WorldWideScience

Sample records for nuclear laboratory les

  1. Nuclear physics laboratory

    International Nuclear Information System (INIS)

    Deruytter, A.J.

    1979-01-01

    The report summarizes the main activities of the Linear Electron Accelerator Section of the Physics Laboratory of the State University of Ghent. The research fields are relative to: 1. Nuclear fission. 2. Photonuclear reactions. 3. Nuclear spectroscopy and positron annihilation. 4. Dosimetry. 5. Theoretical studies. (MDC)

  2. Nuclear physics laboratory

    International Nuclear Information System (INIS)

    Deruytter, A.J.

    1978-01-01

    The report summarizes the main activities of the Linear Electron Accelerator Section of the Physics Laboratory of the State University of Ghent. The research fields are relative to: 1. Nuclear fission. 2. Photonuclear reactions. 3. Nuclear spectroscopy and positron annihilation. 4. Dosimetry. 5. Theoretical studies. (MDC)

  3. Nuclear electronics laboratory manual

    International Nuclear Information System (INIS)

    1984-05-01

    The Nuclear Electronics Laboratory Manual is a joint product of several electronics experts who have been associated with IAEA activity in this field for many years. The manual does not include experiments of a basic nature, such as characteristics of different active electronics components. It starts by introducing small electronics blocks, employing one or more active components. The most demanding exercises instruct a student in the design and construction of complete circuits, as used in commercial nuclear instruments. It is expected that a student who completes all the experiments in the manual should be in a position to design nuclear electronics units and also to understand the functions of advanced commercial instruments which need to be repaired or maintained. The future tasks of nuclear electronics engineers will be increasingly oriented towards designing and building the interfaces between a nuclear experiment and a computer. The manual pays tribute to this development by introducing a number of experiments which illustrate the principles and the technology of interfacing

  4. Nuclear fuels; Les combustibles nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    The nuclear fuel is one of the key component of a nuclear reactor. Inside it, the fission reactions of heavy atoms, uranium and plutonium, take place. It is located in the core of the reactor, but also in the core of the whole nuclear system. Its design and properties influence the behaviour, the efficiency and the safety of the reactor. Even if it represents a weak share of the generated electricity cost, its proper use represents an important economic stake. Important improvements remain to be made to increase its residence time inside the reactor, to supply more energy, and to improve its robustness. Beyond the economical and safety considerations, strategical questions have to find an answer, like the use of plutonium, the management of resources and the management of nuclear wastes and real technological challenges have to be taken up. This monograph summarizes the existing knowledge about the nuclear fuel, its behaviour inside the reactor, its limits of use, and its R and D tracks. It illustrates also the researches in progress and presents some key results obtained recently. Content: 1 - Introduction; 2 - The fuel of water-cooled reactors: aspect, fabrication, behaviour of UO{sub 2} and MOX fuels inside the reactor, behaviour in loss of tightness situation, microscopic morphology of fuel ceramics and evolution under irradiation - migration and localisation of fission products in UOX and MOX matrices, modeling of fuels behaviour - modeling of defects and fission products in the UO{sub 2} ceramics by ab initio calculations, cladding and assembly materials, pellet-cladding interaction, advanced UO{sub 2} and MOX ceramics, mechanical behaviour of the fuel assembly, fuel during a loss of coolant accident, fuel during a reactivity accident, fuel during a serious accident, fuel management inside reactor cores, fuel cycle materials balance, long-term behaviour of the spent fuel, fuel of boiling water reactors; 3 - the fuel of liquid metal fast reactors: fast

  5. Nuclear Reactor Engineering Analysis Laboratory

    International Nuclear Information System (INIS)

    Carlos Chavez-Mercado; Jaime B. Morales-Sandoval; Benjamin E. Zayas-Perez

    1998-01-01

    The Nuclear Reactor Engineering Analysis Laboratory (NREAL) is a sophisticated computer system with state-of-the-art analytical tools and technology for analysis of light water reactors. Multiple application software tools can be activated to carry out different analyses and studies such as nuclear fuel reload evaluation, safety operation margin measurement, transient and severe accident analysis, nuclear reactor instability, operator training, normal and emergency procedures optimization, and human factors engineering studies. An advanced graphic interface, driven through touch-sensitive screens, provides the means to interact with specialized software and nuclear codes. The interface allows the visualization and control of all observable variables in a nuclear power plant (NPP), as well as a selected set of nonobservable or not directly controllable variables from conventional control panels

  6. Graphites for nuclear applications; Les graphites pour les applications nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Bonal, J.P.; Gosmain, L. [CEA Saclay, Dept. des Materiaux pour le Nucleaire (DMN), Lab. de Microscopie et d' Etudes de l' Endommagement, 91 - Gif-sur-Yvette (France)

    2006-03-15

    Being an excellent neutron moderator, graphite is used as a structural material in many nuclear reactor types. By the end of the 50's, the French gas-cooled reactor development needed manufacturing of a nuclear-grade graphite. Graphite irradiation can lead to in-lattice energy accumulation, dimensional changes and physical properties modification. Moreover, the radiolytic corrosion induced by the coolant (CO{sub 2}) may generate mechanical properties degradation. Today, French gas-cooled reactors are all in their decommissioning phase that requires the knowledge of the radiological inventory of the irradiated graphites. At present time, graphite is still foreseen as a future material for hydrogen production by high temperature gas cooled nuclear plants. In the future, graphite will be the necessary moderator material for high temperature reactors with thermal neutron spectrum dedicated to hydrogen and electricity production. (authors)

  7. Nuclear Physics Laboratory. Annual report no.22

    International Nuclear Information System (INIS)

    1987-11-01

    The annual report of the Nuclear Physics Laboratory covers the following subjects: 1) the accelerators; 2) work in experimental nuclear physics; 3) research in particle physics: experiments at TRIUMF and CERN; 4) work in applied nuclear physics; and 5) work in theoretical physics

  8. Nuclear Physics Laboratory. Annual report no.21

    International Nuclear Information System (INIS)

    1986-11-01

    The annual report of the Nuclear Physics Laboratory covers the following subjects: 1) the accelerators; 2) work in experimental nuclear physics; 3) research in particle physics: experiments at TRIUMF and CERN; 4) work in applied nuclear physics; and 5) work in theoretical physics

  9. Nuclear Physics Laboratory: Annual report

    International Nuclear Information System (INIS)

    1987-05-01

    Topics covered in this annual report are: astrophysics and cosmology, giant resonances in excited nuclei, heavy ions, fundamental symmetries, nuclear reactions, accelerator mass spectrometry, accelerators and ion sources, nuclear instrumentation, computer systems and the booster linac project

  10. Safety reassessment of nuclear installations: consequences for the 900 MWe-PWR type reactors. Safety reassessment of laboratories and nuclear industrial plant, application to a nuclear laboratory; Les reexamens de la surete des installations nucleaires: conclusions des reexamens de surete des tranches de 900 MWE. Le reexamen de surete des laboratoires et usines nucleaires, application au laboratoire d'examen des combustibles actifs

    Energy Technology Data Exchange (ETDEWEB)

    Dousson, D.; Guillard, M.; Charles, Th

    2002-10-01

    In 1987 EDF (Electricite de France) launched the first campaign of the reassessment of safety of 6 operating nuclear reactors (2 Fessenheim units and the 4 reactors of the Bugey plant). This reassessment was requested by the Safety Authority in order to: - check that the safety studies led by EDF are consistent with the real state of the reactors and - be sure that the feedback experience cumulated over years of operating life has been profitable. This work ended in 1995. In 1990 EDF launched the second campaign involving the remaining 28 units of the 900 MWe-PWR type reactors. The aim was the same as previously but this time the procedure has included the use of probabilistic studies of safety. This second campaign has now entered its final stage and has led to several measures concerning fire protection, seismic resistance, and protection against deep cold weather. The probabilistic studies have shown that the reliability of some systems important for safety might be improved, so some modifications have been proposed. These modifications concern the emergency feedwater supply of steam generators, the ventilation systems and the emergency turbine generator set. The second part of the document presents the reassessment of safety that has been performed on a CEA laboratory dedicated to the study of irradiated fuel rods. (A.C.)

  11. Nuclear Physics Laboratory annual report

    International Nuclear Information System (INIS)

    Trainor, T.A.; Weitkamp, W.G.

    1985-04-01

    Progress is reported in these areas: nuclear physics relevant to astrophysics and cosmology; nuclear structure of 14 N; the Cabibbo angle in Fermi matrix elements of high j states; giant resonances; heavy ion reactions; 0 + - 0 - isoscalar parity mixing in 14 N; parity mixing in hydrogen and deuterium; medium energy physics; and accelerator mass spectrometry. Accelerators and ion sources, nuclear instrumentation, and computer systems at the university are discussed, including the booster linac project

  12. Idaho national laboratory - a nuclear research center

    International Nuclear Information System (INIS)

    Zaidi Mohammed, K.

    2006-01-01

    Full text: The Idaho National Laboratory (INL) is committed to providing international nuclear leadership for the 21st Century, developing and demonstrating compelling national security technologies, and delivering excellence in science and technology as one of the United States Department of Energy's (DOE) multi program national laboratories. INL runs three major programs - Nuclear, Security and Science. Nuclear programs covers the Advanced test reactor, Six Generation IV technology concepts selected for Rand D, targeting tumors - Boron Neutron Capture therapy. Homeland Security establishes the Control System Security and Test Center, Critical Infrastructure Test Range evaluates technologies on a scalable basis, INL conducts high performance computing and visualization research and science. To provide leadership in the education and training, INL has established an Institute of Nuclear Science and Engineering (INSE) under the Center for Advanced Energy Studies (CAES) and the Idaho State University (ISU). INSE will offer a four year degree based on a newly developed curriculum - two year of basic science course work and two years of participation in project planning and development. The students enrolled in this program can continue to get a masters or a doctoral degree. This summer INSE is the host for the training of the first international group selected by the World Nuclear University (WNU) - 75 fellowship holders and their 30 instructors from 40 countries. INL has been assigned to provide future global leadership in the field of nuclear science and technology. Here, at INL, we keep safety first above all things and our logo is 'Nuclear leadership synonymous with safety leadership'. (author)

  13. Idaho National Laboratory - Nuclear Research Center

    International Nuclear Information System (INIS)

    Zaidi, M.K.

    2005-01-01

    Full text: The Idaho National Laboratory is committed to the providing international nuclear leadership for the 21st Century, developing and demonstrating compiling national security technologies, and delivering excellence in science and technology as one of the United States Department of Energy's (DOE) multiprogram national laboratories. INL runs three major programs - Nuclear, Security and Science. nuclear programs covers the Advanced test reactor, Six Generation technology concepts selected for R and D, Targeting tumors - Boron Neutron capture therapy. Homeland security - Homeland Security establishes the Control System Security and Test Center, Critical Infrastructure Test Range evaluates technologies on a scalable basis, INL conducts high performance computing and visualization research and science - INL facility established for Geocentrifuge Research, Idaho Laboratory, a Utah company achieved major milestone in hydrogen research and INL uses extremophile bacteria to ease bleaching's environmental cost. To provide leadership in the education and training, INL has established an Institute of Nuclear Science and Engineering (Inset). The institute will offer a four year degree based on a newly developed curriculum - two year of basic science course work and two years of participation in project planning and development. The students enrolled in this program can continue to get a masters or a doctoral degree. This summer Inset is the host for the training of the first international group selected by the World Nuclear University (WNU) - 75 fellowship holders and their 30 instructors from 40 countries. INL has been assigned to provide future global leadership in the field of nuclear science and technology. Here, at INL, we keep safety first above all things and our logo is 'Nuclear leadership synonymous with safety leadership'

  14. Technology transfer from Canadian nuclear laboratories

    International Nuclear Information System (INIS)

    MacDonald, R.D.; Evans, W.; MacEwan, J.R.; Melvin, J.G.

    1985-09-01

    Canada has developed a unique nuclear power system, the CANDU reactor. AECL - Research Company (AECL-RC) has played a key role in the CANDU program by supplying its technology to the reactor's designers, constructors and operators. This technology was transferred from our laboratories to our sister AECL companies and to domestic industries and utilities. As CANDUs were built overseas, AECL-RC made its technology available to foreign utilities and agencies. Recently the company has embarked on a new transfer program, commercial R and D for nuclear and non-nuclear customers. During the years of CANDU development, AECL-RC has acquired the skills and technology that are especially valuable to other countries embarking on their own nuclear programs. This report describes AECL-RC's thirty years' experience with the transfer of technology

  15. Students Partner with Laboratory Staff to Modernize LES-9 Satellite Communications

    Science.gov (United States)

    2016-04-29

    orbiting counterpart, a satellite model built by Minuteman Technical High School students and Laboratory staff hangs reminiscent of one of the...communications satellite was developed for the U.S. Air Force and designed to operate in coplanar, circular, inclined, and geosynchronous orbits . Royster...Laboratory’s first pioneering inventions, the Lincoln Experimental Satellite (LES) family. Launched on 14 March 1976, LES-9 is the last in a series of

  16. Les simulacions al laboratori permeten entendre la composició dels cometes

    OpenAIRE

    Rimola Gibert, Albert

    2015-01-01

    L'objectiu de la missió espacial Rosetta és aterrar sobre el cometa 67P per realitzar experiments que permetin conèixer millor aquest tipus de cossos celestes, formats a les primeres etapes del nostre sistema planetari. Es pot estudiar la composició de la matèria dels cometes a partir d'experiments en laboratoris que simulin les reaccions que poden succeir en aquests astres. Investigadors de la UAB han participat en unes d'aquestes simulacions, els resultats de les quals coincideixen amb algu...

  17. Impact of Nuclear Laboratory Personnel Credentials & Continuing Education on Nuclear Cardiology Laboratory Quality Operations.

    Science.gov (United States)

    Malhotra, Saurabh; Sobieraj, Diana M; Mann, April; Parker, Matthew W

    2017-12-22

    Background/Objectives: The specific credentials and continuing education (CME/CE) of nuclear cardiology laboratory medical and technical staff are important factors in the delivery of quality imaging services that have not been systematically evaluated. Methods: Nuclear cardiology accreditation application data from the Intersocietal Accreditation Commission (IAC) was used to characterize facilities performing myocardial perfusion imaging by setting, size, previous accreditation and credentials of the medical and technical staff. Credentials and CME/CE were compared against initial accreditation decisions (grant or delay) using multivariable logistic regression. Results: Complete data were available for 1913 nuclear cardiology laboratories from 2011-2014. Laboratories with initial positive accreditation decisions had a greater prevalence of Certification Board in Nuclear Cardiology (CBNC) certified medical directors and specialty credentialed technical directors. Certification and credentials of the medical and technical directors, respectively, staff CME/CE compliance, and assistance of a consultant with the application were positively associated with accreditation decisions. Conclusion: Nuclear cardiology laboratories directed by CBNC-certified physicians and NCT- or PET-credentialed technologists were less likely to receive delay decisions for MPI. CME/CE compliance of both the medical and technical directors was associated with accreditation decision. Medical and technical directors' years of experience were not associated with accreditation decision. Copyright © 2017 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  18. Nuclear magnetic resonance common laboratory, quadrennial report

    International Nuclear Information System (INIS)

    1994-01-01

    This quadrennial report of the nuclear magnetic resonance common laboratory gives an overview of the main activities. Among the different described activities, only one is interesting for the INIS database: it concerns the Solid NMR of cements used for radioactive wastes storage. In this case, the NMR is used to characterize the structure of the material and the composition, structure and kinetics of formation of the alteration layer which is formed at the surface of concrete during water leaching conditions. The NMR methodology is given. (O.M.)

  19. French research in the field of nuclear agronomy; Les recherches francaises en agronomie nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Guerin De Montgareuil, P. [Commissariat a l' Energie Atomique, Cadarache (France). Centre d' Etudes Nucleaires

    1964-07-01

    , industrial firms, university laboratories scientific institutes. The role of the Commissariat a l'Energie Atomique is defined: on the one hand it supplies information and support, and on the other hand it takes charge of specifically nuclear aspects of the work. Its part in the field has recently found expression in the creation, within the Biology Department, of a Radio-agronomy Section; its objective are described,, as well as the, means placed att its disposal at the Centre d'etudes Nucleaires, Cadarache. (author) [French] On propose un bilan des travaux les plus significatifs effectues en France depuis la deuxieme conference internationale en matiere d'agronomie nucleaire et qui vont d'une recherche apparemment desinteressee a l'application la plus directe. Une telle differenciation recouvre de moins en moins, au fur et a mesure de l'evolution des programmes, la distinction qui est faite dans l'expose entre l'action biologique des rayonnements et les autres emplois des techniques nucleaires. C'est ainsi que les recherches do radiogenetique agricole sont poursuivies dans deux directions: d'un point de vue theorique et methodologique avec l'etude comparative de l'action des divers types de rayonnements, l'influence du debit de dose et de la temperature, l'action des agents mutagenes chimiques, la production de chimeres sous irradiation gamma; et d'autre part, sous un aspect pratique aboutissant a la creation de varietes nouvelles plus resistantes ou plus precoces (riz, mil, arachide). Les problemes de destruction des insectes (eradication) et de conservation des denrees sous irradiation se trouvent egalement abordes par des voies et avec des objectifs tres divers. A la demarche globale representee par une irradiation pure et simple (grains humides, pommes de terre...) sont parfois associees des etudes souvent originales, d'ordre biochimique ou microbiologique (par exemple: alteration de l

  20. Nuclear forensics: a comprehensive model action plan for Nuclear Forensics Laboratory in India

    International Nuclear Information System (INIS)

    Deshmukh, A.V.; Nyati, S.; Fatangre, N.M.; Raghav, N.K.; Reddy, P.G.

    2013-01-01

    Nuclear forensic is an emerging and highly specialized discipline which deals with nuclear investigation and analysis of nuclear or radiological/radioactive materials. Nuclear Forensic analysis includes various methodology and analytical methods along with morphology, physical, chemical, elemental and isotopic analysis to characterize and develop nuclear database for the identification of unknown nuclear or radiological/radioactive material. The origin, source history, pathway and attribution of unknown radioactive/nuclear material is possible with certainty through Nuclear Forensics. Establishment of Nuclear Forensic Laboratory and development of expertise for nuclear investigation under one roof by developing the nuclear data base and laboratory network is need of the hour to ably address the problems of all the law enforcement and nuclear agencies. The present study provides insight in Nuclear Forensics and focuses on an urgent need for a comprehensive plan to set up Nuclear Forensic Laboratory across India. (author)

  1. Nuclear Physics Laboratory 1976 annual report. [Nuclear Physics Laboratory, Univ. of Washington

    Energy Technology Data Exchange (ETDEWEB)

    1976-06-01

    Laboratory activities for the period spring, 1975 to spring, 1976 are described. The emphasis of the work can be discerned from the chapter headings: accelerator development; ion source development; instrumentation, detectors, research techniques; computer and computing; atomic physics; nuclear astrophysics; fundamental symmetries in nuclei; nuclear structure; radiative capture measurements and calculations; scattering and reactions; reactions with polarized protons and deuterons; heavy-ion elastic and inelastic scattering; heavy-ion deeply inelastic and fusion reactions; heavy ion transfer and intermediate structure reactions; medium-energy physics; and energy studies. Research by users and visitors is also described; and laboratory personnel, degrees granted, and publications are listed. Those summaries having significant amounts of information are indexed individually. (RWR)

  2. Nuclear Forensics at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kinman, William Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Steiner, Robert Ernest [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lamont, Stephen Philip [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-30

    Nuclear forensics assists in responding to any event where nuclear material is found outside of regulatory control; a response plan is presented and a nuclear forensics program is undergoing further development so that smugglers are sufficiently deterred.

  3. Nuclear medicine at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Atkins, H.L.

    1976-01-01

    The Nuclear Medicine Program at the Brookhaven National Laboratory seeks to develop new materials and methods for the investigation of human physiology and disease processes. Some aspects of this research are related to basic research of how radiopharmaceuticals work. Other aspects are directed toward direct applications as diagnostic agents. It is likely that cyclotron-produced positron emitting nuclides will assume greater importance in the next few years. This can be attributed to the ability to label biologically important molecules with high specific activity without affecting biological activity, using 11 C, 13 N, and 15 O. Large quantities of these short-lived nuclides can be administered without excessive radiation dose and newer instrumentation will permit reconstructive axial tomography, providing truly quantitative display of distribution of radioactivity. The 122 Xe- 122 I generator has the potential for looking at rapid dynamic processes. Another generator, the 68 Ge- 68 Ga generator produces a positron emitter for the use of those far removed from cyclotrons. The possibilities for 68 Ga radiopharmaceuticals are as numerous as those for /sup 99m/Tc diagnostic agents

  4. The Los Alamos National Laboratory Nuclear Vision Project

    International Nuclear Information System (INIS)

    Arthur, E.D.; Wagner, R.L. Jr.

    1996-01-01

    Los Alamos National Laboratory has initiated a project to examine possible futures associated with the global nuclear enterprise over the course of the next 50 years. All major components are included in this study--weapons, nonproliferation, nuclear power, nuclear materials, and institutional and public factors. To examine key issues, the project has been organized around three main activity areas--workshops, research and analyses, and development of linkages with other synergistic world efforts. This paper describes the effort--its current and planned activities--as well as provides discussion of project perspectives on nuclear weapons, nonproliferation, nuclear energy, and nuclear materials focus areas

  5. US nuclear facility licensing gridlock, reform and the LES experience

    International Nuclear Information System (INIS)

    DiStefano, D.

    1995-01-01

    Problems on the unique legislative program, currently in force in the USA, related to licensing nuclear enterprises are presented. Participation of the public in the regulatory process is touched upon; idea of combined licensing is substantiated and legislative initiative of the senate on energetics, referring to nuclear industry, is approved. The initiated reform is the result of combined efforts undertaken by governmental bodies, industrial groups, nuclear materials suppliers and designers

  6. Nuclear Physics Laboratory 1981 annual report

    International Nuclear Information System (INIS)

    1981-06-01

    Research progress is reported in the following areas: astrophysics and cosmology, nuclear tests of fundamental symmetries, parity mixing in the hydrogen atom, nuclear structure and reactions, radiative capture, medium energy physics, heavy ion reactions, research by outside users, accelerators and ion sources, final design and construction of the magnetic momentum filter, instrumentation and experimental techniques, and computers and computing. Publications are listed

  7. Nuclear Physics Laboratory technical progress report

    International Nuclear Information System (INIS)

    1991-01-01

    This contract supports broadly based experimental work in intermediate energy nuclear physics. The program includes pion- nucleon studies at TRIUMF and LAMPF, inelastic pion scattering and charge exchange reactions at LAMPF, and nucleon charge exchange at LAMPF/NTOF. The first results of spin-transfer observables in the isovector (rvec p,rvec n) reaction are included in this report. Our data confirm the tentative result from (rvec p,rvec p) reactions that the nuclear isovector spin response shows neither longitudinal enhancement nor transverse quenching. Our program in quasifree scattering of high energy pions shows solid evidence of isoscalar enhancement of the nuclear nonspin response. We include several comparisons of the quasifree scattering of different probes. Results from our efforts in the design of accelerator RF cavities are also included in this report

  8. Laboratory portrait: the Saclay nuclear physics division

    International Nuclear Information System (INIS)

    Alamanos, N.; Auger, F.

    2005-01-01

    The research activities of the nuclear physics division (SPHN) of DAPNIA (Cea) take place within strong national and international collaborations. Its programs cover a broad range of topics in nuclear physics from low to high energies, they include the structure and dynamics of the nucleus, the structure of the nucleon, the search for phase transitions in nuclear matter, and contribution to the development of nuclear energy. Concerning the structure of the nucleus, SPHN is involved in the study of the structure of light exotic nuclei such as He 6-8 , C 10-11 , Ne 27 and in the study of shape coexistence in Kr isotopes. The experiments are performed at GANIL. SPHN is also involved in the study of the structure of Md 251 through experiments made in Finland. Near-barrier and sub-barrier fusion of light unstable nuclei and their respective stable isotopes with U 238 targets are studied in Louvain-la-Neuve (Belgium). Concerning nuclear phase transitions, the purpose of our activities is twofold: the study of the liquid-gas phase transition in nuclei at relatively low incident energies and the search for the quark-gluon plasma (QGP) at very high energies. We look for QGP signatures in 2 experiments: Phenix with the accelerator RHIC at Bnl and Alice at the LHC (CERN). Concerning the structure of the nucleon, SPHN is involved in 2 experimental programs both using electromagnetic probes, one to obtain information on the spin carried by the gluons in the proton (Compass at CERN) and the other to extract information on generalized parton distributions by means of deeply virtual Compton scattering (Clas at Jlab). Concerning nuclear energy, the activities are focused along 3 main lines: spallation studies, neutron cross-section measurements and application oriented modeling. (A.C.)

  9. French people and nuclear wastes; Les francais et les dechets nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    D' Iribarne, Ph. [Centre National de la Recherche Scientifique (CNRS), 75 - Paris (France)

    2005-07-01

    On March 21, 2005, the French minister of industry gave to the author of this document, the mission to shade a sociological light on the radioactive wastes perception by French people. The objective of this study was to supply an additional information before the laying down in 2006 of the decisions about the management of high-level and long-lived radioactive wastes. This inquiry, carried out between April 2004 and March 2005, stresses on the knowledge and doubts of the questioned people, on the vision they have of radioactive wastes and of their hazards, and on their opinion about the actors in concern (experts, nuclear companies, government, anti-nuclear groups, public). The last two parts of the report consider the different ways of waste management under study today, and the differences between the opinion of people living close to the Bure site and the opinion of people living in other regions. (J.S.)

  10. Nuclear Physics Laboratory 1979 annual report

    International Nuclear Information System (INIS)

    Adelberger, E.G.

    1979-07-01

    Research progress is reported in the following areas: astrophysics and cosmology, fundamental symmetries, nuclear structure, radiative capture, medium energy physics, heavy ion reactions, research by users and visitors, accelerator and ion source development, instrumentation and experimental techniques, and computers and computing. Publications are listed

  11. Nuclear Physics Laboratory 1979 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Adelberger, E.G. (ed.)

    1979-07-01

    Research progress is reported in the following areas: astrophysics and cosmology, fundamental symmetries, nuclear structure, radiative capture, medium energy physics, heavy ion reactions, research by users and visitors, accelerator and ion source development, instrumentation and experimental techniques, and computers and computing. Publications are listed. (WHK)

  12. Nuclear Physics Laboratory: Annual report, 1986

    International Nuclear Information System (INIS)

    1986-04-01

    Individual research projects are summarized under the following broad headings: astrophysics and cosmology, giant resonances in excited nuclei, heavy ion reactions, fundamental symmetries in nuclei, the search for an intermediate range force coupled to baryon number, other tests of fundamental symmetries, nuclear instrumentation, computer systems, and the booster linac project. A list of publications is included

  13. Nuclear Physics Laboratory 1980 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Adelberger, E.G. (ed.)

    1980-09-01

    Research progress is reported in the following areas: astrophysics and cosmology, fundamental symmetries, nuclear structure and reactions, radiative capture, medium energy physics, heavy ion reactions, research by outside users, accelerators and ion sources, instrumentation and experimental techniques, and computers and computing. Publications are listed. (WHK)

  14. Nuclear Physics Laboratory 1980 annual report

    International Nuclear Information System (INIS)

    Adelberger, E.G.

    1980-09-01

    Research progress is reported in the following areas: astrophysics and cosmology, fundamental symmetries, nuclear structure and reactions, radiative capture, medium energy physics, heavy ion reactions, research by outside users, accelerators and ion sources, instrumentation and experimental techniques, and computers and computing. Publications are listed

  15. Nuclear electronics laboratory manual 1989 edition

    International Nuclear Information System (INIS)

    1989-10-01

    This manual is a joint product of several electronics experts who have been associated with IAEA activity in this field for many years. It is based on the experience of conducting twenty-three training courses on nuclear electronics. Compared with the first edition, published 1984, this edition contains many new experiments, mainly on the advanced technical level. The total number of experiments and special projects is 58. Tabs and figs

  16. Nuclear Structure Committee annual report 1976-1977, nuclear structure grants and laboratory agreements

    International Nuclear Information System (INIS)

    1977-01-01

    The Annual Report for the period 1 August 1976 to 31 July 1977 of the Nuclear Structure Committee of the Nuclear Physics Board, under the (United Kingdom) Science Research Council, is presented. Details are given of nuclear structure grants and laboratory agreements. (U.K.)

  17. Personal nuclear accident dosimetry at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Ward, D.C.; Mohagheghi, A.H.; Burrows, R.

    1996-09-01

    DOE installations possessing sufficient quantities of fissile material to potentially constitute a critical mass, such that the excessive exposure of personnel to radiation from a nuclear accident is possible, are required to provide nuclear accident dosimetry services. This document describes the personal nuclear accident dosimeter (PNAD) used by SNL and prescribes methodologies to initially screen, and to process PNAD results. In addition, this report describes PNAD dosimetry results obtained during the Nuclear Accident Dosimeter Intercomparison Study (NAD23), held during 12-16 June 1995, at Los Alamos National Laboratories. Biases for reported neutron doses ranged from -6% to +36% with an average bias of +12%

  18. Nuclear biological studies in France; Les etudes de biologie nucleaires en France

    Energy Technology Data Exchange (ETDEWEB)

    Coursaget, J. [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1961-07-01

    On the occasion of a colloquium on radiobiological research programmes, a number of documents dealing with French accomplishments and projects in this field were collected together. We felt that it would be useful to assemble these papers in one report; although they are brief and leave gaps to be filled in, they provide certain data, give an overall view of the situation, and can also suggest a rough plan for the general policy to adopt in the field of 'nuclear' biological research; i.e. research based on the nuclear tracer method or devoted to the action of ionising radiations. (author) [French] Un colloque sur les programmes de recherche en radiobiologie nous a donne l'occasion de reunir des documents sur les realisations et les projets francais dans ce domaine. Il nous a semble utile de reunir en un rapport l'ensemble de ces documents, qui, malgre leur brievete et malgre les lacunes qu'ils comportent, donnent un certain nombre d'informations, permettent une vue d'ensemble et peuvent dessiner aussi l'ebauche d'une politique coherente en matiere de recherches biologiques 'nucleaires', c'est-a-dire de recherches basees sur la methode des indicateurs nucleaires ou consacrees a l'action des rayonnements ionisants. (auteur)

  19. Non-nuclear energies; Les energies autres que le nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Nifenecker, H. [Laboratoire de Physique Subatomique et de Cosmologie, IN2P3-CNRS/UJF/INPG, 53 av. des Martyrs, 38026 Grenoble Cedex and Sauvons le Climat (http://www.sauvonsleclimat.org), Grenoble (France)

    2007-07-01

    The different meanings of the word 'energy', as understood by economists, are reviewed and explained. Present rates of consumption of fossil and nuclear fuels are given as well as corresponding reserves and resources. The time left before exhaustion of these reserves is calculated for different energy consumption scenarios. On finds that coal and nuclear only allow to reach the end of this century. Without specific dispositions, the predicted massive use of coal is not compatible with any admissible value of global heating. Thus, we discuss the clean coal techniques, including carbon dioxide capture and storage. One proceeds with the discussion of availability and feasibility of renewable energies, with special attention to electricity production. One distinguishes controllable renewable energies from those which are intermittent. Among the first we find hydroelectricity, biomass, and geothermal and among the second, wind and solar. At world level, hydroelectricity will, most probably, remain the main renewable contributor to electricity production. Photovoltaic is extremely promising for providing villages remote deprived from access to a centralized network. Biomass should be an important source of bio-fuels. Geothermal energy should be an interesting source of low temperature heat. Development of wind energy will be inhibited by the lack of cheap and massive electricity storage; its contribution should not exceed 10% of electricity production. Its present development is totally dependent upon massive public support. A large part of this paper follows chapters of the monograph 'L'energie de demain: technique, environnement, economie', EDP Sciences, 2005. (author)

  20. How the Nuclear Applications Laboratories Help in Strengthening Emergency Response

    International Nuclear Information System (INIS)

    2014-01-01

    Safety is one of the most important considerations when engaging in highly advanced scientific and technological activities. In this respect, utilizing the potential of nuclear technology for peaceful purposes also involves risks, and nuclear techniques themselves can be useful in strengthening emergency response measures related to the use of nuclear technology. In the case of a nuclear incident, the rapid measurement and subsequent monitoring of radiation levels are top priorities as they help to determine the degree of risk faced by emergency responders and the general public. Instruments for the remote measurement of radioactivity are particularly important when there are potential health risks associated with entering areas with elevated radiation levels. The Nuclear Science and Instrumentation Laboratory (NSIL) — one of the eight laboratories of the Department of Nuclear Sciences and Applications (NA) in Seibersdorf, Austria — focuses on developing a variety of specialized analytical and diagnostic instruments and methods, and transferring knowledge to IAEA Member States. These include instruments capable of carrying out remote measurements. This emergency response work carried out by the NA laboratories supports health and safety in Member States and supports the IAEA’s mandate to promote the safe and peaceful use of nuclear energy

  1. US-Russian laboratory-to-laboratory cooperation in nuclear materials protection, control, and accounting

    International Nuclear Information System (INIS)

    Mullen, M.; Augustson, R.; Horton, R.

    1995-01-01

    Under the guidance of the Department of Energy (DOE), six DOE laboratories have initiated a new program of cooperation with the Russian Federation's nuclear institutes. The purpose of the program is to accelerate progress toward a common goal shared by both the US and Russia--to reduce the risks of nuclear weapons proliferation, including such threats as theft, diversion, and unauthorized possession of nuclear materials, by strengthening systems of nuclear materials protection, control, and accounting. This new program is called the Laboratory-to-Laboratory Nuclear Materials Protection, Control, and Accounting (Lab-to-Lab MPC and A) Program. It is designed to complement other US-Russian MPC and A programs such as the government-to-government (Nunn-Lugar) programs. The Lab-to-Lab MPC and A program began in 1994 with pilot projects at two sites: Arzamas-16 and the Kurchitov Institute. This paper presents an overview of the Laboratory-to-Laboratory MPC and A Program. It describes the background and need for the program; the objectives and strategy; the participating US and Russian laboratories, institutes and enterprises; highlights of the technical work; and plans for the next several years

  2. The Los Alamos Scientific Laboratory - An Isolated Nuclear Research Establishment

    Energy Technology Data Exchange (ETDEWEB)

    Bradbury, Norris E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Meade, Roger Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-23

    Early in his twenty-five year career as the Director of the Los Alamos Scientific Laboratory, Norris Bradbury wrote at length about the atomic bomb and the many implications the bomb might have on the world. His themes were both technical and philosophical. In 1963, after nearly twenty years of leading the nation’s first nuclear weapons laboratory, Bradbury took the opportunity to broaden his writing. In a paper delivered to the International Atomic Energy Agency’s symposium on the “Criteria in the Selection of Sites for the Construction of Reactors and Nuclear Research Centers,” Bradbury took the opportunity to talk about the business of nuclear research and the human component of operating a scientific laboratory. This report is the transcript of his talk.

  3. Progress of Jinping Underground laboratory for Nuclear Astrophysics experiment JUNA

    Science.gov (United States)

    Liu, Weiping

    2015-08-01

    Direct measurement of the cross sections for the key nuclear reactions in hydrostatic stellar evolution within Gamow window, which makes use of low background at deep underground laboratory, is crucial to solve key scientific questions in nuclear astrophysics. JUNA project aims at direct measurement of (α,γ), (α,n) reactions in hydrostatic helium burning and (p, γ), (p, α) reactions in hydrostatic hydrogen burning based on Jinping deep underground laboratory in China. The progress of experimental techniques, which include the accelerator system with high stability and high intensity, the detector system, and the shielding material with low background, will be presented.

  4. Development and Manufacture of the Nuclear laboratory equipment

    International Nuclear Information System (INIS)

    Youm, Ki Un; Lee, I. B.; Youm, J. H.

    2009-12-01

    This report on development and manufacture of the nuclear laboratory equipment contains the work scope and contents performed for supporting the researches and the developments projects efficiently. And also, the records for the principal production design, the manufacture contents, the working drawings and the CNC program are described in it. Most of works are to support the successful and convenient performance of the R and D projects by development and manufacturing the requested laboratory equipment

  5. Development and Manufacture of the Nuclear Laboratory Equipment

    International Nuclear Information System (INIS)

    Youm, Ki Un; Moon, J. S.; Lee, I. B.; Youn, J. H.

    2010-12-01

    This report on development and manufacture of the nuclear laboratory equipment contains the work scope and contents performed for supporting the researches and the developments projects efficiently. And also, the records for the principal production design, the manufacture contents, the working drawings and the CNC program are described in it. Most of works are to support the successful and convenient performance of the R and D projects by development and manufacturing the requested laboratory equipment

  6. Development and Manufacture of the Nuclear Laboratory Equipment

    International Nuclear Information System (INIS)

    Youm, Ki Un; Kim, J. K.; Kim, K. S.; Lee, I. B.; Youm, J. H.; Park, I. W.

    2008-12-01

    This report on development and manufacture of the nuclear laboratory equipment contains the work scope and contents performed for supporting the researches and the developments projects efficiently. And also, the records for the principal production design, the manufacture contents, the working drawings and the CNC program are described in it. Most of works are to support the successful and convenient performance of the R and D projects by development and manufacturing the requested laboratory equipment

  7. Universities and national laboratory roles in nuclear engineering

    International Nuclear Information System (INIS)

    Sackett, J.I.

    1991-01-01

    Nuclear Engineering Education is being significantly challenged in the United States. The decline in enrollment generally and the reduction of the number of nuclear engineering departments has been well documented. These declines parallel a lack of new construction for nuclear power plants and a decline in research and development to support new plant design. Precisely at a time when innovation is is needed to deal with many issues facing nuclear power, the number of qualified people to do so is being reduced. It is important that the University and National Laboratory Communities cooperate to address these issues. The Universities must increasingly identify challenges facing nuclear power that demand innovative solutions and pursue them. To be drawn into the technology the best students must see a future, a need and identify challenges that they can meet. The University community can provide that vision with help from the National Laboratories. It has been a major goal within the reactor development program at Argonne National Laboratory to establish the kind of program that can help accomplish this

  8. University of Washington, Nuclear Physics Laboratory annual report, 1995

    International Nuclear Information System (INIS)

    1995-04-01

    The Nuclear Physics Laboratory of the University of Washington supports a broad program of experimental physics research. The current program includes in-house research using the local tandem Van de Graff and superconducting linac accelerators and non-accelerator research in double beta decay and gravitation as well as user-mode research at large accelerator and reactor facilities around the world. This book is divided into the following areas: nuclear astrophysics; neutrino physics; nucleus-nucleus reactions; fundamental symmetries and weak interactions; accelerator mass spectrometry; atomic and molecular clusters; ultra-relativistic heavy ion collisions; external users; electronics, computing, and detector infrastructure; Van de Graff, superconducting booster and ion sources; nuclear physics laboratory personnel; degrees granted for 1994--1995; and list of publications from 1994--1995

  9. Laboratory instrumentation modernization at the WPI Nuclear Reactor Facility

    International Nuclear Information System (INIS)

    1995-01-01

    With partial funding from the Department of Energy (DOE) University Reactor Instrumentation Program several laboratory instruments utilized by students and researchers at the WPI Nuclear Reactor Facility have been upgraded or replaced. Designed and built by General Electric in 1959, the open pool nuclear training reactor at WPI was one of the first such facilities in the nation located on a university campus. Devoted to undergraduate use, the reactor and its related facilities have been since used to train two generations of nuclear engineers and scientists for the nuclear industry. The low power output of the reactor and an ergonomic facility design make it an ideal tool for undergraduate nuclear engineering education and other training. The reactor, its control system, and the associate laboratory equipment are all located in the same room. Over the years, several important milestones have taken place at the WPI reactor. In 1969, the reactor power level was upgraded from 1 kW to 10 kW. The reactor's Nuclear Regulatory Commission operating license was renewed for 20 years in 1983. In 1988, under DOE Grant No. DE-FG07-86ER75271, the reactor was converted to low-enriched uranium fuel. In 1992, again with partial funding from DOE (Grant No. DE-FG02-90ER12982), the original control console was replaced

  10. Educational Activities At The Nuclear Engineering Teaching Laboratory

    Science.gov (United States)

    Tipping, Tracy N.

    2011-06-01

    The Nuclear Engineering Teaching Laboratory (NETL) at the University of Texas at Austin performs a wide variety of educational activities for students at various levels. Regular on-site courses in the areas of health physics, radiochemistry, and reactor operations are offered for university credit. Along with on-site courses, access to the reactor facility via a remote console connection allows students in an off-site classroom to conduct experiments via a "virtual" control console. In addition to the regularly scheduled courses, other programs, such as the Nuclear Regulatory Commission Summer Nuclear Engineering Institute and Office of Naval Research partnerships with Historically Black Colleges and Universities, provide access to the facility for students from other universities both domestic and foreign. And NETL hosts professional development programs such as training programs for Nuclear Regulatory Commission personnel and International Atomic Energy Agency fellowships.

  11. Annual report of Laboratory of Nuclear Studies, Osaka University, 1980

    International Nuclear Information System (INIS)

    1981-01-01

    This is the progress report of the research activities in the Laboratory of Nuclear Studies during the period from April, 1980, to March, 1981. The activities were carried out by the OULNS staffs and also by outsiders at the OULNS. In this period, the X-ray astrophysics group, the radiation physics group and the high energy physics group joined the OULNS. The main accelerators in the OULNS are a 110 cm variable energy cyclotron and a 4.7 MeV Van de Graaff machine. The detailed experimental studies on inbeam e-gamma spectroscopy and beta-decay were carried out at two accelerator laboratories. The radiochemistry facility and a mass spectrometer were fully used. The research activities extended to high energy physics by utilizing national facilities, such as a 230 cm cyclotron in the Research Center for Nuclear Physics and a proton synchrotron in the National Laboratory for High Energy Physics. The theoretical studies on elementary particles and nuclear physics were carried out also. It is important that the facilities in the OULNS were used by the outsiders in Osaka University, such as solid state physics group and particle-induced X-ray group. The activities of the divisions of cyclotron, Van de Graaff, high energy physics, accelerator development and nuclear instrumentation, mass spectroscopy, radioisotope, solid state and theoretical physics are reported. (Kako, I.)

  12. Quality manual for Laboratories of the Nuclear Materials Characterization Division

    International Nuclear Information System (INIS)

    Sabato, S.F.

    1991-05-01

    This publication presents the first Quality Manual for the Laboratories at the Nuclear Materials Characterization Division. The Manual describes the laboratories, its organization structure, fields of activities, personnel records, equipments, maintenance and calibration. The main aspects concerning quality assurance in the analysis were discussed. The whole system of receiving, identifying and processing analysis of the samples is shown. Since there are many information to be contained in several subjects of the Quality Manual, there were produced separate documents that are cross referenced in the manual. (author)

  13. Decommissioning three nuclear reactors at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Montoya, G.M.; Salazar, M.

    1992-01-01

    Three nuclear reactors, including the historic water boiler reactor, were decommissioned at Los Alamos National Laboratory (LANL). The decommissioning of the facilities involved removing the reactors and their associated components. Planning for the decommissioning operation included characterizing the facilities, estimating the costs of decommissioning operations, preparing environmental documentation, establishing systems to track costs and work progress, and preplanning to correct health and safety concerns in each facility

  14. Nuclear energy related capabilities at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Pickering, Susan Y. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-02-01

    Sandia National Laboratories' technology solutions are depended on to solve national and global threats to peace and freedom. Through science and technology, people, infrastructure, and partnerships, part of Sandia's mission is to meet the national needs in the areas of energy, climate and infrastructure security. Within this mission to ensure clean, abundant, and affordable energy and water is the Nuclear Energy and Fuel Cycle Programs. The Nuclear Energy and Fuel Cycle Programs have a broad range of capabilities, with both physical facilities and intellectual expertise. These resources are brought to bear upon the key scientific and engineering challenges facing the nation and can be made available to address the research needs of others. Sandia can support the safe, secure, reliable, and sustainable use of nuclear power worldwide by incorporating state-of-the-art technologies in safety, security, nonproliferation, transportation, modeling, repository science, and system demonstrations.

  15. Nuclear Physics Laboratory, University of Washington annual report

    International Nuclear Information System (INIS)

    1998-04-01

    The Nuclear Physics Laboratory at the University of Washington in Seattle pursues a broad program of nuclear physics. These activities are conducted locally and at remote sites. The current programs include in-house research using the local tandem Van de Graaff and superconducting linac accelerators and non-accelerator research in solar neutrino physics at the Sudbury Neutrino Observatory in Canada and at SAGE in Russia, and gravitation as well as user-mode research at large accelerators and reactor facilities around the world. Summaries of the individual research projects are included. Areas of research covered are: fundamental symmetries, weak interactions and nuclear astrophysics; neutrino physics; nucleus-nucleus reactions; ultra-relativistic heavy ions; and atomic and molecular clusters

  16. Nuclear Physics Laboratory, University of Washington annual report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    The Nuclear Physics Laboratory at the University of Washington in Seattle pursues a broad program of nuclear physics. These activities are conducted locally and at remote sites. The current programs include in-house research using the local tandem Van de Graaff and superconducting linac accelerators and non-accelerator research in solar neutrino physics at the Sudbury Neutrino Observatory in Canada and at SAGE in Russia, and gravitation as well as user-mode research at large accelerators and reactor facilities around the world. Summaries of the individual research projects are included. Areas of research covered are: fundamental symmetries, weak interactions and nuclear astrophysics; neutrino physics; nucleus-nucleus reactions; ultra-relativistic heavy ions; and atomic and molecular clusters.

  17. Development of a new virtual nuclear reactor laboratory

    International Nuclear Information System (INIS)

    Ahmad Abrishami; Ali Pazirandeh

    2009-01-01

    Full text: Nowadays the education industry benefits from computer programs and software in various ways as well as many other industries. Here the e-learning technology uses some forms of software platform to present its contents. Virtual laboratories are superior tools in this technology. A virtual laboratory is interactive graphical user interface software that is based on known scientific laws of its virtual elements, which responses to user acts as desired in the real case. There are some known commercial and non-commercial ones. There are also some simulation software in the field of nuclear industry that has some uses in operator learning and some other applications such as analyzing the effects of human mistakes on plant safety. In this paper we discuss more about the ways to develop a virtual nuclear reactor laboratory and propose our first release of such tool. Our target reactor is Tehran Research Reactor (TRR), which is a pool type reactor. We used WIMS and COSTANZA to develop the simulator kernel of virtual laboratory. (Author)

  18. Felsenkeller shallow-underground accelerator laboratory for nuclear astrophysics

    Science.gov (United States)

    Bemmerer, D.; Cowan, T. E.; Gohl, S.; Ilgner, C.; Junghans, A. R.; Reinhardt, T. P.; Rimarzig, B.; Reinicke, S.; Röder, M.; Schmidt, K.; Schwengner, R.; Stöckel, K.; Szücs, T.; Takács, M.; Wagner, A.; Wagner, L.; Zuber, K.

    2015-05-01

    Favored by the low background in underground laboratories, low-background accelerator-based experiments are an important tool to study nuclear reactions involving stable charged particles. This technique has been used for many years with great success at the 0.4 MV LUNA accelerator in the Gran Sasso laboratory in Italy, proteced from cosmic rays by 1400 m of rock. However, the nuclear reactions of helium and carbon burning and the neutron source reactions for the astrophysical s-process require higher beam energies than those available at LUNA. Also the study of solar fusion reactions necessitates new data at higher energies. As a result, in the present NuPECC long range plan for nuclear physics in Europe, the installation of one or more higher-energy underground accelerators is strongly recommended. An intercomparison exercise has been carried out using the same HPGe detector in a typical nuclear astrophysics setup at several sites, including the Dresden Felsenkeller underground laboratory. It was found that its rock overburden of 45m rock, together with an active veto against the remaining muon flux, reduces the background to a level that is similar to the deep underground scenario. Based on this finding, a used 5 MV pelletron tandem with 250 μA upcharge current and external sputter ion source has been obtained and transported to Dresden. Work on an additional radio-frequency ion source on the high voltage terminal is underway. The project is now fully funded. The installation of the accelerator in the Felsenkeller is expected for the near future. The status of the project and the planned access possibilities for external users will be reported.

  19. Nuclear Astrophysics in underground laboratories: the LUNA experiment

    Science.gov (United States)

    2017-11-01

    One of the main ingredients of nuclear astrophysics is the knowledge of the thermonuclear reactions responsible for powering the stellar engine and for the synthesis of the chemical elements. At astrophysical energies the cross section of nuclear processes is extremely reduced by the effect of the Coulomb barrier. The low value of cross sections prevents their measurement at stellar energies on Earth surface and often extrapolations are needed. The Laboratory for Underground Nuclear Astrophysics (LUNA) is placed under the Gran Sasso mountain and thanks to the cosmic-ray background reduction provided by its position can investigate cross sections at energies close to the Gamow peak in stellar scenarios. Many crucial reactions involved in hydrogen burning has been measured directly at astrophysical energies with both the LUNA-50kV and the LUNA-400kV accelerators, and this intense work will continue with the installation of a MV machine able to explore helium and carbon burnings. Based on this progress, currently there are efforts in several countries to construct new underground accelerators. In this talk, the typical techniques adopted in underground nuclear astrophysics will be described and the most relevant results achieved by LUNA will be reviewed. The exciting science that can be probed with the new facilities will be highlighted.

  20. Protection of personnel against atmospheric contamination by plutonium in the laboratory (1963); Protection du personnel contre la contamination atmospherique par le plutonium, dans les laboratoires (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Feliers, P.; Pomarola, J.; Risselin, A. [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1963-07-01

    Various problems about measurement of atmospheric contamination by plutonium in laboratories are considered. In particular are studied sampling methods, continuous measurement for alarm, criteria used for fixation of the concentrations to be measured, sensitivity of apparatus and effects of natural atmospheric contamination. The means actually available for measurement of contamination and their limits of use are briefly analysed. (authors) [French] Les differents problemes a resoudre pour realiser un controle satisfaisant de la contamination atmospherique par le plutonium, dans les laboratoires, sont abordes. On etudie en particulier les differents modes d'echantillonnage, le controle continu en vue de l'alarme, les criteres qui servent a la fixation des concentrations a mesurer, la sensibilite a donner aux moyens de mesure, les difficultes provenant de la contamination atmospherique naturelle. Les moyens actuellement disponibles pour le controle de la contamination et leurs moyens limites d'emploi sont analyses sommairement. (auteurs)

  1. The dynamic analysis facility at the Chalk River Nuclear Laboratories

    International Nuclear Information System (INIS)

    Argue, D.S.; Howatt, W.T.

    1979-10-01

    The Dynamic Analysis Facility at the Chalk River Nuclear Laboratories (CRNL) of Atomic Energy of Canada Limited (AECL) comprises a Hybrid Computer, consisting of two Applied Dynamic International AD/FIVE analog computers and a Digital Equipment Corporation (DEC) PDP-11/55 digital computer, and a Program Development System based on a DEC PDP-11/45 digital computer. This report describes the functions of the various hardware components of the Dynamic Analysis Facility and the interactions between them. A brief description of the software available to the user is also given. (auth)

  2. Decommissioning of fuel PIE caves at Berkeley Nuclear Laboratories

    International Nuclear Information System (INIS)

    Brant, A.W.

    1990-01-01

    This paper describes the first major contract awarded to private industry to carry out decommissioning of a facility with significant radiation levels. The work required operatives to work in pressurised suits, entry times were significantly affected by sources of radiation in the Caves, being as low as thirty minutes per day initially. The Caves at Berkeley Nuclear Laboratories carry out post irradiation examination of fuel elements support units and reactor core components from CEGB power stations. The decommissioning work is part of an overall refurbishment of the facility to allow the receipt of AGR Fuel Stringer Component direct from power stations. The paper describes the decommissioning and decontamination of the facility from the remote removal and clean up work carried out by the client to the hands-on work. It includes reference to entry times, work patterns, interfaces with the client and the operations of the laboratory. Details of a specially adapted size reduction method are given. (Author)

  3. A new Architectural Approach to Energy Efficient Design for Nuclear and Research Laboratories

    International Nuclear Information System (INIS)

    Algohary, S.A.

    2006-01-01

    As a building type, nuclear and research laboratories demands our attention because they represent the spirit and culture of our era and attracts some of the greatest intellectual and economic recourses of our society. Unfortunately, nuclear and research laboratories are also a prodigious consumer of natural resources and energy intensive. for example, research laboratories typically consume 5 to 10 times more energy per square meter than the office buildings. so, the challenge for architects, engineers, and other building professionals is to design and construct the next generation of nuclear and research laboratories with energy efficiency, renewable energy sources, and sustainable design practices in mind. this parer describes some energy efficient strategies for designing and equipping the new generation of nuclear and research laboratories. it introduces the basic issues associated with energy consumption in the nuclear and research laboratories, summarizes the opportunities to improve and optimize energy performance during each phase of the design, and operation of nuclear and research laboratories

  4. Progress of Jinping Underground laboratory for Nuclear Astrophysics (JUNA)

    Science.gov (United States)

    Liu, WeiPing; Li, ZhiHong; He, JiangJun; Tang, XiaoDong; Lian, Gang; An, Zhu; Chang, JianJun; Chen, Han; Chen, QingHao; Chen, XiongJun; Chen, ZhiJun; Cui, BaoQun; Du, XianChao; Fu, ChangBo; Gan, Lin; Guo, Bing; He, GuoZhu; Heger, Alexander; Hou, SuQing; Huang, HanXiong; Huang, Ning; Jia, BaoLu; Jiang, LiYang; Kubono, Shigeru; Li, JianMin; Li, KuoAng; Li, Tao; Li, YunJu; Lugaro, Maria; Luo, XiaoBing; Ma, HongYi; Ma, ShaoBo; Mei, DongMing; Qian, YongZhong; Qin, JiuChang; Ren, Jie; Shen, YangPing; Su, Jun; Sun, LiangTing; Tan, WanPeng; Tanihata, Isao; Wang, Shuo; Wang, Peng; Wang, YouBao; Wu, Qi; Xu, ShiWei; Yan, ShengQuan; Yang, LiTao; Yang, Yao; Yu, XiangQing; Yue, Qian; Zeng, Sheng; Zhang, HuanYu; Zhang, Hui; Zhang, LiYong; Zhang, NingTao; Zhang, QiWei; Zhang, Tao; Zhang, XiaoPeng; Zhang, XueZhen; Zhang, ZiMing; Zhao, Wei; Zhao, Zuo; Zhou, Chao

    2016-04-01

    Jinping Underground laboratory for Nuclear Astrophysics (JUNA) will take the advantage of the ultra-low background of CJPL lab and high current accelerator based on an ECR source and a highly sensitive detector to directly study for the first time a number of crucial reactions occurring at their relevant stellar energies during the evolution of hydrostatic stars. In its first phase, JUNA aims at the direct measurements of 25Mg(p, γ)26Al, 19F(p, α)16O, 13C(α, n)16O and 12C(α, γ)16O reactions. The experimental setup, which includes an accelerator system with high stability and high intensity, a detector system, and a shielding material with low background, will be established during the above research. The current progress of JUNA will be given.

  5. Progress report: 1985. Laboratory of high energy nuclear physics

    International Nuclear Information System (INIS)

    1986-01-01

    Main research themas are experimental studies of elementary constituents of matter (quark, leptons,...) and of their fields (photons, gluons,...). Experiments in which the LPNHE (laboratory of high energy nuclear physics) participates are, at CERN, NA (4), NA (10), UA (7), NA (38); it collaborates at Modane to determination of proton mean life. It participates to Aleph experiment at Lep, and to studies aimed at H1 calorimeter construction at Hera. Different technical developments are going on; among them, the study of special detectors which use liquids at ambient temperature for charged particles. A group is aimed at fabrication and study of thin films of amorphous silicon and amorphous silicon-germanium alloys. A specialized reactor, the Arcam, allows stocking of thin films with different compositions [fr

  6. Bibliography of Connecticut Advanced Nuclear Engineering Laboratory reports

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1965-12-01

    This report, published in two volumes, is a bibliography of the reports published at the Connecticut Advanced Nuclear Engineering Laboratory (CANEL). The reports cover the period 1952 through 1965 and include the Aircraft Nuclear Propulsion program, the Advanced Liquid Metal Cooled Reactor program, the Advanced Reactor Materials program and the SNAP-50 program. The bibliography contains the report number, title, author, date published, and classification. In some cases where the writing of a report was a group effort, and in some reports containing compilations of certain types of data, the author column is not applicable. This is indicated by a {open_quotes}n.a.{close_quotes} in the author column. The following types of reports are included: PWAC`s, TIM`s, CNLM`s, FXM`s and miscellaneous reports. PWAC and TIM reports conform to the requirements of AEC Manual Chapter 3202-041 and 3202-042, respectively. Most of the technical information of interest generated by this project is documented in these reports. CNLM and FXM reports were written primarily for internal distribution. However, these reports contain enough information of technical interest to warrant their inclusion. All CNLM`s and those FXM`s considered to be of interest are included in this bibliography. The MPR`s (Monthly Progress Reports) are the most important of the miscellaneous categories of reports. The other miscellaneous categories relate primarily to equipment and reactor specifications. The Division of Technical Information Extension (DTIE) at Oak Ridge, Tennessee has been designated as the primary recipient of the reports in the CANEL library. When more than one copy of a report was available, the additional copies were delivered to the Lawrence Radiation Laboratory, Livermore, California.

  7. Bibliography of Connecticut Advanced Nuclear Engineering Laboratory reports

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1965-12-01

    This report, published in two, volumes, is a bibliography of the reports published at the Connecticut Advanced Nuclear Engineering Laboratory (CANEL). The reports cover the period 1952 through 1965 and include the Aircraft Nuclear Propulsion program, the Advanced Liquid Metal Cooled Reactor program, the Advanced Reactor Materials program and the SNAP-50 program. The bibliography contains the report number, title, author, date published, and classification. In some cases where the writing of a report was a group effort, and in some reports containing compilations of certain types of data, the author column is not applicable. This is indicated by a {open_quotes}n.a.{close_quotes} in the author column. The following types of reports are included: PWAC`s, TIM`s, CNLM`s. FXM`s and miscellaneous reports. PWAC and TIM reports conform to the requirements of AEC Manual Chapter 3202-041 and 3202-042, respectively. Most of the technical information of interest generated by this project is documented in these reports, CNLM and FXM reports were written primarily for internal distribution. However, these reports contain enough information of technical interest to warrant their inclusion. All CNLM`s and those FXM`s considered to be of interest are included in this bibliography. The MPR`s (Monthly Progress Reports) are the most important of the miscellaneous categories of reports. The other miscellaneous categories relate primarily to equipment and reactor specifications. The Division of Technical Information Extension (DTIE) at Oak Ridge, Tennessee has been designated as the primary recipient of the reports in the CANEL library. When more than one copy of a report was available, the additional copies were delivered to the Lawrence Radiation Laboratory, Livermore, California.

  8. Lawrence Livermore Laboratory Nuclear Test Effects and Geologic Data Bank

    International Nuclear Information System (INIS)

    Howard, N.W.

    1976-01-01

    Data on the geology of the USERDA Nevada Test Site have been collected for the purpose of evaluating the possibility of release of radioactivity at proposed underground nuclear test sites. These data, including both the rock physical properties and the geologic structure and stratigraphy of a large number of drill-hole sites, are stored in the Lawrence Livermore Laboratory Earth Sciences Division Nuclear Test Effects and Geologic Data Bank. Retrieval programs can quickly provide a geological and geophysical comparison of a particular site with other sites where radioactivity was successfully contained. The data can be automatically sorted, compared, and averaged, and information listed according to site location, drill-hole construction, rock units, depth to key horizons and to the water table, and distance to faults. These programs also make possible ordered listings of geophysical properties (interval bulk density, overburden density, interval velocity, velocity to the surface, grain density, water content, carbonate content, porosity, and saturation of the rocks). The characteristics and capabilities of the data bank are discussed

  9. Laboratory for Nuclear Science. High Energy Physics Program

    Energy Technology Data Exchange (ETDEWEB)

    Milner, Richard [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2014-07-30

    High energy and nuclear physics research at MIT is conducted within the Laboratory for Nuclear Science (LNS). Almost half of the faculty in the MIT Physics Department carry out research in LNS at the theoretical and experimental frontiers of subatomic physics. Since 2004, the U.S. Department of Energy has funded the high energy physics research program through grant DE-FG02-05ER41360 (other grants and cooperative agreements provided decades of support prior to 2004). The Director of LNS serves as PI. The grant supports the research of four groups within LNS as “tasks” within the umbrella grant. Brief descriptions of each group are given here. A more detailed report from each task follows in later sections. Although grant DE-FG02-05ER41360 has ended, DOE continues to fund LNS high energy physics research through five separate grants (a research grant for each of the four groups, as well as a grant for AMS Operations). We are pleased to continue this longstanding partnership.

  10. Experience with radioactive waste incineration at Chalk River Nuclear Laboratories

    International Nuclear Information System (INIS)

    Le, V.T.; Beamer, N.V.; Buckley, L.P.

    1988-06-01

    Chalk River Nuclear Laboratories is a nuclear research centre operated by Atomic Energy of Canada Limited. A full-scale waste treatment centre has been constructed to process low- and intermediate-level radioactive wastes generated on-site. A batch-loaded, two-stage, starved-air incinerator for solid combustible waste is one of the processes installed in this facility. The incinerator has been operating since 1982. It has consistently reduced combustible wastes to an inert ash product, with an average volume reduction factor of about 150:1. The incinerator ash is stored in 200 L drums awaiting solidification in bitumen. The incinerator and a 50-ton hydraulic baler have provided treatment for a combined volume of about 1300 m 3 /a of solid low-level radioactive waste. This paper presents a review of the performance of the incinerator during its six years of operation. In addition to presenting operational experience, an assessment of the starved-air incineration technique will also be discussed

  11. Nuclear accident dosimetry studies at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Casson, W.H.; Buhl, T.E.; Upp, D.L.

    1995-01-01

    Two critical assemblies have been characterized at the Los Alamos Critical Experiments Facility (LACEF) for use in testing nuclear accident dosimeters and related devices. These device, Godiva IV and SHEBA II, have very different characteristics in both operation and emitted neutron energy spectra. The Godiva assembly is a bare metal fast burst device with a hard spectrum. This spectrum can be modified by use of several shields including steel, concrete, and plexiglas. The modified spectra vary in both average neutron energy and in the specific distribution of the neutron energies in the intermediate energy range. This makes for a very favorable test arrangement as the response ratios between different activation foils used in accident dosimeters are significantly altered such as the ratio between gold, copper, and sulfur elements. The SHEBA device is a solution assembly which has both a slow ramp and decay period and a much softer spectrum. The uncertainly introduced in the response of fast decay foils such as indium can therefore be evaluated into the test results. The neutron energy spectrum for each configuration was measured during low power operations with a multisphere system. These measurements were extended to high dose pulsed operation by use of TLDs moderated TLDs, and special activation techniques. The assemblies were used in the testing of several accident dosimetry devices in studies modeled after the Nuclear Accident Dosimetry Studies that were conducted at Oak Ridge National Laboratory for about 25 years using the Health Physics Research Reactor. It is our intention to conduct these studies approximately annually for the evaluation of the nuclear accident dosimeter systems currently in use within the DOE, alternative systems used internationally, and new dosimeter designs being developed or considered for field application. Participation in selected studies will be open to all participants

  12. Annual report of the Nuclear Physics Laboratory, University of Washington

    Energy Technology Data Exchange (ETDEWEB)

    Snover, K.; Fulton, B. [eds.

    1996-04-01

    The Nuclear Physics Laboratory of the University of Washington has for over 40 years supported a broad program of experimental physics research. Some highlights of the research activities during the past year are given. Work continues at a rapid pace toward completion of the Sudbury Neutrino Observatory in January 1997. Following four years of planning and development, installation of the acrylic vessel began last July and is now 50% complete, with final completion scheduled for September. The Russian-American Gallium Experiment (SAGE) has completed a successful {sup 51}Cr neutrino source experiment. The first data from {sup 8}B decay have been taken in the Mass-8 CVC/Second Class Current study. The analysis of the measured barrier distributions for Ca-induced fission of prolate {sup 192}Os and oblate {sup 194}Pt has been completed. In a collaboration with a group from the Bhabha Atomic Research Centre they have shown that fission anisotropies at energies well above the barrier are not influenced by the mass asymmetry of the entrance channel relative to the Businaro-Gallone critical asymmetry. They also have preliminary evidence at higher bombarding energy that noncompound nucleus fission scales with the mean square angular momentum, in contrast to previous suggestions. The authors have measured proton and alpha particle emission spectra from the decay of A {approximately} 200 compound nuclei at excitation energies of 50--100 MeV, and used these measurements to infer the nuclear temperature. The investigations of multiparticle Bose-Einstein interferometry have led to a new algorithm for putting Bose-Einstein and Coulomb correlations of up to 6th order into Monte Carlo simulations of ultra-relativistic collision events, and to a new fast algorithm for extracting event temperatures.

  13. Annual report of the Nuclear Physics Laboratory, University of Washington

    International Nuclear Information System (INIS)

    Snover, K.; Fulton, B.

    1996-04-01

    The Nuclear Physics Laboratory of the University of Washington has for over 40 years supported a broad program of experimental physics research. Some highlights of the research activities during the past year are given. Work continues at a rapid pace toward completion of the Sudbury Neutrino Observatory in January 1997. Following four years of planning and development, installation of the acrylic vessel began last July and is now 50% complete, with final completion scheduled for September. The Russian-American Gallium Experiment (SAGE) has completed a successful 51 Cr neutrino source experiment. The first data from 8 B decay have been taken in the Mass-8 CVC/Second Class Current study. The analysis of the measured barrier distributions for Ca-induced fission of prolate 192 Os and oblate 194 Pt has been completed. In a collaboration with a group from the Bhabha Atomic Research Centre they have shown that fission anisotropies at energies well above the barrier are not influenced by the mass asymmetry of the entrance channel relative to the Businaro-Gallone critical asymmetry. They also have preliminary evidence at higher bombarding energy that noncompound nucleus fission scales with the mean square angular momentum, in contrast to previous suggestions. The authors have measured proton and alpha particle emission spectra from the decay of A ∼ 200 compound nuclei at excitation energies of 50--100 MeV, and used these measurements to infer the nuclear temperature. The investigations of multiparticle Bose-Einstein interferometry have led to a new algorithm for putting Bose-Einstein and Coulomb correlations of up to 6th order into Monte Carlo simulations of ultra-relativistic collision events, and to a new fast algorithm for extracting event temperatures

  14. Keeping the Momentum and Nuclear Forensics at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Steiner, Robert Ernest; Dion, Heather M.; Dry, Donald E.; Kinman, William Scott; LaMont, Stephen Philip; Podlesak, David; Tandon, Lav

    2016-01-01

    LANL has 70 years of experience in nuclear forensics and supports the community through a wide variety of efforts and leveraged capabilities: Expanding the understanding of nuclear forensics, providing training on nuclear forensics methods, and developing bilateral relationships to expand our understanding of nuclear forensic science. LANL remains highly supportive of several key organizations tasked with carrying forth the Nuclear Security Summit messages: IAEA, GICNT, and INTERPOL. Analytical chemistry measurements on plutonium and uranium matrices are critical to numerous programs including safeguards accountancy verification measurements. Los Alamos National Laboratory operates capable actinide analytical chemistry and material science laboratories suitable for nuclear material and environmental forensic characterization. Los Alamos National Laboratory uses numerous means to validate and independently verify that measurement data quality objectives are met. Numerous LANL nuclear facilities support the nuclear material handling, preparation, and analysis capabilities necessary to evaluate samples containing nearly any mass of an actinide (attogram to kilogram levels).

  15. Keeping the Momentum and Nuclear Forensics at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, Robert Ernest [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dion, Heather M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dry, Donald E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kinman, William Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); LaMont, Stephen Philip [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Podlesak, David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tandon, Lav [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-22

    LANL has 70 years of experience in nuclear forensics and supports the community through a wide variety of efforts and leveraged capabilities: Expanding the understanding of nuclear forensics, providing training on nuclear forensics methods, and developing bilateral relationships to expand our understanding of nuclear forensic science. LANL remains highly supportive of several key organizations tasked with carrying forth the Nuclear Security Summit messages: IAEA, GICNT, and INTERPOL. Analytical chemistry measurements on plutonium and uranium matrices are critical to numerous programs including safeguards accountancy verification measurements. Los Alamos National Laboratory operates capable actinide analytical chemistry and material science laboratories suitable for nuclear material and environmental forensic characterization. Los Alamos National Laboratory uses numerous means to validate and independently verify that measurement data quality objectives are met. Numerous LANL nuclear facilities support the nuclear material handling, preparation, and analysis capabilities necessary to evaluate samples containing nearly any mass of an actinide (attogram to kilogram levels).

  16. Accelerator Mass Spectrometry at the Nuclear Science Laboratory: Applications to Nuclear Astrophysics

    Science.gov (United States)

    Collon, P.; Bauder, W.; Bowers, M.; Lu, W.; Ostdiek, K.; Robertson, D.

    The Accelerator Mass Spectrometry (AMS) program at the Nuclear Science Laboratory of the University of Notre Dame is focused on measurements related to galactic radioactivity and to nucleosynthesis of main stellar burning as well as the production of so called Short-Lived Radionuclides (SLRs) in the Early Solar System (ESS). The research program is based around the 11MV FN tandem accelerator and the use of the gas-filled magnet technique for isobar separation. Using a technique that evolved from radiocarbon dating, this paper presents a number of research programs that rely on the use of an 11MV tandem accelerator at the center of the AMS program.

  17. Les essais inter-laboratoires en microbiologie des aliments Inter-laboratory studies in food microbiology

    OpenAIRE

    Lombard, Bertrand

    2004-01-01

    The validity of microbiological controls, performed for ensuring food safety, requires in particular reliable analytical results. Such reliability needs validated methods, implemented by a competent laboratory. The inter-laboratory studies enable to respect, at least partly, these two conditions. Meanwhile, given experimental limitations, these studies are not so largely performed in food microbiology than in other analytical fields. In a first step, a review of reference documents enables to...

  18. Educational laboratory experiments on chemistry in a nuclear engineering school

    International Nuclear Information System (INIS)

    Akatsu, E.

    1982-01-01

    An educational laboratory experiment on radiochemistry was investigated by students in the general course of the Nuclear Engineering School of Japan Atomic Energy Research Institute. Most of them are not chemical engineers, but electrical and mechanical engineers. Therefore, the educational experiment was designed for them by introducing a ''word experiment'' in the initial stage and by reducing the chemical procedure as far as possible. It began with calculations on a simple solvent extraction process-the ''word experiment''--followed by the chemical separation of 144 Pr from 144 Ce with tri-n-butyl phosphate in a nitric acid system and then measurement of the radioactive decay and growth of the separated 144 Pr and 144 Ce, respectively. The chemical procedure was explained by the phenomenon but not by the mechanism of chelation. Most students thought the experiment was an exercise in solvent extraction or radiochemical separation rather than a radioactive equilibrium experiment. However, a pure chemist considered it as a sort of physical experiment, where the chemical procedure was used only for preparation of measuring samples. Another experiment, where 137 Cs was measured after isolation with ammonium phosphomolybdate, was also investigated. The experiment eliminated the need for students who were not chemists to know how to use radioactive tracers. These students appreciated the realization that they could understand the radioactivity in the environmental samples in a chemical frame of reference even though they were not chemists

  19. A High Intensity Multi-Purpose D-D Neutron Generator for Nuclear Engineering Laboratories

    International Nuclear Information System (INIS)

    Ka-Ngo Leung; Jasmina L. Vujic; Edward C. Morse; Per F. Peterson

    2005-01-01

    This NEER project involves the design, construction and testing of a low-cost high intensity D-D neutron generator for teaching nuclear engineering students in a laboratory environment without radioisotopes or a nuclear reactor. The neutron generator was designed, fabricated and tested at Lawrence Berkeley National Laboratory (LBNL)

  20. The laboratories of geological studies; Les laboratoires d`etudes geologiques

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-01-01

    This educational document comprises 4 booklets in a folder devoted to the presentation of the ANDRA`s activities in geological research laboratories. The first booklet gives a presentation of the missions of the ANDRA (the French agency for the management of radioactive wastes) in the management of long life radioactive wastes. The second booklet describes the approach of waste disposal facilities implantation. The third booklet gives a brief presentation of the scientific program concerning the underground geologic laboratories. The last booklet is a compilation of questions and answers about long-life radioactive wastes, the research and works carried out in geologic laboratories, the public information and the local socio-economic impact, and the storage of radioactive wastes in deep geological formations. (J.S.)

  1. Progress report for (1974-1984) of Nuclear Research Laboratory, Srinagar, Kashmir

    International Nuclear Information System (INIS)

    Kaul, P.K.; Razdan, H.

    1985-01-01

    The Nuclear Research Laboratory, established at Srinagar in 1974, serves as a base laboratory to organise research activities at the High Altitude Research Laboratory at Gulmarg. Space physics, nuclear physics, radiation and atmospheric chemistry, and technical physics: are the fields in which the research facilities are established at the Laboratory, over the past ten years. The highlights of the various research programmes undertaken at the Laboratory during the period 1974-1984 are presented in the form of summaries. A list of papers published in various journals and presented at different conferences, symposia etc. is given at the end. (M.G.B.)

  2. Managing Spent Nuclear Fuel at the Idaho National Laboratory

    International Nuclear Information System (INIS)

    Thomas Hill; Denzel L. Fillmore

    2005-01-01

    The Idaho National Laboratory (INL) has a large inventory of diverse types of spent nuclear fuel (SNF). This legacy derives from the history of the INL as the National Reactor Testing Station, and from its mission to recover HEU from SNF and to test and examine SNF after irradiation. The INL also has a large diversity of SNF storage facilities, some 50 years old. SNF at INL has many forms--from intact assemblies down to metallurgical mounts, and some fuel has been wet stored for over 40 years. SNF is stored bare or in metal cans under water, or dry in vaults, caissons or casks. Inspection shows varying corrosion and degradation of the SNF and its storage cans. SNF has been stored in 10 different facilities: 5 pools, one cask storage pad, one vault, two generations of caisson facilities, and one modular Independent Spent Fuel Storage Installation (ISFSI). The pools range in age from 40 years old to the most modern in the US Department of Energy (DOE) complex. The near-term objective is to move SNF from older pools to interim dry storage, allowing shutdown and decommissioning of the older facilities. This move involves drying methods that are dependent on fuel type. The long-term objective is to have INL SNF in safe dry storage and ready to be shipped to the National Repository. The unique features of the INL SNF requires special treatments and packaging to meet the proposed repository acceptance criteria and SNF will be repackaged in standardized canisters for shipment and disposal in the National Repository. Disposal will use the standardized canisters that can be co-disposed with High Level Waste glass logs to limit the total fissile material in a repository waste package. The DOE standardized canister also simplifies the repository handling of the multitude of DOE SNF sizes and shapes

  3. Managing Spent Nuclear Fuel at the Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Hill; Denzel L. Fillmore

    2005-10-01

    The Idaho National Laboratory (INL) has a large inventory of diverse types of spent nuclear fuel (SNF). This legacy derives from the history of the INL as the National Reactor Testing Station, and from its mission to recover HEU from SNF and to test and examine SNF after irradiation. The INL also has a large diversity of SNF storage facilities, some 50 years old. SNF at INL has many forms—from intact assemblies down to metallurgical mounts, and some fuel has been wet stored for over 40 years. SNF is stored bare or in metal cans under water, or dry in vaults, caissons or casks. Inspection shows varying corrosion and degradation of the SNF and its storage cans. SNF has been stored in 10 different facilities: 5 pools, one cask storage pad, one vault, two generations of caisson facilities, and one modular Independent Spent Fuel Storage Installation (ISFSI). The pools range in age from 40 years old to the most modern in the US Department of Energy (DOE) complex. The near-term objective is to move SNF from older pools to interim dry storage, allowing shutdown and decommissioning of the older facilities. This move involves drying methods that are dependent on fuel type. The long-term objective is to have INL SNF in safe dry storage and ready to be shipped to the National Repository. The unique features of the INL SNF requires special treatments and packaging to meet the proposed repository acceptance criteria and SNF will be repackaged in standardized canisters for shipment and disposal in the National Repository. Disposal will use the standardized canisters that can be co-disposed with High Level Waste glass logs to limit the total fissile material in a repository waste package. The DOE standardized canister also simplifies the repository handling of the multitude of DOE SNF sizes and shapes.

  4. Argonne National Laboratory: An example of a US nuclear research centre

    International Nuclear Information System (INIS)

    Bhattacharyya, S.

    2001-01-01

    The nuclear era was ushered in 1942 with the demonstration of a sustained nuclear chain reaction in Chicago Pile 1 facility. The USA then set up five large national multi disciplinary laboratories for developing nuclear technology for civilian use and three national laboratories for military applications. Reactor development, including prototype construction, was the main focus of the Argonne National Laboratory. More than 100 power reactors operating in the USA have benefited from R and D in the national laboratories. However, currently the support for nuclear power has waned. With the end of the cold war there has also been a need to change the mission of laboratories involved in military applications. For all laboratories of the Department of Energy (DOE) the mission, which was clearly focused earlier on high risk, high payoff long term R and D has now become quite diffused with a number of near term programmes. Cost and mission considerations have resulted in shutting down of many large facilities as well as auxiliary facilities. Erosion of infrastructure has also resulted in reduced opportunities for research which means dwindling of interest in nuclear science and engineering among the younger generation. The current focus of nuclear R and D in the DOE laboratories is on plant life extension, deactivation and decommissioning, spent fuel management and waste management. Advanced aspects include space nuclear applications and nuclear fusion R and D. At the Argonne National Laboratory, major initiatives for the future would be in the areas of science, energy, environment and non-proliferation technologies. International collaboration would be useful mechanisms to achieve cost effective solutions for major developmental areas. These include reactor operation and safety, repositories for high level nuclear waste, reactor system decommissioning, large projects like a nuclear fusion reactor and advanced power reactors. The IAEA could have a positive role in these

  5. Unrestricted re-use of decommissioned nuclear laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Cornelissen, R.; Noynaert, L.; Harnie, S.; Marien, J.

    1996-09-18

    A decommissioning strategy was developed by the Belgian Nuclear Research Centre SCK/CEN. In this strategy decommissioning works are limited to the radioactive parts of the nuclear installation. After obtaining an attestation for unrestricted reuse of the building after removal of all radioactivity, the building can be used for new industrial purposes outside the nuclear field. The decommissioning activities according to this strategy have been applied in four buildings. The results are described.

  6. Computerized nuclear material system at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Tischhauser, J.L.

    1980-01-01

    SNLA developed and implemented a nuclear material control and accountability system on an HP 3000 minicomputer. The Sandia Nuclear Materials Computer System (SNMCS) which became operative in January 1980 provides: control of shipments and receivals of nuclear material, control of internal transfers of nuclear material, automated inventory with a bar code system, control of inventory adjustments, automated reporting/transmitting to other contractors and operations offices, automated ledgers and journals for material weights and costs, and interface to the Albuquerque Operations Office (ALO) Automated 741 System

  7. The nuclear power stations of the French atomic energy programme (1960); Les centrales nucleaires de puissance du programme francais (1960)

    Energy Technology Data Exchange (ETDEWEB)

    Leduc, C. [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires; Roux, J.P. [Electricite de France (EDF), 75 - Paris (France)

    1960-07-01

    After recalling the entry of nuclear energy into energy production in France, the paper emphasizes the evolution of techniques applied in the designing of French nuclear power plants and describes the means employed for reducing costs per kWh of EDF2 and EDF3 compared with EDF1: the electric power per ton of uranium varies from 493 kW/t for EDF1 to 970 kW/t for EDF3. For this purpose the thermal power and electric power of units are changed respectively from 290 MWt for EDF1 to 1200 or 1600 MWt for EDF3 and from 28 to 250 MW. The results are obtained by an improvement in neutronic characteristics, developments in nuclear fuel technology, and simplification of the system of charging the reactor, whose means of maintenance are increased; the EDF2 heat-exchangers have been so designed as to increase the unit power of the elements, which will attain 9 MWt, as against 3 for EDF1. For EDF3 an advance project forecasts a thermodynamic layout with only one pressure stage. The paper ends with a description of the burst-slug detection systems, and an appendix gives a detailed comparative table of EDF1, EDF2 and EDF3 plant characteristics. (author) [French] Apres avoir rappele l'integration de l'energie nucleaire parmi les moyens de production de l'energie en France, les auteurs se penchent surtout sur l'evolution des techniques appliquees dans l'equipement des centrales nucleaires francaises et decrivent les moyens mis en oeuvre pour reduire les prix de revient du kWh d'EDF2 et d'EDF3 par rapport a EDF1: la puissance electrique par tonne d'uranium varie de 493 kW/t pour EDF1 a 970 kW/t pour EDF3. C'est dans ce but que les puissances thermiques et la puissance unitaire des groupes turbo-alternateurs passent respectivement de 290 MWt pour EDF1 a 1200 ou 1600 MWt pour EDF3 et de 82 a 250 MW. Les resultats sont obtenus par une amelioration des caracteristiques neutroniques, des progres realises sur la technologie des elements

  8. MANAGING SPENT NUCLEAR FUEL WASTES AT THE IDAHO NATIONAL LABORATORY

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Thomas J

    2005-09-01

    The Idaho National Engineering Laboratory (INL) has a large inventory of diverse types of spent nuclear fuel (SNF). This legacy is in part due to the history of the INL as the National Reactor Testing Station, in part to its mission to recover highly enriched uranium from SNF and in part to it’s mission to test and examine SNF after irradiation. The INL also has a large diversity of SNF storage facility, some dating back 50 years in the site history. The success of the INL SNF program is measured by its ability to: 1) achieve safe existing storage, 2) continue to receive SNF from other locations, both foreign and domestic, 3) repackage SNF from wet storage to interim dry storage, and 4) prepare the SNF for dispositioning in a federal repository. Because of the diversity in the SNF and the facilities at the INL, the INL is addressing almost very condition that may exist in the SNF world. Many of solutions developed by the INL are applicable to other SNF storage sites as they develop their management strategy. The SNF being managed by the INL are in a variety of conditions, from intact assemblies to individual rods or plates to powders, rubble, and metallurgical mounts. Some of the fuel has been in wet storage for over forty years. The fuel is stored bare, or in metal cans and either wet under water or dry in vaults, caissons or casks. Inspections have shown varying degrees of corrosion and degradation of the fuel and the storage cans. Some of the fuel has been recanned under water, and the conditions of the fuel inside the second or third can are unknown. The fuel has been stored in one of 10 different facilities: five wet pools and one casks storage pad, one vault, two generations of caisson facilities, and one modular Independent Spent Fuel Storage Installation (ISFSI). The wet pools range from forty years old to the most modern pool in the US Department of Energy (DOE) complex. The near-term objective is moving the fuel in the older wet storage facilities to

  9. Contaminant dispersion simulation with micrometeorological parameters generated by LES in the area around the Angra Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Dorado, Rodrigo M.; Moreira, Davidson M., E-mail: dorado.engenharia@yahoo.com.b, E-mail: davidson@pq.cnpq.b [Universidade Federal do Pampa (UNIPAMPA), Bage, RS (Brazil). Centro de Ciencias Exatas e Tecnologicas

    2009-07-01

    In this work we report a numerical and statistical comparison between ADMM (Advection-Diffusion Multilayer Method) and GILTT (Generalized Integral Laplace Transform Technique) approaches to simulate radioactive pollutant dispersion in the atmosphere using micrometeorological parameters generated by LES (Large Eddy Simulation). To a better description of the wind profile for the irregular ground level terrain, we consider the wind profile as solution of the MesoNH model. Furthermore, we show the aptness of the discussed methods to solve contaminant dispersion problem in the atmosphere for more realistic micrometeorological parameters and wind field considering experimental data of the Angra I Nuclear Power Plant. (author)

  10. Contaminant dispersion simulation with micrometeorological parameters generated by LES in the area around the Angra Nuclear Power Plant

    International Nuclear Information System (INIS)

    Dorado, Rodrigo M.; Moreira, Davidson M.

    2009-01-01

    In this work we report a numerical and statistical comparison between ADMM (Advection-Diffusion Multilayer Method) and GILTT (Generalized Integral Laplace Transform Technique) approaches to simulate radioactive pollutant dispersion in the atmosphere using micrometeorological parameters generated by LES (Large Eddy Simulation). To a better description of the wind profile for the irregular ground level terrain, we consider the wind profile as solution of the MesoNH model. Furthermore, we show the aptness of the discussed methods to solve contaminant dispersion problem in the atmosphere for more realistic micrometeorological parameters and wind field considering experimental data of the Angra I Nuclear Power Plant. (author)

  11. Nuclear Physics Laboratory, University of Washington annual report, 1989

    International Nuclear Information System (INIS)

    1989-04-01

    This report discusses the following topics: astrophysics; giant resonances; heavy ion induced reactions; fundamental symmetries; nuclear reaction -- polarization; medium energy reactions; accelerator mass spectroscopy; research by outside users; van de Graaff and ion sources; computer systems; instrumentation; and booster linac

  12. Elecnuc. Nuclear power plants in the world; Elecnuc. Les centrales nucleaires dans le monde

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    This small booklet summarizes in tables all data relative to the nuclear power plants worldwide. These data come from the IAEA's PRIS and AREVA-CEA's GAIA databases. The following aspects are reviewed: 2007 highlights; Main characteristics of reactor types; Map of the French nuclear power plants on 2007/01/01; Worldwide status of nuclear power plants (12/31/2007); Units distributed by countries; Nuclear power plants connected to the Grid- by reactor type groups; Nuclear power plants under construction on 2007; Evolution of nuclear power plants capacities connected to the grid; First electric generations supplied by a nuclear unit in each country; Electrical generation from nuclear power plants by country at the end 2007; Performance indicator of French PWR units; Evolution of the generation indicators worldwide by type; Nuclear operator ranking according to their installed capacity; Units connected to the grid by countries at 12/31/2007; Status of licence renewal applications in USA; Nuclear power plants under construction at 12/31/2007; Shutdown reactors; Exported nuclear capacity in net MWe; Exported and national nuclear capacity connected to the grid; Exported nuclear power plants under construction; Exported and national nuclear capacity under construction; Nuclear power plants ordered at 12/31/2007; Long term shutdown units at 12/31/2007; COL (combined licences) applications in the USA; Recycling of Plutonium in reactors and experiences; Mox licence plants projects; Appendix - historical development; Meaning of the used acronyms; Glossary.

  13. Laboratory approaches of nuclear reactions involved in primordial and stellar nucleosynthesis

    International Nuclear Information System (INIS)

    Rolfs, C.; California Inst. of Tech., Pasadena

    1986-01-01

    Laboratory-based studies of primordial and stellar nucleosynthesis are reviewed, with emphasis on the nuclear reactions induced by charged particles. The analytical approach used to investigate nuclear reactions associated with stellar reactions is described, as well as the experimental details and procedures used to investigate nuclear reactions induced by charged particles. The present knowledge of some of the key reactions involved in primordial nucleosynthesis is discussed, along with the progress and problems of nuclear reactions involved in the hydrogen and helium burning phases of a star. Finally, a description is given of new experimental techniques which might be useful for future experiments in the field of nuclear astrophysics. (U.K.)

  14. Elecnuc. Nuclear power plants in the world; Elecnuc. Les centrales nucleaires dans le monde

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This 2003 version of Elecnuc contents information, data and charts on the nuclear power plants in the world and general information on the national perspectives concerning the electric power industry. The following topics are presented: 2002 highlights; characteristics of main reactor types and on order; map of the French nuclear power plants; the worldwide status of nuclear power plants on 2002/12/3; units distributed by countries; nuclear power plants connected to the Grid by reactor type groups; nuclear power plants under construction; capacity of the nuclear power plants on the grid; first electric generations supplied by a nuclear unit; electrical generation from nuclear plants by country at the end 2002; performance indicator of french PWR units; trends of the generation indicator worldwide from 1960 to 2002; 2002 cumulative Load Factor by owners; nuclear power plants connected to the grid by countries; status of license renewal applications in Usa; nuclear power plants under construction; Shutdown nuclear power plants; exported nuclear power plants by type; exported nuclear power plants by countries; nuclear power plants under construction or order; steam generator replacements; recycling of Plutonium in LWR; projects of MOX fuel use in reactors; electricity needs of Germany, Belgium, Spain, Finland, United Kingdom; electricity indicators of the five countries. (A.L.B.)

  15. The development of computer industry and applications of its relevant techniques in nuclear research laboratories

    International Nuclear Information System (INIS)

    Dai Guiliang

    1988-01-01

    The increasing needs for computers in the area of nuclear science and technology are described. The current status of commerical availabe computer products of different scale in world market are briefly reviewed. A survey of some noticeable techniques is given from the view point of computer applications in nuclear science research laboratories

  16. G.N. Florov Laboratory of Nuclear Reactions, history and the present day

    International Nuclear Information System (INIS)

    Szmider, J.

    1996-01-01

    The scientific activity and review of results attained at Florov Nuclear Reactions Laboratory of the Joined Institute of Nuclear Research, Dubna, have been presented in historical order. Especially the heavy ion cyclotron use for synthesis of new super-heavy elements as well as investigations of their physical and chemical properties have been shown. 1 fig

  17. Formal training program for nuclear material custodians at Hanford Engineering Development Laboratory

    International Nuclear Information System (INIS)

    Scott, D.D.

    1979-01-01

    Hanford Engineering Development Laboratory (HEDL) has established a formal training program for nuclear material (NM) custodians. The program, designed to familiarize the custodian with the fundamental concepts of proper nuclear materials control and accountability, is conducted on a semiannual basis. The program is prepared and presented by the Safeguards and Materials Management Section of HEDL and covers 14 subjects on accountability, documentation, transportation, custodian responsibilities, and the safeguarding of nuclear material

  18. Elecnuc. Nuclear power plants in the world; Elecnuc. Les centrales nucleaires dans le monde

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    This small booklet summarizes in tables all the numerical data relative to the nuclear power plants worldwide. These data come from the French CEA/DSE/SEE Elecnuc database. The following aspects are reviewed: 1997 highlights; main characteristics of the reactor types in operation, under construction or on order; map of the French nuclear power plants; worldwide status of nuclear power plants at the end of 1997; nuclear power plants in operation, under construction and on order; capacity of nuclear power plants in operation; net and gross capacity of nuclear power plants on the grid and in commercial operation; forecasts; first power generation of nuclear origin per country, achieved or expected; performance indicator of PWR units in France; worldwide trend of the power generation indicator; nuclear power plants in operation, under construction, on order, planned, cancelled, shutdown, and exported; planning of steam generators replacement; MOX fuel program for plutonium recycling. (J.S.)

  19. Nuclear Physics Laboratory annual report, University of Washington April 1992

    International Nuclear Information System (INIS)

    1992-01-01

    This report contains short discusses on topics in the following areas: astrophysics; giant resonances and photonuclear reactions; nucleus-nucleus reactions; fundamental symmetries; accelerator mass spectrometry; medium energy nuclear physics; ultra-relativistic heavy ion collisions; cluster fusion; instrumentation; van de graaff accelerators and ion sources; and computer data acquisition systems

  20. Nuclear Reactor Laboratory annual report, fiscal year 1981-1982

    International Nuclear Information System (INIS)

    Cashwell, R.J.

    1982-01-01

    Information related to the use of the UWNR reactor is presented concerning instructional use by the Nuclear Engineering Department; reactor sharing program; utility personnel training; sample irradiations and neutron activation analysis services; changes in personnel, facility, and procedures; and results of surveillance tests

  1. The Chalk River Nuclear Laboratories contingency plan -a brief description

    International Nuclear Information System (INIS)

    White, J.M.

    1982-01-01

    A brief description of the contingency plan which deals with both the on-site and off-site consequences of a serious nuclear accident is given. The off-site consequences of different size releases and the subsequent action taken by employees, radiation protection experts, municipal, Provincial and Federal authorities is described and the interaction of the various groups is discussed. (author)

  2. Nuclear Physics Laboratory annual report, University of Washington April 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-07-01

    This report contains short discusses on topics in the following areas: astrophysics; giant resonances and photonuclear reactions; nucleus-nucleus reactions; fundamental symmetries; accelerator mass spectrometry; medium energy nuclear physics; ultra-relativistic heavy ion collisions; cluster fusion; instrumentation; van de graaff accelerators and ion sources; and computer data acquisition systems. (LSP)

  3. Nuclear Physics Laboratory annual report, University of Washington April 1992

    Energy Technology Data Exchange (ETDEWEB)

    Cramer, John G.; Ramirez, Maria G.

    1992-01-01

    This report contains short discusses on topics in the following areas: astrophysics; giant resonances and photonuclear reactions; nucleus-nucleus reactions; fundamental symmetries; accelerator mass spectrometry; medium energy nuclear physics; ultra-relativistic heavy ion collisions; cluster fusion; instrumentation; van de graaff accelerators and ion sources; and computer data acquisition systems. (LSP)

  4. Re-Development of Radiocarbon Dating Laboratory in Malaysian Nuclear Agency

    International Nuclear Information System (INIS)

    Norfaizal Mohamed; Nita Salina Abu Bakar; Phillip, E.

    2015-01-01

    Nuclear Dating Laboratory, formerly known as Radiocarbon Laboratory was established in Malaysian Nuclear Agency (Nuclear Malaysia) since 1983. A benzene synthesis line for radiocarbon (carbon-14) dating was installed in this laboratory by Australian Atomic Energy Commission (AAEC) under the Hydrology Isotope Project, a collaboration project between IAEA, AAEC and PUSPATI (former name for Nuclear Malaysia). Determining the age of samples could be performed using this facility throughout two main processes, namely the production of benzene containing C-14 isotopes and activity determination of C-14 using Liquid Scintillation Counter. Realizing the need and importance of Nuclear Dating Laboratory for the nations science and technology development, the Top Management of Nuclear Malaysia was agreed to hand over this laboratory and its facilities to Waste Technology and Environmental Division (BAS) started in June 2013 for the redevelopment. Hence, this paper will highlight the weaknesses and problems that need to be addressed and improved to enable it to be used in providing a good service. (author)

  5. Development of an in vitro laboratory manual for nuclear medicine technology students

    International Nuclear Information System (INIS)

    Meyers, A.

    1989-01-01

    This study evaluated existing in vitro education materials in qualitative and quantitative parameters that currently exist to educate potential clinicians of nationally accredited nuclear medicine programs. A review of over 300 articles, texts, and manuals pertaining to in vitro nuclear medicine procedures clearly demonstrated that no in vitro laboratory manual for undergraduate students presently exited. Every nuclear medicine program director in the United States was surveyed. They were asked for their overall philosophy in terms of developing an in vitro manual and requested to evaluate the significant of 22 general principles/concepts and 34 specific laboratory testing procedures. From the response to the survey, an in vitro nuclear medicine manual was created and appended to the study. The manual consists of lecture and study material, chapter reviews, and laboratory assignments and exercises

  6. The nuclear structure facility tandem at Daresbury laboratory

    International Nuclear Information System (INIS)

    Voss, R.G.P.

    1976-01-01

    A 30MV tandem electrostatic accelerator for ions of all types, including heavy ions, is being built at Daresbury Laboratory. Construction is well advanced, and considerable effort is continuing to be devoted to R and D programme into the technology of electrostatic accelerators

  7. Nuclear Plant Analyzer development at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Laats, E.T.; Beelman, R.J.; Charlton, T.R.; Hampton, N.L.; Burtt, J.D.

    1985-01-01

    The Nuclear Plant Analyzer (NPA) is a state-of-the-art safety analysis and engineering tool being used to address key nuclear power plant safety issues. The NPA has been developed to integrate the NRC's computerized reactor behavior simulation codes such as RELAP5, TRAC-BWR, and TRAC-PWR, with well-developed computer graphics programs and large repositories of reactor design and experimental data. An important feature of the NAP is the capability to allow an analyst to redirect a RELAP5 or TRAC calculation as it progresses through its simulated scenario. The analyst can have the same power plant control capabilities as the operator of an actual plant. The NPA resides on the dual CDS Cyber-176 mainframe computers at the INEL and is being converted to operate on a Cray-1S computer at the LANL. The subject of this paper is the program conducted at the INEL

  8. Reliability research on nuclear I and C system at KAIST NIC laboratory

    International Nuclear Information System (INIS)

    Seong, Poong-Hyun

    1996-01-01

    As the use of computer systems becomes popular in nuclear industry, reliability assurance of digitized nuclear instrumentation and control systems is becoming one of hot issues. Some issues on this are S/W verification and validation, reliability estimation of digital systems, development strategy of high integrity knowledge base for expert systems, and so on. In order to address these issues, the Nuclear Instrumentation and Control (NIC) laboratory at KAIST is conducting some research projects. This paper describes some highlights of these research activities. The final goal of these research activities is to develop some useful methodologies and tools for development of dependable digital nuclear instrument and control systems. (author)

  9. Los Alamos National Laboratory standard nuclear material container

    Energy Technology Data Exchange (ETDEWEB)

    Stone, Timothy A [Los Alamos National Laboratory

    2009-01-01

    The shut down of United States (U.S.) nuclear-weapons production activities in the early 1990s left large quantities of nuclear materials throughout the U.S. Department of Energy (DOE) complex in forms not intended for long-term storage. In May 1994, the Defense Nuclear Facilities Safety Board (DNFSB) issued Recommendation 94-1, which called for the stabilization and disposition of 'thousands of containers of plutonium-bearing liquids and solids' in the DOE complex, including LANL in the nuclear-weapons-manufacturing pipeline when manufacturing ended. This resulted in the development of the 3013 standard with container requirements for long term storage (up to 50 years). A follow on was the Criteria For Interim Storage of Plutonium Bearing Materials, Charles B. Curtis, in 1996 to address storage other than the 3013 standard for shorter time frames. In January 2000, the DNFSB issued Recommendation 2000-1, which stated the need for LANL to repackage 'about one ton of plutonium metal and oxide,' declared excess to Defense Program (DP) needs. The DNFSB recommended that LANL 'stabilize and seal within welded containers with an inert atmosphere the plutonium oxides ... which are not yet in states conforming to the long-term storage envisaged by DOE-STD-3013,' and that they '... enclose existing and newly-generated legacy plutonium metal in sealed containers with an inert atmosphere,' and 'remediate and/or safely store the various residues.' Recommendation 2000-1, while adding to the number of items needing remediation, also reiterated the need to address remaining items from 1994-1 in a timely fashion. Since timetables slipped, the DNFSB recommended that the Complex 'prioritize and schedule tasks according to the consideration of risks.' In March 2005, the DNFSB issued Recommendation 2005-1. This recommendation addresses the need for a consistent set of criteria across the DOE complex for the interim storage of

  10. Studies of nuclear processes at the Triangle Universities Nuclear Laboratory. Progress report, 1 September 1994--31 August 1995

    International Nuclear Information System (INIS)

    Ludwig, E.J.

    1995-01-01

    The Triangle Universities Nuclear Laboratory (TUNL)--a collaboration of Duke University, North Carolina State University, and the University of North Carolina at Chapel Hill--has had a very productive year. This report covers the second year of a three-year grant between the US Department of Energy and the three collaborating universities. The TUNL research program focuses on the following areas of nuclear physics: parity violation in neutron and charged-particle resonances--the mass and energy dependence of the weak interaction spreading width; chaotic behavior in 30 P from studies of eigenvalue fluctuations in nuclear level schemes; studies of few-body systems; nuclear astrophysics; nuclear data evaluation for A = 3--20, for which TUNL is now the international center; high-spin spectroscopy and superdeformation in nuclei, involving collaborations at Argonne National Laboratory. Developments in technology and instrumentation have been vital to the research and training program. In this progress report the author describes: a proposed polarized γ-beam facility at the Duke Free Electron Laser Laboratory; cryogenic systems and microcalorimeter development; continuing development of the Low Energy Beam Facility. The research summaries presented in this progress report are preliminary

  11. Studies of nuclear processes at the Triangle Universities Nuclear Laboratory. Progress report, 1 September 1994--31 August 1995

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, E.J.

    1995-09-01

    The Triangle Universities Nuclear Laboratory (TUNL)--a collaboration of Duke University, North Carolina State University, and the University of North Carolina at Chapel Hill--has had a very productive year. This report covers the second year of a three-year grant between the US Department of Energy and the three collaborating universities. The TUNL research program focuses on the following areas of nuclear physics: parity violation in neutron and charged-particle resonances--the mass and energy dependence of the weak interaction spreading width; chaotic behavior in {sup 30}P from studies of eigenvalue fluctuations in nuclear level schemes; studies of few-body systems; nuclear astrophysics; nuclear data evaluation for A = 3--20, for which TUNL is now the international center; high-spin spectroscopy and superdeformation in nuclei, involving collaborations at Argonne National Laboratory. Developments in technology and instrumentation have been vital to the research and training program. In this progress report the author describes: a proposed polarized {gamma}-beam facility at the Duke Free Electron Laser Laboratory; cryogenic systems and microcalorimeter development; continuing development of the Low Energy Beam Facility. The research summaries presented in this progress report are preliminary.

  12. Laboratory for materials analysis by nuclear analytical methods at Nuclear Physics Institute

    Czech Academy of Sciences Publication Activity Database

    Hnatowicz, Vladimír; Vacík, Jiří; Macková, Anna; Kučera, Jan

    2016-01-01

    Roč. 26, č. 2 (2016), s. 21-26 ISSN 1061-9127 R&D Projects: GA MŠk LM2015056 Institutional support: RVO:61389005 Keywords : Nuclear Physics Institute * IBA * NDP * NAA * PGAA Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders OBOR OECD: Nuclear physics

  13. Safety reassessment of nuclear installations: consequences for the 900 MWe-PWR type reactors. Safety reassessment of laboratories and nuclear industrial plant, application to a nuclear laboratory

    International Nuclear Information System (INIS)

    Dousson, D.; Guillard, M.; Charles, Th.

    2002-10-01

    In 1987 EDF (Electricite de France) launched the first campaign of the reassessment of safety of 6 operating nuclear reactors (2 Fessenheim units and the 4 reactors of the Bugey plant). This reassessment was requested by the Safety Authority in order to: - check that the safety studies led by EDF are consistent with the real state of the reactors and - be sure that the feedback experience cumulated over years of operating life has been profitable. This work ended in 1995. In 1990 EDF launched the second campaign involving the remaining 28 units of the 900 MWe-PWR type reactors. The aim was the same as previously but this time the procedure has included the use of probabilistic studies of safety. This second campaign has now entered its final stage and has led to several measures concerning fire protection, seismic resistance, and protection against deep cold weather. The probabilistic studies have shown that the reliability of some systems important for safety might be improved, so some modifications have been proposed. These modifications concern the emergency feedwater supply of steam generators, the ventilation systems and the emergency turbine generator set. The second part of the document presents the reassessment of safety that has been performed on a CEA laboratory dedicated to the study of irradiated fuel rods. (A.C.)

  14. Progress report 1986. Laboratory of high energy nuclear physics

    International Nuclear Information System (INIS)

    1987-01-01

    A study of hadron structure using neutrino interactions; high energy photon interactions; a search for gluinos; a spectrometer for the study of quark fusion and structure functions; measurement of the real part of the pp - scattering amplitude at 546 GeV; measurement of photon production in the fragmentation region of pp - interactions at 630 GeV; investigation of very high energy nucleus-nucleus interactions: the quagma; an experience on nucleon stability; as well as high energy nuclear physics research facilities are described [fr

  15. Students' assessment of interactive distance experimentation in nuclear reactor physics laboratory education

    Science.gov (United States)

    Malkawi, Salaheddin; Al-Araidah, Omar

    2013-10-01

    Laboratory experiments develop students' skills in dealing with laboratory instruments and physical processes with the objective of reinforcing the understanding of the investigated subject. In nuclear engineering, where research reactors play a vital role in the practical education of students, the high cost and long construction time of research reactors limit their accessibility to few educational programmes around the world. The concept of the Internet Reactor Laboratory (IRL) was introduced earlier as a new approach that utilises distance education in nuclear reactor physics laboratory education. This paper presents an initial assessment of the implementation of the IRL between the PULSTAR research reactor at North Carolina State University in the USA and the Department of Nuclear Engineering at Jordan University of Science and Technology (JUST) in Jordan. The IRL was implemented in teaching the Nuclear Reactor laboratory course for two semesters. Feedback from surveyed students verifies that the outcomes attained from using IRL in experimentation are comparable to that attainable from other on-campus laboratories performed by the students.

  16. Elecnuc. Nuclear power plants in the world; Elecnuc. Les centrales nucleaires dans le monde

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    This small booklet summarizes in tables all the numerical data relative to the nuclear power plants worldwide. These data come from the French CEA/DSE/SEE Elecnuc database. The following aspects are reviewed: 1999 highlights; main characteristics of the reactor types in operation, under construction or on order; map of the French nuclear power plants; worldwide status of nuclear power plants at the end of 1999; nuclear power plants in operation, under construction and on order; capacity of nuclear power plants in operation; net and gross capacity of nuclear power plants on the grid and in commercial operation; grid connection forecasts; world electric power market; electronuclear owners and share holders in EU, capacity and load factor; first power generation of nuclear origin per country, achieved or expected; performance indicator of PWR units in France; worldwide trend of the power generation indicator; 1999 gross load factor by operator; nuclear power plants in operation, under construction, on order, planned, cancelled, shutdown, and exported; planning of steam generators replacement; MOX fuel program for plutonium recycling. (J.S.)

  17. Microscopic description of nuclear structure; La structure nucleaire decrite par les theories microscopiques

    Energy Technology Data Exchange (ETDEWEB)

    Girod, M.; Berger, J.F.; Peru, S.; Dancer, H. [CEA Bruyeres-le-Chatel, 91 (France)

    2002-07-01

    After briefly recalling the formalism of the mean field approach with an effective nucleon-nucleon interaction, the theoretical framework of the nuclear structure studies performed at CEA-DAM, applications of this theory to various nuclear systems: shape and spin isomeric states, neutron and proton rich nuclei, superheavy and hyper-heavy nuclei, and to the fission process are presented. (authors)

  18. Building an integrated nuclear engineering and nuclear science human resources pipeline at the Idaho National Engineering and Environmental Laboratory

    International Nuclear Information System (INIS)

    Sneed, A.; Sikorski, B.; Lineberry, M.; Jolly, J.

    2004-01-01

    Full text: In 2002, the US Department of Energy (US DOE) transferred sponsorship of the INEEL and ANL-W to the DOE Office of Nuclear Energy, Science and Technology and designated the INEEL and ANL-W as the nation's lead laboratories for nuclear reactor and nuclear fuel cycle research and development. This transfer acknowledged the laboratories' history, infrastructure, expertise and commitment to collaborate broadly in order to fulfill its assigned role as the nation's center for nuclear energy research and development. Key to this role is the availability of well-educated and trained nuclear engineers, professionals from other disciplines of engineering, nuclear scientists, and others with advanced degrees in supporting disciplines such as physics, chemistry, and math. In 2005 the INEEL and ANL-W will be combined into the Idaho National Laboratory (INL). One of US DOE's objectives for the INL will be for it to take a strong role in the revitalization of nuclear engineering and nuclear science education in the US. Responding to this objective for the INL and the national need to rejuvenate nuclear engineering and nuclear science research and education, ISU, University of Idaho (UI), Boise State University, the INEEL, and ANL-W are all supporting a new Institute of Nuclear Science and Engineering (INSE), initially proposed by and to be administered by ISU. The Institute will rely on the resources of both universities and the INL to create a US center for reactor and fuel cycle research to development and attract outstanding faculty and students to Idaho and to the INL. The Institute and other university based education development efforts represent only one component of a viable Human Resources Pipeline from university to leading edge laboratory researcher. Another critical component is the successful integration of new graduates into the laboratory research environment, the transfer of knowledge from senior researchers, and the development of these individuals into

  19. Cancer and workers' compensation at Chalk River nuclear laboratories

    International Nuclear Information System (INIS)

    Evans, D.W.S.

    1985-01-01

    This paper describes the circumstances leading to the notification to the Worker's Compensation Board of Ontario of two cases of cancer, both involving the lymphatic and haematoporetic systems, in employees at Chalk River Nulcear Laboratories. Twenty of these neoplasms are known to have occurred in the CRNL population between 1966 and 1983. The leukemia/lymphoma ratio observed in the twenty neoplasms is similar to that found in populations not occupationally exposed to ionizing radiation. The possible relationship between asbestos exposure and lymphoid neoplasms was discussed. 5 refs

  20. Elecnuc. Nuclear power plants in the world. 1997; Elecnuc. Les centrales nucleaires dans le monde. 1997

    Energy Technology Data Exchange (ETDEWEB)

    Maubacq, F.; Tailland, C

    1997-04-01

    This small booklet provides information about all type of nuclear power plants worldwide. It is based on the data taken from the CEA/DSE/SEE Elecnuc database. The content comprises: the 1996 highlights, the main characteristics of the different type of reactors in operation or under construction, the map of the French nuclear power plant sites, the worldwide status of nuclear power plants at the end of 1996, the nuclear power plants in operation, under construction or on order (by groups of reactor-types), the power capacity evolution of power plants in operation, the net and gross capacity of the power plants on the grid, the commercial operation and grid connection forecasts, the first achieved or expected power generation supplied by a nuclear reactor for each country and the power generation from nuclear reactors, the performance indicator of the PWR units in France, the trends of the power generation indicator worldwide, the nuclear power plants in operation, under construction, on order, planned, cancelled, decommissioned and exported worldwide, the schedule of steam generator replacements, and the MOX fuel plutonium recycling programme. (J.S.)

  1. Los Alamos National Laboratory Human and Intellectual Capital for Sustaining Nuclear Deterrence

    Energy Technology Data Exchange (ETDEWEB)

    McAlpine, Bradley [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-04-01

    This paper provides an overview of the current human and intellectual capital at Los Alamos National Laboratory, through specific research into the statistics and demographics as well as numerous personal interviews at all levels of personnel. Based on this information, a series of recommendations are provided to assist Los Alamos National Laboratory in ensuring the future of the human and intellectual capital for the nuclear deterrence mission. While the current human and intellectual capital is strong it stands on the precipice and action must be taken to ensure Los Alamos National Laboratory maintains leadership in developing and sustaining national nuclear capabilities. These recommendations may be applicable to other areas of the nuclear enterprise, including the Air Force, after further research and study.

  2. Annual report of Nuclear Engineering Research Laboratory, University of Tokyo in fiscal 1992

    International Nuclear Information System (INIS)

    1993-07-01

    In this annual report, the activities of education and research, the state of operation of research facilities and others in Nuclear Engineering Research Laboratory, University of Tokyo in fiscal year 1992 are summarized. In this Laboratory, there are four large research facilities, that are, the fast neutron source reactor 'Yayoi', the electron beam linac, the nuclear fusion reactor blanket experiment facility and the heavy irradiation research facility. Those are used for carrying out education and research in the wide fields of nuclear engineering, and are offered also for joint utilization. The results of research by using respective research facilities have been summarized in separate reports. The course of the management and operation of each research facility is described, and the research activities, the theses for doctorate and graduation these of teachers, personnel and graduate students in the Laboratory are summarized. (J.P.N.)

  3. Triangle Universities Nuclear Laboratory. Annual report, 1 September 1981-1 October 1982

    International Nuclear Information System (INIS)

    Seagondollar, L.W.

    1982-01-01

    The varied research programs described reflect a decision by TUNL to devote its major resources to the study of the multiple facets of nuclear structure which can be probed through light ion induced nuclear reactions. Particular emphasis is placed on reactions induced by polarized protons, deuterons, and neutrons. We also continue a major commitment to the study of the statistical properties of nuclear structure revealed by elastic and inelastic scattering experiments using ultra high resolution beams. A third major laboratory commitment involves measurements of fast neutron cross sections required by the Department of Energy's program to produce controlled thermonuclear fusion. The major accelerator facilities of the laboratory include a model FN tandem Van de Graaff accelerator and a 15 MeV fixed energy negative ion cyclotron injector. The laboratory has two additional single ended Van de Graaff accelerators with terminal energies of 4 MV and 3 MV, respectively

  4. Los Alamos National Laboratory Human and Intellectual Capital for Sustaining Nuclear Deterrence

    International Nuclear Information System (INIS)

    McAlpine, Bradley

    2015-01-01

    This paper provides an overview of the current human and intellectual capital at Los Alamos National Laboratory, through specific research into the statistics and demographics as well as numerous personal interviews at all levels of personnel. Based on this information, a series of recommendations are provided to assist Los Alamos National Laboratory in ensuring the future of the human and intellectual capital for the nuclear deterrence mission. While the current human and intellectual capital is strong it stands on the precipice and action must be taken to ensure Los Alamos National Laboratory maintains leadership in developing and sustaining national nuclear capabilities. These recommendations may be applicable to other areas of the nuclear enterprise, including the Air Force, after further research and study.

  5. Progress of Jinping Underground laboratory for Nuclear Astrophysics (JUNA

    Directory of Open Access Journals (Sweden)

    Liu WeiPing

    2016-01-01

    Full Text Available Jinping Underground lab for Nuclear Astrophysics (JUNA will take the advantage of the ultralow background in Jinping underground lab, high current accelerator based on an ECR source and highly sensitive detector to study directly a number of crucial reactions to the hydrostatic stellar evolution for the first time at their relevant stellar energies. In its first phase, JUNA aims at the direct measurements of 25Mg(p,γ26Al, 19F(p,α16O, 13C(α,n16O and 12C(α,γ16O. The experimental setup, which include the accelerator system with high stability and high intensity, the detector system, and the shielding material with low background, will be established during the above research. The current progress of JUNA will be given.

  6. Fire protection in laboratories and factories. Guide for nuclear operator

    International Nuclear Information System (INIS)

    Savornin, J.; Hebrard, L.; Michard, J.; Muller, G.; Vasseur, C.

    1987-12-01

    Putting in place a nuclear industry is possible only if is taken into account the systematic risks connecting with the manipulation of radioactive matters. The measures taken are essentially the putting in place of static or dynamic barriers confinement. Therefore in case of fire their efficiencies can be reduced. The basic safety rule no. I-4.a serie U defines the objectives but do not give all the means to arrive. The present guide has for objective to propose the means which allow to satisfy these objectives. It permits to define the importance of precautions to take in terms of possible consequences. This document is not a rule. It has for objective to give advices [fr

  7. Report on the Acadiana Research Laboratory nuclear microprobe system

    Science.gov (United States)

    Glass, Gary A.; Hollerman, William A.; Hynes, Shelly F.; Fournet, Justin; Bailey, Alan M.; Liao, Changgeng

    2001-07-01

    The Acadiana Research Laboratory of the University of Louisiana at Lafayette provides high energy ion beams for materials research. Major components of the ion beam systems include a National Electrostatics Corporation (NEC) 1.7 MV tandem Pelletron accelerator system with both SNICS and RF ion sources and a Varian CF-4 200 kV implanter. The NEC Pelletron has three operational beamlines that provide a wide range of capabilities for materials modification and analysis, including such techniques as PIXE, PIGE, RBS, RFS, TOF-ERDA and ion implantation. An Oxford Microbeams Ltd. microprobe system was recently declared operational with the attainment of a 1.5 μm×2.0 μm beam spot size. Microprobe techniques presently available include μPIXE, μRBS and scanning transmission ion microscopy (STIM).

  8. Building an integrated nuclear engineering and nuclear science human resources pipeline at the Idaho National Engineering and Environmental Laboratory

    International Nuclear Information System (INIS)

    Sneed, A.; Sikorski, B.; Lineberry, M.; Jolly, J.

    2004-01-01

    In a joint effort with the Argonne National Laboratory - West (ANL-W), the Idaho National Engineering and Environmental Laboratory (INEEL) has assumed the lead role for nuclear energy reactor research for the United States Government. In 2005, these two laboratories will be combined into one entity, the Idaho National Laboratory (INL). There are two objectives for the INL: (1) to act as the lead systems integrator for the Department of Energy's Office of Nuclear Energy Science and Technology and, (2) to establish a Center for Advanced Energy Studies. Focusing on the Center for Advanced Energy Studies, this paper presents a Human Resources Pipeline Model outlining a nuclear educational pathway that leads to university and industry research partnerships. The pathway progresses from education to employment and into retirement. Key to the model is research and mentoring and their impact upon each stage. The Center's success will be the result of effective and advanced communications, faculty/student involvement, industry support, inclusive broadbased involvement, effective long-term partnering, and increased federal and state support. (author)

  9. Is there any future for nuclear weapons?; Les armes nucleaires ont-elles un avenir?

    Energy Technology Data Exchange (ETDEWEB)

    Heisbourg, F.

    2011-07-01

    Nuclear weapons occupy a paradoxal place both in the collective imagination and in the historical reality: on the one hand everybody dreads the apocalypse horror, and on the other hand, dissuasion appears as an unchanging and quite comfortable situation. However, the world has become multipolar in this domain as well. The geopolitical map is reconstructing. Doctrinal revisions, initiatives against nuclear weapons proliferation, and nuclear disarmament measures are now on the agenda. The best foreign and French experts examine for the first time the consequences of these evolutions. They analyse in particular the split up risks and the potential consequences of a nuclear conflict in regions where atomic arms have become a key-component of the strategic landscape: Middle-Est, Far-East, Southern Asia. The choices France and its allies will have to face are examined as well. (J.S.)

  10. Current Status of the Nuclear Engineering Teaching Laboratory at the University of Texas at Austin

    International Nuclear Information System (INIS)

    Biegalski, S.; Landsberger, S.

    2016-01-01

    The Nuclear Engineering Teaching Laboratory at The University of Texas at Austin houses a 1.1 MW TRIGA Mark II nuclear reactor. The reactor has multiple in-core irradiation facilities and five beam ports. Currently the reactor is utilized for training, research, and service work. Beam port facilities include neutron radiography, prompt-gamma activation analysis, and neutron depth profiling. Associated facilities include a radiochemistry laboratory, α spectroscopy, three Compton suppression γ-ray spectroscopy systems, two β-γ coincidence systems and a 14 MeV D-T neutron generator. (author)

  11. Decommissioning of the nuclear facilities at Risø National Laboratory. Descriptions and cost assessment

    DEFF Research Database (Denmark)

    Lauridsen, K.

    2001-01-01

    The report is the result of a project initiated by Risø National Laboratory in June 2000 on request from the Minister of Research and Information Technology. It describes the nuclear facilities at Risø National Laboratory to be decommissioned and gives anassessment of the work to be done and the ......The report is the result of a project initiated by Risø National Laboratory in June 2000 on request from the Minister of Research and Information Technology. It describes the nuclear facilities at Risø National Laboratory to be decommissioned and gives anassessment of the work to be done....... Furthermore, the report describes some of the legal and licensing framework for the decommissioning and gives an assessment of the amounts of radioactive waste to betransferred to a Danish repository. For a revision of the cost estimate for the decommissioning of the research Reactor DR 3 please consult...

  12. Secondary standard dosimetry laboratory Saraykoy Nuclear Research and Training Center Ankara, Turkey

    International Nuclear Information System (INIS)

    Okruhlica, P.

    2014-01-01

    Turkish Saraykoy Nuclear Research and Training Center (SANA) was founded in 2005. In 2014 the company PTW Freiburg in cooperation with VF Cerna Hora started the construction of a comprehensive national metrology laboratories of ionizing radiation 'Secondary Standard Dosimetry Laboratory' (SSDL). The laboratory will be located in the area of 'Saraykoy Nuclear Research and Training Center' in Ankara in Turkey. SSDL will be equipped with metrology departments for calibration and measurement of standard required quantities of metrology of ionizing radiation: - Neutron workplace; Gamma workplace (low-energy X-ray, gamma Standard Cs-137 and high dose rate, Co-60); - Beta workplace; - Control system of metrology laboratories and irradiation VF DARS; - Radiation monitoring system VF RMS; - Camera and security system; - Measuring instruments (ionization chambers, electrometers, monitors for environmental measurements ...) with the appropriate phantoms and other systems.

  13. Standard guide for establishing a quality assurance program for analytical chemistry laboratories within the nuclear industry

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2006-01-01

    1.1 This guide covers the establishment of a quality assurance (QA) program for analytical chemistry laboratories within the nuclear industry. Reference to key elements of ANSI/ISO/ASQC Q9001, Quality Systems, provides guidance to the functional aspects of analytical laboratory operation. When implemented as recommended, the practices presented in this guide will provide a comprehensive QA program for the laboratory. The practices are grouped by functions, which constitute the basic elements of a laboratory QA program. 1.2 The essential, basic elements of a laboratory QA program appear in the following order: Section Organization 5 Quality Assurance Program 6 Training and Qualification 7 Procedures 8 Laboratory Records 9 Control of Records 10 Control of Procurement 11 Control of Measuring Equipment and Materials 12 Control of Measurements 13 Deficiencies and Corrective Actions 14

  14. Laboratory training manual on the use of nuclear techniques in pesticide research

    International Nuclear Information System (INIS)

    1983-01-01

    This is a laboratory training manual on the use of nuclear techniques, and in particular radioisotopes in pesticide research. It is designed to give the scientists involved in pesticide research the basic terms and principles for understanding ionizing radiation: detection and measurement its hazards and safety measures, and some of the more common applications. Laboratory exercises representing the types of experiments that are valuable in pesticide research programmes and field tests which demonstrate the use of radiolabelled pesticides are included

  15. Research and service capabilities of the National Nuclear Forensic Research Laboratory

    International Nuclear Information System (INIS)

    Romero G, E. T.; Hernandez M, H.; Flores C, J.; Paredes G, L. C.

    2016-09-01

    According to the recommendations of the International Atomic Energy Agency, Mexico is taking steps to combat illicit trafficking in nuclear material. The creation of a National Nuclear Forensic Research Laboratory (Lanafonu, acronym in Spanish) has been assigned to the Instituto Nacional de Investigaciones Nucleares (ININ, Mexico) in 2014. The objectives of this Laboratory are: to combat illicit trafficking in nuclear materials, to optimize scientific processes and techniques used to analyze nuclear materials (orphans or radioactive sources), environmental and potential biological sources as a result of the handling, transport and final storage. At present, the Lanafonu facilities are focused on the optimization of emergency and routine protocols for measuring radioisotopes in environmental and biological samples using inductive coupling mass spectrometer with magnetic sector. The main activities are: i) optimization of the methods for measuring the isotopes of Pu by alpha-spectrometry, Icp-SFMS and AMS (accelerator mass spectrometry), ii) development or radiochemical methods for routine situations and nuclear emergencies, iii) participation in the scientific technical commission on nuclear forensic science, iv) participation in international intercomparison exercises to optimize and validate methods, and v) consolidation of Lanafonu in Mexico and the IAEA. (Author)

  16. Radiopharmaceutical substances and nuclear pharmacy; Les medicaments radiopharmaceutiques et la radiopharmacie

    Energy Technology Data Exchange (ETDEWEB)

    Guilloteau, D. [Hopital Bretonneau, 37 - Tours (France)

    1994-12-31

    Nuclear medicine needs more and more specific radiolabelled agents which are injected in humans for diagnosis or therapy: as such, they are pharmaceutical substances. Therefore, these radiopharmaceuticals must be prepared and distributed according to the rules applied to other pharmaceutical drugs. Such rules allow to warrant a good quality in diagnosis and therapy applications with a high security for the patient. In this article, we describe the role of the nuclear pharmacist in the field of development, preparation, quality control and dispensation. (author). 16 refs.

  17. The wastes of nuclear fission; Les dechets de la fission nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Doubre, H. [Paris-11 Univ., Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse, IN2P3/CNRS, 91 - Orsay (France)

    2005-07-01

    In this paper the author presents the problems of the radioactive wastes generated by the nuclear fission. The first part devoted to the fission phenomenon explains the incident neutron energy and the target nuclei role. The second part devoted to the nuclear wastes sources presents the production of wastes upstream of the reactors, in the reactors and why these wastes are dangerous. The third part discusses the radioactive wastes management in France (classification, laws). The last part details the associated research programs: the radionuclides separation, the disposal, the underground storage, the transmutation and the thorium cycle. (A.L.B.)

  18. Implementation of a communication and control network for the instruments of a nuclear analytical laboratory

    International Nuclear Information System (INIS)

    Cunya, Eduardo; Baltuano, Oscar; Bedregal, Patricia

    2013-01-01

    This paper describes the implementation of a communication network and control for a conventional laboratory instruments and nuclear analytical processes based on CAN open field bus to control devices and machines. Hardware components and software developed as well as installation and configuration tools for incorporating new instruments to the network re presented. (authors).

  19. Heating- and growing-degree days at Chalk River Nuclear Laboratories, 1976-1980

    International Nuclear Information System (INIS)

    Jay, P.C.; Wildsmith, D.P.

    1981-05-01

    An update of the report, Heating- and Growing-Degree-Days at Chalk River Nuclear Laboratories (AECL-5547) is presented along with various other meteorological variables which were not included in the previous publication. Also included, and shown in graph form, are the monthly degree-day frequencies. (author)

  20. Annual report of Radiation Laboratory Department of Nuclear Engineering Faculty of Engineering, Kyoto University

    International Nuclear Information System (INIS)

    1993-07-01

    This publication is the collection of the papers presented research activities of Radiation laboratory, Department of Nuclear Engineering, Kyoto University during the 1992 academic/fiscal year (April, 1992 - March, 1993). The 48 of the presented papers are indexed individually. (J.P.N.)

  1. The Legnaro National Laboratories and the SPES facility: nuclear structure and reactions today and tomorrow

    International Nuclear Information System (INIS)

    De Angelis, Giacomo; Fiorentini, Gianni

    2016-01-01

    There is a very long tradition of studying nuclear structure and reactions at the Legnaro National Laboratories (LNL) of the Istituto Nazionale di Fisica Nucleare (Italian Institute of Nuclear Physics). The wide expertise acquired in building and running large germanium arrays has made the laboratories one of the most advanced research centers in γ -ray spectroscopy. The ’gamma group’ has been deeply involved in all the national and international developments of the last 20 years and is currently one of the major contributors to the AGATA project, the first (together with its American counterpart GRETINA) γ -detector array based on γ -ray tracking. This line of research is expected to be strongly boosted by the coming into operation of the SPES radioactive ion beam project, currently under construction at LNL. In this report, written on the occasion of the 40th anniversary of the Nobel prize awarded to Aage Bohr, Ben R Mottelson and Leo Rainwater and particularly focused on the physics of nuclear structure, we intend to summarize the different lines of research that have guided nuclear structure and reaction research at LNL in the last decades. The results achieved have paved the way for the present SPES facility, a new laboratories infrastructure producing and accelerating radioactive ion beams of fission fragments and other isotopes. (invited comment)

  2. The Legnaro National Laboratories and the SPES facility: nuclear structure and reactions today and tomorrow

    Science.gov (United States)

    de Angelis, Giacomo; Fiorentini, Gianni

    2016-11-01

    There is a very long tradition of studying nuclear structure and reactions at the Legnaro National Laboratories (LNL) of the Istituto Nazionale di Fisica Nucleare (Italian Institute of Nuclear Physics). The wide expertise acquired in building and running large germanium arrays has made the laboratories one of the most advanced research centers in γ-ray spectroscopy. The ’gamma group’ has been deeply involved in all the national and international developments of the last 20 years and is currently one of the major contributors to the AGATA project, the first (together with its American counterpart GRETINA) γ-detector array based on γ-ray tracking. This line of research is expected to be strongly boosted by the coming into operation of the SPES radioactive ion beam project, currently under construction at LNL. In this report, written on the occasion of the 40th anniversary of the Nobel prize awarded to Aage Bohr, Ben R Mottelson and Leo Rainwater and particularly focused on the physics of nuclear structure, we intend to summarize the different lines of research that have guided nuclear structure and reaction research at LNL in the last decades. The results achieved have paved the way for the present SPES facility, a new laboratories infrastructure producing and accelerating radioactive ion beams of fission fragments and other isotopes.

  3. Studies of nuclear processes at the Triangle Universities Nuclear Laboratory. Progress report, 1 September 1995--31 August 1996

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, E.J.

    1996-09-01

    The Triangle Universities Nuclear Laboratory (TUNL)--a collaboration of Duke University, North Carolina State University, and the University of North Carolina at Chapel Hill--has had a very productive year. This report covers parts of the second and third year of a three-year grant between the US Department of Energy and the three collaborating universities. The TUNL research program focuses on the following areas: precision test of parity-invariance violation in resonance neutron scattering at LANSCE/LANL; parity violation measurements using charged-particle resonances in A = 20--40 targets and the A = 4 system at TUNL; chaotic behavior in the nuclei {sup 30}P and {sup 34}Cl from studies of eigenvalue fluctuations in nuclear level schemes; search for anomalies in the level density (pairing phase transition) in 1f-2p shell nuclei using GEANIE at LANSCE/LANL; parity-conserving time-reversal noninvariance tests using {sup 166}Ho resonances at Geel, ORELA, or LANSCE/LANL; nuclear astrophysics; few-body nuclear systems; Nuclear Data evaluation for A = 3--20 for which TUNL is now the international center. Developments in technology and instrumentation are vital to the research and training program. Innovative work was continued in: polarized beam development; polarized target development; designing new cryogenic systems; designing new detectors; improving high-resolution beams for the KN and FN accelerators; development of an unpolarized Low-Energy Beam Facility for radiative capture studies of astrophysical interest. Preliminary research summaries are presented.

  4. Thermal energy of nuclear origin produced in non-fissile materials (1962); Energie calorifique d'origine nucleaire degagee dans les materiaux non fissiles (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Naudet, G. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Millies, P.; Berger, J. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1962-07-01

    A first part is devoted to the description of the interaction phenomena between elementary particles and material that may be observed during the irradiation process in a nuclear reactor: nuclear reactions due to neutrons, production of gamma rays and absorption of those gamma rays through various processes. In a second part the phenomena producing calorific energy in irradiated material are quantitatively examined. In the third part results are summed up in a formulary. The fourth part presents tables and figures giving to the reader all the numerical values necessary for practical calculations. (authors) [French] Une premiere partie est consacree a l'examen des principaux phenomenes d'interaction des particules avec la matiere qui interviennent lors d'une irradiation dans un reacteur: reactions nucleaires dues aux neutrons, production des rayons gamma et absorption de ces derniers par les divers processus. Une deuxieme partie etudie quantitativement les phenomenes qui conduisent a l'apparition d'energie calorifique dans le materiau irradie. En troisieme partie, un formulaire resume les resultats etablis. Dans une quatrieme partie, des tableaux et des courbes fournissent a l'experimentateur toutes les valeurs numeriques necessaires aux calculs pratiques. (auteurs)

  5. IAEA Technical Co-operation activities: Asia and the Pacific. Workshop on training nuclear laboratory technicians

    International Nuclear Information System (INIS)

    Roeed, S.S.

    1976-01-01

    The workshop was held to exchange information on existing facilities and programmes in Asia and the Pacific for training nuclear laboratory technicians, to identify future training needs and to assess the need for IAEA's involvement in this field. As the participants outlined the requirements for nuclear laboratory technician training and the facilities available in their respective countries, it became evident that, in addition to the training of radioisotope laboratory technicians, they also wished to review the need for technician training for the operation of nuclear power plants and industrial application of atomic energy. The terms of reference of the workshop were extended accordingly. The opening address by Chang Suk Lee, the Korean Vice Minister of Science and Technology, noted the valuable contribution to quality control and other industrial uses that nuclear techniques have made in his country. He also reviewed the application of nuclear techniques in Korean agriculture and medicine. The participants explored various forms of co-operation that could be established between countries of the region. Exchange programmes, not only for students but also for expert teachers, and the exchange or loan of equipment were suggested. It was felt that some generalized training courses could be organized on a regional basis, and two countries advocated the setting up of a regional training centre. One suggestion was to arrange regional training courses in special fields that would move from one country to another. The need was felt for periodic regional meetings on training methods, course content and other questions relating to training of laboratory technicians. The IAEA was requested to act as a clearinghouse for information on available training facilities in the region and to advise on the curricula for technician training courses. The Agency was also asked to organize short courses for the training of instructors of technicians in the various fields of atomic

  6. Quality Assurance in Nuclear Fuel Research at the Laboratory of High- and Medium-level Activity at SCK-CEN

    International Nuclear Information System (INIS)

    Sannen, L.; Gys, A.; Verwerft, M.

    1999-10-01

    Quality assurance in nuclear fuel research demands specific calibration and validation methodologies. Indeed the analytical experiments in hot-cells on highly radioactive objects are non-standard and many times unique. The standards and validation methods developed for and applied to the main nuclear fuel research experiments in the hot laboratories of the Belgian Nuclear Research Centre SCK-CEN are outlined

  7. Quality Assurance in Nuclear Fuel Research at the Laboratory of High- and Medium-level Activity at SCK-CEN

    Energy Technology Data Exchange (ETDEWEB)

    Sannen, L.; Gys, A.; Verwerft, M

    1999-10-01

    Quality assurance in nuclear fuel research demands specific calibration and validation methodologies. Indeed the analytical experiments in hot-cells on highly radioactive objects are non-standard and many times unique. The standards and validation methods developed for and applied to the main nuclear fuel research experiments in the hot laboratories of the Belgian Nuclear Research Centre SCK-CEN are outlined.

  8. Applications of nuclear techniques for in vivo body composition studies at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Cohn, S.H.; Ellis, K.J.; Vartsky, D.; Vaswani, A.N.; Wielopolski, L.

    1981-01-01

    A series of technical developments and their clinical applications in various nuclear technologies at Brookhaven National Laboratory is described. These include the development of a portable neutron activation facility for measuring cadmium in vivo in kidney and liver, a technique for the measurement of body iron utilizing nuclear resonant scattering of gamma rays, a non-invasive measure of the skeletal levels of lead by an x-ray fluorescence technique, and the development of a pulsed Van de Graaff generator as a source of pulsed neutrons for the measurement of lung silicon

  9. Nuclear Physics Laboratory technical progress report, [August 15, 1991--October 1, 1992

    International Nuclear Information System (INIS)

    1992-01-01

    This report summarizes work carried out between August 15, 1991 and October 1, 1992 at the Nuclear Physics Laboratory of the University of Colorado, Boulder, under contracts DE-FG02-86ER-40269 and DE-FG02-87ER-40335 with the United States Department of Energy. These contracts support experimental and theoretical work in intermediate energy nuclear physics. The experimental program is very broadly based; it includes pion-nucleon and pion-nucleus studies at Los Alamos and TRIUMF inelastic pion scattering and charge exchange reactions at LAMPF, kaon-nucleus scattering at the AGS, and nucleon charge exchange at LAMPF/NTOF

  10. Applications of nuclear techniques for in vivo body composition studies at Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Cohn, S.H.; Ellis, K.J.; Vartsky, D.; Vaswani, A.N.; Wielopolski, L.

    1981-01-01

    A series of technical developments and their clinical applications in various nuclear technologies at Brookhaven National Laboratory is described. These include the development of a portable neutron activation facility for measuring cadmium in vivo in kidney and liver, a technique for the measurement of body iron utilizing nuclear resonant scattering of gamma rays, a non-invasive measure of the skeletal levels of lead by an x-ray fluorescence technique, and the development of a pulsed Van de Graaff generator as a source of pulsed neutrons for the measurement of lung silicon. (ACR)

  11. Radiological risk guidelines for nonreactor nuclear facilities at the Pacific Northwest Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, D.E.; Ikenberry, T.A.

    1993-09-01

    Radiological risk evaluation guidelines for the public and workers have been developed at the Pacific Northwest Laboratory (PNL) based upon the Nuclear Safety Policy of the US Department of Energy (DOE) established in Secretary of Energy Notice SEN-35-91. The DOE nuclear safety policy states that the general public shall be protected such that no individual bears significant additional risk to health and safety from the operation of a DOE nuclear facility above the risks to which members of the general population are normally exposed. The radiological risk evaluation guidelines developed at PNL are unique in that they are (1) based upon quantitative risk goals and (2) provide a consistent level of risk management. These guidelines are used to evaluate the risk from radiological accidents that may occur during research and development activities at PNL, and are not intended for evaluation of routine exposures. A safety analyst uses the,frequency of the potential accident and the radiological dose to a given receptor to determine if the accident consequences meet the objectives of the Nuclear Safety Policy. The radiological risk evaluation guidelines are an effective tool for assisting in the management of risk at DOE nonreactor nuclear facilities. These guidelines (1) meet the nuclear safety policy of DOE, (2) establish a tool for managing risk at a consistent level within the defined constraints, and (3) set risk at an appropriate level, as compared with other risks encountered by the public and worker. Table S.1 summarizes the guidelines developed in this report.

  12. Radiological risk guidelines for nonreactor nuclear facilities at the Pacific Northwest Laboratory

    International Nuclear Information System (INIS)

    Lucas, D.E.; Ikenberry, T.A.

    1993-09-01

    Radiological risk evaluation guidelines for the public and workers have been developed at the Pacific Northwest Laboratory (PNL) based upon the Nuclear Safety Policy of the US Department of Energy (DOE) established in Secretary of Energy Notice SEN-35-91. The DOE nuclear safety policy states that the general public shall be protected such that no individual bears significant additional risk to health and safety from the operation of a DOE nuclear facility above the risks to which members of the general population are normally exposed. The radiological risk evaluation guidelines developed at PNL are unique in that they are (1) based upon quantitative risk goals and (2) provide a consistent level of risk management. These guidelines are used to evaluate the risk from radiological accidents that may occur during research and development activities at PNL, and are not intended for evaluation of routine exposures. A safety analyst uses the,frequency of the potential accident and the radiological dose to a given receptor to determine if the accident consequences meet the objectives of the Nuclear Safety Policy. The radiological risk evaluation guidelines are an effective tool for assisting in the management of risk at DOE nonreactor nuclear facilities. These guidelines (1) meet the nuclear safety policy of DOE, (2) establish a tool for managing risk at a consistent level within the defined constraints, and (3) set risk at an appropriate level, as compared with other risks encountered by the public and worker. Table S.1 summarizes the guidelines developed in this report

  13. Comparability between NQA-1 and the QA programs for analytical laboratories within the nuclear industry and EPA hazardous waste laboratories

    International Nuclear Information System (INIS)

    English, S.L.; Dahl, D.R.

    1989-01-01

    There is increasing cooperation between the Department of Energy (DOE), Department of Defense (DOD), and the Environmental Protection Agency (EPA) in the activities associated with monitoring and clean-up of hazardous wastes. Pacific Northwest Laboratory (PNL) examined the quality assurance/quality control programs that the EPA requires of the private sector when performing routine analyses of hazardous wastes to confirm how or if the requirements correspond with PNL's QA program based upon NQA-1. This paper presents the similarities and differences between NQA-1 and the QA program identified in ASTM-C1009-83, Establishing a QA Program for Analytical Chemistry Laboratories within the Nuclear Industry; EPA QAMS-005/80, Interim Guidelines and Specifications for Preparing Quality Assurance Project Plans, which is referenced in Statements of Work for CERCLA analytical activities; and Chapter 1 of SW-846, which is used in analyses of RCRA samples. The EPA QA programs for hazardous waste analyses are easily encompassed within an already established NQA-1 QA program. A few new terms are introduced and there is an increased emphasis upon the QC/verification, but there are many of the same basic concepts in all the programs

  14. Argonne National Laboratory contributions to the International Symposium on Fusion Nuclear Technology (ISFNT)

    Energy Technology Data Exchange (ETDEWEB)

    1988-10-01

    A total of sixteen papers with authors from Argonne National Laboratory were presented at the First International Symposium on Fusion Nuclear Technology (ISFNT), held in Tokyo, Japan, in April 1988. The papers cover the results of recent investigations in blanket design and analysis, fusion neutronics, materials experiments in liquid metal corrosion and solid breeders, tritium recovery analysis, experiments and analysis for liquid metal MHD, reactor safety and economic analysis, and transient electromagnetic analysis.

  15. Argonne National Laboratory contributions to the International Symposium on Fusion Nuclear Technology (ISFNT)

    International Nuclear Information System (INIS)

    1988-10-01

    A total of sixteen papers with authors from Argonne National Laboratory were presented at the First International Symposium on Fusion Nuclear Technology (ISFNT), held in Tokyo, Japan, in April 1988. The papers cover the results of recent investigations in blanket design and analysis, fusion neutronics, materials experiments in liquid metal corrosion and solid breeders, tritium recovery analysis, experiments and analysis for liquid metal MHD, reactor safety and economic analysis, and transient electromagnetic analysis

  16. Decommissioning of the nuclear facilities at Risoe National Laboratory. Descriptions and cost assessment. Danish summary

    International Nuclear Information System (INIS)

    Lauridsen, Kurt

    2001-02-01

    The report gives a brief description of relevant aspects of the decommissioning of all nuclear facilities at Risoe National Laboratory, including the necessary operations to be performed and the associated costs. Together with a more detailed report, written in English, this report is the result of a project initiated by Risoe in the summer of 2000. The English report has undergone an international review, the results of which are summarised in the present report. (au)

  17. Design of simulated nuclear electronics laboratory experiments based on IAEA-TECDOC-530 on pcs

    International Nuclear Information System (INIS)

    Ghousia, S.F.; Nadeem, M.; Khaleeq, M.T.

    2002-05-01

    In this IAEA project, PK-11089 (Design of Simulated Nuclear Electronics Laboratory Experiments based on IAEA-TECDOC-530 on PCs), a software package consisting of Computer-Simulated Laboratory Experiments on Nuclear Electronics compatible with the IAEA-TECDOC-530 (Nuclear Electronics Laboratory Manual) has been developed in OrCAD 9.0 (an electronic circuit simulation software environment) as a self-training aid. The software process model employed in this project is the Feedback Waterfall model with some Rapid Application Model. The project work is completed in the five phases of the SDLC, (all of them have been fully completed) which includes the Requirement Definition, Phase, System and Software Design, Implementation and Unit testing, Integration and System-testing phase and the Operation and Maintenance phase. A total of 125 circuits are designed in 39 experiments from Power Supplies, Analog circuits, Digital circuits and Multi-channel analyzer sections. There is another set of schematic designs present in the package, which contains faulty circuits. This set is designed for the learners to exercise the troubleshooting. The integration and system-testing phase was carried out simultaneously. The Operation and Maintenance phase has been implemented by accomplishing it through some trainees and some undergraduate engineering students by allowing them to play with the software independently. (author)

  18. Nuclear criticality safety staff training and qualifications at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Monahan, S.P.; McLaughlin, T.P.

    1997-01-01

    Operations involving significant quantities of fissile material have been conducted at Los Alamos National Laboratory continuously since 1943. Until the advent of the Laboratory's Nuclear Criticality Safety Committee (NCSC) in 1957, line management had sole responsibility for controlling criticality risks. From 1957 until 1961, the NCSC was the Laboratory body which promulgated policy guidance as well as some technical guidance for specific operations. In 1961 the Laboratory created the position of Nuclear Criticality Safety Office (in addition to the NCSC). In 1980, Laboratory management moved the Criticality Safety Officer (and one other LACEF staff member who, by that time, was also working nearly full-time on criticality safety issues) into the Health Division office. Later that same year the Criticality Safety Group, H-6 (at that time) was created within H-Division, and staffed by these two individuals. The training and education of these individuals in the art of criticality safety was almost entirely self-regulated, depending heavily on technical interactions between each other, as well as NCSC, LACEF, operations, other facility, and broader criticality safety community personnel. Although the Los Alamos criticality safety group has grown both in size and formality of operations since 1980, the basic philosophy that a criticality specialist must be developed through mentoring and self motivation remains the same. Formally, this philosophy has been captured in an internal policy, document ''Conduct of Business in the Nuclear Criticality Safety Group.'' There are no short cuts or substitutes in the development of a criticality safety specialist. A person must have a self-motivated personality, excellent communications skills, a thorough understanding of the principals of neutron physics, a safety-conscious and helpful attitude, a good perspective of real risk, as well as a detailed understanding of process operations and credible upsets

  19. The 3rd questionnaire report of safety control on instrument in nuclear medicine laboratory

    International Nuclear Information System (INIS)

    1994-01-01

    The present 3rd survey was aimed at grasping safety control in nuclear medicine examination and the trend for SPECT usage. Questionnaires were sent to 1238 facilities dealing with nuclear medicine; and 1127 facilities (91.0%) responded. The survey period was three years from April 1, 1989 through March 31, 1992. The following 7 items were surveyed: (1) nuclear medicine personnel, (2) nuclear medicine equipments, (3) accidents occurring in nuclear medicine laboratories, (4) risk factors leading to accidents, (5) countermeasures for improving safety control, (6) major breakdown of the machinery and equipment, and (7) demands for makers. Majority of nuclear medicine personnel were male and were less than 50 years old. The number of SPECT equipments increased from 714 in the previous survey to 968. Accidents (personal injuries) and narrow escape from an accident were seen in 45 and 154 cases. Personal injuries such as falling occurred in 37 patients and 8 nuclear medicine personnel. According to nuclear medicine examinations, SPECT was the most common examination associated with accident and narrow escape cases (86/199). Such cases at the beginning of examination were remarkably decreased, as compared with those in the previous two surveys. Accidents were primarily attributable to careless management by personnel. Breakdown of the machinery and equipment was reported in 207 cases. In Item 5, the following contents were presented: heads for examination, personnel's behavior, education, examination equipments, collimators and others. Finally, contents in Item 7 included: equipment design, heads for examination, maintenance or management, data processing, collimators, examination equipments and others. (N.K.)

  20. Particles identification using nuclear emulsion in OPERA; Identification des particules par les emulsions nucleaires dans OPERA

    Energy Technology Data Exchange (ETDEWEB)

    Manai, K

    2007-10-15

    The Opera experiment will try to confirm the {nu}{sub {mu}} {yields} {nu}{sub {tau}} oscillations by the appearance of the {nu}{sub {tau}} in a pure {nu}{sub {mu}} beam. Indeed, a neutrino beam almost pure is produced at CERN (CNGS Beam) and sent to the Opera detector. The detector is composed of two muons spectrometers and a target formed by walls of bricks. Each brick is an alternation of lead plates and emulsions. This modular structure allows to reconstruct the kink topology of the {tau} lepton decay with a high spatial resolution. The great challenge of the Opera experiment is to detect the {nu}{sub {tau}} interactions with the less uncertainty. To reduce this uncertainty it is essential to identify with the greatest efficiency any background event not including a tau particle. My work permits to reduce background. My principal contribution concerns the selection development, the reconstruction and the muons identification at low energy. This work is based on the setting of variables related to the deposit energy and the multiple scattering. Previously, only deposit energy was used in the analyses of pion/muon separation. This study allows doubling the muon identification efficiency at low energy. This leads to increase the background events rejection in Opera and to decrease the contamination by 30%. I also studied the nuclear emulsions capacity to identify charged particles through the analysis of a test beam carried out by the Nagoya group. This test contains protons and pions with different energies. My work proves that the European scan system gives comparable results with those obtained by the Japanese scan system. (author)

  1. Neutron activation analysis in an industrial laboratory using an off-site nuclear reactor

    International Nuclear Information System (INIS)

    Osborn, T.W.; Broering, W.B.

    1977-01-01

    A multifunctional research laboratory, such as Procter and Gamble's Miami Valley Laboratories, requires elemental analyses on many materials. A general survey technique is important even if the information it provides is incomplete or is less precise than single element analyses. Procter and Gamble has developed neutron activation analysis (NAA) capabilities using a nuclear reactor several hundred miles away. The concentration of 40 to 50 elements can be determined in a variety of matrices. We have found NAA to be a powerful supplement to some of the more classical analytical techniques even without having an on-site neutron source. We have also found an automated data acquisition system to be essential for the successful application of NAA in an industrial laboratory

  2. Process in Developing Zebra fish Laboratory at Malaysian Nuclear Agency for Toxicology Studies

    International Nuclear Information System (INIS)

    Fazliana Mohd Saaya; Mohd Noor Hidayat Adenan; Anee Suryani Sued

    2015-01-01

    Toxicology is a branch of the very important especially in determining the safety and effectiveness of herbal products to avoid any side effects to the user. Currently, toxicity tests conducted in the laboratory is testing the toxicity of shrimp, tests on cell cultures and experimental animal tests on the rats. One of the most recent exam easier and can reduce the use of experimental rats was testing on zebra fish fish. Fish zebra fish Danio rerio, suitable for the study of toxicity, teratogenicity, genetic, oncology and neurobiology. Zebra fish system of aquarium fish zebra fish system has been in Nuclear Malaysia since 2013 but has not yet fully operational due to several factors and is in the process of moving into a new laboratory which systematically and in accordance with the enabling environment for care. The development of a new fully equipped laboratory is expected to benefit all for use in research. (author)

  3. A measurement evaluation program to support nuclear material control and accountability measurements in Brazilian laboratories

    International Nuclear Information System (INIS)

    Dias, Fabio C.; Mason, Peter

    2013-01-01

    A measurement evaluation program (MEP) is one of a number of valuable tools that analytical chemists can use to ensure that the data produced in the laboratory are fit for their intended purpose and consistent with expected performance values at a given time. As such, participation in a MEP is an important indicator of the quality of analytical data, and is recognized as such by independent regulatory and/or accreditation bodies. With the intent to implement such a program in Brazil, in November 2012 the Nuclear Energy Commission of Brazil (CNEN), with support from the Department of Energy of the United States' (US-DOE International Safeguards and Engagement Program), decided to initiate a technical cooperation project aiming at organizing a Safeguards Measurement Evaluation Program (SMEP) for Brazilian facilities. The project, entitled Action Sheet 23, was formalized under the terms of the Agreement between the US-DOE and the CNEN concerning research and development in nuclear material control, accountancy, verification, physical protection, and advanced containment and surveillance technologies for International Safeguards Applications. The work, jointly performed by the CNEN's Safeguards Laboratory (LASAL) and the New Brunswick Laboratory (NBL), has the objective to strengthen the traceability of accountability measurements and ensure adequate quality of safeguards measurements for facilities within Brazil, utilizing test samples characterized and provided by NBL. Recommendations to participants included measurement frequency, number of results per sample and format for reporting results using ISO methods for calculating and expressing measurement uncertainties. In this paper, we discuss the main steps taken by CNEN and NBL aiming at implementing such a program and the expected results, in particular the impact of uncertainty estimation on the evaluation of performance of each participant laboratory. The program is considered by Brazilian safeguards authorities

  4. Some Recent Technology Developments From The Uk's National Nuclear Laboratory To Enable Hazard Characterisation For Nuclear Decommissioning Applications

    International Nuclear Information System (INIS)

    Farfan, E.; Foley, T.

    2010-01-01

    Under its programme of self investment Internal Research and Development (IR and D), the UK's National Nuclear Laboratory (NNL) is addressing the requirement for development in technology to enable hazard characterisation for nuclear decommissioning applications. Three such examples are described here: (1) RadBall developed by the NNL (patent pending) is a deployable baseball-sized radiation mapping device which can, from a single location, locate and quantify radiation hazards. RadBall offers a means to collect information regarding the magnitude and distribution of radiation in a given cell, glovebox or room to support the development of a safe, cost effective decontamination strategy. RadBall requires no electrical supplies and is relatively small, making it easy to be deployed and used to map radiation hazards in hard to reach areas. Recent work conducted in partnership with the Savannah River National Laboratory (SRNL) is presented. (2) HiRAD (patent pending) has been developed by the NNL in partnership with Tracerco Ltd (UK). HiRAD is a real-time, remotely deployed, radiation detection device designed to operate in elevated levels of radiation (i.e. thousands and tens of thousands of Gray) as seen in parts of the nuclear industry. Like the RadBall technology, the HiRAD system does not require any electrical components, the small dimensions and flexibility of the device allow it to be positioned in difficult to access areas (such as pipe work). HiRAD can be deployed as a single detector, a chain, or as an array giving the ability to monitor large process areas. Results during the development and deployment of the technology are presented. (3) Wireless Sensor Network is a NNL supported development project led by the University of Manchester (UK) in partnership with Oxford University (UK). The project is concerned with the development of wireless sensor network technology to enable the underwater deployment and communication of miniaturised probes allowing pond

  5. Annual report of Nuclear Engineering Research Laboratory, Faculty of Engineering, University of Tokyo, fiscal year 1996

    International Nuclear Information System (INIS)

    1997-08-01

    This report summarizes research and educational activities, operation status of the research facilities of the Nuclear Engineering Research Laboratory, Faculty of Engineering, University of Tokyo on fiscal year 1996. This facility has four major research facilities such as fast neutron source reactor 'Yayoi', electron Linac, fundamental experiment facility for nuclear fusion reactor blanket design and high fluence irradiation facility(HIT). Education and research activities are conducted in a wide fields of nuclear engineering using these facilities. The former two facilities are available for various studies by universities all over Japan, facility for nuclear fusion reactor blanket design is utilized for research within the Faculty of Engineering and HIT is used for the research within the University of Tokyo. The facility established a plan to reorganized into a nation wide research collaboration center in fiscal year 1995 and after further discussion of a future program it is decided to hold 'Nuclear energy symposium' periodically after fiscal year 1997 as a part of the activity for appealing the research results to the public. (G.K.)

  6. Summary of nuclear plant aging research at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Eissenberg, D.M.

    1991-01-01

    Oak Ridge National Laboratory (ORNL) has been a major contributor to the Nuclear Regulatory Commission (NRC) Nuclear Plant Aging Research Program since its inception. The research at ORNL has consisted primarily of the preparation of comprehensive aging assessments and other studies of safety related and other components and systems. The components and systems have been identified and prioritized based on risk considerations, as well as by operating experience. In each case, ORNL has been preparing a Phase 1 assessment which summarizes design features, operating conditions, and stressors which lead to degradation and failure; identified parameters which could be used to detect, trend and differentiate the degradations; and proposed potential inspection, surveillance, and monitoring methods which could be applied to the parameters. Where appropriate, Phase 2 assessments have been prepared, which verify and recommend inspection, surveillance and monitoring methods based on vendor information, laboratory and field tests, and in-situ inspections and tests. Finally, Phase 3 assessments are prepared which provide recommendations regarding implementing the inspection, surveillance and monitoring methods, and provide recommendations regarding criteria to be applied. Other activities include providing assistance to NRC/Nuclear Regulatory Research and regional offices as requested, and participation in ASME and IEEE codes and standards

  7. Some problems on the aqueous corrosion of structural materials in nuclear engineering; Problemes de corrosion aqueuse de materiaux de structure dans les constructions nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Coriou, H.; Grall, L. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    The purpose of this report is to give a comprehensive view of some aqueous corrosion studies which have been carried out with various materials for utilization either in nuclear reactors or in irradiated fuel treatment plants. The various subjects are listed below. Austenitic Fe-Ni-Cr alloys: the behaviour of austenitic Fe-Ni-Cr alloys in nitric medium and in the presence of hexavalent chromium; the stress corrosion of austenitic alloys in alkaline media at high temperatures; the stress corrosion of austenitic Fe-Ni-Cr alloys in 650 C steam. Ferritic steels: corrosion of low alloy steels in water at 25 and 360 C; zirconium alloys; the behaviour of ultrapure zirconium in water and steam at high temperature. (authors) [French] On presente un ensemble d'etudes de corrosion en milieu aqueux effectuees sur des materiaux utilises, soit dans la construction des reacteurs soit pour la realisation des usines de traitement des combustibles irradies. Les differents sujets etudies sont les suivants. Les alliages austenitiques Fer-Nickel-Chrome: comportement d'alliages austenitiques fer-nickel-chrome en milieu nitrique en presence de chrome hexavalent; Corrosion sous contrainte d'alliages austenitiques dans les milieux alcalins a haute temperature; Corrosion sous contrainte dans la vapeur a 650 C d'alliages austenitiques fer-nickel-chrome. Les aciers ferritiques; Corrosion d'aciers faiblement allies dans l'eau a 25 et 360 C; le zirconium et ses alliages; Comportement du zirconium tres pur dans l'eau et la vapeur a haute temperature. (auteurs)

  8. Implementation of the Immersive Virtual Reality Laboratory in Nuclear Engineering Institute

    Energy Technology Data Exchange (ETDEWEB)

    Mol, Antonio Carlos de Abreu; Grecco, Claudio Henrique dos Santos; Carvalho, Paulo Victor R.; Oliveira, Mauro Vitor de; Santos, Isaac J.A. Luquetti; Augusto, Silas Cordeiro; Viana Filho, Alfredo Marques [Instituto de Engenharia Nuclear (IEN), Rio de Janeiro, RJ (Brazil)]. E-mail: mol@ien.gov.br; grecco@ien.gov.br; paulov@ien.gov.br; mvitor@ien.gov.br; luqietti@ien.gov.br; silas@ien.gov.br; marques@ien.gov.br

    2005-07-01

    The Immersive Virtual Reality Laboratory under development in Human System Interface Laboratory constitute a powerful general-purpose facility for experimental and computational work on human perception and perceptually guided action. Virtual reality or virtual environment are computer generated environments with and within people can interact. The advantage of VR is that people can be immersed by the simulated environment, which would sometimes be unavailable due to cost, safety, or perceptual restrictions in the real environment. There are many applications of virtual reality on the nuclear area. Training is one of the most common of them. A significant advantage of a virtual training environment over a real one is it's enormous flexibility. A virtual environment can be used as the basis for training in any number of different scenarios, so that trainees can learn to cope with many different situations, some of which may be impossible to prepare for any other way. Another advantage of using virtual environments for training purposes is that trainees learn by actively performing actions. This has a significant effect on their ability to retain what they learn, and is clearly superior to passive training techniques, such as videos and books, for training where spatial understanding is important. This kind of Laboratory is the first in Brazilian nuclear area. A safe virtual environment can be used to simulate a real environment that is either too dangerous, complex, or expensive to training. Virtual environments can therefore be used to increase safety standards, improve efficiency, and reduce overall training costs. (author)

  9. Implementation of the Immersive Virtual Reality Laboratory in Nuclear Engineering Institute

    International Nuclear Information System (INIS)

    Mol, Antonio Carlos de Abreu; Grecco, Claudio Henrique dos Santos; Carvalho, Paulo Victor R.; Oliveira, Mauro Vitor de; Santos, Isaac J.A. Luquetti; Augusto, Silas Cordeiro; Viana Filho, Alfredo Marques

    2005-01-01

    The Immersive Virtual Reality Laboratory under development in Human System Interface Laboratory constitute a powerful general-purpose facility for experimental and computational work on human perception and perceptually guided action. Virtual reality or virtual environment are computer generated environments with and within people can interact. The advantage of VR is that people can be immersed by the simulated environment, which would sometimes be unavailable due to cost, safety, or perceptual restrictions in the real environment. There are many applications of virtual reality on the nuclear area. Training is one of the most common of them. A significant advantage of a virtual training environment over a real one is it's enormous flexibility. A virtual environment can be used as the basis for training in any number of different scenarios, so that trainees can learn to cope with many different situations, some of which may be impossible to prepare for any other way. Another advantage of using virtual environments for training purposes is that trainees learn by actively performing actions. This has a significant effect on their ability to retain what they learn, and is clearly superior to passive training techniques, such as videos and books, for training where spatial understanding is important. This kind of Laboratory is the first in Brazilian nuclear area. A safe virtual environment can be used to simulate a real environment that is either too dangerous, complex, or expensive to training. Virtual environments can therefore be used to increase safety standards, improve efficiency, and reduce overall training costs. (author)

  10. Cyclotron laboratory in the Institute of Nuclear Studies of the Hungarian Academy of Sciences

    International Nuclear Information System (INIS)

    Gal'chuk, A.V.; Korolev, L.E.; Stepanov, A.V.

    1985-01-01

    The status of the development of cyclotron laboratory in the Institute for Nuclear Research of the Hungarian Academy of Sciences is discussed. The MGTS-20Eh isochronous cyclotron is to be mounted in the laboratory. Obtaining of accelerated proton beams is planned (energy of 5-18 MeV, internal beam current - 200 μA, external beam current - 50 μA), deuterons (3-10 MeV, 300 μA, 50 μA), H 3 +2 ions (7-27 MeV, 50 μA, 25 μA) and He 4 +2 (6-20 MeV, 50 μA, 25 μA). Fundamental researches in the field of atomic and nuclear physics applied investigations in the field of analysis of high purity materials, radiobiological investigations in the field of medicine and agriculture are to be performed in the laboratory. The cyclotron is to be used for production and application of short-lived radioisotopes and radiation testing machine parts

  11. Radiological risk guidelines for nonreactor nuclear facilities at the Pacific Northwest Laboratory

    International Nuclear Information System (INIS)

    Lucas, D.E.; Ikenberry, T.A.

    1994-03-01

    Radiological risk evaluation guidelines for the public and workers have been developed at the Pacific Northwest Laboratory (PNL) based upon the Nuclear Safety Policy of the US Department of Energy (DOE) established in Secretary of Energy Notice SEN-35-91 (DOE 1991). The DOE nuclear safety policy states that the general public be protected-such that no individual bears significant additional risk to health and safety from the operation of a DOE nuclear facility above the risks to which members of the general population are normally exposed. The radiological risk evaluation guidelines developed at PNL are unique in that they are (1) based upon quantitative risk goals and (2) provide a consistent level of risk management. These guidelines are used to evaluate the risk from radiological accidents that may occur during research and development activities at PNL. A safety analyst uses the frequency of the potential accident and the radiological dose to a given receptor to determine if the accident consequences meet the objectives of the Nuclear Safety Policy

  12. Facilities for post-irradiation examination of experimental fuel elements at Chalk River Nuclear Laboratories

    International Nuclear Information System (INIS)

    Mizzan, E.; Chenier, R.J.

    1979-10-01

    Expansion of post-irradiation facilities at the Chalk River Nuclear Laboratories and steady improvement in hot-cell techniques and equipment are providing more support to Canada's reactor fuel development program. The hot-cell facility primarily used for examination of experimental fuels averages a quarterly throughput of 40 elements and 110 metallographic specimens. New developments in ultrasonic testing, metallographic sample preparation, active storage, active waste filtration, and fissile accountability are coming into use to increase the efficiency and safety of hot-cell operations. (author)

  13. Wireless network development for the automatic registration of parameters in laboratories of nuclear analytical techniques

    International Nuclear Information System (INIS)

    Tincopa, Jean Pierre; Baltuano, Oscar; Bedregal, Patricia

    2015-01-01

    This paper presents in detail the development of a low-cost wireless network for automatic recording of temperature and relative humidity parameters in the laboratory of nuclear analytical techniques. This prototype has a DHT22 sensor which gives us both parameters with high precision and are automatically read and displayed by a ATmega328P microcontroller. This data is then transmitted through transceivers Xbee Pro S2B forming a mesh network for real time storage using an RTC (Real Time Clock). We present the experimental results obtained in its implementation. (author)

  14. A VME-based data acquisition system for nuclear physics and detector laboratories

    International Nuclear Information System (INIS)

    Fan Ruirui; Liang Xiaohua; Meng Xiangcheng

    2012-01-01

    In this paper,we report a laboratory DAQ system based on VME bus, for applications in nuclear physics and the detector tests. It uses a commercial ADC card and a single board computer as a crate controller. They are based on the VME bus.The software is based on the ROOT framework. A canvas window is employed for online monitoring, and the acquired data are stored as Histograms in a ROOT file. The data acquisition speed can rea MB/s. A spectrum of 241 Am 59 keV γ-ray collected with a CdZnTe detector is shown to demonstrate the system. (authors)

  15. USDOE Laboratory views on U.S.-Russian partnership for nuclear security

    International Nuclear Information System (INIS)

    Kempf, C.R.

    1998-01-01

    This paper summarizes an analysis of the US-Russian Nuclear Material Protection, Control and Accounting (MPC and A) Program, developed on the basis of extensive discussions with US laboratory participants as well as personal experience. Results of the discussions have been organized into three main areas: Technical/MPC and A Progress; Programmatic and Administrative Issues; and Professional Aspects, Implications for MPC and A effectiveness, for MPC and A sustainability, and for future relations and collaboration are derived. Suggested next steps are given

  16. The balanced scorecard advantage: Driving strategic change into Canada's nuclear laboratory site operations

    International Nuclear Information System (INIS)

    Lafreniere, P.; Weeks, D.

    2001-01-01

    The challenges presented by the size, diversity, complexity and history of the Facilities and Nuclear Operations (FNO) Group at AECL's Chalk River Laboratories (CRL) required a change to the traditional management approach. As a result, a strategy was adopted that focused on integrating contemporary business practices such as process mapping, activity based management and use of the Balanced Scorecard methodology into the operational culture at CRL. In addition, revitalization of the performance management methods process was undertaken to provide a tool for assessment of business and individual performance. performance. (author)

  17. USDOE Laboratory Views on U.S.-Russian Partnership for Nuclear Security

    Energy Technology Data Exchange (ETDEWEB)

    Kempf, C. Ruth

    1998-08-11

    This paper summarizes an analysis of the US-Russian Nuclear Material Protection, Control and Accounting (MPC and A) Program, developed on the basis of extensive discussions with US laboratory participants as well as personal experience. Results of the discussions have been organized into three main areas: Technical/MPC and A Progress; Programmatic and Administrative Issues; and Professional Aspects. Implications for MPC and A effectiveness, for MPC and A sustainability, and for future relations and collaboration are derived. Suggested next steps are given.

  18. USDOE LABORATORY VIEWS ON U.S.-RUSSIAN PARTNERSHIP FOR NUCLEAR SECURITY.

    Energy Technology Data Exchange (ETDEWEB)

    KEMPF,C.R.

    1998-07-26

    This paper summarizes an analysis of the U.S.-Russian Nuclear Material Protection, Control and Accounting (MPC&A) Program, developed on the basis of extensive discussions with U.S. laboratory participants as well as personal experience. Results of the discussions have been organized into three main areas: Technical/MPC&A Progress; Programmatic and Administrative Issues; and Professional Aspects, Implications for MPC&A effectiveness, for MPC&A sustainability, and for future relations and collaboration are derived. Suggested next steps are given.

  19. USDOE LABORATORY VIEWS ON U.S.-RUSSIAN PARTNERSHIP FOR NUCLEAR SECURITY

    Energy Technology Data Exchange (ETDEWEB)

    KEMPF,C.R.

    1998-07-26

    This paper summarizes an analysis of the US-Russian Nuclear Material Protection, Control and Accounting (MPC and A) Program, developed on the basis of extensive discussions with US laboratory participants as well as personal experience. Results of the discussions have been organized into three main areas: Technical/MPC and A Progress; Programmatic and Administrative Issues; and Professional Aspects, Implications for MPC and A effectiveness, for MPC and A sustainability, and for future relations and collaboration are derived. Suggested next steps are given.

  20. Laboratory training manual on the use of nuclear techniques in animal parasitology

    International Nuclear Information System (INIS)

    1982-01-01

    The Manual is designed for specialist training in the use of nuclear techniques in animal parasitology. The theoretical part contains a general introduction to experimental work in this field. Laboratory exercises are divided into Basic Exercises (17) and Applied Exercises (25) oriented to research in the immunology and pathogenesis of host-parasite interactions using radioisotopic methods and to disease management through the use of radiation-attenuated vaccines. The closing part contains a number of practical guidelines and data for work with radioisotopes in general and for the use of radioisotopic methods in animal parasitology

  1. Decommissioning of the nuclear facilities at Risoe National Laboratory. Descriptions and cost assessment[Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Lauridsen, Kurt [ed.

    2001-02-01

    The report is the result of a project initiated by Risoe National Laboratory in June 2000 on request from the Minister of Research and Information Technology. It describes the nuclear facilities at Risoe National Laboratory to be decommissioned and gives an assessment of the work to be done and the costs incurred. Three decommissioning scenarios were considered with decay times of 10, 25 and 40 years for the DR 3 reactor. The assessments conclude, however, that there will not be much to gain by allowing for the longer decay periods; some operations still will need to be performed remotely. Furthermore, the report describes some of the legal and licensing framework for the decommissioning and gives an assessment of the amounts of radioactive waste to be transferred to a Danish repository. (au)

  2. Health problems raised by the elimination of radioactive wastes and nuclear accidents; Problemes sanitaires poses par l'elimination des dechets radioactifs et par les accidents nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Jammet, H.; Mechali, D.; Dousset, M. [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1964-07-01

    The rapid development of nuclear energy demands an urgent solution to the health problems arising from the discharge into the environment of radioactive residues produced by nuclear installations. - To be able to evaluate the risks run by the population and to fix tolerance limits for waste discharge, it is necessary to possess an exact knowledge of the course taken by the radioelements discharged, from their source until they reach man. The incorporation of radioelements in food cycles is the first risk to take into consideration. The factors involved in all stages of this transmission must be foreseen, whether they concern physical or biological media, because of their continuity and their interdependence. Finally, socio-economic and dietetic data must be collected in order that the risks and tolerance levels estimated are based on concrete and experimental rather than theoretical knowledge. The risk of nuclear accidents in the atomic industry, although very improbable, must be taken into consideration because of the seriousness of their consequences. The health problems arise in the field of professional hygiene on the one hand and in that of public hygiene on the other. In the first field the risk is two-fold and involves irradiation and contamination. The public sphere is reduced essentially to the risk of contamination by radioactive substances accidentally released in the surrounding medium. The health studies to be conducted in this field therefore include research not only on irradiation or contamination therapeutics but also on the transfer of radioelements from the accident site to man, mainly through food cycles, in their physical and in their biological components. Studies of this kind form the basis of decisions in the health field which would have to be taken in the case of an accident. (authors) [French] Le developpement rapide de l'energie nucleaire rend urgente la solution des problemes sanitaires poses par le rejet dans le milieu ambiant des

  3. LabView Based Nuclear Physics Laboratory experiments as a remote teaching and training tool for Latin American Educational Centers

    International Nuclear Information System (INIS)

    Sajo-Bohus, L.; Greaves, E. D.; Barros, H.; Gonzalez, W.; Rangel, A.

    2007-01-01

    A virtual laboratory via internet to provide a highly iterative and powerful teaching tool for scientific and technical discipline is given. The experimenter takes advantage of a virtual laboratory and he can execute nuclear experiment at introductory level e.g. Gamma ray detection with Geiger-Mueller Counter at remote location using internet communication technology

  4. Discourse, Power, and Knowledge in the Management of "Big Science": The Production of Consensus in a Nuclear Fusion Research Laboratory.

    Science.gov (United States)

    Kinsella, William J.

    1999-01-01

    Extends a Foucauldian view of power/knowledge to the archetypical knowledge-intensive organization, the scientific research laboratory. Describes the discursive production of power/knowledge at the "big science" laboratory conducting nuclear fusion research and illuminates a critical incident in which the fusion research…

  5. Anisotropic Rotational Diffusion Studied by Nuclear Spin Relaxation and Molecular Dynamics Simulation: An Undergraduate Physical Chemistry Laboratory

    Science.gov (United States)

    Fuson, Michael M.

    2017-01-01

    Laboratories studying the anisotropic rotational diffusion of bromobenzene using nuclear spin relaxation and molecular dynamics simulations are described. For many undergraduates, visualizing molecular motion is challenging. Undergraduates rarely encounter laboratories that directly assess molecular motion, and so the concept remains an…

  6. Nuclear and high-energy physics laboratory - LPNHE. Activity report 1996-1997

    International Nuclear Information System (INIS)

    Vaissiere, Christian de la; Boniface, Nicole; Dumas, Jean-Marc; Jos, Jeanne

    1998-01-01

    The LPNHE is a joint research unit (UMR 7585) of the National Institute of Nuclear Physics and Particle Physics (IN2P3), Institute of the National Centre for Scientific Research (CNRS), UPMC and Paris Diderot Paris 7. It hosts several research teams and technical services (computers, electronics, mechanical), and two support services (administration, logistics). The laboratory is engaged in several major experimental programs pursued in the framework of international collaborations with very large research facilities around the world, centers of particle accelerators and observatories. The research programs cover current issues in particle physics, astro-particle and cosmology. This report presents the activities of the laboratory during the years 1996-1997: 1 - Forewords; 2 - Physics experiments: LHC Physics with ATLAS, search for new physics at LEP (DELPHI), Neutrinos oscillation DIRAC experiment, Neutrinos oscillation (NOMAD, TONIC), HERA-H1 experiment, CP Violation (BaBar), DΦ experiment at Tevatron, study of gamma radiation sources (CAT), Supernovae, Auger Laboratory project; 3 - Technical activities and means (electronics, computers, mechanics departments); 4 - Laboratory life (Teaching, Administration and general services, Internal and external activities); 5 - Dissemination of scientific information; 6 - List of publications; 7 - staff

  7. Nuclear and high-energy physics laboratory - LPNHE. Activity report 2002-2003

    International Nuclear Information System (INIS)

    Dagoret-Campagne, Sylvie; Roos, Lydia; Schwemling, Philippe; Cossin, Isabelle; Mathy, Jean-Yves

    2004-01-01

    The LPNHE is a joint research unit (UMR 7585) of the National Institute of Nuclear Physics and Particle Physics (IN2P3), Institute of the National Centre for Scientific Research (CNRS), UPMC and Paris Diderot Paris 7. It hosts several research teams and technical services (computers, electronics, mechanical), and two support services (administration, logistics). The laboratory is engaged in several major experimental programs pursued in the framework of international collaborations with very large research facilities around the world, centers of particle accelerators and observatories. The research programs cover current issues in particle physics, astro-particle and cosmology. This report presents the activities of the laboratory during the years 2002-2003: 1 - Forewords; 2 - Scientific and technical activities of the laboratory: Physics with accelerators (CP Violation, proton-antiproton physics, LHC, Neutrino beams, LEP, future linear electron collider); Physics without accelerators (extreme energy cosmic radiation, Cosmology and supernovae, high-energy gamma astronomy); theoretical physics (QCD, phenomenological approaches); 3 - Technical and administrative activities (electronics, computers, mechanics departments, Administration and general services); 4 - Laboratory life (Teaching, training, Internal activities); 5 - Dissemination of scientific information; 6 - List of publications; 7 - Appendix: staff

  8. Treatment and final disposal of nuclear waste. Aespoe hard rock laboratory

    International Nuclear Information System (INIS)

    1992-09-01

    The scientific investigations within SBK's research programme are a part of the work of designing a deep repository and identifying and investigating a suitable site. A balanced appraisal of the facts, requirements and assessments presented in connection with the preparation of R and D-programme 86 led to the proposal to construct an underground research laboratory. This proposal was presented in the aforementioned research programme and was very positively recived by the reviewing bodies. In the autumn of 1986, SKB initiated the field work for the siting of an underground laboratory, the Aespoe hard rock laboratory, in the Simpevarp area in the municipality of Oskarshamn. At the end of 1988, SKB arrived at a decision in principle to site the facility on southern Aespoe about 2 km north of the Oskarshamn nuclear power station. After regulatory review, SKB ordered the excavation of the access tunnel to the Aespoe hard rock laboratory to commence in the autumn of 1990. In conjunction with the tunneling work, which has now (September 1992) reached a depth of more than 200 m, a large number of investigations have been carried out. This background report to SKB's RD and D-programme 92 is based on the previous and 89 /2/. The report provides a general background and presents goals, projects results obtained to date and future work. Compared to the previous background reports, more space is devoted here to experiment planning and the future demonstration programme. (au)

  9. Nuclear and high-energy physics laboratory - LPNHE. Activity report 1998-1999

    International Nuclear Information System (INIS)

    Vaissiere, Christian de la; Banner, Marcel; Faivre, Maria; Moine, Marguerite; Dumas, Jean-Marc; Jos, Jeanne

    2000-01-01

    The LPNHE is a joint research unit (UMR 7585) of the National Institute of Nuclear Physics and Particle Physics (IN2P3), Institute of the National Centre for Scientific Research (CNRS), UPMC and Paris Diderot Paris 7. It hosts several research teams and technical services (computers, electronics, mechanical), and two support services (administration, logistics). The laboratory is engaged in several major experimental programs pursued in the framework of international collaborations with very large research facilities around the world, centers of particle accelerators and observatories. The research programs cover current issues in particle physics, astro-particle and cosmology. This report presents the activities of the laboratory during the years 1998-1999: 1 - Forewords; 2 - Physics experiments: LHC Physics with ATLAS, search for new physics at LEP, DIRAC experiment, Neutrinos oscillation with NOMAD, TONIC and HERA-H1 experiments, CP Violation (BaBar), DΦ experiment at Tevatron, high-energy gamma astronomy, Supernovae, Pierre Auger Laboratory); 3 - Technical activities and means (electronics, computers, mechanics departments); 4 - Laboratory life (Teaching, Administration and general services, Internal and external activities); 5 - Dissemination of scientific information; 6 - List of publications; 7 - staff

  10. Annual report of Nuclear Engineering Research Laboratory, Faculty of Engineering, University of Tokyo, fiscal year 1994

    International Nuclear Information System (INIS)

    1995-08-01

    This annual report is the summary of the research and education activities, the state of operating research facilities and others in fiscal year 1994 in this Research Laboratory. In this Research Laboratory, there are four main installations, namely the fast neutron source reactor 'Yayoi', the electron linear accelerator, the basic experiment facility for the design of nuclear fusion reactor blanket and the heavy irradiation research facility. The former two are put to the joint utilization by all Japanese universities, the blanket is to that within Faculty of Engineering, and the HIT is to that within this university. The fast neutron science research facility, the installation of which was approved in 1993 as the ancillary equipment of the Yayoi, has been put to the joint utilization for all Japan, and achieved good results. In this report, the management and operation of these main installations, research activities, the publication of research papers,graduation and degree theses, the publication of research papers, graduation and degree theses, the events in the Laboratory for one year, the list of the visitors to the Laboratory, the list of the records of official trips to foreign countries and others, and the list of UTNL reports are described. (K.I.)

  11. Minerals and design of new waste forms for conditioning nuclear waste; Les mineraux et la formulation de nouvelles matrices de stockage pour les dechets radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Montel, J.M. [G2R, CNRS, Ecole nationale superieure de geologie, Nancy-universite, BP 70239, 54056 Vandoeuvre-les-Nancy (France)

    2011-02-15

    Safe storage of radioactive waste is a major challenge for the nuclear industry. Mineralogy is a good basis for designing ceramics, which could eventually replace nuclear glasses. This requires a new storage concept: separation-conditioning. Basic rules of crystal chemistry allow one to select the most suitable structures and natural occurrences allow assessing the long-term performance of ceramics in a geological environment. Three criteria are of special interest: compatibility with geological environment, resistance to natural fluids, and effects of self-irradiation. If mineralogical information is efficient for predicting the behaviour of common, well-known minerals, such as zircon, monazite or apatite, more research is needed to rationalize the long-term behaviour of uncommon waste form analogs. (author)

  12. Avaliação da função e da lesão renal: um desafio laboratorial Evaluation of renal function and damage: a laboratorial challenge

    Directory of Open Access Journals (Sweden)

    Fábio L. Sodré

    2007-10-01

    Full Text Available Atualmente a doença renal é um grande problema de saúde pública, que acomete milhares de pessoas no Brasil e no mundo. O estudo da função e dos diversos processos patológicos renais tem despertado o interesse de muitos pesquisadores, principalmente no campo do desenvolvimento de testes que auxiliem os médicos a estabelecer um diagnóstico precoce, classificar a doença de base, obter prognóstico seguro e monitorar terapêutica medicamentosa. Neste artigo sete marcadores de função e de lesão renal são avaliados: uréia, creatinina, cistatina C, proteinúria, dismorfismo eritrocitário, microalbuminúria e fração hepática das proteínas ligadas a ácidos graxos. É apresentado um breve histórico da utilização clínica e da fisiopatologia de cada um deles, seguidas de sua aplicabilidade e dos avanços técnicos e metodológicos disponíveis. Apesar de melhorias terem sido conseguidas e incorporadas à prática laboratorial, nenhum marcador atualmente disponível é completamente eficaz em analisar a função e/ou a lesão renal de forma precisa, sendo imprescindível o conhecimento de todos eles para uma correta avaliação desses testes comuns na rotina laboratorial.Nowadays, renal disease is an important public health problem, affecting millions of people in Brazil and in the world. The study of renal function and renal pathologic processes has aroused the interest of researchers, mainly in the field of development of new assays that could aid physicians in establishing early diagnosis, better classifying the disease, obtaining better outcome and monitoring drug therapeutics. In this article, seven laboratory markers of renal function or damage are evaluated: urea, creatinine, cystatin C, proteinuria, dysmorphic erythrocytes, microalbuminuria and liver-type fatty acid binding protein (L-FABP. For each one of them, a short historical report of its clinical utility and physiopathology is presented. Then technical and

  13. Planning of maintenance of electrical equipment in nuclear plants/laboratories [Paper No.: VB-3

    International Nuclear Information System (INIS)

    Narasinga Rao, S.N.; Bhattacharyya, A.K.

    1981-01-01

    Satisfactory operating performance of electrical systems ensures continuous availability of power to the various plants and machinery in nuclear plant and laboratories. For effective optimal functioning of the electrical equipment and to reduce their down time, scheduled planning of maintenance to the equipment is essential. Maintenance of power plant, nuclear or fossil, and industrial plant and research laboratories demands essential ingredients such as right type of trained and motivated technical personnel, adoption of standard procedures for maintenance, adequate safety and protection for equipment, safety procedures adopted in the installation to prevent hazards to the workers, provision of adequate stores and inventories, facilities for quick repairs and testing of equipment and effective planning of procedures for their maintenance. While breakdown maintenance allows equipment to operate before it is repaired or replaced, preventive maintenance makes use of scheduled inspection and periodical equipment overhaul and has little value for predicting future continuous performances of equipment. The engineered maintenance is most advantageous and offers maximum operating time to reduce down time of the equipment while adding predictive testing technique to aid in determining the frequency of overhaul of equipment. The important checks to be conducted and preventive maintenance programme to be scheduled are discussed in this paper. The safety and reliable functioning of the electrical equipment depend on proper optimal design, selection of equipment, their installation, subsequent maintenance and strict compliance with safety regulations. (author)

  14. Estimating HAPs and radionuclide emissions from a laboratory complex at a nuclear processing site

    International Nuclear Information System (INIS)

    Paul, R.A.; Faugl, T.

    1993-01-01

    A unique methodology was developed for conducting an air emission inventory (AEI) at a DOE nuclear processing facility. This methodology involved the use of computer-assisted design (CAD) drawings to document emission points, computerized process drawings to document industrial processes leading to emissions, and a computerized data base of AEI forms to document emission estimates and related process data. A detailed air emissions inventory for operating years 1985--1991 was recently implemented for the entire site using this methodology. One industrial area at the DOE Site is comprised of laboratory facilities that provide direct support to the nuclear reactor and recovery operations, developmental studies to support reactor and separation operations, and developmental studies to support waste handling and storage. The majority of the functions are conducted in a single large building complex wherein bench scale and pilot scale experiments are carried out involving radionuclides, hazardous air pollutants (HAP), and other chemicals reportable under the Clean Air Act Amendments (CAAA) and Superfund Amendments and Re-authorization Act (SARA) Title 111. The results of the inventory showed that HAP and radionuclide emissions from the laboratory complex were relatively minor

  15. The Dresden Felsenkeller shallow-underground accelerator laboratory for nuclear astrophysics - Status and first physics program

    Energy Technology Data Exchange (ETDEWEB)

    Ilgner, Ch. [Nuclear Astrophysics group, Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Dresden (Germany)

    2015-07-01

    Favored by the low background in underground laboratories, low-background accelerator-based experiments are an important tool to study nuclear reactions involving stable charged particles. This technique has been used for many years with great success at the 0.4 MV LUNA accelerator in the Gran Sasso laboratory in Italy, protected from cosmic rays by 1400 m of rock. However, the nuclear reactions of helium and carbon burning and the neutron source reactions for the astrophysical s-process require higher beam energies than those available at LUNA. Also the study of solar fusion reactions necessitates new data at higher energies. As a result, in the present NuPECC long range plan for nuclear physics in Europe, the installation of one or more higher-energy underground accelerators is strongly recommended. An intercomparison exercise using the same High-Purity Ge detector at several sites has shown that, with a combination of 45 m rock overburden, as can be found in the Felsenkeller underground site in Dresden, and an active veto against the remaining muon flux, in a typical nuclear astrophysics setup a background level can be achieved that is similar to the deep underground scenario as in the Gran- Sasso underground laboratory, for instance. Recently, a muon background study and geodetic measurements were carried out by the REGARD group. It was estimated that the rock overburden at the place of the future ion accelerator is equivalent to 130 m of water. The maximum muon flux measured was 2.5 m{sup -2} sr{sup -1} s{sup -1}, in the direction of the tunnel entrance. Based on this finding, a used 5 MV pelletron tandem accelerator with 250 μA up-charge current and external sputter ion source has been obtained and transported to Dresden. Work on an additional radio-frequency ion source on the high voltage terminal is in progress and far advanced. The installation of the accelerator in the Felsenkeller is expected for the near future. The status of the project and the

  16. Can-rupture detection in gas-cooled nuclear reactors; La detection des ruptures de gaine dans les piles nucleaires refroidies par gaz

    Energy Technology Data Exchange (ETDEWEB)

    Roguin, A. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-07-01

    Can-rupture detection (DRG) is one important aspect of pile safety, more particularly so in the case of gas-cooled reactors. A rapid and sure detection constitutes also an improvement as far as the efficiency of electricity-producing nuclear power stations are concerned. Among the numerous can-rupture detection methods, that based on the measurement of the concentration of short-lived fission gases in the heat-carrying fluid has proved to be the most sensitive and the most rapid. A systematic study of detectors based on the electrostatic collection of the daughter products of fission gases has been undertaken with a view to equip the reactors EL 2, G 3, EDF 1, EDF 2 and EDF 3, the gas loops of PEGASE and EL 4. The different parameters are studied in detail in order to obtain a maximum sensitivity and to make it possible to construct detection devices having the maximum operational reliability and requiring the minimum maintenance. The primary applications of these devices are examined in the case of the above-mentioned reactors. (author) [French] La Detection des Ruptures de Gaines (D. R. G.) est un aspect important de la securite des piles et plus particulierement des piles refroidies par un gaz. Une detection rapide et sure constitue aussi un element d'amelioration du rendement des centrales nucleaires productrices d'energie electrique. Parmi les nombreuses methodes de detection des ruptures de gaines, la mesure de la concentration dans le fluide caloporteur des gaz de fission a vie courte s'est revelee comme la plus sensible et la plus rapide. Une etude systematique des detecteurs a collection electrostatique des descendants des gaz de fission a ete entreprise en vue d'equiper les piles EL 2, G 3, EDF 1, EDF 2 et EDF 3, les boucles a gaz de la pile Pegase et la pile EL 4. Les divers parametres sont etudies en detail pour obtenir une sensibilite maximum et permettre la realisation de dispositifs de detection ayant le maximum de securite de

  17. The atolls of Mururoa and Fangataufa (French Polynesia). The nuclear testings. Radiological aspects; Les atolls de Mururoa et de Fangataufa (Polynesie Francaise). Les experimentations nucleaires. Aspects radiologiques

    Energy Technology Data Exchange (ETDEWEB)

    Martin, G

    2007-07-01

    This report provides a review of the radiological measures implemented during the thirty year period of French nuclear tests in Polynesian atolls of Mururoa and Fangataufa. It presents full details of the practices deployed throughout these tests, including, in particular, aspects concerning radiological protection for the population and the environment. It contains all the scientific results and measurements of radioactivity performed during this period, providing concrete facts that can be used to assess the consequences these tests have had on the personnel involved, the population and the environment. (author)

  18. Activities developed by the biological dosimetry laboratory of the Autoridad Regulatoria Nuclear - ARN of Argentina

    International Nuclear Information System (INIS)

    Radl, A.; Sapienza, C.E.; Taja, M.R.; Bubniak, R.; Deminge, M.; Di Giorgio, M.

    2013-01-01

    Biological dosimetry (DB) allows to estimate doses absorbed in individuals exposed to ionizing radiation through the quantification of stable and unstable chromosome aberrations (SCA and UCA). The frequency of these aberrations is referred to a calibration dose response curve (in vitro) to determine the doses of the individual to the whole body. The DB is a necessary support for programs of national radiation protection and response systems in nuclear or radiological emergencies in the event of accidental or incidental, single overexposure or large scale. In this context the Laboratory of Dosimetry Biological (LDB) of the Authority Regulatory Nuclear (ARN) Argentina develops and applies different dosimeters cytogenetic from four decades ago. These dosimeters provide a fact more within the whole of the information necessary for an accidental, complementing the physical and clinical dosimetry exposure assessment. The most widely used in the DB biodosimetric method is the quantification of SCA (dicentrics and rings Central) from a sample of venous blood. The LDB is accredited for the trial, under rules IRAM 301: 2005 (ISO / IEC 17025: 2005) and ISO 19238:2004. Test applies to the immediate dosimetry evaluation of acute exposures, all or a large part of the body in the range 0,1-5 Gy. In this context the LDB is part of the Latin American network of DB (LBDNet), BioDoseNet-who and response system in radiological emergencies and nuclear IAEA-RANET, being enabled to summon the LBDNet if necessary

  19. Spent fuel reprocessing and minor actinide partitioning safety related research at the UK National Nuclear Laboratory

    International Nuclear Information System (INIS)

    Carrott, Michael; Flint, Lauren; Gregson, Colin; Griffiths, Tamara; Hodgson, Zara; Maher, Chris; Mason, Chris; McLachlan, Fiona; Orr, Robin; Reilly, Stacey; Rhodes, Chris; Sarsfield, Mark; Sims, Howard; Shepherd, Daniel; Taylor, Robin; Webb, Kevin; Woodall, Sean; Woodhead, David

    2015-01-01

    The development of advanced separation processes for spent nuclear fuel reprocessing and minor actinide recycling is an essential component of international R and D programmes aimed at closing the nuclear fuel cycle around the middle of this century. While both aqueous and pyrochemical processes are under consideration internationally, neither option will gain broad acceptance without significant advances in process safety, waste minimisation, environmental impact and proliferation resistance; at least when compared to current reprocessing technologies. The UK National Nuclear Laboratory (NNL) is developing flowsheets for innovative aqueous separation processes. These include advanced PUREX options (i.e. processes using tributyl phosphate as the extractant for uranium, plutonium and possibly neptunium recovery) and GANEX (grouped actinide extraction) type processes that use diglycolamide based extractants to co-extract all transuranic actinides. At NNL, development of the flowsheets is closely linked to research on process safety, since this is essential for assessing prospects for future industrialisation and deployment. Within this context, NNL is part of European 7. Framework projects 'ASGARD' and 'SACSESS'. Key topics under investigation include: hydrogen generation from aqueous and solvent phases; decomposition of aqueous phase ligands used in separations prior to product finishing and recycle of nitric acid; dissolution of carbide fuels including management of organics generated. Additionally, there is a strong focus on use of predictive process modelling to assess flowsheet sensitivities as well as engineering design and global hazard assessment of these new processes. (authors)

  20. Nuclear and high-energy physics laboratory - LPNHE. Activity report 2012-2014

    International Nuclear Information System (INIS)

    Balland, Christophe; Cossin, Isabelle; Giganti, Claudio; Hardin, Delphine; Lavergne, Laurence; Le Dortz, Olivier; Lenain, Jean-Philippe; Marchiori, Giovanni; Regnault, Nicolas; Varanda De-Sa, Vera; Daigremont, Jean-Jacques

    2015-01-01

    The LPNHE is a joint research unit (UMR 7585) of the National Institute of Nuclear Physics and Particle Physics (IN2P3), Institute of the National Centre for Scientific Research (CNRS), UPMC and Paris Diderot Paris 7. It hosts several research teams and technical services (computers, electronics, mechanical), and two support services (administration, logistics). The laboratory is engaged in several major experimental programs pursued in the framework of international collaborations with very large research facilities around the world, centers of particle accelerators and observatories. The research programs cover current issues in particle physics, astro-particle and cosmology. This report presents the activities of the laboratory during the years 2012-2014: 1 - Forewords; 2 - Highlights; 3 - Research: Masses and FUNDAMENTAL INTERACTIONS; Matter-antimatter asymmetry; Dark matter and dark energy; Cosmic radiation nature and origin; Publications, communications; 2 - Teaching, training, internships and PhDs; 3 - Competences and technical realisations (electronics and instrumentation, computers, mechanics, expertise, calculation and technical departments); 4 - Laboratory operation (organisation, partnerships, financial and human resources, permanent training, communication and library, health and safety, radiation protection, general services, staff); 5 - Scientific life and communication (seminars, meetings..)

  1. Nuclear and high-energy physics laboratory - LPNHE. Activity report 2008-2009

    International Nuclear Information System (INIS)

    Pain, Reynald; Guy, Julien; Toussenel, Francois; Laforge, Bertrand; Levy, Jean-Michel; Cossin, Isabelle; Cardot, Violaine

    2011-01-01

    The LPNHE is a joint research unit (UMR 7585) of the National Institute of Nuclear Physics and Particle Physics (IN2P3), Institute of the National Centre for Scientific Research (CNRS), UPMC and Paris Diderot Paris 7. It hosts several research teams and technical services (computers, electronics, mechanical), and two support services (administration, logistics). The laboratory is engaged in several major experimental programs pursued in the framework of international collaborations with very large research facilities around the world, centers of particle accelerators and observatories. The research programs cover current issues in particle physics, astro-particle and cosmology. This report presents the activities of the laboratory during the years 2008-2009: 1 - Forewords; 2 - Highlights; 3 - Research: Masses and FUNDAMENTAL INTERACTIONS; Matter-antimatter asymmetry; Dark matter and dark energy; Cosmic radiation nature and origin; Interdisciplinary activities; Publications, communications; Partnerships; 2 - Teaching, training, internships and PhDs; 3 - Competences and technical realisations (electronics and instrumentation, computers, mechanics departments, test facilities); 4 - Laboratory operation (organisation, financial and human resources, permanent training, communication and library, health and safety, general services, staff); 5 - Scientific life and communication (seminars, meetings..)

  2. Nuclear and high-energy physics laboratory - LPNHE. Activity report 2004-2005

    International Nuclear Information System (INIS)

    Debu, Pascal; Bassler, Ursula; Boratav, Murat; Lacour, Didier; Lebbolo, Herve; Cossin, Isabelle; Mathy, Jean-Yves

    2006-01-01

    The LPNHE is a joint research unit (UMR 7585) of the National Institute of Nuclear Physics and Particle Physics (IN2P3), Institute of the National Centre for Scientific Research (CNRS), UPMC and Paris Diderot Paris 7. It hosts several research teams and technical services (computers, electronics, mechanical), and two support services (administration, logistics). The laboratory is engaged in several major experimental programs pursued in the framework of international collaborations with very large research facilities around the world, centers of particle accelerators and observatories. The research programs cover current issues in particle physics, astro-particle and cosmology. This report presents the activities of the laboratory during the years 2004-2005: 1 - Forewords; 2 - Scientific activities: Physics with accelerators (LHC, Tevatron, CP Violation, future linear electron collider, Neutrino beams); Physics without accelerators (Cosmology and supernovae, high-energy gamma astronomy, extreme energy cosmic radiation, theoretical physics, physics-biology interface); 3 - Technical and administrative activities (electronics, computers, mechanics departments, Administration, health and safety, radiation protection); 4 - Laboratory life (Teaching, training, internships and PhDs); 5 - Internal activities (seminars, meetings..); 6 - External activities (Public information, relations with the industry, valorisation..); 7 - List of publications; 8 - Appendixes: organigram, staff

  3. Nuclear and high-energy physics laboratory - LPNHE. Activity report 2010-2012

    International Nuclear Information System (INIS)

    Pain, Reynald; Ghia, Piera L.; Lacour, Didier; Lavergne, Laurence; Billoir, Pierre; Cossin, Isabelle; Cardot, Violaine

    2012-01-01

    The LPNHE is a joint research unit (UMR 7585) of the National Institute of Nuclear Physics and Particle Physics (IN2P3), Institute of the National Centre for Scientific Research (CNRS), UPMC and Paris Diderot Paris 7. It hosts several research teams and technical services (computers, electronics, mechanical), and two support services (administration, logistics). The laboratory is engaged in several major experimental programs pursued in the framework of international collaborations with very large research facilities around the world, centers of particle accelerators and observatories. The research programs cover current issues in particle physics, astro-particle and cosmology. This report presents the activities of the laboratory during the years 2010-2012: 1 - Forewords; 2 - Highlights; 3 - Research: Masses and FUNDAMENTAL INTERACTIONS; Matter-antimatter asymmetry; Dark matter and dark energy; Cosmic radiation nature and origin; Publications, communications; 2 - Teaching, training, internships and PhDs; 3 - Competences and technical realisations (electronics and instrumentation, computers, mechanics departments, expertise and valorisation, conference participation, responsibilities); 4 - Laboratory operation (organisation, partnerships, financial and human resources, permanent training, communication and library, health and safety, radiation protection, general services, staff); 5 - Scientific life and communication (seminars, meetings..)

  4. Nuclear and high-energy physics laboratory - LPNHE. Activity report 2006-2007

    International Nuclear Information System (INIS)

    Debu, Pascal; Ben-Haim, Eli; Hardin, Delphine; Laporte, Didier; Maurin, David; Cossin, Isabelle; Mathy, Jean-Yves

    2008-01-01

    The LPNHE is a joint research unit (UMR 7585) of the National Institute of Nuclear Physics and Particle Physics (IN2P3), Institute of the National Centre for Scientific Research (CNRS), UPMC and Paris Diderot Paris 7. It hosts several research teams and technical services (computers, electronics, mechanical), and two support services (administration, logistics). The laboratory is engaged in several major experimental programs pursued in the framework of international collaborations with very large research facilities around the world, centers of particle accelerators and observatories. The research programs cover current issues in particle physics, astro-particle and cosmology. This report presents the activities of the laboratory during the years 2006-2007: 1 - Forewords; 2 - Scientific activities: Physics with accelerators (LHC, Tevatron, CP Violation, ILC, Neutrino Physics); Physics without accelerators (Cosmology, high-energy gamma astronomy, extreme energy cosmic radiation, theoretical physics, physics-biology interface); 3 - Technical and administrative activities (electronics, computers, mechanics departments, Administration and general services); 4 - Laboratory life (Teaching, training, internships and PhDs); 5 - Internal activities (seminars, meetings..); 6 - External activities (Public information, relations with the industry, valorisation..)

  5. Studying the elimination of pathogenic agents in laboratory animals feed by use of nuclear technique

    International Nuclear Information System (INIS)

    Shahhosseini, G.; Raisali, G.

    2002-01-01

    Laboratory animals are being used all around the world for different kinds of experiments in biological and medical sciences and related fields for the purposes such as prevention, control, diagnosis and treatment of various diseases in livestock, poultry, human, reproduction, breeding, etc. This is very important to keep in the breeding and reproduction environment of laboratory animals, pathogenic microorganisms as low as possible or completely remove them. The most prevailing and important way of such contamination is through feeding laboratory animals. In this research work, it is tried to use gamma radiation as a useful nuclear technique for decrease or resolve the problem. Two kinds of standard forms of diets consumed by rabbit and guinea pig in the form of small pellets and by mouse, rat and hamster in the form of big pellets (with different feed formula) and also two kinds of additive food i.e. dry milk and vitamin C have been examined. Un-irradiated samples have been used for control. Total of 226 samples were irradiated, among which optimum doses were found 25 kilo Gray for both small and big pellets, 18 kilo Gray for dry milk. Since there was not any contamination in vitamin C un-irradiated sample, irradiation was done only to observe the effect of gamma radiation on vitamin C compounds. (Author)

  6. Dispersion modeling of atmospheric contaminants in the Angra Nuclear Power Plant using LES and a new model for the CBL growth

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Davidson M.; Goulart, Antonio G., E-mail: davidson@pq.cnpq.b, E-mail: agoulart@pq.cnpq.b [Universidade Federal do Pampa (UNIPAMPA), Bage, RS (Brazil); Soares, Pedro M., E-mail: pmsoares@fc.ul.p [Universidade de Lisboa (Portugal). Centro de Geofisica; Vilhena, Marco T., E-mail: vilhena@pq.cnpq.b [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica

    2009-07-01

    In the present work we report a comparison between experimental data and GILTT approach to simulate radioactive contaminant dispersion in the Atmospheric Boundary Layer using micrometeorological parameters generated by LES (Large Eddy Simulation) in the area around the Angra dos Reis Nuclear Power Plant. Furthermore, starting from the evolution equation for the turbulent energy density spectrum (EDS), we develop a new model for the growth of the turbulence in Convective Boundary Layer (CBL). We apply dimensional analysis to parameterize the unknown inertial transport and convective source term in the dynamic equation for the three-dimensional (3-D) spectrum. The non linear integro-differential equation is solved by Adomian decomposition method. The one-dimensional vertical spectrum is derived from the 3-D spectrum, employing a weight function. This allows us to select the magnitude of the vertical spectral component for the construction of the growing 3-D. Using the micrometeorological parameters generated by LES, for the first time, we employ the vertical component of the energy spectrum to calculate the eddy diffusivity (required in dispersion models). This new eddy diffusivity is used in the simulations of the ground-level concentrations considering experimental data of the Nuclear Power Plant. (author)

  7. Dispersion modeling of atmospheric contaminants in the Angra Nuclear Power Plant using LES and a new model for the CBL growth

    International Nuclear Information System (INIS)

    Moreira, Davidson M.; Goulart, Antonio G.; Soares, Pedro M.; Vilhena, Marco T.

    2009-01-01

    In the present work we report a comparison between experimental data and GILTT approach to simulate radioactive contaminant dispersion in the Atmospheric Boundary Layer using micrometeorological parameters generated by LES (Large Eddy Simulation) in the area around the Angra dos Reis Nuclear Power Plant. Furthermore, starting from the evolution equation for the turbulent energy density spectrum (EDS), we develop a new model for the growth of the turbulence in Convective Boundary Layer (CBL). We apply dimensional analysis to parameterize the unknown inertial transport and convective source term in the dynamic equation for the three-dimensional (3-D) spectrum. The non linear integro-differential equation is solved by Adomian decomposition method. The one-dimensional vertical spectrum is derived from the 3-D spectrum, employing a weight function. This allows us to select the magnitude of the vertical spectral component for the construction of the growing 3-D. Using the micrometeorological parameters generated by LES, for the first time, we employ the vertical component of the energy spectrum to calculate the eddy diffusivity (required in dispersion models). This new eddy diffusivity is used in the simulations of the ground-level concentrations considering experimental data of the Nuclear Power Plant. (author)

  8. Development of Biodiversity Laboratory to Support the Establishment of Flora and Fauna Database in the Vicinity of Nuclear Facility

    International Nuclear Information System (INIS)

    Nor Humaira Lau Abdullah; Anis Nadia Mohd Faisol Mahadeven; Mohd Noor Hidayat Adenan

    2015-01-01

    The Biodiversity Laboratory (44128) at Agrotechnology and Biosciences Division (BAB) was developed using One-Off 2014 budget. The renovation works of Seed Technology Laboratory into Biodiversity Laboratory was planned in 2013 and was fully completed in early 2015. This laboratory serves as a centre for development and storage of flora and fauna database. Thus far, this laboratory houses various facilities that befit the function of this laboratory, such as small mammalian and insects sampling tools, herbarium specimen preparation tools, fume chamber, and work benches. Among the activities carried out in this laboratory were sampling and processing of flora, fauna and mushroom specimens collected in the vicinity of nuclear facility besides exhibiting processed/preserved herbaria, mushrooms, fauna and insects specimens. On the other hand, activities planned include cataloguing of existing specimens, online database development, study on ionising radiation towards development of bio indicator, and development of Standard Operating Procedure (SOP). However there are some limitations in terms of tools (supercomputer, camera microscope, photography set-up and drying oven) and not to mention, expertise. In order to overcome the limitations, some recommendations for improvement can be considered for instance fund application, hiring staffs in desired field of expertise (botanist and zoologist) and training's. In summary, this laboratory has potential to support the aspiration of Nuclear Malaysia to be a TSO for national nuclear power development plan in the aspect of environmental and ecosystem protection especially towards non-human biota. (author)

  9. Nuclear Physics Laboratory, University of Colorado technical progress report, 1976 and proposal for continuation of contract

    International Nuclear Information System (INIS)

    1976-01-01

    This report summarizes the work carried out at the Nuclear Physics Laboratory of the University of Colorado during the period November 1, 1975 to November 1, 1976. The low energy nuclear physics section is dominated by light-ion reaction studies which span a wide range. These include both two-neutron and two-proton transfer reactions, charge exchange and inelastic scattering, as well as single nucleon transfer reactions. The nuclei studied vary widely in their mass and characteristics. These reaction studies have been aided by the multi-use scattering chamber which now allows the energy-loss-spectrometer beam preparation system (beam swinger) to shift from charged particle studies to neutron time-of-flight studies with a minimum loss of time. The intermediate energy section reflects the increase in activity accompanying the arrival of LAMPF data and the initiation of (p,d) studies at the Indiana separated-sector cyclotron. The nucleon removal results provided by the π beam at EPICS previous to completion of the spectrometer have shown that nuclear effects dominate this process, so that the widely used free interaction picture is inadequate. The section entitled ''Other Activities'' reveals continuing activities in new applications of nuclear techniques to problems in medicine and biology. Reactions important to astrophysics continue to be investigated and our trace-element program remains at a high level of activity. The theoretical section reports new progress in understanding magnitudes of two-step reactions by inclusion of finite-range effects. A new finite-range program which is fast and economical has been completed. Intermediate energy results include calculations of π-γ angular correlations, low energy π-nucleus interactions, as well as (p,d) and nucleon scattering calculations for intermediate energies

  10. Behaviour norms for nuclear energy peaceful uses; Code de bonne conduite pour les utilisations pacifiques de l`energie nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Strohl, P. [Nuclear Energy Agency, 75 - Paris (France)

    1996-10-01

    After making a brief history on the nuclear law, the author shows that ethical aspects got involved in nuclear matters at three levels: security of nuclear supplies, radioactive waste management, and potential human failures. Then a list of ``good conduct norms`` which should be the link between law and ethics is given. They correspond to different issues of nuclear development: technological quality, radiation protection, radioactive waste management, public information, international cooperation, non-proliferation. (TEC).

  11. Global nuclear energy partnership fuels transient testing at the Sandia National Laboratories nuclear facilities : planning and facility infrastructure options

    International Nuclear Information System (INIS)

    Kelly, John E.; Wright, Steven Alan; Tikare, Veena; MacLean, Heather J.; Parma, Edward J.Jr; Peters, Curtis D.; Vernon, Milton E.; Pickard, Paul S.

    2007-01-01

    The Global Nuclear Energy Partnership fuels development program is currently developing metallic, oxide, and nitride fuel forms as candidate fuels for an Advanced Burner Reactor. The Advance Burner Reactor is being designed to fission actinides efficiently, thereby reducing the long-term storage requirements for spent fuel repositories. Small fuel samples are being fabricated and evaluated with different transuranic loadings and with extensive burnup using the Advanced Test Reactor. During the next several years, numerous fuel samples will be fabricated, evaluated, and tested, with the eventual goal of developing a transmuter fuel database that supports the down selection to the most suitable fuel type. To provide a comparative database of safety margins for the range of potential transmuter fuels, this report describes a plan to conduct a set of early transient tests in the Annular Core Research Reactor at Sandia National Laboratories. The Annular Core Research Reactor is uniquely qualified to perform these types of tests because of its wide range of operating capabilities and large dry central cavity which extents through the center of the core. The goal of the fuels testing program is to demonstrate that the design and fabrication processes are of sufficient quality that the fuel will not fail at its design limit--up to a specified burnup, power density, and operating temperature. Transient testing is required to determine the fuel pin failure thresholds and to demonstrate that adequate fuel failure margins exist during the postulated design basis accidents

  12. Global nuclear energy partnership fuels transient testing at the Sandia National Laboratories nuclear facilities : planning and facility infrastructure options.

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, John E.; Wright, Steven Alan; Tikare, Veena; MacLean, Heather J. (Idaho National Laboratory, Idaho Falls, ID); Parma, Edward J., Jr.; Peters, Curtis D.; Vernon, Milton E.; Pickard, Paul S.

    2007-10-01

    The Global Nuclear Energy Partnership fuels development program is currently developing metallic, oxide, and nitride fuel forms as candidate fuels for an Advanced Burner Reactor. The Advance Burner Reactor is being designed to fission actinides efficiently, thereby reducing the long-term storage requirements for spent fuel repositories. Small fuel samples are being fabricated and evaluated with different transuranic loadings and with extensive burnup using the Advanced Test Reactor. During the next several years, numerous fuel samples will be fabricated, evaluated, and tested, with the eventual goal of developing a transmuter fuel database that supports the down selection to the most suitable fuel type. To provide a comparative database of safety margins for the range of potential transmuter fuels, this report describes a plan to conduct a set of early transient tests in the Annular Core Research Reactor at Sandia National Laboratories. The Annular Core Research Reactor is uniquely qualified to perform these types of tests because of its wide range of operating capabilities and large dry central cavity which extents through the center of the core. The goal of the fuels testing program is to demonstrate that the design and fabrication processes are of sufficient quality that the fuel will not fail at its design limit--up to a specified burnup, power density, and operating temperature. Transient testing is required to determine the fuel pin failure thresholds and to demonstrate that adequate fuel failure margins exist during the postulated design basis accidents.

  13. Nuclear power plant maintenance personnel reliability prediction (NPP/MPRP) effort at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Knee, H.E.; Haas, P.M.; Siegel, A.I.

    1981-01-01

    Human errors committed during maintenance activities are potentially a major contribution to the overall risk associated with the operation of a nuclear power plant (NPP). An NRC-sponsored program at Oak Ridge National Laboratory is attempting to develop a quantitative predictive technique to evaluate the contribution of maintenance errors to the overall NPP risk. The current work includes a survey of the requirements of potential users to ascertain the need for and content of the proposed quantitative model, plus an initial job/task analysis to determine the scope and applicability of various maintenance tasks. In addition, existing human reliability prediction models are being reviewed and assessed with respect to their applicability to NPP maintenance tasks. This paper discusses the status of the program and summarizes the results to date

  14. Research and service capabilities of the National Nuclear Forensic Research Laboratory; Capacidades de investigacion y servicio del Laboratorio Nacional de Investigacion en Forense Nuclear, Lanafonu

    Energy Technology Data Exchange (ETDEWEB)

    Romero G, E. T.; Hernandez M, H.; Flores C, J.; Paredes G, L. C., E-mail: elizabeth.romero@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2016-09-15

    According to the recommendations of the International Atomic Energy Agency, Mexico is taking steps to combat illicit trafficking in nuclear material. The creation of a National Nuclear Forensic Research Laboratory (Lanafonu, acronym in Spanish) has been assigned to the Instituto Nacional de Investigaciones Nucleares (ININ, Mexico) in 2014. The objectives of this Laboratory are: to combat illicit trafficking in nuclear materials, to optimize scientific processes and techniques used to analyze nuclear materials (orphans or radioactive sources), environmental and potential biological sources as a result of the handling, transport and final storage. At present, the Lanafonu facilities are focused on the optimization of emergency and routine protocols for measuring radioisotopes in environmental and biological samples using inductive coupling mass spectrometer with magnetic sector. The main activities are: i) optimization of the methods for measuring the isotopes of Pu by alpha-spectrometry, Icp-SFMS and AMS (accelerator mass spectrometry), ii) development or radiochemical methods for routine situations and nuclear emergencies, iii) participation in the scientific technical commission on nuclear forensic science, iv) participation in international intercomparison exercises to optimize and validate methods, and v) consolidation of Lanafonu in Mexico and the IAEA. (Author)

  15. Los Alamos National Laboratory new generation standard nuclear material storage container - the SAVY4000 design

    International Nuclear Information System (INIS)

    Stone, Timothy Amos

    2010-01-01

    Incidents involving release of nuclear materials stored in containers of convenience such as food pack cans, slip lid taped cans, paint cans, etc. has resulted in defense board concerns over the lack of prescriptive performance requirements for interim storage of nuclear materials. Los Alamos National Laboratory (LANL) has shared in these incidents and in response proactively moved into developing a performance based standard involving storage of nuclear material (RD003). This RD003 requirements document has sense been updated to reflect requirements as identified with recently issued DOE M 441.1-1 'Nuclear Material Packaging Manual'. The new packaging manual was issued at the encouragement of the Defense Nuclear Facilities Safety Board with a clear directive for protecting the worker from exposure due to loss of containment of stored materials. The Manual specifies a detailed and all inclusive approach to achieve a high level of protection; from package design and performance requirements, design life determinations of limited life components, authorized contents evaluations, and surveillance/maintenance to ensure in use package integrity over time. Materials in scope involve those stored outside an approved engineered-contamination barrier that would result in a worker exposure of in excess of 5 rem Committed Effective Does Equivalent (CEDE). Key aspects of meeting the challenge as developed around the SAVY-3000 vented storage container design will be discussed. Design performance and acceptance criteria against the manual, bounding conditions as established that the user must ensure are met to authorize contents in the package (based upon the activity of heat-source plutonium (90% Pu-238) oxide, which bounds the requirements for weapons-grade plutonium oxide), interface as a safety class system within the facility under the LANL plutonium facility DSA, design life determinations for limited life components, and a sense of design specific surveillance program

  16. Nuclear Astrophysics at ELI-NP: the ELISSA prototype tested at Laboratori Nazionali del Sud

    Science.gov (United States)

    Guardo, Giovanni Luca; Anzalone, Antonello; Balabanski, Dimiter; Chesnevskaya, Svetlana; Crucillá, Walter; Filipescu, Dan; Gulino, Marisa; La Cognata, Marco; Lattuada, Dario; Matei, Catalin; Pizzone, Rosario Gianluca; Rapisarda, Giuseppe; Romano, Stefano; Spitaleri, Claudio; Taffara, Alessandra; Tumino, Aurora; Xu, Yi

    2018-01-01

    The Extreme Light Infrastructure-Nuclear Physics (ELI-NP) facility, under construction in Magurele near Bucharest in Romania, will provide high-intensity and high-resolution gamma ray beams that can be used to address hotly debated problems in nuclear astrophysics, such as the accurate measurements of the cross sections of the 24Mg(γ,α)20Ne reaction, that is fundamental to determine the effective rate of 28Si destruction right before the core collapse and the subsequent supernova explosion. For this purpose, a silicon strip detector array (named ELISSA, acronym for Extreme Light Infrastructure Silicon Strip Array) will be realized in a common effort by ELI-NP and Laboratori Nazionali del Sud (INFN-LNS), in order to measure excitation functions and angular distributions over a wide energy and angular range. A prototype of ELISSA was built and tested at INFN-LNS in Catania (Italy) with the support of ELI-NP. In this occasion, we have carried out experiments with alpha sources and with a 11 MeV 7Li beam. Thanks to our approach, the first results of those tests show up a very good energy resolution (better than 1%) and very good position resolution, of the order of 1 mm. Moreover, a threshold of 150 keV can be easily achieved with no cooling.

  17. Analysis guide - Nuclear criticality risks and their prevention in plants and laboratories

    International Nuclear Information System (INIS)

    Galet, C.; Le Bars, I.

    2011-01-01

    This report first describes the nuclear criticality risks and the prevention principles adopted in plants and laboratories, and reminds the French Basic Safety Rule (BSR) No. I.3.c. Diagrams are then used to introduce (i) the methodology recommended by this BSR, and (ii), for the reference fissile medium and each criticality control mode, the parameters to be considered 'conventionally' in a analysis, the 'typical' failures to be investigated, and the 'standard' scenarios associated with these failures. These diagrams, developed by IRSN and subject to change as feedback is received from experience in operating facilities or in implementation analyses and assessments, constitute a guide to the analysis of nuclear criticality risks, whether this is for compiling safety documents or for assessing them. As regards the possibility of modifying this guide, a sheet to be used for suggesting changes, intended for users of the guide, is provided on the last page of this report. Lastly, this guide is nothing more than the compilation of the 'conventional' and 'essential' precautions for preventing nuclear criticality risks. Although these precautions must always be kept in mind, the reader should never forget that each configuration is a special case and that there may be scenarios that apply only to this particular case. It is therefore appropriate to remind here that all criticality accidents are the result of failures and incident scenarios that have not been considered in the analysis. This guide is therefore a tool which is not intended to be exhaustive, and does not replace the necessary analysis to adapt to every situation

  18. Compendium of the Environmental Measurements Laboratory's research projects related to the Chernobyl nuclear accident

    International Nuclear Information System (INIS)

    Volchok, H.L.; Chieco, N.

    1986-01-01

    Following the accident at the Chernobyl nuclear reactor power station in the USSR on April 26, 1986, the Environmental Measurements Laboratory (EML) initiated a number of research projects as follows: (1) selected sites in both the Deposition and Surface Air networks were alerted and their sampling protocols adjusted to accommodate the anticipated arrival times and activity concentrations of the Chernobyl debris; (2) a number of cooperative programs involving field work, sampling, analysis and data interpretation were set up with institutions and scientists in other countries; (3) EML's Regional Baseline Station at Chester, NJ, as well as the roof of the Laboratory in New York City, provided bases for sampling and measurements to study the radionuclide concentrations, radiation levels, physical characteristics and potential biological implications of the Chernobyl fallout on the northeastern United States; and (4) the resulting fallout from the Chernobyl accident provided an 'experiment of opportunity' in that it enabled us to study fresh fission product deposition using collection systems resurrected from the 1950's and 1960's for comparison with current state-of-the-art methodology. The 13 reports of this volume have been entered separately into the data base

  19. Compendium of the Environmental Measurements Laboratory's research projects related to the Chernobyl nuclear accident

    Energy Technology Data Exchange (ETDEWEB)

    Volchok, H L; Chieco, N [comps.

    1986-10-01

    Following the accident at the Chernobyl nuclear reactor power station in the USSR on April 26, 1986, the Environmental Measurements Laboratory (EML) initiated a number of research projects as follows: (1) selected sites in both the Deposition and Surface Air networks were alerted and their sampling protocols adjusted to accommodate the anticipated arrival times and activity concentrations of the Chernobyl debris; (2) a number of cooperative programs involving field work, sampling, analysis and data interpretation were set up with institutions and scientists in other countries; (3) EML's Regional Baseline Station at Chester, NJ, as well as the roof of the Laboratory in New York City, provided bases for sampling and measurements to study the radionuclide concentrations, radiation levels, physical characteristics and potential biological implications of the Chernobyl fallout on the northeastern United States; and (4) the resulting fallout from the Chernobyl accident provided an 'experiment of opportunity' in that it enabled us to study fresh fission product deposition using collection systems resurrected from the 1950's and 1960's for comparison with current state-of-the-art methodology. The 13 reports of this volume have been entered separately into the data base.

  20. Low and medium activity nuclear waste disposal characterisation laboratory. Example of Spanish E1 Cabril Disposal Centre Laboratory

    International Nuclear Information System (INIS)

    Boulanger, G.; Augustin, X.

    1993-01-01

    Low and medium activity radioactive waste generated in Spain by power reactors, research laboratories, etc. is stored in the E1 Cabril Disposal Centre. This Centre, based on a French design, provides a characterisation function for the stored waste and corresponding containers. Technicatome, prime contractor for the French disposal centre, and contributing to the design and construction of the E1 Cabril Centre, played an important part in the R and D work for this laboratory, and the manufacture of certain items of equipment. This laboratory, applying experience acquired in France by the CEA, comprises a set of buildings providing for active and inactive test operations

  1. Information sur les technologies nucleaires

    CERN Multimedia

    2002-01-01

    "La base Inis (International Nuclear Information System) de l'Agence Internationale d'Energie Atomique (IAEA) dispose desormais de liens vers les textes complets de documents internationaux" (1 paragraph).

  2. Radioactive nuclear beams and the North American IsoSpin Laboratory (ISL) initiative

    International Nuclear Information System (INIS)

    Casten, R.F.

    1992-01-01

    Radioactive nuclear beams (RNBs) offer exciting new research opportunities in fields as diverse as nuclear structure, nuclear reactions, astrophysics atomic, materials, and applied science. Their realization in new accelerator complexes also offers important technical challenges. Some of the nuclear physics possibilities afforded by RNBs, with emphasis on low spin nuclear structure, are discussed, accompanied by an outline of the ISL initiative and its status

  3. Training related research and development conducted at Oak Ridge National Laboratory for the US Nuclear Regulatory Commission

    International Nuclear Information System (INIS)

    Haas, P.M.

    1985-01-01

    For a number of years Oak Ridge National Laboratory (ORNL) has conducted a sizeable program of human factors research and development in support of the Office of Nuclear Regulatory Research of the US Nuclear Regulatory Commission (NRC). The history of this effort has in many ways paralleled the growth of human factors R and D throughout the nuclear industry and the program has contributed to advances in the industry as well as to NRC regulatory and research programs. This paper reviews the major projects and products of the program relevant to training and concludes with an identification of future R and D needs

  4. Qualification requirements and training programs for nonreactor nuclear facility personnel in the Operations Division of the Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Preston, E.L.; Culbert, W.H.; Baldwin, M.E.; McCormack, K.E.; Rivera, A.L.; Setaro, J.A.

    1985-11-01

    This document describes the program for training, retraining, and qualification of nonreactor nuclear operators in the Operations Division of the Oak Ridge National Laboratory. The objective of the program is to provide the Operators and Supervisors of nuclear facilities the knowledge and skills needed to perform assigned duties in a safe and efficient manner and to comply with US Department of Energy Order 5480.1A Chapter V. This order requires DOE nuclear facilities to maintain formal training programs for their operating staff and documentation of that training.

  5. Qualification requirements and training programs for nonreactor nuclear facility personnel in the Operations Division of the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Preston, E.L.; Culbert, W.H.; Baldwin, M.E.; McCormack, K.E.; Rivera, A.L.; Setaro, J.A.

    1985-11-01

    This document describes the program for training, retraining, and qualification of nonreactor nuclear operators in the Operations Division of the Oak Ridge National Laboratory. The objective of the program is to provide the Operators and Supervisors of nuclear facilities the knowledge and skills needed to perform assigned duties in a safe and efficient manner and to comply with US Department of Energy Order 5480.1A Chapter V. This order requires DOE nuclear facilities to maintain formal training programs for their operating staff and documentation of that training

  6. Simple SE Methods Deployed in Revitalizing the Nuclear Post- Irradiation Examination Capability for the Idaho National Laboratory

    International Nuclear Information System (INIS)

    Zirker, Larry R.; Hamelin, R. Douglas; Braase, Lori

    2010-01-01

    The 'crown jewels' of nuclear energy research facilities (i.e., hot cells, analysis systems, and scientists) have been centered at the Idaho National Laboratory for over 40 years, but in recent years, emphasis and funding for nuclear fuel research and development have declined to adversely affect the readiness and effectiveness of research facilities and equipment. Conversely, the current national nuclear renaissance forces the need for immediate enhancements in facilities, equipment, capabilities, and staff for the post-irradiation examination (PIE) of nuclear fuel. PIE characterizes the 'burn-up' and structural integrity of fuel elements and defines the effectiveness of new fuels/alloys in search for optimum fuel burn-up and alloys for current and next generation nuclear reactors. This paper details how a team of system engineers adapted simple system engineering tools and techniques for a customer unfamiliar with the power and effectiveness of system engineering, to achieve project success.

  7. The Iran nuclear ambitions and the international consequences; Les ambitions nucleaires de l'Iran et leurs consequences internationales

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-01-15

    This analysis of the Iran situation concerning the nuclear policy, is presented and discussed in three parts: the data and hypothesis of the iranian nuclear program, the regional strategy of Iran and evolution scenario and their consequences. (A.L.B.)

  8. Nuclear Energy, a way for tomorrow spacecrafts; L'energie nucleaire, une voie pour les vaisseaux spatiaux de demain

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    To better explore the solar system, the NASA will uses new propulsion modes, in particular the nuclear energy. These articles present the research programs in the domain and the particularities of the nuclear energy in the projects. (A.L.B.)

  9. Medical surveillance of outside workers in base nuclear facilities; Surveillance medicale des travailleurs exterieurs dans les installations nucleaires de base

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1997-06-01

    Here are described two bylaws relative to the training of doctors in charge of the radiation protection of outside enterprises workers and susceptible to intervene in nuclear facilities, and to the entitlement clauses of medical services in charge to make the medical surveillance of outside enterprises workers intervening in nuclear facilities. (N.C.).

  10. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs draft environmental impact statement. Volume 1, Appendix B: Idaho National Engineering Laboratory Spent Nuclear Fuel Management Program

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    The US Department of Energy (DOE) has prepared this report to assist its management in making two decisions. The first decision, which is programmatic, is to determine the management program for DOE spent nuclear fuel. The second decision is on the future direction of environmental restoration, waste management, and spent nuclear fuel management activities at the Idaho National Engineering Laboratory. Volume 1 of the EIS, which supports the programmatic decision, considers the effects of spent nuclear fuel management on the quality of the human and natural environment for planning years 1995 through 2035. DOE has derived the information and analysis results in Volume 1 from several site-specific appendixes. Volume 2 of the EIS, which supports the INEL-specific decision, describes environmental impacts for various environmental restoration, waste management, and spent nuclear fuel management alternatives for planning years 1995 through 2005. This Appendix B to Volume 1 considers the impacts on the INEL environment of the implementation of various DOE-wide spent nuclear fuel management alternatives. The Naval Nuclear Propulsion Program, which is a joint Navy/DOE program, is responsible for spent naval nuclear fuel examination at the INEL. For this appendix, naval fuel that has been examined at the Naval Reactors Facility and turned over to DOE for storage is termed naval-type fuel. This appendix evaluates the management of DOE spent nuclear fuel including naval-type fuel.

  11. Les semences

    Directory of Open Access Journals (Sweden)

    Turner, M.

    2013-01-01

    Full Text Available Les semences. Une étude a été conduite pour documenter les noms scientifiques, les noms locaux et leurs significations et appréhender la nomenclature des mauvaises herbes de l'oignon adoptée par les producteurs au Nord-est du Bénin. 30 exploitations produisant de l'oignon ont été enquêtées par des entretiens semi-structurés et un inventaire floristique a été réalisé dans chacune d'elles. Les espèces et leurs familles botaniques ainsi que les critères de leurs dénominations locales ont été identifiés et ont servi à l'élaboration d'une typologie de taxonomie locale. 71 espèces appartenant à 26 familles botaniques et 17 espèces réparties dans six familles constituent respectivement les flores générale et associée à l'oignon en végétation. Les familles qui regroupent le plus d'espèces sont les Poaceae, les Cyperaceae, les Commelinaceae, les Malvaceae, les Fabaceae et les Portulacaceae. L'écologie, la morphologie, la résistance au désherbage manuel et les usages socio-culturels sont les critères qui fondent la dénomination de 39 des 71 espèces recensées et qui ont servi à l'élaboration d'une typologie de taxonomie locale. Les 32 autres espèces qui n'ont pas de nom local ne présentent pas un intérêt agro-écologique et ni socioculturel majeur pour les producteurs. L'évaluation de l'importance agronomique de la flore associée à l'oignon en végétation pourra contribuer à une meilleure maîtrise de l'enherbement de cette culture.

  12. The permanent forward (Some episodes from the history of the Laboratory of Nuclear Problems, 1949-1999)

    International Nuclear Information System (INIS)

    Soroko, L.M.

    2001-01-01

    Out of about 6000 scientific investigations, performed at the Laboratory of Nuclear Problems of the JINR during the 50 years of its activity, there were chosen those ones which can be regarded as being on the world scale, on the Russian or, finally, on the JINR's scale. The author was a participant or the direct witness of the episodes described in this paper

  13. Sandia National Laboratories support of the Iraq Nuclear Facility Dismantlement and Disposal Program.

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, John Russell; Danneels, Jeffrey John

    2009-03-01

    Because of past military operations, lack of upkeep and looting there are now enormous radioactive waste problems in Iraq. These waste problems include destroyed nuclear facilities, uncharacterized radioactive wastes, liquid radioactive waste in underground tanks, wastes related to the production of yellow cake, sealed radioactive sources, activated metals and contaminated metals that must be constantly guarded. Iraq currently lacks the trained personnel, regulatory and physical infrastructure to safely and securely manage these facilities and wastes. In 2005 the International Atomic Energy Agency (IAEA) agreed to organize an international cooperative program to assist Iraq with these issues. Soon after, the Iraq Nuclear Facility Dismantlement and Disposal Program (the NDs Program) was initiated by the U.S. Department of State (DOS) to support the IAEA and assist the Government of Iraq (GOI) in eliminating the threats from poorly controlled radioactive materials. The Iraq NDs Program is providing support for the IAEA plus training, consultation and limited equipment to the GOI. The GOI owns the problems and will be responsible for implementation of the Iraq NDs Program. Sandia National Laboratories (Sandia) is a part of the DOS's team implementing the Iraq NDs Program. This report documents Sandia's support of the Iraq NDs Program, which has developed into three principal work streams: (1) training and technical consultation; (2) introducing Iraqis to modern decommissioning and waste management practices; and (3) supporting the IAEA, as they assist the GOI. Examples of each of these work streams include: (1) presentation of a three-day training workshop on 'Practical Concepts for Safe Disposal of Low-Level Radioactive Waste in Arid Settings;' (2) leading GOI representatives on a tour of two operating low level radioactive waste disposal facilities in the U.S.; and (3) supporting the IAEA's Technical Meeting with the GOI from April 21

  14. Laboratory-scale production of adu gels by external gelation for an intermediate HTGR nuclear

    International Nuclear Information System (INIS)

    S Simbolon; SR Susilowati

    2015-01-01

    The The aim of this research is to produce thousands of microsphere ADU (Ammonium Diuranate) gels by using external gelation for an intermediate HTGR (High Temperature Gas-cooled Reactor) nuclear fuel in laboratory-scale. Microsphere ADU gels were based on sol-solution which was made from a homogeneous mixture of ADUN (Acid Deficient Uranyl Nitrate) which was containing uranyl ion in high concentration, a water soluble organic compound PVA (Polyvinyl Alcohol) and THFA (Tetrahydrofurfuryl Alcohol). The simple unified home made laboratory experimental machine was developed to replace test tube experiment method which was once used due to a tiny amount of microsphere ADU gels produced. It consists of four main parts: tank filled sol-solution connecting to peristaltic pump and vibrating nozzle, preliminary gelation and gelation column. The machine has successfully converted 150 mL sol-solution into thousands of drops which produced 120 - 130 drops in each minute in steady state in ammonia gas free sector. Preliminary gelation reaction was carried out in ammonia gas sector where drops react with ammonia gas in a bat an eye followed by gelation reaction in column containing ammonia solution 7 M. In ageing process, ADU gels were collected and submerged into a vessel containing ammonia solution which was shaken for 1 hour in a shaker device. Isopropyl alcohol (90 %) solution was used to wash ADU gels and a digital camera was used to measured spherical form of ADU gels. Diameters in spherical spheroid form were found between 1.8 mm until 2.2 mm. The spherical purity of ADU gels were 10 % - 20 % others were oblate, prolate spheroid and microsphere which have hugetiny of dimples on the surface. (author)

  15. Desalination of seawater with nuclear reactors; Le dessalement de l'eau de mer pour les reacteurs nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Nisan, S.; Volpi, L. [CEA Cadarache, Dir. du Developpement et de l' Innovation Nucleares-DDIN, 13 - Saint-Paul-lez-Durance (France)

    2001-12-01

    About 40 % of the world population is concerned with water scarcity. This article reviews the different techniques of desalination: distillation (MED and MSF), reverse osmosis (RO), and electrodialysis (ED). The use of nuclear energy rests on several arguments: 1) it is economically efficient compared to fossil energy; 2) nuclear reactors provide heat covering a broad range of temperature, which allows the implementation of all the desalination techniques; 3) the heat normally lost at the heat sink could be used for desalination; and 4) nuclear is respectful of the environment. The feedback experience concerning nuclear desalination is estimated to about 100 reactor-years, it is sufficient to allow the understanding of all the physical and technological processes involved. In Japan, 8 PWR-type reactors are coupled to MED, MSF, and RO desalination techniques, the water produced is used locally mainly for feeding steam generators. (A.C.)

  16. Oak Ridge National Laboratory Office of International Nuclear Safeguards: Human Capital Development Activity in FY16

    Energy Technology Data Exchange (ETDEWEB)

    Gilligan, Kimberly V. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Nuclear Security and Isotope Technology Division; Gaudet, Rachel N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Nuclear Security and Isotope Technology Division

    2016-09-30

    In 2007, the U.S. Department of Energy National Nuclear Security Administration (DOE NNSA) Office of Nonproliferation and Arms Control (NPAC) completed a comprehensive review of the current and potential future challenges facing the international safeguards system. One of the report’s key recommendations was for DOE NNSA to launch a major new program to revitalize the international safeguards technology and human resource base. In 2007, at the International Atomic Energy Agency (IAEA) General Conference, then Secretary of Energy Samuel W. Bodman announced the newly created Next Generation Safeguards Initiative (NGSI). NGSI consists of five program elements: policy development and outreach, concepts and approaches, technology and analytical methodologies, human capital development (HCD), and infrastructure development. This report addresses the HCD component of NGSI. The goal of the HCD component as defined in the NNSA Program Plan is “to revitalize and expand the international safeguards human capital base by attracting and training a new generation of talent.” The major objectives listed in the HCD goal include education and training, outreach to universities and professional societies, postdoctoral appointments, and summer internships at national laboratories.

  17. Oak Ridge National Laboratory Office of International Nuclear Safeguards: Human Capital Development Activity in FY16

    International Nuclear Information System (INIS)

    Gilligan, Kimberly V.; Gaudet, Rachel N.

    2016-01-01

    In 2007, the U.S. Department of Energy National Nuclear Security Administration (DOE NNSA) Office of Nonproliferation and Arms Control (NPAC) completed a comprehensive review of the current and potential future challenges facing the international safeguards system. One of the report's key recommendations was for DOE NNSA to launch a major new program to revitalize the international safeguards technology and human resource base. In 2007, at the International Atomic Energy Agency (IAEA) General Conference, then Secretary of Energy Samuel W. Bodman announced the newly created Next Generation Safeguards Initiative (NGSI). NGSI consists of five program elements: policy development and outreach, concepts and approaches, technology and analytical methodologies, human capital development (HCD), and infrastructure development. This report addresses the HCD component of NGSI. The goal of the HCD component as defined in the NNSA Program Plan is ''to revitalize and expand the international safeguards human capital base by attracting and training a new generation of talent.'' The major objectives listed in the HCD goal include education and training, outreach to universities and professional societies, postdoctoral appointments, and summer internships at national laboratories.

  18. LABORATORY-SCALE PRODUCTION OF ADU GELS BY EXTERNAL GELATION FOR AN INTERMEDIATE HTGR NUCLEAR

    Directory of Open Access Journals (Sweden)

    S Simbolon

    2015-03-01

    Full Text Available LABORATORY-SCALE PRODUCTION OF ADU GELS BY EXTERNAL GELATION FOR AN INTERMEDIATE HTGR NUCLEAR. The The aim of this research is to produce thousands of microsphere ADU (Ammonium Diuranate gels by using external gelation for an intermediate HTGR (High Temperature Gas-cooled Reactor nuclear fuel in laboratory-scale. Microsphere ADU gels were based on sol-solution which was made from a homogeneous mixture of ADUN (Acid Deficient Uranyl Nitrate which was containing uranyl ion in high concentration, a water soluble organic compound PVA (Polyvinyl Alcohol and THFA (Tetrahydrofurfuryl Alcohol. The simple unified home made laboratory experimental machine was developed to replace test tube experiment method which was once used due to a tiny amount of microsphere ADU gels produced. It consists of four main parts: tank filled sol-solution connecting to peristaltic pump and vibrating nozzle, preliminary gelation and gelation column. The machine has successfully converted 150 mL sol-solution into thousands of drops which produced 120 - 130 drops in each minute in steady state in ammonia gas free sector. Preliminary gelation reaction was carried out in ammonia gas sector where drops react with ammonia gas in a bat an eye followed by gelation reaction in column containing ammonia solution 7 M. In ageing process, ADU gels were collected and submerged into a vessel containing ammonia solution which was shaken for 1 hour in a shaker device. Isopropyl alcohol (90% solution was used to wash ADU gels and a digital camera was used to measured spherical form of ADU gels. Diameters in spherical spheroid form were found between 1.8 mm until 2.2 mm. The spherical purity of ADU gels were 10% - 20% others were oblate, prolate spheroid and microsphere which have hugetiny of dimples on the surface.   PRODUKSI GEL ADU SKALA LABORATORIUM DENGAN MENGGUNAKAN GELASI EKSTERNAL UNTUK BAHAN BAKAR ANTARA HTGR. Penelitian ini bertujuan untuk membuat ribuan gel bulat ADU (Ammonium

  19. Nuclear systems of the future - generation 4. Proposals of strategic orientations for the nuclear systems of the future; Les systemes nucleaires du futur - generation 4. Propositions d'orientations strategiques pour les systemes nucleaires du futur

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Several points, specific to France, must be taken into consideration for the long term strategic choice of future nuclear systems, in particular: taking the best profit of the progress potentialities of water reactors, optimizing the opportunities offered by the renewal of power plants in operation, integrating the consequences and the implementation of a strategy of optimized management of radioactive wastes, and looking for improvements that would make nuclear energy an active contributor to sustainable development. The prospective researches carried out by the CEA and its industrial partners have led to propose a R and D strategy with 3 complementary goals: search for innovations for water reactors, development of fast neutron reactors with closed fuel cycle (sodium fast reactor (SFR), gas fast reactor (GFR)), and development of key-technologies for nuclear hydrogen production (very high temperature reactor (VHTR)). The R and D effort concerns also the subcritical systems devoted to transmutation, the new cycle processes for a global management of actinides, and some other nuclear systems like the molten salt reactors (MSR) and the supercritical water reactors (SCWR). This paper presents the R and D strategy for each technology with its priorities, steps, financial means and collaborations. (J.S.)

  20. The nuclear energy policy challenges; Les defis de la politique en matiere d'energie nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Hanne, H. [Ministere de l' Ecologie, de l' Industrie et de l' Emploi, Chef du Bureau Ameriques a la Dir. du Tresor et de la Politique Economique, 75 - Paris (France)

    2009-11-15

    At a time when the nuclear question mobilizes attentions and when a new cycle of debates about non-proliferation opens up, the author recalls the constraints and challenges of a nuclear power generation policy. After a brief history of the development of nuclear energy in France and in the rest of the world, the author presents the risks linked with this energy source (TMI and Chernobyl accidents), the particularities of the fuel cycle with its safety and security aspects, and the promises of some past and future reactor technologies (FBR's and fusion reactors). Then, the author stresses on the importance of investments in this domain as illustrated by the launching of new nuclear programs in France, UK, Italy, Finland and in the US, and by the willing of some emerging countries to develop this energy source (China, India, United Arab Emirates, Jordan..). Finally, nuclear energy must not be considered as a privilege of developed countries but should benefit to the rest of the world as well since it promotes economic development thanks to an abundant and cheap energy. (J.S.)

  1. Scale Effects in Laboratory and Pilot-Plant Reactors for Trickle-Flow Processes Les conséquences de l'extrapolation appliquée aux procédés à écoulement ruisselant réalisés en laboratoire et dans les réacteurs des unités-pilotes

    Directory of Open Access Journals (Sweden)

    Sie S. T.

    2006-11-01

    Full Text Available Research and development studies in a laboratory are necessarily conducted on a scale which is orders of magnitude smaller than that in commercial practice. In the case of the development and commercialization of an unprecedented novel process technology, available laboratory results have to be translated into envisaged technology on a commercial scale, i. e. the problem is that of scaling-up. However, in many circumstances the commercial technology is more or less defined as far as type of reactor is concerned and laboratory studies are concerned with the generation of predictive information on the behaviour of new catalysts, alternative feedstocks, etc. , in such a reactor. In many cases the complexity of feed composition and reaction kinetics preclude the prediction to be made on the basis of a combination of fundamental kinetic data and computer models, so that there is no other option than to simulate the commercial reactor on a laboratory scale, i. e. the problem is that of scaling-down. From the point of view of R & D Defficiency, the scale of the laboratory experiments should be as small as possible without detracting from the meaningfulness of the results. In the present paper some problems in the scaling-down of a trickle-flow reactor as applied in hydrotreating processes to kinetically equivalent laboratory reactors of different sizes will be discussed. Two main aspects relating to inequalities in fluid dynamics resulting from the differences in scale will be treated in more detail, viz. deviations from ideal plug flow and non ideal wetting or irrigation of the catalyst particles. Although a laboratory reactor can never be a true small-scale replica of a commercial trickle-flow reactor in all respects, it can nevertheless be made to provide representative data as far as the catalytic conversion aspects are concerned. By ressorting to measures such as catalyst bed dilution with fine catalytically inert material it proves possible to

  2. Nuclear structure research at the Triangle Universities Nuclear Laboratory. Progress report, 1 September 1993--31 August 1994

    International Nuclear Information System (INIS)

    Mitchell, G.E.

    1994-01-01

    This report contains discussions on the following topics. Fundamental symmetries in the nucleus; internucleon reactions; dynamics of very light nuclei; the many-nucleon problem; and nuclear instruments and methods

  3. [Nuclear Structure Research] at the Triangle Universities Nuclear Laboratory: Annual report No. 27, 1 September 1987--31 August 1988

    International Nuclear Information System (INIS)

    1988-01-01

    This report contains papers in the following topics: Fundamental symmetries in the nucleus; Dynamics of few-nucleon systems; Tensor forces in light nuclei; nucleon-nucleus interactions mechanisms; Nuclear structure and reactions; and Development and instrumentation

  4. Nuclear science annual report, July 1, 1977-June 30, 1978. [Lawrence Berkeley Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, L.S.; Gough, R.A.; Nurmia, M.J. (eds.)

    1978-01-01

    Activities for the period July 1, 1977, through June 30, 1978, are reported in the following areas: experimental research (nuclear structure; nuclear reactions and scattering; relativistic heavy ions - projectile and target fragmentation, central collisions; the Table of Isotopes Project, atomic physics, and magnetic monopoles), theory of nuclear collisions (microscopic, macroscopic, relativistic), and apparatus (accelerator operations and development, nuclear instrumentation). Also included are thesis abstracts, publications lists, and an author index. Individual abstracts were prepared for 33 of the reports in this volume. (RWR)

  5. The application of laboratory data from small-scale simulators to human performance issues in the nuclear industry

    International Nuclear Information System (INIS)

    Spettell, C.M.

    1986-01-01

    Laboratory analogs of nuclear power plant tasks were simulated on personal computers in two experimental studies. Human performance data were collected during each experimental study. The goal of the first experiment was to validate a quantitative model of dependence among human errors during testing, calibration, and maintenance activities. This model, the Multiple Sequential Failure (MSF) model (NUREG/CR-2211) has been used to quantify dependent human error failure probabilities for human reliability analyses in Probabilistic Risk Assessments (PRAs). The goal of the second experiment was to examine the relationship among psychological and behavioral characteristics of individuals and their performance at controlling a simulated nuclear power plant

  6. The Science of Nuclear Materials: A Modular, Laboratory-based Curriculum

    International Nuclear Information System (INIS)

    Cahill, C.L.; Feldman, G.; Briscoe, W.J.

    2014-01-01

    The development of a curriculum for nuclear materials courses targeting students pursuing Master of Arts degrees at The George Washington University is described. The courses include basic concepts such as radiation and radioactivity as well as more complex topics such the nuclear fuel cycle, nuclear weapons, radiation detection and technological aspects of non-proliferation

  7. Mid-Term Direction of JAEA Nuclear Fuel Cycle Engineering Laboratories

    International Nuclear Information System (INIS)

    Ojima, H.; Sugiyama, T.; Tanaka, K.; Takeda, S.; Nomura, S.

    2009-01-01

    1. Introduction Nuclear Fuel Cycle Engineering Laboratories (NCL) of Japan Atomic Energy Agency (JAEA) has sufficient experience and ability through its 50 year operation to establish the next generation closed cycle. It strives to become a world-class Center Of Excellence. 2. Current activity in NCL: 1) - Recycling of MOX fuel: The Tokai Reprocessing Plant has reprocessed 29 tons of MOX fuel from the ATR Fugenh as a part of 1140 tons of cumulative spent fuel reprocessed. JAEA has supported the pre-operation of the Rokkasho Reprocessing Plant. An innovative MOX pellet fabrication process has been developed in the Plutonium Fuel Development Center, and a part of products obtained by the development are used as a fuel for core confirmation test for re-startup of the FBR Monjuh. Characterization of MOX containing Am and Np has been studied and a new data such as melting point and thermal conductivity were reported. In the Chemical Processing Facility, a hot lab., an advanced aqueous reprocessing technology has been tested for TRU recovery, economical improvement, etc., using irradiated MOX fuel from the FR Joyoh. 2) - Supporting Activity: JAEA has improved the effectiveness and efficiency of existing safeguards activities. The Integrated Safeguards approach for all facilities in NCL has been implemented since August, 2008, as a pioneer and a good example in the world. To reduce anxiety among local residents, NCL has explained its operation plans and exchanged information and opinions with them concerning potential risks to health and environment. Recently, stake-holder participation in the management of NCL was started from the view point of Corporate Social Responsibility. In April, 2008, the agreement was signed with Idaho National Laboratory for cooperation of personnel training in fuel cycle area. 3. Mid-Term Direction: In Japan, feasibility and direction of the transition period from the LWR era to the FBR era should be discussed for the next several years. Study

  8. Excitations in superfluid systems: contributions of the nuclear structure; Excitations dans les systemes superfluides: contributions de la structure nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Khan, E

    2005-12-15

    The author presents successively the theoretical aspect, the experimental aspect and the applied aspect of excitations in nuclear structures. The quasi-particle random phase approximation (QRPA) tool is first described. Recent approaches on QRPA are based on the theory of the density function where the ground state and excited states are described from the same nucleon-nucleon interaction. 2 methods for measuring the collective excitations are then presented: the proton scattering that has the potentiality to investigate the evolution of magicity, the second method is in fact a new method for measuring the giant mono-polar resonance (GMP) in exotic nuclei. Nuclear reactions are considered as a compulsory step on the way from observables like cross-sections to nuclear structure. The author highlights the assets of the convolution model that can generate the optical potential from the effective nucleon-nucleon interaction and from proton and neutron densities of the nuclei involved. R-processes in nucleosynthesis and neutron stars are reviewed as applications of collective excitations in the field of nuclear astrophysics. (A.C.)

  9. Derived release limits (DRL's) for airborne and liquid effluents from the Chalk River Nuclear Laboratories during normal operations

    International Nuclear Information System (INIS)

    Palmer, J.F.

    1981-02-01

    Derived release limits (DRL's), based on regulatory dose limits, have been calculated for routine discharges of radioactivity in airborne and liquid effluents from the Chalk River Nuclear Laboratories. Three types of sources of airborne effluents were considered: the NRX/NRU stack, the 61 m stack connected to the 99 Mo production facility, and a roof vent typical of those installed on several buildings on the site. Sources of liquid effluents to the Ottawa River were treated as a single source from the site as a whole. Various exposure pathways to workers on the site and to members of the public outside the site boundary were considered in the calculations. The DRL's represent upper limits for routine emissions of radioactivity from the Chalk River Nuclear Laboratories to the surrounding environment. Actual releases are regulated by Administrative Levels, set lower than the DRL's, and are confirmed by monitoring. (author)

  10. Some aspects of nuclear graphite production in France; Etude generale sur les graphites nucleaires produits en France

    Energy Technology Data Exchange (ETDEWEB)

    Gueron, J.; Hering, H. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Legendre, A. [Pechiney, 75 - Paris (France)

    1958-07-01

    1) Manufacturing: A summary and results on the CEA-Pechiney purification process are given. Variations in the preparation of green pastes and their effects on graphitized material are described. 2) Physical and mechanical properties: Results are given on: - Statistics of dimensional variatior products having square cross-section. - Statistical variation of thermal expansion coefficients and of electrical conductivity. - Density of normals to carbon layer planes and their connexion with thermal expansion. - Stress-strain cycles and conclusions drawn therefrom. - Mechanical resistance and gas permeability of items for supporting fuel elements. 3) Behaviour under radiation: Alteration under radiation of French graphites irradiated either in G1 pile or in experimental piles, and thermal annealing of those alterations, are given. (author)Fren. [French] 1) Fabrication: On resume le procede d'epuration CEA-PECHINEY, ainsi que diverses modalites de preparation des pates et on expose les resultats obtenus. 2) Proprietes physiques et mecaniques: On indique le resultat d'etudes sur: - la statistique des dimensions de produits a section carree. - celle des variations des coefficients de dilatation thermique et de la conductibilite electrique. - la densite des normales aux plans graphitiques et leur connexion avec la dilatation thermique. - la compression mecanique du graphite. - la solidite mecanique et la permeabilite aux gaz de pieces destinees a supporter des cartouches de combustible. 3) Tenue sous rayonnement: Modification sous rayonnement des graphites fran is irradies soit dans la pile G1, soit dans des piles experimentales, et guerison thermique de ces modifications. (auteur)

  11. User Guide for the Plotting Software for the Los Alamos National Laboratory Nuclear Weapons Analysis Tools Version 2.0

    Energy Technology Data Exchange (ETDEWEB)

    Cleland, Timothy James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-01-02

    The Los Alamos National Laboratory Plotting Software for the Nuclear Weapons Analysis Tools is a Java™ application based upon the open source library JFreeChart. The software provides a capability for plotting data on graphs with a rich variety of display options while allowing the viewer interaction via graph manipulation and scaling to best view the data. The graph types include XY plots, Date XY plots, Bar plots and Histogram plots.

  12. Application of laboratory data from small-scale simulators to human performance issues in the nuclear industry

    International Nuclear Information System (INIS)

    Spettell, C.M.

    1986-01-01

    Laboratory analogs of nuclear power plant tasks were simulated on personal computers in two experimental studies. Human performance data were collected during each experimental study. The goal of the first experiment was to validate a quantitative model of dependence among human errors during testing, calibration, and maintenance activities. This model, the Multiple Sequential Failure (MSF) model (NUREG/CR-2211) has been used to quantify dependent human error failure probabilities for human reliability analyses in Probabilistic Risk Assessments (PRAs). The goal of the second experiment was to examine the relationship among psychological and behavioral characteristics of individuals and their performance at controlling a simulated nuclear power plant. These studies demonstrated the usefulness of the experimental psychology approach for validating models of human performance at nuclear power plant tasks

  13. Les observables

    Directory of Open Access Journals (Sweden)

    Bergounioux Gabriel

    2014-07-01

    jacents ? Au cours de cette table ronde, la question des observables sera interrogée en partant d’une réflexion concernant les études qui se fondent sur l’inventaire empirique des données pour construire leurs analyses (statistique lexicale, Labphon, corpus-guided linguistics, sociolinguistique variationniste, linguistique cognitive… et en allant jusqu’aux théories qui postulent l’existence de formalismes préalables dont les discours et les textes ratifieraient, par l’actualisation et la distribution de leurs occurrences, la pertinence épistémologique.

  14. Report of controls performed by the CRIIRAD laboratory level with the 'Les sauvages' source harnessing at Saint-Sylvestre (Haute-Vienne)

    International Nuclear Information System (INIS)

    2010-05-01

    This document reports analyses performed on drinkable waters distributed in Saint-Sylvestre (France), and more particularly in situ measurements of radioactivity levels, performed within the so called 'Les sauvages' spring catchment. Several aspects are discussed: the volume activity of radon 222 in the water at different moments, and the need to protect the catchment exploitation personnel

  15. Annual Continuation And Progress Report For Nuclear Theory At Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Ormand, W. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Quaglioni, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Schunck, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vogt, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vranas, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-26

    Nuclear Theory research under the auspices of the Department of Energy (DOE) Office of Nuclear Physics (NP) is conducted within several funding sources and projects. These include base funding, and early career award, and a collaborative SciDAC-­3 award that is jointly funded by DOE/NP and the Advanced Simulations and Computations (ASC) effort within the National Nuclear Security Agency (NNSA). Therefore, this annual report is organized within the three primary sections covering these projects.

  16. Self-Reliance and Sustainability of Nuclear Analytical Laboratories in Small States of Central Europe: The Slovenian Case

    International Nuclear Information System (INIS)

    Korun, M.

    2013-01-01

    The Jožef Stefan Institute is the largest research institution in Slovenia devoted to research in many fields of science and technology. Within the Institute several nuclear analytical laboratories operate, making it the largest nuclear research institution in Slovenia. The Laboratory for Radiation Measuring Systems and Radioactivity Measurements belongs to the Department for Medium and Low Energy Physics, which is engaged mainly in nuclear physics, interactions of radiation with matter and its applications, and in providing a service in radiation measurements and dosimetry. The laboratory was founded almost thirty years ago, when the three accelerators, which formed the basis of the research infrastructure of the department, came to the end of their working lives. The personnel took the opportunity to participate in the programme of radioactivity monitoring of the Krško Nuclear Power Plant, which at that time went into operation. The equipment, i.e., the detectors, electronics and computers, was available, but the expertise was limited to the techniques of measurement and analysis in gamma-ray spectrometry. The absence of the expertise in radiochemistry was a serious drawback, therefore new methods in detector calibration had to be developed. In the following years the laboratory participated not only in the monitoring programme of the nuclear power plant but also in other radioactivity monitoring programmes in Slovenia. Since its foundation the laboratory did not receive any financial support either from the state or from the department. Support in equipment and expertise was received from the International Atomic Energy Agency, the Government of the United States and the United Nations Development Programme. The laboratory is engaged mainly in gamma-ray spectrometric measurements of samples from the natural, living and working environments. The main customers are the Krško Nuclear Power Plant and governmental organizations and agencies. The work for these

  17. A future for nuclear sites beyond their service life. Nuclear site value development; Un avenir pour les sites nucleaires en fin de cycle. Valorisation des sites nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    As the nuclear industry moves into a new development phase, many facilities built in the fifties and sixties are reaching the end of their service life. Dismantling them and rehabilitating the sites on which they stand is a major industrial challenge which will give rise to a number of new projects. AREVA has more than 20 years' experience in these highly technical fields. As more and more sites reach the end of their service life, AREVA considers nuclear site value development as a fully-fledged industrial activity. The group's competencies in this field have been grouped together to form a dedicated entity: the Nuclear Site Value Development Business Unit, created in 2008. Several billion euros are invested in site value development projects which are far-reaching and complex, and often last for several decades. Long before work actually begins, lengthy studies and preparations are required to schedule operations, select the techniques to be used and optimize costs and deadlines. The Nuclear Site Value Development BU is currently working on four major projects involving its own facilities and those of the CEA: - La Hague: dismantling of the first generation of used fuel recycling facilities. Between 1966 and 1998, almost 5,000 tons of used fuel from graphite-moderated gas-cooled reactors, 4,500 tons of light water reactor fuel, as well as fuel from fast reactors and research reactors, were treated at UP2 400, the very first industrial recycling plant on the La Hague site. - Marcoule: first-time dismantling of a recycling plant. 1,000 rooms to be cleaned up, 30,000 tons of waste to be treated, 30 years of work. - Cadarache: first-time dismantling of a Mox fuel fabrication plant. The Cadarache plant was commissioned in 1962 to fabricate fuel for fast reactors; this was followed by MOX fuel for light water reactors, an activity which continued until the plant was shut down in 2003. - Annecy and Veurey: giving a new lease of life to former industrial sites

  18. Remote-operated systems for interventions in civil nuclear facilities; Systemes teleoperes pour interventions dans les installations nucleaires civiles

    Energy Technology Data Exchange (ETDEWEB)

    Bonneville, A. [Groupe INTRA, 37 - Avoine (France)

    1999-10-01

    This short paper is a presentation of the aerial and terrestrial means developed by the Intra Group specialized in interventions in the case of nuclear accidents and incidents. The aerial means consist in a airborne system called Helinuc and which can perform spectro-gamma measurements over surfaces of about 15 km{sup 2} using an `Ecureuil`-type helicopter. The terrestrial means comprise different types of robots for surveys, sampling, manipulation, various works etc.. and remote-controlled caterpillar tractors, shovels and dumper trucks. (J.S.)

  19. Affordable and Secure Nuclear Energy Development: DOE Investments and Laboratory R&D Challenges - A Review

    Energy Technology Data Exchange (ETDEWEB)

    Dasari, Venkateswara Rao [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-12-20

    The need for sustainable and secure nuclear energy is summarized. Driven by economics and public-private partnerships, the technology is evolving. Cost control and regulatory simplification are needed for a nuclear renaissance. Small modular reactors--simple, scalable, and inherently safe--may be the future.

  20. Affordable and Secure Nuclear Energy Development: DOE Investments and Laboratory R&D Challenges - A Review

    International Nuclear Information System (INIS)

    Dasari, Venkateswara Rao

    2016-01-01

    The need for sustainable and secure nuclear energy is summarized. Driven by economics and public-private partnerships, the technology is evolving. Cost control and regulatory simplification are needed for a nuclear renaissance. Small modular reactors--simple, scalable, and inherently safe--may be the future.

  1. Nuclear Structure Research at the Triangle Universities Nuclear Laboratory. [Final report, 1 April 1988 to 4 May 1998

    International Nuclear Information System (INIS)

    Mitchell, Gary E.

    2000-01-01

    Much of the research is focused on symmetries and symmetry breaking. The authors have emphasized the effects of the many body system on symmetry breaking--the parity violation studies. A parallel interest lies in the effects of symmetry breaking on the many body system (as manifested in the statistical distributions characterizing the system). Another major activity has involved few nucleon scattering. The primary technical efforts are in low temperature targetry. The service activity for the nuclear science community is Nuclear Data Evaluation. Results achieved in these areas during the period of the grant are summarized. Details are given in the 10 annual progress reports, 10 Ph.D. dissertations, and approximately 150 publications

  2. Graduate Research Assistant Program for Professional Development at Oak Ridge National Laboratory (ORNL) Global Nuclear Security Technology Division (GNSTD)

    Energy Technology Data Exchange (ETDEWEB)

    Eipeldauer, Mary D [ORNL; Shelander Jr, Bruce R [ORNL

    2012-01-01

    The southeast is a highly suitable environment for establishing a series of nuclear safety, security and safeguards 'professional development' courses. Oak Ridge National Laboratory (ORNL) provides expertise in the research component of these subjects while the Y-12 Nuclear Security Complex handles safeguards/security and safety applications. Several universities (i.e., University of Tennessee, Knoxville (UTK), North Carolina State University, University of Michigan, and Georgia Technology Institute) in the region, which offer nuclear engineering and public policy administration programs, and the Howard Baker Center for Public Policy make this an ideal environment for learning. More recently, the Institute for Nuclear Security (INS) was established between ORNL, Y-12, UTK and Oak Ridge Associate Universities (ORAU), with a focus on five principal areas. These areas include policy, law, and diplomacy; education and training; science and technology; operational and intelligence capability building; and real-world missions and applications. This is a new approach that includes professional development within the graduate research assistant program addressing global needs in nuclear security, safety and safeguards.

  3. Report of the research results with University of Tokyo, Nuclear Engineering Research Laboratory's Facilities in fiscal 1986

    International Nuclear Information System (INIS)

    1987-01-01

    This book contains a large number of reports of studies made in 1986 through joint utilization of the nuclear reactor 'Yayoi' and electron beam type accelerator which are installed in the Nuclear engineering Research Laboratory, Faculty of Engineering, University of Tokyo. The reports presented deal with 'Behaviors of Neutrons in Fast Reactor Blanket Shield', 'Effect of Fast Neutron Radiation on Organic Materials', 'Production and Recovery of Tritium in Nuclear Fusion Reactor Blanket System', 'Bench Mark Experiment of Effect of Atmospheric Scattering of Neutron', 'Experimental Evaluation of Nuclear Heat Rate', 'Fast Neutron Shielding Experiment', 'Effect of Fast Neutron Radiation on Hot Water', 'Neutron Shielding Experiment', 'Biological and Medical Application of 'Yayoi' Neutron', 'Effect of Fission-Fusion Correlation Radiation on Semiconductors (Si, GaAs)', 'Application of Fast Neutron to Radiography Technology', 'Streaming in Offset Slit', 'Design and Evaluation of New Reactor', 'LET Effect on Organic Material', 'Handling, Separation and Recovery of Transuranium Elements', 'Reactor Operation Support System Using Knowledge Engineering Technique', 'Application of Shape Memory Alloys to Nuclear Reactor Devices', 'Numerical Simulation of Turbulent Hear Transfer', and many other studies. (Nogami, K.)

  4. Les dyslipidemies et antiretroviraux chez les personnes vivant avec ...

    African Journals Online (AJOL)

    Les prélèvements sanguins pour les analyses ont été faits dans le même laboratoire, les 12 heures de jeûne avant le prélèvement pour le dosage des lipides étaient respectés.Le test de khi2 a été ... The sampling of blood for analyses were made in the same laboratory, the 12 hours of fast before the taking for the dosage ...

  5. Les fabricants de superlourds

    CERN Multimedia

    Thivent, Viviane

    2006-01-01

    Who said that russian science was not competitive any more? Today, the nuclear physics laboratory in Dubna asserts the record of the heaviest chimical element ever manufactured: 118 protons. (4 pages)

  6. Example Problems in LES Combustion

    Science.gov (United States)

    2016-09-26

    memorandum is the evaporation and subsequent combustion of liquid fuel droplets. Kerosene, a complex hydrogen mixture, is explored from the standpoint of...AFRL-RW-EG-TP-2016-002 Example Problems in LES Combustion Douglas V. Nance Air Force Research Laboratory Munitions...4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Example Problem in LES Combustion 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER

  7. Developments of Spent Nuclear Fuel Pyroprocessing Technology at Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Michael F. Simpson

    2012-03-01

    This paper summarizes research in used fuel pyroprocessing that has been published by Idaho National Laboratory over the last decade. It includes work done both on treatment of Experimental Breeder Reactor-II and development of advanced technology for potential scale-up and commercialization. Collaborations with universities and other laboratories is included in the cited work.

  8. The behaviour of some polyatomic gases in nuclear reactors; Le comportement de quelques gaz polyatomiques dans les reacteurs nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Dolle, L. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    {sub 2} a ete realisous l'influence des radiations. La radiolyse de NH{sub 3}, procede par un mecanisme complexe, et la cinetique obeit a une loi d'ordre 2,5 environ qui augmente avec le taux de decomposition. La decomposition de l'hydrogene sulfure est notablement plus rapide que celle de NH{sub 3}. Le seul produit gazeux de la reaction est l'hydrogene. Le soufre, qui se depose sur les parois des ampoules, est nettement perceptible a l'oeil. On a obtenu jusqu'ici des decompositions allant jusqu'a 84 pour cent. L'influence de la reaction {sup 32}S (n, p) {sup 32}P est consideree. La decomposition radiochimique du protoxyde d'azote N{sub 2}O se fait avec des rendements eleves. La reaction est compliquee des ses debuts par la formation d'oxydes superieurs de l'azote que nous identifions et mesurons. Le methane donne par decomposition radiochimique des quantites d'hydrocarbures superieurs. Certains de ces systemes gazeux pourraient trouver des applications dans la mesure de fortes doses de rayonnement. Ce probleme est discute en conclusion. (auteur)

  9. January 1978 monthly highlights for Office of Nuclear Regulatory Research Programs at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Mynatt, F.R.

    1978-01-01

    Highlights of technical progress during January 1978 are presented for sixteen separate program activities which comprise the ORNL research program for the Office of Nuclear Regulatory Research's Division of Reactor Safety Research

  10. Triangle Universities Nuclear Laboratory annual report, 1 January 1980-31 December 1980

    International Nuclear Information System (INIS)

    1980-01-01

    Research is described for: neutron cross section experiments; neutron polarization studies; high resolution elastic and inelastic scattering studies; charged particle experiments with polarized beams; radioactive capture reactions; accelerator based atomic physics; instrumentation; computer related development; and nuclear theory and phenomenology

  11. Monthly highlights for Office of Nuclear Regulatory Research Programs at Oak Ridge National Laboratory, March 1977

    International Nuclear Information System (INIS)

    Fee, G.G.

    1977-01-01

    Highlights of technical progress during March 1977 are presented for thirteen separate program activities which comprise the ORNL research program for the Office of Nuclear Regulatory Research's Division of Reactor Safety Research

  12. Triangle Universities Nuclear Laboratory: Progress report - TUNL XXVII, 1 September 1987--31 August 1988

    International Nuclear Information System (INIS)

    1988-01-01

    This report contains papers in the following areas: fundamental symmetries in the nucleus; dynamics of few-nucleon systems; tensor forces in light nuclei; nucleon-nucleus interaction mechanisms; nuclear structure and reactions; and development and instrumentation

  13. Applications of nuclear techniques for in vivo body composition studies at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Cohn, S.H.; Ellis, K.J.; Vartsky, D.; Vaswani, A.N.; Wielopolski, L.

    1986-01-01

    The development and clinical application of a number of nuclear techniques for studying body composition is described. These techniques include delayed neutron activation for the analysis of calcium, phsophorus, sodium and chlorine and prompt-gamma activation for the measurement of nitrogen and cadmium. In addition, the measurement of in vivo iron by nuclear resonance scattering and lead by x-ray fluorescence is described. (author)

  14. Overview of research in physics and health sciences at the Chalk River Nuclear Laboratories

    International Nuclear Information System (INIS)

    Milton, J.C.D.

    1988-01-01

    Toxicology research was a logical extension of existing program at Chalk River. Research in radiotoxicology has been going on there since the early forties. An overview of the existing physics and health sciences research programs operating at the Research Company of Atomic Energy of Canada Limited was presented. Programs in nuclear physics, heavy ion nuclear physics, astrophysical neutrino physics, condensed matter physics, fusion, biology, dosimetry, and environmental sciences were briefly described. In addition, a description of the research company organization was provided

  15. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement

    International Nuclear Information System (INIS)

    1994-06-01

    This volume contains the following attachments: transportation of Naval spent nuclear fuel; description of Naval spent nuclear receipt and handling at the Expended Core Facility at the Idaho National Engineering Laboratory; comparison of storage in new water pools versus dry container storage; description of storage of Naval spent nuclear fuel at servicing locations; description of receipt, handling, and examination of Naval spent nuclear fuel at alternate DOE facilities; analysis of normal operations and accident conditions; and comparison of the Naval spent nuclear fuel storage environmental assessment and this environmental impact statement

  16. Cost-effective instrumentation and control upgrades for commercial nuclear power plants surety principles developed at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Rochau, G.E.; Dalton, L.J.

    1998-01-01

    Many nuclear power plants use instrument and control systems based on analog electronics. The state of the art in process control and instrumentation has advanced to use digital electronics and incorporate advanced technology. This technology includes: distributed microprocessors, fiber optics, intelligent systems (neutral networks), and advanced displays. The technology is used to optimize processes and enhance the man-machine interface while maintaining control and safety of the processes. Nuclear power plant operators have been hesitant to install this technology because of the cost and uncertainty in the regulatory process. This technology can be directly applied in an operating nuclear power plant provided a surety principle-based 'administrator' hardware system is included in parallel with the upgrade. Sandia National Laboratories has developed a rigorous approach to High Consequence System Surety (HCSS). This approach addresses the key issues of safety, security, and control while satisfying requirements for reliability and quality. We believe that HCSS principles can be applied to nuclear power plants in a manner that allows the off-the-shelf use of process control instrumentation while maintaining a high level of safety and enhancing the plant performance. We propose that an HCSS Administrator be constructed as a standardized approach to address regulatory issues. Such an administrator would allow a plant control system to be constructed with commercially available, state-to-the-art equipment and be customized to the needs of the individual plant operator. (author)

  17. Cost-effective instrumentation and control upgrades for commercial nuclear power plants using surety principles developed at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Rochau, G.E.; Dalton, L.J.

    1997-01-01

    Many nuclear power plants use instrument and control systems based on analog electronics. The state of the art in process control and instrumentation has advanced to use digital electronics and incorporate advanced technology. This technology includes distributed microprocessors, fiber optics, intelligent systems (neural networks), and advanced displays. The technology is used to optimize processes and enhance the man-machine interface while maintaining control and safety of the processes. Nuclear power plant operators have been hesitant to install this technology because of the cost and uncertainty in the regulatory process. This technology can be directly applied in an operating nuclear power plant provided a surety principle-based open-quotes administratorclose quotes hardware system is included in parallel with the upgrade Sandia National Laboratories has developed a rigorous approach to High Consequence System Surety (HCSS). This approach addresses the key issues of safety, security, and control while satisfying requirements for reliability and quality. HCSS principles can be applied to nuclear power plants in a manner that allows the off-the-shelf use of process control instrumentation while maintaining a high level of safety and enhancing the plant performance. We propose that an HCSS administrator be constructed as a standardized approach to address regulatory issues. Such an administrator would allow a plant control system to be constructed with commercially available, state-of-the-art equipment and be customized to the needs of the individual plant operator

  18. Creating stars, supernovae, and the big bang in the laboratory: Nuclear Astrophysics with the National Ignition Facility

    International Nuclear Information System (INIS)

    Mathews, G.J.

    1994-02-01

    This talk has been prepared for the Symposium on Novel Approaches to Nuclear Astrophysics hosted by the ACS Division of Nuclear Chemistry and Technology for the San Diego ACS meeting. This talk indeed describes a truly novel approach. It discusses a proposal for the construction of the National Ignition Facility which could provide the most powerful concentration of laser energy yet attempted. The energy from such a facility could be concentrated in such a way as to reproduce, for the first time in a terrestrial laboratory, an environment which nearly duplicates that which occurs within stars and during the first few moments of cosmic creation during the big bang. These miniature versions of cosmic explosions may allow us to understand better the tumultuous astrophysical environments which have profoundly influenced the origin and evolution of the universe

  19. Report of the research results with University of Tokyo, Nuclear Engineering Research Laboratory's Facilities in fiscal 1991

    International Nuclear Information System (INIS)

    1992-01-01

    This publication summarizes the results of the joint utilization of the nuclear reactor 'Yayoi' and the electron beam accelerator in the Nuclear Engineering Research Laboratory, University of Tokyo, in fiscal year 1991. The Yayoi was operated smoothly throughout the year, and the number of research themes, for which the reactor Yayoi was jointly utilized, and the related themes reached 21 cases. After the linear accelerator was reconstructed as the twin linac, the joint utilization was resumed in October, 1989, and the number of research themes, was 15 cases. In this publication, in addition to the utilization reports, also the reports of 15 cases of Yayoi Study Meetings held in fiscal year 1991 are collected. (K.I.)

  20. A new nuclear materials laboratory at Queen's University

    Energy Technology Data Exchange (ETDEWEB)

    Holt, R.A.; Daymond, M.R., E-mail: holt@queensu.ca, E-mail: daymond@queensu.ca [Queen' s University, Department of Mechanical and Materials Engineering, Kingston, ON (Canada)

    2015-07-01

    The Reactor Materials Testing Laboratory (RMTL) at Queen's University and the results of commissioning tests are described. RMTL uses energetic protons (up to 8MeV) to simulate fast neutron damage in materials for reactor components. The laboratory is also capable of He implantation (up to 12 MeV) to simulate the effects of transmutation He in reactor components. The $17.5M laboratory comprises a new building, a 4MV tandem accelerator, two electron microscopes, mechanical testing and specimen preparation equipment, and a radiation detection laboratory. RMTL focusses on studying dynamic effects of irradiation (irradiation creep, irradiation growth, irradiation induced swelling, fatigue under irradiation) in-situ. (author)

  1. Laboratory quality assurance and its role in nuclear fuel reprocessing and refabrication

    International Nuclear Information System (INIS)

    Delvin, W.L.

    1977-09-01

    For the overall quality assurance (QA) program to be fully effective, the principles of QA must be applied to the operation of the analytical chemistry laboratory itself. This paper shows how QA is used at HEDL to produce confidence in each analytical result. Use of QA has resulted in the following benefits: poor laboratory practices have been found and eliminated, and an already adequate record system was improved even further

  2. Nuclear magnetic resonance common laboratory, quadrennial report; Laboratoire commun de resonance magnetique nucleaire, rapport quadriennal 1994-1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This quadrennial report of the nuclear magnetic resonance common laboratory gives an overview of the main activities. Among the different described activities, only one is interesting for the INIS database: it concerns the Solid NMR of cements used for radioactive wastes storage. In this case, the NMR is used to characterize the structure of the material and the composition, structure and kinetics of formation of the alteration layer which is formed at the surface of concrete during water leaching conditions. The NMR methodology is given. (O.M.)

  3. Report of the research results with University of Tokyo, Nuclear Engineering Research Laboratory's Facilities in fiscal 1989

    International Nuclear Information System (INIS)

    1990-01-01

    This is the report of the results of research carried out by the common utilization of the reactor 'Yayoi' and an electron accelerator in the Nuclear Engineering Research Laboratory in fiscal year 1989. In fiscal year 1989, the research themes using the reactor Yayoi or related to it were 15, and those using the linear accelerator reached 12, thus the common utilization attracted the strong interest of users. The Yayoi has been operated satisfactorily without trouble. The results of the research carried out by the common utilization of the Yayoi and a linac and the reports of 12 Yayoi research meetings in fiscal year 1989 are collected. (J.P.N.)

  4. Les aciers inoxydables dans les fixations

    CERN Document Server

    CETIM

    2010-01-01

    Cet ouvrage, qui fait la synthèse de plusieurs travaux menés par le Cetim, propose une vue d'ensemble sur les aciers inoxydables utilisés pour les fixations. Au sommaire : les normes EN, ISO et ATSM qui s'y rapportent , les désignations symboliques , les nuances et caractéristiques mécaniques , les différentes formes de corrosion, les méthodes pour les détecter , les règles du métier , les mises en oeuvre. L'ouvrage comprend plusieurs fiches matériaux et des tableaux qui présentent les équivalences entre les désignations.

  5. SOME RECENT TECHNOLOGY DEVELOPMENTS FROM THE UK'S NATIONAL NUCLEAR LABORATORY TO ENABLE HAZARD CHARACTERISATION FOR NUCLEAR DECOMMISSIONING APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Farfan, E.; Foley, T.

    2010-02-11

    Under its programme of self investment Internal Research and Development (IR&D), the UK's National Nuclear Laboratory (NNL) is addressing the requirement for development in technology to enable hazard characterisation for nuclear decommissioning applications. Three such examples are described here: (1) RadBall developed by the NNL (patent pending) is a deployable baseball-sized radiation mapping device which can, from a single location, locate and quantify radiation hazards. RadBall offers a means to collect information regarding the magnitude and distribution of radiation in a given cell, glovebox or room to support the development of a safe, cost effective decontamination strategy. RadBall requires no electrical supplies and is relatively small, making it easy to be deployed and used to map radiation hazards in hard to reach areas. Recent work conducted in partnership with the Savannah River National Laboratory (SRNL) is presented. (2) HiRAD (patent pending) has been developed by the NNL in partnership with Tracerco Ltd (UK). HiRAD is a real-time, remotely deployed, radiation detection device designed to operate in elevated levels of radiation (i.e. thousands and tens of thousands of Gray) as seen in parts of the nuclear industry. Like the RadBall technology, the HiRAD system does not require any electrical components, the small dimensions and flexibility of the device allow it to be positioned in difficult to access areas (such as pipe work). HiRAD can be deployed as a single detector, a chain, or as an array giving the ability to monitor large process areas. Results during the development and deployment of the technology are presented. (3) Wireless Sensor Network is a NNL supported development project led by the University of Manchester (UK) in partnership with Oxford University (UK). The project is concerned with the development of wireless sensor network technology to enable the underwater deployment and communication of miniaturised probes allowing pond

  6. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 1, Appendix D, Part B: Naval spent nuclear fuel management

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    This volume contains the following attachments: transportation of Naval spent nuclear fuel; description of Naval spent nuclear receipt and handling at the Expended Core Facility at the Idaho National Engineering Laboratory; comparison of storage in new water pools versus dry container storage; description of storage of Naval spent nuclear fuel at servicing locations; description of receipt, handling, and examination of Naval spent nuclear fuel at alternate DOE facilities; analysis of normal operations and accident conditions; and comparison of the Naval spent nuclear fuel storage environmental assessment and this environmental impact statement.

  7. Summarizing documentation of the laboratory automation system RADAR for the analytical services of a nuclear fuel reprocessing facility

    International Nuclear Information System (INIS)

    Brandenburg, G.; Brocke, W.; Brodda, B.G.; Buerger, K.; Halling, H.; Heer, H.; Puetz, K.; Schaedlich, W.; Watzlawik, K.H.

    1981-12-01

    The essential tasks of the system are on-line open-loop process control based on in-line measurements and automation of the off-line analytical laboratory. The in-line measurements (at 55 tanks of the chemical process area) provide density-, liquid-, level-, and temperature values. The concentration value of a single component may easily be determined, if the solution consists of no more than two phases. The automation of the off-line analytical laboratory contains laboratory organization including sample management and data organization and computer-aided sample transportation control, data acquisition and data processing at chemical and nuclear analytical devices. The computer system consists of two computer-subsystems: a front end system for sample central registration and in-line process control and a central size system for the off-line analytical tasks. The organization of the application oriented system uses a centralized data base. Similar data processing functions concerning different analytical management tasks are structured into the following subsystem: man machine interface, interrupt- and data acquisition system, data base, protocol service and data processing. The procedures for the laboratory management (organization and experiment sequences) are defined by application data bases. Following the project phases, engineering requirements-, design-, assembly-, start up- and test run phase are described. In addition figures on expenditure and experiences are given and the system concept is discussed. (orig./HP) [de

  8. Quality control at the Regional Centre of Nuclear Sciences chemical dosimetry laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Vivianne L.B. de; Melo, Roberto T. de; Silva, Danubia B. da; Pedroza, Eryka H.; Rodrigues, Kelia R.G.; Cunha, Manuela S. da; Figueiredo, Marcela D.C. de [Centro Regional de Ciencias Nucleares (CRCN-NE/CNEN-PE), Recife, PE (Brazil); Oliveira, Aristides, E-mail: vlsouza@cnen.gov.b, E-mail: rtmelo@cnen.gov.b [Hospital de Cancer de Pernambuco, Recife, PE (Brazil)

    2011-07-01

    Standards for accreditation of laboratories as in ISO 9001 in section: 4.11 require inspection, measuring and equipment testing; likewise, IEC 17025: 2005 in section: 5.5.2 requires the equipment to be calibrated or verified before being put into use. In our laboratory, quality control is often accomplished by standards set done by the laboratory scientists themselves; however, at present, Hellma secondary calibration standards (4026 - Holmium oxide - Filters: F0, F2, F3, F4 and filter didymium - F7) have been used in order to verify if errors in the laboratory have been close to the 1-2% margin. Control graphs were made by using the results of synthetically prepared standards and standardized spectral calibration certificates. The set of secondary calibration standards permits to check the accuracy of the spectrophotometers used in research for both the absorbance in the visible spectrum (at 440, 465, 546, 590 and 635 nm wavelengths) and for the wavelengths (270, 280, 300, 320 nm) of the ultraviolet light. Filters (F0, F2, F3, F4 and F7) are stable and do not suffer the influence of temperature (the influence is negligible), the F0 filter was being used as a blank. The purpose is to verify whether the spectrometer needs adjustments, an important procedure to check absorbance stability, baseline flatness, slit width accuracy and stray radiation. The calibration tests are performed annually in our laboratory and recalibration of Hellma secondary standards is recommended every two years. The results show that the Chemical Dosimetry Laboratory in CRCN has a calibrated spectrophotometer and their synthetic standards for Fricke dosimetry could be used as an alternative method for testing the proficiency and competence of calibration laboratories in accordance with the regulations and standards. (author)

  9. Educational and laboratory base for the expert training on physical protection of nuclear materials: the requirements and experience of practical implementation

    International Nuclear Information System (INIS)

    Bondarev, P.V.; Pogozhin, N.S.; Ryzhukhin, D.V.; Tolstoy, A.I.

    2002-01-01

    Full text: In expert training on physical protection of nuclear materials (NMPP) an educational and laboratory base has special importance. In these laboratories the students receive practical skills concerning physical protection systems (PPS). The basic requirements for creating such base are formulated in a certain educational program implemented at an educational institution. Thus it is necessary to take into account the following features of a modern nuclear object PPS: restriction of an object visiting with the purpose of acquaintance with features of a certain object PPS; dynamical change of PPS component nomenclature; increase of use of computer facilities for managing all PPS subsystems; increase of integration degree of separate subsystems in a uniform PPS complex; high cost of PPS components. Taking that into consideration a university, which assumes to begin the expert training on NMPP, is compelled to solve the following tasks: creation of its own laboratory base. The implementation of practical occupations with visiting a nuclear object cannot be executed practically; definition of quantity and structure of educational laboratories. Thus the features of the implemented educational plan should be taken into account in addition; optimization of expenses on laboratory creation. The regular updating of laboratory equipment structure is impossible in a practical manner. Therefore unique correct decision is to supply laboratories with the equipment, which uses the typical technological decisions on performing the basic PPS functions (detection, delay, estimation of a situation, neutralization); development of laboratory work conducting procedures (laboratory practical works); technical support of the created laboratories. The certain experience of solving the listed tasks is accumulated at the Moscow Engineering Physics Institute (State University) (MEPhl) while implementing 'Physical Protection, Control and Accountability of Nuclear Materials' master

  10. Cultural Resource Investigations for the Resumption of Transient Testing of Nuclear Fuels and Material at the Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Pace, Brenda R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Williams, Julie B. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2013-11-01

    The U. S. Department of Energy (DOE) has a need to test nuclear fuels under conditions that subject them to short bursts of intense, high-power radiation called ‘transient testing’ in order to gain important information necessary for licensing new nuclear fuels for use in U.S. nuclear power plants, for developing information to help improve current nuclear power plant performance and sustainability, for improving the affordability of new generation reactors, for developing recyclable nuclear fuels, and for developing fuels that inhibit any repurposing into nuclear weapons. To meet this mission need, DOE is considering alternatives for re-use and modification of existing nuclear reactor facilities to support a renewed transient testing program. One alternative under consideration involves restarting the Transient Reactor Test (TREAT) reactor located at the Materials and Fuels Complex (MFC) on the Idaho National Laboratory (INL) site in southeastern Idaho. This report summarizes cultural resource investigations conducted by the INL Cultural Resource Management Office in 2013 to support environmental review of activities associated with restarting the TREAT reactor at the INL. These investigations were completed in order to identify and assess the significance of cultural resources within areas of potential effect associated with the proposed action and determine if the TREAT alternative would affect significant cultural resources or historic properties that are eligible for nomination to the National Register of Historic Places. No archaeological resources were identified in the direct area of potential effects for the project, but four of the buildings proposed for modifications are evaluated as historic properties, potentially eligible for nomination to the National Register of Historic Places. This includes the TREAT reactor (building #), control building (building #), guardhouse (building #), and warehouse (building #). The proposed re-use of these historic

  11. Triangle Universities Nuclear Laboratory annual report, 1 January 1980-31 December 1980

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    Research is described for: neutron cross section experiments; neutron polarization studies; high resolution elastic and inelastic scattering studies; charged particle experiments with polarized beams; radioactive capture reactions; accelerator based atomic physics; instrumentation; computer related development; and nuclear theory and phenomenology. (GHT)

  12. Laboratory of neutron activation analysis at the Nuclear Physics Institute ASCR, Řež

    Czech Academy of Sciences Publication Activity Database

    Kučera, Jan

    2011-01-01

    Roč. 21, č. 1 (2011), s. 30-35 ISSN 1061-9127 Institutional research plan: CEZ:AV0Z10480505 Keywords : Instrumental neutron activation analysis * epithermal neutron activation analysis * radiochemical neutron activation analysis * applications in science and technology Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders

  13. Standard guide for qualification of laboratory analysts for the analysis of nuclear fuel cycle materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2003-01-01

    1.1 This guide covers the qualification of analysts to perform chemical analysis or physical measurements of nuclear fuel cycle materials. The guidance is general in that it is applicable to all analytical methods, but must be applied method by method. Also, the guidance is general in that it may be applied to initial qualification or requalification.

  14. Contracting in the national interest: Establishing the legal framework for the interaction of science, government, and industry at a nuclear weapons laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Furman, N.S.

    1988-04-01

    Sandia National Laboratories, the nation's nuclear ordnance laboratory, is operated on a no-profit, no-fee basis by ATandT Technologies, Inc., as a prime contractor for the Department of Energy. This unique arrangement began in 1949 when President Harry Truman personally requested that ATandT assume management of the nuclear weapons laboratory as a service in the national interest. The story of how this unusual relationship came about makes for an interesting chapter in the annals of US legal and institutional history. This report describes the historical background, political negotiations, and prime contract provisos that established the legal framework for the Labs.

  15. Les méthodes thermiques de production des hydrocarbures. Chapitre 5 : Combustion "in situ". Pricipes et études de laboratoire Thermal Methods of Hydrocarbon Production. Chapter 5 : "In Situ" Combustion. Principles and Laboratory Research

    Directory of Open Access Journals (Sweden)

    Burger J.

    2006-11-01

    Full Text Available II existe plusieurs variantes de la combustion in situ, suivant le sens de déplacement du front de combustion, à co-courant ou à contre-courant, et suivant la nature des fluides injectés, air seul ou injection combinée d'air et d'eau. Les réactions de pyrolyse, d'oxydation et de combustion mises en jeu par ces techniques sont discutées, en particulier la cinétique des principaux mécanismes réactionnels, l'importance du dépôt de coke et l'exothermicité des réactions d'oxydation et de combustion. Les résultats d'essais de déplacement unidirectionnel du front de combustion dans des cellules de laboratoire sont présentés et discutés. Enfin on indique les conditions pratiques d'application des méthodes de combustion in situ sur champ. Possible variations of in situ combustion technique ore as follows : forward or reverse combustion depending on the relative directions of the air flow and the combustion front, dry combustion if air is the only fluid injected into the oil-bearing formation, or fixe/woter flooding if water is injected along with air. The chemical reactions of pyrolysis, oxidation and combustion involved in these processes are described. The kinetics of these reactions is discussed as well as fuel availability in forward combustion and the exothermicity of the oxidation and combustion reactions. The results obtained in the laboratory when a combustion front propagates in unidirectional adiabatic tells are described and discussed. This type of experimentation provides extensive information on the characteristics of the processes. Screening criteria for the practical application of in situ combustion techniques are presented.

  16. The Role of Computer-Based Educational Laboratories in Nuclear Engineering University Programmes

    International Nuclear Information System (INIS)

    Korolev, S.A.; Kosilov, A.N.; Chernov, E.V.; Vygovskiy, S.B.

    2014-01-01

    The specialized Educational and research laboratory 'Reactor physics, control and safe operation of WWER type NPP’ is based on the computer simulator of WWER -1000 and offers the real-time monitoring of data available to the WWER -1000 NPP control room operators, and provides a possibility to investigate reactor behavior in normal and abnormal situations. The laboratory supports interactive technologies and team-based activities that enable students to build their knowledge through required gateway courses and explore problems relevant to real life situations

  17. Advances on the Chilean Nuclear Energy Commission's Cyclotron Laboratory Program for the production of 18F and 18FDG

    International Nuclear Information System (INIS)

    Avila, M.J; Bustos, Rosario; Pinto, Luis; Ahumada, Luis

    2003-01-01

    The Chilean Nuclear Energy Commission (CCHEN) Cyclotron's Laboratory has begun to produce short-lived positron's emitter radionuclides need for positron emitter tomography (PET) and intended for clinical prognosis. Production trials took place back on February 2003 to calibrate the only existing camera PET in the country at the Hospital Militar. Subsequently, a complex stage of adjustment, corrections and optimizations on the camera itself, as well as, on the accelerator were performed with solely intention to introduce PET technique as clinical tool in the more efficient way as possible. The reported advances on production are linked to the increasing availability of high radionuclidic and radiochemical purity 18 FDG. Because of demand and nuclear medicine declared necessities on this radiopharmaceutical imposes Cyclotron Laboratory to make available 18 FDG as soon as possible, from the earliest production trials. This was accomplished simultaneously with preliminary beam optical and modular synthesis adjustments. During April the availability of 18 FDG for clinical imaging was acceptable to satisfy demand, whereas May actually initiates routinely production (au)

  18. Laboratory training manual on the use of nuclear techniques in animal research

    International Nuclear Information System (INIS)

    1979-01-01

    The manual is designed to give the animal science researcher the basic terms and principles necessary for understanding radiation, its detection and measurement, its associated hazards, and some of the more common applications. Basic laboratory exercises to illustrate this purpose are included

  19. Activities on archaeology, art and cultural heritage conservation at the Applied Nuclear Physics Laboratory (LFNA), State University of Londrina (UEL)

    Energy Technology Data Exchange (ETDEWEB)

    Appoloni, Carlos R.; Parreira, Paulo S.; Lopes, Fabio [Universidade Estadual de Londrina (UEL), PR (Brazil). Dept. de Fisica. Lab. de Fisica Nuclear Aplicada]. E-mails: appoloni@uel.br; parreira@uel.br; bonn@uel.br

    2007-07-01

    The Laboratory of Applied Nuclear Physics from the State University of Londrina (LFNA/UEL) introduced Archaeometry and related issues pioneeringly among its main research lines in 1994. The current work aims at presenting an overview of the evolution of such activities and the development of human resources up to the present time. The activities related to Archaeology, Art and Cultural Heritage Conservation at the LFNA can be divided into five levels, as follows. (1) Study and implementation of experimental methodologies. (2) Related Basic Research - Physics issues involved in archaeometric applications have led to the need to conduct interesting specific basic research. (3) Works with specific materials - Among the several analysis conducted, the following should be mentioned: ceramics from the archaeological site Tupi Guarani Fazenda Sta. Dalmacia, PR; two archaeological sites in the Amazon Forest; objects from the MAE/USP collection; wall paintings in Imaculada Conceicao Church, SP; coins and other objects from the MHN/RJ; obsidians from Ecuador; etc. (4) Development of Human Resources. In this item there are two components: tutoring of scientific initiation students, Master's and Doctorate in atomic-nuclear methodologies applied to Archaeometry and a course of non-destructive nuclear techniques for the characterization of archaeological and art materials aimed at archaeologists and conservators, given since 1997. (5) Scientific collaborations - the construction of a common language between physicists and archeologists, conservators and other professionals involved in this area is an endeavor of mutual continuous learning and necessary conditions for the success of the projects. (author)

  20. Activities on archaeology, art and cultural heritage conservation at the Applied Nuclear Physics Laboratory (LFNA), State University of Londrina (UEL)

    International Nuclear Information System (INIS)

    Appoloni, Carlos R.; Parreira, Paulo S.; Lopes, Fabio

    2007-01-01

    The Laboratory of Applied Nuclear Physics from the State University of Londrina (LFNA/UEL) introduced Archaeometry and related issues pioneeringly among its main research lines in 1994. The current work aims at presenting an overview of the evolution of such activities and the development of human resources up to the present time. The activities related to Archaeology, Art and Cultural Heritage Conservation at the LFNA can be divided into five levels, as follows. (1) Study and implementation of experimental methodologies. (2) Related Basic Research - Physics issues involved in archaeometric applications have led to the need to conduct interesting specific basic research. (3) Works with specific materials - Among the several analysis conducted, the following should be mentioned: ceramics from the archaeological site Tupi Guarani Fazenda Sta. Dalmacia, PR; two archaeological sites in the Amazon Forest; objects from the MAE/USP collection; wall paintings in Imaculada Conceicao Church, SP; coins and other objects from the MHN/RJ; obsidians from Ecuador; etc. (4) Development of Human Resources. In this item there are two components: tutoring of scientific initiation students, Master's and Doctorate in atomic-nuclear methodologies applied to Archaeometry and a course of non-destructive nuclear techniques for the characterization of archaeological and art materials aimed at archaeologists and conservators, given since 1997. (5) Scientific collaborations - the construction of a common language between physicists and archeologists, conservators and other professionals involved in this area is an endeavor of mutual continuous learning and necessary conditions for the success of the projects. (author)

  1. Les années Joliot

    OpenAIRE

    Bimbot, René

    2009-01-01

    Avec la construction d’un synchrocyclotron à protons, la création du Laboratoire de physique nucléaire d’Orsay, extension de l’Institut du radium de Paris, marque l’entrée des grands accélérateurs dans la recherche française. Mais les débuts du premier laboratoire de la future université d’Orsay vont être endeuillés par la disparition de ses deux fondateurs, Irène Joliot-Curie en 1956, et Frédéric Joliot en 1958. The Orsay Laboratoire de physique nucléaire (Nuclear Physics Laboratory) was ...

  2. University of Wisconsin, Nuclear Reactor Laboratory. Annual report, 1985-1986

    International Nuclear Information System (INIS)

    Cashwell, R.J.

    1986-01-01

    Operational activities for the reactor are described concerning nuclear engineering classes from the University of Wisconsin; reactor sharing program; utility personnel training; sample irradiations and neutron activation analysis; and changes in personnel, facility, and procedures. Results of surveillance tests are presented for operating statistics and fuel exposure; emergency shutdowns and inadvertent scrams; maintenance; radioactive waste disposal; radiation exposures; environmental surveys; and publications and presentations on work based on reactor use

  3. Triangle Universities Nuclear Laboratory annual report-TUNL XVIII, 1 January-31 December 1979

    International Nuclear Information System (INIS)

    1979-01-01

    Activities during the year 1979 are reported in the following categories: neutron cross section experiments, neutron polarization studies, high-resolution studies, charged-particle reactions with polarized beams, radiative capture reactions, atomic physics, other experiments, work done elsewhere by TUNL personnel, applications, ion source development, accelerator development and instrumentation, computer-related development, ad nuclear theory and phenomenology. Appendixes give lists of journal publications, talks, etc. Twelve of the contributions to this annual report have been abstracted and indexed individually

  4. Monthly highlights for Office of Nuclear Regulatory Research Programs at Oak Ridge National Laboratory, August 1976

    International Nuclear Information System (INIS)

    Fee, G.G.

    1976-10-01

    Technical highlights are presented for the following activities: heavy section steel technology, fission product beta and gamma energy release, LOCA release from LWR fuel, Nuclear Safety Information Center, PWR blowdown heat transfer-separate effects, Zircaloy fuel cladding collapse studies, zirconium metal-water oxidation kinetics, aerosol release and transport from LMFBR fuel, HTGR safety analysis and research, design criteria for piping and nozzles, and dose conversion factors for inhalation of radionuclides

  5. Monthly highlights for Office of Nuclear Regulatory research programs at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Fee, G.G.

    1975-04-01

    Summaries are given of the following programs: heavy section steel technology, fission product beta and gamma energy release, LOCA release from LWR fuel, multirod burst tests, Nuclear Safety Information Center, PWR blowdown heat transfer--separate effects, Zircaloy fuel cladding collapse studies, Zr metal--water oxidation kinetics, transient vaporization of LMFBR fuel, and HTGR safety analysis and research. Technical highlights and cost/budget reports are included. (U.S.)

  6. Historic preservation requirements and the evaluation of cold war era nuclear facilities at Argonne National Laboratory-East

    International Nuclear Information System (INIS)

    Wescott, K. L.

    1999-01-01

    Project design for the decontamination and decommissioning (D and D) of federal facilities must address the requirements of the National Environmental Policy Act which includes compliance with the National Historic Preservation Act (NHPA). Section 106 of the NHPA requires that Federal agencies consider any effect their activities may have on historic properties. While a cultural property is not usually considered historic until it has reached an age of 50 years or older, special consideration is given to younger properties if they are of exceptional importance in demonstrating unique development in American history, architecture, archaeology, engineering, or culture. As part of the U.S. Department of Energy's (DOE's) D and D program at Argonne National Laboratory-East (ANL-E), site properties are evaluated within the context of the Cold War Era and within themes associated with nuclear technology. Under this program, ANL-E staff have conducted archival research on three nuclear reactor facilities, one accelerator, and one laboratory building. DOE and ANL-E have been working closely with the Illinois Historic Preservation Agency (IHPA) to determine the eligibility of these properties for listing on the National Register of Historic Places. In 1998, in consultation with the IHPA, the DOE determined that the reactor facilities were eligible. Memoranda of Agreement were signed between the DOE and the IHPA stipulating mitigation requirements for the recordation of two of these properties. The laboratory building was recently determined eligible and will likely undergo similar documentation procedures. The accelerator was determined not eligible. Similar studies and determinations will be required for all future D and D projects

  7. Laboratory training manual on the use of nuclear and associated techniques in pesticide research

    International Nuclear Information System (INIS)

    1991-01-01

    Most laboratories studying pesticide metabolism or other aspects of pesticides use isotope techniques. This manual is aimed at scientists who use or intended to use radioisotopes in pesticide research. It contains a theoretical introduction on the properties of radionuclides and radiation, a description of radioactivity measuring instruments, guidelines for radiation protection and general recommendations on experimental design and performance. A large part of the manual is devoted to laboratory exercises in which detailed protocols for applications of isotope techniques in pesticide research are presented. These are intended to demonstrate concepts or denote representative means of conducting particular types of experiment, and it is hoped that the information gained through the performance of the exercises will serve as a basis for modifications to suit other specialized needs. 36 figs

  8. RANS / LES coupling applied to high Reynolds number turbulent flows of the nuclear industry; Application du couplage RANS / LES aux ecoulements turbulents a haut nombre de Reynolds de l'industrie nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Benarafa, Y

    2005-12-15

    The main issue to perform a computational study of high Reynolds numbered turbulent flows consists on predicting their unsteadiness without implying a tremendous computational cost. First, the main drawbacks of large-eddy simulation with standard wall model on a coarse mesh for a plane channel flow are highlighted. To correct these drawbacks two coupling RANS/LES methods have been proposed. The first one relies on a sophisticated wall model (TBLE) which consists on solving Thin Boundary Layer Equations with a RANS type turbulent closure in the near wall region. The second one consists on a RANS/LES methods have been proposed. The second one consists on a RANS/LES coupling method using a forcing term approach. These various approaches have been implemented in the TRIO-U code developed at CEA (French Atomic Center) at Grenoble, France. The studied flow configurations are the fully developed plane channel flow and a flow around a surface-mounted cubical obstacle. Both approaches provide encouraging results and allow a surface-mounted cubical obstacle. Both approaches provide encouraging results and allow unsteady simulations for a low computational cost. (author)

  9. Human factors considerations in the transfer and storage of liquid nuclear waste at Chalk River Laboratories

    International Nuclear Information System (INIS)

    Ngo, C.

    2006-01-01

    This paper describes Human Factors issues associated with the design and operation of waste management facilities with a focus on the design of Chalk River Laboratories Liquid Waste Transfer and Storage project. Although these issues pose challenges to the project, the paper briefly describes how some of the Human Factors engineering tools used successfully in the power plant domain may also be used in the effective analyses, design, and review of a waste management system. (author)

  10. The International Atomic Energy Agency's Laboratories Seibersdorf and Vienna. Meeting the challenges of research and international co-operation in the application of nuclear techniques

    International Nuclear Information System (INIS)

    Krippl, E.

    1999-08-01

    The International Atomic Energy Agency therefore maintains a unique, multidisciplinary, analytical, research and training centre: the IAEA Laboratories, located at Seibersdorf near Vienna and at the Agency's Headquarters in the Vienna International Centre. They are organized in three branches: (i) the FAO/IAEA Agriculture and Biotechnology Laboratory: Soil Science, Plant Breeding, Animal Production and Health, Entomology, Agrochemicals; (ii) the Physics, Chemistry and Instrumentation Laboratory: Chemistry, Instrumentation, Dosimetry, Isotope Hydrology; (iii) the Safeguards Analytical Laboratory: Isotopic Analysis, Chemical Analysis, Clean Laboratory. 'The Mission of the IAEA Laboratories is to contribute to the implementation of the Agency's programmes in food and agriculture, human health, physical and chemical sciences, water resources, industry, environment, radiation protection and safeguards verification'. Together with a General Services and Safety Section, which provides logistics, information, industrial safety and maintenance services and runs a mechanical workshop, the three groups form the 'Seibersdorf Laboratories' and are part of the IAEA Department of Nuclear Sciences and Applications. The Laboratories contribute an important share to projects fostering peaceful applications of radiation and isotopes and radiation protection, and play a significant part in the nuclear verification mechanism. All activities are therefore planned and implemented in close co-operation with relevant divisions and departments of the IAEA. In specific sectors, the Laboratories also operate in conjunction with other organizations in the UN system, such as the Food and Agriculture Organization (FAO), the World Health Organization (WHO) and the World Meteorological Organization (WMO), and with networks of national laboratories in Member States

  11. VALIDATION OF NUCLEAR MATERIAL CONTROL AND ACCOUNTABILITY (MC&A) SYSTEM EFFECTIVENESS TOOL (MSET) AT IDAHO NATIONAL LABORATORY (INL)

    Energy Technology Data Exchange (ETDEWEB)

    Meppen, Bruce; Haga, Roger; Moedl, Kelley; Bean, Tom; Sanders, Jeff; Thom, Mary Alice

    2008-07-01

    A Nuclear Material Control and Accountability (MC&A) Functional Model has been developed to describe MC&A systems at facilities possessing Category I or II Special Nuclear Material (SNM). Emphasis is on achieving the objectives of 144 “Fundamental Elements” in key areas ranging from categorization of nuclear material to establishment of Material Balance Areas (MBAs), controlling access, performing quality measurements of inventories and transfers, timely reporting all activities, and detecting and investigating anomalies. An MC&A System Effectiveness Tool (MSET), including probabilistic risk assessment (PRA) technology for evaluating MC&A effectiveness and relative risk, has been developed to accompany the Functional Model. The functional model and MSET were introduced at the 48th annual International Nuclear Material Management (INMM) annual meeting in July, 20071,2. A survey/questionnaire is used to accumulate comprehensive data regarding the MC&A elements at a facility. Data is converted from the questionnaire to numerical values using the DELPHI method and exercises are conducted to evaluate the overall effectiveness of an MC&A system. In 2007 a peer review was conducted and a questionnaire was completed for a hypothetical facility and exercises were conducted. In the first quarter of 2008, a questionnaire was completed at Idaho National Laboratory (INL) and MSET exercises were conducted. The experience gained from conducting the MSET exercises at INL helped evaluate the completeness and consistency of the MC&A Functional Model, descriptions of fundamental elements of the MC&A Functional Model, relationship between the MC&A Functional Model and the MC&A PRA tool and usefulness of the MSET questionnaire data collection process.

  12. VALIDATION OF NUCLEAR MATERIAL CONTROL AND ACCOUNTABILITY (MC and A) SYSTEM EFFECTIVENESS TOOL (MSET) AT IDAHO NATIONAL LABORATORY (INL)

    International Nuclear Information System (INIS)

    Meppen, Bruce; Haga, Roger; Moedl, Kelley; Bean, Tom; Sanders, Jeff; Thom, Mary Alice

    2008-01-01

    A Nuclear Material Control and Accountability (MC and A) Functional Model has been developed to describe MC and A systems at facilities possessing Category I or II Special Nuclear Material (SNM). Emphasis is on achieving the objectives of 144 'Fundamental Elements' in key areas ranging from categorization of nuclear material to establishment of Material Balance Areas (MBAs), controlling access, performing quality measurements of inventories and transfers, timely reporting all activities, and detecting and investigating anomalies. An MC and A System Effectiveness Tool (MSET), including probabilistic risk assessment (PRA) technology for evaluating MC and A effectiveness and relative risk, has been developed to accompany the Functional Model. The functional model and MSET were introduced at the 48th annual International Nuclear Material Management (INMM) annual meeting in July, 20071,2. A survey/questionnaire is used to accumulate comprehensive data regarding the MC and A elements at a facility. Data is converted from the questionnaire to numerical values using the DELPHI method and exercises are conducted to evaluate the overall effectiveness of an MC and A system. In 2007 a peer review was conducted and a questionnaire was completed for a hypothetical facility and exercises were conducted. In the first quarter of 2008, a questionnaire was completed at Idaho National Laboratory (INL) and MSET exercises were conducted. The experience gained from conducting the MSET exercises at INL helped evaluate the completeness and consistency of the MC and A Functional Model, descriptions of fundamental elements of the MC and A Functional Model, relationship between the MC and A Functional Model and the MC and A PRA tool and usefulness of the MSET questionnaire data collection process

  13. Les Sophistes

    Directory of Open Access Journals (Sweden)

    Francisco Murari Pires

    1977-12-01

    Full Text Available GUTHRIE, W. K. C. Les Sophistes. Tradução do inglês por J. P. Cottereau. Paris: Payot, 1976, 347 pp. (primeiro parágrafo da resenha No início do capítulo XI — Les Hommes, onde apresenta um resumo biográfico dos principais componentes humanos da sofística (Protágoras, Górgias, Pródicos, Hípias, Antifon, Trasimaco, Críticas, Antístenes, Alcidamas e Licofron — o autor nos apresenta o princípio ordenador de sua obra: "Au cours des chapitres précédents, de nombreuses positions des Sophistes et de leurs contemporains ont été presentées dans une discussion sur les principaux problèmes d'intérét philosophique du Ve. siècle. La priorité donnée a cette discussion sur la prise en consideration de chague penseur en particulier...".

  14. University of Colorado, Nuclear Physics Laboratory technical progress report, November 1, 1978-October 31, 1979. Report NPL-845. [Nuclear Physics Lab. , Univ. of Colorado

    Energy Technology Data Exchange (ETDEWEB)

    1979-11-01

    This report summarizes work carried out at the Nuclear Physics Laboratory of the University of Colorado from November 1, 1978 to October 31, 1979, under contract EY-76-C-02-0535.A003 between the University of Colorado and the United States Department of Energy. Experimental studies of light ion-induced reactions were performed with the AVF cyclotron, which continues each year to produce beams of yet higher quality. Charged-particle studies continued to emphasize use of the high-resolution spectrometer system, but some return to broad-range spectroscopic studies using solid state detectors also occurred. Neutron time-of-flight experiments used 9-meter and 30-meter flight paths. Neutron-gamma ray coincidence studies developed into a new and promising field. The new PDP 11/34 data acquisition system was of great value in allowing such multiparameter experiments. Smaller programs in nuclear astrophysics, plasma diagnostic development, and medical physics were also undertaken. Research activities based at other accelerators grew. Studies of future directions for light-ion accelerators, including work on intense pulsed ion sources, orbit dynamics, and storage rings, were greatly enlarged. 19 of the articles in this report were abstracted and indexed individually. Lists of publications and personnel conclude this report. (RWR)

  15. Triangle Universities Nuclear Laboratory annual report: TUNL, XV. 1 January 1976 -- 31 December 1976

    Energy Technology Data Exchange (ETDEWEB)

    None

    1976-01-01

    Brief reports of research are presented under the following categories: neutron and fission physics, neutron polarization studies, high-resolution studies, gamma ray spectroscopy, charged-particle reactions with polarized beams, radiative capture reactions, atomic collision physics, heavy-ion reactions, applications, ion source development, accelerator development and instrumentation, computer-related developments, and nuclear theory and phenomenology. Although some data are furnished, many of these partial-page summaries are simply abstracts of published papers. Lists of publications, talks, personnel, etc., are included. (RWR)

  16. Molecular Structure Laboratory. Fourier Transform Nuclear Magnetic Resonance (FTNMR) Spectrometer and Ancillary Instrumentation at SUNY Geneseo

    Energy Technology Data Exchange (ETDEWEB)

    Geiger, David K [State Univ. of New York (SUNY), Geneseo, NY (United States)

    2015-12-31

    An Agilent 400-MR nuclear magnetic resonance (NMR) spectrometer and ancillary equipment were purchased, which are being used for molecular structure elucidation.  The instrumentation is housed in a pre-existing facility designed specifically for its use. This instrument package is being used to expand the research and educational efforts of the faculty and students at SUNY-Geneseo and is made available to neighboring educational institutions and business concerns.  Funds were also used for training of College personnel, maintenance of the instrumentation, and installation of the equipment.

  17. Triangle Universities Nuclear Laboratory annual report: TUNL XVII, 1 January 1978 -- 31 December 1978

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    Research at the TUNL is reported under the following headings: neutron and fission physics, neutron polarization studies, high-resolution studies, gamma-ray spectroscopy, charged-particle reactions with polarized beams, radiative capture reactions, atomic physics, heavy-ion physics, applications, ion source development, accelerator development and instrumentation, computer-related development, and nuclear theory and phenomenology. Most of the reports are quite brief (under a page) with little data; several reports with significant data are abstracted and indexed separately. Appendixes list journal articles, conference papers, reports, etc., based on the work performed. (RWR)

  18. Organisation arrangements of nuclear medicine services. Planning of installations. Laboratory monitoring

    International Nuclear Information System (INIS)

    Chanteur, J.

    1977-01-01

    Apart from safety and quality requirements, the organisation of nuclear medicine services, or more generally of installations where nonsealed radioactive sources are used, is governed by profitability and efficiency criteria. In view of the high price of products and apparatus, the equipment must be based on a rationalisation of options guiding the organisation arrangements as a whole. The following items are dealt with in succession: various categories of installations; general planning of equipment; equipment regulations based on a major requirement, the confinement of contamination sources; practical observations concerning administrative and technical questions

  19. Evaluation of Cavity Collapse and Surface Crater Formation for Selected Lawrence Livermore National Laboratory Underground Nuclear Tests - 2011, Part 2

    Energy Technology Data Exchange (ETDEWEB)

    Pawloski, G A

    2012-01-30

    This report evaluates collapse evolution for selected Lawrence Livermore National Laboratory (LLNL) underground nuclear tests at the Nevada National Security Site (NNSS, formerly called the Nevada Test Site). The work is being done to support several different programs that desire access to the ground surface above expended underground nuclear tests. The programs include: the Borehole Management Program, the Environmental Restoration Program, and the National Center for Nuclear Security Gas-Migration Experiment. Safety decisions must be made before a crater area, or potential crater area, can be reentered for any work. Evaluation of cavity collapse and crater formation is input into the safety decisions. Subject matter experts from the LLNL Containment Program who participated in weapons testing activities perform these evaluations. Information used included drilling and hole construction, emplacement and stemming, timing and sequence of the selected test and nearby tests, geology, yield, depth of burial, collapse times, surface crater sizes, cavity and crater volume estimations, ground motion, and radiological release information. Both classified and unclassified data were reviewed. The evaluations do not include the effects of erosion that may modify the collapse craters over time. They also do not address possible radiation dangers that may be present. Various amounts of information are available for these tests, depending on their age and other associated activities. Lack of data can hamper evaluations and introduce uncertainty. We make no attempt to quantify this uncertainty. Evaluation of Cavity Collapse and Surface Crater Formation for Selected Lawrence Livermore National Laboratory Underground Nuclear Tests - 2011 was published on March 2, 2011. This report, considered Part 2 of work undertaken in calendar year 2011, compiles evaluations requested after the March report. The following unclassified summary statements describe collapse evolution and crater

  20. A laboratory scale investigation scheme to prognosticate corrosion characteristics of nuclear power plant systems

    International Nuclear Information System (INIS)

    Szabo, I.

    1983-01-01

    To determine the corrosion properties of system components in primary and secondary circuits of nuclear power plants long-term investigations are needed and experimental loops are required containing all the construction materials of the real system with operation parameters matching that of the power station as close as possible. A different approach should be looked for when response time of some days or weeks can not be exceeded. Comparative investigations were carried out to evaluate a fast method to determine corrosion characteristics of multi-component systems using the model samples representing typical components of a nuclear power plant. In the usual way corrosion rates were determined in experimental runs of several weeks in primary coolant solutions at the nominal operational temperature of 90-100 deg. C in the presence and in the absence of oxygen. On the other hand electrode potentials were measured in the coolant, while variations in surface and ''near surface'' elemental composition of the model samples during corrosion as well as the corrosion rate was measured in diluted decontamination solution. Comparing the results it could be established, that the proposed method can not offer absolute values of the corrosion rate but it can be used to determine the relative corrosion resistance of the system components and to prognosticate possible corrosion-incompatibility, and this can be done within a couple of hours. (author)

  1. Los Alamos National Laboratory case studies on decommissioning of research reactors and a small nuclear facility

    Energy Technology Data Exchange (ETDEWEB)

    Salazar, M.D.

    1998-12-01

    Approximately 200 contaminated surplus structures require decommissioning at Los Alamos National Laboratory. During the last 10 years, 50 of these structures have undergone decommissioning. These facilities vary from experimental research reactors to process/research facilities contaminated with plutonium-enriched uranium, tritium, and high explosives. Three case studies are presented: (1) a filter building contaminated with transuranic radionuclides; (2) a historical water boiler that operated with a uranyl-nitrate solution; and (3) the ultra-high-temperature reactor experiment, which used enriched uranium as fuel.

  2. Les Africaines Et Les Tic

    International Development Research Centre (IDRC) Digital Library (Canada)

    Actuellement, le manque de documentation sur les questions de genre par rapport à l'impact des TIC «rend difficile, voire impossible, de plaider auprès des ...... électronique de détail (comme le démontre le cas de Suzanne), dans la plupart des cas, ce genre d'entreprises n'est pas rentable et compétitif à cette échelle.

  3. The nuclear power plant maintenance personnel reliability prediction (NPP/MPRP) effort at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Knee, H.E.; Haas, P.M.; Siegel, A.I.

    1982-01-01

    Human errors committed during maintenance activities are potentially a major contribution to the overall risk associated with the operation of a nuclear power plant (NPP). An NRC-sponsored program at Oak Ridge National Laboratory is attempting to develop a quantitative predictive technique to evaluate the contribution of maintenance errors to the overall NPP risk. The current work includes a survey of the requirements of potential users to ascertain the need for and content of the proposed quantitative model, plus an initial job/task analysis to determine the scope and applicability of various maintenance tasks. In addition, existing human reliability prediction models are being reviewed and assessed with respect to their applicability to NPP maintenance tasks. This paper discusses the status of the program and summarizes the results to date

  4. High Efficiency Hydrogen Production from Nuclear Energy: Laboratory Demonstration of S-I Water-Splitting

    Energy Technology Data Exchange (ETDEWEB)

    Buckingham, R.; Russ, B.; Brown, L.; Besenbruch, G.E.; Gelbard, F.; Pickard F.S.; Leybros, J.; Le Duigou, A.; Borgard, J.M.

    2004-11-30

    The objective of the French CEA, US-DOE INERI project is to perform a lab scale demonstration of the sulfur iodine (S-I) water splitting cycle, and assess the potential of this cycle for application to nuclear hydrogen production. The project will design, construct and test the three major component reaction sections that make up the S-I cycle. The CEA will design and test the prime (Bunsen) reaction section. General Atomics will develop and test the HI decomposition section, and SNL will develop and test the H2SO4 decomposition section. Activities for this period included initial program coordination and information exchange, the development of models and analyses that will support the design of the component sections, and preliminary designs for the component reaction sections. The sections are being designed to facilitate integration into a closed loop demonstration in a later stage of the program.

  5. Annual report of Nuclear Engineering Research Laboratory, University of Tokyo in fiscal 1993

    International Nuclear Information System (INIS)

    1994-08-01

    In this annual report, the activities of research and education, the state of operation of research facilities and others in fiscal year 1993 are summarized. Four main research facilities are the fast neutron source reactor 'Yayoi', the electron linear accelerator, the basic experiment facility for nuclear fusion reactor blanket design and the heavy irradiation research facility. The reactor and the accelerator are for the joint utilization by all universities in Japan, the blanket is used by the Faculty of Engineering, and the HIT is for the joint utilization in University of Tokyo. In fiscal year 1993, the installation of the fast neutron science research facility was approved. In this annual report, the management and operation of the above research facilities are described, and the research activities, the theses for doctorate and graduation theses of teachers, are summarized. (K.I.)

  6. From laboratory experiments to a geological disposal vault: calculation of used nuclear fuel dissolution rates

    International Nuclear Information System (INIS)

    Sunder, S.; Shoesmith, D.W.; Kolar, M.; Leneveu, D.M.

    1998-01-01

    Calculation of used nuclear fuel dissolution rates in a geological disposal vault requires a knowledge of the redox conditions in the vault. For redox conditions less oxidizing than those causing UO 2 oxidation to the U 3 O 7 , stage, a thermodynamically-based model is appropriate. For more oxidizing redox conditions a kinetic or an electrochemical model is needed to calculate these rates. The redox conditions in a disposal vault will be affected by the radiolysis of groundwater by the ionizing radiation associated with the fuel. Therefore, we have calculated the alpha-, beta- and gamma-dose rates in water in contact with the reference used fuel in the Canadian Nuclear Fuel Waste Management Program (CNFWMP) as a function of cooling time. Also, we have determined dissolution rates of UO 2 fuel as a function of alpha and gamma dose rates from our electrochemical measurements. These room-temperature rates are used to calculate the dissolution rates of used fuel at 100 o C, the highest temperature expected in a container in the CNFWMP, as a function of time since emplacement. It is shown that beta radiolysis of water will be the main cause of oxidation of used CANDU fuel in a failed container. The use of a kinetic or an electrochemical corrosion model, to calculate fuel dissolution rates, is required for a period of ∼1000 a following emplacement of copper containers in the geologic disposal vault envisaged in the CNFWMP. Beyond this time period a thermodynamically-based model adequately predicts the fuel dissolution rates. The results presented in this paper can be adopted to calculate used fuel dissolution rates for other used UO 2 fuels in other waste management programs. (author)

  7. Evaluation of Cavity Collapse and Surface Crater Formation for Selected Lawrence Livermore National Laboratory Underground Nuclear Tests - 2007

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, S K; Pawloski, G A; Raschke, K

    2007-04-26

    This report describes evaluation of collapse evolution for selected LLNL underground nuclear tests at the Nevada Test Site (NTS). The work is being done at the request of NSTec and supports the Department of Energy National Nuclear Security Association Nevada Site Office Borehole Management Program (BMP). The primary objective of this program is to close (plug) weapons program legacy boreholes that are deemed no longer useful. Safety decisions must be made before a crater area, or potential crater area, can be reentered for any work. Our statements on cavity collapse and crater formation are input into their safety decisions. The BMP is an on-going program to address hundreds of boreholes at the NTS. Each year NSTec establishes a list of holes to be addressed. They request the assistance of the Lawrence Livermore National Laboratory and Los Alamos National Laboratory Containment Programs to provide information related to the evolution of collapse history and make statements on completeness of collapse as relates to surface crater stability. These statements do not include the effects of erosion that may modify the collapse craters over time. They also do not address possible radiation dangers that may be present. Subject matter experts from the LLNL Containment Program and the Chemical Sciences Division who had been active in weapons testing activities performed these evaluations. Information used included drilling and hole construction, emplacement and stemming, timing and sequence of the selected test and nearby tests, geology, yield, depth of burial, collapse times, surface crater sizes, cavity and crater volume estimations, and ground motion. Both classified and unclassified data were reviewed. Various amounts of information are available for these tests, depending on their age and other associated activities. Lack of data can hamper evaluations and introduce uncertainty. We make no attempt to quantify this uncertainty. The following unclassified summary

  8. Windscale nuclear power development laboratories power ramp experience in the Winfrith SGHWR (UK)

    International Nuclear Information System (INIS)

    Garlick, A.; Sumerling, R.; Stuttard, A.; Bond, G.G.; Howl, D.A.; Fox, W.N.; Cordall, D.; Cornell, R.M.

    SGHWR fuel has sufficient power ramping capability to permit considerable latitude in fuel management schemes. However, beyond some limiting ramping conditions, there is risk of fuel defecting. Controlled ramp experiments were therefore carried out in the reactor in order to determine the defect mechanism and define the fuel operating limitations. Cladding cracks produced during these power ramps are considered to have been a consequence of fission product stress-corrosion attack. A critical stress level for cracking, based on laboratory stress corrosion tests, have been used successfully in conjunction with computer codes to calculate cladding stresses and strains in fuel rods. Initial analysis of the conditions under which a fuel element defected at 11.6 MWd/kgU suggests that the threshold stress for failure may be decreased compared with elements at lower burn-up (5-6 MWd/kgU)

  9. Laboratory training manual on the use of nuclear techniques in insect research and control. 3. ed.

    International Nuclear Information System (INIS)

    1992-01-01

    Isotopes are commonly used in agricultural research in developed countries, but because of a lack of both training and equipment isotopic techniques are not frequently used in developing countries. This manual has been prepared with the aim of helping entomologists and others responsible for the control of insects in developing countries become familiar with the potential uses of isotopes and radiation in solving some of their research and insect control problems. After chapters dealing with radiation safety, the general properties of radiation and isotopes (especially those used by entomologists), and radiation detection and assay of radioactivity, two further chapters discuss applications to entomological problems and the sterile insect technique. Numerous case studies are described, and the final chapter also includes a description of eight laboratory exercises to investigate the effects of gamma irradiation and chemosterilants on insects. Refs, figs and tabs

  10. Extension of a nuclear reaction calculation code CCONE toward higher incident energies. Multiple preequilibrium emission, and spectrum in laboratory system

    International Nuclear Information System (INIS)

    Iwamoto, Osamu

    2013-01-01

    A nuclear reaction calculation code CCONE, which was developed for nuclear data evaluation for JENDL/AC-2008 and JENDL-4, has been upgraded to improve the prediction accuracy for calculated cross sections at nucleon incident energies higher than 20 MeV. Multiple particle emission, in which nucleons and complex particles up to α-particle are involved, from pre-equilibrium reaction process was implemented based on the sequential-decay calculations for all produced exciton states within the framework of the two-component exciton model. The effect of velocity-change of particle-emitting nuclei on the multiple emission in preequilibrium and compound processes, which was not included in the previous evaluations, was taken into account to obtain spectra in the laboratory system using an average velocity approximation for each composite/compound nucleus. Calculated nucleon emission spectra at nucleon incident energies from 20 to 200 MeV were compared with experimental and evaluated data for the proton- and neutron-induced reactions on 27 Al. The present results are in good agreement with experimental data. It was found that their predictions were better than those of JENDL/HE-2007 especially for low emission energies at high incident energies. (author)

  11. Report of the research results with University of Tokyo, Nuclear Engineering Research Laboratory's Facilities in fiscal 1983

    International Nuclear Information System (INIS)

    1984-01-01

    Much achievement was obtained also in fiscal 1983 by the common utilization of the nuclear reactor ''Yayoi'' and the linear accelerator in the Nuclear Engineering Research Laboratory, University of Tokyo. These results were summarized, and this report is published. In the utilization of the reactor ''Yayoi'', the period of operation and the maximum output were limited very much, because long cooling period is necessary to prepare for the repair of fuel cladding in the next year. Also foreign research students commonly utilized the reactor ''Yayoi''. The common utilization of the linear accelerator was begun six years ago, and now it is carried out widely and smoothly. The total number of those who commonly utilized the facilities reached 3,179. The summaries of the results of 5 on-pile researches, 17 off-pile researches, and 16 researches using the linear accelerator are collected. The committee meetings and study meetings held in fiscal 1983 are listed. The names of the members of various committees and the names of those in charge of various experiments are given. (Kako, I.)

  12. University of Colorado, Nuclear Physics Laboratory technical progress report, November 1, 1978-October 31, 1979. Report NPL-845

    International Nuclear Information System (INIS)

    1979-01-01

    This report summarizes work carried out at the Nuclear Physics Laboratory of the University of Colorado from November 1, 1978 to October 31, 1979, under contract EY-76-C-02-0535.A003 between the University of Colorado and the United States Department of Energy. Experimental studies of light ion-induced reactions were performed with the AVF cyclotron, which continues each year to produce beams of yet higher quality. Charged-particle studies continued to emphasize use of the high-resolution spectrometer system, but some return to broad-range spectroscopic studies using solid state detectors also occurred. Neutron time-of-flight experiments used 9-meter and 30-meter flight paths. Neutron-gamma ray coincidence studies developed into a new and promising field. The new PDP 11/34 data acquisition system was of great value in allowing such multiparameter experiments. Smaller programs in nuclear astrophysics, plasma diagnostic development, and medical physics were also undertaken. Research activities based at other accelerators grew. Studies of future directions for light-ion accelerators, including work on intense pulsed ion sources, orbit dynamics, and storage rings, were greatly enlarged. 19 of the articles in this report were abstracted and indexed individually. Lists of publications and personnel conclude this report

  13. Evaluation of Cavity Collapse and Surface Crater Formation for Selected Lawrence Livermore National Laboratory Underground Nuclear Tests - 2010

    Energy Technology Data Exchange (ETDEWEB)

    Pawloski, G A

    2011-01-03

    This report evaluates collapse evolution for selected Lawrence Livermore National Laboratory (LLNL) underground nuclear tests at the Nevada National Security Site (NNSS, formerly called the Nevada Test Site). The work is being done at the request of Navarro-Interra LLC, and supports environmental restoration efforts by the Department of Energy, National Nuclear Security Administration for the Nevada Site Office. Safety decisions must be made before a surface crater area, or potential surface crater area, can be reentered for any work. Our statements on cavity collapse and surface crater formation are input into their safety decisions. These statements do not include the effects of erosion that may modify the surface collapse craters over time. They also do not address possible radiation dangers that may be present. Subject matter experts from the LLNL Containment Program who had been active in weapons testing activities performed these evaluations. Information used included drilling and hole construction, emplacement and stemming, timing and sequence of the selected test and nearby tests, geology, yield, depth of burial, collapse times, surface crater sizes, cavity and crater volume estimations, and ground motion. Both classified and unclassified data were reviewed. Various amounts of information are available for these tests, depending on their age and other associated activities. Lack of data can hamper evaluations and introduce uncertainty. We make no attempt to quantify this uncertainty.

  14. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs, Draft Environmental Impact Statement

    International Nuclear Information System (INIS)

    1994-06-01

    Volume 1 to the Department of Energy's Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Management Programs Environmental Impact Statement evaluates a range of alternatives for managing naval spent nuclear fuel expected to be removed from US Navy nuclear-powered vessels and prototype reactors through the year 2035. The Environmental Impact Statement (EIS) considers a range of alternatives for examining and storing naval spent nuclear fuel, including alternatives that terminate examination and involve storage close to the refueling or defueling site. The EIS covers the potential environmental impacts of each alternative, as well as cost impacts and impacts to the Naval Nuclear Propulsion Program mission. This Appendix covers aspects of the alternatives that involve managing naval spent nuclear fuel at four naval shipyards and the Naval Nuclear Propulsion Program Kesselring Site in West Milton, New York. This Appendix also covers the impacts of alternatives that involve examining naval spent nuclear fuel at the Expended Core Facility in Idaho and the potential impacts of constructing and operating an inspection facility at any of the Department of Energy (DOE) facilities considered in the EIS. This Appendix also considers the impacts of the alternative involving limited spent nuclear fuel examinations at Puget Sound Naval Shipyard. This Appendix does not address the impacts associated with storing naval spent nuclear fuel after it has been inspected and transferred to DOE facilities. These impacts are addressed in separate appendices for each DOE site

  15. Uranium determination in natural U O2 samples for the laboratory intercomparison program of Agencia Brasileiro-Argentina de Contabilidade e Controle de Materiais Nucleares (ABACC)

    International Nuclear Information System (INIS)

    Avelar, Marta M.; Palmieri, Helena E.L.; Reis Fagundes, Oliene dos

    1997-01-01

    The modified Davies and Gray method for uranium titration to analyse nuclear materials is the procedure used by the CDTN's chemical laboratory. Its analytical performance was evaluated through the participation in the intercomparison program with the Brazilian - Argentine Agency for Accountability and Control of Nuclear Materials (ABACC). One sample of natural uranium dioxide was analysed. The precision and accuracy of the measurements are reported and discussed in this paper. (author). 7 refs., 1 fig., 2 tabs

  16. Advanced x-ray spectrometric techniques for characterization of nuclear materials: An overview of recent laboratory activities

    Science.gov (United States)

    Misra, N. L.

    2014-11-01

    Advancements in x-ray spectrometric techniques at different stages have made this technique suitable for characterization of nuclear materials with respect to trace/major element determinations and compositional uniformity studies. The two important features of total reflection x-ray fluorescence spectrometry: 1) requirement of very small amount of sample in ng level 2) multielement analytical capability, in addition to other features, make this technique very much suitable to nuclear materials characterization as most of the nuclear materials are radioactive and the radioactive waste generated and radiation hazards to the operator are minimum when such low amount of sample is used. Similarly advanced features of energy dispersive x-ray fluorescence e.g. better geometry for high flux, reduction in background due to application of radiation filters have made the measurements of samples sealed inside thin alkathene/PVC covers possible with good sensitivity. This approach avoids putting the instrument inside a glove box for measuring radioactive samples and makes the operation/maintenance of the instrument and analysis of the samples possible in easy and fast manner. This approach has been used for major element determinations in mixed uranium-plutonium samples. Similarly μ-XRF with brilliant and micro-focused excitation sources can be used for compositional uniformity study of reactor fuel pellets. A μ-XRF study using synchrotron light source has been made to assess the compositional uniformity of mixed uranium-thorium oxide pellets produced by different processes. This approach is simple as it does not involve any sample preparation and is non-destructive. A brief summary of such activities carried out in our laboratory in past as well as ongoing and planned for the future have been discussed in the present manuscript.

  17. Les auteurs

    OpenAIRE

    2016-01-01

    A ndersson Benedikte Agrégée de Lettres Modernes et ancienne élève de l’ENS-Ulm, Benedikte Andersson a fait sa thèse sur la poésie de Ronsard sous la direction de Marie-Madeleine Fragonard. Ses domaines de prédilection demeurent la poésie de la Renaissance, la subjectivité lyrique et les mythes relatifs à la lyre. Elle enseigne actuellement dans un lycée de Seine-Saint-Denis. D elattre Charles Charles Delattre est maître de conférences ...

  18. Laboratory and Field Testing of Commercially Available Detectors for the Identification of Chemicals of Interest in the Nuclear Fuel Cycle for the Detection of Undeclared Activities

    Energy Technology Data Exchange (ETDEWEB)

    Carla Miller; Mary Adamic; Stacey Barker; Barry Siskind; Joe Brady; Warren Stern; Heidi Smartt; Mike McDaniel; Mike Stern; Rollin Lakis

    2014-07-01

    Traditionally, IAEA inspectors have focused on the detection of nuclear indicators as part of infield inspection activities. The ability to rapidly detect and identify chemical as well as nuclear signatures can increase the ability of IAEA inspectors to detect undeclared activities at a site. Identification of chemical indicators have been limited to use in the analysis of environmental samples. Although IAEA analytical laboratories are highly effective, environmental sample processing does not allow for immediate or real-time results to an IAEA inspector at a facility. During a complementary access inspection, under the Additional Protocol, the use of fieldable technologies that can quickly provide accurate information on chemicals that may be indicative of undeclared activities can increase the ability of IAEA to effectively and efficiently complete their mission. The Complementary Access Working Group (CAWG) is a multi-laboratory team with members from Brookhaven National Laboratory, Idaho National Laboratory, Los Alamos National Laboratory, and Sandia National Laboratory. The team identified chemicals at each stage of the nuclear fuel cycle that may provide IAEA inspectors with indications that proliferation activities may be occurring. The group eliminated all indicators related to equipment, technology and training, developing a list of by-products/effluents, non-nuclear materials, nuclear materials, and other observables. These proliferation indicators were prioritized based on detectability from a conduct of operations (CONOPS) perspective of a CA inspection (for example, whether an inspector actually can access the S&O or whether it is in process with no physical access), and the IAEA’s interest in the detection technology in conjunction with radiation detectors. The list was consolidated to general categories (nuclear materials from a chemical detection technique, inorganic chemicals, organic chemicals, halogens, and miscellaneous materials). The team

  19. Development in the field of heavy ion physics at the Flerov Laboratory of Nuclear Reactions

    CERN Document Server

    Itkis, M G; Popeko, A G

    2001-01-01

    A unique research base with modern set-ups (kinematic separators, 4 pi-spectrometers of charged particles, detectors of neutron and gamma-quanta) has been created at the FLNR on the basis of the U-400 and U-400M isochronous cyclotrons. A program on the synthesis of superheavy elements in the region of predicted spherical shells with Z approx = 114 and N approx = 184 has been launched. First experiments aimed at the synthesis of the nuclei with Z = 112, 114 and 116 have been carried out using sup 4 sup 8 Ca+ sup 2 sup 3 sup 8 U, sup 4 sup 8 Ca+ sup 2 sup 4 sup 2 sup , sup 2 sup 4 sup 4 Pu and sup 4 sup 8 Ca+ sup 2 sup 4 sup 8 Cm reactions. New results on the properties of Rf and Sg have been obtained. New evidence of the shell influence on the nuclear fission dynamics has been obtained. A number of experiments devoted to the study of reaction mechanism in nucleus-nucleus collisions were carried out. Manifestations of the sup 6 He-nucleus structure in elastic scattering and transfer reactions between sup 6 He a...

  20. Advancing the Theory of Nuclear Reactions with Rare Isotopes. From the Laboratory to the Cosmos

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, Filomena [Michigan State Univ., East Lansing, MI (United States)

    2015-06-01

    The mission of the Topical Collaboration on the Theory of Reactions for Unstable iSotopes (TORUS) was to develop new methods to advance nuclear reaction theory for unstable isotopes—particularly the (d,p) reaction in which a deuteron, composed of a proton and a neutron, transfers its neutron to an unstable nucleus. After benchmarking the state-of-the-art theories, the TORUS collaboration found that there were no exact methods to study (d,p) reactions involving heavy targets; the difficulty arising from the long-range nature of the well known, yet subtle, Coulomb force. To overcome this challenge, the TORUS collaboration developed a new theory where the complexity of treating the long-range Coulomb interaction is shifted to the calculation of so-called form-factors. An efficient implementation for the computation of these form factors was a major achievement of the TORUS collaboration. All the new machinery developed are essential ingredients to analyse (d,p) reactions involving heavy nuclei relevant for astrophysics, energy production, and stockpile stewardship.

  1. Advancing the Theory of Nuclear Reactions with Rare Isotopes: From the Laboratory to the Cosmos

    Energy Technology Data Exchange (ETDEWEB)

    Elster, Charlotte [Ohio Univ., Athens, OH (United States)

    2015-06-01

    The mission of the TORUS Topical Collaboration is to develop new methods that will advance nuclear reaction theory for unstable isotopes by using three-body techniques to improve direct-reaction calculations, and, by using a new partial-fusion theory, to integrate descriptions of direct and compound-nucleus reactions. Ohio University concentrates its efforts on the first part of the mission. Since direct measurements are often not feasible, indirect methods, e.g. (d,p) reactions, should be used. Those (d,p) reactions may be viewed as three-body reactions and described with Faddeev techniques. Faddeev equations in momentum space have a long tradition of utilizing separable interactions in order to arrive at sets of coupled integral equations in one variable. While there exist several separable representations for the nucleon-nucleon interaction, the optical potential between a neutron (proton) and a nucleus is not readily available in separable form. For this reason we first embarked in introducing a separable representation for complex phenomenological optical potentials of Woods-Saxon type.

  2. Mechanisms of mineral scaling in oil and geothermal wells studied in laboratory experiments by nuclear techniques

    International Nuclear Information System (INIS)

    Bjoernstad, T.; Stamatakis, E.

    2006-01-01

    Two independent nuclear methods have been developed and tested for studies of mineral scaling mechanisms and kinetics related to the oil and geothermal industry. The first is a gamma transmission method to measure mass increase with a 30 MBq source of 133 Ba. The other method applies radioactive tracers of one or more of the scaling components. CaCO 3 -precipitation has been used as an example here where the main tracer has been 47 Ca 2+ . While the transmission method is an indirect method, the latter is a direct method where the reactions of specific components may be studied. Both methods are on-line, continuous and non-destructive, and capable to study scaling of liquids with saturation ratios approaching the solubility product. A lower limit for detection of CaCO 3 with the transmission method in sand-packed columns with otherwise reasonable experimental parameters is estimated to be < 1 mg in a 1 cm section of the tube packed with silica sand while the lower limit of detection for the tracer method with reasonable experimental parameters is estimated to < 1 μg in the same tube section. (author)

  3. Les incommensurables

    CERN Document Server

    Houdart, Sophie

    2015-01-01

    Le Large Hadron Collider, ou grand collisionneur de hadrons, est l'accélérateur de particules le plus grand et le plus puissant du monde. Prenant la forme d'un anneau de 26,659 kilomètres de circonférence, lové 100 mètres sous terre et officiellement domicilié à Meyrin, à la frontière de la France et de la Suisse, il est constitué d'aimants supraconducteurs et de structures accélératrices qui augmentent l'énergie des particules qui y circulent. Chaque jour, à l'intérieur de l'accélérateur, deux faisceaux de particules qui circulent en sens contraire à des énergies très élevées avant de rentrer en collision l'un avec l'autre. Les particules, lancées à 99,9999991 % de la vitesse de la lumière, effectuent 11245 fois le tour de l'accélérateur par seconde et entrent en collision quelque 600 millions de fois par seconde. Les Incommensurables est une minutieuse enquête de terrain sur cette "cathédrale" enfouie qui offre la possibilité de se connecter à l'immensité et aux mystères de...

  4. The main rules regarding the management of solid waste and liquid effluent contaminated during use at nuclear medicine departments; Les principales regles de gestion des dechets solides et des effluents liquides contamines dans les services de medecine nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Boudouin, E. [Autorite de Surete Nucleaire, Direction des rayonnements ionisants et de la sante, 75 - Paris (France)

    2011-02-15

    This article describes the key requirements applicable to the management of contaminated medical waste and effluent from hospitals and health care centres, and more especially from nuclear medicine departments that use radionuclides for the purposes of diagnosis (in vivo or in vitro) or in patient treatment. It also presents the key management regulations, making a distinction between contaminated solid waste and contaminated liquid waste from such nuclear medicine departments. (author)

  5. Exposure levels to radiation in a nuclear medicine laboratory: measurements with thermoluminescence dosemeters

    International Nuclear Information System (INIS)

    Ruiz J, A.

    2000-01-01

    Since 1996 in the Nuclear medicine Department and another routine and research departments of the National Institute of Medical and Nutrition Sciences (INCMNSZ) are working at least with 12 radioactive sources opened and sealed. However, it was unknown if with the Tl personal dosemeters with lithium fluoride crystals (LiF), could be possible to receive information about the equivalent dose for each radionuclide or if there was some radionuclide that by being low energy emissor or beta energy emissor, it did not represent an ionization power sufficient to excite the crystals of the thermoluminescent dosemeters (DTL). In this work the obtained results with control dosemeters of diverse source opened or sealed are shown, which were put at 1 cm of the LiF crystals during a time exposure 18 hours. Therefore the objective of this work is to verify which sources excite or not to DTL crystals and taking the pertinent safety measures for each radionuclide. The conclusion is that the majority of dosemeters were excited by beta or gamma radiation of the radionuclides and that LiF crystals are able to receive equivalent doses until 1200 mSv, being this a guarantee for the staff, that in an any moment could be exposed to high dose in his working day. Also it was corroborated that the radionuclides more energizer are: iodine-131, iodine-125 and sodium-22 while the phosphorus-32 must be managed with careful, since the exposure to hands can result significant, just like the technetium-99m ( 99m Tc). (Author)

  6. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs, Draft Environmental Impact Statement. Volume 1, Appendix D: Part A, Naval Spent Nuclear Fuel Management

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    Volume 1 to the Department of Energy`s Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Management Programs Environmental Impact Statement evaluates a range of alternatives for managing naval spent nuclear fuel expected to be removed from US Navy nuclear-powered vessels and prototype reactors through the year 2035. The Environmental Impact Statement (EIS) considers a range of alternatives for examining and storing naval spent nuclear fuel, including alternatives that terminate examination and involve storage close to the refueling or defueling site. The EIS covers the potential environmental impacts of each alternative, as well as cost impacts and impacts to the Naval Nuclear Propulsion Program mission. This Appendix covers aspects of the alternatives that involve managing naval spent nuclear fuel at four naval shipyards and the Naval Nuclear Propulsion Program Kesselring Site in West Milton, New York. This Appendix also covers the impacts of alternatives that involve examining naval spent nuclear fuel at the Expended Core Facility in Idaho and the potential impacts of constructing and operating an inspection facility at any of the Department of Energy (DOE) facilities considered in the EIS. This Appendix also considers the impacts of the alternative involving limited spent nuclear fuel examinations at Puget Sound Naval Shipyard. This Appendix does not address the impacts associated with storing naval spent nuclear fuel after it has been inspected and transferred to DOE facilities. These impacts are addressed in separate appendices for each DOE site.

  7. Advanced x-ray spectrometric techniques for characterization of nuclear materials: An overview of recent laboratory activities

    Energy Technology Data Exchange (ETDEWEB)

    Misra, N.L., E-mail: nlmisra@barc.gov.in

    2014-11-01

    Advancements in x-ray spectrometric techniques at different stages have made this technique suitable for characterization of nuclear materials with respect to trace/major element determinations and compositional uniformity studies. The two important features of total reflection x-ray fluorescence spectrometry: 1) requirement of very small amount of sample in ng level 2) multielement analytical capability, in addition to other features, make this technique very much suitable to nuclear materials characterization as most of the nuclear materials are radioactive and the radioactive waste generated and radiation hazards to the operator are minimum when such low amount of sample is used. Similarly advanced features of energy dispersive x-ray fluorescence e.g. better geometry for high flux, reduction in background due to application of radiation filters have made the measurements of samples sealed inside thin alkathene/PVC covers possible with good sensitivity. This approach avoids putting the instrument inside a glove box for measuring radioactive samples and makes the operation/maintenance of the instrument and analysis of the samples possible in easy and fast manner. This approach has been used for major element determinations in mixed uranium–plutonium samples. Similarly μ-XRF with brilliant and micro-focused excitation sources can be used for compositional uniformity study of reactor fuel pellets. A μ-XRF study using synchrotron light source has been made to assess the compositional uniformity of mixed uranium–thorium oxide pellets produced by different processes. This approach is simple as it does not involve any sample preparation and is non-destructive. A brief summary of such activities carried out in our laboratory in past as well as ongoing and planned for the future have been discussed in the present manuscript. - Highlights: • Advantages of TXRF characterization of nuclear materials are described. • The sample amount required/analytical radioactive

  8. Neutron beam experiments using nuclear research reactors: honoring the retirement of professor Bernard W. Wehring -II. 6. Nuclear Analytical Applications in a Semiconductor Materials Characterization Laboratory

    International Nuclear Information System (INIS)

    Hossain, Tim Z.

    2001-01-01

    A typical semiconductor materials characterization laboratory is heavily loaded with surface analytical tools such as SEM, TEM, TXRF, secondary ion mass spectrometry (SIMS), AFM, and XPS. However, there are analytical needs that cannot be addressed by the aforementioned methods and often require a bulk analysis technique such as ICP/MS. Nuclear analytical methods can play a very important complementary role and provide advantages over nonnuclear techniques because of higher sensitivity, simplicity of sample preparation, and highly quantitative answers. An overwhelming majority of the semiconductor industry uses silicon as the base material for the integrated circuit (IC) manufacturing, and silicon, incidentally, has very favorable nuclear parameters. Silicon, for example, does not have a high neutron capture cross section; thus, matrix activity induced during a neutron irradiation is not very high, and more importantly, the half-life of the major radioisotope 31 Si is only 2.6 h. This short half-life provides a good opportunity to study induced radioactivities of other impurities such as iron, zinc, and nickel. So, neutron activation analysis (NAA) can achieve a very high sensitivity with most transition metals and other important impurities such as copper, gold, and tungsten. NAA is very complementary to other methods of analysis in providing trace-level metals analysis of both silicon wafer and non-wafer samples such as quartz parts used in the diffusion furnaces. Data from NAA of quartz materials used in the diffusion furnaces will be described. In addition, the NAA techniques such as prompt gamma activation analysis are especially useful for the analysis of bulk hydrogen. Another nuclear method, nuclear reaction analysis (NRA), has also been widely used for this purpose. With NRA, a depth profile similar to the ones obtained by SIMS can be achieved. An important nuclear analysis in the semiconductor industry is the depth profiling of boron by neutron depth

  9. Les manifestations cardiovasculaires chez les hemodialyses ...

    African Journals Online (AJOL)

    Le but de l'étude est d'analyser sur une période de 12 mois chez 75 patients en hémodialyse chronique, âgés de 38ans en moyenne, le les aspects cliniques, thérapeutiques et évolutifs des manifestations cardiovasculaires. La prévalence est de 87,20% chez les patients. Les signes fonctionnels les plus fréquents sont la ...

  10. Questions about the future of the nuclear energy; Les interrogations sur l'avenir de l'energie nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-12-15

    The nuclear energy became a society subject much debated. This analysis discusses in three chapters the different interrogations concerning the nuclear energy: the comparison between the different energy sources to justify the preservation of the nuclear energy in France and in the world, the compatibility of the nuclear energy with the different socio-economic choices as the main condition of its development, and the role of the Government to transform the energy policy on the society choice. (A.L.B.)

  11. Building Connecticut's clinical biodosimetry laboratory surge capacity to mitigate the health consequences of radiological and nuclear disasters: A collaborative approach between the state biodosimetry laboratory and Connecticut's medical infrastructure

    International Nuclear Information System (INIS)

    Albanese, Joseph; Martens, Kelly; Arnold, Jeffrey L.; Kelley, Katherine; Kristie, Virginia; Forte, Elaine; Schneider, Mark; Dainiak, Nicholas

    2007-01-01

    Biodosimetry, based on the analysis of dicentric chromosomes in circulating mononuclear cells, is considered the 'gold standard' for estimating radiation dose and is used to make informed decisions regarding the medical management of irradiated persons. This paper describes the development of biodosimetry laboratory surge capacity for the health consequences of radiological and nuclear disasters in Connecticut, including: (1) establishment of the Biodosimetry Laboratory for the timely assessment of radiation dosage in biodosimetry specimens; (2) identification of clinical laboratories qualified and willing to process biodosimetry specimens from a large number of victims; (3) training of clinical laboratorians in initial biodosimetry specimen processing; and (4) conducting a functional drill that evaluated the effectiveness of these elements. Descriptive information was obtained from: (1) personal observations; (2) a needs assessment of clinical laboratories in Connecticut; (3) records from a training program of clinical laboratorians in biodosimetry specimen processing that was developed and provided by the Yale New Haven Center for Emergency Preparedness and Disaster Response; and (4) records from a statewide functional drill in biodosimetry specimen processing that was developed and conducted by the State of Connecticut Biodosimetry Laboratory. A needs assessment of clinical laboratories in Connecticut identified 30 of 32 clinical laboratories qualified and willing to perform initial biodosimetry specimen processing. Currently, 79 clinical laboratorians in 19 of these qualified clinical laboratories have been trained in biodosimetry specimen processing. A functional exercise was conducted involving 37 of these trained clinical laboratorians in 18 qualified laboratories as well as the Biodosimetry Laboratory. The average turnaround time for biodosimetry specimen processing in this drill was 199 min. Exercise participants provided feedback which will be used to

  12. Sandia National Laboratories performance assessment methodology for long-term environmental programs : the history of nuclear waste management.

    Energy Technology Data Exchange (ETDEWEB)

    Marietta, Melvin Gary; Anderson, D. Richard; Bonano, Evaristo J.; Meacham, Paul Gregory (Raytheon Ktech, Albuquerque, NM)

    2011-11-01

    Sandia National Laboratories (SNL) is the world leader in the development of the detailed science underpinning the application of a probabilistic risk assessment methodology, referred to in this report as performance assessment (PA), for (1) understanding and forecasting the long-term behavior of a radioactive waste disposal system, (2) estimating the ability of the disposal system and its various components to isolate the waste, (3) developing regulations, (4) implementing programs to estimate the safety that the system can afford to individuals and to the environment, and (5) demonstrating compliance with the attendant regulatory requirements. This report documents the evolution of the SNL PA methodology from inception in the mid-1970s, summarizing major SNL PA applications including: the Subseabed Disposal Project PAs for high-level radioactive waste; the Waste Isolation Pilot Plant PAs for disposal of defense transuranic waste; the Yucca Mountain Project total system PAs for deep geologic disposal of spent nuclear fuel and high-level radioactive waste; PAs for the Greater Confinement Borehole Disposal boreholes at the Nevada National Security Site; and PA evaluations for disposal of high-level wastes and Department of Energy spent nuclear fuels stored at Idaho National Laboratory. In addition, the report summarizes smaller PA programs for long-term cover systems implemented for the Monticello, Utah, mill-tailings repository; a PA for the SNL Mixed Waste Landfill in support of environmental restoration; PA support for radioactive waste management efforts in Egypt, Iraq, and Taiwan; and, most recently, PAs for analysis of alternative high-level radioactive waste disposal strategies including repositories deep borehole disposal and geologic repositories in shale and granite. Finally, this report summarizes the extension of the PA methodology for radioactive waste disposal toward development of an enhanced PA system for carbon sequestration and storage systems

  13. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    This document analyzes at a pregrammatic level the potential environmental consequences over the next 40 years of alternatives related to the transportation, receipt, processing, and storage of spent nuclear fuel under the responsibility of the US Department of Energy. It also analyzes the site-specific consequences of the Idaho National Engineering Laboratory sitewide actions anticipated over the next 10 years for waste and spent nuclear fuel management and environmental restoration. For pregrammatic spent nuclear fuel management, this document analyzes alternatives of no action, decentralization, regionalization, centralization and the use of the plans that existed in 1992/1993 for the management of these materials. For the Idaho National Engineering Laboratory, this document analyzes alternatives of no action, ten-year plan, minimum and maximum treatment, storage, and disposal of US Department of Energy wastes.

  14. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement

    International Nuclear Information System (INIS)

    1994-06-01

    This document analyzes at a pregrammatic level the potential environmental consequences over the next 40 years of alternatives related to the transportation, receipt, processing, and storage of spent nuclear fuel under the responsibility of the US Department of Energy. It also analyzes the site-specific consequences of the Idaho National Engineering Laboratory sitewide actions anticipated over the next 10 years for waste and spent nuclear fuel management and environmental restoration. For pregrammatic spent nuclear fuel management, this document analyzes alternatives of no action, decentralization, regionalization, centralization and the use of the plans that existed in 1992/1993 for the management of these materials. For the Idaho National Engineering Laboratory, this document analyzes alternatives of no action, ten-year plan, minimum and maximum treatment, storage, and disposal of US Department of Energy wastes

  15. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 2, Part A

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    This document analyzes at a programmatic level the potential environmental consequences over the next 40 years of alternatives related to the transportation, receipt, processing, and storage of spent nuclear fuel under the responsibility of the US Department of Energy. It also analyzes the site-specific consequences of the Idaho National Engineering Laboratory sitewide actions anticipated over the next 10 years for waste and spent nuclear fuel management and environmental restoration. For programmatic spent nuclear fuel management this document analyzes alternatives of no action, decentralization, regionalization, centralization and the use of the plans that existed in 1992/1993 for the management of these materials. For the Idaho National Engineering Laboratory, this document analyzes alternatives of no action, ten-year plan, minimum and maximum and maximum treatment, storage, and disposal of US Department of Energy wastes.

  16. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement

    International Nuclear Information System (INIS)

    1994-06-01

    This document analyzes at a programmatic level the potential environmental consequences over the next 40 years of alternatives related to the transportation, receipt, processing, and storage of spent nuclear fuel under the responsibility of the US Department of Energy. It also analyzes the site-specific consequences of the Idaho National Engineering Laboratory sitewide actions anticipated over the next 10 years for waste and spent nuclear fuel management and environmental restoration. For programmatic spent nuclear fuel management this document analyzes alternatives of no action, decentralization, regionalization, centralization and the use of the plans that existed in 1992/1993 for the management of these materials. For the Idaho National Engineering Laboratory, this document analyzes alternatives of no action, ten-year plan, minimum and maximum and maximum treatment, storage, and disposal of US Department of Energy wastes

  17. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs draft environmental impact statement

    International Nuclear Information System (INIS)

    1994-06-01

    This document analyzes at a programmatic level the potential environmental consequences over the next 40 years of alternatives related to the transportation, receipt, processing, and storage of spent nuclear fuel under the responsibility of the US Department of Energy. It also analyzes the site-specific consequences of the Idaho National Engineering Laboratory sitewide actions anticipated over the next 10 years for waste and spent nuclear fuel management and environmental restoration. For programmatic spent nuclear fuel management, this document analyzes alternatives of no action, decentralization, regionalization, centralization and the use of the plans that existed in 1992/1993 for the management of these materials. For the Idaho National Engineering Laboratory, this document analyzes alternatives of no action, ten-year plan, minimum and maximum treatment, storage, and disposal of US Department of Energy wastes

  18. Use of borehole-geophysical logs and hydrologic tests to characterize crystalline rock for nuclear-waste storage, Whiteshell Nuclear Research Establishment, Manitoba, and Chalk River Nuclear Laboratory, Ontario, Canada

    International Nuclear Information System (INIS)

    Davison, C.C.

    1982-12-01

    A number of borehole methods were used in the investigation of crystalline rocks at Whiteshell Nuclear Research Establishment and Chalk River Nuclear Laboratory in Canada. The selection of a crystalline-rock mass for the storage of nuclear waste likely will require the drilling and testing of a number of deep investigative boreholes in the rock mass. Although coring of at least one hole in each new area is essential, methods for making in-situ geophysical and hydrologic measurements can substitute for widespread coring and result in significant savings in time and money. Borehole-geophysical logging techniques permit the lateral extrapolation of data from a core hole. Log response is related to rock type, alteration, and the location and character of fractures. The geophysical logs that particularly are useful for these purposes are the acoustic televiewer and acoustic waveform, neutron and gamma, resistivity, temperature, and caliper. The acoustic-televiewer log of the borehole wall can provide high resolution data on the orientation and apparent width of fractures. In situ hydraulic tests of single fractures or fracture zones isolated by packers provide quantitative information on permeability, extent, and interconnection. The computer analysis of digitized acoustic waveforms has identified a part of the waveform that has amplitude variations related to permeabilities measured in the boreholes by packer tests. 38 refs., 37 figs., 4 tabs

  19. Propagation des ondes élastiques dans les matériaux non linéaires Aperçu des résultats de laboratoire obtenus sur les roches et des applications possibles en géophysique Propagation of Elastic Waves in Nonlinear Materials Survey of Laboratory Results on Rock and Geophysical Applications

    Directory of Open Access Journals (Sweden)

    Rasolofosaon P.

    2006-12-01

    Full Text Available Les roches présentent souvent un comportement élastique nettement non linéaire, entraînant des conséquences importantes sur la propagation des ondes. Cette non-linéarité élastique est surtout causée par les microdéfauts mécaniques ubiquistes (microfissures, joints de grains, macles, etc. dont la rigidité varie sous l'effet de la contrainte. Ce sujet fait l'objet d'études de plus en plus nombreuses. Nous nous proposons de présenter très sommairement les bases théoriques et les résultats expérimentaux permettant d'avoir un ordre de grandeur des effets caractéristiques observés dans les roches afin de pouvoir proposer une approche critique des possibilités d'applications en géophysique. Deux disciplines se sont développées en parallèle à partir du même principe physique et avec des formalismes très proches : - L'acousto-élasticité étudie l'effet des précontraintes statiques sur les vitesses de propagation des ondes élastiques. On dispose d'un formalisme mécanique élaboré permettant de relier quantitativement variation de contrainte et variation de vitesse élastique (par exemple pour ce qui concerne l'anisotropie acoustique induite par un état de contrainte et d'une méthode expérimentale de mesure des coefficients de non-linéarité. - L'acoustique non linéaire s'intéresse aux conséquences de la variation des modules élastiques au passage d'une onde qui ne peut plus être considérée comme une petite perturbation, mais qui induit localement des modifications mesurables du milieu de propagation ; modifications entraînant l'apparition de phénomènes inconnus en acoustique linéaire tels que la génération d'harmoniques et l'interaction onde-onde. Les applications à la sismique pétrolière semblent fort lointaines puisque, avec les méthodes classiques de surface ou de puits, il y a peu d'espoir de réussir à faire propager jusqu'aux couches profondes des ondes dont l'amplitude dépasserait le seuil de

  20. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement

    International Nuclear Information System (INIS)

    1994-06-01

    The US Department of Energy (DOE) is engaged in two related decision making processes concerning: (1) the transportation, receipt, processing, and storage of spent nuclear fuel (SNF) at the DOE Idaho National Engineering Laboratory (INEL) which will focus on the next 10 years; and (2) programmatic decisions on future spent nuclear fuel management which will emphasize the next 40 years. DOE is analyzing the environmental consequences of these spent nuclear fuel management actions in this two-volume Environmental Impact Statement (EIS). Volume 1 supports broad programmatic decisions that will have applicability across the DOE complex and describes in detail the purpose and need for this DOE action. Volume 2 is specific to actions at the INEL. This document, which limits its discussion to the Savannah River Site (SRS) spent nuclear fuel management program, supports Volume 1 of the EIS. Following the introduction, Chapter 2 contains background information related to the SRS and the framework of environmental regulations pertinent to spent nuclear fuel management. Chapter 3 identifies spent nuclear fuel management alternatives that DOE could implement at the SRS, and summarizes their potential environmental consequences. Chapter 4 describes the existing environmental resources of the SRS that spent nuclear fuel activities could affect. Chapter 5 analyzes in detail the environmental consequences of each spent nuclear fuel management alternative and describes cumulative impacts. The chapter also contains information on unavoidable adverse impacts, commitment of resources, short-term use of the environment and mitigation measures

  1. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs draft environmental impact statement

    International Nuclear Information System (INIS)

    1994-06-01

    The US Department of Energy (DOE) has prepared this report to assist its management in making two decisions. The first decision, which is programmatic, is to determine the management program for DOE spent nuclear fuel. The second decision is on the future direction of environmental restoration, waste management, and spent nuclear fuel management activities at the Idaho National Engineering Laboratory. Volume 1 of the EIS, which supports the programmatic decision, considers the effects of spent nuclear fuel management on the quality of the human and natural environment for planning years 1995 through 2035. DOE has derived the information and analysis results in Volume 1 from several site-specific appendixes. Volume 2 of the EIS, which supports the INEL-specific decision, describes environmental impacts for various environmental restoration, waste management, and spent nuclear fuel management alternatives for planning years 1995 through 2005. This Appendix B to Volume 1 considers the impacts on the INEL environment of the implementation of various DOE-wide spent nuclear fuel management alternatives. The Naval Nuclear Propulsion Program, which is a joint Navy/DOE program, is responsible for spent naval nuclear fuel examination at the INEL. For this appendix, naval fuel that has been examined at the Naval Reactors Facility and turned over to DOE for storage is termed naval-type fuel. This appendix evaluates the management of DOE spent nuclear fuel including naval-type fuel

  2. Laboratori virtual d'ensenyament-aprenentatge: solució numèrica de les equacions de conservació mitjançant volums finits aplicades a superfícies esteses

    Directory of Open Access Journals (Sweden)

    Cintia Casado Merino

    2014-12-01

    Full Text Available En este treball es presenta el disseny d’un Laboratori virtual d’ensenyament-aprenentatge per a la resolució d’un problema model de Transferència de la Calor en la matèria d’Enginyeria Tèrmica del II curs del Grau d’Enginyer de Tecnologies Industrials de la Universidad Rey Juan Carlos de Madrid. En l’àmbit de la Dinàmica de Fluids Computacional i per mitjà de l’ús del programari de simulació d’Ansys Fluent s’introduïx l’alumne al disseny, modelatge del sistema, resolució, anàlisi i validació del model. El resultat d’esta experiència d’aprenentatge és no sols la mera resolució del problema, inabordable amb mètodes didàctics tradicionals, sinó el desenvolupament de la combinació de destreses, habilitats i coneixements necessaris per a l’adquisició d’algunes de les competències generals i específiques de l’Enginyeria Tèrmica.

  3. Uranium recovery research sponsored by the Nuclear Regulatory Commission at Pacific Northwest Laboratory. Annual progress report, May 1982-May 1983

    Energy Technology Data Exchange (ETDEWEB)

    Foley, M.G.; Opitz, B.E.; Deutsch, W.J.; Peterson, S.R.; Gee, G.W.; Serne, R.J.; Hartley, J.N.; Thomas, V.W.; Kalkwarf, D.R.; Walters, W.H.

    1983-06-01

    Pacific Northwest Laboratory (PNL) is currently conducting research for the US Nuclear Regulatory Commission (NRC) on uranium recovery process wastes for both active and inactive operations. NRC-sponsored uranium recovery research at PNL is focused on NRC regulatory responsibilities for uranium-recovery operations: license active milling and in situ extraction operations; concur on the acceptability of DOE remedial-action plans for inactive sites; and license DOE to maintain inactive sites following remedial actions. PNL's program consists of four coordinated projects comprised of a program management task and nine research tasks that address the critical technical and safety issues for uranium recovery. Specifically, the projects endeavor to find and evaluate methods to: prevent erosion of tailings piles and prevent radon release from tailings piles; evaluate the effectiveness of interim stabilization techniques to prevent wind erosion and transport of dry tailings from active piles; estimate the dewatering and consolidation behavior of slurried tailings to promote early cover placement; design a cover-protection system to prevent erosion of the cover by expected environmental stresses; reduce seepage into ground water and prevent ground-water degradation; control solution movement and reaction with ground water in in-situ extraction operations; evaluate natural and induced restoration of ground water in in-situ extraction operations; and monitor releases to the environment from uranium recovery facilities.

  4. NNWSI [Nevada Nuclear Waste Storage Investigation] waste form testing at Argonne National Laboratory: Semiannual report, July--December 1987

    International Nuclear Information System (INIS)

    Bates, J.K.; Gerding, T.J.; Ebert, W.L.; Mazer, J.J.; Biwer, B.M.

    1988-07-01

    Tests are ongoing at Argonne National Laboratory to examine the reaction of glass with water under conditions that may exist in the proposed repository at Yucca Mountain, Nevada. Examination of glass reaction using the Unsaturated Test method as applied to simulated defense glass (SRL 165 black frit based) and simulated West Valley glass (ATM-10) is ongoing. The tests on SRL 165 glass have been ongoing for 104 weeks with nonstoichiometric release of Li, Na, B, and actinide elements being observed throughout the test period. The tests on ATM-10 glass have been in progress for 26 weeks and it is too early in the test cycle to assess the glass reaction. The influence of penetrating gamma radiation on the reaction of synthetic nuclear waste glasses in tuff groundwater was also investigated. Modified MCC-1 static leaching experiments were performed under radiation exposures of 1 /times/ 10 3 R/h and O R/h at 90/degree/C. The groundwater was acidified by nitrous and nitric acids radiolytically produced in the air. The high bicarbonate ion concentration of the groundwater prevented the pH from dropping below 6.4, however. The glass reaction, as measured by the release of glass species and the thickness of an alteration layer formed on the glass surface, was not measurably affected by radiation. 24 refs., 34 figs., 20 tabs

  5. Uranium recovery research sponsored by the Nuclear Regulatory Commission at Pacific Northwest Laboratory. Annual progress report, May 1982-May 1983

    International Nuclear Information System (INIS)

    Foley, M.G.; Opitz, B.E.; Deutsch, W.J.

    1983-06-01

    Pacific Northwest Laboratory (PNL) is currently conducting research for the US Nuclear Regulatory Commission (NRC) on uranium recovery process wastes for both active and inactive operations. NRC-sponsored uranium recovery research at PNL is focused on NRC regulatory responsibilities for uranium-recovery operations: license active milling and in situ extraction operations; concur on the acceptability of DOE remedial-action plans for inactive sites; and license DOE to maintain inactive sites following remedial actions. PNL's program consists of four coordinated projects comprised of a program management task and nine research tasks that address the critical technical and safety issues for uranium recovery. Specifically, the projects endeavor to find and evaluate methods to: prevent erosion of tailings piles and prevent radon release from tailings piles; evaluate the effectiveness of interim stabilization techniques to prevent wind erosion and transport of dry tailings from active piles; estimate the dewatering and consolidation behavior of slurried tailings to promote early cover placement; design a cover-protection system to prevent erosion of the cover by expected environmental stresses; reduce seepage into ground water and prevent ground-water degradation; control solution movement and reaction with ground water in in-situ extraction operations; evaluate natural and induced restoration of ground water in in-situ extraction operations; and monitor releases to the environment from uranium recovery facilities

  6. Hydrogeochemical processes affecting the migration of radionuclides in a fluvial sand aquifer at the Chalk River Nuclear Laboratories

    International Nuclear Information System (INIS)

    Jackson, R.E.; Inch, K.J.

    1980-01-01

    In the mid-1950's two experimental disposals of liquid radioactive waste containing about 700 curries of strontium-90 and cesium-137 were made into pits in sandy ground at one of the disposal areas at Chalk River Nuclear Laboratories. Since then, the wastes have migrated into two nearby aquifers and have chromatographically separated into strontium-90 and cesium-137 plumes moving at velocities less than that of the transporting groundwater. Analysis of radioactively contaminated aquifer sediments showed that most of the strontium-90 is exchangeably adsorbed, primarily to feldspars and layer silicates (mainly biotite); the rest is either specifically adsorbed to iron (III) and perhaps manganese (IV) oxhydroxides or fixed to unknown sinks. Less than one half of adsorbed cesium-137 is exchangeable with 0.5 m calcium chloride; the high levels of cesium-137 adsorption and fixation are probably due to its reaction with micaceous minerals. Complexation of strontium-90 and cesium-137 does not appear to be an important factor affecting their transport or adsorption. In studies of groundwater quality or pollution, dissolved oxygen and sulfide should be measured in addition to the redox potential since it allows independent assessment of the redox levels. The latter were found to affect the mobility of multivalent transition metals and nonmetals. (DN)

  7. Attitudes and practices regarding disposal of liquid nuclear waste at Clinton Laboratories in the very early years: A historical analysis

    International Nuclear Information System (INIS)

    Stow, S.H.

    1996-02-01

    Many previously unreferenced documents show that the management and disposal of the liquid nuclear waste generated at Clinton Labs (which became ORNL after 1948) during the 1940s was performed with the highest degree of integrity and professionalism, contradicting today's perceptions. Even before construction of the laboratories in early 1943, professionals were making plans for the ''safe'' disposal of waste through treatment and dilution at medically prescribed levels into White Oak Creek and the Clinch River; concern for human health permeated all the disposal decisions. Chemical and physical treatment processes were used to remove as much of the activity as possible before release. Environmental and biological monitoring of the surface waters was instituted very early in the disposal history. Information learned at Clinton Labs with regard to waste disposal was transferred to Hanford. By the latter part of the 1940s, the scientists were formulating fairly sophisticated research programs for managing liquid waste and began research on the disposal of low-level solid waste. This historical analysis attempts to place the actions of the 1940s in proper perspective, drawing on the attentiveness and integrity of those who participated 50 years ago. Applying standards of the 1990s to actions in the 1940s must be done skilfully, carefully, and with the realization that those individuals were operating under extremely trying conditions, with minimal knowledge of radionuclide behavior

  8. The today situation and the nuclear sector perspectives in Usa; La situation actuelle et les perspectives du secteur nucleaire aux Etats-Unis

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    In this analysis the author details and discusses the nuclear energy situation in the Usa: the park and the electric power production, the nuclear safety and the radiation protection, the licenses prolongation, the power increase, the regulation relative to the construction of new reactors, the combined construction permit and operating license, the uncertainties on the Yucca Mountain storage site and the Global Nuclear Energy Partnership initiative, the 2006 perspectives and the IV generation reactors. (A.L.B.)

  9. The bad debt of nuclear responsibility; L'heritage empoisonne du nucleaire - De la conduite a suivre pour reduire les risques

    Energy Technology Data Exchange (ETDEWEB)

    Haverkamp, J. [Greenpeace Europe (France)

    2010-11-15

    Nuclear regulation plays an important role in keeping the visible and invisible threats of radioactivity at bay. This article argues that the largest gains in nuclear safety can be made if nuclear activities with economically, socially and environmentally viable alternatives (such as nuclear energy and nuclear weapons) are phased out - similarly to what has been done for toxic substances. Unless this takes place, the legacy of radioactive waste for future generations will only increase. In this respect, the article highlights the importance of accountability, independence and transparency of nuclear regulators to contain the risks stemming from radioactivity. In the interest of safety, other uses of nuclear technology should, as a rule, apply the best available technology and the best regulatory practice. As is made clear in the article, the EURATOM Nuclear Safety Directive, adopted in 2009, hardly addresses any of these issues. The article ends on a set of demands from Greenpeace to meet the challenges posed by nuclear safety, concluding that there is still a long way to go before the sector can be considered even reasonably safe. (author)

  10. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 1, Appendix C, Savannah River Site Spent Nuclear Fuel Mangement Program

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    The US Department of Energy (DOE) is engaged in two related decision making processes concerning: (1) the transportation, receipt, processing, and storage of spent nuclear fuel (SNF) at the DOE Idaho National Engineering Laboratory (INEL) which will focus on the next 10 years; and (2) programmatic decisions on future spent nuclear fuel management which will emphasize the next 40 years. DOE is analyzing the environmental consequences of these spent nuclear fuel management actions in this two-volume Environmental Impact Statement (EIS). Volume 1 supports broad programmatic decisions that will have applicability across the DOE complex and describes in detail the purpose and need for this DOE action. Volume 2 is specific to actions at the INEL. This document, which limits its discussion to the Savannah River Site (SRS) spent nuclear fuel management program, supports Volume 1 of the EIS. Following the introduction, Chapter 2 contains background information related to the SRS and the framework of environmental regulations pertinent to spent nuclear fuel management. Chapter 3 identifies spent nuclear fuel management alternatives that DOE could implement at the SRS, and summarizes their potential environmental consequences. Chapter 4 describes the existing environmental resources of the SRS that spent nuclear fuel activities could affect. Chapter 5 analyzes in detail the environmental consequences of each spent nuclear fuel management alternative and describes cumulative impacts. The chapter also contains information on unavoidable adverse impacts, commitment of resources, short-term use of the environment and mitigation measures.

  11. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement

    International Nuclear Information System (INIS)

    1994-06-01

    The US Department of Energy (DOE) is currently deciding the direction of its environmental restoration and waste management programs at the Idaho National Engineering Laboratory (INEL) for the next 10 years. Pertinent to this decision is establishing policies for the environmentally sensitive and safe transport, storage, and management of spent nuclear fuels. To develop these policies, it is necessary to revisit or examine the available options. As a part of the DOE complex, the Hanford Site not only has a large portion of the nationwide DOE-owned inventory of spent nuclear fuel, but also is a participant in the DOE decision for management and ultimate disposition of spent nuclear fuel. Efforts in this process at Hanford include assessment of several options for stabilizing, transporting, and storing all or portions of DOE-owned spent nuclear fuel at the Hanford Site. Such storage and management of spent nuclear fuel will be in a safe and suitable manner until a final decision is made for ultimate disposition of spent nuclear fuel. Five alternatives involving the Hanford Site are being considered for management of the spent nuclear fuel inventory: (1) the No Action Alternative, (2) the Decentralization Alternative, (3) the 1992/1993 Planning Basis Alternative, (4) the Regionalization Alternative, and (5) the Centralization Alternative. AU alternatives will be carefully designed to avoid environmental degradation and to provide protection to human health and safety at the Hanford Site and surrounding region

  12. The opening of electricity markets: the stakes for the nuclear energy; L'ouverture des marches de l'electricite: les enjeux pour le nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Maillard, M. [Ministere de l' Economie, des Finances et de l' Industrie, 75 - Paris (France). Direction Generale de L' Energie et des Matieres Premieres

    2002-07-01

    This article is a reprint of the opening talk of M. Maillard, general director of DGEMP (general direction of energy and raw materials, French ministry of economy, finances and industry), given at the 2002 annual meeting of the French society of nuclear energy (SFEN). In his talk, M. Maillard presents, first, the international context of the liberalization of electricity markets (the lessons learnt after the Californian crisis, the situation of the existing nuclear park, the questions relative to the nuclear revival, the conditions of a conservation of the nuclear option beyond the existing facilities). Then he analyzes the French situation and its specificities (pluri-annual planning of investments, mastered liberalization and competitiveness of the nuclear energy, preparation of future date-lines in agreement with the decommissioning of the oldest PWR reactors). (J.S.)

  13. Influence of differences in the proton and neutron distributions on nuclear fusion and fission; Infuence de la difference entre les distributions de protons et de neutrons dans le noyau sur les processus de fusion et de fission

    Energy Technology Data Exchange (ETDEWEB)

    Dobrowolski, A

    2006-04-15

    This thesis work is centred on some essential ingredients of a theoretical description of the reaction dynamics of the nuclear fusion and fission process, such as the interaction potential between projectile and target nuclei for fusion and the deformation energy landscape in a multidimensional space for the fission process. We have in particular evaluated the importance of the difference between the neutron and proton density distributions on these 2 processes. The fusion potential between the two interacting nuclei is obtained through the nucleon densities, determined in a self-consistent way through semiclassical density variational calculations for a given effective nucleon-nucleon effective interaction of the Skyrme type. These fusion barriers can then be used in a Langevin formalism to evaluation fusion cross sections. For the fission process it turns out to be essential to allow for the large variety of shapes which appear between the nuclear ground state and the the scission configuration. We show that a shape parametrisation taking into account elongation, as well as possible neck formation, left-right asymmetry and non-axiality allows a precise description of this phenomena in the framework of the macroscopic-microscopic approach. We are thus able to enrich the expression of the liquid-drop type energy through a term which describes the variation of the nuclear energy due to a deformation difference between the proton and neutron distribution. The resulting reduction of the fission barriers is only of the order of one MeV but this can easily cause a change in the fission cross-section by an order of magnitude and thus plays a capital role for the stability of super-heavy of exotic nuclei. (author)

  14. Nuclear systems of the future. Stakes, R and D strategy, and international cooperation; Les systemes nucleaires du futur. Enjeux, strategie de recherche et developpement, et cooperation internationale

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    As demonstrated by prospective studies, nuclear energy will represent a decisive contribution in the future energy mix. The long-term strategy of development of nuclear energy requires to foresee a new generation of nuclear systems, named generation 4. The goal of these new systems is to optimize the use of nuclear fuels, to minimize the generation of wastes and to enlarge the field of applications of nuclear energy to other applications like: hydrogen and synthetic fuels generation, heat generation for the industry etc. This document presents the French R and D strategy on nuclear systems of 4. generation that has been approved by the public authorities. This strategy follows three axes: a priority research on fast neutron systems with fuel recycle (sodium fast reactors (SFR) and gas fast reactors (GFR)), a research on key-technologies for the supply of very high temperature heat (very high temperature reactor (VHTR), fast and thermal neutron reactors, and water decomposition processes), and a continuation of researches on PWR reactors improvement. An integral recycling of all actinides in fast neutron reactors requires the development of new fuel reprocessing and fuel re-fabrication processes. A reference scenario for the progressive renewal of French nuclear facilities foresees the simultaneous development of fast neutron systems and the start-up of a new spent fuel reprocessing plant. France in involved in the development of the SFR, GFR and VHTR systems thanks to its participation to the Generation 4 international forum and to bilateral cooperation with other big nuclear partners like Russia and China. One of the main stakes of the French nuclear industry is to be able to invest in the R and D of future nuclear systems in order to valorize the experience gained so far in sodium FBR systems and in fuel cycle processes. (J.S.)

  15. Pacific Northwest Laboratory: Annual report for 1986 to the Assistant Secretary for Environment, Safety and Health: Part 5, Nuclear and operational safety

    Energy Technology Data Exchange (ETDEWEB)

    Faust, L.G.; Kennedy, W.E.; Steelman, B.L.; Selby, J.M.

    1987-02-01

    Part 5 of the 1986 Annual Report to the Department of Energy's Assistant Secretary for Environment, Safety and Health presents Pacific Northwest Laboratory's progress on work performed for the Office of Nuclear Safety, the Office of Operational Safety, and for the Office of Environmental Analysis. For each project, as identified by the Field Task Proposal/Agreement, articles describe progress made during fiscal year 1986. Authors of these articles represent a broad spectrum of capabilities derived from three of the seven research departments of the Laboratory, reflecting the interdisciplinary nature of the work.

  16. Pacific Northwest Laboratory: Annual report for 1986 to the Assistant Secretary for Environment, Safety and Health: Part 5, Nuclear and operational safety

    International Nuclear Information System (INIS)

    Faust, L.G.; Kennedy, W.E.; Steelman, B.L.; Selby, J.M.

    1987-02-01

    Part 5 of the 1986 Annual Report to the Department of Energy's Assistant Secretary for Environment, Safety and Health presents Pacific Northwest Laboratory's progress on work performed for the Office of Nuclear Safety, the Office of Operational Safety, and for the Office of Environmental Analysis. For each project, as identified by the Field Task Proposal/Agreement, articles describe progress made during fiscal year 1986. Authors of these articles represent a broad spectrum of capabilities derived from three of the seven research departments of the Laboratory, reflecting the interdisciplinary nature of the work

  17. Les jeux de hasard chez les enfants et les adolescents

    Science.gov (United States)

    Gupta, Rina; Pinzon, Jorge L

    2012-01-01

    RÉSUMÉ Même si, au Canada, les mineurs n’ont pas le droit de jouer à des jeux de hasard légalisés, les adolescents participent souvent à des jeux de hasard soit légalisés (produits de loterie, casino, terminaux de jeux vidéo), soit autonomes (jeux de cartes, paris sportifs, dés) à la maison et en milieu scolaire. Chez les adultes, le taux de prévalence de dépendance aux jeux de hasard au cours de la vie se situe entre 1 % et 2 %. D’après les données existantes, la prévalence chez les adolescents serait de deux à quatre fois plus élevée. On ne sait pas grand-chose des facteurs de risque d’apparition et de perpétuation d’une dépendance pathologique aux jeux de hasard. Le présent document de principes vise à informer les pédiatres, les médecins de famille et les autres professionnels de la santé des connaissances émergentes sur les jeux de hasard pendant l’enfance et l’adolescence et du risque de conséquences graves qui s’y rattachent. On y exhorte également les gouvernements fédéral, provinciaux et territoriaux à inclure cette question dans leur programme et à tenir compte des facteurs sociopolitiques associés aux jeux de hasard.

  18. Research means to back the development of nuclear reactors; Les moyens de recherche en support a l'evolution des reacteurs nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    After 50 year long feedback experience on nuclear reactor operations it is legitimate to wonder whether experimental facilities used to support nuclear power programs are still necessary. The various participants of this conference said yes for mainly 4 reasons: -) to validate the extension of the service life of a reactor without putting at risk its high safety standard, -) to give the reactor more flexibility to cope with the power demand, -) to confront the results given by computerized simulations with experimental data, and -) to qualify the nuclear systems of tomorrow. (A.C.)

  19. Joint Institute for Nuclear Research Exhibition Science Bringing Nations Together

    CERN Multimedia

    2000-01-01

    Laboratories:Bogoliubov Laboratory Theoretical Physics Laboratory of High Energies Laboratory of Particle Physics Laboratory of Nuclear Problems Flerov Laboratory of Nuclear Reactions Frank Laboratory of Neutron Physics Laboratory of Computing Techniques and Automation

  20. Implementation of the Gamma Monitor Calibration Laboratory (LABCAL) of the Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN) of the Technology Center of the Brazilian Army (CTEx)

    International Nuclear Information System (INIS)

    Balthar, Mario Cesar V.; Amorim, Aneuri de; Santos, Avelino dos and others

    2017-01-01

    The objective of this work is to describe the implementation and adaptation stages of the Gamma Monitor Calibration Laboratory (Laboratório de Calibração de Monitores Gama - LABCAL) of the Institute of Chemical, Biological, Radiological and Nuclear Defense (Instituto de Defesa Química, Biológica, Radiológica e Nuclear - IDQBRN) of the Technology Center of the Brazilian Army (Centro Tecnológico do Exército - CTEx). Calibration of the radiation monitors used by the Brazilian Army will be performed by quantitatively measuring the ambient dose equivalent, in compliance with national legislation. LABCAL still seeks licensing from CNEN and INMETRO. The laboratory in intended to supply the total demand for calibration of ionizing radiation devices from the Brazilian Army. (author)

  1. Implementation of the Gamma Monitor Calibration Laboratory (LABCAL) of the Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN) of the Technology Center of the Brazilian Army (CTEx)

    Energy Technology Data Exchange (ETDEWEB)

    Balthar, Mario Cesar V.; Amorim, Aneuri de; Santos, Avelino dos and others, E-mail: mariobalthar@gmail.com [Centro Tecnológico do Exército (IDQBRN/CTEx), Rio de Janeiro, RJ (Brazil). Instituto de Defesa Química, Biológica, Radiológica e Nuclear

    2017-07-01

    The objective of this work is to describe the implementation and adaptation stages of the Gamma Monitor Calibration Laboratory (Laboratório de Calibração de Monitores Gama - LABCAL) of the Institute of Chemical, Biological, Radiological and Nuclear Defense (Instituto de Defesa Química, Biológica, Radiológica e Nuclear - IDQBRN) of the Technology Center of the Brazilian Army (Centro Tecnológico do Exército - CTEx). Calibration of the radiation monitors used by the Brazilian Army will be performed by quantitatively measuring the ambient dose equivalent, in compliance with national legislation. LABCAL still seeks licensing from CNEN and INMETRO. The laboratory in intended to supply the total demand for calibration of ionizing radiation devices from the Brazilian Army. (author)

  2. The formal notices of the French authority of nuclear safety; Les mises en demeure de l'autorite de surete nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    The French authority of nuclear safety (ASN) publishes on its web site (http://www.asn.gouv.fr) the formal notices and official statements addressed by the ASN to the concerned responsible persons (operators of nuclear facilities, directors of companies etc..) when anomalies requiring a corrective action have been noticed during on-site or off-site safety inspections. This document brings together the formal notices addressed by the ASN since June 2000 and up to April 2002. (J.S.)

  3. Development of nuclear medicine techniques - radiation protection issues for patients; Evolution des techniques en medecine nucleaire - Enjeux de radioprotection pour les patients

    Energy Technology Data Exchange (ETDEWEB)

    Marchandise, Xavier [Faculte de Medecine de Lille, F-59045 Lille Cedex (France)

    2011-07-15

    Nuclear medicine uses radioactive isotopes for diagnostic or therapeutic purposes. The radiation protection culture is now well-anchored in the training of nuclear medicine specialists in France and must remain at the highest possible level. However, practices change and the immediate medical - or even media - interest in new equipment and new tracers must not obscure the fundamentals of patient radiation protection. Particular vigilance is today required with regard to two aspects: - children; - the corresponding computed tomography. (author)

  4. Present day situation and perspectives of the nuclear sector in the USA; La situation actuelle et les perspectives du secteur nucleaire aux Etats-Unis

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    With the restart-up of Browns Ferry NPP on May 22, 2007, the US nuclear park comprises now 104 reactors in operation: 35 BWR-type and 69 PWR-type. NPPs are present in only 31 states and mainly in the eastern half of the country. Nuclear energy represents 20% of the US energy mix (coal: 50%, gas: 19%, hydro-power: 6%, petroleum: 3% and other renewable energies: 2%). The highest average availability rate in power generation is reached by nuclear energy (89.9%). The nuclear power generation reached 787.2 TWh in 2006, i.e. the second best result after the 2004 record (788.5 TWh). This document presents also some nuclear safety and radioprotection indicators (number of unplanned outages, failures, injury frequency rate), the programme of licenses extension, the permissions for power increase, the demands for design certification, for early site permit, and for combined construction permit and operating license. The regulation may be different from one state to the other and sometimes not favorable to a re-launch of nuclear energy. The situation of each state in this domain is presented in appendix. (J.S.)

  5. Conformity of nuclear construction codes with the requirements of the French order dated December 12, 2005 related to nuclear pressure equipment; Conformite des codes de construction nucleaires avec les exigences de l'arrete du 12 decembre 2005 relatif aux equipements sous pression nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Grandemange, J.M.; Renaut, P. [Areva-NP, Tour AREVA, 92084 - Paris La Defense cedex, (France); Paris, D. [EDF-Ceidre 2 rue Ampere - 93206 SAINT-DENIS Cedex (France); Faidy, C. [EDF-Septen 12/14, Avenue Dutrievoz 69628 Villeurbanne Cedex (France)

    2007-07-01

    The French Decree dated December 13, 1999 transposing the Pressure Equipment Directive (PED) has replaced the fundamental texts on which up to now the regulation for pressure equipment important for the safety of nuclear reactors was also founded. By a Ministerial Order - called 'ESPN Order' - dated December 12, 2005, a new regulation has been issued for nuclear pressure equipment. This text makes reference to the Decree transposing the PED while completing these provisions by supplementary requirements having the objective to provide a very high level of integrity guarantee for equipments which are the most important for safety, and to cover the prevention of radioactive release risks. These regulatory evolutions are presented in the Plenary Session of the ESOPE conference. Referencing the Decree and thus the PED, and including specific provisions, the Ministerial Order implies that the Manufacturers update their documents and, if necessary, their prescriptions in the following two domains: - that of the conformity of Codes and Standards used, generally inspired from the ASME Code Section III, with the essential safety requirements of the PED, - that of the respect of the complementary provisions brought by the ESPN Order. This paper presents the more significant conclusions of this work and the resulting amendments of the RCC-M Code, introduced by the 2007 addendum to that Code. The analysis will lead to specify the same type of complementary requirements to Code when a manufacturer wishes to use the German KTA Rules or the ASME Code Section III. (authors) [French] Le decret du 13 decembre 1999 transposant la directive europeenne (DESP) relative aux equipements sous pression a remplace les textes fondamentaux sur lesquels se fondait egalement jusque la la reglementation des appareils a pression importants pour la surete des reacteurs nucleaires. Par arrete - dit 'arrete ESPN' - du 12 decembre 2005, une nouvelle reglementation a ete dictee. Ce

  6. Historical sketches of Sandia National Laboratories nuclear field testing. Volume 1: Full discussion except for sensitive references

    International Nuclear Information System (INIS)

    Banister, J.R.

    1994-10-01

    This report contains historical sketches that cover the major activities of Sandia nuclear field testing, from early atmospheric shots until 1990. It includes a chronological overview followed by more complete discussions of atmospheric, high-altitude, underwater, cratering, and underground nuclear testing. Other activities related to nuclear testing and high-explosive tests are also described. A large number of references are cited for readers who wish to learn more about technical details. Appendices, written by several authors, provide more insight for a variety of special aspects of nuclear testing and related work. Two versions of this history were published: volume 1 has an unlimited distribution, and volume 2 has a limited distribution

  7. 3 and 4 oxidation state element solubilities in borosilicate glasses. Implement to actinides in nuclear glasses; Solubilite des elements aux degres d'oxydation (3) et (4) dans les verres de borosilicate. Application aux actinides dans les verres nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Cachia, J.N

    2005-12-15

    In order to ensure optimal radionuclides containment, the knowledge of the actinide loading limits in nuclear waste glasses and also the comprehension of the solubilization mechanisms of these elements are essential. A first part of this manuscript deals with the study of the differences in solubility of the tri and tetravalent elements (actinides and surrogates) particularly in function of the melting temperature. The results obtained indicate that trivalent elements (La, Gd, Nd, Am, Cm) exhibit a higher solubility than tetravalent elements (Hf, Th, Pu). Consequently, it was planned to reduce plutonium at the oxidation state (III), the later being essentially tetravalent in borosilicate glasses. An innovating reduction process of multi-valent elements (cerium, plutonium) using silicon nitride has been developed in a second part of this work. Reduced plutonium-bearing glasses synthesized by Si{sub 3}N{sub 4} addition made it possible to double the plutonium solubility from 2 to 4 wt% at 1200 deg C. A structural approach to investigate the differences between tri and tetravalent elements was finally undertaken. These investigations were carried out by X-rays Absorption Spectroscopy (EXAFS) and NMR. Trivalent rare earth and actinide elements seem to behave as network modifiers while tetravalent elements rather present true intermediaries' behaviour. (author)

  8. Modelling turbulent fluid flows in nuclear and fossil-fired power plants; La modelisation des ecoulements turbulents rencontres dans les reacteurs nucleaires et dans les centrales thermiques a flamme

    Energy Technology Data Exchange (ETDEWEB)

    Viollet, P.L.

    1995-06-01

    The turbulent flows encountered in nuclear reactor thermal hydraulic studies or fossil-fired plant thermo-aerodynamic analyses feature widely varying characteristics, frequently entailing heat transfers and two-phase flows so that modelling these phenomena tends more and more to involve coupling between several branches of engineering. Multi-scale geometries are often encountered, with complex wall shapes, such as a PWR vessel, a reactor coolant pump impeller or a circulating fluidized bed combustion chamber. When it comes to validating physical models of these flows, the analytical process highlights the main descriptive parameters of local flow conditions: tensor characterizing the turbulence anisotropy, characteristic time scales for turbulent flow particle dynamics. Cooperative procedures implemented between national or international working parties can accelerate validation by sharing and exchanging results obtained by the various organizations involved. With this principle accepted, we still have to validate the products themselves, i.e. the software used for the studies. In this context, the ESTET, ASTRID and N3S codes have been subjected to a battery of test cases covering their respective fields of application. These test cases are re-run for each new version, so that the sets of test cases systematically benefit from the gradually upgraded functionalities of the codes. (author). refs., 3 figs., 6 tabs.

  9. Decommissioning of Active Ventilation Systems in a Nuclear R and D Facility to Prepare for Building Demolition (Whiteshell Laboratories Decommissioning Project, Canada) - 13073

    International Nuclear Information System (INIS)

    Wilcox, Brian; May, Doug; Howlett, Don; Bilinsky, Dennis

    2013-01-01

    Whiteshell Laboratories (WL) is a nuclear research establishment owned by the Canadian government and operated by Atomic Energy of Canada Limited (AECL) since the early 1960's. WL is currently under a decommissioning license and the mandate is to remediate the nuclear legacy liabilities in a safe and cost effective manner. The WL Project is the first major nuclear decommissioning project in Canada. A major initiative underway is to decommission and demolish the main R and D Laboratory complex. The Building 300 R and D complex was constructed to accommodate laboratories and offices which were mainly used for research and development associated with organic-cooled reactors, nuclear fuel waste management, reactor safety, advanced fuel cycles and other applications of nuclear energy. Building 300 is a three storey structure of approximately 16,000 m 2 . In order to proceed with building demolition, the contaminated systems inside the building have to be characterized, removed, and the waste managed. There is a significant focus on volume reduction of radioactive waste for the WL project. The active ventilation system is one of the significant contaminated systems in Building 300 that requires decommissioning and removal. The active ventilation system was designed to manage hazardous fumes and radioactivity from ventilation devices (e.g., fume hoods, snorkels and glove boxes) and to prevent the escape of airborne hazardous material outside of the laboratory boundary in the event of an upset condition. The system includes over 200 ventilation devices and 32 active exhaust fan units and high efficiency particulate air (HEPA) filters. The strategy to remove the ventilation system was to work from the laboratory end back to the fan/filter system. Each ventilation duct was radiologically characterized. Fogging was used to minimize loose contamination. Sections of the duct were removed by various cutting methods and bagged for temporary storage prior to disposition

  10. On-site tests on the nuclear power plants; L`activite d`essais sur les sites de production nucleaire d`electricite

    Energy Technology Data Exchange (ETDEWEB)

    Morilhat, P.; Favennec, J.M.; Neau, P.; Preudhomme, E. [Departement REM-E, Service EP, Direction des Etudes et Recherches, Electricite de France (EDF), 92 - Clamart (France)

    1996-12-31

    On-site tests and experiments are performed by EDF Research and Development Division on the nuclear power plants to assess the behaviour of major components submitted to thermal and vibratory solicitations. On-going studies deal with the qualification of new nuclear power plant standard and with the feedback of plants under operation. The tests, particularly the investigation tests, correspond to large investments and entail an important data volume which must ensure the continuity over a long period of the order of magnitude of the in-service plant life (around 40 years). This paper addresses the on-site experimental activities, describes the means to be used, and gives an example: the qualification of SG of new 1450 MW nuclear power plants. (author)

  11. Request for Naval Reactors Comment on Proposed PROMETHEUS Space Flight Nuclear Reactor High Tier Reactor Safety Requirements and for Naval Reactors Approval to Transmit These Requirements to Jet Propulsion Laboratory

    International Nuclear Information System (INIS)

    D. Kokkinos

    2005-01-01

    The purpose of this letter is to request Naval Reactors comments on the nuclear reactor high tier requirements for the PROMETHEUS space flight reactor design, pre-launch operations, launch, ascent, operation, and disposal, and to request Naval Reactors approval to transmit these requirements to Jet Propulsion Laboratory to ensure consistency between the reactor safety requirements and the spacecraft safety requirements. The proposed PROMETHEUS nuclear reactor high tier safety requirements are consistent with the long standing safety culture of the Naval Reactors Program and its commitment to protecting the health and safety of the public and the environment. In addition, the philosophy on which these requirements are based is consistent with the Nuclear Safety Policy Working Group recommendations on space nuclear propulsion safety (Reference 1), DOE Nuclear Safety Criteria and Specifications for Space Nuclear Reactors (Reference 2), the Nuclear Space Power Safety and Facility Guidelines Study of the Applied Physics Laboratory

  12. Optimization of the workers radiation protection in the electro nuclear, industrial and medical fields; Optimisation de la radioprotection des travailleurs dans les domaines electronucleaire, industriel et medical

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    This conference is devoted to the radiation protection and the best way to optimize it. It reviews each area of the nuclear industry, and explores also the medical sector. Dosimetry, ALARA principle and new regulation are important points of this meeting. (N.C.)

  13. Technical safety Organisations (TSO) contribute to European Nuclear Safety; Les organismes techniques de surete (TSO) au service de la surete nucleaire europeenne

    Energy Technology Data Exchange (ETDEWEB)

    Repussard, J. [Institut de radioprotection et de surete nucleaire - IRSN, 92 - Clarmart (France)

    2010-11-15

    Nuclear safety and radiation protection rely on science to achieve high level prevention objectives, through the analysis of safety files proposed by the licensees. The necessary expertise needs to be exercised so as to ensure adequate independence from nuclear operators, appropriate implementation of state of the art knowledge, and a broad spectrum of analysis, adequately ranking the positive and negative points of the safety files. The absence of a Europe-wide nuclear safety regime is extremely costly for an industry which has to cope with a highly competitive and open international environment, but has to comply with fragmented national regulatory systems. Harmonization is therefore critical, but such a goal is difficult to achieve. Only a gradual policy, made up of planned steps in each of the three key dimensions of the problem (energy policy at EU level, regulatory harmonization, consolidation of Europe-wide technical expertise capability) can be successful to achieve the required integration on the basis of the highest safety levels. TSO's contribute to this consolidation, with the support of the EC, in the fields of research (EURATOM-Programmes), of experience feedback analysis (European Clearinghouse), of training and knowledge management (European Training and Tutoring Institute, EUROSAFE). The TSO's network, ETSON, is becoming a formal organisation, able to enter into formal dialogue with EU institutions. However, nuclear safety nevertheless remains a world wide issue, requiring intensive international cooperation, including on TSO issues. (author)

  14. Production and validation of nuclear data for reactor and fuel cycle applications; Production et validation des donnees nucleaires pour les applications reacteurs et cycle du combustible

    Energy Technology Data Exchange (ETDEWEB)

    Trakas, C. [Framatome ANP GmbH NBTT, Erlangen (Germany); Verwaerde, D. [Electricite de France EDF, 75 - Paris (France); Toubon, H. [Cogema, 78 - Velizy Villacoublay (France)] [and others

    2002-07-01

    The aim of this technical meeting is the improvement of the existing nuclear data and the production of new data of interest for the upstream and downstream of the fuel cycle (enrichment, fabrication, management, storage, transport, reprocessing), for the industrial reactors, the research reactors and the new reactor concepts (criticality, dimensioning, exploitation), for the instrumentation systems (external and internal sensors), the radioprotection, the residual power, the structures (neutron bombardment effect on vessels, rods etc..), and for the activation of steel structures (Fr, Ni, Co). The expected result is the collection of more reliable and accurate data in a wider spectrum of energies and temperatures thanks to more precise computer codes and measurement techniques. This document brings together the communications presented at this meeting and dealing with: the process of production and validation of nuclear data; the measurement facilities and the big international programs; the users needs and the industrial priorities; the basic nuclear data (BND) needs at Cogema; the expression and evaluation of BND; the evaluation work: the efficient cross-sections; the processing of data and the creation of activation libraries; from the integral measurement to the qualification and the feedback on nuclear data. (J.S.)

  15. Securing a better future for all: Nuclear techniques for global development and environmental protection. NA factsheet on environment laboratories: Protecting the environment

    International Nuclear Information System (INIS)

    2012-01-01

    According to the Millennium Development Goals, managing the environment is considered an integral part of the global development process. The main purpose of the IAEA's environment laboratories is to provide Member States with reliable information on environmental issues and facilitate decision making on protection of the environment. An increasingly important feature of this work is to assess the impact of climate change on environmental sustainability and natural resources. The IAEA's environment laboratories use nuclear techniques, radionuclides, isotopic tracers and stable isotopes to gain a better understanding of the various marine processes, including locating the sources of pollutants and their fate, their transport pathways and their ultimate accumulation in sediments. Radioisotopes are also used to study bioaccumulation in organisms and the food chain, as well as to track signals of climate change throughout history. Natural and artificial radionuclides are used to track ocean currents in key regions. They are also used to validate models designed to predict the future impact of climate change and ocean acidification. The laboratories study the fate and impact of contamination on a variety of ecosystems in order to provide effective preventative diagnostic and remediation strategies. They enhance the capability of Member States to use nuclear techniques to understand and assess changes in their own terrestrial and atmospheric environments, and adopt suitable and sustainable remediation measures when needed. Since 1995, the IAEA environment laboratories have coordinated the international network of Analytical Laboratories for the Measurement of Environmental Radioactivity, providing accurate analysis in the event of an accident or an intentional release of radioactivity. In addition, the laboratories work alongside other organizations, such as UNESCO, the IOC, UNEP and the EC. The laboratories collaborate with Member States through direct involvement with

  16. Les nouveaux verres

    OpenAIRE

    Lucas, J.

    1986-01-01

    Le développement de nouveaux verres est principalement guidé par la recherche de matériaux ayant un large domaine de transmission, particulièrement dans le domaine infrarouge, et par la potentialité d'ultratransparence. Les matériaux candidats pour la fabrication de fibres optiques à très faibles pertes et de guide d'onde ayant une large fenêtre optique sont les verres de chalcogénures et les verres halogénés, en particulier les verres fluorés à base de métaux lourds dont les pertes minimales...

  17. Jeux chez les Touaregs

    OpenAIRE

    Bernus, E.

    2012-01-01

    Parmi les jeux pratiqués par les Touaregs, il faut distinguer les jeux sportifs qui opposent deux équipes ou deux hommes, des jeux de société dans un cadre inscrit dans le sable, et les jeux d’esprit, véritables joutes verbales ; enfin, il faut signaler la construction par les enfants de jouets. Un certain nombre de jeux sont connus chez d’autres populations africaines. L’ouvrage de Charles Béart, Jeux et jouets de l’Ouest africain (1955), nous permet d’utiles comparaisons. Il est donc intére...

  18. Les Africaines et les TIC : Enquête sur les technologies, la question ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Les Africaines et les TIC : Enquête sur les technologies, la question de genre et autonomisation. Couverture du livre Les Africaines et les TIC : Enquête sur les technologies, la question. Directeur(s):. Ineke Buskens et Anne Webb. Maison(s) d'édition: Presses de l'Université Laval, CRDI. 28 février 2011. ISBN :.

  19. Les risques du travail

    CERN Document Server

    Thébaud-Mony, Annie

    2015-01-01

    Depuis les années 1990, les conditions de travail se sont peu à peu imposées dans le débat social. Néanmoins, la situation reste critique. Les risques traditionnels n'ont pas disparu : les manutentions lourdes, l'exposition professionnelle aux cancérogènes, au bruit ou aux vibrations demeurent répandues... De plus, certaines " améliorations " n'ont fait que déplacer et dissimuler les problèmes, telle l'externalisation des risques grâce à la sous-traitance. Dans le même temps, les transformations du travail et des modalités de gestion de la main-d'œuvre ont fragilisé les collectifs et accru l'isolement des salariés, conduisant à une montée visible de la souffrance psychique. Face à ces évolutions, il est plus que jamais nécessaire que tous les acteurs concernés, en particulier les salariés eux-mêmes et leurs représentants, s'approprient les connaissances indispensables pour améliorer la protection de la santé sur les lieux du travail. Tel est le but de ce livre, qui renouvelle int�...

  20. Lawrence and his laboratory

    International Nuclear Information System (INIS)

    Hellbron, J.L.; Seidel, R.W.

    1989-01-01

    The birthplace of nuclear chemistry and nuclear medicine is the subject of this study of the Radiation Laboratory in Berkeley, California, where Ernest Lawrence used local and national technological, economic, and manpower resources to build the cyclotron

  1. The nuclear and the energy supply of tomorrow. Stop the useless quarrels about the nuclear; Le nucleaire et l'approvisionnement energetique de demain. Cesser les querelles inutiles a propos du nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    Following the paper of Hubert Reeves which developed the reasons of the the nuclear stopping, the author presents arguments to ease this opinion ( economic growth of the developing countries, greenhouse gases reduction, fossil fuels conservation, transportation sector) and proposes a cooperation between the nuclear and the renewable energies to satisfy a sustainable development. (A.L.B.)

  2. Lawrence Livermore National Laboratory and Sandia National Laboratory Nuclear Accident Dosimetry Support of IER 252 and the Dose Characterization of the Flattop Reactor at the DAF

    Energy Technology Data Exchange (ETDEWEB)

    Hickman, D. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jeffers, K. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Radev, R. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Tai, L. I. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ward, D. C. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Leonard, E. I. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2017-10-06

    In support of IER 252 “Characterization of the Flattop Reactor at the NCERC”, LLNL performed ROSPEC measurements of the neutron spectrum and deployed 129 Personnel Nuclear Accident Dosimeters (PNAD) to establish the need for height corrections and verification of neutron spectrum evaluation of the fluences and dose. A very limited number of heights (typically only one or two heights) can be measured using neutron spectrometers, therefore it was important to determine if any height correction would be needed in future intercomparisons and studies. Specific measurement positions around the Flatttop reactor are provided in Figure 1. Table 1 provides run and position information for LLNL measurements. The LLNL ROSPEC (R2) was used for run numbers 1 – 7, and vi. PNADs were positioned on trees during run numbers 9, 11, and 13.

  3. Argonne National Laboratory papers presented at third ANS topical meeting on the technology of controlled nuclear fusion

    International Nuclear Information System (INIS)

    1978-01-01

    The 9 papers included in this Technical Memorandum were presented at the Third ANS Topical Meeting on the Technology of Controlled Nuclear Fusion that was held in Santa Fe, New Mexico on May 9-11, 1978

  4. Life time of nuclear power plants and new types of reactors; La duree de vie des centrales nucleaires et les nouveaux types de reacteurs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-05-01

    This report, realized by the Evaluation Parliamentary Office of scientific and technological choices, aims to answer simple but fundamental questions for the french electric power production. What are the phenomena which may limit the exploitation time of nuclear power plants? How can we fight against the aging, at which cost and with which safety? The first chapter presents the management of the nuclear power plants life time, an essential element of the park optimization but not a sufficient element. The second chapter details the EPR and the other reactors for 2015 as a bond between the today and tomorrow parks. The last chapter deals with the necessity of efforts in the research and development to succeed in 2035 and presents other reactors in project. (A.L.B.)

  5. The safety approach for the second and the third generations of nuclear reactors; L'approche de surete pour les reacteurs de deuxieme et troisieme generations

    Energy Technology Data Exchange (ETDEWEB)

    Chambon, J.L.; Mattei, J.M

    2003-10-01

    This paper reviews the safety approach that was used for the second and third generation of nuclear reactors. Generally speaking, the safety requirements associated to electronuclear techniques are developed with the evolution of the industrial context and with the political and social attitudes. Thus for the third generation of PWR type reactors, it will be taken into account the maximum of the acquired experience by the design and exploitation of the fleet of reactors now in operation. (O.M.)

  6. Researches on nuclear wastes. Knowledge gained and perspectives at the 2006 date line; Recherches sur les dechets nucleaires acquis et perspectives a l'echeance 2006

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The law from December 30, 1991, precisely defines 3 axes of researches for the management of high level and long-lived radioactive wastes: separation/transmutation, surface storage and underground disposal. A global evaluation report about these researches is to be supplied in 2006 by the French government to the Parliament. The responsibility of these researches is given to the French atomic energy commission (CEA) and to the national agency for radioactive wastes (ANDRA) who have to coordinate their works with other research organizations and industrialists. The aim of this colloquium is to make a status of the scientific knowledge gained before the implementation of the public and parliamentary debates on nuclear wastes management. This document gathers the presentations (slides) given at the colloquium and dealing with: separation/transmutation, storage and conditioning of waste packages; geologic disposal, the inter-disciplinary PACE program of the CNRS; synthesis of the researches evaluation process; general principles for a sustainable management of radioactive wastes; technical experience implemented by industrialists since 15 years; point of view of the nuclear safety authority; international context of nuclear waste management and related researches; a sociological enlightening: researches advance as seen by the public. (J.S.)

  7. Radioprotection optimization in the electro-nuclear, industrial and medical fields; Optimisation de la radioprotection dans les domaines electronucleaire industriel et medical

    Energy Technology Data Exchange (ETDEWEB)

    Gauron, C. [Institut National de Recherche et de Securite, INRS, Dept. Etudes et Assistance Medicales, 75 - Paris (France); Gagna, G. [Service de protection radiologique des armees (SPRA), 92 - Clamart (France)

    2010-07-01

    This document proposes abstracts of interventions which have been proposed during a two-day meeting in Saint-Malo in September 2010. Thus, it evokes recent legal and regulatory evolutions (new recommendations by the International Commission for Radiological Protection or ICRP, the new Basic Safety Standards of BSS of the European Commission), the optimization in the electro-nuclear field (overview of the situation for the main nuclear operators, practical examples of radioprotection optimization through the ALARA approach), in the industrial field (ALARA approach for the design of the International Fusion Materials Irradiation Facility of IFMIF, alternative techniques of use of industrial gamma-graphy, radon management in private dwelling in Switzerland, optimization implementation in NORMS companies, management of solids and sites polluted by radioactive substances), in the medical field (teaching in radioprotection, use of ALARA in design in a proto-therapy centre, development of alternative techniques for the use of ionizing radiations in the medical field, use of diagnosis reference levels for optimization in radio-diagnosis, ALARA in veterinary radio-diagnosis, optimization of doses in nuclear medicine, optimization in interventional radiology). A last set of interventions dealt with the activity international networks for the development of radioprotection

  8. Project Increase of infrastructure: 'Establishment of a laboratory for studies of pollutants in air, water and soil through atomic and nuclear techniques

    International Nuclear Information System (INIS)

    Aldape U, F.

    1993-10-01

    In this report there are the guidelines of this project as well as the goals, activities and costs. The general objectives were: 1. A laboratory that allows to analyze with efficiency samples of air, water and soil pollutants using atomic and nuclear origin techniques as PIXE (Proton Induced X-ray Emission, NRA (Nuclear Reaction Analysis) and RBS (Rutherford Backscattering) as well as auxiliary and/or complementary techniques. 2. To obtain indicators of the influence of the pollution of the Valley of Mexico about the ecology and the health of the inhabitants of Mexico City with perspectives of carrying out studies in other cities. 3. To develop an appropriate technology for the realization of those studies and to generate human resources in this area. (Author)

  9. Recycling the spent nuclear fuel actinides: a major contribution to the sustainability of the 4. generation nuclear energy systems; Le recyclage des actinides presents dans les combustibles nucleaires uses: une contribution significative pour un nucleaire du 4. generation durable

    Energy Technology Data Exchange (ETDEWEB)

    Poinssot, Ch.; Warin, D. [CEA Valrho (DEN/MAR/DRCP/DIR), 30 - Marcoule (France)

    2009-08-15

    In line with the emerging objective of sustainable development, renaissance of nuclear energy requires optimizing current nuclear fuel cycles to recycle all the potentially energetic elements which are still present within the spent nuclear fuel after their first use in reactor. That concerns basically the actinides, first of all uranium and plutonium, but also the minor actinides, which represent the most significant part of the long term radiotoxicity of the nuclear waste to be disposed off deep underground. Current R and D aims to develop chemical processes based on liquid/liquid extraction using organic molecules presenting specific affinity for actinides. This paper aims to give an overview of the recent French results and the current developments which are performed within the framework of the French Waste Management Act from 28 June 2006. (authors)

  10. United States Department of Energy National Nuclear Security Administration Sandia Field Office NESHAP Annual Report CY2014 for Sandia National Laboratories New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    evelo, stacie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Miller, Mark L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-05-01

    This report provides a summary of the radionuclide releases from the United States (U.S.) Department of Energy (DOE) National Nuclear Security Administration facilities at Sandia National Laboratories, New Mexico (SNL/NM) during Calendar Year (CY) 2014, including the data, calculations, and supporting documentation for demonstrating compliance with 40 Code of Federal Regulation (CFR) 61, Subpart H--NATIONAL EMISSION STANDARDS FOR EMISSIONS OF RADIONUCLIDES OTHER THAN RADON FROM DEPARTMENT OF ENERGY FACILITIES. A description is given of the sources and their contributions to the overall dose assessment. In addition, the maximally exposed individual (MEI) radiological dose calculation and the population dose to local and regional residents are discussed.

  11. Policies and practices pertaining to the selection, qualification requirements, and training programs for nuclear-reactor operating personnel at the Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Culbert, W.H.

    1985-10-01

    This document describes the policies and practices of the Oak Ridge National Laboratory (ORNL) regarding the selection of and training requirements for reactor operating personnel at the Laboratory's nuclear-reactor facilities. The training programs, both for initial certification and for requalification, are described and provide the guidelines for ensuring that ORNL's research reactors are operated in a safe and reliable manner by qualified personnel. This document gives an overview of the reactor facilities and addresses the various qualifications, training, testing, and requalification requirements stipulated in DOE Order 5480.1A, Chapter VI (Safety of DOE-Owned Reactors); it is intended to be in compliance with this DOE Order, as applicable to ORNL facilities. Included also are examples of the documentation maintained amenable for audit.

  12. Policies and practices pertaining to the selection, qualification requirements, and training programs for nuclear-reactor operating personnel at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Culbert, W.H.

    1985-10-01

    This document describes the policies and practices of the Oak Ridge National Laboratory (ORNL) regarding the selection of and training requirements for reactor operating personnel at the Laboratory's nuclear-reactor facilities. The training programs, both for initial certification and for requalification, are described and provide the guidelines for ensuring that ORNL's research reactors are operated in a safe and reliable manner by qualified personnel. This document gives an overview of the reactor facilities and addresses the various qualifications, training, testing, and requalification requirements stipulated in DOE Order 5480.1A, Chapter VI (Safety of DOE-Owned Reactors); it is intended to be in compliance with this DOE Order, as applicable to ORNL facilities. Included also are examples of the documentation maintained amenable for audit

  13. A few nuclear technologies in earth science and industry; Quelques techniques nucleaires dans l`industrie et les sciences de la terre

    Energy Technology Data Exchange (ETDEWEB)

    Caillot, A.

    1994-12-31

    The radioactivity pacific and favourable applications are very numerous. The sensitivity, the efficiency of these processes make them peculiarly attractive. Nevertheless, their implementation is a demanding job on account of numerous subjects that must acquire the specialists: nuclear, electronic and computing, fluid mechanics and sometimes... athletics when it concerns studies on the maritime sites. In spite of these numerous advantages, we must not deduce that those methods are the panacea destined to replace the other technologies. It`s the association of these two approaches which is an economy and progress supply.

  14. Problems bound to the tritium in materials for the nuclear - some illustrations; Problematiques liees au tritium dans les materiaux dans le domaine nucleaire - quelques illustrations

    Energy Technology Data Exchange (ETDEWEB)

    Gastaldi, O. [CEA Cadarache (DTN/STPA/LPC), 13 - Saint-Paul-lez-Durance (France)

    2007-07-01

    The tritium control takes more and more importance in the nuclear industry because of the release more and more limited, in the environment. After a presentation on the tritium sources in the environment, the author presents the different ways of its production. Then for each reactor channel, the main problems are presented (fission and fusion). The last part deals with the behavior of the tritium in materials: the tritium inventory control in a fusion system, the tritium management after the reactor exploitation. (A.L.B.)

  15. Methodology for advanced control rooms assessment of nuclear reactors: case study using Laboratory of Human System Interface (LABIHS)

    International Nuclear Information System (INIS)

    Carvalho, Eduardo Ferro; Verboonen, Monique; Carvalho, Bruno Batista de

    2005-01-01

    A control room of a nuclear reactor is a complex system that controls a thermodynamic process used to produce electric energy. The operators interact with the control room through interfaces and several monitoring stations. These interfaces present significant implications for the safety of the nuclear power plant, once they influence the activities of the operators, affect the way how operators receive information related with the status from the main systems and determine the necessary requirements so that the operators understand and supervise the main parameters. This article intends to present the methodology and the results of the evaluation carried through in the advanced control room of a compact simulator, that uses as reference a nuclear plant PWR of the Westinghouse. The structure used for evaluation of the simulator is formed by the guideline of human factors of the NRC, the NUREG 700, checklist, questionnaires and the analysis of the operator's activity. (author)

  16. Theme day: corrosion and surface treatments in nuclear facilities. Proceedings; Journee Thematique: Corrosion et Traitements de surface dans les Installations Nucleaires. Recueil des presentations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-02-15

    This document brings together the available presentations given at the theme day organized by the Bourgogne Nuclear Pole on the topic of corrosion and surface treatments in nuclear facilities. Eleven presentations (slides) are compiled in this document: 1 - Introduction - PNB centre of competitiveness and R and D activities (A. Mantovan, PNB); 2 - Corrosion damage (M. Foucault, Areva NP - Centre Technique Le Creusot); 3 - Corrosion mechanisms (R. Oltra, UB-ICB); 4 - Examples of expertise management (C. Duret-Thual, Institut de la corrosion/Corrosion Institute); 5 - General framework of surface treatments (C. Nouveau, ENSAM Cluny Paris Tech); 6 - Surfaces et interfaces characterisation - Part A (C. Langlade, Y. Gachon, UTBM and HEF); 7 - Surfaces et interfaces characterisation - Part B (C. Langlade, Y. Gachon, UTBM and HEF); 8 - Ion beam surface treatment (Y. Le Guellec, Quertech Ingenierie); 9 - Impact surface treatment (G. Saout, Sonats); 10 - Metal oxides Characterisation by US laser (R. Oltra, UB-ICB); 11 - Detection and Characterisation of intergranular corrosion (Y. Kernin, Stephane Bourgois, Areva Intercontrole)

  17. International reactions after the resumption of nuclear tests: lot of noise for nothing?; Les reactions internationales a la reprise des essais nucleaires: beaucoup de bruit pour rien?

    Energy Technology Data Exchange (ETDEWEB)

    Montesquieu, E. de

    1996-07-01

    In 1995, the French President announced that France would perform an ultimate campaign of nuclear tests before a complete banishment as soon as spring 1996. The campaign effectively ended on time and six tests took place between September 5, 1995 and January 27, 1996. The disarmament process went on and the international negotiations in progress at that time were not affected by the French policy. However, this campaign has caused a strong emotion, if not in the entire World, at least in part of the planet and in particular in Western Europe. This report analyses the reactions from the different governments and from the public opinion and shows their impact on the French diplomacy. Content: Part 1 - general considerations: 1 - lot of noise for nothing?: the objectives of French diplomacy; the acts (a quasi lack of sanctions, a temporary degradation of our relations with a limited number of countries); the rhetoric (diplomatic regrets in first time, slip-ups in the second time, the public opinion weight); 2 - the lessons learnt: the opinion and the management of the foreign policy (the image of France, the communication fight); the geopolitical lessons (European Union: community solidarity and European defense; the South Pacific area); 3 - a case study: Japan: the time of uncertainties (domestic situation, external policy); the Japanese reactions after the tests resumption. Part 2 - synthesis of reactions after the resumption of nuclear tests by France: Pacific bordering countries (South Pacific, Latin America); Western Europe countries; non-European countries; Conclusions.

  18. Les Cahiers du CREAD

    African Journals Online (AJOL)

    Admin

    est également un organe consultatif en ce qui concerne les projets urbains ayant une incidence sur les transports publics et ..... territorial (ARE), Suisse et Agence de l'Environnement et de la Maîtrise de l'Énergie (ADEM), France. ..... les Déplacements Urbains en Méditerranée -. Skhirat, Maroc, 22 et 23 janvier 2008, 85p.

  19. Les migrations interurbaines

    Directory of Open Access Journals (Sweden)

    Denise Pumain

    1990-03-01

    Full Text Available Les flux de migrants échangés par les villes françaises sont assez bien décrits par un modèle de gravitation. La cartographie des écarts au modèle, dits «flux résiduels», met en évidence la dimension nationale du champ migratoire de la capitale, avec ses relations préférentielles et ses effets de barrière. Entre les villes de province, les échanges préférentiels dessinent des sous-systèmes urbains régionaux.

  20. Should evacuation conditions after a nuclear accident be revised?; Faut-il revoir les conditions d'evacuation a la suite d'un accident nucleaire?

    Energy Technology Data Exchange (ETDEWEB)

    Nifenecker, H.

    2011-07-01

    The author proposes to draw lessons from the Fukushima accident, notably in the field of post-accident management. He discusses the definition of an as widely understandable as possible method of description of risks related to irradiations after a nuclear accident. As these irradiations are mainly low dose ones which have a carcinogenic effect, he proposes to assess the average life expectancy loss due to an irradiation. Then, this risk can be easily compared with other risks like air pollution, smoking and passive smoking, and so on. Then, once this risk assessment method is well defined, it is possible to associate the inhabitants of contaminated areas to the post-accident management. They could then decide to go back to their homes or not with full knowledge of the facts

  1. North Carolina State University nuclear structure research at the Triangle Universities Nuclear Laboratory. Progress report, 1 April 1979-31 March 1980

    International Nuclear Information System (INIS)

    Gould, C.R.; Mitchell, G.E.; Seagondollar, L.W.; Tilley, D.R.

    1980-01-01

    Research during the period April 1, 1979 to March 31, 1980 is reported in the following areas: neutron cross section experiments, high-resolution studies, radiative capture reactions, atomic physics, and nuclear theory and phenomenology. Other activities, including accelerator development and instrumentation and developments related to computers, are also sketched. The body of this report is a photocopy of that portion of the TUNL Annual Report XVIII in which NCSU personnel were involved. The TUNL Annual Report XVIII (see DOE/TIC--11133 in the Report Number Index) is indexed in greater depth

  2. Appuyer les occasions d'affaires pour les femmes dans les régions ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Ce projet vise à étudier les activités de subsistance des femmes en milieu rural en agriculture, en agroalimentaire et dans d'autres secteurs, ainsi que les pratiques exemplaires, l'entrepreneuriat et l'autonomisation. La recherche permettra de cerner les facteurs et les instruments de politique qui influent sur les activités que ...

  3. Radioisotope Power System Delivery, Ground Support and Nuclear Safety Implementation: Use of the Multi-Mission Radioisotope Thermoelectric Generator for the NASA's Mars Science Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    S.G. Johnson; K.L. Lively; C.C. Dwight

    2014-07-01

    Radioisotope power systems have been used for over 50 years to enable missions in remote or hostile environments. They are a convenient means of supplying a few milliwatts up to a few hundred watts of useable, long-term electrical power. With regard to use of a radioisotope power system, the transportation, ground support and implementation of nuclear safety protocols in the field is a complex process that requires clear identification of needed technical and regulatory requirements. The appropriate care must be taken to provide high quality treatment of the item to be moved so it arrives in a condition to fulfill its missions in space. Similarly it must be transported and managed in a manner compliant with requirements for shipment and handling of special nuclear material. This presentation describes transportation, ground support operations and implementation of nuclear safety and security protocols for a radioisotope power system using recent experience involving the Multi-Mission Radioisotope Thermoelectric Generator for National Aeronautics and Space Administration’s Mars Science Laboratory, which launched in November of 2011.

  4. Guidelines for starting a nuclear medicine laboratory. Excerpts from a booklet published by Bhabha Atomic Research Centre, India

    International Nuclear Information System (INIS)

    1992-01-01

    A nuclear medicine department caters to the need of all clinical departments, and, therefore, should be located at a central place. At the same time, because of radiation hazard associated with the use of radionuclides, planning of the departments should be done in such a way that there is no radiation exposure to non-radiation workers and the general public, and also that radiation workers handling radioisotopes receive minimum exposure. When a decision to set up a nuclear medicine department is taken, the authorities are faced with a number of questions regarding the location, planning for the premises, equipment needed, availability of trained medical and paramedical personnel and the procedure for obtaining clearance from various authorities

  5. Proposal for an Experiment at the National Accelerator Laboratory Nuclear Levels as Analyzers of High Energy Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Babcock, B.; Kirk, P.; Marraffino, J.; Mehlhop, W.; Murty, S.; Piccioni, O.; Bowles, P.; Scipione, D.; Sebek, J.; /California U.

    1972-06-06

    We propose to study diffractive phenomena caused by 100 BeV pions, using a new technique, which consists in associating with the high energy interaction, the detection of photons resulting from the de-excitation of nuclear levels. Knowledge of the quantum numbers both for the ground state and the nuclear levels of the nuclei used, adds information as to the type of interaction. In particular, the use of the 4.4 MeV level of Carbon guarantees that the exchange quantum has isotopic spin 0. In addition, evidence resulting from our tests at Berkeley seems to further encourage the notion that this level selects to a good extent phenomena of the diffractive type. We ask for 150 hours of running on a 100 BeV/c pion beam.

  6. Report on the environmental and sanitary impacts of the nuclear tests performed by France between 1960 and 1996 and elements of comparison with the tests performed by the other nuclear Powers; Rapport sur les incidences environnementales et sanitaires des essais nucleaires effectues par la France entre 1960 et 1996 et elements de comparaison avec les essais des autres puissances nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Bataille, Ch.; Revol, H

    2002-07-01

    This report makes a comprehensive presentation of the French atmospheric and underground nuclear tests performed in Sahara and Polynesia between 1960 and 1996 with their possible impact on the health of populations and personnel and on the environment. A comparison is made with similar tests performed by other nuclear Powers: US (Marshall islands, Nevada), former Soviet union (Semipalatinsk, Novaya Zemlya), UK (several atmospheric test-sites), China, India, Pakistan. (J.S.)

  7. Laboratory studies on the dissolution and solvent extraction of yellow cake to produce nuclear grade ammonium diuranate

    International Nuclear Information System (INIS)

    Bernido, C.C.; Pabelonia, C.A.; Balagtas, G.C.; Ubanan, E.

    1984-10-01

    Yellow cake or uranium concentrate, the semi-refined product from the processing of uranium-bearing ores in uranium mills has to undergo further processing and purification to nuclear grade specifications prior to conversion to uranium dioxide, the chemical form in which uranium is found in the fuel elements of many nuclear power reactor types, including the Philippines' PNPP-1. This paper presents the results of the studies conducted to obtain the optimum operating conditions for the first two steps in the processing of yellow cake to achieve nuclear grade purity, namely, (a) the dissolution of yellow cake in nitric acid, and (b) the separation of uranium from other impurities by solvent extraction using 20% Tri-butyl-Phosphate (TBP) in kerosene as the organic phase. The parameters studied for the dissolution step are acid molarity, temperature, and time; the optimum conditions obtained were: 4M HNO 3 , 100degC, and one hour, respectively. For the solvent extraction step, the following parameters were studied: aqueous to organic ratio, mixing time, and number of extraction stages; the optimum results obtained were O:A=4:1, three minutes mixing time, and three extraction stages, respectively. (author)

  8. Les trous noirs

    CERN Document Server

    Ioli, Elena

    2016-01-01

    L'univers est peuplé par des étoiles, des planètes, des galaxies, des astéroïdes, des comètes, mais les trous noirs en sont certainement les habitants les plus mystérieux et les plus fascinants ! Grâce à cette merveilleuse histoire racontée par papy Gino, professeur d'astronomie, les trous noirs n auront plus de secrets pour vous ! C est l'été, le soleil illumine le ciel, la plage est en feu : une journée à la plage pleine de jeux et de plongée qui va se transformer pour Bernardo, Gregorio et leurs deux amis en une aventure inattendue. Ils découvriront les secrets des trous noirs, d étranges objets célestes que personne n'a jamais vus mais qui existent bel et bien ! Grand-père Gino, un professeur d astronomie à la retraite, emmènera les enfants à l'intérieur d'un trou noir, leur expliquera pourquoi ils sont noirs, comment ils sont nés et comment les scientifiques pensent qu'ils vont mourir. Et Gino leur racontera même ce qui se trouve de l'autre côté d'un trou noir...

  9. Les saveurs au potager

    OpenAIRE

    Vaysse, Pierre; Devillepoix, Amélie; Causse, Mathilde; Pitrat, Michel

    2016-01-01

    Le bon goût est à la mode dans le potager. Les consommateurs sont de plus en plus exigeants sur la qualité gustative des légumes ou des fruits. Les sélectionneurs en tiennent compte. Voici quatre exemples avec la fraise, la framboise, la tomate et le melon.

  10. Report on the possibilities of long-term storage of irradiated nuclear fuels; Rapport sur les possibilites d'entreposage a long terme de combustibles nucleaires irradies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This report aims at giving a legislative aspect to the many rules that govern the activities of the back-end of the fuel cycle in France. These activities concern the unloading of spent nuclear fuels, their reprocessing, storage, recycling and definitive disposal. The following points are reviewed and commented: the management of non-immediately reprocessed fuels (historical reasons of the 'all wastes reprocessing' initial choice, evolution of the economic and political context, the future reprocessing or the definitive disposal of spent fuels in excess); the inevitable long-term storage of part of the spent fuels (quantities and required properties of long-term stored fuels, the eventuality of a definitive disposal of spent fuels); the criteria that long-term storage facilities must fulfill (confinement measures, reversibility, surveillance and control during the whole duration of the storage); storage concept to be retained (increase of storage pools capacity, long-term storage in pools of reprocessing plants, centralized storage in pools, surface dry-storage on power plant sites, reversible underground storage, subsurface storage and storage/disposal in galleries, surface dry-storage facilities); the preliminary studies for the creation of long-term storage facilities (public information, management by a public French organization, clarifying of the conditions of international circulation of spent fuels); problems linked with the presence of foreign spent fuels in France (downstream of the reprocessing cycle, foreign plutonium and wastes re-shipment); conclusions and recommendations. (J.S.)

  11. Solubility of actinides and surrogates in nuclear glasses; Solubilite des actinides et de leurs simulants dans les verres nucleaires. Limites d'incorporation et comprehension des mecanismes

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Ch

    2003-07-01

    The nuclear wastes are currently incorporated in borosilicate glass matrices. The resulting glass must be perfectly homogeneous. The work discussed here is a study of actinide (thorium and plutonium) solubility in borosilicate glass, undertaken to assess the extent of actinide solubility in the glass and to understand the mechanisms controlling actinide solubilization. Glass specimens containing; actinide surrogates were used to prepare and optimize the fabrication of radioactive glass samples. These preliminary studies revealed that actinide Surrogates solubility in the glass was enhanced by controlling the processing temperature, the dissolution kinetic of the surrogate precursors, the glass composition and the oxidizing versus reducing conditions. The actinide solubility was investigated in the borosilicate glass. The evolution of thorium solubility in borosilicate glass was determined for temperatures ranging from 1200 deg C to 1400 deg C.Borosilicate glass specimens containing plutonium were fabricated. The experimental result showed that the plutonium solubility limit ranged from 1 to 2.5 wt% PuO{sub 2} at 1200 deg C. A structural approach based on the determination of the local structure around actinides and their surrogates by EXAFS spectroscopy was used to determine their structural role in the glass and the nature of their bonding with the vitreous network. This approach revealed a correlation between the length of these bonds and the solubility of the actinides and their surrogates. (author)

  12. Les souvenirs du fondateur

    Directory of Open Access Journals (Sweden)

    Marie-Thérèse Curie

    2009-11-01

    Full Text Available J’étais vicaire à Notre-Dame de Dole dans les années cinquante. Cette fonction, à cette époque, me mettait en contact permanent avec les mouvements de jeunesse, ceux de l’âge d’or des « patros » et des colonies de vacances. On me demanda d’ailleurs de créer plusieurs de ces « colos » de filles (La Rixouse, les Rivières, les Perrets dans le Jura, mais aussi à l’île d’Yeu pour le diocèse. Mon bon contact avec les jeunes et la confiance de ma hiérarchie me désignèrent pour m’occuper d’une paroi...

  13. Platinoids and molybdenum in nuclear waste containment glasses: a structural study; Les platinoides et le molybdene dans des verres d'interet nucleaires: etude structurale

    Energy Technology Data Exchange (ETDEWEB)

    Le Grand, M. [CEA/VALRHO - site de Marcoule, Dept. de Recherche en Retraitement et en Vitrification (DRRV), 30 - Marcoule (France)]|[Paris-7 Univ., 75 (France)

    2000-07-01

    This work deals with the structure of borosilicate nuclear glasses and with some relationships between structure and macroscopic properties. Two types of elements which may disturb the industrial process - platinoids (Ru and Pd) and molybdenum - are central to this work. Platinoids induce weak modifications on the structure of the glass, causing a depolymerization of the glassy network, an increase of the {sup [3]}B/{sup [4]}B ratio and a modification of the medium range order around Si between 3.3 and 4.5 angstrom. The modifications of viscosity and density induced by platinoids in the glass are not due to the structural effect of the platinoids. The increase of viscosity is attributed to needle shaped RuO{sub 2}. It can be moderated by imposing reducing conditions during the elaboration of the glass. The slight difference between experimental and calculated densities is due to the increase of the volume percentage of bubbles in the glass with increasing platinoid content. Mo is either present in the glass as molybdic groupings, or mobilized in chemically complex molybdic crystalline phases. The chemical composition and mineralogy of these phases has been obtained using electronic microprobe data and XRD with Rietveld analysis. The distribution of the different elements between the crystalline phases and the glass is strongly influenced by the structural role of the various cations in the glass. The Mo present in the glass appears as MoO{sub 4} tetrahedra, independent of the borosilicate network. The formation of the crystalline phases can be explained by the existence of a precursor in which the MoO{sub 4} tetrahedra are concentrated in rich alkali and earth-alkali bearing areas of the glass. (author)

  14. Contribution to the study of thermal-hydraulic problems in nuclear reactors; Contribution a l`etude de problemes de thermohydraulique dans les reacteurs nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Cognet, G

    1998-07-07

    In nuclear reactors, whatever the type considered, Pressurized Water Water Reactors (PWRs), Fast Breeder reactors (FBRs)..., thermal-hydraulics, the science of fluid mechanics and thermal behaviour, plays an essential role, both in nominal operating and accidental conditions. Fluid can either be the primary fluid (liquid or gas) or a very specific fluid called corium, which, in case of severe accident, could result from core and environning structure melting. The work reported here represents a 20-year contribution to thermal-hydraulic issues which could occur in FBRs and PWRs. Working on these two types of reactors, both in nominal and severe accident situations, has allowed me to compare the problems and to realize the importance of communication between research teams. The evolution in the complexity of studied problems, unavoidable in order to reduce costs and significantly improve safety, has led me from numerical modelling of single-phase flow turbulence to high temperature real melt experiments. The difficulties encountered in understanding the observed phenomena and in increasing experimental databases for computer code qualification have often entailed my participation in specific measurement device developments or adaptations, in particular non-intrusive devices generally based on optical techniques. Being concerned about the end-use of this research work, I actively participated in `in-situ` thermalhydraulic experiments in the FBRs: Phenix and Super-Phenix, of which I appreciated their undeniable scientific contribution. In my opinion, the thermal-hydraulic questions related to severe accidents are the most complex as they are at the cross-roads of several scientific specialities. Consequently, they require a multi-disciplinary approach and a continuous see-saw motion between experimentalists and modelling teams. After a brief description of the various problems encountered, the main ones are reported. Finally, the importance for research teams to

  15. Activities developed by the biological dosimetry laboratory of the Autoridad Regulatoria Nuclear - ARN of Argentina; Actividades desarrolladas por el laboratorio de dosimetria biologica de la Autoridad Regulatoria Nuclear de Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Radl, A.; Sapienza, C.E.; Taja, M.R.; Bubniak, R.; Deminge, M.; Di Giorgio, M., E-mail: csapienza@arn.gob.ar [Autoridad Regulatoria Nuclear (ARN), Buenos Aires (Argentina)

    2013-07-01

    Biological dosimetry (DB) allows to estimate doses absorbed in individuals exposed to ionizing radiation through the quantification of stable and unstable chromosome aberrations (SCA and UCA). The frequency of these aberrations is referred to a calibration dose response curve (in vitro) to determine the doses of the individual to the whole body. The DB is a necessary support for programs of national radiation protection and response systems in nuclear or radiological emergencies in the event of accidental or incidental, single overexposure or large scale. In this context the Laboratory of Dosimetry Biological (LDB) of the Authority Regulatory Nuclear (ARN) Argentina develops and applies different dosimeters cytogenetic from four decades ago. These dosimeters provide a fact more within the whole of the information necessary for an accidental, complementing the physical and clinical dosimetry exposure assessment. The most widely used in the DB biodosimetric method is the quantification of SCA (dicentrics and rings Central) from a sample of venous blood. The LDB is accredited for the trial, under rules IRAM 301: 2005 (ISO / IEC 17025: 2005) and ISO 19238:2004. Test applies to the immediate dosimetry evaluation of acute exposures, all or a large part of the body in the range 0,1-5 Gy. In this context the LDB is part of the Latin American network of DB (LBDNet), BioDoseNet-who and response system in radiological emergencies and nuclear IAEA-RANET, being enabled to summon the LBDNet if necessary.

  16. Enhanced activity of Anticarsia gemmatalis Hüb. (Lepidoptera: Noctuidae) nuclear polyhedrosis virus by boric acid in the laboratory

    OpenAIRE

    Morales, Lauro; Moscardi, Flávio; Sosa-Gómez, Daniel R.; Paro, Fábio E.; Soldorio, Ivanilda L.

    1997-01-01

    Boric acid concentrations (0.02,0.03,0.045,0.067 and 0.101 g/100 ml of diet) were evaluated in combination with the Anticarsia gemmatalis Hüb. nuclear polyhedrosis virus (AgNPV) for enhanced virali activity against the insect. Seven days after inoculation, the median lethal concentration (LC50) was 1.52 x 10(5) for the AgNPV alone and 7.95 x 10² for the NPV mixed with 0.045g of boric acid/100 ml of diet. At subsequent evaluation dates (9,11 and 14 days after inoculation) LC50's for NPV+boric ...

  17. Questionnement sur les liens de la recherche avec les autres ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    enseignement, la recherche et les services à la société. Malgré les ressources et les efforts consentis par les pays africains et leurs partenaires, l'accomplissement de ces missions par l'institution universitaire semble plutôt mitigé.

  18. Les Cahiers du CREAD

    African Journals Online (AJOL)

    Admin

    choix entre les options de gestion des déchets n'est pas aussi facile aise à hiérarchiser notamment lorsque les gouvernements cherchent à minimiser les coûts. 1.4. Hiérarchie des modes d'élimination de déchets. Idéalement, le choix stratégique du mode d'élimination des déchets devrait être fondé sur des estimations des ...

  19. Initial performance assessment of the disposal of spent nuclear fuel and high-level waste stored at Idaho National Engineering Laboratory. Volume 1, Methodology and results

    Energy Technology Data Exchange (ETDEWEB)

    Rechard, R.P. [ed.

    1993-12-01

    This performance assessment characterized plausible treatment options conceived by the Idaho National Engineering Laboratory (INEL) for its spent fuel and high-level radioactive waste and then modeled the performance of the resulting waste forms in two hypothetical, deep, geologic repositories: one in bedded salt and the other in granite. The results of the performance assessment are intended to help guide INEL in its study of how to prepare wastes and spent fuel for eventual permanent disposal. This assessment was part of the Waste Management Technology Development Program designed to help the US Department of Energy develop and demonstrate the capability to dispose of its nuclear waste. Although numerous caveats must be placed on the results, the general findings were as follows: Though the waste form behavior depended upon the repository type, all current and proposed waste forms provided acceptable behavior in the salt and granite repositories.

  20. Idaho National Laboratory Ten-year Site Plan (2012 through 2021) -- DOE-NE's National Nuclear Capability -- Developing and Maintaining the INL Infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Cal Ozaki

    2010-06-01

    To meet long-term objectives to transform the Idaho National Laboratory (INL), we are providing an integrated, long-term vision of infrastructure requirements that support research, development and demonstration (RD&D) goals outlined in the DOE strategic plans, including the NE Roadmap and reports such as Facilities for the Future of Nuclear Energy Research: A Twenty-year Outlook. The goal of the INL Ten-year Site Plan (TYSP) is to clearly link RD&D mission goals and INL core capabilities with infrastructure requirements (single and multi-program), establish the 10-year end-state vision for INL complexes, identify and prioritize infrastructure and capability gaps, as well as the most efficient and economic approaches to closing those gaps.

  1. Initial performance assessment of the disposal of spent nuclear fuel and high-level waste stored at Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Rechard, R.P.

    1993-12-01

    This performance assessment characterized plausible treatment options conceived by the Idaho National Engineering Laboratory (INEL) for its spent fuel and high-level radioactive waste and then modeled the performance of the resulting waste forms in two hypothetical, deep, geologic repositories: one in bedded salt and the other in granite. The results of the performance assessment are intended to help guide INEL in its study of how to prepare wastes and spent fuel for eventual permanent disposal. This assessment was part of the Waste Management Technology Development Program designed to help the US Department of Energy develop and demonstrate the capability to dispose of its nuclear waste. Although numerous caveats must be placed on the results, the general findings were as follows: Though the waste form behavior depended upon the repository type, all current and proposed waste forms provided acceptable behavior in the salt and granite repositories

  2. Creation of a dynamic database and analysis of LIDAR measurements in web format at the Laboratory of Environmental Laser Applications at the Nuclear and Energy Research Institute

    International Nuclear Information System (INIS)

    Pozzetti, Lucila Maria Viola

    2006-01-01

    The LIDAR system (Light Detection and Ranging) laser remote sensing at the Nuclear and Energy Research Institute - Laboratory of Environmental Laser Applications allows on line measurements of variations in the concentrations of atmospheric aerosols by sending a laser beam to the atmosphere and collecting the backscattered light. Such a system supplies a great number of physical parameters that must be managed in an agile form to the attainment of a real time analysis. Database implementation therefore becomes an important toll of communication and graphical visualization of measurements. A criterion for classification of this valuable information was adopted, establishing defined levels of storage from specific characteristics of the determined data types. The compilation and automation of these measurements will promote optimized integration between data, analysis and retrieval of the resulting properties and of the atmosphere, improving future research and data analysis. (author)

  3. Geological disposal of nuclear waste: II. From laboratory data to the safety analysis – Addressing societal concerns

    International Nuclear Information System (INIS)

    Grambow, Bernd; Bretesché, Sophie

    2014-01-01

    Highlights: • Models for repository safety can only partly be validated. • Long term risks need to be translated in the context of societal temporalities. • Social sciences need to be more strongly involved into safety assessment. - Abstract: After more than 30 years of international research and development, there is a broad technical consensus that geologic disposal of highly-radioactive waste will provide for the safety of humankind and the environment, now, and far into the future. Safety analyses have demonstrated that the risk, as measured by exposure to radiation, will be of little consequence. Still, there is not yet an operating geologic repository for highly-radioactive waste, and there remains substantial public concern about the long-term safety of geologic disposal. In these two linked papers, we argue for a stronger connection between the scientific data (paper I, Grambow et al., 2014) and the safety analysis, particularly in the context of societal expectations (paper II). In this paper (II), we assess the meaning of the technical results and derived models (paper I) for the determination of the long-term safety of a repository. We consider issues of model validity and their credibility in the context of a much broader historical, epistemological and societal context. Safety analysis is treated in its social and temporal dimensions. This perspective provides new insights into the societal dimension of scenarios and risk analysis. Surprisingly, there is certainly no direct link between increased scientific understanding and a public position for or against different strategies of nuclear waste disposal. This is not due to the public being poorly informed, but rather due to cultural cognition of expertise and historical and cultural perception of hazards to regions selected to host a geologic repository. The societal and cultural dimension does not diminish the role of science, as scientific results become even more important in distinguishing

  4. Mesurer et comparer les contextes et les politiques alimentaires en ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    En Amérique latine, les maladies non transmissibles (MNT) sont responsables de trois décès sur quatre. Une mauvaise alimentation fait augmenter de plus en plus les décès et les maladies évitables et prématurées liés aux MNT. Dans le but de régler ce problème, ce projet suivra et comparera les contextes et les ...

  5. Management of waste associated with the decommissioning of the JASON research reactor and the nuclear laboratories at the Royal Naval College Greenwich

    International Nuclear Information System (INIS)

    Beeley, P.A.; Lockwood, R.J.S.; Hoult, D.; Major, R.

    2001-01-01

    In 1996 the UK Government announced that the Royal Naval College, Greenwich would pass to non-defence use by the millennium. As a consequence of this decision, the decommissioning of the JASON 10 kW Argonaut research reactor and the relocation of the Department of Nuclear Science and Technology (DNST) were approved by the Ministry of Defence. The decommissioning of the reactor commenced in November 1997 while DNST remained operational until October 1998. The DNST was responsible for education and training in support of the UK Naval Nuclear Propulsion Programme and operated academic laboratories for atomic and nuclear physics, health physics, instrument calibration and radiochemistry. Therefore, besides the nuclear reactor, open and sealed sources (alpha, beta and gamma), intense x-ray (sealed tube) and gamma-ray ( 60 CO and 137 Cs) sources and small 241 Am/Be neutron sources had been used in the Department for over 35 years. Decommissioning of all facilities was therefore a relatively complex task and the management of waste streams was challenging. All facilities were successfully decommissioned for unrestricted site release by December 1999 and this paper will describe the methodology used for preparation, storage, characterisation and disposal of all waste streams. The most significant waste management task during this decommissioning programme was that associated with the JASON reactor. It should be noted that the JASON reactor fuel was not designated as nuclear waste, the fuel removal and storage were covered under separate contracts and therefore no high level waste was generated. With respect to other waste streams, a combination of Monte Carlo modelling and selective sampling and analysis of the reactor materials was used to estimate the quantities of waste as follows: LLW - 76 tonnes packed in 4 half height ISO containers; LLW - 6 Tonnes packed in 200litre drums in 1 full height ISO container; ILW - 60 kg packed in approved shielded containers; FRW -121

  6. Preliminary Hanford technical input for the Department of Energy programmatic spent nuclear fuel management and Idaho National Engineering Laboratory environmental restoration and waste management programs environmental impact statement

    International Nuclear Information System (INIS)

    Bergsman, K.H.

    1995-03-01

    The US Department of Energy (DOE) is currently evaluating its programmatic options for the safe management of its diverse spent nuclear fuel (SNF) inventory in the Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Environmental Impact Statement (SNF and INEL EIS). In the SNF and INEL EIS, the DOE is assessing five alternatives for SNF management, which consider at which of the DOE sites each of the various SNF types should be managed until ultimate disposition. The range of SNF inventories considered for management at the Hanford Site in the SNF and INEL EIS include the current Hanford Site inventory, only the current Hanford Site defense production SNF inventory, the DOE complex-wide SNF inventory, or none at all. Site-specific SNF management decisions will be evaluated in separate National Environmental Policy Act evaluations. Appendixes A and B include information on (1) additional facilities required to accommodate inventories of SNF within each management alternative, (2) existing and new SNF management facility descriptions, (3) facility costs for construction and operation, (4) facility workforce requirements for construction and operation, and (5) facility discharges. The information was extrapolated from existing analyses to the extent possible. New facility costs, manpower requirements, and similar information are based on rough-order-of-magnitude estimates

  7. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement

    International Nuclear Information System (INIS)

    1994-06-01

    Two types of projects in the spent nuclear fuel and environmental restoration and waste management activities at the Idaho National Engineering Laboratory (INEL) are described. These are: foreseeable proposed projects where some funding for preliminary planning and/or conceptual design may already be authorized, but detailed design or planning will not begin until the Department of Energy (DOE) has determined that the requirements of the National Environmental Policy Act process for the project have been completed; planned or ongoing projects not yet completed but whose National Environmental Policy Act documentation is already completed or is expected to be completed before the Record of Decision for this Envirorunental Impact Statement (EIS) is issued. The section on project summaries describe the projects (both foreseeable proposed and ongoing).They provide specific information necessary to analyze the environmental impacts of these projects. Chapter 3 describes which alternative(s) each project supports. Summaries are included for (a) spent nuclear fuel projects, (b) environmental remediation projects, (c) the decontamination and decommissioning of surplus INEL facilities, (d) the construction, upgrade, or replacement of existing waste management facilities, (e) infrastructure projects supporting waste management activities, and (f) research and development projects supporting waste management activities

  8. Quantitative x-ray diffraction analyses of samples used for sorption studies by the Isotope and Nuclear Chemistry Division, Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Chipera, S.J.; Bish, D.L.

    1989-09-01

    Yucca Mountain, Nevada, is currently being investigated to determine its suitability to host our nation's first geologic high-level nuclear waste repository. As part of an effort to determine how radionuclides will interact with rocks at Yucca Mountain, the Isotope and Nuclear Chemistry (INC) Division of Los Alamos National Laboratory has conducted numerous batch sorption experiments using core samples from Yucca Mountain. In order to understand better the interaction between the rocks and radionuclides, we have analyzed the samples used by INC with quantitative x-ray diffraction methods. Our analytical methods accurately determine the presence or absence of major phases, but we have not identified phases present below ∼1 wt %. These results should aid in understanding and predicting the potential interactions between radionuclides and the rocks at Yucca Mountain, although the mineralogic complexity of the samples and the lack of information on trace phases suggest that pure mineral studies may be necessary for a more complete understanding. 12 refs., 1 fig., 1 tab

  9. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 2, Part B

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    Two types of projects in the spent nuclear fuel and environmental restoration and waste management activities at the Idaho National Engineering Laboratory (INEL) are described. These are: foreseeable proposed projects where some funding for preliminary planning and/or conceptual design may already be authorized, but detailed design or planning will not begin until the Department of Energy (DOE) has determined that the requirements of the National Environmental Policy Act process for the project have been completed; planned or ongoing projects not yet completed but whose National Environmental Policy Act documentation is already completed or is expected to be completed before the Record of Decision for this Envirorunental Impact Statement (EIS) is issued. The section on project summaries describe the projects (both foreseeable proposed and ongoing).They provide specific information necessary to analyze the environmental impacts of these projects. Chapter 3 describes which alternative(s) each project supports. Summaries are included for (a) spent nuclear fuel projects, (b) environmental remediation projects, (c) the decontamination and decommissioning of surplus INEL facilities, (d) the construction, upgrade, or replacement of existing waste management facilities, (e) infrastructure projects supporting waste management activities, and (f) research and development projects supporting waste management activities.

  10. DLHA: Dark Matter Les Houches Agreement

    International Nuclear Information System (INIS)

    Balazs, C.; Cerdeno, D.G.; Leane, R.; Kakizaki, M.; Kraml, S.; Savage, C.; Scott, P.; Sekmen, S.

    2012-01-01

    This work presents a set of conventions and numerical structures that aim to provide a universal interface between computer programs calculating dark matter related observables. It specifies input and output parameters for the calculation of observables such as abundance, direct and various indirect detection rates. These parameters range from cosmological to astrophysical to nuclear observables. The present conventions lay the foundations for defining a future Les Houches Dark Matter Accord. (authors)

  11. Critical review of the clinical relevance of growth hormone and its measurement in the nuclear medicine laboratory

    International Nuclear Information System (INIS)

    Brown, G.M.; Kirpalani, S.H.

    1975-01-01

    A wide variety of metabolic and stressful stimuli, both physical and psychologic, produce rapid elevation of plasma growth hormone (GH). In addition, spontaneous elevation of GH occurs during the day, and a rise in GH occurs in association with the initial slow-wave sleep episode at night. Although the identity of the GH releasing factor has not yet been established, a hypothalamic factor inhibiting GH release named somatostatin identified and synthesized. Most, if not all, of the GH rises are mediated by neural mechanisms, and therefore they may be disrupted by many disease processes affecting the pituitary or the hypothalamus. In acromegaly, hypersecretion of GH occurs, and remnants of hypothalamic control can frequently be demonstrated, suggesting a hypothalamic origin for at least some cases. Provocative stimuli commonly used to assess adequacy of GH responses include hypoglycemia, arginine infusion, and exercise. Administration of L-dopa or apomorphine also produces GH elevation, and since these agents may activate specific dopamine mechanisms, they are of particular interest. Two comprehensive commercial kits have been evaluated, and three major defects have been identified. The literature provided in both kits was inadequate. Both kits required an initial dilution without any replication, so that dilution error would be undetected. One of the kits did not provide a full complement of materials. Quantities of HGH antigen and antisera sufficient for large numbers of assays are also available commercially. However, no commercial source was found for control sera containing known quantities of HGH. Individual laboratories to provide their own supply of sera to use for quality control. It is now known that GH exists in multiple forms in plasma and that antisera may differ in ability to bind these forms. It will, therefore, be necessary for laboratories to revalidate the assay if a different antiserum is used. (U.S.)

  12. Initial performance assessment of the disposal of spent nuclear fuel and high-level waste stored at Idaho National Engineering Laboratory. Volume 2: Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Rechard, R.P. [ed.

    1993-12-01

    This performance assessment characterized plausible treatment options conceived by the Idaho National Engineering Laboratory (INEL) for its spent fuel and high-level radioactive waste and then modeled the performance of the resulting waste forms in two hypothetical, deep, geologic repositories: one in bedded salt and the other in granite. The results of the performance assessment are intended to help guide INEL in its study of how to prepare wastes and spent fuel for eventual permanent disposal. This assessment was part of the Waste Management Technology Development Program designed to help the US Department of Energy develop and demonstrate the capability to dispose of its nuclear waste, as mandated by the Nuclear Waste Policy Act of 1982. The waste forms comprised about 700 metric tons of initial heavy metal (or equivalent units) stored at the INEL: graphite spent fuel, experimental low enriched and highly enriched spent fuel, and high-level waste generated during reprocessing of some spent fuel. Five different waste treatment options were studied; in the analysis, the options and resulting waste forms were analyzed separately and in combination as five waste disposal groups. When the waste forms were studied in combination, the repository was assumed to also contain vitrified high-level waste from three DOE sites for a common basis of comparison and to simulate the impact of the INEL waste forms on a moderate-sized repository, The performance of the waste form was assessed within the context of a whole disposal system, using the U.S. Environmental Protection Agency`s Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes, 40 CFR 191, promulgated in 1985. Though the waste form behavior depended upon the repository type, all current and proposed waste forms provided acceptable behavior in the salt and granite repositories.

  13. Initial performance assessment of the disposal of spent nuclear fuel and high-level waste stored at Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Rechard, R.P.

    1993-12-01

    This performance assessment characterized plausible treatment options conceived by the Idaho National Engineering Laboratory (INEL) for its spent fuel and high-level radioactive waste and then modeled the performance of the resulting waste forms in two hypothetical, deep, geologic repositories: one in bedded salt and the other in granite. The results of the performance assessment are intended to help guide INEL in its study of how to prepare wastes and spent fuel for eventual permanent disposal. This assessment was part of the Waste Management Technology Development Program designed to help the US Department of Energy develop and demonstrate the capability to dispose of its nuclear waste, as mandated by the Nuclear Waste Policy Act of 1982. The waste forms comprised about 700 metric tons of initial heavy metal (or equivalent units) stored at the INEL: graphite spent fuel, experimental low enriched and highly enriched spent fuel, and high-level waste generated during reprocessing of some spent fuel. Five different waste treatment options were studied; in the analysis, the options and resulting waste forms were analyzed separately and in combination as five waste disposal groups. When the waste forms were studied in combination, the repository was assumed to also contain vitrified high-level waste from three DOE sites for a common basis of comparison and to simulate the impact of the INEL waste forms on a moderate-sized repository, The performance of the waste form was assessed within the context of a whole disposal system, using the U.S. Environmental Protection Agency's Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes, 40 CFR 191, promulgated in 1985. Though the waste form behavior depended upon the repository type, all current and proposed waste forms provided acceptable behavior in the salt and granite repositories

  14. LES PAYS EN TRANSITION

    International Development Research Centre (IDRC) Digital Library (Canada)

    Cathy Egan

    capacité du pays d'exécuter des recherches pouvant avoir une incidence sur les poli- tiques et d'élaborer des politiques fondées sur les constatations de la recherche. Ce processus exigeait un calendrier à long terme et des engagements solides; il suppo- sait également de l'expérimentation au cours des premières étapes ...

  15. Les chemins du savoir

    International Development Research Centre (IDRC) Digital Library (Canada)

    Cathy Egan

    solutions africaines aux problèmes causés par les politiques d'ajustement structurel sévères imposées par les institutions financières internationales. Aujourd'hui, cet organisme à but non lucratif, se place au premier rang des organismes de recherche en économie en. « Quand la démocratie bat de l'aile dans un pays, tout.

  16. Les Cahiers du CREAD

    African Journals Online (AJOL)

    Admin

    améliorer la réputation de Numericable-qui est en déficit. Accès du Numericable à des compétences marketing de SFR de mobile plus réactif, et agressif. Optimisation des dépenses marketing en unifiant toutes les offres autour de la seule marque SFR. L'offre quadruple play permet de fidéliser les clients des deux entités ...

  17. Annual Continuation And Progress Report For Low-Energy Nuclear Physics Research At Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Scielzo, N. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wu, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-27

    (I)In this project, the Beta-­decay Paul Trap, an open-­geometry RFQ ion trap that can be instrumented with sophisticated radiation detection arrays, is used for precision β-­decay studies. Measurements of β-­decay angular correlations, which are sensitive to exotic particles and other phenomena beyond the Standard Model (SM) of particle physics that may occur at the TeV-­energy scale, are being performed by taking advantage of the favorable properties of the mirror 8Li and 8B β± decays and the benefits afforded by using trapped ions. By detecting the β and two α particles emitted in these decays, the complete kinematics can be reconstructed. This allows a simultaneous measurement of the β-­n, β-­n-­α, and β-α correlations and a determination of the neutrino energy and momentum event by event. In addition, the 8B neutrino spectrum, of great interest in solar neutrino oscillation studies, can be determined in a new way. Beta-­delayed neutron spectroscopy is also being performed on neutron-­rich isotopes by studying the β-­decay recoil ions that emerge from the trap with high efficiency, good energy resolution, and practically no backgrounds. This novel technique is being used to study isotopes of mass-­number A~130 in the vicinity of the N=82 neutron magic number to help understand the rapid neutron-­capture process (r-­process) that creates many of the heavy isotopes observed in the cosmos. (II)A year-long CHICO2 campaign at ANL/ATLAS together with GRETINA included a total of 10 experiments, seven with the radioactive beams from CARIBU and three with stable beams, with 82 researchers involved from 27 institutions worldwide. CHICO2 performed flawlessly during this long campaign with achieved position resolution matching to that of GRETINA, which greatly enhances the sensitivity in the study of nuclear γ-­ray spectroscopy. This can be demonstrated in our results on 144Ba and 146

  18. Nuclear electronics

    International Nuclear Information System (INIS)

    Lucero B, E.

    1989-01-01

    The rapid technical development of Colombia over the past years, resulted among others, a considerable increase in the number of measuring instrumentation and testing laboratories, scientific research and metrology centers, in industry, agriculture, public health, education on the nuclear field, etc. IAN is a well organized institution with qualified management, trained staff and reasonably equipped laboratories to carry out tasks as: Metrology, standardization, quality control and maintenance and repair of nuclear instruments. The government of Colombia has adopted a policy to establish and operate through the country maintenance and repair facilities for nuclear instrumentation. This policy is reflected in the organization of electronic laboratories in Bogota-IAN

  19. Evaluation of uranium removal by Hydrilla verticillata (L.f.) Royle from low level nuclear waste under laboratory conditions.

    Science.gov (United States)

    Srivastava, Sudhakar; Bhainsa, K C

    2016-02-01

    The present study evaluated uranium (U) removal ability and tolerance to low level nuclear waste (LLNW) of an aquatic weed Hydrilla verticillata. Plants were screened for growth in 10%-50% waste treatments up to 3 d. Treatments of 20% and 50% waste imposed increasing toxicity with duration assessed in terms of change in fresh weight and in the levels of photosynthetic pigments and thiobarbituric acid-reactive substances. U concentration, however, did not show a progressive increase and was about 42 μg g(-1) dw from 20% to 50% waste at 3 d. This suggested that a saturation stage was reached with respect to U removal due to increasing toxicity. However, in another experiment with 10% waste and 10% waste+10 ppm U treatments, plants showed an increase in U concentration with the maximum level approaching 426 μg g(-1) dw at 3 d without showing any toxicity as compared to that at 20% and 50% waste treatments. Hence, plants possessed significant potential to take up U and toxicity of LLNW limited their U removal ability. This implies that the use of Hydrilla plants for U removal from LLNW is feasible at low concentrations and would require repeated harvesting at short intervals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Diagnostic systems for the nuclear fusion and plasma research in the PF-24 plasma focus laboratory at the IFJ PAN

    Directory of Open Access Journals (Sweden)

    Marciniak Łukasz

    2016-12-01

    Full Text Available This paper presents a set of diagnostics dedicated to PF-24 - new medium size - plasma focus (PF device built and operated at the Institute of Nuclear Physics Polish Academy of Sciences (IFJ PAN. The PF-24 can operate at energy level up to 93 kJ and charging voltage up to 40 kV. Each condenser is connected with a specially designed spark gap with a very small jitter, which ensures a high effi ciency and a low current rise time. The working parameters of PF-24 generator make it a suitable tool for testing new detection systems to be used in fusion research. Four types of such detection systems are presented in this article: three diagnostic systems used to measure electric quantities (Rogowski coil, magnetic probe, capacitance probe, neutron counter based on beryllium activation, fast neutron pinhole camera based on small-area BCF-12 plastic scintillation detectors and high-speed four-frame soft X-ray camera with microchannel plate.

  1. Radiation protection - Performance criteria for laboratories performing cytogenetic triage for assessment of mass casualties in radiological or nuclear emergencies - General principles and application to dicentric assay

    International Nuclear Information System (INIS)

    2008-01-01

    The potential for nuclear and radiological emergencies involving mass casualties from accidental or malicious acts or terrorism requires generic procedures for emergency dose assessment to help the development of medical response capabilities. A mass-casualties incident is defined here as an event that exceeds the local medical resources. Biological dosimetry, based on cytogenetic analysis using the dicentric assay, typically applied for accidental dose assessment, has been defined in ISO 19238. Cytogenetic triage is the use of chromosome damage to evaluate and assess approximately and rapidly radiation doses received by individuals in order to supplement the clinical categorization of casualties. This International Standard focuses on the use of the dicentric assay for rapid cytogenetic triage involving mass-casualty incidents. The primary purpose of this International Standard is to provide a guideline to all laboratories in order to perform the dicentric-bioassay - cytogenetic triage for dose assessment using documented and validated procedures. Secondly, it can facilitate the application of cytogenetic biodosimetry networks to permit comparison of results obtained in different laboratories. Finally, it is expected that laboratories newly commissioned to carry out the cytogenetic triage conform to this International Standard in order to perform the triage reproducibly and accurately. This International Standard is written in the form of procedures to adopt for dicentric-bioassay - cytogenetic triage biological dosimetry for overexposures involving mass radiological casualties. The criteria required for such measurements usually depend on the application of the results: medical management when appropriate, radiation-protection management, record keeping and medical/legal requirements. For example, selected cases can be analysed to produce a more accurate evaluation of high partial-body exposure; secondly, doses can be estimated for persons exposed below the

  2. Deposition of hematite particles on alumina seal faceplates of nuclear reactor coolant pumps: Laboratory experiments and industrial feedback

    Directory of Open Access Journals (Sweden)

    Lefèvre Grégory

    2012-01-01

    Full Text Available In the primary circuit of pressurized water reactors (PWR, the dynamic sealing system in reactor coolant pumps is ensured by mechanical seals whose ceramic parts are in contact with the cooling solution. During the stretch-out phase in reactor operation, characterized by low boric acid concentration, the leak-off flow has been observed to abnormally evolve in industrial plants. The deposition of hematite particles, originating from corrosion, on alumina seals of coolant pumps is suspected to be the cause. As better understanding of the adhesion mechanism is the key factor in the prevention of fouling and particle removal, an experimental study was carried out using a laboratory set-up. With model materials, hematite and sintered alumina, the adhesion rate and surface potentials of the interacting solids were measured under different chemical conditions (solution pH and composition in analogy with the PWR ones. The obtained results were in good agreement with the DLVO (Derjaguin-Landau-Verwey- Overbeek theory and used as such to interpret this industrial phenomenon.

  3. Fouling of steam generator tubes in nuclear power plants. Laboratory tests to reproduce oxides deposition and chemical cleanings

    International Nuclear Information System (INIS)

    Goujon, C.; Bescond, A.; Mansour, C.; Delaunay, S.; Pauporte, T.; Bretelle, J-L.

    2014-01-01

    In the secondary circuit of nuclear Pressurized Water Reactors, magnetite (Fe 3 O 4 ) deposits lead to Steam Generators (SG) fouling decreasing thermal performances. As a counteraction, chemical cleanings, started in 1989, have become since 2006 the priority strategy to remove oxides deposited in SG of the EDF fleet. The use of chelating agents in chemical cleaning processes could affect the passive layer of SG tubes, and then modify their surface reactivity. To investigate this impact, a three steps R and D program was established: (1) reproduce deposits on SG tube surfaces using several techniques, (2) apply industrial chemical cleaning procedures and (3) study the redeposition of magnetite. First, SG tubes were fouled in a specific experimental loop, FORTRAND. In this device, magnetite and soluble iron were formed by carbon steel pipes corrosion in feedwater circuit representative conditions and released in the fluid. Then, corrosion products were flow-carried to the autoclave where their precipitation and deposition on heated SG tubes led to tubes fouling. Additional nickel base alloys substrates were also fouled by magnetite electrodeposition. Second, chemical cleaning processes were applied on fouled substrates and tubes in a specific experimental device, ECCLIPS. SG industrial cleaning processes timing and thermochemical conditions were strictly respected during these operations. Finally, fouling of cleaned substrates and tubes was performed in FORTRAND in the same experimental conditions as in the first step. At each step of the study, oxide composition and properties were investigated by surface characterizations. Comparison of oxide deposits before and after cleaning highlights the impact of chemical cleanings on tubes surface reactivity. (author)

  4. Les tribunaux, les réseaux et les entreprises en démarrage : l ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Les tribunaux, les réseaux et les entreprises en démarrage : l'importance des institutions pour les petites entreprises de l'Asie du Sud. Ce projet examinera les conséquences ... Sud - favoriser la croissance partagée. En Asie du Sud, la plupart des travailleurs ont un emploi mal rémunéré n'offrant aucune protection sociale.

  5. Les tribunaux, les réseaux et les entreprises en démarrage : l ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Ce projet examinera les conséquences économiques des tribunaux sur les entreprises en Asie du Sud. Plus précisément, il analysera la façon dont les tribunaux et les autres obstacles institutionnels empêchent les nouvelles petites et moyennes entreprises de faire leur entrée sur le marché et de créer des emplois.

  6. The nuclear refugees; Les refugies du nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Linton, M.

    2011-06-15

    The authors propose a report on the various situations of people who had to be evacuated after the Fukushima accident. Along with examples of people who left their homes with taking with them a single object, the authors describe and comment how this evacuation occurred, the problems faced by the authorities for refugee reception and accommodation. This evacuation has been either organised or spontaneous. Hospitals had to be evacuated as well. Then, local authorities faced food shortage. Some animals have been saved, other starved to death. Dead animals are covered with lime. Dead bodies are decontaminated before being given back to families. Tests are regularly performed to assess people contamination. A second article discussed the bad news concerning the different Fukushima reactors with their melted cores. The geophysical aspects of the earthquake are evoked in a last article

  7. La science rapproche les peuples

    CERN Multimedia

    CERN Press Office. Geneva

    1999-01-01

    On Monday 3 May 1999 at 5 p.m. Ambassador Vassily Sidorov, Permanent Representative of the Russian Federation to the United Nations, together with the Director General of the European Laboratory for Particle Physics (CERN*)) Prof. Luciano Maiani, and the Director of the Joint Institute for Nuclear Research (JINR**) in Dubna, Russia, Prof. Vladimir Kadyshevsky will inaugurate the exhibition "Science Bringing Nations Together" in the Pas Perdus Hall of the Palais des Nations, Geneva.

  8. 20. Les transports du futur

    OpenAIRE

    Battin-Leclerc, Frédérique

    2017-01-01

    Les transports contribuent de façon significative à la consommation de pétrole et à l’émission dans l’atmosphère de gaz polluants. La combustion des carburants dans les moteurs conduit, en particulier, à la formation de gaz à effet de serre*, principalement de dioxyde de carbone (CO2) dont les émissions au niveau mondial sont en constante augmentation. Les moteurs sont aussi responsables de la formation de composés toxiques, soit directement, comme les aldéhydes* ou les particules de suies, s...

  9. INL Site Portion of the April 1995 Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Mamagement Programmatic Final Environmental Impact Statement

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    2005-06-30

    In April 1995, the Department of Energy (DOE) and the Department of the Navy, as a cooperating agency, issued the Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Final Environmental Impact Statement (1995 EIS). The 1995 EIS analyzed alternatives for managing The Department's existing and reasonably foreseeable inventories of spent nuclear fuel through the year 2035. It also included a detailed analysis of environmental restoration and waste management activities at the Idaho National Engineering and Environmental Laboratory (INEEL). The analysis supported facility-specific decisions regarding new, continued, or planned environmental restoration and waste management operations. The Record of Decision (ROD) was signed in June 1995 and amended in February 1996. It documented a number of projects or activities that would be implemented as a result of decisions regarding INL Site operations. In addition to the decisions that were made, decisions on a number of projects were deferred or projects have been canceled. DOE National Environmental Policy Act (NEPA) implementing procedures (found in 10 CFR Part 1 021.330(d)) require that a Supplement Analysis of site-wide EISs be done every five years to determine whether the site-wide EIS remains adequate. While the 1995 EIS was not a true site-wide EIS in that several programs were not included, most notably reactor operations, this method was used to evaluate the adequacy of the 1995 EIS. The decision to perform a Supplement Analysis was supported by the multi-program aspect of the 1995 EIS in conjunction with the spirit of the requirement for periodic review. The purpose of the SA is to determine if there have been changes in the basis upon which an EIS was prepared. This provides input for an evaluation of the continued adequacy of the EIS in light of those changes (i.e., whether there are substantial changes in the proposed

  10. Les technolectes au Maroc

    OpenAIRE

    Messaoudi, Leila

    2017-01-01

    Cette réflexion sur les technolectes au Maroc émane d’un ensemble de travaux menés sur le terrain et conduit à une synthèse permettant de dégager le fonctionnement général et les tendances d’évolution. Nous commencerons par rappeler les traits définitoires du technolecte. Nous aborderons ensuite se : modes de réalisation, en illustrant par des échantillons de corpus recueillis au Maroc. Définition de « technolecte » Par « technolecte », nous entendons l’ensemble des usages lexicaux et discurs...

  11. pour les femmes et les enfants vulnérables

    International Development Research Centre (IDRC) Digital Library (Canada)

    Mise au point sur les grossesses chez les adolescentes . 7. La nécessité de meilleures données et de systèmes d'information sanitaire plus solides . 9. Lutte contre les inégalités en matière de santé . 10. Priorités mondiales pour transformer les systèmes de santé dysfonctionnels . 12. Prise en compte des répercussions ...

  12. Mobiliser les sciences sociales dans le monde arabe : les ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Il est de plus en plus pressant de mener des recherches sur les facteurs, les tendances et la trajectoire en ce qui concerne les événements actuels dans la région arabe. Ce projet appuiera le travail de l'Arab Council for the Social Sciences (ACSS) afin de régler les problèmes à l'aide de recherche pertinente au niveau des ...

  13. Baudelaire et les estampes

    OpenAIRE

    Chagniot, Claire

    2018-01-01

    Les estampes ont inspiré à Baudelaire des essais sur le rire et sur les caricaturistes français et étrangers, sans doute conçus dès 1846. Sa correspondance montre qu’il a connu Gavarni et qu’il fut proche d’Honoré Daumier. Après 1860, il fut en relation avec Charles Meryon et avec plusieurs aquafortistes d’avant-garde, Félix Bracquemond, Édouard Manet, Alphonse Legros, Johan Barthold Jongkind, James McNeill Whistler et Félicien Rops. Il projeta même de collaborer avec certains d’entre eux et ...

  14. Les institutions sportives et les pouvoirs publics en Afrique noire ...

    African Journals Online (AJOL)

    Les institutions sportives et les pouvoirs publics en Afrique noire Francophone: les paradoxes d'un equilibre fragile et/ou inacheve des pouvoirs (1920-2010) ... mass and/or of the high competition sport, the recognition of a public service of the new sporty policies deludes the stake aside from the socio-educatives practices.

  15. Nuclear astrophysics

    International Nuclear Information System (INIS)

    Haxton, W.C.

    1992-01-01

    The problem of core-collapse supernovae is used to illustrate the many connections between nuclear astrophysics and the problems nuclear physicists study in terrestrial laboratories. Efforts to better understand the collapse and mantle ejection are also motivated by a variety of interdisciplinary issues in nuclear, particle, and astrophysics, including galactic chemical evolution, neutrino masses and mixing, and stellar cooling by the emission of new particles. The current status of theory and observations is summarized

  16. Precision and accuracy control of dose calibrator: CAPINTEC CRC 12 in laboratory for radiopharmacy of Nuclear Medicine Institute of Sucre, Bolivia

    International Nuclear Information System (INIS)

    Huanca Sardinas, E; Castro Sacci, O; Torrez Cabero, M; Vasquez Ibanez, M.R; Zambrana Zelada, AJ.

    2013-01-01

    The dose calibrator is one of the indispensable tools in radiopharmacy laboratories of a nuclear medicine department also is mandated to provide accurate readings. A very high doses produce unnecessary radiation exposure to the patient or a very low dose, prolong the acquisition time of the studies affecting the quality of the image. In the present work we did a retrospective analysis of the results of quality checks performed at precision accuracy of the Gauge CRC12 CAPINTEC dose calibrator over a period of 16 years, using sealed certified sources with low power, medium and high: Ba 133 , Cs 137 , Co 60 and Co 57 . The results showed that the lowest standard deviation value was 0.17 for Ba133, relative to Co 57 of 2.97 in the control of accuracy. Accuracy over control values were also lower standard deviation for Ba 133 1.00, relative to Co 57 10.06. Being stated that the CRC12 CAPINTEC activimeter reliability is acceptable during the reporting period and under the conditions indicated. Therefore, we continue to make these quality control procedures and the professional must feel confident that the measurements obtained with it are reliable

  17. Technology Evaluations Related to Mercury, Technetium, and Chloride in Treatment of Wastes at the Idaho Nuclear Technology and Engineering Center of the Idaho National Engineering and Environmental Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    C. M. Barnes; D. D. Taylor; S. C. Ashworth; J. B. Bosley; D. R. Haefner

    1999-10-01

    The Idaho High-Level Waste and Facility Disposition Environmental Impact Statement defines alternative for treating and disposing of wastes stored at the Idaho Nuclear Technology and Engineering Center. Development is required for several technologies under consideration for treatment of these wastes. This report contains evaluations of whether specific treatment is needed and if so, by what methods, to remove mercury, technetium, and chlorides in proposed Environmental Impact Statement treatment processes. The evaluations of mercury include a review of regulatory requirements that would apply to mercury wastes in separations processes, an evaluation of the sensitivity of mercury flowrates and concentrations to changes in separations processing schemes and conditions, test results from laboratory-scale experiments of precipitation of mercury by sulfide precipitation agents from the TRUEX carbonate wash effluent, and evaluations of methods to remove mercury from New Waste Calcining Facility liquid and gaseous streams. The evaluation of technetium relates to the need for technetium removal and alternative methods to remove technetium from streams in separations processes. The need for removal of chlorides from New Waste Calcining Facility scrub solution is also evaluated.

  18. Technology Evaluations Related to Mercury, Technetium, and Chloride in Treatment of Wastes at the Idaho Nuclear Technology and Engineering Center of the Idaho National Engineering and Environmental Laboratory

    International Nuclear Information System (INIS)

    Barnes, C.M.; Taylor, D.D.; Ashworth, S.C.; Bosley, J.B.; Haefner, D.R.

    1999-01-01

    The Idaho High-Level Waste and Facility Disposition Environmental Impact Statement defines alternative for treating and disposing of wastes stored at the Idaho Nuclear Technology and Engineering Center. Development is required for several technologies under consideration for treatment of these wastes. This report contains evaluations of whether specific treatment is needed and if so, by what methods, to remove mercury, technetium, and chlorides in proposed Environmental Impact Statement treatment processes. The evaluations of mercury include a review of regulatory requirements that would apply to mercury wastes in separations processes, an evaluation of the sensitivity of mercury flowrates and concentrations to changes in separations processing schemes and conditions, test results from laboratory-scale experiments of precipitation of mercury by sulfide precipitation agents from the TRUEX carbonate wash effluent, and evaluations of methods to remove mercury from New Waste Calcining Facility liquid and gaseous streams. The evaluation of technetium relates to the need for technetium removal and alternative methods to remove technetium from streams in separations processes. The need for removal of chlorides from New Waste Calcining Facility scrub solution is also evaluated

  19. Distribution of 238U, 232Th, 40K, and 137Cs concentrations in soil samples nearby a nuclear laboratory, Capao Island, Brazil

    Directory of Open Access Journals (Sweden)

    Oliveira Luciano S.R.

    2015-01-01

    Full Text Available Absolute soil concentrations of 238U, 232Th, 40K, and 137Cs samples were measured using high-resolution gamma spectrometry. The area of interest encompasses an embankment in a mangrove swamp in Guaratiba, Rio de Janeiro, called Capao Island, where nuclear, chemical and biological defense laboratories of the Brazilian Army Technology Center are in operation for more than 30 years. In order to ensure that no significant environmental impact has resulted from neutron physics experiments performed in a graphite exponential pile in addition to the operation of two cesium-driven irradiating facilities, radiation monitoring of the isotopes was carried out. A total of eight 250 ml soil samples were extracted within an area of 300 m x 300 m. No trace of 137Cs was detected and the measured levels of 238U were found to be close to the global mean. However, some data that slightly exceeded the expected normal range for 232Th (60 % of samples and 40K (20 % of samples should be attributed to the construction debris (cement, rocks, and sand used in the embankment at the site. Since there is no handling of those isotopes at that site or adjacent facilities that could affect their presence, it was concluded that no detectable contamination has occurred.

  20. Evaluation of the impact of technology transfers between public research laboratories and industrial companies. The case of the French nuclear authority

    International Nuclear Information System (INIS)

    Petit, Serge

    1999-12-01

    Public research institutions are increasingly expected to evaluate the economic impact of their research, but the generally available impact indicators are not satisfactory. This research develops indicators that grasp with greater detail the effects that are induced by R and D collaborations between a laboratory and a firm. Seven such indicators are being developed on the empirical evidence of twenty two R and D projects of the French Nuclear Authority (CEA). Functional relationships are being sought between these indicators and a couple of explanatory variables that stand for the profile of the innovating firm, the features of the collaboration and of the launched innovation. Kohonen's algorithm allows to extract robust associations between indicators and their determinants, thus founding a sort of 'mixed' methodology that relies on the principles of monograph observations and statistical data mining. Three kinds of results are derived from the empirical work: - the production of indicators that are complementary to the currently-used impact indicator, namely the innovation-induced turnover, and the definition of the scenarios in which they apply; - the evidence of a link between different ways of organising collaborative R and D projects and the underlying industrial objectives; - some guidelines for the construction of revenue-optimising contracts for the CEA. The results illustrate the immaterial dimension of technology and its importance in economic terms. The linear model, in spite of the criticism, is shown to produce interesting results in some cases. (author) [fr

  1. LES MALADIES NEUROLOGIQUES OBSERVEES EN ...

    African Journals Online (AJOL)

    Conclusion: Les affections neurologiques habituellement rencontrées ont un aspect similaire à celles observées dans le sud du Nigéria. Les AVC et les affections du système nerveux sont les principales causes de morbidité et de mortalité. Ces données impliquent la mise en place d\\'unités régionales d\\'AVC de même que ...

  2. Les Cahiers du CREAD

    African Journals Online (AJOL)

    Admin

    0.05). Ceci peut indirectement affecter la perception des femmes sur leur éventuel projet entrepreneurial. -Effet la culture et la religion sur les attitudes et croyances. Après l'analyse des résultats, il transparaît que la culture et la religion ont un ...

  3. les cahiers du cread

    African Journals Online (AJOL)

    Our Journal “les cahiers du cread” is a quarterly economic review publishing original findings of empirical research and theoretical debates on fields pertaining to our mission coverage (Macro Economics, Industrial Economics and Firms, Human Development & Social Economics, Agriculture & Environment). Other websites ...

  4. Les formes du fond

    Directory of Open Access Journals (Sweden)

    Michel Maffesoli

    2004-12-01

    Full Text Available Il n'est pas vrai que la nature a horreur du vide. Peut-être même s'y complait-elle. Le creux est aussi une modalité de l'être. Il est possible de s'y nicher, de s'y lover paresseusement et, ainsi, de se protéger contre l'angoisse du temps qui passe. Le creux des apparences est, à certains moments, une des formes d'expression de la vie sociale. Encore faut-il savoir le reconnaître. Certes, nous avons tous une existence personnelle, mais nous sommes, également, les représentants, parfois même les victimes, d'un "esprit commun", peut-être même d'un "inconscient collectif" qui s'est constitué de siècle en siècle. Et, très souvent, là où nous croyons exprimer nos propres idées, nous ne sommes que les porte-voix, les figurants d'un vaste "theatrum mundi" aux dimensions infinies.

  5. Notes sur les Limaces

    NARCIS (Netherlands)

    Regteren, van C.O.

    1964-01-01

    9. DESCRIPTION D'UNE NOUVELLE ESPÈ CE DE DEROCERAS DES ENVIRONS DE GRENADE 1) Même pour celui qui ne dispose pas d'une voiture, la ville de Grenade est un magnifique centre d'excursions. Les trams et autobus permettent au naturaliste de sortir de la ville en toutes directions et de commencer ses

  6. Nuclear waste

    International Nuclear Information System (INIS)

    1992-05-01

    The Nuclear Waste Policy Act of 1982, as amended in 1987, directed the Secretary of Energy to, among other things, investigate Yucca Mountain, Nevada, as a potential site for permanently disposing of highly radioactive wastes in an underground repository. In April 1991, the authors testified on Yucca Mountain project expenditures before your Subcommittee. Because of the significance of the authors findings regrading DOE's program management and expenditures, you asked the authors to continue reviewing program expenditures in depth. As agreed with your office, the authors reviewed the expenditures of project funds made available to the Department of Energy's (DOE) Lawrence Livermore National Laboratory, which is the lead project contractor for developing a nuclear waste package that wold be used for disposing of nuclear waste at Yucca Mountain. This report discusses the laboratory's use of nuclear waste funds to support independent research projects and to manage Yucca Mountain project activities. It also discusses the laboratory's project contracting practices

  7. LES APPROCHES PSYCHOSOCIOLOGIQUES DES ORGANISATIONS

    Directory of Open Access Journals (Sweden)

    Deaconu Alecxandrina

    2008-05-01

    Full Text Available Les préoccupations pour bien comprendre la complexité des organisations sont bien connues dans la théorie et la pratique du management. La motivation la plus fréquente pour toutes les recherches et les investigationes faites a été fondée sur le besoin de savoir gérer les situations diverses en vue de maximiser la performance organisationnelle. En ce qui nous concerne, pour enrichir les informations disponibles, nous voulons élargir, dans notre communication, les approches traditionelles, focaliser l’attention sur la dimension psychologiques des organisations et présenter les mécanismes qui favorisent l’implication des salariés.

  8. Les barrages alpins

    Directory of Open Access Journals (Sweden)

    Alain Marnezy

    2009-03-01

    Full Text Available Les barrages-réservoirs de montagne ont été réalisés initialement dans les Alpes pour répondre à la demande d’énergie en période hivernale. Une certaine diversification des usages de l’eau s’est ensuite progressivement développée, en relation avec le développement touristique des collectivités locales. Aujourd’hui, la participation des ouvrages d’Électricité De France à la production de neige de culture représente une nouvelle étape. Dans les régions où les aménagements hydroélectriques sont nombreux, les besoins en eau pour la production de neige peuvent être résolus par prélèvements à partir des adductions EDF. Les gestionnaires de stations échappent ainsi aux inconvénients liés à la construction et à la gestion des « retenues collinaires ». Cette évolution, qui concerne déjà quelques régions alpines comme la haute Maurienne ou le Beaufortin, apparaît comme une forme renouvelée d’intégration territoriale de la ressource en eau.Mountain reservoirs were initially built in the Alps to meet energy needs in the winter. A certain diversification in the uses of water then gradually developed, related to tourism development in the local communities. Today, the use of facilities belonging to EDF (French Electricity Authority to provide water for winter resorts to make artificial snow represents a new phase. By taking water from EDF resources to supply snow-making equipment, resort managers are thus able to avoid the problems related to the construction and management of small headwater dams. This new orientation in the use of mountain water resources already affects a number of alpine regions such as the Upper Maurienne valley and Beaufortain massif and represents a renewed form of the territorial integration of water resources.

  9. Contribution to the study of time-resolution in pulse electronics for nuclear physics: phase control circuits; Contribution a l'etude de la resolution en temps de l'electronique impulsionnelle pour physique nucleaire: les circuits de mise en phase

    Energy Technology Data Exchange (ETDEWEB)

    Cortet, J.P. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-07-01

    Phase control circuits make it possible to improve quite markedly the time resolution in pulse electronics. They replace a random pulse, of which the time of arrival with respect to a reference zero is being measured, by another pulse whose phase is well determined with respect to that, of a clock taken as reference. The time spectrum of the output, delayed, can always be situated inside channels of width {delta}T defined by the clock. The time statistics of the events analyzed is always correct even if the transition time for the circuits defining the channels represents a large fraction of {delta}T: the coding of the time becomes perfect, The phase control circuits, used in precision chronometry, are widely applied in Nuclear Physics since the lime spectra obtained are representative, indirectly, of certain values which are required to be measured with great accuracy. A description is given of: the constitution and operation of phase control circuits; a chain with automatic analysis and automatic reading, built for testing these circuits. Finally the measurement results are given. (author) [French] Les circuits de mise en phase permettent d'ameliorer notablement la resolution en temps de l'electronique impulsionnelle. Ils substituent a une impulsion aleatoire, dont on cherche a mesurer l'instant d'arrivee par rapport a un instant pris pour origine, une autre impulsion dont la phase est bien determinee par rapport a celle d'une horloge prise comme reference. Le spectre temporel de sortie, retarde, peut toujours etre situe a l'interieur des canaux de largeur {delta}T, definis par l'horloge. La statistique temporelle des evenements analyses est toujours correcte, meme si la duree de transition des circuits definissant les canaux represente une grande fraction de {delta}T: le codage de temps devient parfait. Les circuits de mise en phase, utilises en chronometrie fine, sont tres employes en Physique Nucleaire car les spectres

  10. Risk analysis and reliability of the GERDA Experiment extraction and ventilation plant at Gran Sasso mountain underground laboratory of Italian National Institute for Nuclear Physics

    Energy Technology Data Exchange (ETDEWEB)

    Lombardi, Mara; Garzia, Fabio; Guarascio, Massimo; Giovannone, Enzo Paolo; Giampaoli, Antonio; Musti, Mafalda; Ranalli, Maria Teresa; Perruzza, Roberto; Tartaglia, Roberto, E-mail: mara.lombardi@uniroma1.it, E-mail: fabio.garzia@uniroma1.it, E-mail: massimo.guarascio@uniroma1.it [Universita degli Studi di Roma La Sapienza-Engineering Roma (Italy); Corpo Nazionale Vigili del Fuoco L' Aquila (CNVF) (Italy); Istituto Nazionale di Fisica Nucleare - Laboratori del Gran Sasso L' Aquila, Abruzzo (Italy)

    2017-07-15

    The aim of this study is the risk analysis evaluation about argon release from the GERDA experiment in the Gran Sasso underground National Laboratories (LNGS) of the Italian National Institute for Nuclear Physics (INFN). The GERDA apparatus, located in Hall A of the LNGS, is a facility with germanium detectors located in a wide tank filled with about 70 m{sup 3} of cold liquefied argon. This cryo-tank sits in another water-filled tank (700 m{sup 3} ) at atmospheric pressure. In such cryogenic processes, the main cause of an accidental scenario is lacking insulation of the cryo-tank. A preliminary HazOp analysis has been carried out on the whole system. The risk assessment identified two possible top-events: explosion due to a Rapid Phase Transition - RPT and argon runaway evaporation. Risk analysis highlighted a higher probability of occurrence of the latter top event. To avoid emission in Hall A, the HazOp, Fault Tree and Event tree analyses of the cryogenic gas extraction and ventilation plant have been made. The failures related to the ventilation system are the main cause responsible for the occurrence. To improve the system reliability some corrective actions were proposed: the use of UPS and the upgrade of damper opening devices. Furthermore, the Human Reliability Analysis identified some operating and management improvements: action procedure optimization, alert warnings and staff training. The proposed model integrates the existing analysis techniques by applying the results to an atypical work environment and there are useful suggestions for improving the system reliability. (author)

  11. Characterizing source fingerprints and ageing processes in laboratory-generated secondary organic aerosols using proton-nuclear magnetic resonance (1H-NMR) analysis and HPLC HULIS determination

    Science.gov (United States)

    Zanca, Nicola; Lambe, Andrew T.; Massoli, Paola; Paglione, Marco; Croasdale, David R.; Parmar, Yatish; Tagliavini, Emilio; Gilardoni, Stefania; Decesari, Stefano

    2017-09-01

    The study of secondary organic aerosol (SOA) in laboratory settings has greatly increased our knowledge of the diverse chemical processes and environmental conditions responsible for the formation of particulate matter starting from biogenic and anthropogenic volatile compounds. However, characteristics of the different experimental setups and the way they impact the composition and the timescale of formation of SOA are still subject to debate. In this study, SOA samples were generated using a potential aerosol mass (PAM) oxidation flow reactor using α-pinene, naphthalene and isoprene as precursors. The PAM reactor facilitated exploration of SOA composition over atmospherically relevant photochemical ageing timescales that are unattainable in environmental chambers. The SOA samples were analyzed using two state-of-the-art analytical techniques for SOA characterization - proton nuclear magnetic resonance (1H-NMR) spectroscopy and HPLC determination of humic-like substances (HULIS). Results were compared with previous Aerodyne aerosol mass spectrometer (AMS) measurements. The combined 1H-NMR, HPLC, and AMS datasets show that the composition of the studied SOA systems tend to converge to highly oxidized organic compounds upon prolonged OH exposures. Further, our 1H-NMR findings show that only α-pinene SOA acquires spectroscopic features comparable to those of ambient OA when exposed to at least 1 × 1012 molec OH cm-3 × s OH exposure, or multiple days of equivalent atmospheric OH oxidation. Over multiple days of equivalent OH exposure, the formation of HULIS is observed in both α-pinene SOA and in naphthalene SOA (maximum yields: 16 and 30 %, respectively, of total analyzed water-soluble organic carbon, WSOC), providing evidence of the formation of humic-like polycarboxylic acids in unseeded SOA.

  12. Les Mayas à Hollywood.

    Directory of Open Access Journals (Sweden)

    Boris Jeanne

    2007-02-01

    Full Text Available Les Mayas de nos jours ce sont surtout des grandes pyramides au milieu de la forêt à un jet d’avion de Cancún : pour nombre de touristes américains et européens, c’est une occasion de s’acoquiner avec la culture, la grande culture des civilisations perdues, en continuant de boire des piña coladas le soir au bord de la plage. Et puis au mois de décembre les Mayas ont débarqué en force dans le paysage culturel local des Américains et des Européens, dans leurs cinémas, au moyen de deux films in...

  13. 12. Les nanoparticules

    OpenAIRE

    Chanéac, Corinne; Sanchez, Clément

    2017-01-01

    Les nanoparticules peuvent être qualifiées de « nouvel état de la matière », c’est-à-dire un état intermédiaire entre les espèces moléculaires en solution et le solide massif. Leurs propriétés remarquables sont à l’origine de l’émergence des nanosciences et de l’essor des nanotechnologies. Si le discours du prix Nobel Richard Feynmann le 29 décembre 1959 fait date, il faudra attendre une trentaine d’années pour qu’une nouvelle ère industrielle impulsée par une course à la miniaturisation, se ...

  14. Laboratory investigations

    International Nuclear Information System (INIS)

    Handin, J.

    1980-01-01

    Our task is to design mined-repository systems that will adequately secure high-level nuclear waste for at least 10,000 yr and that will be mechanically stable for 50 to 100-yr periods of retrievability during which mistakes could be corrected and a valuable source of energy could be reclaimed, should national policy on the reprocessing of spent fuel ever change. The only credible path for the escape of radionuclides from the repository to the biosphere is through ground-water, and in hard rock, bulk permeability is largely governed by natural and artificial fracture systems. Catastrophic failure of an excavation in hard rock is likely to occur at the weakest links - the discontinuities in the rock mass that is perturbed first by mining and then by radiogenic heating. The laboratory can contribute precise measurements of the pertinent thermomechanical, hydrological and chemical properties and improve our understanding of the fundamental processes through careful experiments under well controlled conditions that simulate the prototype environment. Thus laboratory investigations are necessary, but they are not sufficient, for conventional sample sizes are small relative to natural defects like joints - i.e., the rock mass is not a continuum - and test durations are short compared to those that predictive modeling must take into account. Laboratory investigators can contribute substantially more useful data if they are provided facilities for testing large specimens(say one cubic meter) and for creep testing of all candidate host rocks. Even so, extrapolations of laboratory data to the field in neither space nor time are valid without the firm theoretical foundations yet to be built. Meanwhile in-situ measurements of structure-sensitive physical properties and access to direct observations of rock-mass character will be absolutely necessary

  15. Les Cahiers du CREAD

    African Journals Online (AJOL)

    Admin

    ailleurs, le recours aux énergies renouvelables restera coûteux dans les conditions technico-économiques actuelles, alors que de fortes pressions écologiques s'installent en regroupant différentes catégories de la population européenne19. Par conséquent, l'évolution future de la production et de la consommation gazière ...

  16. Les Cahiers du CREAD

    African Journals Online (AJOL)

    Admin

    aux intérêts objectifs de leurs auteurs sans avoir été expressément conçue à cette fin » (Bourdieu P, (1980). Questions de sociologie, éd, Minuit, Paris, p119). De ce point de vue, notre objectif est de proposer une définition opérationnelle propre, touchant ...... les années comme critères de recrutement pour deux différents.

  17. Les Cahiers du CREAD

    African Journals Online (AJOL)

    Admin

    cette économie. Cette technique d'estimation permet de connaître la taille relative de l'économie informelle et d'en suivre l'évolution au cours du temps. ..... Mémoire de Magister en Sciences économiques, Université de Tlemcen. Bounoua C, (1992). Une lecture critique du secteur informel dans les pays du tiers monde, ...

  18. Les tables de multiplication

    OpenAIRE

    Ghys, Etienne

    2009-01-01

    International audience; Ah ! les tables de multiplication de notre enfance, quels mauvais souvenirs ! (en ce qui me concerne, c'est la table de 7 qui m'a posé des problèmes). Elles nous narguaient sur le dos des cahiers de brouillon... Y aurait-il encore aujourd'hui des mathématiciens qui tenteraient d'en simplifier l'usage ?

  19. Les Tinamous. Tinami

    NARCIS (Netherlands)

    Schlegel, H.

    1880-01-01

    Les Tinamous forment une tribu d’oiseaux parfaitement isolée et circonscrite, et bornée à la partie de l’Amérique comprise entre le Mexico méridional et la Patagonie. Ils se rattachent, toutefois, naturellement à l’ordre des Gallinae, tout en offrant certaines affinités avec l’ordre des Autruches.

  20. Les Cahiers du CREAD

    African Journals Online (AJOL)

    Admin

    6 juil. 2007 ... Une bonne partie des théories de l'entrepreneuriat (J. Schumpeter,. A. Marshall, Kizner, Von Hayek, etc.) met l'accent sur les capacités. 1 Le choix de cette région se justifie par son fort dynamisme économique : la wilaya de Bejaia est classée en quatrième position en matière de création de PME privées.