays from a computerized nuclear materials control and accounting system

    International Nuclear Information System (INIS)

    Ellis, J.H.

    1981-11-01

    A computerized nuclear materials control and accounting system is being developed for an LWR spent fuel reprocessing facility. This system directly accesses process instrument readings, sample analyses, and outputs of various on-line analytical instruments. In this paper, methods of processing and displaying this information in ways that aid in the efficient, timely, and safe control of the chemical processes of the facility are described

  7. A New Regulation Policy for Accounting and Control of Nuclear Material

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K. H.; Kim, M. S.; Ahn, S. H. [Korea Institute of Nuclear nonproliferation and Control, Daejeon (Korea, Republic of)

    2016-05-15

    Nuclear Safety and Security Commission(NSSC) has amended two public notices about the regulation of nuclear material accounting and control(NMAC). Those notices were declared in November 2014 and entry into force since 2015. According to this legislation, a new type of NMAC inspection system was introduced and facility rules for NMAC approved by the government should be revised subsequently. These changes were one of the preemptive actions to cope with the emergence of new international safeguards policy and increasing demand on advanced nuclear technology. Generally, the regulation policy affects the nuclear business including research and development. Therefore, understanding of the new policy and its making process may help stakeholders to minimize unnecessary financial and operational burden. This study describes background, features, and institutionalization of the new regulation policy for NMAC. The new regulation policy for NMAC was established and institutionalized to preemptively cope with the internal and external demand on 'better' national system of accounting and control of nuclear material. This new policy and regulation system may call not only the regulator but also nuclear business operators for new works to make their system more effective and efficient.

  8. A New Regulation Policy for Accounting and Control of Nuclear Material

    International Nuclear Information System (INIS)

    Kim, K. H.; Kim, M. S.; Ahn, S. H.

    2016-01-01

    Nuclear Safety and Security Commission(NSSC) has amended two public notices about the regulation of nuclear material accounting and control(NMAC). Those notices were declared in November 2014 and entry into force since 2015. According to this legislation, a new type of NMAC inspection system was introduced and facility rules for NMAC approved by the government should be revised subsequently. These changes were one of the preemptive actions to cope with the emergence of new international safeguards policy and increasing demand on advanced nuclear technology. Generally, the regulation policy affects the nuclear business including research and development. Therefore, understanding of the new policy and its making process may help stakeholders to minimize unnecessary financial and operational burden. This study describes background, features, and institutionalization of the new regulation policy for NMAC. The new regulation policy for NMAC was established and institutionalized to preemptively cope with the internal and external demand on 'better' national system of accounting and control of nuclear material. This new policy and regulation system may call not only the regulator but also nuclear business operators for new works to make their system more effective and efficient

  9. US-Russian laboratory-to-laboratory cooperation in nuclear materials protection, control, and accounting

    International Nuclear Information System (INIS)

    Mullen, M.; Augustson, R.; Horton, R.

    1995-01-01

    Under the guidance of the Department of Energy (DOE), six DOE laboratories have initiated a new program of cooperation with the Russian Federation's nuclear institutes. The purpose of the program is to accelerate progress toward a common goal shared by both the US and Russia--to reduce the risks of nuclear weapons proliferation, including such threats as theft, diversion, and unauthorized possession of nuclear materials, by strengthening systems of nuclear materials protection, control, and accounting. This new program is called the Laboratory-to-Laboratory Nuclear Materials Protection, Control, and Accounting (Lab-to-Lab MPC and A) Program. It is designed to complement other US-Russian MPC and A programs such as the government-to-government (Nunn-Lugar) programs. The Lab-to-Lab MPC and A program began in 1994 with pilot projects at two sites: Arzamas-16 and the Kurchitov Institute. This paper presents an overview of the Laboratory-to-Laboratory MPC and A Program. It describes the background and need for the program; the objectives and strategy; the participating US and Russian laboratories, institutes and enterprises; highlights of the technical work; and plans for the next several years

  10. Nuclear Material Information Quality Control for Safeguards Purposes in South Africa

    International Nuclear Information System (INIS)

    Nel, H.; Rasweswe, M.; Bopape, A.

    2015-01-01

    The State System of Accounting and Control of Nuclear Material (SSAC) in South Africa comprises a State Inspectorate, Technical Support and Safeguards Information Systems (SIS). SIS is responsible for the quality control and assurance of the Nuclear Material Reports, Additional Protocol declarations and submission to the IAEA. Monthly reports are received from the facilities where inventory changes took place. Reports are prepared according to a Quality Management Document: Instruction for the Completion of Nuclear Material Accounting Reports. The inventory changes are reported on spreadsheets developed for our system. The Inventory Change Reports (ICR) and General Ledgers (GL) are compared line by line to check for discrepancies, which will be noted on a Control Sheet. The form will be sent to the relevant facility to notify them of corrections needed. The corrected reports will be re-submitted to SIS. A spreadsheet is used in the verification process with columns for all material categories and inventory change codes. The ICR totals of all inventory changes can be reconciled with the GL values. If all the entries are correct the nuclear material totals should be the same as on the GL. The facility file is checked by the State Inspector responsible for the specific facility as a second round of quality control. The inspector is required to sign the Control Sheet to confirm the completeness and correctness of the reports. The Excel data is then converted into a text (.txt) file, encrypted and then submitted electronically to the Agency. This paper will present all the steps involved in ensuring the correctness of the reports and the quality control measures in detail used by the South Africa SSAC. (author)

  11. A real-time material control concept for safeguarding special nuclear material in United States licensed processing facilities

    International Nuclear Information System (INIS)

    Shea, T.E.

    1976-01-01

    This paper describes general safeguards research being undertaken by the United States Nuclear Regulatory Commission. Efforts to improve the ability of United States licensed plants to contend with the perceived threat of covert material theft are emphasized. The framework for this improvement is to break down the internal control and accounting system into subsystems to achieve material isolation, inventory control, inventory characterization, and inventory containment analysis. A general programme is outlined to develop and evaluate appropriate mechanisms, integrate selected mechanisms into subsystems, and evaluate the subsystems in the context of policy requirements. (author)

  12. Where do the Nuclear Materials Management functions fit in the Materials Control and Accountability (MC and A) plan?

    International Nuclear Information System (INIS)

    DeVer, E.A.

    1987-01-01

    Safeguards had its beginning in the early 1940s and has continued to grow through the stormy years in dealing with nuclear materials. MC and A Plans have been developed for each facility which includes requirements for containment, surveillance, internal controls, measurements, statistics, records and report systems, and inventory certification of its nuclear materials, in the context of how precisely the inventory is known at stated risk or confidence levels. The I and E Regulations, the newest document affecting the control system, are used for testing the current MC and A plan in place at each facility. Nuclear Materials Management activities also have reporting requirements that include: (1) Annual Forecast, (2) Materials Management Plan, (3) Quarterly Status Report, (4) Assessment Report, and (5) Scrap and Excess Material Management. Data used to generate reports for both functions come from the same data base and source documents at most facilities. The separation of sponsoring groups at the DOE for NM Accountability and NM Management can and does pose problems for contractors. In this paper, we will try to separate and identify these overlaps at the Facility and DOE level

  13. Nuclear Security Recommendations on Nuclear and other Radioactive Material out of Regulatory Control: Recommendations (Spanish Edition); Recomendaciones de Seguridad Fisica Nuclear sobre Materiales Nucleares y otros Materiales Radiactivos no sometidos a Control Reglamentario: Recomendaciones

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-06-15

    This publication presents recommendations for the nuclear security of nuclear and other radioactive material that is out of regulatory control. It is based on national experiences and practices and guidance publications in the field of security as well as the nuclear security related international instruments. The recommendations include guidance for States with regard to the nuclear security of nuclear and other radioactive material that has been reported as being out of regulatory control as well as for material that is lost, missing or stolen but has not been reported as such, or has been otherwise discovered. In addition, these recommendations adhere to the detection and assessment of alarms and alerts and to a graded response to criminal or unauthorized acts with nuclear security implications.

  14. Professional Nuclear Materials Management

    International Nuclear Information System (INIS)

    Forcella, A.A.; O'Leary, W.J.

    1966-01-01

    This paper describes the scope of nuclear materials management for a typical power reactor in the United States of America. Since this power reactor is financed by private capital, one of the principal obligations of the reactor operator is to ensure that the investment is protected and will furnish an adequate financial return. Because of the high intrinsic value of nuclear materials, appropriate security and accountability must be continually exercised to minimize losses beyond security and accountability for the nuclear materials. Intelligent forethought and planning must be employed to ensure that additional capital is not lost as avoidable additional costs or loss of revenue in a number of areas. The nuclear materials manager must therefore provide in advance against the following contingencies and maintain constant control or liaison against deviations from planning during (a) pre-reactor acquisition of fuel and fuel elements, (b) in-reactor utilization of the fuel elements, and (c) post-reactor recovery of fuel values. During pre-reactor planning and operations, it is important that the fuel element be designed for economy in manufacture, handling, shipping, and replaceability. The time schedule for manufacturing operations must minimize losses of revenue from unproductive dead storage of high cost materials. For in-reactor operations, the maximum achievable burn-up of the fissionable material must be obtained by means of appropriate fuel rearrangement schemes. Concurrently the unproductive down-time of the reactor for fuel rearrangement, inspections, and the like must be minimized. In the post-reactor period, when the fuel has reached a predetermined depletion of fissionable material, the nuclear materials manager must provide for the most economical reprocessing and recovery of fissionable values and by-products. Nuclear materials management is consequently an essential factor in achieving competitive fuel cycle and unit energy costs with power reactors

  15. Safeguards on nuclear materials

    International Nuclear Information System (INIS)

    Cisar, V.; Keselica, M.; Bezak, S.

    2001-01-01

    The article describes the implementation of IAEA safeguards for nuclear materials in the Czech and Slovak Republics, the establishment and development of the State System of Accounting for and Control of Nuclear Material (SSAC) at the levels of the state regulatory body and of the operator, particularly at the Dukovany nuclear power plant. A brief overview of the historical development is given. Attention is concentrated on the basic concepts and legal regulation accepted by the Czech and Slovak Republics in accordance with the new approach to create a complete legislative package in the area of nuclear energy uses. The basic intention is to demonstrate the functions of the entire system, including safeguards information processing and technical support of the system. Perspectives of the Integrated Safeguards System are highlighted. The possible ways for approximation of the two national systems to the Safeguards System within the EU (EURATOM) are outlined, and the necessary regulatory and operators' roles in this process are described. (author)

  16. Sweden, United States and nuclear energy. The establishment of a Swedish nuclear materials control 1945-1995

    International Nuclear Information System (INIS)

    Jonter, T.

    1999-05-01

    This report deals mainly with the United States nuclear energy policy towards Sweden 1945-1960. Although Sweden contained rich uranium deposits and retained high competence in the natural sciences and technology, the country had to cooperate with other nations in order to develop the nuclear energy. Besides developing the civil use of nuclear power, the Swedish political elite also had plans to start a nuclear weapons programme. From the beginning of the 1950s up to 1968, when the Swedish parliament decided to sign the non-proliferation treaty, the issue was widely debated. In this report, American policy is analyzed in two periods. In the first period, 1945-1953, the most important aim was to prevent Sweden from acquiring nuclear materials, technical know-how, and advanced equipment which could be used in the production of nuclear weapons. The Swedish research projects were designed to contain both a civil and military use of nuclear energy. The first priority of the American administration was to discourage the Swedes from exploiting their uranium deposits, especially for military purposes. In the next period, 1953-1960, the American policy was characterized by extended aid to the development of the Swedish energy programme. Through the 'Atoms for Peace'-programme, the Swedish actors now received previously classified technical information and nuclear materials. Swedish companies and research centers could now buy enriched uranium and advanced equipment from the United States. This nuclear trade was, however, controlled by the American Atomic Energy Commission (AEC). The American help was shaped to prevent the Swedes from developing nuclear weapons capability. From mid-50s Swedish politicians and defence experts realised that a national production of nuclear bombs would cost much more money than was supposed 4-5 years earlier. As a consequence, Swedish officials started to explore the possibilities of acquiring nuclear weapons from United States. The American

  17. The declaration regime: An efficient tool to improve control and protection of nuclear materials in France

    International Nuclear Information System (INIS)

    Pillette-Cousin, L.

    2001-01-01

    Full text: The French Government set up a national safeguards system under the authority of the Ministry for Industry to control nuclear materials within national boundaries and to ensure physical protection for nuclear materials, even for the small quantities held by users in industrial, medical and research areas. The main nuclear materials detained by small owners are depleted uranium and thorium. These materials are present in manufactured equipment (radiation shielding in industrial gammagraphy and radiotherapy, collimation devices and other accessories) which are used or unused, which may be damaged or left as scraps. The French protection and control system of nuclear materials is an original system based on detailed and comprehensive regulations, taking into account in a specific way the small users of nuclear materials. The decree no. 81-512 of 12 May 1981 establishes three different regimes: licensing, declaration and exemption, according to the nature and quantity of nuclear materials involved. Typically, the declaration regime applies to quantities of depleted uranium or thorium, greater than 1 kg and lower than 500 kg. The Order of 14 March 1984 sets the requirements related to the control and physical protection of nuclear materials in the frame of the declaration regime. A declaration must be established every year by the operator and sent to the IPSN, acting as technical support body of the national authority. This declaration provides the stock of all nuclear materials held by the operator and stock variations occurred during the previous year, including the identification of senders and receivers. Before fulfilling its annual declaration, the operator must carry out a physical inventory of all nuclear material, both used and unused. The declaration also describes the main features concerning facility layout related to surveillance and physical protection of materials. With respect to physical protection requirements, nuclear materials should be

  18. Nuclear material control and accounting system evaluation in uranium conversion operations

    International Nuclear Information System (INIS)

    Moreira, Jose Pontes

    1994-01-01

    The Nuclear Material Control and Accounting Systems in uranium conversion operations are described. The conversion plant, uses ammonium diuranate (ADU), as starting material for the production of uranium hexafluoride. A combination of accountability and verification measurement is used to verify physical inventory quantities. Two types of inspection are used to minimize the measurements uncertainty of the Material Unaccounted For (MUF) : Attribute inspection and Variation inspection. The mass balance equation is the base of an evaluation of a Material Balance Area (MBA). Statistical inference is employed to facilitate rapid inventory taking and enhance material control of Safeguards. The calculation of one sampling plan for a MBA and the methodology of inspection evaluation are also described. We have two kinds of errors : no detection and false delation. (author)

  19. Advanced international training course on state systems of accounting for and control of nuclear materials

    International Nuclear Information System (INIS)

    1981-10-01

    This report incorporates all lectures and presentations at the Advanced International Training Course on State Systems of Accounting for and Control of Nuclear Material held April 27 through May 12, 1981 at Santa Fe and Los Alamos, New Mexico, and Richland, Washington, USA. Authorized by the US Nuclear Non-Proliferation Act and sponsored by the US Department of Energy in cooperation with the International Atomic Energy Agency, the course was developed to provide practical training in the design, implementation, and operation of a state system of nuclear materials accountability and control that satisfies both national and international safeguards. Major emphasis for the 1981 course was placed on safeguards methods used at bulk-handling facilities, particularly low-enriched uranium conversion and fuel fabrication plants. The course was conducted by the University of California's Los Alamos National Laboratory, the Battelle Pacific Northwest Laboratory, and Exxon Nuclear Company, Inc. Tours and demonstrations were arranged at both the Los Alamos National Laboratory, Los Alamos, New Mexico, and the Exxon Nuclear fuel fabrication plant, Richland, Washington

  20. Advanced international training course on state systems of accounting for and control of nuclear materials

    Energy Technology Data Exchange (ETDEWEB)

    1981-10-01

    This report incorporates all lectures and presentations at the Advanced International Training Course on State Systems of Accounting for and Control of Nuclear Material held April 27 through May 12, 1981 at Santa Fe and Los Alamos, New Mexico, and Richland, Washington, USA. Authorized by the US Nuclear Non-Proliferation Act and sponsored by the US Department of Energy in cooperation with the International Atomic Energy Agency, the course was developed to provide practical training in the design, implementation, and operation of a state system of nuclear materials accountability and control that satisfies both national and international safeguards. Major emphasis for the 1981 course was placed on safeguards methods used at bulk-handling facilities, particularly low-enriched uranium conversion and fuel fabrication plants. The course was conducted by the University of California's Los Alamos National Laboratory, the Battelle Pacific Northwest Laboratory, and Exxon Nuclear Company, Inc. Tours and demonstrations were arranged at both the Los Alamos National Laboratory, Los Alamos, New Mexico, and the Exxon Nuclear fuel fabrication plant, Richland, Washington.

  1. Nuclear material accounting handbook

    International Nuclear Information System (INIS)

    2008-01-01

    The handbook documents existing best practices and methods used to account for nuclear material and to prepare the required nuclear material accounting reports for submission to the IAEA. It provides a description of the processes and steps necessary for the establishment, implementation and maintenance of nuclear material accounting and control at the material balance area, facility and State levels, and defines the relevant terms. This handbook serves the needs of State personnel at various levels, including State authorities, facility operators and participants in training programmes. It can assist in developing and maintaining accounting systems which will support a State's ability to account for its nuclear material such that the IAEA can verify State declarations, and at the same time support the State's ability to ensure its nuclear security. In addition, the handbook is useful for IAEA staff, who is closely involved with nuclear material accounting. The handbook includes the steps and procedures a State needs to set up and maintain to provide assurance that it can account for its nuclear material and submit the prescribed nuclear material accounting reports defined in Section 1 and described in Sections 3 and 4 in terms of the relevant agreement(s), thereby enabling the IAEA to discharge its verification function as defined in Section 1 and described in Sections 3 and 4. The contents of the handbook are based on the model safeguards agreement and, where applicable, there will also be reference to the model additional protocol. As a State using The handbook consists of five sections. In Section 1, definitions or descriptions of terms used are provided in relation to where the IAEA applies safeguards or, for that matter, accounting for and control of nuclear material in a State. The IAEA's approach in applying safeguards in a State is also defined and briefly described, with special emphasis on verification. In Section 2, the obligations of the State

  2. Production of an English/Russian glossary of terminology for nuclear materials control and accounting

    Energy Technology Data Exchange (ETDEWEB)

    Schachowskoj, S.; Smith, H.A. Jr.

    1995-05-01

    The program plans for Former Soviet Union National Nuclear Materials Control and Accounting (MC and A) Systems Enhancements call for the development of an English/Russian Glossary of MC and A terminology. This glossary was envisioned as an outgrowth of the many interactions, training sessions, and other talking and writing exercises that would transpire in the course of carrying out these programs. This report summarizes the status of the production of this glossary, the most recent copy of which is attached to this report. The glossary contains over 950 terms and acronyms associated with nuclear material control and accounting for safeguards and nonproliferation. This document is organized as follows: English/Russian glossary of terms and acronyms; Russian/English glossary of terms and acronyms; English/Russian glossary of acronyms; and Russian/English glossary of acronyms.

  3. Control system and nuclear materials inventory at IPEN/CNEN-SP, Brazil

    International Nuclear Information System (INIS)

    Araujo, Jose Adroaldo de; Enokihara, Cyro Teiti

    2002-01-01

    The history, requirements, organization, and operation of the State System of Accounting and Control from the Institute for Energetic and Nuclear Research (IPEN-CNEN/SP) are described. The implementation system at the institution take into consideration the national and international safeguards requirements. It has started by the nuclear material (U, Pu and Th) physical inventory taking, including their provenance and transformation. The earlier computerized accounting system used for control has been replaced by a new one developed by the National Authority (CNEN/CSG). The optimized system has more flexibility, giving a more effective answer to any occurred change on Material Balance Area. The present system make use of an effective methodology. (author)

  4. Nuclear material accounting and control: Co-ordinating assistance to newly independent States

    International Nuclear Information System (INIS)

    Thorstensen, S.

    1995-01-01

    This article outlines work under way among the IAEA, its Member States, and the Newly Independent States (NIS) relating to the establishment and development in the NIS of State Systems of Accounting and Control (SSACs) of nuclear material. It describes IAEA activities in the NIS, including fact-finding missions at technical visits, the successful attempts to find donor States providing voluntary funding and expertise, and the co-ordination of technical support between the IAEA and the donor States. 3 tabs

  5. International training course on implementation of state systems of accounting for and control of nuclear materials

    International Nuclear Information System (INIS)

    1982-12-01

    The course was developed to provide practical training in the implementation and operation of a national system of nuclear materials accountability and control that satisfies both national and international safeguards requirements. Major emphasis for the 1982 course was placed on methods for safeguarding reactor facilities - both research reactors and power reactors plus their associated spent-fuel fuel storage. Separate abstracts have been prepared for 23 of the sessions; one of the remaining sessions had been previously abstracted

  6. ABACC: annual report 2012 - Brazilian-Argentine Agency for the Accounting and Control of Nuclear Materials

    International Nuclear Information System (INIS)

    2012-01-01

    This document reports the actives during the year 2012 related to: technical activities as safeguards application and advances in application of safeguards; main activities conducted in Brazil and main activities developed at ABACC headquarters; management of the Quadripartite Agreement and of the SCCC - Common System for Accounting and Control of Nuclear Materials; training; technical cooperation; institutional, administrative and financial activities; perspectives for 2013; list of inspectors; list of Brazilian and Argentine facilities subject to the Quadripartite Agreement

  7. Material control and accounting in the Department of Energy's nuclear fuel complex

    Energy Technology Data Exchange (ETDEWEB)

    None

    1989-01-01

    Material control and accounting takes place within an envelope of activities related to safeguards and security, as well as to safety, health, and environment, all of which need to be managed to assure that the entire nuclear fuel complex can operate in a societally accepted manner. Within this envelope the committee was directed to carry out the following scope of work: (1) Review the MCandA systems in use at selected DOE facilities that are processing special nuclear material (SNM) in various physical and chemical forms. (2) Design and convene a workshop for senior representatives from each of DOE's facilities on the flows and inventories of nuclear materials. (3) Plan and conduct a series of site visits to each of the facilities to observe first hand the processing operations and the related MCandA systems. (4) Review the potential improvement in overall safeguard systems effectiveness, as measured by expected reduction in inventory difference control limits and inventory differences for materials balance accounts and facilities, or other criteria as appropriate. Indicate how this affects the relative degree of uncertainty in the system. (5) Review the efficiency of operating the MCandA system with and without the upgrading options and assess whether upgrading will contribute further efficiencies in operation, which may reduce many of the current operations costs. Determine if the current system is cost-effective. (6) Recommend the most promising technical approaches for further development by DOE and further study as warranted.

  8. Specialists training on nuclear materials control, accounting and physical protection in the Moscow Engineering Physics Institute

    International Nuclear Information System (INIS)

    Khromov, V.V.; Pogozhin, N.S.; Kryuchkov, E.F.; Glebov, V.B.; Geraskin, N.I.

    1998-01-01

    Educational program to train specialists on non-proliferation problems and nuclear materials control, accounting and physical protection systems (NMCA and PP) at the Science Master's level was developed and is being realized in Moscow Sate Institute of Engineering and Physics at the support of the USA Ministry of Energy. The program is intended to train students who already got the Bachelor's degree on physical and technical subjects. The United methodological base of the program comprises lecture courses, practice in laboratories and computer programs. The educational program contains the following parts for training the students. 1) Deep scientific and technical knowledge. 2) System approach to designing and analysis of the NMCA and PP systems. 3) Knowledge of scientific and technical principles, means, devices and procedures used in the NMCA and PP systems. 4) Judicial, international and economical aspects of nuclear materials management. 5) Application of computer and information technologies for nuclear materials control and accounting. 6) Extensive practice in laboratories, using the most up-to-date equipment and devices used in the worldwide practice of NM control

  9. Upgrade of the Nuclear Material Protection, Control and Accounting System at the VNIIEF Industrial Zone

    International Nuclear Information System (INIS)

    Lewis, J.C.; Maltsev, V.; Singh, S.P.

    1999-01-01

    The Industrial Zone at the Russian Federal Nuclear Center/All-Russian Scientific Research Institute of Experimental Physics (RFNC/VNEEF) consists of ten guarded areas with twenty two material balance areas (A and As). The type of facilities in the Industrial Zone include storage sites, machine shops, research facilities, and training facilities. Modernization of the Material Protection, Control and Accounting (MPC and A) System at the Industrial Zone started in 1997. This paper provides a description of, the methodology/strategy used in the upgrade of the MFC and A system

  10. Applications of Kalman Filtering to nuclear material control. [Kalman filtering and linear smoothing for detecting nuclear material losses

    Energy Technology Data Exchange (ETDEWEB)

    Pike, D.H.; Morrison, G.W.; Westley, G.W.

    1977-10-01

    The feasibility of using modern state estimation techniques (specifically Kalman Filtering and Linear Smoothing) to detect losses of material from material balance areas is evaluated. It is shown that state estimation techniques are not only feasible but in most situations are superior to existing methods of analysis. The various techniques compared include Kalman Filtering, linear smoothing, standard control charts, and average cumulative summation (CUSUM) charts. Analysis results indicated that the standard control chart is the least effective method for detecting regularly occurring losses. An improvement in the detection capability over the standard control chart can be realized by use of the CUSUM chart. Even more sensitivity in the ability to detect losses can be realized by use of the Kalman Filter and the linear smoother. It was found that the error-covariance matrix can be used to establish limits of error for state estimates. It is shown that state estimation techniques represent a feasible and desirable method of theft detection. The technique is usually more sensitive than the CUSUM chart in detecting losses. One kind of loss which is difficult to detect using state estimation techniques is a single isolated loss. State estimation procedures are predicated on dynamic models and are well-suited for detecting losses which occur regularly over several accounting periods. A single isolated loss does not conform to this basic assumption and is more difficult to detect.

  11. Determination of plutonium in nuclear fuel materials by controlled potential coulometry

    International Nuclear Information System (INIS)

    Ambolikar, A.S.; Pillai, Jisha S.; Sharma, M.K.; Kamat, J.V.; Aggarwal, S.K.

    2011-01-01

    Accurate knowledge of Pu content in nuclear fuel materials is an important requirement for the purpose of chemical quality control, nuclear material accounting and process control. Biamperometry and potentiometry techniques are widely employed for the determination of Pu. These redox electroanalytical based methods are capable of meeting the requirements of high accuracy and precision using milligram amounts of the analyte. However, use of chemical reagents to carry out redox reactions in these methodologies generates radioactive liquid waste which needs to be processed to recover plutonium. In coulometric technique, change in the oxidation state of an electro active species is carried out by charge transfer on an electrode surface, hence chemical reagents as well as chemical standards required for the redox titration based methods are eliminated and analytical waste generated is free from metallic impurities. Therefore the determination of Pu in nuclear fuel materials by coulometry is an attractive option. In view of this, controlled potential coulometric methods have been developed in our laboratory for variety of applications at different stages of nuclear fuel cycle. In the early stage of coulometry developments in our laboratory, coulometers procured from EG and G Princeton Applied Research Corporation were employed. After prolong use, these instruments were showing ageing and hence indigenously built controlled potential coulometer was procured. Performance evaluation studies of these coulometers were reported from our laboratory for the determination of uranium and plutonium in working chemical assay standards. In this paper, we present studies carried out on the determination of plutonium in Pu-alloy and (U, Pu) C samples employing the same indigenous coulometer

  12. Practical experience with nuclear material control and accountancy in a large reprocessing plant

    International Nuclear Information System (INIS)

    Lebaillif, D.; Mitterrand, B.; Rincel, X.; Regnier, J.

    1999-01-01

    This paper describes the system implemented in UP3 and provides the results of the 9-year operation experience. It will be insisted on the necessity to perform measurements as accurately as possible in order to have an effective system. The Nuclear Material Control and Accountancy implemented at La Hague has proven to be an effective and efficient tool for the management of the facility. In particular it has been shown the necessity to determine as accurately as possible every transfer of nuclear material (NM) out or into the facility of area of the facility, whatever is considered, in order to establish the best possible balance of NM. A computerized system permits accurate and timely data collection, following up of throughputs and inventories, establishment of reports and records requested by national and international authorities [ru

  13. Compositional characterization of hafnium alloy used as control rod material in nuclear reactor

    International Nuclear Information System (INIS)

    Sharma, P.K.; Bassan, M.K.T.; Avhad, D.K.; Singhal, R.K.

    2014-01-01

    Hafnium (Hf) is a heavy, steel-gray metal in the reactive metals group that is very closely related to zirconium (Zr) and forms a continuous solid-solution at all concentrations of zirconium and hafnium. Hafnium occurs naturally with zirconium at a ratio of approximately 1:50 and is produced exclusively as a co-product of nuclear-grade zirconium. It is used in a variety of applications where few substitutes are available. Thus with its relatively high thermal neutron absorption cross-section, hafnium's biggest application is as control rod material in nuclear reactors. During this work, major (Zirconium (Zr), Cobalt (Co) and Molybdenum (Mo)) and trace ((Iron (Fe), Nickel (Ni) and Titanium (Ti)) elements were measured in the bulk matrices of Hf. These materials are also associated with other impurities such as O, N, H etc.

  14. Conceptual design of a system for nuclear material control in a research centre according to the IAEA safeguards requirements

    International Nuclear Information System (INIS)

    Bueker, H.; Kotte, U.; Stein, G.

    1976-01-01

    In comparison with other facilities handling nuclear material, a nuclear research centre is characterized by a wider spectrum of operations. This requires a number of installations within the centre such as research reactors, critical assemblies, research institutes and central departments, operating, in general, independently of each other. Nuclear material is stored and processed in small quantities and in different chemical and physical configurations within prescribed license areas. The conceptual design of a new system for nuclear material control in a research centre has to consider the operator's and IAEA's safeguards requirements. Using the example of the Juelich Nuclear Research Centre in the Federal Republic of Germany, these requirements are being examined in conjunction with the specified peculiarities of a nuclear research centre. Following this, a division of the research centre into material balance areas and key measurement points is being proposed, based on the existing facilities and licence areas. The essential characteristic of the concept is a far-reaching displayability of the inventory and flow of nuclear material. The availability of information is based on differentiated material accountancy in conjunction with adequate measurement of nuclear material data. For data processing and generation of data, a computerized record and report system is to be provided as well as a central measurement system. The design of an integrated accountancy system with a central computer and remote terminals is described; various measuring appliances, now being developed or tested, for the non-destructive assay of nuclear material are specified. The functions of a central department for nuclear material management for operating these systems are discussed and the planned verification of nuclear material in the different material balance areas illustrated. On applying the measures described in this paper, the conceptual design of a system for nuclear material

  15. Basic principles of accounting and control of nuclear materials in the BOR-60 experimental fast reactor

    International Nuclear Information System (INIS)

    Gryazev, V.M.; Gadzhiev, G.I.; Alekseev, I.N.

    1979-01-01

    Under a contract with the International Atomic Energy Agency, the V.I. Lenin Atomic Reactor Research Institute is currently carrying out a study of ways of organizing a nuclear materials accounting and control system for the BOR-60 fast reactor. Some results of this study are presented in the paper. The special physical and technological features of fast reactors create additional difficulties in safeguards systems and give rise to a number of new possibilities for the illicit removal of nuclear materials. These questions are discussed with reference to the BOR-60 reactor but the conclusions are probably applicable to all fast reactors. The proposed accounting and control system is based on non-destructive measurements of the amount of fissile materials in the operating fuel assemblies and screened bundles of the reactor, on the independent control of the principal facility parameters (a list of which is given) and on an automated information collection and evaluation system. Visual means of inspection can be very effective in fast reactor safeguards systems, especially for controlling storage, but they are not used with the BOR-60 reactor. (author)

  16. Method for assessing the performance of a material control and accounting system at an operating nuclear fuel processing facility

    International Nuclear Information System (INIS)

    Ellwein, L.B.; Harris, L.; Altman, W.D.; Gramann, R.H.

    1981-01-01

    This paper discusses a method for assessing the performance of a material control and accounting (MCandA) system in an operating nuclear fuel processing facility. The performance criteria inherent in the assessment are 16 key goals established by NRC's 1978 Material Control and Material Accounting Task Force. 7 refs

  17. Overview of system of accounting and control of nuclear materials in Belarus and its development perspectives

    International Nuclear Information System (INIS)

    Sudakou, I.

    1999-01-01

    This paper presents a brief overview of technical and software means involved in the system of accounting and control of nuclear materials (SSAC) in the Republic of Belarus. The existing SSAC and its main components are described, namely legal framework, requirements for accounting and control at the facility level, and reporting procedures. Further development of the SSAC is outlined along such lines as improvement of accounting information processing, measuring capabilities, training of personnel, upgrading of regulatory practice, and strengthening of international co-operation. The 2000 year problem concerning the SSAC is briefly addressed. (author)

  18. Efforts in strengthening accounting for and control of nuclear materials in Russia

    International Nuclear Information System (INIS)

    Dmitriev, A.; Volodin, Y.; Krupchatnikov, B.; Sanin, A.

    2001-01-01

    Full text: Recent state orders, directives, regulations are reviewed as well as practical results of the state system for nuclear material accountancy and control (NMAC) development in the Russian Federation are addressed. Based on the Federal Laws and regulations responsibilities of different agencies related to the NMAC are discussed in view of transforming the existing nuclear material accountancy and control systems to a new system at the federal level. Governmental Orders of 10 July 1998 No.746 and of 15 December 2000 No. 962 assigned Minatom of Russia as the agency in charge of establishing and operating the NMAC at the federal level while Gosatomnadzor of Russia as the agency responsible for the enforcement of the MC and A regulation and for the NMAC oversight functions. Provisions of major regulatory documents that have been or are currently being developed defining requirements, procedures, conditions and agencies' responsibilities in the area of NM control and accounting are addressed. Trends in development of the domestic safeguards system are reported in light of strengthening regulation, inspection infrastructure and licensing of NM use. Incorporation of GAN and the agencies in charge of managing nuclear installations is discussed. Foreign support to the NMAC development in Russia is also reviewed. (author)

  19. U.S. government-to-government cooperation on nuclear materials protection, control, and accounting

    International Nuclear Information System (INIS)

    Mladineo, S.; Bricker, K.; Alberque, W.

    1996-01-01

    The US Department of Energy (DOE) is cooperating with Russia, the Newly Independent States (NIS), and the Baltics to help prevent the proliferation of nuclear weapons through the improvement of national systems of nuclear material protection, control, and accounting (MPC and A). US cooperation with Russia is carried out under the DOE MPC and A Program and the Nunn-Lugar funded Cooperative Threat Reduction program for Russia. Presidential Decision Directive (PDD)-41 designated DOE as the government agency with primary responsibility for MPC and A efforts in Russia, the NIS, and Baltics. Cooperation is conducted in coordination with the Nuclear Regulatory Commission (NRC) for the development of a strong, independent national regulatory agency in Russia. DOE also coordinates these efforts with the European Community and other countries. DOE''s cooperation under the MPC and A program with Russia includes aggressive near-term activities to better secure nuclear materials through MPC and A system upgrades at facilities. Simultaneously, DOE is supporting Russia in its long-term goal of implementing upgraded MPC and A systems that can be maintained and supported from indigenous resources. Projects include the development of national regulations and laws, training of trainers, the development of a computerized federal information system, and other related tasks. NRC''s role in these efforts includes regulatory development activities, such as licensing and inspection program development, and related training. This paper provides an overview of the activities undertaken through DOE-Russian cooperation on MPC and A and how they complement each other

  20. e-Gamma: Nuclear Material Accountancy and Control System in Brazil

    International Nuclear Information System (INIS)

    Negri Ferreira, S.; Souza Dunley, L.

    2015-01-01

    The Brazilian Nuclear Energy Commission (CNEN) is the government organization responsible for regulating all nuclear activities in Brazil and for ensuring that international safeguards are implemented according to the international agreements. In 2006 CNEN initiated a project aiming at the development and implementation of a web based system (e-Gamma) for on line nuclear material accountancy and control. In January-2014, after three years of beta testing, e-Gamma finally became the official nuclear material accountancy system in Brazil. e-Gamma is a web system hosted in a dedicated server under a secure environment maintained at CNEN headquarters. Secure access is provided by the use of Digital Client Certificate and internal user pre-authorization for login as well as multiple access profiles each one with specific function menus. The System operation is based on source documents for each inventory change prepared and updated by the MBA operators with the help of specific forms with strong validations. After the document conclusion the System records the inventory change in a general ledger. Monthly the officers of CNEN analyzes the general ledgers of each MBA and generates the applicable reports through the System [Inventory Change Reports (ICR), Physical Inventory List (PIL), and Material Balance Report (MBR)]. The System allows the running of managerial queries and has brought to CNEN much more control and traceability of the inventory changes and significant reduction in typing errors, costs and inspection efforts. Therefore, more efficient accountancy verification procedures at national and international levels are expected, as well as remote accountancy verification previous to an inspection. The proposed paper will describe the e-Gamma System, its main features and the oral presentation will contain a brief demonstration of some functionalities through the use of a local version installed on a notebook. (author)

  1. Nuclear Security Systems and Measures for the Detection of Nuclear and Other Radioactive Material out of Regulatory Control. Implementing Guide (Arabic Edition)

    International Nuclear Information System (INIS)

    2015-01-01

    This publication provides guidance to Member States for the development, or improvement of nuclear security systems and measures for the detection of criminal or unauthorized acts with nuclear security implications involving nuclear and other radioactive material out of regulatory control. It describes the elements of an effective nuclear security detection architecture which is composed of an integrated set of nuclear security systems and measures, and is based on an appropriate legal and regulatory framework for the implementation of the national detection strategy. The publication is an implementing guide within the IAEA Nuclear Security Series and is intended for use by national policy makers, legislative bodies, competent authorities, institutions, and individuals involved in the establishment, implementation, maintenance or sustainability of nuclear security systems and measures for the detection of nuclear and other radioactive material out of regulatory control

  2. The control of vehicles used in transport of sensitive nuclear material

    International Nuclear Information System (INIS)

    Loiseau, O.; Larrignon, D.; Autrusson, B.

    2010-01-01

    Most sensitive nuclear materials are usually shipped in specific vehicles with a reinforced protection; such vehicles are generally escorted, tracked and watched over from a distant control centre. Among the various publications made by the IAEA in relation with the CPPNM, the INFCIRC/225 introduces major recommendations for physical protection of nuclear materials in general and particularly during transport. For instance, the text recommends - for the terrestrial shipment of most sensitive material - the use of vehicles specially designed to resist attack and equipped with a vehicle disabling device. Applying such a recommendation at a state level requires the intervention of a competent authority; the competent authority defines the framework of a validation process starting with the design of the vehicle and ending with the vehicle protection approval. The validation process needs articulating responsibilities between the three major actors who are: the operator in charge of the design, a technical support body in charge of technical evaluation, and the competent authority who is responsible for the final approval of the protection. This paper focuses on the approval process of reinforced protection vehicles in France; it aims at showing how such a process may contribute to the security of nuclear material shipments. The paper notably focuses on the responsibilities of the operators, the competent authority and the technical support organization. This approval process of the protection of a vehicle allows the authority to ensure that the protection setup is effective and operational in order to protect the cargo from a malicious threat. In such a process, the authority defines the threat and the objectives of protection; the authority may choose, in certain case, to recommend protection devices or solutions; the need for recommendation versus objective definition mostly depends on the environment of the vehicle and the constraints induced. The authority may

  3. The Russian Nuclear Material Protection, Control and Accounting Program: Analysis and prospect

    International Nuclear Information System (INIS)

    Kempf, C.R.

    1998-01-01

    This paper summarizes an analysis of the US-Russian Nuclear Material Protection, Control and Accounting (MPC and A) Program, developed on the basis of extensive discussions with US laboratory participants as well as personal experience. Results of the discussions have been organized into three main areas: Technical/MPC and A Progress; Programmatic and Administrative Issues; and Professional Aspects. Implications for MPC and A effectiveness, for MPC and A sustainability, and for future relations and collaboration are derived. Suggested next steps are given

  4. A role for distributed processing in advanced nuclear materials control and accountability systems

    International Nuclear Information System (INIS)

    Tisinger, R.M.; Whitty, W.J.; Ford, W.; Strittmatter, R.B.

    1986-01-01

    Networking and distributed processing hardware and software have the potential of greatly enhancing nuclear materials control and account-ability (MCandA) systems, both from safeguards and process operations perspectives while allowing timely integrated safeguards activities and enhanced computer security at reasonable cost. A hierarchical distributed system is proposed consisting of groups of terminals and instruments in plant production and support areas connected to microprocessors that are connected to either larger microprocessors or minicomputers. The structuring and development of a limited distributed MCandA prototype system, including human engineering concepts, are described. Implications of integrated safeguards and computer security concepts to the distributed system design are discussed

  5. U.S. Nuclear Regulatory Commission bases for control of solid materials

    International Nuclear Information System (INIS)

    Meck, R.A.; Cardille, F.P.; Feldman, C.; Gnugnoli, G.N.; Huffert, A.M.; Klementowicz, S.P.

    2002-01-01

    The U.S. Nuclear Regulatory Commission (NRC) is considering whether to proceed with rulemaking on the control of solid materials with very low levels of associated radioactivity. The current implementation of clearance by NRC licensees is the context for the decision. Inputs to the decision include information gathering efforts of the Commission in the areas of public workshops, dose assessments and inventories, the recommendations of the National Academies' National Research Council (NAs) on regulatory alternatives, and participation in international efforts by the International Atomic Energy Agency (IAEA). (author)

  6. Safeguards for special nuclear materials

    International Nuclear Information System (INIS)

    Carlson, R.L.

    1979-12-01

    Safeguards, accountability, and nuclear materials are defined. The accuracy of measuring nuclear materials is discussed. The use of computers in nuclear materials accounting is described. Measures taken to physically protect nuclear materials are described

  7. Experience of the Russian Federation in the field of the nuclear material control

    International Nuclear Information System (INIS)

    1998-01-01

    The paper deals with the develop met of new approaches concerning safeguards for specific nuclear materials, specific facilities which used Russian technology and design and situation of storing the nuclear materials. The role od IAEA safeguards is emphasised in view of verification and inspection of all the related issues

  8. 1993 Annual report of the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials - ABACC

    International Nuclear Information System (INIS)

    1994-01-01

    The 1993 annual report of the Brazilian Argentine Agency for Accounting and Control of Nuclear Materials, (ABACC), describes the activities regarding the administration and application of the Control and Accounting Common System (SCCC) established by the bilateral agreement between the Republic of Argentine and Federative Republic of Brazil for exclusive peaceful use of the nuclear energy. The main goal to verify practically all the installations which were not subjected to the international safeguards, before the agreement, was reached. Considering the safeguards application under implementation in both countries, the ABACC is preparing itself technically for the quadripartite agreement to be into force and signed among Argentine, Brazil, IAEA and ABACC. On checking the procedures established by the SCCC and controlled material, nothing was detected that could indicate nuclear material diversion either for nuclear weapon or for other explosive nuclear device. (B.C.A.)

  9. Physics and technology of nuclear materials

    CERN Document Server

    Ursu, Ioan

    2015-01-01

    Physics and Technology of Nuclear Materials presents basic information regarding the structure, properties, processing methods, and response to irradiation of the key materials that fission and fusion nuclear reactors have to rely upon. Organized into 12 chapters, this book begins with selectively several fundamentals of nuclear physics. Subsequent chapters focus on the nuclear materials science; nuclear fuel; structural materials; moderator materials employed to """"slow down"""" fission neutrons; and neutron highly absorbent materials that serve in reactor's power control. Other chapters exp

  10. ABACC - Brazil-Argentina Agency for Accounting and Control of Nuclear Materials, a model of integration and transparence

    International Nuclear Information System (INIS)

    Oliveira, Antonio A.; Do Canto, Odilon Marcusso

    2013-01-01

    Argentina and Brazil began its activities in the nuclear area about the same time, in the 50 century past. The existence of an international nuclear nonproliferation treaty-TNP-seen by Brazil and Argentina as discriminatory and prejudicial to the interests of the countries without nuclear weapons, led to the need for a common system of control of nuclear material between the two countries to somehow provide assurances to the international community of the exclusively peaceful purpose of its nuclear programs. The creation of a common system, assured the establishment of uniform procedures to implement safeguards in Argentina and Brazil, so the same requirements and safeguards procedures took effect in both countries, and the operators of nuclear facilities began to follow the same rules of control of nuclear materials and subjected to the same type of verification and control. On July 18, 1991, the Bilateral Agreement for the Exclusively Peaceful Use of Nuclear Energy created a binational body, the Argentina-Brazil Agency for Accounting and Control of Nuclear Materials-ABACC-to implement the so-called Common System of Accounting and Control of Nuclear materials - SCCC. The deal provided, permanently, a clear commitment to use exclusively for peaceful purposes all material and nuclear facilities under the jurisdiction or control of the two countries. The Quadripartite Agreement, signed in December of that year, between the two countries, ABACC and IAEA completed the legal framework for the implementation of comprehensive safeguards system. The 'model ABACC' now represents a paradigmatic framework in the long process of economic, political, technological and cultural integration of the two countries. Argentina and Brazil were able to establish a guarantee system that is unique in the world today and that consolidated and matured over more than twenty years, has earned the respect of the international community

  11. Absolute nuclear material assay

    Science.gov (United States)

    Prasad, Manoj K [Pleasanton, CA; Snyderman, Neal J [Berkeley, CA; Rowland, Mark S [Alamo, CA

    2010-07-13

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  12. Thermodynamics of nuclear materials

    International Nuclear Information System (INIS)

    1979-01-01

    Full text: The science of chemical thermodynamics has substantially contributed to the understanding of the many problems encountered in nuclear and reactor technology. These problems include reaction of materials with their surroundings and chemical and physical changes of fuels. Modern reactor technology, by its very nature, has offered new fields of investigations for the scientists and engineers concerned with the design of nuclear fuel elements. Moreover, thermodynamics has been vital in predicting the behaviour of new materials for fission as well as fusion reactors. In this regard, the Symposium was organized to provide a mechanism for review and discussion of recent thermodynamic investigations of nuclear materials. The Symposium was held in the Juelich Nuclear Research Centre, at the invitation of the Government of the Federal Republic of Germany. The International Atomic Energy Agency has given much attention to the thermodynamics of nuclear materials, as is evidenced by its sponsorship of four international symposia in 1962, 1965, 1967, and 1974. The first three meetings were primarily concerned with the fundamental thermodynamics of nuclear materials; as with the 1974 meeting, this last Symposium was primarily aimed at the thermodynamic behaviour of nuclear materials in actual practice, i.e., applied thermodynamics. Many advances have been made since the 1974 meeting, both in fundamental and applied thermodynamics of nuclear materials, and this meeting provided opportunities for an exchange of new information on this topic. The Symposium dealt in part with the thermodynamic analysis of nuclear materials under conditions of high temperatures and a severe radiation environment. Several sessions were devoted to the thermodynamic studies of nuclear fuels and fission and fusion reactor materials under adverse conditions. These papers and ensuing discussions provided a better understanding of the chemical behaviour of fuels and materials under these

  13. Nuclear materials management procedures

    International Nuclear Information System (INIS)

    Veevers, K.; Silver, J.M.; Quealy, K.J.; Steege, E. van der.

    1987-10-01

    This manual describes the procedures for the management of nuclear materials and associated materials at the Lucas Heights Research Laboratories. The procedures are designed to comply with Australia's nuclear non-proliferation obligations to the International Atomic Energy Agency (IAEA), bilateral agreements with other countries and ANSTO's responsibilities under the Nuclear Non-Proliferation (Safeguards) Act, 1987. The manual replaces those issued by the Australian Atomic Energy Commission in 1959, 1960 and 1969

  14. PC based controlled potential coulometric titrator for quantitative analysis of nuclear materials

    International Nuclear Information System (INIS)

    Manna, A.; Moorthy, A.D.; Bhogale, R.G.

    2001-01-01

    With increased requirements for process control and accountability of nuclear materials in plutonium reprocessing plants, the PC based controlled potential coulometric titrator was developed which has the capability of automatic quantitative analysis of the samples. The instruments based on electromechanical methods, incorporates an electronic potentiostat, a digital coulometer with wide dynamic range and a PC with a control interface card. The potentiostat is required to control the potential at the working electrode surface as per predetermined controlled voltage with respect to a reference electrode under wide variations in the conductivity and double layer capacitance of the electrochemical cell. The digital coulometer precisely measures the amount of electronic charge taking part in the electrochemical reactions of interest. The software has the facility to carry out three different types of analysis, i.e., primary coulometry, secondary coulometry and coulogram curve tracing. Due to complete analysis of the samples under program control, the human related errors are minimized and a better precision in the results are obtained. It has been possible to obtain an overall precession of better than +/- 0.3% in the determination of plutonium using the instrument. (author)

  15. The Russian Federal Information System for Nuclear Material Control and Accounting: Yesterday, Today and Tomorrow

    International Nuclear Information System (INIS)

    Martyanov, A.A.; Pitel, V.A.; Berchik, V.P.; Kasumova, L.A.; Babcock, R.A.; Kilmartin, W.E.; Heinberg, C.L.

    2002-01-01

    Most enterprises in the Russian Federation are not prepared to report to the Russian Federal Nuclear Material Control and Accounting Information System (FIS) by the full function reporting method. The full function reporting method requires reporting inventory listings on a schedule based on nuclear material category, submission of individual inventory change reports, and reconciliation and closeout at the end of each reporting period. Most Russian enterprises do not have automated systems and do not have the resources to develop and implement such systems. Over the last two years, MinAtom put the regulations and national level nuclear material control and accounting (MC and A) software in place to require all enterprises in the Russian Federation to report summarized inventory listings to the FIS in January 2002. Enterprises do not need automated systems to comply with summarized reporting requirements. Along with the approximately 25% of the total Category 1 Material Balance Areas (MBAs) using full function reporting, the addition of this complete summarized inventory makes the FIS a more valuable tool for MinAtom management. The FIS is now poised to complete the work by improving the integrity and reliability of the data through increasing the number of enterprises and MBAs using full function reporting. There are obstacles and issues that must be dealt with along the way to achieving the final goal of every MBA sending inventory and inventory change reports using the full function reporting method. Summarized reporting is a major step toward this final goal. Currently all MBAs using full function reporting are doing so under a U.S. contract. FIS management recognized full function reporting could not be implemented in the near-term and prepared a plan with immediate, intermediate, and long-term FIS tasks. To address the major obstacles and optimize implementation, two paths need to be followed in parallel: developing the regulatory basis and overcoming

  16. Studies and research concerning BNFP: computerized nuclear materials control and accounting system development evaluation report, FY 1978

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, J M; Ehinger, M H; Joseph, C; Madeen, M L

    1978-10-01

    Development work on a computerized system for nuclear materials control and accounting in a nuclear fuel reprocessing plant is described and evaluated. Hardware and software were installed and tested to demonstrate key measurement, measurement control, and accounting requirements at accountability input/output points using natural uranium. The demonstration included a remote data acquisition system which interfaces process and special instrumentation to a cenral processing unit.

  17. Computerization of nuclear material accounting and control at storage facilities of RT-1 plant, PA Mayak

    International Nuclear Information System (INIS)

    Krakhmal'nik, V.I.; Menshchikov, Yu.L.; Mozhaev, D.A.

    1999-01-01

    Computerized system for nuclear material (NM) accounting and control at RT-1 plant is being created on the basis of advanced engineering and programming tools, which give a possibility to ensure prompt access to the information required, to unify the accounting and report documentation, make statistical processing of the data, and trace the NM transfers in the chain of its storage at facilities of RT-1 plant. Currently, the accounting is performed in parallel, both by the old methods and with computerized system. The following functions are performed by the system at the current stage: input of data on the end product's (plutonium dioxide) quantitative and qualitative composition; data input on the localization of containers with finished products at storage facilities of the plant and the product's temporary characteristics; selective verification of the data on containers and batches, according to the criteria prespecified by the user; data protection against unauthorized access; data archiving; report documents formation and providing [ru

  18. Evaluation of nitrogen containing reducing agents for the corrosion control of materials relevant to nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Padma S. [Water and Steam Chemistry Division, BARC Facilities, Kalpakkam, Tamilnadu (India); Mohan, D. [Department of Chemistry, Anna University, Chennai, Tamilnadu (India); Chandran, Sinu; Rajesh, Puspalata; Rangarajan, S. [Water and Steam Chemistry Division, BARC Facilities, Kalpakkam, Tamilnadu (India); Velmurugan, S., E-mail: svelu@igcar.gov.in [Water and Steam Chemistry Division, BARC Facilities, Kalpakkam, Tamilnadu (India)

    2017-02-01

    Materials undergo enhanced corrosion in the presence of oxidants in aqueous media. Usually, hydrogen gas or water soluble reducing agents are used for inhibiting corrosion. In the present study, the feasibility of using alternate reducing agents such as hydrazine, aqueous ammonia, and hydroxylamine that can stay in the liquid phase was investigated. A comparative study of corrosion behavior of the structural materials of the nuclear reactor viz. carbon steel (CS), stainless steel (SS-304 LN), monel-400 and incoloy-800 in the oxidizing and reducing conditions was also made. In nuclear industry, the presence of radiation field adds to the corrosion problems. The radiolysis products of water such as oxygen and hydrogen peroxide create an oxidizing environment that enhances the corrosion. Electrochemical studies at 90 °C showed that the reducing agents investigated were efficient in controlling corrosion processes in the presence of oxygen and hydrogen peroxide. Evaluation of thermal stability of hydrazine and its effect on corrosion potential of SS-304 LN were also investigated in the temperature range of 200–280 °C. The results showed that the thermal decomposition of hydrazine followed a first order kinetics. Besides, a change in electrochemical corrosion potential (ECP) was observed from −0.4 V (Vs SHE) to −0.67 V (Vs SHE) on addition of 5 ppm of hydrazine at 240 °C. Investigations were also made to understand the distribution behavior of hydrogen peroxide and hydrazine in water-steam phases and it was found that both the phases showed identical behavior. - Highlights: • Hydrazine was found to be a promising reducing agent for oxidant control. • In presence of hydrazine corrosion potential of SS304 LN was well below −230 mV. • SS304LN could be protected from IGSCC by hydrazine addition. • Thermal and radiation stability of hydrazine at 285 °C was found satisfactory.

  19. Solution standards for quality control of nuclear-material analytical measurements

    International Nuclear Information System (INIS)

    Clark, J.P.

    1981-01-01

    Analytical chemistry measurement control depends upon reliable solution standards. At the Savannah River Plant Control Laboratory over a thousand analytical measurements are made daily for process control, product specification, accountability, and nuclear safety. Large quantities of solution standards are required for a measurement quality control program covering the many different analytical chemistry methods. Savannah River Plant produced uranium, plutonium, neptunium, and americium metals or oxides are dissolved to prepare stock solutions for working or Quality Control Standards (QCS). Because extensive analytical effort is required to characterize or confirm these solutions, they are prepared in large quantities. These stock solutions are diluted and blended with different chemicals and/or each other to synthesize QCS that match the matrices of different process streams. The target uncertainty of a standard's reference value is 10% of the limit of error of the methods used for routine measurements. Standard Reference Materials from NBS are used according to special procedures to calibrate the methods used in measuring the uranium and plutonium standards so traceability can be established. Special precautions are required to minimize the effects of temperature, radiolysis, and evaporation. Standard reference values are periodically corrected to eliminate systematic errors caused by evaporation or decay products. Measurement control is achieved by requiring analysts to analyze a blind QCS each shift a measurement system is used on plant samples. Computer evaluation determines whether or not a measurement is within the +- 3 sigma control limits. Monthly evaluations of the QCS measurements are made to determine current bias correction factors for accountability measurements and detect significant changes in the bias and precision statistics. The evaluations are also used to plan activities for improving the reliability of the analytical chemistry measurements

  20. Transportation of nuclear materials

    International Nuclear Information System (INIS)

    Brobst, W.A.

    1977-01-01

    Twenty years of almost accident-free transport of nuclear materials is pointed to as evidence of a fundamentally correct approach to the problems involved. The increased volume and new technical problems in the future will require extension of these good practices in both regulations and packaging. The general principles of safety in the transport of radioactive materials are discussed first, followed by the transport of spent fuel and of radioactive waste. The security and physical protection of nuclear shipments is then treated. In discussing future problems, the question of public understanding and acceptance is taken first, thereafter transport safeguards and the technical bases for the safety regulations. There is also said to be a need for a new technology for spent fuel casks, while a re-examination of the IAEA transport standards for radiation doses is recommended. The IAEA regulations regarding quality assurance are said to be incomplete, and more information is required on correlations between engineering analysis, scale model testing and full scale crash testing. Transport stresses on contents need to be considered while administrative controls have been neglected. (JIW)

  1. Detailed description of a state system for accounting for and control of nuclear material at the state level

    International Nuclear Information System (INIS)

    Jones, R.J.

    1985-02-01

    The purpose of this document is to provide a detailed description of the technical elements of a system for the accounting for and control of nuclear material at the State Authority level which can be used by a state in the establishment of a national system for nuclear material accounting and control. It is expected that a state system designed along the lines described also will assist the IAEA in carrying out its safeguards responsibilities. The scope of this document is limited to descriptions of the technical elements of a state level system concerned with Laws and Regulations, the Information System, and the Establishment of Requirements for Nuclear Material Accounting and Control. The discussion shows the relationship of these technical elements at the state level to the principal elements of an SSAC at the facility levels

  2. Physics and technology of nuclear materials

    International Nuclear Information System (INIS)

    Ursu, I.

    1985-01-01

    The subject is covered in chapters, entitled; elements of nuclear reactor physics; structure and properties of materials (including radiation effects); fuel materials (uranium, plutonium, thorium); structural materials (including - aluminium, zirconium, stainless steels, ferritic steels, magnesium alloys, neutron irradiation induced changes in the mechanical properties of structural materials); moderator materials (including - nuclear graphite, natural (light) water, heavy water, beryllium, metal hydrides); materials for reactor reactivity control; coolant materials; shielding materials; nuclear fuel elements; nuclear material recovery from irradiated fuel and recycling; quality control of nuclear materials; materials for fusion reactors (thermonuclear fusion reaction, physical processes in fusion reactors, fuel materials, materials for blanket and cooling system, structural materials, materials for magnetic devices, specific problems of material irradiation). (U.K.)

  3. Smuggling special nuclear materials

    International Nuclear Information System (INIS)

    Lazaroiu, Gheorghe

    1999-01-01

    Ever since the collapse of the former Soviet Union reports have circulated with increasing frequency concerning attempts to smuggle materials from that country's civil and military nuclear programs. Such an increase obviously raises a number of concerns (outlined in the author's introduction), chief among which is the possibility that these materials might eventually fall into the hands of proliferant states or terrorist groups. The following issues are presented: significance of materials being smuggled; sources and smuggling routes; potential customers; international efforts to reduce nuclear smuggling; long-term disposition of fissile materials. (author)

  4. Application of ion chromatography to the control of materials of nuclear interest

    International Nuclear Information System (INIS)

    Pires, M.A.F.

    1989-01-01

    The present work concerns ion chromatrography (IC) with conductometric detection as analytical technique for controling several materials of nuclear interest by determining the chemical elements present in them. Priority has been given to the individual determination of the lanthanide elements and yttrium. Complexing agents were used as eluents for the elements studied. Several experiments were performed in which the eluent composition as well as its pH were varied, so obtaining the eluent's iso-pH and iso-concentration values for each of the lanthanide and yttrium. The importance of the presence of the ethylenediamine ion on the separation and elution of the rare-earths was investigated. The determination of the alkaline metals and ammonium ion, alkaline-earth elements, fluoride, chloride, nitrate and phosphate anions in several solutions and in different materials that are involved in the chemical processes belonging to the fuel cycle was carried out. Single column ion chromatography technique was applied for determining all the lanthanide elements as well as yttrium, magnesium, calcium, strontium and barium and the sensibility of the measurements determined. A rapid chromatographic method for determining gadolinium in urania-gadolinia matrix is also proposed. Quantitative data on the separation of the lanthanide elements and yttrium from large amounts or other ions, rare earths for example, are presented. (author) [pt

  5. Automated nuclear materials accounting

    International Nuclear Information System (INIS)

    Pacak, P.; Moravec, J.

    1982-01-01

    An automated state system of accounting for nuclear materials data was established in Czechoslovakia in 1979. A file was compiled of 12 programs in the PL/1 language. The file is divided into four groups according to logical associations, namely programs for data input and checking, programs for handling the basic data file, programs for report outputs in the form of worksheets and magnetic tape records, and programs for book inventory listing, document inventory handling and materials balance listing. A similar automated system of nuclear fuel inventory for a light water reactor was introduced for internal purposes in the Institute of Nuclear Research (UJV). (H.S.)

  6. Thermodynamics of nuclear materials

    International Nuclear Information System (INIS)

    Rand, M.H.

    1975-01-01

    A report is presented of the Fourth International Symposium on Thermodynamics of Nuclear Materials held in Vienna, 21-25 October 1974. The technological theme of the Symposium was the application of thermodynamics to the understanding of the chemistry of irradiated nuclear fuels and to safety assessments for hypothetical accident conditions in reactors. The first four sessions were devoted to these topics and they were followed by four more sessions on the more basic thermodynamics, phase diagrams and the thermodynamic properties of a wide range of nuclear materials. Sixty-seven papers were presented

  7. The position of IAEA safeguards relative to nuclear material control accountancy by States

    International Nuclear Information System (INIS)

    Rometsch, R.; Hough, G.

    1977-01-01

    IAEA Safeguards, which are always implemented on the basis of agreements which are concluded between one or more Governments and the IAEA, lay down the rights and obligations of the parties; and the more modern types of agreement, in particular those in connection with the Treaty on the Non-Proliferation of Nuclear Weapons, do this in quite some detail. Several articles, for instance, regulate the working relations between the States and the IAEA inspectorate. These are based on two basic obligations - that of the State to establish and maintain a ''System of Accountancy for and Control of Nuclear Material'' and that of the IAEA to ascertain the absence of diversion of nuclear material by verifying the findings of the States' systems, inter alia through independent measurements and observations. Other articles dealing also with the working relations between States and the IAEA rule that the IAEA should take due account of the technical effectiveness of the States' systems and mention among the criteria for determining the inspection effort, the extent of functional dependence of the State's accountancy on that of the facility operator. However, quantitative relationships in this respect are left to be worked out in practice. With the help of consultants and expert advisory groups a rationale has been developed and possible practical arrangements discussed with several States concerned. The rationale for co-ordinating the work of the States' inspectorate with that of the IAEA was to use a factor by which the significant quantity used for calculating verification sampling plans would be adjusted so as to reduce to a certain extent the IAEA's independent verification work in case the States would themselves do extensive verifications in a manner transparent to the IAEA. However, in practice it proved that there are a number of points in the fuel cycle where such adaptations would have little or no effect on the inspection effort necessary to achieve the safeguards

  8. The position of IAEA safeguards relative to nuclear material control accountancy by states

    International Nuclear Information System (INIS)

    Rometsch, R.; Hough, G.

    1977-01-01

    IAEA Safeguards are always implemented on the basis of agreements which are concluded between one or more Governments and the Agency. They lay down the rights and obligations of the parties; the more modern types of agreements, in particular those in connection with the Treaty on the Non-Proliferation of Nuclear Weapons, do that in quite some details. Several articles, for instance, regulate the working relations between the States and the IAEA inspectorate. Those are based on two basic obligations: that of the State to establish and maintain a ''System of Accountancy for and Control of Nuclear Material'' and that of the Agency to ascertain the absence of diversion of nuclear material by verifying the findings of the States' system, inter alia through independent measurements and observations. Other articles dealing also with the working relations States - IAEA rule that the Agency should take due account of the technical effectiveness of the States' system and mention among the criteria for determining the inspection effort, the extent of functional dependence of the State's accountancy from that of the facility operator. However, quantitative relationships in that respect are left to be worked out in practice. With the help of consultants and expert advisory groups a rational has been developed and possible practical arrangements discussed with several States concerned. The rational for coordinating the work of the States' inspectorate with IAEA's inspectorate was to use a factor by which the significant quantity used for calculating verification sampling plans would be adjusted in order to reduce to a certain extent the Agency's independent verification work in case the States would do extensive verifications themselves in a manner transparent to IAEA. However, in practice it proved that there are quite a number of points in the fuel cycle where such adaptations would have little or no effect on the inspection effort necessary to achieve the safeguards objective

  9. Operational control of material release and discharges from nuclear power plant

    International Nuclear Information System (INIS)

    Szabo, I. C.; Ranga, T.; Daroczi, L.; Deme, S.; Kerekes, A.

    2003-01-01

    The operational control of radioactive materials during atmospheric release and aquatic discharge from nuclear power plant is a licensing criterion for NPPs. Originally at the Paks NPP the release control was based on activity limits for four groups of elements. These groups were noble gases, long living radio-aerosols, radioiodine and radiostrontium for atmospheric release and specified activity limit for beta emitters, strontium and tritium for aquatic discharge into Danube. These groups were controlled with proper sampling and/or measuring instrumentation. The limit for atmospheric release was given as a 30-day moving average, for liquid discharges the annual limit was stipulated. The new release and discharge limitation system is based on the environmental dose limitation. The dose constraint for Paks NPP is 90 Sv/year of the critical group for all release pathways and the investigation dose limit is equal to 27 Sv/year. The regulation did not subdivide the dose limit for atmospheric and liquid components but for operational control subdivision of dose limits for atmospheric release and aquatic discharge and shorter time period (one day-one month) seems to be useful. The subdivision can be based on past release data and/or previous activity limits. To satisfy dose below the investigation dose limit there should be a proper operation control level for each separately measured component and pathway belonging to reasonable time interval significantly shorter than one year. The main task of the NPP staff is elaboration of reasonable control levels and reference time intervals for different radionuclide and element groups to be used in operational control. Operational control levels are based on measured daily or monthly release rates. In case of noble gases, aerosols and iodine the daily release rates have several sharp peaks per year. Operational control levels give opportunity to detect these peaks for internal investigation purposes. Investigation release limits

  10. INMACS: Operating experience of a mature, computer-assisted control system for nuclear material inventory and criticality safety

    International Nuclear Information System (INIS)

    Ross, A.M.

    1983-01-01

    This paper describes the operating experience of INMACS, the Integrated Nuclear Material Accounting and Control System used in the Recycle Fuel Fabrication Laboratories at Chalk River. Since commissioning was completed in 1977, INMACS has checked and recorded approximately 3000 inventory-related transactions involved in fabricating thermal-recycle fuels of (U,Pu)0 2 and (Th,Pu)0 2 . No changes have been necessary to INMACS programs that are used by laboratory staff when moving or processing nuclear material. The various utility programs have allowed efficient management and surveillance of the INMACS data base. Hardware failures and the nuisance of system unavailability at the laboratory terminals have been minimized by regular preventative maintenance. The original efforts in the design and rigorous testing of programs have helped INMACS to be accepted enthusiastically by old and new staff of the laboratories. The work required for nuclear material inventory control is done efficiently and in an atmosphere of safety

  11. Standard guide for application of radiation monitors to the control and physical security of special nuclear material

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    This guide briefly describes the state-of-the-art of radiation monitors for detecting special nuclear material (SNM) in order to establish the context in which to write performance standards for the monitors. This guide extracts information from technical documentation to provide information for selecting, calibrating, testing, and operating such radiation monitors when they are used for the control and protection of SNM. This guide offers an unobtrusive means of searching pedestrians, packages, and motor vehicles for concealed SNM as one part of a nuclear material control or security plan for nuclear materials. The radiation monitors can provide an efficient, sensitive, and reliable means of detecting the theft of small quantities of SNM while maintaining a low likelihood of nuisance alarms

  12. Standard guide for application of radiation monitors to the control and physical security of special nuclear material

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1999-01-01

    1.1 This guide briefly describes the state-of-the-art of radiation monitors for detecting special nuclear material (SNM) (see 3.1.11) in order to establish the context in which to write performance standards for the monitors. This guide extracts information from technical documentation to provide information for selecting, calibrating, testing, and operating such radiation monitors when they are used for the control and protection of SNM. This guide offers an unobtrusive means of searching pedestrians, packages, and motor vehicles for concealed SNM as one part of a nuclear material control or security plan for nuclear materials. The radiation monitors can provide an efficient, sensitive, and reliable means of detecting the theft of small quantities of SNM while maintaining a low likelihood of nuisance alarms. 1.2 Dependable operation of SNM radiation monitors rests on selecting appropriate monitors for the task, operating them in a hospitable environment, and conducting an effective program to test, calibrat...

  13. Detecting Illicit Nuclear Materials

    International Nuclear Information System (INIS)

    Kouzes, Richard T.

    2005-01-01

    The threat that weapons of mass destruction might enter the United States has led to a number of efforts for the detection and interdiction of nuclear, radiological, chemical, and biological weapons at our borders. There have been multiple deployments of instrumentation to detect radiation signatures to interdict radiological material, including weapons and weapons material worldwide

  14. Report on {open_quotes}audit of internal controls over special nuclear materials{close_quotes}

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    The Department of Energy (Department) is responsible for safeguarding a significant amount of plutonium, uranium-233 and enriched uranium - collectively referred to as special nuclear materials - stored in the United States. The Department`s office of Nonproliferation and National Security has overall management cognizance for developing policies for safeguarding these materials, while other Headquarters program offices have {open_quotes}landlord{close_quotes} responsibilities for the sites where the materials are stored, and the Department`s operations and field offices provide onsite management of contractor operations. The Department`s management and operating contractors, under the direction of the Department, safeguard and account for the special nuclear material stored at Department sites.

  15. New CSA guideline for the exemption or clearance from regulatory control of materials that contain, or potentially contain, nuclear substances

    International Nuclear Information System (INIS)

    Rhodes, M.; Kwong, A.

    2011-01-01

    The Canadian Standards Association (CSA) guideline N292.5, Guideline for the exemption or clearance from regulatory control of materials that contain, or potentially contain, nuclear substances, was recently developed to address a need for guidance on approaches for clearance of materials from facilities licensed by the Canadian Nuclear Safety Commission (CNSC) consistent with Canadian and international recommendations. This guideline is also applicable to determining if an activity associated with materials that contain nuclear substances is exempt from requiring a CNSC licence. The guideline summarizes the regulatory requirements associated with the exemption and clearance of materials and provides a graded approach to designing a survey based on the risk of residual contamination being present. (author)

  16. Nuclear weapon relevant materials and preventive arms control. Uranium-free fuels for plutonium elimination and spallation neutron sources

    International Nuclear Information System (INIS)

    Liebert, Wolfgang; Englert, Matthias; Pistner, Christoph

    2009-01-01

    Today, the most significant barrier against the access to nuclear weapons is to take hold on sufficient amounts of nuclear weapon-relevant nuclear materials. It is mainly a matter of fissionable materials (like highly enriched uranium and plutonium) but also of fusionable tritium. These can be used as reactor fuel in civil nuclear programmes but also in nuclear weapon programmes. To stop or to hinder nuclear proliferation, in consequence, there is not only a need to analyse open or covered political objectives and intentions. In the long term, it might be more decisive to analyse the intrinsic civil-military ambivalence of nuclear materials and technologies, which are suitable for sensitive material production. A farsighted strategy to avoid proliferation dangers should take much more account to technical capabilities as it is done in the political debate on nuclear non-proliferation so far. If a technical option is at a state's disposal, it is extremely difficult and lengthy to revert that again. The dangers, which one has to react to, are stemming from already existing stocks of nuclear weapon-relevant materials - in the military as well as in the civil realm - and from existing or future technologies, which are suitable for the production of such materials (cf. info 1 and 2). Therefore, the overall approach of this research project is to strive for a drastic reduction of the access to nuclear weapon-relevant material and its production capabilities. Thus, on one hand the nuclear proliferation by state actors could be answered more effectively, on the other hand by that approach a decisive barrier against the access on nuclear weapons by sub-national groups and terrorists could also be erected. For this purpose, safeguards of the International Atomic Energy Agency (IAEA) and other measures of physical accountancy will remain indispensable elements of arms control. However, one has to consider that the goal of nuclear non-proliferation could not be achieved and

  17. A measurement evaluation program to support nuclear material control and accountability measurements in Brazilian laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Fabio C., E-mail: fabio@ird.gov.br [Comissao Nacional de Energia Nuclear (CNEN-RJ), Rio de Janeiro, RJ (Brazil); Mason, Peter, E-mail: peter.mason@ch.doe.gov [New Brunswick Laboratory (DOE/NBL), Argonne, IL (United States)

    2013-07-01

    A measurement evaluation program (MEP) is one of a number of valuable tools that analytical chemists can use to ensure that the data produced in the laboratory are fit for their intended purpose and consistent with expected performance values at a given time. As such, participation in a MEP is an important indicator of the quality of analytical data, and is recognized as such by independent regulatory and/or accreditation bodies. With the intent to implement such a program in Brazil, in November 2012 the Nuclear Energy Commission of Brazil (CNEN), with support from the Department of Energy of the United States' (US-DOE International Safeguards and Engagement Program), decided to initiate a technical cooperation project aiming at organizing a Safeguards Measurement Evaluation Program (SMEP) for Brazilian facilities. The project, entitled Action Sheet 23, was formalized under the terms of the Agreement between the US-DOE and the CNEN concerning research and development in nuclear material control, accountancy, verification, physical protection, and advanced containment and surveillance technologies for International Safeguards Applications. The work, jointly performed by the CNEN's Safeguards Laboratory (LASAL) and the New Brunswick Laboratory (NBL), has the objective to strengthen the traceability of accountability measurements and ensure adequate quality of safeguards measurements for facilities within Brazil, utilizing test samples characterized and provided by NBL. Recommendations to participants included measurement frequency, number of results per sample and format for reporting results using ISO methods for calculating and expressing measurement uncertainties. In this paper, we discuss the main steps taken by CNEN and NBL aiming at implementing such a program and the expected results, in particular the impact of uncertainty estimation on the evaluation of performance of each participant laboratory. The program is considered by Brazilian safeguards

  18. A measurement evaluation program to support nuclear material control and accountability measurements in Brazilian laboratories

    International Nuclear Information System (INIS)

    Dias, Fabio C.; Mason, Peter

    2013-01-01

    A measurement evaluation program (MEP) is one of a number of valuable tools that analytical chemists can use to ensure that the data produced in the laboratory are fit for their intended purpose and consistent with expected performance values at a given time. As such, participation in a MEP is an important indicator of the quality of analytical data, and is recognized as such by independent regulatory and/or accreditation bodies. With the intent to implement such a program in Brazil, in November 2012 the Nuclear Energy Commission of Brazil (CNEN), with support from the Department of Energy of the United States' (US-DOE International Safeguards and Engagement Program), decided to initiate a technical cooperation project aiming at organizing a Safeguards Measurement Evaluation Program (SMEP) for Brazilian facilities. The project, entitled Action Sheet 23, was formalized under the terms of the Agreement between the US-DOE and the CNEN concerning research and development in nuclear material control, accountancy, verification, physical protection, and advanced containment and surveillance technologies for International Safeguards Applications. The work, jointly performed by the CNEN's Safeguards Laboratory (LASAL) and the New Brunswick Laboratory (NBL), has the objective to strengthen the traceability of accountability measurements and ensure adequate quality of safeguards measurements for facilities within Brazil, utilizing test samples characterized and provided by NBL. Recommendations to participants included measurement frequency, number of results per sample and format for reporting results using ISO methods for calculating and expressing measurement uncertainties. In this paper, we discuss the main steps taken by CNEN and NBL aiming at implementing such a program and the expected results, in particular the impact of uncertainty estimation on the evaluation of performance of each participant laboratory. The program is considered by Brazilian safeguards authorities

  19. Characterization of ceramic materials - Some methods employed in quality control of nuclear fuels

    International Nuclear Information System (INIS)

    Cardoso, P.E.; Ferraz, W.B.; Lameiras, F.S.; Lopes, J.A.M.; Santos, A.M.M. dos; Ferreira, R.A.N.

    1986-01-01

    Measuring methods are presented for specific surface, density, open porosity and microstructure, such as bulk density of particles in form of nicrospheres, for characterization of ceramic materials used as nuclear fuels. Some of these methods are alternatives to those usually employed, and they present some advantages, such as economy, speed of execution, and accuracy. (Author) [pt

  20. Material control evaluation

    International Nuclear Information System (INIS)

    Waddoups, I.G.; Anspach, D.A.; Abbott, J.A.

    1993-01-01

    Changes in the Department of Energy's (DOE) scope of work have stimulated several laboratories and commercial companies to develop and apply technology to enhance nuclear material control. Accountability, inventory, radiation exposure, and insider protection concerns increase as many DOE facilities require increased storage. This paper summarizes a study of the existing material control technologies. The goal of the study is to identify, characterize, and quantify the trade-offs associated with using these technologies to provide real-time information on stored nuclear material that in turn supports decreasing the frequency of inventories conducted by site personnel

  1. Novel Problems Associated with Accounting and Control of Nuclear Material from Decontamination and Decommissioning and in Waste

    International Nuclear Information System (INIS)

    Schlegel, Steven C.

    2007-01-01

    The reduction in nuclear arms and the production facilities that supported the weapons programs have produced some unique problems for nuclear material control and accountability (MC and A). Many of these problems are not limited to the weapons complex, but have the potential to appear in many legacy facilities as they undergo dismantlement and disposal. Closing facilities find that what was previously defined as product has become a waste stream bringing regulatory, human, and technological conflict. The sometimes unique compositions of these materials produce both storage and measurement problems. The nuclear material accounting and control programs have had to become very adaptive and preemptive to ensure control and protection is maintained. This paper examines some of the challenges to Safeguards generated by deinventory, decontamination decommissioning, dismantlement, demolition, and waste site remediation from predictable sources and some from unpredictable sources. 1.0 Introduction The United States is eliminating many facilities that support the nuclear weapons program. With the changing political conditions around the world and changes in military capabilities, the decreased emphasis on nuclear weapons has eliminated the need for many of the aging facilities. Additionally, the recovery of plutonium from dismantled weapons and reuse of components has eliminated the need to produce more plutonium for the near future. Because the nuclear weapons program and commercial applications generally do not mix in the United States, the facilities in the DOE complex that no longer have a weapon mission are being deinventoried, decontaminated, decommissioned, and dismantled/demolished. The materials from these activities are then disposed of in various ways but usually in select waste burial sites. Additionally, the waste in many historical burial sites associated with the weapons complex are being recovered, repackaged if necessary, and disposed of in either

  2. Selection of nuclear reactor coolant materials

    International Nuclear Information System (INIS)

    Shi Lisheng; Wang Bairong

    2012-01-01

    Nuclear material is nuclear material or materials used in nuclear industry, the general term, it is the material basis for the construction of nuclear power, but also a leader in nuclear energy development, the two interdependent and mutually reinforcing. At the same time, nuclear materials research, development and application of the depth and breadth of science and technology reflects a nation and the level of the nuclear power industry. Coolant also known as heat-carrier agent, is an important part of the heart nuclear reactor, its role is to secure as much as possible to the economic output in the form fission energy to heat the reactor to be used: the same time cooling the core, is controlled by the various structural components allowable temperature. This paper described the definition of nuclear reactor coolant and characteristics, and then addressed the requirements of the coolant material, and finally were introduced several useful properties of the coolant and chemical control. (authors)

  3. Advanced training course on state systems of accounting for and control of nuclear materials. Volume II. Visual aids

    International Nuclear Information System (INIS)

    Sorenson, R.J.; Schneider, R.A.

    1979-01-01

    Purpose of the course was to train in the accounting and control of nuclear materials in a bulk processing facility, for international safeguards. The Exxon low enriched uranium fabrication plant is used as an example. This volume contains visual aids used for the presentation

  4. A prototype system dynamic model of nuclear and radiological export controls in Central Asia and the Caucasus; enhancing the effectiveness of preventing illicit nuclear material trafficking

    International Nuclear Information System (INIS)

    Ferguston, C.D.; Ouagrham, S.B.

    2002-01-01

    An urgent need calls out for improved border security and export control systems in the Central Asian and Caucasus regions to prevent illicit nuclear and radioactive materials trafficking. Effective nuclear and radiological exports controls are essential because these regions contain numerous nuclear facilities and radioactive materials as well as lie at the crossroads between seekers and suppliers of technologies that could be employed in nuclear and radiological weapons. Porous and unprotected borders compound these concerns. Moreover, the states within these regions are struggling with forming new regulations and laws, obtaining sufficient portal monitoring equipment, training customs and border security personnel, and coordinating these activities with neighboring states. Building this infrastructure all at once can severely task any government. Thus, unsurprisingly, most of these states have inadequate export control and border security systems. To enable each state in these regions determine how to better prevent illicit nuclear and radiological materials trafficking, the authors have developed a prototype system dynamics model focused on evaluating and improving of effectiveness of export controls. System dynamics modeling, a management tool that grew out of the field of system engineering and nonlinear dynamics, uses two structures: causal loop diagrams and stock and flow diagrams. The former shows how endogenous systematic factors interact with each other to produce feedback mechanisms that results in either balancing or reinforcing loops. A classic example is a arms race, modeled as a vicious cycle or reinforcing loop. In addition to interacting with each other, causal loops influence the flow of stock, which is material concern. In the export control system dynamics model, the stock represents nuclear and radioactive materials. System dynamics modelling is an iterative process that is continually modified by user input. Therefore, export control

  5. Electrochemical investigations for understanding and controlling corrosion in nuclear reactor materials

    International Nuclear Information System (INIS)

    Gnanamoorthy, J.B.

    1998-01-01

    Electrochemical techniques such as potentiodynamic polarization have been used at the Indira Gandhi Centre for Atomic Research at Kalpakkam for understanding and controlling the corrosion of nuclear reactor materials such as austenitic stainless steels and chrome-moly steels. Results on the measurements of critical potentials for pitting and crevice corrosion of stainless steels and their weldments and of laser surface modified stainless steels in aqueous chloride solutions are discussed. Investigations carried out to correlate the degree of sensitization in types 304 and 316 stainless steels, measured by the electrochemical potentiokinetic reactivation technique, with the susceptibility to intergranular corrosion and intergranular stress corrosion cracking have been discussed. The stress corrosion cracking behaviour of weldments of type 316 stainless steel was studied in a boiling solution of a mixture of 5 M NaCl and 0.15 M Na 2 SO 4 acidified to give a pH of 1.3 by monitoring of the open circuit potential with time as well as by anodic polarization. Interesting information could also been obtained on the microbiologically influenced corrosion of type 304 stainless steels in a fresh water system by carrying out cyclic potentiodynamic polarization measurements as well as by monitoring the open circuit potential measurements with exposure time. Since secondary phases present (or developed during thermal ageing) in stainless steels have a significant influence on their corrosion behaviour, the estimation of these secondary phases by electrochemical methods has also been discussed. (author)

  6. Nuclear materials control and accountability (NMC and A) auditors in the 90's

    International Nuclear Information System (INIS)

    Barham, M.A.; Abbott, R.R.

    1991-01-01

    The increase in emphasis on the adequacy of the NMC and A internal control systems requires that management define what type of training and experience is needed by NMC and A Internal Audit Program. At Martin Marietta Energy Systems, inc. (the prime contractor for the Department of Energy at Oak Ridge, Tenn.), the Central NMC and A Manager has developed a comprehensive set of NMC and A Internal Audit policies that defines performance standards, methods of conducting audits, mechanisms for ensuring appropriate independence for NMC and A auditors, structure for standardized audit reports and working papers, and a section that addresses the development of training plans for individual NMC and A auditors. The training requirements reflect the unique combination of skills necessary to be an effective NMC and A Internal Auditor- a combination of the operational auditing skills of a Certified Internal Auditor, the accounting auditing capabilities of a Certified Public Accountant, and the specific technical knowledge base associated with nuclear materials. This paper presents a mechanism for identifying an individual training program for NMC and A auditors that considers the above requirements and the individual's long-range career goals

  7. Achievements, current status and prospects for Russian-American cooperation in nuclear material physical protection, control and accounting - 1998

    International Nuclear Information System (INIS)

    Nikiforov, N.V.

    1999-01-01

    The process of upgrading the material physical protection, control and accounting systems is an ongoing and long-term process that consists of modernization measuring equipment and methodologies, improving, data exchange and processing technologies, and improving administrative procedures. The positive results that was already achieved form a foundation upon which this collaboration may extend into other new and important areas, such as - the second and third lines of defence, which are directed toward countering illegal trafficking not only in nuclear materials, but in other hazardous substances that constitute a threat to the nuclear sites and national security of the countries [ru

  8. The Quantometer as an analytical instrument in the control of nuclear materials

    International Nuclear Information System (INIS)

    Alvarez Gonzalez, F.; Roca Adell, M.; Fernandez Cellini, R.

    1961-01-01

    In order to solve different problems of chemical analysis in the fields of nuclear industry and research, a Quantometer is used with a high number of channels. A detailed study to choose the more suitable spectral lines is described. The different channels have been distributed into two programs to allow the analysis of high and low concentrations. The Quantometer is being applied successfully to analyse soils, plant ashes, rocks and ores, uranium and its compounds, zirconium, graphite, alloys and other nuclear materials. (Author) 6 refs

  9. Collaborative Russian-US work in nuclear material protection, control and accounting at the Institute of Physics and Power Engineering

    International Nuclear Information System (INIS)

    Matveenko, I.P.; Pshakin, G.M.; Mozhaev, V.K.

    1995-01-01

    The Institute of Physics and Power Engineering (IPPE) is a leading research center under the Ministry of Atomic Energy of the Russian Federation. IPPE encompasses many installations and many specialists who perform fundamental and applied investigations in nuclear power and technology for the national nuclear program. IPPE has a key role in the national nuclear material protection, control, and accounting (MPC ampersand A) system both as a nuclear facility and also as a training center for MPC ampersand A. As a participant in the US-Russian Laboratory-to-Laboratory Cooperative Program in MPC ampersand A, IPPE is conducting several tasks in collaboration with US Department of Energy national laboratories. The main goal of these tasks is the rapid improvement of MPC ampersand A at one of the most sensitive operating IPPE installations, the BFS critical facility, which has large numbers of fuel items containing highly enriched uranium and weapons-grade plutonium. After the completion of several test, evaluation, and demonstration tasks, it is hoped that the tested and adopted methods and procedures can be applied not only to the entire population of BFS fuel items, but also to other facilities at IPPE and other Russian nuclear institutes and operating facilities. The collaborative tasks cover seven areas: computerized nuclear material accounting, entry control and portals, item control and inventory, design evaluation and analysis, gamma and neutron assay, an integrated demonstration, and physical protection elements and test bed

  10. The state system of accounting and control of nuclear material in Argentina and the Y2K issue

    International Nuclear Information System (INIS)

    Moreno, S.F.; Maceiras, E.

    1999-01-01

    The nuclear regulatory activities in Argentina are carried out by the 'Nuclear Regulatory Authority' (ARN). To fulfil its responsibilities, the ARN has established and enforced a regulatory framework for all nuclear activities concerning nuclear safety and radiological protection, physical protection and the guarantees of non-proliferation. Concerning the guarantees of non-proliferation, the SSAC includes an independent verification system based on national safeguards inspections, evaluations and a centralised accounting database of all nuclear materials in all nuclear activities performed in Argentina. The ARN has implemented two computerised databases to improve its SSAC. One is the 'Safeguards Inspections System' (SIS) developed to optimise the programming of the national inspections and their evaluation. The other is the 'Nuclear Material Control System' (SCMN) designed to improve the issuing and submission of accounting and operating reports. To improve further the SSAC, the ARN has requested software that should be in use at each nuclear installation in the near future. This computerised accounting database (SOP) would increase the quality of the operator's accounting and control system. About the change of the millennium, it is important to bear in mind that it may have an impact not only in the dates of the safeguards reports, but also in some data generated by software or equipment at nuclear installations used as the basis for safeguards records. For example, computerised programs for fuel element management at the Nuclear Power Stations or certain software and hardware in use at bulk installations would require a comprehensive review to assure that the change of the year 2000 will not cause any problem. Besides, some of the data generated by computerised systems at the level of installations are inputs for the three integrated databases SCMN, SIS and SOP. This paper describes the objectives and functions of these integrated systems and some main aspects

  11. Active Interrogation using Photofission Technique for Nuclear Materials Control and Accountability

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Haori [Oregon State Univ., Corvallis, OR (United States)

    2016-03-31

    Innovative systems with increased sensitivity and resolution are in great demand to detect diversion and to prevent misuse in support of nuclear materials management for the U.S. fuel cycle. Nuclear fission is the most important multiplicative process involved in non-destructive active interrogation. This process produces the most easily recognizable signature for nuclear materials. In addition to thermal or high-energy neutrons, high-energy gamma rays can also excite a nucleus and cause fission through a process known as photofission. Electron linear accelerators (linacs) are widely used as the interrogating photon sources for inspection methods involving photofission technique. After photofission reactions, prompt signals are much stronger than the delayed signals, but it is difficult to quantify them in practical measurements. Delayed signals are easily distinguishable from the interrogating radiation. Linac-based, advanced inspection techniques utilizing the delayed signals after photofission have been extensively studied for homeland security applications. Previous research also showed that a unique delayed gamma ray energy spectrum exists for each fissionable isotope. In this work, high-energy delayed γ-rays were demonstrated to be signatures for detection, identification, and quantification of special nuclear materials. Such γ-rays were measured in between linac pulses using independent data acquisition systems. A list-mode system was developed to measure low-energy delayed γ-rays after irradiation. Photofission product yields of 238U and 239Pu were determined based on the measured delayed γ-ray spectra. The differential yields of delayed γ-rays were also proven to be able to discriminate nuclear from non-nuclear materials. The measurement outcomes were compared with Monte Carlo simulation results. It was demonstrated that the current available codes have capabilities and limitations in the simulation of photofission process. A two

  12. Active Interrogation using Photofission Technique for Nuclear Materials Control and Accountability

    International Nuclear Information System (INIS)

    Yang, Haori

    2016-01-01

    Innovative systems with increased sensitivity and resolution are in great demand to detect diversion and to prevent misuse in support of nuclear materials management for the U.S. fuel cycle. Nuclear fission is the most important multiplicative process involved in non-destructive active interrogation. This process produces the most easily recognizable signature for nuclear materials. In addition to thermal or high-energy neutrons, high-energy gamma rays can also excite a nucleus and cause fission through a process known as photofission. Electron linear accelerators (linacs) are widely used as the interrogating photon sources for inspection methods involving photofission technique. After photofission reactions, prompt signals are much stronger than the delayed signals, but it is difficult to quantify them in practical measurements. Delayed signals are easily distinguishable from the interrogating radiation. Linac-based, advanced inspection techniques utilizing the delayed signals after photofission have been extensively studied for homeland security applications. Previous research also showed that a unique delayed gamma ray energy spectrum exists for each fissionable isotope. In this work, high-energy delayed γ-rays were demonstrated to be signatures for detection, identification, and quantification of special nuclear materials. Such γ-rays were measured in between linac pulses using independent data acquisition systems. A list-mode system was developed to measure low-energy delayed γ-rays after irradiation. Photofission product yields of 238 U and 239 Pu were determined based on the measured delayed γ-ray spectra. The differential yields of delayed γ-rays were also proven to be able to discriminate nuclear from non-nuclear materials. The measurement outcomes were compared with Monte Carlo simulation results. It was demonstrated that the current available codes have capabilities and limitations in the simulation of photofission process. A two-fold approach was

  13. Role of a national system of accounting and control of nuclear material under ABACC's (Brazilian-Argentine Agency) regional system

    International Nuclear Information System (INIS)

    Fernandez Moreno, Sonia; Estrada Oyuela, Miguel E.

    2000-01-01

    The Brazilian-Argentine Agency (ABACC) and the 'Common System of Accounting and Control of Nuclear Materials' (SCCC) are the result of a process started with nuclear cooperation between Argentina and Brazil. The SCCC reflects a common policy of transparency established by a Bilateral Agreement. Its insertion in the global context was made through a Quadripartite Agreement (Argentina, Brazil, ABBAC, IAEA). This paper describes the role of the State System of Accounting and Control (SSAC) in the framework established in the Bilateral and the Quadripartite Safeguards Agreements and in the context of new trends and perspectives in international safeguards. It could also serve as a example for initiatives in other regions. (author)

  14. Nuclear materials transportation

    International Nuclear Information System (INIS)

    Ushakov, B.A.

    1986-01-01

    Various methods of nuclear materials transportation at different stages of the fuel cycle (U 3 O 8 , UF 6 production enrichment, fuel element manufacturing, storage) are considered. The advantages and drawbacks of railway, automobile, maritime and air transport are analyzed. Some types of containers are characterized

  15. International training course on implementation of state systems of accounting for and control of nuclear materials: proceedings

    International Nuclear Information System (INIS)

    1984-06-01

    This report incorporates all lectures and presentations at the International Training Course on Implementation of State Systems of Accounting for and Control of Nuclear Materials held October 17 through November 4, 1983, at Santa Fe and Los Alamos, New Mexico and Richland, Washington, USA. Authorized by the US Nuclear Non-Proliferation Act and sponsored by the US Department of Energy in cooperation with the International Atomic Energy Agency, the course was developed to provide practical training in the design, implementation, and operation of a State system of nuclear materials accountability and control that satisfies both national and international safeguards requirements. Major emphasis for the 1983 course was placed on safeguards methods used at bulk-handling facilities, particularly low-enriched uranium conversion and fuel fabrication plants. The course was conducted by the University of California's Los Alamos National Laboratory and Exxon Nuclear Company, Inc. Tours and demonstrations were arranged at the Los Alamos National Laboratory, Los Alamos, New Mexico, and the Exxon Nuclear fuel fabrication plant, the Battelle Pacific Northwest Laboratory, Westinghouse Fast Flux Test Facility Visitor Center, and Washington Public Power System nuclear reactor facilities in Richland, Washington. Individual presentations were indexed for inclusion in the Energy Data Base

  16. Status report on US-Russian laboratory-to-laboratory cooperation in nuclear materials protection, control and accounting

    International Nuclear Information System (INIS)

    Mullen, M.

    1996-01-01

    In April 1994, a new program of cooperation on nuclear materials protection, control, and accounting (MPC and A) was initiated between (1) the US Department of Energy and its laboratories and (2) nuclear institutes and enterprises of the Russian Federation. The program is called the Laboratory-to-Laboratory Nuclear Materials Protection, Control, and Accounting Program (Lab-to-Lab MPC and A Program); it is one of several, complementary US-Russian MPC and A programs. The purpose of the Lab-to-Lab MPC and A Program is to accelerate progress toward a goal that is vital to the national security interests of both countries: reducing the risk of nuclear weapons proliferation by strengthening MPC and A systems. In its first two years, the program has made significant progress and has expanded to include many additional Russian participants. It has also fostered a spirit of mutual understanding, partnership, and respect between US and Russian nuclear specialists, which has paved the way for advances in other MPC and A and nuclear security cooperative efforts. This paper reviews the current status of the program. In addition to summarizing the background and objectives of the program, the paper describes highlights of recent work and outlines future directions for Lab-to-Lab MPC and A cooperation

  17. International training course on implementation of state systems of accounting for and control of nuclear materials: proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1984-06-01

    This report incorporates all lectures and presentations at the International Training Course on Implementation of State Systems of Accounting for and Control of Nuclear Materials held October 17 through November 4, 1983, at Santa Fe and Los Alamos, New Mexico and Richland, Washington, USA. Authorized by the US Nuclear Non-Proliferation Act and sponsored by the US Department of Energy in cooperation with the International Atomic Energy Agency, the course was developed to provide practical training in the design, implementation, and operation of a State system of nuclear materials accountability and control that satisfies both national and international safeguards requirements. Major emphasis for the 1983 course was placed on safeguards methods used at bulk-handling facilities, particularly low-enriched uranium conversion and fuel fabrication plants. The course was conducted by the University of California's Los Alamos National Laboratory and Exxon Nuclear Company, Inc. Tours and demonstrations were arranged at the Los Alamos National Laboratory, Los Alamos, New Mexico, and the Exxon Nuclear fuel fabrication plant, the Battelle Pacific Northwest Laboratory, Westinghouse Fast Flux Test Facility Visitor Center, and Washington Public Power System nuclear reactor facilities in Richland, Washington. Individual presentations were indexed for inclusion in the Energy Data Base.

  18. Minatom of Russia Situation and Crisis Center and the Automated Federal Information System for Nuclear Material Control and Accounting

    International Nuclear Information System (INIS)

    Berchik, V.P.; Kasumova, L.A.; Babcock, R.A.; Heinberg, C.L.; Tynan, D.M.

    2001-01-01

    Under the Situation and Crisis Center (SCC) management, the Information Analytical Center (IAC) of the Ministry of Atomic Energy (Minatom) of Russia was created to oversee the operation of the Federal Nuclear Material Control and Accounting Information System (FIS). During 2000, the FIS achieved an important milestone in its development: the basic functions of the information system were implemented. This includes placing into operation the collecting and processing of nuclear material control and accounting (MC and A) information from the enterprises reporting to the FIS. The FIS began working with 14 Russian enterprises to develop and implement full-function reporting (i.e., reporting inventory and inventory changes including closeout and reconciliation between the FIS and enterprises). In 2001, the system will expand to include enterprise-level inventory information for all enterprises using nuclear materials in Russia. For this reason, at the end of 2000 through the beginning of 2001, five separate training sessions were held for over 100 enterprise personnel responsible for preparation and transfer of the reports to the FIS. Through the assistance of the Nuclear Material Protection, Control and Accounting (MPC and A) program, information systems for the accounting of nuclear materials are being installed at Russia enterprises. In creating the program for modernization of the Russian Federation State System of Accounting and Control (SSAC) of nuclear material, the SCC conducted a survey of the enterprises to determine the readiness of their internal MC and A systems for reporting to the FIS. Based on the information from the survey and the results of the projects on creation of local information systems at Russian enterprises, the analysis of information and the technical aspects of MC and A systems identified deficiencies that were analyzed and recommendations for eliminating these deficiencies were proposed. The concentration of analytical and administrative

  19. Use of process monitoring data for the enhancement of nuclear material control and accounting

    International Nuclear Information System (INIS)

    Miles, J.C.; Glancy, J.E.; Donelson, S.E.

    1979-09-01

    Two licensed fuel fabrication facilities, one processing low-enriched and the other high-enriched uranium, were examined in this study. Safeguards effectiveness of the current material accounting system at each licensee was quantitatively assessed using an evaluation methodology. Two generations of alternate material control systems using portions of the facilities' process monitoring data were developed and similarly evaluated for each facility

  20. International training course on implementation of state systems of accounting for and control of nuclear materials: proceedings

    International Nuclear Information System (INIS)

    1986-06-01

    This report incorporates all lectures and presentations at the International Training Course on Implementation of State Systems of Accounting for and Control of Nuclear Materials held June 3 through June 21, 1985, at Santa Fe and Los Alamos, New Mexico, and San Clemente, California. Authorized by the US Nuclear Non-Proliferation Act and sponsored by the US Department of Energy in cooperation with the International Atomic Energy Agency, the Course was developed to provide practical training in the design, implementation, and operation of a state system of nuclear materials accountability and control that satisfies both national and international safeguards requirements. Major emphasis for the 1985 course was placed on safeguards methods used at item-control facilities, particularly nuclear power generating stations and test reactors. An introduction to safeguards methods used at bulk handling facilities, particularly low-enriched uranium conversion and fuel fabrication plants, was also included. The course was conducted by the University of California's Los Alamos National Laboratory and the Southern California Edison Company. Tours and demonstrations were arranged at the Los Alamos National Laboratory, Los Alamos, New Mexico, and the San Onofre Nuclear Generating Station, San Clemente, California

  1. International training course on implementation of state systems of accounting for and control of nuclear materials: proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1986-06-01

    This report incorporates all lectures and presentations at the International Training Course on Implementation of State Systems of Accounting for and Control of Nuclear Materials held June 3 through June 21, 1985, at Santa Fe and Los Alamos, New Mexico, and San Clemente, California. Authorized by the US Nuclear Non-Proliferation Act and sponsored by the US Department of Energy in cooperation with the International Atomic Energy Agency, the Course was developed to provide practical training in the design, implementation, and operation of a state system of nuclear materials accountability and control that satisfies both national and international safeguards requirements. Major emphasis for the 1985 course was placed on safeguards methods used at item-control facilities, particularly nuclear power generating stations and test reactors. An introduction to safeguards methods used at bulk handling facilities, particularly low-enriched uranium conversion and fuel fabrication plants, was also included. The course was conducted by the University of California's Los Alamos National Laboratory and the Southern California Edison Company. Tours and demonstrations were arranged at the Los Alamos National Laboratory, Los Alamos, New Mexico, and the San Onofre Nuclear Generating Station, San Clemente, California.

  2. Effect of controlled potential on SCC of nuclear waste package container materials

    International Nuclear Information System (INIS)

    Lum, B. Y.; Roy, A. K.; Spragge, M. K.

    1999-01-01

    The slow-strain-rate (SSR) test technique was used to evaluate the susceptibility of Titanium (Ti) Gr-7 (UNS R52400) and Ti Gr-12 (UNS R53400) to stress corrosion cracking (SCC). Ti Gr-7 and Ti Gr-12 are two candidate container materials for the multi-barrier package for nuclear waste. The tests were done in a deaerated 90 C acidic brine (pH ∼ 2.7) containing 5 weight percent (wt%) sodium chloride (NaCl) using a strain rate of 3.3 x 10 -6 sec -1 . Before being tested in the acidic brine, specimens of each alloy were pulled inside the test chamber in the dry condition at ambient temperature. Then while in the test solution, specimens were strained under different cathodic (negative) controlled electrochemical potentials. These controlled potentials were selected based on the corrosion potential measured in the test solution before the specimens were strained. Results indicate that the times to failure (TTF) for Ti Gr-12 were much shorter than those for Ti Gr-7. Furthermore, as the applied potential became more cathodic, Ti Gr-12 showed reduced ductility in terms of percent reduction in area (%RA) and true fracture stress (σ f ). In addition, TTF and percent elongation (%El) reached the minimum values when Ti Gr-12 was tested under an impressed potential of -1162 mV. However, for Ti Gr-7, all these ductility parameters were not significantly influenced by the changes in applied potential. In general, the results of hydrogen analysis by secondary ion mass spectrometry (SIMS) showed increased hydrogen concentration at more cathodic controlled potentials. Optical microscopy and scanning electron microscopy (SEM) were used to evaluate the morphology of cracking both at the primary fracture face and the secondary cracks along the gage section of the broken tensile specimen. Transgranular secondary cracks were observed in both alloys possibly resulting from the formation of brittle titanium hydrides due to cathodic charging. The primary fracture face was characterized

  3. Nuclear materials transport worldwide

    International Nuclear Information System (INIS)

    Stellpflug, J.

    1987-01-01

    This Greenpeace report shows: nuclear materials transport is an extremely hazardous business. There is no safe protection against accidents, kidnapping, or sabotage. Any moment of a day, at any place, a nuclear transport accident may bring the world to disaster, releasing plutonium or radioactive fission products to the environment. Such an event is not less probable than the MCA at Chernobyl. The author of the book in hand follows the secret track of radioactive materials around the world, from uranium mines to the nuclear power plants, from reprocessing facilities to the waste repositories. He explores the routes of transport and the risks involved, he gives the names of transport firms and discloses incidents and carelessness, tells about damaged waste drums and plutonium that 'disappeared'. He also tells about worldwide, organised resistance to such nuclear transports, explaining the Greenpeace missions on the open sea, or the 'day X' operation at the Gorleben site, informing the reader about protests and actions for a world freed from the threat of nuclear energy. (orig./HP) [de

  4. Real-time software use in nuclear materials handling criticality safety control

    International Nuclear Information System (INIS)

    Huang, S.; Lappa, D.; Chiao, T.; Parrish, C.; Carlson, R.; Lewis, J.; Shikany, D.; Woo, H.

    1997-01-01

    This paper addresses the use of real-time software to assist handlers of fissionable nuclear material. We focus specifically on the issue of workstation mass limits, and the need for handlers to be aware of, and check against, those mass limits during material transfers. Here ''mass limits'' generally refer to criticality safety mass limits; however, in some instances, workstation mass limits for some materials may be governed by considerations other than criticality, e.g., fire or release consequence limitation. As a case study, we provide a simplified reliability comparison of the use of a manual two handler system with a software-assisted two handler system. We identify the interface points between software and handlers that are relevant to criticality safety

  5. International nuclear material safeguards

    International Nuclear Information System (INIS)

    Syed Azmi Syed Ali

    1985-01-01

    History can be a very dull subject if it relates to events which have long since lost their relevance. The factors which led to the creation of the International Atomic Energy Agency (IAEA), however, are as important and relevant today as they were when the Agency was first created. Without understanding these factors it is impossible to realise how important the Agency is in the present world or to understand some of the controversies surrounding its future. Central to these controversies is the question of how best to promote the international transfer of nuclear technology without contributing further to the problem of proliferating nuclear explosives or explosive capabilities. One effective means is to subject nuclear materials (see accompanying article in box), which forms the basic link between the manufacture of nuclear explosives and nuclear power generation, to international safeguards. This was realized very early in the development of nuclear power and was given greater emphasis following the deployment of the first two atomic bombs towards the end of World War II. (author)

  6. Safeguards agreement and additional protocol - IAEA instruments for control of nuclear materials distribution and their application in Tajikistan

    International Nuclear Information System (INIS)

    Nasrulloev, Kh.; Mirsaidov, U.

    2010-01-01

    Full text: It is known that IAEA plays an important role in facilitation of nuclear non-proliferation as international authority which carries out nuclear inspections. Republic of Tajikistan in 1997 signed nuclear weapon non-proliferation treaty. Then in 2004 Safeguards agreement, additional protocol and small quantity protocol were signed. During 5 years Republic of Tajikistan submits information on its nuclear activity as declarations, foreseen in article 2.3 of Additional protocol to Safeguards agreement. Currently 66 declarations are submitted. Information required in accordance with Safeguards agreement and Additional Protocol is figured on that IAEA could compile more detailed and exact conception about nuclear activity in Tajikistan and it has the following purpose: information will lead to more transparency, and make it possible to IAEA to ensure with high extent of confidence that in the framework of declared program, any unstated nuclear activity is concealed; the more exact and comprehensive information, the rare is questions and discrepancies are originating; required information is the basis for effective planning and IAEA activity realization, related not only with safeguards implementation in regard to declared nuclear material but also ensuring of confidence in absence of undeclared nuclear activity in Tajikistan. IAEA inspection mission consisting of Messrs. N.Lazarev and F. Coillou visited Dushanbe in 2008 for verification of republic’s declarations on account for and control of nuclear materials under Additional protocol and Small quantity protocol, as well as consultations were provided on correct declaration completing and providing information on all nuclear materials. Besides, in 2006, the training course was conducted in Chkalovsk with participation of Commonwealth of Independent States countries on Safeguards agreement and Additional protocol. These visits and events will facilitate to strengthening of weapons of mass destruction non

  7. Materials for nuclear reactors

    International Nuclear Information System (INIS)

    Banerjee, S.; Kamath, H.S.

    2005-01-01

    The improved performance of present generation nuclear reactors and the realization of advanced reactor concepts, both, require development of better materials. Physical metallurgy/materials science principles which have been exploited in meeting the exacting requirements of nuclear reactor materials (fuels and structural materials), are outlined citing a few specific examples. While the incentive for improvement of traditional fuels (e.g., UO 2 fuel) is primarily for increasing the average core burn up, the development of advanced fuels (e.g., MOX, mixed carbide, nitride, silicide and dispersion fuels) are directed towards better utilization of fissile and fertile inventories through adaptation of innovative fuel cycles. As the burn up of UO 2 fuel reaches higher levels, a more detailed and quantitative understanding of the phenomena such as fission gas release, fuel restructuring induced by radiation and thermal gradients and pellet-clad interaction is being achieved. Development of zirconium based alloys for both cladding and pressure tube applications is discussed with reference to their physical metallurgy, fabrication techniques and in-reactor degradation mechanisms. The issue of radiation embrittlement of reactor pressure vessels (RPVs) is covered drawing a comparison between the western and eastern specifications of RPV steels. The search for new materials which can stand higher rates of atomic displacement due to radiation has led to the development of swelling resistant austenitic and ferritic stainless steels for fast reactor applications as exemplified by the development of the D-9 steel for Indian fast breeder reactor. The presentation will conclude by listing various materials related phenomena, which have a strong bearing on the successful development of future nuclear energy systems. (author)

  8. The condition, problems, and outlook on Ukraine accounting and control system of nuclear materials

    International Nuclear Information System (INIS)

    Galasun, O.

    1999-01-01

    There are 5 NPPs with 14 operating units in Ukraine as well as scientific facilities which are all under the IAEA safeguards. Although a number of important state laws concerning the use of nuclear energy and radiation safety there are still problems on computer processing of current information on accounting and control. The Y2K problem exists in relation to control and operating systems. Ukraine is ready to accept any recommendations in order to eliminate this problem. Some working groups were organised for solving the Y2K problem, each starting from different directions towards the common aim

  9. Thermodynamics of nuclear materials

    International Nuclear Information System (INIS)

    1962-01-01

    The first session of the symposium discussed in general the thermodynamic properties of actinides, including thorium, uranium and Plutonium which provide reactor fuel. The second session was devoted to applications of thermodynamic theory to the study of nuclear materials, while the experimental techniques for the determination of thermodynamic data were examined at the next session. The thermodynamic properties of alloys were considered at a separate session, and another session was concerned with solids other than alloys. Vaporization processes, which are of special interest in the development of high-temperature reactors, were discussed at a separate session. The discussions on the methods of developing the data and ascertaining their accuracy were especially useful in highlighting the importance of determining whether any given data are reliable before they can be put to practical application. Many alloys and refractory materials (i. e. materials which evaporate only at very high temperatures) are of great importance in nuclear technology, and some of these substances are extremely complex in their chemical composition. For example, until recently the phase composition of the oxides of thorium, uranium and plutonium had been only very imperfectly understood, and the same was true of the carbides of these elements. Recent developments in experimental techniques have made it possible to investigate the phase composition of these complex materials as well as the chemical species of these materials in the gaseous phase. Recent developments in measuring techniques, such as fluorine bomb calorimetry and Knudsen effusion technique, have greatly increased the accuracy of thermodynamic data

  10. The use of selective electrodes for the control of nuclear materials

    International Nuclear Information System (INIS)

    Pires, M.A.F.; Abrao, A.

    1984-01-01

    The use of ion selective electrodes is discussed for the determination of nitrate, chloride and fluoride in several materials used in the fuel cycle. The determination of nitrate and chloride in thorium compounds, the analysis of fluoride and chloride in uranium compounds and the determination of fluoride in crude phosphoric acid are described. The control of fluoride in urine of individuals that handle materials containing fluor and its compounds is also described. (C.L.B.) [pt

  11. Trial operation of material protection, control, and accountability systems at two active nuclear material handling sites within the All-Russian Institute of Experimental Physics (VNIIEF)

    International Nuclear Information System (INIS)

    Skripka, G.; Vatulin, V.; Yuferev, V.

    1997-01-01

    This paper discusses Russian Federal Nuclear Center (RFNC)-VNIIEF activities in the area of nuclear material protection, control, and accounting (MPC and A) procedures enhancement. The goal of such activities is the development of an automated systems for MPC and A at two of the active VNIIEF research sites: a research (reactor) site and a nuclear material production facility. The activities for MPC and A system enhancement at both sites are performed in the framework of a VNIIEF-Los Alamos National Laboratory contract with participation from Sandia National Laboratories, Lawrence Livermore National Laboratory, Brookhaven National Laboratory, Oak Ridge National Laboratory, Pacific Northwest National Laboratory, and PANTEX Plant in accordance with Russian programs supported by MinAtom. The American specialists took part in searching for possible improvement of technical solutions, ordering equipment, and delivering and testing the equipment that was provided by the Americans

  12. ABACC - Brazil-Argentina Agency for Accounting and Control of Nuclear Materials, a model of integration and transparence; ABACC - Agencia Brasileno-Argentina de Contabilidad y Control de Materiales Nucleares, un ejemplo de integracion y transparencia

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Antonio A.; Do Canto, Odilon Marcusso, E-mail: oliveira@abacc.org.br, E-mail: odilon@abacc.org.br [Agencia Brasileno Argentina de Contabilidad y Control de Materiales Nucleares (ABACC), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    Argentina and Brazil began its activities in the nuclear area about the same time, in the 50 century past. The existence of an international nuclear nonproliferation treaty-TNP-seen by Brazil and Argentina as discriminatory and prejudicial to the interests of the countries without nuclear weapons, led to the need for a common system of control of nuclear material between the two countries to somehow provide assurances to the international community of the exclusively peaceful purpose of its nuclear programs. The creation of a common system, assured the establishment of uniform procedures to implement safeguards in Argentina and Brazil, so the same requirements and safeguards procedures took effect in both countries, and the operators of nuclear facilities began to follow the same rules of control of nuclear materials and subjected to the same type of verification and control. On July 18, 1991, the Bilateral Agreement for the Exclusively Peaceful Use of Nuclear Energy created a binational body, the Argentina-Brazil Agency for Accounting and Control of Nuclear Materials-ABACC-to implement the so-called Common System of Accounting and Control of Nuclear materials - SCCC. The deal provided, permanently, a clear commitment to use exclusively for peaceful purposes all material and nuclear facilities under the jurisdiction or control of the two countries. The Quadripartite Agreement, signed in December of that year, between the two countries, ABACC and IAEA completed the legal framework for the implementation of comprehensive safeguards system. The 'model ABACC' now represents a paradigmatic framework in the long process of economic, political, technological and cultural integration of the two countries. Argentina and Brazil were able to establish a guarantee system that is unique in the world today and that consolidated and matured over more than twenty years, has earned the respect of the international community.

  13. Department of Energy Nuclear Material Protection, Control, and Accounting Program at the Mangyshlak Atomic Energy Complex, Aktau, Republic of Kazakhstan

    International Nuclear Information System (INIS)

    Case, R.; Berry, R.B.; Eras, A.

    1998-01-01

    As part of the Cooperative Threat Reduction Nuclear Material Protection, Control, and Accounting (MPC and A) Program, the US Department of Energy and Mangyshlak Atomic Energy Complex (MAEC), Aktau, Republic of Kazakstan have cooperated to enhance existing MAEC MPC and A features at the BN-350 liquid-metal fast-breeder reactor. This paper describes the methodology of the enhancement activities and provides representative examples of the MPC and A augmentation implemented at the MAEC

  14. The Ural Electrochemical Integrated Plant Process for Managing Equipment Intended for Nuclear Material Protection, Control and Accounting System Upgrades

    International Nuclear Information System (INIS)

    Yuldashev, Rashid; Nosov, Andrei; Carroll, Michael F.; Garrett, Albert G.; Dabbs, Richard D.; Ku, Esther M.

    2008-01-01

    Since 1996, the Ural Electrochemical Integrated Plant (UEIP) located in the town of Novouralsk, Russia, (previously known as Sverdlovsk-44) and the United States Department of Energy (U.S. DOE) have been cooperating under the Nuclear Material Protection, Control and Accounting (MPC and A) Program. Because UEIP is involved in the processing of highly enriched uranium (HEU) into low enriched uranium (LEU), and there are highly enriched nuclear materials on its territory, the main goal of the MPC and A cooperation is to upgrade those systems that ensure secure storage, processing and transportation of nuclear materials at the plant. UEIP has completed key upgrades (equipment procurement and installation) aimed at improving MPC and A systems through significant investments made by both the U.S. DOE and UEIP. These joint cooperative efforts resulted in bringing MPC and A systems into compliance with current regulations, which led to nuclear material (NM) theft risk reduction and prevention from other unlawful actions with respect to them. Upon the U.S. MPC and A project team's suggestion, UEIP has developed an equipment inventory control process to track all the property provided through the MPC and A Program. The UEIP process and system for managing equipment provides many benefits including: greater ease and efficiency in determining the quantities, location, maintenance and repair schedule for equipment; greater assurance that MPC and A equipment is in continued satisfactory operation; and improved control in the development of a site sustainability program. While emphasizing UEIP's equipment inventory control processes, this paper will present process requirements and a methodology that may have practical and helpful applications at other sites.

  15. Twenty Years of Regional Safeguards: the ABACC System and the Synergy with the National Nuclear Material Control Systems

    International Nuclear Information System (INIS)

    Dias, Fabio C.; Palhares, Lilia C.; De Mello, Luiz A.; Vicens, Hugo E.; Maceiras, Elena; Terigi, Gabriel

    2011-01-01

    As result of the nuclear integration between Brazil and Argentina, in July 1991 the Agreement for Peaceful Uses of the Nuclear Energy (Bilateral Agreement) was signed and the Brazilian Argentine Agency for Accountancy and Control of Nuclear Material (ABACC) was created [1]. The main role assigned to ABACC was the implementation and administration of the regional control system and the coordination with the International Atomic Energy Agency (IAEA) in order to apply safeguards to all nuclear material in all nuclear activities of Argentina and Brazil. In December 1991 the IAEA, ABACC, Argentina and Brazil signed the Quadripartite Agreement (INFCIRC/435) [2]. The agreement establishes obligations similar to those established by model INFCIRC/153 comprehensive agreements. The Bilateral Agreement establishes that the Parties should make available financial and technical capabilities to support ABACC activities. In order to accomplish this challenge, the National Systems had to improve their structure and capabilities. Through the close interaction with the IAEA and ABACC, the national systems have been enriched by adopting new methodologies, implementing innovative safeguards approaches and providing specialized training to the regional inspectors. All of this also resulted in relevant technical improvements to the regional system as a whole. The approach of both neighborhoods controlling each other increased the confidence between the partners and permitted a better knowledge of their potentialities. The recognized performance of the regional system in the implementation of innovative, efficient and credible safeguards measures increased the confidence of the international community on the implementation of nuclear safeguards in Argentina and Brazil. In this paper, after twenty years of the creation of the ABACC System, the view of the Brazilian and Argentine National Authorities is presented. (authors)

  16. VALIDATION OF NUCLEAR MATERIAL CONTROL AND ACCOUNTABILITY (MC and A) SYSTEM EFFECTIVENESS TOOL (MSET) AT IDAHO NATIONAL LABORATORY (INL)

    International Nuclear Information System (INIS)

    Meppen, Bruce; Haga, Roger; Moedl, Kelley; Bean, Tom; Sanders, Jeff; Thom, Mary Alice

    2008-01-01

    A Nuclear Material Control and Accountability (MC and A) Functional Model has been developed to describe MC and A systems at facilities possessing Category I or II Special Nuclear Material (SNM). Emphasis is on achieving the objectives of 144 'Fundamental Elements' in key areas ranging from categorization of nuclear material to establishment of Material Balance Areas (MBAs), controlling access, performing quality measurements of inventories and transfers, timely reporting all activities, and detecting and investigating anomalies. An MC and A System Effectiveness Tool (MSET), including probabilistic risk assessment (PRA) technology for evaluating MC and A effectiveness and relative risk, has been developed to accompany the Functional Model. The functional model and MSET were introduced at the 48th annual International Nuclear Material Management (INMM) annual meeting in July, 20071,2. A survey/questionnaire is used to accumulate comprehensive data regarding the MC and A elements at a facility. Data is converted from the questionnaire to numerical values using the DELPHI method and exercises are conducted to evaluate the overall effectiveness of an MC and A system. In 2007 a peer review was conducted and a questionnaire was completed for a hypothetical facility and exercises were conducted. In the first quarter of 2008, a questionnaire was completed at Idaho National Laboratory (INL) and MSET exercises were conducted. The experience gained from conducting the MSET exercises at INL helped evaluate the completeness and consistency of the MC and A Functional Model, descriptions of fundamental elements of the MC and A Functional Model, relationship between the MC and A Functional Model and the MC and A PRA tool and usefulness of the MSET questionnaire data collection process

  17. Some major challenges: Nuclear non-proliferation, nuclear arms control and nuclear terrorism. Vienna, 29 October 2001. Statement to the symposium on international safeguards: Verification and nuclear material security

    International Nuclear Information System (INIS)

    ElBaradei, M.

    2001-01-01

    The main topics dealt with the ensuring of an effective, universal and adequately financed system for the verification of nuclear non-proliferation, namely as follows: Effectiveness of the system; Participation in the system ; Financing of the system; Making Progress in Nuclear Arms Control; Protection Against Nuclear Terrorism. In the Safeguards Implementation Report (SIR) for 2000, the Agency was able to conclude that for all 140 states with safeguards agreements in place the nuclear material and other items placed under safeguards remained in peaceful nuclear activities or were otherwise adequately accounted for. The Agency currently safeguards over 900 facilities in 70 countries on a regular safeguards budget of approximately US $80 million per year. Turning to the major recent challenge, protection against nuclear terrorism, the IAEA has long been active in encouraging States to make security an integral part of the management of their nuclear programmes. The recent attacks in the United States were, however, a wake-up call to all that more can and must be done. In the week immediately following the tragedy, the IAEA General Conference adopted a resolution which requested a thorough review of Agency activities and programmes relevant to preventing acts of nuclear terrorism

  18. Supply of nuclear materials

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1959-07-15

    Any large-scale atomic energy programme is inherently dependent on the availability of materials that can be used as fuel in reactors, and the International Atomic Energy Agency, at its inception, was intended to act as a bank for the flow of materials between Member States. According to its Statute, one of its primary functions is to provide materials 'to meet the needs of research on, and development and practical application of, atomic energy for peaceful purposes, including the production of electric power, with due consideration for the needs of the under-developed areas of the world'. If the Agency is to fulfil its Statutory function, it would be essential for it to have not only some ready sources of supply, but also an established framework of general terms and conditions on which it could secure the supplies. The latter would eliminate the need for going through elaborate procedural formalities whenever the Agency receives a new request for materials. Such a framework has now been established with the signing of broad agreements with three countries which had offered to supply various quantities of special fissionable materials to the Agency. These agreements, signed in Vienna on 11 May 1959, with the USSR, the UK and the USA, lay down the basic terms and conditions on which these three countries will make nuclear materials available when needed by the Agency. The USSR has agreed to make available to the Agency 50 kg of uranium-235, the UK 20 kg and the USA 5 000 kg. The material will be supplied in the form of enriched uranium in any concentration up to 20 per cent; the amounts mentioned relate to the 235-isotope content of the materials. The UK and the USA have agreed that the parties to a particular supply agreement may decide on higher enrichment of uranium to be used for research reactors, material testing reactors or for other research purposes. The USA has also agreed to make available to the Agency such additional supplies as would match in amount

  19. Material control in nuclear fuel fabrication facilities. Part II. Accountability, instrumentation and measurement techniques in fuel fabrication facilities

    International Nuclear Information System (INIS)

    Borgonovi, G.M.; McCartin, T.J.; McDaniel, T.; Miller, C.L.; Nguyen, T.

    1978-01-01

    This report describes the measurement techniques, the instrumentation, and the procedures used in accountability and control of nuclear materials, as they apply to fuel fabrication facilities. A general discussion is given of instrumentation and measurement techniques which are presently used being considered for fuel fabrication facilities. Those aspects which are most significant from the point of view of satisfying regulatory constraints have been emphasized. Sensors and measurement devices have been discussed, together with their interfacing into a computerized system designed to permit real-time data collection and analysis. Estimates of accuracy and precision of measurement techniques have been given, and, where applicable, estimates of associated costs have been presented. A general description of material control and accounting is also included. In this section, the general principles of nuclear material accounting have been reviewed first (closure of material balance). After a discussion of the most current techniques used to calculate the limit of error on inventory difference, a number of advanced statistical techniques are reviewed. The rest of the section deals with some regulatory aspects of data collection and analysis, for accountability purposes, and with the overall effectiveness of accountability in detecting diversion attempts in fuel fabrication facilities. A specific example of application of the accountability methods to a model fuel fabrication facility is given. The effect of random and systematic errors on the total material uncertainty has been discussed, together with the effect on uncertainty of the length of the accounting period

  20. Material control in nuclear fuel fabrication facilities. Part II. Accountability, instrumentation and measurement techniques in fuel fabrication facilities

    Energy Technology Data Exchange (ETDEWEB)

    Borgonovi, G.M.; McCartin, T.J.; McDaniel, T.; Miller, C.L.; Nguyen, T.

    1978-01-01

    This report describes the measurement techniques, the instrumentation, and the procedures used in accountability and control of nuclear materials, as they apply to fuel fabrication facilities. A general discussion is given of instrumentation and measurement techniques which are presently used being considered for fuel fabrication facilities. Those aspects which are most significant from the point of view of satisfying regulatory constraints have been emphasized. Sensors and measurement devices have been discussed, together with their interfacing into a computerized system designed to permit real-time data collection and analysis. Estimates of accuracy and precision of measurement techniques have been given, and, where applicable, estimates of associated costs have been presented. A general description of material control and accounting is also included. In this section, the general principles of nuclear material accounting have been reviewed first (closure of material balance). After a discussion of the most current techniques used to calculate the limit of error on inventory difference, a number of advanced statistical techniques are reviewed. The rest of the section deals with some regulatory aspects of data collection and analysis, for accountability purposes, and with the overall effectiveness of accountability in detecting diversion attempts in fuel fabrication facilities. A specific example of application of the accountability methods to a model fuel fabrication facility is given. The effect of random and systematic errors on the total material uncertainty has been discussed, together with the effect on uncertainty of the length of the accounting period.

  1. Responsible stewardship of nuclear materials

    International Nuclear Information System (INIS)

    Hannum, W.H.

    1994-01-01

    The ability to tap the massive energy potential of nuclear fission was first developed as a weapon to end a terrible world war. Nuclear fission is also a virtually inexhaustible energy resource, and is the only energy supply in certain areas in Russia, Kazakhstan and elsewhere. The potential link between civilian and military applications has been and continues to be a source of concern. With the end of the Cold War, this issue has taken a dramatic turn. The U.S. and Russia have agreed to reduce their nuclear weapons stockpiles by as much as two-thirds. This will make some 100 tonnes of separated plutonium and 500 tonnes of highly enriched uranium available, in a form that is obviously directly usable for weapons. The total world inventory of plutonium is now around 1000 tonnes and is increasing at 60-70 tonnes per year. There is even more highly enriched uranium. Fortunately the correct answer to what to do with excess weapons material is also the most attractive. It should be used and reused as fuel for fast reactors. Material in use (particularly nuclear material) is very easy to monitor and control, and is quite unattractive for diversion. Active management of fissile materials not only makes a major contribution to economic stability and well-being, but also simplifies accountability, inspection and other safeguards processes; provides a revenue stream to pay for the necessary safeguards; and, most importantly, limits the prospective world inventory of plutonium to only that which is used and useful

  2. Decree no 2007-1557 from November 2, 2007, relative to basic nuclear facilities and to the nuclear safety control of nuclear materials transport

    International Nuclear Information System (INIS)

    2007-11-01

    This decree concerns the enforcement of articles 5, 17 and 36 of the law 2006-686 from June 13, 2006, relative to the transparency and safety in the nuclear domain. A consultative commission of basic nuclear facilities is established. The decree presents the general dispositions relative to basic nuclear facilities, the dispositions relative to their creation and operation, to their shutdown and dismantling. It precises the dispositions in the domain of public utility services, administrative procedures and sanctions. It stipulates also the particular dispositions relative to other facilities located in the vicinity of nuclear facilities, relative to the use of pressure systems, and relative to the transport of radioactive materials. (J.S.)

  3. Control of unauthorized transportation of nuclear and radioactive materials across state territories and borders: detection, response and decision support

    International Nuclear Information System (INIS)

    Stavrov, Andrei; Frymire, Allan; Kagan, Leonid; Karczewski, Jerzy

    2008-01-01

    A new solution to control the illicit transportation of nuclear and radioactive materials is proposed and described. This solution consists in the creation of a system of gamma and gamma-neutron radiation monitors and fundamentally new software/hardware package RAVEN (Radiation Alarm and Video Event Notification) which integrates different type monitors in a single network. The main purpose of this system is to analyze and store data coming from radiation monitors, to process these data and to help the user to interpret them. This ensures the user's correct response to all the alarms triggered by radiation monitors and indicating the presence of radioactive and/or nuclear materials in scanned objects. The developed system can integrate fixed radiation monitors that can be installed in different sites within not only one country but in different sites worldwide in a single network. The system can be adapted to the local conditions and allows the user: (i) To detect minimum quantities of special nuclear and radioactive materials (specified by the national and international requirements) by their gamma and/or neutron radiation; (ii) To acquire, store and analyze digital data and video images related to cargos with radioactive materials crossing a state border or an object limits; (iii) To make these data accessible to users at different levels ensuring effective operation of both central alarm stations (state, regional or agency center) and local alarm stations (border cross points or object limits). (author)

  4. Nuclear material control and accountancy in a spent fuel storage ponds

    International Nuclear Information System (INIS)

    Gurle, P.; Zhabo, Dgh.

    1999-01-01

    The spent fuel storage ponds of a large reprocessing plant La Hague in France are under safeguards by means of a wide range of techniques currently used. These techniques include the nuclear material accountancy an containment/surveillance (C/S). Nondestructive assay, design information verification, and authentication of equipment provided by the operator are also implemented. Specific C/S equipment including video surveillance and unattended radiation monitoring have been developed and implemented in a spent fuel pond of La Hague. These C/S systems named EMOSS and CONSULHA with high degree of reliability and conclusiveness provide the opportunity to improve the efficiency of safeguards, particularly as related to spent fuel storage areas where the accountancy is verified by item counting [ru

  5. Experience of developing and introduction of the integrated systems for accounting, control and physical protection of nuclear materials under conditions of continuously operating production

    International Nuclear Information System (INIS)

    Filatov, O.N.; Rogachev, V.E.

    2003-01-01

    The improvements of the integrated systems for accounting, control and physical protection (ACPP) of nuclear materials under conditions practically continuous production cycle are described. As a result of development and introduction of the improved means and technologies the developed systems realized successfully the requirements of reliable ACPP of nuclear materials [ru

  6. Material control and accountability alternatives

    International Nuclear Information System (INIS)

    1991-01-01

    Department of Energy and Nuclear Regulatory Commission regulations governing material control and accountability in nuclear facilities have become more restrictive in the past decade, especially in areas that address the insider threat. As the insider threat receives greater credibility, regulations have been strengthened to increase the probability of detecting insider activity and to prevent removal of a significant quantity of Special Nuclear Material (SNM) from areas under control of the protective force

  7. Transport packages for nuclear material and waste

    International Nuclear Information System (INIS)

    1997-01-01

    The regulations and responsibilities concerning the transport packages of nuclear materials and waste are given in the guide. The approval procedure, control of manufacturing, commissioning of the packaging and the control of use are specified. (13 refs.)

  8. The Ural Electrochemical Integrated Plant Sustainability Program of Nuclear Material Protection, Control and Accounting System Upgrades

    International Nuclear Information System (INIS)

    Vakhonin, Alexander; Yuldashev, Rashid; Dabbs, Richard D.; Carroll, Michael F.; Garrett, Albert G.; Patrick, Scott W.; Ku, Eshter M.

    2009-01-01

    UEIP has been working on a comprehensive sustainability program that includes establishing a site sustainability working group, information gathering, planning, organizing, developing schedule and estimated costs, trhough joint UEIP-US DOE/NNSA National Laboratory sustainability contracts. Considerable efforts have been necessary in the sustainability planning, monitoring, and control of the scope of work using tools such as Microsoft Excel, Microsoft Project and SAP R/3. While information interchanges within the sustainability program provides adequate US assurances that US funds are well spent through its quarterly reporting methodology, proper information security and protection measures are taken throughout the process. Decommissioning of outdated equipment has also become part of determining sustainability requirements and processes. The site's sustainability program has facilitated the development of a transition plan toward eventual full Russian funding of sustaining nuclear security upgrades.

  9. Tracer techniques in estimating nuclear materials holdup

    International Nuclear Information System (INIS)

    Pillay, K.K.S.

    1987-01-01

    Residual inventory of nuclear materials remaining in processing facilities (holdup) is recognized as an insidious problem for safety of plant operations and safeguarding of special nuclear materials (SNM). This paper reports on an experimental study where a well-known method of radioanalytical chemistry, namely tracer technique, was successfully used to improve nondestructive measurements of holdup of nuclear materials in a variety of plant equipment. Such controlled measurements can improve the sensitivity of measurements of residual inventories of nuclear materials in process equipment by several orders of magnitude and the good quality data obtained lend themselves to developing mathematical models of holdup of SNM during stable plant operations

  10. US/Russian cooperative efforts in nuclear material protection, control, and accounting at the Siberian Chemical Combine

    International Nuclear Information System (INIS)

    Goloskokov, I.; Yarygin, A.; Petrushev, V.; Morgado, R.E.

    1998-01-01

    The Siberian Chemical Combine (SKhK) is the largest multifunction nuclear production facility in the Russian nuclear complex. Until recently, it produced and processed special nuclear material for the Russian Defense Ministry. SKhK and its US partners in the Department of Energy (DOE) US/Russian Materials Protection, Control, and Accountability (MPC and A) Program are nearing completion of the initial MPC and A upgrades at the six SKhK plant sites that were begun three years ago. Comprehensive enhancements to the physical protection and access control systems are progressing on a site-wide basis while a comprehensive MC and A system is being implemented at the Radiochemical Plant site. SKhK now produces thermal and electrical power, enriches uranium for commercial reactor fuel, reprocesses irradiated fuel, converts high-enriched uranium metal into high-enriched oxide for blending into reactor-grade, low-enriched uranium, and manufactures civilian products. The authors review the progress to date and outline plans for continuing the work in 1999

  11. Numerical consideration for multiscale statistical process control method applied to nuclear material accountancy

    International Nuclear Information System (INIS)

    Suzuki, Mitsutoshi; Hori, Masato; Asou, Ryoji; Usuda, Shigekazu

    2006-01-01

    The multiscale statistical process control (MSSPC) method is applied to clarify the elements of material unaccounted for (MUF) in large scale reprocessing plants using numerical calculations. Continuous wavelet functions are used to decompose the process data, which simulate batch operation superimposed by various types of disturbance, and the disturbance components included in the data are divided into time and frequency spaces. The diagnosis of MSSPC is applied to distinguish abnormal events from the process data and shows how to detect abrupt and protracted diversions using principle component analysis. Quantitative performance of MSSPC for the time series data is shown with average run lengths given by Monte-Carlo simulation to compare to the non-detection probability β. Recent discussion about bias corrections in material balances is introduced and another approach is presented to evaluate MUF without assuming the measurement error model. (author)

  12. The Quantometer as an analytical instrument in the control of nuclear materials; El cuantometro como instrumento analitico en el control de materiales nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez Gonzalez, F; Roca Adell, M; Fernandez Cellini, R

    1961-07-01

    In order to solve different problems of chemical analysis in the fields of nuclear industry and research, a Quantometer is used with a high number of channels. A detailed study to choose the more suitable spectral lines is described. The different channels have been distributed into two programs to allow the analysis of high and low concentrations. The Quantometer is being applied successfully to analyse soils, plant ashes, rocks and ores, uranium and its compounds, zirconium, graphite, alloys and other nuclear materials. (Author) 6 refs.

  13. Procedures for the accounting and control of nuclear materials in large research centres, as related to the needs of international safeguards

    International Nuclear Information System (INIS)

    Kotte, U.; Bueker, H.; Stein, G.

    1976-07-01

    In signatory states of the Non-Proliferation Treaty nuclear material is subject to the supervision of the International Atomic Energy Agency. The IAEA safeguards concept intended for nuclear material has, so far, been predominantly applied to nuclear facilities of the nuclear fuel cycle. It is the aim of this report to consider the applicability of these control measures to a nuclear research centre. The report refers to the concrete example of the Juelich Nuclear Research Centre (KFA). The particular features of a nuclear research centre and the handling of nuclear material in the KFA are described. A review is given of the various licence areas and permitted handling quantities as well as of the inventories and flow of nuclear material. The concept of a control system for a nuclear research centre satisfying the operator's requirements, national requirement and international obligations at the same time is developed along these lines. The essential characteristic of the concept is a far-reaching clarity of the distribution of nuclear material items within the Nuclear Research Centre. The clarity desired will be achieved by means of an integrated accountancy system processing all necessary data with the aid of a central computer and remote terminals. The availability of information is based on differentiated material acountancy in conjunction with adequate measurement of nuclear material data. In the case of the KFA two groups are formed by research reactors and critical assemblies. Research institutes and central departments the permitted handling quantities of which do not exceed 5 eff.kg constitute a further group. Two further groups are formed for cases where the permitted handling quantities are above or below 1 eff.kg. The report shows the safeguards measures that can be applied in certain circumstances and conditions in a nuclear research centre

  14. Measurement control workshop instructional materials

    Energy Technology Data Exchange (ETDEWEB)

    Gibbs, Philip [Brookhaven National Lab. (BNL), Upton, NY (United States); Harvel, Charles [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Clark, John [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gregg Protection Services, Lynchburg, VA (United States)

    2012-09-01

    An essential element in an effective nuclear materials control and accountability (MC&A) program is the measurement of the nuclear material as it is received, moved, processed and shipped. Quality measurement systems and methodologies determine the accuracy of the accountability values. Implementation of a measurement control program is essential to ensure that the measurement systems and methodologies perform as expected. A measurement control program also allows for a determination of the level of confidence in the accounting values.

  15. Measurement control workshop instructional materials

    Energy Technology Data Exchange (ETDEWEB)

    Gibbs, Philip [Brookhaven National Lab. (BNL), Upton, NY (United States); Harvel, Charles [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Clark, John [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gregg Protection Services, Lynchburg, VA (United States)

    2011-12-01

    An essential element in an effective nuclear materials control and accountability (MC&A) program is the measurement of the nuclear material as it is received, moved, processed and shipped. Quality measurement systems and methodologies determine the accuracy of the accountability values. Implementation of a measurement control program is essential to ensure that the measurement systems and methodologies perform as expected. A measurement control program also allows for a determination of the level of confidence in the ac counting values.

  16. Study of nuclear material accounting

    International Nuclear Information System (INIS)

    Ruderman, H.

    1977-01-01

    The implications of deliberate diversion of nuclear materials on materials accounting, the validity of the MUF concept to establish assurance concerning the possible diversion of special nuclear materials, and an economic analysis to permit cost comparison of varying the inventory frequency are being studied. An inventory cost model, the statistical hypothesis testing approach, the game theoretic approach, and analysis of generic plants are considered

  17. MATERIAL CONTROL ACCOUNTING INMM

    Energy Technology Data Exchange (ETDEWEB)

    Hasty, T.

    2009-06-14

    Since 1996, the Mining and Chemical Combine (MCC - formerly known as K-26), and the United States Department of Energy (DOE) have been cooperating under the cooperative Nuclear Material Protection, Control and Accounting (MPC&A) Program between the Russian Federation and the U.S. Governments. Since MCC continues to operate a reactor for steam and electricity production for the site and city of Zheleznogorsk which results in production of the weapons grade plutonium, one of the goals of the MPC&A program is to support implementation of an expanded comprehensive nuclear material control and accounting (MC&A) program. To date MCC has completed upgrades identified in the initial gap analysis and documented in the site MC&A Plan and is implementing additional upgrades identified during an update to the gap analysis. The scope of these upgrades includes implementation of MCC organization structure relating to MC&A, establishing material balance area structure for special nuclear materials (SNM) storage and bulk processing areas, and material control functions including SNM portal monitors at target locations. Material accounting function upgrades include enhancements in the conduct of physical inventories, limit of error inventory difference procedure enhancements, implementation of basic computerized accounting system for four SNM storage areas, implementation of measurement equipment for improved accountability reporting, and both new and revised site-level MC&A procedures. This paper will discuss the implementation of MC&A upgrades at MCC based on the requirements established in the comprehensive MC&A plan developed by the Mining and Chemical Combine as part of the MPC&A Program.

  18. Development of the system for academic training of personnel engaged in nuclear material protection, control and accounting in Russia

    International Nuclear Information System (INIS)

    Kryuchkov, E.F.

    2004-01-01

    educational problems in area of nuclear materials physical protection, control and accountability (MPC and A) in Russia. General scheme of Russian educational system is considered with main emphasis on the directions under implementation now, namely academic training system, re-training system and specialists qualification upgrade system in MPC and A area. Russian academic training system consists of the educational programs at various levels: Bachelor of Sciences, Master of Sciences, Specialist (also referred to as an Engineer Degree), and professional re-training of the personnel already working in the nuclear field. Currently, only the Master of Sciences Graduate Program is completely developed for the students training. This is taking place at Moscow Engineering Physics Institute (State University, MEPhI), where the fourth generation of Masters has graduated from in May 2003. The graduates are now working at nuclear-related governmental agencies, non-governmental organizations, universities, and nuclear facilities. Development of the system to produce academically trained Russian MPC and A personnel is therefore well underway. MEPhI's MPC and A Engineering Degree Program which currently under development is considered in the paper. Analysis of MPC and A needs at Russian nuclear facilities has demonstrated the Engineering Degree Program is the best way to satisfy these needs and the resulting demands for MPC and A specialists at Russian nuclear enterprises. This paper discusses specific features of the Engineering Degree training required by Russian education legislation and the Russian system of quality control as applied to the training process. The paper summarizes the main joint actions undertaken during the past three years by MEPhI in collaboration with the US Department of Energy and US national laboratories to develop the MPC and A Engineering Degree Program in Russia. These actions include opening a new Engineering Degree specialty, Safeguards and Nonproliferation

  19. INMACS - An approach to on-line nuclear materials accounting and control in a fuel fabrication environment

    International Nuclear Information System (INIS)

    Yan, G.; L'Archeveque, J.V.R.; Paul, R.N.

    1977-08-01

    Taking advantage of modern system technologies, the concept of an Integrated Nuclear Materials Accounting and Control System (INMACS) was formulated as an alternative solution to manual inventory procedures. The selected approach offers prospects for tackling the more general fissile materials inventory problem while satisfying the immediate requirements of the Fuel Fabrication Pilot Line at CRNL. A PDP-11/40 minicomputer system was purchased, and a Data Base Management System (DBMS) was designed and implemented to provide a uniform file handling capability. The specific requirements of the Pilot Line were met by a package of application programs. About 16 man-years have been spent on the project. INMACS has been installed in the field and its usefulness as an on-line inventory system will be demonstrated in the Pilot Line. (author)

  20. Development of a personal computer-based state system of accounting for/and control of nuclear materials

    International Nuclear Information System (INIS)

    Markov, A.

    1986-09-01

    An IBM-PC and compatible based state system of accounting for and control of nuclear materials under international safeguards (state-level SSAC) is presented. The system works under DOS version 2.0 and above. It consists of a single-module Safeguards Report Editor which is a multi-function menu-driven code written in BASIC. The Editor may be run both in interactive mode and as an EXEC module. The output represents four types of material accounting reports on diskette, suitable for direct input into the IAEA Safeguards Information System (ISIS). In the first part of the report presented, a general description of the system is given. This is complemented with a detailed User Manual where a Guide to Applications, an Operator's Guide, a Programmer's Guide and Listings are included. The system is now available. It is maintained by the Bulgarian Committee on the Uses of Atomic Energy for Peaceful Purposes

  1. Measurement control workshop instructional materials

    Energy Technology Data Exchange (ETDEWEB)

    Gibbs, Philip [Brookhaven National Lab. (BNL), Upton, NY (United States); Crawford, Cary [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McGinnis, Brent [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Insolves LLC, Piketon, OH (United States)

    2014-04-01

    A workshop to teach the essential elements of an effective nuclear materials control and accountability (MC&A) programs are outlined, along with the modes of Instruction, and the roles and responsibilities of participants in the workshop.

  2. Measurement Control Workshop Instructional Materials

    International Nuclear Information System (INIS)

    Gibbs, Philip; Crawford, Cary; McGinnis, Brent

    2014-01-01

    A workshop to teach the essential elements of an effective nuclear materials control and accountability (MC&A) programs are outlined, along with the modes of Instruction, and the roles and responsibilities of participants in the workshop.

  3. Program for upgrading nuclear materials protection, control, and accounting at all facilities within the All-Russian Institute of Experimental Physics (VNIIEF)

    International Nuclear Information System (INIS)

    Yuferev, V.; Zhikharev, S.; Yakimov, Y.

    1998-01-01

    As part of the Department of Energy-Russian program for strengthening nuclear material protection, control, and accounting (MPC and A), plans have now been formulated to install an integrated MPC and A system at all facilities containing large quantities of weapons-usable nuclear material within the All-Russian Institute of Experimental Physics (VNIIEF, Arzamas-16) complex. In addition to storage facilities, the complex houses a number of critical facilities used to conduct nuclear physics research and facilities for developing procedures for disassembly of nuclear weapons

  4. Nuclear materials inventory plan

    International Nuclear Information System (INIS)

    Doerr, R.W.; Nichols, D.H.

    1982-03-01

    In any processing, manufacturing, or active storage facility it is impractical to assume that any physical security system can prevent the diversion of Special Nuclear Material (SNM). It is, therefore, the responsibility of any DOE Contractor, Licensee, or other holder of SNM to provide assurance that loss or diversion of a significant quantity of SNM is detectable. This ability to detect must be accomplishable within a reasonable time interval and can be accomplished only by taking physical inventories. The information gained and decisions resulting from these inventories can be no better than the SNM accounting system and the quality of measurements performed for each receipt, removal and inventory. Inventories interrupt processing or production operations, increase personnel exposures, and can add significantly to the cost of any operation. Therefore, realistic goals for the inventory must be defined and the relationship of the inherent parameters used in its validation be determined. Purpose of this document is to provide a statement of goals and a plan of action to achieve them

  5. Development of a system for academic training of the personnel engaged in nuclear material protection, control and accounting in Russia

    International Nuclear Information System (INIS)

    Onykiy, B.N.; Kryuchkov, E.F.

    2005-01-01

    The main attention in the present paper is focused on discussing the educational problems in the area of nuclear materials physical protection, control and accountability (MPC and A) in Russia. Currently, only the Master of Science Graduate Program has been completely developed for students training. This is taking place at Moscow Engineering Physics Institute (State University, MEPhI), where the sixth generation of Masters has graduated in May 2004. The MPC and A Engineer Degree Program, currently under development at MEPhI, is considered in the paper. This paper discusses specific features of the Engineer Degree training required by the Russian educational legislation and the Russian quality control system as applied to the training process. The paper summarises the main joint actions undertaken during the past three years by MEPhI in collaboration with the US Department of Energy and US National Laboratories for developing the MPC and A Engineer Degree Program in Russia. (author)

  6. State system of accounting for and control of nuclear materials and Protocol Additional in the Slovak Republic

    International Nuclear Information System (INIS)

    Bencova, A.

    2001-01-01

    Full text: The State System of Accounting for and Control of Nuclear Materials (SSAC) which is established in the Slovak Republic was developed by the former Czechoslovak Atomic Energy Commission and after splitting of the Czechoslovak Republic in 1993 it has been fully accepted by the regulatory authority of the Slovak Republic. This system is based on requirements of the safeguards agreement between the government of the Czechoslovak Republic and the IAEA (which has been accepted by the government of the Slovak Republic), known as INFCIRC/173. The agreement is conforming to INFCIRC/153 i. e. it is reflecting requirements of the Treaty on the Non - Proliferation of Nuclear Weapons (NPT) which was signed by the government of the Czechoslovak Socialist Republic on 01. 07. 1968 and in March 1993 was accepted by the government of the Slovak Republic. The SSAC in the Slovak Republic has national and international objectives. Organisational and functional elements of the SSAC in the Slovak Republic can be addressed in the following six major areas: a) Authority and Responsibility; b) Laws, Regulations and Other Measures; c) SSAC Information System; d) Establishment of Requirements for Nuclear Materials Accounting and Control; e) Ensuring Compliance; f) Technical Support. Legal Basis for the IAEA inspection activities is an Agreement between the government of the Slovak Republic and the IAEA (INFCIRC/173). The Agreement is supplemented by the Subsidiary Arrangement (SA), which contains in the general part the requirements on accountancy documentation, reports and inspections. The Facility Attachment is a part of SA, which contains information specific for individual MBA, mainly: a brief description of the facility, its purpose, nominal capacity, geographic location, the name and address; location and flow of nuclear materials, a description of features of the facility relating to material accountancy, containment and surveillance; a description of the existing and

  7. Illicit diversion of nuclear materials

    International Nuclear Information System (INIS)

    Bett, F.L.

    1975-08-01

    This paper discusses the means of preventing illegal use of nuclear material by terrorists or other sub-national groups and by governments. With respect to sub-national groups, it concludes that the preventive measures of national safeguards systems, when taken together with the practical difficulties of using nuclear material, would make the diversion and illegal use of nuclear material unattractive in comparison with other avenues open to these groups to attain their ends. It notes that there are only certain areas in the nuclear fuel cycle, e.g. production of some types of nuclear fuel embodying highly enriched uranium and shipment of strategically significant nuclear material, which contain material potentially useful to these groups. It also discusses the difficult practical problems, e.g. coping with radiation, which would face the groups in making use of the materials for terrorist purposes. Concerning illegal use by Governments, the paper describes the role of international safeguards, as applied by the International Atomic Energy Agency, and the real deterrent effect of these safeguards which is achieved through the requirements to maintain comprehensive operating records of the use of nuclear material and by regular inspections to verify these records. The paper makes the point that Australia would not consider supplying nuclear material unless it were subject to international safeguards. (author)

  8. Advanced training course on state systems of accounting for and control of nuclear materials. Volume I. Program for technical assistance to IAEA safeguards

    International Nuclear Information System (INIS)

    Sorenson, R.J.; Schneider, R.A.

    1979-01-01

    Purpose of the course was to provide practical training in the implementation and operation of a national system of accounting for and control of nuclear materials in a bulk processing facility, in the context of international safeguards. This course extends the training received in the basic course on State Systems of Accounting for and Control of Nuclear Materials to a practical, illustrative example utilizing the Exxon Nuclear low enriched uranium fabrication plant. Volume I of this manual contains the text of the presentations following the outline of the syllabus. Sample problems and answers are also included, along with some visual aids

  9. The regulations concerning refining business of nuclear source material and nuclear fuel materials

    International Nuclear Information System (INIS)

    1981-01-01

    This rule is established under the provisions concerning refining business in the law concerning the regulation of nuclear raw materials, nuclear fuel materials and nuclear reactors and the ordinance for the execution of this law, and to enforce them. Basic terms are defined, such as: exposure radiation dose, cumulative dose, control area, surrounding monitoring area and worker. The application for the designation for refining business under the law shall be classified into the facilities for crushing and leaching-filtration, thikening, and refining, the storage facilities for nuclear raw materials and nuclear fuel materials, and the disposal facilities for radioactive wastes, etc. To the application, shall be attached business plans, the explanations concerning the technical abilities of applicants and the prevention of hazards by nuclear raw materials and nuclear fuel materials regarding refining facilities, etc. Records shall be made on the accept, delivery and stock of each kind of nuclear raw materials and nuclear fuel materials, radiation control, the maintenance of and accidents in refining facilities, and kept for specified periods, respectively. Security regulations shall be enacted for each works or enterprise on the functions and organizations of persons engaged in the control of refining facilities, the operation of the apparatuses which must be controlled for the prevention of accidents, and the establishment of control area and surrounding monitoring area, etc. The report on the usage of internationally regulated goods and the measures taken at the time of danger are defined particularly. (Okada, K.)

  10. Nuclear materials management storage study

    International Nuclear Information System (INIS)

    Becker, G.W. Jr.

    1994-02-01

    The Office of Weapons and Materials Planning (DP-27) requested the Planning Support Group (PSG) at the Savannah River Site to help coordinate a Departmental complex-wide nuclear materials storage study. This study will support the development of management strategies and plans until Defense Programs' Complex 21 is operational by DOE organizations that have direct interest/concerns about or responsibilities for nuclear material storage. They include the Materials Planning Division (DP-273) of DP-27, the Office of the Deputy Assistant Secretary for Facilities (DP-60), the Office of Weapons Complex Reconfiguration (DP-40), and other program areas, including Environmental Restoration and Waste Management (EM). To facilitate data collection, a questionnaire was developed and issued to nuclear materials custodian sites soliciting information on nuclear materials characteristics, storage plans, issues, etc. Sites were asked to functionally group materials identified in DOE Order 5660.1A (Management of Nuclear Materials) based on common physical and chemical characteristics and common material management strategies and to relate these groupings to Nuclear Materials Management Safeguards and Security (NMMSS) records. A database was constructed using 843 storage records from 70 responding sites. The database and an initial report summarizing storage issues were issued to participating Field Offices and DP-27 for comment. This report presents the background for the Storage Study and an initial, unclassified summary of storage issues and concerns identified by the sites

  11. Nuclear measurements and reference materials

    International Nuclear Information System (INIS)

    1988-01-01

    This report summarizes the progress of the JRC programs on nuclear data, nuclear metrology, nuclear reference materials and non-nuclear reference materials. Budget restrictions and personnel difficulties were encountered during 1987. Fission properties of 235 U as a function of neutron energy and of the resonances can be successfully described on the basis of a three exit channel fission model. Double differential neutron emission cross-sections were accomplished on 7 Li and were started for the tritium production cross-section of 9 Be. Reference materials of uranium minerals and ores were prepared. Special nuclear targets were prepared. A batch of 250 g of Pu0 2 was characterized in view of certification as reference material for the elemental assay of plutonium

  12. Nuclear safeguards control in nuclear power stations

    International Nuclear Information System (INIS)

    Boedege, R.; Braatz, U.; Heger, H.

    1976-01-01

    The execution of the Non-Proliferation Treaty (NPT) has initiated a third phase in the efforts taken to ensure peace by limiting the number of atomic powers. In this phase it is important, above all, to turn into workable systems the conditions imposed upon technology by the different provisions of the Verification Agreement of the NPT. This is achieved mainly by elaborating annexes to the Agreement specifically geared to certain model plants, typical representatives selected for LWR power stations being the plants at Garigliano, Italy (BWR), and Stade, Federal Republic of Germany (PWR). The surveillance measures taken to prevent any diversion of special nuclear material for purposes of nuclear weapons manufacture must be effective in achieving their specific objective and must not impede the circumspect management of operations of the plants concerned. A VDEW working party has studied the technical details of the planned surveillance measures in nuclear power stations in the Federal Republic of Germany and now presents a concept of material balancing by units which meets the conditions imposed by the inspection authority and could also be accepted by the operators of nuclear power stations. The concept provides for uninterrupted control of the material balance areas of the nuclear power stations concerned, allows continuous control of the whole nuclear fuel cycle, is based exclusively on existing methods and facilities, and can be implemented at low cost. (orig.) [de

  13. Technical supports for nuclear control

    Energy Technology Data Exchange (ETDEWEB)

    An, Jong Sung; Kwak, Eun Hoh; Noh, Sung Kee; Soh, Dong Sub; Yoon, Wan Kee; Shin, Jang Soo; Paek, Dae Hyun; Park, Wan Soo; Kim, Hyun Tae; Park, Chan Sik; Cha, Hong Yul; Choi, Yoon Dong; Park, Jin Hoh; Lee, Eui Jin; An, Jin Soo; Kim, Jong Heui [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-12-01

    The project was carried out to support the establishment of the system of accountancy and control of nuclear materials in Korea. The training of inspectors and seminar were held to improve inspection capability of the nuclear inspectors. The information about the north Korean nuclear activities were successfully analyzed. In the drafts of nuclear energy law the national inspection and the regulation of physical protection were newly introduced for the purpose to clarify the openness of nuclear activities in Korea. 1 fig, 20 tabs, 19 refs. (Author).

  14. Experience gained with certification of instruments for the system for nuclear material physical protection, accounting, and control

    International Nuclear Information System (INIS)

    Gus'kov, O.M.; Egorov, V.V.; Morozov, O.S.; Novikov, V.M.

    1999-01-01

    Results of the tests have confirmed the expedience of certification of the equipment, especially imported items. For the use of imported equipment at Russian facilities, it is justified to accommodate the accompanying documents thereto for the Russian standards. Equipment items shipped to Russia should be prepared for the certification tests and/or operation. When taking decision on the certification of imported equipment, it is expedient to preliminarily estimate the instrument's parameters and its operation in Russia. To solve the question whether the imported equipment is usable for Russia and what engineering support and maintenance is needed for its operation, it would be justified to create the Center for engineering support of instruments to be used for nuclear material protection, control and accounting on the basis of one of institutes dealing with the development of instruments for these application [ru

  15. Estimation methods for special nuclear materials holdup

    International Nuclear Information System (INIS)

    Pillay, K.K.S.; Picard, R.R.

    1984-01-01

    The potential value of statistical models for the estimation of residual inventories of special nuclear materials was examined using holdup data from processing facilities and through controlled experiments. Although the measurement of hidden inventories of special nuclear materials in large facilities is a challenging task, reliable estimates of these inventories can be developed through a combination of good measurements and the use of statistical models. 7 references, 5 figures

  16. The state system of accounting for and control of nuclear material (SSAC) of the German Democratic Republic - as of december 1984

    International Nuclear Information System (INIS)

    Roehnsch, W.; Burmester, M.; Helming, M.; Siebert, H.U.; Willuhn, K.

    1985-01-01

    In the GDR, nuclear material is subject to domestic safeguards implemented by the National Board of Atomic Safety and Radiation Protection, the findings of which are verified by international (IAEA) safeguards in connection with the Treaty on the Nonproliferation of Nuclear Weapons. An overview is given of the main elements and functions of the SSAC, as for example the legal framework; mode, scope, objectives and intrastate organization of nuclear materials controls; system of records; methods of information processing; and reporting to the IAEA. (author)

  17. The State system of accounting for and control of nuclear material (SSAC) of the German Democratic Republic - as of December 1984

    International Nuclear Information System (INIS)

    Roehnsch, W.; Burmester, M.; Helming, M.; Siebert, H.U.; Willuhn, K.

    1985-01-01

    In the GDR, nuclear material is subject to domestic safeguards implemented by the National Board of Atomic Safety and Radiation Protection, the findings of which are verified by international (IAEA) safeguards in connection with the Treaty on the Nonproliferation of Nuclear Weapons. An overview is given of the main elements and functions of the SSAC, as for example the legal framework; mode, scope, objectives and intrastate organization of nuclear materials controls; system of records; methods of information processing; and reporting to the IAEA. (author)

  18. Integrated Global Nuclear Materials Management Preliminary Concepts

    International Nuclear Information System (INIS)

    Jones, E; Dreicer, M.

    2006-01-01

    The world is at a turning point, moving away from the Cold War nuclear legacy towards a future global nuclear enterprise; and this presents a transformational challenge for nuclear materials management. Achieving safety and security during this transition is complicated by the diversified spectrum of threat 'players' that has greatly impacted nonproliferation, counterterrorism, and homeland security requirements. Rogue states and non-state actors no longer need self-contained national nuclear expertise, materials, and equipment due to availability from various sources in the nuclear market, thereby reducing the time, effort and cost for acquiring a nuclear weapon (i.e., manifestations of latency). The terrorist threat has changed the nature of military and national security requirements to protect these materials. An Integrated Global Nuclear Materials Management (IGNMM) approach would address the existing legacy nuclear materials and the evolution towards a nuclear energy future, while strengthening a regime to prevent nuclear weapon proliferation. In this paper, some preliminary concepts and studies of IGNMM will be presented. A systematic analysis of nuclear materials, activities, and controls can lead to a tractable, integrated global nuclear materials management architecture that can help remediate the past and manage the future. A systems approach is best suited to achieve multi-dimensional and interdependent solutions, including comprehensive, end-to-end capabilities; coordinated diverse elements for enhanced functionality with economy; and translation of goals/objectives or standards into locally optimized solutions. A risk-informed basis is excellent for evaluating system alternatives and performances, and it is especially appropriate for the security arena. Risk management strategies--such as defense-in-depth, diversity, and control quality--help to weave together various technologies and practices into a strong and robust security fabric. Effective

  19. Materials. The Argentine nuclear policy

    International Nuclear Information System (INIS)

    Strasser, H.

    1982-01-01

    Part A of the volume contains a literature search on proliferation and the Third World and on the nuclear technology of Argentina. The materials in part B are divided in: 1. Nonproliferation discussion and the Third World. 2. Development and state of nuclear technology in Argentina. 3. Argentina's international contacts in the field of nuclear energy 1. Federal Republic of Germany, 2. Soviet Union, 3. Brazil. (orig./HP) [de

  20. Graphite materials for nuclear reactors

    International Nuclear Information System (INIS)

    Oku, Tatsuo

    1991-01-01

    Graphite materials have been used in the nuclear fission reactors from the beginning of the reactor development for the speed reduction and reflection of neutron. Graphite materials are used both as a moderator and as a reflector in the core of high temperature gas-cooled reactors, and both as a radiation shielding material and as a reflector in the surrounding of the core for the fast breeder reactor. On the other hand, graphite materials are being positively used as a first wall of plasma as it is known that low Z materials are useful for holding high temperature plasma in the nuclear fusion devices. In this paper the present status of the application of graphite materials to the nuclear fission reactors and fusion devices (reactors) is presented. In addition, a part of results on the related properties to the structural design and safety evaluation and results examined on the subjects that should be done in the future are also described. (author)

  1. Material input of nuclear fuel

    International Nuclear Information System (INIS)

    Rissanen, S.; Tarjanne, R.

    2001-01-01

    The Material Input (MI) of nuclear fuel, expressed in terms of the total amount of natural material needed for manufacturing a product, is examined. The suitability of the MI method for assessing the environmental impacts of fuels is also discussed. Material input is expressed as a Material Input Coefficient (MIC), equalling to the total mass of natural material divided by the mass of the completed product. The material input coefficient is, however, only an intermediate result, which should not be used as such for the comparison of different fuels, because the energy contents of nuclear fuel is about 100 000-fold compared to the energy contents of fossil fuels. As a final result, the material input is expressed in proportion to the amount of generated electricity, which is called MIPS (Material Input Per Service unit). Material input is a simplified and commensurable indicator for the use of natural material, but because it does not take into account the harmfulness of materials or the way how the residual material is processed, it does not alone express the amount of environmental impacts. The examination of the mere amount does not differentiate between for example coal, natural gas or waste rock containing usually just sand. Natural gas is, however, substantially more harmful for the ecosystem than sand. Therefore, other methods should also be used to consider the environmental load of a product. The material input coefficient of nuclear fuel is calculated using data from different types of mines. The calculations are made among other things by using the data of an open pit mine (Key Lake, Canada), an underground mine (McArthur River, Canada) and a by-product mine (Olympic Dam, Australia). Furthermore, the coefficient is calculated for nuclear fuel corresponding to the nuclear fuel supply of Teollisuuden Voima (TVO) company in 2001. Because there is some uncertainty in the initial data, the inaccuracy of the final results can be even 20-50 per cent. The value

  2. NDA systems to support nuclear material control and accounting in spent fuel reprocessing plants

    International Nuclear Information System (INIS)

    Simpson, J.C.B.; Clark, P.A.; Nicols, O.P.; Whitehouse, K.R.

    1999-01-01

    Detailed descriptions of a number of instrument systems relating to accountancy and safeguarding of plutonium operations and storage on Thermal Oxide Plant (Thorp) are provided. The systems described include the Plutonium Inventory Measurement System (PIMS), used to provide Near Real Time Materials Accountancy (NRTMA) information within the Thorp plutonium finishing area; the Product Can Contents Monitor (PCCM), used to verify can weight measurements and isotopic composition and; the In-Store Plutonium Verification Monitor, used to provide in-situ measurements of plutonium in cans whilst they are in their storage channels. These nondestructive systems are necessarily combined with other physical security, surveillance and identification arrangements for the handling and storage of plutonium product cans [ru

  3. Nuclear fuel cladding material

    International Nuclear Information System (INIS)

    Nakahigashi, Shigeo.

    1982-01-01

    Purpose: To largely improve the durability and the safety of fuel cladding material. Constitution: Diffusion preventive layers, e.g., aluminum or the like are covered on both sides of a zirconium alloy base layer of thin material, and corrosion resistant layers, e.g., copper or the like are covered thereon. This thin plate material is intimately wound in a circularly tubular shape in a plurality of layers to form a fuel cladding tube. With such construction, corrosion of the tube due to fuel and impurity can be prevented by the corrosion resistant layers, and the diffusion of the corrosion resistant material to the zirconium alloy can be prevented by the diffusion preventive layers. Since a plurality of layers are cladded, even if the corrosion resistant layers are damaged or cracked due to stress corrosion, only one layer is damaged or cracked, but the other layers are not affected. (Sekiya, K.)

  4. Software development for managing nuclear material database

    International Nuclear Information System (INIS)

    Tondin, Julio Benedito Marin

    2011-01-01

    In nuclear facilities, the nuclear material control is one of the most important activities. The Brazilian National Commission of Nuclear Energy (CNEN) and the International Atomic Energy Agency (IAEA), when inspecting routinely, regards the data provided as a major safety factor. Having a control system of nuclear material that allows the amount and location of the various items to be inspected, at any time, is a key factor today. The objective of this work was to enhance the existing system using a more friendly platform of development, through the VisualBasic programming language (Microsoft Corporation), to facilitate the operation team of the reactor IEA-R1 Reactor tasks, providing data that enable a better and prompter control of the IEA-R1 nuclear material. These data have allowed the development of papers presented at national and international conferences and the development of master's dissertations and doctorate theses. The software object of this study was designed to meet the requirements of the CNEN and the IAEA safeguard rules, but its functions may be expanded in accordance with future needs. The program developed can be used in other reactors to be built in the country, since it is very practical and allows an effective control of the nuclear material in the facilities. (author)

  5. Transport of nuclear materials

    International Nuclear Information System (INIS)

    Anon.

    2002-01-01

    During november and december 2001, 2 events concerning nuclear transport were reported and classified on the first grade (grade 1) of the INES scale. The first event concerns a hole in a transport cask of contaminated tools. The hole seems to have been made by the fork of a handling equipment. The second event concerns the loss of a parcel containing a technetium generator, this generator represented an activity of about 141 G Becquerel of 99 Mo the day it left the premises of CIS-bio in Saclay. (A.C.)

  6. A study on strengthening measures of non-proliferation regime through the export control system of sensitive materials, equipment and technology related to nuclear activities

    International Nuclear Information System (INIS)

    Kikuchi, Masahiro; Kurosawa, Mitsuru; Komizo, Yasuyoshi

    2004-01-01

    The strengthened safeguards caused from safeguards experiences to Iraq and DPRK leads to the expansion of the IAEA's activities for verification of all nuclear activities as well as verification of nuclear material in the States. The purpose of the activities, of course, includes detection of undeclared exports and imports of specified equipment and non-nuclear material. The Additional Protocol to the agreements between States and the IAEA for the application of safeguards requires to the States to declare the exports and imports information regarding specified equipment and non-nuclear material corresponding to the export control list that is established by the nuclear suppliers group. The Additional Protocol also insists the IAEA's right to access to the location identified by the State to resolve a question related to the declarations. Recently, the IAEA detected the black market group of the sensitive materials, equipment and technologies relevant to the nuclear proliferation through the safeguards activities to Iran and Libya. International community stated deeply concerns to the indecent facts. This paper would discuss and propose the supplemental strengthening measures of non-proliferation regime by effective combination of the safeguards activities under additional protocol and the export control regime. (author)

  7. Nuclear technology and materials science

    International Nuclear Information System (INIS)

    Olander, D.R.

    1992-01-01

    Current and expected problems in the materials of nuclear technology are reviewed. In the fuel elements of LWRs, cladding waterside corrosion, secondary hydriding and pellet-cladding interaction may be significant impediments to extended burnup. In the fuel, fission gas release remains a key issue. Materials issues in the structural alloys of the primary system include stress-corrosion cracking of steel, corrosion of steam generator tubing and pressurized thermal shock of the reactor vessel. Prediction of core behavior in severe accidents requires basic data and models for fuel liquefaction, aerosol formation, fission product transport and core-concrete interaction. Materials questions in nuclear waste management and fusion technology are briefly reviewed. (author)

  8. The regulations concerning refining business of nuclear source material and nuclear fuel materials

    International Nuclear Information System (INIS)

    1979-01-01

    The regulations are provided for under the law for the regulations of nuclear source materials, nuclear fuel materials and reactors and provisions concerning refining business in the enforcement order for the law. The basic concepts and terms are defined, such as: exposure dose, accumulative dose; controlled area; inspected surrounding area and employee. Refining facilities listed in the application for designation shall be classified into clushing and leaching, thickning, refining facilities, storage facilities of nuclear source materials and nuclear fuel materials, disposal facilities of contaminated substances and building for refining, etc. Business program attached to the application shall include expected time of beginning of refining, estimated production amount of nuclear source materials or nuclear fuel materials for the first three years and funds necessary for construction, etc. Records shall be made and kept for particular periods on delivery and storage of nuclear source materials and nuclear fuel materials, control of radiation, maintenance and accidents of refining facilities. Safety securing, application of internationally regulated substances and measures in dangerous situations are stipulated respectively. Exposure dose of employees and other specified matters shall be reported by the refiner yearly to the Director General of Science and Technology Agency and the Minister of International Trade and Industry. (Okada, K.)

  9. 37. annual meeting of the Institute of Nuclear Materials Management

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    The following subjects were covered in this meeting: waste management; nuclear materials management -- safety and health; international safeguards; measurement control and statistics for nuclear materials management; material control and accountability; packaging and transportation; nonproliferation and arms control; and physical protection. Separate papers were prepared for 74 items of this meeting

  10. Nuclear materials stewardship: Our enduring mission

    International Nuclear Information System (INIS)

    Isaacs, T.H.

    1998-01-01

    The US Department of Energy (DOE) and its predecessors have handled a remarkably wide variety of nuclear materials over the past 50 yr. Two fundamental changes have occurred that shape the current landscape regarding nuclear materials. If one recognizes the implications and opportunities, one sees that the stewardship of nuclear materials will be a fundamental and important job of the DOE for the foreseeable future. The first change--the breakup of the Soviet Union and the resulting end to the nuclear arms race--altered US objectives. Previously, the focus was on materials production, weapon design, nuclear testing, and stockpile enhancements. Now the attention is on dismantlement of weapons, excess special nuclear material inventories, accompanying increased concern over the protection afforded to such materials; new arms control measures; and importantly, maintenance of the safety and reliability of the remaining arsenal without testing. The second change was the raised consciousness and sense of responsibility for dealing with the environmental legacies of past nuclear arms programs. Recognition of the need to clean up radioactive contamination, manage the wastes, conduct current operations responsibly, and restore the environment have led to the establishment of what is now the largest program in the DOE. Two additional features add to the challenge and drive the need for recognition of nuclear materials stewardship as a fundamental, enduring, and compelling mission of the DOE. The first is the extraordinary time frames. No matter what the future of nuclear weapons and no matter what the future of nuclear power, the DOE will be responsible for most of the country's nuclear materials and wastes for generations. Even if the Yucca Mountain program is successful and on schedule, it will last more than 100 yr. Second, the use, management, and disposition of nuclear materials and wastes affect a variety of nationally important and diverse objectives, from national

  11. Introduction to nuclear material safeguards

    International Nuclear Information System (INIS)

    Kuroi, Hideo

    1986-01-01

    This article is aimed at outlining the nuclear material safeguards. The International Atomic Energy Agency (IAEA) was established in 1957 and safeguards inspection was started in 1962. It is stressed that any damage resulting from nuclear proliferation would be triggered by a human intentional act. Various measures have been taken by international societies and nations, of which the safeguards are the only means which relay mainly on technical procedures. There are two modes of diversing nuclear materials to military purposes. One would be done by national intension while the other by indivisulas or expert groups, i.e., sub-national intention. IAEA is responsible for the prevention of diversification by nations, for which the international safeguards are being used. Measures against the latter mode of diversification are called nuclear protection, for which each nation is responsible. The aim of the safeguards under the Nonproliferation Treaty is to detect the diversification of a significant amount of nuclear materials from non-military purposes to production of nuclear explosion devices such as atomic weapons or to unidentified uses. Major technical methods used for the safeguards include various destructive and non-destructive tests as well as containment and monitoring techniques. System techniques are to be employed for automatic containment and monitoring procedures. Appropriate nuclear protection system techniques should also be developed. (Nogami, K.)

  12. System of accounting and control of nuclear materials (MCA) relative to IAEA safeguards and improvement of radioecological situation of the Joint Stock Company ULBA Metallurgical Plant

    International Nuclear Information System (INIS)

    Kuznetsov, B.; Khadeev, V.; Antonov, N.; Gradelnikov, K.

    1996-01-01

    Following goals must be accomplished following this Project : - Develop computerized and automated MCA data system; - Provide up-to-date and reliable accounting and control of availability and transfer of nuclear materials, detect loss or theft of nuclear materials; - Improve book keeping of nuclear materials, provide paperwork for raw materials and finished products sales and purchase control, process nuclear materials shipment data; - Reduce sampling error and to obtain precise measure of nuclear materials to obtain ESADRA target values; - Thorium concentrates transfer preliminary released from raw Beryllium to the new storage to prevent environment radiation pollution and obvious fire accidents; - Improve radioecological situation of the territory caused by old storage dismantling and decontamination of site; - Improve accounting, storing and Physical Protection of Thorium Following is the proposal to obtain goals of the Project : - Develop accounting and control systems - Develop basic standards and procedures for MCA system - Develop users specifications of MCA data system - Develop software of MCA data system - Assembly and adjustment of local network at the production facilities - Automated MCA data system personnel training - Develop measurement system - Determination of the mistakes in sampling and measurement of Uranium and isotopes content - Develop the procedures of sampling and measurement of Uranium and isotopes content providing ESADRA target values - Develop measure control program covering scales and analytical equipment and measuring methods - Develop software for measure control program support - Thorium shipment, decontamination and improvement of Physical Protection of Thorium storage - Accounting of Thorium containing materials when transferring to the new storage - Arrange storage decontamination - Develop new systems of Thorium Containment/Surveillance and Physical Protection

  13. Physical protection of nuclear material

    International Nuclear Information System (INIS)

    1975-01-01

    Full text: An Advisory Group met to consider the up-dating and extension of the Recommendations for the Physical Protection of Nuclear Material, produced in 1972. Twenty-seven experts from 11 countries and EURATOM were present. Growing concern has been expressed in many countries that nuclear material may one day be used for acts of sabotage or terrorism. Serious attention is therefore being given to the need for States to develop national systems for the physical protection of nuclear materials during use, storage and transport throughout the nuclear fuel cycle which should minimize risks of sabotage or theft. The revised Recommendations formulated by the Advisory Group include new definitions of the objectives of national systems of physical protection and proposals for minimizing possibilities of unauthorized removal and sabotage to nuclear facilities. The Recommendations also describe administrative or organizational steps to be taken for this purpose and the essential technical requirements of physical protection for various types and locations of nuclear material, e.g., the setting up of protected areas, the use of physical barriers and alarms, the need for security survey, and the need of advance arrangements between the States concerned in case of international transportation, among others. (author)

  14. Proceedings of the Tripartite Seminar on Nuclear Material Accounting and Control at Radiochemical Plants; Trudy trekhstoronnego seminara Uchet i kontrol' yadernykh materialov na radiokhimicheskikh ustanovkakh

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    The problems of creation and operation of nuclear materials (NM) control and accounting systems and their components at radiochemical plants were discussed in seminar during November 2-6 of 1998. There were 63 Russian and 25 foreign participants in seminar. The seminar programme includes following sessions and articles: the aspects of State NM control and accountancy; NM control and accounting in radiochemical plants and at separate stages of reprocessing of spent nuclear fuel and irradiated fuel elements of commercial reactors; NM control and accountancy in storage facilities of radiochemical plants; NM control and accounting computerization, material balance assessment, preparation of reports; qualitative and quantitative measurements in NM control and accounting at radiochemical plants destructive analysis techniques.

  15. Modern technical and technological solutions of radiation control to combat illicit trafficking of nuclear and radioactive materials across borders

    International Nuclear Information System (INIS)

    Frymire, A.; Kagan, L.; Stavrov, A.

    2006-01-01

    Full text: Preventing the illicit nuclear and radioactive materials transportation across the state borders has recently taken on a special significance due to ongoing threat of utilizing these materials for terrorist purposes. Currently more and more countries are gaining better understanding of the importance of creating the national security system. It is obvious that the threat of nuclear terrorism is not the only reason to stimulate these efforts and actions. Another reason is existence of 'orphan' sources which number in the world is approaching to 200 000 including the ones with a very high activity. Uncontrolled presence of such sources and materials in the human environment can be hazardous to human health and it may cause significant economical losses. Radiation control at the borders of the countries in this case is the first line of defense on the route of illicit nuclear and radioactive material movement and therefore vitally important for country/state radiation protection. Radiation control at the borders of the states requires three steps: 1) primary control or detecting the presence of radioactive sources on a controlled object; 2) additional radiation control or locating the exact place of the radioactive source on the person, within the vehicle or inside the container; 3) identification of the nature of the radioactive source. To accomplish the first and the main step of radiation control process the high sensitive gamma-neutron portal monitors operating in automatic mode are utilized. They are used to alert authorities to the appearance of any radioactive source in the controlled area. These monitors are developed and manufactured in some countries and currently deployed at the borders of the countries and also in areas where the radioactive sources may appear. However, the experience of deploying the portal monitors in various countries (Poland, Russia, Belarus) (1-3) has proved that the installation even the best of the best monitors is just

  16. Creating a comprehensive, efficient, and sustainable nuclear regulatory structure. A Process Report from the U.S. Department of Energy's Material Protection, Control and Accounting Program

    International Nuclear Information System (INIS)

    Davis, Gregory E.; Brownell, Lorilee; Wright, Troy L.; Tuttle, John D.; Cunningham, Mitchel E.; O'Brien, Patricia E.

    2006-01-01

    This paper describes the strategies and process used by the U.S. Department of Energy's (DOE) nuclear Material Protection, Control and Accounting (MPC and A) Regulatory Development Project (RDP) to restructure its support for MPC and A regulations in the Russian Federation. The RDP adopted a project management approach to defining, implementing, and managing an effective nuclear regulatory structure. This approach included defining and developing the regulatory documents necessary to provide the Russian Federation with a comprehensive regulatory structure that supports an effective and sustainable MPC and A Program in Russia. This effort began in February 2005, included a series of three multi-agency meetings in April, June, and July, and culminated in August 2005 in a mutually agreed-upon plan to define and populate the nuclear regulatory system in the Russian Federation for non-military, weapons-usable material. This nuclear regulatory system will address all non-military Category I and II nuclear material at the Russian Federal Atomic Energy Agency (Rosatom), the Russian Agency for Industry (Rosprom), and the Federal Agency for Marine and River Transport (FAMRT) facilities; nuclear material in transport and storage; and nuclear material under the oversight of the Federal Environmental, Industrial and Nuclear Supervisory Service of Russia (Rostechnadzor). The Russian and U.S. MPC and A management teams approved the plan, and the DOE National Nuclear Security Administration's (NNSA) NA-255, Office of Infrastructure and Sustainability (ONIS), is providing funding. The Regulatory Development Project is managed by the Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy's (DOE) NNSA

  17. Nuclear material shipment study

    International Nuclear Information System (INIS)

    Shepherd, E.W.

    1980-01-01

    The Radioactive Material Transport Assessment Study is expected to provide a flexible set of capabilities and useful information to the public, industry and government users by using a system design to assure obtaining high quality data from selected industry sources at acceptable cost. It is expected that the shipping record approach coupled with an efficient sampling strategy will accomplish this. The study is also designed to yield analytical capabilities and statistical output to serve public, industry and government users. The information provided by the study will make a valuable contribution to environmental and accident risk assessment, policy development and operational planning and management activities

  18. The century of nuclear materials

    Science.gov (United States)

    Mansur, Lou; Was, Gary S.; Zinkle, Steve; Petti, David; Ukai, Shigeharu

    2018-03-01

    In the spring of 1959 the well-read metallurgist would have noticed the first issue of an infant Journal, one dedicated to a unique and fast growing field of materials issues associated with nuclear energy systems. The periodical, Journal of Nuclear Materials (JNM), is now the leading publication in the field from which it takes its name, thriving beyond the rosiest expectations of its founders. The discipline is well into the second half-century. During that time much has been achieved in nuclear materials; the Journal provides the authoritative record of virtually all those accomplishments. These pages introduce the 500th volume, a significant measure in the world of publishing. The Editors reflect on the progress in the field and the role of this journal.

  19. LECI Department of Nuclear Materials

    International Nuclear Information System (INIS)

    2006-01-01

    The LECI is a 'hot' laboratory dedicated mostly to the characterization of irradiated materials. It has, however, limited activities on fuel, as a back up to the LECA STAR in Cadarache. The LECI belongs to the Section of Research on Irradiated Materials (Department of Nuclear Materials). The Department for Nuclear Materials (DMN) has for its missions: - to contribute, through theoretical and experimental investigations, to the development of knowledge in materials science in order to be able to predict the evolution of the material physical and mechanical properties under service conditions (irradiation, thermomechanical solicitations, influence of the environment,..); - to characterize the properties of the materials used in the nuclear industry in order to determine their performance and to be able to predict their life expectancy, in particular via modelling. These materials can be irradiated or not, and originate from surveillance programs, experimental neutron irradiations or simulated irradiations with charged particles; - to establish, maintain and make use of the databases generated by these data; - to propose new or optimized materials, satisfying future service conditions and extend the life or the competitiveness of the associated systems; - to establish constitutive laws and models for the materials in service, incidental, accidental and storage conditions, and contribute to the development of the associated design codes in order to support the safety argumentation of utilities and vendors; - to provide expertise on industrial components, in particular to investigate strain or rupture mechanisms and to offer leads for improvement. This document presents, first, the purpose of the LECI (Historical data, Strategy, I and K shielded cell lines (building 605), M shielded cell line (building 625), Authorized materials). Then, it presents the microscopy and irradiation damage studies laboratory of the Saclay centre (Building 605) Which belongs to the Nuclear

  20. Whither the legal control of nuclear energy?

    International Nuclear Information System (INIS)

    Riley, Peter

    1995-01-01

    International nuclear trade is governed by the regime of legal control of nuclear energy, nuclear materials, knowledge of nuclear processes and weapons. Nuclear trade is under pinned by international agreements concerning physical protection and safeguards, the control of nuclear weapons, the protection of nuclear materials from terrorist action and third part liability. The political and geographical boundary changes of the past two years have significantly altered the background against which this regime has developed. Such changes have affected nuclear trade. The paper summarised the legal control of nuclear energy between States, identifies the areas of change which may affect this regime and the consequences for international trade. Conclusions are drawn as to the development of the international legal control of nuclear energy. (author). 21 refs

  1. Cooperation Between the Russian Federation and the United States to Enhance the Existing Nuclear-Material Protection, Control, and Accounting Systems at Mayak Production Association

    International Nuclear Information System (INIS)

    Cahalane, P.T.; Ehinger, M.H.; James, L.T.; Jarrett, J.H.; Lundgren, R.A.; Manatt, D.R.; Niederauer, G.F.; Olivos, J.D.; Prishchepov, A.I.; Starodubtsev, G.S.; Suda, S.C.; Tittemore, G.W.; Zatorsky, Y.M.

    1999-01-01

    The Ministry of the Russian Federation for Atomic Energy (MINATOM) and the US Department of Energy (DOE) are engaged in joint, cooperative efforts to reduce the likelihood of nuclear proliferation by enhancing Material Protection, Control and Accounting (MPC and A) systems in both countries. Mayak Production Association (Mayak) is a major Russian nuclear enterprise within the nuclear complex that is operated by lylINATOM. This paper describes the nature, scope, and status of the joint, cooperative efforts to enhance existing MPC and A systems at Mayak. Current cooperative efforts are focused on enhancements to the existing MPC and A systems at two of the plants operated by Mayak that work with proliferation-sensitive nuclear materials

  2. Cooperative efforts to improve nuclear materials accounting, control and physical protection at the National Science Center, Kharkov Institute of Physics and Technology

    International Nuclear Information System (INIS)

    Zelensky, V.F.; Mikhailov, V.A.

    1996-01-01

    The US Department of Energy (DOE) and the Ukrainian Government are engaged in a program of cooperation to enhance the nonproliferation of nuclear weapons by developing a strong national system of nuclear material protection, control, and accounting (MPC and A). This paper describes the capabilities and work of the Kharkov Institute of Physics and Technology (KIPT) and cooperative efforts to improve MPC and A at this facility. It describes how these cooperative efforts grew out of Ukraine''s decision to become a non-nuclear weapon state and the shortcomings in MPC and A that developed at KIPT after the disintegration of the former Soviet Union. It also envisions expanded future cooperation in other areas of nuclear materials management

  3. Cooperation between the Russian Federation and the United States to enhance the existing nuclear-material protection, control, and accounting systems at Mayak Production Association

    International Nuclear Information System (INIS)

    Starodubtsev, G.S.; Prishchepov, A.I.; Zatorsky, Y.M.; James, L.T.

    1997-01-01

    The Ministry of the Russian Federation for Atomic Energy (MINATOM) and the US Department of Energy (DOE) are engaged in joint, cooperative efforts to reduce the likelihood of nuclear proliferation by enhancing Material Protection, Control and Accounting (MPC ampersand A) systems in both countries. Mayak Production Association (MPA) is a major Russian nuclear enterprise within the nuclear complex that is operated by MINATOM. This paper describes the nature, scope, and status of the joint, cooperative efforts to enhance existing MPC ampersand A systems at MPA. Current cooperative efforts are focused on enhancements to the existing MPC ampersand A systems at four plants that are operated by MPA and that produce, process, handle and/or store proliferation-sensitive nuclear materials

  4. Cooperation between the Russian Federation and the United States to enhance the existing nuclear-material protection, control, and accounting systems at Mayak Production Association

    Energy Technology Data Exchange (ETDEWEB)

    Starodubtsev, G.S.; Prishchepov, A.I.; Zatorsky, Y.M.; James, L.T. [and others

    1997-11-01

    The Ministry of the Russian Federation for Atomic Energy (MINATOM) and the US Department of Energy (DOE) are engaged in joint, cooperative efforts to reduce the likelihood of nuclear proliferation by enhancing Material Protection, Control and Accounting (MPC&A) systems in both countries. Mayak Production Association (MPA) is a major Russian nuclear enterprise within the nuclear complex that is operated by MINATOM. This paper describes the nature, scope, and status of the joint, cooperative efforts to enhance existing MPC&A systems at MPA. Current cooperative efforts are focused on enhancements to the existing MPC&A systems at four plants that are operated by MPA and that produce, process, handle and/or store proliferation-sensitive nuclear materials.

  5. Nuclear material accounting software for Ukraine

    International Nuclear Information System (INIS)

    Doll, M.; Ewing, T.; Lindley, R.; McWilliams, C.; Roche, C.; Sakunov, I.; Walters, G.

    1999-01-01

    Among the needs identified during initial surveys of nuclear facilities in Ukraine was improved accounting software for reporting material inventories to the regulatory body. AIMAS (Automated Inventory/Material Accounting System) is a PC-based application written in Microsoft Access that was jointly designed by an US/Ukraine development team. The design is highly flexible and configurable, and supports a wide range of computing infrastructure needs and facility requirements including situations where networks are not available or reliable. AIMAS has both English and Russian-language options for displays and reports, and it operates under Windows 3.1, 95, or NT 4.0trademark. AIMAS functions include basic physical inventory tracking, transaction histories, reporting, and system administration functions (system configuration, security, data backup and recovery). Security measures include multilevel password access control, all transactions logged with the user identification, and system administration control. Interfaces to external modules provide nuclear fuel burn-up adjustment and barcode scanning capabilities for physical inventory taking. AIMAS has been installed at Kiev Institute of Nuclear Research (KINR), South Ukraine Nuclear Power Plant (SUNPP), Kharkov Institute of Physics and Technology (KIPT), Sevastopol Institute of Nuclear Energy and Industry (SINEI), and the Ministry of Environmental Protection and Nuclear Safety/Nuclear Regulatory Administration (MEPNS/NRA). Facility specialists are being trained to use the application to track material movement and report to the national regulatory authority

  6. Material control in nuclear fuel fabrication facilities. Part II. Accountability, instrumntation, and measurement techniques in fuel fabrication facilities, P.O.1236909. Final report

    International Nuclear Information System (INIS)

    Borgonovi, G.M.; McCartin, T.J.; McDaniel, T.; Miller, C.L.; Nguyen, T.

    1978-12-01

    This report describes the measurement techniques, the instrumentation, and the procedures used in accountability and control of nuclear materials, as they apply to fuel fabrication facilities. Some of the material included has appeared elswhere and it has been summarized. An extensive bibliography is included. A spcific example of application of the accountability methods to a model fuel fabrication facility which is based on the Westinghouse Anderson design

  7. Material control in nuclear fuel fabrication facilities. Part II. Accountability, instrumntation, and measurement techniques in fuel fabrication facilities, P. O. 1236909. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Borgonovi, G.M.; McCartin, T.J.; McDaniel, T.; Miller, C.L.; Nguyen, T.

    1978-12-01

    This report describes the measurement techniques, the instrumentation, and the procedures used in accountability and control of nuclear materials, as they apply to fuel fabrication facilities. Some of the material included has appeared elswhere and it has been summarized. An extensive bibliography is included. A spcific example of application of the accountability methods to a model fuel fabrication facility which is based on the Westinghouse Anderson design.

  8. Modernizing computerized nuclear material accounting systems

    International Nuclear Information System (INIS)

    Erkkila, B.H.; Claborn, J.

    1995-01-01

    DOE Orders and draft orders for nuclear material control and accountability address a complete material control and accountability (MC and A) program for all DOE contractors processing, using, or storing nuclear materials. A critical element of an MC and A program is the accounting system used to track and record all inventories of nuclear material and movements of materials in those inventories. Most DOE facilities use computerized accounting systems to facilitate the task of accounting for all their inventory of nuclear materials. Many facilities still use a mixture of a manual paper system with a computerized system. Also, facilities may use multiple systems to support information needed for MC and A. For real-time accounting it is desirable to implement a single integrated data base management system for a variety of users. In addition to accountability needs, waste management, material management, and production operations must be supported. Information in these systems can also support criticality safety and other safety issues. Modern networked microcomputers provide extensive processing and reporting capabilities that single mainframe computer systems struggle with. This paper describes an approach being developed at Los Alamos to address these problems

  9. Nuclear data information system for nuclear materials

    International Nuclear Information System (INIS)

    Fujita, Mitsutane; Noda, Tetsuji; Utsumi, Misako

    1996-01-01

    The conceptual system for nuclear material design is considered and some trials on WWW server with functions of the easily accessible simulation of nuclear reactions are introduced. Moreover, as an example of the simulation on the system using nuclear data, transmutation calculation was made for candidate first wall materials such as 9Cr-2W steel, V-5Cr-5Ti and SiC in SUS316/Li 2 O/H 2 O(SUS), 9Cr-2W/Li 2 O/H 2 O(RAF), V alloy/Li/Be(V), and SiC/Li 2 ZrO 3 /He(SiC) blanket/shield systems based on ITER design model. Neutron spectrum varies with different blanket/shield compositions. The flux of low energy neutrons decreases in order of V< SiC< RAF< SUS blanket/shield systems. Fair amounts of W depletion in 9Cr-2W steel and the increase of Cr content in V-5Cr-5Ti were predicted in SUS or RAF systems. Concentration change in W and Cr is estimated to be suppressed if Li coolant is used in place of water. Helium and hydrogen production are not strongly affected by the different blanket/shield compositions. (author)

  10. Materials science for nuclear detection

    OpenAIRE

    Peurrung, Anthony

    2008-01-01

    The increasing importance of nuclear detection technology has led to a variety of research efforts that seek to accelerate the discovery and development of useful new radiation detection materials. These efforts aim to improve our understanding of how these materials perform, develop formalized discovery tools, and enable rapid and effective performance characterization. We provide an overview of these efforts along with an introduction to the history, physics, and taxonomy of radiation detec...

  11. Nuclear Material (Offences) Act 1983

    International Nuclear Information System (INIS)

    1983-01-01

    The main purpose of this Act is to enable the United Kingdom to ratify the Convention on the Physical Protection of Nuclear Material which opened for signature at Vienne and New York on 3 March 1980. The Act extends throughout the United Kingdom. (NEA) [fr

  12. The Problems of Controlling Defects in the Materials Used for the First Czechoslovak Nuclear-Power Station

    International Nuclear Information System (INIS)

    Radislav, Filipp

    1965-01-01

    The paper briefly describes the reactor vessel of the first Czechoslovak nuclear power station. In order to meet the stringent design and structural requirements involved in fabricating the reactor vessel, which consists of low-alloy, non-aging steel of considerable thickness (650 mm), it was necessary to devise a ''control'' method for non-destructive testing of the basic material and welded joints. The ultrasonic pulse method, using one probe, is used extensively in testing the quality of the basic material and welded joints. The paper describes the methods used for carrying out tests and interpreting the results during the investigation of the basic material, and the methods for testing the quality of molten-slag arcless electric welds, carbon-dioxide welds, and manual arc welds. An automatic flaw-detection apparatus made in Czechoslovakia is used to test flat forgings and rolled products. The apparatus consists of two parts: a travelling mechanism and a UID-A2 ultrasonic flaw-detector made in Czechoslovakia. The apparatus incorporates a number of new features. The effect of distance on the height of the defect signal pulse is compensated and the height remains constant. The effect of irregularity of the acoustic link is also compensated since the data-unit conveys pulses to the remote recording device. An attenuator is used to determine the size of the flaw. An automatic apparatus is now being developed for testing on a vertical cylindrical surface. Assembly welds on circumferences must be tested at a high temperature. In the V.I. Lenin Plant at Pilsen a special data-unit has been developed for this purpose which makes it possible to carry out tests at elevated temperatures with a high degree of accuracy. Non-destructive tests of welded structures are also carried out using radiography. The testing of thin longitudinal seam welds and their roots at a high temperature is carried out with an X-ray unit with circular radiation characteristics, using special

  13. Nuclear and hazardous material perspective

    International Nuclear Information System (INIS)

    Sandquist, Gary M.; Kunze, Jay F.; Rogers, Vern C.

    2007-01-01

    The reemerging nuclear enterprise in the 21. century empowering the power industry and nuclear technology is still viewed with fear and concern by many of the public and many political leaders. Nuclear phobia is also exhibited by many nuclear professionals. The fears and concerns of these groups are complex and varied, but focus primarily on (1) management and disposal of radioactive waste [especially spent nuclear fuel and low level radioactive waste], (2) radiation exposures at any level, and (3) the threat nuclear terrorism. The root cause of all these concerns is the exaggerated risk perceived to human health from radiation exposure. These risks from radiation exposure are compounded by the universal threat of nuclear weapons and the disastrous consequences if these weapons or materials become available to terrorists or rogue nations. This paper addresses the bases and rationality for these fears and considers methods and options for mitigating these fears. Scientific evidence and actual data are provided. Radiation risks are compared to similar risks from common chemicals and familiar human activities that are routinely accepted. (authors)

  14. Pakistan's national legislation entitled: 'Export Control on Goods, Technologies, Material and Equipment related to Nuclear and Biological Weapons and their Delivery Systems Act, 2004'

    International Nuclear Information System (INIS)

    2004-01-01

    The Director General has received a letter from the Permanent Mission of Pakistan, dated 4 November 2004, concerning Pakistan's national legislation entitled 'Export Control on Goods, Technologies, Material and Equipment related to Nuclear and Biological Weapons and their Delivery Systems Act, 2004'. As requested by the Permanent Mission of Pakistan, the letter and the Export Control Act of 2004, are reproduced herein for the information of the Member States

  15. Structure and experience of the state system of accounting for and control of nuclear material (SSAC) in the German Democratic Republic

    International Nuclear Information System (INIS)

    Rehak, W.

    1989-01-01

    The legislative basis, structure, functions, records and experience of the State System of Accounting for and Control of Nuclear Materials (SSAC) in the German Democratic Republic (GDR) are reviewed. The GDR's nuclear activities are characterized by research establishments and power reactors and by the absence of industrial bulk handling facilities such as fuel fabrication, reprocessing and enrichment plants. As a consequence both the national and the international safeguards approach can be based on the principles of item accountability which does not require the establishment of an elaborate measurement system. Right from the beginning the safeguards implemented were of the NPT type as the GDR was among the early parties to the Non-Proliferation Treaty. The national rules and procedures of safeguards were thus established in harmony with the international requirements and have closely followed their development. The SSAC in the GDR is part of the comprehensive set-up of protective measures against the potential hazards in the use of nuclear energy under the National Board for Atomic Safety and Radiation Protection which has established a number of inspectorates, among them the inspection group for nuclear material control -the Nuclear Material Inspectorate. 5 figs., 2 tabs

  16. Collaborative Russian-US work in nuclear material protection, control and accounting at the Institute of Physics and Power Engineering. 3: Emphasis on site-wide issues

    International Nuclear Information System (INIS)

    Kuzin, V.V.; Pshakin, G.M.; Belov, A.P.

    1997-07-01

    During 1997, collaborative Russian-US nuclear material protection, control, and accounting (MPC and A) tasks at the Institute of Physics and Power Engineering (IPPE) in Obninsk, Russia are focusing increasingly on site-wide issues, though there is continued work at several major facilities: the Fast Critical Facility, the Technological Laboratory for Fuel Fabrication, and the (new and existing) Central Storage Facility. The collaborative work is being done with US Department of Energy National Laboratories. IPPE's emphasis on site-wide issues has resulted in the formation of a separate division for MPC and A. This new division reports directly to the IPPE Chief Engineer. It is a separate scientific and engineering operating division responsible for coordination and harmonization of MPC and A at IPPE, as well as for audit, assessment and inspection. By virtue of the organizational independence of this new division, IPPE has significantly strengthened the role of MPC and A. Two specific site-wide accomplishments are the consolidation of nuclear material from many buildings to a smaller number, and, as a major part of this strategy, the construction of a nuclear island surrounding the Fast Critical Facility and the new Central Storage Facility. Most of IPPE's weapons-grade nuclear materials will be concentrated within the nuclear island. The paper summarizes the following technical elements: computerized accounting, bar coding, weight measurements, gamma-ray measurements, tamper indicating devices, procedures for physical inventory taking and material balance closure, and video monitoring systems for storage and critical assembly areas

  17. Proposed real-time data processing system to control source and special nuclear material (SS) at Mound Laboratory

    International Nuclear Information System (INIS)

    DeVer, E.A.; Baston, M.; Bishop, T.C.

    1976-01-01

    The SS Acountability System was designed to provide accountability of all SS materials by unit identification and grams. The existing system is a gram-accountable system. The new system was designed to incorporate unit identification into an ADP (Automated Data Processing) System. It also records all transactions performed against a particular unit of accountable material. The high volume of data is input via CRT terminals. Input data will consist of the following: source of the material (its unit identification), amount of material being moved, isotopic content, type of material, Health Physics number of the person moving the material, account number from which the material is being moved, unit identification of the material being moved (if all material is not moved), Health Physics number of the person receiving the material, account number to which material is being moved, and acceptance of the material by the receiver. A running inventory of all material is kept. At the end of the month the physical inventory will be compared to the data base and all discrepancies reported. Since a complete history of transactions has been kept, the source and cause for any discrepancies should be easily located. Discrepancies are held to a minimum since errors are detected before entrance into the data base. The system will also furnish all reports necessary to control SS Accountability. These reports may be requested at any time via an accountability master terminal

  18. Nuclear Materials Management for the Nevada Test Site (NTS)

    International Nuclear Information System (INIS)

    Jesse C. Schreiber

    2007-01-01

    The Nevada Test Site (NTS) has transitioned from its historical role of weapons testing to a broader role that is focused on being a solution to multiple National Nuclear Security Administration (NNSA) challenges and opportunities with nuclear materials for the nation. NTS is supporting other NNSA sites challenged with safe nuclear materials storage and disposition. NNSA, with site involvement, is currently transforming the nuclear stockpile and supporting infrastructure to meet the 2030 vision. Efforts are under way to make the production complex smaller, more consolidated, and more modern. With respect to the nuclear material stockpile, the NNSA sites are currently reducing the complex nuclear material inventory through dispositioning and consolidating nuclear material. This includes moving material from other sites to NTS. State-of-the-art nuclear material management and control practices at NTS are essential for NTS to ensure that these new activities are accomplished in a safe, secure, efficient, and environmentally responsible manner. NTS is aggressively addressing this challenge

  19. Advanced control systems to improve nuclear power plant reliability and efficiency. Working material. Report of an advisory group meeting held in Vienna, 13-17 March, 1995

    International Nuclear Information System (INIS)

    1995-01-01

    The Advisory Group Meeting as a consequence of the recommendations of the IAEA International Working Group on Nuclear Power Plant Control and Instrumentation to produce a practical guidance on the application of the advanced control systems available for nuclear power plant operation. The objective of the IAEA advisory group meeting were: To provide an international forum of exchange of ideas and views for the purpose of enhancement of nuclear power plant reliability and efficiency by adopting advanced control technologies; to develop a scope, table of content, and extended outlines for an IAEA technical document on the subject. The present volume contains summary report, materials prepared by the meeting, and reports presented by national delegates. Refs, figs and tabs

  20. Nuclear material statistical accountancy system

    International Nuclear Information System (INIS)

    Argentest, F.; Casilli, T.; Franklin, M.

    1979-01-01

    The statistical accountancy system developed at JRC Ispra is refered as 'NUMSAS', ie Nuclear Material Statistical Accountancy System. The principal feature of NUMSAS is that in addition to an ordinary material balance calcultation, NUMSAS can calculate an estimate of the standard deviation of the measurement error accumulated in the material balance calculation. The purpose of the report is to describe in detail, the statistical model on wich the standard deviation calculation is based; the computational formula which is used by NUMSAS in calculating the standard deviation and the information about nuclear material measurements and the plant measurement system which are required as data for NUMSAS. The material balance records require processing and interpretation before the material balance calculation is begun. The material balance calculation is the last of four phases of data processing undertaken by NUMSAS. Each of these phases is implemented by a different computer program. The activities which are carried out in each phase can be summarised as follows; the pre-processing phase; the selection and up-date phase; the transformation phase, and the computation phase

  1. Customs control of radioactive materials

    International Nuclear Information System (INIS)

    Causse, B.

    1998-01-01

    Customs officers take part in the combat against illicit traffic od radioactive materials by means of different regulations dealing with nuclear materials, artificial radiation sources or radioactive wastes. The capability of customs officers is frequently incomplete and difficult to apply due to incompatibility of the intervention basis. In case of contaminated materials, it seems that the customs is not authorised directly and can only perform incidental control. In order to fulfil better its mission of fighting against illicit traffic of radioactive materials customs established partnership with CEA which actually includes practical and theoretical training meant to augment the capabilities of customs officers

  2. Operative and informative nuclear-physical methods for analysis of mineral raw materials and control of technological process

    International Nuclear Information System (INIS)

    Sattarov, G.S.; Muzafarov, A.M.; Komilov, J.M.; Kadirov, F.; Kist, A.A.

    2006-01-01

    Full text: In the Navoi region uranium and gold are mined for more than 35 and 30 years, respectively. Various nuclear-chemical and nuclear-physical analysis methods are applied for elemental analysis of gold and uranium bearing ores and technological elements. The nuclear-physical analysis methods have a number of advantages: high sensitivity, capabilities for simultaneous determination of a number of elements, capabilities for automation of analysis process and their expressness at determination of short-living radionuclides. In the given work the comparative characteristics of nuclear-physical methods are shown applied for operative control of gold, uranium and some other rare elements at technological separation processes by sampling and at continuous flow of crushed ore and solution. They are: control of gold sorption leaching; quality control of ore, gravio- and flotation concentrate; x-ray spectral analysis; x-ray energy disperse analysis; radio-indicator and gamma-absorption analysis methods; neutron-activation analysis with using the ampoule neutron sources; elemental analysis at continuous flow of crushed ore and solution; and others. The analytical capabilities of some developed nuclear-physical research methods, which provide information on for geochemical and technological behaviour of gold, uranium and accompanying elements. Like photo-registration of radioluminescence; neutron-activation autoradiography and radio scanning; natural radiation radiometry; alpha, beta and gamma spectrometry of naturally active samples; determination of form in which the elements are present in sewage and underground waters; study of leachability of elements in dynamical and static conditions; determination of time of products being in technological apparatus. Practical examples are presented showing application of the developed methods for the study of geochemical behaviour of main and accompanying elements; for control of the gold, uranium, and some other rare and

  3. Nuclear materials facility safety initiative

    International Nuclear Information System (INIS)

    Peddicord, K.L.; Nelson, P.; Roundhill, M.; Jardine, L.J.; Lazarev, L.; Moshkov, M.; Khromov, V.V.; Kruchkov, E.; Bolyatko, V.; Kazanskij, Yu.; Vorobeva, I.; Lash, T.R.; Newton, D.; Harris, B.

    2000-01-01

    Safety in any facility in the nuclear fuel cycle is a fundamental goal. However, it is recognized that, for example, should an accident occur in either the U.S. or Russia, the results could seriously delay joint activities to store and disposition weapons fissile materials in both countries. To address this, plans are underway jointly to develop a nuclear materials facility safety initiative. The focus of the initiative would be to share expertise which would lead in improvements in safety and safe practices in the nuclear fuel cycle.The program has two components. The first is a lab-to-lab initiative. The second involves university-to-university collaboration.The lab-to-lab and university-to-university programs will contribute to increased safety in facilities dealing with nuclear materials and related processes. These programs will support important bilateral initiatives, develop the next generation of scientists and engineers which will deal with these challenges, and foster the development of a safety culture

  4. Proposals for the Future Development of the Russian Automated Federal Information System for Nuclear Material Control and Accounting: The Universal Reporting Concept

    International Nuclear Information System (INIS)

    Martyanov, Alexander; Pitel, Victor; Kasumova, Leila; Babcock, Rose A.; Heinberg, Cynthia L.

    2004-01-01

    Development of the automated Russian Federation Federal Information System for Nuclear Material Control and Accounting (FIS) started in 1996. From the beginning, the creation of the FIS was based on the concept of obtaining data from the material balance areas of the organizations, which would enable the system to collect detailed information on nuclear material. In December 2000, the organization-level summarized reporting method was mandated by the Russian Federation and subsequently implemented for all organizations. Analysis of long-term FIS objectives, reporting by all the MBAs in Russia, showed that the present summarized reporting approach decreed by regulations posed a fair number of problems. We need alternative methods that allow the FIS to obtain more detailed information on nuclear material but which accurately reflect the technical and economic resources available to Russian organizations. One possible solution is the universal reporting method. In August 2003, the proposals of the FIS working group to transition to the universal reporting method were approved at the fourth meeting of the Joint Coordinating Committee for Implementation of the Russian Federation and U.S. Government-to-Government Agreement on Cooperation in the Area of Nuclear Material Physical Protection, Control and Accounting (JCC). One of the important elements of universal reporting is that organizations handling nuclear material will establish 'reporting areas' in cooperation with MinAtom of Russia. A reporting area may consist of one MBA, several MBAs, or even an entire organization. This paper will discuss the universal reporting concept and its major objectives and methods for the FIS.

  5. Nuclear Technology Series. Course 25: Radioactive Material Handling Techniques.

    Science.gov (United States)

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  6. Nuclear reactor control rod

    International Nuclear Information System (INIS)

    Cearley, J.E.; Izzo, K.R.

    1987-01-01

    This patent describes a vertically oriented bottom entry control rod from a nuclear reactor: a frame including an elongated central spine of cruciform cross section connected between an upper support member and a lower support member both of cruciform shape having four laterally extending arms. The arms are in alignment with the arms of the lower support member and each aligned upper and lower support members has a sheath extending between; absorber plates of neutron absorber material, different from the material of the frame, one of the absorber plates is positioned within a sheath beneath each of the arms; attachment means suspends the absorber plates from the arms of the upper support member within a sheath; elongated absorber members positioned within a sheath between each of the suspended absorber plates and an arm of the lower support member; and joint means between the upper ends of the absorber members and the lower ends of the suspended absorber plates for minimizing gaps; the sheath means encloses the suspended absorber plates and the absorber members extending between aligned arms of the upper and lower support members and secured

  7. Prevention of nuclear fuel cladding materials corrosion

    International Nuclear Information System (INIS)

    Yang, K.R.; Yang, J.C.; Lee, I.C.; Kang, H.D.; Cho, S.W.; Whang, C.K.

    1983-01-01

    The only way which could be performed by the operator of nuclear power plant to minimizing the degradation of nuclear fuel cladding material is to control the water quality of primary coolant as specified standard conditions which dose not attack the cladding material. If the water quality of reactor coolant does not meet far from the specification, the failure will occure not only cladding material itself but construction material of primary system which contact with the coolant. The corrosion product of system material are circulate through the whole primary system with the coolant and activated by the neutron near the reactor core. The activated corrosion products and fission products which released from fuel rod to the coolant, so called crud, will repeate deposition and redeposition continuously on the fuel rod and construction material surface. As a result we should consider heat transfer problem. In this study following activities were performed; 1. The crud sample was taken from the spent fuel rod surface of Kori unit one and analized for radioactive element and non radioactive chemical species. 2. The failure mode of nuclear fuel cladding material was estimated by the investigation of releasing type of fission products from the fuel rod to the reactor coolant using the iodine isotopes concentration of reactor coolants. 3. A study was carried out on the sipping test results of spent fuel and a discussion was made on the water quality control records through the past three cycle operation period of Kori unit one plant. (Author)

  8. Bar code usage in nuclear materials accountability

    International Nuclear Information System (INIS)

    Mee, W.T.

    1983-01-01

    The age old method of physically taking an inventory of materials by listing each item's identification number has lived beyond its usefulness. In this age of computerization, which offers the local grocery store a quick, sure, and easy means to inventory, it is time for nuclear materials facilities to automate accountability activities. The Oak Ridge Y-12 Plant began investigating the use of automated data collection devices in 1979. At that time, bar code and optical-character-recognition (OCR) systems were reviewed with the purpose of directly entering data into DYMCAS (Dynamic Special Nuclear Materials Control and Accountability System). Both of these systems appeared applicable; however, other automated devices already employed for production control made implementing the bar code and OCR seem improbable. However, the DYMCAS was placed on line for nuclear material accountability, a decision was made to consider the bar code for physical inventory listings. For the past several months a development program has been underway to use a bar code device to collect and input data to the DYMCAS on the uranium recovery operations. Programs have been completed and tested, and are being employed to ensure that data will be compatible and useful. Bar code implementation and expansion of its use for all nuclear material inventory activity in Y-12 is presented

  9. Controlling nuclear proliferation

    International Nuclear Information System (INIS)

    Sweet, W.

    1981-01-01

    Nuclear non-proliferation policy depends on the 1968 Non-Proliferation Treaty, in which countries promise not to acquire nuclear weapons in exchange for open access to peaceful nuclear technology, and a system of international safeguards that are imposed on exported nuclear equipment and facilities operated by parties to the treaty. Critics have feared all along that non-nuclear countries might circumvent or exploit the system to obtain nuclear weapons and that the Atoms for Peace plan would spread the very technology it sought to control. The nuclear weapons states would like everyone else to believe that atomic bombs are undesirable, but they continue to rely on the bombs for their own defense. Israel's raid on Iraq's nuclear reactor focused world attention on the proliferation problem and helped to broaden and sterengthen its prospects. It also highlighted the weakness that there are no effective sanctions against violators. Until the international community can ageee on enforcement measures powerful enough to prevent nuclear proliferation, individual countries may be tempted to follow Israel's example, 19 references

  10. Special nuclear material simulation device

    Science.gov (United States)

    Leckey, John H.; DeMint, Amy; Gooch, Jack; Hawk, Todd; Pickett, Chris A.; Blessinger, Chris; York, Robbie L.

    2014-08-12

    An apparatus for simulating special nuclear material is provided. The apparatus typically contains a small quantity of special nuclear material (SNM) in a configuration that simulates a much larger quantity of SNM. Generally the apparatus includes a spherical shell that is formed from an alloy containing a small quantity of highly enriched uranium. Also typically provided is a core of depleted uranium. A spacer, typically aluminum, may be used to separate the depleted uranium from the shell of uranium alloy. A cladding, typically made of titanium, is provided to seal the source. Methods are provided to simulate SNM for testing radiation monitoring portals. Typically the methods use at least one primary SNM spectral line and exclude at least one secondary SNM spectral line.

  11. Analytical chemistry of nuclear materials

    International Nuclear Information System (INIS)

    1966-01-01

    The second panel on the Analytical Chemistry of Nuclear Materials was organized for two purposes: first, to advise the Seibersdorf Laboratory of the Agency on its future programme, and second, to review the results of the Second International Comparison of routine analysis of trace impurities in uranium and also the action taken as a result of the recommendations of the first panel in 1962. Refs, figs and tabs

  12. Technologies for detection of nuclear materials

    International Nuclear Information System (INIS)

    DeVolpi, A.

    1996-01-01

    Detection of smuggled nuclear materials at transit points requires monitoring unknown samples in large closed packages. This review contends that high-confidence nuclear-material detection requires induced fission as the primary mechanism, with passive radiation screening in a complementary role. With the right equipment, even small quantities of nuclear materials are detectable with a high probability at transit points. The equipment could also be linked synergistically with detectors of other contrabond. For screening postal mail and packages, passive monitors are probably more cost-effective. When a suspicious item is detected, a single active probe could then be used. Until active systems become mass produced, this two-stage screening/interrogation role for active/passive equipment is more economic for cargo at border crossings. For widespread monitoring of nuclear smuggling, it will probably be necessary to develop a system for simultaneously detecting most categories of contraband, including explosives and illicit drugs. With control of nuclear materials at known storage sites being the first line of defense, detection capabilities at international borders could establish a viable second line of defense against smuggling

  13. U.S. and Russian cooperative efforts to enhance nuclear material protection, control, and accountability at the Siberian Chemical Combine at Tomsk-7

    International Nuclear Information System (INIS)

    Kreykes, J.; Petrushev, V.I.; Griggs, J.

    1996-01-01

    The US partners in the Laboratory-to-Laboratory Program in Nuclear Materials Protection, Control, and Accountability (MPC and A) have reached signed agreements with the Siberian Chemical Combine (SKhK) to rapidly enhance the protection, control, and accountability of nuclear material at all of its facilities. SKhK is the largest multi-function production center of the Russian nuclear complex and, until recently, its facilities produced and processed special nuclear materials for the Russian Defense Ministry. SKhK produces heat and electricity, enriches uranium for commercial reactor fuel, reprocesses irradiated fuel, and converts highly enriched uranium metal into oxide for blending into low-enriched reactor-grade uranium, and manufactures civilian products. SKhK is aggressively pursuing a program to enhance MPC and A which includes the installation of pedestrian and vehicle radiation monitors, rapid inventory methods, tamper-indicating devices, computerized accounting systems, and physical protection measures. This work is a collaboration between technical experts from Brookhaven, Lawrence Livermore, Los Alamos, Oak Ridge, pacific Northwest, and Sandia National Laboratories and their Russian counterparts at SKhK. This paper reviews the status of this initial effort and outlines plans for continuing the work in 1996

  14. Nuclear reactors: physics and materials

    Energy Technology Data Exchange (ETDEWEB)

    Yadigaroglu, G

    2005-07-01

    In the form of a tutorial addressed to non-specialists, the article provides an introduction to nuclear reactor technology and more specifically to Light Water Reactors (LWR); it also shows where materials and chemistry problems are encountered in reactor technology. The basics of reactor physics are reviewed, as well as the various strategies in reactor design and the corresponding choices of materials (fuel, coolant, structural materials, etc.). A brief description of the various types of commercial power reactors follows. The design of LWRs is discussed in greater detail; the properties of light water as coolant and moderator are put in perspective. The physicochemical and metallurgical properties of the materials impose thermal limits that determine the performance and the maximum power a reactor can deliver. (author)

  15. Better materials for nuclear energy

    International Nuclear Information System (INIS)

    Banerjee, S.

    2005-01-01

    The improved performance of present generation nuclear reactors and the realization of advanced reactor concepts, both, require development of better materials. Physical metallurgy /materials science principles which have been exploited in meeting the exacting requirements of nuclear systems comprising fuels, structural materials, moderators and coolants are outlined citing a few specific examples. While the incentive for improvement of traditional fuels (e.g., UO 2 fuel) is primarily for increasing the average core burn up, the development of advanced fuels (e.g., MOX, mixed carbide, nitride, silicide and dispersion fuels) are directed towards better utilization of fissile and fertile inventories through adaptation of innovative fuel cycles. As the burn up of UO 2 fuel reaches higher levels, a more detailed and quantitative understanding of the phenomena such as fission gas release, fuel restructuring - induced by radiation and thermal gradients and pellet-clad interaction is being achieved. Development of zirconium based alloys for both cladding and pressure tube applications is discussed with reference to their physical metallurgy, fabrication techniques, in-reactor degradation mechanisms, and in-service inspection. The issue of radiation embrittlement of reactor pressure vessels (RPVs) is covered drawing a comparison between the western and eastern specifications of RPV steels. The search for new materials which can stand higher rates of atomic displacement due to radiation has led to the development of swelling resistant austenitic and ferritic stainless steels for fast reactor applications as exemplified by the development of the D-9 steel for Indian fast breeder reactor. New challenges are thrown to material scientists for the development of materials suitable for high temperature reactors, which have a potential for providing primary heat for thermo chemical dissociation of water. Development of several ceramic materials, carbon based materials, dissimilar

  16. Nuclear export controls

    International Nuclear Information System (INIS)

    Thorne, C.E.

    1999-01-01

    One approach to describing the multilateral nuclear export controls is to do it according to time. This led to an interesting discovery, i.e. multilateral export controls have been defined by four distinct periods, the forst two of abut five years each, the second two about twice as long. These time periods have another interesting property. The two suppliers groups, which we will discuss in detail, have alternated in dominance over nearly thirty years. After describing the historical developments, the status of the present situation in multilateral nuclear export controls is examined, with the strengths and weaknesses. The future of multilateral nuclear export controls and possible ways that might be taken are considered

  17. Collaborative Russian-US work in nuclear material protection, control and accounting at the Institute of Physics and Power Engineering. II. extension to additional facilities

    International Nuclear Information System (INIS)

    Kuzin, V.V.; Pshakin, G.M.; Belov, A.P.

    1996-01-01

    During 1995, collaborative Russian-US nuclear material protection, control and accounting (MPC ampersand A) tasks at the Institute of Physics and Power Engineering (IPPE) in Obninsk, Russia focused on improving the protection of nuclear materials at the BFS Fast Critical Facility. BFS has thousands of fuel disks containing highly enriched uranium and weapons-grade plutonium that are used to simulate the core configurations of experimental reactors in two critical assemblies. Completed tasks culminated in demonstrations of newly implemented equipment and methods that enhanced the MPC ampersand A at BFS through computerized accounting, nondestructive inventory verification measurements, personnel identification and assess control, physical inventory taking, physical protection, and video surveillance. The collaborative work is now being extended. The additional tasks encompass communications and tamper-indicating devices; new storage alternatives; and systemization of the MPC ampersand A elements that are being implemented

  18. Multiple nuclear ADC controller

    Energy Technology Data Exchange (ETDEWEB)

    Lovett, A; Rapaport, M S [Center for Nuclear Research, Soreq (Israel)

    1980-12-01

    A controller for an on-line three parameter coincidence and multispectra scaling system has been developed. It has been designed to control, event-by-event, the outputs of three nuclear analog-to-digital converters used at the SOLIS facility. The system utilizes an HP minicomputer with a 32k-word core memory, a disc drive and magnetic tape units.

  19. The changing role of nuclear materials accounting

    International Nuclear Information System (INIS)

    Gibbs, P.W.

    1995-01-01

    Nuclear materials accounting and accounting systems at what have been DOE Production sites are evolving into management decision support tools. As the sites are moving into the mode of making decisions on how to disposition complex and varied nuclear material holdings, the need for complete and many times different information has never been greater. The artificial boundaries that have historically been established between what belongs in the classic material control and accountability (MC and A) records versus what goes into the financial, radiological control, waste, or decommissioning and decontamination records are being challenged. In addition, the tools historically used to put material into different categories such as scrap codes, composition codes, etc. have been found to be inadequate for the information needs of today. In order to be cost effective and even, more importantly to effectively manage -our inventories, the new information systems the authors design have to have the flexibility to serve many needs. In addition, those tasked with the responsibility of managing the inventories must also expand beyond the same artificial boundaries. This paper addresses some of the things occurring at the Savannah River Site to support the changing role of nuclear materials accounting

  20. Analytical chemistry of nuclear materials

    International Nuclear Information System (INIS)

    1963-01-01

    The last two decades have witnessed an enormous development in chemical analysis. The rapid progress of nuclear energy, of solid-state physics and of other fields of modern industry has extended the concept of purity to limits previously unthought of, and to reach the new dimensions of these extreme demands, entirely new techniques have been invented and applied and old ones have been refined. Recognizing these facts, the International Atomic Energy Agency convened a Panel on Analytical Chemistry of Nuclear Materials to discuss the general problems facing the analytical chemist engaged in nuclear energy development, particularly in newly developing centre and countries, to analyse the represent situation and to advise as to the directions in which research and development appear to be most necessary. The Panel also discussed the analytical programme of the Agency's laboratory at Seibersdorf, where the Agency has already started a programme of international comparison of analytical methods which may lead to the establishment of international standards for many materials of interest. Refs and tabs

  1. Nuclear materials for fission reactors

    International Nuclear Information System (INIS)

    Matzke, H.; Schumacher, G.

    1992-01-01

    This volume brings together 47 papers from scientists involved in the fabrication of new nuclear fuels, in basic research of nuclear materials, their application and technology as well as in computer codes and modelling of fuel behaviour. The main emphasis is on progress in the development of non -oxide fuels besides reporting advances in the more conventional oxide fuels. The two currently performed large reactor safety programmes CORA and PHEBUS-FP are described in invited lectures. The contributions review basic property measurements, as well as the present state of fuel performance modelling. The performance of today's nuclear fuel, hence UO 2 , at high burnup is also reviewed with particular emphasis on the recently observed phenomenon of grain subdivision in the cold part of the oxide fuel at high burnup, the so-called 'rim' effect. Similar phenomena can be simulated by ion implantation in order to better elucidate the underlying mechanism and reviews on high resolution electron microscopy provide further information. The papers will provide a useful treatise of views, ideas and new results for all those scientists and engineers involved in the specific questions of current nuclear waste management

  2. Robot development for nuclear material processing

    International Nuclear Information System (INIS)

    Pedrotti, L.R.; Armantrout, G.A.; Allen, D.C.; Sievers, R.H. Sr.

    1991-07-01

    The Department of Energy is seeking to modernize its special nuclear material (SNM) production facilities and concurrently reduce radiation exposures and process and incidental radioactive waste generated. As part of this program, Lawrence Livermore National Laboratory (LLNL) lead team is developing and adapting generic and specific applications of commercial robotic technologies to SNM pyrochemical processing and other operations. A working gantry robot within a sealed processing glove box and a telerobot control test bed are manifestations of this effort. This paper describes the development challenges and progress in adapting processing, robotic, and nuclear safety technologies to the application. 3 figs

  3. Fieldable Nuclear Material Identification System

    International Nuclear Information System (INIS)

    Radle, James E.; Archer, Daniel E.; Carter, Robert J.; Mullens, James Allen; Mihalczo, John T.; Britton, Charles L. Jr.; Lind, Randall F.; Wright, Michael C.

    2010-01-01

    The Fieldable Nuclear Material Identification System (FNMIS), funded by the NA-241 Office of Dismantlement and Transparency, provides information to determine the material attributes and identity of heavily shielded nuclear objects. This information will provide future treaty participants with verifiable information required by the treaty regime. The neutron interrogation technology uses a combination of information from induced fission neutron radiation and transmitted neutron imaging information to provide high confidence that the shielded item is consistent with the host's declaration. The combination of material identification information and the shape and configuration of the item are very difficult to spoof. When used at various points in the warhead dismantlement sequence, the information complimented by tags and seals can be used to track subassembly and piece part information as the disassembly occurs. The neutron transmission imaging has been developed during the last seven years and the signature analysis over the last several decades. The FNMIS is the culmination of the effort to put the technology in a usable configuration for potential treaty verification purposes.

  4. Recommendations to the NRC on acceptable standard format and content for the Fundamental Nuclear Material Control (FNMC) Plan required for low-enriched uranium enrichment facilities

    International Nuclear Information System (INIS)

    Moran, B.W.; Belew, W.L.; Hammond, G.A.; Brenner, L.M.

    1991-11-01

    A new section, 10 CFR 74.33, has been added to the material control and accounting (MC ampersand A) requirements of 10 CFR Part 74. This new section pertains to US Nuclear Regulatory Commission (NRC)-licensed uranium enrichment facilities that are authorized to produce and to possess more than one effective kilogram of special nuclear material (SNM) of low strategic significance. The new section is patterned after 10 CFR 74.31, which pertains to NRC licensees (other than production or utilization facilities licensed pursuant to 10 CFR Part 50 and 70 and waste disposal facilities) that are authorized to possess and use more than one effective kilogram of unencapsulated SNM of low strategic significance. Because enrichment facilities have the potential capability of producing SNM of moderate strategic significance and also strategic SNM, certain performance objectives and MC ampersand A system capabilities are required in 10 CFR 74.33 that are not contained in 10 CFR 74.31. This document recommends to the NRC information that the licensee or applicant should provide in the fundamental nuclear material control (FNMC) plan. This document also describes methods that should be acceptable for compliance with the general performance objectives. While this document is intended to cover various uranium enrichment technologies, the primary focus at this time is gas centrifuge and gaseous diffusion

  5. Perspective on transporting nuclear materials

    International Nuclear Information System (INIS)

    Wymer, R.G.

    1975-01-01

    An evaluation is made of the material flow to be expected up to the year 2000 to and from the various steps in the nuclear cycle. These include the reactors, reprocessing plants, enrichment plants, U mills, U conversion plants, and fuel fabrication plants. A somewhat more-detailed discussion is given of the safety engineering that goes into the design of containers and packages and the selection of the mode of transportation. The relationship of shipping to siting and transportation accidents is considered briefly

  6. US national material control and accounting system

    International Nuclear Information System (INIS)

    Smith, C.N.

    1984-01-01

    The State System of Accounting and Control (SSAC) for fuel cycle facilities in the licensed, commercial sector of the US nuclear community, and details of the material control and accounting measures dealing with the national safeguards program are discussed. The concept and role of the Fundamental Nuclear Material Control (FNMC) Plan is discussed. Also, the relationship between the national safeguards program and the international safeguards program of the US SSAC are described

  7. The law for the regulations of nuclear source materials, nuclear fuel materials and reactors

    International Nuclear Information System (INIS)

    1980-01-01

    The law intends under the principles of the atomic energy act to regulate the refining, processing and reprocessing businesses of nuclear raw and fuel metarials and the installation and operation of reactors for the peaceful and systematic utilization of such materials and reactors and for securing public safety by preventing disasters, as well as to control internationally regulated things for effecting the international agreements on the research, development and utilization of atomic energy. Basic terms are defined, such as atomic energy; nuclear fuel material; nuclear raw material; nuclear reactor; refining; processing; reprocessing; internationally regulated thing. Any person who is going to engage in refining businesses other than the Power Reactor and Nuclear Fuel Development Corporation shall get the special designation by the Prime Minister and the Minister of International Trade Industry. Any person who is going to engage in processing businesses shall get the particular admission of the Prime Minister. Any person who is going to establish reactors shall get the particular admission of the Prime Minister, The Minister of International Trade and Industry or the Minister of Transportation according to the kinds of specified reactors, respectively. Any person who is going to engage in reprocessing businesses other than the Power Reactor and Nuclear Fuel Development Corporation and the Japan Atomic Energy Research Institute shall get the special designation by the Prime Minister. The employment of nuclear fuel materials and internationally regulated things is defined in detail. (Okada, K.)

  8. Statistical methods for nuclear material management

    Energy Technology Data Exchange (ETDEWEB)

    Bowen W.M.; Bennett, C.A. (eds.)

    1988-12-01

    This book is intended as a reference manual of statistical methodology for nuclear material management practitioners. It describes statistical methods currently or potentially important in nuclear material management, explains the choice of methods for specific applications, and provides examples of practical applications to nuclear material management problems. Together with the accompanying training manual, which contains fully worked out problems keyed to each chapter, this book can also be used as a textbook for courses in statistical methods for nuclear material management. It should provide increased understanding and guidance to help improve the application of statistical methods to nuclear material management problems.

  9. Statistical methods for nuclear material management

    International Nuclear Information System (INIS)

    Bowen, W.M.; Bennett, C.A.

    1988-12-01

    This book is intended as a reference manual of statistical methodology for nuclear material management practitioners. It describes statistical methods currently or potentially important in nuclear material management, explains the choice of methods for specific applications, and provides examples of practical applications to nuclear material management problems. Together with the accompanying training manual, which contains fully worked out problems keyed to each chapter, this book can also be used as a textbook for courses in statistical methods for nuclear material management. It should provide increased understanding and guidance to help improve the application of statistical methods to nuclear material management problems

  10. Problems on shipping high-enriched nuclear materials

    International Nuclear Information System (INIS)

    Ganzha, V.V.; Demko, N.A.; Deryavko, I.I.; Zelenski, D.I.; Kolbaenkov, A.N.; Pivovarov, O.S.; Storozhenko, A.N.; Chernyad'ev, V.V.; Yakovlev, V.V.; Gorin, N.V.; Prokhod'ko, A.I.; Sherbina, A.N.; Barsanov, V.I.; Dyakov, E.K.; Tishenko, M.F.; Khlystov, A.I.; Vasil'ev, A.P.; Smetannikov, V.P.

    1998-01-01

    In 1996-1998 all Russian nuclear materials were taken out of the Institute of Atomic Energy of Kazakhstan National Nuclear Centre (IAE NNC RK). In this report there are basic tasks related to the performance of this work. They are: 1) Preparation of Russian nuclear materials (NM) kept at IAE NNC RK for transportation; 2) accounting and control of Russian nuclear materials kept at IAE NNC RK; 3) arrangement of permit papers for NM transportation; 4) NM transportation from IAE NNC RK to the enterprises of Russian MINATOM; 5) provision of nuclear and radiation safety in the course of operations with NM; 6) provision of physical protection for Russian NM

  11. IAEA Support for Building-Up a Highly Skilled Workforce Necessary for an Effective State System of Accounting for and Control of Nuclear Material

    International Nuclear Information System (INIS)

    Braunegger-Guelich, A.; Cisar, V.; Crete, J.-M.; Stevens, R.

    2015-01-01

    The need for highly qualified and well trained experts in the area of nuclear safeguards and non-proliferation has been emphasized at several International Atomic Energy Agency (IAEA) General Conferences and Board of Governors' meetings. To meet this need, the IAEA has developed a training programme dedicated to assisting Member States in building-up knowledge, skills and attitudes required for the sustainable establishment and maintenance of an effective State system of accounting for and control of nuclear material. The IAEA training programme in the area of nuclear safeguards and non-proliferation is designed for experts in governmental organizations, regulatory bodies, utilities and relevant industries and is provided on a regular basis at the regional and international level and, upon request, at the national level. It is based on training needs assessed, inter alia, during relevant IAEA advisory services and is updated periodically by applying the Systematic Approach to Training (SAT). In the framework of this human resources assistance programme, the IAEA also facilitates fellowship programmes for young professionals, regularly hosts the IAEA safeguards traineeship programme and supports safeguards related outreach activities organized by donor countries, universities or other institutions. This paper provides an overview of the IAEA's efforts in the area of nuclear safeguards and non-proliferation training and education, including assistance to Member States' initiatives and nuclear education networks, focusing on the development and delivery of nuclear safeguards training and academic courses. Further, it discusses the important role of IAEA advisory missions and other mechanisms that significantly contribute to the continuous improvement of the IAEA Member States training in the area of nuclear safeguards and non-proliferation. Finally, it outlines the forthcoming eLearning module on Safeguards that will complement the existing training

  12. Control of nuclear material hold-up: The key factors for design and operation of MOX fuel fabrication plants in Europe

    International Nuclear Information System (INIS)

    Beaman, M.; Beckers, J.; Boella, M.

    2001-01-01

    Full text: Some protagonists of the nuclear industry suggest that MOX fuel fabrication plants are awash with nuclear materials which cannot be adequately safeguarded and that materials 'stuck in the plant' could conceal clandestine diversion of plutonium. In Europe the real situation is quite different: nuclear operators have gone to considerable efforts to deploy effective systems for safety, security, quality and nuclear materials control and accountancy which provide detailed information. The safeguards authorities use this information as part of the safeguards measures enabling them to give safeguards assurances for MOX fuel fabrication plants. This paper focuses on the issue of hold-up: definition of the hold-up and of the so-called 'hidden inventory'; measures implemented by the plant operators, from design to day to day operations, for minimising hold-up and 'hidden inventory'; plant operators' actions to manage the hold-up during production activities but also at PIT/PIV time; monitoring and management of the 'hidden inventory'; measures implemented by the safeguards authorities and inspectorate for verification and control of both hold-up and 'hidden inventory'. The examples of the different plant specific experiences related in this paper reveal the extensive experience gained in european MOX fuel fabrication plants by the plant operators and the safeguards authorities for the minimising and the control of both hold-up and 'hidden inventory'. MOX fuel has been fabricated in Europe, with an actual combined capacity of 2501. HM/year subject, without any discrimination, to EURATOM Safeguards, for more than 30 years and the total output is, to date, some 1000 t.HM. (author)

  13. Induced-Fission Imaging of Nuclear Material

    International Nuclear Information System (INIS)

    Hausladen, Paul; Blackston, Matthew A.; Mullens, James Allen; McConchie, Seth M.; Mihalczo, John T.; Bingham, Philip R.; Ericson, Milton Nance; Fabris, Lorenzo

    2010-01-01

    This paper presents initial results from development of the induced-fission imaging technique, which can be used for the purpose of measuring or verifying the distribution of fissionable material in an unopened container. The technique is based on stimulating fissions in nuclear material with 14 MeV neutrons from an associated-particle deuterium-tritium (D-T) generator and counting the subsequent induced fast fission neutrons with an array of fast organic scintillation detectors. For each source neutron incident on the container, the neutron creation time and initial trajectory are known from detection of the associated alpha particle of the d + t → α + n reaction. Many induced fissions will lie along (or near) the interrogating neutron path, allowing an image of the spatial distribution of prompt induced fissions, and thereby fissionable material, to be constructed. A variety of induced-fission imaging measurements have been performed at Oak Ridge National Laboratory with a portable, low-dose D-T generator, including single-view radiographic measurements and three-dimensional tomographic measurements. Results from these measurements will be presented along with the neutron transmission images that have been performed simultaneously. This new capability may have applications to a number of areas in which there may be a need to confirm the presence or configuration of nuclear materials, such as nuclear material control and accountability, quality assurance, treaty confirmation, or homeland security applications.

  14. Introduction to Special Edition (of the Journal of Nuclear Materials Management) on Reducing the Threat from Radioactive Materials

    International Nuclear Information System (INIS)

    Mladineo, Stephen V.

    2007-01-01

    Introductory article for special edition of the JOURNAL OF NUCLEAR MATERIALS MANAGEMENT outlining the Institute of Nuclear Materials Management Nonproliferation and Arms Control Technical Division. In particular the International Nuclear and Radiological Security Standing Committee and its initial focus covering four topical areas--Radiological Threat Reduction, Nuclear Smuggling and Illicit Trafficking, Countering Nuclear Terrorism, and Radiological Terrorism Consequence Management

  15. The establishment of computer system for nuclear material accounting

    International Nuclear Information System (INIS)

    Hong, Jong Sook; Lee, Byung Doo; Park, Ho Joon

    1988-01-01

    Computer based nuclear material accountancy system will not only increase the credibility of KOREA-IAEA safeguards agreement and bilateral agreements but also decrease the man-power needed to carry out the inspection activity at state level and at facility level. Computer software for nuclear material accounting for and control has been materialized the application to both item and bulk facilities and software for database at state level has been also established to maintain up -to-date status of nation-wide nuclear material inventory. Computer recordings and reporting have been realized to fulfill the national and international commitments to nuclear material accounting for and control. The exchange of information related to nuclear material accounting for has become possible by PC diskettes. (Author)

  16. Bar code usage in nuclear materials accountability

    International Nuclear Information System (INIS)

    Mee, W.T.

    1983-01-01

    The Oak Ridge Y-12 Plant began investigating the use of automated data collection devices in 1979. At this time, bar code and optical-character-recognition (OCR) systems were reviewed with the purpose of directly entering data into DYMCAS (Dynamic Special Nuclear Materials Control and Accountability System). Both of these systems appeared applicable, however, other automated devices already employed for production control made implementing the bar code and OCR seem improbable. However, the DYMCAS was placed on line for nuclear material accountability, a decision was made to consider the bar code for physical inventory listings. For the past several months a development program has been underway to use a bar code device to collect and input data to the DYMCAS on the uranium recovery operations. Programs have been completed and tested, and are being employed to ensure that data will be compatible and useful. Bar code implementation and expansion of its use for all nuclear material inventory activity in Y-12 is presented

  17. The regulations concerning the uses of nuclear source materials

    International Nuclear Information System (INIS)

    1981-01-01

    This rule is established under the provisions of the law concerning the regulation of nuclear raw materials, nuclear fuel materials and nuclear reactors and the ordinance for the execution of this law, and to enforce them. Basic terms are defined, such as exposure radiation dose, cumulative dose, control area, surrounding monitoring area, worker and radioactive waste. Nuclear raw materials shall be used at the facilities for using them, and control areas and surrounding monitoring areas shall be set up. Cumulative dose and exposure radiation dose of workers shall not exceed the permissible quantities defined by the General Director of the Science and Technology Agency. Records shall be made in each works or enterprise on the accept, delivery and stock of each kind of nuclear raw materials, radiation control and the accidents in the facilities of using nuclear raw materials, and kept for specified periods, respectively. The users of nuclear raw materials shall present reports in each works or enterprise on the stock of these materials on July 30 and December 31, every year. They shall submit reports immediately to the Director General on the particular accidents concerning nuclear raw materials and their facilities and on the circumstances and the measures taken against such accidents within ten days. These reports shall be presented on internationally regulated raw materials too. (Okada, K.)

  18. Sources of ionizing radiation, radioactive or nuclear materials out of control. National system of response in Slovakia

    International Nuclear Information System (INIS)

    Auxtova, L.; Adamek, P.; Moravecb, R.; Melich, M.

    2003-01-01

    In this paper authors deals with the Customs inspection of radioactive materials - present situation as well as with situation after accession of the Slovak Republic process to European Union (EU). he actual response system to incidents with orphan sources or radioactive material occurring in metal scrap, illicit trafficking and disused sources out of control is laid down on the following scheme. The national strategy is aimed to establish a more effective responding system preventing further illegal trafficking with regard to the acceding process which will require for new member states joining EU proper arrangements in improving the safety of radiation sources over the life-cycle to ensure the effective functioning in the conditions of the Slovak Republic's membership in the European Union

  19. Nuclear power plant cable materials :

    Energy Technology Data Exchange (ETDEWEB)

    Celina, Mathias C.; Gillen, Kenneth T; Lindgren, Eric Richard

    2013-05-01

    A selective literature review was conducted to assess whether currently available accelerated aging and original qualification data could be used to establish operational margins for the continued use of cable insulation and jacketing materials in nuclear power plant environments. The materials are subject to chemical and physical degradation under extended radiationthermal- oxidative conditions. Of particular interest were the circumstances under which existing aging data could be used to predict whether aged materials should pass loss of coolant accident (LOCA) performance requirements. Original LOCA qualification testing usually involved accelerated aging simulations of the 40-year expected ambient aging conditions followed by a LOCA simulation. The accelerated aging simulations were conducted under rapid accelerated aging conditions that did not account for many of the known limitations in accelerated polymer aging and therefore did not correctly simulate actual aging conditions. These highly accelerated aging conditions resulted in insulation materials with mostly inert aging processes as well as jacket materials where oxidative damage dropped quickly away from the air-exposed outside jacket surface. Therefore, for most LOCA performance predictions, testing appears to have relied upon heterogeneous aging behavior with oxidation often limited to the exterior of the cable cross-section a situation which is not comparable with the nearly homogenous oxidative aging that will occur over decades under low dose rate and low temperature plant conditions. The historical aging conditions are therefore insufficient to determine with reasonable confidence the remaining operational margins for these materials. This does not necessarily imply that the existing 40-year-old materials would fail if LOCA conditions occurred, but rather that unambiguous statements about the current aging state and anticipated LOCA performance cannot be provided based on

  20. Report on the legislation in the field of nuclear safety and regulatory control of radiation sources and radioactive materials in Yugoslavia

    International Nuclear Information System (INIS)

    Kolundzija, V.

    2001-01-01

    The national regulatory infrastructure in Yugoslavia is described in the report, including the legal framework governing the safety of radiation sources and the security of radioactive materials. The organization and competencies of the Yugoslav Nuclear Safety Administration are explained, in particular regarding the national system of notification, registration, licensing, inspection and enforcement of radiation sources and radioactive materials, where the Federal Ministry of Economy and the Federal Ministry of Labour, Health and Social Policy are sharing competencies. Finally, the report refers to the national provisions on the management of disused sources; on planning, preparedness and response to abnormal events and emergencies; on the recovery of control over orphan sources; and on the education and training in the safety of radiation sources and the security of radioactive materials. (author)

  1. Regulations concerning the fabricating business of nuclear fuel materials

    International Nuclear Information System (INIS)

    1978-01-01

    The Regulation is revised on the basis of ''The law for the regulations of nuclear source materials, nuclear fuel materials and reactors'' and the ''Provisions concerning the enterprises processing nuclear fuel materials'' in the Enforcement Ordinance for the Law, to enforce such provisions. This is the complete revision of the regulation of the same name in 1957. Terms are explained, such as exposure radiation dose, cumulative dose, control area, surrounding inspection area, persons engaged in works, radioactive wastes, area for incoming and outgoing of materials, fluctuation of stocks, batch, real stocks, effective value and main measuring points. For the applications for the permission of the enterprises processing nuclear fuel materials, the location of an enterprise, the construction of buildings and the construction of and the equipments for facilities of chemical processing, forming, coating, assembling, storage of nuclear fuel materials, disposal of radioactive wastes and radiation control must be written. Records shall be made and maintained for the periods specified on the inspection of processing facilities, nuclear fuel materials, radiation control, operation, maintainance, accidents of processing facilities and weather. Limit to entrance into the control area, measures for exposure radiation dose, patrol and inspection, operation of processing facilities, transport of materials, disposal of radioactive wastes, safety regulations are provided for. Reports to be filed by the persons engaging in the enterprises processing nuclear fuel materials are prescribed. (Okada, K.)

  2. Nuclear material measurement system in Brazil

    International Nuclear Information System (INIS)

    Almeida, S.G. de.

    1988-01-01

    The description of the activities developed at the Safeguards Laboratory of Brazilian Nuclear Energy Commission is done. The methods and techniques used for measuring and evaluating nuclear materials and facilities are presented. (E.G.) [pt

  3. Nuclear material management: challenges and prospects

    International Nuclear Information System (INIS)

    Rieu, J.; Besnainou, J.; Leboucher, I.; Chiguer, M.; Capus, G.; Greneche, D.; Durret, L.F.; Carbonnier, J.L.; Delpech, M.; Loaec, Ch.; Devezeaux de Lavergne, J.G.; Granger, S.; Devid, S.; Bidaud, A.; Jalouneix, J.; Toubon, H.; Pochon, E.; Bariteau, J.P.; Bernard, P.; Krellmann, J.; Sicard, B.

    2008-01-01

    The articles in this dossier were derived from the papers of the yearly S.F.E.N. convention, which took place in Paris, 12-13 March 2008. They deal with the new challenges and prospects in the field of nuclear material management, throughout the nuclear whole fuel cycle, namely: the institutional frame of nuclear materials management, the recycling, the uranium market, the enrichment market, the different scenarios for the management of civil nuclear materials, the technical possibilities of spent fuels utilization, the option of thorium, the convention on the physical protection of nuclear materials and installations, the characterisation of nuclear materials by nondestructive nuclear measurements, the proliferation from civil installations, the use of plutonium ( from military origin) and the international agreements. (N.C.)

  4. Co-operation agreement. The text of the agreement of 25 May 1998 between the International Atomic Energy Agency and the Brazilian-Argentine Agency for accounting and control of nuclear materials

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-25

    The document reproduces the text of the Co-operation Agreement between the International Atomic Energy Agency and the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials which entered into force on 25 May 1998

  5. Co-operation agreement. The text of the agreement of 25 May 1998 between the International Atomic Energy Agency and the Brazilian-Argentine Agency for accounting and control of nuclear materials

    International Nuclear Information System (INIS)

    1998-01-01

    The document reproduces the text of the Co-operation Agreement between the International Atomic Energy Agency and the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials which entered into force on 25 May 1998

  6. Nuclear reactor control column

    International Nuclear Information System (INIS)

    Bachovchin, D.M.

    1982-01-01

    The nuclear reactor control column comprises a column disposed within the nuclear reactor core having a variable cross-section hollow channel and containing balls whose vertical location is determined by the flow of the reactor coolant through the column. The control column is divided into three basic sections wherein each of the sections has a different cross-sectional area. The uppermost section of the control column has the greatest crosssectional area, the intermediate section of the control column has the smallest cross-sectional area, and the lowermost section of the control column has the intermediate cross-sectional area. In this manner, the area of the uppermost section can be established such that when the reactor coolant is flowing under normal conditions therethrough, the absorber balls will be lifted and suspended in a fluidized bed manner in the upper section. However, when the reactor coolant flow falls below a predetermined value, the absorber balls will fall through the intermediate section and into the lowermost section, thereby reducing the reactivity of the reactor core and shutting down the reactor

  7. Material control test and evaluation system at the ICPP

    International Nuclear Information System (INIS)

    Johnson, C.E.

    1979-01-01

    The US DOE is evaluating process monitoring as part of a total nuclear material safeguards system. A monitoring system is being installed at the Idaho Chemical Processing Plant to test and evaluate material control and surveillance concepts in an operating nuclear fuel reprocessing plant. Process monitoring for nuclear material control complements conventional safeguards accountability and physical protection to assure adherence to approved safeguards procedures and verify containment of nuclear materials within the processing plant

  8. Techniques and methods in nuclear materials traceability

    International Nuclear Information System (INIS)

    Persiani, P.J.

    1996-01-01

    The nonproliferation community is currently addressing concerns that the access to special nuclear materials may increase the illicit trafficking in weapons-usable materials from civil and/or weapons material stores and/or fuel cycles systems. Illicit nuclear traffic usually involves reduced quantities of nuclear materials perhaps as samplings of a potential protracted diversionary flow from sources to users. To counter illicit nuclear transactions requires the development of techniques and methods in nuclear material traceability as an important phase of a broad forensic analysis capability. This report discusses how isotopic signatures and correlation methods were applied to determine the origins of Highly Enriched Uranium (HEU) and Plutonium samples reported as illicit trafficking in nuclear materials

  9. Quality control in nuclear medicine

    International Nuclear Information System (INIS)

    Leme, P.R.

    1983-01-01

    The following topics are discussed: objectives of the quality control in nuclear medicine; the necessity of the quality control in nuclear medicine; guidelines and recommendations. An appendix is given concerning the guidelines for the quality control and instrumentation in nuclear medicine. (M.A.) [pt

  10. Fugitive binder for nuclear fuel materials

    International Nuclear Information System (INIS)

    Gallivan, T.J.

    1977-01-01

    A process for fabricating a body of a nuclear fuel material has the steps of admixing the nuclear fuel material in powder form wih a binder of a compound or its hydration products containing ammonium cations and anions selected from the group consisting of carbonate anions, bicarbonate anions, carbamate anions and mixtures of such anions, forming the resulting mixture into a green body such as by die pressing, heating the green body to decompose substantially all of the binder into gases, further heating the body to produce a sintered body, and cooling the sintered body in a controlled atmosphere. Preferred binders used in the practice of this invention include ammonium bicarbonate, ammonium carbonate, ammonium bicarbonate carbamate, ammonium sesquicarbonate, ammonium carbamate and mixtures thereof. This invention includes a composition of matter in the form of a compacted structure suitable for sintering comprising a mixture of a nuclear fuel material and a binder of a compound or its hydration products containing ammonium cations and anions selected from the group consisting of carbonate anions, bicarbonate anions, carbamate anions and mixtures of such anions. 9 claims, 4 figures

  11. Report of the Material Control and Material Accounting Task Force

    International Nuclear Information System (INIS)

    1978-03-01

    In September 1977 a Task Force was formed to complete a study of the role of material control and material accounting in NRC's safeguards program. The Task Force's assignment was to: define the roles and objectives of material control and material accounting in the NRC safeguards program; recommend goals for the material control and material accounting systems based on their roles and objectives; assess the extent to which the existing safeguards regulatory base meets or provides the capability to meet the recommended goals; and provide direction for material control and material accounting development, including both near-term and long-term upgrades. The study was limited to domestic nuclear facilities possessing significant amounts of plutonium, uranium-233 or highly enriched uranium in unsealed form. The Task Force findings are reported

  12. Risk Prevention for Nuclear Materials and Radioactive Sources

    International Nuclear Information System (INIS)

    Badawy, I.

    2008-01-01

    The present paper investigates the parameters which may have effects on the safety of nuclear materials and other radioactive sources used in peaceful applications of atomic energy. The emergency response planning in such situations are also indicated. In synergy with nuclear safety measures, an approach is developed in this study for risk prevention. It takes into consideration the collective implementation of measures of nuclear material accounting and control, physical protection and monitoring of such strategic and dangerous materials in an integrated and coordinated real-time mode at a nuclear or radiation facility and in any time

  13. Safeguards for nuclear material transparency monitoring

    International Nuclear Information System (INIS)

    MacArthur, D.A.; Wolford, J.K.

    1999-01-01

    The US and the Russian Federation are currently engaged in negotiating or implementing several nuclear arms and nuclear material control agreements. These involve placing nuclear material in specially designed containers within controlled facilities. Some of the agreements require the removal of nuclear components from stockpile weapons. These components are placed in steel containers that are then sealed and tagged. Current strategies for monitoring the agreements involve taking neutron and gamma radiation measurements of components in their containers to monitor the presence, mass, and composition of plutonium or highly enriched uranium, as well as other attributes that indicate the use of the material in a weapon. If accurate enough to be useful, these measurements will yield data containing information about the design of the weapon being monitored. In each case, the design data are considered sensitive by one or both parties to the agreement. To prevent the disclosure of this information in a bilateral or trilateral inspection scenario, so-called information barriers have evolved. These barriers combine hardware, software, and procedural safeguards to contain the sensitive data within a protected volume, presenting to the inspector only the processed results needed for verification. Interlocks and volatile memory guard against disclosure in case of failure. Implementing these safeguards requires innovation in radiation measurement instruments and data security. Demonstrating their reliability requires independent testing to uncover any flaws in design. This study discusses the general problem and gives a proposed solution for a high resolution gamma ray detection system. It uses historical examples to illustrate the evolution of other successful systems

  14. The law for the regulations of nuclear source materials, nuclear fuel materials and reactors

    International Nuclear Information System (INIS)

    1987-01-01

    General provisions specify the purpose of the Law and definitions of terms used in it. Provisions relating to control of business management for refining cover designation of business operation, requirements for designation, permission and report of alteration, report of commencement of business operation, revocation of designation, recording, and measures for wastes. Provisions relating to control of business management for processing cover permission of operation, requirements for permission, approval of design and construction plan, inspection of facilities, report of commencement of business management, measures for maintenance, suspension of use of facilities, responsible personnel for handling nuclear fuel, and permit, obligations, etc. of responsible personnel for handing nuclear fuel. Provisions relating to control of construction and operation of nuclear reactor cover permission of construction, permission concerning nuclear reactor mounted on foreign nuclear powered ships, requirements for permission, etc. Other articles stipulate provisions relating to control of business management for reprocessing, use of nuclear fuel substances, use of materials and substances covered by international regulations, designation of inspection organizations, and other rules. (Nogami, K.)

  15. Advanced research workshop: nuclear materials safety

    International Nuclear Information System (INIS)

    Jardine, L J; Moshkov, M M.

    1999-01-01

    The Advanced Research Workshop (ARW) on Nuclear Materials Safety held June 8-10, 1998, in St. Petersburg, Russia, was attended by 27 Russian experts from 14 different Russian organizations, seven European experts from six different organizations, and 14 U.S. experts from seven different organizations. The ARW was conducted at the State Education Center (SEC), a former Minatom nuclear training center in St. Petersburg. Thirty-three technical presentations were made using simultaneous translations. These presentations are reprinted in this volume as a formal ARW Proceedings in the NATO Science Series. The representative technical papers contained here cover nuclear material safety topics on the storage and disposition of excess plutonium and high enriched uranium (HEU) fissile materials, including vitrification, mixed oxide (MOX) fuel fabrication, plutonium ceramics, reprocessing, geologic disposal, transportation, and Russian regulatory processes. This ARW completed discussions by experts of the nuclear materials safety topics that were not covered in the previous, companion ARW on Nuclear Materials Safety held in Amarillo, Texas, in March 1997. These two workshops, when viewed together as a set, have addressed most nuclear material aspects of the storage and disposition operations required for excess HEU and plutonium. As a result, specific experts in nuclear materials safety have been identified, know each other from their participation in t he two ARW interactions, and have developed a partial consensus and dialogue on the most urgent nuclear materials safety topics to be addressed in a formal bilateral program on t he subject. A strong basis now exists for maintaining and developing a continuing dialogue between Russian, European, and U.S. experts in nuclear materials safety that will improve the safety of future nuclear materials operations in all the countries involved because of t he positive synergistic effects of focusing these diverse backgrounds of

  16. Physical protection system to detect and control the illicit trafficking and transfer of nuclear materials in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Young Ho [Catholic Univ. of Daegu, Gyeongbuk (Korea, Republic of); Moon, Joo Hyun [Dongguk Univ., Gyeongbuk (Korea, Republic of)

    2011-11-15

    Physical protection has played an essential role in ensuring the implementation of global nuclear nonproliferation framework for the past decades. Since the 9/11 terrorist attacks upon the United States, physical protection has also played the same role in combating nuclear terrorism. Nowadays, physical protection is more highlighted than before with global nuclear security regimes more strengthened. Ever since the commencement of the first nuclear power plant in 1978, Korea has devotedly implemented international physical protection standards as an exemplary country in respect of the peaceful use of nuclear energy. The Korean government has recently reinforced national physical protection policy including the revision of laws and regulations. In this paper, the national policy is extensively reviewed and additional measures are proposed to enhance the national physical protection system. (orig.)

  17. The role of the state system of accounting for and control of nuclear material and its relationship with the international safeguards agreements for the set-up of peaceful nuclear programs and activities

    International Nuclear Information System (INIS)

    Mhadhbi, H.

    2010-01-01

    Nuclear energy plays an important role in the development of the economy and is considered as a key element with regard to the growth of the world energy demand due to the limitation of other natural energy resources, its contribution to the protection of the environment and the reduction of CO 2 emission. Several countries, including some Arab countries, are planning to consider the nuclear option in the near future. To provide an assurance to the international community of the peaceful uses of nuclear energy, the International Atomic Energy Agency established legal tools, called Safeguards Agreements, to be accepted by every state willing to run nuclear programmes for peaceful purposes. The most important basis required by these agreements is the State System of Accounting for and Control of Nuclear Material, which plays a primary role for effective and efficient fulfilment of the state commitment with regard to the international safeguards agreements. The requirements for the set-up of a State System of Accounting for and Control , its role, its objectives and its fundamental elements are deeply presented. (author)

  18. Creating a Comprehensive, Efficient, and Sustainable Nuclear Regulatory Structure: A Process Report from the U.S. Department of Energy's Material Protection, Control and Accounting Program

    International Nuclear Information System (INIS)

    Wright, Troy L.; O'Brien, Patricia E.; Hazel, Michael J.; Tuttle, John D.; Cunningham, Mitchel E.; Schlegel, Steven C.

    2010-01-01

    With the congressionally mandated January 1, 2013 deadline for the U.S. Department of Energy's (DOE) Nuclear Material Protection, Control and Accounting (MPC and A) program to complete its transition of MPC and A responsibility to the Russian Federation, National Nuclear Security Administration (NNSA) management directed its MPC and A program managers and team leaders to demonstrate that work in ongoing programs would lead to successful and timely achievement of these milestones. In the spirit of planning for successful project completion, the NNSA review of the Russian regulatory development process confirmed the critical importance of an effective regulatory system to a sustainable nuclear protection regime and called for an analysis of the existing Russian regulatory structure and the identification of a plan to ensure a complete MPC and A regulatory foundation. This paper describes the systematic process used by DOE's MPC and A Regulatory Development Project (RDP) to develop an effective and sustainable MPC and A regulatory structure in the Russian Federation. This nuclear regulatory system will address all non-military Category I and II nuclear materials at State Corporation for Atomic Energy 'Rosatom,' the Federal Service for Ecological, Technological, and Nuclear Oversight (Rostechnadzor), the Federal Agency for Marine and River Transport (FAMRT, within the Ministry of Transportation), and the Ministry of Industry and Trade (Minpromtorg). The approach to ensuring a complete and comprehensive nuclear regulatory structure includes five sequential steps. The approach was adopted from DOE's project management guidelines and was adapted to the regulatory development task by the RDP. The five steps in the Regulatory Development Process are: (1) Define MPC and A Structural Elements; (2) Analyze the existing regulatory documents using the identified Structural Elements; (3) Validate the analysis with Russian colleagues and define the list of documents to be

  19. Chemical characterization of nuclear fuel materials

    International Nuclear Information System (INIS)

    Ramakumar, K.L.

    2011-01-01

    India is fabricating nuclear fuels for various types of reactors, for example, (U-Pu) MOX fuel of varying Pu content for boiling water reactors (BWRs), pressurized heavy water reactors (PHWRs), prototype fast breeder reactors (PFBRs), (U-Pu) carbide fuel fast breeder test reactor (FBTR), and U-based fuels for research reactors. Nuclear fuel being the heart of the reactor, its chemical and physical characterisation is an important component of this design. Both the fuel materials and finished fuel products are to be characterised for this purpose. Quality control (both chemical and physical) provides a means to ensure that the quality of the fabricated fuel conforms to the specifications for the fuel laid down by the fuel designer. Chemical specifications are worked out for the major and minor constituents which affect the fuel properties and hence its performance under conditions prevailing in an operating reactor. Each fuel batch has to be subjected to comprehensive chemical quality control for trace constituents, stoichiometry and isotopic composition. A number of advanced process and quality control steps are required to ensure the quality of the fuels. Further more, in the case of Pu-based fuels, it is necessary to extract maximum quality data by employing different evaluation techniques which would result in minimum scrap/waste generation of valuable plutonium. The task of quality control during fabrication of nuclear fuels of various types is both challenging and difficult. The underlying philosophy is total quality control of the fuel by proper mix of process and quality control steps at various stages of fuel manufacture starting from the feed materials. It is also desirable to adapt more than one analytical technique to increase the confidence and reliability of the quality data generated. This is all the most required when certified reference materials are not available. In addition, the adaptation of non-destructive techniques in the chemical quality

  20. The law for the regulations of nuclear source materials, nuclear fuel materials and reactors

    International Nuclear Information System (INIS)

    1978-01-01

    This law has following two purposes. At first, it exercises necessary controls concerning nuclear source material, nuclear fuel material and reactors in order to: (a) limit their uses to those for the peaceful purpose; (b) ensure planned uses of them; and (c) ensure the public safety by preventing accidents from their uses. Necessary controls are to be made concerning the refining, fabricating and reprocessing businesses, as well as the construction and operation of reactors. The second purpose of the law is to exercise necessary controls concerning internationally controlled material in order to execute the treaties and other international agreements on the research, development and use of atomic energy (the first chapter). In the second and following chapters the law prescribes controls for the persons who wish to carry on the refining and fabricating businesses, to construct and operate reactors, and to conduct the reprocessing business, as well as for those who use the internationally controlled material, respectively in separate chapters by the category of those businesses. For example, the controls to the person who wishes to construct and operate reactors are: (a) the permission of the business after the examination; (b) the examination and approval of the design and methods of construction prior to the construction; (c) the inspection of the facilities prior to their use; (d) periodic inspections of the facilities; (e) the establishment of requirements for safety measures and punishments to their violations. (Matsushima, A.)

  1. Nuclear reactor control assembly

    International Nuclear Information System (INIS)

    Negron, S.B.

    1991-01-01

    This patent describes an assembly for providing global power control in a nuclear reactor having the core split into two halves. It comprises a disk assembly formed from at least two disks each machined with an identical surface hole pattern such that rotation of one disk relative to the other causes the hole pattern to open or close, the disk assembly being positioned substantially at the longitudinal center of and coaxial with the core halves; and means for rotating at least one of the disks relative to the other

  2. Controlling nuclear retrofit costs

    International Nuclear Information System (INIS)

    Gruber, C.O.

    1985-01-01

    Increased safety regulations that required modifications to nuclear power plants have had an impact on the capital and expense budgets of utilities. The author addresses the budgeting and control of project-related expenditures, and notes the importance of total cost management throughout the project's life cycle. That total includes the systems, procedures, personnel, expertise, and organization involved in the process. A rational and structured evaluation process at the beginning, realistic targets, and an organizational framework are key components. 2 references, 3 figures, 1 table

  3. Uncertainty estimation in nuclear material weighing

    Energy Technology Data Exchange (ETDEWEB)

    Thaure, Bernard [Institut de Radioprotection et de Surete Nucleaire, Fontenay aux Roses, (France)

    2011-12-15

    The assessment of nuclear material quantities located in nuclear plants requires knowledge of additions and subtractions of amounts of different types of materials. Most generally, the quantity of nuclear material held is deduced from 3 parameters: a mass (or a volume of product); a concentration of nuclear material in the product considered; and an isotopic composition. Global uncertainties associated with nuclear material quantities depend upon the confidence level of results obtained in the measurement of every different parameter. Uncertainties are generally estimated by considering five influencing parameters (ISHIKAWA's rule): the material itself; the measurement system; the applied method; the environmental conditions; and the operator. A good practice guide, to be used to deal with weighing errors and problems encountered, is presented in the paper.

  4. Attributes identification of nuclear material by non-destructive radiation measurement methods

    International Nuclear Information System (INIS)

    Gan Lin

    2002-01-01

    Full text: The nuclear materials should be controlled under the regulation of National Safeguard System. The non-destructive analysis method, which is simple and quick, provide a effective process in determining the nuclear materials, nuclear scraps and wastes. The method play a very important role in the fields of nuclear material control and physical protection against the illegal removal and smuggling of nuclear material. The application of non-destructive analysis in attributes identification of nuclear material is briefly described in this paper. The attributes determined by radioactive detection technique are useful tolls to identify the characterization of special nuclear material (isotopic composition, enrichment etc.). (author)

  5. Legal aspects of the control and repression of illicit trafficking of nuclear and other radioactive materials. Is there a need for an international convention?

    International Nuclear Information System (INIS)

    Spence, Scott

    2012-01-01

    It is generally recognised that illicit trafficking of nuclear and other radioactive materials is a serious problem, and one that must be tackled with a comprehensive response involving national governments as well as a number of intergovernmental organisations including the International Atomic Energy Agency (IAEA). The IAEA notes that 1 773 incidents were reported to its Illicit Trafficking Database, or ITDB, between January 1993 and December 2009, and that 351 of these involved '... unauthorized possession and related criminal activities' such as '... illegal possession, movement or attempts to illegally trade in or use nuclear material or radioactive sources'. The IAEA adds that 222 more incidents were confirmed between July 2009 and June 2010 and concludes that: - the availability of unsecured nuclear and other radioactive material persists; - effective border control measures help to detect illicit trafficking, although effective control is not uniformly implemented at all international border points; and - individuals and groups are prepared to engage in trafficking this material. A disturbing trend is trafficking in particularly sensitive regions of the world, such as in countries that were formerly a part of the former Soviet Union. In November 2010, Georgian officials seized four individuals allegedly trying to sell cesium-137, which though fairly common can be used to make a radiological dispersion device (RDD) or 'dirty bomb'. This closely followed a court case in Georgia involving Armenian nationals who had attempted to sell weapon-grade plutonium. More recently, in June 2011, Moldovan police arrested six individuals suspected of trafficking in uranium-235. In view of the problem, this paper considers whether an international convention specifically targeting illicit trafficking is needed or not. The paper does not go conceptually beyond the legal aspects of controlling and repressing illicit trafficking; rather, it will look at whether the existing

  6. Welcome from INMM (Institute of Nuclear Materials Management)

    International Nuclear Information System (INIS)

    Satkowiak, L.

    2015-01-01

    The Institute of Nuclear Materials Management (INMM) is the premier professional society focused on safe and secure use of Nuclear Materials and the related nuclear scientific technology and knowledge. Its international membership includes government, academia, non-governmental organizations and industry, spanning the full spectrum all the way from policy to technology. The Institute's primary role include the promotion of research, the establishment of standards and the development of best practices, all centered around nuclear materials. It then disseminates this information through meetings, professional contacts, reports, papers, discussions, and publications. The formal structure of the INMM includes six technical divisions: Facility Operation; Materials Control and Accountability; Nonproliferation and Arms Control; Nuclear Security and Physical Protection; Packaging, Transportation and Disposition

  7. Base isolation for nuclear power and nuclear material facilities

    International Nuclear Information System (INIS)

    Eidinger, J.M.; Kircher, C.A.; Vaidya, N.; Constantinou, M.; Kelly, J.M.; Seidensticker, R.; Tajirian, F.F.; Ovadia, D.

    1989-01-01

    This report serves to document the status of the practice for the use of base isolation systems in the design and construction of nuclear power and nuclear material facilities. The report first describes past and current (1989) applications of base isolation in nuclear facilities. The report then provides a brief discussion of non-nuclear applications. Finally, the report summarizes the status of known base-isolation codes and standards

  8. 78 FR 67225 - Amendments to Material Control and Accounting Regulations

    Science.gov (United States)

    2013-11-08

    ... Amendments to Material Control and Accounting Regulations AGENCY: Nuclear Regulatory Commission. ACTION... for material control and accounting (MC&A) of special nuclear material (SNM). The goal of this... for control and accounting of SNM that is held by a licensee. The MC&A regulations ensure that the...

  9. Outline of a computerized nuclear material accounting system applicable to nuclear power reactors

    International Nuclear Information System (INIS)

    Handshuh, J.W.

    1975-01-01

    A computerized nuclear material accounting system is described which enables a utility to account for its material throughout the entire fuel cycle. From input of transactions, the system records and reports inventories and transactions by accounts which the user may establish for discrete locations, item control areas, further subdivisions, and material types. Account numbers are designed so that accounts and records are automatically sorted in the order desired. The system also generates the Material Status Reports for the Nuclear Regulatory Commission

  10. Metabonomics for detection of nuclear materials processing.

    Energy Technology Data Exchange (ETDEWEB)

    Alam, Todd Michael; Luxon, Bruce A. (University Texas Medical Branch); Neerathilingam, Muniasamy (University Texas Medical Branch); Ansari, S. (University Texas Medical Branch); Volk, David (University Texas Medical Branch); Sarkar, S. (University Texas Medical Branch); Alam, Mary Kathleen

    2010-08-01

    Tracking nuclear materials production and processing, particularly covert operations, is a key national security concern, given that nuclear materials processing can be a signature of nuclear weapons activities by US adversaries. Covert trafficking can also result in homeland security threats, most notably allowing terrorists to assemble devices such as dirty bombs. Existing methods depend on isotope analysis and do not necessarily detect chronic low-level exposure. In this project, indigenous organisms such as plants, small mammals, and bacteria are utilized as living sensors for the presence of chemicals used in nuclear materials processing. Such 'metabolic fingerprinting' (or 'metabonomics') employs nuclear magnetic resonance (NMR) spectroscopy to assess alterations in organismal metabolism provoked by the environmental presence of nuclear materials processing, for example the tributyl phosphate employed in the processing of spent reactor fuel rods to extract and purify uranium and plutonium for weaponization.

  11. Metabonomics for detection of nuclear materials processing

    International Nuclear Information System (INIS)

    Alam, Todd Michael; Luxon, Bruce A.; Neerathilingam, Muniasamy; Ansari, S.; Volk, David; Sarkar, S.; Alam, Mary Kathleen

    2010-01-01

    Tracking nuclear materials production and processing, particularly covert operations, is a key national security concern, given that nuclear materials processing can be a signature of nuclear weapons activities by US adversaries. Covert trafficking can also result in homeland security threats, most notably allowing terrorists to assemble devices such as dirty bombs. Existing methods depend on isotope analysis and do not necessarily detect chronic low-level exposure. In this project, indigenous organisms such as plants, small mammals, and bacteria are utilized as living sensors for the presence of chemicals used in nuclear materials processing. Such 'metabolic fingerprinting' (or 'metabonomics') employs nuclear magnetic resonance (NMR) spectroscopy to assess alterations in organismal metabolism provoked by the environmental presence of nuclear materials processing, for example the tributyl phosphate employed in the processing of spent reactor fuel rods to extract and purify uranium and plutonium for weaponization.

  12. Nuclear Materials Management. Proceedings of the Symposium on Nuclear Materials Management

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1966-02-15

    An increasing number of countries are using nuclear materials which, because of their high value and the potential hazards involved, require special methods of handling. To discuss these and to provide a forum at which different systems for achieving the necessary economy and safety could be compared, the International Atomic Energy Agency held a Symposium at Vienna on Nuclear Materials Management from 30 August to 3 September, 1965. It was attended by 115 participants from 19 Member States and two international organizations. Nuclear materials are already being used on an industrial scale and their high cost demands close and continuous control to ensure that they are delivered precisely on time and that they are used to the fullest possible extent before they are withdrawn from service. Routine industrial methods of material control and verification are widely used to ensure safe and economical operation and handling in nuclear power stations, in fuel-element fabrication and reprocessing plants, and in storage facilities. In addition special refinements are needed to take account of the value and the degree of purity required of nuclear materials. Quality as well as quantity has to be checked thoroughly and the utmost economy in processing is necessary. The radioactivity of the material poses special problems of handling and storage and creates a potential hazard to health. A further problem is that of criticality. These dangers and the means of averting them are well understood, as is evidenced by the outstandingly good safety record of the atomic energy industry. But besides accommodating all these special problems, day-to-day procedures must be simple enough to fit in with industrial conditions. Many of the 58 papers presented at the Symposium emphasized that records, checks, measurements and handling precautions, if suitably devised, provide the control vital to efficient operation, serve as checks against loss or waste of valuable materials and help meet the

  13. Concepts of IAEA nuclear materials accounting

    International Nuclear Information System (INIS)

    Oakberg, John A.

    2001-01-01

    The paper describes nuclear material accounting from the standpoint of IAEA Safeguards and how this accounting is applied by the Agency. The basic concepts of nuclear material accounting are defined and the way these apply to States with INFCIRC/153-type safeguards agreements is presented. (author)

  14. Optimization of the irradiation conditions of some control components and materials for the nuclear power plants and the radiation stability of certain types of plastic lubricants

    International Nuclear Information System (INIS)

    Pesek, M.; Rerichova, M.; Trebicky, V.; Chvojka, M.

    1989-01-01

    Fail-safe operation of various safeguard devices, operational and auxiliary equipments and control components, e.g. servomotors other engines and various appliances, is required for a safe operation of nuclear power plants. Non-metal materials, control components, motors and other appliances have to be tested and their properties evaluated after γ-irradiation with doses corresponding to the assumed long term radiation commitment and also to the irradiation caused by an eventual accident. The radiation stability of greases used in devices exposed to high doses of the ionizing radiation presents a rather serious and important problem. The results of some tests and the evaluation of the properties of irradiated plastic lubricants are described. (author)

  15. Definition of Nuclear Material in Aspects of Nuclear Nonproliferation and Security

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Ji Hye; Lee, Chan Suh [Korea Institute of Nuclear Nonproliferation and Control, Daejeon (Korea, Republic of)

    2014-10-15

    Nuclear safety accidents directly affect human health but nuclear security incidents indirectly influence human, which demonstrates the reason why security receives less attention. However, it is acknowledged that nuclear terrorism is indeed one of the most dreadful threat humanity faces. As part of strengthening nuclear security as well as nonproliferation to response to the threat, we need a better understanding of the nuclear material which needs to be safe under the objective of nuclear security. In reality, practitioners implement safeguards and physical protection in compliance with the regulation text in domestic legislation. Thus, it is important to specify nuclear material clearly in law for effective implementation. Therefore, the definition of terminology related to nuclear material is explored herein, within the highest-level legislation on the safeguards and physical protection. First the definition in Korean legislation is analyzed. Then, so as to suggest some improvements, other international efforts are examined and some case studies are conducted on other states which have similar level of nuclear technology and industry to Korea. Finally, a draft of definition on nuclear material in perspective of nuclear nonproliferation and security is suggested based on the analysis below. The recommendation showed the draft nuclear material definition in nuclear control. The text will facilitate the understanding of nuclear material in the context of nuclear nonproliferation and security. It might provide appropriate provision for future legislation related to nuclear nonproliferation and security. For effective safeguards and physical protection measures, nuclear material should be presented with in a consistent manner as shown in the case of United Kingdom. It will be much more helpful if further material engineering studies on each nuclear material are produced. Multi-dimensional approach is required for the studies on the degree of efforts to divert

  16. Definition of Nuclear Material in Aspects of Nuclear Nonproliferation and Security

    International Nuclear Information System (INIS)

    Jeon, Ji Hye; Lee, Chan Suh

    2014-01-01

    Nuclear safety accidents directly affect human health but nuclear security incidents indirectly influence human, which demonstrates the reason why security receives less attention. However, it is acknowledged that nuclear terrorism is indeed one of the most dreadful threat humanity faces. As part of strengthening nuclear security as well as nonproliferation to response to the threat, we need a better understanding of the nuclear material which needs to be safe under the objective of nuclear security. In reality, practitioners implement safeguards and physical protection in compliance with the regulation text in domestic legislation. Thus, it is important to specify nuclear material clearly in law for effective implementation. Therefore, the definition of terminology related to nuclear material is explored herein, within the highest-level legislation on the safeguards and physical protection. First the definition in Korean legislation is analyzed. Then, so as to suggest some improvements, other international efforts are examined and some case studies are conducted on other states which have similar level of nuclear technology and industry to Korea. Finally, a draft of definition on nuclear material in perspective of nuclear nonproliferation and security is suggested based on the analysis below. The recommendation showed the draft nuclear material definition in nuclear control. The text will facilitate the understanding of nuclear material in the context of nuclear nonproliferation and security. It might provide appropriate provision for future legislation related to nuclear nonproliferation and security. For effective safeguards and physical protection measures, nuclear material should be presented with in a consistent manner as shown in the case of United Kingdom. It will be much more helpful if further material engineering studies on each nuclear material are produced. Multi-dimensional approach is required for the studies on the degree of efforts to divert

  17. The first word in material control is material

    International Nuclear Information System (INIS)

    Martin, H.R.; Wilkey, D.D.

    1989-01-01

    Material control has tended to rely on containment and access control, augmented by physical inventories, to meet the material control and accounting (MC ampersand A) goals of detecting theft/diversion and providing assurance that all nuclear material (NM) is present. Such systems have significant deficiencies. Material containment strategies are generally based on protection provided at boundaries around the NM and rely on alarms at the boundary for detection of theft/diversion. Assurance that all NM is present requires a negative inference based on the absence of alarms. Additionally, design of effective boundary protection systems requires that the designer be able to anticipate and provide protection for all scenarios that the insider adversary might utilize in removing material from the facility. Access control is an administrative system that cannot protect against malevolent actions by insiders authorized to access the material. Inventories may not provide timely detection of theft/diversion, and the sensitivity of detection depends on the magnitude of the variance of the inventory difference. More effective material control is provided for both material in storage and in process by a material-oriented system designed to detect abnormal events involving NM. Abnormal events are defined as any unauthorized activity involving NM, whether accidental or deliberate, and are assessed to determine the cause of the discrepancy. The designs of material-oriented control systems vary greatly, depending on the operations involved; however, a model system would include the use of process monitoring data for material control and automated surveillance of material in storage

  18. Approaches to characterization of nuclear material for establishment of nuclear forensics

    International Nuclear Information System (INIS)

    Okazaki, Hiro; Sumi, Mika; Sato, Mitsuhiro; Kayano, Masashi; Kageyama, Tomio; Shinohara, Nobuo; Martinez, Patrick; Xu, Ning; Thomas, Mariam; Porterfield, Donivan; Colletti, Lisa; Schwartz, Dan; Tandon, Lav

    2014-01-01

    The Plutonium Fuel Development Center (PFDC) of Japan Atomic Energy Agency has been analyzing isotopic compositions and contents of plutonium and uranium as well as trace impurities and physics in the nuclear fuel from MOX fuel fabrication process for accountancy and process control purpose. These analytical techniques are also effective for nuclear forensics to identify such as source, history, and route of the material by determining a composition and characterization of nuclear material. Therefore, PFDC cooperates with Los Alamos National Laboratory which has broad experience and established measurement skill for nuclear forensics, and evaluates the each method, procedure and analytical data toward R and D of characterizing a nuclear material for forensic purposes. This paper describes the approaches to develop characterization techniques of nuclear material for nuclear forensics purposes at PFDC. (author)

  19. Technology development for nuclear material accountability

    International Nuclear Information System (INIS)

    Hong, Jong Sook; Lee, Byung Doo; Cha, Hong Ryul; Choi, Hyoung Nai; Park, Ho Joon

    1991-03-01

    Using Segmented Gamma Scanning(SGS) System and coaxical Ge detector, the amounts of uranium in 55 gallon waste drums mixed with low density matrix material were determined by segmented gamma-scanning method. Various factors that influence sample measurement were identified as attenuation effects against sample container and matrix material counting loss effect by dead time and signal pile-up and radial and axial non-uniformity effects of sample. External transmission source, Yb-169, was used to correct gamma-ray attenuation by matrix material. The measure deviation caused by non-uniform distribution in the drum was minimized by rotating and dividing the drum. To calibrate the measurement system, calibration sources were prepared in the range of 50g, 100g, 300g, and 500g of U0 2 powder which let it stick to thin gummed papers and mix with other matrix materials such as papers, vinyl sheets, pieces of rubber gloves in 4 each drum. Under the calibrated assay system the uncertainty of measured amounts of UO 2 powder approached about 10% of absolute value at 1σ and a normal flow of waste stream can be maintained at least one drum per hour. On the other hand, in an effort to ease the nuclear material accounting for and control the flow of nuclear material in CANDU Fuel Fabrication Facility was analyzed to develope a model computer network interfaced with hardwares, structual design of network, computer operating system, and hardware set-up were studied to draw out the most practical network system. (Author)

  20. Automated processing of nuclear materials accounting data

    International Nuclear Information System (INIS)

    Straka, J.; Pacak, P.; Moravec, J.

    1980-01-01

    An automated system was developed of nuclear materials accounting in Czechoslovakia. The system allows automating data processing including data storage. It comprises keeping records of inventories and material balance. In designing the system, the aim of the IAEA was taken into consideration, ie., building a unified information system interconnected with state-run systems of accounting and checking nuclear materials in the signatory countries of the non-proliferation treaty. The nuclear materials accounting programs were written in PL-1 and were tested at an EC 1040 computer at UJV Rez where also the routine data processing takes place. (B.S.)

  1. Nuclear image display controller

    International Nuclear Information System (INIS)

    Roth, D.A.

    1985-01-01

    In a nuclear imaging system the digitized x and y coordinates of gamma ray photon emission events address memory locations corresponding to the coordinates. The respective locations are incremented each time they are addressed so at the end of a selected time or event count period the locations contain digital values or raw data corresponding to the intensity of pixels comprising an image frame. The raw data for a frame is coupled to one input of an arithmetic logic unit (ALU) whose output is coupled to a display controller memory. The output of the controller memory is coupled to another ALU input with a feedback bus and is also coupled to a further signal processing circuit which includes means for converting processed data to analog video signals for television display. The ALU is selectively controlled to let raw image data pass through to the display controllor memory or alternately to add (or subtract) raw data for the last image frame developed to the raw data for preceding frames held in the display controller to thereby produce the visual effect on the television screen of an isotope flowing through anatomy

  2. The Physical Protection of Nuclear Material and Nuclear Facilities

    International Nuclear Information System (INIS)

    1999-08-01

    Physical protection against the theft or unauthorized diversion of nuclear materials and against the sabotage of nuclear facilities by individuals or groups has long been a matter of national and international concern. Although responsibility for establishing and operating a comprehensive physical protection system for nuclear materials and facilities within a State rests entirely with the Government of that State, it is not a matter of indifference to other States whether and to what extent that responsibility is fulfilled. Physical protection has therefore become a matter of international concern and co-operation. The need for international co-operation becomes evident in situations where the effectiveness of physical protection in one State depends on the taking by other States also of adequate measures to deter or defeat hostile actions against nuclear facilities and nuclear materials, particularly when such materials are transported across national frontiers

  3. The Physical Protection of Nuclear Material and Nuclear Facilities

    International Nuclear Information System (INIS)

    1999-06-01

    Physical protection against the theft or unauthorized diversion of nuclear materials and against the sabotage of nuclear facilities by individuals or groups has long been a matter of national and international concern. Although responsibility for establishing and operating a comprehensive physical protection system for nuclear materials and facilities within a State rests entirely with the Government of that State, it is not a matter of indifference to other States whether and to what extent that responsibility is fulfilled. Physical protection has therefore become a matter of international concern and co-operation. The need for international co-operation becomes evident in situations where the effectiveness of physical protection in one State depends on the taking by other States also of adequate measures to deter or defeat hostile actions against nuclear facilities and nuclear materials, particularly when such materials are transported across national frontiers [es

  4. The Physical Protection of Nuclear Material and Nuclear Facilities

    International Nuclear Information System (INIS)

    1999-06-01

    Physical protection against the theft or unauthorized diversion of nuclear materials and against the sabotage of nuclear facilities by individuals or groups has long been a matter of national and international concern. Although responsibility for establishing and operating a comprehensive physical protection system for nuclear materials and facilities within a State rests entirely with the Government of that State, it is not a matter of indifference to other States whether and to what extent that responsibility is fulfilled. Physical protection has therefore become a matter of international concern and co-operation. The need for international co-operation becomes evident in situations where the effectiveness of physical protection in one State depends on the taking by other States also of adequate measures to deter or defeat hostile actions against nuclear facilities and nuclear materials, particularly when such materials are transported across national frontiers

  5. Chemical characterization of nuclear materials: recent trends

    International Nuclear Information System (INIS)

    Prakash, Amrit; Nandi, C.; Patil, A.B.; Khan, K.B.

    2013-01-01

    Analytical chemistry plays a very important role for nuclear fuel activities be it fuel fabrication, waste management or reprocessing. Nuclear fuels are selected based on the type of reactor. The nuclear fuel has to conform to stringent chemical specifications like boron, cadmium, rare earths, hydrogen, oxygen to metal ratio, total gas, heavy metal content, chlorine and fluorine etc. Selection of technique is very important to evaluate the true specification. This is important particularly when the analyses have to perform inside leak tight enclosure. The present paper describes the details of advanced analytical techniques being developed and used in chemical characterization of nuclear materials specially fuels during their fabrication. Nuclear fuels comprise of fuels based on UO 2 , PUO 2 , ThO 2 and combination of (U+Pu)O 2 , (Th+U)O 2 , (Th+Pu)O 2 , (U+Pu)C, (U+Pu)N etc depending on the type of reactors chosen Viz. Pressurized Heavy water Reactor (PHWR), Boiling Water Reactor (BWR), Fast Breeder Test Reactor and Prototype Fast Breeder Reactor (PFBR). Chemical characterization of these fuels is very important for performance of fuel in the reactor. It provides means to ascertain that the quality of the fabricated fuel conforms to the chemical specifications for the fuel laid down by the designer. The batches of sintered/degassed pellets are subjected to comprehensive chemical quality control for trace constituents, stoichiometry and isotopic composition. Chemical Quality Control of fuel is carried out at different stages of manufacture namely feed materials, sintering, vacuum degassing and fuel element welding. Advanced analytical technique based on titrimetry, spectroscopy, thermogravimetry, XRF and XRD have largely been used for this purpose. Since they have to be handled inside special enclosures, extreme care are being taken during handling. Instruments are being developed/modified for ease of handling and maintenance. The method should be fast to reduce

  6. Selection of materials in nuclear fuel: present and future

    International Nuclear Information System (INIS)

    Munoz-Reja, C.; Fuentes, L.; Garcia de la Infanta, J. M.; Munoz Sicilia, A.

    2013-01-01

    One of the main aspects of the nuclear fuel is the selection of materials for the components. The operating conditions of the fuel elements impose a major challenge to materials: high temperature, corrosive aqueous environment, high mechanical properties, long periods of time under these extreme conditions and what is the differentiating factor; the effect of irradiation. The materials are selected to fulfill these severe requirements and also to be able to control and to predict its behavior in the working conditions. Their development, in terms of composition and processing, is based on the continuous follow-up of the operation behavior. Many of these materials are specific of the nuclear industry, such as the uranium dioxide and the zirconium alloys. This article presents the selection and development of the nuclear fuel materials as a function of the services requirements. It also includes a view of the new nuclear fuels materials that are being raised after Fukushima accident. (Author)

  7. Material control in nuclear fuel fabrication facilities. Part I. Fuel descriptions and fabrication processes, P.O. 1236909 Final report

    International Nuclear Information System (INIS)

    Borgonovi, G.M.; McCartin, T.J.; Miller, C.L.

    1978-12-01

    The report presents information on foreign nuclear fuel fabrication facilities. Fuel descriptions and fuel fabrication information for three basic reactor types are presented: The information presented for LWRs assumes that Pu--U Mixed Oxide Fuel (MOX) will be used as fuel

  8. The regulations concerning the uses of nuclear fuel materials

    International Nuclear Information System (INIS)

    1978-01-01

    The Regulations are established on the basis of ''The law for the regulations of nuclear source materials, nuclear fuel materials and reactors'' and the ''Provisions concerning the usage of nuclear fuel materials'' in the Enforcement Ordinance of the Law, to enforce such provisions. Terms are explained, such as exposure radiation dose, cumulative dose, control area, surrounding inspection area, persons engaging in works, area for incoming and outgoing of materials, batch, real stocks, effective value and main measuring points. In the applications for the permission to use nuclear fuel materials, the expected period and quantity of usage of each kind of such materials and the other party and the method of selling, lending and returning spent fuel or the process of disposal of such fuel must be written. Explanations concerning the technical ability required for the usage of nuclear fuel materials shall be attached to the applications. Applications shall be filed for the inspection of facilities for use, in which the name and the address of the applicant, the name and the address of the factory or the establishment, the range of the facilities for use, the maximum quantity of nuclear fuel materials to be used or stocked, and the date, the place and the kind of the expected inspection are written. Prescriptions cover the records to be held, safety regulations, the technical standards for usage, the disposal, transport and storage of nuclear fuel materials and the reports to be filed. (Okada, K.)

  9. Nuclear battery materials and application of nuclear batteries

    International Nuclear Information System (INIS)

    Hao Shaochang; Lu Zhenming; Fu Xiaoming; Liang Tongxiang

    2006-01-01

    Nuclear battery has lots of advantages such as small volume, longevity, environal stability and so on, therefore, it was widely used in aerospace, deep-sea, polar region, heart pacemaker, micro-electromotor and other fields etc. The application of nuclear battery and the development of its materials promote each other. In this paper the development and the latest research progress of nuclear battery materials has been introduced from the view of radioisotope, electric energy conversion and encapsulation. And the current and potential applications of the nuclear battery are also summarized. (authors)

  10. Aims and methods of nuclear materials management

    International Nuclear Information System (INIS)

    Leven, D.; Schier, H.

    1979-05-01

    Whilst international safeguarding of fissile materials against abuse has been the subject of extensive debate, little public attention has so far been devoted to the internal security of these materials. All countries using nuclear energy for peaceful purposes have laid down appropriate regulations. In the Federal Republic of Germany safeguards are required, for instance, by the Atomic Energy Act, and are therefore a prerequisite for licensing. The aims and methods of national nuclear materials management are contrasted with viewpoints on international safeguards

  11. Nuclear reactivity control configuration

    International Nuclear Information System (INIS)

    Bingham, B.E.; DeMars, R.V.

    1990-01-01

    This patent describes a neutron flux control component assembly for use in a nuclear reactor. It comprises: at least three V-shaped close fitting carrier sheets nested together to provide a Y-shaped cross section and which are movable relative to each other along their longitudinal axis; at least three substantially identical neutron poison segments, one of each of the carrier sheets, movable between overlapped and exposed positions in response to movement of the carrier sheets; and each of the poison segments having a width grater than three times the effective thickness of the assembly of overlapping poison segments and capable of absorbing at least eighty percent of the neutrons that strike its surface

  12. The NPT and nuclear export controls

    International Nuclear Information System (INIS)

    Berkhout, F.

    1992-01-01

    Controls on the export of nuclear materials and technology were originally imposed in wartime and under the United States Atomic Energy Act of 1946 to restrict the supply of uranium. But there was no international agreement until the mid 1960s; before that the United States, Canada, France and the Soviet Union imposed export controls on a national basis. The Non-Proliferation Treaty, especially Articles I-IV, set out the first world wide controls on the nuclear trade. These articles are explained in the context of the relevant Committees (the Zangger Committee, the Committee on the Assurance of Supply, the National Export Committee and the Coordinating Committee for Multilateral Export Control) and Guidelines (the Nuclear Suppliers Guidelines and the International Nuclear Fuel Cycle Evaluation). Recent developments which have a bearing on nuclear trade, such as the single European market, the emergence of new supplies and the break-up of the Soviet Union, are considered. (UK)

  13. The physical protection of nuclear material

    International Nuclear Information System (INIS)

    1989-12-01

    A Technical Committee on Physical Protection of Nuclear Material met in April-May 1989 to advise on the need to update the recommendations contained in document INFCIRC/225/Rev.1 and on any changes considered to be necessary. The Technical Committee indicated a number of such changes, reflecting mainly: the international consensus established in respect of the Convention on the Physical Protection of Nuclear Material; the experience gained since 1977; and a wish to give equal treatment to protection against the theft of nuclear material and protection against the sabotage of nuclear facilities. The recommendations presented in this IAEA document reflect a broad consensus among Member States on the requirements which should be met by systems for the physical protection of nuclear materials and facilities. 1 tab

  14. Implementing New Methods of Laser Marking of Items in the Nuclear Material Control and Accountability System at SSC RF-IPPE: An Automated Laser Marking System

    International Nuclear Information System (INIS)

    Regoushevsky, V.I.; Tambovtsev, S.D.; Dvukhsherstnov, V.G.; Efimenko, V.F.; Ilyantsev, A.I.; Russ, G.P. III

    2009-01-01

    For over ten years SSC RF-IPPE, together with the US DOE National Laboratories, has been working on implementing automated control and accountability methods for nuclear materials and other items. Initial efforts to use adhesive bar codes or ones printed (painted) onto metal revealed that these methods were inconvenient and lacked durability under operational conditions. For NM disk applications in critical stands, there is the additional requirement that labels not affect the neutron characteristics of the critical assembly. This is particularly true for the many stainless-steel clad disks containing highly enriched uranium (HEU) and plutonium that are used at SSC RF-IPPE for modeling nuclear power reactors. In search of an alternate method for labeling these disks, we tested several technological options, including laser marking and two-dimensional codes. As a result, the method of laser coloring was chosen in combination with Data Matrix ECC200 symbology. To implement laser marking procedures for the HEU disks and meet all the nuclear material (NM) handling standards and rules, IPPE staff, with U.S. technical and financial support, implemented an automated laser marking system; there are also specially developed procedures for NM movements during laser marking. For the laser marking station, a Zenith 10F system by Telesis Technologies (10 watt Ytterbium Fiber Laser and Merlin software) is used. The presentation includes a flowchart for the automated system and a list of specially developed procedures with comments. Among other things, approaches are discussed for human-factor considerations. To date, markings have been applied to numerous steel-clad HEU disks, and the work continues. In the future this method is expected to be applied to other MC and A items.

  15. Nuclear controls are stringent

    International Nuclear Information System (INIS)

    Sonnekus, D.

    1983-01-01

    The peace-time application of nuclear power in South Africa, the organisations concerned and certain provisions laid down by the Act on Nuclear Energy, aimed at safeguarding the general public, are discussed

  16. On the activities in building a computerized system of nuclear materials accounting and control at the SChK radiochemical plant

    International Nuclear Information System (INIS)

    Skuratov, V.A.; Purygin, V.Ya.; Savchuk, O.A.

    1999-01-01

    The project: Development of the nuclear materials (NM) control and accountancy system model on the example of the SCP Radiochemical Plant (RCP) has been fulfilled by the Siberian Chemical Plant in collaboration with a number of organization since October 1992 through October 1996. One of the key goals of the project was the use of new criteria and approaches to NM control and accounting, including step-by-step implementation for all the NM flows measurement principles. The work on project has resulted in the development of the model for NM control and accountancy system at RCP. When designing the model, the single RCP balance area on uranium and plutonium was broken down to four NM balance areas. The model developed within the project is being implemented in a few ways: introduction of innovative NM measurement techniques, working out regulatory documents, adaptation of computers for control and accountancy. An aim to secure safety in the most problematic area MBA-2 (plutonium dioxide production) transition to the real-time cannot be resolved without implementation of computerized system of NM control and accountancy [ru

  17. Supplier responsibility for nuclear material quality

    International Nuclear Information System (INIS)

    Stuart, P.S.; Dohna, A.E.

    1976-01-01

    Nuclear materials must be delivered by either the manufacturer or the distributor with objective, documented evidence that the material was manufactured, inspected, and tested by proven techniques performed by qualified personnel working to documented procedures. Measurement devices used for acceptance must be of proven accuracy. The material and all records must be identified for positive traceability as part of the quality history of the nuclear components, system, or structure in which the material was used. In conclusion, the nuclear material supplier must join the fabricator, the installer, and the user in effective implementation of the total systems approach to the application of quality assurance principles to all phases of procurement, fabrication, installation, and use of the safety-related components, systems, and structures in a nuclear power plant

  18. Measures for prevention illicit trafficking of nuclear and radioactive materials

    International Nuclear Information System (INIS)

    Strezov, A.

    2002-01-01

    Full text: In the early 1990ies the number of illicit trafficking cases with nuclear material and radioactive sources began to appear in the press more often than before. This fact became of great concern among international organizations and different states that the nuclear material subjected to trafficking might become in possession of rogue states and be implicated in weapons production or that stolen radioactive sources may cause health and safety effects to the population or to the environment. The creation and proposition of a model scheme procedure for the developing countries is important for starting the initial process of preventing and combating the illicit traffic of nuclear materials. Particular efforts have been directed for the protection of fissile materials. The reported incidents for diversion of nuclear materials have raised the problem of potential nuclear terrorism and also for countries of proliferation to take a short cut to the bomb. There is a need of rapid implementation of comprehensive, mutually reinforcing strategy to control the existing stockpiles of fissile material and to lower the future production and use of such materials. The illicit traffic of nuclear materials is a new threat, which requires new efforts, new approaches and coordination of services and institutions and even new legislation. The propositions of a model-procedure will allow better and quicker upgrade of developing countries capabilities for combating illicit nuclear trafficking. (author)

  19. Order of 20 September 1993 amending the Order of 26 March 1982 on protection and control of nuclear materials during transport

    International Nuclear Information System (INIS)

    1993-01-01

    This Order amends and supplements the system for the transport of nuclear materials laid down by the 1982 Order. Two new provisions have been inserted. The first specifies that in the event of an accident or an incident occurring during the transport of nuclear materials which implies a radiological risk, the Central Service for Proteciton against Ionizing Radiation (SCPRI) must be notified immediately. The other provision specifies that the transport vehicle must be equipped with a means of communication so as to inform the Institute for Protection and Nuclear Safety (IPSN) about the main stages of the operation. (NEA)

  20. Introduction of the Recycling program for Nuclear materials

    International Nuclear Information System (INIS)

    Park, Jae Beom; Shin, Byung Woo; Park, Jae Whan; Park, Soo Jin

    2009-01-01

    The LOF is the abbreviation of Location outside Facilities using in safeguards. IAEA want to control the location using the small nuclear material over the world. The depleted uranium used in Industrial field should be controlled by the Government according to the agreement between the IAEA and the ROK. From 2006, The ROK is managing the locations in the LOF. The detail article governing the locations is on the Location attachment agreed between two bodies. As of end of 2007, The LOF was consisting of 64 locations. Now, A number of Locations are increasing up to 75. The KINAC(Korea Institute of Nuclear Nonproliferation and Control) is controlling the data about the amount of nuclear material in LOF. The KINAC is trying to upgrade the efficiency and accuracy about the data. The KINAC will make a storage house at the underground of head office from 2009. The purpose of the storage system in KINAC is gathering the nuclear material, which is difficult to control by the industries, especially the nuclear material involved in LOF. The final goal for gathering the nuclear materials are recycling to new another machine. I would like to introduce the handling case of the Depleted uranium in their countries. On this paper, I will show 4 countries case briefly

  1. A REPRINT of a July 1991 Report to Congress, Executive Summary of Verification of Nuclear Warhead Dismantlement and Special Nuclear Material Controls

    International Nuclear Information System (INIS)

    Fuller, James L.

    2008-01-01

    With the renewed thinking and debate about deep reductions in nuclear weapons, including recent proposals about eliminating nuclear warheads altogether, republishing the general conclusions of the Robinson Committee Report of 1992 appears useful. The report is sometimes referred to as the 3151 Report, from Section 3151 of the National Defense Authorization Act for FY1991, from where its requirement originated. This report contains the Executive Summary only and the forwarding letters from the Committee, the President of the United States, the Secretary of Energy, and C Paul Robinson, the head of the Advisory Committee

  2. NUCLEAR NONPROLIFERATION: Concerns With the U.S. International Nuclear Materials Tracking System

    National Research Council Canada - National Science Library

    Rezendes, Victor

    1996-01-01

    ...) provide data to policymakers and other government officials. The United States regulates and controls its exports of civilian-use nuclear materials through three mechanisms-agreements for cooperation, export licenses, and subsequent arrangements...

  3. Management of Global Nuclear Materials for International Security

    International Nuclear Information System (INIS)

    Isaacs, T; Choi, J-S

    2003-01-01

    Nuclear materials were first used to end the World War II. They were produced and maintained during the cold war for global security reasons. In the succeeding 50 years since the Atoms for Peace Initiative, nuclear materials were produced and used in global civilian reactors and fuel cycles intended for peaceful purposes. The Nonproliferation Treaty (NPT) of 1970 established a framework for appropriate applications of both defense and civilian nuclear activities by nuclear weapons states and non-nuclear weapons states. As global inventories of nuclear materials continue to grow, in a diverse and dynamically changing manner, it is time to evaluate current and future trends and needed actions: what are the current circumstances, what has been done to date, what has worked and what hasn't? The aim is to identify mutually reinforcing programmatic directions, leading to global partnerships that measurably enhance international security. Essential elements are material protection, control and accountability (MPC and A) of separated nuclear materials, interim storage, and geologic repositories for all nuclear materials destined for final disposal. Cooperation among key partners, such as the MPC and A program between the U.S. and Russia for nuclear materials from dismantled weapons, is necessary for interim storage and final disposal of nuclear materials. Such cooperative partnerships can lead to a new nuclear regime where a complete fuel cycle service with fuel leasing and spent fuel take-back can be offered to reactor users. The service can effectively minimize or even eliminate the incentive or rationale for the user-countries to develop their indigenous enrichment and reprocessing technologies. International cooperation, supported by governments of key countries can be best to facilitate the forum for formation of such cooperative partnerships

  4. Code HEX-Z-DMG for support of accounting for and control of nuclear material software system as part of international safeguards system at BN-350 site

    International Nuclear Information System (INIS)

    Bushmakin, A.G.; Schaefer, B.

    1999-01-01

    A code for the computation of the global neutron distribution in the three-dimensional hexagonal-z geometry and multi-group diffusion approximation was developed at BN-350 as the main part of the BN-350 accounting for and control of nuclear material software system. This software system includes: the model for stationary distributions of neutrons; the model to calculate isotope compositions changing; the model of refueling operations; To develop this system next two principal problems were solved: to make a micro cross sections library for all nuclides for the BN-350 reactor core; to develop the code for the computation of the global neutron distribution. To solve first task the twenty-six-energy-groups micro cross sections library for more than seventy nuclides was produced. To solve second task the three-dimensional hexagonal-z geometry and multi-group diffusion approximation code was developed. This code (HEX-Z-DMG) was based on the solution of the multi groups diffusion equation using the standard net approach. The series of calculations was performed in the twenty-six-energy-groups representation using this code. We compared eigenvalues (k eff ), a worth added during refueling operations, spatial and energy-group-dependent neutron flux distributions with results of calculation using other code (DIF3D). After the series of these calculations we can say that the HEX-Z-DMG code is well established to use as the part of the BN-350 accounting for and control of nuclear material software system. (author)

  5. Guidelines for verification and validation of software related to nuclear power plant control and instrumentation. Working material

    International Nuclear Information System (INIS)

    1993-01-01

    The main purpose of the consultancy organized by the IAEA and held form 6 to 10 September 1993 was to prepare an extended outline of a new technical document in which a current status of Verification and Validation of software related to NPP I and C systems and guidance on the practical use of Verification and Validation methods for solving special problems in design, operation and maintenance of nuclear power plants are to be presented. The present volume contains: (1) report of the meeting; (2) reports presented by the national delegates; and (3) technical draft document. Ref and figs

  6. New Department of Energy policy and guidance for cost-effectiveness in nuclear materials control and accountability programs

    International Nuclear Information System (INIS)

    Van Ryn, G.L.; Zack, N.R.

    1994-01-01

    Recent Department of Energy (DOE) initiatives have given Departmental nuclear facilities the opportunity to take more credit for certain existing safeguards and security systems in determining operational program protection requirements. New policies and guidance are coupled with these initiatives to enhance systems performance in a cost effective and efficient manner as well as to reduce operational costs. The application of these methods and technologies support safety, the reduction of personnel radiation exposure, emergency planning, and inspections by international teams. This discussion will review guidance and policies that support advanced systems and programs to decrease lifetime operational costs without increasing risk

  7. Erosion and corrosion of nuclear power plant materials

    International Nuclear Information System (INIS)

    1994-01-01

    This conference is composed of 23 papers, grouped in 3 sessions which main themes are: analysis of corrosion and erosion damages of nuclear power plant equipment and influence of water chemistry, temperature, irradiations, metallurgical and electrochemical factors, flow assisted cracking, stress cracking; monitoring and control of erosion and corrosion in nuclear power plants; susceptibility of structural materials to erosion and corrosion and ways to improve the resistance of materials, steels, coatings, etc. to erosion, corrosion and cracking

  8. Chapter No.5. Nuclear materials and physical protection of nuclear installations

    International Nuclear Information System (INIS)

    2002-01-01

    The State System of Accounting for and Control of Nuclear Material (SSAC) is based on requirements resulting from the Safeguards Agreement between the Government of the Slovak Republic and the IAEA. UJD performs this activity according to the 'Atomic Act' and relevant decree. The purpose of the SSAC is also to prevent unauthorised use of nuclear materials, to detect loses of nuclear materials and provide information that could lead to the recovery of missing material. The main part of nuclear materials under jurisdiction of the Slovak Republic is located at NPP Jaslovske Bohunice, NPP Mochovce and at interim storage in Jaslovske Bohunice. Even though that there are located more then 99% of nuclear materials in these nuclear facilities, there are not any significant problems with their accountancy and control due to very simply identification of accountancy units - fuel assemblies, and due to stability of legal subjects responsible for operation and for keeping of information continuity, which is necessary for fulfilling requirements of the Agreement. The nuclear material located outside nuclear facilities is a special category. There are 81 such subjects of different types and orientations on the territory of the Slovak Republic. These subjects use mainly depleted uranium as a shielding and small quantity of natural uranium, low enrichment uranium and thorium for experimental purposes and education. Frequent changes of these subjects, their transformations into the other subjects, extinction and very high fluctuation of employees causes loss of information about nuclear materials and creates problems with fulfilling requirements resulting from the Agreement. In 2001, the UJD carried out 51 inspections of nuclear materials, of which 31 inspections were performed at nuclear installations in co-operation with the IAEA inspectors. No discrepancies concerning the management of nuclear materials were found out during inspections and safeguards goals in year 2001 were

  9. The use of modern databases in managing nuclear material inventories

    International Nuclear Information System (INIS)

    Behrens, R.G.

    1994-01-01

    The need for a useful nuclear materials database to assist in the management of nuclear materials within the Department of Energy (DOE) Weapons Complex is becoming significantly more important as the mission of the DOE Complex changes and both international safeguards and storage issues become drivers in determining how these materials are managed. A well designed nuclear material inventory database can provide the Nuclear Materials Manager with an essential cost effective tool for timely analysis and reporting of inventories. This paper discusses the use of databases as a management tool to meet increasing requirements for accurate and timely information on nuclear material inventories and related information. From the end user perspective, this paper discusses the rationale, philosophy, and technical requirements for an integrated database to meet the needs for a variety of users such as those working in the areas of Safeguards, Materials Control and Accountability (MC ampersand A), Nuclear Materials Management, Waste Management, materials processing, packaging and inspection, and interim/long term storage

  10. Structural materials for innovative nuclear systems (SMINS)

    International Nuclear Information System (INIS)

    2008-01-01

    Structural materials research is a field of growing relevance in the nuclear sector, especially for the different innovative reactor systems being developed within the Generation IV International Forum (GIF), for critical and subcritical transmutation systems, and of interest to the Global Nuclear Energy Partnership (GNEP). Under the auspices of the NEA Nuclear Science Committee (NSC) the Workshop on Structural Materials for Innovative Nuclear Systems (SMINS) was organised in collaboration with the Forschungszentrum Karlsruhe in Germany. The objectives of the workshop were to exchange information on structural materials research issues and to discuss ongoing programmes, both experimental and in the field of advanced modelling. These proceedings include the papers and the poster session materials presented at the workshop, representing the international state of the art in this domain. (author)

  11. Automated accounting systems for nuclear materials

    International Nuclear Information System (INIS)

    Erkkila, B.

    1994-01-01

    History of the development of nuclear materials accounting systems in USA and their purposes are considered. Many present accounting systems are based on mainframe computers with multiple terminal access. Problems of future improvement accounting systems are discussed

  12. The Physical Protection of Nuclear Material

    International Nuclear Information System (INIS)

    1993-01-01

    Physical protection against the theft or unauthorized diversion of nuclear materials and against the sabotage of nuclear facilities by individuals or groups has long been a matter of national and international concern. Although responsibility for establishing and operating a comprehensive physical protection system for nuclear materials and facilities within a State rests entirely with the Government of that State, it is not a matter of indifference to other States whether and to what extent that responsibility is fulfilled. Physical protection has therefore become a matter of international concern and co-operation. The need for international cooperation becomes evident in situations where the effectiveness of physical protection in one State depends on the taking by other States also of adequate measures to deter or defeat hostile actions against nuclear facilities and materials, particularly when such materials are transported across national frontiers

  13. The Physical Protection of Nuclear Material

    International Nuclear Information System (INIS)

    1993-09-01

    Physical protection against the theft or unauthorized diversion of nuclear materials and against the sabotage of nuclear facilities by individuals or groups has long been a matter of national and international concern. Although responsibility for establishing and operating a comprehensive physical protection system for nuclear materials and facilities within a State rests entirely with the Government of that State, it is not a matter of indifference to other States whether and to what extent that responsibility is fulfilled. Physical protection has therefore become a matter of international concern and co-operation. The need for international cooperation becomes evident in situations where the effectiveness of physical protection in one State depends on the taking by other States also of adequate measures to deter or defeat hostile actions against nuclear facilities and materials, particularly when such materials are transported across national frontiers [es

  14. The Physical Protection of Nuclear Material

    International Nuclear Information System (INIS)

    1993-09-01

    Physical protection against the theft or unauthorized diversion of nuclear materials and against the sabotage of nuclear facilities by individuals or groups has long been a matter of national and international concern. Although responsibility for establishing and operating a comprehensive physical protection system for nuclear materials and facilities within a State rests entirely with the Government of that State, it is not a matter of indifference to other States whether and to what extent that responsibility is fulfilled. Physical protection has therefore become a matter of international concern and co-operation. The need for international cooperation becomes evident in situations where the effectiveness of physical protection in one State depends on the taking by other States also of adequate measures to deter or defeat hostile actions against nuclear facilities and materials, particularly when such materials are transported across national frontiers [fr

  15. List of Nuclear Materials Licensing Actions Received

    Data.gov (United States)

    Nuclear Regulatory Commission — A catalog of all Materials Licensing Actions received for review. The catalog lists the name of the entity submitting the license application, their city and state,...

  16. The Physical Protection of Nuclear Material

    International Nuclear Information System (INIS)

    1993-09-01

    Physical protection against the theft or unauthorized diversion of nuclear materials and against the sabotage of nuclear facilities by individuals or groups has long been a matter of national and international concern. Although responsibility for establishing and operating a comprehensive physical protection system for nuclear materials and facilities within a State rests entirely with the Government of that State, it is not a matter of indifference to other States whether and to what extent that responsibility is fulfilled. Physical protection has therefore become a matter of international concern and co-operation. The need for international cooperation becomes evident in situations where the effectiveness of physical protection in one State depends on the taking by other States also of adequate measures to deter or defeat hostile actions against nuclear facilities and materials, particularly when such materials are transported across national frontiers

  17. Study of nuclear environment and material strategy

    International Nuclear Information System (INIS)

    Kamei, Takashi

    2011-01-01

    There is a concern about the environmental hazard caused by radioactive materials coming with the expansion of nuclear power and even by renewable energies, which are used as countermeasures against global warming to construct a sustainable society. A concept to internalize the pollution caused by radioactive materials, which are directly or indirectly related to nuclear power, to economical activities by adopting externality is proposed. Energy and industrial productions are strongly related to the supply of material. Therefore material flow is also part of this internalization concept. The concept is named 'NEMS (Nuclear Environment and Material Strategy)'. Fission products and transuranic isotopes from nuclear power such as plutonium are considered in this concept. Thorium, which comes from the material flow of rare-earth production to support the elaboration of renewable energies including electric vehicles on the consumer side, is considered as an externality of the non-nuclear power field. Fission products contain some rare-earth materials. Thus, these rare-earth materials, which are extracted by the advanced ORIENT (Optimization by Recycling Instructive Elements) cycle, are internalized as rare-earth supplier in economy. However, the supply quantity is limited. Therefore rare-earth production itself is still needed. The externality of rare-earth production is thorium and is internalized by using it as nuclear fuel. In this case, the demand of thorium is still small within these few decades compared to the production of thorium as byproduct of the rare-earth production. A thorium energy bank (The Bank) is advanced to regulate the storage of the excess amount of thorium inside of an international framework in order to prevent environmental hazard resulting from the illegal disposal of thorium. In this paper, the material flows of thorium and rare-earth are outlined. Their material balance are demonstrated based on the prediction of rare-earth mining and an

  18. State and regional systems of accounting for and control of nuclear materials cooperation between international, regional and states safeguards organizations: An evolving issue

    International Nuclear Information System (INIS)

    Fernández Moreno, Sonia

    2011-01-01

    Cooperation between the IAEA, States and regional organizations is increasingly important to ensure effective accountancy and control of nuclear material in peaceful uses. The IAEA, SAGSI2 and institutions such INMM3 and ESARDA4 have recognized the relevance and the evolving role that SSAC5 and regional organizations play to this aim. In this context, it is important to take steps to ensure the effectiveness of the system and the optimal level of relationship between these organizations so as to maximize the benefits for each party, particularly in those cases where well developed systems exist. Moreover, expansion of nuclear energy requires concerted efforts towards building competence in safeguards in all relevant States. This is also important with respect to other aspects of nonproliferation. In this scenario there is agreement on the need to have effective state organizations that fulfill international safeguards and other security obligations. However, the roles and duties of SSAC and the possible scope of cooperation between the IAEA and SSAC are still under evolution. This paper discusses possible ways and means to build competence in safeguards and how the international community could be more proactive in establishing a framework including the various dimensions of the cooperation in safeguards and other security matters between all parties concerned. The establishment of a forum and a network of interested parties under the auspice of interested organizations could be one mechanism to exchange best practices and experiences. (authors)

  19. Reactor Structure Materials: Nuclear Fuel

    International Nuclear Information System (INIS)

    Sannen, L.; Verwerft, M.

    2000-01-01

    Progress and achievements in 1999 in SCK-CEN's programme on applied and fundamental nuclear fuel research in 1999 are reported. Particular emphasis is on thermochemical fuel research, the modelling of fission gas release in LWR fuel as well as on integral experiments

  20. Overview of nuclear materials transportation

    International Nuclear Information System (INIS)

    Grella, A.W.

    1986-01-01

    This presentation is an overview of transportation as it relates to one specific type of material, low specific activity (LSA) material. It is the predominant type of material that fits into the low-level waste category. An attempt is made to discuss how LSA is regulated, setting forth the requirements. First the general scheme of regulations are reviewed. In addition future changes in the regulations which will affect transportation of LSA materials and, which quite likely, will have an impact on R and D needs in this area are presented

  1. Fundamentals of materials accounting for nuclear safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Pillay, K.K.S. (comp.)

    1989-04-01

    Materials accounting is essential to providing the necessary assurance for verifying the effectiveness of a safeguards system. The use of measurements, analyses, records, and reports to maintain knowledge of the quantities of nuclear material present in a defined area of a facility and the use of physical inventories and materials balances to verify the presence of special nuclear materials are collectively known as materials accounting for nuclear safeguards. This manual, prepared as part of the resource materials for the Safeguards Technology Training Program of the US Department of Energy, addresses fundamental aspects of materials accounting, enriching and complementing them with the first-hand experiences of authors from varied disciplines. The topics range from highly technical subjects to site-specific system designs and policy discussions. This collection of papers is prepared by more than 25 professionals from the nuclear safeguards field. Representing research institutions, industries, and regulatory agencies, the authors create a unique resource for the annual course titled ''Materials Accounting for Nuclear Safeguards,'' which is offered at the Los Alamos National Laboratory.

  2. Resources of nuclear fuels and materials

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, K [Tokyo Inst. of Tech. (Japan); Kamiyama, Teiji; Hayashi, S; Hida, Noboru; Okano, T

    1974-11-01

    In this explanatory article, data on the world resources of nuclear fuels and materials, their production, and the present state of utilization are presented by specialists in varied fields. Main materials taken up are uranium, thorium, beryllium, zirconium, niobium, rare earth elements, graphite, and materials for nuclear fusion (heavy hydrogen and tritium). World reserves and annual production of these materials listed in a number of tables are cited from statistics of the period 1970-1973 or given by estimation. These data may be used as valuable numerical data for various projects and problems of atomic power industries.

  3. Analysis on Domestic Law and Management Trend Related to Small-Quantity Nuclear Material

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jae Beom; Lee, Kyong Woo; Shim, Hye Won; Min, Gyung Sik [National Nuclear Management and Control Agency, Daejeon (Korea, Republic of)

    2005-07-01

    International Atomic Energy Agency (IAEA) has requested Korea to establish and manage the law ruling all nuclear materials through the INFCIRC/153. Now, it has been 30 years since Korea made the agreement, INFCIRC/153, with IAEA. Korea has tried their best to accomplish the international standard in nuclear control field and it is a fact that Korea finally produced some results in the nuclear control field. Related to nuclear material control, Korea is above the common level appropriately ranked 6th in the world in terms of nuclear power. Before 2000, Korea was making the foundation secure in the nuclear control. IAEA did not urge to establish the law supervising the small-quantity nuclear material and depleted uranium (DU). In a turnaround from early IAEA moderate line to Korea, the situation was changed. Since IAEA brought up the agenda to 2000 Joint Review Meeting between Korea-IAEA, IAEA has asked Korea to establish the control system for smallquantity nuclear material and DU. In 2003, the Korean government set up a project establishing the control system about all nuclear material including small-quantity nuclear material and DU. National Nuclear Management and Control Agency (NNCA), delegating the business relating to international controlling materials from government, developed some modules in nuclear material control system and operated it. The system includes a controlling system for small-quantity nuclear material. NNCA on behalf of government has collected the information and Korea Ministry of Science and Technology (MOST) has reported the information to the IAEA. This paper introduces you the background of controlling the small-quantity nuclear material and the system of controlling nuclear material in Korea. And it will suggest the improvement of the management method in the system for small-quantity nuclear material.

  4. Analysis on Domestic Law and Management Trend Related to Small-Quantity Nuclear Material

    International Nuclear Information System (INIS)

    Park, Jae Beom; Lee, Kyong Woo; Shim, Hye Won; Min, Gyung Sik

    2005-01-01

    International Atomic Energy Agency (IAEA) has requested Korea to establish and manage the law ruling all nuclear materials through the INFCIRC/153. Now, it has been 30 years since Korea made the agreement, INFCIRC/153, with IAEA. Korea has tried their best to accomplish the international standard in nuclear control field and it is a fact that Korea finally produced some results in the nuclear control field. Related to nuclear material control, Korea is above the common level appropriately ranked 6th in the world in terms of nuclear power. Before 2000, Korea was making the foundation secure in the nuclear control. IAEA did not urge to establish the law supervising the small-quantity nuclear material and depleted uranium (DU). In a turnaround from early IAEA moderate line to Korea, the situation was changed. Since IAEA brought up the agenda to 2000 Joint Review Meeting between Korea-IAEA, IAEA has asked Korea to establish the control system for smallquantity nuclear material and DU. In 2003, the Korean government set up a project establishing the control system about all nuclear material including small-quantity nuclear material and DU. National Nuclear Management and Control Agency (NNCA), delegating the business relating to international controlling materials from government, developed some modules in nuclear material control system and operated it. The system includes a controlling system for small-quantity nuclear material. NNCA on behalf of government has collected the information and Korea Ministry of Science and Technology (MOST) has reported the information to the IAEA. This paper introduces you the background of controlling the small-quantity nuclear material and the system of controlling nuclear material in Korea. And it will suggest the improvement of the management method in the system for small-quantity nuclear material

  5. Considerations for sampling nuclear materials for SNM accounting measurements. Special nuclear material accountability report

    International Nuclear Information System (INIS)

    Brouns, R.J.; Roberts, F.P.; Upson, U.L.

    1978-05-01

    This report presents principles and guidelines for sampling nuclear materials to measure chemical and isotopic content of the material. Development of sampling plans and procedures that maintain the random and systematic errors of sampling within acceptable limits for SNM(Special Nuclear Materials) accounting purposes are emphasized

  6. 1980 Annual status report: fissile materials control and management

    International Nuclear Information System (INIS)

    1981-01-01

    The R and D activities of the JRC in the field of Fissile Material Control and Management are oriented to the development of safeguards systems in the European Community nuclear fuel cycle and to provide means for a more efficient nuclear material management within the nuclear industry

  7. National Nuclear Management and Control Agency (NNCA)

    International Nuclear Information System (INIS)

    Yoon, Wan Ki

    2006-01-01

    The National Nuclear Management and Control Agency (NNCA) is an independent agency for safeguards and material control for nuclear activities in the Republic of Korea. Formerly subordinate to the Korea Atomic Energy Research Institute (KAERI), it is temporarily associated with the Korea Institute of Nuclear Safety (KINS). In mid-2006 it will become fully independent. The NNCA is responsible for safeguards within the ROK, cooperates with the IAEA, and supports technical needs of the Ministry of Science and Technology (MOST). In addition, it has responsibilities in export controls and physical protection. In the future the NNCA expects to become a national 'think tank' for nuclear control and nonproliferation issues. This presentation enumerated the many responsibilities of the NNCA and explained the structure and staffing of the organization. (author)

  8. Overview moderator material for nuclear reactor components

    International Nuclear Information System (INIS)

    Mairing Manutu Pongtuluran; Hendra Prihatnadi

    2009-01-01

    In order for a reactor design is considered acceptable absolute technical requirement is fulfilled because the most important part of a reactor design. Safety considerations emphasis on the handling of radioactive substances emitted during the operation of a reactor and radioactive waste handling. Moderator material is a layer that interacts directly with neutrons split the nuclear fuel that will lead to changes in physical properties, nuclear properties, mechanical properties and chemical properties. Reviews moderator of this time is of the types of moderator is often used to meet the requirements as nuclear material. (author)

  9. International training course on nuclear materials accountability for safeguards purposes

    International Nuclear Information System (INIS)

    1980-12-01

    The two volumes of this report incorporate all lectures and presentations at the International Training Course on Nuclear Materials Accountability and Control for Safeguards Purposes, held May 27-June 6, 1980, at the Bishop's Lodge near Santa Fe, New Mexico. The course, authorized by the US Nuclear Non-Proliferation Act and sponsored by the US Department of Energy in cooperation with the International Atomic Energy Agency, was developed to provide practical training in the design, implementation, and operation of a National system of nuclear materials accountability and control that satisfies both National and IAEA International safeguards objectives. Volume I, covering the first week of the course, presents the background, requirements, and general features of material accounting and control in modern safeguard systems. Volume II, covering the second week of the course, provides more detailed information on measurement methods and instruments, practical experience at power reactor and research reactor facilities, and examples of operating state systems of accountability and control

  10. International training course on nuclear materials accountability for safeguards purposes

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    The two volumes of this report incorporate all lectures and presentations at the International Training Course on Nuclear Materials Accountability and Control for Safeguards Purposes, held May 27-June 6, 1980, at the Bishop's Lodge near Santa Fe, New Mexico. The course, authorized by the US Nuclear Non-Proliferation Act and sponsored by the US Department of Energy in cooperation with the International Atomic Energy Agency, was developed to provide practical training in the design, implementation, and operation of a National system of nuclear materials accountability and control that satisfies both National and IAEA International safeguards objectives. Volume I, covering the first week of the course, presents the background, requirements, and general features of material accounting and control in modern safeguard systems. Volume II, covering the second week of the course, provides more detailed information on measurement methods and instruments, practical experience at power reactor and research reactor facilities, and examples of operating state systems of accountability and control.

  11. The regulations concerning the uses of nuclear fuel materials

    International Nuclear Information System (INIS)

    1979-01-01

    The regulations are defined under the law for the regulations of nuclear source materials, nuclear fuel materials and reactors and provisions concerning the uses of nuclear fuel materials in the order for execution of the law. Basic concepts and terms are explained, such as: exposure dose; accumulative dose; controlled area; inspected surrounding area and employee. The application for permission shall state the expected period and amount of the uses for each kind of nuclear fuel materials. Persons to whom spent fuels shall be sold, lent or returned and the method of disposal of such fuels shall be also indicated. Records shall be made and kept for particular periods for each works and enterprise on inspection of facilities, control of dose, maintenance and accident of facilities in use. The application for permission of the safeguard regulations shall report rules for each works and enterprise on the faculty and organization of controllers of facilities in use, safeguard education of employees, operation of apparatus which needs special control for prevention of disaster, establishment of controlled and inspected surrounding areas, entrance limitation, inspection of exposure dose, etc. Technical standards of the uses of nuclear fuel materials, disposal and transportation in the works and the enterprise and storage are stipulated in detail. Reports on exposure dose of employees and other specified matters shall be submitted every year to the Director General of Science and Technology Agency according to the forms attached. (Okada, K.)

  12. Controlled procurement for nuclear power plants

    International Nuclear Information System (INIS)

    MacFarlane, I.S.

    1985-01-01

    A method is presented for establishing a controlled materials management system that facilitates materials procurement at nuclear power plants. This method is based on the determination of informational data requirements, appropriate input and approvals, and extent of administrative controls. Implementation of the techniques described herein will ensure that the accuracy of important procurement information is not compromised by unauthorized initial input or changes and/or failure to maintain the information. Needed material can thus be ordered through the materials management system with a high degree of confidence that the correct items are ordered, with minimal internal lead time and minimum delays during the receiving process

  13. New materials in nuclear fusion reactors

    International Nuclear Information System (INIS)

    Iwata, Shuichi

    1988-01-01

    In the autumn of 1987, the critical condition was attained in the JET in Europe and Japanese JT-60, thus the first subject in the physical verification of nuclear fusion reactors was resolved, and the challenge to the next attainment of self ignition condition started. As the development process of nuclear fusion reactors, there are the steps of engineering, economical and social verifications after this physical verification, and in respective steps, there are the critical problems related to materials, therefore the development of new materials must be advanced. The condition of using nuclear fusion reactors is characterized by high fluence, high thermal flux and strong magnetic field, and under such extreme condition, the microscopic structures of materials change, and they behave much differently from usual case. The subjects of material development for nuclear fusion reactors, the material data base being built up, the materials for facing plasma and high thermal flux, first walls, blanket structures, electric insulators and others are described. The serious effect of irradiation and the rate of defect inducement must be taken in consideration in the structural materials for nuclear fusion reactors. (Kako, I.)

  14. Material degradation - a nuclear utility's view

    International Nuclear Information System (INIS)

    Spekkens, P.

    2007-01-01

    Degradation of nuclear plant materials has been responsible for major costs and unit outage time. As such, nuclear utilities are important end users of the information produced by R and D on material degradation. This plenary describes the significance of material degradation for the nuclear utilities, and how utilities use information about material degradation in their short, medium and long term planning activities. Utilities invest in R and D programs to assist them in their business objective of operating safely, reliably and cost competitively. Material degradation impacts all three of these business drivers. Utilities make decisions on life cycle planning, unit refurbishment and 'new build' projects on the basis of their understanding of the behaviour of a variety of materials in a broad range of environments. The R and D being carried out today will determine the future business success of the nuclear utilities. The R and D program needs to be broadly based to include a range of materials, environments and time-frames, particularly any new materials proposed for use in new units. The R and D community needs to help the utility managers make choices that will result in an optimized materials R and D program

  15. Development of the seal for nuclear material

    International Nuclear Information System (INIS)

    Lu Feng; Lu Zhao; Zhao Yonggang; Zhang Qixin; Xiao Xuefu

    2000-01-01

    Two kinds of double cap metallic seal and an adhesive seal are developed for the purpose of the accounting for and control of nuclear material. Two kinds of double cap metallic seal are made of stainless steel and copper, respectively and the self-locked technique is used. The number and the random pattern are carved out side and in side of a cap, respectively, for the seal. The random pattern carved inside of a cap for seal is taken a picture using numeral camera and memorized in computer. Special software is developed for verification of the random pattern memorized in computer. The adhesive seal is made of special adhesive paper for purpose of security, and a special pattern guarded against falsification is printed on seal paper using ultraviolet fluorescent light technique

  16. International safeguards: Accounting for nuclear materials

    Energy Technology Data Exchange (ETDEWEB)

    Fishbone, L.G.

    1988-09-28

    Nuclear safeguards applied by the International Atomic Energy Agency (IAEA) are one element of the non-proliferation regime'', the collection of measures whose aim is to forestall the spread of nuclear weapons to countries that do not already possess them. Safeguards verifications provide evidence that nuclear materials in peaceful use for nuclear-power production are properly accounted for. Though carried out in cooperation with nuclear facility operators, the verifications can provide assurance because they are designed with the capability to detect diversion, should it occur. Traditional safeguards verification measures conducted by inspectors of the IAEA include book auditing; counting and identifying containers of nuclear material; measuring nuclear material; photographic and video surveillance; and sealing. Novel approaches to achieve greater efficiency and effectiveness in safeguards verifications are under investigation as the number and complexity of nuclear facilities grow. These include the zone approach, which entails carrying out verifications for groups of facilities collectively, and randomization approach, which entails carrying out entire inspection visits some fraction of the time on a random basis. Both approaches show promise in particular situations, but, like traditional measures, must be tested to ensure their practical utility. These approaches are covered on this report. 15 refs., 16 figs., 3 tabs.

  17. International safeguards: Accounting for nuclear materials

    International Nuclear Information System (INIS)

    Fishbone, L.G.

    1988-01-01

    Nuclear safeguards applied by the International Atomic Energy Agency (IAEA) are one element of the ''non-proliferation regime'', the collection of measures whose aim is to forestall the spread of nuclear weapons to countries that do not already possess them. Safeguards verifications provide evidence that nuclear materials in peaceful use for nuclear-power production are properly accounted for. Though carried out in cooperation with nuclear facility operators, the verifications can provide assurance because they are designed with the capability to detect diversion, should it occur. Traditional safeguards verification measures conducted by inspectors of the IAEA include book auditing; counting and identifying containers of nuclear material; measuring nuclear material; photographic and video surveillance; and sealing. Novel approaches to achieve greater efficiency and effectiveness in safeguards verifications are under investigation as the number and complexity of nuclear facilities grow. These include the zone approach, which entails carrying out verifications for groups of facilities collectively, and randomization approach, which entails carrying out entire inspection visits some fraction of the time on a random basis. Both approaches show promise in particular situations, but, like traditional measures, must be tested to ensure their practical utility. These approaches are covered on this report. 15 refs., 16 figs., 3 tabs

  18. 10 CFR 50.34a - Design objectives for equipment to control releases of radioactive material in effluents-nuclear...

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Design objectives for equipment to control releases of... out in appendix I to this part provide numerical guidance on design objectives for light-water-cooled... unrestricted areas be kept as low as is reasonably achievable. These numerical guides for design objectives and...

  19. Nuclear Space Power Systems Materials Requirements

    International Nuclear Information System (INIS)

    Buckman, R.W. Jr.

    2004-01-01

    High specific energy is required for space nuclear power systems. This generally means high operating temperatures and the only alloy class of materials available for construction of such systems are the refractory metals niobium, tantalum, molybdenum and tungsten. The refractory metals in the past have been the construction materials selected for nuclear space power systems. The objective of this paper will be to review the past history and requirements for space nuclear power systems from the early 1960's through the SP-100 program. Also presented will be the past and present status of refractory metal alloy technology and what will be needed to support the next advanced nuclear space power system. The next generation of advanced nuclear space power systems can benefit from the review of this past experience. Because of a decline in the refractory metal industry in the United States, ready availability of specific refractory metal alloys is limited

  20. Security of nuclear materials using fusion multi sensor wavelett

    International Nuclear Information System (INIS)

    Djoko Hari Nugroho

    2010-01-01

    Security of a nuclear material in an installation is determined by how far the installation is to assure that nuclear material remains at a predetermined location. This paper observed a preliminary design on nuclear material tracking system in the installation for decision making support based on multi sensor fusion that is reliable and accurate to ensure that the nuclear material remains inside the control area. Capability on decision making in the Management Information System is represented by an understanding of perception in the third level of abstraction. The second level will be achieved with the support of image analysis and organizing data. The first level of abstraction is constructed by merger between several CCD camera sensors distributed in a building in a data fusion representation. Data fusion is processed based on Wavelett approach. Simulation utilizing Matlab programming shows that Wavelett fuses multi information from sensors as well. Hope that when the nuclear material out of control regions which have been predetermined before, there will arise a warning alarm and a message in the Management Information System display. Thus the nuclear material movement time event can be obtained and tracked as well. (author)

  1. Evaluation of Terminated Nuclear Material Licenses

    International Nuclear Information System (INIS)

    Spencer, K.M.; Zeighami, E.A.

    1999-01-01

    This report presents the results of a six-year project that reviewed material licenses that had been terminated during the period from inception of licensing until approximately late-1994. The material licenses covered in the review project were Part 30, byproduct material licenses; Part 40, source material licenses; and Part 70, special nuclear material licenses. This report describes the methodology developed for the project, summarizes the findings of the license file inventory process, and describes the findings of the reviews or evaluations of the license files. The evaluation identified nuclear material use sites that need review of the licensing material or more direct follow-up of some type. The review process also identified licenses authorized to possess sealed sources for which there was incomplete or missing documentation of the fate of the sources

  2. Safeguards and Nuclear Material Management

    International Nuclear Information System (INIS)

    Stanchi, L.

    1991-01-01

    The book contains contributed papers from various authors on the following subjects: Safeguards systems and implementation, Measurement techniques: general, Measurement techniques: destructive analysis, Measurement techniques: non-destructive assay, Containment and surveillance, Spent fuel strategies, Material accounting and data evaluation

  3. Nuclear physics methods in materials research

    International Nuclear Information System (INIS)

    Bethge, K.; Baumann, H.; Jex, H.; Rauch, F.

    1980-01-01

    Proceedings of the seventh divisional conference of the Nuclear Physics Division held at Darmstadt, Germany, from 23rd through 26th of September, 1980. The scope of this conference was defined as follows: i) to inform solid state physicists and materials scientists about the application of nuclear physics methods; ii) to show to nuclear physicists open questions and problems in solid state physics and materials science to which their methods can be applied. According to the intentions of the conference, the various nuclear physics methods utilized in solid state physics and materials science and especially new developments were reviewed by invited speakers. Detailed aspects of the methods and typical examples extending over a wide range of applications were presented as contributions in poster sessions. The Proceedings contain all the invited papers and about 90% of the contributed papers. (orig./RW)

  4. A cost/benefit analysis of methods for controlling the release of radioactive materials in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Blanco, R.E.; Dahlman, R.C.; Davis, W. Jr.; Finney, B.C.; Groenier, W.S.; Hill, G.S.; Kibbey, A.H.; Kitts, F.G.; Lindauer, R.B.; Moore, R.E.; Pechin, W.H.; Roddy, J.W.; Ryon, A.D.; Seagren, R.D.; Sears, M.B.; Witherspoon, J.P.

    1977-01-01

    Cost/benefit surveys were made to determine the cost (in dollars) and effectiveness of radwaste treatment systems for decreasing the release of radioactive materials from model fuel cycle facilities, and to determine the benefits in terms of reduction in radiological dose commitment to individuals and populations in the surrounding areas. The studies include milling of uranium ores, conversion of virgin uranium and recycle uranium to UF 6 , fabrication of light-water reactor (LWR) fuels containing enriched uranium or enriched uranium and plutonium, fabrication of high-temperature gas-cooled reactor (HTGR) fuels containing 233 U and thorium, and reprocessing of LWR and HTGR fuels. Conceptual flowsheets were prepared for each model facility illustrating the treatment methods for gaseous and liquid effluents. The ''base'' case represents the lowest treatment cost, current treatment technology, and highest radiological dose. In succeeding cases, increasingly efficient radwaste treatment equipment is added to the ''base'' plant to reduce the amounts of radioactive materials released. The technology ranges from that currently available to that which may be developed over the next 30 years. The status of development for these technologies is discussed. The dose estimates are for maximum individual total body and organ doses at the plant boundary and for population total-body and organ doses out to 89 km. Comparisons of the doses vs annual costs in dollars are presented. In summary, they indicate that (1) the annual doses can be reduced to very low fractions of the natural background dose by the successful development and application of the radwaste treatment methods; and (2) excluding mills, the capital costs for the treatment methods vary from 0.02 to 8% of the capital cost of the base plants and the total annual operating costs (fixed charges plus operating costs) vary from 0.009 to 7.0% of the capital costs for the plant

  5. Modernization of instrumentation and control systems in nuclear power plants. Working materials. Proceedings of a specialists` meeting held in Garching, Germany, 4-7 July 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The Specialists` Meeting on ``Modernization of Instrumentation and Control Systems in Nuclear Power Plants`` was organized by the IAEA (jointly by Division of Nuclear Power and Division of Nuclear Safety) in co-operation with Institute for Safety Technology (ISTec) and held in Garching, Germany from 4 to 7 July 1995 (The Meeting Chairman - Dr. W. Bastl). The meeting brought together experts on power plant operation with experts on application of today`s instrumentation and control technology. In this way, a match was made between those knowing the industry needs and requirements and those knowing the potentials of the technology. Refs, figs and tabs.

  6. Control for nuclear reactor

    International Nuclear Information System (INIS)

    Ash, E.B.; Bernath, L.; Facha, J.V.

    1980-01-01

    A nuclear reactor is provided with several hydraulically-supported spherical bodies having a high neutron absorption cross section, which fall by gravity into the core region of the reactor when the flow of supporting fluid is shut off. (auth)

  7. Nuclear export controls and nuclear safeguards

    International Nuclear Information System (INIS)

    Sevini, F.

    2013-01-01

    The export control of dual use goods has developed since the early seventies to counter nuclear proliferation. The paper provides an overview of dual-use export control issues also in relation with the Additional Protocol to the Comprehensive Safeguards Agreement, which requires States to provide declarations of the export of the controlled items listed in its Annex II, derived from the Nuclear Suppliers Group Trigger list. Recommendations for improvement are proposed. On the EU level, the paper summarises the framework set by the European Council Regulation 428/2009, requiring Member States to impose control on exports, brokering and transit of dual use goods. The Regulation includes the so-called 'EU dual-use control list' integrating the lists of dual-use items defined by the international regimes and requires also the control on intangible technology transfers as foreseen by U.N. Security Council Resolution 1540. ESARDA has recently launched a new sub-Working Group on export control, which raised large interest and may evolve to a full-fledged working group. Export control may provide an opportunity of technical collaboration between ESARDA and INMM. The paper is followed by the slides of the presentation. (author)

  8. Security of material: Preventing criminal activities involving nuclear and other radioactive materials

    International Nuclear Information System (INIS)

    Nilsson, A.

    2001-01-01

    The report emphasizes the need for national regulatory authorities to include in the regulatory systems, measures to control and protect nuclear materials from being used in illegal activities, as well as aspects of relevance for detecting and responding to illegal activities involving nuclear and other radioactive materials. The report will give an overview of the international treaties and agreements that underpin the establishment of a regulatory structure necessary for States to meet their non-proliferation policy and undertakings. Ongoing work to strengthen the protection of nuclear material and to detect and respond to illegal activities involving nuclear and other radioactive material will be included. The focus of the paper is on the need for standards and national regulation in the nuclear security area. (author)

  9. The physical protection of nuclear material and nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-06-01

    The latest review (1993) of this document was of limited scope and resulted in changes to the text of INFCIRC/225/Rev.2 designed to make the categorization table in that document consistent with the categorization table contained in the Convention on Physical Protection of Nuclear Materials. Consequently, a comprehensive review of INFCIRC/225 has not been conducted since 1989. Consequently, a meeting of national experts was convened from 2-5 June 1998 and from 27-29 October 1998 for a thorough review of INFCIRC/225/Rev.3. The revised document reflects the recommendations of the national experts to improve the structure and clarity of the document and to take account of improved technology and current international and national practices. In particular, a chapter has been added which provides specific recommendations related to sabotage of nuclear facilities and nuclear material. As a result of this addition, the title has been changed to 'The Physical Protection of Nuclear Material and Nuclear Facilities'. The recommendations presented in this IAEA document reflect a broad consensus among Member States on the requirements which should be met by systems for the physical protection of nuclear materials and facilities. It is hoped that they will provide helpful guidance for Member States.

  10. The physical protection of nuclear material and nuclear facilities

    International Nuclear Information System (INIS)

    1999-06-01

    The latest review (1993) of this document was of limited scope and resulted in changes to the text of INFCIRC/225/Rev.2 designed to make the categorization table in that document consistent with the categorization table contained in the Convention on Physical Protection of Nuclear Materials. Consequently, a comprehensive review of INFCIRC/225 has not been conducted since 1989. Consequently, a meeting of national experts was convened from 2-5 June 1998 and from 27-29 October 1998 for a thorough review of INFCIRC/225/Rev.3. The revised document reflects the recommendations of the national experts to improve the structure and clarity of the document and to take account of improved technology and current international and national practices. In particular, a chapter has been added which provides specific recommendations related to sabotage of nuclear facilities and nuclear material. As a result of this addition, the title has been changed to 'The Physical Protection of Nuclear Material and Nuclear Facilities'. The recommendations presented in this IAEA document reflect a broad consensus among Member States on the requirements which should be met by systems for the physical protection of nuclear materials and facilities. It is hoped that they will provide helpful guidance for Member States

  11. Nuclear materials transport in France

    International Nuclear Information System (INIS)

    Korycanek, J.

    1990-01-01

    About 1.5 million tons of uranium ore, 8000 tons of uranium concentrate, 1000 tons of UF 6 , 340 spent fuel containers, and 30 000 m 3 of nuclear wastes are transported annually by trucks, trains and ships in France. Annual costs of this transportation amount to 500-600 million FRF, and about 200 employees are engaged in this activity. Transportation of spent fuel to the La Hague and Marcoule fuel reprocessing plants, and the transport of plutonium are dealt with in detail. (Z.M.). 5 figs., 1 ref

  12. Verification and nuclear material security

    International Nuclear Information System (INIS)

    ElBaradei, M.

    2001-01-01

    Full text: The Director General will open the symposium by presenting a series of challenges facing the international safeguards community: the need to ensure a robust system, with strong verification tools and a sound research and development programme; the importance of securing the necessary support for the system, in terms of resources; the effort to achieve universal participation in the non-proliferation regime; and the necessity of re-energizing disarmament efforts. Special focus will be given to the challenge underscored by recent events, of strengthening international efforts to combat nuclear terrorism. (author)

  13. Radiation Effects in Nuclear Waste Materials

    International Nuclear Information System (INIS)

    Weber, William J.

    2005-01-01

    The objective of this project is to develop a fundamental understanding of radiation effects in glasses and ceramics, as well as the influence of solid-state radiation effects on aqueous dissolution kinetics, which may impact the performance of nuclear waste forms and stabilized nuclear materials. This work provides the underpinning science to develop improved glass and ceramic waste forms for the immobilization and disposition of high-level tank waste, excess plutonium, plutonium residues and scrap, other actinides, and other nuclear waste streams. Furthermore, this work is developing develop predictive models for the performance of nuclear waste forms and stabilized nuclear materials. Thus, the research performed under this project has significant implications for the immobilization of High-Level Waste (HLW) and Nuclear Materials, two mission areas within the Office of Environmental Management (EM). With regard to the HLW mission, this research will lead to improved understanding of radiation-induced degradation mechanisms and their effects on dissolution kinetics, as well as development of predictive models for waste form performance. In the Nuclear Materials mission, this research will lead to improvements in the understanding of radiation effects on the chemical and structural properties of materials for the stabilization and long-term storage of plutonium, highly-enriched uranium, and other actinides. The research uses plutonium incorporation, ion-beam irradiation, and electron-beam irradiation to simulate the effects of alpha decay and beta decay on relevant glasses and ceramics. The research under this project has the potential to result in improved glass and ceramic materials for the stabilization and immobilization of high-level tank waste, plutonium residues and scraps, surplus weapons plutonium, highly-enriched uranium, other actinides, and other radioactive materials

  14. Radiation Effects in Nuclear Waste Materials

    International Nuclear Information System (INIS)

    Weber, William J.; Wang, Lumin; Hess, Nancy J.; Icenhower, Jonathan P.; Thevuthasan, Suntharampillai

    2003-01-01

    The objective of this project is to develop a fundamental understanding of radiation effects in glasses and ceramics, as well as the influence of solid-state radiation effects on aqueous dissolution kinetics, which may impact the performance of nuclear waste forms and stabilized nuclear materials. This work provides the underpinning science to develop improved glass and ceramic waste forms for the immobilization and disposition of high-level tank waste, excess plutonium, plutonium residues and scrap, other actinides, and other nuclear waste streams. Furthermore, this work is developing develop predictive models for the performance of nuclear waste forms and stabilized nuclear materials. Thus, the research performed under this project has significant implications for the immobilization of High-Level Waste (HLW) and Nuclear Materials, two mission areas within the Office of Environmental Management (EM). With regard to the HLW mission, this research will lead to improved understanding of radiation-induced degradation mechanisms and their effects on dissolution kinetics, as well as development of predictive models for waste form performance. In the Nuclear Materials mission, this research will lead to improvements in the understanding of radiation effects on the chemical and structural properties of materials for the stabilization and long-term storage of plutonium, highly-enriched uranium, and other actinides. The research uses plutonium incorporation, ion-beam irradiation, and electron-beam irradiation to simulate the effects of alpha decay and beta decay on relevant glasses and ceramics. The research under this project has the potential to result in improved glass and ceramic materials for the stabilization and immobilization of high-level tank waste, plutonium residues and scraps, surplus weapons plutonium, highly-enriched uranium, other actinides, and other radioactive materials

  15. Polymers for nuclear materials processing

    International Nuclear Information System (INIS)

    Jarvinen, G.; Benicewicz, B.; Duke, J.

    1996-01-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The use of open-celled microcellular foams as solid sorbents for metal ions and other solutes could provide a revolutionary development in separation science. Macroreticular and gel-bead materials are the current state-of-the-art for solid sorbents to separate metal ions and other solutes from solution. The new polymer materials examined in this effort offer a number of advantages over the older materials that can have a large impact on industrial separations. The advantages include larger usable surface area in contact with the solution, faster sorption kinetics, ability to tailor the uniform cell size to a specific application, and elimination of channeling and packing instability

  16. On determination of limit of effective dose for living bodies concerning control areas of nuclear law material mines

    International Nuclear Information System (INIS)

    1977-01-01

    The Notification is based on the prescriptions of the Safety Regulation of Metal Mines. The permissible levels of effective dose for living bodies and others concerning control areas are defined as follows: the effective dose of external radiation for living bodies should be less than 30 millirems in a consecutive week; the concentrations of radioactive substances in the air or in the water possibly drunk by men are specified respectively for Rn 220, Rn 222, Th and U; the densities of such substances on the surfaces of things contaminated by such elements in refineries should be less than 10 micro-micro-curies per centi-meter 2 , etc. Such permissible levels in residential quarters are defined as follows: the effective dose of external radiation for living bodies should be less than 10 millirems in a consecutive week; the concentrations of radioactive substances in the air or in the water possibly drunk by men are specified respectively for Rn 220, Rn 222, Th and U, etc. The permissible exposure dose for miners working regularly in control areas should be less than 3 rems in three consecutive months. The permissible limit of accumulated dose should be less than the figure, in the unit of rem, which is obtained by multiplying the figure of age of the miner concerned minus 18 by 5. (Okada, K.)

  17. Modernization of instrumentation and control systems in nuclear power plants. Working material. Report of an advisory group meeting

    International Nuclear Information System (INIS)

    1996-01-01

    The report attempts to address a very wide range of circumstances from, old plant operating at very low powers that face major ageing issues, to new potentially high performance plant for which it has been decided I and C improvements are required to resolve safety issues. The process of change raises many issues as to what potentially might be achieved by such a change to overcome obsolescence, economic and safety problems. The report must also include appropriate consideration of the increasingly international nature of the instrumentation and control system supply industry. Consequently, it does not ignore the different national approaches that are used to demonstrate the systems are suitable to be brought into service. The report does not seek to provide advice on how the different national licensing processes should be approached

  18. Safeguarding nuclear weapon: Usable materials in Russia

    International Nuclear Information System (INIS)

    Cochran, T.

    1998-01-01

    Both the United States and Russia are retaining as strategic reserves more plutonium and HEU for potential reuse as weapons, than is legitimately needed. Both have engaged in discussions and have programs in various stages of development to dispose of excess plutonium and HEU. These fissile material disposition programs will take decades to complete. In the interim there will be, as there is now, hundreds of tons of separated weapon-usable fissile