Landau Zener Effect in Superfluid Nuclear Systems
Mirea, M.
The Landau Zener effect is generalized for many-body systems with pairing residual interactions. The microscopic equations of motion are obtained and the 14C decay of 223Ra spectroscopic factors are deduced. An asymmetric nuclear shape parametrization given by two intersected spheres is used. The single particle level scheme is determined in the frame of the superasymmetric two-center shell model. The deformation energy is computed in the microscopic macroscopic approximation. The penetrabilities are obtained within the WKB approximation. The fine structure of the cluster decay analyzed in the frame of this formalism gives a very good agreement with the experimental ratio of partial half-lives for transition to the first excited state and to the ground state.
Landau-Zener effect in superfluid nuclear systems
Mirea, M.
2002-01-01
The Landau--Zener effect is generalized for many-body systems with pairing residual interactions. The microscopic equations of motion are obtained and the $^{14}$C decay of $^{223}$Ra spectroscopic factors are deduced. An asymmetric nuclear shape parametrization given by two intersected spheres is used. The single particle level scheme is determined in the frame of the superasymmetric two-center shell. The deformation energy is computed in the microscopic-macroscopic approximation. The penetr...
Landau-Zener effect in superfluid nuclear systems
Mirea, M
2003-01-01
The Landau--Zener effect is generalized for many-body systems with pairing residual interactions. The microscopic equations of motion are obtained and the $^{14}$C decay of $^{223}$Ra spectroscopic factors are deduced. An asymmetric nuclear shape parametrization given by two intersected spheres is used. The single particle level scheme is determined in the frame of the superasymmetric two-center shell. The deformation energy is computed in the microscopic-macroscopic approximation. The penetrabilities are obtained within the WKB approximation. The fine structure of the cluster decay analyzed in the frame of this formalism gives a very good agreement with the experimental ratio of partial half-lives obtained in special conditions
Effects of periodic modulation on the nonlinear Landau-Zener tunneling
Institute of Scientific and Technical Information of China (English)
Wu Li-Hua; Duan Wen-Shan
2009-01-01
We study the Landau-Zener tunneling of a nonlinear two-level system by applying a periodic modulation on its energy bias. We find that the two levels are splitting at the zero points of the zero order Bessel function for high-frequency modulation. Moreover, we obtain the effective coupling constant between two levels at the zero points of the zero order Bessel function by calculating the final tunneling probability at these points. It seems that the effective coupling constant can be regarded as the approximation of the higher order Bessel function at these points. For the low-frequency modulation, we find that the final tunneling probability is a function of the interaction strength. For the weak inter-level coupling case, we find that the final tunneling probability is more disordered as the interaction strength becomes larger.
Landau-Zener-Stueckelberg interferometry
Energy Technology Data Exchange (ETDEWEB)
Shevchenko, S.N., E-mail: sshevchenko@ilt.kharkov.u [B.Verkin Institute for Low Temperature Physics and Engineering, Kharkov (Ukraine); RIKEN Advanced Science Institute, Wako-shi, Saitama (Japan); Ashhab, S.; Nori, Franco [RIKEN Advanced Science Institute, Wako-shi, Saitama (Japan); Department of Physics, The University of Michigan, Ann Arbor, MI (United States)
2010-07-15
A transition between energy levels at an avoided crossing is known as a Landau-Zener transition. When a two-level system (TLS) is subject to periodic driving with sufficiently large amplitude, a sequence of transitions occurs. The phase accumulated between transitions (commonly known as the Stueckelberg phase) may result in constructive or destructive interference. Accordingly, the physical observables of the system exhibit periodic dependence on the various system parameters. This phenomenon is often referred to as Landau-Zener-Stueckelberg (LZS) interferometry. Phenomena related to LZS interferometry occur in a variety of physical systems. In particular, recent experiments on LZS interferometry in superconducting TLSs (qubits) have demonstrated the potential for using this kind of interferometry as an effective tool for obtaining the parameters characterizing the TLS as well as its interaction with the control fields and with the environment. Furthermore, strong driving could allow for fast and reliable control of the quantum system. Here we review recent experimental results on LZS interferometry, and we present related theory.
Rodionov, Ya. I.; Kugel, K. I.; Nori, Franco
2016-11-01
Using the Landau-Zener-Stückelberg-Majorana-type (LZSM) semiclassical approach, we study both graphene and a thin film of a Weyl semimetal subjected to a strong ac electromagnetic field. The spectrum of quasienergies in the Weyl semimetal turns out to be similar to that of a graphene sheet. It has been predicted qualitatively that the transport properties of strongly irradiated graphene oscillate as a function of the radiation intensity [S. V. Syzranov et al., Phys. Rev. B 88, 241112 (2013)], 10.1103/PhysRevB.88.241112. Here we obtain rigorous quantitative results for a driven linear conductance of graphene and a thin film of a Weyl semimetal. The exact quantitative structure of oscillations exhibits two contributions. The first one is a manifestation of the Ramsauer-Townsend effect, while the second contribution is a consequence of the LZSM interference defining the spectrum of quasienergies.
Duality in Landau-Zener-Stueckelberg potential curve crossing
Fujikawa, K; Fujikawa, Kazuo; Suzuki, Hiroshi
1997-01-01
It is pointed out that there exists an interesting strong and weak duality in the Landau-Zener-Stueckelberg potential curve crossing. A reliable perturbation theory can thus be formulated in the both limits of weak and strong interactions. It is shown that main characteristics of the potential crossing phenomena such as the Landau-Zener formula including its numerical coefficient are well-described by simple (time-independent) perturbation theory without referring to Stokes phenomena. A kink-like topological object appears in the ``magnetic'' picture, which is responsible for the absence of the coupling constant in the prefactor of the Landau-Zener formula. It is also shown that quantum coherence in a double well potential is generally suppressed by the effect of potential curve crossing, which is analogous to the effect of Ohmic dissipation on quantum coherence.
Nonlinear Landau-Zener tunneling in quantum phase space
Energy Technology Data Exchange (ETDEWEB)
Trimborn, F [Institut fuer theoretische Physik, Leibniz Universitaet Hannover, D-30167 Hannover (Germany); Witthaut, D [QUANTOP, Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen (Denmark); Kegel, V; Korsch, H J, E-mail: friederike.trimborn@itp.uni-hannover.d [Fachbereich Physik, TU Kaiserslautern, D-67663 Kaiserslautern (Germany)
2010-05-15
We present a detailed analysis of the Landau-Zener problem for an interacting Bose-Einstein condensate in a time-varying double-well trap, especially focusing on the relation between the full many-particle problem and the mean-field approximation. Due to the nonlinear self-interaction a dynamical instability occurs, which leads to a breakdown of adiabaticity and thus fundamentally alters the dynamics. It is shown that essentially all the features of the Landau-Zener problem including the depletion of the condensate mode can be already understood within a semiclassical phase-space picture. In particular, this treatment resolves the formerly imputed incommutability of the adiabatic and semiclassical limits. The possibility of exploiting Landau-Zener sweeps to generate squeezed states for spectroscopic tasks is analyzed in detail. Moreover, we study the influence of phase noise and propose a Landau-Zener sweep as a sensitive yet readily implementable probe for decoherence, since the noise has significant effect on the transition rate for slow parameter variations.
Landau-Zener type surface hopping algorithms
Belyaev, Andrey K; Trigila, Giulio
2014-01-01
A class of surface hopping algorithms is studied comparing two recent Landau-Zener (LZ) formulas for the probability of nonadiabatic transitions. One of the formulas requires a diabatic representation of the potential matrix while the other one depends only on the adiabatic potential energy surfaces. For each classical trajectory, the nonadiabatic transitions take place only when the surface gap attains a local minimum. Numerical experiments are performed with deterministically branching trajectories and with probabilistic surface hopping. The deterministic and the probabilistic approach confirm the good agreement of both the LZ probabilities as well the good approximation of the reference solution computed solving the Schroedinger equation via a grid based pseudo-spectral method. Visualizations of position expectations and superimposed surface hopping trajectories with reference position densities illustrate the effective dynamics of the investigated algorithms.
Landau-Zener transitions mediated by an environment: population transfer and energy dissipation.
Dodin, Amro; Garmon, Savannah; Simine, Lena; Segal, Dvira
2014-03-28
We study Landau-Zener transitions between two states with the addition of a shared discretized continuum. The continuum allows for population decay from the initial state as well as indirect transitions between the two states. The probability of nonadiabatic transition in this multichannel model preserves the standard Landau-Zener functional form except for a shift in the usual exponential factor, reflecting population transfer into the continuum. We provide an intuitive explanation for this behavior assuming individual, independent transitions between pairs of states. In contrast, the ground state survival probability at long time shows a novel, non-monotonic, functional form with an oscillatory behavior in the sweep rate at low sweep rate values. We contrast the behavior of this open-multistate model to other generalized Landau-Zener models incorporating an environment: the stochastic Landau-Zener model and the dissipative case, where energy dissipation and thermal excitations affect the adiabatic region. Finally, we present evidence that the continuum of states may act to shield the two-state Landau-Zener transition probability from the effect of noise.
Landau-Zener transition driven by slow noise
Luo, Zhu-Xi; Raikh, M. E.
2017-02-01
The effect of a slow noise in nondiagonal matrix element J (t ) that describes the diabatic level coupling on the probability of the Landau-Zener transition is studied. For slow noise, the correlation time τc of J (t ) is much longer than the characteristic time of the transition. Existing theory for this case suggests that the average transition probability is the result of averaging of the conventional Landau-Zener probability, calculated for a given constant J , over the distribution of J . We calculate a finite-τc correction for this classical result. Our main finding is that this correction is dominated by sparse realizations of noise for which J (t ) passes through zero within a narrow time interval near the level crossing. Two models of noise, random telegraph noise and Gaussian noise, are considered. Naturally, in both models the average probability of transition decreases upon decreasing τc. For Gaussian noise we identify two domains of this falloff with specific dependencies of average transition probability on τc.
Landau-Zener Bloch Oscillations with Perturbed Flat Bands.
Khomeriki, Ramaz; Flach, Sergej
2016-06-17
Sinusoidal Bloch oscillations appear in band structures exposed to external fields. Landau-Zener (LZ) tunneling between different bands is usually a counteracting effect limiting Bloch oscillations. Here we consider a flat band network with two dispersive and one flat band, e.g., for ultracold atoms and optical waveguide networks. Using external synthetic gauge and gravitational fields we obtain a perturbed yet gapless band structure with almost flat parts. The resulting Bloch oscillations consist of two parts-a fast scan through the nonflat part of the dispersion structure, and an almost complete halt for substantial time when the atomic or photonic wave packet is trapped in the original flat band part of the unperturbed spectrum, made possible due to LZ tunneling.
Yan, Jie-Yun; Wang, Lan-Yu
2016-09-01
We investigate the atomic current in optical lattices under the presence of both constant and periodic external field with Landau-Zener tunneling considered. By simplifying the system to a two-band model, the atomic current is obtained based on the Boltzmann equations. We focus on three situations to discuss the influence of the Landau-Zener tunneling and periodic field on the atomic current. Numerical calculations show the atomic transient current would finally become the stable oscillation, whose amplitude and average value can be further adjusted by the periodic external field. It is concluded that the periodic external field could provide an effective modulation on the atomic current even when the Landau-Zener tunneling probability has almostly become a constant.
Quantum system driven by incoherent a.c fields: Multi-crossing Landau Zener dynamics
Jipdi, M. N.; Fai, L. C.; Tchoffo, M.
2016-10-01
The paper investigates the multi-crossing dynamics of a Landau-Zener (LZ) system driven by two sinusoidal a.c fields applying the Dynamic Matrix approach (DMA). The system is shown to follow one-crossing and multi-crossing dynamics for low and high frequency regime respectively. It is shown that in low frequency regime, the resonance phenomenon occurs and leads to the decoupling of basis states; the effective gap vanishes and then the complete blockage of the system. For high frequency, the system achieves multi-crossing dynamics with two fictitious crossings; the system models a Landau-Zener-Stückelberg (LZS) interferometer with critical parameters that tailor probabilities. The system is then shown to depend only on the phase that permits the easiest control with possible application in implementing logic gates.
Dissipative Landau-Zener quantum dynamics with transversal and longitudinal noise
Javanbakht, S.; Nalbach, P.; Thorwart, M.
2015-05-01
We determine the Landau-Zener transition probability in a dissipative environment including both longitudinal as well as transversal quantum-mechanical noise originating from a single noise source. For this, we use the numerically exact quasiadiabatic path integral, as well as the approximative nonequilibrium Bloch equations. We find that transversal quantum noise in general influences the Landau-Zener probability much more strongly than longitudinal quantum noise does at a given temperature and system-bath coupling strength. In other words, transversal noise contributions become important even when the coupling strength of transversal noise is smaller than that of longitudinal noise. We furthermore reveal that transversal noise renormalizes the tunnel coupling independent of temperature. Finally, we show that the effect of mixed longitudinal and transversal noise originating from a single bath cannot be obtained from an incoherent sum of purely longitudinal and purely transversal noise.
Dissipative Landau-Zener problem and thermally assisted Quantum Annealing
Arceci, Luca; Barbarino, Simone; Fazio, Rosario; Santoro, Giuseppe E.
2017-08-01
We revisit here the issue of thermally assisted Quantum Annealing by a detailed study of the dissipative Landau-Zener problem in the presence of a Caldeira-Leggett bath of harmonic oscillators, using both a weak-coupling quantum master equation and a quasiadiabatic path-integral approach. Building on the known zero-temperature exact results [Wubs et al., Phys. Rev. Lett. 97, 200404 (2006), 10.1103/PhysRevLett.97.200404], we show that a finite temperature bath can have a beneficial effect on the ground-state probability only if it couples also to a spin direction that is transverse with respect to the driving field, while no improvement is obtained for the more commonly studied purely longitudinal coupling. In particular, we also highlight that, for a transverse coupling, raising the bath temperature further improves the ground-state probability in the fast-driving regime. We discuss the relevance of these findings for the current quantum-annealing flux qubit chips.
Nonlinear Landau-Zener tunneling in quantum phase space
Trimborn, F; Kegel, V; Korsch, H J; 10.1088/1367-2630/12/5/053010
2010-01-01
We present a detailed analysis of the Landau-Zener problem for an interacting Bose-Einstein condensate in a time-varying double-well trap, especially focussing on the relation between the full many-particle problem and the mean-field approximation. Due to the nonlinear self-interaction a dynamical instability occurs, which leads to a breakdown of adiabaticity condition and thus fundamentally alters the dynamics. It is shown that essentially all features of the Landau-Zener problem including the depletion of the condensate mode can be already understood within a semiclassical phase space picture. In particular, this treatment resolves the formerly imputed incommutability of the adiabatic and semiclassical limits. The possibility to exploit Landau-Zener sweeps to generate squeezed states for spectroscopic tasks is analysed in detail. Moreover, we study the influence of phase noise and propose a Landau-Zener sweep as a sensitive, yet readily implementable probe for decoherence, since this has a significant effec...
A Simple Approach to the Landau-Zener Formula
Vutha, Amar C.
2010-01-01
The Landau-Zener formula provides the probability of non-adiabatic transitions occurring when two energy levels are swept through an avoided crossing. The formula is derived here in a simple calculation that emphasizes the physics responsible for non-adiabatic population transfer. (Contains 2 figures.)
Tailoring Population Inversion in Landau-Zener-Stückelberg Interferometry of Flux Qubits
Ferrón, Alejandro; Domínguez, Daniel; Sánchez, María José
2012-12-01
We distinguish different mechanisms for population inversion in flux qubits driven by dc+ac magnetic fields. We show that for driving amplitudes such that there are Landau-Zener-Stückelberg interferences, it is possible to have population inversion solely mediated by the environmental bath. Furthermore, we find that the degree of population inversion can be controlled by tailoring a resonant frequency Ωp in the environmental bath. To observe these effects experiments should be performed for long driving times after full relaxation.
Quantum Information Transfer in Circuit QED with Landau-Zener Tunneling
Institute of Scientific and Technical Information of China (English)
LI Jun-Wang; WU Chun-Wang; DAI Hong-Yi
2011-01-01
We propose a scheme to implement quantum information transfer between Cooper-pair boxes (CPBs) in a circuit quantum electrodynamic (QED) system with Landau-Zener tunneling. The system consists of two CPB qubits and a one-dimensional transmission line resonator (TLR). By analytically solving the eigenequation and numerically calculating the transition probability, the results show the quantum state transfer from one qubit to another via a fast adiabatic passage. The coupling mechanism is robust against decoherence effects.%@@ We propose a scheme to implement quantum information transfer between Cooper-pair boxes(CPBs)in a circuit quantum electrodynamic(QED)system with Landau-Zener tunneling.The system consists of two CPB qubits and a one-dimensional transmission line resonator(TLR).By analytically solving the eigenequation and numeri-cally calculating the transition probability,the results show the quantum state transfer from one qubit to another via a fast adiabatic passage.The coupling mechanism is robust against decoherence effects.
Dissipation in small systems: Landau-Zener approach.
Barra, Felipe; Esposito, Massimiliano
2016-06-01
We establish a stochastic thermodynamics for a Fermionic level driven by a time-dependent force and interacting with initially thermalized levels playing the role of a reservoir. The driving induces consecutive avoided crossings between system and reservoir levels described within Landau-Zener theory. We derive the resulting system dynamics and thermodynamics and identify energy, work, heat, entropy, and dissipation. Our theory perfectly reproduces the numerically exact quantum work statistics obtained using a two point measurements approach of the total energy and provides an explicit expression for the dissipation in terms of diabatic transitions.
Gaussian wave packet dynamics and the Landau-Zener model for nonadiabatic transitions
DEFF Research Database (Denmark)
Henriksen, Niels Engholm
1992-01-01
The Landau-Zener model for transitions between two linear diabatic potentials is examined. We derive, in the weak-coupling limit, an expression for the transition probability where the classical trajectory and the constant velocity approximations are abandoned and replaced by quantum dynamics...... described by a Gaussian wavepacket. A remarkable agreement with the results from the simple Landau-Zener formula is observed....
Solution to the Landau-Zener problem via Susskind-Glogower operators
Energy Technology Data Exchange (ETDEWEB)
Rodriguez-Lara, B.M., E-mail: cqtbmrl@nus.edu.sg [Centre for Quantum Technologies, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore); Rodriguez-Mendez, D. [INAOE, Coordinacion de Optica, Apdo. Postal 51 y 216, 72000 Puebla, Pue. (Mexico); Moya-Cessa, H., E-mail: hmmc@inaoep.mx [INAOE, Coordinacion de Optica, Apdo. Postal 51 y 216, 72000 Puebla, Pue. (Mexico)
2011-10-17
We show that, by means of a right-unitary transformation, the fully quantized Landau-Zener Hamiltonian in the weak-coupling regime may be solved by using known solutions from the standard Landau-Zener problem. In the strong-coupling regime, where the rotating wave approximation is not valid, we show that the quantized Landau-Zener Hamiltonian may be diagonalized in the atomic basis by means of a unitary transformation; hence allowing numerical solutions for the few photons regime via truncation. -- Highlights: → We study a full quantum Landau-Zener model derived from the Jaynes-Cummings model. → The model within the rotating wave appoximation is diagonalized in the field basis. → Solutions to the quantum model are presented in terms of well-know solutions to the classical Landau-Zener problem. → The model without the rotating wave appoximation is diagonalized in the qubit basis.
Transition times in the Landau-Zener model
Vitanov, N V
1999-01-01
This paper presents analytic formulas for various transition times in the Landau-Zener model. Considerable differences are found between the transition times in the diabatic and adiabatic bases, and between the jump time (the time for which the transition probability rises to the region of its asymptotic value) and the relaxation time (the characteristic damping time of the oscillations which appear in the transition probability after the crossing). These transition times have been calculated by using the exact values of the transition probabilities and their derivatives at the crossing point and approximations to the time evolutions of the transition probabilities in the diabatic basis, derived earlier \\protect{[}N. V. Vitanov and B. M. Garraway, Phys. Rev. A {\\bf 53}, 4288 (1996)\\protect{]}, and similar results in the adiabatic basis, derived in the present paper.
Loss of adiabaticity with increasing tunneling gap in nonintegrable multistate Landau-Zener models
Malla, Rajesh K.; Raikh, M. E.
2017-09-01
We consider the simplest nonintegrable model of the multistate Landau-Zener transition. In this model, two pairs of levels in two tunnel-coupled quantum dots are swept past each other by the gate voltage. Although this 2 ×2 model is nonintegrable, it can be solved analytically in the limit when the interlevel energy distance is much smaller than their tunnel splitting. The result is contrasted to the similar 2 ×1 model, in which one of the dots contains only one level. The latter model does not allow interference of the virtual transition amplitudes, and it is exactly solvable. In the 2 ×1 model, the probability for a particle, residing at time t →-∞ in one dot, to remain in the same dot at t →∞ , falls off exponentially with tunnel coupling. By contrast, in the 2 ×2 model, this probability grows rapidly with tunnel coupling. The physical origin of this growth is the formation of the tunneling-induced collective states in the system of two dots. This can be viewed as a manifestation of the Dicke effect.
Counterintuitive transitions in the multistate Landau-Zener problem with linear level crossings
Sinitsyn, N A
2004-01-01
We generalize the Brundobler-Elser hypothesis in the multistate Landau-Zener problem to the case when instead of a state with the highest slope of the diabatic energy level there is a band of states with an arbitrary number of parallel levels having the same slope. We argue that the probabilities of counterintuitive transitions among such states are exactly zero.
de Lima, M M; Kosevich, Yu A; Santos, P V; Cantarero, A
2010-04-23
We present the experimental observation of Bloch oscillations, the Wannier-Stark ladder, and Landau-Zener tunneling of surface acoustic waves in perturbed grating structures on a solid substrate. A model providing a quantitative description of our experimental observations, including multiple Landau-Zener transitions of the anticrossed surface acoustic Wannier-Stark states, is developed. The use of a planar geometry for the realization of the Bloch oscillations and Landau-Zener tunneling allows a direct access to the elastic field distribution. The vertical surface displacement has been measured by interferometry.
Llorente, J M Gomez
2016-01-01
We analytically study the effect of gravitational and harmonic forces on ultra-cold atoms with synthetic spin-orbit coupling (SOC). In particular, we focus on the recently observed transitions between internal states induced by acceleration of the external modes. Our description corresponds to a generalized version of the Landau-Zener (LZ) model: the dimensionality is enlarged to combine the quantum treatment of the external variables with the internal-state characterization; additionally, atomic-interaction effects are considered. The emergence of the basic model is analytically traced. Namely, by using a sequence of unitary transformations and a subsequent reduction to the spin space, the SOC Hamiltonian, with the gravitational potential incorporated, is exactly converted into the primary LZ scenario. Moreover, the transitions induced by harmonic acceleration are approximately cast into the framework of the basic LZ model through a complete analytical procedure. We evaluate how the validity of our picture d...
Hasan, F.; O'Dell, D. H. J.
2016-10-01
We perform a theoretical investigation into the classical and quantum dynamics of an optical field in a cavity containing a moving membrane ("membrane-in-the-middle" setup). Our approach is based on the Maxwell wave equation and complements previous studies based on an effective Hamiltonian. The analysis shows that for slowly moving and weakly reflective membranes the classical field dynamics can be approximated by first-order-in-time evolution given by an effective Schrödinger-type equation with a Hamiltonian that does not depend on the membrane speed. This approximate theory is the one typically adopted in cavity optomechanics and we develop a criterion for its validity. However, in more general situations, the full second-order wave equation predicts light dynamics which do not conserve energy, giving rise to parametric amplification (or attenuation) that is forbidden under first-order dynamics and can be considered to be the classical counterpart of the dynamical Casimir effect. The case of a membrane moving at constant velocity can be mapped onto the Landau-Zener problem, but with additional terms responsible for field amplification. Furthermore, the nature of the adiabatic regime is rather different from the ordinary Schrödinger case since mode amplitudes need not be constant even when there are no transitions between them. The Landau-Zener problem for a field is therefore richer than in the standard single-particle case. We use the work-energy theorem applied to the radiation pressure on the membrane as a self-consistency check for our solutions of the wave equation and as a tool to gain an intuitive understanding of energy pumped into or out of the light field by the motion of the membrane.
Landau-Zener-Stückelberg-Majorana lasing in circuit quantum electrodynamics
Neilinger, P.; Shevchenko, S. N.; Bogár, J.; Rehák, M.; Oelsner, G.; Karpov, D. S.; Hübner, U.; Astafiev, O.; Grajcar, M.; Il'ichev, E.
2016-09-01
We demonstrate amplification (and attenuation) of a probe signal by a driven two-level quantum system in the Landau-Zener-Stückelberg-Majorana regime by means of an experiment, in which a superconducting qubit was strongly coupled to a microwave cavity, in a conventional arrangement of circuit quantum electrodynamics. Two different types of flux qubit, specifically a conventional Josephson junctions qubit and a phase-slip qubit, show similar results, namely, lasing at the working points where amplification takes place. The experimental data are explained by the interaction of the probe signal with Rabi-like oscillations. The latter are created by constructive interference of Landau-Zener-Stückelberg-Majorana (LZSM) transitions during the driving period of the qubit. A detailed description of the occurrence of these oscillations and a comparison of obtained data with both analytic and numerical calculations are given.
Landau-Zener-Stueckelberg interferometry with low- and high-frequency driving
Shevchenko, Sergey; Ashhab, Sahel; Nori, Franco
2010-03-01
The problem of a periodically driven two-level system cannot be solved exactly. The rotating-wave approximation (RWA) is the most common approximation used to analyze this problem. I will discuss an alternative approximation that applies in the case of very strong driving, where the RWA is generally invalid. The dynamics is approximated by a sequence of Landau-Zener transitions that can interfere constructively or destructively, depending on the Stueckelberg phase accumulated between transitions. It turns out that the resonance conditions are qualitatively different for the cases of low- and high-frequency driving. I will discuss the two respective limits. I will also show that our theoretical results describe recent experiments on Landau-Zener-Stuckelberg interferometry with superconducting qubits [S.N. Shevchenko, S. Ashhab, and F. Nori, arXiv:0911.1917].
Population Inversion Induced by Landau-Zener Transition in a Strongly Driven rf-SQUID
Sun, Guozhu; Wang, Yiwen; Cong, Shanhua; Chen, Jian; Kang, Lin; Xu, Weiwei; Yu, Yang; Han, Siyuan; Wu, Peiheng
2010-01-01
Microwave resonances between discrete macroscopically distinct quantum states with single photon and multiphoton absorption are observed in a strongly driven radio frequency superconducting quantum interference device flux qubit. The amplitude of the resonant peaks and dips are modulated by the power of the applied microwave irradiation and a population inversion is generated at low flux bias. These results, which can be addressed with Landau-Zener transition, are useful to develop an alternative means to initialize and manipulate the flux qubit, as well as to do a controllable population inversion used in a micromaser.
Shevchenko, Sergey; Ashhab, Sahel; Nori, Franco
2013-03-01
We consider theoretically a superconducting qubit - nanomechanical resonator system, which was realized recently by LaHaye et al. [Nature 459, 960 (2009)]. We formulate and solve the inverse Landau-Zener-Stuckelberg problem, where we assume the driven qubit's state to be known (i.e. measured by some other device) and aim to find the parameters of the qubit's Hamiltonian. In particular, for our system the qubit's bias is defined by the nanomechanical resonator's displacement. This may provide a tool for monitoring the nanomechanical resonator 's position. [S. N. Shevchenko, S. Ashhab, and F. Nori, Phys. Rev. B 85, 094502 (2012).
Institute of Scientific and Technical Information of China (English)
Zhang Bing-Zhi; Cui Hu; Li Xiang-Heng; She Wei-Long
2009-01-01
We theoretically study the beam dynamical hehaviour in a modulated optical lattice with a quadratic potential in a photovoltaic photorefractive crystal. We find that two different Bloch oscillation patterns appear for the excitation of both broad and narrow light beams. One kind of optical Landau-Zener tunnelling also appears upon the Bloch oscillation and can be controlled by adjusting the parameter of the optical lattice. Unlike the case of linear potential, the energy radiation due to Landau-Zener tunnelling can be confined in modulated lattices of this kind. For high input intensity levels, the Landau-Zener tunnelling is suppressed by the photovoltaic photorefractive nonlinearity and a symmetry breaking of beam propagation from the modulational instability appears.
DEFF Research Database (Denmark)
Malossi, Nicola; Bason, Mark George; Viteau, Matthieu
2013-01-01
We present experimental results on the preparation of a desired quantum state in a two-level system with the maximum possible fidelity using driving protocols ranging from generalizations of the linear Landau-Zener protocol to transitionless driving protocols that ensure perfect following of the ...
DEFF Research Database (Denmark)
Malossi, Nicola; Bason, Mark George; Viteau, Matthieu
2013-01-01
We present experimental results on the preparation of a desired quantum state in a two-level system with the maximum possible fidelity using driving protocols ranging from generalizations of the linear Landau-Zener protocol to transitionless driving protocols that ensure perfect following...
Landau-Zener transitions in spin qubit encoded in three quantum dots
Łuczak, Jakub; Bułka, Bogdan R.
2017-01-01
We study generation and dynamics of an exchange spin qubit encoded in three coherently coupled quantum dots with three electrons. For two geometries of the system, a linear and a triangular one, the creation and coherent control of the qubit states are performed by the Landau-Zener transitions. In the triangular case, both the qubit states are equivalent and can be easily generated for particular symmetries of the system. If one of the dots is smaller than the others, one can observe Rabi oscillations that can be used for coherent manipulation of the qubit states. The linear system is easier to fabricate; however, then the qubit states are not equivalent, making qubit operations more difficult to control.
Role of multilevel Landau-Zener interference in extreme harmonic generation
Stehlik, J.; Maialle, M. Z.; Degani, M. H.; Petta, J. R.
2016-08-01
Motivated by the observation of multiphoton electric dipole spin-resonance processes in InAs nanowires, we study theoretically the transport dynamics of a periodically driven five-level system, modeling the level structure of a two-electron double quantum dot. We show that the observed multiphoton resonances, which are dominant near interdot charge transitions, are due to multilevel Landau-Zener-Stückelberg-Majorana interference. Here, a third energy level serves as a shuttle that transfers population between the two resonant spin states. By numerically integrating the master equation, we replicate the main features observed in the experiments: multiphoton resonances (as large as eight photons), a robust odd-even dependence, and oscillations in the electric dipole spin-resonance signal as a function of energy-level detuning.
Photon-assisted Landau-Zener transition: Role of coherent superposition states
Sun, Zhe; Wang, Xiaoguang; Nori, Franco
2012-01-01
We investigate a Landau-Zener (LZ) transition process modelled by a quantum two-level system (TLS) coupled to a photon mode when the bias energy is varied linearly in time. The initial state of the photon field is assumed to be a superposition of coherent states, leading to a more intricate LZ transition. Applying the rotating-wave approximation (RWA), analytical results are obtained revealing the enhancement of the LZ probability by increasing the average photon number. We also consider the creation of entanglement and the change of photon statistics during the LZ process. When without the RWA, we find some qualitative differences of the LZ dynamics from the RWA results, e.g., the average photon number no longer monotonically enhances the LZ probability.
Asymmetric sequential Landau-Zener dynamics of Bose condensed atoms in a cavity
Huang, Jiahao; Qin, Xizhou; Zhong, Honghua; Lee, Chaohong
2016-01-01
We explore the asymmetric sequential Landau-Zener (LZ) dynamics in an ensemble of interacting Bose condensed two-level atoms coupled with a cavity field. Assuming the couplings between all atoms and the cavity field are identical, the interplay between atom-atom interaction and detuning may lead to a series of LZ transitions. Unlike the conventional sequential LZ transitions, which are symmetric to the zero detuning, the LZ transitions of Bose condensed atoms in a cavity field are asymmetric and sensitively depend on the photon number distribution of the cavity. In LZ processes involving single excitation numbers, both the variance of the relative atom number and the step slope of the sequential population ladder are asymmetric, and the asymmetry become more significant for smaller excitation numbers. Furthermore, in LZ processes involving multiple excitation numbers, there may appear asymmetric population ladders with decreasing step heights. During a dynamical LZ process, due to the atom-cavity coupling, th...
Wang, Li; Tu, Tao; Gong, Bo; Zhou, Cheng; Guo, Guang-Can
2016-01-07
High fidelity universal gates for quantum bits form an essential ingredient of quantum information processing. In particular, geometric gates have attracted attention because they have a higher intrinsic resistance to certain errors. However, their realization remains a challenge because of the need for complicated quantum control on a multi-level structure as well as meeting the adiabatic condition within a short decoherence time. Here, we demonstrate non-adiabatic quantum operations for a two-level system by applying a well-controlled geometric Landau-Zener-Stückelberg interferometry. By characterizing the gate quality, we also investigate the operation in the presence of realistic dephasing. Furthermore, the result provides an essential model suitable for understanding an interplay of geometric phase and Landau-Zener-Stückelberg process which are well explored separately.
Wang, Yiwen; Wen, Xueda; Pan, Cheng; Sun, Guozhu; Chen, Jian; Kang, Lin; Xu, Weiwei; Yu, Yang; Wu, Peiheng
2009-01-01
We irradiated an rf-SQUID qubit with large-amplitude and high frequency electromagnetic field. Population transitions between macroscopic distinctive quantum states due to Landau-Zener transitions at energy-level avoided crossings were observed. The qubit population on the excited states as a function of flux detuning and microwave power exhibits interference patterns. Some novel features are found in the interference and a model based on rate equations can well address the features.
Variational ansatz for the nonlinear Landau-Zener problem for cold atom association
Energy Technology Data Exchange (ETDEWEB)
Ishkhanyan, A [Institute for Physical Research NAS of Armenia, 0203 Ashtarak-2 (Armenia); Joulakian, B [LPMC, Universite Paul Verlaine-Metz, 1 Bld Arago, 57078 Metz Cedex 3 (France); Suominen, K-A [Department of Physics and Astronomy, University of Turku, 20014 Turun yliopisto (Finland)
2009-11-28
We present a rigorous analysis of the Landau-Zener linear-in-time term crossing problem for quadratic-nonlinear systems relevant to the coherent association of ultracold atoms in degenerate quantum gases. Our treatment is based on an exact third-order nonlinear differential equation for the molecular state probability. Applying a variational two-term ansatz, we construct a simple approximation that accurately describes the whole-time dynamics of the coupled atom-molecular system for any set of involved parameters. Ensuring an absolute error of less than 10{sup -5} for the final transition probability, the resultant solution improves by several orders of magnitude the accuracy of the previous approximations by A Ishkhanyan et al developed separately for the weak coupling (2005 J. Phys. A: Math. Gen. 38 3505) and strong interaction (2006 J. Phys. A: Math. Gen. 39 14887) limits. In addition, the constructed approximation covers the whole moderate-coupling regime, providing this intermediate regime with the same accuracy as the two mentioned limits. The obtained results reveal the remarkable observation, that for the strong-coupling limit the resonance crossing is mostly governed by the nonlinearity, while the coherent atom-molecular oscillations arising soon after the resonance has been crossed are basically of a linear nature. This observation is supposed to be of a general character, due to the basic attributes of the resonance-crossing processes in the nonlinear quantum systems of the discussed type of involved quadratic nonlinearity. (fast track communication)
Korkusinski, M.; Studenikin, S. A.; Aers, G.; Granger, G.; Kam, A.; Sachrajda, A. S.
2017-02-01
Manipulating qubits via electrical pulses in a piezoelectric material such as GaAs can be expected to generate incidental acoustic phonons. In this Letter we determine theoretically and experimentally the consequences of these phonons for semiconductor spin qubits using Landau-Zener-Stückelberg interferometry. Theoretical calculations predict that phonons in the presence of the spin-orbit interaction produce both phonon-Rabi fringes and accelerated evolution at the singlet-triplet anticrossing. Observed features confirm the influence of these mechanisms. Additionally, evidence is found that the pulsed gates themselves act as phonon cavities increasing the influence of phonons under specific resonant conditions.
Energy Technology Data Exchange (ETDEWEB)
Kosevich, Yurii A; Manevitch, Leonid I; Manevitch, E L [N N Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow (Russian Federation)
2010-12-31
The problem of irreversible targeted energy transfer is approached in a new way using the analogy between a system of two weakly coupled parametric pendulums or oscillators and nonadiabatic Landau - Zener tunneling in a two-state quantum system. This analogy predicts that efficient irreversible vibrational energy transfer is possible between two subsystems if the frequency of at least one of them changes adiabatically slowly with time, thus allowing an internal resonance to occur between them. We also show that evolution equations for the transition of the Landau - Zener tunneling type give a quantitative prediction for the part of the initially imparted energy that is retained asymptotically in the protected classical system. The findings made can be used for designing new types of energy traps for the dynamical protection of various mechanical systems. (methodological notes)
The Study of Single-phonon Landau-Zener Tunneling Pobability%单声子作用下的Landau—Zener隧穿概率研究
Institute of Scientific and Technical Information of China (English)
陈少容
2011-01-01
A new complete basis set was adopted to solve single-phonon Landau-Zener tunneling probability by solving the Schrodinger differential equation, then the result was compared with the result got by solving Landau-Zener formula. The result show that: In the case of weak coupling,the tunneling probability by solving the Schrodinger differential equation is consistent with the result got by solving Landau-Zener formula.%采用一种新的完备基矢,通过解薛定谔微分方程对Landau-Zener模型单模情况下的隧穿概率进行求解,再跟Landau-Zener概率公式计算出来的隧穿概率进行比较,计算的结果表明:在耦合强度比较低的情况下,通过解薛定谔微分方程求解出来的隧穿概率比较符合Landau-Zener概率公式计算出来的隧穿概率.
Cao, Gang; Li, Hai-Ou; Tu, Tao; Wang, Li; Zhou, Cheng; Xiao, Ming; Guo, Guang-Can; Jiang, Hong-Wen; Guo, Guo-Ping
2013-01-01
A basic requirement for quantum information processing is the ability to universally control the state of a single qubit on timescales much shorter than the coherence time. Although ultrafast optical control of a single spin has been achieved in quantum dots, scaling up such methods remains a challenge. Here we demonstrate complete control of the quantum-dot charge qubit on the picosecond scale [corrected], orders of magnitude faster than the previously measured electrically controlled charge- or spin-based qubits. We observe tunable qubit dynamics in a charge-stability diagram, in a time domain, and in a pulse amplitude space of the driven pulse. The observations are well described by Landau-Zener-Stückelberg interference. These results establish the feasibility of a full set of all-electrical single-qubit operations. Although our experiment is carried out in a solid-state architecture, the technique is independent of the physical encoding of the quantum information and has the potential for wider applications.
Ateuafack, M. E.; Diffo, J. T.; Fai, L. C.; Jipdi, M. N.
2017-01-01
The paper investigates exact time-dependent analytical solutions of the Landau-Zener (LZ) transitions for spin one-half subjected to classical noise field using rotation operator approach introduced by Zhou and co-authors. The particular case of the LZ model subjected to colored noise field is studied and extended to arbitrary spin magnitude. Transition probabilities are derived regardless of the initial configuration of the system and are found to be functions of the sort for Stokes constant. It is observed that the latter may be completely evaluated provided we have knowledge of the phase difference between noise in x - and y - directions. Transition probabilities are found to depend not only on the LZ parameter and noise frequency, but also on the states involved in the study. In particular, the coherence of the system is sustained for an exceedingly long time when many levels are considered in an atom and if in addition, the LZ parameter tends to unity and the noise' frequency is low.
Coherent manipulation of single electron spins with Landau-Zener sweeps
Rančić, Marko J.; Stepanenko, Dimitrije
2016-12-01
We propose a method to manipulate the state of a single electron spin in a semiconductor quantum dot (QD). The manipulation is achieved by tunnel coupling a QD, labeled L , and occupied with an electron to an adjacent QD, labeled R , which is not occupied by an electron but having an energy linearly varying in time. We identify a parameter regime in which a complete population transfer between the spin eigenstates |L ↑> and |L ↓> is achieved without occupying the adjacent QD. This method is convenient due to the fact that manipulation can be done electrically, without precise knowledge of the spin resonance condition, and is robust against Zeeman level broadening caused by nuclear spins.
Landau-Zener-Stueckelberg Physics with a Singular Continuum of States
Basko, D. M.
2017-01-01
This Letter addresses the dynamical quantum problem of a driven discrete energy level coupled to a semi-infinite continuum whose density of states has a square-root-type singularity, such as states of a free particle in one dimension or quasiparticle states in a BCS superconductor. The system dynamics is strongly affected by the quantum-mechanical repulsion between the discrete level and the singularity, which gives rise to a bound state, suppresses the decay into the continuum, and can produce Stueckelberg oscillations. This quantum coherence effect may limit the performance of mesoscopic superconducting devices, such as the quantum electron turnstile.
Deng, Haiming; Dai, Hui; Huang, Jiahao; Qin, Xizhou; Xu, Jun; Zhong, Honghua; He, Chunshan; Lee, Chaohong
2015-08-01
We present a cluster Gutzwiller mean-field study for ground states and time-evolution dynamics in the Bose-Hubbard ladder (BHL), which can be realized by loading Bose atoms in double-well optical lattices. In our cluster mean-field approach, we treat each double-well unit of two lattice sites as a coherent whole for composing the cluster Gutzwiller ansatz, which may remain some residual correlations in each two-site unit. For an unbiased BHL, in addition to conventional superfluid phase and integer Mott insulator phases, we find that there are exotic fractional insulator phases if the interchain tunneling is much stronger than the intrachain one. The fractional insulator phases cannot be found by using a conventional mean-field treatment based upon the single-site Gutzwiller ansatz. For a biased BHL, we find there appear single-atom tunneling and interaction blockade if the system is dominated by the interplay between the on-site interaction and the interchain bias. In the many-body Landau-Zener process, in which the interchain bias is linearly swept from negative to positive or vice versa, our numerical results are qualitatively consistent with the experimental observation [Nat. Phys. 7, 61 (2011), 10.1038/nphys1801]. Our cluster bosonic Gutzwiller treatment is of promising perspectives in exploring exotic quantum phases and time-evolution dynamics of bosonic particles in superlattices.
Thurber, Kent R; Tycko, Robert
2012-08-28
We present theoretical calculations of dynamic nuclear polarization (DNP) due to the cross effect in nuclear magnetic resonance under magic-angle spinning (MAS). Using a three-spin model (two electrons and one nucleus), cross effect DNP with MAS for electron spins with a large g-anisotropy can be seen as a series of spin transitions at avoided crossings of the energy levels, with varying degrees of adiabaticity. If the electron spin-lattice relaxation time T(1e) is large relative to the MAS rotation period, the cross effect can happen as two separate events: (i) partial saturation of one electron spin by the applied microwaves as one electron spin resonance (ESR) frequency crosses the microwave frequency and (ii) flip of all three spins, when the difference of the two ESR frequencies crosses the nuclear frequency, which transfers polarization to the nuclear spin if the two electron spins have different polarizations. In addition, adiabatic level crossings at which the two ESR frequencies become equal serve to maintain non-uniform saturation across the ESR line. We present analytical results based on the Landau-Zener theory of adiabatic transitions, as well as numerical quantum mechanical calculations for the evolution of the time-dependent three-spin system. These calculations provide insight into the dependence of cross effect DNP on various experimental parameters, including MAS frequency, microwave field strength, spin relaxation rates, hyperfine and electron-electron dipole coupling strengths, and the nature of the biradical dopants.
Non-adiabatic Landau-Zener transitions in low-spin molecular magnet V sub 1 sub 5
Chiorescu, I; Müller, A; Bögge, H; Barbara, B
2000-01-01
The V sub 1 sub 5 polyoxovanadate molecule is made of 15 spins ((1)/(2)) with antiferromagnetic couplings. It belongs to the class of molecules with very large Hilbert space dimension (2 sup 1 sup 5 in V sub 1 sub 5 , 10 sup 8 in Mn sub 1 sub 2 -AC). It is a low spin/large molecule with spin S=((1)/(2)). Contrary to large spins/large molecules of the Mn sub 1 sub 2 -AC type, V sub 1 sub 5 has no energy barrier against spin rotation. Magnetization measurements have been performed and despite the absence of a barrier, magnetic hysteresis is observed over a timescale of several seconds. This new phenomenon characterized by a 'butterfly' hysteresis loop is due to the effect of the environment on the quantum rotation of the entangled 15 spins of the molecule, in which the phonon density of states is not at its equilibrium (phonon bottleneck).
Dynamics of a Landau-Zener transitions in a two-level system driven by a dissipative environment
Ateuafack, M. E.; Diffo, J. T.; Fai, L. C.
2016-02-01
The paper investigates the effects of a two-level quantum system coupled to transversal and longitudinal dissipative environment. The time-dependent phase accumulation, LZ transition probability and entropy in the presence of fast-ohmic, sub-ohmic and super-ohmic quantum noise are derived. Analytical results are obtained in terms of temperature, dissipation strength, LZ parameter and bath cutoff frequency. The bath is observed to modify the standard occupation difference by a decaying random phase factor and also produces dephasing during the transfer of population. The dephasing characteristics or the initial non-zero decoherence rate are observed to increase in time with the bath temperature and depend on the system-bath coupling strength and cutoff frequency. These parameters are found to strongly affect the memory and thus tailor the coherence process of the system.
Landau-Zener Probability Reviewed
Valencia, C
2008-01-01
We examine the survival probability for neutrino propagation through matter with variable density. We present a new method to calculate the level-crossing probability that differs from Landau's method by constant factor, which is relevant in the interpretation of neutrino flux from supernova explosion.
Nuclear weapons, nuclear effects, nuclear war
Energy Technology Data Exchange (ETDEWEB)
Bing, G.F.
1991-08-20
This paper provides a brief and mostly non-technical description of the militarily important features of nuclear weapons, of the physical phenomena associated with individual explosions, and of the expected or possible results of the use of many weapons in a nuclear war. Most emphasis is on the effects of so-called ``strategic exchanges.``
Bloch oscillations and mean-field effects of Bose-Einstein condensates in 1D optical lattices.
Morsch, O; Müller, J H; Cristiani, M; Ciampini, D; Arimondo, E
2001-10-01
We have loaded Bose-Einstein condensates into one-dimensional, off-resonant optical lattices and accelerated them by chirping the frequency difference between the two lattice beams. For small values of the lattice well depth, Bloch oscillations were observed. Reducing the potential depth further, Landau-Zener tunneling out of the lowest lattice band, leading to a breakdown of the oscillations, was also studied and used as a probe for the effective potential resulting from mean-field interactions as predicted by Choi and Niu [Phys. Rev. Lett. 82, 2022 (1999)]. The effective potential was measured for various condensate densities and trap geometries, yielding good qualitative agreement with theoretical calculations.
Wójcik, Paweł; Adamowski, Janusz
2017-01-01
The spin filtering effect in the bilayer nanowire with quantum point contact is investigated theoretically. We demonstrate the new mechanism of the spin filtering based on the lateral inter-subband spin-orbit coupling, which for the bilayer nanowires has been reported to be strong. The proposed spin filtering effect is explained as the joint effect of the Landau-Zener intersubband transitions caused by the hybridization of states with opposite spin (due to the lateral Rashba SO interaction) and the confinement of carriers in the quantum point contact region. PMID:28358141
Jasper, Ahren W
2015-07-16
The appropriateness of treating crossing seams of electronic states of different spins as nonadiabatic transition states in statistical calculations of spin-forbidden reaction rates is considered. We show that the spin-forbidden reaction coordinate, the nuclear coordinate perpendicular to the crossing seam, is coupled to the remaining nuclear degrees of freedom. This coupling gives rise to multidimensional effects that are not typically included in statistical treatments of spin-forbidden kinetics. Three qualitative categories of multidimensional effects may be identified: static multidimensional effects due to the geometry-dependence of the local shape of the crossing seam and of the spin-orbit coupling, dynamical multidimensional effects due to energy exchange with the reaction coordinate during the seam crossing, and nonlocal (history-dependent) multidimensional effects due to interference of the electronic variables at second, third, and later seam crossings. Nonlocal multidimensional effects are intimately related to electronic decoherence, where electronic dephasing acts to erase the history of the system. A semiclassical model based on short-time full-dimensional trajectories that includes all three multidimensional effects as well as a model for electronic decoherence is presented. The results of this multidimensional nonadiabatic statistical theory (MNST) for the (3)O + CO → CO2 reaction are compared with the results of statistical theories employing one-dimensional (Landau-Zener and weak coupling) models for the transition probability and with those calculated previously using multistate trajectories. The MNST method is shown to accurately reproduce the multistate decay-of-mixing trajectory results, so long as consistent thresholds are used. The MNST approach has several advantages over multistate trajectory approaches and is more suitable in chemical kinetics calculations at low temperatures and for complex systems. The error in statistical
Haider, H; Athar, M Sajjad; Vacas, M J Vicente
2011-01-01
We study the nuclear medium effects in the weak structure functions $F_2(x,Q^2)$ and $F_3(x,Q^2)$ in the deep inelastic neutrino/antineutrino reactions in nuclei. We use a theoretical model for the nuclear spectral functions which incorporates the conventional nuclear effects, such as Fermi motion, binding and nucleon correlations. We also consider the pion and rho meson cloud contributions calculated from a microscopic model for meson-nucleus self-energies. The calculations have been performed using relativistic nuclear spectral functions which include nucleon correlations. Our results are compared with the experimental data of NuTeV and CDHSW.
Haider, H; Athar, M Sajjad; Vacas, M J Vicente
2011-01-01
Nuclear medium effects in the weak structure functions $F_2(x,Q^2)$ and $F_3(x,Q^2)$ have been studied for deep inelastic neutrino/antineutrino reactions in iron nucleus by taking into account Fermi motion, binding, pion and rho meson cloud contributions, target mass correction, shadowing and anti-shadowing corrections. The calculations have been performed in a local density approximation using relativistic nuclear spectral functions which include nucleon correlations. Using these structure functions we have obtained the ratio $R_{F2,F3}^A(x,Q^2)= \\frac{2F_{2,3}^A(x,Q^2)}{AF_{2,3}^D(x,Q^2)}$, the differential scattering cross section $\\frac{1}{E}\\frac{d^2\\sigma}{dxdy}$ and the total scattering cross section $\\sigma$. The results of our numerical calculations in $^{56}Fe$ are compared with the experimental results of NuTeV and CDHSW collaborations.
Nuclear effects in atomic transitions
Pálffy, Adriana
2011-01-01
Atomic electrons are sensitive to the properties of the nucleus they are bound to, such as nuclear mass, charge distribution, spin, magnetization distribution, or even excited level scheme. These nuclear parameters are reflected in the atomic transition energies. A very precise determination of atomic spectra may thus reveal information about the nucleus, otherwise hardly accessible via nuclear physics experiments. This work reviews theoretical and experimental aspects of the nuclear effects ...
Shell effects in nuclear magnetization
Energy Technology Data Exchange (ETDEWEB)
Kondratyev, V.N.; Maruyama, Toshiki; Chiba, Satoshi [Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan)
2000-08-01
The magnetization of nuclei in strong magnetic fields associated with magnetars' is considered within the shell model. It is demonstrated that the magnetic field gives rise to a phase-shift of the shell-oscillations in nuclear masses shifting significantly the nuclear magic numbers of the iron region towards smaller mass numbers. Shell-effects are found to result in anomalies of the nuclear magnetization. Such anomalies resemble the behavior associated with a phase transition. (author)
Studies of electron correlation effects in multicharged ion atom collisions involving double capture
Energy Technology Data Exchange (ETDEWEB)
Stolterfoht, N.; Sommer, K.; Griffin, D.C.; Havener, C.C.; Huq, M.S.; Phaneuf, R.A.; Swenson, J.K.; Meyer, F.W.
1988-01-01
We review measurements of L-Coster Kronig and Auger electron production in slow, multicharged collision systems to study electron correlation effects in the process of double electron capture. The n/sup /minus/3/ law was confirmed for the production of the Coster-Kronig configurations 1s/sup 2/2pn/ell/ (n greater than or equal to 6) in O/sup 6 +/ + He collisions. Enhancement of high angular momentum /ell/ in specific 1s/sup 2/2pn/ell/ configurations was observed by means of high-resolution measurements of the Coster-Kronig lines. The importance of electron correlation effects in couplings of potential energy curves leading to the 1s/sup 2/2pn/ell/ configurations is verified by means of Landau-Zener model calculations. 32 refs., 4 figs.
Ultrafast hydrogen migration in acetylene cation driven by non-adiabatic effects.
Madjet, Mohamed El-Amine; Li, Zheng; Vendrell, Oriol
2013-03-07
Non-adiabatic dynamics of the acetylene cation is investigated using mixed quantum-classical dynamics based on trajectory surface hopping. To describe the non-adiabatic effects, two surface hopping methods are used, namely, Tully's fewest switches and Landau-Zener surface hopping. Similarities and differences between the results based on those two methods are discussed. We find that the photoionization of acetylene into the first excited state A(2)Σg(+) drives the molecule from the linear structure to a trans-bent structure. Through a conical intersection the acetylene cation can relax back to either the ground state of acetylene or vinylidene. We conclude that hydrogen migration always takes place after non-radiative electronic relaxation to the ground state of the monocation. Based on the analysis of correlation functions we identify coherent oscillations between acetylene and vinylidene with a period of about 70 fs after the electronic relaxation.
Nuclear effects hardened shelters
Lindke, Paul
1990-11-01
The Houston Fearless 76 Government Projects Group has been actively engaged for more than twenty-five years as a sub-contractor and currently as a prime contractor in the design, manufacture, repair and logistics support of custom mobile ground stations and their equipment accommodations. Other associated products include environmental control units (ECU's), mobilizers for shelters and a variety of mobile power generation units (MPU's). Since 1984, Houston Fearless 76 has designed and manufactured four 8' x 8' x 22' nuclear hardened mobile shelters. These shelters were designed to contain electronic data processing/reduction equipment. One shelter is currently being operated by the Air Force as a Defense Intelligence Agency (DIA) approved and certified Special Corrpartmented Information Facility (SCIF). During the development and manufacturing process of the shelters, we received continual technical assistance and design concept evaluations from Science Applications International Corporation (SAIC) Operations Analysis and Logistics Engineering Division and the Nondestructive Inspection Lab at McClellan AFB. SAIC was originally employed by the Air Force to design the nuclear hardening specifications applied to these shelters. The specific levels of hardening to which the shelters were designed are classified and will not be mentioned during this presentation.
Fuchs, Gregory
2011-03-01
Nitrogen vacancy (NV) center spins in diamond have emerged as a promising solid-state system for quantum information processing and precision metrology at room temperature. Understanding and developing the built-in resources of this defect center for quantum logic and memory is critical to achieving these goals. In the first case, we use nanosecond duration microwave manipulation to study the electronic spin of single NV centers in their orbital excited-state (ES). We demonstrate ES Rabi oscillations and use multi-pulse resonant control to differentiate between phonon-induced dephasing, orbital relaxation, and coherent electron-nuclear interactions. A second resource, the nuclear spin of the intrinsic nitrogen atom, may be an ideal candidate for a quantum memory due to both the long coherence of nuclear spins and their deterministic presence. We investigate coherent swaps between the NV center electronic spin state and the nuclear spin state of nitrogen using Landau-Zener transitions performed outside the asymptotic regime. The swap gates are generated using lithographically fabricated waveguides that form a high-bandwidth, two-axis vector magnet on the diamond substrate. These experiments provide tools for coherently manipulating and storing quantum information in a scalable solid-state system at room temperature. We gratefully acknowledge support from AFOSR, ARO, and DARPA.
Landau-Zener extension of the Tavis-Cummings model: Structure of the solution
Sun, Chen; Sinitsyn, Nikolai A.
2016-09-01
We explore the recently discovered solution of the driven Tavis-Cummings model (DTCM). It describes interaction of an arbitrary number of two-level systems with a bosonic mode that has linearly time-dependent frequency. We derive compact and tractable expressions for transition probabilities in terms of the well-known special functions. In this form, our formulas are suitable for fast numerical calculations and analytical approximations. As an application, we obtain the semiclassical limit of the exact solution and compare it to prior approximations. We also reveal connection between DTCM and q -deformed binomial statistics.
Spin transistor action via tunable Landau-Zener transitions in magnetic semiconductor quantum wells
Weiss, Dieter
2013-03-01
Spin-transistors, employing spin-orbit interaction like Datta-Das prototypes, principally suffer from low signal levels due to limitations in spin injection efficiency, fast spin relaxation and dephasing processes. Here we present an alternative concept to implement spin transistor action where efficiency is improved by keeping spin transport adiabatic. To this end a helical stray field B, generated by ferromagnetic Dysprosium stripes, is superimposed upon a two-dimensional electron system in (Cd,Mn)Te, containing Mn ions with spin 5/2. Due to the giant spin splitting, occurring at low temperatures and small B in (Cd,Mn)Te quantum wells, the B-helix translates into a spin-helix and the electron spins follow adiabatically the imposed spin texture. Within this approach the transmission of spin-polarized electrons between two contacts is regulated by changing the degree of adiabaticity, i.e. an electron's ability to follow the spin helix. This is done by means of a small applied homogeneous magnetic field while the degree of adiabaticity is monitored by the channel resistance. Our scheme allows spin information to propagate efficiently over typical device distances and provides an alternative route to realize spintronics applications. We note that our concept is not restricted to a particular choice of materials, temperature, methods of spin injection, manipulation as well as detection. Work done in cooperation with Christian Betthausen, Institute of Experimental and Applied Physics, University of Regensburg, D-93040 Regensburg, Germany; Tobias Dollinger, Henri Saarikosi, Institute of Theoretical Physics, University of Regensburg, D-93040 Regensburg, Germany; Valeri Kolkovsky, Grzegorz Karczewski, Tomasz Wojtowicz, Institute of Physics, Polish Academy of Sciences, PL-02668 Warsaw, Poland; and Klaus Richter, Institute of Theoretical Physics, University of Regensburg. Financial support from the Deutsche Forschungsgemeinschaft through SFB 689, WE 247618, and FOR 1483 is gratefully acknowledged
Belyaev, Andrey K.; Domcke, Wolfgang; Lasser, Caroline; Trigila, Giulio
2015-03-01
The Landau-Zener (LZ) type classical-trajectory surface-hopping algorithm is applied to the nonadiabatic nuclear dynamics of the ammonia cation after photoionization of the ground-state neutral molecule to the excited states of the cation. The algorithm employs a recently proposed formula for nonadiabatic LZ transition probabilities derived from the adiabatic potential energy surfaces. The evolution of the populations of the ground state and the two lowest excited adiabatic states is calculated up to 200 fs. The results agree well with quantum simulations available for the first 100 fs based on the same potential energy surfaces. Three different time scales are detected for the nuclear dynamics: Ultrafast Jahn-Teller dynamics between the excited states on a 5 fs time scale; fast transitions between the excited state and the ground state within a time scale of 20 fs; and relatively slow partial conversion of a first-excited-state population to the ground state within a time scale of 100 fs. Beyond 100 fs, the adiabatic electronic populations are nearly constant due to a dynamic equilibrium between the three states. The ultrafast nonradiative decay of the excited-state populations provides a qualitative explanation of the experimental evidence that the ammonia cation is nonfluorescent.
Belyaev, Andrey K; Lasser, Caroline; Trigila, Giulio
2014-01-01
The Landau--Zener (LZ) type classical-trajectory surface-hopping algorithm is applied to the nonadiabatic nuclear dynamics of the ammonia cation after photoionization of the ground-state neutral molecule to the excited states of the cation. The algorithm employs the recently proposed formula for nonadiabatic LZ transition probabilities derived from the adiabatic potential energy surfaces. The evolution of the populations of the ground state and the two lowest excited adiabatic states is calculated up to 200 fs. The results agree well with quantum simulations available for the first 100 fs based on the same potential energy surfaces. Four different time scales are detected for the nuclear dynamics: Ultrafast Jahn--Teller dynamics between the excited states on a 5 fs time scale; fast transitions between the excited state and the ground state within a time scale of 20 fs; relatively slow partial conversion of a first-excited-state population to the ground state within a time scale of 100 fs; and nearly constant ...
The Effects of Nuclear Weapons
Energy Technology Data Exchange (ETDEWEB)
Glasstone, Samuel
1964-02-01
This book is a revision of "The Effects of Nuclear Weapons" which was issued in 1957. It was prepared by the Defense Atomic Support Agency of the Department of Defense in coordination with other cognizant governmental agencies and was published by the U.S. Atomc Energy Commission. Although the complex nature of nuclear weapons effects does not always allow exact evaluation, the conclusions reached herein represent the combined judgment of a number of the most competent scientists working the problem. There is a need for widespread public understanding of the best information available on the effects of nuclear weapons. The purpose of this book is to present as accurately as possible, within the limits of national security, a comprehensive summary of this information.
Radiation Effects in Nuclear Ceramics
Directory of Open Access Journals (Sweden)
L. Thomé
2012-01-01
Full Text Available Due to outstanding physicochemical properties, ceramics are key engineering materials in many industrial domains. The evaluation of the damage created in ceramics employed in radiative media is a challenging problem for electronic, space, and nuclear industries. In this latter field, ceramics can be used as immobilization forms for radioactive wastes, inert fuel matrices for actinide transmutation, cladding materials for gas-cooled fission reactors, and structural components for fusion reactors. Information on the radiation stability of nuclear materials may be obtained by simulating the different types of interactions involved during the slowing down of energetic particles with ion beams delivered by various types of accelerators. This paper presents a review of the radiation effects occurring in nuclear ceramics, with an emphasis on recent results concerning the damage accumulation processes. Energetic ions in the KeV-GeV range are used to explore the nuclear collision (at low energy and electronic excitation (at high energy regimes. The recovery by electronic excitation of the damage created by ballistic collisions (SHIBIEC process is also addressed.
The Effects of Nuclear Weapons
Energy Technology Data Exchange (ETDEWEB)
Glasstone, Samuel
1957-06-01
This handbook prepared by the Armed Forces Special Weapons Project of the Department of Defense in coordination with other cognizant government agencies and published by the United States Atomic Energy Commission, is a comprehensive summary of current knowledge on the effects of nuclear weapons. The effects information contained herein is calculated for yields up to 20 megatons and the scaling laws for hypothetically extending the calculations beyond this limit are given. The figure of 20 megatons however is not be taken as an indication of capabilities or developments.
Effects of nuclear weapons. Third edition
Energy Technology Data Exchange (ETDEWEB)
Glasstone, S.; Dolan, P.J.
1977-01-01
Since the last edition of ''The Effects of Nuclear Weapons'' in 1962 much new information has become available concerning nuclear weapon effects. This has come in part from the series of atmospheric tests, including several at very high altitudes, conducted in the Pacific Ocean area in 1962. In addition, laboratory studies, theoretical calculations, and computer simulations have provided a better understanding of the various effects. A new chapter has been added on the electromagnetic pulse. The chapter titles are as follows: general principles of nuclear explosions; descriptions of nuclear explosions; air blast phenomena in air and surface bursts; air blast loading; structural damage from air blast; shock effects of surface and subsurface bursts; thermal radiation and its effects; initial nuclear radiation; residual nuclear radiation and fallout; radio and radar effects; the electromagnetic pulse and its effects; and biological effects. (LTN)
The Effects of Nuclear Weapons. Third edition
Energy Technology Data Exchange (ETDEWEB)
Glasstone, S; Dolan, P J
1977-01-01
Since the last edition of ''The Effects of Nuclear Weapons'' in 1962 much new information has become available concerning nuclear weapon effects. This has come in part from the series of atmospheric tests, including several at very high altitudes, conducted in the Pacific Ocean area in 1962. In addition, laboratory studies, theoretical calculations, and computer simulations have provided a better understanding of the various effects. A new chapter has been added on the electromagnetic pulse. The chapter titles are as follows: general principles of nuclear explosions; descriptions of nuclear explosions; air blast phenomena in air and surface bursts; air blast loading; structural damage from air blast; shock effects of surface and subsurface bursts; thermal radiation and its effects; initial nuclear radiation; residual nuclear radiation and fallout; radio and radar effects; the electromagnetic pulse and its effects; and biological effects. (LTN)
Nuclear Dynamics with Effective Field Theories
Epelbaum, Evgeny
2013-01-01
These are the proceedings of the international workshop on "Nuclear Dynamics with Effective Field Theories" held at Ruhr-Universitaet Bochum, Germany from July 1 to 3, 2013. The workshop focused on effective field theories of low-energy QCD, chiral perturbation theory for nuclear forces as well as few- and many-body physics. Included are a short contribution per talk.
Radiation Effects in Nuclear Waste Materials
Energy Technology Data Exchange (ETDEWEB)
William j. Weber; Lumin Wang; Jonathan Icenhower
2004-07-09
The objective of this project is to develop a fundamental understanding of radiation effects in glasses and ceramics, as well as the influence of solid-state radiation effects on aqueous dissolution kinetics, which may impact the performance of nuclear waste forms and stabilized nuclear materials.
The environmental effects of nuclear war
Energy Technology Data Exchange (ETDEWEB)
MacCracken, M.C.
1988-09-01
Substantial environmental disruption will significantly add to the disastrous consequences caused by the direct thermal, blast, and radiological effects brought on by a major nuclear war. Local fallout could cover several percent of the Northern Hemisphere with potentially lethal doses. Smoke from post-nuclear fires could darken the skies and induce temperature decreases of tens of degrees in continental interiors. Stratospheric ozone could be significantly reduced due to nitric oxide injections and smoke-induced circulation changes. The environmental effects spread the consequences of a nuclear war to the world population, adding to the potentially large disruptive effects a further reason to avoid such a catastrophe. 27 refs., 4 figs.
Coherence effects in nuclear bremsstrahlung
Lohner, H
2002-01-01
The production of nuclear bremsstrahlung (Egamma > 30 MeV) has been studied in heavy-ion collisions, as well as proton and alpha-particle collisions with nuclei. In heavy-ion reactions the measured photon spectra show an exponential shape dominated by the incoherent sum of photons produced in first-
Nuclear Overhauser effects in tritium NMR
Energy Technology Data Exchange (ETDEWEB)
Kaspersen, F.M.; Funke, C.W.; Sperling, E.M.G.; Wagenaars, G.N.
1987-02-01
The accuracy of the quantification of the tritium distribution in labelled compounds may be reduced by differential nuclear Overhauser effects, especially for compounds in which the different tritiated positions differ in the number of protons surrounding them.
The Effects of Nuclear Weapons
1977-01-01
deposited con the ground. The extensive 9.141 The activity of strontium-90, atmospheric nuclear tesi programs con- as of radioactive materials in...main a reiult of radiation exposure and hem- disadvantage is that an appreciable de- ,rrhage, so that symptoms of anemia , crease in tne platelet count...such radiation. In Hiroshima ceiving combined injuries. The avail- 4 COMBINED INJURIES 589 able data do indicate, however, that some anemia and the body
Health effects of the nuclear industry
Energy Technology Data Exchange (ETDEWEB)
Gittus, J.
1987-02-01
The paper on radiation health effects was presented to the United Kingdom (U.K.) Nuclear Electricity Information Group, 1986. The radiation risks to workers in the U.K. nuclear industry are discussed in terms of the results of mortality studies and allowable dose limits. The radiation doses to members of the public from the nuclear industry, i.e. from discharges of radioactive wastes to the environment, are also described, along with epidemiological studies. Finally risks to the public from radiation accidents are briefly outlined. (U.K.).
Radiation Effects in Nuclear Waste Materials
Energy Technology Data Exchange (ETDEWEB)
Weber, William J.
2005-09-30
The objective of this project is to develop a fundamental understanding of radiation effects in glasses and ceramics, as well as the influence of solid-state radiation effects on aqueous dissolution kinetics, which may impact the performance of nuclear waste forms and stabilized nuclear materials. This work provides the underpinning science to develop improved glass and ceramic waste forms for the immobilization and disposition of high-level tank waste, excess plutonium, plutonium residues and scrap, other actinides, and other nuclear waste streams. Furthermore, this work is developing develop predictive models for the performance of nuclear waste forms and stabilized nuclear materials. Thus, the research performed under this project has significant implications for the immobilization of High-Level Waste (HLW) and Nuclear Materials, two mission areas within the Office of Environmental Management (EM). With regard to the HLW mission, this research will lead to improved understanding of radiation-induced degradation mechanisms and their effects on dissolution kinetics, as well as development of predictive models for waste form performance. In the Nuclear Materials mission, this research will lead to improvements in the understanding of radiation effects on the chemical and structural properties of materials for the stabilization and long-term storage of plutonium, highly-enriched uranium, and other actinides. The research uses plutonium incorporation, ion-beam irradiation, and electron-beam irradiation to simulate the effects of alpha decay and beta decay on relevant glasses and ceramics. The research under this project has the potential to result in improved glass and ceramic materials for the stabilization and immobilization of high-level tank waste, plutonium residues and scraps, surplus weapons plutonium, highly-enriched uranium, other actinides, and other radioactive materials.
Radiation Effects in Nuclear Waste Materials
Energy Technology Data Exchange (ETDEWEB)
Weber, William J.
2005-06-01
The objective of this project is to develop a fundamental understanding of radiation effects in glasses and ceramics, as well as the influence of solid-state radiation effects on aqueous dissolution kinetics, which may impact the performance of nuclear waste forms and stabilized nuclear materials. This work provides the underpinning science to develop improved glass and ceramic waste forms for the immobilization and disposition of high-level tank waste, excess plutonium, plutonium residues and scrap, other actinides, and other nuclear waste streams. Furthermore, this work is developing develop predictive models for the performance of nuclear waste forms and stabilized nuclear materials. Thus, the research performed under this project has significant implications for the immobilization of High-Level Waste (HLW) and Nuclear Materials, two mission areas within the Office of Environmental Management (EM). With regard to the HLW mission, this research will lead to improved understanding of radiation-induced degradation mechanisms and their effects on dissolution kinetics, as well as development of predictive models for waste form performance. In the Nuclear Materials mission, this research will lead to improvements in the understanding of radiation effects on the chemical and structural properties of materials for the stabilization and long-term storage of plutonium, highly-enriched uranium, and other actinides. The research uses plutonium incorporation, ion-beam irradiation, and electron-beam irradiation to simulate the effects of alpha decay and beta decay on relevant glasses and ceramics. The research under this project has the potential to result in improved glass and ceramic materials for the stabilization and immobilization of high-level tank waste, plutonium residues and scraps, surplus weapons plutonium, highly-enriched uranium, other actinides, and other radioactive materials.
Nuclear effects in the deuteron structure function
Energy Technology Data Exchange (ETDEWEB)
Epele, L.N.; Fanchiotti, H.; Garcia Canal, C.A.; Sassot, R. (Lab. de Fisica Teorica, Dept. de Fisica, Univ. Nacional de La Plata (Argentina))
1992-08-06
An analysis of nuclear effects in the deuteron quark distributions is carried out in connection with the Gottfried sum rule (GSR), the Drell-Yan proton-neutron asymmetry and the Bjorken sum rule (BSR). It is shown that the small amount of nuclear effects necessary to saturate the GSR experimental data modifies the Drell-Yan asymmetry in an entirely different way as an asymmetric sea does. These effects are of little consequence in the convergence of the BSR to the expected value. (orig.).
Energy Technology Data Exchange (ETDEWEB)
Tan, Xinsheng [National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093 (China); Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045 (United States); Yu, Haifeng, E-mail: hfyu@nju.edu.cn; Yu, Yang, E-mail: yuyang@nju.edu.cn [National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Han, Siyuan [Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045 (United States)
2015-09-07
We demonstrate a fast method to detect microscopic two-level systems in a superconducting phase qubit. By monitoring the population leak after sweeping the qubit bias flux, we are able to measure the two-level systems that are coupled with the qubit. Compared with the traditional method that detects two-level systems by energy spectroscopy, our method is faster and more sensitive. This method supplies a useful tool to investigate two-level systems in solid-state qubits.
Radiation Effects in Nuclear Waste Materials
Energy Technology Data Exchange (ETDEWEB)
Weber, William J.; Corrales, L. Rene; Ness, Nancy J.; Williford, Ralph E.; Heinisch, Howard L.; Thevuthasan, Suntharampillai; Icenhower, Jonathan P.; McGrail, B. Peter; Devanathan, Ramaswami; Van Ginhoven, Renee M.; Song, Jakyoung; Park, Byeongwon; Jiang, Weilin; Begg, Bruce D.; Birtcher, R. B.; Chen, X.; Conradson, Steven D.
2000-10-02
Radiation effects from the decay of radionuclides may impact the long-term performance and stability of nuclear waste forms and stabilized nuclear materials. In an effort to address these concerns, the objective of this project was the development of fundamental understanding of radiation effects in glasses and ceramics, particularly on solid-state radiation effects and their influence on aqueous dissolution kinetics. This study has employed experimental, theoretical and computer simulation methods to obtain new results and insights into radiation damage processes and to initiate the development of predictive models. Consequently, the research that has been performed under this project has significant implications for the High-Level Waste and Nuclear Materials focus areas within the current DOE/EM mission. In the High-Level Waste (HLW) focus area, the results of this research could lead to improvements in the understanding of radiation-induced degradation mechanisms and their effects on dissolution kinetics, as well as development of predictive models for waste form performance. In the Nuclear Materials focus area, the results of this research could lead to improvements in the understanding of radiation effects on the chemical and structural properties of materials for the stabilization and long-term storage of plutonium, highly-enriched uranium, and other actinides. Ultimately, this research could result in improved glass and ceramic materials for the stabilization and immobilization of high-level tank waste, plutonium residues and scraps, surplus weapons plutonium, highly-enriched uranium, other actinides, and other radioactive materials.
Chiral effective field theory and nuclear forces
Machleidt, R
2011-01-01
We review how nuclear forces emerge from low-energy QCD via chiral effective field theory. The presentation is accessible to the non-specialist. At the same time, we also provide considerable detailed information (mostly in appendices) for the benefit of researchers who wish to start working in this field.
Climatic Effects of Regional Nuclear War
Oman, Luke D.
2011-01-01
We use a modern climate model and new estimates of smoke generated by fires in contemporary cities to calculate the response of the climate system to a regional nuclear war between emerging third world nuclear powers using 100 Hiroshima-size bombs (less than 0.03% of the explosive yield of the current global nuclear arsenal) on cities in the subtropics. We find significant cooling and reductions of precipitation lasting years, which would impact the global food supply. The climate changes are large and longlasting because the fuel loadings in modern cities are quite high and the subtropical solar insolation heats the resulting smoke cloud and lofts it into the high stratosphere, where removal mechanisms are slow. While the climate changes are less dramatic than found in previous "nuclear winter" simulations of a massive nuclear exchange between the superpowers, because less smoke is emitted, the changes seem to be more persistent because of improvements in representing aerosol processes and microphysical/dynamical interactions, including radiative heating effects, in newer global climate system models. The assumptions and calculations that go into these conclusions will be described.
Recommendable Practices for Effective Nuclear Crisis Communication
Energy Technology Data Exchange (ETDEWEB)
Lee, Chang Ju; Hah, Yeon Hee [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)
2011-10-15
'Crisis communication' refers one of the activities done by the Nuclear Regulatory Organizations (NROs) in order to protect the public and the environment from the possible harmful effects. As denoted by the BMU, German NRO, crisis communication is not only 'public information' or 'information for the public', but also communication between authorities in order to guarantee that public information is consistent. This study proposes some recommendable practices for developing a guideline of well-prepared nuclear crisis communication system, including its management framework, and for introducing good insights, based on the study of international aspects provided by relevant OECD/NEA WPGC (Working Group on Public Communication for Nuclear Regulatory Organizations)i working group
QED theory of the nuclear recoil effect in atoms
Shabaev, V M
1998-01-01
The quantum electrodynamic theory of the nuclear recoil effect in atoms to all orders in \\alpha Z is formulated. The nuclear recoil corrections for atoms with one and two electrons over closed shells are considered in detail. The problem of the composite nuclear structure in the theory of the nuclear recoil effect is discussed.
Surface effects of underground nuclear explosions
Energy Technology Data Exchange (ETDEWEB)
Allen, B.M.; Drellack, S.L. Jr.; Townsend, M.J.
1997-06-01
The effects of nuclear explosions have been observed and studied since the first nuclear test (code named Trinity) on July 16, 1945. Since that first detonation, 1,053 nuclear tests have been conducted by the US, most of which were sited underground at the Nevada Test Site (NTS). The effects of underground nuclear explosions (UNEs) on their surroundings have long been the object of much interest and study, especially for containment, engineering, and treaty verification purposes. One aspect of these explosion-induced phenomena is the disruption or alteration of the near-surface environment, also known as surface effects. This report was prepared at the request of the Los Alamos National Laboratory (LANL), to bring together, correlate, and preserve information and techniques used in the recognition and documentation of surface effects of UNEs. This report has several main sections, including pertinent background information (Section 2.0), descriptions of the different types of surface effects (Section 3.0), discussion of their application and limitations (Section 4.0), an extensive bibliography and glossary (Section 6.0 and Appendix A), and procedures used to document geologic surface effects at the NTS (Appendix C). Because a majority of US surface-effects experience is from the NTS, an overview of pertinent NTS-specific information also is provided in Appendix B. It is not within the scope of this report to explore new relationships among test parameters, physiographic setting, and the types or degree of manifestation of surface effects, but rather to compile, summarize, and capture surface-effects observations and interpretations, as well as documentation procedures and the rationale behind them.
Quantum Nuclear Extension of Electron Nuclear Dynamics on Folded Effective-Potential Surfaces
DEFF Research Database (Denmark)
Hall, B.; Deumens, E.; Ohrn, Y.;
2014-01-01
A perennial problem in quantum scattering calculations is accurate theoretical treatment of low energy collisions. We propose a method of extracting a folded, nonadiabatic, effective potential energy surface from electron nuclear dynamics (END) trajectories; we then perform nuclear wave packet...
Gate-Sensing Coherent Charge Oscillations in a Silicon Field-Effect Transistor.
Gonzalez-Zalba, M Fernando; Shevchenko, Sergey N; Barraud, Sylvain; Johansson, J Robert; Ferguson, Andrew J; Nori, Franco; Betz, Andreas C
2016-03-09
Quantum mechanical effects induced by the miniaturization of complementary metal-oxide-semiconductor (CMOS) technology hamper the performance and scalability prospects of field-effect transistors. However, those quantum effects, such as tunneling and coherence, can be harnessed to use existing CMOS technology for quantum information processing. Here, we report the observation of coherent charge oscillations in a double quantum dot formed in a silicon nanowire transistor detected via its dispersive interaction with a radio frequency resonant circuit coupled via the gate. Differential capacitance changes at the interdot charge transitions allow us to monitor the state of the system in the strong-driving regime where we observe the emergence of Landau-Zener-Stückelberg-Majorana interference on the phase response of the resonator. A theoretical analysis of the dispersive signal demonstrates that quantum and tunneling capacitance changes must be included to describe the qubit-resonator interaction. Furthermore, a Fourier analysis of the interference pattern reveals a charge coherence time, T2 ≈ 100 ps. Our results demonstrate charge coherent control and readout in a simple silicon transistor and open up the possibility to implement charge and spin qubits in existing CMOS technology.
77 FR 30030 - Monitoring the Effectiveness of Maintenance at Nuclear Power Plants
2012-05-21
... COMMISSION Monitoring the Effectiveness of Maintenance at Nuclear Power Plants AGENCY: Nuclear Regulatory... Maintenance at Nuclear Power Plants.'' This guide endorses Revision 4A to Nuclear Management and Resources... Effectiveness of Maintenance at Nuclear Power Plants,'' Part 50, ``Domestic......
Global nuclear structure effects of tensor interaction
Zalewski, M; Rafalski, M; Satula, W; Werner, T R; Wyss, R A
2009-01-01
A direct fit of the isoscalar spin-orbit (SO) and both isoscalar and isovector tensor coupling constants to the f5/2-f7/2 SO splittings in 40Ca, 56Ni, and 48Ca nuclei requires a drastic reduction of the isoscalar SO strength and strong attractive tensor coupling constants. The aim of this work is to address further consequences of these strong attractive tensor and weak SO fields on binding energies, nuclear deformability, and high-spin states. In particular, we show that contribution to the nuclear binding energy due to the tensor field shows generic magic structure with tensorial magic numbers at N(Z)=14, 32, 56, or 90 corresponding to the maximum spin-asymmetries in 1d5/2, 1f7/2-2p3/2, 1g9/2-2d5/2 and 1h11/2-2f7/2 single-particle configurations and that these numbers are smeared out by pairing correlations and deformation effects. We also examine the consequences of strong attractive tensor fields and weak SO interaction on nuclear stability at the drip lines, in particular close to the tensorial doubly ma...
Nuclear and extranuclear effects of vitamin A.
Iskakova, Madina; Karbyshev, Mikhail; Piskunov, Aleksandr; Rochette-Egly, Cécile
2015-12-01
Vitamin A or retinol is a multifunctional vitamin that is essential at all stages of life from embryogenesis to adulthood. Up to now, it has been accepted that the effects of vitamin A are exerted by active metabolites, the major ones being 11-cis retinal for vision, and all trans-retinoic acid (RA) for cell growth and differentiation. Basically RA binds nuclear receptors, RARs, which regulate the expression of a battery of target genes in a ligand dependent manner. During the last decade, new scenarios have been discovered, providing a rationale for the understanding of other long-noted but not explained functions of retinol. These novel scenarios involve: (i) other nuclear receptors such as PPAR β/δ, which regulate the expression of other target genes with other functions; (ii) extranuclear and nontranscriptional effects, such as the activation of kinases, which phosphorylate RARs and other transcription factors, thus expanding the list of the RA-activated genes; (iii) finally, vitamin A is active per se and can work as a cytokine that regulates gene transcription by activating STRA6. New effects of vitamin A and RA are continuously being discovered in new fields, revealing new targets and new mechanisms thus improving the understanding the pleiotropicity of their effects.
Nuclear effects in neutrino induced reactions
Vacas, M J Vicente; Geng, L S; Nieves, J; Valverde, M; Hirenzaki, S
2008-01-01
We discuss the relevance of nuclear medium effects in the analysis of some low and medium energy neutrino reactions of current interest. In particular, we study the Quasi-Elastic (QE) process, where RPA correlations and Final State Interactions (FSI) are shown to play a crucial role. We have also investigated the neutrino induced coherent pion production. We find a strong reduction of the cross section due to the distortion of the pion wave function and the modification of the production mechanisms in the nucleus. The sensitivity of the results to the axial $N\\Delta$ coupling $C_5^A(0)$ has been also investigated.
Effect of nuclear viscosity on fission process
Energy Technology Data Exchange (ETDEWEB)
Li Shidong; Kuang Huishun; Zhang Shufa; Xing Jingru; Zhuo Yizhong; Wu Xizhen; Feng Renfa
1989-02-01
According to the fission diffusion model, the deformation motion of fission nucleuses is regarded as a diffusion process of quasi-Brownian particles under fission potential. Through simulating such Brownian motion in two dimensional phase space by Monte-Carlo mehtod, the effect of nuclear visocity on Brownian particle diffusion is studied. Dynamical quanties, such as fission rate, kinetic energy distribution on scission, and soon are numerically calculated for various viscosity coefficients. The results are resonable in physics. This method can be easily extended to deal with multi-dimensional diffusion problems.
Study of Nuclear Effects in the Computation of the 0{\
Neacsu, Andrei
2013-01-01
We analyse the effects that different nuclear structure approximations associated with the short range correlations (SRC), finite nucleon size (FNS), higher order terms in the nucleon currents (HOC) and with some nuclear input parameters, have on the values of the nuclear matrix elements (NMEs) for the neutrinoless double beta (0{\
Nuclear effective field theory on the lattice
Krebs, H; Epelbaum, E; Lee, D; ner, Ulf-G Mei\\ss
2008-01-01
In the low-energy region far below the chiral symmetry breaking scale (which is of the order of 1 GeV) chiral perturbation theory provides a model-independent approach for quantitative description of nuclear processes. In the two- and more-nucleon sector perturbation theory is applicable only at the level of an effective potential which serves as input in the corresponding dynamical equation. To deal with the resulting many-body problem we put chiral effective field theory (EFT) on the lattice. Here we present the results of our lattice EFT study up to next-to-next-to-leading order in the chiral expansion. Accurate description of two-nucleon phase-shifts and ground state energy ratio of dilute neutron matter up to corrections of higher orders shows that lattice EFT is a promising tool for a quantitative description of low-energy few- and many-body systems.
76 FR 55137 - Monitoring the Effectiveness of Maintenance at Nuclear Power Plants
2011-09-06
... COMMISSION Monitoring the Effectiveness of Maintenance at Nuclear Power Plants AGENCY: Nuclear Regulatory..., ``Monitoring the Effectiveness of Maintenance at Nuclear Power Plants.'' This guide endorses Revision 4A to... Effectiveness of Maintenance at Nuclear Power Plants,'' which provides methods that......
Restriction of Civilian Nuclear Fuel Cycle and Effectiveness of Nuclear Nonproliferation
Energy Technology Data Exchange (ETDEWEB)
Ryu, JaeSoo; Lee, HanMyung; Ko, HanSuk; Yang, MaengHo; Oh, KunBae [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
2006-07-01
Many efforts have been made to prevent the spread of nuclear weapons since the nuclear era. Recent revelation such as Dr. A.Q. Khan Network showed that some states had acquired sensitive nuclear technologies including uranium enrichment which could be used for making nuclear weapons. In addition, with the advancement of industrial technology, it has become easier to have access to those technologies. In this context, proliferation risks are being increased more and more. As a result, various proposals to respond to proliferation risks by sensitive technologies have been made: Multilateral Nuclear Approaches (MNAs) by IAEA Director General El Baradei, non-transfer of sensitive nuclear technologies by the U.S. President George W. Bush, international center for nuclear fuel cycle service by Russian President Vladimir V. Putin, Global Nuclear Energy Partnership (GNEP) by Bush's administration and a concept for a multilateral mechanism for reliable access to nuclear fuel by 6 member states of the IAEA. Theses proposals all share the idea that the best way to reduce risk is to prevent certain states from having control over an indigenous civilian fuel cycle while still finding ways to confer the benefits of nuclear energy, and seem to imply that the current nonproliferation regime is fundamentally flawed and needs to be altered. However, these proposals are a center of controversy because they can restrict the inalienable right for the peaceful purposes of nuclear energy inscribed in Article IV of the NPT. Therefore, this paper analyzes the key challenges of these proposals and effectiveness of the goal of nuclear nonproliferation in practical term by restricting civilian nuclear fuel cycle.
Direct Evidence of Washing out of Nuclear Shell Effects
Chaudhuri, A; Banerjee, K; Bhattacharya, S; Sadhukhan, Jhilam; Bhattacharya, C; Kundu, S; Meena, J K; Mukherjee, G; Pandey, R; Rana, T K; Roy, P; Roy, T; Srivastava, V; Bhattacharya, P
2015-01-01
Constraining excitation energy at which nuclear shell effect washes out has important implications on the production of super heavy elements and many other fields of nuclear physics research. We report the fission fragment mass distribution in alpha induced reaction on an actinide target for wide excitation range in close energy interval and show direct evidence that nuclear shell effect washes out at excitation energy ~40 MeV. Calculation shows that second peak of the ?fission barrier also vanishes around similar excitation energy.
Effective nucleon mass and the nuclear caloric curve
Shetty, D V; Galanopoulos, S; Yennello, S J
2009-01-01
Assuming a schematic form of the nucleon effective mass as a function of nuclear excitation energy and mass, we provide a simple explanation for understanding the experimentally observed mass dependence of the nuclear caloric curve. It is observed that the excitation energy at which the caloric curve enters into a plateau region, could be sensitive to the nuclear mass evolution of the effective nucleon mass.
Nuclear effects in deuteron and the Gottfried sum rule
Energy Technology Data Exchange (ETDEWEB)
Epele, L.N.; Sassot, R. (Lab. de Fisica Teorica, Univ. Nacional de La Plata (Argentina)); Fanchiotti, H. (Theory Div., CERN, Geneva (Switzerland)); Carcia Canal, C.A. (Lab. de Fisica Teorica, Univ. Nacional de La Plata (Argentina) Theory Div., CERN, Geneva (Switzerland))
1992-01-23
Recent NMC data on the ratio of the deep inelastic structure functions F{sub 2} per nucleon for deuterium relative to hydrogen are analysed in the context of the Gottfried sum rule. It is shown that the discrepancy between the Gottfried sum rule prediction and NMC data analysis may be interpreted as a nuclear effect in deuterium as it is suggested by several models. This fact, applied to nuclear-deuterium measured ratios, modifies the standard picture of nuclear effects. (orig.).
Effective interaction: From nuclear reactions to neutron stars
Indian Academy of Sciences (India)
D N Basu
2014-05-01
An equation of state (EoS) for symmetric nuclear matter is constructed using the density-dependent M3Y effective interaction and extended for isospin asymmetric nuclear matter. Theoretically obtained values of symmetric nuclear matter incompressibility, isobaric incompressibility, symmetry energy and its slope agree well with experimentally extracted values. Folded microscopic potentials using this effective interaction, whose density dependence is determined from nuclear matter calculations, provide excellent descriptions for proton, alpha and cluster radioactivities, elastic and inelastic scattering. The nuclear deformation parameters extracted from inelastic scattering of protons agree well with other available results. The high density behaviour of symmetric and asymmetric nuclear matter satisfies the constraints from the observed flow data of heavy-ion collisions. The neutron star properties studied using -equilibrated neutron star matter obtained from this effective interaction reconcile with the recent observations of the massive compact stars.
Comparative nuclear effects of biomedical interest. Civil effects study
Energy Technology Data Exchange (ETDEWEB)
White, C.S.; Bowen, I.G.; Richmond, D.R.; Corsbie, R.L.
1961-01-12
Selected physical and biological data bearing upon the environmental variations created by nuclear explosions are presented in simplified form. Emphasis is placed upon the ``early`` consequences of exposure to blast, thermal radiation, and ionizing radiation to elucidate the comparative ranges of the major effects as they vary with explosive yield and as they contribute to the total hazard to man. A section containing brief definitions of the terminology employed is followed by a section that utilizes text and tabular material to set forth events that follow nuclear explosions and the varied responses of exposed physical and biological materials. Finally, selected quantitative weapons-effects data in graphic and tabular form are presented over a wide range of explosive yields to show the relative distances from Ground Zero affected by significant levels of blast overpressures, thermal fluxes, and initial and residual penetrating ionizing radiations. However, only the ``early`` rather than the ``late`` effects of the latter are considered.
Quantum fluctuation effects on nuclear fragment and atomic cluster formation
Energy Technology Data Exchange (ETDEWEB)
Ohnishi, Akira [Hokkaido Univ., Sapporo (Japan). Dept. of Physics; Randrup, J.
1997-05-01
We investigate the nuclear fragmentation and atomic cluster formation by means of the recently proposed quantal Langevin treatment. It is shown that the effect of the quantal fluctuation is in the opposite direction in nuclear fragment and atomic cluster size distribution. This tendency is understood through the effective classical temperature for the observables. (author)
Microbial Effects on Nuclear Waste Packaging Materials
Energy Technology Data Exchange (ETDEWEB)
Horn, J; Martin, S; Carrillo, C; Lian, T
2005-07-22
Microorganisms may enhance corrosion of components of planned engineered barriers within the proposed nuclear waste repository at Yucca Mountain (YM). Corrosion could occur either directly, through processes collectively known as Microbiologically Influenced Corrosion (MIC), or indirectly, by adversely affecting the composition of water or brines that come into direct contact with engineered barrier surfaces. Microorganisms of potential concern (bacteria, archea, and fungi) include both those indigenous to Yucca Mountain and those that infiltrate during repository construction and after waste emplacement. Specific aims of the experimental program to evaluate the potential of microorganisms to affect damage to engineered barrier materials include the following: Indirect Effects--(1) Determine the limiting factors to microbial growth and activity presently in the YM environment. (2) Assess these limiting factors to aid in determining the conditions and time during repository evolution when MIC might become operant. (3) Evaluate present bacterial densities, the composition of the YM microbial community, and determining bacterial densities if limiting factors are overcome. During a major portion of the regulatory period, environmental conditions that are presently extant become reestablished. Therefore, these studies ascertain whether biomass is sufficient to cause MIC during this period and provide a baseline for determining the types of bacterial activities that may be expected. (4) Assess biogenic environmental effects, including pH, alterations to nitrate concentration in groundwater, the generation of organic acids, and metal dissolution. These factors have been shown to be those most relevant to corrosion of engineered barriers. Direct Effects--(1) Characterize and quantify microbiological effects on candidate containment materials. These studies were carried out in a number of different approaches, using whole YM microbiological communities, a subset of YM
Nuclear effects in the structure functions
Indian Academy of Sciences (India)
E Marco; E Oset; S K Singh
2003-11-01
By using a relativistic framework and accurate nuclear spectral function the structure functions 2 and 3 of deep inelastic charged lepton and neutrino scattering are calculated in nuclei and results are presented.
Nuclear Deformation Effects in the Cluster Radioactivity
Misicu, S.; Protopopescu, D.(University of Glasgow, Glasgow, G12 8QQ, United Kingdom)
1998-01-01
We investigate the influence of the nuclear deformation on the decay rates of some cluster emission processes. The interaction between the daughter and the cluster is given by a double folding potential including quadrupole and hexadecupole deformed densities of both fragments. The nuclear part of the nucleus-nucleus interaction is density dependent and at small distances a repulsive core in the potential will occur. In the frame of the WKB- approximation the assault frequency of the cluster ...
Radiation and Thermal Effects on Used Nuclear Fuel and Nuclear Waste Forms
Energy Technology Data Exchange (ETDEWEB)
Weber, William J. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Materials Science and Engineering; Zhang, Yanwen [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Materials Science and Engineering
2016-09-20
This is the final report of the NEUP project “Radiation and Thermal Effects on Used Nuclear Fuel and Nuclear Waste Forms.” This project started on July 1, 2012 and was successfully completed on June 30, 2016. This report provides an overview of the main achievements, results and findings through the duration of the project. Additional details can be found in the main body of this report and in the individual Quarterly Reports and associated Deliverables of this project, which have been uploaded in PICS-NE. The objective of this research was to advance understanding and develop validated models on the effects of self-radiation from beta and alpha decay on the response of used nuclear fuel and nuclear waste forms during high-temperature interim storage and long-term permanent disposition. To achieve this objective, model used-fuel materials and model waste form materials were identified, fabricated, and studied.
A New Effect in the QCD Fusion of Nuclear Partons
Institute of Scientific and Technical Information of China (English)
RUAN Jian-Hong; ZHU Wei; LI Guang-Lie
2001-01-01
The parton fusion in nucleus at the leading order of recombination is investigated based on perturbative QCD. We compute various cut diagrams including the nuclear parton fusion, and find that the parton-fusion effects depend on the nuclear QCD structure.``
Examining Nuclear Effects in Neutrino Interactions with Transverse Kinematic Imbalance
Pickering, Luke
We present a Monte Carlo truth study examining nuclear effects in charged-current neutrino interactions using observables constructed in the transverse plane. Three distributions are introduced that show very weak dependence on neutrino flux and its associated uncertainty. Measurements comparing these distributions between quasi-elastic-like and single charged pion final states will provide new constraints of nuclear effects. It is suggested that the on-axis position in the NuMI beam provides the correct flux to take advantage of this reduced energy dependence in measuring nuclear effect-generated transverse imbalances.
QCD Factorization Approach to Cold Nuclear Matter Effects
Qiu, Jianwe
2016-09-01
Cold nuclear matter effects exist in all high energy collisions involving identified nucleus (or nuclei). They have been manifested in very significant ways in e-A and p-A, as well as A-A collisions, where the cold nuclear effect is a part of the initial condition which plays a critical role in determining the outcome of heavy ion collisions. In this talk, I will discuss if it is possible to consistently calculate or extract the cold nuclear effect, the advantage and limitation of QCD factorization approach, and the predictive power or the testability of the QCD calculations.
Nuclear medium effects in Drell–Yan process
Haider, H.; Athar, M. Sajjad; Singh, S. K.; Ruiz Simo, I.
2017-04-01
We study the nuclear medium effects in Drell–Yan process using quark parton distribution functions calculated in a microscopic nuclear model which takes into account the effects of Fermi motion, nuclear binding and nucleon correlations through a relativistic nucleon spectral function. The contributions of π and ρ mesons as well as shadowing effects are also included. The beam energy loss is calculated using a phenomenological approach. The present theoretical results are compared with the experimental results of the E772 and E866 experiments. These results are applicable to the forthcoming experimental analysis of E906 Sea Quest experiment at the Fermi Lab.
Nuclear medium effects in Drell-Yan process
Haider, H; Singh, S K; Simo, I Ruiz
2016-01-01
We study the nuclear medium effects in Drell-Yan process using quark parton distribution functions calculated in a microscopic nuclear model which takes into account the effects of Fermi motion, nuclear binding and nucleon correlations through a relativistic nucleon spectral function. The contributions of $\\pi$ and $\\rho$ mesons as well as shadowing effects are also included. The beam energy loss is calculated using a phenomenological approach. The present theoretical results are compared with the experimental results of E772 and E886 experiments. These results are applicable to the forthcoming experimental analysis of E906 Sea Quest experiment at Fermi Lab.
Nuclear polarization effects in muonic atoms
Ji, Chen; Bacca, Sonia; Barnea, Nir
2013-01-01
We illustrate how nuclear polarization corrections in muonic atoms can be formally connected to inelastic response functions of a nucleus. We first discuss the point-nucleon approximation and then include finite-nucleon-size corrections. As an example, we compare our ab-initio calculation of the third Zemach moment in the muonic Helium-4 ion to previous phenomenological results.
The Effects of Nuclear Terrorism Fizzles
Liolios, T E
2002-01-01
The September 11 terrorist attack against America has caused a lot of concern to the American public and the entire world, which is suspecting a new attack sooner or later. The most frightening scenario is the one involving the detonation of a nuclear device at the heart of a large metropolitan city. Unless the terrorists are in possession of a fully assembled modern nuclear weapons it is very likely that they will possess a crude nuclear device which has been assembled in a terrorist camp by people with relatively limited technological resources. It well known that the Oppenheimer team which designed and tested the first nuclear weapon (the gadget) had a lot of reservations as to whether the first test at Alamogordo would produce any yield at all. Therefore, the most likely scenario is that the terrorists will achieve either a nominal yield or no yield at all (Fizzle). In this study we will investigate all those parameters that play a decisive role in the number of casualties after such an attack so that we ...
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
In order to investigate the effects of different kinds of nuclear recipients from Kunming (KM) mouse on developmental potential of somatic nuclear transfer em- bryos, the enucleated MⅡ oocytes, enucleated zygotes and 2-cell blastomere were used to produce cloned mouse embryos. Using fibroblast deriving from C57/BL6 ear tissue as nuclear donor, we produced cloned embryos by transferring the fibroblast nuclei into enucleated KM mouse oocytes (single nuclear transfer, SNT), transferring pronuclei from the SNT embryos into enucleated KM zygotes (nuclear into zygote, NZ), and 2-cell blastomere nuclei from SNT embryos into enucleated KM mouse oocytes (nuclear into oocytes, NO); tetraploid embryos (tetraploid embryos, TE) were obtained by fusing two blastomeres, one is from the SNT cloned embryos, and the other from normal 2-cell KM mouse embryos. In group SNT, the cloned embryos could not develop beyond 8-cell stage and the rate of 8-cell stage is only 0.3%; in group NO, the reconstructed embryos could develop to morula stage, the rate of 8-cell stage was significantly greater than that of SNT group (P < 0.05); in group NZ, the development rate was further improved, and the reconstructed embryos could develop into blastocyst stage, the rate of blastocyst was 1.9%; in group TE, as high as 62.3% of the reconstructed embryos could develop into blastocyst. Results suggested that different nuclear recipients could significantly affect the developmental potential of cloned mouse embryos; KM MⅡ oocyte cytoplasm was not so effective as zygotes to reprogram the mouse somatic cell nuclei; serial nuclear transfer could improve the developmental potential of cloned mouse embryos.
Energy Technology Data Exchange (ETDEWEB)
Catalan, J. M.
2009-07-01
The health effects of nuclear facilities under the microscope. The forthcoming months will see the conclusion of the epidemiological study that the Nuclear Safety Council (CSN) and the Carlos III Institute of Health (ISCIII) are carrying out to investigate the possible effects on the population of the ionising radiations produced by the operation of nuclear facilities. (Author)
Energy Technology Data Exchange (ETDEWEB)
Lee, Y. E.; Byeon, M. J.; Yoo, J. W.; Lee, J. M.; Lim, J. H. [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)
2016-10-15
The donor countries need to make decisions on various steps such as whether to fully accept newcomers’ requests, the depth of support, and how the supportive action will be carried out. Such is not an easy task due to limited time, resources, manpower, etc. Thus, creating an infrastructure to support emerging nuclear energy countries is needed. This paper suggests the resource portfolio concept used in business management and aims to analyze the validity of supporting the new entrants’ development of regulatory infrastructure as a case study. This study tries to develop a very simple Excel-based tool for assessing the supporting strategy quantitatively and screening the activities that is projected to be less effective and attractive. There are many countries, so called newcomers, which have expressed interests in developing their own nuclear power program. It has been recognized by the international community that every country considering embarking upon their own nuclear power program should establish their nuclear safety infrastructure to sustain a high level of nuclear safety. The newcomers have requested for considerable assistance from the IAEA and they already have bilateral cooperation programs with the advanced countries with matured nuclear regulatory programs. Currently, the regulatory bodies that provide support are confronted with two responsibilities as follows; the primary objective of the regulatory bodies is to ensure that the operator fulfills the responsibility to protect human health.
Pion Effect of Nuclear Matter in a Chiral Sigma Model
Institute of Scientific and Technical Information of China (English)
HU Jin-niu; Y.Ogawa; H.Toki; A.Hosaka; SHEN Hong
2009-01-01
We develop a new framework for the study of the nuclear matter based on the linear sigma model.We introduce a completely new viewpoint on the treatment of the nuclear matter with the inclusion of the pion.We extend the relativistic chiral mean field model by using the similar method in the tensor optimized shell model.We also regulate the pion-nucleon interaction by considering the form-factor and short range repulsion effects.We obtain the equation of state of nuclear matter and study the importance of the pion effect.
Nuclear deformation effects in the cluster radioactivity
Energy Technology Data Exchange (ETDEWEB)
Misicu, S. [Department of Theoretical Physics, NINPE-HH, Bucharest-Magurele (Romania); Protopopescu, D. [Frank Laboratory of Neutron Physics, JINR, Dubna (Russian Federation)
1999-01-01
We investigate the influence of the nuclear deformation on the decay rates of some cluster emission processes. The interaction between the daughter and the cluster is given by a double folding potential including quadrupole and hexadecapole deformed densities of both fragments. The nuclear part of the nucleus-nucleus interaction is density dependent and at small distances a repulsive core in the potential will occur. In the frame of the WKB-approximation the assault frequency of the cluster will depend on the geometric properties of the potential pocket whereas the penetrability will be sensitive to changes in the barrier location. The results obtained in this paper point out that various combinations of cluster and daughter deformations may account for the measured values of the decay rate. The decay rates are however more sensitive to the changes in the daughter deformation due to the large mass asymmetry of the process. (author) 10 refs, 6 figs, 1 tab
Nuclear Deformation Effects in the Cluster Radioactivity
Misicu, Serban; Protopopescu, Dan
1999-01-01
We investigate the influence of the nuclear deformation on the decay rates of some cluster emission processes. The interaction between the daughter and the cluster is given by a double folding potential including quadrupole and hexadecupole deformed densities of both fragments. The nuclear part of the nucleus--nucleus interaction is density dependent and at small distances a repulsive core in the potential will occur. In the frame of the WKB-approximation the assault frequency of the cluster will depend on the geometric properties of the potential pocket whereas the penetrability will be sensitive to changes in the barrier location. The results obtained in this paper point out that various combinations of cluster and daughter deformations may account for the measured values of the decay rate. The decay rates are however more sensitive to the changes in the daughter deformation due to the large mass asymmetry of the process.
Nuclear Deformation Effects in the Cluster Radioactivity
Misicu, S
1998-01-01
We investigate the influence of the nuclear deformation on the decay rates of some cluster emission processes. The interaction between the daughter and the cluster is given by a double folding potential including quadrupole and hexadecupole deformed densities of both fragments. The nuclear part of the nucleus-nucleus interaction is density dependent and at small distances a repulsive core in the potential will occur. In the frame of the WKB-approximation the assault frequency of the cluster will depend on the geometric properties of the potential pocket whereas the penetrability will be sensitive to changes in the barrier location. The results obtained in this paper point out that various combinations of cluster and daughter deformations may account for the measured values of the decay rate.
Tammam, Salma N; Azzazy, Hassan M E; Breitinger, Hans G; Lamprecht, Alf
2015-12-07
Many recently discovered therapeutic proteins exert their main function in the nucleus, thus requiring both efficient uptake and correct intracellular targeting. Chitosan nanoparticles (NPs) have attracted interest as protein delivery vehicles due to their biocompatibility and ability to escape the endosomes offering high potential for nuclear delivery. Molecular entry into the nucleus occurs through the nuclear pore complexes, the efficiency of which is dependent on NP size and the presence of nuclear localization sequence (NLS). Chitosan nanoparticles of different sizes (S-NPs ≈ 25 nm; L-NP ≈ 150 nm) were formulated, and they were modified with different densities of the octapeptide NLS CPKKKRKV (S-NPs, 0.25, 0.5, 2.0 NLS/nm(2); L-NPs, 0.6, 0.9, 2 NLS/nm(2)). Unmodified and NLS-tagged NPs were evaluated for their protein loading capacity, extent of cell association, cell uptake, cell surface binding, and finally nuclear delivery efficiency in L929 fibroblasts. To avoid errors generated with cell fractionation and nuclear isolation protocols, nuclear delivery was assessed in intact cells utilizing Förster resonance energy transfer (FRET) fluorometry and microscopy. Although L-NPs showed ≈10-fold increase in protein loading per NP when compared to S-NPs, due to higher cell association and uptake S-NPs showed superior protein delivery. NLS exerts a size and density dependent effect on nanoparticle uptake and surface binding, with a general reduction in NP cell surface binding and an increase in cell uptake with the increase in NLS density (up to 8.4-fold increase in uptake of High-NLS-L-NPs (2 NLS/nm(2)) compared to unmodified L-NPs). However, for nuclear delivery, unmodified S-NPs show higher nuclear localization rates when compared to NLS modified NPs (up to 5-fold by FRET microscopy). For L-NPs an intermediate NLS density (0.9 NLS/nm(2)) seems to provide highest nuclear localization (3.7-fold increase in nuclear delivery compared to High
Medical response to effects of ionising radiation. [Nuclear facilities
Energy Technology Data Exchange (ETDEWEB)
Crosbie, W.A.; Gittus, J.H. (UKAEA Headquarters, London (UK))
1989-01-01
The proceedings of a conference on 'Medical Response to Effects of Ionising Radiation' in 1989 in the form of nineteen papers published as a book. Topics discussed include radiation accidents at nuclear facilities, the medical management of radiation casualties, the responsibilities, plans and resources for coping with a nuclear accident and finally the long term effects of radiation, including leukaemia epidemiology studies. All papers were selected and indexed separately. (UK).
Power Counting and Wilsonian Renormalization in Nuclear Effective Field Theory
Valderrama, Manuel Pavon
2016-01-01
Effective field theories are the most general tool for the description of low energy phenomena. They are universal and systematic: they can be formulated for any low energy systems we can think of and offer a clear guide on how to calculate predictions with reliable error estimates, a feature that is called power counting. These properties can be easily understood in Wilsonian renormalization, in which effective field theories are the low energy renormalization group evolution of a more fundamental ---perhaps unknown or unsolvable--- high energy theory. In nuclear physics they provide the possibility of a theoretically sound derivation of nuclear forces without having to solve quantum chromodynamics explicitly. However there is the problem of how to organize calculations within nuclear effective field theory: the traditional knowledge about power counting is perturbative but nuclear physics is not. Yet power counting can be derived in Wilsonian renormalization and there is already a fairly good understanding ...
Nucleon propagation through nuclear matter in chiral effective field theory
Mallik, S; Mishra, Hiranmaya
2007-01-01
We treat the propagation of nucleon in nuclear matter by evaluating the ensemble average of the two-point function of nucleon currents in the framework of the chiral effective field theory. We first derive the effective parameters of nucleon to one loop. The resulting formula for the effective mass was known previously and gives an absurd value at normal nuclear density. We then modify it following Weinberg's method for the two-nucleon system in the effective theory. Our results for the effective mass and the width of nucleon are compared with those in the literature.
Nucleon propagation through nuclear matter in chiral effective field theory
Energy Technology Data Exchange (ETDEWEB)
Mallik, S. [Saha Institute of Nuclear Physics, Kolkata (India); Mishra, H. [Physical Research Laboratory, Theory Divison, Ahmedabad (India)
2007-05-15
We treat the propagation of a nucleon in nuclear matter by evaluating the ensemble average of the two-point function of the nucleon currents in the framework of chiral effective field theory. We first derive the effective parameters of the nucleon to one loop. The resulting formula for the effective mass has been known since before and gives an absurd value at normal nuclear density. We then modify it following Weinberg's method for the two-nucleon system in the effective theory. Our results for the effective mass and the width of the nucleon are compared with those in the literature. (orig.)
Nucleon propagation through nuclear matter in chiral effective field theory
Mallik, S.; Mishra, H.
2007-05-01
We treat the propagation of a nucleon in nuclear matter by evaluating the ensemble average of the two-point function of the nucleon currents in the framework of chiral effective field theory. We first derive the effective parameters of the nucleon to one loop. The resulting formula for the effective mass has been known since before and gives an absurd value at normal nuclear density. We then modify it following Weinberg’s method for the two-nucleon system in the effective theory. Our results for the effective mass and the width of the nucleon are compared with those in the literature.
Studies of Health Effects from Nuclear Testing near the Semipalatinsk Nuclear Test Site, Kazakhstan
Directory of Open Access Journals (Sweden)
Bernd Grosche
2015-05-01
Full Text Available The nuclear bomb testing conducted at the Semipalatinsk nuclear test site in Kazakhstan is of great importance for today’s radiation protection research, particularly in the area of low dose exposures. This type of radiation is of particular interest due to the lack of research in this field and how it impacts population health. In order to understand the possible health effects of nuclear bomb testing, it is important to determine what studies have been conducted on the effects of low dose exposure and dosimetry, and evaluate new epidemiologic data and biological material collected from populations living in proximity to the test site. With time, new epidemiological data has been made available, and it is possible that these data may be linked to biological samples. Next to linking existing and newly available data to examine health effects, the existing dosimetry system needs to be expanded and further developed to include residential areas, which have not yet been taken into account. The aim of this paper is to provide an overview of previous studies evaluating the health effects of nuclear testing, including some information on dosimetry efforts, and pointing out directions for future epidemiologic studies.
Medium effects in $K^+$ nuclear interactions
Friedman, E; Mares, J
1997-01-01
Total and reaction cross sections are derived self consistently from the attenuation cross sections measured in transmission experiments at the AGS for K^+ on Li^6, C, Si and Ca in the momentum range of 500-700 MeV/c by using a V_{opt}=t_{eff}(rho)rho optical potential. Self consistency requires, for the KN in-medium t matrix, that Im t_{eff}(rho) increases linearly with the average nuclear density in excess of a threshold value of 0.088+-0.004 fm^-3. The density dependence of Re t_{eff}(rho) is studied phenomenologically, and also applying a relativistic mean field approach, by fitting the integral cross sections. The real part of the optical potential is found to be systematically less repulsive with increasing energy than expected from the free-space repulsive KN interaction. When the elastic scattering data for Li^6 and C at 715 MeV/c are included in the analysis, a tendency of Re V_{opt} to generate an attractive pocket at the nuclear surface is observed.
Effect of topological defects on "nuclear pasta" observables
Schneider, A S; Caplan, M E; Horowitz, C J; Lin, Z
2016-01-01
[Background] The "pasta" phase of nuclear matter may play an important role in the structure and evolution of neutron stars. Recent works suggest nuclear pasta has a high resistivity which could be explained by the presence of long lived topological defects. The defects act as impurities that decrease thermal and electrical conductivity of the pasta. [Purpose] To quantify how topological defects affect transport properties of nuclear pasta and estimate this effect using an impurity parameter $Q_{\\text{imp}}$. [Methods] Contrast molecular dynamics simulations of up to 409\\,600 nucleons arranged in parallel nuclear pasta slabs (perfect pasta) with simulations of pasta slabs connected by topological defects (impure pasta). From these simulations compare the viscosity and heat conductivity of perfect and impure pasta to obtain an effective impurity parameter $Q_{\\text{imp}}$ due to the presence of defects. [Results] Both the viscosity and thermal conductivity calculated for both perfect and impure pasta are aniso...
Nuclear medium effects in Drell-Yan process
Haider, H; Simo, I Ruiz; Singh, S K
2013-01-01
We study nuclear medium effects in Drell-Yan processes at small target x using quark parton distribution functions and nucleon structure functions for a bound nucleon calculated in a microscopic nuclear model which takes into account the effect of Fermi motion, nuclear binding and nucleon correlations through a relativistic spectral function. The contributions of $\\pi$ and $\\rho$ mesons, target mass corrections and nuclear shadowing are also included. The results are compared with the theoretical and experimental results. The model is able to successfully explain the low target x results of E772 and E866 Drell-Yan experiments and is applicable to the forthcoming experimental analysis of E906 Sea Quest experiment at Fermi Lab.
Chiral effective field theory for nuclear forces: Achievements and challenges
Directory of Open Access Journals (Sweden)
Machleidt R.
2014-03-01
Full Text Available I start with a historical review of the theories of nuclear forces and then shift to the main focus, which is the chiral effective field theory approach to nuclear forces. I summarize the current status of this approach and discuss the most important open issues: the proper renormalization of the chiral two-nucleon potential and sub-leading three-nucleon forces.
Health effects of the nuclear accident at Three Mile Island
Energy Technology Data Exchange (ETDEWEB)
Fabrikant, J.I.
1980-05-01
Between March 28 and April 15, 1979 the collective dose resulting from the radioactivity released to the population living within a 50-mile radius of the Three Mile Island nuclear plant was about 2000 person-rems, less than 1% of the annual natural background level. The average dose to a person living within 5 miles of the nuclear plant was less than 10% of annual background radiation. The maximum estimated radiation dose received by any one individual in the general population (excluding the nuclear plant workers) during the accident was 70 mrem. The doses received by the general population as a result of the accident were so small that there will be no detectable additional cases of cancer, developmental abnormalities, or genetic ill-health. Three Three Mile Island nuclear workers received radiation doses of about 3 to 4 rem, exceeding maximum permissible quarterly dose of 3 rem. The major health effect of the accident at Three Mile Island was that of a pronounced demoralizing effect on the general population in the Three Mile Island area, including teenagers and mothers of preschool children and the nuclear plant workers. However, this effect proved transient in all groups studied except the nuclear workers.
Nuclear effects in deep inelastic scattering and transition region
Kumano, S
2016-01-01
We discuss nuclear effects on neutrino-nuclear interactions in a wide kinematical range from shallow to deep inelastic scattering (DIS) region. There is necessity from neutrino communities to have precise neutrino-nucleus cross sections within several percent order for future measurements on neutrino oscillations and leptonic CP violation. We try to create a model to calculate neutrino cross sections in the wide kinematical range, from quasi-elastic scattering and resonance productions to the DIS. In this article, nuclear modifications of structure functions are mainly discussed, and a possible extension to the $Q^2 \\to 0$ region is explained. We also comment on the transition region between baryon resonances and the DIS. There are ongoing experimental efforts on nuclear modifications of structure functions or parton distribution functions such as by pA reactions at RHIC and LHC, Drell-Yan measurements at Fermilab, Miner$\
Coulomb and nuclear effects in breakup and reaction cross sections
Descouvemont, P.; Canto, L. F.; Hussein, M. S.
2017-01-01
We use a three-body continuum discretized coupled channel (CDCC) model to investigate Coulomb and nuclear effects in breakup and reaction cross sections. The breakup of the projectile is simulated by a finite number of square integrable wave functions. First we show that the scattering matrices can be split in a nuclear term and in a Coulomb term. This decomposition is based on the Lippmann-Schwinger equation and requires the scattering wave functions. We present two different methods to separate both effects. Then, we apply this separation to breakup and reaction cross sections of 7Li+208Pb . For breakup, we investigate various aspects, such as the role of the α +t continuum, the angular-momentum distribution, and the balance between Coulomb and nuclear effects. We show that there is a large ambiguity in defining the Coulomb and nuclear breakup cross sections, since both techniques, although providing the same total breakup cross sections, strongly differ for the individual components. We suggest a third method which could be efficiently used to address convergence problems at large angular momentum. For reaction cross sections, interference effects are smaller, and the nuclear contribution is dominant above the Coulomb barrier. We also draw attention to different definitions of the reaction cross section which exist in the literature and which may induce small, but significant, differences in the numerical values.
Shell effects in the superasymmetric fission
Mirea, M
2002-01-01
A new formalism based on the Landau-Zener promotion mechanism intends to explain the fine structure of alpha and cluster decay. The analysis of this phenomenon is accomplished by following the modality in which the shells are reorganized during the decay process beginning with the initial ground state of the parent towards the final configuration of two separated nuclei. A realistic level scheme is obtained in the framework of the superasymmetric two-center shell model. (author)
Huang, Lei; Zhou, Ying; Han, Yuting; Hammitt, James K; Bi, Jun; Liu, Yang
2013-12-03
We assessed the influence of the Fukushima nuclear accident (FNA) on the Chinese public's attitude and acceptance of nuclear power plants in China. Two surveys (before and after the FNA) were administered to separate subsamples of residents near the Tianwan nuclear power plant in Lianyungang, China. A structural equation model was constructed to describe the public acceptance of nuclear power and four risk perception factors: knowledge, perceived risk, benefit, and trust. Regression analysis was conducted to estimate the relationship between acceptance of nuclear power and the risk perception factors while controlling for demographic variables. Meanwhile, we assessed the median public acceptable frequencies for three levels of nuclear events. The FNA had a significant impact on risk perception of the Chinese public, especially on the factor of perceived risk, which increased from limited risk to great risk. Public acceptance of nuclear power decreased significantly after the FNA. The most sensitive groups include females, those not in public service, those with lower income, and those living close to the Tianwan nuclear power plant. Fifty percent of the survey respondents considered it acceptable to have a nuclear anomaly no more than once in 50 y. For nuclear incidents and serious incidents, the frequencies are once in 100 y and 150 y, respectively. The change in risk perception and acceptance may be attributed to the FNA. Decreased acceptance of nuclear power after the FNA among the Chinese public creates additional obstacles to further development of nuclear power in China and require effective communication strategies.
Power counting and Wilsonian renormalization in nuclear effective field theory
Valderrama, Manuel Pavón
2016-05-01
Effective field theories are the most general tool for the description of low energy phenomena. They are universal and systematic: they can be formulated for any low energy systems we can think of and offer a clear guide on how to calculate predictions with reliable error estimates, a feature that is called power counting. These properties can be easily understood in Wilsonian renormalization, in which effective field theories are the low energy renormalization group evolution of a more fundamental — perhaps unknown or unsolvable — high energy theory. In nuclear physics they provide the possibility of a theoretically sound derivation of nuclear forces without having to solve quantum chromodynamics explicitly. However there is the problem of how to organize calculations within nuclear effective field theory: the traditional knowledge about power counting is perturbative but nuclear physics is not. Yet power counting can be derived in Wilsonian renormalization and there is already a fairly good understanding of how to apply these ideas to non-perturbative phenomena and in particular to nuclear physics. Here we review a few of these ideas, explain power counting in two-nucleon scattering and reactions with external probes and hint at how to extend the present analysis beyond the two-body problem.
Lessons Learned in Applying Accelerometers to Nuclear Effects Testing
Directory of Open Access Journals (Sweden)
Patrick L. Walter
2008-01-01
Full Text Available Exoatmospheric nuclear effects, such as those that would be encounter by reentry bodies, provide instantaneous (near zero-duration, impulsive loading of structures. Endoatmospheric nuclear effects possess an impulse that is finite in duration, but whose rise time is still instantaneous. The commonality of these loadings is that they initiate waves propagating through structures, resulting in extremely short duration accelerations to free surfaces where accelerometers are mounted. Over the years, attempts have been made to measure free surface accelerations using ceramic, quartz, and piezoresistive accelerometers. This paper describes the lessons learned, and looks to the future. It also provides a history of shock accelerometer development.
76 FR 65753 - Monitoring the Effectiveness of Maintenance at Nuclear Power Plants
2011-10-24
... COMMISSION Monitoring the Effectiveness of Maintenance at Nuclear Power Plants AGENCY: Nuclear Regulatory..., ``Monitoring the Effectiveness of Maintenance at Nuclear Power Plants,'' in the Federal Register for a 60 day... (NUMARC) 93-01, ``Industry Guideline for Monitoring the Effectiveness of Maintenance at Nuclear......
Psychosocial effects of the Chernobyl nuclear disaster.
Barnett, Lynn
2007-01-01
The psychological factors surrounding the Chernobyl disaster include the sudden trauma of evacuation, long-term effects of being a refugee, disruption of social networks, illness, separation and its effects on families, children's perception and effects on their development and the threat of a long-term consequence with an endless future. Added to this was the breakdown of the Soviet Union with consequent collapse of health services, increasing poverty and malnutrition. These complexities made necessary new individual and social treatment methods developed in UNESCO Community Centres, within which some positives have resulted, such as the development of individual and group self help and the professions of counselling, social work and community development, practices which did not previously exist in the Soviet Union.
Bubble Effect in Heterogeneous Nuclear Fuel Solution System
Institute of Scientific and Technical Information of China (English)
ZHOU; Xiao-ping; LUO; Huang-da; ZHANG; Wei; ZHU; Qing-fu
2013-01-01
Bubble effect means system reactivity changes due to the bubble induced solution volume,neutron leakage and absorption properties,neutron energy spectrum change in the nuclear fuel solution system.In the spent fuel dissolver,during uranium element shearing,the oxygen will be inlet to accelerate the
Exploring nuclear effects in neutrino interactions with MINERvA
Energy Technology Data Exchange (ETDEWEB)
Osmanov, B. [Department of Physics, University of Florida, Gainesville, FL, 32611 (United States)
2012-08-15
With the new era of neutrino-oscillation experiments, it becomes crucially important to know the neutrino interaction cross-sections with a high precision. This is the primary scientific aim of MINERvA experiment located in Fermilab. Another task is to examine the nuclear medium effects in neutrino-induced interactions such as final state modifications in the nucleus. The MINERvA collaboration has all the necessary tools in hand to achieve the above-stated goals: high-intensity neutrino beam, fine-granulated detector with EM and hadron calorimetry regions, various integrated nuclear targets and high-statistics event sample.
The EMC effect of Nuclear Matter with Coulomb Corrections
Li, Shujie; Solvignon, Patricia; Arrington, John; Gaskell, Dave
2016-09-01
Extraction of the EMC effect for nuclear matter is of great interest since it allows comparison to theoretical calculations in a regime where ``exact'' nuclear wave functions can be used. Earlier extractions from (e,e') cross sections ignored the contribution of the Coulomb distortion, which can be approximated as an electron energy shift on the order of MeV. Though small, this shift can cause a noticeable change in cross sections in certain kinematic regimes. In this study, we applied Coulomb corrections on the per-nucleon ratios from the published SLAC E139 data and preliminary JLAB E03-103 data. I will show preliminary results for an extrapolation of the EMC ratios from finite nuclei to symmetric nuclear matter, including Coulomb Corrections and examining the sensitivity to different approximations for the nuclear density. The data from two experiments will also be combined to study the nuclear dependence of R =σL /σT . Supported in part by DOE Grant No. DE-AC05-06OR23177, No. DE-AC02-06CH11357, and No. DE-SC0014168.
Modelling Nuclear Effects in Neutrino Scattering
Leitner, T; Mosel, U
2006-01-01
We have developed a model to describe the interactions of neutrinos with nucleons and nuclei via charged and neutral currents, focusing on the region of the quasielastic and Delta(1232) peaks. For neutrino nucleon collisions a fully relativistic formalism is used. The extension to finite nuclei has been done in the framework of a coupled-channel BUU transport model where we have studied exclusive channels taking into account in-medium effects and final state interactions.
Effect of topological defects on "nuclear pasta" observables
Schneider, A. S.; Berry, D. K.; Caplan, M. E.; Horowitz, C. J.; Lin, Z.
2016-06-01
Background: The "pasta" phase of nuclear matter may play an important role in the structure and evolution of neutron stars. Recent works suggest nuclear pasta has a high resistivity which could be explained by the presence of long-lived topological defects. The defects act as impurities that decrease thermal and electrical conductivity of the pasta. Purpose: To quantify how topological defects affect transport properties of nuclear pasta and estimate this effect using an impurity parameter Qimp. Methods: Contrast molecular dynamics simulations of up to 409 600 nucleons arranged in parallel nuclear pasta slabs (perfect pasta) with simulations of pasta slabs connected by topological defects (impure pasta). From these simulations we compare the viscosity and heat conductivity of perfect and impure pasta to obtain an effective impurity parameter Qimp due to the presence of defects. Results: Both the viscosity and thermal conductivity calculated for both perfect and impure pasta are anisotropic, peaking along directions perpendicular to the slabs and reaching a minimum close to zero parallel to them. In our 409 600 nucleon simulation topological defects connecting slabs of pasta reduce both the thermal conductivity and viscosity on average by about 37%. We estimate an effective impurity parameter due to the defects of order Qimp˜30 . Conclusions: Topological defects in the pasta phase of nuclear matter have an effect similar to impurities in a crystal lattice. The irregularities introduced by the defects reduce the thermal and electrical conductivities and the viscosity of the system. This effect can be parametrized by a large impurity parameter Qimp˜30 .
Coulomb and nuclear effects in breakup and reaction cross sections
Descouvemont, Pierre; Hussein, Mahir S
2016-01-01
We use a three-body Continuum Discretized Coupled Channel (CDCC) model to investigate Coulomb and nuclear effects in breakup and reaction cross sections. The breakup of the projectile is simulated by a finite number of square integrable wave functions. First we show that the scattering matrices can be split in a nuclear term, and in a Coulomb term. This decomposition is based on the Lippmann-Schwinger equation, and requires the scattering wave functions. We present two different methods to separate both effects. Then, we apply this separation to breakup and reaction cross sections of 7Li + 208Pb. For breakup, we investigate various aspects, such as the role of the alpha + t continuum, the angular-momentum distribution, and the balance between Coulomb and nuclear effects. We show that there is a large ambiguity in defining the 'Coulomb' and 'nuclear' breakup cross sections, since both techniques, although providing the same total breakup cross sections, strongly differ for the individual components. We suggest...
Nuclear Effects in Neutrino Interactions at Low Momentum Transfer
Energy Technology Data Exchange (ETDEWEB)
Miltenberger, Ethan Ryan [Univ. of Minnesota, Minneapolis, MN (United States)
2015-05-01
This is a study to identify predicted effects of the carbon nucleus environment on neutrino - nucleus interactions with low momentum transfer. A large sample of neutrino interaction data collected by the MINERvA experiment is analyzed to show the distribution of charged hadron energy in a region with low momentum transfer. These distributions reveal a major discrepancy between the data and a popular interaction model with only the simplest Fermi gas nuclear effects. Detailed analysis of systematic uncertainties due to energy scale and resolution can account for only a little of the discrepancy. Two additional nuclear model effects, a suppression/screening effect (RPA), and the addition of a meson exchange current process (MEC), are shown to improve the description of the data.
Microstructural characterization of radiation effects in nuclear materials
2017-01-01
Microstructural Characterization of Radiation Effects in Nuclear Materials provides an overview into experimental techniques that can be used to examine those effects (both neutron and charged particle) and can be used by researchers, technicians or students as a tool to introduce them to the various techniques. The need to examine the effect of radiation on materials is becoming increasingly important as nuclear energy is emerging as a growing source of renewable energy. The book opens with a discussion of why it is important to study the effects of radiation on materials and looks at current and future reactor designs and the various constraints faced by materials as a result of those designs. The book also includes an overview of the radiation damage mechanisms. The next section explores the various methods for characterizing damage including transmission electron microscopy, scanning transmission electron microscopy, analytical electron microscopy, electron backscatter diffraction, atom probe tomography,...
Energy Technology Data Exchange (ETDEWEB)
Benvenuto, O.G. [La Plata Univ. (Argentina). Fac. of Astron. and Geophys.; Civitarese, O. [Dept. of Physics, Univ. of La Plata (Argentina); Reboiro, M. [Dept. of Physics, Univ. of La Plata (Argentina)
1997-05-01
Effects due to the temperature dependence of the nuclear binding energy upon the equation of state (EOS) for hot nuclear matter are studied. Nuclear contributions to the free energy are represented by temperature dependent liquid drop model terms. Phase coexistence is assumed for temperatures of the order of 1 MeV {<=} T {<=} 6 MeV, baryon number densities {rho} of the order of 10{sup -4}fm{sup -3} {<=} {rho} {<=} 10{sup -1}fm{sup -3} and lepton fractions of the order of 0.2 {<=} y{sub 1} {<=} 0.4. It is found that the total pressure of the system is not affected by the temperature dependence of the nuclear free energy, in spite of changes observed in the nuclear pressure due to the different parametrizations used to represent the nuclear binding energy. (orig.).
Effect of Coulomb Screening Length on Nuclear Pasta Simulations
Alcain, P N; Nichols, J I; Dorso, C O
2013-01-01
We study the role of the effective Coulomb interaction strength and length on the dynamics of nucleons in conditions according to those in a neutron star's crust. Calculations were made with a semi-classical molecular dynamics model, studying isospin symmetric matter at sub-saturation densities and low temperatures. The electrostatic interaction between protons interaction is included in the form of a screened Coulomb potential in the spirit of the Thomas-Fermi approximation, but the screening length is artificially varied to explore its effect on the formation of the non-homogeneous nuclear structures known as ``nuclear pasta''. As the screening length increases, we can a transition from a one-per-cell pasta regime (due exclusively to finite size effects) to a more appealing multiple pasta per simulation box. This shows qualitative difference in the structure of neutron star matter at low temperatures, and therefore, special caution should be taken when the screening length is estimated for numerical simulat...
Energy Technology Data Exchange (ETDEWEB)
Benvenuto, O.G. (Facultad de Ciencias Astronomica y Geofisicas, Universidad Nacional de La Plata, La Plata, Buenos Aires (Argentina)); Civitarese, O.; Reboiro, M. (Departamento de Fisica, Universidad Nacional de La Plata, La Plata, Buenos Aires (Argentina))
1993-05-01
The influence of finite temperature nuclear effects upon the adiabatic index, for a system of nuclei, nucleons, and leptons, is discussed. It is found that the inclusion of temperature-dependent nuclear binding energies affects the behavior of the adiabats and of the adiabatic index, particularly, at low entropies.
10 CFR 50.65 - Requirements for monitoring the effectiveness of maintenance at nuclear power plants.
2010-01-01
... maintenance at nuclear power plants. 50.65 Section 50.65 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... Construction Permits § 50.65 Requirements for monitoring the effectiveness of maintenance at nuclear power..., including normal shutdown operations. (a)(1) Each holder of an operating license for a nuclear power......
Radiation effects in nuclear waste materials. 1998 annual progress report
Energy Technology Data Exchange (ETDEWEB)
Weber, W.J.; Corrales, L.R. [Pacific Northwest National Lab., Richland, WA (US); Birtcher, R.C. [Argonne National Lab., IL (US); Nastasi, M. [Los Alamos National Lab., NM (US)
1998-06-01
'The objective of this multidisciplinary, multi-institutional research effort is to develop a fundamental understanding of radiation effects in glasses and ceramics at the atomic, microscopic, and macroscopic levels. The goal is to provide the underpinning science and models necessary to assess the performance of glasses and ceramics designed for the immobilization and disposal of high-level tank waste, plutonium residues, excess weapons plutonium, and other highly radioactive waste streams. A variety of experimental and computer simulation methods are employed in this effort. In general, research on glasses focuses on the electronic excitations due to ionizing radiation emitted from beta decay, since this is currently thought to be the principal mechanism for deleterious radiation effects in nuclear waste glasses. Research on ceramics focuses on defects and structural changes induced by the elastic interactions between alpha-decay particles and the atoms in the structure. Radiation effects can lead to changes in physical and chemical properties that may significantly impact long-term performance of nuclear waste materials. The current lack of fundamental understanding of radiation effects in nuclear waste materials makes it impossible to extrapolate the limited existing data bases to larger doses, lower dose rates, different temperature regimes, and different glass compositions or ceramic structures. This report summarizes work after almost 2 years of a 3-year project. Work to date has resulted in 9 publications. Highlights of the research over the past year are presented.'
Effect of ground motion from nuclear excavation: interim canal studies
Energy Technology Data Exchange (ETDEWEB)
King, C. Y.; Nadolski, M. E.
1969-09-01
The effect of ground motion due to nuclear excavation of a sea-level canal at two alternative routes, 17A and 25E, are discussed from the aspects of motion prediction and structural response. The importance of the high-rise building problem is stressed because of its complexity. Several damage criteria are summarized for advance planning of excavation and operation. The 1964 shot schedule and the latest revised schedule are included for comparison.
Energy Technology Data Exchange (ETDEWEB)
Betthausen, Christian
2012-07-09
Within the framework of this PhD we report on the very first observation of the fractional Quantum Hall Effect (FQHE) in both, a non-magnetic CdTe and a semimagnetic Cd{sub 1-x}Mn{sub x}Te quantum well device. To our knowledge, this constitutes the first demonstration of this effect in the II-VI material family. Furthermore, our results reveal that the formation of fractional Quantum Hall states is not inhibited by the presence of magnetic impurities in a quantum structure. The second part of this thesis addresses an alternative route to realize efficient spin transistor action. Typically, spin transistor designs relying on spin-orbit interaction principally suffer from low signal levels due to limitations in spin injection efficiency and fast spin decay. Here we present an approach to realize spin transistor action in systems where spin information is protected by propagating it adiabatically. This is achieved by inducing tunable diabatic Landau-Zener transitions that lead to a backscattering of spins and hence allow controlling the transmission of spin-polarized charge carriers through the device, i.e. switching between 'on' and 'off' states. We demonstrate the validity of our approach in a Cd{sub 1-x}Mn{sub x}Te diluted magnetic semiconductor quantum well structure where efficient spin transport is observed over device distances of 50 {mu}m. In contrast to other spin transistor designs we find that our concept is exceptionally tolerant against disorder.
Memory effects on descent from nuclear fission barrier
Kolomietz, V M; Shlomo, S
2001-01-01
Non-Markovian transport equations for nuclear large amplitude motion are derived from the collisional kinetic equation. The memory effects are caused by the Fermi surface distortions and depend on the relaxation time. It is shown that the nuclear collective motion and the nuclear fission are influenced strongly by the memory effects at the relaxation time $\\tau \\geq 5\\cdot 10^{-23}{\\rm s}$. In particular, the descent of the nucleus from the fission barrier is accompanied by characteristic shape oscillations. The eigenfrequency and the damping of the shape oscillations depend on the contribution of the memory integral in the equations of motion. The shape oscillations disappear at the short relaxation time regime at $\\tau \\to 0$, which corresponds to the usual Markovian motion in the presence of friction forces. We show that the elastic forces produced by the memory integral lead to a significant delay for the descent of the nucleus from the barrier. Numerical calculations for the nucleus $^{236}$U shows that ...
Nuclear matter from effective quark-quark interaction.
Baldo, M; Fukukawa, K
2014-12-12
We study neutron matter and symmetric nuclear matter with the quark-meson model for the two-nucleon interaction. The Bethe-Bruckner-Goldstone many-body theory is used to describe the correlations up to the three hole-line approximation with no extra parameters. At variance with other nonrelativistic realistic interactions, the three hole-line contribution turns out to be non-negligible and to have a substantial saturation effect. The saturation point of nuclear matter, the compressibility, the symmetry energy, and its slope are within the phenomenological constraints. Since the interaction also reproduces fairly well the properties of the three-nucleon system, these results indicate that the explicit introduction of the quark degrees of freedom within the considered constituent quark model is expected to reduce the role of three-body forces.
Finite size effects in Neutron Star and Nuclear matter simulations
Molinelli, P A Giménez
2014-01-01
In this work we study molecular dynamics simulations of symmetric nuclear matter using a semi-classical nucleon interaction model. We show that, at sub-saturation densities and low temperatures, the solutions are non-homogeneous structures reminiscent of the ``nuclear pasta'' phases expected in Neutron Star Matter simulations, but shaped by artificial aspects of the simulations. We explore different geometries for the periodic boundary conditions imposed on the simulation cell: cube, hexagonal prism and truncated octahedron. We find that different cells may yield different solutions for the same physical conditions (i.e. density and temperature). The particular shape of the solution at a given density can be predicted analytically by energy minimization. We also show that even if this behavior is due to finite size effects, it does not mean that it vanishes for very large systems and it actually is independent of the system size: The system size sets the only characteristic length scale for the inhomogeneitie...
Nuclear energy density functional inspired by an effective field theory
Papakonstantinou, Panagiota; Lim, Yeunhwan; Hyun, Chang Ho
2016-01-01
Inspired by an effective field theory (EFT) for Fermi systems, we write the nuclear energy density functional (EDF) as an expansion in powers of the Fermi momentum $k_F$, or the cubic root of the density $\\rho^{1/3}$. With the help of pseudodata from microscopic calculations we fit the coefficients of the functional within a wide range of densities relevant for nuclei and neutron stars. The functional already at low order can reproduce known or adopted values of nuclear matter near saturation, a range of existing microscopic results on asymmetric matter, and a neutron-star mass-radius relation consistent with observations. Our approach leads to a transparent expansion of Skyrme-type EDFs and opens up many possibilities for future explorations in nuclei and homogeneous matter.
Nuclear Parity-Violation in Effective Field Theory
Energy Technology Data Exchange (ETDEWEB)
Shi-Lin Zhu; C.M. Maekawa; B.R. Holstein; M.J. Ramsey-Musolf; U van Kolck
2005-02-21
We reformulate the analysis of nuclear parity-violation (PV) within the framework of effective field theory (EFT). To order Q, the PV nucleon-nucleon (NN) interaction depends on five a priori unknown constants that parameterize the leading-order, short-range four-nucleon operators. When pions are included as explicit degrees of freedom, the potential contains additional medium- and long-range components parameterized by PV piNN couplings. We derive the form of the corresponding one- and two-pion-exchange potentials. We apply these considerations to a set of existing and prospective PV few-body measurements that may be used to determine the five independent low-energy constants relevant to the pionless EFT and the additional constants associated with dynamical pions. We also discuss the relationship between the conventional meson-exchange framework and the EFT formulation, and argue that the latter provides a more general and systematic basis for analyzing nuclear PV.
Sloppy nuclear energy density functionals: effective model reduction
Niksic, Tamara
2016-01-01
Concepts from information geometry are used to analyse parameter sensitivity for a nuclear energy density functional, representative of a class of semi-empirical functionals that start from a microscopically motivated ansatz for the density dependence of the energy of a system of protons and neutrons. It is shown that such functionals are sloppy, characterized by an exponential range of sensitivity to parameter variations. Responsive to only a few stiff parameter combinations, they exhibit an exponential decrease of sensitivity to variations of the remaining soft parameters. By interpreting the space of model predictions as a manifold embedded in the data space, with the parameters of the functional as coordinates on the manifold, it is also shown that the exponential distribution of model manifold widths corresponds to the distribution of parameter sensitivity. Using the Manifold Boundary Approximation Method, we illustrate how to systematically construct effective nuclear density functionals of successively...
Effects of Neutron Skin Thickness in Peripheral Nuclear Reactions
Institute of Scientific and Technical Information of China (English)
FANG De-Qing; MA Yu-Gang; CAI Xiang-Zhou; TIAN Wen-Dong; WANG Hong-Wei
2011-01-01
Effects of neutron skin thickness in peripheral nuclear collisions are investigated using the statistical abrasion ablation (SAA) model. The reaction cross section, neutron (proton) removal cross section, one-neutron (proton) removal cross section as well as their ratios for nuclei with different neutron skin thickness are studied. It is demonstrated that there are good linear correlations between these observables and the neutron skin thickness for neutron-rich nuclei. The ratio between the (one-)neutron and proton removal cross section is found to be the most sensitive observable of neutron skin thickness. Analysis shows that the relative increase of this ratio could be used to determine the neutron skin size in neutron-rich nuclei.%Effects of neutron skin thickness in peripheral nuclear collisions are investigated using the statistical abrasion ablation (SAA ) model.The reaction cross section,neutron (proton) removal cross section,one-neutron (proton) removal cross section as well as their ratios for nuclei with different neutron skin thickness are studied.It is demonstrated that there are good linear correlations between these observables and the neutron skin thickness for neutron-rich nuclei.The ratio between the (one-)neutron and proton removal cross section is found to be the most sensitive observable of neutron skin thickness.Analysis shows that the relative increase of this ratio could be used to determine the neutron skin size in neutron-rich nuclei.Determining the size and shape of a nucleus is one of the most important subjects since the discovery of atomic nuclei.The rms radii of the neutron (rn) and proton (rp) density distributions are among the most prominent observables for this purpose.Studies for stable nuclei have shown that the nuclear radii are proportional to A1/3,with A being the nuclear mass number.Meanwhile,the density distributions of neutrons and protons in stable nuclei are very similar.
Effects of hypothetical improvised nuclear detonation on the electrical infrastructure
Energy Technology Data Exchange (ETDEWEB)
Barrett, Christopher L.; Eubank, Stephen; Evrenosoglu, C. Yaman; Marathe, Achla; Marathe, Madhav V.; Phadke, Arun; Thorp, James; Vullikanti, Anil [Virginia Tech, Blacksburg, VA (United States). Network Dynamics and Simulation Science Lab.
2013-07-01
We study the impacts of a hypothetical improvised nuclear detonation (IND) on the electrical infrastructure and its cascading effects on other urban inter-dependent infrastructures of a major metropolitan area in the US. We synthesize open source information, expert knowledge, commercial software and Google Earth data to derive a realistic electrical transmission and distribution network spanning the region. A dynamic analysis of the geo-located grid is carried out to determine the cause of malfunction of components, and their short-term and long-term effect on the stability of the grid. Finally a detailed estimate of the cost of damage to the major components of the infrastructure is provided.
Effects of the Fukushima Daiichi nuclear accident on goshawk reproduction.
Murase, Kaori; Murase, Joe; Horie, Reiko; Endo, Koichi
2015-03-24
Although the influence of nuclear accidents on the reproduction of top predators has not been investigated, it is important that we identify the effects of such accidents because humans are also top predators. We conducted field observation for 22 years and analysed the reproductive performance of the goshawk (Accipiter gentilis fujiyamae), a top avian predator in the North Kanto area of Japan, before and after the accidents at the Fukushima Daiichi nuclear power plant that occurred in 2011. The reproductive performance declined markedly compared with the pre-accident years and progressively decreased for the three post-accident study years. Moreover, it was suggested that these declines were primarily caused by an increase in the air dose rate of radio-active contaminants measured under the nests caused by the nuclear accidents, rather than by other factors. We consider the trends in the changes of the reproductive success rates and suggest that internal exposure may play an important role in the reproductive performance of the goshawk, as well as external exposure.
A new explanation to the cold nuclear matter effects in heavy ion collisions
Liu, Zhi-Feng
2014-01-01
The J/Psi cross section ratios of p-A/p-p under different collision energy is calculated with cold nuclear matter effects redefined in this paper. The advantage of these new definitions is that all cold nuclear matter effects have clear physical origins.The radios are compared with the corresponding experiment data and that calculated with classic nuclear effects. The ratios calculated with new definitions can reproduce almost all existing J/Psi measurements in p-A collisions more accuratly than that calculated with classic nuclear effects. Hence, this paper presents a new approach to explain cold nuclear effects in the hardproduction of quarkonium.
Effect of a strong magnetic field on the energy yield of nuclear reactions in dense nuclear matter
Energy Technology Data Exchange (ETDEWEB)
Sekerzhitskii, V.S. [Pushkin Pedagogical Institute, Brest (Belarus)
1995-01-01
According to modern concepts, the electron-neutron-nuclear (Aen) phase of dense highly degenerate matter can be realized in the shells of neutron stars. This phase has relatively stable and absolutely stable states of thermodynamic equilibrium. Strong magnetic fields can exist in neutron stars. For this reason, analysis of their effect on the characteristics of the Aen phase is of great interest. It is specially important to study the influence of strong magnetic fields on the energy yield of nuclear reactions in dense nuclear matter because the transition to the absolute equilibrium state proceeds through these reactions.
2010-01-29
... Gamma Nuclear Radiology; Confirmatory Order Modifying License (Effective Immediately) I Beta Gamma Nuclear Radiology (BGNR) (Licensee) is the holder of medical License No. 52-25542-01, issued by the U.S...
Radiation and Thermal Effects on Used Nuclear Fuel and Nuclear Waste Forms
Energy Technology Data Exchange (ETDEWEB)
Weber, William [Univ. of Tennessee, Knoxville, TN (United States)
2016-09-20
This is the final report of the NEUP project “Radiation and Thermal Effects on Used Nuclear Fuel and Nuclear Waste Forms.” This project started on July 1, 2012 and was successfully completed on June 30, 2016. This report provides an overview of the main achievements, results and findings through the duration of the project. Additional details can be found in the main body of this report and in the individual Quarterly Reports and associated Deliverables of this project, which have been uploaded in PICS-NE. The objective of this research was to advance understanding and develop validated models on the effects of self-radiation from beta and alpha decay on the response of used nuclear fuel and nuclear waste forms during high-temperature interim storage and long-term permanent disposition. To achieve this objective, model used-fuel materials and model waste form materials were identified, fabricated, and studied. Two model used-fuel materials, nanograined CeO_{2} and ZrO_{2}, were fabricated as part of this study. To complement the work on damage evolution in nanocrystalline CeO_{2} and ZrO_{2} during helium implantation and heavy ion irradiation, additional irradiations were performed on single crystal CeO_{2} and ZrO_{2}. Samples were irradiated to ion fluences corresponding to an irradiation dose ranging from 0.11 to 100 dpa (displacements per atom), which is comparable to the irradiated dose expected during interim and long-term storage. Detailed transmission electron microscopy, Rutherford backscattering and Raman spectroscopy analysis have been carried out on these irradiated materials. The critical helium concentration for formation of helium bubbles was found to be 0.15 atomic percent (at%) in these samples, which is similar to that found in ^{238}Pu-doped UO_{2}. This critical helium concentration for bubble formation will be achieved in less than 100 years for MOX used fuels, in about 1000
Energy Technology Data Exchange (ETDEWEB)
Marques, Paulo, E-mail: pmarx@iq.usp.br [Universidade de Sao Paulo (USP), SP (Brazil)
2012-07-01
This work reports the severe nuclear incident occurred in Japan on March 11, 2011, due a earthquake followed by tsunami, where three of six existing reactors in Daiichi-Fukushima were damaged. The explosions with releasing of radioactive materials to environment have been discussed. It has shown the harmful effects of radiations to the exposed human being. Besides, the existence of the main impediment of the nuclear electric generation represented by production of non-disposable atomic waste has been discussed. (author)
Radiation effects on organic materials in nuclear plants. Final report
Energy Technology Data Exchange (ETDEWEB)
Bruce, M B; Davis, M V
1981-11-01
A literature search was conducted to identify information useful in determining the lowest level at which radiation causes damage to nuclear plant equipment. Information was sought concerning synergistic effects of radiation and other environmental stresses. Organic polymers are often identified as the weak elements in equipment. Data on radiation effects are summarized for 50 generic name plastics and 16 elastomers. Coatings, lubricants, and adhesives are treated as separate groups. Inorganics and metallics are considered briefly. With a few noted exceptions, these are more radiation resistant than organic materials. Some semiconductor devices and electronic assemblies are extremely sensitive to radiation. Any damage threshold including these would be too low to be of practical value. With that exception, equipment exposed to less than 10/sup 4/ rads should not be significantly affected. Equipment containing no Teflon should not be significantly affected by 10/sup 5/ rads. Data concerning synergistic effects and radiation sensitization are discussed. The authors suggest correlations between the two effects.
Medium effects in DIS from polarized nuclear targets
Energy Technology Data Exchange (ETDEWEB)
Fanchiotti, Huner; Garcia Canal, Carlos A.; Tarutina, Tatiana [Universidad Nacional de La Plata, Departamento de Fisica, C.C. 67, La Plata (Argentina); Universidad Nacional de La Plata, IFLP(CONICET), C.C. 67, La Plata (Argentina); Vento, Vicente [Universidad de Valencia, Consejo Superior de Investigaciones Cientificas, Departamento de Fisica Teorica and Instituto de Fisica Corpuscular, Burjassot (Valencia) (Spain)
2014-07-15
The behavior of the nucleon structure functions in lepton nuclei deep inelastic scattering, both polarized and unpolarized, due to nuclear structure effects is reanalyzed. The study is performed in two schemes: an x-rescaling approach, and one in which there is an increase of sea quark components in the in-medium nucleon, related to the low-energy N-N interaction. In view of a recent interesting experimental proposal to study the behavior of the proton spin structure functions in nuclei we proceed to compare these approaches in an effort to enlighten the possible phenomenological interest of such difficult experiment. (orig.)
Climate and chemistry effects of a regional scale nuclear conflict
Directory of Open Access Journals (Sweden)
A. Stenke
2013-05-01
Full Text Available Previous studies have highlighted the severity of detrimental effects for life on Earth after an assumed regionally limited nuclear war. These effects are caused by climatic, chemical and radiative changes persisting for up to one decade. However, so far only a very limited number of climate model simulations have been performed, giving rise to the question how realistic previous computations have been. This study uses the coupled chemistry climate model (CCM SOCOL, which belongs to a different family of CCMs than previously used, to investigate the consequences of such a hypothetical nuclear conflict. In accordance with previous studies, the present work assumes a scenario of a nuclear conflict between India and Pakistan, each applying 50 warheads with an individual blasting power of 15 kt ("Hiroshima size" against the major population centers, resulting in the emission of tiny soot particles, which are generated in the firestorms expected in the aftermath of the detonations. Substantial uncertainties related to the calculation of likely soot emissions, particularly concerning assumptions of target fuel loading and targeting of weapons, have been addressed by simulating several scenarios, with soot emissions ranging from 1 to 12 Tg. Their high absorptivity with respect to solar radiation leads to a tremendous self-lofting of the soot particles into the strato- and mesosphere, where they remain for several years. Consequently, the model suggests Earth's surface temperatures to drop by several degrees Celsius due to the shielding of solar irradiance by the soot, indicating a major global cooling. In addition, there is a substantial reduction of precipitation lasting 5 to 10 yr after the conflict, depending on the magnitude of the initial soot release. Extreme cold spells associated with massive sea ice formation are found during Northern Hemisphere winter, which expose the continental land masses of Northern America and Eurasia to chilling
Accelerated nuclear quantum effects sampling with open path integrals
Mazzola, Guglielmo
2016-01-01
We numericaly demonstrate that, in double well models, the autocorrelation time of open path integral Monte Carlo simulations can be much smaller compared to standard ones using ring polymers. We also provide an intuitive explanation based on the role of instantons as transition states of the path integral pseudodynamics. Therefore we propose that, in all cases when the ground state approximation to the finite temperature partition function holds, open path integral simulations can be used to accelerate the sampling in realistic simulations aimed to explore nuclear quantum effects.
The Hoyle state in nuclear lattice effective field theory
Indian Academy of Sciences (India)
Timo A Lähde; Evgeny Epelbaum; Hermann Krebs; Dean Lee; Ulf-G Meißner; Gautam Rupak
2014-11-01
We review the calculation of the Hoyle state of 12C in nuclear lattice effective field theory (NLEFT) and its anthropic implications in the nucleosynthesis of 12C and 16O in red giant stars. We also analyse the extension of NLEFT to the regime of medium-mass nuclei, with emphasis on the determination of the ground-state energies of the nuclei 16O, 20Ne, 24Mg, and 28Si by Euclidean time projection. Finally, we discuss recent NLEFT results for the spectrum, electromagnetic properties, and α-cluster structure of 16O.
Nuclear effects in F_3 structure function of nucleon
Athar, M Sajjad; Vacas, M J Vicente
2007-01-01
We study nuclear effects in the $F^A_3(x)$ structure function in the deep inelastic neutrino reactions on iron by using a relativistic framework to describe the nucleon spectral functions in the nucleus. The results for the ratio $R(x,Q^2)=\\frac{F^A_3(x,Q^2)}{AF^N_3(x, Q^2)}$ and the Gross-Llewellyn Smith(GLS) integral $G(x,Q^2)=\\int_x^1 dx F^A_3(x,Q^2)$ in nuclei are discussed and compared with the recent results available in literature from theoretical and phenomenological analyses of experimental data.
The effects on the atmosphere of a major nuclear exchange
Energy Technology Data Exchange (ETDEWEB)
1985-01-01
Most of the earth's population would survive the immediate horrors of a nuclear holocaust, but what long-term climatological changes would affect their ability to secure food and shelter. This sobering report considers the effects of fine dust from ground-level detonations, of smoke from widespread fires, and of chemicals released into the atmosphere. The authors use mathematical models of atmospheric processes and data from natural situations - e.g., volcanic eruptions and arctic haze - to draw their conclusions.
Nuclear EMC effect in non-extensive statistical model
Trevisan, Luis A.; Mirez, Carlos
2013-05-01
In the present work, we attempt to describe the nuclear EMC effect by using the proton structure functions obtained from the non-extensive statistical quark model. We record that such model has three fundamental variables, the temperature T, the radius, and the Tsallis parameter q. By combining different small changes, a good agreement with the experimental data may be obtained. Another interesting point of the model is to allow phenomenological interpretation, for instance, with q constant and changing the radius and the temperature or changing the radius and q and keeping the temperature.
Direct extraction of nuclear effects in quasielastic scattering on carbon
Wilkinson, Callum
2016-01-01
The differences between neutrino and antineutrino CCQE cross sections measured on hydrocarbon targets are due to fundamental differences in the cross section, different neutrino and antineutrino fluxes from the same beamline, and the additional interactions on hydrogen for antineutrinos that are absent for neutrinos. In this analysis we correct for the former two differences to extract a constraint on the ratio of the CCQE cross section for free and bound protons from MINERvA and MiniBooNE data. This measures nuclear effects in carbon, and we compare this measurement to models.
Nuclear Quantum Vibrational Effects in Shock Hugoniot Temperatures
Energy Technology Data Exchange (ETDEWEB)
Goldman, N; Reed, E; Fried, L E
2009-07-23
We present a straightforward method for the inclusion of quantum nuclear vibrational effects in molecular dynamics calculations of shock Hugoniot temperatures. Using a Grueneisen equation of state and a quasiharmonic approximation to the vibrational energies, we derive a simple, post-processing method for calculation of the quantum corrected Hugoniot temperatures. We have used our novel technique on ab initio simulations of shock compressed water. Our results indicate significantly closer agreement with all available experimental temperature data. Our formalism and technique can be easily applied to a number of different shock compressed molecular liquids or solids.
Nuclear Quantum Vibrational Effects in Shock Hugoniot Temperatures
Energy Technology Data Exchange (ETDEWEB)
Goldman, N; Reed, E; Fried, L E
2009-07-23
We present a straightforward method for the inclusion of quantum nuclear vibrational effects in molecular dynamics calculations of shock Hugoniot temperatures. Using a Grueneisen equation of state and a quasiharmonic approximation to the vibrational energies, we derive a simple, post-processing method for calculation of the quantum corrected Hugoniot temperatures. We have used our novel technique on ab initio simulations of shock compressed water. Our results indicate significantly closer agreement with all available experimental temperature data. Our formalism and technique can be easily applied to a number of different shock compressed molecular liquids or solids.
Climate and chemistry effects of a regional scale nuclear conflict
Stenke, A.; Hoyle, C. R.; Luo, B.; Rozanov, E.; Gröbner, J.; Maag, L.; Brönnimann, S.; Peter, T.
2013-05-01
Previous studies have highlighted the severity of detrimental effects for life on Earth after an assumed regionally limited nuclear war. These effects are caused by climatic, chemical and radiative changes persisting for up to one decade. However, so far only a very limited number of climate model simulations have been performed, giving rise to the question how realistic previous computations have been. This study uses the coupled chemistry climate model (CCM) SOCOL, which belongs to a different family of CCMs than previously used, to investigate the consequences of such a hypothetical nuclear conflict. In accordance with previous studies, the present work assumes a scenario of a nuclear conflict between India and Pakistan, each applying 50 warheads with an individual blasting power of 15 kt ("Hiroshima size") against the major population centers, resulting in the emission of tiny soot particles, which are generated in the firestorms expected in the aftermath of the detonations. Substantial uncertainties related to the calculation of likely soot emissions, particularly concerning assumptions of target fuel loading and targeting of weapons, have been addressed by simulating several scenarios, with soot emissions ranging from 1 to 12 Tg. Their high absorptivity with respect to solar radiation leads to a tremendous self-lofting of the soot particles into the strato- and mesosphere, where they remain for several years. Consequently, the model suggests Earth's surface temperatures to drop by several degrees Celsius due to the shielding of solar irradiance by the soot, indicating a major global cooling. In addition, there is a substantial reduction of precipitation lasting 5 to 10 yr after the conflict, depending on the magnitude of the initial soot release. Extreme cold spells associated with massive sea ice formation are found during Northern Hemisphere winter, which expose the continental land masses of Northern America and Eurasia to chilling coldness. In the
Pairing effects on spinodal decomposition of asymmetric nuclear matter
Directory of Open Access Journals (Sweden)
Burrello S.
2015-01-01
Full Text Available We present an analysis framed in the general context of two-component fermionic systems subjected to pairing correlations. The study is conducted for unstable asymmetric nuclear matter at low temperature, along the clusterization process driven by spinodal instabilities. It is shown that, especially around the transition temperature from the superfluid to the normal phase, pairing correlations may have non-negligible effects on the isotopic features of the clusterized low-density matter, which could be of interest also in the astrophysical context.
Finite size effects in neutron star and nuclear matter simulations
Energy Technology Data Exchange (ETDEWEB)
Giménez Molinelli, P.A., E-mail: pagm@df.uba.ar; Dorso, C.O.
2015-01-15
In this work we study molecular dynamics simulations of symmetric nuclear and neutron star matter using a semi-classical nucleon interaction model. Our aim is to gain insight on the nature of the so-called “finite size effects”, unavoidable in this kind of simulations, and to understand what they actually affect. To do so, we explore different geometries for the periodic boundary conditions imposed on the simulation cell: cube, hexagonal prism and truncated octahedron. For nuclear matter simulations we show that, at sub-saturation densities and low temperatures, the solutions are non-homogeneous structures reminiscent of the “nuclear pasta” phases expected in neutron star matter simulations, but only one structure per cell and shaped by specific artificial aspects of the simulations—for the same physical conditions (i.e. number density and temperature) different cells yield different solutions. The particular shape of the solution at low enough temperature and a given density can be predicted analytically by surface minimization. We also show that even if this behavior is due to the imposition of periodic boundary conditions on finite systems, this does not mean that it vanishes for very large systems, and it is actually independent of the system size. We conclude that, for nuclear matter simulations, the cells' size sets the only characteristic length scale for the inhomogeneities, and the geometry of the periodic cell determines the shape of those inhomogeneities. To model neutron star matter we add a screened Coulomb interaction between protons, and perform simulations in the three cell geometries. Our simulations indeed produce the well known nuclear pasta, with (in most cases) several structures per cell. However, we find that for systems not too large results are affected by finite size in different ways depending on the geometry of the cell. In particular, at the same certain physical conditions and system size, the hexagonal prism yields a
Nuclear and extra-nuclear effects of retinoid acid receptors: how they are interconnected.
Piskunov, Aleksandr; Al Tanoury, Ziad; Rochette-Egly, Cécile
2014-01-01
The nuclear retinoic acid receptors (RAR α, β and γ) and their isoforms are ligand-dependent regulators of transcription Transcription , which mediate the effects of all-trans retinoic acid (RA), the active endogenous metabolite of Vitamin A. They heterodimerize with Retinoid X Receptors (RXRs α, β and γ), and regulate the expression of a battery of target genes Target genes involved in cell growth and differentiation Differentiation . During the two last decades, the description of the crystallographic structures of RARs, the characterization of the polymorphic response elements of their target genes Target genes , and the identification of the multiprotein complexes involved in their transcriptional activity have provided a wealth of information on their pleiotropic effects. However, the regulatory scenario became even more complicated once it was discovered that RARs are phosphoproteins and that RA can activate kinase signaling cascades via a pool of RARs present in membrane lipid rafts. Now it is known that these RA-activated kinases Kinases translocate to the nucleus where they phosphorylate RARs and other retinoid signaling factors. The phosphorylation Phosphorylation state of the RARs dictates whether the transcriptional programs which are known to be induced by RA are facilitated and/or switched on. Thus, kinase signaling pathways appear to be crucial for fine-tuning the appropriate physiological activity of RARs.
Nuclear counter effect and pi-e misidentification
Zürcher, D
2000-01-01
The e sup+-/pi sup+- discrimination within the CMS(1) ECAL is investigated using GEANT simulations and the 1998 test beam results. If one takes into account the energy left in the ECAL crystals alone (i.e. without read-out effects), the probability that a pi sup+- leaves more than 95% of its initial energy decreases from about 0.01% for 10 GeV to about 0.001% for 50 GeV. The Nuclear Counter Effect within the Avalanche Photo-Diodes (APD) enhances the probability of an electron misidentification. With the expected value of this effect (approx 100 MeV), this probability appears then to be between 0.2% and 0.01% for initial momenta varying, respectively, between 5 and 50 GeV. Important consequences of the pion-electron misidentification could appear in the form of new possible backgrounds for physics channels.
Freudenburg, William R.; Davidson, Debra J.
2007-01-01
Studies of reactions to nuclear facilities have found consistent male/female differences, but the underlying reasons have never been well-clarified. The most common expectations involve traditional roles--with men focusing more on economic concerns and with women (especially mothers) being more concerned about family safety/health. Still, with…
Freudenburg, William R.; Davidson, Debra J.
2007-01-01
Studies of reactions to nuclear facilities have found consistent male/female differences, but the underlying reasons have never been well-clarified. The most common expectations involve traditional roles--with men focusing more on economic concerns and with women (especially mothers) being more concerned about family safety/health. Still, with…
Risk perception of nuclear energy and the effect of information
Energy Technology Data Exchange (ETDEWEB)
Taylor, Caroline
2000-08-01
Results from 4 studies are reported. A mixture of survey, experimental and quasi-experimental designs and a variety of samples (undergraduates, postgraduates and graduates of Nottingham University, visitors to Sellafield and a random national UK sample) were used to examine risk perceptions of nuclear energy. The roles of risk, benefit, preference, knowledge, control, trust, attitudes, intentions to act and personality, in relation to nuclear energy, were examined. A survey study examined and explored the above-mentioned variables. Then experimental and quasi-experimental studies were devised using a BNFL video advert, a BNFL written newspaper advert and BNFL's Sellafield Visitors' Centre (SVC), to test the effectiveness of information on these variables. Through pre-post experimental and quasi-experimental studies, it was shown that levels of knowledge could be increased through information. This increase was also seen to be sustained over time, especially when people engaged in their learning environment (reading a newspaper or going to Sellafield). Regarding levels of knowledge, passively watching a video had a significant but very small effect. Changes in attitudes were also recorded, although these were only sustained over time for the Visitors' Centre. Concerning the other variables in question, changes in perceived risk, perceived benefit and preference were also recorded for the samples, although these results either could not be attributed to the different types of information, were not sustained or were no different to observations in the control groups. Some changes were recorded for aspects of control in the advert study although none were seen in the SVC study. No changes were found in trust for any of the different types of information. The main, consistent finding, was that sustained changes were recorded for knowledge and attitudes. These were both found to be linked to many of the variables under investigation, including risk
Update on nuclear structure effects in light muonic atoms
Hernandez, Oscar Javier; Ji, Chen; Bacca, Sonia; Barnea, Nir
2016-01-01
We present calculations of the nuclear structure corrections to the Lamb shift in light muonic atoms, using state-of-the-art nuclear potentials. We outline updated results on finite nucleon size contributions.
Update on nuclear structure effects in light muonic atoms
Hernandez, Oscar Javier; Dinur, Nir Nevo; Ji, Chen; Bacca, Sonia; Barnea, Nir
2016-12-01
We present calculations of the nuclear structure corrections to the Lamb shift in light muonic atoms, using state-of-the-art nuclear potentials. We outline updated results on finite nucleon size contributions.
Update on nuclear structure effects in light muonic atoms
Energy Technology Data Exchange (ETDEWEB)
Hernandez, Oscar Javier, E-mail: javierh@triumf.ca; Dinur, Nir Nevo; Ji, Chen; Bacca, Sonia [TRIUMF (Canada); Barnea, Nir [The Hebrew University, Racah Institute of Physics (Israel)
2016-12-15
We present calculations of the nuclear structure corrections to the Lamb shift in light muonic atoms, using state-of-the-art nuclear potentials. We outline updated results on finite nucleon size contributions.
Understanding the proton radius puzzle: Nuclear structure effects in light muonic atoms
Ji, Chen; Dinur, Nir Nevo; Bacca, Sonia; Barnea, Nir
2015-01-01
We present calculations of nuclear structure effects to the Lamb shift in light muonic atoms. We adopt a modern ab-initio approach by combining state-of-the-art nuclear potentials with the hyperspherical harmonics method. Our calculations are instrumental to the determination of nuclear charge radii in the Lamb shift measurements, which will shed light on the proton radius puzzle.
2010-06-11
... Carolinas, LLC; McGuire Nuclear Station; Confirmatory Order (Effective Immediately) I Duke Energy Carolinas, LLC's (Duke Energy or Licensee) is the holder of License Nos. NPF-9 and NPF-17, issued by the Nuclear... Energy Nuclear Policy Manual, NSD 218.10.1, Revision 9, states in relevant part, that where unusual...
Study on the establishment of effective nuclear export system
Energy Technology Data Exchange (ETDEWEB)
Kim, Byung Koo; So, Dong Sup; Baik, Dae Hyun; Kwack, Eun Ho; Shin, Jang Soo; Yoon, Wan Ki; Park, Wan Soo; Kim, Hyun Tae
1997-02-01
To improve Korean nuclear export control system, the modification of the present export license procedure for the nuclear equipment and materials and the classification of control items and their related technologies are required. And it is also necessary to make a database of the original countries who have the right of prior consent. For the efficient export control of LWR items to DPRK, it is desirable to manage the export license scheme of nuclear reactor facility as a total package, and to prepare a control regime for the retransfer of nuclear reactor component such as reactor coolant pump and nuclear fuel whose technologies are not self-reliant. It is especially essential to prepare a systematic procedure for the supply of nuclear equipment and materials to DPRK in order to meet international guidelines of NSG and others through an accord on the nuclear cooperation between Republic of Korea (ROK) and DPRK. The principal elements to be included in the accord are the range of cooperation, the restriction within the peaceful uses, prior consent right in case of retransfer of important nuclear reactor components and of storage, transfer and changes of nuclear fuels, application of safeguards to the supplied Trigger list items, physical protection of nuclear material, requirement of the return of nuclear equipment and materials, and restriction right for the suspension or termination of the agreement. (author). 40 refs., 5 tabs., 8 figs.
Directory of Open Access Journals (Sweden)
O. B. Toon
2006-11-01
Full Text Available We assess the potential damage and smoke production associated with the detonation of small nuclear weapons in modern megacities. While the number of nuclear warheads in the world has fallen by about a factor of three since its peak in 1986, the number of nuclear weapons states is increasing and the potential exists for numerous regional nuclear arms races. Eight countries are known to have nuclear weapons, 2 are constructing them, and an additional 32 nations already have the fissile material needed to build substantial arsenals of low-yield (Hiroshima-sized explosives. Population and economic activity worldwide are congregated to an increasing extent in megacities, which might be targeted in a nuclear conflict. Our analysis shows that, per kiloton of yield, low yield weapons can produce 100 times as many fatalities and 100 times as much smoke from fires as high-yield weapons, if they are targeted at city centers. A single "small'' nuclear detonation in an urban center could lead to more fatalities, in some cases by orders of magnitude, than have occurred in the major historical conflicts of many countries. We analyze the likely outcome of a regional nuclear exchange involving 100 15-kt explosions (less than 0.1% of the explosive yield of the current global nuclear arsenal. We find that such an exchange could produce direct fatalities comparable to all of those worldwide in World War II, or to those once estimated for a "counterforce'' nuclear war between the superpowers. Megacities exposed to atmospheric fallout of long-lived radionuclides would likely be abandoned indefinitely, with severe national and international implications. Our analysis shows that smoke from urban firestorms in a regional war would rise into the upper troposphere due to pyro-convection. Robock et al. (2006 show that the smoke would subsequently rise deep into the stratosphere due to atmospheric heating, and then might induce significant climatic
Climate and chemistry effects of a regional scale nuclear conflict
Stenke, A.; Hoyle, C. R.; Luo, B.; Rozanov, E.; Gröbner, J.; Maag, L.; Brönnimann, S.; Peter, T.
2013-10-01
Previous studies have highlighted the severity of detrimental effects for life on earth after an assumed regionally limited nuclear war. These effects are caused by climatic, chemical and radiative changes persisting for up to one decade. However, so far only a very limited number of climate model simulations have been performed, giving rise to the question how realistic previous computations have been. This study uses the coupled chemistry climate model (CCM) SOCOL, which belongs to a different family of CCMs than previously used, to investigate the consequences of such a hypothetical nuclear conflict. In accordance with previous studies, the present work assumes a scenario of a nuclear conflict between India and Pakistan, each applying 50 warheads with an individual blasting power of 15 kt ("Hiroshima size") against the major population centers, resulting in the emission of tiny soot particles, which are generated in the firestorms expected in the aftermath of the detonations. Substantial uncertainties related to the calculation of likely soot emissions, particularly concerning assumptions of target fuel loading and targeting of weapons, have been addressed by simulating several scenarios, with soot emissions ranging from 1 to 12 Tg. Their high absorptivity with respect to solar radiation leads to a rapid self-lofting of the soot particles into the strato- and mesosphere within a few days after emission, where they remain for several years. Consequently, the model suggests earth's surface temperatures to drop by several degrees Celsius due to the shielding of solar irradiance by the soot, indicating a major global cooling. In addition, there is a substantial reduction of precipitation lasting 5 to 10 yr after the conflict, depending on the magnitude of the initial soot release. Extreme cold spells associated with an increase in sea ice formation are found during Northern Hemisphere winter, which expose the continental land masses of North America and Eurasia to a
Climate and chemistry effects of a regional scale nuclear conflict
Directory of Open Access Journals (Sweden)
A. Stenke
2013-10-01
Full Text Available Previous studies have highlighted the severity of detrimental effects for life on earth after an assumed regionally limited nuclear war. These effects are caused by climatic, chemical and radiative changes persisting for up to one decade. However, so far only a very limited number of climate model simulations have been performed, giving rise to the question how realistic previous computations have been. This study uses the coupled chemistry climate model (CCM SOCOL, which belongs to a different family of CCMs than previously used, to investigate the consequences of such a hypothetical nuclear conflict. In accordance with previous studies, the present work assumes a scenario of a nuclear conflict between India and Pakistan, each applying 50 warheads with an individual blasting power of 15 kt ("Hiroshima size" against the major population centers, resulting in the emission of tiny soot particles, which are generated in the firestorms expected in the aftermath of the detonations. Substantial uncertainties related to the calculation of likely soot emissions, particularly concerning assumptions of target fuel loading and targeting of weapons, have been addressed by simulating several scenarios, with soot emissions ranging from 1 to 12 Tg. Their high absorptivity with respect to solar radiation leads to a rapid self-lofting of the soot particles into the strato- and mesosphere within a few days after emission, where they remain for several years. Consequently, the model suggests earth's surface temperatures to drop by several degrees Celsius due to the shielding of solar irradiance by the soot, indicating a major global cooling. In addition, there is a substantial reduction of precipitation lasting 5 to 10 yr after the conflict, depending on the magnitude of the initial soot release. Extreme cold spells associated with an increase in sea ice formation are found during Northern Hemisphere winter, which expose the continental land masses of North
Effect of the isovector coupling channel on the macroscopic part of the nuclear binding energy
Indian Academy of Sciences (India)
S Haddad
2013-05-01
The effect of isovector coupling channel on the macroscopic part of the nuclear binding energy is studied using the relativistic density-dependent Thomas–Fermi approach. The dependency of this effect on the number of neutrons and protons is also studied. The isovector coupling channel leads to increased nuclear binding energy, and this effect increases with the increasing neutron number in the nucleus.
Nuclear Quantum Effects on Aqueous Electron Attachment and Redox Properties.
Rybkin, Vladimir V; VandeVondele, Joost
2017-03-17
Nuclear quantum effects (NQEs) on the reduction and oxidation properties of small aqueous species (CO2, HO2, and O2) are quantified and rationalized by first-principles molecular dynamics and thermodynamic integration. Vertical electron attachment, or electron affinity, and detachment energies (VEA and VDE) are strongly affected by NQEs, decreasing in absolute value by 0.3 eV going from a classical to a quantum description of the nuclei. The effect is attributed to NQEs that lessen the solvent response upon oxidation/reduction. The reduction of solvent reorganization energy is expected to be general for small solutes in water. In the thermodynamic integral that yields the free energy of oxidation/reduction, these large changes enter with opposite sign, and only a small net effect (0.1 eV) remains. This is not obvious for CO2, where the integrand is strongly influenced by NQEs due to the onset of interaction of the reduced orbital with the conduction band of the liquid during thermodynamic integration. We conclude that NQEs might not have to be included in the computation of redox potentials, unless high accuracy is needed, but are important for VEA and VDE calculations.
Search for isospin effects on nuclear level density
Directory of Open Access Journals (Sweden)
Lucarelli F.
2010-03-01
Full Text Available Studies on the isospin dependence of the level density have been recently reported in the literature for nuclei with 20 ≤ A ≤ 110. Corrections to the level density have been deduced which would imply a significant reduction of this quantity for nuclei far from the valley of stability. Isospin effects on the level density are also expected through the symmetry energy contribution to the nuclear masses, which is predicted to increase with the temperature. According to these findings, we have implemented the statistical model in order to account for isospin effects on the level density parameter a and on the temperature-dependent symmetry energy. We present the results of calculations for the decay of a variety of neutron-rich composite systems. We found that isospin produces sizable eïňĂects on difierent observables, this result being promising for future experiments with the second generation RIB facilities SPES and SPIRAL2. We report the results of a first experiment aimed at searching for isospin effects in the decay of 139 Eu composite nuclei produced by a stable beam at E x =90 MeV.
Effect of donor cell type on nuclear remodelling in rabbit somatic cell nuclear transfer embryos.
Tian, J; Song, J; Li, H; Yang, D; Li, X; Ouyang, H; Lai, L
2012-08-01
Cloned rabbits have been produced for many years by somatic cell nuclear transfer (SCNT). The efficiency of cloning by SCNT, however, has remained extremely low. Most cloned embryos degenerate in utero, and the few that develop to term show a high incidence of post-natal death and abnormalities. The cell type used for donor nuclei is an important factor in nuclear transfer (NT). As reported previously, NT embryos reconstructed with fresh cumulus cells (CC-embryos) have better developmental potential than those reconstructed with foetal fibroblasts (FF-embryos) in vivo and in vitro. The reason for this disparity in developmental capacity is still unknown. In this study, we compared active demethylation levels and morphological changes between the nuclei of CC-embryos and FF-embryos shortly after activation. Anti-5-methylcytosine immunofluorescence of in vivo-fertilized and cloned rabbit embryos revealed that there was no detectable active demethylation in rabbit zygotes or NT-embryos derived from either fibroblasts or CC. In the process of nuclear remodelling, however, the proportion of nuclei with abnormal appearance in FF-embryos was significantly higher than that in CC-embryos during the first cell cycle. Our study demonstrates that the nuclear remodelling abnormality of cloned rabbit embryos may be one important factor for the disparity in developmental success between CC-embryos and FF-embryos.
Wilson, J. W.; Khandelwal, G. S.
1976-01-01
Calculational methods for estimation of dose from external proton exposure of arbitrary convex bodies are briefly reviewed. All the necessary information for the estimation of dose in soft tissue is presented. Special emphasis is placed on retaining the effects of nuclear reaction, especially in relation to the dose equivalent. Computer subroutines to evaluate all of the relevant functions are discussed. Nuclear reaction contributions for standard space radiations are in most cases found to be significant. Many of the existing computer programs for estimating dose in which nuclear reaction effects are neglected can be readily converted to include nuclear reaction effects by use of the subroutines described herein.
Power counting for nuclear forces in chiral effective field theory
Long, Bingwei
2016-01-01
The present note summarizes the discourse on power counting issues of chiral nuclear forces, with an emphasis on renormalization-group invariance. Given its introductory nature, I will lean toward narrating a coherent point of view on the concepts, rather than covering comprehensively the development of chiral nuclear forces in different approaches.
Power counting for nuclear forces in chiral effective field theory
Long, Bingwei
2016-02-01
The present note summarizes the discourse on power counting issues of chiral nuclear forces, with an emphasis on renormalization-group invariance. Given its introductory nature, I will lean toward narrating a coherent point of view on the concepts, rather than covering comprehensively the development of chiral nuclear forces in different approaches.
Cold Nuclear Matter Effects on J/psi Production: Intrinsic and Extrinsic Transverse Momentum Effects
Energy Technology Data Exchange (ETDEWEB)
Ferreiro, E.G.; /Santiago de Compostela U.; Fleuret, F.; /Ecole Polytechnique; Lansberg, J.P.; /Heidelberg U.; Rakotozafindrabe, A.; /SPhN, DAPNIA, Saclay
2010-08-26
Cold nuclear matter effects on J/{psi} production in proton-nucleus and nucleus-nucleus collisions are evaluated taking into account the specific J/{psi}-production kinematics at the partonic level, the shadowing of the initial parton distributions and the absorption in the nuclear matter. We consider two different parton processes for the c{bar c}-pair production: one with collinear gluons and a recoiling gluon in the final state and the other with initial gluons carrying intrinsic transverse momentum. Our results are compared to RHIC observables. The smaller values of the nuclear modification factor R{sub AA} in the forward rapidity region (with respect to the mid rapidity region) are partially explained, therefore potentially reducing the need for recombination effects.
Skobelev, N. K.
2016-07-01
Experimental data on the cross sections for channels of fusion and transfer reactions induced by beams of radioactive halo nuclei and clustered and stable loosely bound nuclei were analyzed, and the results of this analysis were summarized. The interplay of the excitation of single-particle states in reaction-product nuclei and direct reaction channels was established for transfer reactions. Respective experiments were performed in stable (6Li) and radioactive (6He) beams of the DRIBs accelerator complex at the Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, and in deuteron and 3He beams of the U-120M cyclotron at the Nuclear Physics Institute, Academy Sciences of Czech Republic (Řež and Prague, Czech Republic). Data on subbarrier and near-barrier fusion reactions involving clustered and loosely bound light nuclei (6Li and 3He) can be described quite reliably within simple evaporation models with allowance for different reaction Q-values and couple channels. In reactions involving halo nuclei, their structure manifests itself most strongly in the region of energies below the Coulomb barrier. Neutron transfer occurs with a high probability in the interactions of all loosely bound nuclei with light and heavy stable nuclei at positive Q-values. The cross sections for such reactions and the respective isomeric ratios differ drastically for nucleon stripping and nucleon pickup mechanisms. This is due to the difference in the population probabilities for excited single-particle states.
The effects of nuclear structure on generalized parton distributions of 3He
Scopetta, S
2005-01-01
The effect of the nuclear medium on generalized parton distributions (GPDs) is studied for the 3He nucleus, through a realistic microscopic analysis. In Impulse Approximation, Fermi motion and binding effects, evaluated by modern potentials, are found to be larger than in the forward case and very sensitive to the details of nuclear structure at short distances.
Passive permeability and effective pore size of HeLa cell nuclear membranes.
Samudram, Arunkarthick; Mangalassery, Bijeesh M; Kowshik, Meenal; Patincharath, Nandakumar; Varier, Geetha K
2016-09-01
Nuclear pore complexes in the nuclear membrane act as the sole gateway of transport of molecules from the cytoplasm to the nucleus and vice versa. Studies on biomolecular transport through nuclear membranes provide vital data on the nuclear pore complexes. In this work, we use fluorescein isothiocyanate-labeled dextran molecules as a model system and study the passive nuclear import of biomolecules through nuclear pore complexes in digitonin-permeabilized HeLa cells. Experiments are carried out under transient conditions in the time lapse imaging scheme using an in-house constructed confocal laser scanning microscope. Transport rates of dextran molecules having molecular weights of 4-70 kDa corresponding to Stokes radius of 1.4-6 nm are determined. Analyzing the permeability of the nuclear membrane for different sizes the effective pore radius of HeLa cell nuclear membrane is determined to be 5.3 nm, much larger than the value reported earlier using proteins as probe molecules. The range of values reported for the nuclear pore radius suggest that they may not be rigid structures and it is quite probable that the effective pore size of nuclear pore complexes is critically dependent on the probe molecules and on the environmental factors.
In-medium effective chiral lagrangians and the pion mass in nuclear matter
Wirzba, A; Wirzba, Andreas; Thorsson, Vesteinn
1995-01-01
We argue that the effective pion mass in nuclear matter obtained from chiral effective lagrangians is unique and does not depend on off-mass-shell extensions of the pion fields as e.g. the PCAC choice. The effective pion mass in isospin symmetric nuclear matter is predicted to increase slightly with increasing nuclear density, whereas the effective time-like pion decay constant and the magnitude of the density-dependent quark condensate decrease appreciably. The in-medium Gell-Mann-Oakes-Renner relation as well as other in-medium identities are studied in addition. Finally, several constraints on effective lagrangians for the description of the pion propagation in isospin symmetric, isotropic and homogenous nuclear matter are discussed. (Talk presented at the workshop ``Hirschegg '95: Hadrons in Nuclear Matter'', Hirschegg, Kleinwalsertal, Austria, January 16-21, 1995)
Effect of the interactions and environment on nuclear activity
Sabater, J; Argudo-Fernández, M
2012-01-01
We present a study of the prevalence of optical and radio nuclear activity with respect to the environment and interactions in a sample of SDSS galaxies. We defined a local density parameter and a tidal forces estimator and used a cluster richness estimator from the literature. The possible correlations between these parameters were removed using a principal component analysis. We applied a stratified statistical method that takes into account the effect of possible confounding factors like the galaxy mass. We found that the prevalence of optical AGN is a factor 2-3 lower in the densest environments, but increases by a factor of ~2 in the presence of strong one-on-one interactions. The importance of galaxy interactions decreases from star-forming nuclei (SFN) to Seyferts to LINERs to passive galaxies, in accordance with previous suggestions of an evolutionary time-sequence. The fraction of radio AGN increases strongly towards denser environments, and is enhanced by galaxy interactions. Overall, the results ag...
Nuclear Fusion Effects Induced in Intense Laser-Generated Plasmas
Directory of Open Access Journals (Sweden)
Lorenzo Torrisi
2013-01-01
Full Text Available Deutered polyethylene (CD2n thin and thick targets were irradiated in high vacuum by infrared laser pulses at 1015W/cm2 intensity. The high laser energy transferred to the polymer generates plasma, expanding in vacuum at supersonic velocity, accelerating hydrogen and carbon ions. Deuterium ions at kinetic energies above 4 MeV have been measured by using ion collectors and SiC detectors in time-of-flight configuration. At these energies the deuterium–deuterium collisions may induce over threshold fusion effects, in agreement with the high D-D cross-section valuesaround 3 MeV energy. At the first instants of the plasma generation, during which high temperature, density and ionacceleration occur, the D-D fusions occur as confirmed by the detection of mono-energetic protonsand neutrons with a kinetic energy of 3.0 MeV and 2.5 MeV, respectively, produced by the nuclear reaction. The number of fusion events depends strongly on the experimental set-up, i.e. on the laser parameters (intensity, wavelength, focal spot dimension, target conditions (thickness, chemical composition, absorption coefficient, presence of secondary targets and used geometry (incidence angle, laser spot, secondary target positions.A number of D-D fusion events of the order of 106÷7 per laser shot has been measured.
Effect of Chromosome Tethering on Nuclear Organization in Yeast
Barış Avşaroğlu; Gabriel Bronk; Susannah Gordon-Messer; Jungoh Ham; Debra A Bressan; Haber, James E; Jane Kondev
2014-01-01
Interphase chromosomes in Saccharomyces cerevisiae are tethered to the nuclear envelope at their telomeres and to the spindle pole body (SPB) at their centromeres. Using a polymer model of yeast chromosomes that includes these interactions, we show theoretically that telomere attachment to the nuclear envelope is a major determinant of gene positioning within the nucleus only for genes within 10 kb of the telomeres. We test this prediction by measuring the distance between the SPB and the sil...
Understanding the proton radius puzzle: Nuclear structure effects in light muonic atoms
Directory of Open Access Journals (Sweden)
Ji Chen
2016-01-01
Full Text Available We present calculations of nuclear structure effects to the Lamb shift in light muonic atoms. We adopt a modern ab-initio approach by combining state-of-the-art nuclear potentials with the hyperspherical harmonics method. Our calculations are instrumental to the determination of nuclear charge radii in the Lamb shift measurements, which will shed light on the proton radius puzzle.
Duality in adiabatic level crossing Quantum coherence and complete reflection
Fujikawa, K; Fujikawa, Kazuo; Suzuki, Hiroshi
1997-01-01
A field dependent su(2) gauge transformation connects between the adiabatic and diabatic pictures in the (Landau-Zener-Stueckelberg) level crossing problem. It is pointed out that weak and strong level crossing interactions are interchanged under this transformation, and thus realizing a naive strong and weak duality. A reliable perturbation theory is thus formulated in the both limits of weak and strong interactions. Main characteristics of the level crossing phenomena such as the Landau-Zener formula including its numerical coefficient are well-described by simple perturbation theory without referring to Stokes phenomena. We also show that quantum coherence in a double well potential is generally suppressed by the effect of level crossing, which is analogous to the effect of Ohmic dissipation on quantum coherence.
Enhanced charge detection: Amplification factor, phase reversal and measurement time dependence
Energy Technology Data Exchange (ETDEWEB)
Thorgrimson, J.; Sachrajda, A. S. [National Research Council Canada, Ottawa, ON Canada K1A 0R6 and Department of Physics, McGill University, 3600 rue University, Montreal, QC (Canada); Studenikin, S. A.; Bogan, A. [National Research Council Canada, Ottawa, ON Canada K1A 0R6 and Department of Physics and Astronomy, University of Waterloo, 200 University Avenue West, Waterloo, ON (Canada); Aers, G. C.; Kam, A.; Zawadzki, P.; Wasilewski, Z. R. [National Research Council Canada, Ottawa, ON (Canada)
2013-12-04
Studenikin et al. recently demonstrated a significant enhancement of the fringe contrast of coherent Landau-Zener-Stückelberg (LZS) oscillations between singlet S and triplet T+ two-spin states using a modified charge detection technique called enhanced charge detection (ECD). In this paper we explain the amplitude phase reversal and confirm the magnitude of the effect is consistent with our calibrations. We also show that the enhancement cannot be explained by a T{sub 1} effect.
Nuclear Density-Dependent Effective Coupling Constants in the Mean-Field Theory
Lee, J H; Lee, S J; Lee, Jae Hwang; Lee, Young Jae; Lee, Suk-Joon
1996-01-01
It is shown that the equation of state of nuclear matter can be determined within the mean-field theory of $\\sigma \\omega$ model provided only that the nucleon effective mass curve is given. We use a family of the possible nucleon effective mass curves that reproduce the empirical saturation point in the calculation of the nuclear binding energy curves in order to obtain density-dependent effective coupling constants. The resulting density-dependent coupling constants may be used to study a possible equation of state of nuclear system at high density or neutron matter. Within the constraints used in this paper to $M^*$ of nuclear matter at saturation point and zero density, neutron matter of large incompressibility is strongly bound at high density while soft neutron matter is weakly bound at low density. The study also exhibits the importance of surface vibration modes in the study of nuclear equation of state.
Health and environmental effects of nuclear weapons; Helse- og miljoevirkninger av atomvaapen
Energy Technology Data Exchange (ETDEWEB)
NONE
1995-08-01
Since 1981 WHO has been studying and reporting on the effects of nuclear war on health and health services. This report provides information on the subject and refers to earlier related work of WHO. It forms the basis for a request from WHO to the International Court of Justice regarding the legality of the use of nuclear weapons. 15 refs.
A Post Licensing Study of Community Effects at Two Operating Nuclear Power Plants. Final Report.
Purdy, Bruce J.; And Others
In an effort to identify and assess the social, economic, and political effects of nuclear power plant construction and operation upon two host communities (Plymouth, Massachusetts and Waterford, Connecticut), a post-licensing review revealed that the primary impact of the nuclear power plants in both communities was an increase in the property…
Nuclear Effects on Bremsstrahlung Neutrino Rates of Astrophysical Interest
Stoica, S
2002-01-01
We calculate in this work the rates for the neutrino pair production by nucleon-nucleon bremsstrahlung taking into account the full contribution from a nuclear one-pion-exchange potential. It is shown that if the temperatures are low enough ($T \\leq 20 MeV$), the integration over the nuclear part can be done for the general case, ranging from the completely degenerate (D) to the non-degenerate (ND) regime. We find that the inclusion of the full nuclear contribution enhances the neutrino pair production by $nn$ and $pp$ bremsstrahlung by a factor of about two in both the D and ND limits when compared with previous calculations. This result may be relevant for the physical conditions of interest in the semitransparent regions near the neutrinosphere in type II supernovae, cooling of neutron stars and other astrophysical situations.
Impact of overlapping resonances on magnetoassociation of cold molecules in tight traps
Jachymski, Krzysztof
2016-10-01
Overlapping Feshbach resonances are commonly observed in experiments with ultracold atoms and can influence the molecule production process. We derive an effective approach to describe magnetoassociation in an external trap in the presence of multiple overlapping resonances. We study how the strength and shape of the trap affects the energy level structure and demonstrate the existence of a regime in which the conventional two-channel Landau-Zener description of the molecule production process breaks down.
Impact of overlapping resonances on magnetoassociation of cold molecules in tight traps
Jachymski, Krzysztof
2016-01-01
Overlapping Feshbach resonances are commonly observed in experiments with ultracold atoms and can influence the molecule production process. We derive an effective approach to describe magnetoassociation in an external trap in the presence of multiple overlapping resonances. We study how the strength and shape of the trap affects the energy level structure and demonstrate the existence of a regime in which the conventional two-channel Landau-Zener description of the molecule production process breaks down.
Nuclear Deterrence: Strong Policy is Needed for Effective Defense
2011-03-24
Skeptics,” The Brown Journal of World Affairs 16, no. 1 (Fall/Winter 2009): 32. 54 Herman Kahn, Thinking About the Unthinkable in the 1980s (New York...108 Arnie Heller , “Enhancing Confidence in the Nation’s Nuclear Stockpile,” Science and Technology Review (July/August 2010): 4. 109 Department of...110 Bruce T. Goodwin, “Deterrence with a Minimum Nuclear Stockpile,” Science and Technology Review (July/August 2010): 3. 111 Heller , “Enhancing
Pickering, Luke
2016-01-01
We present a Monte Carlo truth study examining nuclear effects in charged-current neutrino interactions using observables constructed in the transverse plane. Three distributions are introduced that show very weak dependence on neutrino flux and its associated uncertainty. Measurements comparing these distributions between quasi-elastic-like and single charged pion final states will provide new constraints of nuclear effects. It is suggested that the on-axis position in the NuMI beam provides the correct flux to take advantage of this reduced energy dependence in measuring nuclear effect-generated transverse imbalances.
Goal Direction and Effectiveness, Emotional Maturity, and Nuclear Family Functioning
Klever, Phillip
2009-01-01
Differentiation of self, a cornerstone concept in Bowen theory, has a profound influence over time on the functioning of the individual and his or her family unit. This 5-year longitudinal study tested this hypothesis with 50 developing nuclear families. The dimensions of differentiation of self that were examined were goal direction and…
Nuclear effects on neutrino emissivities from nucleon-nucleon bremsstrahlung
Stoica, S.; Paun, V. P.; Negoita, A. G.
2004-06-01
The rates of neutrino pair emission by nucleon-nucleon (NN) bremsstrahlung are calculated with the inclusion of the full contribution from a nuclear one pion exchange potential (OPEP). We compute the contributions from the neutron-neutron (nn), proton-proton (pp), and neutron-proton (np) processes for physical conditions encountered in supernovae and neutron stars, both in the degenerate (D) and nondegenerate (ND) limits. We find a significant reduction of these rates, especially for the nn and pp processes, in comparison with the case when the whole nuclear contribution was replaced by constants, representing the high-momentum limits of the expressions of the nuclear potential. Furthermore, we also perform the calculations by including contributions due to the ρ meson exchange between nucleons, in the OPEP. This may be relevant for processes produced in the inner core of neutron stars, where the density may exceed several times the standard nuclear density, and the short-range part of the NN interaction should be taken into account. These corrections lead to an additional suppression of the neutrino emission rates between (8 and 36)%, depending on the process [nn (pp) or np] and physical conditions (temperature and degeneracy of the nucleons).
Identification of nuclear effects in neutrino-carbon interactions at low three-momentum transfer
Rodrigues, P A; Miltenberger, E; Aliaga, L; Altinok, O; Bercellie, A; Betancourt, M; Bodek, A; Bravar, A; Carneiro, M F; Chvojka, J; Devan, J; Eberly, B; Elkins, M; Felix, J; Fields, L; Fine, R; Gago, A M; Galindo, R; Gallagher, H; Ghosh, A; Golan, T; Gran, R; Harris, D A; Higuera, A; Hurtado, K; Kiveni, M; Kleykamp, J; Kordosky, M; Le, T; Leistico, J R; Lovlein, A; Maher, E; Manly, S; Mann, W A; Marshall, C M; Caicedo, D A Martinez; McFarland, K S; McGivern, C L; McGowan, A M; Messerly, B; Miller, J; Mislivec, A; Mousseau, J; Muhlbeier, T; Naples, D; Nelson, J K; Norrick, A; Nuruzzaman,; Patrick, C E; Perdue, G N; Ramirez, M A; Ransome, R D; Ray, H; Ren, L; Rimal, D; Ruterbories, D; Schmitz, D W; Salinas, C J Solano; Tice, B G; Valencia, E; Walton, T; Wolcott, J; Wospakrik, M; Zavala, G; Zhang, D
2015-01-01
Two different nuclear-medium effects are isolated using a low three-momentum transfer subsample of neutrino-carbon scattering data from the MINERvA neutrino experiment. The observed hadronic energy in charged-current $\
Proceedings: 17th Asilomar conference on fire and blast effects of nuclear weapons
Energy Technology Data Exchange (ETDEWEB)
Hickman, R.G.; Meier, C.A. (eds.)
1983-01-01
The objective of the 1983 conference was to provide for the technical exchange of ideas relating to the science and technology of the immediate effects of nuclear weapon explosions. Separate abstracts were prepared for 39 of the papers.
Coulomb effects in low-energy nuclear fragmentation
Wilson, John W.; Chun, Sang Y.; Badavi, Francis F.; John, Sarah
1993-01-01
Early versions of the Langley nuclear fragmentation code NUCFRAG (and a publicly released version called HZEFRG1) assumed straight-line trajectories throughout the interaction. As a consequence, NUCFRAG and HZEFRG1 give unrealistic cross sections for large mass removal from the projectile and target at low energies. A correction for the distortion of the trajectory by the nuclear Coulomb fields is used to derive fragmentation cross sections. A simple energy-loss term is applied to estimate the energy downshifts that greatly alter the Coulomb trajectory at low energy. The results, which are far more realistic than prior versions of the code, should provide the data base for future transport calculations. The systematic behavior of charge-removal cross sections compares favorably with results from low-energy experiments.
Effects of Induced Surface Tension in Nuclear and Hadron Matter
Sagun, V V; Ivanytskyi, A I; Oliinychenko, D R; Mishustin, I N
2016-01-01
Short range particle repulsion is rather important property of the hadronic and nuclear matter equations of state. We present a novel equation of state which is based on the virial expansion for the multicomponent mixtures with hard-core repulsion. In addition to the hard-core repulsion taken into account by the proper volumes of particles, this equation of state explicitly contains the surface tension which is induced by another part of the hard-core repulsion between particles. At high densities the induced surface tension vanishes and the excluded volume treatment of hard-core repulsion is switched to its proper volume treatment. Possible applications of this equation of state to a description of hadronic multiplicities measured in A+A collisions, to an investigation of the nuclear matter phase diagram properties and to the neutron star interior modeling are discussed.
Effects of Induced Surface Tension in Nuclear and Hadron Matter
Directory of Open Access Journals (Sweden)
Sagun V.V.
2017-01-01
Full Text Available Short range particle repulsion is rather important property of the hadronic and nuclear matter equations of state. We present a novel equation of state which is based on the virial expansion for the multicomponent mixtures with hard-core repulsion. In addition to the hard-core repulsion taken into account by the proper volumes of particles, this equation of state explicitly contains the surface tension which is induced by another part of the hard-core repulsion between particles. At high densities the induced surface tension vanishes and the excluded volume treatment of hard-core repulsion is switched to its proper volume treatment. Possible applications of this equation of state to a description of hadronic multiplicities measured in A+A collisions, to an investigation of the nuclear matter phase diagram properties and to the neutron star interior modeling are discussed.
Nuclear Effects in the Deuteron and Global PDF Fits
Alekhin, S I; Petti, R
2016-01-01
We present a detailed study of nuclear corrections in the deuteron (D) from an analysis of data from charged-lepton deep-inelastic scattering (DIS) off proton and D, as well as from dimuon pair production in pp and pD collisions and $W^\\pm$ and the $Z$ boson production at pp (p$\\rm \\bar p$) colliders. In particular, we discuss the determination of the off-shell function describing the modification of parton distributions (PDF) in bound nucleons in the context of global PDF fits. Our results are consistent with the ones obtained earlier from the study of the ratios of DIS structure functions $F_2^A/F_2^D$ in nuclei with $A\\geq4$, confirming the universality of the off-shell function. We also discuss the sensitivity to various models of the deuteron wave function and the impact of nuclear corrections on the determination of the $d$ quark distribution.
Ab initio nuclear structure from lattice effective field theory
Energy Technology Data Exchange (ETDEWEB)
Lee, Dean [Department of Physics, North Carolina State University, Raleigh NC 27695 (United States)
2014-11-11
This proceedings article reviews recent results by the Nuclear Lattice EFT Collaboration on an excited state of the {sup 12}C nucleus known as the Hoyle state. The Hoyle state plays a key role in the production of carbon via the triple-alpha reaction in red giant stars. We discuss the structure of low-lying states of {sup 12}C as well as the dependence of the triple-alpha reaction on the masses of the light quarks.
Tsushima, K; Saitô, K; Thomas, A W; Lu, D H
2000-01-01
We discuss the effect of changes in meson properties in a nuclear medium on physical observables, notably, $J/\\Psi$ dissociation on pion and $\\rho$ meson comovers in relativistic heavy ion collisions, and the prediction of the $\\omega$-, $\\eta$- and $\\eta'$-nuclear bound states.
Effect of nuclear power generation on the electricity price in Korea
Energy Technology Data Exchange (ETDEWEB)
Lee, Man Kee; Song, Kee Dong; Kim, Seung Soo; Kim, Sung Kee; Lee, Yung Kun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1994-12-01
The main purpose of this study is to estimate the effect of nuclear power generation on the electricity price by analysing electricity supply sector. The effects on electricity price changes are estimated in terms of following respects: - Restriction on the additional introduction of nuclear power plant. - CO{sub 2} emission quantity control and carbon tax. A computer model by using Linear Programming optimization technique was also developed for these analyses. 10 figs, 12 tabs, 32 refs. (Author).
Sungjoo Lee; Byungun Yoon; Juneseuk Shin
2016-01-01
We propose a stepwise method of selecting appropriate indicators to measure effects of a specific nuclear energy option on sustainable development and energy security, and also to compare an energy option with another. Focusing on the sodium-cooled fast reactor, one of the highlighted Generation IV reactors, we measure and compare its effects with the standard pressurized water reactor-based nuclear power, and then with coal power. Collecting 36 indicators, five experts select seven key indic...
Effect of chromosome tethering on nuclear organization in yeast.
Directory of Open Access Journals (Sweden)
Barış Avşaroğlu
Full Text Available Interphase chromosomes in Saccharomyces cerevisiae are tethered to the nuclear envelope at their telomeres and to the spindle pole body (SPB at their centromeres. Using a polymer model of yeast chromosomes that includes these interactions, we show theoretically that telomere attachment to the nuclear envelope is a major determinant of gene positioning within the nucleus only for genes within 10 kb of the telomeres. We test this prediction by measuring the distance between the SPB and the silent mating locus (HML on chromosome III in wild-type and mutant yeast strains that contain altered chromosome-tethering interactions. In wild-type yeast cells we find that disruption of the telomere tether does not dramatically change the position of HML with respect to the SPB, in agreement with theoretical predictions. Alternatively, using a mutant strain with a synthetic tether that localizes an HML-proximal site to the nuclear envelope, we find a significant change in the SPB-HML distance, again as predicted by theory. Our study quantifies the importance of tethering at telomeres on the organization of interphase chromosomes in yeast, which has been shown to play a significant role in determining chromosome function such as gene expression and recombination.
Yao, Xiaojun; Müller, Berndt
2016-01-01
We study the dynamical screening effect in the QED plasma on the $\\alpha$-$\\alpha$ scattering at the $^8$Be resonance. Dynamical screening leads to an imaginary part of the potential which results in a thermal width for the resonance and dominates over the previously considered static screening effect. As a result, both the resonance energy and width increase with the plasma temperature. Furthermore, dynamical screening can have a huge impact on the $\\alpha$-$\\alpha$ thermal nuclear scattering rate. For example, when the temperature is around $10$ keV, the rate is suppressed by a factor of about $900$. We expect similar thermal suppressions of nuclear reaction rates to occur in nuclear reactions dominated by an above threshold resonance with a thermal energy. Dynamical screening effects on nuclear reactions can be relevant to cosmology and astrophysics.
Nori, Franco
2012-02-01
This talk will present an overview of some of our recent results on atomic physics and quantum optics using superconducting circuits. Particular emphasis will be given to photons interacting with qubits, interferometry, the Dynamical Casimir effect, and also studying Majorana fermions using superconducting circuits.[4pt] References available online at our web site:[0pt] J.Q. You, Z.D. Wang, W. Zhang, F. Nori, Manipulating and probing Majorana fermions using superconducting circuits, (2011). Arxiv. J.R. Johansson, G. Johansson, C.M. Wilson, F. Nori, Dynamical Casimir effect in a superconducting coplanar waveguide, Phys. Rev. Lett. 103, 147003 (2009). [0pt] J.R. Johansson, G. Johansson, C.M. Wilson, F. Nori, Dynamical Casimir effect in superconducting microwave circuits, Phys. Rev. A 82, 052509 (2010). [0pt] C.M. Wilson, G. Johansson, A. Pourkabirian, J.R. Johansson, T. Duty, F. Nori, P. Delsing, Observation of the Dynamical Casimir Effect in a superconducting circuit. Nature, in press (Nov. 2011). P.D. Nation, J.R. Johansson, M.P. Blencowe, F. Nori, Stimulating uncertainty: Amplifying the quantum vacuum with superconducting circuits, Rev. Mod. Phys., in press (2011). [0pt] J.Q. You, F. Nori, Atomic physics and quantum optics using superconducting circuits, Nature 474, 589 (2011). [0pt] S.N. Shevchenko, S. Ashhab, F. Nori, Landau-Zener-Stuckelberg interferometry, Phys. Reports 492, 1 (2010). [0pt] I. Buluta, S. Ashhab, F. Nori. Natural and artificial atoms for quantum computation, Reports on Progress in Physics 74, 104401 (2011). [0pt] I.Buluta, F. Nori, Quantum Simulators, Science 326, 108 (2009). [0pt] L.F. Wei, K. Maruyama, X.B. Wang, J.Q. You, F. Nori, Testing quantum contextuality with macroscopic superconducting circuits, Phys. Rev. B 81, 174513 (2010). [0pt] J.Q. You, X.-F. Shi, X. Hu, F. Nori, Quantum emulation of a spin system with topologically protected ground states using superconducting quantum circuit, Phys. Rev. A 81, 063823 (2010).
Cold nuclear matter effects on the color singlet J/psi production in d-Au collisions at RHIC
Jiang, Zefang; Yin, Zhongbao; Shi, Yafei; Yuan, Xianbao
2014-01-01
We develop a Modified DKLMT model (called M-DKLMT model) to study the cold nuclear matter (CNM) effects on the color singlet J/psi production in d-Au collisions at RHIC. The cold nuclear effect has been investigated by introducing a nuclear geometric effect function f({\\xi}) and considering the nuclear geometry effect. The dependencies of nuclear modification factors (RdA) on rapidity and centrality are studied and compared to experimental data. It is found that the M-DKLMT model can well describe the experimental results at both forward- and mid-rapidity regions in collisions at RHIC.
The K sup + as a probe of nuclear medium effects
Energy Technology Data Exchange (ETDEWEB)
Chrien, R.E.
1992-01-01
The study of the K+ total cross sections on a wide range of nuclei has revealed important modifications of the free-space K+ -nucleon interaction when the nucleon is embedded in a nucleus. In addition to the previously published data on carbon and deuterium we report here the extension of such measurements to lithium, silicon, and calcium. We demonstrate that the previous reported medium modifications for carbon occur quite generally. The results are discussed as evidence for partial quark deconfinement at nuclear densities.
Nuclear-Coupled Flow Instabilities and Their Effects on Dryout
Energy Technology Data Exchange (ETDEWEB)
M. Ishii; X. Sunn; S. Kuran
2004-09-27
Nuclear-coupled flow/power oscillations in boiling water reactors (BWRs) are investigated experimentally and analytically. A detailed literature survey is performed to identify and classify instabilities in two-phase flow systems. The classification and the identification of the leading physical mechanisms of the two-phase flow instabilities are important to propose appropriate analytical models and scaling criteria for simulation. For the purpose of scaling and the analysis of the nonlinear aspects of the coupled flow/power oscillations, an extensive analytical modeling strategy is developed and used to derive both frequency and time domain analysis tools.
Quadrupolar effects on nuclear spins of neutral arsenic donors in silicon
Franke, David P.; Pflüger, Moritz P. D.; Mortemousque, Pierre-André; Itoh, Kohei M.; Brandt, Martin S.
2016-04-01
We present electrically detected electron nuclear double resonance measurements of the nuclear spins of ionized and neutral arsenic donors in strained silicon. In addition to a reduction of the hyperfine coupling, we find significant quadrupole interactions of the nuclear spin of the neutral donors of the order of 10 kHz. By comparing these to the quadrupole shifts due to crystal fields measured for the ionized donors, we identify the effect of the additional electron on the electric field gradient at the nucleus. This extra component is expected to be caused by the coupling to electric field gradients created due to changes in the electron wave function under strain.
Effect of three-body interaction on hot asymmetric nuclear matter
Institute of Scientific and Technical Information of China (English)
Li Zeng-Hua; Zuo Wei; Lu Guang-Cheng
2004-01-01
The properties of hot asymmetric nuclear matter are studied in the framework of the finite temperature BruecknerHartree-Fock theory that is extended to include the contribution of microscopic three-body forces. We give the variation of the critical temperature with the asymmetry parameter and show the effect brought by this three-body repulsive potential on the value of the critical asymmetry of the phase transition for asymmetric nuclear matter. Owing to the additional repulsion provided by three-body forces, this value decreases. In addition, the domain of mechanical instability for hot nuclear matter is also indicated, which gradually shrinks with increasing asymmetry and temperature.
Delfino, A; Frederico, T
1996-01-01
The link between non-linear chiral effective Lagrangians and the Walecka model description of bulk nuclear matter [1] is questioned. This fact is by itself due to the Mean Field Approximation (MFA) which in nuclear mater makes the picture of a nucleon-nucleon interaction based on scalar(vector) meson exchange, equivalent to the description of a nuclear matter based on attractive and repulsive contact interactions. We present a linear chiral model where this link between the Walecka model and an underlying to chiral symmetry realization still holds, due to MFA.
A study of nuclear effect in $F_3$ structure function in the deep inelastic $\
Athar, M Sajjad; Singh, S K; Vacas, M J Vicente
2009-01-01
We study nuclear effect in the $F^A_3(x)$ structure function in the deep inelastic neutrino reactions on iron by taking into account Fermi motion, binding, target mass correction, shadowing and anti-shadowing corrections. Calculations have been done in a local density approximation using relativistic nuclear spectral functions which include nucleon correlations for nuclear matter. Results for $F^A_3(x)$ have been compared with the results reported at NuTeV and also with some of the older experiments reported in the literature.
Effect of colchicine on mammalian liver nuclear envelope and on nucleo-cytoplasmic RNA transport.
Agutter, P S; Suckling, K E
1982-09-27
The binding of colchicine to nuclear envelopes was studied in order to elucidate the mechanism whereby this compound inhibits nucleocytoplasmic RNA transport. The results suggest that a single class of colchicine-binding site (dissociation constant=approx. 0.7 mM, concentration=approx. 330 nmol colchicine/mg protein) is localised in the nuclear periphery (pore-lamina) and that binding to these sites effects a constriction of the pore-complexes with concomitant inhibition of RNA egress and disordering of the nuclear membrane phospholipid bilayers.
Effect of gamma-strength on nuclear reaction calculations
Kadenko, Igor; Bondar, Borys; Gorbachenko, Oleksandr; Leshchenko, Borys; Solodovnyk, Kateryna; Tkach, Oleksandr; Zheltonozhskyi, Viktor
2016-01-01
The results of the study of gamma-transition description in fast neutron capture and photofission are presented. Recent experimental data were used, namely, the spectrum of prompt gamma-rays in the energy range 2{\\div}18 MeV from 14-MeV neutron capture in natural Ni and isomeric ratios in primary fragments of photofission of the isotopes of U, Np and Pu by bremsstrahlung with end-point energies $E_e$= 10.5, 12 and 18 MeV. The data are compared with the theoretical calculations performed within EMPIRE 3.2 and TALYS 1.6 codes. The mean value of angular momenta and their distributions were determined in the primary fragments $^{84}$Br, $^{97}$Nb, $^{90}$Rb, $^{131,133}$Te, $^{132}$Sb, $^{132,134}$I, $^{135}$Xe of photofissions. An impact of the characteristics of nuclear excited states on the calculation results is studied using different models for photon strength function and nuclear level density.
Society and health effects of aspects an overview of nuclear energy
Directory of Open Access Journals (Sweden)
Mehmet Soykenar
2015-02-01
Full Text Available Today along with developing technology and rapid population growth, energy needs have been increasing in the worldwide. In order to supply rising energy demands, the countries have been tending to nuclear power plants which have high productivitiy. As all kinds of energy sources, there are negative effects to public health in the stages of production and consumption also for nuclear energy. For nuclear power plants established by using high tecnology, required precautions are adopted by assessing all negative effects that can harm environmental health. So as to provide our country to be the leading position in the global trade and tecnological progress competition, it is required to make the investments by evaluating the pros and cons of nuclear energy, regarded as a qualified and sustainable energy source. [TAF Prev Med Bull 2015; 14(1.000: 65-70
Directory of Open Access Journals (Sweden)
Sungjoo Lee
2016-09-01
Full Text Available We propose a stepwise method of selecting appropriate indicators to measure effects of a specific nuclear energy option on sustainable development and energy security, and also to compare an energy option with another. Focusing on the sodium-cooled fast reactor, one of the highlighted Generation IV reactors, we measure and compare its effects with the standard pressurized water reactor-based nuclear power, and then with coal power. Collecting 36 indicators, five experts select seven key indicators to meet data availability, nuclear energy relevancy, comparability among energy options, and fit with Korean energy policy objectives. The results show that sodium-cooled fast reactors is a better alternative than existing nuclear power as well as coal electricity generation across social, economic and environmental dimensions. Our method makes comparison between energy alternatives easier, thereby clarifying consequences of different energy policy decisions.
Chernyshev, Kirill A; Larina, Ludmila I; Chirkina, Elena A; Krivdin, Leonid B
2012-02-01
The effects of intramolecular and intermolecular coordination on (31)P nuclear shielding have been investigated in the series of tetracoordinated, pentacoordinated and hexacoordinated N-vinylpyrazoles and intermolecular complexes of N-vinylimidazole and 1-allyl-3,5-dimethylpyrazole with phosphorous pentachloride both experimentally and theoretically. It was shown that either intramolecular or intermolecular coordination involving phosphorous results in a dramatic (31)P nuclear shielding amounting to approximately 150 ppm on changing the phosphorous coordination number by one. A major importance of solvent effects on (31)P nuclear shielding of intramolecular and intermolecular complexes involving N → P coordination bond has been demonstrated. It was found that the zeroth-order regular approximation-gauge-including atomic orbital-B1PW91/DZP method was sufficiently accurate for the calculation of (31)P NMR chemical shifts, provided relativistic corrections are taken into account, the latter being of crucial importance in the description of (31)P nuclear shielding.
Effects of Cyclic Nucleotide-Gated Channels in Vestibular Nuclear Neurons
Heo, Tag; Jang, Sujeong; Jeong, Han-Seong; Park, Jong-Seong
2011-01-01
This study was designed to investigate the effects an 8-Br-cGMP on the neuronal activity of rat vestibular nuclear cells. Sprague-Dawley rats aged 14 to 16 days were decapitated under ether anesthesia. After treatment with pronase and thermolysin, the dissociated vestibular nuclear cells were transferred into a chamber on an inverted microscope. Spontaneous action potentials and potassium currents were recorded by standard patch-clamp techniques under current and voltage-clamp modes. Twelve v...
Energy Technology Data Exchange (ETDEWEB)
Han, EunOk; Lee, Seung Koo; Choi, Yoon Seok [Korea Academy of Nuclear Safety, Seoul (Korea, Republic of)
2016-10-15
Advancing nuclear energy and radiation technology to drive the country forward should be based on the understanding and acceptance of the public. Korea has provided numerous types of information to increase public acceptance of nuclear energy, but it has been difficult to change adults’ perceptions and increase their acceptance of nuclear energy. As a result, social costs are rising. After a pilot program of 13 classes on understanding nuclear energy and radiation offered to elementary school students, who were expected to easily change their perceptions and to experience a relatively greater educational effect, this study analyzed changes to knowledge, attitudes, and behaviors regarding nuclear energy. In addition, this program was the first curriculum of its kind used as a step to lay the groundwork for offering it nationally in the free semester system. Therefore, the study analyzed its appropriateness to educational purposes. A lack of research and practice on communication strategies could be responsible for the situation in Korea of low support for nuclear energy because Korea does not have public understanding even though it is a nuclear energy exporter. If Korea implemented strategic communications from this point, such efforts could reduce unnecessary social costs.
Solid effect in the electron spin dressed state: A new approach for dynamic nuclear polarization
Weis, V.; Bennati, M.; Rosay, M.; Griffin, R. G.
2000-10-01
We describe a new type of solid effect for dynamic nuclear polarization (DNP) that is based on simultaneous, near resonant microwave (mw) and radio frequency (rf) irradiation of a coupled electron nuclear spin system. The interaction of the electron spin with the mw field is treated as an electron spin dressed state. In contrast to the customary laboratory frame solid effect, it is possible to obtain nuclear polarization with the dressed state solid effect (DSSE) even in the absence of nonsecular hyperfine coupling. Efficient, selective excitation of dressed state transitions generates nuclear polarization in the nuclear laboratory frame on a time scale of tens of μs, depending on the strength of the electron-nuclear coupling, the mw and rf offset and field strength. The experiment employs both pulsed mw and rf irradiation at a repetition rate comparable to T1e-1, where T1e is the electronic spin lattice relaxation time. The DSSE is demonstrated on a perdeuterated BDPA radical in a protonated matrix of polystyrene.
Papoulia, A; Ekman, J
2016-01-01
Background: Atomic spectral lines from different isotopes display a small shift in energy, commonly referred to as the line isotope shift. One of the components of the isotope shift is the field shift, which depends on the extent and the shape of the nuclear charge density distribution. Purpose: To investigate how sensitive field shifts are with respect to variations in the nuclear size and shape and what information of nuclear charge distributions that can be extracted from measured field shifts. Methods: Nuclear properties are obtained from nuclear density functional theory calculations based on the Skyrme-Hartree-Fock-Bogoliubov approach. These results are combined with multiconfiguration Dirac-Hartree-Fock methods to obtain realistic field shifts. Results: Phenomena such as nuclear deformation and variations in the diffuseness of nuclear charge distributions give measurable contributions to the field shifts. Using a novel approach, we demonstrate the possibility to extract new information concerning the n...
Nuclear shell effect and collinear tripartition of nuclei
Nasirov, A K; Tashkhodjaev, R B
2014-01-01
A possibility of formation of the three reaction products having comparable masses at the spontaneous fission of $^{252}$Cf is theoretically explored. This work is aimed to study the mechanism leading to observation of the reaction products with masses $M_1=$136---140 and $M_2=$68---72 in coincidence by the FOBOS group in JINR. The same type of ternary fission decay has been observed in the reaction $^{235}$U(n$_{\\rm th}$,fff). The potential energy surface for the ternary system forming a collinear nuclear chain is calculated for the wide range of mass and charge numbers of constituent nuclei. The results of the PES for the tripartition of $^{252}$Cf(sf,fff) shows, that we have favorable dynamical conditions for the formation of fragments with mass combinations of clusters $^{68-70}$Ni with $^{130-132}$Sn and with missing cluster $^{48-52}$Ca.
Nuclear shell effect and collinear tripartition of nuclei
Indian Academy of Sciences (India)
Avazbek K Nasirov; Wolfram von Oertzen; Rustam B Tashkhodjaev
2015-08-01
A possibility for the formation of three reaction products having comparable masses at the spontaneous fission of 252Cf is theoretically explored. This work is aimed to study the mechanism leading to the observation of the reaction products with masses $M_{1}$ = 136–140 and $M_{2}$ = 68–72 in coincidence with the FOBOS group in JINR. The same type of ternary fission decay has been observed in the 235U(nth, fff) reaction. The potential energy surface (PES) for the ternary system forming a collinear nuclear chain is calculated for a wide range of masses and charge numbers of the constituent nuclei. The results of the PES for the tripartition of 252Cf(sf, fff) allows us to establish dynamical conditions leading to the formation of fragments with mass combinations of clusters 68−70Ni with 130−132Sn and with the missing cluster 48−52Ca.
Intracellular lysyl oxidase: Effect of a specific inhibitor on nuclear mass in proliferating cells
Energy Technology Data Exchange (ETDEWEB)
Saad, Fawzy A. [Laboratory for the Study of Skeletal Disorders and Rehabilitation, Department of Orthopedics, Children' s Hospital Boston, 300 Longwood Avenue EN926, Boston, MA 02115 (United States); Harvard Medical School, Boston, MA 02115 (United States); Torres, Marie [Laboratory for the Study of Skeletal Disorders and Rehabilitation, Department of Orthopedics, Children' s Hospital Boston, 300 Longwood Avenue EN926, Boston, MA 02115 (United States); Wang, Hao [Laboratory for the Study of Skeletal Disorders and Rehabilitation, Department of Orthopedics, Children' s Hospital Boston, 300 Longwood Avenue EN926, Boston, MA 02115 (United States); Harvard Medical School, Boston, MA 02115 (United States); Graham, Lila, E-mail: lilagraham@cs.com [Laboratory for the Study of Skeletal Disorders and Rehabilitation, Department of Orthopedics, Children' s Hospital Boston, 300 Longwood Avenue EN926, Boston, MA 02115 (United States); Harvard Medical School, Boston, MA 02115 (United States)
2010-06-11
LOX, the principal enzyme involved in crosslinking of collagen, was the first of several lysyl oxidase isotypes to be characterized. Its active form was believed to be exclusively extracellular. Active LOX was later reported to be present in cell nuclei; its function there is unknown. LOX expression opposes the effect of mutationally activated Ras, which is present in about 30% of human cancers. The mechanism of LOX in countering the action of Ras is also unknown. In the present work, assessment of nuclear protein for possible effects of lysyl oxidase activity led to the discovery that proliferating cells dramatically increase their nuclear protein content when exposed to BAPN ({beta}-aminopropionitrile), a highly specific lysyl oxidase inhibitor that reportedly blocks LOX inhibition of Ras-induced oocyte maturation. In three cell types (PC12 cells, A7r5 smooth muscle cells, and NIH 3T3 fibroblasts), BAPN caused a 1.8-, 1.7-, and 2.1-fold increase in total nuclear protein per cell, respectively, affecting all major components in both nuclear matrix and chromatin fractions. Since nuclear size is correlated with proliferative status, enzyme activity restricting nuclear growth may be involved in the lysyl oxidase tumor suppressive effect. Evidence is also presented for the presence of apparent lysyl oxidase isotype(s) containing a highly conserved LOX active site sequence in the nuclei of PC12 cells, which do not manufacture extracellular lysyl oxidase substrates. Results reported here support the hypothesis that nuclear lysyl oxidase regulates nuclear growth, and thereby modulates cell proliferation.
Spin-dependent structure functions in nuclear matter and the polarized EMC effect.
Cloët, I C; Bentz, W; Thomas, A W
2005-07-29
An excellent description of both spin-independent and spin-dependent quark distributions and structure functions has been obtained with a modified Nambu--Jona-Lasinio model, which is free of unphysical thresholds for nucleon decay into quarks--hence incorporating an important aspect of confinement. We utilize this model to investigate nuclear medium modifications to structure functions and find that we are readily able to reproduce both nuclear matter saturation and the experimental F2N(A)/F2N ratio, that is, the European Muon Collaboration (EMC) effect. Applying this framework to determine g1p(A), we find that the ratio g1p(A)/g1p differs significantly from unity, with the quenching caused by the nuclear medium being about twice that of the spin-independent case. This represents an exciting result, which, if confirmed experimentally, will reveal much about the quark structure of nuclear matter.
Chiral symmetry and effective field theories for hadronic, nuclear and stellar matter
Energy Technology Data Exchange (ETDEWEB)
Holt, Jeremy W., E-mail: jwholt.phys@gmail.com [Department of Physics, University of Washington, Seattle, 98195 (United States); Rho, Mannque [Department of Physics, Hanyang University, Seoul 133-791 (Korea, Republic of); Institut de Physique Théorique, CEA Saclay, 91191 Gif-sur-Yvette (France); Weise, Wolfram [Physik Department, Technische Universität München, D-85747 Garching (Germany); ECT*, Villa Tambosi, I-38123 Villazzano (Italy)
2016-03-21
Chiral symmetry, first entering in nuclear physics in the 1970s for which Gerry Brown played a seminal role, has led to a stunningly successful framework for describing strongly-correlated nuclear dynamics both in finite and infinite systems. We review how the early, germinal idea conceived with the soft-pion theorems in the pre-QCD era has evolved into a highly predictive theoretical framework for nuclear physics, aptly assessed by Steven Weinberg: “it (chiral effective field theory) allows one to show in a fairly convincing way that what they (nuclear physicists) have been doing all along... is the correct first step in a consistent approximation scheme”. Our review recounts both how the theory presently fares in confronting Nature and how one can understand its extremely intricate workings in terms of the multifaceted aspects of chiral symmetry, namely, chiral perturbation theory, skyrmions, Landau Fermi-liquid theory, the Cheshire cat phenomenon, and hidden local and mended symmetries.
Chiral symmetry and effective field theories for hadronic, nuclear and stellar matter
Holt, Jeremy W; Weise, Wolfram
2014-01-01
Chiral symmetry, first entering in nuclear physics in the 1970's for which Gerry Brown played a seminal role, has led to a stunningly successful framework for describing strongly-correlated nuclear dynamics both in finite and infinite systems. We review how the early germinal idea, conceived with the soft-pion theorems in the pre-QCD era, has evolved into a highly predictive theoretical framework for nuclear physics, aptly assessed by Steven Weinberg: "it (chiral effective field theory) allows one to show in a fairly convincing way that what they (nuclear physicists) have been doing all along... is the correct first step in a consistent approximation scheme." Our review recounts both how the theory presently fares in confronting Nature and how one can understand its extremely intricate workings in terms of the multifaceted aspects of chiral symmetry, namely, chiral perturbation theory, skyrmions, Landau Fermi-liquid theory, the Cheshire cat phenomenon, and hidden local and mended symmetries.
DETERMINING THE EFFECTS OF RADIATION ON AGING CONCRETE STRUCTURES OF NUCLEAR REACTORS
Energy Technology Data Exchange (ETDEWEB)
Serrato, M.
2010-01-29
The U.S. Department of Energy Office of Environmental Management (DOE-EM) is responsible for the Decontamination and Decommissioning (D&D) of nuclear facilities throughout the DOE Complex. Some of these facilities will be completely dismantled, while others will be partially dismantled and the remaining structure will be stabilized with cementitious fill materials. The latter is a process known as In-Situ Decommissioning (ISD). The ISD decision process requires a detailed understanding of the existing facility conditions, and operational history. System information and material properties are need for aged nuclear facilities. This literature review investigated the properties of aged concrete structures affected by radiation. In particular, this review addresses the Savannah River Site (SRS) isotope production nuclear reactors. The concrete in the reactors at SRS was not seriously damaged by the levels of radiation exposure. Loss of composite compressive strength was the most common effect of radiation induced damage documented at nuclear power plants.
A Procedure to Obtain the Effective Nuclear Charge from the Atomic Spectrum of Sodium
Sala*, O.; Araki, Koiti; Noda, L. K.
1999-09-01
The penetration of the valence electron orbitals of the alkali metals into their inner shells and its effect on the energy levels can be considered through two methods that take into account modifications of the hydrogen formula (one-electron system). One of them considers the quantum defect, modifying the quantum number n; the other considers the effective nuclear charge Z* replacing the nuclear charge Z. The method using the quantum defect is widely used because this quantity is practically constant for a given angular momentum quantum number l. However, the method using effective nuclear charge is more realistic because it explains many atomic and molecular properties - but the effective nuclear charge depends on l as well as on the principal quantum number n. This article describes a relatively simple graphical procedure to calculate the effective nuclear charges experienced by the sodium valence electron from its atomic spectrum. A relation of Z* with n for a given l is obtained and the Z* values for all states of the valence electron are found; the energy terms can also be determined. The calculations can be performed by using common spreadsheet software.
Clay, Raymond; Morales, Miguel; Bonev, Stanimir
Lithium at ambient conditions is the simplest alkali metal and exhibits textbook nearly-free electron character. However, increased core/valence electron overlap under compression leads to surprisingly complex behavior. Dense lithium is known to posses a maximum in the melting line, a metal to semiconductor phase transition around 80GPa, reemergent metallicity around 120GPa, and low coordination solid and liquid phases. In addition to its complex electronic structure at high pressure, the atomic mass of lithium is low enough that nuclear quantum effects could have a nontrivial impact on its phase diagram. Through a combination of density functional theory based path-integral and classical molecular dynamics simulations, we have investigated the impact of both nuclear quantum effects and anharmonicity on the melting line and solid phase boundaries. Additionally, we have determined the robustness of previously predicted tetrahedral clustering in the dense liquid to the inclusion of nuclear quantum effects and approximate treatment of electronic exchange-correlation effects.
Bis-gadolinium complexes for solid effect and cross effect dynamic nuclear polarization
Energy Technology Data Exchange (ETDEWEB)
Kaushik, Monu; Corzilius, Bjoern [Goethe-Universitaet Frankfurt am Main, Institut fuer Physikalische und Theoretische Chemie, Institut fuer Biophysikalische Chemie und Biomolekulares Magnetresonanzzentrum (BMRZ) (Germany); Qi, Mian; Godt, Adelheid [Fakultaet fuer Chemie und Centrum fuer Molekulare Materialien (CM2), Universitaet Bielefeld (Germany)
2017-04-03
High-spin complexes act as polarizing agents (PAs) for dynamic nuclear polarization (DNP) in solid-state NMR spectroscopy and feature promising aspects towards biomolecular DNP. We present a study on bis(Gd-chelate)s which enable cross effect (CE) DNP owing to spatial confinement of two dipolar-coupled electron spins. Their well-defined Gd..Gd distances in the range of 1.2-3.4 nm allowed us to elucidate the Gd..Gd distance dependence of the DNP mechanism and NMR signal enhancement. We found that Gd..Gd distances above 2.1 nm result in solid effect DNP while distances between 1.2 and 2.1 nm enable CE for {sup 1}H, {sup 13}C, and {sup 15}N nuclear spins. We compare 263 GHz electron paramagnetic resonance (EPR) spectra with the obtained DNP field profiles and discuss possible CE matching conditions within the high-spin system and the influence of dipolar broadening of the EPR signal. Our findings foster the understanding of the CE mechanism and the design of high-spin PAs for specific applications of DNP. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)
Finite nuclear size corrections to the recoil effect in hydrogenlike ions
Aleksandrov, I A; Glazov, D A; Shabaev, V M
2014-01-01
The finite nuclear size corrections to the relativistic recoil effect in H-like ions are calculated within the Breit approximation. The calculations are performed for the $1s$, $2s$, and $2p_{1/2}$ states in the range $Z =$ 1-110. The obtained results are compared with previous evaluations of this effect. It is found that for heavy ions the previously neglected corrections amount to about 20% of the total nuclear size contribution to the recoil effect calculated within the Breit approximation.
Genotoxic Effects of Tobacco on Buccal Epithelium: Cell Nuclear Anomalies as Biomarker
Directory of Open Access Journals (Sweden)
Sohini Das Biswas
2014-12-01
Full Text Available Background: Tobacco use has toxic effects on different organs. This study was carried out to assess the effect of indigenous tobacco both in smoking (bidi and smokeless (gutkha, zarda and khaini forms on buccal cells at chromosomal level, through assessment of different nuclear anomalies as biomarker. Methods:This study was done on people living in Durgapur and its adjacent areas, West Bengal, India during January to July 2011. The samples were collected from 50 smokers (case group, 50 smokeless tobacco consumers or chewers (case group and 50 non-tobacco consumers (control group. Micronucleus assay was used to assess buccal cell nuclear changes. Buccal smears collected from study subjects were prepared on a grease free slide. Prepared slides were observed under light microscope and 2 to 5 fields were observed randomly for counting the different anomalies. In each field, the frequency of each anomaly was assessed in 100 cells and reported with percentage. Results:Chewers had significantly the highest frequency of all nuclear anomalies compared to smokers and healthy controls (HCs. Smokers also had significantly more anomalies compared to HCs. Condensed chromatin (CC, karyolysis (KL and bi-nucleation (BN in chewers and CC, pyknosis and BN in smokers were the most frequent anomalies. KL was significantly more frequent in chewers compared to smokers (59.8 ± 6.4 vs. 24.2 ± 12.4%, P < 0.001, however, the frequency of other nuclear anomalies were not significantly different in these two study groups. Presence of each nuclear anomaly was significantly greater in older ages in all study groups. Conclusion:Tobacco can cause and increase the rate of nuclear anomalies in both smoking and smokeless forms compared to HCs. The genotoxic effects of tobacco on buccal cells are partly age-related. Cell nuclear anomalies in buccal tissue can be used as biomarker indicating the detrimental effects of tobacco.
Study of Cold Nuclear Matter Effects on Heavy Quarkonia in Proton-Lead Collisions at LHCb
Jing, Fanfan; Yang, Zhenwei; Schmidt, Burkhard
Proton-nucleus ($p\\rm{A}$) collisions play an important role in high energy nuclear physics as they allow to study nuclear matter effects and the parton distribution functions in the nuclear environment (nPDF). The quantum chromodynamics (QCD) phase transition from hadron gas to the the quark-gluon plasma (QGP) is not expected to occur in a $p\\rm{A}$ collision due to its limited space-time size. Therefore, the $p\\rm{A}$ collisions provide an ideal platform to study cold nuclear matter (CNM) effects, which are also known as normal nuclear matter effects. The measurements of the productions and correlations of the final-state particles in $p\\rm{A}$ collisions serve the purpose to test various theoretical models for CNM effects, to constrain the benchmarking nPDFs, and thus provide a baseline to understand and interpret the QGP created in ultra-relativistic heavy-ion collisions. Heavy quarkonia (including charmonia and bottomonia), which are produced at the early stage of heavy-ion collisions, are considered goo...
Garashchuk, Sophya; Jakowski, Jacek; Wang, Lei; Sumpter, Bobby G
2013-12-10
A massively parallel, direct quantum molecular dynamics method is described. The method combines a quantum trajectory (QT) representation of the nuclear wave function discretized into an ensemble of trajectories with an electronic structure (ES) description of electrons, namely using the density functional tight binding (DFTB) theory. Quantum nuclear effects are included into the dynamics of the nuclei via quantum corrections to the classical forces. To reduce computational cost and increase numerical accuracy, the quantum corrections to dynamics resulting from localization of the nuclear wave function are computed approximately and included into selected degrees of freedom representing light particles where the quantum effects are expected to be the most pronounced. A massively parallel implementation, based on the message passing interface allows for efficient simulations of ensembles of thousands of trajectories at once. The QTES-DFTB dynamics approach is employed to study the role of quantum nuclear effects on the interaction of hydrogen with a model graphene sheet, revealing that neglect of nuclear effects can lead to an overestimation of adsorption.
Effect of the Duration Time of a Nuclear Accident on Radiological Health Consequences
Directory of Open Access Journals (Sweden)
Hyojoon Jeong
2014-03-01
Full Text Available This study aimed to quantify the effect of duration time of a nuclear accident on the radiation dose of a densely populated area and the resulting acute health effects. In the case of nuclear accidents, the total emissions of radioactive materials can be classified into several categories. Therefore, the release information is very important for the assessment of risk to the public. We confirmed that when the duration time of the emissions are prolonged to 7 hours, the concentrations of radioactive substances in the ambient air are reduced by 50% compared to that when the duration time of emission is one hour. This means that the risk evaluation using only the first wind direction of an accident is very conservative, so it has to be used as a screening level for the risk assessment. Furthermore, it is judged that the proper control of the emission time of a nuclear accident can minimize the health effects on residents.
Energy Technology Data Exchange (ETDEWEB)
Silver, E G [ed.
1989-01-01
This document is a review journal that covers significant developments in the field of nuclear safety. Its scope includes the analysis and control of hazards associated with nuclear energy, operations involving fissionable materials, and the products of nuclear fission and their effects on the environment. Primary emphasis is on safety in reactor design, construction, and operation; however, the safety aspects of the entire fuel cycle, including fuel fabrication, spent-fuel processing, nuclear waste disposal, handling of radioisotopes, and environmental effects of these operations, are also treated.
Collective effective dose in Europe from X-ray and nuclear medicine procedures.
Bly, R; Jahnen, A; Järvinen, H; Olerud, H; Vassileva, J; Vogiatzi, S
2015-07-01
Population doses from radiodiagnostic (X-ray and nuclear medicine) procedures in Europe were estimated based on data collected from 36 European countries. For X-ray procedures in EU and EFTA countries (except Liechtenstein) the collective effective dose is 547,500 man Sv, resulting in a mean effective dose of 1.06 mSv per caput. For all European countries included in the survey the collective effective dose is 605,000 man Sv, resulting in a mean effective dose of 1.05 mSv per caput. For nuclear medicine procedures in EU countries and EFTA (except Liechtenstein) countries the collective effective dose is 30,700 man Sv, resulting in a mean effective dose of 0.06 mSv per caput. For all European countries included in the survey the collective effective dose is 31,100 man Sv, resulting in a mean effective dose of 0.05 mSv per caput.
Lv, Ming; Chen, Jin-Hui; Fang, De-Qing; Zhang, Guo-Qiang
2015-01-01
Nuclear modification factor ($R_{cp}$) of protons and pions are investigated by simulating Au + Au collisions from 0.8 to 1.8$A$ GeV in a framework of an isospin-dependent quantum molecular dynamics (IQMD) model. $R_{cp}$ of protons rises with the increase of \\pt~ at different beam energies owing to radial flow and Cronin effect. The rate of increase of \\rcp~ is suppressed at higher beam energies. The significant difference of $R_{cp}$ between protons and pions indicates different medium effects between protons and pions. By changing the in-medium nucleon-nucleon cross section, the $R_{cp}$ of protons changes a lot, while the $R_{cp}$ of pions does not. Taking the pion absorption into account, the $R_{cp}$ of pions becomes close to unity without $p_{T}$ dependence after deactivating the reaction $\\pi N \\rightarrow \\Delta$, while there is nearly no change on proton. This suggests that the pion absorption plays a dominant role on pion dynamics and have slight effect for proton dynamics.
Effects of the nuclear disaster on marine products in Fukushima.
Wada, Toshihiro; Nemoto, Yoshiharu; Shimamura, Shinya; Fujita, Tsuneo; Mizuno, Takuji; Sohtome, Tadahiro; Kamiyama, Kyoichi; Morita, Takami; Igarashi, Satoshi
2013-10-01
After the release of huge amounts of radionuclides into the ocean from the devastated Fukushima Dai-ichi Nuclear Power Plant (FDNPP), safety concerns have arisen for marine products in Fukushima Prefecture. As of October 2012, we had inspected the radionuclide ((131)I, (134)Cs and (137)Cs) concentrations in 6462 specimens within 169 marine species collected off the coast of Fukushima Prefecture from April 2011. Only two species exceeded the Japanese provisional regulatory limit for (131)I (2000 Bq/kg-wet) immediately after the FDNPP accident. In 2011 and 2012, 63 and 41 species respectively exceeded the Japanese regulatory limit for radioactive Cs (100 Bq/kg-wet). The overall radioactive Cs concentrations of the total marine products have decreased significantly. However, the time-series trends of radioactive Cs concentrations have differed greatly among taxa, habitats (pelagic/demersal), and spatial distributions. Higher concentrations were observed in shallower waters south of the FDNPP. Radioactive Cs concentrations decreased quickly or were below detection limits in pelagic fishes and some invertebrates, and decreased constantly in seaweed, surf clams, and other organisms. However, in some coastal demersal fishes, the declining trend was much more gradual, and concentrations above the regulatory limit have been detected frequently, indicating continued uptake of radioactive Cs through the benthic food web. The main continuing source of radioactive Cs to the benthic food web is expected to be the radioactive Cs-containing detritus in sediment. Trial fishing operations for several selected species without radioactive Cs contamination were commenced in Soma area, 50 km north of the FDNPP, from June 2012. Long-term and careful monitoring of marine products in the waters off Fukushima Prefecture, especially around the FDNPP, is necessary to restart the coastal fishery reliably and to prevent harmful rumors in the future.
Nuclear Quantum Effects in Water and Aqueous Systems: Experiment, Theory, and Current Challenges.
Ceriotti, Michele; Fang, Wei; Kusalik, Peter G; McKenzie, Ross H; Michaelides, Angelos; Morales, Miguel A; Markland, Thomas E
2016-07-13
Nuclear quantum effects influence the structure and dynamics of hydrogen-bonded systems, such as water, which impacts their observed properties with widely varying magnitudes. This review highlights the recent significant developments in the experiment, theory, and simulation of nuclear quantum effects in water. Novel experimental techniques, such as deep inelastic neutron scattering, now provide a detailed view of the role of nuclear quantum effects in water's properties. These have been combined with theoretical developments such as the introduction of the principle of competing quantum effects that allows the subtle interplay of water's quantum effects and their manifestation in experimental observables to be explained. We discuss how this principle has recently been used to explain the apparent dichotomy in water's isotope effects, which can range from very large to almost nonexistent depending on the property and conditions. We then review the latest major developments in simulation algorithms and theory that have enabled the efficient inclusion of nuclear quantum effects in molecular simulations, permitting their combination with on-the-fly evaluation of the potential energy surface using electronic structure theory. Finally, we identify current challenges and future opportunities in this area of research.
Thyroid side effects prophylaxis in front of nuclear power plant accidents.
Agopiantz, Mikaël; Elhanbali, Ouifak; Demore, Béatrice; Cuny, Thomas; Demarquet, Léa; Ndiaye, Cumba; Barbe, Françoise; Brunaud, Laurent; Weryha, Georges; Klein, Marc
2016-02-01
The better knowledge of the mechanisms of nuclear incidents and lessons learned from accidents in the recent past to improve the effectiveness of measures taken following a nuclear accident exposure to fallout of radioactive iodine isotopes. Thus, immediate, passive measures, such as containment, and stopping consumption of contaminated products are paramount. The earliest possible administration of stable iodine as potassium iodide (KI) reduces significantly (up to 90% if taken at the same time of the accident) thyroid radioactive contamination. These tablets should be given in priority to children and pregnant women. The side effects are minor. KI is not recommended for persons aged over 60 years, or for adults suffering from cardiovascular disorders.
Fukushima effects in Germany? Changes in media coverage and public opinion on nuclear power.
Arlt, Dorothee; Wolling, Jens
2016-10-01
Based on a literature review on factors that explain media effects and previous findings on media coverage and public opinion on nuclear power, this article examines the effects of Fukushima on media coverage and public opinion in Germany in two studies. The first study uses content analysis data to analyse changes in media coverage, and the second one is based on panel survey data to examine attitude changes on an individual level. The results of both studies show changes in media coverage and public opinion on nuclear power. Furthermore, the second study reveals that individual attitude changes cannot necessarily be explained by the same factors as the distribution of attitudes.
Discrimination of nuclear and electronic recoil events using plasma effect in germanium detectors
Wei, W.-Z.; Liu, J.; Mei, D.-M.
2016-07-01
We report a new method of using the plasma time difference, which results from the plasma effect, between the nuclear and electronic recoil events in high-purity germanium detectors to distinguish these two types of events in the search for rare physics processes. The physics mechanism of the plasma effect is discussed in detail. A numerical model is developed to calculate the plasma time for nuclear and electronic recoils at various energies in germanium detectors. It can be shown that under certain conditions the plasma time difference is large enough to be observable. The experimental aspects in realizing such a discrimination in germanium detectors is discussed.
Discrimination of nuclear and electronic recoil events using plasma effect in germanium detectors
Wei, W -Z; Mei, D -M
2016-01-01
We report a new method of using the plasma time difference, which results from the plasma effect, between the nuclear and electronic recoil events in high-purity germanium detectors to distinguish these two types of events in the search for rare physics processes. The physics mechanism of the plasma effect is discussed in detail. A numerical model is developed to calculate the plasma time for nuclear and electronic recoils at various energies in germanium detectors. It can be shown that under certain conditions the plasma time difference is large enough to be observable. The experimental aspects in realizing such a discrimination in germanium detectors is discussed.
Probing Nuclear Effects at the T2K Near Detector Using Single-Transverse Kinematic Imbalance
Dolan, Stephen; Pickering, Luke; Vladisavljevic, Tomislav; Weber, Alfons
2016-01-01
In order to make precision measurements of neutrino oscillations using few-GeV neutrino beams a detailed understanding of nuclear effects in neutrino scattering is essential. Recent studies have revealed that single-transverse kinematic imbalance (STKI), defined in the plane transverse to an incoming neutrino beam, can act as a unique probe of these nuclear effects. This work first illustrates that an exclusive measurement of STKI at the off-axis near detector of the T2K experiment (ND280) is expected to distinguish the presence of multi-nucleon correlations producing a two proton final state (2p-2h) from alterations of the predominant underlying cross-section parameter ($M_A$ - the nucleon axial mass). Such a measurement is then demonstrated with fake data, showing substantial nuclear model separation potential.
Khoma, Mykhaylo; Jaquet, Ralph
2017-09-21
The kinetic energy operator for triatomic molecules with coordinate or distance-dependent nuclear masses has been derived. By combination of the chain rule method and the analysis of infinitesimal variations of molecular coordinates, a simple and general technique for the construction of the kinetic energy operator has been proposed. The asymptotic properties of the Hamiltonian have been investigated with respect to the ratio of the electron and proton mass. We have demonstrated that an ad hoc introduction of distance (and direction) dependent nuclear masses in Cartesian coordinates preserves the total rotational invariance of the problem. With the help of Wigner rotation functions, an effective Hamiltonian for nuclear motion can be derived. In the derivation, we have focused on the effective trinuclear Hamiltonian. All necessary matrix elements are given in closed analytical form. Preliminary results for the influence of non-adiabaticity on vibrational band origins are presented for H3(+).
Institute of Scientific and Technical Information of China (English)
奚玉东; 王登龙; 佘彦超; 王凤姣; 丁建文
2010-01-01
考虑玻色-爱因斯坦凝聚体局限于周期性的双色光晶格势阱中,研究其中的Bloch能带结构、第一能隙和第二能隙的Landau-Zener隧穿行为.结果表明,随着双色光晶格势阱的主、次晶格相位差φ从0增加到π,Bloch能带中第一能隙宽度逐渐增加,而第二能隙宽度逐渐减小.同时发现,双色光晶格势阱的主、次晶格深度及其相位差对第一能隙和第二能隙的Landau-Zener隧穿性质有重要的影响.
Nuclear Theory - Nuclear Power
Svenne, J. P.; Canton, L.; Kozier, K. S.
2008-01-01
The results from modern nuclear theory are accurate and reliable enough to be used for practical applications, in particular for scattering that involves few-nucleon systems of importance to nuclear power. Using well-established nucleon-nucleon (NN) interactions that fit well the NN scattering data, and the AGS form of the three-body theory, we have performed precise calculations of low-energy neutron-deuteron (n+d) scattering. We show that three-nucleon force effects that have impact on the low-energy vector analyzing powers have no practical effects on the angular distribution of the n+d cross-section. There appear to be problems for this scattering in the evaluated nuclear data file (ENDF) libraries, at the incident neutron energies less than 3.2 MeV. Supporting experimental data in this energy region are rather old (>25 years), sparse and often inconsistent. Our three-body results at low energies, 50 keV to 10.0 MeV, are compared to the ENDF/B-VII.0 and JENDL (Japanese Evaluated Nuclear Data Library) -3.3 evaluated angular distributions. The impact of these results on the calculated reactivity for various critical systems involving heavy water is shown.
Nuclear Weapons Effects on Army Tactical Systems. Volume 1. Overview
1979-04-01
be extremely high-performance analog IC’s or those IC’s that use lateral PNP 25 transist-rs for gain elements. These lateral PNP transistors are...degradation. For example, this degradation causes current gain degradation in bipolar transistors . Those device technologies that are insensitive to this effect...can be eliminated from further consideration. Such device technologies include junction field-effect transistors , all types of metal oxide
Nuclear and partonic dynamics in the EMC effect
Energy Technology Data Exchange (ETDEWEB)
Garcia Canal, Carlos A.; Tarutina, Tatiana [Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Laboratorio de Fisica Teorica, Departamento de Fisica, IFLP, CONICET, La Plata (Argentina); Vento, Vicente [Universidad de Valencia-CSIC, Departamento de Fisica Teorica and Instituto de Fisica Corpuscular, Burjassot (Spain)
2013-08-15
It has been recently confirmed that the magnitude of the EMC effect measured in the electron deep inelastic scattering is linearly related to the short-range correlation scaling factor obtained from electron inclusive scattering. By using a x -rescaling approach we are able to understand the interplay between the quark-gluon and hadronic degrees of freedom in the discussion of the EMC effect. (orig.)
Effects of Climate Change on the European Nuclear Power Sector
Vögele, Stefan; Rübbelke, Dirk
2010-01-01
4 p. Anthropogenic emissions of greenhouse gases cause climate change and this change in turn induces various direct impacts, e.g., changes in regional weather patterns. The frequency of heat waves and droughts in Europe is likely to rise. Yet, beyond these immediate effects of climate change, there are more indirect effects: Droughts in Europe will cause water scarcity and a lack in water supply will affect further sectors and critical infrastructures. An arising lack in water supply for ...
Search for entrance channel effects in compound nuclear formation
Maj, A; Herskind, B; Bracco, A; Camera, F; Hagemann, G; Varmette, P
1999-01-01
The entrance channel effect was studied for the decay of sup 1 sup 7 sup 0 W formed in fusion reactions with different beam-target combinations. The average number of emitted neutrons suggest a lower effective excitation energy in the (alpha,xn) decay channel when more mass-symmetric reaction is used, especially at the highest angular momenta. The results are in qualitative agreement with predictions of the dissipative fusion model.
Fong, Peter
1997-11-01
The cancer deaths per 100,000 U.S. population plotted as a function of time (year) over the past 60 years can be represented by a smooth curve except the years 1952-1978 where the data points fall below the smooth curve indicating a reduction of cancer ceaths of a total of 418,000. This anormaly is traced, through the space-time correlation of the mortalities with the 48 States, to the airborne nuclear weapons tests (mostly in Nevada) during that period when 500 nuclear bombs were exploded in air, generating an extra amount of radiation of 30 mrem/year. From this serendipitous experiment we deduce the law of the beneficial effect of low level radiation that a doubling of the background radiation (as in Colorado) will reduce cancer death rate by 24.3%. The actual rate of reduction in Colorado is 25% lower than the national average. Thus the law is verified. In another aspect Kerala,India has a background radiation 20 times higher than normal and it has a life expectancy 10.7 years longer than average India, thus showing the great beneficial affect of low level radiation. Concerning the nuclear power plant safety, the 500 bombs exploded are equivalent to 50 Chernobyl type nuclear plant explosions, the results of which are the reduction of 418,000 cancer deaths. Thus the nuclear industry is absolutely safe under any catastrophic disasters that may befall on the 414 nuclear plant now operating on the earth. The beneficial effects of radiation have been taken advantage of in folklores and health practices in Brazil, Chekoslovakia, Germany and Colorado. These health practices can benefit from the radiation generated from nuclear power and the nuclear waste disposal problem can be solved by turning trashes into treasures.
Energy Technology Data Exchange (ETDEWEB)
Homma, Toshimitsu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Takahashi, Tomoyuki [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst; Yonehara, Hidenori [National Inst. of Radiological Sciences, Chiba (Japan)] [eds.
2000-12-01
This report is a revision of JAERI-M 91-005, 'Health Effects Models for Off-Site Radiological Consequence Analysis of Nuclear Reactor Accidents'. This revision provides a review of two revisions of NUREG/CR-4214 reports by the U.S. Nuclear Regulatory Commission which is the basis of the JAERI health effects models and other several recent reports that may impact the health effects models by international organizations. The major changes to the first version of the JAERI health effects models and the recommended parameters in this report are for late somatic effects. These changes reflect recent changes in cancer risk factors that have come from longer followup and revised dosimetry in major studies on the Japanese A-bomb survivors. This report also provides suggestions about future revisions of computational aspects on health effects models. (author)
Effective Mass of Kaon in Asymmetrici Nuclear Matter
Institute of Scientific and Technical Information of China (English)
LiXiguo; GaoYuan; LiuZiyu; ZuoWei
2003-01-01
The properties of kaon at very high baryon density has been a fascinating subject since 1986. Of particular importance is the modification of effective mass of antikaon in-medium. This is expected to not only help us to understander the chiral symmetry restoration but also effect the composition and structure of neutron star.. The modification of kaon and antikaon mass in medium might be a new mechanism of production at energies below the threshold. Based on the mean-field approximation to the effective SU(3)L×SU(3)n chiral Lagrangian, the kaon and anti kaon mass in medium, defined as the energy of a kaon (or antikaon) with zero three momentum,are then given by[1
Renormalization Group Equation for Low Momentum Effective Nuclear Interactions
Bogner, S K; Kuo, T T S; Brown, G E
2001-01-01
We consider two nonperturbative methods originally used to derive shell model effective interactions in nuclei. These methods have been applied to the two nucleon sector to obtain an energy independent effective interaction V_{low k}, which preserves the low momentum half-on-shell T matrix and the deuteron pole, with a sharp cutoff imposed on all intermediate state momenta. We show that V_{low k} scales with the cutoff precisely as one expects from renormalization group arguments. This result is a step towards reformulating traditional model space many-body calculations in the language of effective field theories and the renormalization group. The numerical scaling properties of V_{low k} are observed to be in excellent agreement with our exact renormalization group equation.
Bohr-Weisskopf effect influence of the distributed nuclear magnetization on hfs
Stroke, Hinko Henry; Pinard, J
2000-01-01
Nuclear magnetic moments provide a sensitive test of nuclear wave functions, in particular those of neutrons, which are not readily obtainable from other nuclear data. These are taking added importance by recent proposals to study parity non-conservation (PNC) effects in alkali atoms in isotopic series. By taking ratios of the PNC effects in pairs of isotopes, uncertainties in the atomic wave functions are largely cancelled out at the cost of knowledge of the change in the neutron wave function, the Bohr-Weisskopf effect (1950) in the hyperfine structure interaction of atoms measures the influence of the spatial distribution of the nuclear magnetization, and thereby provides an additional constraint on the determination of the neutron wave function. The added great importance of B-W in the determination of QED effects from the hfs in hydrogen-like ions of heavy elements, as measured recently at GSI, is noted, the B-W experiments require precision measurements of the hfs interactions and, independently, of the...
Fire and the related effects of nuclear explosions. 1982 Asilomar Conference
Energy Technology Data Exchange (ETDEWEB)
Martin, S.B.; Alger, R.S. (eds.)
1982-11-01
This report summarizes the proceedings of a Federal Emergency Management Agency-sponsored Conference on fire and the related effects of nuclear explosions (with passing attention to earthquakes and other nonnuclear mishaps). This conference, the fifth of an annual series (formally called Blast/Fire Interaction Conferences), was held during the week of April 25, 1982, again at Asilomar, California.
Parton distribution of nucleon and nuclear EMC effect in a statistical model
Yu, Xian-Qiao
2016-01-01
We study the parton distribution of nucleon and nuclear EMC effect in a statistical model. We find when we choose the parameters appropriately, the predictions given by pure statistical laws can fit the experimental data well in most range of $x$, this reveal statistical law play an important role in the parton distribution of nucleon.
Discussion about modeling the effects of neutron flux exposure for nuclear reactor core analysis
Energy Technology Data Exchange (ETDEWEB)
Vondy, D.R.
1986-04-01
Methods used to calculate the effects of exposure to a neutron flux are described. The modeling of the nuclear-reactor core history presents an analysis challenge. The nuclide chain equations must be solved, and some of the methods in use for this are described. Techniques for treating reactor-core histories are discussed and evaluated.
Cold Nuclear Matter Effects on Open and Hidden Heavy Flavor Production at the LHC
Vogt, R
2015-01-01
We discuss a number of cold nuclear matter effects that can modify open heavy flavor and quarkonium production in proton-nucleus collisions and could thus also affect their production in nucleus-nucleus collisions, in addition to hot quark-gluon plasma production. We show some results for $p+$Pb collisions at sqrt s = 5 TeV at the LHC.
Microscopic effective reaction theory for direct nuclear reactions
Directory of Open Access Journals (Sweden)
Ogata Kazuyuki
2016-01-01
Full Text Available Some recent activities with the microscopic effective reaction theory (MERT on elastic, inelastic, breakup, transfer, and knockout processes are reviewed briefly. As a possible alternative to MERT, a description of elastic and inelastic scattering with the continuum particle-vibration coupling (cPVC method is also discussed.
Effect of quantum nuclear motion on hydrogen bonding
Energy Technology Data Exchange (ETDEWEB)
McKenzie, Ross H., E-mail: r.mckenzie@uq.edu.au; Bekker, Christiaan [School of Mathematics and Physics, University of Queensland, Brisbane 4072 (Australia); Athokpam, Bijyalaxmi; Ramesh, Sai G. [Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012 (India)
2014-05-07
This work considers how the properties of hydrogen bonded complexes, X–H⋯Y, are modified by the quantum motion of the shared proton. Using a simple two-diabatic state model Hamiltonian, the analysis of the symmetric case, where the donor (X) and acceptor (Y) have the same proton affinity, is carried out. For quantitative comparisons, a parametrization specific to the O–H⋯O complexes is used. The vibrational energy levels of the one-dimensional ground state adiabatic potential of the model are used to make quantitative comparisons with a vast body of condensed phase data, spanning a donor-acceptor separation (R) range of about 2.4 − 3.0 Å, i.e., from strong to weak hydrogen bonds. The position of the proton (which determines the X–H bond length) and its longitudinal vibrational frequency, along with the isotope effects in both are described quantitatively. An analysis of the secondary geometric isotope effect, using a simple extension of the two-state model, yields an improved agreement of the predicted variation with R of frequency isotope effects. The role of bending modes is also considered: their quantum effects compete with those of the stretching mode for weak to moderate H-bond strengths. In spite of the economy in the parametrization of the model used, it offers key insights into the defining features of H-bonds, and semi-quantitatively captures several trends.
Effect of quantum nuclear motion on hydrogen bonding
McKenzie, Ross H.; Bekker, Christiaan; Athokpam, Bijyalaxmi; Ramesh, Sai G.
2014-05-01
This work considers how the properties of hydrogen bonded complexes, X-H⋯Y, are modified by the quantum motion of the shared proton. Using a simple two-diabatic state model Hamiltonian, the analysis of the symmetric case, where the donor (X) and acceptor (Y) have the same proton affinity, is carried out. For quantitative comparisons, a parametrization specific to the O-H⋯O complexes is used. The vibrational energy levels of the one-dimensional ground state adiabatic potential of the model are used to make quantitative comparisons with a vast body of condensed phase data, spanning a donor-acceptor separation (R) range of about 2.4 - 3.0 Å, i.e., from strong to weak hydrogen bonds. The position of the proton (which determines the X-H bond length) and its longitudinal vibrational frequency, along with the isotope effects in both are described quantitatively. An analysis of the secondary geometric isotope effect, using a simple extension of the two-state model, yields an improved agreement of the predicted variation with R of frequency isotope effects. The role of bending modes is also considered: their quantum effects compete with those of the stretching mode for weak to moderate H-bond strengths. In spite of the economy in the parametrization of the model used, it offers key insights into the defining features of H-bonds, and semi-quantitatively captures several trends.
Isospin Effect on Nuclear Stopping in Intermediate Energy Heavy Ion Collisions
Institute of Scientific and Technical Information of China (English)
2001-01-01
By using the isospin dependent quantum molecular dynamics model (IQMD), we study the dependence of nuclear stopping Qzz/A and R in intermediate energy heavy ion collisions on system size, initial N/Z, isospin symmetry potential and the medium correction of two-body cross sections. We find the effect of initial N/Z ratio, isospin symmetry potential on stopping is weak. The excitation function of Qzz/A and R depends on the form of medium correction of two-body cross sections and the equation of state of nuclear matter (EOS). Our results show the behavior of the excitation function of Qzz/A and
Short-range correlation effects on the nuclear matrix element of neutrinoless double-$\\beta$ decay
Benhar, Omar; Speranza, Enrico
2014-01-01
We report the results of a calculation of the nuclear matrix element of neutrinoless double-$\\beta$ decay of $^{48}$Ca, carried out taking into account nucleon-nucleon correlations in both coordinate- and spin-space. Our numerical results, obtained using nuclear matter correlation functions, suggest that inclusion of correlations leads to a $\\sim$ $20\\%$ decrease of the matrix element, with respect to the shell model prediction. This conclusion is supported by the results of an independent calculation, in which correlation effects are taken into account using the spectroscopic factors of $^{48}$Ca obtained from an {\\em ab intitio} many body approach.
Parity violating asymmetry with nuclear medium effects in deep inelastic $\\vec e$ scattering
Haider, H; Singh, S K; Simo, I Ruiz
2014-01-01
Recently at JLab using polarised electron beam on unpolarised deuteron target measurements have been performed for the parity violating asymmetry($A_{PV}$) and there are future plans to measure this asymmetry using various nuclear targets. In this paper, we study $A_{PV}$ in nuclear targets like $^{12}C$, $^{56}Fe$ and $^{208}Pb$, in a local density approximation using spectral function which takes into account Fermi motion, binding energy correction and nucleon correlations. Furthermore, the pion and rho cloud contributions have also been taken into account. The present model has been used earlier to study medium effects in electromagnetic as well as weak interaction induced processes in the DIS region.
Anzai, Kazunori; Ban, Nobuhiko; Ozawa, Toshihiko; Tokonami, Shinji
2012-01-01
On March 11, 2011, an earthquake led to major problems at the Fukushima Daiichi Nuclear Power Plant. A 14-m high tsunami triggered by the earthquake disabled all AC power to Units 1, 2, and 3 of the Power Plant, and carried off fuel tanks for emergency diesel generators. Despite many efforts, cooling systems did not work and hydrogen explosions damaged the facilities, releasing a large amount of radioactive material into the environment. In this review, we describe the environmental impact of the nuclear accident, and the fundamental biological effects, acute and late, of the radiation. Possible medical countermeasures to radiation exposure are also discussed.
An effect of nuclear electric quadrupole moments in thermonuclear fusion plasmas
De, B. R.; Srnka, L. J.
1978-01-01
Consideration of the nuclear electric quadrupole terms in the expression for the fusion Coulomb barrier suggests that this electrostatic barrier may be substantially modified from that calculated under the usual plasma assumption that the nuclei are electric monopoles. This effect is a result of the nonspherical potential shape and the spatial quantization of the nuclear spins of the fully stripped ions in the presence of a magnetic field. For monopole-quadrupole fuel cycles like p-B-11, the fusion cross-section may be substantially increased at low energies if the protons are injected at a small angle relative to the confining magnetic field.
Cladding Effects on Structural Integrity of Nuclear Components
Energy Technology Data Exchange (ETDEWEB)
Sattari-Far, Iradi; Andersson, Magnus [lnspecta Technology AB, Stockholm (Sweden)
2006-06-15
measurement of different clad components. Measurement of cladding residual stresses in a decommissioned reactor pressure vessel head, which was exposed to service conditions (pressure test, temperature, neutron irradiation, etc.), and the results from the cladding in a cut-out-piece, which did not experience any service or test pressure, basically showed similar profiles. Considering the low scatter and the reproducible data, the hole-drilling technique is recommended in measurement of the peak of the cladding residual stresses. The profile and magnitude of the cladding residual stresses depend mainly upon cladding composition, cladding thickness, clad component geometry and clad component temperature. The peak of the cladding residual stresses is actually about 2-3 mm under the surface of the clad layer, and values in the range of 150 and 500 MPa are reported. Fracture assessments on different clad components at different loading conditions reveal that fracture assessments based on LEFM and ASME Kk curve lead to unrealistic conservative results, and the cladding residual stresses are of importance for surface crack behaviour, especially under cold loads. The NESC projects have shown that the Master Curve methodology can give good predictions of the conducted experiments. It is reasonable to assume a peak value of cladding residual stresses in the whole clad layer to be equal to the yield strength of the cladding material (around 300 MPa) at room temperature. Providing that the clad component has received PWHT, it can be assumed no residual stresses in the underlying base material. For the nuclear pressure vessel, it is also reasonable to assume that the cladding stress free temperature is at the operation temperature of the vessel (around 300 deg C). It has been shown that the cladding residual stresses have negligible influence on subclad crack behaviour in clad components (receiving PWHT). It has also been shown that the crack growth for subclad cracks would be towards the
Directory of Open Access Journals (Sweden)
Fang-Ming Zhou
2016-08-01
Full Text Available A canned nuclear coolant pump is used in an advanced third-generation pressurized water reactor. Impeller is a key component of a canned nuclear coolant pump. Usually, the blade is installed between the hub and the shroud as an entire part. The blade is divided into two parts and is staggered in the circumferential direction is an approach of blade design. To understand the effects of staggered blades on a canned nuclear coolant pump, this article numerically investigated different types of staggering. The validity of the numerical simulation was confirmed by comparing the numerical and experimental results. The performance change of a canned nuclear coolant pump with staggered blades was acquired. Hydraulic performance curves, axial force curves, static pressure distributions at the impeller outlet, and static pressure pulsations were performed to investigate the performance changes caused by the staggered blades. The results show that the staggered blade has an important influence on the performance of canned nuclear coolant pumps. A staggered blade does not improve hydraulic performance but does improve the axial force and pressure pulsation. Specifically, the staggered blades can significantly reduce the pressure pulsation amplitude on the impeller pass frequency.
A comparative study on the effective safety of nuclear technology in Korea
Energy Technology Data Exchange (ETDEWEB)
Soh, Young Jin [Daegu University, Daegu (Korea); Kim, Young Pyoung [Korea University, Seoul (Korea); Jung, Yoon Soo [Myoungji University, Seoul (Korea); Chung, Ik Jae; Choi, Byung Sun [Seoul National University, Seoul (Korea)
2001-12-01
The main purpose of this research is to analyze Korean perception of nuclear risk in comparison with other technological risks. In order to understand the characteristics of risk perception, the concept of 'effective safety' is clarified and defined. This research also covers such issues as relative riskiness of major risks, risk attitude, risk attribution, behavioral pattern for risky situation, and risk knowledge. A nation-wide survey was conducted for this study with a sample size of 1870. It was based on the purposive quota sampling to compare nuclear risk and other technological risks selected are 6 groups of risk; nuclear risk, environmental risk, traffic risk, chemical materials, industrial safety, and other recent risks. Accross these groups, a total of 25 risks are examined. 52 refs., 14 figs., 125 tabs. (Author)
Enhancement of the nuclear forward glory effect in the {sup 11}Be + {sup 12}C system
Energy Technology Data Exchange (ETDEWEB)
Ostrowski, A.N.; Roussel-Chomaz, P.; Villari, A.C.C. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France); Lepine-Szily, A.; Lichtenthaeler Filho, R. [Sao Paulo Univ., SP (Brazil); Alamanos, N. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. d`Astrophysique, de la Physique des Particules, de la Physique Nucleaire et de l`Instrumentation Associee; Brandan, M.E. [Universidad Nacional Autonoma de Mexico, Mexico City (Mexico). Inst. de Fisica
1996-12-31
The possibility of obtaining information on peculiarities in the density distributions of light exotic nuclei from elastic scattering data by using the modified Generalized Optical Theorem for charged particles is studied. It is shown that model independent information on the forward nuclear scattering amplitude can be obtained. This quantity probes the outer part of the underlying scattering potential and is therefore sensitive to `halo-like` tails in the matter distribution. In the presence of such a tail a strong enhancement of the forward nuclear scattering amplitude at 0 deg is obtained. To demonstrate that this enhancement is even stronger that the one due to the well-established nuclear forward glory effect, synthetic data for the `non halo` {sup 10}Be+{sup 12}C and the `neutron-halo` {sup 11}Be+{sup 12}C systems are compared in the glory angular domain. (author). 17 refs.
The effects of different maceration techniques on nuclear DNA amplification using human bone.
Lee, Esther J; Luedtke, Jennifer G; Allison, Jamie L; Arber, Carolyn E; Merriwether, D Andrew; Steadman, Dawnie Wolfe
2010-07-01
Forensic anthropologists routinely macerate human bone for the purposes of identity and trauma analysis, but the heat and chemical treatments used can destroy genetic evidence. As a follow-up to a previous study on nuclear DNA recovery that used pig ribs, this study utilizes human skeletal remains treated with various bone maceration techniques for nuclear DNA amplification using the standard Combined DNA Index System (CODIS) markers. DNA was extracted from 18 samples of human lower leg bones subjected to nine chemical and heat maceration techniques. Genotyping was carried out using the AmpFlSTR COfiler and AmpFlSTR Profiler Plus ID kits. Results showed that heat treatments via microwave or Biz/Na(2)CO(3) in sub-boiling water efficiently macerate bone and produce amplifiable nuclear DNA for genetic analysis. Long-term use of chemicals such as hydrogen peroxide is discouraged as it results in poor bone quality and has deleterious effects on DNA amplification.
Nuclear dynamical correlation effects in X-ray spectroscopy from a time-domain perspective
Karsten, Sven; Aziz, Saadullah G; Bokarev, Sergey I; Kühn, Oliver
2016-01-01
To date X-ray spectroscopy has become a routine tool that can reveal highly local and element-specific information on the electronic structure of atoms in complex environments. Here, we focus on nuclear dynamical effects in X-ray spectra and develop a rigorous time-correlation method employing ground state molecular dynamics simulations. The importance of nuclear correlation phenomena is demonstrated by comparison against the results from the conventional sampling approach for gas phase water. In contrast to the first-order absorption, second-order resonant inelastic scattering spectra exhibit pronounced fingerprints of nuclear motions. The developed methodology does not depend on the accompanying electronic structure method in principle as well as on the spectral range and, thus, can be applied to, e.g., UV and X-ray photo-electron and Auger spectroscopies.
Nuclear-Motion Effects in Attosecond Transient Absorption Spectroscopy of Molecules
Bækhøj, Jens E; Madsen, Lars Bojer
2015-01-01
We investigate the characteristic effects of nuclear motion on attosecond transient absorption spectra in molecules by calculating the spectrum for different model systems. Two models of the hydrogen molecular ion are considered: one where the internuclear separation is fixed, and one where the nuclei are free to vibrate. The spectra for the fixed nuclei model are similar to atomic spectra reported elsewhere, while the spectra obtained in the model including nuclear motion are very different and dominated by extremely broad absorption features. These broad absorption features are analyzed and their relation to molecular dissociation investigated. The study of the hydrogen molecular ion validates an approach based on the Born-Oppenheimer approximation and a finite electronic basis. This latter approach is then used to study the three-dimensional hydrogen molecule including nuclear vibration. The spectrum obtained from H$_2$ is compared to the result of a fixed-nuclei calculation. In the attosecond transient ab...
Zhang, Y.; Varga, T.; Ishimaru, M.; Edmondson, P. D.; Xue, H.; Liu, P.; Moll, S.; Namavar, F.; Hardiman, C.; Shannon, S.; Weber, W. J.
2014-05-01
Ever increasing energy needs have raised the demands for advanced fuels and cladding materials that withstand the extreme radiation environments with improved accident tolerance over a long period of time. Ceria (CeO2) is a well known ionic conductor that is isostructural with urania and plutonia-based nuclear fuels. In the context of nuclear fuels, immobilization and transmutation of actinides, CeO2 is a model system for radiation effect studies. Covalent silicon carbide (SiC) is a candidate for use as structural material in fusion, cladding material for fission reactors, and an inert matrix for the transmutation of plutonium and other radioactive actinides. Understanding microstructural change of these ionic-covalent materials to irradiation is important for advanced nuclear energy systems.
Effect of Tensor Range in Nuclear Two-Body Problems
Feshbach, H.; Schwinger, J.; Harr, J. A.
1949-11-01
The interaction between neutron and proton in the triplet state is investigated, a wide variation in the values of both central and tensor ranges are included; the per cent D state in the deuteron and the effective triplet range have been computed; the results are applied tot he discussion of the magnetic moment of the deuteron, the photoelectric disintegration of the deuteron, and neutron-proton scattering.
Effect of quantum nuclear motion on hydrogen bonding
McKenzie, Ross H; Athokpam, Bijyalaxmi; Ramesh, Sai G
2014-01-01
This work considers how the properties of hydrogen bonded complexes, D-H....A, are modified by the quantum motion of the shared proton. Using a simple two-diabatic state model Hamiltonian, the analysis of the symmetric case, where the donor (D) and acceptor (A) have the same proton affinity, is carried out. For quantitative comparisons, a parametrization specific to the O-H....O complexes is used. The vibrational energy levels of the one-dimensional ground state adiabatic potential of the model are used to make quantitative comparisons with a vast body of condensed phase data, spanning a donor-acceptor separation (R) range of about 2.4-3.0 A, i.e., from strong to weak bonds. The position of the proton and its longitudinal vibrational frequency, along with the isotope effects in both are discussed. An analysis of the secondary geometric isotope effects, using a simple extension of the two-state model, yields an improved agreement of the predicted variation with R of frequency isotope effects. The role of the b...
Gupta, Y K; Howard, K B; Matta, J T; Senyigit, M; Itoh, M; Ando, S; Aoki, T; Uchiyama, A; Adachi, S; Fujiwara, M; Iwamoto, C; Tamii, A; Akimune, H; Kadono, C; Matsuda, Y; Nakahara, T; Furuno, T; Kawabata, T; Tsumura, M; Harakeh, M N; Kalantar-Nayestanaki, N
2016-01-01
"Background-free" spectra of inelastic $\\alpha$-particle scattering have been measured at a beam energy of 385 MeV in $^{90, 92}$Zr and $^{92}$Mo at extremely forward angles, including 0$^{\\circ}$. The ISGMR strength distributions for the three nuclei coincide with each other, establishing clearly that nuclear incompressibility is not influenced by nuclear shell structure near $A\\sim$90 as was claimed in recent measurements.
Effects of different ligands on epidermal growth factor receptor (EGFR) nuclear translocation
Energy Technology Data Exchange (ETDEWEB)
Faria, Jerusa A.Q.A.; Andrade, Carolina de; Goes, Alfredo M. [Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, MG, 31270-901 (Brazil); Rodrigues, Michele A. [Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, MG, 31270-901 (Brazil); Department of General Pathology, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, MG, 31270-901 (Brazil); Gomes, Dawidson A., E-mail: dawidson@ufmg.br [Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, MG, 31270-901 (Brazil)
2016-09-09
The epidermal growth factor receptor (EGFR) is activated through binding to specific ligands and generates signals for proliferation, differentiation, migration, and cell survival. Recent data show the role of nuclear EGFR in tumors. Although many EGFR ligands are upregulated in cancers, little is known about their effects on EGFR nuclear translocation. We have compared the effects of six EGFR ligands (EGF, HB-EGF, TGF-α, β-Cellulin, amphiregulin, and epiregulin) on nuclear translocation of EGFR, receptor phosphorylation, migration, and proliferation. Cell fractionation and confocal immunofluorescence detected EGFR in the nucleus after EGF, HB-EGF, TGF-α and β-Cellulin stimulation in a dose-dependent manner. In contrast, amphiregulin and epiregulin did not generate nuclear translocation of EGFR. EGF, HB-EGF, TGF-α and β-Cellulin showed correlations between a higher rate of wound closure and increased phosphorylation of residues in the carboxy-terminus of EGFR, compared to amphiregulin and epiregulin. The data indicate that EGFR is translocated to the nucleus after stimulation with EGF, HB-EGF, TGF-α and β-Cellulin, and that these ligands are related to increased phosphorylation of EGFR tyrosine residues, inducing migration of SkHep-1 cells. - Highlights: • EGF, HB-EGF, TGF-α, β-Cellulin are involved in the EGFR nuclear translocation. • Amphiregulin and epiregulin did not promote nuclear translocation of EGFR. • EGF, HB-EGF, TGF-α and β-Cellulin have a role in SkHep-1 cells migration. • EGFR ligands associated with better prognosis don't stimulate EGFR translocation.
Refractive effects in 9Be scattering and nuclear rainbow ghosts
Satchler, G. R.; Fulmer, C. B.; Auble, R. L.; Ball, J. B.; Bertrand, F. E.; Erb, K. A.; Gross, E. E.; Hensley, D. C.
1983-08-01
Data for the elastic scattering of 9Be on 12C and 16O at 158 MeV provide evidence of refractive effects that allow the optical potentials to be determined with little ambiguity. The real potentials are deep. Large angle data indicate dominance of negative-angle scattering from the far side of the target nucleus. The analysis also implies a residual rainbow phenomenon, contrary to what has been seen previously in heavy-ion scattering. We suggest this be called a rainbow ghost. Operated by Union Carbide Corporation under contract W-7405-eng-26 with the US Department of Energy.
Energy Technology Data Exchange (ETDEWEB)
Zhang, Yanwen [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States); Varga, Tamas [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Ishimaru, Manabu [Department of Materials Science and Engineering, Kyushu Inst. of Technology, Fukuoka (Japan); Edmondson, P. D. [Univ. of Oxford, (United Kingdom). Dept. of Materials; Xue, H. [Univ. of Tennessee, Knoxville, TN (United States); Liu, Peng [Univ. of Tennessee, Knoxville, TN (United States); School of Physics, Key Laboratory of Particle Physics and Particle Irradiation, Shandong Univ., Jinan (China); Moll, Sandra [TN International/AREVA, Montigny Le Bretonneux (France); Namavar, Fereydoon [Univ. of Nebraska Medical Center, Omaha, NE (United States); Hardiman, Christopher M. [North Carolina State Univ. (United States). Dept. of Nuclear Engineering; Shannon, Steven [North Carolina State Univ. (United States). Dept. of Nuclear Engineering; Weber, William J. [Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab., Oak Ridge, TN (United States)
2014-05-01
Ever increasing energy needs have raised the demands for advanced fuels and cladding materials that withstand the extreme radiation environments with improved accident tolerance over a long period of time. Ceria (CeO2) is a well known ionic conductor that is isostructural with urania and plutonia-based nuclear fuels. In the context of nuclear fuels, immobilization and transmutation of actinides, CeO2 is a model system for radiation effect studies. Covalent silicon carbide (SiC) is a candidate for use as structural material in fusion, cladding material for fission reactors, and an inert matrix for the transmutation of plutonium and other radioactive actinides. Understanding microstructural change of these ionic-covalent materials to irradiation is important for advanced nuclear energy systems. While displacements from nuclear energy loss may be the primary contribution to damage accumulation in a crystalline matrix and a driving force for the grain boundary evolution in nanostructured materials, local non-equilibrium disorder and excitation through electronic While displacements from nuclear energy loss may be the primary contribution to damage accumulation in a crystalline matrix and a driving force for the grain boundary evolution in nanostructured materials, local non-equilibrium disorder and excitation through electronic energy loss may, however, produce additional damage or anneal pre-existing defect. At intermediate transit energies where electronic and nuclear energy losses are both significant, synergistic, additive or competitive processes may evolve that affect the dynamic response of materials to irradiation. The response of crystalline and nanostructured CeO2 and SiC to ion irradiation are studied under different nuclear and electronic stopping powers to describe some general material response in this transit energy regime. Although fast radiation-induced grain growth in CeO2 is evident with no phase transformation, different fluence and dose dependence
Kondo effect of D\\xAFs and D\\xAFs* mesons in nuclear matter
Yasui, Shigehiro; Sudoh, Kazutaka
2017-03-01
We study the Kondo effect for D¯s and D¯s* mesons as impurity particles in nuclear matter. The spin-exchange interaction between the D¯s or D¯s* meson and the nucleon induces the enhancement of the effective coupling in the low-energy scattering in the infrared region, whose energy scale of singularity is given by the Kondo scale. We investigate the Kondo scale in the renormalization group equation at nucleon one-loop level. We furthermore study the ground state with the Kondo effect in the mean-field approach, and present that the Kondo scale is related to the mixing strength between the D¯s or D¯s* meson and the nucleon in nuclear matter. We show the spectral function of the impurity when the Kondo effect occurs.
Directory of Open Access Journals (Sweden)
Judith-Anne W. Chapman
2008-01-01
Full Text Available Background: Nuclear grade has been associated with breast DCIS recurrence and progression to invasive carcinoma; however, our previous study of a cohort of patients with breast DCIS did not find such an association with outcome. Fifty percent of patients had heterogeneous DCIS with more than one nuclear grade. The aim of the current study was to investigate the effect of quantitative nuclear features assessed with digital image analysis on ipsilateral DCIS recurrence.Methods: Hematoxylin and eosin stained slides for a cohort of 80 patients with primary breast DCIS were reviewed and two fields with representative grade (or grades were identified by a Pathologist and simultaneously used for acquisition of digital images for each field. Van Nuys worst nuclear grade was assigned, as was predominant grade, and heterogeneous grading when present. Patients were grouped by heterogeneity of their nuclear grade: Group A: nuclear grade 1 only, nuclear grades 1 and 2, or nuclear grade 2 only (32 patients, Group B: nuclear grades 1, 2 and 3, or nuclear grades 2 and 3 (31 patients, Group 3: nuclear grade 3 only (17 patients. Nuclear fi ne structure was assessed by software which captured thirty-nine nuclear feature values describing nuclear morphometry, densitometry, and texture. Step-wise forward Cox regressions were performed with previous clinical and pathologic factors, and the new image analysis features.Results: Duplicate measurements were similar for 89.7% to 97.4% of assessed image features. The rate of correct classification of nuclear grading with digital image analysis features was similar in the two fields, and pooled assessment across both fields. In the pooled assessment, a discriminant function with one nuclear morphometric and one texture feature was significantly (p = 0.001 associated with nuclear grading, and provided correct jackknifed classification of a patient’s nuclear grade for Group A (78.1%, Group B (48.4%, and Group C (70.6%. The
Literature survey of blast and fire effects of nuclear weapons on urban areas
Energy Technology Data Exchange (ETDEWEB)
Reitter, T.A.; McCallen, D.B.; Kang, S.W.
1982-06-01
The American literature of the past 30 years on fire and blast effects of nuclear weapons on urban areas has been surveyed. The relevant work is briefly sketched and areas where information is apparently lacking are noted. This report is intended to provide the basis for suggesting research priorities in the fire and blast effects area for the Federal Emergency Management Agency. It is also intended to provide entry into the literature for researchers. over 850 references are given.
Effects of Nuclear Medium on the Sum Rules in Electron and Neutrino Scattering
Zaidi, F; Athar, M Sajjad; Singh, S K; Simo, I Ruiz
2016-01-01
In this work, we study the influence of nuclear medium effects on various parton model sum rules in nuclei and compare the results with the free nucleon case. We have used relativistic nucleon spectral function to take into account Fermi motion, binding and nucleon correlations. The pion and rho meson cloud contributions have been incorporated in a microscopic model. The effect of shadowing has also been considered.
Spin Cut-off Parameter of Nuclear Level Density and Effective Moment of Inertia
Institute of Scientific and Technical Information of China (English)
A.N. Behkami; M. Soltani
2005-01-01
The spin cut-off parameter of the nuclear level density and effective moment of inertia for a large number of nuclei have been determined from analysis of the experimental data on S-wave neutron resonances and spins of lowlying levels. Contrary to claims made before, it is shown the spin cut-off parameter differs considerably from their corresponding rigid body values, and the energy dependence of the effective moment of inertia confirms the interacting fermion model prediction.
QED and nuclear effects in strong optical and x-ray laser fields
Di Piazza, A.; Pálffy, A.; Liao, W.-T.; Hatsagortsyan, K. Z.; Keitel, C. H.
2011-06-01
The possibility of employing strong optical and x-ray laser fields to investigate processes in the realm of classical and quantum electrodynamics as well as nuclear quantum optics is considered. In the first part we show on the theoretical side how modern strong optical laser fields can be employed to test the fundamental classical equations of motion of the electron which include radiation reaction, i.e., the effect of the radiation emitted by the electron on its own motion. Then, we clarify the quantum origin of radiation reaction and discuss a new radiation regime where both quantum and radiation effects dominate the electron dynamics. The second part is dedicated to the possibility of controlling nuclear transitions with coherent x-ray light. In particular, we investigate the resonant driving of nuclear transitions by super-intense x-ray laser fields considering parameters of upcoming high-frequency coherent light sources. As relevant application, the controlled pumping or release of energy stored in long-lived nuclear states is discussed.
Nuclear effects on heavy quark production. Results from Fermilab experiments E772 and E789
Energy Technology Data Exchange (ETDEWEB)
Leitch, M.J.; Alde, D.; Baer, H.; Boissevain, J.; Carey, T.; Garvey, G.T.; Jeppesen, R.; Kapustinsky, J.; Klein, A.; Lane, D.; Lee, C.; Lillberg, J.; McGaughey, P.; Moss, J.M.; Peng, J.C. (Los Alamos National Lab., NM (United States)); Brooks, M.; Brown, G.; Isenhower, D.; Sadler, M.; Schnathorst, R. (Abilene Christian Univ., TX (United States)); Danner, G.; Wang, M. (Case Western Reserve Univ., Cleveland, OH (United States)); Lederman, L.; Schub, M. (Univ. of Chicago, IL (United States)); Brown, C.N.; Cooper, W.E.; Glass, H.; Hsiung, Y.B.; Mishra, C.S.; Gounder, K. (Fermilab, Batavia, IL (United States)); Adams, M.R. (Univ. of Illinois, Chicago, IL (United States)); Gidal, G.; Ho, P.M.; Kowitt, M.; Luk, K.B.; Pripstein, D. (Lawrence Berkeley Lab., CA (United States)); Apolinski, M.; Guo, R.; Kaplan, D.M.; Martin, V.; Preston, R.; Sa, J.; Tanikella, V. (Northern Illinois Univ., DeKalb, IL (United States)); Childers, R.; Darden, C.; Wilson, J. (Univ. of South Carolina, Columbia; E772 and E789 Collaborations
1992-07-20
Fermilab Experiments E772 and E789 are fixed target experiments with 800 GeV protons incident on nuclear targets corresponding to a center-of-mass energy of [radical]s [approx equal] 39 GeV. Measurements are made with a pair spectrometer which has a solid angle of a few percent and operates at high luminosity with up to [approx equal] 10[sup 12](E772) or [approx equal] 10[sup 11](E789) protons/spill. Our experimental program explores several types of nuclear medium effects: the modification of quark and gluon structure functions by the nucleus, effects on the production of vector mesons (e.g. J/[psi] and [Upsilon]), and effects on the production of D mesons. (orig.).
Nuclear-thermal rocket thrust transient effects on minimum-fuel lunar trajectories
Rivas, Matthew L.
1995-01-01
A technically viable option for low-cost minimum-fuel Lunar transfers with short trip times is the use of nuclear thermal rockets. However, little work has been done on the effects the associated thrust transients have on these optimal trajectories. The nominal thrust level of an engine is not immediately reached when the rocket is turned ``on.'' Similarly, when the engine is turned ``off'', the thrust and specific impulse levels decrease over a period of time which is directly related to both the flow effecs of the engine and cooling requirements. This paper presents an analysis of these effects on a typical optimal Lunar transfer. Several different models simulating the transient effects are used. They range from simple ``mass dumps'' to account for the extra required propellant to curve-fits of actual engine characteristics obtained from the NERVA nuclear rocket program.
Competitive effects of nuclear deformation and density dependence of $\\Lambda\\!N$ interaction
Isaka, M; Rijken, T h A
2016-01-01
Competitive effects of nuclear deformation and density dependence of $\\Lambda\\!N$-interaction in $\\Lambda$ binding energies $B_\\Lambda$ of hypernuclei are studied systematically on the basis of the baryon-baryon interaction model ESC including many-body effects. By using the $\\Lambda\\!N$ G-matrix interaction derived from ESC, we perform microscopic calculations of $B_\\Lambda$ in $\\Lambda$ hypernuclei within the framework of the antisymmetrized molecular dynamics under the averaged-density approximation. The calculated values of $B_\\Lambda$ reproduce experimental data within a few hundred keV in the wide mass regions from 9 to 51. It is found that competitive effects of nuclear deformation and density dependence of $\\Lambda\\!N$-interaction work decisively for fine tuning of $B_\\Lambda$ values.
Energy Technology Data Exchange (ETDEWEB)
Zhang, Yanwen [ORNL; Varga, Tamas [Pacific Northwest National Laboratory (PNNL); Ishimaru, Dr. Manabu [Osaka University; Edmondson, Dr. Philip [University of Oxford; Xue, Haizhou [University of Tennessee, Knoxville (UTK); Liu, Peng [University of Tennessee, Knoxville (UTK); Moll, Sandra [French Atomic Energy Commission (CEA), Centre de Saclay, Gif sur Yvette; Namavar, Fereydoon [University of Nebraska Medical Center; Hardiman, Chris [North Carolina State University; Shannon, Prof. Steven [North Carolina State University; Weber, William J [ORNL
2014-01-01
Ever increasing energy needs have raised the demands for advanced fuels and cladding materials that withstand the extreme radiation environments with improved accident tolerance over a long period of time. Ceria (CeO2) is a well known ionic conductor that is isostructural with urania and plutonia-based nuclear fuels. In the context of nuclear fuels, immobilization and transmutation of actinides, CeO2 is a model system for radiation effect studies. Covalent silicon carbide (SiC) is a candidate for use as structural material in fusion, cladding material for fission reactors, and an inert matrix for the transmutation of plutonium and other radioactive actinides. Understanding microstructural change of these ionic-covalent materials to irradiation is important for advanced nuclear energy systems. While displacements from nuclear energy loss may be the primary contribution to damage accumulation in a crystalline matrix and a driving force for the grain boundary evolution in nanostructured materials, local non-equilibrium disorder and excitation through electronic energy loss may, however, produce additional damage or anneal pre-existing defect. At intermediate transit energies where electronic and nuclear energy losses are both significant, synergistic, additive or competitive processes may evolve that affect the dynamic response of materials to irradiation. The response of crystalline and nanostructured CeO2 and SiC to ion irradiation are studied under different nuclear and electronic stopping powers to describe some general material response in this transit energy regime. Although fast radiation-induced grain growth in CeO2 is evident with no phase transformation, different fluence and dose dependence on the growth rate is observed under Si and Au irradiations. While grain shrinkage and amorphization are observed in the nano-engineered 3C SiC with a high-density of stacking faults embedded in nanosize columnar grains, significantly enhanced radiation resistance is
Nuclear quantum effects in a HIV/cancer inhibitor: The case of ellipticine
Sappati, Subrahmanyam; Hassanali, Ali; Gebauer, Ralph; Ghosh, Prasenjit
2016-11-01
Ellipticine is a natural product that is currently being actively investigated for its inhibitory cancer and HIV properties. Here we use path-integral molecular dynamics coupled with excited state calculations to characterize the role of nuclear quantum effects on the structural and electronic properties of ellipticine in water, a common biological solvent. Quantum effects collectively enhance the fluctuations of both light and heavy nuclei of the covalent and hydrogen bonds in ellipticine. In particular, for the ellipticine-water system, where the proton donor and acceptor have different proton affinities, we find that nuclear quantum effects (NQEs) strengthen both the strong and the weak H bonds. This is in contrast to what is observed for the cases where the proton affinity of the donors and acceptors is same. These structural fluctuations cause a significant red-shift in the absorption spectra and an increase in the broadening, bringing it into closer agreement with the experiments. Our work shows that nuclear quantum effects alter both qualitatively and quantitatively the optical properties of this biologically relevant system and highlights the importance of the inclusion of these effects in the microscopic understanding of their optical properties. We propose that isotopic substitution will produce a blue shift and a reduction in the broadening of the absorption peak.
Nuclear medicine methods in the assessment of acupuncture effects: a short review
Directory of Open Access Journals (Sweden)
Deise Elisabete Souza
2007-09-01
Full Text Available The mechanisms of acupuncture are poorly understood. In consequence, numerous investigators have conducted clinical trials to test the efficacy of acupuncture in various conditions. We have used PubMed database system to evaluate the number of publications in acupuncture and nuclear medicine procedures in the period from 1964 to 2007, using the keywords: "nuclear medicine and acupuncture", "SPECT and acupuncture", "PET and acupuncture", "scintigraphy and acupuncture", "radionuclide and acupuncture", "radiopharmaceutical and acupuncture", "radioisotope and acupuncture" and "99mTc and acupuncture". Some papers published in English language were selected and a short review is presented The analysis of the number of publications shows that when a method is well accepted by the scientific community, as the methods used in nuclear medicine, the interest in the development of research increases. Moreover, important findings are presented when the nuclear medicine image is used to evaluate the effect of the acupuncture.Os mecanismos de ação da acupuntura ainda não são completamente esclarecidos. Em conseqüência, diversos pesquisadores têm conduzido testes clínicos para verificar a eficiência da acupuntura em condições diversas. Nós utilizamos o sistema de base de dados PubMed para avaliar o número de publicações em acupuntura e procedimentos em medicina nuclear no período de 1964 até 2007, usando as palavras-chaves: "medicina nuclear e acupuntura", "SPECT e acupuntura", "PET e acupuntura", "cintilografia e acupuntura", "radionuclídeo e acupuntura", "radiofármaco e acupuntura", "radioisótopo e acupuntura" e "99mTc e acupuntura". Alguns artigos publicados em inglês foram selecionados e uma pequena revisão é apresentada. A análise do número de publicações mostra que quando um método é bem aceito pela comunidade científica, como os métodos utilizados em medicina nuclear, o interesse em desenvolver novos estudos aumenta. Al
Extra-nuclear effects of estrogen on cortical bone in males require ERαAF-1
Wu, J; Gustafsson, K L; Windahl, S H; Kim, S H; Katzenellenbogen, J A; Ohlsson, C; Lagerquist, M K
2017-01-01
Estradiol (E2) signaling via estrogen receptor alpha (ERα) is important for the male skeleton as demonstrated by ERα inactivation in both mice and man. ERα mediates estrogenic effects not only by translocating to the nucleus and affecting gene transcription but also by extra-nuclear actions e.g., triggering cytoplasmic signaling cascades. ERα contains various domains, and the role of activation function 1 (ERαAF-1) is known to be tissue specific. The aim of this study was to determine the importance of extra-nuclear estrogen effects for the skeleton in males and to determine the role of ERαAF-1 for mediating these effects. Five-month-old male wild-type (WT) and ERαAF-1-inactivated (ERαAF-10) mice were orchidectomized and treated with equimolar doses of 17β-estradiol (E2) or an estrogen dendrimer conjugate (EDC), which is incapable of entering the nucleus and thereby only initiates extra-nuclear ER actions or their corresponding vehicles for 3.5 weeks. As expected, E2 treatment increased cortical thickness and trabecular bone volume per total volume (BV/TV) in WT males. EDC treatment increased cortical thickness in WT males, whereas no effect was detected in trabecular bone. In ERαAF-10 males, E2 treatment increased cortical thickness, but did not affect trabecular bone. Interestingly, the effect of EDC on cortical bone was abolished in ERαAF-10 mice. In conclusion, extra-nuclear estrogen signaling affects cortical bone mass in males, and this effect is dependent on a functional ERαAF-1. Increased knowledge regarding estrogen signaling mechanisms in the regulation of the male skeleton may aid the development of new treatment options for male osteoporosis. PMID:28057769
Energy Technology Data Exchange (ETDEWEB)
Bernal, A.; Lentijo, J. C.; Lopez-Abente, G.; Pollan, M.; Ramos, M. R.; Rodriguez, M.; Tello, O.; Urbano, I.
2010-07-01
The Carlos III Health Institute and the Nuclear Safety Council, signed an agreement for the performance of an epidemiological study to investigate the possible effects of exposure to ionising radiations on the health of populations living in the vicinity of nuclear and radioactive facilities involved in the nuclear fuel cycle. (Author)
Influence of various parameters on effectiveness of seismic base isolation of nuclear equipment
Energy Technology Data Exchange (ETDEWEB)
Ebisawa, K. [Japan Atomic Research Inst., Ibaraki-ken (Japan); Kameoka, H. [CRC Research Inst., Chiba-chi (Japan); Takenouchi, I.; Kajiki, S. [Oiles Corp. (Japan)
1995-12-31
Authors developed a methodology and EBISA code for evaluating the applicability and the effectiveness of seismic base isolation of nuclear equipment. In order to investigate the influence of various parameters on the effectiveness of seismic base isolation, a sensitivity analysis was carried out for an emergency transformer with the base isolation devices. It was proved that seismic base isolation of equipment is very effective. This effectiveness can be influenced by the differences of the base isolation devices and the direction of the input seismic wave. (author). 7 refs., 3 figs., 3 tabs.
Energy Technology Data Exchange (ETDEWEB)
Mori, Kazunari; Tsutsumi, Hideaki; Yamada, Hiroyuki; Ebisawa, Katsumi; Shibata, Katsuyuki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
2001-07-01
Introduction of the base isolation technique into the seismic design of nuclear power plant components as well as buildings has been expected as one of the effective countermeasure to reduce the seismic force applied to components. A research program on the base isolation of nuclear components has been carried out at the Japan Atomic Energy Research Institute (JAERI) since 1991. A methodology and a computer code (EBISA: Equipment Base Insolation System Analysis) for evaluating the failure frequency of the nuclear component with the base isolation were developed. In addition, a test program, which is concerned with the above development, aiming at improvement of failure frequency analysis models in the code has been conducted since 1996 to investigate the dynamic behavior and to verify the effectiveness of component base isolation systems. In the failure frequency analysis, methodology for evaluating the actual dynamic responses of the nuclear components with the base isolation in detail has been examined. In the methodology, the actual responses are computed by considering the scatter in mechanical properties of rock masses, reactor building and components under many earthquake motions with various frequency characteristics. The failure frequency of component is computed as the conditional probability where the actual response exceeds the capacity of components. It is a very important in the above methodology to investigates the dynamic response analysis method for the ground, reactor building and nuclear components as well as the scattering factors in the dynamic analysis. This report describes the accuracy of the dynamic response analysis method and analysis models, and the influence of scatters in properties of rock masses and reactor building on the dynamic response. (author)
Hamdan, L. K.; Walton, J. C.; Woocay, A.
2009-12-01
Nuclear power use is expected to expand in the future, as part of the global clean energy initiative, to meet the world’s surging energy demand, and attenuate greenhouse gas emissions, which are mainly caused by fossil fuels. As a result, it is estimated that hundreds of thousands of metric tons of spent nuclear fuel (SNF) will accumulate. SNF disposal has major environmental (radiation exposure) and security (nuclear proliferation) concerns. Storage in unsaturated zone geological repositories is a reasonable solution for dealing with SNF. One of the key factors that determine the performance of the geological repository is the release of radionuclides from the engineered barrier system. Over time, the nuclear waste containers are expected to fail gradually due to general and localized corrosions and eventually infiltrating water will have access to the nuclear waste. Once radionuclides are released, they will be transported by water, and make their way to the accessible environment. Physical and chemical disturbances in the environment over the container will lead to different corrosion rates, causing different times and locations of penetration. One possible scenario for waste packages failure is the bathtub model, where penetrations occur on the top of the waste package and water pools inside it. In this paper the bathtub-type failed waste container is considered. We shed some light on chemical and physical processes that take place in the pooled water inside a partially failed waste container (bathtub category), and the effects of these processes on radionuclide release. Our study considers two possibilities: temperature stratification of the pooled water versus mixing process. Our calculations show that temperature stratification of the pooled water is expected when the waste package is half (or less) filled with water. On the other hand, when the waste package is fully filled (or above half) there will be mixing in the upper part of water. The effect of
Nuclear medicine methods in the assessment of acupuncture effects: a short review
Energy Technology Data Exchange (ETDEWEB)
Souza, Deise Elisabete; Rebello, Bernardo Machado; Agostinho, Raquel Terra [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Inst. de Biologia Roberto Alcantara Gomes. Lab. de Radiofarmacia Experimental; Academia Brasileira de Arte e Ciencia Oriental, Rio de Janeiro, RJ (Brazil); E-mail: deise_desouza@yahoo.com.br; Silva Filho, Reginaldo de Carvalho [Escola Brasileira de Medicina Chinesa, Sao Paulo, SP (Brazil). Centro Avancado de Pesquisas em Ciencias Orientais; Bastos, Sohaku R.C. [Academia Brasileira de Arte e Ciencia Oriental, Rio de Janeiro, RJ (Brazil); Bernardo-Filho, Mario [Instituto Nacional de Cancer (INCa), Rio de Janeiro, RJ (Brazil). Centro de Pesquisa Basica
2007-09-15
The mechanisms of acupuncture are poorly understood. In consequence, numerous investigators have conducted clinical trials to test the efficacy of acupuncture in various conditions. We have used PubMed database system to evaluate the number of publications in acupuncture and nuclear medicine procedures in the period from 1964 to 2007, using the keywords: 'nuclear medicine and acupuncture', 'SPECT and acupuncture, 'PET and acupuncture', 'scintigraphy and acupuncture, 'radionuclide and acupuncture', 'radiopharmaceutical and acupuncture', 'radioisotope and acupuncture' and {sup 99m}Tc and acupuncture'. Some papers published in English language were selected and a short review is presented The analysis of the number of publications shows that when a method is well accepted by the scientific community, as the methods used in nuclear medicine, the interest in the development of research increases. Moreover, important findings are presented when the nuclear medicine image is used to evaluate the effect of the acupuncture. (author)
Nuclear deformation and neutron excess as competing effects for pygmy dipole strength
Massarczyk, R; Dönau, F; Frauendorf, S; Anders, M; Bemmerer, D; Beyer, R; Bhatia, C; Birgersson, E; Butterling, M; Elekes, Z; Ferrari, A; Gooden, M E; Hannaske, R; Junghans, A R; Kempe, M; Kelley, J H; Kögler, T; Matic, A; Menzel, M L; Müller, S; Reinhardt, T P; Röder, M; Rusev, G; Schilling, K D; Schmidt, K; Schramm, G; Tonchev, A P; Tornow, W; Wagner, A
2013-01-01
The electromagnetic dipole strength below the neutron-separation energy has been studied for the xenon isotopes with mass numbers A = 124, 128, 132, and 134 in nuclear resonance fluorescence experiments using the ELBE bremsstrahlung facility at Helmholtz-Zentrum Dresden-Rossendorf and the HIgS facility at Triangle Universities Nuclear Laboratory Durham. The systematic study gained new information about the influence of the neutron excess as well as of nuclear deformation on the strength in the region of the pygmy dipole resonance. The results are compared with those obtained for the chain of molybdenum isotopes and with predictions of a random-phase approximation in a deformed basis. It turned out that the effect of nuclear deformation plays a minor role compared with the one caused by neutron excess. A global parametrization of the strength in terms of neutron and proton numbers allowed us to derive a formula capable of predicting the summed E1 strengths in the pygmy region for a wide mass range of nuclides.
The effects of age on nuclear power plant containment cooling systems
Energy Technology Data Exchange (ETDEWEB)
Lofaro, R.; Subudhi, M.; Travis, R.; DiBiasio, A.; Azarm, A. [Brookhaven National Lab., Upton, NY (United States); Davis, J. [Science Applications International Corp., New York, NY (United States)
1994-04-01
A study was performed to assess the effects of aging on the performance and availability of containment cooling systems in US commercial nuclear power plants. This study is part of the Nuclear Plant Aging Research (NPAR) program sponsored by the US Nuclear Regulatory Commission. The objectives of this program are to provide an understanding of the aging process and how it affects plant safety so that it can be properly managed. This is one of a number of studies performed under the NPAR program which provide a technical basis for the identification and evaluation of degradation caused by age. The effects of age were characterized for the containment cooling system by reviewing and analyzing failure data from national databases, as well as plant-specific data. The predominant failure causes and aging mechanisms were identified, along with the components that failed most frequently. Current inspection, surveillance, and monitoring practices were also examined. A containment cooling system unavailability analysis was performed to examine the potential effects of aging by increasing failure rates for selected components. A commonly found containment spray system design and a commonly found fan cooler system design were modeled. Parametric failure rates for those components in each system that could be subject to aging were accounted for in the model to simulate the time-dependent effects of aging degradation, assuming no provisions are made to properly manage it. System unavailability as a function of increasing component failure rates was then calculated.
Nuclear recoil effect in the Lamb shift of light hydrogen-like atoms
Yerokhin, V A
2015-01-01
We report high-precision calculations of the nuclear recoil effect to the Lamb shift of hydrogen-like atoms to the first order in the electron-nucleus mass ratio and to all orders in the nuclear binding strength parameter $Z\\alpha$. The results are in excellent agreement with the known terms of the $Z\\alpha$ expansion and allow an accurate identification of the nonperturbative higher-order remainder. For hydrogen, the higher-order remainder was found to be much larger than anticipated. This result resolves the long-standing disagreement between the numerical all-order and the analytical $Z\\alpha$-expansion approaches to the recoil effect and completely removes the second-largest theoretical uncertainty in the hydrogen Lamb shift of the $1S$ and $2S$ states.
Nuclear medium effects in structure functions of nucleon at moderate $Q^2$
Haider, H; Athar, M Sajjad; Singh, S K; Simo, I Ruiz
2015-01-01
Recent experiments performed on inclusive electron scattering from nuclear targets have measured the nucleon electromagnetic structure functions $F_1(x,Q^2)$, $F_2(x,Q^2)$ and $F_L(x,Q^2)$ in $^{12}C$, $^{27}Al$, $^{56}Fe$ and $^{64}Cu$ nuclei. The measurements have been done in the energy region of $1 GeV^2 < W^2 < 4 GeV^2$ and $Q^2$ region of $0.5 GeV^2 < Q^2 < 4.5 GeV^2$. We have calculated nuclear medium effects in these structure functions arising due to the Fermi motion, binding energy, nucleon correlations, mesonic contributions from pion and rho mesons and shadowing effects. The calculations are performed in a local density approximation using relativistic nucleon spectral function which include nucleon correlations. The numerical results are compared with the recent experimental data from JLab and also with some earlier experiments.
Probing Nuclear Effects at the T2K Near Detector Using Transverse Kinematic Imbalance
Dolan, Stephen
2016-01-01
In this work we utilise variables characterising kinematic imbalance in the plane transverse to an incoming neutrino, which have recently been shown to act as a direct probe of nuclear effects (such as final state interactions, Fermi motion and multi-nucleon processes) in $\\mathcal{O}$(GeV) neutrino scattering. We present a methodology to measure the charged current differential cross-section with no final state pions and at least one final state proton ($CC0\\pi+Np, N \\geq 1$) in these variables at the near detector of the T2K experiment (ND280), using the upstream Fine Grained Detector (FGD1) as a hydrocarbon target. Overall these measurements will allow us to better understand the impact of nuclear effects on the observables in neutrino scattering, providing valuable constraints on the systematic uncertainties associated with neutrino oscillation and scattering measurements for both T2K and other experiments with similar energy neutrino beams.
Accidental $\\xi$-scaling as a signature of nuclear effects at x $>$ 1
Benhar, O
1995-01-01
We propose an interpretation of the \\xi-scaling behavior of nuclear structure functions observed at Bjorken x>1 and Q^2 \\lesssim 4 \\, {\\rm (GeV/c)^2}. We show that at \\xi \\gtrsim 1, \\xi-scaling might arise accidentally because of the approximate cancellation of two different Q^2-dependent effects, namely Final State Interactions and the effects implicit in the choice of the scaling variable \\xi. We provide a new convolution formula for the nuclear structure function in terms of \\xi and make predictions for the kinematical regions where Final State Interactions are expected to be small and the suggested balancing of scaling violations is expected to break down. Our analysis is aimed at the final goal of clarifying the range of applicability of local duality ideas in nuclei.
DEFF Research Database (Denmark)
Hanni, Matti; Lantto, Perttu; Ilias, Miroslav
2007-01-01
Relativistic effects on the 129Xe nuclear magnetic resonance shielding and 131Xe nuclear quadrupole coupling (NQC) tensors are examined in the weakly bound Xe2 system at different levels of theory including the relativistic four-component Dirac-Hartree-Fock (DHF) method. The intermolecular...... interaction-induced binary chemical shift d, the anisotropy of the shielding tensor ?s, and the NQC constant along the internuclear axis ?ll are calculated as a function of the internuclear distance. DHF shielding calculations are carried out using gauge-including atomic orbitals. For comparison, the full...... leading-order one-electron Breit-Pauli perturbation theory (BPPT) is applied using a common gauge origin. Electron correlation effects are studied at the nonrelativistic (NR) coupled-cluster singles and doubles with perturbational triples [CCSD(T)] level of theory. The fully relativistic second...
Energy Technology Data Exchange (ETDEWEB)
Mance, Deni; Baldus, Marc, E-mail: m.baldus@uu.nl [NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, 3584 CH Utrecht (Netherlands); Gast, Peter; Huber, Martina [Department of Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, PO Box 9504, 2300 RA Leiden (Netherlands); Ivanov, Konstantin L., E-mail: ivanov@tomo.nsc.ru [International Tomography Center, Siberian Branch of the Russian Academy of Science, Institutskaya 3a, Novosibirsk 630090, Russia and Novosibirsk State University, Pirogova 2, Novosibirsk 63009 (Russian Federation)
2015-06-21
We develop a theoretical description of Dynamic Nuclear Polarization (DNP) in solids under Magic Angle Spinning (MAS) to describe the magnetic field dependence of the DNP effect. The treatment is based on an efficient scheme for numerical solution of the Liouville-von Neumann equation, which explicitly takes into account the variation of magnetic interactions during the sample spinning. The dependence of the cross-effect MAS-DNP on various parameters, such as the hyperfine interaction, electron-electron dipolar interaction, microwave field strength, and electron spin relaxation rates, is analyzed. Electron spin relaxation rates are determined by electron paramagnetic resonance measurements, and calculations are compared to experimental data. Our results suggest that the observed nuclear magnetic resonance signal enhancements provided by MAS-DNP can be explained by discriminating between “bulk” and “core” nuclei and by taking into account the slow DNP build-up rate for the bulk nuclei.
Bán, Zoltán; Győri, Erzsébet; János Katona, Tamás; Tóth, László
2015-04-01
Preparedness of nuclear power plants to beyond design base external effects became high importance after 11th of March 2011 Great Tohoku Earthquakes. In case of some nuclear power plants constructed at the soft soil sites, liquefaction should be considered as a beyond design basis hazard. The consequences of liquefaction have to be analysed with the aim of definition of post-event plant condition, identification of plant vulnerabilities and planning the necessary measures for accident management. In the paper, the methodology of the analysis of liquefaction effects for nuclear power plants is outlined. The case of Nuclear Power Plant at Paks, Hungary is used as an example for demonstration of practical importance of the presented results and considerations. Contrary to the design, conservatism of the methodology for the evaluation of beyond design basis liquefaction effects for an operating plant has to be limited to a reasonable level. Consequently, applicability of all existing methods has to be considered for the best estimation. The adequacy and conclusiveness of the results is mainly limited by the epistemic uncertainty of the methods used for liquefaction hazard definition and definition of engineering parameters characterizing the consequences of liquefaction. The methods have to comply with controversial requirements. They have to be consistent and widely accepted and used in the practice. They have to be based on the comprehensive database. They have to provide basis for the evaluation of dominating engineering parameters that control the post-liquefaction response of the plant structures. Experience of Kashiwazaki-Kariwa plant hit by Niigata-ken Chuetsu-oki earthquake of 16 July 2007 and analysis of site conditions and plant layout at Paks plant have shown that the differential settlement is found to be the dominating effect in case considered. They have to be based on the probabilistic seismic hazard assessment and allow the integration into logic
Energy Technology Data Exchange (ETDEWEB)
Ararat, Karyan Gevorg
2013-06-15
In this thesis the determination of the multiplicities of {pi}{sup {+-}}, K{sup {+-}}, p, and anti p in semi-inclusive deep inelastic e{sup {+-}} scattering on D, Ne, Kr, and Xe targets at an energy of 27.6 GeV is described. By determination of the ratios of the multiplicities on Ne, Kr, and Xe targets to those on the D target the effect of nuclear attenuation is studied. (HSI)
Magnetic field effect on nuclear shell structure and implications to physics of neutron stars
Energy Technology Data Exchange (ETDEWEB)
Kondratyev, V.N.; Maruyama, Toshiki; Chiba, Satoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
1999-12-01
The effect of the magnetic field on the shell structure of nuclei is considered by employing the shell-correction method. The shift of a phase in shell-oscillations is shown to represent the main feature of the field effect. Such a phase-change is originating from the Pauli-magnetic response associated with the relative shift of spin-up and spin-down energy levels. The neutron shell-correction energy behaves almost periodically as a function of the field strength with a slightly enhanced amplitude of the shell-oscillations at a large field. The period of the sign change is determined by the energy difference between neighbour levels. The proton shell-correction energy displays an anomalous dependence on the field. The proton orbital magnetism enhances the nuclear shell effect especially when the field influence is comparable to the spin-orbit coupling. The nuclear magic numbers are demonstrated to depend considerably on the magnetic field on the strength scale B {approx} 10{sup 16} - 10{sup 17} G relevant for neutron stars and supernovas. Such a field is found to shift significantly nuclear magics of the iron region towards smaller mass numbers. (author)
Study of seed layer effect in nuclear battery with P-N diode junction
Energy Technology Data Exchange (ETDEWEB)
Uhm, Young Rang; Son, Kwang Jae; Lee, Jun Sig [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Choi, Byoung Gun [Kookmin Univ., Seoul (Korea, Republic of)
2014-10-15
A nuclear battery with diode junction is a device that converts nuclear radiation directly to electric power. The mechanism of a nuclear battery is same as the P-N junction diode for solar cell application. The photovoltaic is operated by converted photons to electrical energy in the junction. In betavoltaic battery, beta particles are collected and converted to electrical energy as similar principle as photovoltaic. A very low current, order of nano or micro amps, is generated in devices. If a radioisotope (RI) with a long halflife (over 50 years) is used, a lifetime of a power source is extended as long as halflife time of RI.. Some special applications require long-lived compact power sources. These include space equipment, sensors in remote locations (space, underground, etc.), and implantable medical devices. Conventionally, these sources rely on converting chemical energy to electricity. This means they require a large storage of chemical 'fuel' since the amount of energy released per reaction is small. The nuclear battery is a novel solution to solve the power needs of these applications. For the {sup 63}Ni beta-source we used, the half-life is 100.2 years. Hence, the power sources we describe could extend a system's operating life by several decades or even a century, during which time the system could gain learned behavior without worrying about the power turning off. Radioactive thin-film-based power sources also have energy density orders of magnitude higher than chemical-reaction-based energy sources. In this study, we fabricate nuclear battery using {sup 63}Ni source with diode junction, and studied seed layer effect for optimization of structure of p-n junction.
Energy Technology Data Exchange (ETDEWEB)
1987-06-01
This report presents a study of the nuclear weapons magnetohydrodynamic (MHD) effects on submarine communications cables. The study consisted of the analysis and interpretation of currently available data on submarine cable systems TAT-4, TAT-6, and TAT-7. The primary result of the study is that decrease of the effective resistivity with frequency over the available experimental range, coupled with the model results, leads to quite small effective resistivities at the MHD characteristic frequencies, and hence small earth potential differences. Thus, it appears that submarine cable systems are less susceptible to an MHD threat than their land-based counter-parts.
Pausata, Francesco S. R.; Lindvall, Jenny; Ekman, Annica M. L.; Svensson, Gunilla
2016-11-01
Here, we use a coupled atmospheric-ocean-aerosol model to investigate the plume development and climate effects of the smoke generated by fires following a regional nuclear war between emerging third-world nuclear powers. We simulate a standard scenario where 5 Tg of black carbon (BC) is emitted over 1 day in the upper troposphere-lower stratosphere. However, it is likely that the emissions from the fires ignited by bomb detonations include a substantial amount of particulate organic matter (POM) and that they last more than 1 day. We therefore test the sensitivity of the aerosol plume and climate system to the BC/POM ratio (1:3, 1:9) and to the emission length (1 day, 1 week, 1 month). We find that in general, an emission length of 1 month substantially reduces the cooling compared to the 1-day case, whereas taking into account POM emissions notably increases the cooling and the reduction of precipitation associated with the nuclear war during the first year following the detonation. Accounting for POM emissions increases the particle size in the short-emission-length scenarios (1 day/1 week), reducing the residence time of the injected particle. While the initial cooling is more intense when including POM emission, the long-lasting effects, while still large, may be less extreme compared to the BC-only case. Our study highlights that the emission altitude reached by the plume is sensitive to both the particle type emitted by the fires and the emission duration. Consequently, the climate effects of a nuclear war are strongly dependent on these parameters.
Molecular (Feshbach) treatment of charge exchange Li/sup 3 +/+He collisions. II. Cross sections
Energy Technology Data Exchange (ETDEWEB)
Errea, L.F.; Martin, F.; Mendez, L.; Riera, A.; Yanez, M.
1986-05-15
Using the wave functions calculated in the preceding article, and a common translation factor, the charge exchange cross section for the Li/sup 3 +/+He(1s/sup 2/) reaction is calculated, and the mechanism of the process discussed. We show how small deviations from the Landau--Zener model, which are unrelated to Nikitin's conditions for its validity, lead to a minimum of the cross section at an impact energy Eapprox. =1 keV, and to larger values of sigma at intermediate nuclear velocities.
Supernova equations of state including full nuclear ensemble with in-medium effects
Furusawa, Shun; Sumiyoshi, Kohsuke; Yamada, Shoichi; Suzuki, Hideyuki
2017-01-01
We construct new equations of state for baryons at sub-nuclear densities for the use in core-collapse supernova simulations. The abundance of various nuclei is obtained together with thermodynamic quantities. The formulation is an extension of the previous model, in which we adopted the relativistic mean field theory with the TM1 parameter set for nucleons, the quantum approach for d, t, h and α as well as the liquid drop model for the other nuclei under the nuclear statistical equilibrium. We reformulate the model of the light nuclei other than d, t, h and α based on the quasi-particle description. Furthermore, we modify the model so that the temperature dependences of surface and shell energies of heavy nuclei could be taken into account. The pasta phases for heavy nuclei and the Pauli- and self-energy shifts for d, t, h and α are taken into account in the same way as in the previous model. We find that nuclear composition is considerably affected by the modifications in this work, whereas thermodynamical quantities are not changed much. In particular, the washout of shell effect has a great impact on the mass distribution above T ∼ 1 MeV. This improvement may have an important effect on the rates of electron captures and coherent neutrino scatterings on nuclei in supernova cores.
Sangeeta; Kaur, Varinderjit
2017-10-01
The structural and isospin effects have been studied through isospin dependent and independent nuclear charge radii parameterizations on the collective flow within the framework of Isospin-dependent Quantum Molecular Dynamics (IQMD) model. The calculations have been carried out by using two approaches: (i) for the reaction series having fixed N / Z ratio and (ii) for the isobaric reaction series with different N / Z ratio. Our results indicate that there is a considerable effect of radii parameterizations on the excitation function of reduced flow (∂v1/∂Yred) and elliptical flow (v2). Both balance energy (Ebal) and transition energy (Etrans) are enhanced with increase in radii of reacting nuclei and found to follow a power law with nuclear charge radii. The exponent τ values show that the elliptical flow is more sensitive towards different nuclear charge radii as compared to reduced flow. Moreover, we observe that our theoretical calculation of Ebal and Etrans are in agreement with the experimental data provided by GSI, INDRA and FOPI collaborations.
Isospin Effect on Nuclear Stopping in Intermediate Energy Heavy Ion Collisions
Institute of Scientific and Technical Information of China (English)
李庆峰; 李祝霞
2002-01-01
By using the isospin-dependent quantum molecular dynamics model, we study the dependence of nuclear stopping Qzz/A and R in intermediate energy heavy ion collisions on system size, initial N/Z, isospin symmetry potential and the medium correction of two-body cross sections. We find the effect of the initial N/Z ratio and isospinsymmetry potential on stopping is weak. The excitation function of Qzz/A and R depends on the form of medium correction of two-body cross sections, the equation ofstate of nuclear matter. Our results show that the behaviour of the excitation function of Qzz/A and R can provide clearer information of the isospin dependence of the medium correction of two-body cross sections
Three-body Effect on Equation of State of Spin-polarized Nuclear Matter
Institute of Scientific and Technical Information of China (English)
ZuoWei
2003-01-01
The equation of state (EOS) of spin-polarized nuclear matter has been investigated within the spin-dependent; Brueckner-Hartree-Fock framework by adopting the realistic nucleon-nucleon interaction supplemented with a microscopic three-body force. The three-body force effects have been studied and stressed with a special attention. The calculated results are given in Fig.1. It is seen that; in the Brueckner-Hartree-Fock framework the predicted energy per particle of spin-polarized nuclear matter versus the neutron and proton spin-polarization parameters fulfills a quadratic law in the whole range of spin-polarization. The related physical quantities such as spin the Landau parameters Go in spin channel and G′0 in spin-isospin channel, have been also calculated.
Confinement effects on the nuclear spin isomer conversion of H$_2$O
Turgeon, Pierre-Alexandre; Alexandrowicz, Gil; Peperstraete, Yoann; Philippe, Laurent; Fillion, Jean-Hugues; Michaut, Xavier; Ayotte, Patrick
2016-01-01
The mechanism for interconversion between the nuclear spin isomers (NSI) of H$_2$O remains shrouded in uncertainties. The temperature dependence displayed by NSI interconversion rates for H$_2$O isolated in an Argon matrix provides evidence that confinement effects are responsible for the dramatic increase in their kinetics with respect to the gas phase, providing new pathways for o-H$_2$O $\\leftrightarrow$ p-H$_2$O conversion in endohedral compounds. This reveals intramolecular aspects of the interconversion mechanism which may improve methodologies for the separation and storage of NSI en route to applications in nuclear magnetic resonance spectroscopy and imaging. It may also improve astronomers' ability to use their relative abundance in the interstellar medium as proxies, thereby providing a valuable "astronomical clock".
Marinelli, M; Milani, E; Paoletti, A; Pillon, M; Tucciarone, A; Verona-Rinati, G
2002-01-01
Many outstanding properties of diamond can, in principle, lead to the development of radiation detectors with interesting capabilities. In particular, diamond-based nuclear particle detectors are good candidates to replace silicon-based detectors in several fields, e.g. in high-flux applications such as next generation particle-accelerator experiments or beam monitoring. However, the high concentration of defects (grain boundaries, impurities) in synthetic diamond films can strongly limit the detector's performance. A significant increase in the efficiency of CVD diamond detectors is achieved by means of pre-irradiation (pumping) with beta particles. We report here on a systematic study of the effects of pumping in high-quality microwave CVD diamond films. The efficiency (eta) and charge collection distance (CCD) of nuclear particle detectors based on these films depend on the methane content in the growth gas mixture and on the film thickness. Both efficiency and CCD behave in a markedly different way in the...
Observation of the 'head-tail' effect in nuclear recoils of low-energy neutrons
Dujmic, D; Lewandowska, M; Ahlen, S; Fisher, P; Kaboth, A; Kohse, G; Lanza, R; Monroe, J; Roccaro, A; Sciolla, G; Skvorodnev, N; Vanderspek, R; Wellenstein, H; Yamamoto, R
2008-01-01
The current experimental techniques may be inadequate to provide unambiguous positive signals as the limits on direct searches for dark matter improve. Thus, convincing evidence for dark matter particles may be possible only by detecting the direction of the incoming particles in the presence of background. We present in this article an experimental method to determine the direction and sense ('head-tail') of dark matter wind by measuring the direction of the elastic nuclear recoils in the scattering of dark matter particles with the detector material. We measure the direction and sense of the nuclear recoils created by the scattering of low-energy neutrons with CF4 in a low-pressure time-projection chamber as a demonstration. The decreasing stopping power along the recoil trajectory allows us to detect the sense and direction of the incoming neutrons, and proves that the 'head-tail' effect can be measured.
Evaluating the Effect of Catalyst Nuclearity in Ni-Catalyzed Alkyne Cyclotrimerizations.
Pal, Sudipta; Uyeda, Christopher
2015-07-01
An evaluation of catalyst nuclearity effects in Ni-catalyzed alkyne oligomerization reactions is presented. A dinuclear complex, featuring a Ni-Ni bond supported by a naphthyridine-diimine (NDI) ligand, promotes rapid and selective cyclotrimerization to form 1,2,4-substituted arene products. Mononickel congeners bearing related N-donor chelates (2-iminopyridines, 2,2'-bipyridines, or 1,4,-diazadienes) are significantly less active and yield complex product mixtures. Stoichiometric reactions of the dinickel catalyst with hindered silyl acetylenes enable characterization of the alkyne complex and the metallacycle that are implicated as catalytic intermediates. Based on these experiments and supporting DFT calculations, the role of the dinuclear active site in promoting regioselective alkyne coupling is discussed. Together, these results demonstrate the utility of exploring nuclearity as a parameter for catalyst optimization.
Health effects[1997 Scientific Report of the Belgian Nuclear Research Centre
Energy Technology Data Exchange (ETDEWEB)
Mahieu, L.
1998-07-01
The objectives of the research in the field of epidemiology , performed at the Belgian Nuclear Research Centre SCK-CEN are (1) to study cancer mortality and morbidity in nuclear workers in Belgium; (2) to document the feasibility of retrospective cohort studies in Belgium; (3) to participate in the IARC study. For radiobiology, the main objectives are: (1) to elucidate the mechanisms of the effects of ionizing radiation on the mammalian embryo during the early phase of its development, (2) to assess the genetic risks of maternal exposure to ionizing radiation, (3) to elucidate the mechanisms by which damage to the brain and mental retardation are caused in man after prenatal irradiation. The main achievements in these domains for 1997 are presented.
Nuclear symmetry energy with mesonic cross-couplings in the effective chiral model
Malik, Tuhin; Banerjee, Kinjal; Jha, T. K.; Agrawal, B. K.
2017-09-01
The effective chiral model is extended by introducing the contributions from the cross-couplings between isovector and isoscalar mesons. These cross-couplings are found to be instrumental in improving the density content of the nuclear symmetry energy. The nuclear symmetry energy as well as its slope and curvature parameters at the saturation density are in harmony with those deduced from a diverse set of experimental data. The equation of state for pure neutron matter at subsaturation densities is also in accordance with the ones obtained from different microscopic models. The maximum mass of a neutron star is consistent with the measurement, and the radius at the canonical mass of the neutron star is within the empirical bounds.
Nuclear in-medium effects of strange particles in proton-nucleus collisions
Feng, Zhao-Qing
2014-01-01
Dynamics of strange particles produced in proton induced nuclear reactions near threshold energies has been investigated within the Lanzhou quantum molecular dynamics (LQMD) transport model. The in-medium modifications on particle production in dense nuclear matter are considered through corrections on the elementary cross sections via the effective mass and the mean-field potentials. It is found that the attractive antikaon-nucleon potential enhances the subthreshold $\\overline{K}$ production and also influences the structure of inclusive spectra. The strangeness production is strongly suppressed in proton induced reactions in comparison to heavy-ion collisions. The measured K$^{-}$/K$^{+}$ ratios in the $^{12}$C+$^{12}$C and p+$^{12}$C collisions from KaoS collaboration have been well explained with inclusion of the in-medium potentials.
Energy Technology Data Exchange (ETDEWEB)
Kim, Minyi; Ryu, Hosan; Ye, Songhae; Lee, Euijong [KNHP CRI, Daejeon (Korea, Republic of)
2016-10-15
An electromagnetic pulse (EMP) is a transient electromagnetic shock wave that has powerful electric and magnetic fields that can destroy electronic equipment. It is generally well-known that EMPs can cause the malfunction and disorder of electronic equipment and serious damages to electric power systems and communication networks. Research is being carried out to protect nuclear power plants (NPPs) from EMP threats. Penetration routes of EMPs can be roughly categorized into two groups, radioactivity and conductivity. The radioactive effect refers to an impact transmitted to the ground from high-altitude electromagnetic pulses (HEMP). Such an impact may affect target equipment through the point of entry (POE) of the concrete structure of an NPP. The conductive effect refers to induced voltage or current coupled to the NPPs cable structure. The induced voltage and current affect the target equipment via connected cables. All these factors must be considered when taking into account EMP effect analysis for NPPs. To examine all factors, it is necessary to fully understand the schemes of NPPs. This paper presents a four type design information template that can be used to analyze the EMP effect in operating nuclear power plants. In order to analyze of the effects of EMPs on operating NPPs, we must consider both the conductive and radioactive effects on the target (system, equipment, structure). For these reasons, not only the equipment information, but also the information about the structure and the external penetration will be required. We are developing a design information template for robust nuclear design information acquisition. We expect to develop a block diagram on the basis of the template.
Energy Technology Data Exchange (ETDEWEB)
Taborda, A.; Desbrée, A. [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM/SDI/LEDI, BP-17, 31, Avenue de la Division Leclerc, 92262 Fontenay-aux-Roses (France); Carvalho, A. [IEQUALTECS, Lda, Rua Dr. Francisco Sá Carneiro, 36, 2500-065 S. Gregório CLD (Portugal); Chaves, P.C. [C" 2TN, Campus Tecnológico e Nuclear, Instituto Superior Técnico, Universidade de Lisboa, EN10 km 139.7, 2685-066 Bobadela LRS (Portugal); Reis, M.A., E-mail: mareis@ctn.tecnico.ulisboa.pt [IEQUALTECS, Lda, Rua Dr. Francisco Sá Carneiro, 36, 2500-065 S. Gregório CLD (Portugal); C" 2TN, Campus Tecnológico e Nuclear, Instituto Superior Técnico, Universidade de Lisboa, EN10 km 139.7, 2685-066 Bobadela LRS (Portugal)
2016-08-15
Superparamagnetic iron oxide (SPIO) nanoparticles are widely used as contrast agents for nuclear magnetic resonance imaging (MRI), and can be modified for improved imaging or to become tissue-specific or even protein-specific. The knowledge of their detailed elemental composition characterisation and potential use in nuclear medicine applications, is, therefore, an important issue. X-ray fluorescence techniques such as particle induced X-ray emission (PIXE) or X-ray fluorescence spectrometry (XRF), can be used for elemental characterisation even in problematic situations where very little sample volume is available. Still, the fluorescence coefficient of Fe is such that, during the decay of the inner-shell ionised atomic structure, keV Auger electrons are produced in excess to X-rays. Since cross-sections for ionisation induced by keV electrons, for low atomic number atoms, are of the order of 10{sup 3} barn, care should be taken to account for possible fluorescence effects caused by Auger electrons, which may lead to the wrong quantification of elements having atomic number lower than the atomic number of Fe. Furthermore, the same electron processes will occur in iron oxide nanoparticles containing {sup 57}Co, which may be used for nuclear medicine therapy purposes. In the present work, simple approximation algorithms are proposed for the quantitative description of radiative and non-radiative processes associated with Auger electrons cascades. The effects on analytical processes and nuclear medicine applications are quantified for the case of iron oxide nanoparticles, by calculating both electron fluorescence emissions and energy deposition on cell tissues where the nanoparticles may be embedded.
Taborda, A.; Desbrée, A.; Carvalho, A.; Chaves, P. C.; Reis, M. A.
2016-08-01
Superparamagnetic iron oxide (SPIO) nanoparticles are widely used as contrast agents for nuclear magnetic resonance imaging (MRI), and can be modified for improved imaging or to become tissue-specific or even protein-specific. The knowledge of their detailed elemental composition characterisation and potential use in nuclear medicine applications, is, therefore, an important issue. X-ray fluorescence techniques such as particle induced X-ray emission (PIXE) or X-ray fluorescence spectrometry (XRF), can be used for elemental characterisation even in problematic situations where very little sample volume is available. Still, the fluorescence coefficient of Fe is such that, during the decay of the inner-shell ionised atomic structure, keV Auger electrons are produced in excess to X-rays. Since cross-sections for ionisation induced by keV electrons, for low atomic number atoms, are of the order of 103 barn, care should be taken to account for possible fluorescence effects caused by Auger electrons, which may lead to the wrong quantification of elements having atomic number lower than the atomic number of Fe. Furthermore, the same electron processes will occur in iron oxide nanoparticles containing 57Co, which may be used for nuclear medicine therapy purposes. In the present work, simple approximation algorithms are proposed for the quantitative description of radiative and non-radiative processes associated with Auger electrons cascades. The effects on analytical processes and nuclear medicine applications are quantified for the case of iron oxide nanoparticles, by calculating both electron fluorescence emissions and energy deposition on cell tissues where the nanoparticles may be embedded.
Cherenkov and Fano effects at the origin of asymmetric vector mesons in nuclear media
Dremin, I M
2015-01-01
It is argued that the experimentally observed phenomenon of asymmetric vector mesons produced in nuclear media during high energy nucleus-nucleus collisions can be explained as Cherenkov and Fano effects. The mass distributions of lepton pairs created at meson decays decline from the traditional Breit-Wigner shape in the low-mass wing of the resonance. That is explained by the positive real part of the amplitude in this wing for classic Cherenkov treatment and further detalized in quantum mechanics as the interference of direct and continuum states in Fano effect. The corresponding parameters are found from the comparison with rho-meson data and admit reasonable explanation.
Baryonic forces and hyperons in nuclear matter from SU(3) chiral effective field theory
Energy Technology Data Exchange (ETDEWEB)
Petschauer, Stefan Karl
2016-02-12
In this work the baryon-baryon interaction is studied at next-to-leading order in SU(3) chiral effective field theory and applied to hyperon-nucleon scattering. The properties of hyperons in isospin-symmetric as well as asymmetric nuclear matter are calculated within the Bruecker-Hartree-Fock formalism. Moreover, the leading three-baryon interaction is derived and its low-energy constants are estimated from decuplet intermediate states. We conclude, that chiral effective field theory is a well-suited tool to describe the baryonic forces.
Haider, H; Athar, M Sajjad
2012-01-01
We study the nuclear medium effects and nonisoscalarity correction in the extraction of weak mixing angle sin$^2\\theta_W$ using Paschos-Wolfenstein (PW) relation. The calculations are performed for the iron nucleus. The results are discussed along with the experimental result inferred by NuTeV collaboration. The nuclear medium effects like Fermi motion, binding, shadowing and antishadowing corrections and pion and rho meson cloud contributions have been taken into account. Calculations have been performed in the local density approximation using a relativistic nuclear spectral function which includes nucleon correlations. These studies may be useful for the ongoing MINER$\
Safety and effective developing nuclear power to realize green and low-carbon development
Directory of Open Access Journals (Sweden)
Qi-Zhen Ye
2016-03-01
Full Text Available This paper analyzes the role of nuclear power of China's energy structure and industry system. Comparing with other renewable energy the nuclear power chain has very low greenhouse gas emission, so it will play more important role in China's low-carbon economy. The paper also discussed the necessity of nuclear power development to achieve emission reduction, energy structure adjustment, nuclear power safety, environmental protection, enhancement of nuclear power technology, nuclear waste treatment, and disposal, as well as nuclear power plant decommissioning. Based on the safety record and situation of the existing power plants in China, the current status of the development of world nuclear power technology, and the features of the independently designed advanced power plants in China, this paper aims to demonstrate the safety of nuclear power. A nuclear power plant will not cause harm either to the environment and nor to the public according to the real data of radioactivity release, which are obtained from an operational nuclear plant. The development of nuclear power technology can enhance the safety of nuclear power. Further, this paper discusses issues related to the nuclear fuel cycle, the treatment, and disposal strategies of nuclear waste, and the decommissioning of a nuclear power plant, all of which are issues of public concern.
Energy Technology Data Exchange (ETDEWEB)
Molitoris, J.; Bonasera, A.; Adorno, A.
1993-04-01
The authors study pion production at subthreshold energies in nucleus-collisions using the extended Boltzmann-Nordheim-Vlasov (BNV) model. The extreme sensitivity of the pion yield to the initial momentum space Fermi distribution is demonstrated. The effect of the three body collision term is also shown to be substantial. However, the nuclear equation of state has no significant effect at these energies. Details and implications of the nuclear kinetic equation simulation are discussed.
In-medium effects for nuclear matter in the Fermi energy domain
Lopez, O; Lehaut, G; Borderie, B; Rivet, M F; Bougault, R; Galichet, E; Guinet, D; Neindre, N Le; Marini, P; Napolitani, P; Pârlog, M; Rosato, E; Spadaccini, G; Vient, E; Vigilante, M
2014-01-01
We study nuclear stopping in central collisions for heavy-ion induced reactions in the Fermi energy domain, between $15$ and $100$ A\\,\\textrm{MeV}. Using the large dataset of exclusive measurements provided by the $4\\pi$ array \\emph{INDRA}, we determine the relative degree of stopping as a function of system mass and bombarding energy. We show that the stopping can be directly related to the transport properties in the nuclear medium. By looking specifically at free nucleons (here protons), we present for the first time a comprehensive body of experimental results concerning the mean free path, the nucleon-nucleon cross-section and in-medium effects in nuclear matter. It is shown that the mean free path exhibits a maximum at $\\lambda_{NN}=9.5 \\pm 2$ \\textrm{fm}, around $E_{inc}=35-40$ A\\,\\textrm{MeV} incident energy and decreases toward an asymptotic value $\\lambda_{NN}= 4.5 \\pm 1$ \\textrm{fm} at $E_{inc} = 100$ A\\,\\textrm{MeV}. After accounting for Pauli blocking of elastic nucleon-nucleon collisions, it is ...
Kim, Ju-Seong; Hong, Jong-Dae; Yang, Yong-Sik; Kook, Dong-Hak
2017-08-01
Temperature and hoop stress limits have been used to prevent the gross rupture of spent nuclear fuel during dry storage. The stress due to rod internal pressure can induce cladding degradation such as creep, hydride reorientation, and delayed hydride cracking. Creep is a self-limiting phenomenon in a dry storage system; in contrast, hydride reorientation and delayed hydride cracking are potential degradation mechanisms activated at low temperatures when the cladding material is brittle. In this work, a conservative rod internal pressure and corresponding hoop stress were calculated using FRAPCON-4.0 fuel performance code. Based on the hoop stresses during storage, a study on the onset of hydride reorientation and delayed hydride cracking in spent nuclear fuel was conducted under the current storage guidelines. Hydride reorientation is hard to occur in most of the low burn-up fuel while some high burn-up fuel can experience hydride reorientation, but their effect may not be significant. On the other hand, delayed hydride cracking will not occur in spent nuclear fuel from pressurized water reactor; however, there is a lack of confirmatory data on threshold intensity factor for delayed hydride cracking and crack size distribution in the fuel.
Effects of Spiral Arms on Star Formation in Nuclear Rings of Barred-spiral Galaxies
Seo, Woo-Young
2014-01-01
We use hydrodynamic simulations to study the effect of spiral arms on the star formation rate (SFR) occurring in nuclear rings of barred-spiral galaxies. We find that spiral arms can be an efficient means of gas transport from the outskirts to the central parts, provided that the arms are rotating slower than the bar. While the ring star formation in models with no-arm or corotating arms is active only during about the bar growth phase, arm-driven gas accretion makes the ring star formation both enhanced and prolonged significantly in models with slow-rotating arms. The arm-enhanced SFR is larger by a factor of ~ 3-20 than in the no-arm model, with larger values corresponding to stronger and slower arms. Arm-induced mass inflows also make dust lanes stronger. Nuclear rings in slow-arm models are ~ 45% larger than in the no-arm counterparts. Star clusters that form in a nuclear ring exhibit an age gradient in the azimuthal direction only when the SFR is small, whereas no noticeable age gradient is found in the...
Energy Technology Data Exchange (ETDEWEB)
Badrianto, Muldani Dwi; Riupassa, Robi D.; Basar, Khairul, E-mail: khbasar@fi.itb.ac.id [Nuclear Physics and Biophysics Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung (Indonesia)
2015-09-30
Nuclear batteries have strategic applications and very high economic potential. One Important problem in application of nuclear betavoltaic battery is its low efficiency. Current efficiency of betavoltaic nuclear battery reaches only arround 2%. One aspect that can influence the efficiency of betavoltaic nuclear battery is the geometrical configuration of radioactive source. In this study we discuss the effect of geometrical configuration of radioactive source material to the radiation intensity in betavoltaic nuclear battery system. received by the detector. By obtaining the optimum configurations, the optimum usage of radioactive materials can be determined. Various geometrical configurations of radioactive source material are simulated. It is obtained that usage of radioactive source will be optimum for circular configuration.
Gupta, J S; Roy, S K
1989-01-01
The effect of clomiphene on nuclear estrogen receptors of the Fallopian tube during ovum transport in the rabbit has been studied. Nuclear binding capacity was observed in ampulla (A), ampullary-isthmic junction (AIJ), isthmus (I), uterine-isthmic junction (UIJ) and uterus (U). Receptor concentration decreased in all segments of the tube after administration of clomiphene in mated animals. The bindings are of high affinity and low capacity. Important alterations were observed during transport when compared to that of 14, 24, 34, 48, 72, 144 and 168 hr post-coitum (p.c). At 24 hr p.c binding increased only in I and decreased in A and AIJ. Retention of eggs at I at 24 hr p.c showed as increase in binding at I. Egg transport was accelerated and eggs reached prematurely in the uterus due to the influence of clomiphene. Binding in I remained constant from 48 hr p.c to 144 hr p.c but concurrently the binding level increased in U from 34 hr p.c. The elevation of nuclear estrogen receptor level was maximum at 24 hr p.c which coincided with increased plasma estrogen level. The result of such study showed that clomiphene depleted nuclear estrogen receptor complex in the fallopian tube before transfer to the uterus. Further, observation indicated that clomiphene acted directly on the rate of egg transport because of the variations in estrogen receptors during different time periods. Thus, clomiphene reduced the quantity of estrogen receptor i.e., insensitiveness to estrogen. The variations in estrogen binding to its receptor and plasma level at different post-coital periods are modulated by clomiphene resulting in the acceleration of egg transport and prevention of pregnancy.
Effects of growth hormone on nuclear maturation of ovine oocytes and subsequent embryo development.
Shirazi, A; Shams-Esfandabadi, N; Ahmadi, E; Heidari, B
2010-06-01
The objective of this study was to determine the effect of the presence of recombinant ovine growth hormone either alone or together with follicle stimulating hormone (FSH) during ovine oocyte in vitro maturation (IVM) on nuclear maturation and subsequent embryo development. Moreover, the effect of growth hormine (GH) on embryo development whether influenced by the presence of foetal bovine serum (FBS) was assessed. The abattoir-derived oocytes were randomly divided into four treatment groups and cultured in maturation medium supplemented with: (i) 0.05 IU/ml FSH; (ii) 300 ng/ml roGH; (iii) FSH + roGH; and (iv) no FSH and GH (control). The percentages of germinal vesicle-stage oocytes in GH-treated group after 8 h of culture was significantly higher than the FSH and FSH + GH groups and lower than control (22.4%, 8.7%, 9.1%, and 32% respectively). The percentage of MII-stage oocytes was significantly increased in the presence of GH after 16 and 24 h of culture compared to the control (44.7% and 83.1% vs 32.6% and 73.6% respectively). There was no significant synergism between GH and FSH in terms of nuclear maturation. The blastocyst rates in serum-supplemented groups were enhanced by the presence of FSH and GH compared to the control (35.4% and 31.3 vs 11.4% respectively). Compared with either GH or FSH alone, the subsequent embryo development (blastocyst rate), however, was negatively influenced by co-presence of both hormones (22.8%). In contrast, the corresponding values were not affected in the absence of serum. In conclusion, GH had positive effect on nuclear maturation of sheep oocytes. Moreover, the pattern of the effect of GH on embryo development was influenced by the presence of FBS during IVM.
Energy Technology Data Exchange (ETDEWEB)
Clement, Ralph R C [Los Alamos National Laboratory; Plesko, Catherine S [Los Alamos National Laboratory; Bradley, Paul A [Los Alamos National Laboratory; Conlon, Leann M [Los Alamos National Laboratory
2009-01-01
The NASA 2007 white paper ''Near-Earth Object Survey and Deflection Analysis of Alternatives'' affirms deflection as the safest and most effective means of potentially hazardous object (PHO) impact prevention. It also calls for further studies of object deflection. In principle, deflection of a PHO may be accomplished by using kinetic impactors, chemical explosives, gravity tractors, solar sails, or nuclear munitions. Of the sudden impulse options, nuclear munitions are by far the most efficient in terms of yield-per-unit-mass launched and are technically mature. However, there are still significant questions about the response of a comet or asteroid to a nuclear burst. Recent and ongoing observational and experimental work is revolutionizing our understanding of the physical and chemical properties of these bodies (e.g ., Ryan (2000) Fujiwara et al. (2006), and Jedicke et al. (2006)). The combination of this improved understanding of small solar-system bodies combined with current state-of-the-art modeling and simulation capabilities, which have also improved dramatically in recent years, allow for a science-based, comprehensive study of PHO mitigation techniques. Here we present an examination of the effects of radiation from a nuclear explosion on potentially hazardous asteroids and comets through Monte Carlo N-Particle code (MCNP) simulation techniques. MCNP is a general-purpose particle transport code commonly used to model neutron, photon, and electron transport for medical physics reactor design and safety, accelerator target and detector design, and a variety of other applications including modeling the propagation of epithermal neutrons through the Martian regolith (Prettyman 2002). It is a massively parallel code that can conduct simulations in 1-3 dimensions, complicated geometries, and with extremely powerful variance reduction techniques. It uses current nuclear cross section data, where available, and fills in the gaps with
From nuclear power to coal power: Aerosol-induced health and radiative effects
Mielonen, Tero; Laakso, Anton; Karhunen, Anni; Kokkola, Harri; Partanen, Antti-Ilari; Korhonen, Hannele; Romakkaniemi, Sami; Lehtinen, Kari E. J.
2015-12-01
We have investigated what would be the climate and PM-induced air quality consequences if all nuclear reactors worldwide were closed down and replaced by coal combustion. In a way, this presents a "worst-case scenario" since less polluting energy sources are available. We studied simultaneously the radiative and health effects of coal power emissions using a global 3-D aerosol-climate model (ECHAM-HAMMOZ). This approach allowed us to estimate the effects of a major global energy production change from low carbon source to a high carbon one using detailed spatially resolved population density information. We included the radiative effects of both CO2 and PM2.5 but limited the study of health effects to PM2.5 only. Our results show that the replacement of nuclear power with coal power would have globally caused an average of 150,000 premature deaths per year during the period 2005-2009 with two thirds of them in Europe. For 37 years the aerosol emissions from the additional coal power plants would cool the climate but after that the accumulating CO2 emissions would accelerate the warming of the climate.
Energy Technology Data Exchange (ETDEWEB)
Subudhi, M. [Brookhaven National Lab., Upton, NY (United States); Carroll, D.P. [Florida Univ., Gainesville, FL (United States); Kasturi, S. [MOS, Inc., Melville, NY (United States)
1994-01-01
This report presents the results of a study to evaluate the potential effects of geomagnetically induced currents (GICs) caused by the solar disturbances on the in-plant electrical distribution system and equipment in nuclear power stations. The plant-specific electrical distribution system for a typical nuclear plant is modeled using the ElectroMagnetic Transient Program (EMTP). The computer model simulates online equipment and loads from the station transformer in the switchyard of the power station to the safety-buses at 120 volts to which all electronic devices are connected for plant monitoring. The analytical model of the plant`s electrical distribution system is studied to identify the transient effects caused by the half-cycle saturation of the station transformers due to GIC. This study provides results of the voltage harmonics levels that have been noted at various electrical buses inside the plant. The emergency circuits appear to be more susceptible to high harmonics due to the normally light load conditions. In addition to steady-state analysis, this model was further analyzed simulating various plant transient conditions (e.g., loss of load or large motor start-up) occurring during GIC events. Detail models of the plant`s protective relaying system employed in bus transfer application were included in this model to study the effects of the harmonic distortion of the voltage input. Potential harmonic effects on the uniterruptable power system (UPS) are qualitatively discussed as well.
... for Parents/Teachers Resource Links for Students Glossary Nuclear Medicine What is nuclear medicine? What are radioactive ... NIBIB-funded researchers advancing nuclear medicine? What is nuclear medicine? Nuclear medicine is a medical specialty that ...
Microscopic Three-Body Force Effect on Nucleon-Nucleon Cross Sections in Symmetric Nuclear Matter
Institute of Scientific and Technical Information of China (English)
ZHANG Hong-Fei; ZUO Wei; Lombardo Umberto; LI Zeng-Hua; LI Jun-Qing
2008-01-01
We provide a microscopic calculation of neutron-proton and proton-proton cross sections in symmetric nuclear matter at various densities, using the Brueckner-Hartree-Fock approximation scheme with the Argonne V14 potential including the contribution of microscopic three-body force. We investigate separately the effects of three-body force on the effective mass and on the scattering amplitude. In the present calculation, the rearrangement contribution of three-body force is considered, which will reduce the neutron and proton effective mass, and depress the amplitude of cross section. The effect of three body force is shown to be repulsive, especially in high densities and large momenta, which will suppress the cross section markedly.
Relativistic Effects and Three-Nucleon Forces in Nuclear Matter and Nuclei
Müther, Herbert; Ma, Zhongyu
2016-01-01
We review a large body of predictions obtained within the framework of relativistic meson theory together with the Dirac-Brueckner-Hartree-Fock approach to nuclear matter and finite nuclei. The success of this method has been largely related to its ability to take into account important three-body effects. Therefore, the overarching theme of this article is the interpretation of the so-called "Dirac effects" as an effective three-nucleon force. We address the equation of state of isospin symmetric and asymmetric nucleonic matter and related issues, ranging from proton and neutron density distributions to momentum distributions and short-range correlations. A central part of the discussion is devoted to the optical model potential for nucleon-nucleus scattering. We also take the opportunity to explore similarities and differences with predictions based on the increasingly popular chiral effective field theory.
Initialization effects via the nuclear radius on transverse in-plane flow and its disappearance
Directory of Open Access Journals (Sweden)
Bansal Rajni
2014-04-01
Full Text Available We study the dependence of collective transverse flow and its disappearance on initialization effects via the nuclear radius within the framework of the Isospin-dependent Quantum Molecular Dynamics (IQMD model. We calculate the balance energy using different parametrizations of the radius available in the literature for the reaction of 12C+12C to explain its measured balance energy. A mass-dependent analysis of the balance energy through out the periodic table is also carried out by changing the default liquid drop IQMD radius.
Probing nuclear effects using single-transverse kinematic imbalance with MINERvA
Energy Technology Data Exchange (ETDEWEB)
Lu, X. -G. [Oxford U.; Betancourt, M. [Fermilab
2016-08-15
Kinematic imbalance of the final-state particles in the plane transverse to the neutrino direction provides a sensitive probe of nuclear effects. In this contribution, we report the MINERvA measurement of the single-transverse kinematic imbalance in neutrino charged-current quasielastic-like events on CH targets. To improve the momentum measurements of the final-state particles, we develop a method to select elastically scattering contained (ESC) protons and a general procedure to correct the transverse momentum scales.
Nuclear Effects in Polarized Proton-Deuteron Drell-Yan Processes
Institute of Scientific and Technical Information of China (English)
DUAN Chun-Gui; SHI Li-Jie; SHEN Peng-Nian; LI Guang-Lie
2004-01-01
@@ The longitudinally polarized Drell- Yan process is one of the most powerful tools to probe the structure of hadrons.By means of the recent formalism of the polarized proton-deuteron (pd) Drell-Yan, we calculate the ratio of the proton-deuteron Drell-Yan cross section to the proton-proton (pp) one △σpd/2△σpp in the polarized case. The theoretical results can be compared with future experimental data to confirm the nuclear effect due to the 6-quark cluster in deuteron.
Probing nuclear effects using single-transverse kinematic imbalance with MINERvA
Lu, X -G
2016-01-01
Kinematic imbalance of the final-state particles in the plane transverse to the neutrino direction provides a sensitive probe of nuclear effects. In this contribution, we report the MINERvA measurement of the single-transverse kinematic imbalance in neutrino charged-current quasielastic-like events on CH targets. To improve the momentum measurements of the final-state particles, we develop a method to select elastically scattering contained (ESC) protons and a general procedure to correct the transverse momentum scales.
The effect of chromium oxide on the properties of simulated nuclear waste glasses
Energy Technology Data Exchange (ETDEWEB)
Vojtech, O.; Sussmilch, J.; Urbanec, Z. [and others
1996-02-01
A study of the effect of chromium on the properties of selected glasses was performed in the frame of a Contract between Battelle, Pacific Northwest Laboratories and Nuclear Research Institute, ReZ. In the period from July 1994 to June 1995 two borosilicate glasses of special composition were prepared according to the PNL procedure and their physical and structural characteristics of glasses were studied. This Final Report contains a vast documentation on the properties of all glasses studied. For the preparation of the respective technology more detailed study of physico-chemical properties and crystallinity of investigated systems would be desirable.
Energy Technology Data Exchange (ETDEWEB)
Chappert, F
2007-06-15
The effective interaction between nucleons is the basic input to microscopic calculations in nuclear structure. One of the forms used since the 1970's is the phenomenological effective force proposed by D. Gogny. This force gives excellent results in nuclei at the mean-field approximation. The presence of contact terms does not allow, however, to use it for the description of beyond mean-field correlations present in nuclei. In this work, we investigate some extensions of the Gogny force, and especially a generalization in which the zero range density dependent term has been replaced by a finite range term. The parameters occurring in the analytical form of the force have been adjusted on symmetric infinite nuclear matter and neutron matter properties, and on some selected observables for stable nuclei, especially those related to pairing correlations. We present the method to include this kind of force in Hartree-Fock-Bogoliubov calculations and we analyze the results obtained for various nuclei. The new versions of the Gogny force allow us to reproduce nuclear structure properties with improved accuracy as compared to the former version. (author)
Nuclear magnetic resonance studies of quadrupolar nuclei and dipolar field effects
Energy Technology Data Exchange (ETDEWEB)
Urban, Jeffry Todd
2004-12-21
Experimental and theoretical research conducted in two areas in the field of nuclear magnetic resonance (NMR) spectroscopy is presented: (1) studies of the coherent quantum-mechanical control of the angular momentum dynamics of quadrupolar (spin I > 1/2) nuclei and its application to the determination of molecular structure; and (2) applications of the long-range nuclear dipolar field to novel NMR detection methodologies.The dissertation is organized into six chapters. The first two chapters and associated appendices are intended to be pedagogical and include an introduction to the quantum mechanical theory of pulsed NMR spectroscopy and the time dependent theory of quantum mechanics. The third chapter describes investigations of the solid-state multiple-quantum magic angle spinning (MQMAS) NMR experiment applied to I = 5/2 quadrupolar nuclei. This work reports the use of rotary resonance-matched radiofrequency irradiation for sensitivity enhancement of the I = 5/2 MQMAS experiment. These experiments exhibited certain selective line narrowing effects which were investigated theoretically.The fourth chapter extends the discussion of multiple quantum spectroscopy of quadrupolar nuclei to a mostly theoretical study of the feasibility of enhancing the resolution of nitrogen-14 NMR of large biomolecules in solution via double-quantum spectroscopy. The fifth chapter continues to extend the principles of multiple quantum NMR spectroscopy of quadrupolar nuclei to make analogies between experiments in NMR/nuclear quadrupolar resonance (NQR) and experiments in atomic/molecular optics (AMO). These analogies are made through the Hamiltonian and density operator formalism of angular momentum dynamics in the presence of electric and magnetic fields.The sixth chapter investigates the use of the macroscopic nuclear dipolar field to encode the NMR spectrum of an analyte nucleus indirectly in the magnetization of a sensor nucleus. This technique could potentially serve as an
Nuclear magnetic resonance studies of quadrupolar nuclei and dipolar field effects
Energy Technology Data Exchange (ETDEWEB)
Urban, Jeffry Todd [Univ. of California, Berkeley, CA (United States)
2004-01-01
Experimental and theoretical research conducted in two areas in the field of nuclear magnetic resonance (NMR) spectroscopy is presented: (1) studies of the coherent quantum-mechanical control of the angular momentum dynamics of quadrupolar (spin I > 1/2) nuclei and its application to the determination of molecular structure; and (2) applications of the long-range nuclear dipolar field to novel NMR detection methodologies.The dissertation is organized into six chapters. The first two chapters and associated appendices are intended to be pedagogical and include an introduction to the quantum mechanical theory of pulsed NMR spectroscopy and the time dependent theory of quantum mechanics. The third chapter describes investigations of the solid-state multiple-quantum magic angle spinning (MQMAS) NMR experiment applied to I = 5/2 quadrupolar nuclei. This work reports the use of rotary resonance-matched radiofrequency irradiation for sensitivity enhancement of the I = 5/2 MQMAS experiment. These experiments exhibited certain selective line narrowing effects which were investigated theoretically.The fourth chapter extends the discussion of multiple quantum spectroscopy of quadrupolar nuclei to a mostly theoretical study of the feasibility of enhancing the resolution of nitrogen-14 NMR of large biomolecules in solution via double-quantum spectroscopy. The fifth chapter continues to extend the principles of multiple quantum NMR spectroscopy of quadrupolar nuclei to make analogies between experiments in NMR/nuclear quadrupolar resonance (NQR) and experiments in atomic/molecular optics (AMO). These analogies are made through the Hamiltonian and density operator formalism of angular momentum dynamics in the presence of electric and magnetic fields.The sixth chapter investigates the use of the macroscopic nuclear dipolar field to encode the NMR spectrum of an analyte nucleus indirectly in the magnetization of a sensor nucleus. This technique could potentially serve as an
Nuclear effects on heavy quark production: Results from Fermilab Experiments E772 and E789
Energy Technology Data Exchange (ETDEWEB)
E772 and E789 Collaborations
1991-12-31
Fermilab Experiments E772 and E789 are fixed target experiments with 800 GeV protons incident on nuclear targets corresponding to a center-of-mass energy of {radical}{bar s} {approximately} 39 GeV. Measurements are made with a pair spectrometer which has a solid angle of a few percent and operates at high luminosity with up to {approximately}10{sup 12}(E772) or {approximately}10{sup 11}(E789) protons/spill. Our experimental program explores several types of nuclear medium effects: the modification of quark and gluon structure functions by the nucleus, effects on the production of vector mesons (e.g. J/{psi} and {gamma}), and effects on the production of D mesons. The latter is accomplished with the use of a new silicon vertex detector. E789 also looks at the decays of B mesons including the decay to J/{psi} and searches for the decays to two-charged particles (e.g. B {yields} h{sup +}h{sup {minus}}) but I will not discuss this part of our program in this paper.
Effect of local and large-scale environments on nuclear activity and star formation
Argudo-Fernández, M; Sabater, J; Puertas, S Duarte; Verley, S; Yang, X
2016-01-01
Active galactic nuclei (AGN) is one of the main drivers for transition from star-forming disk to passive spheroidal galaxies. However, the role of large-scale environment versus one-on-one interactions in triggering different types of AGN is still uncertain. We present a statistical study of the prevalence of the nuclear activity in isolated galaxies and physically bound isolated pairs. For the purpose of this study we considered optically and radio selected nuclear activity types. We aim to assess the effect of one-on-one interaction on the fraction of AGN and the role of their large-scale environment. To study the effect of one-on-one interaction on the fraction of AGN in isolated galaxy pairs, we compare with a sample of isolated galaxies homogeneously selected under the same isolation criterion. We examine the effect of the large-scale environment by comparing with control samples of single galaxies and galaxy pairs. In general we found no difference in the prevalence of optical AGN for the considered sam...
Gitterman, Yefim; Kim, So Gu; Hofstetter, Abraham
2014-05-01
Two underground nuclear explosions conducted by North Korea in 2009 and 2013 were recorded by the Israel Seismic Network. Pronounced coherent minima (spectral nulls) at 1.2-1.3 Hz were revealed in the spectra of teleseismic P-waves. For a ground-truth explosion with a shallow source depth (relatively to an earthquake), this phenomenon can be interpreted in terms of the interference between the down-going P-wave and the pP phase reflected from the Earth's surface. A similar effect was observed at ISN stations for the Pakistan nuclear explosion at a different frequency 1.7 Hz indicating a source and not site-effect. Similar spectral minima with about the same frequency were observed in teleseismic P-waves of all three North Korea explosions (including the 2006 test) recorded at network stations and arrays in Kazakhstan (KURK), Norway (NORESS, ARCESS), Australia (Alice Springs, Warramunga) and Canada (Yellowknife), covering a broad azimuthal range. Data of the 2013 test at Warramunga array showed harmonic spectral modulation with several minima, evidencing a clear interference effect. These observations support the above-mentioned interpretation. Based on the null frequency dependency on the near-surface acoustic velocity and the source depth, the depth of the North Korea tests was estimated as ~2 km (different from the value ~1 km reported by USGS for the third test). This unusual depth estimation needs an additional validation based on more stations and verification by other methods.
Fractionated Mercury Isotopes in Fish: The Effects of Nuclear Mass, Spin, and Volume
Das, R.; Odom, A. L.
2007-12-01
.3, and thus more than one mass-independent isotope effect is inferred. MIF of mercury can be caused by the nuclear volume effect. Schauble, 2007 has calculated nuclear volume fractionation scaling factors for a number of common mercury chemical species in equilibrium with Hg° vapor. From his calculations the nuclear field shift effect is larger in Δ199Hg than in Δ201Hg by approximately a factor of two. The predominant mercury chemical species in fish is methylmercury cysteine. From the experimental studies of Buchachenko and others (2004) on the reaction of methylmercury chloride with creatine kinase it seems reasonable to predicted that the thiol functional groups of cysteine gets enriched in 199Hg and 201Hg. Here the magnetic isotope effect (MIE) produces a kinetic partial separation of isotopes with non-zero nuclear spin quantum numbers from the even-N isotopes. The ratio of enrichment of Δ201Hg /Δ199Hg is predicted from theory to be 1.11, which is the ratio of the magnetic moments of 199Hg and 201Hg. Because mercury possesses two odd-N isotopes, it is possible to detect and evaluate the effects of two distinct, mass-independent isotope fractionating processes. From the data obtained on fish samples, we can deconvolute the contributions of the isotope effects of nuclear mass, spin and volume. For these samples the role of spin or the magnetic isotope effect is the most dominant.
Nuclear energy - some aspects; Energia nuclear - alguns aspectos
Energy Technology Data Exchange (ETDEWEB)
Bandeira, Fausto de Paula Menezes
2005-05-15
This work presents a brief history of research and development concerning to nuclear technology worldwide and in Brazil, also information about radiations and radioactive elements as well; the nuclear technology applications; nuclear reactor types and functioning of thermonuclear power plants; the number of existing nuclear power plants; the nuclear hazards occurred; the national fiscalization of nuclear sector; the Brazilian legislation in effect and the propositions under proceduring at House of Representatives related to the nuclear energy.
Yoshizawa, Masato; Ashida, Go; Jeffery, William R
2012-09-01
Epigenetic parental genetic effects are important in many biological processes but their roles in the evolution of adaptive traits and their consequences in naturally evolving populations remain to be addressed. By comparing two divergent blind cave-dwelling cavefish populations with a sighted surface-dwelling population (surface fish) of the teleost Astyanax mexicanus, we report here that convergences in vibration attraction behavior (VAB), the lateral line sensory receptors underlying this behavior, and the feeding benefits of this behavior are controlled by parental genetic effects, either maternal or paternal inheritance. From behavioral studies and mathematical evolutionary simulations, we further demonstrate that disparity in nuclear and mitochondrial DNA in one of these cavefish populations that has hybridized with surface fish can be explained by paternal inheritance of VAB. The results suggest that parental genetic effects in adaptive behaviors may be important factors in biasing mitochondrial DNA inheritance in natural populations that are subject to introgression.
Institute of Scientific and Technical Information of China (English)
DUAN Chun-Gui; SHEN Peng-Nian; LI Guang-Lie
2006-01-01
By taking advantage of the model-independent nuclear parton distributions, the structure functions xF3(x, Q2)are calculated, in comparison with the experimental data from CCFR neutrino-nuclei charge current deep inelastic scattering. It is shown that shadowing and anti-shadowing effects occur in valence quark distributions for small and medium x regions, respectively. It is suggested that the neutrino experimental data should be employed in the future for pinning down the nuclear parton distributions.
The interplay of nuclear and Coulomb effects in proton breakup from exotic nuclei
Kumar, Ravinder
2012-01-01
This paper gives new insight to the study of dynamical effects in proton breakup as compared to neutron breakup from a weakly bound state in an exotic nucleus. Following our recent work [Ravinder Kumar and Angela Bonaccorso, Phys. Rev. C84 014613 (2011)] there has been some discussion in the literature [B. Paes, J. Lubiana, P.R.S. Gomes, V. Guimar\\~aes, Nucl. Phys. A890 1 (2012); Y. Kucuk and A. M. Moro, Phys. Rev. C86 034601 (2012)], thus in order to clarify and asses quantitatively which mechanism would dominate measured observables, we study here several reaction mechanisms separately but also their total including interference. These mechanisms are: the recoil effect of the core-target Coulomb potential which we distinguish from the direct proton-target Coulomb potential and nuclear breakup, which consists of stripping and diffraction. Direct Coulomb breakup typically gives cross sections about an order of magnitude larger than the recoil term and the amount of nuclear diffraction vs. Coulomb depends on t...
Spectroscopic study of energetic helium-ion irradiation effects on nuclear graphite tiles
Energy Technology Data Exchange (ETDEWEB)
Kim, Do Wan; Lee, K.W. [Department of Physics, Korea University, Seoul 136-713 (Korea, Republic of); Choi, D.M.; Noh, S.J.; Kim, H.S. [Department of Applied Physics, Dankook University, Yongin 448-701 (Korea, Republic of); Lee, Cheol Eui, E-mail: rscel@korea.ac.kr [Department of Physics, Korea University, Seoul 136-713 (Korea, Republic of)
2016-02-01
Highlights: • Energetic helium-ion irradiation on nuclear graphite tiles studied for plasma facing components. • XPS reveals recrystallization at low dose irradiation and DLC sites at higher doses. • Raman spectroscopy reveals increasing diamond-like defects and structural deformation. • Average inter-defect distance obtained as a function of irradiation dose from Raman intensities. - Abstract: Helium ion-irradiation effects on the nuclear graphite tiles were studied in order to understand the structural modifications and damages that can be produced by fusion reaction in tokamaks. The surface morphological changes due to increasing dose of the irradiation were examined by the field-effect scanning electron microscopy, and X-ray photoelectron spectroscopy elucidated the changes in the shallow surface bonding configurations caused by the energetic irradiation. Raman spectroscopy revealed the structural defects and diamond-like carbon sites that increased with increasing irradiation dose, and the average inter-defect distance was found from the Raman peak intensities as a function of the irradiation dose.
Isospin splitting of nucleon effective mass and symmetry energy in isotopic nuclear reactions
Guo, Ya-Fei; Niu, Fei; Zhang, Hong-Fei; Jin, Gen-Ming; Feng, Zhao-Qing
2016-01-01
Within an isospin and momentum dependent transport model, the dynamics of isospin particles (nucleons and light clusters) in Fermi-energy heavy-ion collisions are investigated for constraining the isospin splitting of nucleon effective mass and the symmetry energy at subsaturation densities. The mass splitting of $m^{*}_{n}>m^{*}_{p}$ and $m^{*}_{n}
The isolation of nuclear envelopes. Effects of thiol-group oxidation and of calcium ions.
Comerford, S A; McLuckie, I F; Gorman, M; Scott, K A; Agutter, P S
1985-02-15
The effects of (a) oxidative cross-linking of protein thiol groups and (b) the presence or absence of Ca2+ ions on rat liver nuclear-envelope isolation were studied. Two envelope-isolation procedures were compared: a well characterized low-ionic-strength method and a recently developed high-ionic-strength method. The latter method seems preferable to the former in respect of lower intranuclear contamination of the envelopes, suppression of endogenous serine proteinase, and maintenance of high specific activities of envelope-associated enzymes. In both procedures, however, the presence of Ca2+ gave rise to a rapid, apparently irreversible, contamination of the envelopes by intranuclear material. This effect was half-maximal at 20 microM-Ca2+. In addition, the envelopes became contaminated with intranuclear material by a Ca2+-independent mechanism, apparently resulting from N-ethylmaleimide-sensitive intermolecular disulphide-bond formation. This oxidative process seemed to have two major kinetic components (half-life, t1/2, approx. 2 min and 10 min). In view of these findings, it is recommended that (i) for most purposes, nuclear envelopes be isolated by the newly developed high-ionic-strength procedure, (ii) irrespective of the method used, Ca2+-chelators be included in all the buffers, (iii) thiol-group oxidation be prevented or reversed during the procedure.
Kawashima, Yukio; Tachikawa, Masanori
2013-05-01
Ab initio path integral molecular dynamics simulation was performed to understand the nuclear quantum effect on the hydrogen bond of hydrogen malonate anion. Static calculation predicted the proton transfer barrier as 0.12 kcal/mol. Conventional ab initio molecular dynamics simulation at 300 K found proton distribution with a double peak on the proton transfer coordinate. Inclusion of thermal effect alone elongates the hydrogen bond length, which increases the barrier height. Inclusion of nuclear quantum effect washes out this barrier, and distributes a single broad peak in the center. H/D isotope effect on the proton transfer is also discussed.
Energy Technology Data Exchange (ETDEWEB)
Friar, J.L.
1998-12-01
Nuclear scales are discussed from the nuclear physics viewpoint. The conventional nuclear potential is characterized as a black box that interpolates nucleon-nucleon (NN) data, while being constrained by the best possible theoretical input. The latter consists of the longer-range parts of the NN force (e.g., OPEP, TPEP, the {pi}-{gamma} force), which can be calculated using chiral perturbation theory and gauged using modern phase-shift analyses. The shorter-range parts of the force are effectively parameterized by moments of the interaction that are independent of the details of the force model, in analogy to chiral perturbation theory. Results of GFMC calculations in light nuclei are interpreted in terms of fundamental scales, which are in good agreement with expectations from chiral effective field theories. Problems with spin-orbit-type observables are noted.
Friar, J L
1998-01-01
Nuclear scales are discussed from the nuclear physics viewpoint. The conventional nuclear potential is characterized as a black box that interpolates nucleon-nucleon (NN) data, while being constrained by the best possible theoretical input. The latter consists of the longer-range parts of the NN force (e.g., OPEP, TPEP, the $\\pi$-$\\gamma$ force), which can be calculated using chiral perturbation theory and gauged using modern phase-shift analyses. The shorter-range parts of the force are effectively parameterized by moments of the interaction that are independent of the details of the force model, in analogy to chiral perturbation theory. Results of GFMC calculations in light nuclei are interpreted in terms of fundamental scales, which are in good agreement with expectations from chiral effective field theories. Problems with spin-orbit-type observables are noted.
Energy Technology Data Exchange (ETDEWEB)
1978-05-01
Information on underground nuclear power plants is presented concerning underground nuclear power plant concepts; public health impacts; technical feasibility of underground concepts; economic impacts of underground construction; and evaluation of related issues.
Effects of nuclear deformation on the form factor for direct dark matter detection
Institute of Scientific and Technical Information of China (English)
CHEN Ya-Zheng; CHEN Jun-Mou; LUO Yan-An; SHEN Hong; LI Xue-Qian
2012-01-01
For the detection of direct dark matter,in order to extract useful information about the fundamental interactions from the data,it is crucial to properly determine the nuclear form factor.The form factor for the spin-independent cross section of collisions between dark matter particles and the nucleus has been thoroughly studied by many authors.When the analysis was carried out,the nuclei were always supposed to be spherically symmetric.In this work,we investigate the effects of the deformation of nuclei from a spherical shape to an elliptical one on the form factor.Our results indicate that as long as the ellipticity is not too large,such deformation will not cause any substantial effects.In particular,when the nuclei are randomly orientated in room-temperature circumstances,one can completely neglect them.
Isospin effects and the density dependence of the nuclear symmetry energy
Souza, S R; Carlson, B V; Donangelo, R; Lynch, W G; Steiner, A W
2009-01-01
The density dependence of the nuclear symmetry energy is inspected using the Statistical Multifragmentation Model with Skyrme effective interactions. The model consistently considers the expansion of the fragments' volumes at finite temperature at the freeze-out stage. By selecting parameterizations of the Skyrme force that lead to very different equations of state for the symmetry energy, we investigate the sensitivity of different observables to the properties of the effective forces. Our results suggest that, in spite of being sensitive to the thermal dilation of the fragments' volumes, it is difficult to distinguish among the Skyrme forces from the isoscaling analysis. On the other hand, the isotopic distribution of the emitted fragments turns out to be very sensitive to the force employed in the calculation.
Massen, S E; Grypeos, M E
1995-01-01
We investigate the effects of fluctuations of the nuclear surface on the harmonic oscillator elastic charge form factor of light nuclei, while simultaneously approximating the short-range correlations through a Jastrow correlation ~factor. Inclusion of surface-fluctuation effects within this description, by truncating the cluster expansion at the two-body part, is found to improve somewhat the fit to the elastic charge form-factor of ^{16}O and ^{40}Ca. However, the convergence of the cluster expansion is expected to deteriorate. An additional finding is that the surface-fluctuation correlations produce a drastic change in the asymptotic behavior of the point-proton form factor, which now falls off quite slowly (i.e. as const. \\cdot q^{-4}) at large values of the momentum transfer q.
Possible toxic effects from the nuclear reprocessing at Sellafield and Cap de la Hague
Energy Technology Data Exchange (ETDEWEB)
Schneider, M.; Coeytaux, X.; Faid, Y.B.; Marignac, Y.; Rouy, E. [Wise, 75 - Paris (France); Thompson, G. [IRSS, Cambridge (United States); Fairlie, I.; Lowry, D.; Sumner, D
2001-11-15
The principal aim of this report is to assist the Committee of Petitions of the European Parliament in its consideration of Petition 393/95 brought by Dr. W. Nachtwey. The Petition expresses concerns about radioactive discharges from nuclear reprocessing plants at Sellafield in the UK and La Hague in France, and their possible adverse health effects. Six years after the Petition was introduced, the Petitioner main concerns remain relevant. This report concludes that reprocessing discharges are a valid matter for the Committee consideration. It also concludes that, on balance, the Petitioner's concerns over radioactive discharges from Sellafield and La Hague are justified. The report presents evidence and data on: 1) radioactive discharges from the Sellafield and La Hague sites; 2) resulting nuclide concentrations in environmental media including foodstuffs; 3) radiation doses from nuclide discharges to critical groups near the sites; 4) adverse health effects near the two sites; and 5) resulting collective doses from nuclide discharges. The report also examines a number of current issues in radiobiology concerning health effects from exposure to ionising radiation, in particular genetic and in utero effects. In addition, in accordance with contract specifications, the report examines other major factors that might influence future decision-making on reprocessing. It provides information on the legal framework, the operational history of the plants and the economic case for reprocessing compared with available alternatives for spent nuclear fuel management. The report also makes policy-related recommendations that take into account current knowledge and uncertainties in risk assessment and the availability of alternatives to reprocessing in spent fuel management. (authors)
Health effects models for nuclear power plant accident consequence analysis: Low LET radiation
Energy Technology Data Exchange (ETDEWEB)
Evans, J.S. (Harvard Univ., Boston, MA (USA). School of Public Health)
1990-01-01
This report describes dose-response models intended to be used in estimating the radiological health effects of nuclear power plant accidents. Models of early and continuing effects, cancers and thyroid nodules, and genetic effects are provided. Weibull dose-response functions are recommended for evaluating the risks of early and continuing health effects. Three potentially lethal early effects -- the hematopoietic, pulmonary, and gastrointestinal syndromes -- are considered. In addition, models are included for assessing the risks of several nonlethal early and continuing effects -- including prodromal vomiting and diarrhea, hypothyroidism and radiation thyroiditis, skin burns, reproductive effects, and pregnancy losses. Linear and linear-quadratic models are recommended for estimating cancer risks. Parameters are given for analyzing the risks of seven types of cancer in adults -- leukemia, bone, lung, breast, gastrointestinal, thyroid, and other.'' The category, other'' cancers, is intended to reflect the combined risks of multiple myeloma, lymphoma, and cancers of the bladder, kidney, brain, ovary, uterus and cervix. Models of childhood cancers due to in utero exposure are also developed. For most cancers, both incidence and mortality are addressed. The models of cancer risk are derived largely from information summarized in BEIR III -- with some adjustment to reflect more recent studies. 64 refs., 18 figs., 46 tabs.
Nuclear size effects in rotational spectra: A tale with a twist
Energy Technology Data Exchange (ETDEWEB)
Knecht, Stefan, E-mail: knecht@ifk.sdu.dk [Department of Physics and Chemistry, University of Southern Denmark, Campusvej 55, 5230 Odense M (Denmark); Saue, Trond, E-mail: trond.saue@irsamc.ups-tlse.fr [Laboratoire de Physique Quantique (CNRS UMR 5626), IRSAMC, Universite Paul Sabatier, 118 Route de Narbonne, F-31062 Toulouse cedex (France)
2012-06-05
Graphical abstract: Molecular field shift: 4-Component relativistic calibration calculations show a coincidence of errors in previous theoretical and experimental studies of nuclear volume effects in the rotational spectra of diatomics. The central quantity for the calculation of corrections to the rotational Dunham coefficient Y{sub 01} is the derivative of the electron density with respect to internuclear distance, here shown for the TlI molecule. Abstract: We report a 4-component relativistic benchmark study of the isotopic field shift in the rotational spectrum of three diatomic molecules: TlI, PbTe and PtSi. A central quantity in the theory is the derivative with respect to internuclear distance of an effective electron density associated with a given nucleus, calculated at the equilibrium distance. The effective density, which is related to the mean electron density within the nuclear volume, is usually replaced with the contact density, that is, the electron density at the origin of the nucleus. Our computational study shows that for the chosen systems this induces errors on the order of 10%, which is not acceptable for high-precision work. On the other hand, the systematic nature of the error suggests that it can be handled by an atom-specific correction factor. Our calibration study reveals that relativistic effects increase the contact density gradient by about an order of magnitude, and that the proper transformation of the associated property operator is mandatory in 1- and 2-component relativistic calculations. Our results show very good agreement with the experimental data presented by Schlembach and Tiemann [Chem. Phys. 68 (1982) 21], but disagree completely with the revised results given by the same group in a later paper [Chem. Phys. 93 (1985) 349]. We have carefully re-derived the relevant formulas and cannot see that the rescaling of results is justified. Curiously previous DFT calculations agree quite well with the revised results for TlI and Pb
Damage to structures by pyroclastic flows and surges, inferred from nuclear weapons effects
Valentine, Greg A.
1998-12-01
In order to define the risk from explosive eruptions, one must constrain both the probability of explosive events and the effects, or consequences, of those events. This paper focuses on the effects of pyroclastic flows and surges (here termed `pyroclastic density currents', or PDCs) on buildings, infrastructure elements, and to some extent on vehicles. PDCs impart a lateral force to such structures in the form of dynamic pressure, which depends on the bulk density of the PDC (which in turn depends mainly on particle concentration) and its velocity. For reasonable ranges of particle concentration (10 -3 to 0.5) and velocities (10 to 300 m/s), dynamic pressure on the upstream face of a structure ranges from ˜0.1 kPa to 10 4 kPa. Lateral loads ranging up to about 100 kPa were produced during nuclear weapons tests in the 1940s and 1950s that were designed to study the effects of such loading on a variety of structures for civil defense and emergency response purposes in the event of nuclear war. Although considerable simplifications are involved, the data from these weapon tests provide useful analog information for understanding the effects of PDCs. I reviewed data from the nuclear tests, describing the expected damage from different loadings. Tables are provided that define the response of different structural elements (e.g., windows, framing, walls) and whole structures to loading in probabilistic terms, which in principle account for variations in construction quality, orientation, and other factors. Finally, damage documented from historical eruptions at Mt. Lamington (1951), Herculaneum (AD 79 Vesuvius eruption), and St. Pierre (1902 Mt. Pelee eruption) is reviewed. Damage patterns, combined with estimates of velocity, provide an independent estimate of particle concentration in the PDCs. Details of structural damage should be recorded and mapped around future eruptions in order to help refine this aspect of consequence analysis. Another fruitful approach would
Directory of Open Access Journals (Sweden)
Na Liu
2015-10-01
Full Text Available Hadron production in semi-inclusive deep-inelastic scattering of leptons from nuclei is an ideal tool to determine and constrain the transport coefficient in cold nuclear matter. The leading-order computations for hadron multiplicity ratios are performed by means of the SW quenching weights and the analytic parameterizations of quenching weights based on BDMPS formalism. The theoretical results are compared to the HERMES positively charged pions production data with the quarks hadronization occurring outside the nucleus. With considering the nuclear geometry effect on hadron production, our predictions are in good agreement with the experimental measurements. The extracted transport parameter from the global fit is shown to be qˆ=0.74±0.03 GeV2/fm for the SW quenching weight without the finite energy corrections. As for the analytic parameterization of BDMPS quenching weight without the quark energy E dependence, the computed transport coefficient is qˆ=0.20±0.02 GeV2/fm. It is found that the nuclear geometry effect has a significant impact on the transport coefficient in cold nuclear matter. It is necessary to consider the detailed nuclear geometry in studying the semi-inclusive hadron production in deep inelastic scattering on nuclear targets.
Resolving the H 2 effect on radiation induced dissolution of UO 2-based spent nuclear fuel
Trummer, Martin; Jonsson, Mats
2010-01-01
In recent years, the impact of H2 on α-radiation induced dissolution of UO2-based spent nuclear fuel has been studied and debated extensively. Experimental results on the effect of H2 on the concentration of H2O2 during α-radiolysis have been shown to disagree with numerical simulations. For this reason, the reaction scheme used in simulations of aqueous radiation chemistry has sometimes been questioned. In this work, we have studied the impact of H2 on the H2O2 concentration in α-irradiated aqueous solution using numerical simulations. The effects of H2 pressure, α-dose rate and HCO3- concentration were investigated by performing systematic variations in these parameters. The simulations show that the discrepancy between the previously published experimental result and numerical simulations is due to the use of a homogeneous dose rate (the energy is assumed to be equally distributed in the whole volume). Taking the actual dose rate of the α-irradiated volume into account, the simulation is in perfect agreement with the experimental results. This shows that the H2 effect is strongly α-dose rate dependent, and proves the reliability of the reaction scheme used in the simulations. The simulations also show that H2 influences the H2O2 concentration under α-radiolysis. The magnitude of the effect depends on the dose rate and the H2 pressure as well as on the concentration of HCO 3-. The impact of the radiolytic H2 effect on the rate of α-radiation induced dissolution of spent nuclear fuel is discussed along with other (α- and γ-) radiation induced processes capable of reducing the concentration of uranium in solution. The radiolytic H2 effect is quantitatively compared to the previously presented noble metal catalyzed H2 effect. This comparison shows that the noble metal catalyzed H2 effect is far more efficient than the radiolytic H2 effect. Reduction of U(VI) in solution due to low dose rate γ-radiolysis in the presence of H2 is proposed to be the cause of
Nuclear effects and neutron structure in deeply virtual Compton scattering off 3He
Rinaldi, Matteo
2014-01-01
The study of nuclear generalized parton distributions (GPDs) could be a crucial achievement of hadronic physics since they open new ways to obtain new information on the structure of bound nucleons, in particular, to access the neutron GPDs. Here, the results of calculations of 3He GPDs in Impulse Approximation are presented. The calculation of the sum of GPDs H + E, and "tilde H", with the correct limits, will be shown. These quantities, at low momentum transfer, are largely dominated by the neutron contribution so that 3He is an ideal target for these kind of studies. Nevertheless the extraction of neutron information from future 3He data could be non trivial. A procedure, which takes into account nuclear effects encoded in IA, is presented. The calculation of H,E and "tilde H" allows also to evaluate the cross section asymmetries for deeply virtual compton scattering at Jefferson Lab kinematics. Thanks to these observations, DVCS off 3He could be an ideal process to access the neutron information in the ne...
Thermal cycling effect in U-10Mo/Zry-4 monolithic nuclear fuel
Lopes, Denise A.; Zimmermann, Angelo J. O.; Silva, Selma L.; Piqueira, J. R. C.
2016-05-01
Uranium alloys in a monolithic form have been considered attractive candidates for high density nuclear fuel. However, this high-density fissile material configuration keeps the volume permitted for the retention of fission products at a minimum. Additionally, the monolithic nuclear fuel has a peculiar configuration, whereby the fuel is in direct contact with the cladding. How this fuel configuration will retain fission products and how this will affect its integrity under various physical conditions - such as thermal cycling - are some of the technological problems for this new fuel. In this paper, the effect of out-of-pile thermal cycling is studied for a monolithic fuel plate produced by a hot co-rolling method using U-10Mo (wt %) as the fuel alloy and Zircaloy-4 as the cladding material. After performing 10 thermal cycles from 25 to 400 °C at a rate of 1 °C/min (∼125 h), the fuel alloy presented several fractures that were observed to occur in the last three cycles. These cracks nucleated approximately in the center of the fuel alloy and crossed the interdiffusion zone initiating an internal crack in the cladding. The results suggest that the origin of these fractures is the thermal fatigue of the U-10Mo alloy caused due to the combination of two factors: (i) the high difference in the thermal expansion coefficient of the fuel and of the cladding material, and (ii) the bound condition of fuel/cladding materials in this fuel element configuration.
Nucleon Finite Volume Effect and Nuclear Matter Properties in a Relativistic Mean-Field Theory
Institute of Scientific and Technical Information of China (English)
R. Costa; A.J. Santiago; H. Rodrigues; J. Sa Borges
2006-01-01
Effects of excluded volume of nucleons on nuclear matter are studied, and the nuclear properties that follow from different relativistic mean-field model parametrizations are compared. We show that, for all tested parametrizations,the resulting volume energy a1 and the symmetry energy J are around the acceptable values of 16 MeV and 30 MeV,and the density symmetry L is around 100 Me V. On the other hand, models that consider only linear terms lead to incompressibility K0 much higher than expected. For most parameter sets there exists a critical point (ρc,δc), where the minimum and the maximum of the equation of state are coincident and the incompressibility equals zero. This critical point depends on the excluded volume parameter r. If this parameter is larger than 0.5 fm, there is no critical point and the pure neutron matter is predicted to be bound. The maximum value for neutron star mass is 1.85M⊙, which is in agreement with the mass of the heaviest observed neutron star 4U0900-40 and corresponds to r = 0.72 fm. We also show that the light neutron star mass (1.2M⊙) is obtained for r (≌) 0.9 fm.
Effect of Acrylamide on Oocyte Nuclear Maturation and Cumulus Cells Apoptosis in Mouse In Vitro
Liu, Shuzhen; Jiang, Ligang; Zhong, Tao; Kong, Shuhui; Zheng, Rongbin; Kong, Fengyun; Zhang, Cong; Zhang, Lei; An, Liguo
2015-01-01
Acrylamide (ACR) is a chemical compound with severe neurotoxicity, genotoxicity, carcinogenicity and reproductive toxicity. Recent studies showed that ACR impairs the function of reproductive organs, e.g., epididymis and testes. In vitro maturation of mouse oocyte is a sensitive assay to identify potential chemical hazard to female fertility. The aim of this study was to evaluate the adverse effects of ACR on the nuclear maturation and cumulus cells apoptosis of mouse oocytes in vitro. Cumulus–oocyte complexes were incubated in a maturation medium containing 0, 5, 10 and 20 μM of ACR. Chromosome alignment and spindle morphology of oocytes was determined by immunofluorescence and confocal microscopy. Our results showed that oocytes exposed to different doses of ACR in vitro were associated with a significant decrease of oocyte maturation, significant increase of chromosome misalignment rate, occurrence of abnormal spindle configurations, and the inhibition of oocyte parthenogenetic activation. Furthermore, apoptosis of cumulus cells was determined by TUNEL and CASPASE-3 assay. Results showed that apoptosis in cumulus cells was enhanced and the expression of CASPASE-3 was increased after cumulus–oocyte complexes were exposed to ACR. Therefore, ACR may affect the nuclear maturation of oocytes via the apoptosis of cumulus cells in vitro. PMID:26275143
Energy Technology Data Exchange (ETDEWEB)
Vacher, Morgane; Bearpark, Michael J.; Robb, Michael A. [Department of Chemistry, Imperial College London, London SW7 2AZ (United Kingdom); Mendive-Tapia, David [Laboratoire CEISAM - UMR CNR 6230, Université de Nantes, 2 Rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3 (France)
2015-03-07
Photoionization can generate a non-stationary electronic state, which leads to coupled electron-nuclear dynamics in molecules. In this article, we choose benzene cation as a prototype because vertical ionization of the neutral species leads to a Jahn-Teller degeneracy between ground and first excited states of the cation. Starting with equal populations of ground and first excited states, there is no electron dynamics in this case. However, if we add methyl substituents that break symmetry but do not radically alter the electronic structure, we see charge migration: oscillations in the spin density that we can correlate with particular localized electronic structures, with a period depending on the gap between the states initially populated. We have also investigated the effect of nuclear motion on electron dynamics using a complete active space self-consistent field (CASSCF) implementation of the Ehrenfest method, most previous theoretical studies of electron dynamics having been carried out with fixed nuclei. In toluene cation for instance, simulations where the nuclei are allowed to move show significant differences in the electron dynamics after 3 fs, compared to simulations with fixed nuclei.
Effect of Acrylamide on Oocyte Nuclear Maturation and Cumulus Cells Apoptosis in Mouse In Vitro.
Directory of Open Access Journals (Sweden)
Shuzhen Liu
Full Text Available Acrylamide (ACR is a chemical compound with severe neurotoxicity, genotoxicity, carcinogenicity and reproductive toxicity. Recent studies showed that ACR impairs the function of reproductive organs, e.g., epididymis and testes. In vitro maturation of mouse oocyte is a sensitive assay to identify potential chemical hazard to female fertility. The aim of this study was to evaluate the adverse effects of ACR on the nuclear maturation and cumulus cells apoptosis of mouse oocytes in vitro. Cumulus-oocyte complexes were incubated in a maturation medium containing 0, 5, 10 and 20 μM of ACR. Chromosome alignment and spindle morphology of oocytes was determined by immunofluorescence and confocal microscopy. Our results showed that oocytes exposed to different doses of ACR in vitro were associated with a significant decrease of oocyte maturation, significant increase of chromosome misalignment rate, occurrence of abnormal spindle configurations, and the inhibition of oocyte parthenogenetic activation. Furthermore, apoptosis of cumulus cells was determined by TUNEL and CASPASE-3 assay. Results showed that apoptosis in cumulus cells was enhanced and the expression of CASPASE-3 was increased after cumulus-oocyte complexes were exposed to ACR. Therefore, ACR may affect the nuclear maturation of oocytes via the apoptosis of cumulus cells in vitro.
Delineating effects of tensor force on the density dependence of nuclear symmetry energy
Xu, Chang; Li, Bao-An
2012-01-01
In this talk, we report results of our recent studies to delineate effects of the tensor force on the density dependence of nuclear symmetry energy within phenomenological models. The tensor force active in the isosinglet neutron-proton interaction channel leads to appreciable depletion/population of nucleons below/above the Fermi surface in the single-nucleon momentum distribution in cold symmetric nuclear matter (SNM). We found that as a consequence of the high momentum tail in SNM the kinetic part of the symmetry energy $E^{kin}_{sym}(\\rho)$ is significantly below the well-known Fermi gas model prediction of approximately $12.5 (\\rho/\\rho_0)^{2/3}$. With about 15% nucleons in the high momentum tail as indicated by the recent experiments at J-Lab by the CLAS Collaboration, the $E^{kin}_{sym}(\\rho)$ is negligibly small. It even becomes negative when more nucleons are in the high momentum tail in SNM. These features have recently been confirmed by three independent studies based on the state-of-the-art micros...
Directory of Open Access Journals (Sweden)
Shunfang Wang
2015-12-01
Full Text Available An effective representation of a protein sequence plays a crucial role in protein sub-nuclear localization. The existing representations, such as dipeptide composition (DipC, pseudo-amino acid composition (PseAAC and position specific scoring matrix (PSSM, are insufficient to represent protein sequence due to their single perspectives. Thus, this paper proposes two fusion feature representations of DipPSSM and PseAAPSSM to integrate PSSM with DipC and PseAAC, respectively. When constructing each fusion representation, we introduce the balance factors to value the importance of its components. The optimal values of the balance factors are sought by genetic algorithm. Due to the high dimensionality of the proposed representations, linear discriminant analysis (LDA is used to find its important low dimensional structure, which is essential for classification and location prediction. The numerical experiments on two public datasets with KNN classifier and cross-validation tests showed that in terms of the common indexes of sensitivity, specificity, accuracy and MCC, the proposed fusing representations outperform the traditional representations in protein sub-nuclear localization, and the representation treated by LDA outperforms the untreated one.
Wang, Shunfang; Liu, Shuhui
2015-12-19
An effective representation of a protein sequence plays a crucial role in protein sub-nuclear localization. The existing representations, such as dipeptide composition (DipC), pseudo-amino acid composition (PseAAC) and position specific scoring matrix (PSSM), are insufficient to represent protein sequence due to their single perspectives. Thus, this paper proposes two fusion feature representations of DipPSSM and PseAAPSSM to integrate PSSM with DipC and PseAAC, respectively. When constructing each fusion representation, we introduce the balance factors to value the importance of its components. The optimal values of the balance factors are sought by genetic algorithm. Due to the high dimensionality of the proposed representations, linear discriminant analysis (LDA) is used to find its important low dimensional structure, which is essential for classification and location prediction. The numerical experiments on two public datasets with KNN classifier and cross-validation tests showed that in terms of the common indexes of sensitivity, specificity, accuracy and MCC, the proposed fusing representations outperform the traditional representations in protein sub-nuclear localization, and the representation treated by LDA outperforms the untreated one.
Effect of Na2O on aqueous dissolution of nuclear waste glasses
Farooqi, Rahmat Ullah; Hrma, Pavel
2017-04-01
Sodium oxide is present in the majority of commercial and waste glasses as a viscosity-reducing component. In some nuclear waste glasses, its source is the waste itself. As such, it can limit the waste loading because of its deleterious effect on the resistance of the glass to attack by aqueous media. The maximum tolerable content of Na2O in glass depends on the presence and concentration of components that interact with it. To assess the acceptability limits of Na2O in the composition region of nuclear waste glasses, we formulated 11 baseline compositions by varying the content of oxides of Si, B, Al, Ca, Zr, and Li. In each of these compositions, we varied the Na2O fraction from 8-16 mass% to 23-30 mass%. To each of 146 glasses thus formulated, we applied the seven-day Product Consistency Test (PCT) to determine normalized B and Na releases (ri, where i ≡ B or Na). Fitting approximation functions ln(ri/gm-2) = Σbijgj to ri data (gj is the j-th component mass fraction and bij the corresponding component coefficient), we showed that the rB (and, consequently, the initial glass alteration rate) was proportional to the glass component mass fractions in the order Al2O3role that PCT data may play in understanding the evolution of the glass alteration process is discussed.
Energy Technology Data Exchange (ETDEWEB)
Ha, Jun Su, E-mail: junsu.ha@kustar.ac.ae [Nuclear Engineering Department, Khalifa University of Science, Technology and Research, P.O. Box 127788, Abu Dhabi (United Arab Emirates); Seong, Poong Hyun, E-mail: phseong@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)
2014-10-15
Highlights: • Effectiveness in information searching is measured by two eye-tracking measures. • The relationship between the effectiveness and perception and diagnosis is addressed. • An experimental study is conducted to investigate the relationship. • The experimental results show close correlation. • The eye-tracking measures as inferential measures for perception and diagnosis. - Abstract: Eye-tracking-based measures of attentional-resource effectiveness in information searching such as FIR (fixation to importance ratio) and SAE (selective attention effectiveness) have been developed based on cost-benefit principles. The relationship between the eye-tracking-based measures and perception and diagnosis of operators during operating tasks in main control rooms (MCRs) of nuclear power plants (NPPs) is investigated with experimental studies. The FIR and the SAE, which represent how effectively an operator attends to important information sources, are used as measures of the effectiveness in information searching. Perception failure rate (PFR) and diagnosis score (DS) are used as measures of perception and diagnosis, respectively. Experimental results show that the FIR and the SAE correlate closely with the PFR and the DS, respectively. It is concluded that the FIR and the SAE can be used as inferential measures of perception and diagnosis for human factors in NPP MCRs.
Effect of thermal aging on the leak-before-break analysis of nuclear primary pipes
Energy Technology Data Exchange (ETDEWEB)
Lv, Xuming; Li, Shilei [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Wang, Xitao [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083 (China); Wang, Yanli [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Wang, Zhaoxi [CPI Nuclear Power Institute, 18 Xizhimen St., Beijing 100044 (China); Xue, Fei [Suzhou Nuclear Power Research Institute, Suzhou 215004 (China); Zhang, Hailong, E-mail: hlzhang@ustb.edu.cn [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China)
2014-12-15
Highlights: • Thermal aging embrittlement is considered in LBB assessment of nuclear pipe. • Effect of thermal aging on growth behavior of partial-through crack is not obvious. • Detectable leakage crack length of thermally aged material is slightly increased. • Critical crack length of thermally aged material is significantly reduced. • Ignorance of thermal aging produces less conservative LBB results. - Abstract: Three-dimensional finite element analysis (FEA) models were built for pipes with circumferential cracks and the effect of thermal aging embrittlement on the leak-before-break (LBB) behavior was analyzed according to the Level 2 and Level 3 safety assessments. The detectable leakage crack length obtained using the two-phase critical flow model and the critical crack length calculated by the J-integral stability assessment diagram method were carried out to assess the LBB behavior. The propagation behavior of partial-through circumferential cracks for both unaged and thermally aged materials was estimated by testing fatigue crack growth rate. The results show that the effect of thermal aging on detectable leakage crack length is not obvious, whereas the critical crack length after thermal aging significantly decreases due to degradation of fracture toughness. The increments of partial-through cracks are insignificant after 40 years of service. In the Level 2 and Level 3 safety assessments for nuclear piping, LBB is shown to have sufficient safety margins, while it is suggested to decrease in the case of thermal aging. This work demonstrates that less conservative LBB assessment results will be produced if thermal aging embrittlement in piping steels is not taken into consideration.
Modelling the nuclear parton distributions
Kulagin, S A
2016-01-01
We review a semi-microscopic model of nuclear parton distributions, which takes into account a number of nuclear effects including Fermi motion and nuclear binding, nuclear meson-exchange currents and off-shell corrections to bound nucleon distributions as well as nuclear shadowing effect. We also discuss applications of the model to the lepton-nuclear deep-inelastic scattering, Drell-Yan process and neutrino total cross sections.
Energy Technology Data Exchange (ETDEWEB)
Smith, Albert A.; Corzilius, Björn; Haze, Olesya; Swager, Timothy M.; Griffin, Robert G., E-mail: rgg@mit.edu [Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)
2013-12-07
We present electron paramagnetic resonance experiments for which solid effect dynamic nuclear polarization transitions were observed indirectly via polarization loss on the electron. This use of indirect observation allows characterization of the dynamic nuclear polarization (DNP) process close to the electron. Frequency profiles of the electron-detected solid effect obtained using trityl radical showed intense saturation of the electron at the usual solid effect condition, which involves a single electron and nucleus. However, higher order solid effect transitions involving two, three, or four nuclei were also observed with surprising intensity, although these transitions did not lead to bulk nuclear polarization—suggesting that higher order transitions are important primarily in the transfer of polarization to nuclei nearby the electron. Similar results were obtained for the SA-BDPA radical where strong electron-nuclear couplings produced splittings in the spectrum of the indirectly observed solid effect conditions. Observation of high order solid effect transitions supports recent studies of the solid effect, and suggests that a multi-spin solid effect mechanism may play a major role in polarization transfer via DNP.
Smith, Albert A; Corzilius, Björn; Haze, Olesya; Swager, Timothy M; Griffin, Robert G
2013-12-01
We present electron paramagnetic resonance experiments for which solid effect dynamic nuclear polarization transitions were observed indirectly via polarization loss on the electron. This use of indirect observation allows characterization of the dynamic nuclear polarization (DNP) process close to the electron. Frequency profiles of the electron-detected solid effect obtained using trityl radical showed intense saturation of the electron at the usual solid effect condition, which involves a single electron and nucleus. However, higher order solid effect transitions involving two, three, or four nuclei were also observed with surprising intensity, although these transitions did not lead to bulk nuclear polarization--suggesting that higher order transitions are important primarily in the transfer of polarization to nuclei nearby the electron. Similar results were obtained for the SA-BDPA radical where strong electron-nuclear couplings produced splittings in the spectrum of the indirectly observed solid effect conditions. Observation of high order solid effect transitions supports recent studies of the solid effect, and suggests that a multi-spin solid effect mechanism may play a major role in polarization transfer via DNP.
Combined effects of nuclear and electronic energy losses in solids irradiated with a dual-ion beam
Thomé, Lionel; Debelle, Aurélien; Garrido, Frédérico; Trocellier, Patrick; Serruys, Yves; Velisa, Gihan; Miro, Sandrine
2013-04-01
Single and dual-beam irradiations of oxide (c-ZrO2, MgO, Gd2Ti2O7) and carbide (SiC) single crystals were performed to study combined effects of nuclear (Sn) and electronic (Se) energy losses. Rutherford backscattering experiments in channeling conditions show that the Sn/Se cooperation induces a strong decrease of the irradiation-induced damage in SiC and MgO and almost no effects in c-ZrO2 and Gd2Ti2O7. The healing process is ascribed to electronic excitations arising from the electronic energy loss of swift ions. These results present a strong interest for both fundamental understanding of the ion-solid interactions and technological applications in the nuclear industry where expected cooperative Sn/Se effects may lead to the preservation of the integrity of nuclear devices.
Energy Technology Data Exchange (ETDEWEB)
SivaRanjan, Uppala; Ramachandran, Ramesh, E-mail: rramesh@iisermohali.ac.in [Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Manauli, P.O. Box-140306, Mohali, Punjab (India)
2014-02-07
A quantum-mechanical model integrating the concepts of reduced density matrix and effective Hamiltonians is proposed to explain the multi-spin effects observed in rotational resonance (R{sup 2}) nuclear magnetic resonance (NMR) experiments. Employing this approach, the spin system of interest is described in a reduced subspace inclusive of its coupling to the surroundings. Through suitable model systems, the utility of our theory is demonstrated and verified with simulations emerging from both analytic and numerical methods. The analytic results presented in this article provide an accurate description/interpretation of R{sup 2} experimental results and could serve as a test-bed for distinguishing coherent/incoherent effects in solid-state NMR.
SivaRanjan, Uppala; Ramachandran, Ramesh
2014-02-01
A quantum-mechanical model integrating the concepts of reduced density matrix and effective Hamiltonians is proposed to explain the multi-spin effects observed in rotational resonance (R2) nuclear magnetic resonance (NMR) experiments. Employing this approach, the spin system of interest is described in a reduced subspace inclusive of its coupling to the surroundings. Through suitable model systems, the utility of our theory is demonstrated and verified with simulations emerging from both analytic and numerical methods. The analytic results presented in this article provide an accurate description/interpretation of R2 experimental results and could serve as a test-bed for distinguishing coherent/incoherent effects in solid-state NMR.
SivaRanjan, Uppala; Ramachandran, Ramesh
2014-02-07
A quantum-mechanical model integrating the concepts of reduced density matrix and effective Hamiltonians is proposed to explain the multi-spin effects observed in rotational resonance (R(2)) nuclear magnetic resonance (NMR) experiments. Employing this approach, the spin system of interest is described in a reduced subspace inclusive of its coupling to the surroundings. Through suitable model systems, the utility of our theory is demonstrated and verified with simulations emerging from both analytic and numerical methods. The analytic results presented in this article provide an accurate description/interpretation of R(2) experimental results and could serve as a test-bed for distinguishing coherent/incoherent effects in solid-state NMR.
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
The Fukushima nuclear accident provides valuable lessons for China national nuclear Corp.as it continues to expand its operations AS Japan’s Fukushima nuclear crisis sparks a global debate over nuclear safety,China National Nuclear Corp. (CNNC),the country’s largest nuclear plant operator, comes under the spotlight.
Nuclear quantum effects in water exchange around lithium and fluoride ions
Wilkins, David M; Dang, Liem X
2015-01-01
We employ classical and ring polymer molecular dynamics simulations to study the effect of nuclear quantum fluctuations on the structure and the water exchange dynamics of aqueous solutions of lithium and fluoride ions. While we obtain reasonably good agreement with experimental data for solutions of lithium by augmenting the Coulombic interactions between the ion and the water molecules with a standard Lennard-Jones ion-oxygen potential, the same is not true for solutions of fluoride, for which we find that a potential with a softer repulsive wall gives much better agreement. A small degree of destabilization of the first hydration shell is found in quantum simulations of both ions when compared with classical simulations, with the shell becoming less sharply defined and the mean residence time of the water molecules in the shell decreasing. In line with these modest differences, we find that the mechanisms of the exchange processes are unaffected by quantization, so a classical description of these reaction...
Mass dependence of nuclear short- range correlations and the EMC effect
Cosyn, Wim; Ryckebusch, Jan
2014-01-01
We sketch an approximate method to quantify the number of correlated pairs in any nucleus $A$. It is based on counting independent-particle model (IPM) nucleon-nucleon pairs in a relative $S$-state with no radial excitation. We show that IPM pairs with those quantum numbers are most prone to short-range correlations and are at the origin of the high-momentum tail of the nuclear momentum distributions. Our method allows to compute the $a_2$ ratios extracted from inclusive electron scattering. Furthermore, our results reproduce the observed linear correlation between the number of correlated pairs and the magnitude of the EMC effect. We show that the width of the pair center-of-mass distribution in exclusive two-nucleon knockout yields information on the quantum numbers of the pairs.
Nuclear effects in F{sub 3} structure function of nucleon
Energy Technology Data Exchange (ETDEWEB)
Athar, M. Sajjad [Department of Physics, Aligarh Muslim University, Aligarh-202 002 (India)], E-mail: sajathar@rediffmail.com; Singh, S.K. [Department of Physics, Aligarh Muslim University, Aligarh-202 002 (India); Vacas, M.J. Vicente [Departamento de Fisica Teorica and IFIC, Centro Mixto Universidad de Valencia-CSIC, 46100 Burjassot (Valencia) (Spain)
2008-10-02
We study nuclear effects in the F{sub 3}{sup A}(x) structure function in the deep inelastic neutrino reactions on iron by using a relativistic framework to describe the nucleon spectral functions in the nucleus. The results for the ratio R(x,Q{sup 2})=(F{sub 3}{sup A}(x,Q{sup 2}))/(AF{sub 3}{sup N}(x,Q{sup 2})) and the Gross-Llewellyn Smith (GLS) integral G(x,Q{sup 2})={integral}{sub x}{sup 1}dxF{sub 3}{sup A}(x,Q{sup 2}) in nuclei are discussed and compared with the recent results available in literature from theoretical and phenomenological analyses of experimental data.
Inverse Temperature Dependence of Nuclear Quantum Effects in DNA Base Pairs
Fang, Wei; Rossi, Mariana; Feng, Yexin; Li, Xin-Zheng; Michaelides, Angelos
2016-01-01
Despite the inherently quantum mechanical nature of hydrogen bonding, it is unclear how nuclear quantum effects (NQEs) alter the strengths of hydrogen bonds. With this in mind, we use ab initio path integral molecular dynamics to determine the absolute contribution of NQEs to the binding in DNA base pair complexes, arguably the most important hydrogen-bonded systems of all. We find that depending on the temperature, NQEs can either strengthen or weaken the binding within the hydrogen-bonded complexes. As a somewhat counterintuitive consequence, NQEs can have a smaller impact on hydrogen bond strengths at cryogenic temperatures than at room temperature. We rationalize this in terms of a competition of NQEs between low-frequency and high-frequency vibrational modes. Extending this idea, we also propose a simple model to predict the temperature dependence of NQEs on hydrogen bond strengths in general.
Rossi, Mariana; Michaelides, Angelos
2016-01-01
Biomolecules are complex systems stabilized by a delicate balance of weak interactions, making it important to assess all energetic contributions in an accurate manner. However, it is a priori unclear which contributions make more of an impact. Here, we examine stacked polyglutamine (polyQ) strands, a peptide repeat often found in amyloid aggregates. We investigate the role of hydrogen bond (HB) cooperativity, van der Waals (vdW) dispersion interactions, and quantum contributions to free energies, including anharmonicities through density functional theory and ab initio path integral simulations. Of these various factors, we find that the largest impact on structural stabilization comes from vdW interactions. HB cooperativity is the second largest contribution as the size of the stacked chain grows. Competing nuclear quantum effects make the net quantum contribution small but very sensitive to anharmonicities, vdW, and the number of HBs. Our results suggest that a reliable treatment of these systems can only ...
Dugad, L B; Goff, H M
1992-07-13
Proton nuclear Overhauser effect and paramagnetic relaxation measurements have been used to define more extensively the heme active site structure of Coprinus macrorhizus peroxidase, CMP (previously known as Coprinus cinereus peroxidase), as the ferric low-spin cyanide ligated complex. The results are compared with other well-characterized peroxidase enzymes. The NMR spectrum of CMPCN shows changes in the paramagnetically shifted resonances as a function of time, suggesting a significant heme disorder for CMP. The presence of proximal and distal histidine amino acid residues are common to the heme environments of both CMPCN and HRPCN. However, the upfield distal arginine signals of HRPCN are not evident in the 1H-NMR spectra of CMPCN.
Chirality-sensitive nuclear magnetic resonance effects induced by indirect spin-spin coupling
Garbacz, P.; Buckingham, A. D.
2016-11-01
It is predicted that, for two spin-1/2 nuclei coupled by indirect spin-spin coupling in a chiral molecule, chirality-sensitive induced electric polarization can be observed at the frequencies equal to the sum and difference between the spin resonance frequencies. Also, an electric field oscillating at the difference frequency can induce spin coherences which allow the direct discrimination between enantiomers by nuclear magnetic resonance. The dominant contribution to the magnitude of these expected chiral effects is proportional to the permanent electric dipole moment and to the antisymmetric part of the indirect spin-spin coupling tensor of the chiral molecule. Promising compounds for experimental tests of the predictions are derivatives of 1,3-difluorocyclopropene.
Energy Technology Data Exchange (ETDEWEB)
Prabhu Gaunkar, N., E-mail: neelampg@iastate.edu; Bouda, N. R. Y.; Nlebedim, I. C.; Hadimani, R. L.; Mina, M.; Jiles, D. C. [Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011 (United States); Bulu, I.; Ganesan, K.; Song, Y. Q. [Schlumberger-Doll Research, Cambridge, Massachusetts 02139 (United States)
2015-05-07
This work presents investigations and detailed analysis of ringing in a non-resonant pulsed nuclear magnetic resonance (NMR) circuit. Ringing is a commonly observed phenomenon in high power switching circuits. The oscillations described as ringing impede measurements in pulsed NMR systems. It is therefore desirable that those oscillations decay fast. It is often assumed that one of the causes behind ringing is the role of the magnetic core used in the antenna (acting as an inductive load). We will demonstrate that an LRC subcircuit is also set-up due to the inductive load and needs to be considered due to its parasitic effects. It is observed that the parasitics associated with the inductive load become important at certain frequencies. The output response can be related to the response of an under-damped circuit and to the magnetic core material. This research work demonstrates and discusses ways of controlling ringing by considering interrelationships between different contributing factors.
Harada, Koji; Yahiro, Masanobu
2016-01-01
We formulate the next-to-leading order nuclear effective field theory without pions in the two-nucleon sector on a spatial lattice, and investigate nonperturbative renormalization group flows in the strong coupling region by diagonalizing the Hamiltonian numerically. The cutoff (proportional to the inverse of the lattice constant) dependence of the coupling constants is obtained by changing the lattice constant with the binding energy and the asymptotic normalization constant for the groundstate being fixed. We argue that the critical line can be obtained by looking at the finite-size dependence of the groundstate energy. We determine the relevant operator and locate the nontrivial fixed point, as well as the physical flow line corresponding to the deuteron in the two-dimensional plane of dimensionless coupling constants. It turns out that the location of the nontrivial fixed point is very close to the one obtained by the corresponding analytic calculation, but the relevant operator is quite different.
Effects of etching time on alpha tracks in Solid state Nuclear Track Detectors
Gillmore, Gavin; Wertheim, David; Crust, Simon
2013-04-01
Inhalation of radon gas is thought to be the cause of about 1100 lung cancer related deaths each year in the UK (1). Radon concentrations can be monitored using Solid State Nuclear Track Detectors (SSNTDs) as the natural decay of radon results in alpha particles which form tracks in the detectors and these tracks can be etched in order to enable microscopic analysis. We have previously shown that confocal microscopy can be used for 3D visualisation of etched SSNTDs (2, 3). The aim of the study was to examine the effect of etching time on the appearance of alpha tracks in SSNTDs. Six SSNTDs were placed in a chamber with a luminous dial watch for a fixed period. The detectors were etched for between 30 minutes and 4.5 hours using 6M NaOH at a temperature of 90oC. A 'LEXT' OLS4000 confocal laser scanning microscope (Olympus Corporation, Japan) was used to acquire 2D and 3D image datasets of CR-39 plastic SSNTDs. Confocal microscope 3D images were acquired using a x50 or x100 objective lens. Data were saved as images and also spreadsheet files with height measurements. Software was written using MATLAB (The MathWorks Inc., USA) to analyse the height data. Comparing the 30 minute and 4 hour etching time detectors, we observed that there were marked differences in track area; the lower the etching time the smaller the track area. The degree to which etching may prevent visualising adjacent tracks also requires further study as it is possible that etching could result in some tracks being subsumed in other tracks. On the other hand if there is too little etching, track sizes would be reduced and hence could be more difficult to image; thus there is a balance required to obtain suitable measurement accuracy. (1) Gray A, Read S, McGale P and Darby S. Lung cancer deaths from indoor radon and the cost effectiveness and potential of policies to reduce them. BMJ 2009; 338: a3110. (2) Wertheim D, Gillmore G, Brown L, and Petford N. A new method of imaging particle tracks in
Energy Technology Data Exchange (ETDEWEB)
Ye, Song Hae; Ryu, Hosun; Kim, Minyi; Lee, Euijong [KHNP CRI, Daejeon (Korea, Republic of)
2016-10-15
The electromagnetic pulse (EMP) can be used as a strategic weapon by inducing damaging voltage and currents that the electrical circuits are not designed to withstand. EMPs are lethal to electronic systems. All EMP events have three common components: a source, coupling path, and receptor. It can also travel across power grids, destroying electronics as it passes in less than a second. There have been no research studies on the effect analysis for EMP in domestic nuclear power plants and power grids. To ensure the safety of operating nuclear power plants in this environment, the emission of EMP is needed for the effect analysis and safety measures against EMPs. Actually, it is difficult and inefficient to conduct the effect analysis of EMP with all the equipment and systems in nuclear power plants (NPPs). Therefore, this paper presents the results of establishing the object selection criteria for the effect analysis of EMP in operating nuclear power plants through reviewing previous research in the US and the safety related design concepts in domestic NPPs. It is not necessary to ensure the continued operation of the plant in intense multiple EMP environments. The most probable effect of EMP on a modern nuclear power plant is an unscheduled shutdown. EMP may also cause an extended shutdown by the unnecessary activation of some safety related systems. In general, EMP can be considered a nuisance to nuclear plants, but it is not considered a serious threat to plant safety. The results of EMP effect analysis show less possibility of failure in the tested individual equipment. It was also confirmed that there is no possibility of simultaneous failure for devices in charge of the safety shutdown in the NPP.
Molecular collision processes in the presence of picosecond laser pulses
Lee, H. W.; George, T. F.
1979-01-01
Radiative transitions in molecular collision processes taking place in the presence of picosecond pulses are studied within a semiclassical formalism. An expression for adiabatic potential surfaces in the electronic-field representation is obtained, which directly leads to the evaluation of transition probabilities. Calculations with a Landau-Zener-type model indicate that picosecond pulses can be much more effective in inducing transitions than a single long pulse of the same intensity and the same total energy, if the intensity is sufficiently high that the perturbation treatment is not valid.
Entanglement dynamics of a strongly driven trapped atom
Roghani, Maryam; Breuer, Heinz-Peter
2011-01-01
We study the entanglement between the internal electronic and the external vibrational degrees of freedom of a trapped atom which is driven by two lasers into electromagnetically-induced transparency. It is shown that basic features of the intricate entanglement dynamics can be traced to Landau-Zener splittings (avoided crossings) in the spectrum of the atom-laser field Hamiltonian. We further construct an effective Hamiltonian that describes the behavior of entanglement under dissipation induced by spontaneous emission processes. The proposed approach is applicable to a broad range of scenarios for the control of entanglement between electronic and translational degrees of freedom of trapped atoms through suitable laser fields.
Laser-induced charge transfer in the HeH/sup 2 +/ quasimolecule
Energy Technology Data Exchange (ETDEWEB)
Errea, L.F.; Mendez, L.; Riera, A.
1983-11-01
In a recent publication, the charge transfer cross section for He/sup 2 +/+H(ls) collisions through photon-assisted 2psigma--3dsigma transitions was calculated; this calculation, however, contained several errors whose quantitative--even qualitative effect on the results is not obvious. We present a correct evaluation of this laser-induced cross section, which turns out to be larger, and present a maximum for longer wavelengths, than the values previously reported. In addition, we have checked the applicability of perturbation theory, of the stationary phase, uniform and Landau--Zener approximations, and the importance of potentially competitive photon-assisted reactions.
Energy Technology Data Exchange (ETDEWEB)
Carvalho, Jose Antonio B.; Saldanha, Pedro L.C. [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil). Coordenacao-Geral de Reatores e Ciclo Combustivel], e-mail: jantonio@cnen.gov.br, e-mail: saldanha@cnen.gov.br; Melo, Paulo F.F. Frutuoso e [Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear], e-mail: frutuoso@con.ufrj.br
2009-07-01
Safety management has changed with the evolution of management methods, named Quality Systems, moving from Quality Control, where the focus was the product, passing through Quality Assurance, which takes care of the whole manufacturing process and reaching the Total Quality Management, where policies and goals are established. Nowadays, there is a trend towards Management Systems, which integrate all different aspects related to the management of an organization (safety, environment, security, quality, costs and, etc), but it is necessary to have features to establish and assure that safety overrides the remaining aspects. The most usual way to reach this goal is to establish a policy where safety is a priority, but its implementation and the assessment of its effectiveness are no so simple. Nuclear power plants usually have over a hundred safety indicators in many processes dedicated to prevent and detect problems, although a lot of them do not evaluate these indicators in an integrated manner or point out degradation trends of organizational aspects, which can affect the plant safety. This work develops an aggregation of proactive and reactive safety indicators in order to evaluate the effectiveness of nuclear power plant safety management and to detect, at early stages, signs of process degradation or activities used to establish, maintain and assure safety conditions. The aggregation integrates indicators of the usual processes and is based on the manner the management activities have been developed in the last decades, that is: Planning, Doing, Checking and Acting - known as PDCA cycle - plus a fifth element related to the capability of those who perform safety activities. The proposed aggregation is in accordance to Brazilian standards and international recommendations and constitutes a friendly link between the top management level and the daily aspects of the organization. (author)
An estimate of Sandia resources for underground nuclear weapons effects testing.
Energy Technology Data Exchange (ETDEWEB)
Bomber, Thomas M.; Zeuch, David Henry
2003-11-01
We conducted a study of the time and resources that would be required for Sandia National Laboratories to once again perform nuclear weapons effects experiments of the sort that it did in the past. The study is predicated on the assumptions that if underground nuclear weapons effects testing (UG/NWET) is ever resumed, (1) a brief series of tests (i.e., 2-3) would be done, and (2) all required resources other than those specific to SNL experiments would be provided by others. The questions that we sought to answer were: (1) What experiments would SNL want to do and why? (2) How much would they cost? (3) How long would they take to field? To answer these questions, we convened panels of subject matter experts first to identify five experiments representative of those that SNL has done in the past, and then to determine the costs and timelines to design, fabricate and field each of them. We found that it would cost $76M to $84M to do all five experiments, including 164 to 174 FTEs to conduct all five experiments in a single test. Planning and expenditures for some of the experiments needed to start as early as 5.5 years prior to zero-day, and some work would continue up to 2 years beyond the event. Using experienced personnel as mentors, SNL could probably field such experiments within the next five years. However, beyond that time frame, loss of personnel would place us in the position of essentially starting over.
Jin, Long; Zhu, Hai-Ying; Guo, Qing; Li, Xiao-Chen; Zhang, Yu-Chen; Cui, Cheng-Du; Li, Wen-Xue; Cui, Zheng-Yun; Yin, Xi-Jun; Kang, Jin-Dan
2017-01-01
Cloning remains as an important technique to enhance the reconstitution and distribution of animal population with high-genetic merit. One of the major detrimental factors of this technique is the abnormal epigenetic modifications. MGCD0103 is known as a histone deacetylase inhibitor. In this study, we investigated the effect of MGCD0103 on the in vitro blastocyst formation rate in porcine somatic cell nuclear transferred (SCNT) embryos and expression in acetylation of the histone H3 lysine 9 and histone H4 lysine 12. We compared the in vitro embryonic development of SCNT embryos treated with different concentrations of MGCD0103 for 24 hours. Our results reported that treating with 0.2-μM MGCD0103 for 24 hours effectively improved the development of SCNT embryos, in comparison to the control group (blastocyst formation rate, 25.5 vs. 10.7%, P transferred into two surrogate sows, one of whom became pregnant and three fetuses developed. These results suggest that MGCD0103 can enhance the nuclear reprogramming and improve in vitro developmental potential of porcine SCNT embryos.
Energy Technology Data Exchange (ETDEWEB)
Bozzolan, Jean-Claude
2006-07-01
Accidents caused by domino effect are among the most severe accidents in the chemical and process industry. Although the destructive potential of these accidental scenarios is widely known, little attention has been paid to this problem in the technical literature and a complete methodology for quantitative assessment of domino accidents contribution to industrial risk is still lacking. The present study proposed a systematic procedure for the quantitative assessment of the risk caused by domino effect in chemical plants that are part of nuclear fuel cycle plants. This work is based on recent advances in the modeling of fire and explosion damage to process equipment due to different escalation vectors (heat radiation, overpressure and fragment projection). Available data from literature and specific vulnerability models derived for several categories of process equipment had been used in the present work. The proposed procedure is applied to a typical storage area of a reconversion plant situated in a complex that shelters other nuclear fuel cycle facilities. The top-events and escalation vectors are identified, their consequences estimated and credible domino scenarios selected on the basis of their frequencies. (author)
Nuclear winter or nuclear fall?
Berger, André
Climate is universal. If a major modern nuclear war (i.e., with a large number of small-yield weapons) were to happen, it is not even necessary to have a specific part of the world directly involved for there to be cause to worry about the consequences for its inhabitants and their future. Indeed, smoke from fires ignited by the nuclear explosions would be transported by winds all over the world, causing dark and cold. According to the first study, by Turco et al. [1983], air surface temperature over continental areas of the northern mid-latitudes (assumed to be the nuclear war theatre) would fall to winter levels even in summer (hence the term “nuclear winter”) and induce drastic climatic conditions for several months at least. The devastating effects of a nuclear war would thus last much longer than was assumed initially. Discussing to what extent these estimations of long-term impacts on climate are reliable is the purpose of this article.
Relativistic heavy-atom effects on heavy-atom nuclear shieldings
Lantto, Perttu; Romero, Rodolfo H.; Gómez, Sergio S.; Aucar, Gustavo A.; Vaara, Juha
2006-11-01
The principal relativistic heavy-atom effects on the nuclear magnetic resonance (NMR) shielding tensor of the heavy atom itself (HAHA effects) are calculated using ab initio methods at the level of the Breit-Pauli Hamiltonian. This is the first systematic study of the main HAHA effects on nuclear shielding and chemical shift by perturbational relativistic approach. The dependence of the HAHA effects on the chemical environment of the heavy atom is investigated for the closed-shell X2+, X4+, XH2, and XH3- (X =Si-Pb) as well as X3+, XH3, and XF3 (X =P-Bi) systems. Fully relativistic Dirac-Hartree-Fock calculations are carried out for comparison. It is necessary in the Breit-Pauli approach to include the second-order magnetic-field-dependent spin-orbit (SO) shielding contribution as it is the larger SO term in XH3-, XH3, and XF3, and is equally large in XH2 as the conventional, third-order field-independent spin-orbit contribution. Considering the chemical shift, the third-order SO mechanism contributes two-thirds of the difference of ˜1500ppm between BiH3 and BiF3. The second-order SO mechanism and the numerically largest relativistic effect, which arises from the cross-term contribution of the Fermi contact hyperfine interaction and the relativistically modified spin-Zeeman interaction (FC/SZ-KE), are isotropic and practically independent of electron correlation effects as well as the chemical environment of the heavy atom. The third-order SO terms depend on these factors and contribute both to heavy-atom shielding anisotropy and NMR chemical shifts. While a qualitative picture of heavy-atom chemical shifts is already obtained at the nonrelativistic level of theory, reliable shifts may be expected after including the third-order SO contributions only, especially when calculations are carried out at correlated level. The FC/SZ-KE contribution to shielding is almost completely produced in the s orbitals of the heavy atom, with values diminishing with the principal
Energy Technology Data Exchange (ETDEWEB)
Le Pape, Y., E-mail: lepapeym@ornl.gov; Field, K.G.; Remec, I.
2015-02-15
Highlights: • A micromechanical model for irradiated concrete is proposed. • Confrontation with literature data is successful. • Neutron radiation-induced volumetric expansion is a predominant degradation mode. • The nature of the aggregate alters the severity of damage to irradiated concrete. - Abstract: The need to understand and characterize the effects of neutron irradiation on concrete has become urgent because of the possible extension of service life of many nuclear power generating stations. Current knowledge is primarily based on a collection of data obtained in test reactors. These data are inherently difficult to interpret because materials and testing conditions are inconsistent. A micromechanical approach based on the Hashin composite sphere model is presented to derive a first-order separation of the effects of radiation on cement paste and aggregate, and, also, on their interaction. Although the scarcity of available data limits the validation of the model, it appears that, without negating a possible gamma-ray induced effect, the neutron-induced damage and swelling of aggregate plays a predominant role on the overall concrete expansion and the damage of the cement paste. The radiation-induced volumetric expansion (RIVE) effects can also be aided by temperature elevation and shrinkage in the cement paste.
Fossión, Rubén
2010-09-01
The atomic nucleus is a typical example of a many-body problem. On the one hand, the number of nucleons (protons and neutrons) that constitute the nucleus is too large to allow for exact calculations. On the other hand, the number of constituent particles is too small for the individual nuclear excitation states to be explained by statistical methods. Another problem, particular for the atomic nucleus, is that the nucleon-nucleon (n-n) interaction is not one of the fundamental forces of Nature, and is hard to put in a single closed equation. The nucleon-nucleon interaction also behaves differently between two free nucleons (bare interaction) and between two nucleons in the nuclear medium (dressed interaction). Because of the above reasons, specific nuclear many-body models have been devised of which each one sheds light on some selected aspects of nuclear structure. Only combining the viewpoints of different models, a global insight of the atomic nucleus can be gained. In this chapter, we revise the the Nuclear Shell Model as an example of the microscopic approach, and the Collective Model as an example of the geometric approach. Finally, we study the statistical properties of nuclear spectra, basing on symmetry principles, to find out whether there is quantum chaos in the atomic nucleus. All three major approaches have been rewarded with the Nobel Prize of Physics. In the text, we will stress how each approach introduces its own series of approximations to reduce the prohibitingly large number of degrees of freedom of the full many-body problem to a smaller manageable number of effective degrees of freedom.
Roles and effects of pyroprocessing for spent nuclear fuel management in South Korea
Ahn, J
2014-01-01
Republic of Korea (ROK) changed its spent nuclear fuel policy from the once-through usage and direct disposal to a total system approach that includes pyroprocessing, sodium-cooled fast reactors, and a two-tier geological repository to achieve a breakthrough for domestic deadlock situation and thus enable sustainable utilization of nuclear power, but caused disagreement in the bilateral negotiation with the United States (US) for the Nuclear Cooperation Agreement. Analysis has revealed that t...
Vasconcellos, C. A. Zen
2015-12-01
Nuclear science has developed many excellent theoretical models for many-body systems in the domain of the baryon-meson strong interaction for the nucleus and nuclear matter at low, medium and high densities. However, a full microscopic understanding of nuclear systems in the extreme density domain of compact stars is still lacking. The aim of this contribution is to shed some light on open questions facing the nuclear many-body problem at the very high density domain. Here we focus our attention on the conceptual issue of naturalness and its role in shaping the baryon-meson phase space dynamics in the description of the equation of state (EoS) of nuclear matter and neutrons stars. In particular, in order to stimulate possible new directions of research, we discuss relevant aspects of a recently developed relativistic effective theory for nuclear matter within Quantum Hadrodynamics (QHD) with genuine many-body forces and derivative natural parametric couplings. Among other topics we discuss in this work the connection of this theory with other known effective QHD models of the literature and its potentiality in describing a new physics for dense matter. The model with parameterized couplings exhausts the whole fundamental baryon octet (n, p, Σ-, Σ0, Σ+, Λ, Ξ-, Ξ0) and simulates n-order corrections to the minimal Yukawa baryon couplings by considering nonlinear self-couplings of meson fields and meson-meson interaction terms coupled to the baryon fields involving scalar-isoscalar (σ, σ∗), vector-isoscalar (ω, ɸ), vector-isovector (ϱ) and scalar-isovector (δ) virtual sectors. Following recent experimental results, we consider in our calculations the extreme case where the Σ- experiences such a strong repulsion that its influence in the nuclear structure of a neutron star is excluded at all. A few examples of calculations of properties of neutron stars are shown and prospects for the future are discussed.
Energy Technology Data Exchange (ETDEWEB)
Urena N, F.; Reyes G, A. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)
1999-07-01
The objective of this work is to determine the chemical effects produced by the gamma rays and beta particles radiations on the powdery milk. This work treats on the Pre-dose analysis, sampling radiating, electron spin resonance, acidity, proteins, aminoacids, lactose, fatty acids, peroxides, as well as its experimental results. (Author)
Berlyn, Graeme P.; Dhillon, Sukhraj S.; Koslow, Evan E.
1980-03-01
Technetium-99 (99Tc) is formed in significant amounts (6.2% fission yield) during fission in both nuclear reactors and nuclear bombs. The effects of technetium on soybeans ( Glycine max) were studied in relation to ( a) cytochemical events in the apical meristems of germinating seedlings; ( b) growth responses to 0, 0.04, 0.2, 1.0, 5.0, and 20.0 ppm Tc; ( c) growth responses to varying levels of Tc after a prior 5-day germination on Tc-free media, and ( d) response to Tc in the presence of added manganese. By 20 days, reductions in growth were evident at all levels of Tc except 0.04 ppm (Experiment 2). Root growth was most severely affected, and seedling abnormality at 20 ppm was fivefold greater than that of the controls. The effect of 20 ppm Tc was evident at 10 days when the accumulated absorption dose was approximately 25 rads. The first evidence of damage at this dose was a delay in the initiation of the first trifoliate leaf. The shoot meristem size was 1.2-fold smaller than that of the control; however, there was no cytological evidence of radiation-induced damage. Observation of mitotic figures did not reveal any chromosome aberrations, micronuclei, or chromosome bridges. The lowest level of Tc showing toxicity was 0.2 ppm which resulted in a 31% reduction in growth at 20 days. The accumulated dose was 0.5 rad (0.025 rad/day) and thus it seems unlikely that the rapid inhibition of growth and development is due to radiological toxicity. It is quite probable that the growth effects are due to chemical toxicity possibly due to nutrient competition and/or substitution in uptake or metabolism. However, extremely low doses of radiation have been shown to delay the onset of DNA synthesis (possibly by membrane effects) in Tradescantia and until the actual mechanism of Tc inhibition is determined a radiation effect cannot be totally ruled out.
Nuclear effects on ion heating within the small-angle charged-particle elastic-scattering regime
Andrade, A.; Hale, G. M.
1984-10-01
The effects of nuclear forces (in contrast to pure Coulomb interaction) on the ion heating rate which results from small-angle scattering processes between charged particles in plasmas are investigated within the framework of Fokker-Planck theory. These effects are included through the addition of analytic Coulomb-nuclear interference and nuclear elastic cross sections in the scattering integrals of the dynamical friction coefficient and dispersion tensor. It is found that corrections to traditional Fokker-Planck predictions of the ion-ion energy exchange rate can be calculated and that these corrections are sensitive to the choice of the maximum scattering angle defining the cutoff between small- and large-angle scattering.
Institute of Scientific and Technical Information of China (English)
Rui-lan GAO; Xiao-hong CHEN; Xiao-jie LIN; Xu-dai QIAN; Wei-hong XU; Beng Hock CHONC
2007-01-01
Aim: To investigate the effects of panax notoginosides (PNS) on the proliferation of human hematopoietic stem/progenitor cells, and to explore the signaling path-way of the nuclear transcription factor of the glucocorticoid receptor (GR-NTF) initiated by PNS related with the proliferation. Methods: The human CD34+ cells and bone marrow nuclear cells were exposed to PNS at a concentration of 0, 10, 25,50, and 100 mg/L, respectively, in semi-solid culture system to observe colony forming unite of all lineages, granulocyte, erythrocyte, and megakaryocyte (CFU-GEMM, CFU-GM, CFU-E, and CFU-MK). Three lineages of human hematopoietic cell lines, including granulocytic HL-60, erythrocytic K562, megakaryocytic CHRF-288, and Meg-01 cells were incubated with PNS at 20 mg/L for 14 d. Meanwhile,dexamethasone (Dex) was used as a positive control. The nuclear protein of the cells was analyzed by Western blotting with monoclonal antibodies against the amino or carboxyl terminus of GR-NTF. Electrophoretic mobility shift assay per-formed by using the 32p-radiolabeled GR-NTF consensus oligonucleotide. Results:PNS promoted the proliferation of CD34+ cells and significantly raised the colony numbers of CFU-GEMM by 34.7%~±16.0% over the non-PNS control (P<0.01).PNS also enhanced the proliferation of CFU-GM, CFU-E, and CFU-MK by 39.3%±5.7%, 33.3%±7.3%, and 26.2%±3.2%, respectively. GR-NTF protein levels of either the amino or carboxyl terminus in K562, CHRF-288, and Meg-01 treated by PNS increased by 2.4- 2.8 fold and 1.3- 3.9 fold over the untreated cells. GR-NTF binding activity, initiated by either PNS or Dex, was apparently elevated to form the complex of GR-NTF with DNA as higher density bands in K562 and CHRF-288 cells, and some activity appeared as a band in HL-60 cells induced by PNS.Conclusion: PNS displayed the action of hematopoietic growth factor-like or syn-ergistic efficacy to promote proliferation of human progenitor cells, may play a role in the upregulation of gene
Hyperfine and spin-orbit dynamics in GaAs double quantum dots
Shulman, Michael; Nichol, John; Harvey, Shannon; Pal, Arijeet; Halperin, Bertrand; Umansky, Vladimir; Yacoby, Amir
2015-03-01
Semiconductor quantum dots provide a unique platform for single-particle physics and many-body quantum mechanics. In particular, understanding the dynamics of a single electron interacting with a nuclear spin bath is key to improving spin-based quantum information processing, since the hyperfine interaction limits the performance of many spin qubits. We probe the electron-nuclear interaction by measuring the splitting at the anti-crossing between the electron singlet (S) and m =1 triplet (T +) states in a GaAs double quantum dot. Using Landau-Zener sweeps, we find that the size of this splitting varies by more than an order of magnitude depending on the magnitude and direction of the external magnetic field. These results are consistent with a competition between the spin orbit interaction and the hyperfine interaction, even though the extracted spin orbit length is much larger than the size of the double quantum dot. We confirm these results by using Landau-Zener sweeps to measure the high-frequency correlations in the S-T + splitting that arise from the Larmor precession of the nuclei. These unexpected results have implications for improving the performance of spin-based quantum information processing, as well as improving our understanding of the central spin problem.
Neudert, Oliver; Mattea, Carlos; Stapf, Siegfried
2017-03-01
In the last decade nuclear spin hyperpolarization methods, especially Dynamic Nuclear Polarization (DNP), have provided unprecedented possibilities for various NMR techniques by increasing the sensitivity by several orders of magnitude. Recently, in-situ DNP-enhanced Fast Field Cycling (FFC) relaxometry was shown to provide appreciable NMR signal enhancements in liquids and viscous systems. In this work, a measurement protocol for DNP-enhanced NMR studies is introduced which enables the selective detection of nuclear spin hyperpolarized by either Overhauser effect or solid effect DNP. Based on field-cycled DNP and relaxation studies it is shown that these methods allow for the independent measurement of polymer and solvent nuclear spins in a concentrated solution of high molecular weight polybutadiene in benzene doped with α,γ-bisdiphenylene-β-phenylallyl radical. Appreciable NMR signal enhancements of about 10-fold were obtained for both constituents. Moreover, qualitative information about the dynamics of the radical and solvent was obtained. Selective DNP-enhanced FFC relaxometry is applied for the measurement of the 1H nuclear magnetic relaxation dispersion of both constituents with improved precision. The introduced method is expected to greatly facilitate NMR studies of complex systems with multiple overlapping signal contributions that cannot be distinguished by standard methods.
The effect of rough surfaces on Nuclear Magnetic Resonance relaxation experiments
Nordin, Matias
2015-01-01
Most theoretical treatments of Nuclear Magnetic Resonance (NMR) assume ideal smooth geometries (i.e. slabs, spheres or cylinders) with well-defined surface-to-volume ratios (S/V). This same assumption is commonly adopted for naturally occurring materials, where the pore geometry can differ substantially from these ideal shapes. In this paper the effect of surface roughness on the T2 relaxation spectrum is studied. By homogenization of the problem using an electrostatic approach it is found that the effective surface relaxivity can increase dramatically in the presence of rough surfaces. This leads to a situation where the system responds as a smooth pore, but with significantly increased surface relaxivity. As a result: the standard approach of assuming an idealized geometry with known surface-to-volume and inverting the T2 relaxation spectrum to a pore size distribution is no longer valid. The effective relaxivity is found to be fairly insensitive to the shape of roughness but strongly dependent on the width...
Hydrogen adsorption in metal-organic frameworks: The role of nuclear quantum effects
Wahiduzzaman, Mohammad; Walther, Christian F. J.; Heine, Thomas
2014-08-01
The role of nuclear quantum effects on the adsorption of molecular hydrogen in metal-organic frameworks (MOFs) has been investigated on grounds of Grand-Canonical Quantized Liquid Density-Functional Theory (GC-QLDFT) calculations. For this purpose, we have carefully validated classical H2-host interaction potentials that are obtained by fitting Born-Oppenheimer ab initio reference data. The hydrogen adsorption has first been assessed classically using Liquid Density-Functional Theory and the Grand-Canonical Monte Carlo methods. The results have been compared against the semi-classical treatment of quantum effects by applying the Feynman-Hibbs correction to the Born-Oppenheimer-derived potentials, and by explicit treatment within the GC-QLDFT. The results are compared with experimental data and indicate pronounced quantum and possibly many-particle effects. After validation calculations have been carried out for IRMOF-1 (MOF-5), GC-QLDFT is applied to study the adsorption of H2 in a series of MOFs, including IRMOF-4, -6, -8, -9, -10, -12, -14, -16, -18, and MOF-177. Finally, we discuss the evolution of the H2 quantum fluid with increasing pressure and lowering temperature.
Energy Technology Data Exchange (ETDEWEB)
Madni, I.K. [Brookhaven National Lab., Upton, NY (United States); Cazzoli, E.G.; Khatib-Rahbar, M. [Energy Research, Inc., Rockville, MD (United States)
1995-11-01
During certain hypothetical severe accidents in a nuclear power plant, radionuclides could be released to the environment as a plume. Prediction of the atmospheric dispersion and transport of these radionuclides is important for assessment of the risk to the public from such accidents. A simplified PC-based model was developed that predicts time-integrated air concentration of each radionuclide at any location from release as a function of time integrated source strength using the Gaussian plume model. The solution procedure involves direct analytic integration of air concentration equations over time and position, using simplified meteorology. The formulation allows for dry and wet deposition, radioactive decay and daughter buildup, reactor building wake effects, the inversion lid effect, plume rise due to buoyancy or momentum, release duration, and grass height. Based on air and ground concentrations of the radionuclides, the early dose to an individual is calculated via cloudshine, groundshine, and inhalation. The model also calculates early health effects based on the doses. This paper presents aspects of the model that would be of interest to the prediction of environmental flows and their public consequences.
Directory of Open Access Journals (Sweden)
Tielin Han
2016-01-01
Full Text Available Long-term immersion was adopted to explore the damage deterioration and mechanical properties of granite under different chemical solutions. Here, granite was selected as the candidate of parent rocks for nuclear waste storage. The physical and mechanical properties of variation regularity immersed in various chemical solutions were analyzed. Meanwhile, the damage variable based on the variation in porosity was used in the quantitative analysis of chemical damage deterioration degree. Experimental results show that granite has a significant weakening tendency after chemical corrosion. The fracture toughness KIC, splitting tensile strength, and compressive strength all demonstrate the same deteriorating trend with chemical corrosion time. However, a difference exists in the deterioration degree of the mechanical parameters; that is, the deterioration degree of fracture toughness KIC is the greatest followed by those of splitting tensile strength and compressive strength, which are relatively smaller. Strong acid solutions may aggravate chemical damage deterioration in granite. By contrast, strong alkaline solutions have a certain inhibiting effect on chemical damage deterioration. The chemical solutions that feature various compositions may have different effects on chemical damage degree; that is, SO42- ions have a greater effect on the chemical damage in granite than HCO3- ions.
Hydrogen adsorption in metal-organic frameworks: the role of nuclear quantum effects
Wahiduzzaman, Mohammad; Heine, Thomas
2014-01-01
The role of nuclear quantum effects on the adsorption of molecular hydrogen in metal-organic frameworks (MOFs) has been investigated on grounds of Grand-Canonical Quantized Liquid Density-Functional Theory (GC-QLDFT) calculations. For this purpose, we have carefully validated classical H2 -host interaction potentials that are obtained by fitting Born-Oppenheimer ab initio reference data. The hydrogen adsorption has first been assessed classically using Liquid Density-Functional Theory (LDFT) and the Grand-Canonical Monte Carlo (GCMC) methods. The results have been compared against the semi-classical treatment of quantum effects by applying the Feynman-Hibbs correction to the Born-Oppenheimer-derived potentials, and by explicit treatment within the Grand-Canonical Quantized Liquid Density-Functional Theory (GC-QLDFT). The results are compared with experimental data and indicate pronounced quantum and possibly many-particle effects. After validation calculations have been carried out for IRMOF-1 (MOF-5), GC-QLD...
Nuclear safeguards; Salvaguardias nucleares
Energy Technology Data Exchange (ETDEWEB)
Zurron, O.
2015-07-01
Safeguards control at the Juzbado Plant is implemented through the joint IAEA/EURATOM partnership approach in force within the European Union for all nuclear facilities. this verification agreement is designed to minimize burden on the operators whilst ensuring that both inspectorate achieve the objectives related to their respective safeguards regimes. This paper outlines the safeguards approaches followed by the inspectorate and the particularities of the Juzbado Plants nuclear material accountancy and control system. (Authors)
Helenius, Ilkka; Eskola, Kari J
2016-01-01
We report on our studies of the neutron-skin effects in high-$p_{\\mathrm{T}}$ observables at the LHC. We study the impact of the neutron-skin effect on the centrality dependence of inclusive direct photon, high-$p_{\\mathrm{T}}$ hadron and $W^{\\pm}$ production in nuclear collisions at the LHC. The neutron-skin effect refers to the observation that in spherical heavy nuclei, the tail of the neutron distribution extends farther than the distribution of protons, which can affect observables sensitive to electroweak phenomena in very peripheral collisions. We quantify this effect for direct photons, charged hadrons and W bosons as a function of the collision centrality. In the case of direct photons we find that it will be difficult to resolve the neutron-skin effect, given the uncertainties in the nuclear PDFs and their spatial dependence. With charged hadrons and W's, however, up to 20~\\% unambiguous effects are expected for most peripheral collisions.
Track structure based modelling of light ion radiation effects on nuclear and mitochondrial DNA
Schmitt, Elke; Ottolenghi, Andrea; Dingfelder, Michael; Friedland, Werner; Kundrat, Pavel; Baiocco, Giorgio
2016-07-01
Space radiation risk assessment is of great importance for manned spaceflights in order to estimate risks and to develop counter-measures to reduce them. Biophysical simulations with PARTRAC can help greatly to improve the understanding of initial biological response to ionizing radiation. Results from modelling radiation quality dependent DNA damage and repair mechanisms up to chromosomal aberrations (e.g. dicentrics) can be used to predict radiation effects depending on the kind of mixed radiation field exposure. Especially dicentric yields can serve as a biomarker for an increased risk due to radiation and hence as an indicator for the effectiveness of the used shielding. PARTRAC [1] is a multi-scale biophysical research MC code for track structure based initial DNA damage and damage response modelling. It integrates physics, radiochemistry, detailed nuclear DNA structure and molecular biology of DNA repair by NHEJ-pathway to assess radiation effects on cellular level [2]. Ongoing experiments with quasi-homogeneously distributed compared to sub-micrometre focused bunches of protons, lithium and carbon ions allow a separation of effects due to DNA damage complexity on nanometre scale from damage clustering on (sub-) micrometre scale [3, 4]. These data provide an unprecedented benchmark for the DNA damage response model in PARTRAC and help understand the mechanisms leading to cell killing and chromosomal aberrations (e.g. dicentrics) induction. A large part of space radiation is due to a mixed ion field of high energy protons and few heavier ions that can be only partly absorbed by the shielding. Radiation damage induced by low-energy ions significantly contributes to the high relative biological efficiency (RBE) of ion beams around Bragg peak regions. For slow light ions the physical cross section data basis in PARTRAC has been extended to investigate radiation quality effects in the Bragg peak region [5]. The resulting range and LET values agree with ICRU data
Energy Technology Data Exchange (ETDEWEB)
Palmiotti, Giuseppe; Salvatores, Massimo; Hursin, Mathieu; Kodeli, Ivo; Gabrielli, Fabrizio; Hummel, Andrew
2016-11-01
A critical examination of the role of uncertainty assessment, target accuracies, role of integral experiment for validation and, consequently, of data adjustments methods is underway since several years at OECD-NEA, the objective being to provide criteria and practical approaches to use effectively the results of sensitivity analyses and cross section adjustments for feedback to evaluators and experimentalists in order to improve without ambiguities the knowledge of neutron cross sections, uncertainties, and correlations to be used in a wide range of applications and to meet new requirements and constraints for innovative reactor and fuel cycle system design. An approach will be described that expands as much as possible the use in the adjustment procedure of selected integral experiments that provide information on “elementary” phenomena, on separated individual physics effects related to specific isotopes or on specific energy ranges. An application to a large experimental data base has been performed and the results are discussed in the perspective of new evaluation projects like the CIELO initiative.
Vizkelethy, G.; King, M. P.; Aktas, O.; Kizilyalli, I. C.; Kaplar, R. J.
2017-08-01
Radiation responses of high-voltage, vertical gallium-nitride (GaN) diodes were investigated using Sandia National Laboratories' nuclear microprobe. Effects of the ionization and the displacement damage were studied using various ion beams. We found that the devices show avalanche effect for heavy ions operated under bias well below the breakdown voltage. The displacement damage experiments showed a surprising effect for moderate damage: the charge collection efficiency demonstrated an increase instead of a decrease for higher bias voltages.
Effects of Microscopic Three-body Forces in Asymmetric Nuclear Matter
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The efiects of microscopic three-body forces on the equatioil of state(EOS)and the single particle properties of isospin asymmetric nuclear matter have been studied within Brueckner-Hartree-Fock framework~[1]The microscopic three-body force model constructed from meson exchange current approach in Ref.~[2] has been extended to isospin asymmetric nuclear matter
2010-06-01
MIRVs) and anti-ballistic missile ( ABM ) technology began to re-invigorate thinking regarding nuclear warfighting explored under McNamara‘s counter...Nuclear Weapons and Nonproliferation: A Reference Handbook. Contemporary World Issues. ( ABC -CLIO, 2008), 6. policy proved deadly for this initial non
A time-correlation function approach to nuclear dynamical effects in X-ray spectroscopy
Karsten, Sven; Aziz, Saadullah G; Ivanov, Sergei D; Kühn, Oliver
2016-01-01
Modern X-ray spectroscopy has proven itself as a robust tool for probing the electronic structure of atoms in complex environments. Despite working on energy scales that are much larger than those corresponding to nuclear motions, taking nuclear dynamics and the associated nuclear correlations into account may be of importance for X-ray spectroscopy. Recently, we have developed an efficient protocol to account for nuclear dynamics in X-ray absorption and resonant inelastic X-ray scattering spectra [Karsten \\textit{et al.} arXiv:1608.03436], based on ground state molecular dynamics accompanied with state-of-the-art calculations of electronic excitation energies and transition dipoles. Here, we present an alternative derivation of the formalism and elaborate on the developed simulation protocol on the examples of gas phase and bulk water. The specific spectroscopic features stemming from the nuclear motions are analyzed and traced down to the dynamics of electronic energy gaps and transition dipole correlation ...
Lagemaat, M.W.; Bank, B.L. van de; Sati, P.; Li, S.; Maas, M.C.; Scheenen, T.W.J.
2016-01-01
An often-employed strategy to enhance signals in (31) P MRS is the generation of the nuclear Overhauser effect (NOE) by saturation of the water resonance. However, NOE allegedly increases the variability of the (31) P data, because variation is reported in NOE enhancements. This would negate the
Taira, Wataru; Hiyama, Atsuki; Nohara, Chiyo; Sakauchi, Ko; Otaki, Joji M.
2015-01-01
One important public concern in Japan is the potential health effects on animals and humans that live in the Tohoku-Kanto districts associated with the ingestion of foods contaminated with artificial radionuclides from the collapsed Fukushima Dai-ichi Nuclear Power Plant. Additionally, transgenerational or heritable effects of radiation exposure are also important public concerns because these effects could cause long-term changes in animal and human populations. Here, we concisely review our findings and implications related to the ingestional and transgenerational effects of radiation exposure on the pale grass blue butterfly, Zizeeria maha, which coexists with humans. The butterfly larval ingestion of contaminated leaves found in areas of human habitation, even at low doses, resulted in morphological abnormalities and death for some individuals, whereas other individuals were not affected, at least morphologically. This variable sensitivity serves as a basis for the adaptive evolution of radiation resistance. The distribution of abnormality and mortality rates from low to high doses fits well with a Weibull function model or a power function model. The offspring generated by morphologically normal individuals that consumed contaminated leaves exhibited high mortality rates when fed contaminated leaves; importantly, low mortality rates were restored when they were fed non-contaminated leaves. Our field monitoring over 3 years (2011–2013) indicated that abnormality and mortality rates peaked primarily in the fall of 2011 and decreased afterwards to normal levels. These findings indicate high impacts of early exposure and transgenerationally accumulated radiation effects over a specific period; however, the population regained normality relatively quickly after ∼15 generations within 3 years. PMID:26661851
Taira, Wataru; Hiyama, Atsuki; Nohara, Chiyo; Sakauchi, Ko; Otaki, Joji M
2015-12-01
One important public concern in Japan is the potential health effects on animals and humans that live in the Tohoku-Kanto districts associated with the ingestion of foods contaminated with artificial radionuclides from the collapsed Fukushima Dai-ichi Nuclear Power Plant. Additionally, transgenerational or heritable effects of radiation exposure are also important public concerns because these effects could cause long-term changes in animal and human populations. Here, we concisely review our findings and implications related to the ingestional and transgenerational effects of radiation exposure on the pale grass blue butterfly, Zizeeria maha, which coexists with humans. The butterfly larval ingestion of contaminated leaves found in areas of human habitation, even at low doses, resulted in morphological abnormalities and death for some individuals, whereas other individuals were not affected, at least morphologically. This variable sensitivity serves as a basis for the adaptive evolution of radiation resistance. The distribution of abnormality and mortality rates from low to high doses fits well with a Weibull function model or a power function model. The offspring generated by morphologically normal individuals that consumed contaminated leaves exhibited high mortality rates when fed contaminated leaves; importantly, low mortality rates were restored when they were fed non-contaminated leaves. Our field monitoring over 3 years (2011-2013) indicated that abnormality and mortality rates peaked primarily in the fall of 2011 and decreased afterwards to normal levels. These findings indicate high impacts of early exposure and transgenerationally accumulated radiation effects over a specific period; however, the population regained normality relatively quickly after ∼15 generations within 3 years.
Liu, Jing-Jing
2016-01-01
Based on the theory of relativistic superstrong magnetic fields(SMFs), by using the method of the Thomas-Fermi-Dirac approximations, we investigate the problem of strong electron screening(SES) in SMFs, and the influence of SES on the nuclear reaction of $^{23}$Mg $(p, \\gamma)$$^{24}$Al. Our calculations show that the nuclear reaction will be markedly effected by the SES in SMFs in the surface of magnetars. Our calculated screening rates can increase two orders of magnitude due to SES in SMFs.
Brons, S; Elsässer, T; Ferrari, A; Gadioli, E; Mairani, A; Parodi, K; Sala, P; Scholz, M; Sommerer, F
2010-01-01
Monte Carlo codes are rapidly spreading among hadron therapy community due to their sophisticated nuclear/electromagnetic models which allow an improved description of the complex mixed radiation field produced by nuclear reactions in therapeutic irradiation. In this contribution results obtained with the Monte Carlo code FLUKA are presented focusing on the production of secondary fragments in carbon ion interaction with water and on CT-based calculations of absorbed and biological effective dose for typical clinical situations. The results of the simulations are compared with the available experimental data and with the predictions of the GSI analytical treatment planning code TRiP.
Energy Technology Data Exchange (ETDEWEB)
Sang, David (Bishop Luffa Comprehensive School, Chichester (UK))
1990-01-01
Nuclear Physics covers the aspects of radioactivity and nuclear physics dealt with in the syllabuses of all the A-level examination boards; in particular, it provides detailed coverage of the Joint Matriculation Board option in nuclear physics. It deals with the discovery of the atomic nucleus, the physics of nuclear processes, and nuclear technology. (author).
Zhu, X X; Macdonald, P M
1995-05-01
An empirical compensation function for the correction of eddy current effects in the Stejskal-Tanner pulsed-gradient spin-echo (PGSE) nuclear magnetic resonance (NMR) experiments has been established. Eddy currents may arise as a result of the application of sharp and strong gradient pulses and may cause severe distortion of the NMR signals. In this method, the length of one gradient pulse is altered to compensate for the eddy current effects. The compensation is considered to be ideal when the position and the phase of the spin-echo maximum obtained from an aqueous solution of poly(ethylene glycol) (PEG) is the same in the presence and absence of a gradient pulse in the PGSE pulse sequence. We first characterized the functional dependence of the length of the required compensation on the three principal variables in the PGSE experiment: the gradient strength, the duration of the gradient pulse, and the interval between the two gradient pulses. Subsequently, we derived a model which successfully describes the general relationship between these variables and the size of the induced eddy current. The parameters extracted from fitting the model to the experimental compensation data may be used to predict the correct compensation for any combination of the three principal variables.
Li, Zi-Wei; Adams, James H., Jr.
2007-01-01
Space radiation from galactic cosmic rays (GCR) is a major hazard to space crews, especially in long duration human space explorations. For this reason, they will be protected by radiation shielding that fragments the GCR heavy ions. Here we investigate how sensitive the crew's radiation exposure is to nuclear fragmentation cross sections at different energies. We find that in deep space cross sections between about 0.2 and 1.2 GeV/u have the strongest effect on dose equivalent behind shielding in solar minimum GCR environments, and cross sections between about 0.6 and 1.7 GeV/u are the most important at solar maximum'. On the other hand, at the location of the International Space Station, cross sections at_higher -energies, between about 0.6 and 1.7 GeV /u at solar minimum and between about 1.7 and 3.4 GeV/u'at,solar maximum, are the most important This is. due-to the average geomagnetic cutoff for the ISS orbit. We also show the effect of uncertainties in the fragmentation cross sections on the elemental energy spectra behind shielding. These results help to focus the studies of fragmentation cross sections on the proper energy range in order to improve our predictions of crew exposures.
Jing, Junjie; Zhao, Yang; Wang, Chengfeng; Zhao, Qingshuang; Liang, Qinchuan; Wang, Shousen; Ma, Jie
2015-05-01
Spliceosome mutations have been reported in various types of cancer and a number of antitumor drugs have been observed to tightly bind to spliceosome components. Small nuclear ribonucleoprotein‑associated polypeptide N (SNRPN) is a small ribonuclear protein and is a key spliceosome constituent. However, the role of SNRPN in human medulloblastoma remains unknown. In the present study, the effect of SNRPN on cell growth was investigated in vitro using the Daoy human medulloblastoma cell line. Lentivirus (Lv)-mediated short hairpin (sh) RNA was used to silence SNRPN expression, which was verified by reverse transcription‑quantitative polymerase chain reaction and western blotting. Cell proliferation was examined by MTT and colony formation assays. Knockdown of SNRPN markedly reduced the proliferation and colony formation ability of Daoy medulloblastoma cells. In addition, flow cytometric analysis revealed that the cell cycle distribution was altered when the Daoy cells were infected with Lv‑shSNRPN. To the best of our knowledge, this is the first study to investigate the effect of SNRPN on cell proliferation in medulloblastoma. The results indicate that SNRPN may be a potential novel target for the development of pharmacological therapeutics in human medulloblastoma.
Directory of Open Access Journals (Sweden)
M. A. Musa
2011-01-01
Full Text Available Problem statement: This study presents result of outdoor absorbed dose rate and estimated effective dose from the naturally occurring radionuclides 232Th and 238U series 40K, around a Nuclear Research Reactor at the Centre for Energy Research and Training (CERT, Zaria, Nigeria. Approach: A high-resolution in situ ?-ray spectrometry was used to carry out the study. CERT houses a 30Kw Research Reactor and other neutron and gamma sources for Research and Training. Results: The values of absorbed dose rate in air for 232Th, 238U and 40K range from 8.2 ± 2.5-24.5 ± 3.6 nGy h?1, 1.9 ± 1.2-4.6 ± 2.5 nGy h?1 and 12.2 ± 5-38 ± 6.7n Gy h?1 respectively . The estimated total annual effective dose outdoor for the sites range from 27.3-79.9 ?Sv y?1.Conclusions: This showed that radiation exposure level for the public is lower than the recommended value of 1 mSv y?1.Hence, the extensive usage of radioactive materials within and around CERT does not appear to have any impact on the radiation burden of the environment.
Cold nuclear matter effects and a modified form of the proximity approach
Gharaei, Reza
2016-01-01
The influence of the cold nuclear matter effects on the Coulomb barriers and also on the fusion cross sections of 47 fusion reactions are systematically investigated within the framework of the proximity formalism. For this purpose, I modify the original version of this formalism (Prox. 77) using a new analytical form of the universal function which is formulated based on the double-folding model with three density-dependent versions of the M3Y-type interactions, namely DDM3Y1, CDM3Y3 and BDM3Y1. It is found that when the Prox. 77 potential is accompanied by each of the formulated universal functions, the agreement between the theoretical and experimental data of the barrier height and also the fusion cross section increase for our selected fusion systems. The present study also provides appropriate conditions to explore theoretically the variation effects of the NM incompressibility constant $K$ on the calculated results caused by the Prox. 77 model. It is shown that the accuracy of this potential model for ...
Distasio, Robert; Li, Zhaofeng; Santra, Biswajit; Wu, Xifan; Car, Roberto
2013-03-01
Quantitative agreement between theory and experiment on the structure of liquid water at ambient conditions has been quite difficult to achieve to date. In this work, we report that highly accurate ab initio molecular dynamics simulations of liquid water that account for exact exchange (via the hybrid PBE0 functional [PRB 79, 085102 (2009)]), dispersion interactions [PRL 102, 073005 (2009)], and nuclear quantum effects (presently approximated by a 30K increase in the simulation temperature) result in excellent agreement with experiments [PRL 101, 065502 (2008)]. The importance of each of these effects in the theoretical prediction of the structure of liquid water will be demonstrated by a detailed comparative analysis of the predicted and experimental oxygen-oxygen radial distribution functions. In addition, we will discuss the connection between the experimentally observed scattering intensity, I(k), and the final radial distribution function, g(r), via the structure and form factors. This work was supported by NSF CHE-0956500, DOE-DE- SC0005180, and DOE: DE-SC0008626.
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
Objective: To explore the effects of perioperative cimetidine administration on tumor cell nuclear morphometric parameters and DNA content in patients with gastrointestinal adenocarcinoma. Methods: 49 patients with pathologically confirmed gastrointestinal adenocarcinoma were randomized into test group (n=25) and control group (n=24). The test group started oral cimetidine intake 400 mg, tid, 7-10d before operation, followed by standard curative operation. The control group did not receive cimetidine. Tumor specimens were paraffin embedded for microsection and stained with hematoxylin and eosin (HE) and Feulgen stain. Morphometric studies and DNA content of tumor nuclei were performed on IBAS Image Analyzer. Results: The tumor cell nuclear area (m m2), nuclear perimeter (m m), maximal nuclear diameter (m m) for test group/control group were 23.54 ± 5.08/34.69± 10.08 (Pquintuple ploidy tumor cells for test group/control group were 16.64± 2.58/5.33± 2.14 (P0.50), 12.42± 5.00/14.48± 0.74 (P>0.20), 31.11± 6.86/ 45.97± 3.82 (P<0.005), respectively. Conclusion: Perioperative administration of cimetidine in gasgtrointestinal cancer patients could decrease the nuclear size and raise the percentage of diploid tumor cells, and convert high aneuploid tumor cells into low-aneuploid tumor cells, which might help reduce the invasiveness of tumor cells.
Dowling, D K; Friberg, U; Arnqvist, G
2007-11-01
It is widely assumed that male sperm competitiveness evolves adaptively. However, recent studies have found a cytoplasmic genetic component to phenotypic variation in some sperm traits presumed important in sperm competition. As cytoplasmic genes are maternally transmitted, they cannot respond to selection on sperm and this constraint may affect the scope in which sperm competitiveness can evolve adaptively. We examined nuclear and cytoplasmic genetic contributions to sperm competitiveness, using populations of Callosobruchus maculatus carrying orthogonal combinations of nuclear and cytoplasmic lineages. Our design also enabled us to examine genetic contributions to female remating. We found that sperm competitiveness and remating are primarily encoded by nuclear genes. In particular, a male's sperm competitiveness phenotype was contingent on an interaction between the competing male genotypes. Furthermore, cytoplasmic effects were detected on remating but not sperm competitiveness, suggesting that cytoplasmic genes do not generally play a profound evolutionary role in sperm competition.
Energy Technology Data Exchange (ETDEWEB)
NONE
1998-05-01
Nuclear materials declared by the US and Russian governments as surplus to defense programs are being converted into fuel for commercial nuclear reactors. This report presents the results of an analysis estimating the market effects that would likely result from current plans to commercialize surplus defense inventories. The analysis focuses on two key issues: (1) the extent by which traditional sources of supply, such as production from uranium mines and enrichment plants, would be displaced by the commercialization of surplus defense inventories or, conversely, would be required in the event of disruptions to planned commercialization, and (2) the future price of uranium considering the potential availability of surplus defense inventories. Finally, the report provides an estimate of the savings in uranium procurement costs that could be realized by US nuclear power generating companies with access to competitively priced uranium supplied from surplus defense inventories.
Papoulia, A.; Carlsson, B. G.; Ekman, J.
2016-10-01
Atomic spectral lines from different isotopes display a small shift in energy, commonly referred to as the line isotope shift. One of the components of the isotope shift is the field shift, which depends on the extent and the shape of the nuclear charge density distribution. The purpose of this work is to investigate how sensitive field shifts are with respect to variations in the nuclear size and shape and what information of nuclear charge distributions can be extracted from measurements. Nuclear properties are obtained from nuclear density functional theory calculations based on the Skyrme-Hartree-Fock-Bogoliubov approach. These results are combined with multiconfiguration Dirac-Hartree-Fock methods to obtain realistic field shifts and it is seen that phenomena such as nuclear deformation and variations in the diffuseness of nuclear charge distributions give measurable contributions to the isotope shifts. Using a different approach, we demonstrate the possibility to extract information concerning the nuclear charge densities from the observed field shifts. We deduce that combining methods used in atomic and nuclear structure theory gives an improved description of field shifts and that extracting additional nuclear information from measured isotope shifts is possible in the near future with improved experimental methods.