Memory effect in balanced Josephson comparators
Energy Technology Data Exchange (ETDEWEB)
Ortlepp, Th., E-mail: tortlepp@cismst.de [CiS Research Institute for Micro-Sensor Systems and Photovoltaics, 14 Konrad-Zuse Street, 99099 Erfurt (Germany); Volkmann, M.H., E-mail: mvolkmann@cismst.de [CiS Research Institute for Micro-Sensor Systems and Photovoltaics, 14 Konrad-Zuse Street, 99099 Erfurt (Germany); Yamanashi, Y., E-mail: yamanasi@ynu.ac.jp [Department of Electrical and Computer Engineering, Yokohama National University, 79-5 Tokiwadai, Yokohama 240-8501 (Japan)
2014-05-15
Highlights: • Balanced Josephson comparator decisions depend on previous decisions at high frequencies. • The maximum effective data rate is lower than the clock frequency. • Tradeoff between maximum effective data rate and minimum comparator gray-zone. - Abstract: The performance of a balanced Josephson comparator is measured by its gray-zone and its maximum operation frequency. A typical effect at high clock frequencies is the correlation of output bits with their predecessors, the comparator develops a memory. This is undesirable, as it imposes an upper limit on the useful clock frequency at which the comparator can be operated. In this work, we describe and observe experimentally the memory effect of a Josephson comparator and study its influence on the gray zone width and the maximum effective data rate.
Josephson Currents Induced by the Witten Effect
Nogueira, Flavio S.; Nussinov, Zohar; van den Brink, Jeroen
2016-10-01
We reveal the existence of a new type of topological Josephson effect involving type II superconductors and three-dimensional topological insulators as tunnel junctions. We predict that vortex lines induce a variant of the Witten effect that is the consequence of the axion electromagnetic response of the topological insulator: at the interface of the junction each flux quantum attains a fractional electrical charge of e /4 . As a consequence, if an external magnetic field is applied perpendicular to the junction, the Witten effect induces an ac Josephson effect in the absence of any external voltage. We derive a number of further experimental consequences and propose potential setups where these quantized, flux induced Witten effects may be observed.
Directory of Open Access Journals (Sweden)
F. Osman
2005-01-01
Full Text Available Brian Josephson appealed at the meeting of the Nobel Laureates July 2004 against the ignorance of physicist to the phenomenon of cold fusion. Though there are good reasons against many publications on this topic but not for all what was reported. It seems to be indicated to summarize the following serious, reproducible and confirmed observations on the reactions of protons or deuterons incorporated in host metals such as palladium, nickel and other metals. We underline the confusing discovery by Cockroft and Oliphant with the anomalous low energy for nuclear reactions which was hundred times lower than in the usual cases when smashing nuclei against their Coulomb potential. A similar unexpected result was that of Otto Hahn’s-the chemist!-Discovery of fission that had changed the world. A significant result of cold fusion was seen in gaseous atmosphere or discharges between palladium targets, rather significant and fully reproducible, e.g. From the “life after death” heat production of such high values per host atom that only nuclear reactions can be involved. This supports the earlier evaluation of neutron generation in fully reversible experiments with gas discharges hinting that a reasonable screening effect-preferably in the swimming electron layer-may lead to reactions at nuclear distances d of picometers with reaction probability times U off about mega seconds similar to the K-shell capture radioactivity. Further electrolytic experiments led to Low Energy Nuclear Reactions (LENR where the involvement of pollution could be excluded from the generation of very seldom rare earth elements. A basically new theory for DD cross sections is used to confirm the picometer-mega second reactions of cold fusion. Other theoretical aspects are given from measured heavy element distributions similar to the standard abundance distribution, SAD, in the Universe with consequences on endothermic heavy nucleus generation, magic numbers and to quark
The Josephson effect in atomic contacts; Effect Josephson dans les contacts atomiques
Energy Technology Data Exchange (ETDEWEB)
Chauvin, M
2005-11-15
The Josephson effect appears when a weak-link establishes phase coherence between two superconductors. A unifying theory of this effect emerged in the 90's within the framework of mesoscopic physics. Based on two cornerstone concepts, conduction channels and Andreev reflection, it predicts the current-phase relation for the most basic weak-link: a single conduction channel of arbitrary transmission. This thesis illustrates this mesoscopic point of view with experiments on superconducting atomic size contacts. In particular, we have focused on the supercurrent peak around zero voltage, put into evidence the ac Josephson currents in a contact under constant bias voltage (Shapiro resonances and photon assisted multiple Andreev reflections), and performed direct measurements of the current-phase relation. (author)
Mesoscopic lateral S/N/S weak links: Josephson effects and Josephson-like vortex flow
Carapella, G.; Sabatino, P.; Gombos, M.
2017-02-01
We report an experimental and numerical study of magneto-transport properties of mesoscopic lateral S/N/S superconducting weak links where the N region is made of the same material as the S banks, though with strongly reduced critical temperature. Magnetoresistance oscillations and clear dc and ac Josephson effects are observed. Experimental results are analyzed in the framework of the time-dependent Ginzburg-Landau model for mesoscopic type II superconductors with an inhomogeneous critical temperature. The analysis suggests that dissipative branches of the current-voltage curve of the weak link in the presence of a magnetic field are accounted for by moving ‘Josephson-like’ vortices. These relatively fast excitations are anisotropic as per the ordinary Josephson vortex in tunnel junctions, but have a normal core like the ordinary Abrikosov vortex in plain superconducting strips. Moreover, unlike the vortex in tunneling junctions, in the lateral S/N/S weak link, the extension of the moving vortex is larger than the extension of the static one. Further, we report in some detail on the lateral proximity effect, and the deviations from the ideality of the current-phase relation of this kind of lateral weak link in the Josephson regime.
Josephson effects in a Bose–Einstein condensate of magnons
Energy Technology Data Exchange (ETDEWEB)
Troncoso, Roberto E., E-mail: r.troncoso.c@gmail.com [Centro para el Desarrollo de la Nanociencia y la Nanotecnología, CEDENNA, Avda. Ecuador 3493, Santiago 9170124 (Chile); Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Casilla 487-3, Santiago (Chile); Núñez, Álvaro S., E-mail: alnunez@dfi.uchile.cl [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Casilla 487-3, Santiago (Chile)
2014-07-15
A phenomenological theory is developed, that accounts for the collective dynamics of a Bose–Einstein condensate of magnons. In terms of such description we discuss the nature of spontaneous macroscopic interference between magnon clouds, highlighting the close relation between such effects and the well known Josephson effects. Using those ideas, we present a detailed calculation of the Josephson oscillations between two magnon clouds, spatially separated in a magnonic Josephson junction. -- Highlights: •We presented a theory that accounts for the collective dynamics of a magnon-BEC. •We discuss the nature of macroscopic interference between magnon-BEC clouds. •We remarked the close relation between the above phenomena and Josephson’s effect. •We remark the distinctive oscillations that characterize the Josephson oscillations.
Higher-order nonlinear effects in a Josephson parametric amplifier
Kochetov, Bogdan A.; Fedorov, Arkady
2015-12-01
Nonlinearity of the current-phase relationship of a Josephson junction is the key resource for a Josephson parametric amplifier (JPA) as well as for a Josephson traveling-wave parametric amplifier, the only devices in which the quantum limit for added noise has so far been approached at microwave frequencies. A standard approach to describe JPA takes into account only the lowest order (cubic) nonlinearity resulting in a Duffing-like oscillator equation of motion or in a Kerr-type nonlinearity term in the Hamiltonian. In this paper we derive the quantum expression for the gain of JPA including all orders of the Josephson junction nonlinearity in the linear response regime. We then analyze gain saturation effect for stronger signals within a semiclassical approach. Our results reveal nonlinear effects of higher orders and their implications for operation of a JPA.
Intrinsic Josephson effects on superconducting films
Chana, O S
2002-01-01
Films of the high-T sub c superconductor Tl sub 2 Ba sub 2 CaCu sub 2 O sub 8 with the crystal c-axis misaligned from the substrate normal have been used to make intrinsic Josephson junctions. The copper-oxide layers in the cuprate superconductor are weakly coupled in the c-direction. This weak interplanar coupling is analogous to superconductor- insulator-superconductor stacks parallel to the c-direction in the film and this maps out to a series array of intrinsic Josephson junctions. A novel device geometry has been used to exploit this and series arrays of intrinsic Josephson junctions have been fabricated. The junctions are optimised in quality and have a high and critical-current- independent value for the product of the critical current and normal state resistance. The temperature dependence of the critical current fits the Ambegaokar-Baratoff theory for SIS tunnelling. X-band emission at around 12 GHz has been detected from the intrinsic Josephson bridge at 103 K. This confirms that the junctions are s...
Effect of surface losses on soliton propagation in Josephson junctions
DEFF Research Database (Denmark)
Davidson, A.; Pedersen, Niels Falsig; Pagano, S.
1986-01-01
We have explored numerically the effects on soliton propagation of a third order damping term in the modified sine-Gordon equation. In Josephson tunnel junctions such a term corresponds physically to quasiparticle losses within the metal electrodes of the junction. We find that this loss term pla...... the dominant role in determining the shape and stability of the soliton at high velocity. Applied Physics Letters is copyrighted by The American Institute of Physics.......We have explored numerically the effects on soliton propagation of a third order damping term in the modified sine-Gordon equation. In Josephson tunnel junctions such a term corresponds physically to quasiparticle losses within the metal electrodes of the junction. We find that this loss term plays...
Coexistence of tunneling magnetoresistance and Josephson effects in SFIFS junctions
Vávra, O.; Soni, R.; Petraru, A.; Himmel, N.; Vávra, I.; Fabian, J.; Kohlstedt, H.; Strunk, Ch.
2017-02-01
We demonstrate an integration of tunneling magnetoresistance and the Josephson effects within one tunneling junction. Several sets of Nb-Fe-Al-Al2O3-Fe-Nb wafers with varying Al and Fe layers thickness were prepared to systematically explore the competition of TMR and Josephson effects. A coexistence of the critical current IC(dFe) and the tunneling magnetoresistance ratio T M R(dFe) is observed for iron layer dFe thickness range 1.9 and 2.9 nm. Further optimization such as thinner Al2O3 layer leads to an enhancement of the critical current and thus to an extension of the coexistence regime up to dFe≃3.9 nm Fe.
Josephson effects in an alternating current biased transition edge sensor
Gottardi, Luciano; Akamatsu, Hiroki; van der Kuur, Jan; Bruijn, Marcel P; Hartog, Roland H den; Hijmering, Richard; Khosropanah, Pourya; Lambert, Colin; van der Linden, Anton J; Ridder, Marcel L; Suzuki, Toyo; Gao, Jan R
2016-01-01
We report the experimental evidence of the ac Josephson effect in a transition edge sensor (TES) operating in a frequency domain multiplexer and biased by ac voltage at MHz frequencies. The effect is observed by measuring the non-linear impedance of the sensor. The TES is treated as a weakly linked superconducting system and within the resistively shunted junction model framework. We provide a full theoretical explanation of the results by finding the analytic solution of the non-inertial Langevian equation of the system and calculating the non-linear response of the detector to a large ac bias current in the presence of noise.
Current voltage characteristics of intrinsic Josephson junctions with charge-imbalance effect
Shukrinov, Yu. M.; Mahfouzi, F.
2007-09-01
The current-voltage characteristics (IVC) of intrinsic Josephson junctions are numerically calculated taking into account the quasiparticle charge-imbalance effect. We solve numerically the full set of the equations including second order differential equations for phase differences, kinetic equations and generalized Josephson relations for a stack of Josephson junctions. The boundary conditions due to the proximity effect are used. We obtain the branch structure of IVC and investigate it as a function of disequilibrium parameter at different values of coupling constant and McCumber parameter. An increase in the disequilibrium parameter essentially changes the character of IVC at large values of McCumber parameter.
Effects of LC shunting on the Shapiro steps features of Josephson junction
Shukrinov, Yu. M.; Rahmonov, I. R.; Kulikov, K. V.; Seidel, P.
2015-05-01
We study an effect of external radiation on the dynamics of Josephson junction shunted by an LC circuit. When the Josephson frequency is equal to the frequency of the circuit, additional stable resonant circuit branches appear in the IV-characteristic of the junction. The branches occur on the stable side of a narrow resonance peak, while the other peak side has a negative slope and is unstable. We show that the amplitude dependence of the Shapiro step width crucially changes when the Shapiro step is on the resonant circuit branch. These effects might give very important advantages for methods and technologies that exploit the response of Josephson junctions to microwave fields.
Current-voltage characteristics of intrinsic Josephson junctions with charge-imbalance effect
Energy Technology Data Exchange (ETDEWEB)
Shukrinov, Yu.M. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Physical Technical Institute, Dushanbe 734063 (Tajikistan)], E-mail: shukrinv@theor.jinr.ru; Mahfouzi, F. [Institute for Advanced Studies in Basic Sciences, P.O. Box 45195-1159, Zanjan (Iran, Islamic Republic of)
2007-09-01
The current-voltage characteristics (IVC) of intrinsic Josephson junctions are numerically calculated taking into account the quasiparticle charge-imbalance effect. We solve numerically the full set of the equations including second order differential equations for phase differences, kinetic equations and generalized Josephson relations for a stack of Josephson junctions. The boundary conditions due to the proximity effect are used. We obtain the branch structure of IVC and investigate it as a function of disequilibrium parameter at different values of coupling constant and McCumber parameter. An increase in the disequilibrium parameter essentially changes the character of IVC at large values of McCumber parameter.
Dicke-Josephson effect in a cross-typed triple-quantum-dot junction
Wang, Xiao-Qi; Yi, Guang-Yu; Gong, Wei-Jiang
2016-12-01
We investigate the Dicke-Josephson effect in a superconductor/triple-quantum-dot/superconductor junction in which the central dot is coupled to the superconductors. It is found that the Dicke effect can modulate the Josephson effect in a nontrivial way. In the noninteracting case, the Dicke effect induces a subpeak in the supercurrent spectrum around the energy zero point. When intradot interactions are taken into account, the role of the Dicke effect changes completely. Namely, it tends to suppress the π-phase current near the position of electron-hole symmetry. With the increase of the Coulomb strength, it has an opportunity to reverse the current direction. We thus conclude that the Dicke-Josephson effect is also an important part in describing the Josephson effect in coupled-dot junctions.
Hui, Hoi-Yin; Sau, Jay D.
2017-01-01
Time-reversal invariance places strong constraints on the properties of the quantum spin Hall edge. One such restriction is the inevitability of dissipation in a Josephson junction between two superconductors formed on such an edge without the presence of interaction. Interactions and spin-conservation breaking are key ingredients for the realization of the dissipationless ac Josephson effect on such quantum spin Hall edges. We present a simple quantum impurity model that allows us to create a dissipationless fractional Josephson effect on a quantum spin Hall edge. We then use this model to substantiate a general argument that shows that any such nondissipative Josephson effect must necessarily be 8 π periodic.
Possible resonance effect of axionic dark matter in Josephson junctions.
Beck, Christian
2013-12-06
We provide theoretical arguments that dark-matter axions from the galactic halo that pass through Earth may generate a small observable signal in resonant S/N/S Josephson junctions. The corresponding interaction process is based on the uniqueness of the gauge-invariant axion Josephson phase angle modulo 2π and is predicted to produce a small Shapiro steplike feature without externally applied microwave radiation when the Josephson frequency resonates with the axion mass. A resonance signal of so far unknown origin observed by C. Hoffmann et al. [Phys. Rev. B 70, 180503(R) (2004)] is consistent with our theory and can be interpreted in terms of an axion mass m(a)c2=0.11 meV and a local galactic axionic dark-matter density of 0.05 GeV/cm3. We discuss future experimental checks to confirm the dark-matter nature of the observed signal.
0-π Transition Driven by Magnetic Proximity Effect in a Josephson Junction
Hikino, Shin-ichi; Yunoki, Seiji
2015-02-01
We theoretically study the Josephson effect in a superconductor/normal metal/superconductor (S/N/S) Josephson junction composed of s-wave Ss with N which is sandwiched by two ferromagnetic insulators (Fs), forming a spin valve, in the vertical direction of the junction. We show that the 0-π transition of the Josephson critical current occurs with increasing the thickness of N along the junction. This transition is due to the magnetic proximity effect (MPE) which induces ferromagnetic magnetization in the N. Moreover, we find that, even for fixed thickness of N, the proposed Josephson junction with the spin valve can be switched from π to 0 states and vice versa by varying the magnetization configuration (parallel or antiparallel) of two Fs. We also examine the effect of spin-orbit scattering on the Josephson critical current and argue that the 0-π transition found here can be experimentally observed within the current nanofabrication techniques, thus indicating a promising potential of this junction as a 0-π switching device operated reversibly with varying the magnetic configuration in the spin valve by, e.g., applying an external magnetic field. Our results not only provide possible applications in superconducting electronics but also suggest the importance of a fundamental concept of MPE in nanostructures of multilayer N/F systems.
Proximity Effect in BSCCO Intrinsic Josephson Junctions Contacted with a Normal Metal Layer
Suzuki, Minoru; Koizumi, Masayuki; Ohmaki, Masayuki; Kakeya, Itsuhiro; Shukrinov, Yu. M.
Superconductivity proximity effect is numerically evaluated based on McMillan's tunneling proximity model for a sandwich of a normal metal layer on top of the surface superconducting layer of intrinsic Josephson junctions in a Bi2Sr2CaCu2O8+δ (BSCCO) crystal. Due to the very thin thickness of 0.3 nm of the superconducting layer in IJJs, the surface layer is subject to influence of the proximity effect when the top layer is contacted with a normal metal layer. The effect manifests itself as a significant change in the characteristics of the IJJ surface Josephson junction. It is found that when the superconducting layer thickness is smaller than 0.6 nm, the pair potential reduces significantly, leading to an almost complete suppression of the critical Josephson current density for the surface junction. This result can partly explain the experimental results on the IJJ characteristics of a mesa type structure.
dc Josephson Effect in s-Wave Superconductor/Ferromagnet Insulator/p-Wave Superconductor Junctions
Institute of Scientific and Technical Information of China (English)
LI Xiao-Wei
2007-01-01
The Josephson currents in s-wave superconductor/ferromagnet insulator/p-wave superconductor(s/FI/p)junctions are calculated as a function of temperature and the phase taking into account the roughness scattering effect at interface.The phase dependence of the Josephson current I ( φ) between s-wave and px-wave superconductor is predicted to be sin(2φ).The ferromagnet scattering effect,the barrier strength,and the roughness strength at interface suppress the dc currents in s/FI/p junction.
Measurement of Aharonov-Casher effect in a Josephson junction chain
Pop, Ioan Mihai; Lecocq, Florent; Pannetier, Bernard; Buisson, Olivier; Guichard, Wiebke
2011-03-01
We have recently measured the effect of superconducting phase-slips on the ground state of a Josephson junction chain and a rhombi chain. Here we report clear evidence of Aharonov-Casher effect in a chain of Josephson junctions. This phenomenon is the dual of the well known Aharonov-Bohm interference. Using a capacitively coupled gate to the islands of the chain, we induce oscillations of the supercurrent by tuning the polarization charges on the islands. We observe complex interference patterns for different quantum phase slip amplitudes, that we understand quantitatively as Aharonov-Casher vortex interferences. European STREP MIDAS.
An effect of temperature distribution on terahertz phase dynamics in intrinsic Josephson junctions
Energy Technology Data Exchange (ETDEWEB)
Asai, Hidehiro, E-mail: hd-asai@aist.go.jp; Kawabata, Shiro
2013-11-15
Highlights: •We calculate the temperature distribution in intrinsic Josephson junctions (IJJs). •We investigate the effect of temperature distribution on THz radiation from IJJs. •The Joule heating in the IJJs makes inhomogeneous temperature distribution. •The inhomogeneous temperature distribution strongly excites THz emission. -- Abstract: In this study, we numerically calculate the temperature distribution and the THz phase dynamics in the mesa-structured intrinsic Josephson junctions (IJJs) using the thermal diffusion equation and the Sine–Gordon equation. We observe that the temperature distribution has a broad peak around the center region of the IJJ mesa. Under a high external current, a “hot spot” where the temperature is locally higher than the superconducting critical temperature appears around this region. The transverse Josephson plasma wave is strongly excited by the inhomogeneous temperature distribution in the mesa. This gives rise to intense THz emission.
An investigation of the effect of grain size on some properties of intrinsic Josephson junction
Energy Technology Data Exchange (ETDEWEB)
Aslan Çataltepe, Özden, E-mail: ozdenaslan@yahoo.com [Gedik University, Faculty of Engineering, Yakacık/Kartal, 34876, İstanbul (Turkey); Güven Özdemir, Zeynep [Yıldız Technical University, Physics Department, Faculty of Science and Arts, Davutpaşa Campus, Esenler 34210, İstanbul (Turkey); Onbaşli, Ülker [University of Marmara, Physics Department, Faculty of Science and Arts, Rıdvanpaşa cad.3.sok., 85/12, 34730, Göztepe, İstanbul (Turkey)
2013-08-15
Highlights: ► Grain size, t, determined by SEM, has a key role for intrinsic Josephson Junctions. ► Supercurrent density and Josephson penetration depth are changed with variation of t. ► HgBa{sub 2}Ca{sub 2}Cu{sub 3}O{sub 8+x} (Hg-1223) consists of intrinsic Josephson junction array. ► The effect of t on electrodynamics parameters of Hg-1223 was investigated by SEM. -- Abstract: Some superconducting parameters of the high temperature superconductors, such as the plasma frequency and the critical transition temperature, depend on the oxygen content of the material. Since the oxygen content is effective on the grain size of the system, the under, optimally and over oxygen doped Hg-based copper oxide layered superconductors, which have the hole type superconductivity, have been investigated in this study. As is known that the concentration of hole type carriers is increased via optimally oxygen annealing. In other words, relatively higher values for the various critical parameters are achieved by the optimally oxygen doping procedure. In this work, the grain sizes of the oxygen annealed samples have been investigated by Scanning Electron Microscopy (SEM). Moreover, the magnetization data obtained via Superconducting Interference Quantum Device (SQUID) has been utilized for calculation of critical current density, which is essential parameter for determining Josephson penetration depth. The Josephson penetration depths of the systems have been calculated by Lawrence–Doniach Model for high temperature superconductors. Since plasma frequency of the system is inversely proportional to Josephson penetration depth, the plasma frequencies of the various doping profiles have also been calculated for the high temperature superconductor investigated.
Chaotic Josephson effects in two-coupled Bose-Einstein condensates
Fang, Jianshu; Hai, Wenhua; Chong, Guishu; Xie, Qiongtao
2005-04-01
We discuss the chaotic Josephson effects in two weakly coupled Bose-Einstein condensates (BECs). The boson Josephson junction (BJJ) dynamics in BECs is governed by the two-mode Gross-Pitaevskii equation. We obtained a perturbed chaotic solution of the BJJ equation by using the direct perturbation technique. Theoretical analysis reveals that the stable oscillating orbits are embedded in the Melnikov chaotic attractors. The corresponding numerical results show that the Poincaré sections in the equivalent phase space (φ,φ˙) sensitively depends on the system parameter and initial conditions. Therefore, we can control the transitions between chaos and order by adjusting these parameters and conditions.
6 π Josephson Effect in Majorana Box Devices
Zazunov, A.; Buccheri, F.; Sodano, P.; Egger, R.
2017-02-01
We study Majorana devices featuring a competition between superconductivity and multichannel Kondo physics. Our proposal extends previous work on single-channel Kondo systems to a topologically nontrivial setting of a non-Fermi liquid type, where topological superconductor wires (with gap Δ ) represent leads tunnel coupled to a Coulomb-blockaded Majorana box. On the box, a spin degree of freedom with Kondo temperature TK is nonlocally defined in terms of Majorana states. For Δ ≫TK, the destruction of Kondo screening by superconductivity implies a 4 π -periodic Josephson current-phase relation. Using a strong-coupling analysis in the opposite regime Δ ≪TK, we find a 6 π -periodic Josephson relation for three leads, with critical current Ic≈e Δ2/ℏTK, corresponding to the transfer of fractionalized charges e*=2 e /3 .
Terpstra, D.; Rijnders, A.J.H.M.; Roesthuis, F.J.G.; Blank, D.H.A.; Gerritsma, G.J.; Rogalla, H.
1993-01-01
We present the response to 100 GHz irradiation of high-Tc Josephson junction devices for mixer/detector applications in the (sub-) mm wave range. These devices consist of a YBCO/PBCO/YBCO ramp-type junction combined with a planar logarithmic periodic antenna. The critical current and the first two S
Effect of microwave irradiation on parametric resonance in intrinsic Josephson junctions
Gaafar, Mahmoud; Shukrinov, Yury
2012-01-01
The effect of microwave irradiation on the phase dynamics of intrinsic Josephson junctions in high temperature superconductors is investigated. We demonstrate the influence of microwave's amplitude variation on the current-voltage characteristics and on the time dependence (temporal oscillations) of the electric charge in the superconducting layers. A remarkable changing of the longitudinal plasma wavelength at parametric resonance is shown. We demonstrate an effect of the microwave radiation...
Effect of microwave irradiation on parametric resonance in intrinsic Josephson junctions
Gaafar, Mahmoud; Shukrinov, Yury
2013-08-01
The effect of microwave irradiation on the phase dynamics of intrinsic Josephson junctions in high temperature superconductors is investigated. We demonstrate the influence of microwave’s amplitude variation on the current-voltage characteristics and on the time dependence (temporal oscillations) of the electric charge in the superconducting layers. A remarkable changing of the longitudinal plasma wavelength at parametric resonance is shown. We demonstrate an effect of the microwave radiation on the width of the parametric resonance region.
Shukrinov, Yu M.; Mahfouzi, F.
2005-01-01
We report the numerical calculations of the current-voltage characteristics of intrinsic Josephson junctions in high- superconductors. The charging effect at superconducting layers is taken into account. A set of equations is used to study the non-linear dynamics of the system. In framework of capacitively coupled Josephson junctions model we obtain the total number of branches using fixed initial conditions for phases and their derivatives. The influence of the coupling constant \\alpha on th...
Nonideal Quantum Measurement Effects on the Switching Currents Distribution of Josephson Junctions
Pierro, Vincenzo
2016-01-01
The quantum character of Josephson junctions is ordinarily revealed through the analysis of the switching currents, i.e. the current at which a finite voltage appears: A sharp rise of the voltage signals the passage (tunnel) from a trapped state (the zero voltage solution) to a running state (the finite voltage solution). In this context, we investigate the probability distribution of the Josephson junctions switching current taking into account the effect of the bias sweeping rate and introducing a simple nonideal quantum measurements scheme. The measurements are modelled as repeated voltage samplings at discrete time intervals, that is with repeated projections of the time dependent quantum solutions on the static or the running states, to retrieve the probability distribution of the switching currents. The distribution appears to be immune of the quantum Zeno effect, and it is close to, but distinguishable from, the Wentzel-Kramers-Brillouin approximation. For energy barriers comparable to the quantum fund...
Institute of Scientific and Technical Information of China (English)
TIAN Jing; QIU Hai-Bo
2013-01-01
In this paper,by employing Bogliubov backreaction method,we investigate quantum correction effects on dynamical phase transition in a single species bosonic Josephson junction induced by increasing nonlinear interaction.Compared with mean field theory results,we find that the transition point is shifted.The dynamical phase transition is accompanied by a change of the entanglement entropy,which is found to reach a maximum at the transition point of the mean field theory.
JOSEPHSON EFFECTS IN CERAMIC SUPERCONDUCTORS AND THEIR APPLICATION TO SQUID MAGNETOMETRY
Gough, C.
1988-01-01
A brief review is given of Josephson Effects in high-Tc superconductors with specific reference to ceramic material properties and device applications. The development of liquid-nitrogen cooled rf and dc SQUIDs for ultrasensitive magnetometry will be described. Field sensitivities of better than 10-12 T / √Hz have already been achieved but 1 / f -noise becomes important at low frequencies.
Aharonov-Casher effect for plasmons in a ring of Josephson junctions
Süsstrunk, Roman; Garate, Ion; Glazman, Leonid I.
2013-08-01
Phase slips in a one-dimensional closed array of Josephson junctions hybridize the persistent current states and plasmon branches of excitations. The interference between phase slips passing through different junctions of the array makes the hybridization sensitive to the charges of the superconducting islands comprising the array. This in turn results in the Aharonov-Casher effect for plasmons, which in the absence of phase slips are insensitive to island charges.
Zeeman effects on Josephson current in d-wave superconductor/d-wave superconductor junctions
Institute of Scientific and Technical Information of China (English)
Liao Yan-Hua; Dong Zheng-Chao; Yin Zai-Feng; Fu Hao
2008-01-01
This paper solves a self-consistent equation for the d-wave superconducting gap and the effective exchange field in the mean-field approximation,and studies the Zeeman effects on the d-wave superconducting gap and thermodynamic potential.The Josephson currents in the d-wave superconductor(S)/insulating layer(I)/d-wave S junctions are calculated as a function of the temperature,exchange field,and insulating barrier strength under a Zeeman magnetic field on the two d-wave Ss.It is found that the Josephson critical currents in d-wave S/d-wave S junction to a great extent depend on the relative orientation of the effective exchange field of the two S electrodes,and the crystal orientation of the d-wave S.The exchange field under certain conditions can enhance the Josephson critical current in a d-wave S/I/d-wave S junction.
Phase retrapping in a φ Josephson junction: Onset of the butterfly effect
Menditto, R.; Sickinger, H.; Weides, M.; Kohlstedt, H.; Žonda, M.; Novotný, T.; Koelle, D.; Kleiner, R.; Goldobin, E.
2016-05-01
We investigate experimentally the retrapping of the phase in a φ Josephson junction upon return of the junction to the zero-voltage state. Since the Josephson energy profile U0(ψ ) in φ JJ is a 2 π periodic double-well potential with minima at ψ =±φ mod2 π , the question is at which of the two minima -φ or +φ the phase will be trapped upon return from a finite voltage state during quasistatic decrease of the bias current (tilt of the potential). By measuring the relative population of two peaks in escape histograms, we determine the probability of phase trapping in the ±φ wells for different temperatures. Our experimental results agree qualitatively with theoretical predictions. In particular, we observe an onset of the butterfly effect with an oscillating probability of trapping. Unexpectedly, this probability saturates at a value different from 50% at low temperatures.
Spin superconductivity and ac-Josephson effect in Graphene system under strong magnetic field
Liu, Haiwen; Jiang, Hua; Sun, Qing-Feng; Xie, X. C.; Collaborative Innovation Center of Quantum Matter, Beijing, China Collaboration
We study the spin superconductivity in Graphene system under strong magnetic field. From the microscopically Gor'kov method combined with the Aharonov-Casher effect, we derive the effective Landau-Ginzburg free energy and analyze the time evolution of order parameter, which is confirmed to be the off-diagonal long range order. Meanwhile, we compare the ground state of spin superconductivity to the canted-antiferromagnetic state, and demonstrate the equivalence between these two states. Moreover, we give out the pseudo-field flux quantization condition of spin supercurrent, and propose an experimental measurable ac-Josephson effect of spin superconductivity in this system.
Photonic analogue of Josephson effect in a dual-species optical-lattice cavity
Lei, Soi-Chan; Lee, Ray-Kuang
2010-01-01
We extend the idea of quantum phase transitions of light in the photonic Bose-Hubbard model with interactions to two atomic species by a self-consistent mean field theory. The excitation of two-level atoms interacting with coherent photon fields is analyzed with a finite temperature dependence of the order parameters. Four ground states of the system are found, including an isolated Mott-insulator phase and three different superfluid phases. Like two weakly coupled superconductors, our proposed dual-species lattice system shows a photonic analogue of Josephson effect. The dynamics of the proposed two species model provides a promising quantum simulator for possible quantum information processes.
Josephson Effect in MgB2: Large IcRlN Product and Superconducting Energy Gap
Institute of Scientific and Technical Information of China (English)
宣毅; 李壮志; 陶宏杰; 任治安; 车广灿; 赵柏儒; 赵忠贤
2001-01-01
We report on the observation of the Josephson effect on the newly discovered superconductor MgB2 with the breakjunction technique. Similar to conventional superconductors, the I - V curve can be fitted with the resistively shunted junction model including the noise effect, and a large characteristic voltage Vc = IcRN = 9.6meV was obtained. The energy gap determined by the Ambegaokar-Baratoff relation with the fitted Vc is very consistent with the Bardeen-Cooper-Schrieffer weak-coupling value. Our result implies that the superconductor MgB2 is a promising material for Josephson device applications.
Josephson junction of non-Abelian superconductors and non-Abelian Josephson vortices
Directory of Open Access Journals (Sweden)
Muneto Nitta
2015-10-01
Full Text Available A Josephson junction is made of two superconductors sandwiching an insulator, and a Josephson vortex is a magnetic vortex (flux tube absorbed into the Josephson junction, whose dynamics can be described by the sine-Gordon equation. In a field theory framework, a flexible Josephson junction was proposed, in which the Josephson junction is represented by a domain wall separating two condensations and a Josephson vortex is a sine-Gordon soliton in the domain wall effective theory. In this paper, we propose a Josephson junction of non-Abelian color superconductors and show that a non-Abelian vortex (color magnetic flux tube absorbed into it is a non-Abelian Josephson vortex represented as a non-Abelian sine-Gordon soliton in the domain wall effective theory, that is the U(N principal chiral model.
Josephson junction of non-Abelian superconductors and non-Abelian Josephson vortices
Nitta, Muneto
2015-01-01
A Josephson junction is made of two superconductors sandwiching an insulator, and a Josephson vortex is a magnetic vortex absorbed into the Josephson junction, whose dynamics can be described by the sine-Gordon equation. In a field theory framework, a flexible Josephson junction was proposed, in which the Josephson junction is represented by a domain wall separating two condensations and a Josephson vortex is a sine-Gordon soliton in the domain wall effective theory. In this paper, we propose a Josephson junction of non-Abelian color superconductors, that is described by a non-Abelian domain wall, and show that a non-Abelian vortex (color magnetic flux tube) absorbed into it is a non-Abelian Josephson vortex represented as a non-Abelian sine-Gordon soliton in the domain wall effective theory.
Fano-Josephson effect in the junction with DIII-class topological and s-wave superconductors
Jiang, Cui; Yi, Guang-Yu; Meng, Guang-Yi; Gong, Wei-Jiang
2017-04-01
We investigate the Josephson effects in the junction formed by the direct and indirect couplings between DIII-class topological and s-wave superconductors. As a result, the Josephson current is found to oscillate in period 2 π . The presence of Majorana doublet in the DIII-class superconductor renders the current finite at the case of zero phase difference, with its sign determined by the fermion parity of such a junction. In addition to the dot level and intradot Coulomb interaction, the Fano interference is an important factor to adjust the Josephson current. It is believed that these results will be helpful in understanding the transport properties of the DIII-class superconductor.
Nuclear weapons, nuclear effects, nuclear war
Energy Technology Data Exchange (ETDEWEB)
Bing, G.F.
1991-08-20
This paper provides a brief and mostly non-technical description of the militarily important features of nuclear weapons, of the physical phenomena associated with individual explosions, and of the expected or possible results of the use of many weapons in a nuclear war. Most emphasis is on the effects of so-called ``strategic exchanges.``
Institute of Scientific and Technical Information of China (English)
WU Tao; LIU Jian-She; LI Zheng
2006-01-01
@@ Superconducting flux qubits with three Josephson junctions are promising candidates for the building blocks of a quantum computer. We have applied the imaginary time evolution method to study the model of this qubit accurately by calculating its wavefunctions and eigenenergies. Because such qubits are manipulated with magnetic lux microwave pulses, they might be irradiated into non-computational states, which is called the leakage effect.By the evolution of the density matrix of the qubit under either hard-shaped π-pulse or Gaussian-shaped π-pulse to carry out quantum NOT operation, it has been demonstrated that the leakage effect for a flux qubit is very small even for hard-shaped microwave pulses while Gaussian-shaped pulses may suppress the leakage effect to a negligible level.
Effect of microwave irradiation on parametric resonance in intrinsic Josephson junctions
Energy Technology Data Exchange (ETDEWEB)
Gaafar, Mahmoud, E-mail: futech_ma7moudgaafer@yahoo.com [BLTP, JINR, Dubna, Moscow Region 141980 (Russian Federation); Department of Physics, Faculty of Science, Menoufya University (Egypt); Shukrinov, Yury [BLTP, JINR, Dubna, Moscow Region 141980 (Russian Federation); Max-Planck-Institute for the Physics of Complex Systems, 01187 Dresden (Germany)
2013-08-15
Highlights: ► We investigated the effect of microwave irradiation on the phase dynamics of IJJs. ► A remarkable changing of the wavelength of LPW at parametric resonance is shown. ► Appearance of an additional parametric resonance before Shapiro step is observed. -- Abstract: The effect of microwave irradiation on the phase dynamics of intrinsic Josephson junctions in high temperature superconductors is investigated. We demonstrate the influence of microwave’s amplitude variation on the current–voltage characteristics and on the time dependence (temporal oscillations) of the electric charge in the superconducting layers. A remarkable changing of the longitudinal plasma wavelength at parametric resonance is shown. We demonstrate an effect of the microwave radiation on the width of the parametric resonance region.
Raghavan, S.; Smerzi, A.; Fantoni, S.; Shenoy, S. R.
1999-01-01
We discuss the coherent atomic oscillations between two weakly coupled Bose-Einstein condensates. The weak link is provided by a laser barrier in a (possibly asymmetric) double-well trap or by Raman coupling between two condensates in different hyperfine levels. The boson Josephson junction (BJJ) dynamics is described by the two-mode nonlinear Gross-Pitaevskii equation that is solved analytically in terms of elliptic functions. The BJJ, being a neutral, isolated system, allows the investigations of dynamical regimes for the phase difference across the junction and for the population imbalance that are not accessible with superconductor Josephson junctions (SJJ's). These include oscillations with either or both of the following properties: (i) the time-averaged value of the phase is equal to π (π-phase oscillations); (ii) the average population imbalance is nonzero, in states with macroscopic quantum self-trapping. The (nonsinusoidal) generalization of the SJJ ac and plasma oscillations and the Shapiro resonance can also be observed. We predict the collapse of experimental data (corresponding to different trap geometries and the total number of condensate atoms) onto a single universal curve for the inverse period of oscillations. Analogies with Josephson oscillations between two weakly coupled reservoirs of 3He-B and the internal Josephson effect in 3He-A are also discussed.
Annealing effect on the reproducibility of Josephson Junctions made by ion irradiation
Energy Technology Data Exchange (ETDEWEB)
Sirena, M; Matzen, S; Bergeal, N; Lesueur, J [Laboratoire Photons Et Matiere, CNRS, ESPCI, 10 Rue Vauquelin 75231 Paris (France) (France); Faini, G [Laboratoire de Photonique et Nanostructures, Route de Nozay, 91460 Marcoussis (France) (France); Bernard, R; Briatico, J; Crete, D [UMR-CNRS/THALES, Route D128, 91767 Palaiseau (France) (France)], E-mail: martin.sirena@espci.fr
2008-02-01
We have studied the annealing effects on the transport properties of High Tc Josephson Junctions (JJ) made by ion irradiation. Several JJ were measured for different annealing times and the experimental data were compared to numerical simulations. We have successfully used a vacancy-interstitial annihilation mechanism to describe the evolution of the JJ coupling temperature (T{sub J}) and the homogeneity of a JJ array, related to the evolution of the defects density mean value and its distribution width. For sufficient long annealing times (t > 600 min), {delta}T{sub J} was significatively reduced. This result appears to be very encouraging for future applications where the spread in JJ characteristics has to be as low as possible.
Directory of Open Access Journals (Sweden)
S Senoussi
2006-09-01
Full Text Available We report systematic investigations of the magnetic superconducting properties of the new superconducting materials (NS: New high temperature superconductors (HTS, Organic superconductors (OS, fullerenes, carbon nanotubes, MgB2 etc. We show that, contrary to conventional superconductors where the superconducting state can be coherent over several tenths of km, the macroscopic coherence range lc of the NS is often as short as 0.1 to 10 µm typically. As a consequence, the magnetic properties are dominated by granular-like effects as well as Josephson coupling between grains. Here, we concentrate on HTS ceramics and organic superconductors exclusively. In the first case we observe three distinct regimes: (i At very low field (H < 5 Oe to say all the grains are coupled via Josephson effect and lc can be considered as infinite. (2 At intermediate field (5 < H < 50 Oe, typically the grains are gradually decoupled by H and/or T. (iii At higher fields all the grains are decoupled and lc roughly coincides with the diameter of the metallurgical grains. The case of OS is more subtle and is connected with a kind of order-disorder transition that occurs in most of them. For instance, in this study, we exploit quenched disorder (after crossing such a transition in the -(BEDT-TTF2Cu[N(CN2]Br layered organic superconductor to get new insights on both the superconducting state (T £ 11.6 K and the glassy transition at Tg, by studying the superconducting properties as functions of annealing time and annealing temperature around the glassy transition. Our main result is that the data can be described by a percolation molecular cluster model in which the topology and the growth of the molecular clusters obey an Ising spin-glass-like model with Tg ≈ 80 K for the hydrogenated compound and Tg ≈ 55 K for the fully deuterated one.
Shukrinov, Yu. M.; Hamdipour, M.; Kolahchi, M. R.
2009-07-01
Charge formations on superconducting layers and creation of the longitudinal plasma wave in the stack of intrinsic Josephson junctions change crucially the superconducting current through the stack. Investigation of the correlations of superconducting currents in neighboring Josephson junctions and the charge correlations in neighboring superconducting layers allows us to predict the additional features in the current-voltage characteristics. The charge autocorrelation functions clearly demonstrate the difference between harmonic and chaotic behavior in the breakpoint region. Use of the correlation functions gives us a powerful method for the analysis of the current-voltage characteristics of coupled Josephson junctions.
Yokoyama, T.; Eto, M.; Nazarov, Y.V.
2014-01-01
We investigate theoretically the Josephson junction of semiconductor nanowire with strong spin-orbit (SO) interaction in the presence of magnetic field. By using a tight-binding model, the energy levels En of Andreev bound states are numerically calculated as a function of phase difference φ between
DC Josephson effect and critical currents of YBa 2Cu 3O 7 and Tl 2CaBa 2O 8
Kleiner, R.; Müller, P.; Andres, K.
1989-12-01
The DC Josephson effect between grains in YBa 2Cu 3O 7 and Tl 2CaBa 2Cu 2O 8 sinters was investigated. DC SQUID operation was detected in two geometries up to T = 86 K and T = 101 K respectively. The results are consistent with the assumption that the grain boundaries are S-N-S or S-S'-S junctions and that the transport currents are of pure Josephson type.
Confocal Annular Josephson Tunnel Junctions
Monaco, Roberto
2016-09-01
The physics of Josephson tunnel junctions drastically depends on their geometrical configurations and here we show that also tiny geometrical details play a determinant role. More specifically, we develop the theory of short and long annular Josephson tunnel junctions delimited by two confocal ellipses. The behavior of a circular annular Josephson tunnel junction is then seen to be simply a special case of the above result. For junctions having a normalized perimeter less than one, the threshold curves in the presence of an in-plane magnetic field of arbitrary orientations are derived and computed even in the case with trapped Josephson vortices. For longer junctions, a numerical analysis is carried out after the derivation of the appropriate motion equation for the Josephson phase. We found that the system is modeled by a modified and perturbed sine-Gordon equation with a space-dependent effective Josephson penetration length inversely proportional to the local junction width. Both the fluxon statics and dynamics are deeply affected by the non-uniform annulus width. Static zero-field multiple-fluxon solutions exist even in the presence of a large bias current. The tangential velocity of a traveling fluxon is not determined by the balance between the driving and drag forces due to the dissipative losses. Furthermore, the fluxon motion is characterized by a strong radial inward acceleration which causes electromagnetic radiation concentrated at the ellipse equatorial points.
A thin polymer insulator for Josephson tunneling applications
Wilmsen, C. M.
1973-01-01
The use of an organic monolayer formed from a vapor as an insulating barrier for thin film Josephson junctions is considered, and the effect of an organic monolayer on the transition temperature of a thin film superconductor is investigated. Also analyzed are the geometric factors which influence Josephson junctions and Josephson junction interferometers.
Quantum ratchets, the orbital Josephson effect, and chaos in Bose-Einstein condensates
Carr, Lincoln D.; Heimsoth, Martin; Creffield, Charles E.; Sols, Fernando
2014-03-01
In a system of ac-driven condensed bosons we study a new type of Josephson effect occurring between states sharing the same region of space and the same internal atom structure. We first develop a technique to calculate the long-time dynamics of a driven interacting many-body system. For resonant frequencies, this dynamics can be shown to derive from an effective time-independent Hamiltonian which is expressed in terms of standard creation and annihilation operators. Within the subspace of resonant states, and if the undriven states are plane waves, a locally repulsive interaction between bosons translates into an effective attraction. We apply the method to study the effect of interactions on the coherent ratchet current of an asymmetrically driven boson system. We find a wealth of dynamical regimes which includes Rabi oscillations, self-trapping and chaotic behavior. In the latter case, a full quantum many-body calculation deviates from the mean-field results by predicting large quantum fluctuations of the relative particle number. Moreover, we find that chaos and entanglement, as defined by a variety of widely used and accepted measures, are overlapping but distinct notions. Funded by Spanish MINECO, the Ramon y Cajal program (CEC), the Comunidad de Madrid through Grant Microseres, the Heidelberg Center for Quantum Dynamics, and the NSF.
Possible resonance effect of axionic dark matter in S/N/S Josephson junctions
Beck, Christian
2013-01-01
We provide theoretical arguments that dark matter axions from the galactic halo that pass through the earth may generate a small observable signal in resonant S/N/S Josephson junctions. The corresponding interaction process is based on uniqueness of the gauge-invariant axion Josephson phase angle modulo 2 pi and is predicted to produce a small Shapiro step-like feature without externally applied microwave radiation when the Josephson frequency resonates with the axion mass. A resonance signal of so far unknown origin observed in [C. Hoffmann et al. PRB 70, 180503(R) (2004)] is consistent with our theory and can be interpreted in terms of an axion mass of 0.11 meV and a local galactic axionic dark matter density of 0.05 GeV/cm^3. We discuss future experimental checks to confirm the dark-matter nature of the observed signal.
Effect of phase noise on quantum correlations in Bose-Josephson junctions
Energy Technology Data Exchange (ETDEWEB)
Ferrini, G.; Minguzzi, A.; Hekking, F. W. J. [Universite Grenoble 1 and CNRS, Laboratoire de Physique et Modelisation des Milieux Condenses UMR5493, B.P. 166, F-38042 Grenoble (France); Spehner, D. [Universite Grenoble 1 and CNRS, Laboratoire de Physique et Modelisation des Milieux Condenses UMR5493, B.P. 166, F-38042 Grenoble (France); Universite Grenoble 1 and CNRS, Institut Fourier UMR5582, B.P. 74, F-38402 Saint Martin d' Heres (France)
2011-10-15
In a two-mode Bose-Josephson junction the dynamics induced by a sudden quench of the tunnel amplitude leads to the periodic formation of entangled states. For instance, squeezed states are formed at short times and macroscopic superpositions of phase states at later times. In atom interferometry, the two modes of the junction play the role of the two arms of a Mach-Zehnder interferometer; use of multiparticle entangled states allows the enhancement of phase sensitivity with respect to that obtained from uncorrelated atoms. Decoherence due to the presence of noise degrades quantum correlations between atoms, thus reducing phase sensitivity. We consider decoherence due to stochastic fluctuations of the energies of the two modes of the junction. We analyze its effect on squeezed states and macroscopic superpositions and calculate the squeezing parameter and the quantum Fisher information during the quenched dynamics. The latter quantity measures the amount of quantum correlations useful in interferometry. For moderate noise intensities, we show that it increases on time scales beyond the squeezing regime. This suggests multicomponent superpositions of phase states as interesting candidates for high-precision atom interferometry.
Moor, Andreas; Volkov, Anatoly F.; Efetov, Konstantin B.
2016-03-01
On the basis of the Usadel equation we study a multiterminal Josephson junction. This junction is composed by "magnetic" superconductors Sm, which have singlet pairing and are separated from the normal n wire by spin filters so that the Josephson coupling is caused only by fully polarized triplet components. We show that there is no interaction between triplet Cooper pairs with antiparallel total spin orientations. The presence of an additional singlet superconductor S attached to the n wire leads to a finite Josephson current IQ with an unusual current-phase relation. The density of states in the n wire for different orientations of spins of Cooper pairs is calculated. We derive a general formula for the current IQ in a multiterminal Josephson contact and apply this formula for analysis of two four-terminal Josephson junctions of different structures. It is shown in particular that both the "nematic" and the "magnetic" cases can be realized in these junctions. In a two-terminal structure with parallel filter orientations and in a three-terminal structure with antiparallel filter orientations of the "magnetic" superconductors with attached additional singlet superconductor, we find a nonmonotonic temperature dependence of the critical current. Also, in these structures, the critical current shows a Riedel peak like dependence on the exchange field in the "magnetic" superconductors. Although there is no current through the S/n interface due to orthogonality of the singlet and triplet components, the phase of the order parameter in the superconuctor S is shown to affect the Josephson current in a multiterminal structure.
Energy Technology Data Exchange (ETDEWEB)
Grison, X
2000-11-15
This work, mainly experimental, is dedicated to the study of the Josephson effect and the tunnel spectroscopy of superconducting films. Thin films of YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} oriented towards [0,0,1], [1,0,3], [1,1,0] or [1,0,0] axis have been made. The results concerning the [0,0,1] orientation are consistent with an order parameter having a d(x{sup 2}-y{sup 2}) symmetry but with a small component of s symmetry due to the orthorombicity of YBa{sub 2}Cu{sub 3}O{sub 7{delta}}. The results concerning the [1,1,0] orientation show the existence (near (1,1,0)-type surfaces) of an order parameter whose symmetry is d(x{sup 2}-y{sup 2}) {+-} i*s or more likely d(x{sup 2} - y{sup 2}) {+-} i*d(xy). The latter term implies the breaking of the time reversing symmetry. The i*d(xy) component is responsible for the Josephson coupling along the [1,1,0] axis, which means that the coupling is not or is little carried by the Andreev bound states contrarily to recent predictions. It is also shown that Josephson junctions can be fabricated by using ion irradiation. (A.C.)
Aharonov-Bohm–Type Effect for Vortices in Josephson-Junction Arrays
Wees, B.J. van
1990-01-01
The dynamics of a single vortex present in a ring-shaped (Corbino geometry) two-dimensional array of low-capacity Josephson junctions is studied. The vortex is treated as a macroscopic quantum particle, whose energy levels En(Q0) are periodic functions of the externally induced gauge charge Q0 which
Effect of thermal noise on the phase locking of a Josephson fluxon oscillator
DEFF Research Database (Denmark)
Grønbech-Jensen, Niels; Salerno, Mario; Samuelsen, Mogens Rugholm
1992-01-01
The influence of thermal noise on fluxon motion in a long Josephson junction is investigated when the motion is phase locked to an external microwave signal. It is demonstrated that the thermal noise can be treated theoretically within the context of a two-dimensional map that models the dynamics...
Rahmonov, I. R.; Shukrinov, Yu. M.; Atanasova, P. Kh.; Zemlyanaya, E. V.; Bashashin, M. V.
2017-01-01
We have studied the current-voltage characteristic of a system of long Josephson junctions taking into account the inductive and capacitive coupling. The dependence of the average time derivative of the phase difference on the bias current and spatiotemporal dependences of the phase difference and magnetic field in each junction are considered. The possibility of branching of the current-voltage characteristic in the region of zero field step, which is associated with different numbers of fluxons in individual Josephson junctions, is demonstrated. The current-voltage characteristic of the system of Josephson junctions is compared with the case of a single junction, and it is shown that the observed branching is due to coupling between the junctions. The intensity of electromagnetic radiation associated with motion of fluxons is calculated, and the effect of coupling between junctions on the radiation power is analyzed.
Gao, Zhen; Wang, Xiao-Qi; Shan, Wan-Fei; Wu, Hai-Na; Gong, Wei-Jiang
2016-01-01
We investigate the Josephson effects in the junction formed by the indirect coupling between DIII-class topological and s-wave superconductors via an embedded quantum dot. Due to the presence of two kinds of superconductors, three dot-superconductor coupling manners are considered, respectively. As a result, the Josephson current is found to oscillate in period 2π. More importantly, the presence of Majorana doublet in the DIII-class superconductor renders the current finite at the case of zero phase difference, with its sign determined by the fermion parity of such a junction. In addition, the dot-superconductor coupling plays a nontrivial role in adjusting the Josephson current. When the s-wave superconductor couples to the dot in the weak limit, the current direction will have an opportunity to reverse. It is believed that these results will be helpful for understanding the transport properties of the DIII-class superconductor. PMID:27324426
Domański, T.; Žonda, M.; Pokorný, V.; Górski, G.; Janiš, V.; Novotný, T.
2017-01-01
We study the subgap spectrum of the interacting single-level quantum dot coupled between two superconducting reservoirs, forming the Josephson-type circuit, and additionally hybridized with a metallic normal lead. This system allows for the phase-tunable interplay between the correlation effects and the proximity-induced electron pairing resulting in the singlet-doublet (0-π ) crossover and the phase-dependent Kondo effect. We investigate the spectral function, induced local pairing, Josephson supercurrent, and Andreev conductance in a wide range of system parameters by the numerically exact numerical renormalization group and quantum Monte Carlo calculations along with perturbative treatments in terms of the Coulomb repulsion and the hybridization term. Our results address especially the correlation effects reflected in dependencies of various quantities on the local Coulomb interaction strength as well as on the coupling to the normal lead. We quantitatively establish the phase-dependent Kondo temperature logTK(ϕ ) ∝cos2(ϕ /2 ) and show that it can be read off from the half-width of the zero-bias enhancement in the Andreev conductance in the doublet phase, which can be experimentally measured by the tunneling spectroscopy.
Energy Technology Data Exchange (ETDEWEB)
Malishevskii, A.S.; Silin, V.P.; Uryupin, S.A
2002-12-30
For the magnetically coupled waveguide and long Josephson junction we gave the analytic description of two separate velocity domains where the free motion of traveling vortex (2{pi}-kink) exists. The role of the mutual influence of waveguide and long Josephson junction is discussed. It is shown the possibility of the fast vortex motion with the velocity much larger than Swihart velocity of Josephson junction and close to the speed of light in the waveguide. The excitation of motion of such fast Josephson vortex is described.
Haider, H; Athar, M Sajjad; Vacas, M J Vicente
2011-01-01
We study the nuclear medium effects in the weak structure functions $F_2(x,Q^2)$ and $F_3(x,Q^2)$ in the deep inelastic neutrino/antineutrino reactions in nuclei. We use a theoretical model for the nuclear spectral functions which incorporates the conventional nuclear effects, such as Fermi motion, binding and nucleon correlations. We also consider the pion and rho meson cloud contributions calculated from a microscopic model for meson-nucleus self-energies. The calculations have been performed using relativistic nuclear spectral functions which include nucleon correlations. Our results are compared with the experimental data of NuTeV and CDHSW.
Testing axion physics in a Josephson junction environment
Beck, Christian
2011-01-01
We suggest that experiments based on Josephson junctions, SQUIDS, and coupled Josephson qubits can be used to construct a resonant environment for dark matter axions. We propose experimental setups in which axionic interaction strengths in a Josephson junction environment can be tested, similar in nature to recent experiments that test for quantum entanglement of two coupled Josephson qubits. We point out that the parameter values relevant for early-universe axion cosmology are accessible with present day's achievements in nanotechnology. We work out how typical dark matter and dark energy signals would look like in a novel detector that exploits this effect.
Butz, Susanne
2014-01-01
This thesis presents a novel approach to the experimental realization of tunable, superconducting metamaterials. Therefore, conventional resonant meta-atoms are replaced by meta-atoms that contain Josephson junctions, which renders their resonance frequency tunable by an external magnetic field. This tunability is theoretically and experimentally investigated in one-dimensional magnetic and electric metamaterials. For the magnetic metamaterial, the effective, magnetic permeability is determined.
Non-equilibrium effects in a Josephson junction coupled to a precessing spin
Energy Technology Data Exchange (ETDEWEB)
Fogelstroem, Mikael [Department of Microtechnology and Nanoscience, Chalmers University of Technology, 42196 Goeteborg (Sweden)
2015-07-01
I will discuss a theoretical study of s-wave superconductors coupled to a classical spin. When an external magnetic field is applied, the classical spin can be driven to precess with the Larmor frequency. This results in a time-dependent boundary condition for the superconducting quasiparticles, with different tunnelling amplitudes for spin-up and spin-down quasiparticles and where the precession produces spin-flip scattering processes. Andreev states develop at the interface with a non-equilibrium population which depend on how the spin is driven. The Andreev states carry a steady-state Josephson current whose current-phase relation could be used for characterising the spin. In addition to the charge transport, a spin current is also generated. This spin current will induce a torque and couple back to the dynamics of the classical spin.
DEFF Research Database (Denmark)
Andersen, Christian Kraglund; Mølmer, Klaus
2013-01-01
We propose to use a time-dependent imaginary potential to describe quantum mechanical tunneling through time-varying potential barriers. We use Gamow solutions for stationary tunneling problems to justify our choice of potential, and we apply our method to describe tunneling of a mesoscopic quantum...... variable: the phase change across a Josephson junction. The Josephson junction phase variable behaves as the position coordinate of a particle moving in a tilted washboard potential, and our general solution to the motion in such a potential with a time-dependent tilt reproduces a number of features...... associated with voltage switching in Josephson junctions. Apart from applications as artificial atoms in quantum information studies, the Josephson junction may serve as an electric field sensitive detector, and our studies provide a detailed understanding of how the voltage switching dynamics couples...
DEFF Research Database (Denmark)
Andersen, Christian Kraglund; Mølmer, Klaus
2013-01-01
variable: the phase change across a Josephson junction. The Josephson junction phase variable behaves as the position coordinate of a particle moving in a tilted washboard potential, and our general solution to the motion in such a potential with a time-dependent tilt reproduces a number of features......We propose to use a time-dependent imaginary potential to describe quantum mechanical tunneling through time-varying potential barriers. We use Gamow solutions for stationary tunneling problems to justify our choice of potential, and we apply our method to describe tunneling of a mesoscopic quantum...... associated with voltage switching in Josephson junctions. Apart from applications as artificial atoms in quantum information studies, the Josephson junction may serve as an electric field sensitive detector, and our studies provide a detailed understanding of how the voltage switching dynamics couples...
Field theoretical model of multi-layered Josephson junction and dynamics of Josephson vortices
Fujimori, Toshiaki; Nitta, Muneto
2016-01-01
Multi-layered Josephson junctions are modeled in the context of a field theory, and dynamics of Josephson vortices trapped inside insulators are studied. Starting from a theory consisting of complex and real scalar fields coupled to a U(1) gauge field which admit parallel $N-1$ domain-wall solutions, Josephson couplings are introduced weakly between the complex scalar fields. The $N-1$ domain walls behave as insulators separating $N$ superconductors. We construct the effective Lagrangian on the domain walls, which reduces to a coupled sine-Gordon model for well-separated walls and contains more interactions for walls at short distance. We then construct sine-Gordon solitons emerging in the effective theory that we identify Josephson vortices carrying singly quantized magnetic fluxes. When two neighboring superconductors tend to have the same phase, the ground state does not change with the positions of domain walls. On the other hand, when two neighboring superconductors tend to have the $\\pi$ phase differenc...
Shapiro and parametric resonances in coupled Josephson junctions
Gaafar, Ma A.; Shukrinov, Yu M.; Foda, A.
2012-11-01
The effect of microwave irradiation on the phase dynamics of intrinsic Josephson junctions in high temperature superconductors is investigated. We compare the current-voltage characteristics for a stack of coupled Josephson junctions under external irradiation calculated in the framework of CCJJ and CCJJ+DC models.
Fluxon dynamics in long annular Josephson tunnel junctions
DEFF Research Database (Denmark)
Martucciello, N.; Mygind, Jesper; Koshelets, V.P.
1998-01-01
Single-fluxon dynamics has been experimentally investigated in high-quality Nb/Al-AlOx/Nb annular Josephson tunnel junctions having a radius much larger than the Josephson penetration depth. Strong evidence of self-field effects is observed. An external magnetic field in the barrier plane acts...
Modern aspects of Josephson dynamics and superconductivity electronics
Askerzade, Iman; Cantürk, Mehmet
2017-01-01
In this book new experimental investigations of properties of Josephson junctions and systems are explored with the help of recent developments in superconductivity. The theory of the Josephson effect is presented taking into account the influence of multiband and anisotropy effects in new superconducting compounds. Anharmonicity effects in current-phase relation on Josephson junctions dynamics are discussed. Recent studies in analogue and digital superconductivity electronics are presented. Topics of special interest include resistive single flux quantum logic in digital electronics. Application of Josephson junctions in quantum computing as superconducting quantum bits are analyzed. Particular attention is given to understanding chaotic behaviour of Josephson junctions and systems. The book is written for graduate students and researchers in the field of applied superconductivity.
Field theoretical model of multilayered Josephson junction and dynamics of Josephson vortices
Fujimori, Toshiaki; Iida, Hideaki; Nitta, Muneto
2016-09-01
Multilayered Josephson junctions are modeled in the context of a field theory, and dynamics of Josephson vortices trapped inside insulators are studied. Starting from a theory consisting of complex and real scalar fields coupled to a U(1) gauge field which admit parallel N -1 domain-wall solutions, Josephson couplings are introduced weakly between the complex scalar fields. The N -1 domain walls behave as insulators separating N superconductors, where one of the complex scalar fields has a gap. We construct the effective Lagrangian on the domain walls, which reduces to a coupled sine-Gordon model for well-separated walls and contains more interactions for walls at short distance. We then construct sine-Gordon solitons emerging in an effective theory in which we identify Josephson vortices carrying singly quantized magnetic fluxes. When two neighboring superconductors tend to have the same phase, the ground state does not change with the positions of domain walls (the width of superconductors). On the other hand, when two neighboring superconductors tend to have π -phase differences, the ground state has a phase transition depending on the positions of domain walls; when the two walls are close to each other (one superconductor is thin), frustration occurs because of the coupling between the two superconductors besides the thin superconductor. Focusing on the case of three superconductors separated by two insulators, we find for the former case that the interaction between two Josephson vortices on different insulators changes its nature, i.e., attractive or repulsive, depending on the positions of the domain walls. In the latter case, there emerges fractional Josephson vortices when two degenerate ground states appear due to spontaneous charge-symmetry breaking, and the number of the Josephson vortices varies with the position of the domain walls. Our predictions should be verified in multilayered Josephson junctions.
Cryocooled Josephson standards for AC voltage metrology
Durandetto, P.; Sosso, A.; Monticone, E.; Trinchera, B.; Fretto, M.; Lacquaniti, V.
2017-05-01
The Josephson effect is worldwide used as a basis for constant reference voltages in national metrological institutes and in calibration laboratories of industry. Research on Josephson voltage standards is aiming at a fundamental change also in the metrology of the volt for AC and arbitrary waveforms: programmable Josephson voltage standards converting a digital code into a quantum-accurate stepwise waveform are already available in primary laboratories and even more advanced standards for converting sub-nanosecond binary coded pulses into any arbitrary signal with quantum accuracy are now actively developed and tested. A new experimental setup based on a two-stage Gifford-McMahon cryocooler has been developed at INRiM for the operation of AC-Josephson voltage standards. Among its distinct features, the possibility of employing both the aforementioned techniques (programmable and pulsed Josephson voltage standards) is particularly interesting. Quantum-based AC voltage sine waves have been synthesized with both programmable and pulse-driven arrays, although their accuracy is still limited by thermal oscillations due to the cryocooler piston motion.
Fabry–Perot filters with tunable Josephson junction defects
Energy Technology Data Exchange (ETDEWEB)
Pierro, Vincenzo, E-mail: pierro@unisannio.it [Dept. of Engineering, University of Sannio, Corso Garibaldi, 107, I-82100 Benevento (Italy); Filatrella, Giovanni, E-mail: filatrella@unisannio.it [Dept. of Sciences and Technologies, University of Sannio, Via Port’Arsa, 11, I-82100 Benevento (Italy)
2015-10-15
Highlights: • We propose a tunable filter exploiting Josephson junctions nonlinear inductance. • The resonance center frequency is tuned by the external current. • The long Josephson junctions features are within fabrication feasibility. • The full wave analysis of the defect agrees with the linearized approximation. - Abstract: We propose to take advantage of the properties of long Josephson junctions to realize a frequency variable Fabry–Perot filter that operates in the range 100–500 GHz with a bandwidth below 1 GHz. In fact, we show that it is possible to exploit the tunability of the effective impedance of the Josephson component, that is controlled by a dc bias, to tune, up to 10% of the central frequency, the resonance of the system. An analysis of the linearized system indicates the range of operation and the main characteristic parameters. Numerical simulations of the full nonlinear Josephson element confirm the behavior expected from the linear approximation.
Hikino, Shin-ichi
2017-09-01
We theoretically study the magnetism induced by the proximity effect in the normal metal of ferromagnetic Josephson junction composed of two s-wave superconductors separated by ferromagnetic metal/normal metal/ferromagnetic metal junction (S/F/N/F/S junction). We calculate the magnetization in the N by solving the Eilenberger equation. We show that the magnetization arises in the N when the product of anomalous Green’s functions of the spin-triplet even-frequency odd-parity Cooper pair and spin-singlet odd-frequency odd-parity Cooper pair in the N has a finite value. The induced magnetization M(d,θ ) can be decomposed into two parts, M(d,θ ) = MI(d) + MII(d,θ ), where d is the thickness of N and θ is superconducting phase difference between two Ss. Therefore, θ dependence of M(d,θ ) allows us to control the amplitude of magnetization by changing θ. The variation of M(d,θ ) with θ is indeed the good evidence of the magnetization induced by the proximity effect, since some methods of magnetization measurement pick up total magnetization in the S/F/N/F/S junction.
Scanning Josephson spectroscopy on the atomic scale
Randeria, Mallika T.; Feldman, Benjamin E.; Drozdov, Ilya K.; Yazdani, Ali
2016-04-01
The Josephson effect provides a direct method to probe the strength of the pairing interaction in superconductors. By measuring the phase fluctuating Josephson current between a superconducting tip of a scanning tunneling microscope and a BCS superconductor with isolated magnetic adatoms on its surface, we demonstrate that the spatial variation of the pairing order parameter can be characterized on the atomic scale. This system provides an example where the local pairing potential suppression is not directly reflected in the spectra measured via quasiparticle tunneling. Spectroscopy with such superconducting tips also shows signatures of previously unexplored Andreev processes through individual impurity-bound Shiba states. The atomic resolution achieved here establishes scanning Josephson spectroscopy as a promising technique for the study of novel superconducting phases.
Phonon-Josephson resonances in atomtronic circuits
Bidasyuk, Y. M.; Prikhodko, O. O.; Weyrauch, M.
2016-09-01
We study the resonant excitation of sound modes from Josephson oscillations in Bose-Einstein condensates. From the simulations for various setups using the Gross-Pitaevskii mean-field equations and Josephson equations we observe additional tunneling currents induced by resonant phonons. The proposed experiment may be used for spectroscopy of phonons as well as other low-energy collective excitations in Bose-Einstein condensates. We also argue that the observed effect may mask the observation of Shapiro resonances if not carefully controlled.
Haider, H; Athar, M Sajjad; Vacas, M J Vicente
2011-01-01
Nuclear medium effects in the weak structure functions $F_2(x,Q^2)$ and $F_3(x,Q^2)$ have been studied for deep inelastic neutrino/antineutrino reactions in iron nucleus by taking into account Fermi motion, binding, pion and rho meson cloud contributions, target mass correction, shadowing and anti-shadowing corrections. The calculations have been performed in a local density approximation using relativistic nuclear spectral functions which include nucleon correlations. Using these structure functions we have obtained the ratio $R_{F2,F3}^A(x,Q^2)= \\frac{2F_{2,3}^A(x,Q^2)}{AF_{2,3}^D(x,Q^2)}$, the differential scattering cross section $\\frac{1}{E}\\frac{d^2\\sigma}{dxdy}$ and the total scattering cross section $\\sigma$. The results of our numerical calculations in $^{56}Fe$ are compared with the experimental results of NuTeV and CDHSW collaborations.
DEFF Research Database (Denmark)
Madsen, Søren Find; Pedersen, Niels Falsig; Christiansen, Peter Leth
2010-01-01
Long Josephson junctions have for some time been considered as a source of THz radiation. Solitons moving coherently in the junctions is a possible source for this radiation. Analytical computations of the bunched state and bunching-inducing methods are reviewed. Experiments showing THz radiation...
Josephson junctions with ferromagnetic interlayer
Energy Technology Data Exchange (ETDEWEB)
Wild, Georg Hermann
2012-03-04
We report on the fabrication of superconductor/insulator/ferromagnetic metal/superconductor (Nb/AlO{sub x}/Pd{sub 0.82}Ni{sub 0.18}/Nb) Josephson junctions (SIFS JJs) with high critical current densities, large normal resistance times area products, and high quality factors. For these junctions, a transition from 0- to {pi}-coupling is observed for a thickness d{sub F}=6 nm of the ferromagnetic Pd{sub 0.82}Ni{sub 0.18} interlayer. The magnetic field dependence of the critical current of the junctions demonstrates good spatial homogeneity of the tunneling barrier and ferromagnetic interlayer. Magnetic characterization shows that the Pd{sub 0.82}Ni{sub 0.18} has an out-of-plane anisotropy and large saturation magnetization indicating negligible dead layers at the interfaces. A careful analysis of Fiske modes up to about 400 GHz provides valuable information on the junction quality factor and the relevant damping mechanisms. Whereas losses due to quasiparticle tunneling dominate at low frequencies, at high frequencies the damping is explained by the finite surface resistance of the junction electrodes. High quality factors of up to 30 around 200 GHz have been achieved. They allow to study the junction dynamics, in particular the switching probability from the zero-voltage into the voltage state with and without microwave irradiation. The experiments with microwave irradiation are well explained within semi-classical models and numerical simulations. In contrast, at mK temperature the switching dynamics without applied microwaves clearly shows secondary quantum effects. Here, we could observe for the first time macroscopic quantum tunneling in Josephson junctions with a ferromagnetic interlayer. This observation excludes fluctuations of the critical current as a consequence of an unstable magnetic domain structure of the ferromagnetic interlayer and affirms the suitability of SIFS Josephson junctions for quantum information processing.
Long Range Magnetic Interaction between Josephson Junctions
DEFF Research Database (Denmark)
Grønbech-Jensen, Niels; Samuelsen, Mogens Rugholm
1995-01-01
A new model for magnetic coupling between long Josephson junctions is proposed. The coupling mechanism is a result of the magnetic fields outside the junctions and is consequently effective over long distances between junctions. We give specific expressions for the form and magnitude of the inter...
Switching current distributions in InAs nanowire Josephson junctions
Kim, Bum-Kyu; Doh, Yong-Joo
2016-08-01
We report on the switching current distributions in nano-hybrid Josephson junctions made of InAs semiconductor nanowires. The temperature dependence of the switching current distribution can be understood through the motion of Josephson phase particles escaping from a tilted washboard potential, and the data could be fitted well by using the macroscopic quantum tunneling, thermal activation or phase diffusion models, depending on temperature. Application of the gate voltage to tune the Josephson coupling strength enable us to adjust the effective temperature for the escape process, and holds promising for developing gate-tunable superconducting phase qubits.
Semerdzhieva, E. G.; Boyadzhiev, T. L.; Shukrinov, Yu. M.
2005-10-01
The transition from the model of a long Josephson junction of variable width to the model of a junction with a coordinate-dependent Josephson current amplitude is effected through a coordinate transformation. This establishes the correspondence between the classes of Josephson junctions of variable width and quasi-one-dimensional junctions with a variable thickness of the barrier layer. It is shown that for a junction of exponentially varying width the barrier layer of the equivalent quasi-one-dimensional junction has a distributed resistive inhomogeneity that acts as an attractor for magnetic flux vortices. The curve of the critical current versus magnetic field for a Josephson junction with a resistive microinhomogeneity is constructed with the aid of a numerical simulation, and a comparison is made with the critical curve of a junction of exponentially varying width. The possibility of replacing a distributed inhomogeneity in a Josephson junction by a local inhomogeneity at the end of the junction is thereby demonstrated; this can have certain advantages from a technological point of view.
Josephson junction spectrum analyzer for millimeter and submillimeter wavelengths
Energy Technology Data Exchange (ETDEWEB)
Larkin, S.Y.; Anischenko, S.E.; Khabayev, P.V. [State Research Center, Kiev (Ukraine)
1994-12-31
A prototype of the Josephson-effect spectrum analyzer developed for the millimeter-wave band is described. The measurement results for spectra obtained in the frequency band from 50 to 250 GHz are presented.
Nuclear effects in atomic transitions
Pálffy, Adriana
2011-01-01
Atomic electrons are sensitive to the properties of the nucleus they are bound to, such as nuclear mass, charge distribution, spin, magnetization distribution, or even excited level scheme. These nuclear parameters are reflected in the atomic transition energies. A very precise determination of atomic spectra may thus reveal information about the nucleus, otherwise hardly accessible via nuclear physics experiments. This work reviews theoretical and experimental aspects of the nuclear effects ...
Nonlinearities in Josephson-photonics
Energy Technology Data Exchange (ETDEWEB)
Kubala, Bjoern; Ankerhold, Joachim [Institute for Complex Quantum Systems and IQST, Ulm University, Ulm (Germany)
2016-07-01
Embedding a voltage-biased Josephson junction within a high-Q superconducting microwave cavity provides a new way to explore the interplay of the tunneling transfer of charges and the emission and absorption of light. While for weak driving the system can be reduced to simple cases, such as a (damped) harmonic or parametric oscillator, the inherent nonlinearity of the Josephson junction allows to access regimes of strongly non-linear quantum dynamics. Classically, dynamical phenomena such as thresholds for higher-order resonances, other bifurcations, and up- and down-conversion have been found. Here, we will investigate how and to which extent these features appear in the deep quantum regime, where charge quantization effects are crucial. Theory allows to employ phase-space quantities, such as the Wigner-density of the cavity mode(s), but also observables amenable to more immediate experimental access, such as correlations in light emission and charge transport, to probe these novel non-equilibrium transitions.
Polaritonic Rabi and Josephson Oscillations.
Rahmani, Amir; Laussy, Fabrice P
2016-07-25
The dynamics of coupled condensates is a wide-encompassing problem with relevance to superconductors, BECs in traps, superfluids, etc. Here, we provide a unified picture of this fundamental problem that includes i) detuning of the free energies, ii) different self-interaction strengths and iii) finite lifetime of the modes. At such, this is particularly relevant for the dynamics of polaritons, both for their internal dynamics between their light and matter constituents, as well as for the more conventional dynamics of two spatially separated condensates. Polaritons are short-lived, interact only through their material fraction and are easily detuned. At such, they bring several variations to their atomic counterpart. We show that the combination of these parameters results in important twists to the phenomenology of the Josephson effect, such as the behaviour of the relative phase (running or oscillating) or the occurence of self-trapping. We undertake a comprehensive stability analysis of the fixed points on a normalized Bloch sphere, that allows us to provide a generalized criterion to identify the Rabi and Josephson regimes in presence of detuning and decay.
Equivalent Josephson junctions
Boyadjiev, T. L.; Semerdjieva, E. G.; Shukrinov, Yu. M.
2008-01-01
The magnetic field dependences of critical current are numerically constructed for a long Josephson junction with a shunt-or resistor-type microscopic inhomogeneities and compared to the critical curve of a junction with exponentially varying width. The numerical results show that it is adequate to replace the distributed inhomogeneity of a long Josephson junction by an inhomogeneity localized at one of its ends, which has certain technological advantages. It is also shown that the critical curves of junctions with exponentially varying width and inhomogeneities localized at the ends are unaffected by the mixed fluxon-antifluxon distributions of the magnetic flow. This fact may explain the improvement of the spectra of microwave radiation noted in the literature.
Energy Technology Data Exchange (ETDEWEB)
Narla, A.; Sliwa, K. M.; Hatridge, M.; Shankar, S.; Frunzio, L.; Schoelkopf, R. J.; Devoret, M. H. [Department of Applied Physics, Yale University, New Haven, Connecticut 06511 (United States)
2014-06-09
Josephson junction parametric amplifiers are playing a crucial role in the readout chain in superconducting quantum information experiments. However, their integration with current 3D cavity implementations poses the problem of transitioning between waveguide, coax cables, and planar circuits. Moreover, Josephson amplifiers require auxiliary microwave components, like directional couplers and/or hybrids, that are sources of spurious losses and impedance mismatches that limit measurement efficiency and amplifier tunability. We have developed a wireless architecture for these parametric amplifiers that eliminates superfluous microwave components and interconnects. This greatly simplifies their assembly and integration into experiments. We present an experimental realization of such a device operating in the 9–11 GHz band with about 100 MHz of amplitude gain-bandwidth product, on par with devices mounted in conventional sample holders. The simpler impedance environment presented to the amplifier also results in increased amplifier tunability.
Resonance features of coupled Josephson junctions: radiation and shunting
Shukrinov, Yu M.; Seidel, P.; Il'ichev, E.; Nawrocki, W.; Grajcar, M.; Plecenik, P. A.; Rahmonov, I. R.; Kulikov, K.
2012-11-01
We study the phase dynamics and the resonance features of coupled Josephson junctions in layered superconductors and their manifestations in the current- voltage characteristics and temporal dependence of the electric charge in the superconducting layers. Results on the effect of the external radiation and shunting of the stack of Josephson junctions by LC-elements are presented. We discuss the ideas concerning the experimental observation of these resonances.
1D Josephson quantum interference grids: diffraction patterns and dynamics
Lucci, M.; Badoni, D.; Corato, V.; Merlo, V.; Ottaviani, I.; Salina, G.; Cirillo, M.; Ustinov, A. V.; Winkler, D.
2016-02-01
We investigate the magnetic response of transmission lines with embedded Josephson junctions and thus generating a 1D underdamped array. The measured multi-junction interference patterns are compared with the theoretical predictions for Josephson supercurrent modulations when an external magnetic field couples both to the inter-junction loops and to the junctions themselves. The results provide a striking example of the analogy between Josephson phase modulation and 1D optical diffraction grid. The Fiske resonances in the current-voltage characteristics with voltage spacing {Φ0}≤ft(\\frac{{\\bar{c}}}{2L}\\right) , where L is the total physical length of the array, {Φ0} the magnetic flux quantum and \\bar{c} the speed of light in the transmission line, demonstrate that the discrete line supports stable dynamic patterns generated by the ac Josephson effect interacting with the cavity modes of the line.
Chiral Edge Currents in a Holographic Josephson Junction
Rozali, Moshe
2013-01-01
We discuss the Josephson effect and the appearance of dissipationless edge currents in a holographic Josephson junction configuration involving a chiral, time-reversal breaking, superconductor in 2+1 dimensions. Such a superconductor is expected to be topological, thereby supporting topologically protected gapless Majorana-Weyl edge modes. Such modes manifest themselves in chiral dissipationless edge currents, which we exhibit and investigate in the context of our construction. The physics of the Josephson current itself, though expected to be unconventional in some non-equilibrium settings, is shown to be conventional in our setup which takes place in thermal equilibrium. We comment on various ways in which the expected Majorana nature of the edge excitations, and relatedly the unconventional nature of topological Josephson junctions, can be verified in the holographic context.
Synchronisation of Josephson vortices in multi-junction systems
DEFF Research Database (Denmark)
Filatrella, G.; Pedersen, Niels Falsig; Wiesenfeld, K.
2006-01-01
, that is mainly to retrieve the above described synchronous motion. We discuss the physics behind synchronization of nonlinear elements and we review applications to Josephson arrays. We discuss in the framework of a general model for synchronization, the Kuramoto model, a mechanism that can possibly enhance......A largely adopted model for the description of high-temperature superconductors such as BSCCO results in several long Josephson junctions one on the top of the other ("stacked"). The dynamics of the basic nonlinear excitation of the isolated long Josephson junction, the Josephson vortex...... synchronization, such as coupling to a resonant cavity. We present a version of the Kuramoto model that might include the effects of the strong interaction between the oscillators and the cavity. (c) 2005 Elsevier B.V. All rights reserved....
High-resolution Josephson spectroscopy with a scanning tunneling microscope
Randeria, Mallika T.; Feldman, Benjamin E.; Drozdov, Ilya K.; Yazdani, Ali
2015-03-01
Conventional scanning tunneling microscopy (STM) measurements use a normal metal tip to probe local quasi-particle density of states with atomic resolution. Using a superconducting tip to conduct spectroscopy significantly boosts the energy resolution of the measurements, thus expanding the STM capabilities. Moreover, superconducting tips make it possible to probe superconductivity via the Josephson effect, which provides a direct measure of the local superconducting order parameter. Therefore, scanning Josephson spectroscopy measurements have the potential to characterize of a wide variety of superconducting materials on the atomic scale. I will present superconducting Pb tip measurements performed at temperatures below 250mK in a dilution refrigerator STM. By controlling the junction resistance, we are able to explore a wide range of tunneling regimes. Josephson measurements on Pb samples exhibit features including multiple Andreev reflections, and I will discuss the extension of these techniques to study atomic scale variations in Josephson current.
Energy Technology Data Exchange (ETDEWEB)
Sprungmann, Dirk
2010-01-28
The combination of the Josephson and the proximity effect is possible by the introduction of a ferromagnetic barrier into a Josephson contact resulting in a so called π coupling. The supra current through these contacts is flowing in the reverse direction. Specific new electronic circuits such as phase shifting devices are possible, for instance for high-speed analog-digital transducers. In the frame of this thesis SIFS Josephson contacts were studied, with a barrier consisting of a thin insulating Al2Ox barrier layer and a ferromagnetic thin film. For the ferromagnetic material weak ferromagnetic Ni(0.6)Cu(0.4), the strong ferromagnetic Fe(0.25)Co(0.75) and the ternary Heusler alloys Co2MnSn and Cu2MnAl were used. Josephson contacts with π coupling were realized with the NiCu alloy, triplet superconductivity seems to appear with the Heusler systems.
Shell effects in nuclear magnetization
Energy Technology Data Exchange (ETDEWEB)
Kondratyev, V.N.; Maruyama, Toshiki; Chiba, Satoshi [Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan)
2000-08-01
The magnetization of nuclei in strong magnetic fields associated with magnetars' is considered within the shell model. It is demonstrated that the magnetic field gives rise to a phase-shift of the shell-oscillations in nuclear masses shifting significantly the nuclear magic numbers of the iron region towards smaller mass numbers. Shell-effects are found to result in anomalies of the nuclear magnetization. Such anomalies resemble the behavior associated with a phase transition. (author)
Parity violation effects in the Josephson junction of a p-wave superconductor
Belov, Nikolay A.; Harman, Zoltán
2016-10-01
The phenomenon of the parity violation due to weak interaction may be studied with superconducting systems. Previous research considered the case of conventional superconductors. We here theoretically investigate the parity violation effect in an unconventional p-wave ferromagnetic superconductor, and find that its magnitude can be increased by three orders of magnitude, as compared to results of earlier studies. For potential experimental observations, the superconductor UGe2 is suggested, together with the description of a possible experimental scheme allowing one to effectively measure and control the phenomenon. Furthermore, we put forward a setup for a further significant enhancement of the signature of parity violation in the system considered.
Nonlinear nonequilibrium quasiparticle relaxation in Josephson junctions.
Krasnov, V M
2009-11-27
I solve numerically a full set of nonlinear kinetic balance equations for stacked Josephson junctions, which allows analysis of strongly nonequilibrium phenomena. It is shown that nonlinearity becomes significant already at very small disequilibrium. The following new, nonlinear effects are obtained: (i) At even-gap voltages V = 2nDelta/e (n = 2, 3, ...) nonequilibrium bosonic bands overlap. This leads to enhanced emission of Omega = 2Delta bosons and to the appearance of dips in tunnel conductance. (ii) A new type of radiative solution is found at strong disequilibrium. It is characterized by the fast stimulated relaxation of quasiparticles. A stack in this state behaves as a light emitting diode and directly converts electric power to boson emission, without utilization of the ac-Josephson effect. The phenomenon can be used for realization of a new type of superconducting cascade laser in the THz frequency range.
Boson Josephson Junction with Trapped Atoms
Raghavan, S.; Smerzi, A.; Fantoni, S.; Shenoy, S. R.
We consider coherent atomic tunneling between two weakly coupled Bose-Einstein condensates at T=0 in a double-well trap. The condensate dynamics of the macroscopic amplitudes in the two wells is modeled by two Gross-Pitaevskii equations (GPE) coupled by a tunneling matrix element. Analytic elliptic function solutions are obtained for the time evolution of the inter-well fractional population imbalance z(t) (related to the condensate phase difference) of the Boson Josephson junction (BJJ). Surprisingly, the neutral-atom BJJ shows (non-sinusoidal generalizations of) effects seen in charged-electron superconductor Josephson junctions (SJJ). The BJJ elliptic-function behavior has a singular dependence on a GPE parameter ratio Λ at a critical ratio Λ=Λc, beyond which a novel 'macroscopic quantum self-trapping' effect sets in with a non-zero time-averaged imbalance ≠0.
One-Dimensional Tunable Josephson Metamaterials
Butz, Susanne
2014-01-01
This thesis presents a novel approach to the experimental realization of tunable, superconducting metamaterials. Therefore, conventional resonant meta-atoms are replaced by meta-atoms that contain Josephson junctions, which renders their resonance frequency tunable by an external magnetic field. This tunability is theoretically and experimentally investigated in one-dimensional magnetic and electric metamaterials. For the magnetic metamaterial, the effective, magnetic permeability is determined.
Accurate Control of Josephson Phase Qubits
2016-04-14
61 ~1986!. 23 K. Kraus, States, Effects, and Operations: Fundamental Notions of Quantum Theory, Lecture Notes in Physics , Vol. 190 ~Springer-Verlag... PHYSICAL REVIEW B 68, 224518 ~2003!Accurate control of Josephson phase qubits Matthias Steffen,1,2,* John M. Martinis,3 and Isaac L. Chuang1 1Center...for Bits and Atoms and Department of Physics , MIT, Cambridge, Massachusetts 02139, USA 2Solid State and Photonics Laboratory, Stanford University
Linewidth of Josephson oscillations in YBa2Cu3O7-x grain-boundary junctions
DEFF Research Database (Denmark)
Divin, Yu. Ya.; Mygind, Jesper; Pedersen, Niels Falsig;
1993-01-01
The AC Josephson effect in YBa2Cu3O7-x grain-boundary junctions (GBJs) was studied in the temperature range from 4 K to 90 K. The temperature dependence of the linewidth of millimeter-wave Josephson oscillations was measured, and it is shown that the derived effective noise temperature of GBJ might...
Chaos induced by coupling between Josephson junctions
Shukrinov, Yu. M.; Azemtsa-Donfack, H.; Botha, A. E.
2015-02-01
It is found that, in a stack of intrinsic Josephson junctions in layered high temperature superconductors under external electromagnetic radiation, the chaotic features are triggered by interjunction coupling, i.e., the coupling between different junctions in the stack. While the radiation is well known to produce chaotic effects in the single junction, the effect of interjunction coupling is fundamentally different and it can lead to the onset of chaos via a different route to that of the single junction. A precise numerical study of the phase dynamics of intrinsic Josephson junctions, as described by the CCJJ+DC model, is performed. We demonstrate the charging of superconducting layers, in a bias current interval corresponding to a Shapiro step subharmonic, due to the creation of a longitudinal plasma wave along the stack of junctions. With increase in radiation amplitude chaotic behavior sets in. The chaotic features of the coupled Josephson junctions are analyzed by calculations of the Lyapunov exponents. We compare results for a stack of junctions to the case of a single junction and prove that the observed chaos is induced by the coupling between the junctions. The use of Shapiro step subharmonics may allow longitudinal plasma waves to be excited at low radiation power.
Overdamped Josephson junctions for digital applications
Energy Technology Data Exchange (ETDEWEB)
Febvre, P., E-mail: Pascal.Febvre@univ-savoie.fr [University of Savoie, IMEP-LAHC – CNRS UMR5130, 73376 Le Bourget du Lac (France); De Leo, N.; Fretto, M.; Sosso, A. [I.N.Ri.M., Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, 10135 Torino (Italy); Belogolovskii, M. [Donetsk Institute for Physics and Engineering, 72 R. Luxemburg str., 83114 Donetsk (Ukraine); Collot, R. [University of Savoie, IMEP-LAHC – CNRS UMR5130, 73376 Le Bourget du Lac (France); Lacquaniti, V. [I.N.Ri.M., Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, 10135 Torino (Italy)
2013-01-15
Highlights: ► Properties of self-shunted sub-micron Nb/Al–AlO{sub x}/Nb SNIS junctions are studied. ► 1–100 kA/cm{sup 2} current densities and 0.1–0.7 mV critical voltages are obtained. ► The critical voltage-vs-temperature behavior of SNIS junctions is discussed. ► Numerical results showing an effect of the aluminum film thickness are presented. ► A Josephson balanced comparator is studied for different temperatures of operation. -- Abstract: An interesting feature of Superconductor–Normal metal–Superconductor Josephson junctions for digital applications is due to their non-hysteretic current–voltage characteristics in a broad temperature range below T{sub c}. This allows to design Single-Flux-Quantum (SFQ) cells without the need of external shunts. Two advantages can be drawn from this property: first the SFQ cells can be more compact which leads to a more integrated solution towards nano-devices and more complex circuits; second the absence of electrical parasitic elements associated with the wiring of resistors external to the Josephson junctions increases the performance of SFQ circuits, in particular regarding the ultimate speed of operation. For this purpose Superconductor–Normal metal–Insulator–Superconductor Nb/Al–AlO{sub x}/Nb Josephson junctions have been recently developed at INRiM with aluminum layer thicknesses between 30 and 100 nm. They exhibit non-hysteretic current–voltage characteristics with I{sub c}R{sub n} values higher than 0.5 mV in a broad temperature range and optimal Stewart McCumber parameters at 4.2 K for RSFQ applications. The main features of obtained SNIS junctions regarding digital applications are presented.
Josephson current in Fe-based superconducting junctions: theory and experiment
Burmistrova, A.V.; Devyatov, I.A.; Golubov, A.; Yada, K.; Tanaka, Y.; Tortello, M.; Gonnelli, R.S.; Stepanov, V.A.; Ding, X.X.; Wen, H.H.; Green, L.H.
2015-01-01
We present a theory of the dc Josephson effect in contacts between Fe-based and spin-singlet s-wave superconductors. The method is based on the calculation of temperature Green's function in the junction within the tight-binding model. We calculate the phase dependencies of the Josephson current for
Nuclear effects hardened shelters
Lindke, Paul
1990-11-01
The Houston Fearless 76 Government Projects Group has been actively engaged for more than twenty-five years as a sub-contractor and currently as a prime contractor in the design, manufacture, repair and logistics support of custom mobile ground stations and their equipment accommodations. Other associated products include environmental control units (ECU's), mobilizers for shelters and a variety of mobile power generation units (MPU's). Since 1984, Houston Fearless 76 has designed and manufactured four 8' x 8' x 22' nuclear hardened mobile shelters. These shelters were designed to contain electronic data processing/reduction equipment. One shelter is currently being operated by the Air Force as a Defense Intelligence Agency (DIA) approved and certified Special Corrpartmented Information Facility (SCIF). During the development and manufacturing process of the shelters, we received continual technical assistance and design concept evaluations from Science Applications International Corporation (SAIC) Operations Analysis and Logistics Engineering Division and the Nondestructive Inspection Lab at McClellan AFB. SAIC was originally employed by the Air Force to design the nuclear hardening specifications applied to these shelters. The specific levels of hardening to which the shelters were designed are classified and will not be mentioned during this presentation.
Wireless Josephson Junction Arrays
Adams, Laura
2015-03-01
We report low temperature, microwave transmission measurements on a wireless two- dimensional network of Josephson junction arrays composed of superconductor-insulator -superconductor tunnel junctions. Unlike their biased counterparts, by removing all electrical contacts to the arrays and superfluous microwave components and interconnects in the transmission line, we observe new collective behavior in the transmission spectra. In particular we will show emergent behavior that systematically responds to changes in microwave power at fixed temperature. Likewise we will show the dynamic and collective response of the arrays while tuning the temperature at fixed microwave power. We discuss these spectra in terms of the Berezinskii-Kosterlitz-Thouless phase transition and Shapiro steps. We gratefully acknowledge the support Prof. Steven Anlage at the University of Maryland and Prof. Allen Goldman at the University of Minnesota. Physics and School of Engineering and Applied Sciences.
2014-09-01
junction is a thin layer of insulating material sep- arating two superconductors that is thin enough for electrons to tunnel through. Two Josephson...different material and/or method on the bisecting Josephson junction for high temperature superconductor (HTS) YBa2Cu3O7 (YBCO) bi-SQUIDs. This...in the previous case. The transition point (critical current) and hysteresis are both decreased. There are much greater amplitude oscillations for K P
Micromagnetic modeling of critical current oscillations in magnetic Josephson junctions
Golovchanskiy, I. A.; Bol'ginov, V. V.; Stolyarov, V. S.; Abramov, N. N.; Ben Hamida, A.; Emelyanova, O. V.; Stolyarov, B. S.; Kupriyanov, M. Yu.; Golubov, A. A.; Ryazanov, V. V.
2016-12-01
In this work we propose and explore an effective numerical approach for investigation of critical current dependence on applied magnetic field for magnetic Josephson junctions with in-plane magnetization orientation. This approach is based on micromagnetic simulation of the magnetization reversal process in the ferromagnetic layer with introduced internal magnetic stiffness and subsequent reconstruction of the critical current value using total flux or reconstructed actual phase difference distribution. The approach is flexible and shows good agreement with experimental data obtained on Josephson junctions with ferromagnetic barriers. Based on this approach we have obtained a critical current dependence on applied magnetic field for rectangular magnetic Josephson junctions with high size aspect ratio. We have shown that the rectangular magnetic Josephson junctions can be considered for application as an effective Josephson magnetic memory element with the value of critical current defined by the orientation of magnetic moment at zero magnetic field. An impact of shape magnetic anisotropy on critical current is revealed and discussed. Finally, we have considered a curling magnetic state in the ferromagnetic layer and demonstrated its impact on critical current.
Collective Dynamics of Intrinsic Josephson Junctions in HTSC
Energy Technology Data Exchange (ETDEWEB)
Shukrinov, Yu M [Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Moscow Region, 141980 (Russian Federation); Mahfouzi, F [Institute for Advanced Studies in Basic Sciences, PO Box 45195-1159, Zanjan (Iran, Islamic Republic of)
2006-06-01
The dynamics of a stack of intrinsic Josephson junctions (IJJ) in the high-T{sub c} superconductors is theoretically investigated with both the quasineutrality breakdown effect and quasiparticle charge imbalance effect taken into account. The current-voltage characteristics (IVC) of IJJ are numerically calculated in the framework of capacitively coupled Josephson junctions model and charge imbalance model including set of differential equations for phase differences, kinetic equations and generalized Josephson relations. We obtain the branch structure in IVC and investigate it as a function of model parameters such as coupling constant, McCumber parameter and number of junctions in the stack. The dependence of branch slopes and branch endpoints on the coupling and disequilibrium parameters are found. We study the nonequilibrium effects created by current injection and show that the increase in the disequilibrium parameter changes essentially the character of IVC. The new features of the hysteresis behavior of IVC of IJJ are obtained.
Collective Dynamics of Intrinsic Josephson Junctions in HTSC
Shukrinov, Yu M.; Mahfouzi, F.
2006-06-01
The dynamics of a stack of intrinsic Josephson junctions (IJJ) in the high-Tc superconductors is theoretically investigated with both the quasineutrality breakdown effect and quasiparticle charge imbalance effect taken into account. The current-voltage characteristics (IVC) of IJJ are numerically calculated in the framework of capacitively coupled Josephson junctions model and charge imbalance model including set of differential equations for phase differences, kinetic equations and generalized Josephson relations. We obtain the branch structure in IVC and investigate it as a function of model parameters such as coupling constant, McCumber parameter and number of junctions in the stack. The dependence of branch slopes and branch endpoints on the coupling and disequilibrium parameters are found. We study the nonequilibrium effects created by current injection and show that the increase in the disequilibrium parameter changes essentially the character of IVC. The new features of the hysteresis behavior of IVC of IJJ are obtained.
The Effects of Nuclear Weapons
Energy Technology Data Exchange (ETDEWEB)
Glasstone, Samuel
1964-02-01
This book is a revision of "The Effects of Nuclear Weapons" which was issued in 1957. It was prepared by the Defense Atomic Support Agency of the Department of Defense in coordination with other cognizant governmental agencies and was published by the U.S. Atomc Energy Commission. Although the complex nature of nuclear weapons effects does not always allow exact evaluation, the conclusions reached herein represent the combined judgment of a number of the most competent scientists working the problem. There is a need for widespread public understanding of the best information available on the effects of nuclear weapons. The purpose of this book is to present as accurately as possible, within the limits of national security, a comprehensive summary of this information.
Observation of supercurrent in graphene-based Josephson junction
Energy Technology Data Exchange (ETDEWEB)
Wang, Libin; Li, Sen; Kang, Ning [Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871 (China); Xu, Chuan; Ren, Wencai [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)
2015-07-01
Josephson junctions with a normal metal region sandwiched between two superconductors (S) are known as superconductor- normal-superconductor (SNS) structures. It has attracted significant attention especially when changing the normal metal with graphene, which allow for high tunability with the gate voltage and to study the proximity effect of the massless Dirac fermions. Here we report our work on graphene-based Josephson junction with a new two dimensional superconductor crystal, which grown directly on graphene, as superconducting electrodes. At low temperature, we observer proximity effect induced supercurrent flowing through the junction. The temperature and the magnetic field dependences of the critical current characteristics of the junction are also studied. The critical current exhibits a Fraunhofer-type diffraction pattern against magnetic field. Our experiments provided a new route of fabrication of graphene-based Josephson junction.
Planar Josephson tunnel junctions in a transverse magnetic field
DEFF Research Database (Denmark)
Monacoa, R.; Aarøe, Morten; Mygind, Jesper
2007-01-01
Traditionally, since the discovery of the Josephson effect in 1962, the magnetic diffraction pattern of planar Josephson tunnel junctions has been recorded with the field applied in the plane of the junction. Here we discuss the static junction properties in a transverse magnetic field where...... demagnetization effects imposed by the tunnel barrier and electrodes geometry are important. Measurements of the junction critical current versus magnetic field in planar Nb-based high-quality junctions with different geometry, size, and critical current density show that it is advantageous to use a transverse...
Dynamic behavior of Josephson-coupled layered structures
DEFF Research Database (Denmark)
Kleiner, R.; Müller, P.; Kohlstedt, H.;
1994-01-01
We have investigated Josephson effects in stacks of both artificial and natural Josephson junctions. The measurements have been performed on Nb/Al-AlO(x)/Nb multilayers and on small single crystals of Bi2Sr2CaCu2O8. Both systems exhibit multiple branched I-V characteristics in zero magnetic field....... In finite magnetic fields coupling via currents flowing along the superconducting layers is essential, since the layers are thinner than the London penetration depth. All observations are in good agreement with numerical simulations of stacks of coupled Josephson junctions. These simulations predict...... that a large number of junctions can be phase locked in large magnetic fields via Fiske resonances excited in all junctions....
A nanoscale gigahertz source realized with Josephson scanning tunneling microscopy
Energy Technology Data Exchange (ETDEWEB)
Jäck, Berthold, E-mail: b.jaeck@fkf.mpg.de; Eltschka, Matthias; Assig, Maximilian; Etzkorn, Markus; Ast, Christian R. [Max-Planck-Institut für Festkörperforschung, 70569 Stuttgart (Germany); Hardock, Andreas [Institut für Theoretische Elektrotechnik, Technische Universität Hamburg-Harburg, 21079 Hamburg (Germany); Kern, Klaus [Max-Planck-Institut für Festkörperforschung, 70569 Stuttgart (Germany); Institut de Physique de la Matière Condensée, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne (Switzerland)
2015-01-05
Using the AC Josephson effect in the superconductor-vacuum-superconductor tunnel junction of a scanning tunneling microscope (STM), we demonstrate the generation of GHz radiation. With the macroscopic STM tip acting as a λ/4-monopole antenna, we first show that the atomic scale Josephson junction in the STM is sensitive to its frequency-dependent environmental impedance in the GHz regime. Further, enhancing Cooper pair tunneling via excitations of the tip eigenmodes, we are able to generate high-frequency radiation. We find that for vanadium junctions, the enhanced photon emission can be tuned from about 25 GHz to 200 GHz and that large photon flux in excess of 10{sup 20 }cm{sup −2} s{sup −1} is reached in the tunnel junction. These findings demonstrate that the atomic scale Josephson junction in an STM can be employed as a full spectroscopic tool for GHz frequencies on the atomic scale.
Supercurrents in InSb nanowire Josephson junctions
Chen, Jun; Yu, Peng; Plissard, Sébastien; Car, Diana; Mourik, Vincent; Zuo, Kun; van Woerkom, David; Szombati, Daniel; Kouwenhoven, Leo; Bakkers, Erik; Frolov, Sergey
2014-03-01
Majorana fermions have been predicted in one-dimensional semiconductor nanowires with strong spin-orbit interactions coupled to superconductors. Effects such as odd number Shapiro steps disappearing and critical currents oscillating in magnetic field have been proposed as signatures of Majorana fermions in Josephson junctions. Here we investigate supercurrents in NbTiN-InSb nanowire-NbTiN Josephson junctions as a function of back gate and magnetic field. When an external magnetic field was applied along the nanowire, we observe gate-tunable oscillations in the critical current. To clarify the origin of this oscillating critical current, we are studying the spectra of Shapiro steps, which may give us a better understanding of such Josephson junctions and guide the search for additional signatures of Majorana fermions.
Josephson instantons and Josephson monopoles in a non-Abelian Josephson junction
Nitta, Muneto
2015-01-01
Non-Abelian Josephson junction is a junction of non-Abelian color superconductors sandwiching an insulator, or non-Abelian domain wall if flexible, whose low-energy dynamics is described by a $U(N)$ principal chiral model with the conventional pion mass. A non-Abelian Josephson vortex is a non-Abelian vortex (color magnetic flux tube) residing inside the junction, that is described as a non-Abelian sine-Gordon soliton. In this paper, we propose Josephson instantons and Josephson monopoles, that is, Yang-Mills instantons and monopoles inside a non-Abelian Josephson junction, respectively, and show that they are described as $SU(N)$ Skyrmions and $U(1)^{N-1}$ vortices in the $U(N)$ principal chiral model without and with a twisted mass term, respectively. Instantons with a twisted boundary condition are reduced (or T-dual) to monopoles, implying that ${\\mathbb C}P^{N-1}$ lumps are T-dual to ${\\mathbb C}P^{N-1}$ kinks inside a vortex. Here we find $SU(N)$ Skyrmions are T-dual to $U(1)^{N-1}$ vortices inside a wa...
Vortex structure in a long Josephson junction with two inhomogeneities
Energy Technology Data Exchange (ETDEWEB)
Andreeva, O.Yu. [Tumen Thermal Networks OAO ' TRGK' , Tobolsk 626150 (Russian Federation); Boyadjiev, T.L. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Shukrinov, Yu.M. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation)], E-mail: shukrinv@theor.jinr.ru
2007-09-01
We study the vortex structure in the long Josephson junctions with one and two rectangular inhomogeneities in the barrier layer. In case of one inhomogeneity we demonstrate the existence of the asymmetric fluxon states. The disappearance of the mixed fluxon-antifluxon states is shown when the position of the inhomogeneity shifted to the end of the junction. In case of two inhomogeneities the change of the amplitude of Josephson current through the inhomogeneity in the end of the junction makes strong effect on the stability of the fluxon states and smoothes the maximums on the dependence 'critical current-magnetic field'.
Vortex structure in a long Josephson junction with two inhomogeneities
Andreeva, O. Yu.; Boyadjiev, T. L.; Shukrinov, Yu. M.
2007-09-01
We study the vortex structure in the long Josephson junctions with one and two rectangular inhomogeneities in the barrier layer. In case of one inhomogeneity we demonstrate the existence of the asymmetric fluxon states. The disappearance of the mixed fluxon-antifluxon states is shown when the position of the inhomogeneity shifted to the end of the junction. In case of two inhomogeneities the change of the amplitude of Josephson current through the inhomogeneity in the end of the junction makes strong effect on the stability of the fluxon states and smoothes the maximums on the dependence “critical current-magnetic field”.
Bloch inductance in small-capacitance Josephson junctions.
Zorin, A B
2006-04-28
We show that the electrical impedance of a small-capacitance Josephson junction also includes, in addition to the capacitive term -i/(omega)CB, an inductive term i(omega)LB. Similar to the known Bloch capacitance CB(q), the Bloch inductance LB(q) also depends periodically on the quasicharge, q, and its maximum value achieved at q=e(mod 2e) always exceeds the value of the Josephson inductance of this junction LJ(phi) at fixed phi=0. The effect of the Bloch inductance on the dynamics of a single junction and a one-dimensional array is described.
0-π phase-controllable thermal Josephson junction
Fornieri, Antonio; Timossi, Giuliano; Virtanen, Pauli; Solinas, Paolo; Giazotto, Francesco
2017-05-01
Two superconductors coupled by a weak link support an equilibrium Josephson electrical current that depends on the phase difference ϕ between the superconducting condensates. Yet, when a temperature gradient is imposed across the junction, the Josephson effect manifests itself through a coherent component of the heat current that flows opposite to the thermal gradient for |ϕ| fundamental step towards the realization of caloritronic logic components such as thermal transistors, switches and memory devices. These elements, combined with heat interferometers and diodes, would complete the thermal conversion of the most important phase-coherent electronic devices and benefit cryogenic microcircuits requiring energy management, such as quantum computing architectures and radiation sensors.
Energy Technology Data Exchange (ETDEWEB)
Savel' ev, Sergey; Yampol' skii, V A; Rakhmanov, A L; Nori, Franco [Advanced Science Institute, Institute of Physical and Chemical Research (RIKEN), Wako-shi, Saitama 351-0198 (Japan)
2010-02-15
The recent growing interest in terahertz (THz) and sub-THz science and technology is due to its many important applications in physics, astronomy, chemistry, biology and medicine, including THz imaging, spectroscopy, tomography, medical diagnosis, health monitoring, environmental control, as well as chemical and biological identification. We review the problem of linear and nonlinear THz and sub-THz Josephson plasma waves in layered superconductors and their excitations produced by moving Josephson vortices. We start by discussing the coupled sine-Gordon equations for the gauge-invariant phase difference of the order parameter in the junctions, taking into account the effect of breaking the charge neutrality, and deriving the spectrum of Josephson plasma waves. We also review surface and waveguide Josephson plasma waves. The spectrum of these waves is presented, and their excitation is discussed. We review the propagation of weakly nonlinear Josephson plasma waves below the plasma frequency, {omega}{sub J}, which is very unusual for plasma-like excitations. In close analogy to nonlinear optics, these waves exhibit numerous remarkable features, including a self-focusing effect and the pumping of weaker waves by a stronger one. In addition, an unusual stop-light phenomenon, when {partial_derivative}{omega}/{partial_derivative}k {approx} 0, caused by both nonlinearity and dissipation, can be observed in the Josephson plasma waves. At frequencies above {omega}{sub J}, the current-phase nonlinearity can be used for transforming continuous sub-THz radiation into short, strongly amplified, pulses. We also present quantum effects in layered superconductors, specifically, the problem of quantum tunneling of fluxons through stacks of Josephson junctions. Moreover, the nonlocal sine-Gordon equation for Josephson vortices is reviewed. We discuss the Cherenkov and transition radiations of the Josephson plasma waves produced by moving Josephson vortices, either in a single
Energy Technology Data Exchange (ETDEWEB)
Araujo-Moreira, Fernando M [Grupo de Materiais e Dispositivos, Centro Multidisciplinar para o Desenvolvimento de Materiais Ceramicos, Departamento de Fisica, Universidade Federal de Sao Carlos, 13565-905 Sao Carlos, SP (Brazil); Sergeenkov, Sergei [Departamento de Fisica, CCEN, Universidade Federal da ParaIba, Cidade Universitaria, 58051-970 Joao Pessoa, PB (Brazil)
2008-04-01
In this paper, we report on different phenomena related to the magnetic properties of artificially prepared highly ordered (periodic) two-dimensional Josephson junction arrays (2D-JJAs) of both shunted and unshunted Nb-AlO{sub x}-Nb tunnel junctions. By employing mutual-inductance measurements and using a high-sensitivity home-made bridge, we have thoroughly investigated (both experimentally and theoretically) the temperature and magnetic field dependence of complex AC susceptibility of 2D-JJAs. After a brief description of the measurement technique and the numerical simulations method, we proceed to demonstrate that the observed dynamic reentrance (DR) phenomenon is directly linked to the value of the Stewart-McCumber parameter {beta}{sub C}. By simultaneously varying the inductance related parameter {beta}{sub L}, we obtain a phase diagram {beta}{sub C}-{beta}{sub L} (which demarcates the border between the reentrant and non-reentrant behavior) and show that only arrays with sufficiently large value of {beta}{sub C} will exhibit DR behavior. The second topic of this paper is related to the step-like structure (with the number of steps n = 4 corresponding to the number of flux quanta that can be screened by the maximum critical current of the junctions) which has been observed in the temperature dependence of AC susceptibility in our unshunted 2D-JJA with {beta}{sub L} (4.2 K) = 30 and attributed to the geometric properties of the array. The steps are predicted to manifest themselves in arrays with {beta}{sub L}(T) matching a 'quantization' condition {beta}{sub L}(0) = 2{pi}(n+1). In conclusion, we demonstrate the use of the scanning SQUID microscope for imaging the local flux distribution within our unshunted arrays.
Phase transitions in dissipative Josephson chains
Energy Technology Data Exchange (ETDEWEB)
Bobbert, P.A.; Fazio, R.; Schoen, G. (Department of Applied Physics, Delft University of Technology, 2628 CJ Delft, The Netherlands (NL)); Zimanyi, G.T. (Department of Physics, University of California, Davis, Davis, California 95616 (USA))
1990-03-01
We study the zero-temperature phase transitions of a chain of Josephson junctions, taking into account the quantum fluctuations due to the charging energy and the effects of an Ohmic dissipation. We map the problem onto a generalized Coulomb gas model, which then is transformed into a sine-Gordon field theory. Apart from the expected dipole unbinding transition, which describes a transition between globally superconducting and resistive behavior, we find a quadrupole unbinding transition at a critical strength of the dissipation. This transition separates two superconducting states characterized by different local properties.
Radiation Effects in Nuclear Ceramics
Directory of Open Access Journals (Sweden)
L. Thomé
2012-01-01
Full Text Available Due to outstanding physicochemical properties, ceramics are key engineering materials in many industrial domains. The evaluation of the damage created in ceramics employed in radiative media is a challenging problem for electronic, space, and nuclear industries. In this latter field, ceramics can be used as immobilization forms for radioactive wastes, inert fuel matrices for actinide transmutation, cladding materials for gas-cooled fission reactors, and structural components for fusion reactors. Information on the radiation stability of nuclear materials may be obtained by simulating the different types of interactions involved during the slowing down of energetic particles with ion beams delivered by various types of accelerators. This paper presents a review of the radiation effects occurring in nuclear ceramics, with an emphasis on recent results concerning the damage accumulation processes. Energetic ions in the KeV-GeV range are used to explore the nuclear collision (at low energy and electronic excitation (at high energy regimes. The recovery by electronic excitation of the damage created by ballistic collisions (SHIBIEC process is also addressed.
Energy Technology Data Exchange (ETDEWEB)
Andreeva, O Yu [OAO ' Ural Thermal Network Company' , Tumen, 625023 (Russian Federation); Boyadjiev, T L; Shukrinov, Yu M [Joint Institute for Nuclear Research, Dubna (Russian Federation)], E-mail: shukrinv@theor.jinr.ru
2008-10-15
Numerical experiment results on long Josephson junction with one and two rectangular inhomogeneities in the barrier layer are presented. We demonstrate the effect of the shifting of the inhomogeneity and the value of the Josephson current on the vortex structure. The disappearance of mixed fluxon-antifluxon states is shown when the position of inhomogeneity shifted to the end of the junction. A change of the amplitude of Josephson current at the end makes a strong effect on the stability of the fluxon states and smoothes the maximums of the dependence 'critical current-magnetic field'.
PHONONS IN INTRINSIC JOSEPHSON SYSTEMS
Energy Technology Data Exchange (ETDEWEB)
C. PREIS; K. SCHMALZL; ET AL
2000-10-01
Subgap structures in the I-V curves of layered superconductors are explained by the excitation of phonons by Josephson oscillations. In the presence of a magnetic field applied parallel to the layers additional structures due to fluxon motion appear. Their coupling with phonons is investigated theoretically and a shift of the phonon resonances in strong magnetic fields is predicted.
Josephson-CMOS Hybrid Memories
2007-04-25
discussed. These are the non-destructive read-out cell developed by H. Henkels at 24 IBM [25], the variable-threshold cell developed by I. Kurosawa at...1978. [26] I. Kurosawa , A. Yagi, H. Nakagawa, and H. Hayakawa, “Single flux-quantum Josephson memory cell using a new threshold characteristic,” Appl
Discrete breathers in Josephson ladders
Trias, E.; Mazo, J.J.; Brinkman, A.; Orlando, T.P.
2001-01-01
We present a study of nonlinear localized excitations called discrete breathers in a superconducting array. These localized solutions were recently observed in Josephson-junction ladder arrays by two different experimental groups [Phys. Rev. Lett. 84 (2000) 741; Phys. Rev. Lett. 84 (2000) 745; Phys.
Josephson tunnel junction microwave attenuator
DEFF Research Database (Denmark)
Koshelets, V. P.; Shitov, S. V.; Shchukin, A. V.
1993-01-01
A new element for superconducting electronic circuitry-a variable attenuator-has been proposed, designed, and successfully tested. The principle of operation is based on the change in the microwave impedance of a superconductor-insulator-superconductor (SIS) Josephson tunnel junction when dc bias...
Josephson nanocircuit in the presence of linear quantum noise
Paladino, E.; F. Taddei; Giaquinta, G.; Falci, G.
2003-01-01
We derive the effective hamiltonian for a charge-Josephson qubit in a circuit with no use of phenomenological arguments, showing how energy renormalizations induced by the environment appear with no need of phenomenological counterterms. This analysis may be important for multiqubit systems and geometric quantum computation.
The current-phase relation in Josephson junctions
Golubov, A.A.; Kupriyanov, M. Yu.; Il'ichev, E.
2004-01-01
This review provides a theoretical basis for understanding the current-phase relation (CPhiR) for the stationary (dc) Josephson effect in various types of superconducting junctions. The authors summarize recent theoretical developments with an emphasis on the fundamental physical mechanisms of the d
Control of chaotic patterns in a Josephson junction model
DEFF Research Database (Denmark)
Olsen, Ole Hvilsted; Samuelsen, Mogens Rugholm
2000-01-01
The effect of an applied rf signal on the dynamics of a large-area Josephson junction is examined. The problem of controlling spatiotemporal chaotic patterns induced by the external magnetic field is addressed. Chaos control is conducted by a weak spatially distributed force. (C) 2000 Elsevier...
Conditions for synchronization in Josephson-junction arrays
Energy Technology Data Exchange (ETDEWEB)
Chernikov, A.A.; Schmidt, G. [Stevens Institute of Technology, Hoboken, NJ (United States)
1995-12-31
An effective perturbation theoretical method has been developed to study the dynamics of Josephson Junction series arrays. It is shown that the inclusion of Junction capacitances, often ignored, has a significant impact on synchronization. Comparison of analytic with computational results over a wide range of parameters shows excellent agreement.
The Effects of Nuclear Weapons
Energy Technology Data Exchange (ETDEWEB)
Glasstone, Samuel
1957-06-01
This handbook prepared by the Armed Forces Special Weapons Project of the Department of Defense in coordination with other cognizant government agencies and published by the United States Atomic Energy Commission, is a comprehensive summary of current knowledge on the effects of nuclear weapons. The effects information contained herein is calculated for yields up to 20 megatons and the scaling laws for hypothetically extending the calculations beyond this limit are given. The figure of 20 megatons however is not be taken as an indication of capabilities or developments.
Breakdown of the escape dynamics in Josephson junctions
Massarotti, D.; Stornaiuolo, D.; Lucignano, P.; Galletti, L.; Born, D.; Rotoli, G.; Lombardi, F.; Longobardi, L.; Tagliacozzo, A.; Tafuri, F.
2015-08-01
We have identified anomalous behavior of the escape rate out of the zero-voltage state in Josephson junctions with a high critical current density Jc. For this study we have employed YBa2Cu3O7 -x grain boundary junctions, which span a wide range of Jc and have appropriate electrodynamical parameters. Such high Jc junctions, when hysteretic, do not switch from the superconducting to the normal state following the expected stochastic Josephson distribution, despite having standard Josephson properties such as a Fraunhofer magnetic field pattern. The switching current distributions (SCDs) are consistent with nonequilibrium dynamics taking place on a local rather than a global scale. This means that macroscopic quantum phenomena seem to be practically unattainable for high Jc junctions. We argue that SCDs are an accurate means to measure nonequilibrium effects. This transition from global to local dynamics is of relevance for all kinds of weak links, including the emergent family of nanohybrid Josephson junctions. Therefore caution should be applied in the use of such junctions in, for instance, the search for Majorana fermions.
How coherent are Josephson junctions?
Paik, Hanhee; Bishop, Lev S; Kirchmair, G; Catelani, G; Sears, A P; Johnson, B R; Reagor, M J; Frunzio, L; Glazman, L; Schoelkopf, R J
2011-01-01
Attaining sufficient coherence is a requirement for realizing a large-scale quantum computer. We present a new implementation of a superconducting transmon qubit that is strongly coupled to a three-dimensional superconducting cavity. We observe a reproducible increase in the coherence times of qubit (both $T_1$ and $T_2$ > 10 microseconds) and cavity ($T_{cav}$ ~ 50 microseconds) by more than an order of magnitude compared to the current state-of-art superconducting qubits. This enables the study of the stability and quality of Josephson junctions at precisions exceeding one part per million. Surprisingly, we see no evidence for $1/f$ critical current noise. At elevated temperatures, we observe the dissipation due to a small density (< 1 - 10 ppm) of thermally-excited quasiparticles. The results suggest that the overall quality of Josephson junctions will allow error rates of a few $10^{-4}$, approaching the error correction threshold.
Effects of nuclear weapons. Third edition
Energy Technology Data Exchange (ETDEWEB)
Glasstone, S.; Dolan, P.J.
1977-01-01
Since the last edition of ''The Effects of Nuclear Weapons'' in 1962 much new information has become available concerning nuclear weapon effects. This has come in part from the series of atmospheric tests, including several at very high altitudes, conducted in the Pacific Ocean area in 1962. In addition, laboratory studies, theoretical calculations, and computer simulations have provided a better understanding of the various effects. A new chapter has been added on the electromagnetic pulse. The chapter titles are as follows: general principles of nuclear explosions; descriptions of nuclear explosions; air blast phenomena in air and surface bursts; air blast loading; structural damage from air blast; shock effects of surface and subsurface bursts; thermal radiation and its effects; initial nuclear radiation; residual nuclear radiation and fallout; radio and radar effects; the electromagnetic pulse and its effects; and biological effects. (LTN)
The Effects of Nuclear Weapons. Third edition
Energy Technology Data Exchange (ETDEWEB)
Glasstone, S; Dolan, P J
1977-01-01
Since the last edition of ''The Effects of Nuclear Weapons'' in 1962 much new information has become available concerning nuclear weapon effects. This has come in part from the series of atmospheric tests, including several at very high altitudes, conducted in the Pacific Ocean area in 1962. In addition, laboratory studies, theoretical calculations, and computer simulations have provided a better understanding of the various effects. A new chapter has been added on the electromagnetic pulse. The chapter titles are as follows: general principles of nuclear explosions; descriptions of nuclear explosions; air blast phenomena in air and surface bursts; air blast loading; structural damage from air blast; shock effects of surface and subsurface bursts; thermal radiation and its effects; initial nuclear radiation; residual nuclear radiation and fallout; radio and radar effects; the electromagnetic pulse and its effects; and biological effects. (LTN)
Simulation of vortex motion in underdamped two-dimensional arrays of Josephson junctions
Energy Technology Data Exchange (ETDEWEB)
Bobbert, P.A. (Department of Applied Physics, Delft University of Technology, Lorentweg 1, 2628 CJ Delft (Netherlands) Department of Physics and Division of Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States))
1992-04-01
We report numerical simulations of classical vortex motion in two-dimensional arrays of underdamped Josephson junctions. A very efficient algorithm was developed, using a piecewise linear approximation for the Josephson current. We find no indication for ballistic motion, in square arrays nor in triangular arrays. Instead, in the limit of very low damping, there appears to be an effective viscosity due to excitation of the lattice behind the moving vortex.
Shot noise in YBCO bicrystal Josephson junctions
DEFF Research Database (Denmark)
Constantinian, K.Y.; Ovsyannikov, G.A.; Borisenko, I.V.;
2003-01-01
We measured spectral noise density in YBCO symmetric bicrystal Josephson junctions on sapphire substrates at bias voltages up to 100 mV and T 4.2 K. Normal state resistance of the Josephson junctions, R-N = 20-90 Omega and ICRN up to 2.2 mV have been observed in the experimental samples. Noise...
Double resonance in the system of coupled Josephson junctions
Shukrinov, Yu. M.; Rahmonov, I. R.; Kulikov, K. V.
2013-01-01
The effect of LC shunting on the phase dynamics of coupled Josephson junctions has been examined. It has been shown that additional ( rc) branches appear in the current-voltage characteristics of the junctions when the Josephson frequency ωJ is equal to the natural frequency of the formed resonance circuit ωrc. The effect of the parameters of the system on its characteristics has been studied. Double resonance has been revealed in the system at ωJ = ωrc = 2ωLPW, where ωLPW is the frequency of a longitudinal plasma wave appearing under the parametric-resonance conditions. In this case, electric charge appears in superconducting layers in the interval of the bias current corresponding to the rc branch. The charge magnitude is determined by the accuracy with which the double resonance condition is satisfied. The possibility of the experimental implementation of the effects under study has been estimated.
Holographic Josephson Junction from Massive Gravity
Hu, Ya-Peng; Zeng, Hua-Bi; Zhang, Hai-Qing
2015-01-01
We study the holographic superconductor-normal metal-superconductor (SNS) Josephon junction in the massive gravity. In the homogeneous case of the chemical potential, we find that the graviton mass will make the normal metal-superconductor phase transition harder to take place. In the holographic model of Josephson junction, it is found that the maximal tunneling current will decrease according to the graviton mass. Besides, the coherence length of the junction decreases as well with respect to the graviton mass. If one interprets the graviton mass as the effect of momentum dissipation in the boundary field theory, it indicates that the stronger the momentum dissipation is, the smaller the coherence length is.
Nuclear Dynamics with Effective Field Theories
Epelbaum, Evgeny
2013-01-01
These are the proceedings of the international workshop on "Nuclear Dynamics with Effective Field Theories" held at Ruhr-Universitaet Bochum, Germany from July 1 to 3, 2013. The workshop focused on effective field theories of low-energy QCD, chiral perturbation theory for nuclear forces as well as few- and many-body physics. Included are a short contribution per talk.
Radiation Effects in Nuclear Waste Materials
Energy Technology Data Exchange (ETDEWEB)
William j. Weber; Lumin Wang; Jonathan Icenhower
2004-07-09
The objective of this project is to develop a fundamental understanding of radiation effects in glasses and ceramics, as well as the influence of solid-state radiation effects on aqueous dissolution kinetics, which may impact the performance of nuclear waste forms and stabilized nuclear materials.
Breathing Charge Density Waves in Intrinsic Josephson Junctions
Shukrinov, Yu M.; Abdelhafiz, H.
2013-01-01
We demonstrate the creation of a charge density wave (CDW) along a stack of coupled Josephson junctions in layered superconductors. Electric charge in each superconducting layer oscillates around some average value, forming a breathing CDW. We show the transformation of a longitudinal plasma wave to CDW in the state corresponding to the outermost branch. Transitions between different types of CDW's related to the inner branches of current voltage characteristics are demonstrated. The effect o...
Evidence for a minigap in YBCO grain boundary Josephson junctions.
Lucignano, P; Stornaiuolo, D; Tafuri, F; Altshuler, B L; Tagliacozzo, A
2010-10-01
Self-assembled YBaCuO diffusive grain boundary submicron Josephson junctions offer a realization of a special regime of the proximity effect, where normal state coherence prevails on the superconducting coherence in the barrier region. Resistance oscillations from the current-voltage characteristic encode mesoscopic information on the junction and more specifically on the minigap induced in the barrier. Their persistence at large voltages is evidence of the long lifetime of the antinodal (high energy) quasiparticles.
Heersche, H.B.; Jarillo-Herrero, P.; Oostinga, J.B.; Vandersypen, L.M.K.; Morpurgoa, A.F.
2007-01-01
The electronic transport properties of graphene exhibit pronounced differences from those of conventional two dimensional electron systems investigated in the past. As a consequence, well established phenomena such as the integer quantum Hall effect and weak localization manifest themselves differen
Spatial dependence of plasma oscillations in Josephson tunnel junctions
DEFF Research Database (Denmark)
Holst, Thorsten; Hansen, Jørn Bindslev
1991-01-01
We report on direct measurements of the plasma oscillations in Josephson tunnel junctions of various spatial dimensions. The effect of the spatial variation of the Cooper-pair phase difference (the Josephson phase) on the dynamics of the junction was investigated by application of a static magnetic...... field threading the tunneling barrier. We compare measurements where the plasma frequency was tuned either by applying a magnetic field or by raising the temperature. A crossover from short- to long-junction behavior of the functional dependence of the plasma oscillations was observed in the case...... of an applied magnetic field. Numerical simulations of the governing partial-differential sine-Gordon equation were performed and compared to the experimental results and a perturbation analysis. The theoretical results support the experiments and allow us to interpret the observed crossover as due...
Quantum and thermal phase escape in extended Josephson systems
Energy Technology Data Exchange (ETDEWEB)
Kemp, A.
2006-07-12
In this work I examine phase escape in long annular Josephson tunnel junctions. The sine-Gordon equation governs the dynamics of the phase variable along the junction. This equation supports topological soliton solutions, which correspond to quanta of magnetic flux trapped in the junction barrier. For such Josephson vortices an effective potential is formed by an external magnetic field, while a bias current acts as a driving force. Both together form a metastable potential well, which the vortex is trapped in. When the driving force exceeds the pinning force of the potential, the vortex escapes and the junction switches to the voltage state. At a finite temperature the driving force fluctuates. If the junction's energy scale is small, the phase variable can undergo a macroscopic quantum tunneling (MQT) process at temperatures below the crossover temperature. Without a vortex trapped, the metastable state is not a potential minimum in space, but a potential minimum at zero phase difference. (orig.)
High critical temperature superconductor Josephson junctions for quantum circuit applications
Energy Technology Data Exchange (ETDEWEB)
Bauch, T; Gustafsson, D; Cedergren, K; Nawaz, S; Mumtaz Virk, M; Lombardi, F [Department of Microtechnology and Nanoscience, MC2, Chalmers University of Technology, Goeteborg (Sweden); Pettersson, H; Olsson, E [Department of Applied Physics, Chalmers University of Technology, Goeteborg (Sweden)], E-mail: bauch@chalmers.se
2009-12-15
Recent findings of macroscopic quantum properties in high critical temperature superconductor (HTS) Josephson junctions (JJs) point toward the need to revise the role of zero energy quasi-particles in this novel superconductor. We will discuss the possibility of designing superconducting artificial atoms in a transmon configuration to study the low energy excitation spectra of HTS. We have engineered high quality grain boundary JJs on low dielectric constant substrates. By fabricating submicron junctions, we extract values of capacitance and Josephson critical current densities that satisfy the main transmon design requirements. Moreover, the measured critical current noise power extrapolated at 1 Hz gives a dephasing time of 25 ns, which indicates that the observation of macroscopic quantum coherent effects in HTS JJ is a feasible task.
Josephson ϕ0-junction in nanowire quantum dots
Szombati, D. B.; Nadj-Perge, S.; Car, D.; Plissard, S. R.; Bakkers, E. P. A. M.; Kouwenhoven, L. P.
2016-06-01
The Josephson effect describes supercurrent flowing through a junction connecting two superconducting leads by a thin barrier. This current is driven by a superconducting phase difference ϕ between the leads. In the presence of chiral and time-reversal symmetry of the Cooper pair tunnelling process, the current is strictly zero when ϕ vanishes. Only if these underlying symmetries are broken can the supercurrent for ϕ = 0 be finite. This corresponds to a ground state of the junction being offset by a phase ϕ0, different from 0 or π. Here, we report such a Josephson ϕ0-junction based on a nanowire quantum dot. We use a quantum interferometer device to investigate phase offsets and demonstrate that ϕ0 can be controlled by electrostatic gating. Our results may have far-reaching implications for superconducting flux- and phase-defined quantum bits as well as for exploring topological superconductivity in quantum dot systems.
DEFF Research Database (Denmark)
Pankratov, A.L.; Sobolev, A.S.; Koshelets, V.P.
2007-01-01
)] in the millimeter and submillimeter range. The study is performed in the frame of a modified sine-Gordon model, which includes surface losses, self-pumping effect, and in an empirical way the superconducting gap. The electromagnetic coupling to the environment is modeled by a simple resistor-capacitor load (RC load...
Even-odd flux quanta effect in the Fraunhofer oscillations of an edge-channel Josephson junction
Baxevanis, B.; Ostroukh, V. P.; Beenakker, C. W. J.
2015-01-01
We calculate the beating of h /2 e and h /e periodic oscillations of the flux-dependent critical supercurrent Ic(Φ ) through a quantum spin-Hall insulator between two superconducting electrodes. A conducting pathway along the superconductor connects the helical edge channels via a nonhelical channel, allowing an electron incident on the superconductor along one edge to be Andreev reflected along the opposite edge. In the limit of small Andreev reflection probability the resulting even-odd effect is described by Ic∝|cos(e Φ /ℏ ) +f | , with |f |≪1 proportional to the probability for phase-coherent interedge transmission. Because the sign of f depends on microscopic details, a sample-dependent inversion of the alternation of large and small peaks is a distinctive feature of the beating mechanism for the even-odd effect.
The environmental effects of nuclear war
Energy Technology Data Exchange (ETDEWEB)
MacCracken, M.C.
1988-09-01
Substantial environmental disruption will significantly add to the disastrous consequences caused by the direct thermal, blast, and radiological effects brought on by a major nuclear war. Local fallout could cover several percent of the Northern Hemisphere with potentially lethal doses. Smoke from post-nuclear fires could darken the skies and induce temperature decreases of tens of degrees in continental interiors. Stratospheric ozone could be significantly reduced due to nitric oxide injections and smoke-induced circulation changes. The environmental effects spread the consequences of a nuclear war to the world population, adding to the potentially large disruptive effects a further reason to avoid such a catastrophe. 27 refs., 4 figs.
Measurement of Quantum Phase-Slips in Josephson Junction Chains
Guichard, Wiebke
2011-03-01
Quantum phase-slip dynamics in Josephson junction chains could provide the basis for the realization of a new type of topologically protected qubit or for the implementation of a new current standard. I will present measurements of the effect of quantum phase-slips on the ground state of a Josephson junction chain. We can tune in situ the strength of the phase-slips. These phase-slips are the result of fluctuations induced by the finite charging energy of each junction in the chain. Our measurements demonstrate that a Josephson junction chain under phase bias constraint behaves in a collective way. I will also show evidence of coherent phase-slip interference, the so called Aharonov-Casher effect. This phenomenon is the dual of the well known Aharonov-Bohm interference. In collaboration with I.M. Pop, Institut Neel, C.N.R.S. and Universite Joseph Fourier, BP 166, 38042 Grenoble, France; I. Protopopov, L. D. Landau Institute for Theoretical Physics, Kosygin str. 2, Moscow 119334, Russia and Institut fuer Nanotechnologie, Karlsruher Institut fuer Technologie, 76021 Karlsruhe, Germany; and F. Lecocq, Z. Peng, B. Pannetier, O. Buisson, Institut Neel, C.N.R.S. and Universite Joseph Fourier. European STREP MIDAS, ANR QUANTJO.
Supercurrent reversal in Josephson junctions based on bilayer graphene flakes
Rameshti, Babak Zare; Zareyan, Malek; Moghaddam, Ali G.
2015-08-01
We investigate the Josephson effect in a bilayer graphene flake contacted by two monolayer sheets deposited by superconducting electrodes. It is found that when the electrodes are attached to the different layers of the bilayer, the Josephson current is in a π state, if the bilayer region is undoped and there is no vertical bias. Applying doping or bias to the junction reveals π -0 transitions which can be controlled by varying the temperature and the junction length. The supercurrent reversal here is very different from the ferromagnetic Josephson junctions where the spin degree of freedom plays the key role. We argue that the scattering processes accompanied by layer and sublattice index change give rise to the scattering phases, the effect of which varies with doping and bias. Such scattering phases are responsible for the π -0 transitions. On the other hand, if both of the electrodes are coupled to the same layer of the flake or the flake has AA stacking instead of common AB, the junction will be always in 0 state since the layer or sublattice index is not changed.
Coherence effects in nuclear bremsstrahlung
Lohner, H
2002-01-01
The production of nuclear bremsstrahlung (Egamma > 30 MeV) has been studied in heavy-ion collisions, as well as proton and alpha-particle collisions with nuclei. In heavy-ion reactions the measured photon spectra show an exponential shape dominated by the incoherent sum of photons produced in first-
Effect of hotspot on THz radiation from Bi2Sr2CaCu2O8 intrinsic Josephson junctions
Iranmehr, Masoud; Mohamadian, Ali; Faez, Rahim
2017-08-01
We investigate hot spot effects on increasing THz emission of the frequency modes in a square mesa structure with constant hot spot size in different positions, without applying magnetic field. We show that in the presence of hot spot at any position, the average of emitted power intensity level is increased. The frequency modes that the position of their field concentration is more matched with hot spot position are more excited. Accordingly, in the case with hot spot located at center of a-axis or b-axis, frequency modes TM( m, n) with even indices m or n is more excited and in the case in which hot spot is located at the corner of a-axis or b-axis, frequency modes TM( m, n) with odd indices m or n is more excited. We also show that in the presence of hot spot, the excited frequencies are independent of hot spot temperature and critical current attenuation ratio. Increase of the emission intensity of excited modes and average power intensity has a little dependency on critical current density attenuation ratio of hot spot region.
Branching in current-voltage characteristics of intrinsic Josephson junctions
Energy Technology Data Exchange (ETDEWEB)
Shukrinov, Yu M [BLTP, JINR, Dubna, Moscow Region, 141980 (Russian Federation); Mahfouzi, F [Institute for Advanced Studies in Basic Sciences, PO Box 45195-1159, Zanjan (Iran, Islamic Republic of)
2007-02-15
We study branching in the current-voltage characteristics of the intrinsic Josephson junctions of high-temperature superconductors in the framework of the capacitively coupled Josephson junction model with diffusion current. A system of dynamical equations for the gauge-invariant phase differences between superconducting layers for a stack of ten intrinsic junctions has been numerically solved. We have obtained a total branch structure in the current-voltage characteristics. We demonstrate the existence of a 'breakpoint region' on the current-voltage characteristics and explain it as a result of resonance between Josephson and plasma oscillations. The effect of the boundary conditions is investigated. The existence of two outermost branches and correspondingly two breakpoint regions for the periodic boundary conditions is shown. One branch, which is observed only at periodic boundary conditions, corresponds to the propagating of the plasma mode. The second one corresponds to the situation when the charge oscillations on the superconducting layers are absent, excluding the breakpoint. A time dependence of the charge oscillations at breakpoints is presented.
Branching in current voltage characteristics of intrinsic Josephson junctions
Shukrinov, Yu M.; Mahfouzi, F.
2007-02-01
We study branching in the current-voltage characteristics of the intrinsic Josephson junctions of high-temperature superconductors in the framework of the capacitively coupled Josephson junction model with diffusion current. A system of dynamical equations for the gauge-invariant phase differences between superconducting layers for a stack of ten intrinsic junctions has been numerically solved. We have obtained a total branch structure in the current-voltage characteristics. We demonstrate the existence of a 'breakpoint region' on the current-voltage characteristics and explain it as a result of resonance between Josephson and plasma oscillations. The effect of the boundary conditions is investigated. The existence of two outermost branches and correspondingly two breakpoint regions for the periodic boundary conditions is shown. One branch, which is observed only at periodic boundary conditions, corresponds to the propagating of the plasma mode. The second one corresponds to the situation when the charge oscillations on the superconducting layers are absent, excluding the breakpoint. A time dependence of the charge oscillations at breakpoints is presented.
Nuclear Overhauser effects in tritium NMR
Energy Technology Data Exchange (ETDEWEB)
Kaspersen, F.M.; Funke, C.W.; Sperling, E.M.G.; Wagenaars, G.N.
1987-02-01
The accuracy of the quantification of the tritium distribution in labelled compounds may be reduced by differential nuclear Overhauser effects, especially for compounds in which the different tritiated positions differ in the number of protons surrounding them.
The Effects of Nuclear Weapons
1977-01-01
deposited con the ground. The extensive 9.141 The activity of strontium-90, atmospheric nuclear tesi programs con- as of radioactive materials in...main a reiult of radiation exposure and hem- disadvantage is that an appreciable de- ,rrhage, so that symptoms of anemia , crease in tne platelet count...such radiation. In Hiroshima ceiving combined injuries. The avail- 4 COMBINED INJURIES 589 able data do indicate, however, that some anemia and the body
Superconducting Josephson vortex flow transistors
Tavares, P A C
2002-01-01
The work reported in this thesis focuses on the development of high-temperature superconducting Josephson vortex-flow transistors (JVFTs). The JVFT is a particular type of superconducting transistor, i.e. an electromagnetic device capable of delivering gain while keeping the control and output circuits electrically isolated. Devices were fabricated from (100) YBa sub 2 Cu sub 3 O sub 7 sub - subdelta thin films grown by Pulsed Laser Deposition on 24 deg magnesium oxide and strontium titanate bicrystals. The design of the JVFTs was guided by numerical simulations and the devices were optimised for current gain. Improvements were made to the fabrication process in order to accurately pattern the small structures required. The devices exhibited current gains higher than 60 in liquid nitrogen. Gains measured at lower temperatures were significantly higher. As part of the work a data acquisition suite was developed for the characterisation of three-terminal devices and, in particular, of JVFTs.
Experiments with tunable Josephson metamaterials
Energy Technology Data Exchange (ETDEWEB)
Butz, Susanne; Jung, Philipp [Physikalisches Institut, Karlsruhe Institute of Technology, Karlsruhe (Germany); Koshelets, Valery [Kotel' nikov Institute of Radio Engineering and Electronics, RAS, Moscow (Russian Federation); Ustinov, Alexey V. [Physikalisches Institut, Karlsruhe Institute of Technology, Karlsruhe (Germany); National University of Science and Technology, MISIS, Moscow (Russian Federation)
2013-07-01
We report on experiments investigating a tunable metamaterial consisting of rf-SQUIDs. A metamaterial is a medium constructed of artifical elements, so-called meta-atoms, that interact in a specific way with an incoming electromagnetic wave. The size of the individual meta-atom is much smaller than the wavelength. Our metamaterial consists of an array of rf-SQUIDs which is placed into a coplanar waveguide. The rf-SQUIDs couple to the magnetic field component of the propagating microwave. In a frequency range around the resonance frequency, the magnetic permeability μ{sub r} of the metamaterial deviates strongly from the typical value of μ{sub r} = 1. By using an additional constant magnetic field bias, the inductance of the Josephson junction and thereby the resonance frequency of our meta-atom is changed. We show that the magnetic permeability of such a SQUID metamaterial is tunable in situ and compare the experimental results with numerical simulations.
Health effects of the nuclear industry
Energy Technology Data Exchange (ETDEWEB)
Gittus, J.
1987-02-01
The paper on radiation health effects was presented to the United Kingdom (U.K.) Nuclear Electricity Information Group, 1986. The radiation risks to workers in the U.K. nuclear industry are discussed in terms of the results of mortality studies and allowable dose limits. The radiation doses to members of the public from the nuclear industry, i.e. from discharges of radioactive wastes to the environment, are also described, along with epidemiological studies. Finally risks to the public from radiation accidents are briefly outlined. (U.K.).
Josephson current in Fe-based superconducting junctions: Theory and experiment
Burmistrova, A. V.; Devyatov, I. A.; Golubov, Alexander A.; Yada, Keiji; Tanaka, Yukio; Tortello, M.; Gonnelli, R. S.; Stepanov, V. A.; Ding, Xiaxin; Wen, Hai-Hu; Greene, L. H.
2015-06-01
We present a theory of the dc Josephson effect in contacts between Fe-based and spin-singlet s -wave superconductors. The method is based on the calculation of temperature Green's function in the junction within the tight-binding model. We calculate the phase dependencies of the Josephson current for different orientations of the junction relative to the crystallographic axes of Fe-based superconductor. Further, we consider the dependence of the Josephson current on the thickness of an insulating layer and on temperature. Experimental data for PbIn/Ba 1 -xKx (FeAs) 2 point-contact Josephson junctions are consistent with theoretical predictions for s± symmetry of an order parameter in this material. The proposed method can be further applied to calculations of the dc Josephson current in contacts with other new unconventional multiorbital superconductors, such as Sr2RuO4 and the superconducting topological insulator CuxBi2Se3 .
Periodic oscillations of Josephson-vortex flow resistance in Bi(2)Sr(2)CaCu(2)O(8+y).
Ooi, S; Mochiku, T; Hirata, K
2002-12-09
To study the Josephson-vortex system, we have measured the vortex-flow resistance as a function of magnetic field parallel to the ab plane in Bi(2)Sr(2)CaCu(2)O(8+y) single crystals. Novel periodic oscillations of the vortex-flow resistance have been observed in a wide range of temperatures and magnetic fields. The period of the oscillations corresponds to the field needed to add "one" vortex quantum per "two" intrinsic Josephson junctions. The flow velocity is related to a matching effect between the lattice spacing of Josephson vortices along the layers and the width of the sample. These results suggest that Josephson vortices form a triangular lattice in the ground state where the oscillations occur.
Radiation Effects in Nuclear Waste Materials
Energy Technology Data Exchange (ETDEWEB)
Weber, William J.
2005-09-30
The objective of this project is to develop a fundamental understanding of radiation effects in glasses and ceramics, as well as the influence of solid-state radiation effects on aqueous dissolution kinetics, which may impact the performance of nuclear waste forms and stabilized nuclear materials. This work provides the underpinning science to develop improved glass and ceramic waste forms for the immobilization and disposition of high-level tank waste, excess plutonium, plutonium residues and scrap, other actinides, and other nuclear waste streams. Furthermore, this work is developing develop predictive models for the performance of nuclear waste forms and stabilized nuclear materials. Thus, the research performed under this project has significant implications for the immobilization of High-Level Waste (HLW) and Nuclear Materials, two mission areas within the Office of Environmental Management (EM). With regard to the HLW mission, this research will lead to improved understanding of radiation-induced degradation mechanisms and their effects on dissolution kinetics, as well as development of predictive models for waste form performance. In the Nuclear Materials mission, this research will lead to improvements in the understanding of radiation effects on the chemical and structural properties of materials for the stabilization and long-term storage of plutonium, highly-enriched uranium, and other actinides. The research uses plutonium incorporation, ion-beam irradiation, and electron-beam irradiation to simulate the effects of alpha decay and beta decay on relevant glasses and ceramics. The research under this project has the potential to result in improved glass and ceramic materials for the stabilization and immobilization of high-level tank waste, plutonium residues and scraps, surplus weapons plutonium, highly-enriched uranium, other actinides, and other radioactive materials.
Radiation Effects in Nuclear Waste Materials
Energy Technology Data Exchange (ETDEWEB)
Weber, William J.
2005-06-01
The objective of this project is to develop a fundamental understanding of radiation effects in glasses and ceramics, as well as the influence of solid-state radiation effects on aqueous dissolution kinetics, which may impact the performance of nuclear waste forms and stabilized nuclear materials. This work provides the underpinning science to develop improved glass and ceramic waste forms for the immobilization and disposition of high-level tank waste, excess plutonium, plutonium residues and scrap, other actinides, and other nuclear waste streams. Furthermore, this work is developing develop predictive models for the performance of nuclear waste forms and stabilized nuclear materials. Thus, the research performed under this project has significant implications for the immobilization of High-Level Waste (HLW) and Nuclear Materials, two mission areas within the Office of Environmental Management (EM). With regard to the HLW mission, this research will lead to improved understanding of radiation-induced degradation mechanisms and their effects on dissolution kinetics, as well as development of predictive models for waste form performance. In the Nuclear Materials mission, this research will lead to improvements in the understanding of radiation effects on the chemical and structural properties of materials for the stabilization and long-term storage of plutonium, highly-enriched uranium, and other actinides. The research uses plutonium incorporation, ion-beam irradiation, and electron-beam irradiation to simulate the effects of alpha decay and beta decay on relevant glasses and ceramics. The research under this project has the potential to result in improved glass and ceramic materials for the stabilization and immobilization of high-level tank waste, plutonium residues and scraps, surplus weapons plutonium, highly-enriched uranium, other actinides, and other radioactive materials.
Energy Technology Data Exchange (ETDEWEB)
Asai, Hidehiro, E-mail: hd-asai@aist.go.jp [Electronics and Photonics Research Institute (ESPRIT), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Ota, Yukihiro [CCSE, Japan Atomic Energy Agency, Kashiwa, Chiba 277-8587 (Japan); Kawabata, Shiro [Electronics and Photonics Research Institute (ESPRIT), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Nori, Franco [CEMS, RIKEN, Wako-shi, Saitama 351-0198 (Japan); Physics Department, University of Michigan, Ann Arbor, MI 48109-1040 (United States)
2014-09-15
Highlights: • We study MQT in Josephson junctions composed of multi-gap superconductors. • We derive a formula of the MQT escape rate for multiple phase differences. • We investigate the effect of inter-band phase fluctuation on MQT. • The MQT escape rate is significantly enhanced by the inter-band phase fluctuation. - Abstract: We theoretically investigate macroscopic quantum tunneling (MQT) in a hetero Josephson junction formed by a conventional single-gap superconductor and a multi-gap superconductor. In such Josephson junctions, phase differences for each tunneling channel are defined, and the fluctuation of the relative phase differences appear which is referred to as Josephson–Leggett’s mode. We take into account the effect of the fluctuation in the tunneling process and calculate the MQT escape rate for various junction parameters. We show that the fluctuation of relative phase differences drastically enhances the escape rate.
Nuclear effects in the deuteron structure function
Energy Technology Data Exchange (ETDEWEB)
Epele, L.N.; Fanchiotti, H.; Garcia Canal, C.A.; Sassot, R. (Lab. de Fisica Teorica, Dept. de Fisica, Univ. Nacional de La Plata (Argentina))
1992-08-06
An analysis of nuclear effects in the deuteron quark distributions is carried out in connection with the Gottfried sum rule (GSR), the Drell-Yan proton-neutron asymmetry and the Bjorken sum rule (BSR). It is shown that the small amount of nuclear effects necessary to saturate the GSR experimental data modifies the Drell-Yan asymmetry in an entirely different way as an asymmetric sea does. These effects are of little consequence in the convergence of the BSR to the expected value. (orig.).
Shukrinov, Yu M.; Mans, M.; Scherbel, J.; Seidel, P.
2007-02-01
The current-voltage characteristics of a micrometre bridge of intrinsic Josephson junctions under microwave irradiation are studied. The collective switching of the group of four junctions splits up as the AC signal amplitude is gradually increased. The switching current of the remaining group of junctions is increased with increasing radiation power. We consider that microwave irradiation injects an additional quasiparticle current into the Josephson junction array. We use ideas of breakdown of quasineutrality and quasiparticle charge imbalance in the superconducting layers and explain the experimental results by the competition between the 'current effect' and the effect of suppression of the switching current by irradiation.
Energy Technology Data Exchange (ETDEWEB)
Shukrinov, Yu M [BLTP, JINR, Dubna, Moscow Region, 141980 (Russian Federation); Mans, M [Institut fur Festkoerperphysik, Friedrich-Schiller-Universitaet Jena, D-07743 Jena (Germany); Scherbel, J [Institut fur Festkoerperphysik, Friedrich-Schiller-Universitaet Jena, D-07743 Jena (Germany); Seidel, P [Institut fur Festkoerperphysik, Friedrich-Schiller-Universitaet Jena, D-07743 Jena (Germany)
2007-02-15
The current-voltage characteristics of a micrometre bridge of intrinsic Josephson junctions under microwave irradiation are studied. The collective switching of the group of four junctions splits up as the AC signal amplitude is gradually increased. The switching current of the remaining group of junctions is increased with increasing radiation power. We consider that microwave irradiation injects an additional quasiparticle current into the Josephson junction array. We use ideas of breakdown of quasineutrality and quasiparticle charge imbalance in the superconducting layers and explain the experimental results by the competition between the 'current effect' and the effect of suppression of the switching current by irradiation.
Parity Anomaly and Spin Transmutation in Quantum Spin Hall Josephson Junctions
Peng, Yang; Vinkler-Aviv, Yuval; Brouwer, Piet W.; Glazman, Leonid I.; von Oppen, Felix
2016-12-01
We study the Josephson effect in a quantum spin Hall system coupled to a localized magnetic impurity. As a consequence of the fermion parity anomaly, the spin of the combined system of impurity and spin-Hall edge alternates between half-integer and integer values when the superconducting phase difference across the junction advances by 2 π . This leads to characteristic differences in the splittings of the spin multiplets by exchange coupling and single-ion anisotropy at phase differences, for which time-reversal symmetry is preserved. We discuss the resulting 8 π -periodic (or Z4) fractional Josephson effect in the context of recent experiments.
Energy Technology Data Exchange (ETDEWEB)
Shukrinov, Yu.M. [BLTP, JINR, Dubna, Moscow Region, 141980 (Russian Federation) and Physical Technical Institute, Dushanbe 734063 (Tajikistan)]. E-mail: shukrinv@theor.jinr.ru; Mahfouzi, F. [Institute for Advanced Studies in Basic Sciences, P.O. Box 45195-1159, Zanjan (Iran, Islamic Republic of); Seidel, P. [Institut fuer Festkorperphysik, Friedrich-Schiller-Universitaet Jena, D-07743 Jena (Germany)
2006-11-01
Branch structure in current-voltage characteristics of intrinsic Josephson junctions of HTSC is studied in the framework of two models: capacitively coupled Josephson junctions (CCJJ) model and CCJJ model with diffusion current (CCJJ + DC). We investigate the coupling dependence of the branch's slopes and demonstrate that the equidistance of the branch structure in CCJJ model is broken at enough small values of coupling parameter (at {alpha} << 1). We show that the inclusion of diffusion in the tunneling current through intrinsic Josephson junctions might restore the equidistance of the branch structure. Change of the current-voltage characteristics in CCJJ + DC model under variation of the coupling and McCumber parameters and effect of boundary conditions on the branch structure is analyzed.
Shukrinov, Yu. M.; Mahfouzi, F.; Seidel, P.
2006-11-01
Branch structure in current-voltage characteristics of intrinsic Josephson junctions of HTSC is studied in the framework of two models: capacitively coupled Josephson junctions (CCJJ) model and CCJJ model with diffusion current (CCJJ + DC). We investigate the coupling dependence of the branch’s slopes and demonstrate that the equidistance of the branch structure in CCJJ model is broken at enough small values of coupling parameter (at α ≪ 1). We show that the inclusion of diffusion in the tunneling current through intrinsic Josephson junctions might restore the equidistance of the branch structure. Change of the current-voltage characteristics in CCJJ + DC model under variation of the coupling and McCumber parameters and effect of boundary conditions on the branch structure is analyzed.
Decoherence of Josephson charge qubit in non-Markovian environment
Energy Technology Data Exchange (ETDEWEB)
Qiu, Qing-Qian; Zhou, Xing-Fei; Liang, Xian-Ting, E-mail: liangxianting@nbu.edu.cn
2016-05-15
In this paper we investigate the decoherence of Josephson charge qubit (JCQ) by using a time-nonlocal (TNL) dynamical method. Three kinds of environmental models, described with Ohmic, super-Ohmic, and sub-Ohmic spectral density functions are considered. It is shown that the TNL method can effectively include the non-Markovian effects in the dynamical solutions. In particular, it is shown that the sub-Ohmic environment has longer correlation time than the Ohmic and super-Ohmic ones. And the Markovian and non-Markovian dynamics are obviously different for the qubit in sub-Ohmic environment.
Directional Amplification with a Josephson Circuit
Abdo, Baleegh; Sliwa, Katrina; Frunzio, Luigi; Devoret, Michel
2013-07-01
Nonreciprocal devices perform crucial functions in many low-noise quantum measurements, usually by exploiting magnetic effects. In the proof-of-principle device presented here, on the other hand, two on-chip coupled Josephson parametric converters (JPCs) achieve directionality by exploiting the nonreciprocal phase response of the JPC in the transmission-gain mode. The nonreciprocity of the device is controlled in situ by varying the amplitude and phase difference of two independent microwave pump tones feeding the system. At the desired working point and for a signal frequency of 8.453 GHz, the device achieves a forward power gain of 15 dB within a dynamical bandwidth of 9 MHz, a reverse gain of -6dB, and suppression of the reflected signal by 8 dB. We also find that the amplifier adds a noise equivalent to less than 1.5 photons at the signal frequency (referred back to the input). It can process up to 3 photons at the signal frequency per inverse dynamical bandwidth. With a directional amplifier operating along the principles of this device, qubit and readout preamplifier could be integrated on the same chip.
Parametric resonance in the system of long Josephson junctions
Rahmonov, I. R.; Shukrinov, Yu. M.; Irie, A.
2014-08-01
The phase dynamics of the system of long Josephson junctions whose length exceeds the Josephson penetration depth has been studied. The possibility of the appearance of a longitudinal plasma wave and parametric resonance has been demonstrated. Both inductive and capacitive couplings between Josephson junctions have been taken into account in the calculations. The current-voltage characteristics, as well as time evolution of the spatial distribution of the electric charge in superconducting layers and the magnetic field, have been calculated in all Josephson junctions of the system. The coexistence of the longitudinal plasma wave and fluxon states has been observed in the region of parametric resonance beginning with a certain length of the Josephson junction. This indicates the appearance of a new unique collective excitation in the system of coupled Josephson junctions, namely, a composite state of the Josephson current, electric field, and vortex magnetic field.
Breakpoint region in the IV-characteristics of intrinsic Josephson junctions
Shukrinov, Yu M.; Mahfouzi, F.
2008-02-01
We study theoretically the IV-characteristics of intrinsic Josephson junctions in HTSC. We solve numerically a set of differential equations for N intrinsic Josephson junctions and investigate the nonlinear dynamics of the system. The charging effect is taken into account. We demonstrate that the breakpoint region in the current-voltage characteristics naturally follows from the solution of the system of the dynamical equations for the phase difference. In the breakpoint region the plasma mode is a stationary solution of the system and this fact might be used in some applications, particularly, in high frequency devices such as THz oscillators and mixers.
Temporal dynamics of a chain of Josephson junctions in the Coulomb blockade regime.
Energy Technology Data Exchange (ETDEWEB)
Cole, Jared; Marthaler, Michael [Institut fuer Theoretische Festkoerperphysik, Karlsruher Institut fuer Technologie, Karlsruhe (Germany)
2010-07-01
Recent experiments have studied the transport of individual charge carriers through a one-dimensional array of small Josephson junctions, in the limit of small Josephson coupling. Modern time resolved charge detection techniques allow the direct measurement of temporal correlations between these carriers. We study such a system theoretical with the aim of understanding the transport properties within the array, in both the normal and superconducting regimes. Of particular interest are the effects of Coulomb repulsion between the carriers and the resulting transport through the array.
Denisenko, M. V.; Munyaev, V. O.; Satanin, A. M.
2016-11-01
The parametric frequency division in a coplanar waveguide line with an integrated single-contact rf SQUID (Josephson oscillator) is discussed. It is assumed that the oscillator is excited by pump pulses whose carrier frequency can be a multiple of the plasma frequency of the oscillator. It is shown that the Josephson oscillator excited at the pump frequency can induce frequency division by emitting subharmonics that are multiples of the fundamental frequency (fractional resonances). Parameters for which parametric frequency transformation occurs are determined. The possible generalization of this effect to the quantum case in which correlated microwave photons (entangled photon states) can be generated is discussed.
Radiation Effects in Nuclear Waste Materials
Energy Technology Data Exchange (ETDEWEB)
Weber, William J.; Corrales, L. Rene; Ness, Nancy J.; Williford, Ralph E.; Heinisch, Howard L.; Thevuthasan, Suntharampillai; Icenhower, Jonathan P.; McGrail, B. Peter; Devanathan, Ramaswami; Van Ginhoven, Renee M.; Song, Jakyoung; Park, Byeongwon; Jiang, Weilin; Begg, Bruce D.; Birtcher, R. B.; Chen, X.; Conradson, Steven D.
2000-10-02
Radiation effects from the decay of radionuclides may impact the long-term performance and stability of nuclear waste forms and stabilized nuclear materials. In an effort to address these concerns, the objective of this project was the development of fundamental understanding of radiation effects in glasses and ceramics, particularly on solid-state radiation effects and their influence on aqueous dissolution kinetics. This study has employed experimental, theoretical and computer simulation methods to obtain new results and insights into radiation damage processes and to initiate the development of predictive models. Consequently, the research that has been performed under this project has significant implications for the High-Level Waste and Nuclear Materials focus areas within the current DOE/EM mission. In the High-Level Waste (HLW) focus area, the results of this research could lead to improvements in the understanding of radiation-induced degradation mechanisms and their effects on dissolution kinetics, as well as development of predictive models for waste form performance. In the Nuclear Materials focus area, the results of this research could lead to improvements in the understanding of radiation effects on the chemical and structural properties of materials for the stabilization and long-term storage of plutonium, highly-enriched uranium, and other actinides. Ultimately, this research could result in improved glass and ceramic materials for the stabilization and immobilization of high-level tank waste, plutonium residues and scraps, surplus weapons plutonium, highly-enriched uranium, other actinides, and other radioactive materials.
Loss models for long Josephson junctions
DEFF Research Database (Denmark)
Olsen, O. H.; Samuelsen, Mogens Rugholm
1984-01-01
A general model for loss mechanisms in long Josephson junctions is presented. An expression for the zero-field step is found for a junction of overlap type by means of a perturbation method. Comparison between analytic solution and perturbation result shows good agreement.......A general model for loss mechanisms in long Josephson junctions is presented. An expression for the zero-field step is found for a junction of overlap type by means of a perturbation method. Comparison between analytic solution and perturbation result shows good agreement....
The Geometric Field at a Josephson Junction
Atanasov, Victor
2016-01-01
A geometric potential from the kinetic term of a constrained to a curved hyper-plane of space-time quantum superconducting condensate is derived. An energy conservation relation involving the geometric field at every material point in the superconductor is demonstrated. At a Josephson junction the energy conservation relation implies the possibility to transform electric energy into geometric field energy, that is curvature of space-time. Experimental procedures to verify that the Josephson junction can act as a voltage-to-curvature converter are discussed.
Microscopic tunneling theory of long Josephson junctions
DEFF Research Database (Denmark)
Grønbech-Jensen, N.; Hattel, Søren A.; Samuelsen, Mogens Rugholm
1992-01-01
We present a numerical scheme for solving a nonlinear partial integro-differential equation with nonlocal time dependence. The equation describes the dynamics in a long Josephson junction modeled by use of the microscopic theory for tunneling between superconductors. We demonstrate that the detai......We present a numerical scheme for solving a nonlinear partial integro-differential equation with nonlocal time dependence. The equation describes the dynamics in a long Josephson junction modeled by use of the microscopic theory for tunneling between superconductors. We demonstrate...
Chiral effective field theory and nuclear forces
Machleidt, R
2011-01-01
We review how nuclear forces emerge from low-energy QCD via chiral effective field theory. The presentation is accessible to the non-specialist. At the same time, we also provide considerable detailed information (mostly in appendices) for the benefit of researchers who wish to start working in this field.
Climatic Effects of Regional Nuclear War
Oman, Luke D.
2011-01-01
We use a modern climate model and new estimates of smoke generated by fires in contemporary cities to calculate the response of the climate system to a regional nuclear war between emerging third world nuclear powers using 100 Hiroshima-size bombs (less than 0.03% of the explosive yield of the current global nuclear arsenal) on cities in the subtropics. We find significant cooling and reductions of precipitation lasting years, which would impact the global food supply. The climate changes are large and longlasting because the fuel loadings in modern cities are quite high and the subtropical solar insolation heats the resulting smoke cloud and lofts it into the high stratosphere, where removal mechanisms are slow. While the climate changes are less dramatic than found in previous "nuclear winter" simulations of a massive nuclear exchange between the superpowers, because less smoke is emitted, the changes seem to be more persistent because of improvements in representing aerosol processes and microphysical/dynamical interactions, including radiative heating effects, in newer global climate system models. The assumptions and calculations that go into these conclusions will be described.
Recommendable Practices for Effective Nuclear Crisis Communication
Energy Technology Data Exchange (ETDEWEB)
Lee, Chang Ju; Hah, Yeon Hee [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)
2011-10-15
'Crisis communication' refers one of the activities done by the Nuclear Regulatory Organizations (NROs) in order to protect the public and the environment from the possible harmful effects. As denoted by the BMU, German NRO, crisis communication is not only 'public information' or 'information for the public', but also communication between authorities in order to guarantee that public information is consistent. This study proposes some recommendable practices for developing a guideline of well-prepared nuclear crisis communication system, including its management framework, and for introducing good insights, based on the study of international aspects provided by relevant OECD/NEA WPGC (Working Group on Public Communication for Nuclear Regulatory Organizations)i working group
QED theory of the nuclear recoil effect in atoms
Shabaev, V M
1998-01-01
The quantum electrodynamic theory of the nuclear recoil effect in atoms to all orders in \\alpha Z is formulated. The nuclear recoil corrections for atoms with one and two electrons over closed shells are considered in detail. The problem of the composite nuclear structure in the theory of the nuclear recoil effect is discussed.
Manifestation of resonance-related chaos in coupled Josephson junctions
Energy Technology Data Exchange (ETDEWEB)
Shukrinov, Yu.M. [BLTP, JINR, Dubna, Moscow Region, 141980 (Russian Federation); Hamdipour, M. [BLTP, JINR, Dubna, Moscow Region, 141980 (Russian Federation); Institute for Advanced Studies in Basic Sciences, P.O. Box 45195-1159, Zanjan (Iran, Islamic Republic of); Kolahchi, M.R. [Institute for Advanced Studies in Basic Sciences, P.O. Box 45195-1159, Zanjan (Iran, Islamic Republic of); Botha, A.E., E-mail: bothaae@unisa.ac.za [Department of Physics, University of South Africa, P.O. Box 392, Pretoria 0003 (South Africa); Suzuki, M. [Photonics and Electronics Science and Engineering Center and Department of Electronic Science and Engineering, Kyoto University, Kyoto 615-8510 (Japan)
2012-11-01
Manifestation of chaos in the temporal dependence of the electric charge is demonstrated through the calculation of the maximal Lyapunov exponent, phase–charge and charge–charge Lissajous diagrams and correlation functions. It is found that the number of junctions in the stack strongly influences the fine structure in the current–voltage characteristics and a strong proximity effect results from the nonperiodic boundary conditions. The observed resonance-related chaos exhibits intermittency. The criteria for a breakpoint region with no chaos are obtained. Such criteria could clarify recent experimental observations of variations in the power output from intrinsic Josephson junctions in high temperature superconductors.
Manifestation of resonance-related chaos in coupled Josephson junctions
Shukrinov, Yu. M.; Hamdipour, M.; Kolahchi, M. R.; Botha, A. E.; Suzuki, M.
2012-11-01
Manifestation of chaos in the temporal dependence of the electric charge is demonstrated through the calculation of the maximal Lyapunov exponent, phase-charge and charge-charge Lissajous diagrams and correlation functions. It is found that the number of junctions in the stack strongly influences the fine structure in the current-voltage characteristics and a strong proximity effect results from the nonperiodic boundary conditions. The observed resonance-related chaos exhibits intermittency. The criteria for a breakpoint region with no chaos are obtained. Such criteria could clarify recent experimental observations of variations in the power output from intrinsic Josephson junctions in high temperature superconductors.
Chaotic Dynamics of a Periodically Modulated Josephson Junction
Institute of Scientific and Technical Information of China (English)
WU Qin; LI Fei
2007-01-01
We study the chaotic dynamics of a periodically modulated Josephson junction with damping. The general solution of the first-order perturbed equation is constructed by using the direct perturbation technique. It is theoretically found that the boundedness conditions of the general solution contain the Melnikov chaotic criterion.When the perturbation conditions cannot be satisfied, numerical simulations demonstrate that the system can step into chaos through a period doubling route with the increase of the amplitude of the modulating term.Regulating specific parameters can effectively suppress the chaos.
Quasiparticle tunneling in a periodically driven bosonic Josephson junction
Gertjerenken, Bettina; Holthaus, Martin
2014-11-01
A resonantly driven bosonic Josephson junction supports stable collective excitations, or quasiparticles, which constitute analogs of the Trojan wave packets previously explored with Rydberg atoms in strong microwave fields. We predict a quantum beating effect between such symmetry-related many-body Trojan states taking place on time scales which are long in comparison with the driving period. Within a mean-field approximation, this quantum beating can be regarded as a manifestation of dynamical tunneling. On the full N -particle level, the beating phenomenon leads to an experimentally feasible, robust strategy for probing highly entangled mesoscopic states.
Current phase relation in nanowire based Josephson junctions
Szombati, Daniel; Nadj-Perge, Stevan; Geresdi, Attila; Mourik, Vincent; Zuo, Kun; Woerkom, David; Car, Diana; Bakkers, Erik; Kouwenhoven, Leo
2015-03-01
Junctions based on small band-gap nanowires are convenient platform for studying Josephson effect in the presence of strong spin-orbit coupling. As predicted by theory, due to the interplay between strong Zeeman interaction and large spin orbing coupling in these nanowires, the critical current and in particular current phase relation exhibits rich set of features in the presence of external magnetic field and electrostatic gating. We study supercurrent transport through Indium Antimonide nanowires contacted using Niobium-Titanium-Nitride leads using both current and phase bias measurements. Our results provide useful insights into superconductor/semiconductor hybrid systems capable of hosting Majorana fermions, potential building blocks for topological quantum computing.
Surface effects of underground nuclear explosions
Energy Technology Data Exchange (ETDEWEB)
Allen, B.M.; Drellack, S.L. Jr.; Townsend, M.J.
1997-06-01
The effects of nuclear explosions have been observed and studied since the first nuclear test (code named Trinity) on July 16, 1945. Since that first detonation, 1,053 nuclear tests have been conducted by the US, most of which were sited underground at the Nevada Test Site (NTS). The effects of underground nuclear explosions (UNEs) on their surroundings have long been the object of much interest and study, especially for containment, engineering, and treaty verification purposes. One aspect of these explosion-induced phenomena is the disruption or alteration of the near-surface environment, also known as surface effects. This report was prepared at the request of the Los Alamos National Laboratory (LANL), to bring together, correlate, and preserve information and techniques used in the recognition and documentation of surface effects of UNEs. This report has several main sections, including pertinent background information (Section 2.0), descriptions of the different types of surface effects (Section 3.0), discussion of their application and limitations (Section 4.0), an extensive bibliography and glossary (Section 6.0 and Appendix A), and procedures used to document geologic surface effects at the NTS (Appendix C). Because a majority of US surface-effects experience is from the NTS, an overview of pertinent NTS-specific information also is provided in Appendix B. It is not within the scope of this report to explore new relationships among test parameters, physiographic setting, and the types or degree of manifestation of surface effects, but rather to compile, summarize, and capture surface-effects observations and interpretations, as well as documentation procedures and the rationale behind them.
Tsujimoto, Manabu; Yamaki, Kazuhiro; Deguchi, Kota; Yamamoto, Takashi; Kashiwagi, Takanari; Minami, Hidetoshi; Tachiki, Masashi; Kadowaki, Kazuo; Klemm, Richard A
2010-07-16
Subterahertz radiation emitted from a variety of short rectangular-, square-, and disk-shaped mesas of intrinsic Josephson junctions fabricated from a Bi(2)Sr(2)CaCu(2)O(8+δ) single crystal was studied from the observed I-V characteristics, far-infrared spectra, and spatial radiation patterns. In all cases, the radiation frequency satisfies the conditions both for the ac Josephson effect and for a mesa cavity resonance mode. The integer higher harmonics observed in all spectra imply that the ac Josephson effect plays the dominant role in the novel dual-source radiation mechanism.
Quantum Nuclear Extension of Electron Nuclear Dynamics on Folded Effective-Potential Surfaces
DEFF Research Database (Denmark)
Hall, B.; Deumens, E.; Ohrn, Y.;
2014-01-01
A perennial problem in quantum scattering calculations is accurate theoretical treatment of low energy collisions. We propose a method of extracting a folded, nonadiabatic, effective potential energy surface from electron nuclear dynamics (END) trajectories; we then perform nuclear wave packet...
Flux interactions on stacked Josephson junctions
DEFF Research Database (Denmark)
Scott, Alwyn C.; A., Petraglia
1996-01-01
Perturbation methods are used to study the dynamics of locked fluxon modes on stacked Josephson junctions and single crystals of certain high-T-c, superconductors. Two limiting cases are considered: (i) The nonlinear diffusion regime in which fluxon dynamics are dominated by energy exchange betwe...
Defect formation in long Josephson junctions
DEFF Research Database (Denmark)
Gordeeva, Anna; Pankratov, Andrey
2010-01-01
We study numerically a mechanism of vortex formation in a long Josephson junction within the framework of the one-dimensional sine-Gordon model. This mechanism is switched on below the critical temperature. It is shown that the number of fluxons versus velocity of cooling roughly scales according...
Fluxon density waves in long Josephson junctions
DEFF Research Database (Denmark)
Olsen, O. H.; Ustinov, A. V.; Pedersen, Niels Falsig
1993-01-01
Numerical simulations of the multiple fluxon dynamics stimulated by an external oscillating force applied at a boundary of a long Josephson junction are presented. The calculated IV characteristics agree well with a recent experimental observation of rf-induced satellite flux-flow steps. The volt...... density waves....
Soliton bunching in annular Josephson junctions
DEFF Research Database (Denmark)
Vernik, I.V; Lazarides, Nickos; Sørensen, Mads Peter
1996-01-01
By studying soliton (fluxon) motion in long annular Josephson junctions it is possible to avoid the influence of the boundaries and soliton-soliton collisions present in linear junctions. A new experimental design consisting of a niobium coil placed on top of an annular junction has been used...
Josephson plasma resonance in superconducting multilayers
DEFF Research Database (Denmark)
Pedersen, Niels Falsig; Sakai, S
1998-01-01
We derive an analytical solution for the Josephson plasma resonance of superconducting multilayers. This analytical solution is derived mainly for low-T-c systems with magnetic coupling between the superconducting layers. but many features of our results are more general, and thus an application...
Josephson plasma resonance in superconducting multilayers
DEFF Research Database (Denmark)
Pedersen, Niels Falsig
1999-01-01
We derive an analytical solution for the josephson plasma resonance of superconducting multilayers. This analytical solution is derived mainly for low T-c systems with magnetic coupling between the superconducting layers, but many features of our results are more general, and thus an application...
Fluxon Dynamics in Elliptic Annular Josephson Junctions
DEFF Research Database (Denmark)
Monaco, Roberto; Mygind, Jesper
2016-01-01
We analyze the dynamics of a magnetic flux quantum (current vortex) trapped in a current-biased long planar elliptic annular Josephson tunnel junction. The system is modeled by a perturbed sine-Gordon equation that determines the spatial and temporal behavior of the phase difference across the tu...
Exponentially tapered Josephson flux-flow oscillator
DEFF Research Database (Denmark)
Benabdallah, A.; Caputo, J. G.; Scott, Alwyn C.
1996-01-01
We introduce an exponentially tapered Josephson flux-flow oscillator that is tuned by applying a bias current to the larger end of the junction. Numerical and analytical studies show that above a threshold level of bias current the static solution becomes unstable and gives rise to a train of flu......, and (iv) better impedance matching to a load....
Mesh Currents and Josephson Junction Arrays
1995-01-01
A simple but accurate mesh current analysis is performed on a XY model and on a SIMF model to derive the equations for a Josephson junction array. The equations obtained here turn out to be different from other equations already existing in the literature. Moreover, it is shown that the two models come from an unique hidden structure
Experiments on intrinsic and thermally induced chaos in an rf-driven Josephson junction
DEFF Research Database (Denmark)
Davidson, A.; Dueholm, B.; Beasley, M. R.
1986-01-01
We report detailed measurements of low-frequency noise due to microwaves applied to a real Josephson tunnel junction. An intrinsically chaotic region is apparently identified, but the effects of thermal noise are shown to be significant. In particular we show experimental data that we interpret a...
Control of Josephson current by Aharonov-Casher phase in a Rashba ring
Liu, Xin; Borunda, M. F.; Liu, Xiong-Jun; Sinova, Jairo
2009-11-01
We study the interference effect induced by the Aharonov-Casher phase on the Josephson current through a semiconducting ring attached to superconducting leads. Using a one-dimensional model that incorporates spin-orbit coupling in the semiconducting ring, we calculate the Andreev levels analytically and numerically, and predict oscillations of the Josephson current due to the AC phase. This result is valid from the point-contact limit to the long channel-length case, as defined by the ratio of the junction length and the BCS healing length. We show in the long channel-length limit that the impurity scattering has no effect on the oscillation of the Josephson current, in contrast to the case of conductivity oscillations in a spin-orbit-coupled ring system attached to normal leads where impurity scattering reduces the amplitude of oscillations. Our results suggest a scheme to measure the AC phase with, in principle, higher sensitivity. In addition, this effect allows for control of the Josephson current through the gate-voltage-tuned AC phase.
Josephson and persistent spin currents in Bose-Einstein condensates of magnons
Nakata, Kouki; van Hoogdalem, Kevin A.; Simon, Pascal; Loss, Daniel
2014-10-01
Using the Aharonov-Casher (A-C) phase, we present a microscopic theory of the Josephson and persistent spin currents in quasiequilibrium Bose-Einstein condensates (BECs) of magnons in ferromagnetic insulators. Starting from a microscopic spin model that we map onto a Gross-Pitaevskii Hamiltonian, we derive a two-state model for the Josephson junction between the weakly coupled magnon-BECs. We then show how to obtain the alternating-current (ac) Josephson effect with magnons as well as macroscopic quantum self-trapping in a magnon-BEC. We next propose how to control the direct-current (dc) Josephson effect electrically using the A-C phase, which is the geometric phase acquired by magnons moving in an electric field. Finally, we introduce a magnon-BEC ring and show that persistent magnon-BEC currents flow due to the A-C phase. Focusing on the feature that the persistent magnon-BEC current is a steady flow of magnetic dipoles that produces an electric field, we propose a method to directly measure it experimentally.
Hysteresis in rf-driven large-area josephson junctions
DEFF Research Database (Denmark)
Olsen, O. H.; Samuelsen, Mogens Rugholm
1986-01-01
We have studied the effect of an applied rf signal on the radiation emitted from a large-area Josephson junction by means of a model based on the sine-Gordon equation. The rms value of the voltage of the emitted signal has been calculated and a hysteresis loop found. An analysis shows that the hy......We have studied the effect of an applied rf signal on the radiation emitted from a large-area Josephson junction by means of a model based on the sine-Gordon equation. The rms value of the voltage of the emitted signal has been calculated and a hysteresis loop found. An analysis shows...... that the hysteresis is due to the nonlinearity in the system, i.e., the dynamics of the lower branch can be described by a solution to the linearized system while the upper branch is described by a breather mode. These solutions are frequency locked to the driving signal. Various characteristics of the loop...
Magnetic Field Dependence of the Critical Current of Planar Geometry Josephson Junctions
Ma, Meng; Cho, Ethan; Huynh, Chuong; Cybart, Shane; Dynes, Robert
2015-03-01
We report a study on the magnetic field dependence of the critical current of planar geometry Josephson junctions. We have fabricated Josephson junctions by using a focused helium ion beam to irradiate a narrow barrier in the plane of a 25 nm thick Y-Ba-Cu-O film. The London penetration depth λL is large (~1 μm) because of the ultra-thin thickness of the film. As a result, calculations of the Josephson penetration depth λJ are not realistic nor physical. Therefore in this work, we measure λJ experimentally. We tested devices with bridge widths ranging from 4 to 50 μm, and present measurements of the Fraunhofer quantum diffraction pattern (IC (B)). We observe a crossover from short to long junction behavior, which gives an experimentally measured λJ that ranges between 3 μm to 5 μm. The shape of the IC (B) pattern is strongly affected by the width of the bridge because of self-field effects. As the bridge width increases, Josephson vortices enter the junction and skew the patterns. This work shows that the electronic properties of the planar junctions are very different than those classical ``sandwich'' junctions due to the differences in geometry.
Proximity semiconducting nanowire junctions from Josephson to quantum dot regimes
Gharavi, Kaveh; Holloway, Gregory; Baugh, Jonathan
Experimental low-temperature transport results are presented on proximity-effect Josephson junctions made from low bandgap III-V semiconductor nanowires contacted with Nb. Two regimes are explored in terms of the Nb/nanowire interface transparency t. (i) High t allows a supercurrent to flow across the junction with magnitude Ic, which can be modulated using the voltage Vg on a global back gate or a local gate. Relatively high values are obtained for the figure-of-merit parameter IcRN / (eΔ) ~ 0 . 5 , and t ~ 0 . 75 , where RN is the normal state resistance and Δ the superconducting gap of the Nb leads. With the application of an axial magnetic field, Ic decays but exhibits oscillations before being fully suppressed. The period and amplitude of the oscillations depend on Vg. Possible explanations for this behaviour are presented, including Josephson interference of the orbital subbands in the nanowire. (ii) Lower transparency correlates with a spontaneous quantum dot (QD) formed in the nanowire channel. Pairs of Andreev Bound States (ABS) appear at energies | E | < Δ , with one pair unexpectedly pinned at E = 0 for a wide range of Vg. A description of the QD-ABS system beyond the Anderson model is presented to explain the latter results.
Characteristics of the Surface-Intrinsic Josephson Junction
Institute of Scientific and Technical Information of China (English)
YANG Li; XU Wei-wei; YE Su-li; GUO Da-yuan; YOU Li-xing; WU Pei-heng
2006-01-01
During the fabrication of intrinsic Josephson junctions (IJJs) with Bi2Sr2CaCu2O8+δ(BSCCO) single crystals,the superconductivity of the surface Cu-O layer is degraded because of a deposited metal film on top of the stack.Thus,the characteristics of the surface junction consisting of the surface Cu-O double layers remarkably differ from those of the junctions deep in the stack,which will be referred to as ordinary IJJs.The electrical transport characteristics of the surface junction,such as I-V,I'c-T,and R-T,show that the critical temperature T'c of the surface junction is always lower than that of ordinary IJJs,and that the change of its critical current I'c with temperature is different from that of ordinary IIJs.Furthermore,by shunting! the surface junction resistively,we are able to observe the AC Josephson effect at 3-mm waveband.
Low-noise THz MgB2 Josephson mixer
Cunnane, Daniel; Kawamura, Jonathan H.; Acharya, Narendra; Wolak, Matthäus A.; Xi, X. X.; Karasik, Boris S.
2016-09-01
The potential applications for high frequency operation of the Josephson effect in MgB2 include THz mixers, direct detectors, and digital circuits. Here we report on MgB2 weak links which exhibit the Josephson behavior up to almost 2 THz and using them for low-noise heterodyne detection of THz radiation. The devices are made from epitaxial film grown in the c-axis direction by the hybrid physical-chemical vapor deposition method. The current in the junctions travels parallel to the surface of the film, thus making possible a large contribution of the quasi-two-dimensional σ-gap in transport across the weak link. These devices are connected to a planar spiral antenna with a dielectric substrate lens to facilitate coupling to free-space radiation for use as a detector. The IcRn product of the junction is 5.25 mV, giving confirmation of a large gap parameter. The sensitivity of the mixer was measured from 0.6 THz to 1.9 THz. At a bath temperature of over 20 K, a mixer noise temperature less than 2000 K (DSB) was measured near 0.6 THz.
77 FR 30030 - Monitoring the Effectiveness of Maintenance at Nuclear Power Plants
2012-05-21
... COMMISSION Monitoring the Effectiveness of Maintenance at Nuclear Power Plants AGENCY: Nuclear Regulatory... Maintenance at Nuclear Power Plants.'' This guide endorses Revision 4A to Nuclear Management and Resources... Effectiveness of Maintenance at Nuclear Power Plants,'' Part 50, ``Domestic......
Global nuclear structure effects of tensor interaction
Zalewski, M; Rafalski, M; Satula, W; Werner, T R; Wyss, R A
2009-01-01
A direct fit of the isoscalar spin-orbit (SO) and both isoscalar and isovector tensor coupling constants to the f5/2-f7/2 SO splittings in 40Ca, 56Ni, and 48Ca nuclei requires a drastic reduction of the isoscalar SO strength and strong attractive tensor coupling constants. The aim of this work is to address further consequences of these strong attractive tensor and weak SO fields on binding energies, nuclear deformability, and high-spin states. In particular, we show that contribution to the nuclear binding energy due to the tensor field shows generic magic structure with tensorial magic numbers at N(Z)=14, 32, 56, or 90 corresponding to the maximum spin-asymmetries in 1d5/2, 1f7/2-2p3/2, 1g9/2-2d5/2 and 1h11/2-2f7/2 single-particle configurations and that these numbers are smeared out by pairing correlations and deformation effects. We also examine the consequences of strong attractive tensor fields and weak SO interaction on nuclear stability at the drip lines, in particular close to the tensorial doubly ma...
Boyadjiev, T. L.; Semerdjieva, E. G.; Shukrinov, Yu. M.
2007-09-01
We study the vortex structure in three different models of the long Josephson junction: the exponentially shaped Josephson junction and the Josephson junctions with the resistor and the shunt inhomogeneities in the barrier layer. For these three models the critical curves “critical current-magnetic field” are numerically constructed. We develop the idea of the equivalence of the exponentially shaped Josephson junction and the rectangular junction with the distributed inhomogeneity and demonstrate that at some parameters of the shunt and the resistor inhomogeneities in the ends of the junction the corresponding critical curves are very close to the exponentially shaped one.
Energy Technology Data Exchange (ETDEWEB)
Boyadjiev, T.L. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Semerdjieva, E.G. [Plovdiv University, 24 Tzar Asen Str., Plovdiv 4000 (Bulgaria); Shukrinov, Yu.M. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation)], E-mail: shukrinv@theor.jinr.ru
2007-09-01
We study the vortex structure in three different models of the long Josephson junction: the exponentially shaped Josephson junction and the Josephson junctions with the resistor and the shunt inhomogeneities in the barrier layer. For these three models the critical curves 'critical current-magnetic field' are numerically constructed. We develop the idea of the equivalence of the exponentially shaped Josephson junction and the rectangular junction with the distributed inhomogeneity and demonstrate that at some parameters of the shunt and the resistor inhomogeneities in the ends of the junction the corresponding critical curves are very close to the exponentially shaped one.
Vortex structures in exponentially shaped Josephson junctions
Shukrinov, Yu. M.; Semerdjieva, E. G.; Boyadjiev, T. L.
2005-04-01
We report the numerical calculations of the static vortex structure and critical curves in exponentially shaped long Josephson junctions for in-line and overlap geometries. Stability of the static solutions is investigated by checking the sign of the smallest eigenvalue of the associated Sturm-Liouville problem. The change in the junction width leads to the renormalization of the magnetic flux in comparison with the case of a linear one-dimensional model. We study the influence of the model's parameters, and particularly, the shape parameter on the stability of the states of the magnetic flux. We compare the vortex structure and critical curves for the in-line and overlap geometries. Our numerically constructed critical curve of the Josephson junction matches well with the experimental one.
Hybrid-free Josephson Parametric Converter
Frattini, N. E.; Narla, A.; Sliwa, K. M.; Shankar, S.; Hatridge, M.; Devoret, M. H.
A necessary component for any quantum computation architecture is the ability to perform efficient quantum operations. In the microwave regime of superconducting qubits, these quantum-limited operations can be realized with a non-degenerate Josephson junction based three-wave mixer, the Josephson Parametric Converter (JPC). Currently, the quantum signal of interest must pass through a lossy 180 degree hybrid to be presented as a differential drive to the JPC. This hybrid therefore places a limit on the quantum efficiency of the system and also increases the device footprint. We present a new design for the JPC eliminating the need for any external hybrid. We also show that this design has nominally identical performance to the conventional JPC. Work supported by ARO, AFOSR and YINQE.
3-wave mixing Josephson dipole element
Frattini, N. E.; Vool, U.; Shankar, S.; Narla, A.; Sliwa, K. M.; Devoret, M. H.
2017-05-01
Parametric conversion and amplification based on three-wave mixing are powerful primitives for efficient quantum operations. For superconducting qubits, such operations can be realized with a quadrupole Josephson junction element, the Josephson Ring Modulator, which behaves as a loss-less three-wave mixer. However, combining multiple quadrupole elements is a difficult task so it would be advantageous to have a three-wave dipole element that could be tessellated for increased power handling and/or information throughput. Here, we present a dipole circuit element with third-order nonlinearity, which implements three-wave mixing. Experimental results for a non-degenerate amplifier based on the proposed third-order nonlinearity are reported.
Nuclear and extranuclear effects of vitamin A.
Iskakova, Madina; Karbyshev, Mikhail; Piskunov, Aleksandr; Rochette-Egly, Cécile
2015-12-01
Vitamin A or retinol is a multifunctional vitamin that is essential at all stages of life from embryogenesis to adulthood. Up to now, it has been accepted that the effects of vitamin A are exerted by active metabolites, the major ones being 11-cis retinal for vision, and all trans-retinoic acid (RA) for cell growth and differentiation. Basically RA binds nuclear receptors, RARs, which regulate the expression of a battery of target genes in a ligand dependent manner. During the last decade, new scenarios have been discovered, providing a rationale for the understanding of other long-noted but not explained functions of retinol. These novel scenarios involve: (i) other nuclear receptors such as PPAR β/δ, which regulate the expression of other target genes with other functions; (ii) extranuclear and nontranscriptional effects, such as the activation of kinases, which phosphorylate RARs and other transcription factors, thus expanding the list of the RA-activated genes; (iii) finally, vitamin A is active per se and can work as a cytokine that regulates gene transcription by activating STRA6. New effects of vitamin A and RA are continuously being discovered in new fields, revealing new targets and new mechanisms thus improving the understanding the pleiotropicity of their effects.
Josephson junction microwave modulators for qubit control
Naaman, O.; Strong, J. A.; Ferguson, D. G.; Egan, J.; Bailey, N.; Hinkey, R. T.
2017-02-01
We demonstrate Josephson junction based double-balanced mixer and phase shifter circuits operating at 6-10 GHz and integrate these components to implement both a monolithic amplitude/phase vector modulator and an I/Q quadrature mixer. The devices are actuated by flux signals, dissipate no power on chip, exhibit input saturation powers in excess of 1 nW, and provide cryogenic microwave modulation solutions for integrated control of superconducting qubits.
Low-Loss Materials for Josephson Qubits
2014-10-09
number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From- To) 09-10-2014 Final...failing to comply with a collection of information if it does not display a currently valid OMB control number 1. REPORT DATE 2014 2. REPORT TYPE N...loss comes from the capacitor, the inductor (including the Josephson inductance), and radiative loss from the embedded circuit. \\section{capacitor
Internal dynamics of long Josephson junction oscillators
DEFF Research Database (Denmark)
Christiansen, Peter Leth; Lomdahl, P. S.; Scott, Alwyn C.;
1981-01-01
Numerical computations on a sine-Gordon model of the Josephson junction fluxon oscillator are compared with experimental measurements. Good agreement is found for the voltage current characteristic, oscillator power output, and range of current bias over which oscillation is observed. Our numeric...... results imply a ''bunched-fluxon'' mode of oscillation at larger values of bias current. Applied Physics Letters is copyrighted by The American Institute of Physics....
Nuclear effects in neutrino induced reactions
Vacas, M J Vicente; Geng, L S; Nieves, J; Valverde, M; Hirenzaki, S
2008-01-01
We discuss the relevance of nuclear medium effects in the analysis of some low and medium energy neutrino reactions of current interest. In particular, we study the Quasi-Elastic (QE) process, where RPA correlations and Final State Interactions (FSI) are shown to play a crucial role. We have also investigated the neutrino induced coherent pion production. We find a strong reduction of the cross section due to the distortion of the pion wave function and the modification of the production mechanisms in the nucleus. The sensitivity of the results to the axial $N\\Delta$ coupling $C_5^A(0)$ has been also investigated.
Effect of nuclear viscosity on fission process
Energy Technology Data Exchange (ETDEWEB)
Li Shidong; Kuang Huishun; Zhang Shufa; Xing Jingru; Zhuo Yizhong; Wu Xizhen; Feng Renfa
1989-02-01
According to the fission diffusion model, the deformation motion of fission nucleuses is regarded as a diffusion process of quasi-Brownian particles under fission potential. Through simulating such Brownian motion in two dimensional phase space by Monte-Carlo mehtod, the effect of nuclear visocity on Brownian particle diffusion is studied. Dynamical quanties, such as fission rate, kinetic energy distribution on scission, and soon are numerically calculated for various viscosity coefficients. The results are resonable in physics. This method can be easily extended to deal with multi-dimensional diffusion problems.
Solitonic Josephson-based meminductive systems
Guarcello, Claudio; Solinas, Paolo; di Ventra, Massimiliano; Giazotto, Francesco
2017-04-01
Memristors, memcapacitors, and meminductors represent an innovative generation of circuit elements whose properties depend on the state and history of the system. The hysteretic behavior of one of their constituent variables, is their distinctive fingerprint. This feature endows them with the ability to store and process information on the same physical location, a property that is expected to benefit many applications ranging from unconventional computing to adaptive electronics to robotics. Therefore, it is important to find appropriate memory elements that combine a wide range of memory states, long memory retention times, and protection against unavoidable noise. Although several physical systems belong to the general class of memelements, few of them combine these important physical features in a single component. Here, we demonstrate theoretically a superconducting memory based on solitonic long Josephson junctions. Moreover, since solitons are at the core of its operation, this system provides an intrinsic topological protection against external perturbations. We show that the Josephson critical current behaves hysteretically as an external magnetic field is properly swept. Accordingly, long Josephson junctions can be used as multi-state memories, with a controllable number of available states, and in other emerging areas such as memcomputing, i.e., computing directly in/by the memory.
Otten, Daniel; Rubbert, Sebastian; Ulrich, Jascha; Hassler, Fabian
2016-09-01
Josephson junctions are the most prominent nondissipative and at the same time nonlinear elements in superconducting circuits allowing Cooper pairs to tunnel coherently between two superconductors separated by a tunneling barrier. Due to this, physical systems involving Josephson junctions show highly complex behavior and interesting novel phenomena. Here, we consider an infinite one-dimensional chain of superconducting islands where neighboring islands are coupled by capacitances. We study the effect of Josephson junctions shunting each island to a common ground superconductor. We treat the system in the regime where the Josephson energy exceeds the capacitive coupling between the islands. For the case of two offset charges on two distinct islands, we calculate the interaction energy of these charges mediated by quantum phase slips due to the Josephson nonlinearities. We treat the phase slips in an instanton approximation and map the problem onto a classical partition function of interacting particles. Using the Mayer cluster expansion, we find that the interaction potential of the offset charges decays with a universal inverse-square power-law behavior.
Kaneko, Nobu-hisa; Maruyama, Michitaka; Urano, Chiharu; Kiryu, Shogo
2012-01-01
A method of AC waveform synthesis with quantum-mechanical accuracy has been developed on the basis of the Josephson effect in national metrology institutes, not only for its scientific interest but its potential benefit to industries. In this paper, we review the development of Josephson arbitrary waveform synthesizers based on the two types of Josephson junction array and their distinctive driving methods. We also discuss a new operation technique with multibit delta-sigma modulation and a thermometer code, which possibly enables the generation of glitch-free waveforms with high voltage levels. A Josephson junction array for this method has equally weighted branches that are operated by thermometer-coded bias current sources with multibit delta-sigma conversion.
Institute of Scientific and Technical Information of China (English)
ZHOU Tie-Ge; YAN Shao-Lin; FANG Lan; ZUO Xu; LI Song; JI Lu; ZHAO Xin-Jie
2006-01-01
@@ We observe and measure the inductance of long intrinsic Josephson junction arrays composed of misaligned Tl2 Ba2 CaCu2 O8 thin films grown on LaAlO3 substrates. The array consists of about 9.1 × 103 intrinsic Josephson junctions, where 90° phase shift between ac voltage across the array and ac current flowing through has been measured. Furthermore, the voltage is proportional to the frequency of the current. The measured inductance values of the intrinsic Josephson junction arrays are basically consistent with the theoretically calculated results, confirming that the inductance is mainly due to the Josephson effect. The dependence of the array inductance on its critical current is also discussed.
An automated 55 GHz cryogenic Josephson sampling oscilloscope
DEFF Research Database (Denmark)
Bodin, P.; Jacobsen, M. L.; Kyhle, Anders
1993-01-01
A computer-automated superconductive 55 GHz sampling oscilloscope based on 4 kA/cm2, Nb/Nb2O5/Pb edge Josephson junctions is presented. The Josephson sampler chip was flip-chip bonded to a carrier chip with a coplanar transmission line by use of a novel flip-chip bonding machine. A 5.6 ps step pu...
Feynman's and Ohta's Models of a Josephson Junction
De Luca, R.
2012-01-01
The Josephson equations are derived by means of the weakly coupled two-level quantum system model given by Feynman. Adopting a simplified version of Ohta's model, starting from Feynman's model, the strict voltage-frequency Josephson relation is derived. The contribution of Ohta's approach to the comprehension of the additional term given by the…
Long Josephson Junction Stack Coupled to a Cavity
DEFF Research Database (Denmark)
Madsen, Søren Peder; Pedersen, Niels Falsig; Groenbech-Jensen, N.
2007-01-01
A stack of inductively coupled long Josephson junctions are modeled as a system of coupled sine-Gordon equations. One boundary of the stack is coupled electrically to a resonant cavity. With one fluxon in each Josephson junction, the inter-junction fluxon forces are repulsive. We look at a possible...
Numerical simulations of flux flow in stacked Josephson junctions
DEFF Research Database (Denmark)
Madsen, Søren Peder; Pedersen, Niels Falsig
2005-01-01
We numerically investigate Josephson vortex flux flow states in stacked Josephson junctions, motivated by recent experiments trying to observe the vortices in a square vortex lattice when a magnetic field is applied to layered high-Tc superconductors of the Bi2Sr2CaCu2Ox type. By extensive...
Josephson junction analog and quasiparticle-pair current
DEFF Research Database (Denmark)
Bak, Christen Kjeldahl; Pedersen, Niels Falsig
1973-01-01
A close analogy exists between a Josephson junction and a phase-locked loop. A new type of electrical analog based on this principle is presented. It is shown that the inclusion in this analog of a low-pass filter gives rise to a current of the same form as the Josephson quasiparticle-pair current...
Phase dynamics of two parallel stacks of coupled Josephson junctions
Shukrinov, Yu M.; Rahmonov, I. R.; Plecenik, A.; Seidel, P.; Ilʼichev, E.; Nawrocki, W.
2014-12-01
Two parallel stacks of coupled Josephson junctions (JJs) are investigated to clarify the physics of transitions between the rotating and oscillating states and their effect on the IV-characteristics of the system. The detailed study of phase dynamics and bias dependence of the superconducting and diffusion currents allows one to explain all features of simulated IV-characteristics and demonstrate the correspondence in their behavior. The coupling between JJ in the stacks leads to the branching of IV-characteristics and a decrease in the hysteretic region. The crucial role of the diffusion current in the formation of the IV-characteristic of the parallel stacks of coupled JJs is demonstrated. We discuss the effect of symmetry in a number of junctions in the stacks and show a decrease of the branching in the symmetrical stacks. The observed effects might be useful for development of superconducting electronic devices based on intrinsic JJs.
Josephson oscillations and noise temperatures in YBa2Cu3O7-x grain-boundary junctions
DEFF Research Database (Denmark)
Yu, Ya. Divin; Mygind, Jesper; Pedersen, Niels Falsig;
1992-01-01
The ac Josephson effect was studied in YBa2Cu3O7−x grain-boundary junctions (GBJ) in the temperature range from 4 to 90 K. The temperature dependence of the linewidth of millimeter-wave Josephson oscillations was measured and it is shown that the derived effective noise temperatures may be as low...... as the physical temperature in the temperature range investigated. In the millimeter-wave range, linewidths as low as 380 MHz were found at liquid-nitrogen temperatures. Applied Physics Letters is copyrighted by The American Institute of Physics....
Study of Nuclear Effects in the Computation of the 0{\
Neacsu, Andrei
2013-01-01
We analyse the effects that different nuclear structure approximations associated with the short range correlations (SRC), finite nucleon size (FNS), higher order terms in the nucleon currents (HOC) and with some nuclear input parameters, have on the values of the nuclear matrix elements (NMEs) for the neutrinoless double beta (0{\
Nuclear effective field theory on the lattice
Krebs, H; Epelbaum, E; Lee, D; ner, Ulf-G Mei\\ss
2008-01-01
In the low-energy region far below the chiral symmetry breaking scale (which is of the order of 1 GeV) chiral perturbation theory provides a model-independent approach for quantitative description of nuclear processes. In the two- and more-nucleon sector perturbation theory is applicable only at the level of an effective potential which serves as input in the corresponding dynamical equation. To deal with the resulting many-body problem we put chiral effective field theory (EFT) on the lattice. Here we present the results of our lattice EFT study up to next-to-next-to-leading order in the chiral expansion. Accurate description of two-nucleon phase-shifts and ground state energy ratio of dilute neutron matter up to corrections of higher orders shows that lattice EFT is a promising tool for a quantitative description of low-energy few- and many-body systems.
Energy Technology Data Exchange (ETDEWEB)
Shukrinov, Yu.M. [BLTP, JINR, Moscow Region, Dubna 141980 (Russian Federation) and Physical Technical Institute, Dushanbe 734063 (Tajikistan)]. E-mail: shukrinv@theor.jinr.ru; Mahfouzi, F. [Institute for Advanced Studies in Basic Sciences, P.O. Box 45195-1159, Zanjan (Iran, Islamic Republic of)
2006-02-01
We study the current-voltage characteristics of intrinsic Josephson junctions in high-T {sub c} superconductors by numerical calculations and in framework of capacitively coupled Josephson junctions model we obtain the total number of branches. The influence of the coupling parameter {alpha} on the current-voltage characteristics at fixed parameter {beta} ({beta} {sup 2} 1/{beta} {sub c}, where {beta} {sub c} is McCumber parameter) and the influence of {alpha} on {beta}-dependence of the current-voltage characteristics are investigated. We obtain the {alpha}-dependence of the branch's slopes and branch's endpoints. The presented results show new features of the coupling effect on the scheme of hysteresis jumps in current-voltage characteristics of intrinsic Josephson junctions in high-T {sub c} superconductors.
Shukrinov, Yu. M.; Mahfouzi, F.
2006-02-01
We study the current-voltage characteristics of intrinsic Josephson junctions in high-Tc superconductors by numerical calculations and in framework of capacitively coupled Josephson junctions model we obtain the total number of branches. The influence of the coupling parameter α on the current-voltage characteristics at fixed parameter β (β2 = 1/βc, where βc is McCumber parameter) and the influence of α on β-dependence of the current-voltage characteristics are investigated. We obtain the α-dependence of the branch's slopes and branch's endpoints. The presented results show new features of the coupling effect on the scheme of hysteresis jumps in current-voltage characteristics of intrinsic Josephson junctions in high-Tc superconductors.
Perturbed period-doubling bifurcation. II. Experiments on Josephson junctions
DEFF Research Database (Denmark)
Eriksen, Gert Friis; Hansen, Jørn Bindslev
1990-01-01
We present experimental results on the effect of periodic perturbations on a driven, dynamic system that is close to a period-doubling bifurcation. In the preceding article a scaling law for the change of stability of such a system was derived for the case where the perturbation frequency ωS is c......B as a function of the frequency and the amplitude of the perturbation signal ΔμB(ωS,AS) for a model system, the microwave-driven Josephson tunnel junction, and find reasonable agreement between the experimental results and the theory.......We present experimental results on the effect of periodic perturbations on a driven, dynamic system that is close to a period-doubling bifurcation. In the preceding article a scaling law for the change of stability of such a system was derived for the case where the perturbation frequency ω...
Quantum metamaterials: Electromagnetic waves in Josephson qubit lines
Energy Technology Data Exchange (ETDEWEB)
Zagoskin, A.M. [Frontier Research System, Institute of Physical and Chemical Research (RIKEN),Wako-shi, Saitama (Japan); Department of Physics, Loughborough University, Loughborough (United Kingdom); Physics and Astronomy Department, University of British Columbia, Vancouver, B.C. (Canada); Rakhmanov, A.L. [Frontier Research System, Institute of Physical and Chemical Research (RIKEN),Wako-shi, Saitama (Japan); Institute for Theoretical and Applied Electrodynamics RAS, Moscow (Russian Federation); Savel' ev, Sergey [Frontier Research System, Institute of Physical and Chemical Research (RIKEN),Wako-shi, Saitama (Japan); Department of Physics, Loughborough University, Loughborough (United Kingdom); Nori, Franco [Frontier Research System, Institute of Physical and Chemical Research (RIKEN),Wako-shi, Saitama (Japan); Department of Physics, Center for Theoretical Physics, Applied Physics Program, Center for the Study of Complex Systems, University of Michigan, Ann Arbor, MI (United States)
2009-05-15
We consider the propagation of a classical electromagnetic wave through a transmission line, formed by identical superconducting charge qubits inside a superconducting resonator. Since the qubits can be in a coherent superposition of quantum states, we show that such a system demonstrates interesting new effects, such as a ''breathing'' photonic crystal with an oscillating bandgap. Similar behaviour is expected from a transmission line formed by flux qubits. The key ingredient of these effects is that the optical properties of the Josephson transmission line are controlled by the quantum coherent state of the qubits (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
76 FR 55137 - Monitoring the Effectiveness of Maintenance at Nuclear Power Plants
2011-09-06
... COMMISSION Monitoring the Effectiveness of Maintenance at Nuclear Power Plants AGENCY: Nuclear Regulatory..., ``Monitoring the Effectiveness of Maintenance at Nuclear Power Plants.'' This guide endorses Revision 4A to... Effectiveness of Maintenance at Nuclear Power Plants,'' which provides methods that......
Landau Zener Effect in Superfluid Nuclear Systems
Mirea, M.
The Landau Zener effect is generalized for many-body systems with pairing residual interactions. The microscopic equations of motion are obtained and the 14C decay of 223Ra spectroscopic factors are deduced. An asymmetric nuclear shape parametrization given by two intersected spheres is used. The single particle level scheme is determined in the frame of the superasymmetric two-center shell model. The deformation energy is computed in the microscopic macroscopic approximation. The penetrabilities are obtained within the WKB approximation. The fine structure of the cluster decay analyzed in the frame of this formalism gives a very good agreement with the experimental ratio of partial half-lives for transition to the first excited state and to the ground state.
Restriction of Civilian Nuclear Fuel Cycle and Effectiveness of Nuclear Nonproliferation
Energy Technology Data Exchange (ETDEWEB)
Ryu, JaeSoo; Lee, HanMyung; Ko, HanSuk; Yang, MaengHo; Oh, KunBae [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
2006-07-01
Many efforts have been made to prevent the spread of nuclear weapons since the nuclear era. Recent revelation such as Dr. A.Q. Khan Network showed that some states had acquired sensitive nuclear technologies including uranium enrichment which could be used for making nuclear weapons. In addition, with the advancement of industrial technology, it has become easier to have access to those technologies. In this context, proliferation risks are being increased more and more. As a result, various proposals to respond to proliferation risks by sensitive technologies have been made: Multilateral Nuclear Approaches (MNAs) by IAEA Director General El Baradei, non-transfer of sensitive nuclear technologies by the U.S. President George W. Bush, international center for nuclear fuel cycle service by Russian President Vladimir V. Putin, Global Nuclear Energy Partnership (GNEP) by Bush's administration and a concept for a multilateral mechanism for reliable access to nuclear fuel by 6 member states of the IAEA. Theses proposals all share the idea that the best way to reduce risk is to prevent certain states from having control over an indigenous civilian fuel cycle while still finding ways to confer the benefits of nuclear energy, and seem to imply that the current nonproliferation regime is fundamentally flawed and needs to be altered. However, these proposals are a center of controversy because they can restrict the inalienable right for the peaceful purposes of nuclear energy inscribed in Article IV of the NPT. Therefore, this paper analyzes the key challenges of these proposals and effectiveness of the goal of nuclear nonproliferation in practical term by restricting civilian nuclear fuel cycle.
Studies of chaos and thermal noise in a driven Josephson junction using an electronic analog
Energy Technology Data Exchange (ETDEWEB)
Pegrum, C.M.; Gurney, W.S.C.; Nisbet, R.M.
1989-03-01
Using an electronic analog of a resistively shunted driven Josephson junction, the authors have demonstrated a number of effects, including the appearance of a devil's staircase in the current-voltage characteristic, the onset of chaos, and the effect of noise on these phenomena. The authors stress that the analog is simple, but models the junction behavior with a high degree of accuracy and detail.
High-performance passive microwave survey on Josephson Junctions
Denisov, A. G.; Radzikhovsky, V. N.; Kudeliya, A. M.
1995-01-01
The quasi-optical generations of images of objects with their internal structure in millimeter (MM) and submillimeter (SMM) bands is one of prime problems of modern radioelectronics. The main advantage of passive MM imaging systems in comparison with visible and infrared (IR) systems is small attenuation of signals in fog, cloud, smoke, dust and other obscurants. However, at a panoramic scanning of space the observation time lengthens and thereby the information processing rate becomes restricted so that single-channel system cannot image in real time. Therefore we must use many radiometers in parallel to reduce the observation time. Such system must contain receiving sensors as pixels in multibeam antenna. The use of Josephson Junctions (JJ) for this purpose together with the cryoelectronic devices like GaAs FET (field effect transistors) or SQUIDS for signal amplifications after JJ is of particular interest in this case.
Energy storage and subharmonic oscillations in Josephson junctions
Dempsey, D. G.; Levinsen, M. T.; Ulrich, B. T.
1975-01-01
The energy stored in the magnetic and electric field near a superconducting point contact is typically the same magnitude as the coupling energy which produces the Josephson effect in the weakly coupled superconductors. One consequence of energy storage in both the electric and magnetic field is that the junction can oscillate at a fundamental frequency. The dynamics of these subharmonic oscillations have been studied for a model in which the magnetic and electric energies are represented as being stored in an inductance and a capacitance respectively. The model was studied numerically for various biasing conditions, and the behavior compared to experimental data. A simple analytic approximation was developed that gives physical insight into the mechanism that creates the subharmonic oscillations.
Fabrication of high quality ferromagnetic Josephson junctions
Energy Technology Data Exchange (ETDEWEB)
Weides, M. [Institute for Solid State Research, Research Centre Juelich, D-52425 Juelich (Germany) and CNI-Center of Nanoelectronic Systems for Information Technology, Research Centre Juelich, D-52425 Juelich (Germany)]. E-mail: m.weides@fz-juelich.de; Tillmann, K. [Institute for Solid State Research, Research Centre Juelich, D-52425 Juelich (Germany); Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Research Centre Juelich, D-52425 Juelich (Germany); Kohlstedt, H. [Institute for Solid State Research, Research Centre Juelich, D-52425 Juelich (Germany); CNI-Center of Nanoelectronic Systems for Information Technology, Research Centre Juelich, D-52425 Juelich (Germany); Department of Material Science and Engineering and Department of Physics, University of Berkeley, CA 94720 (United States)
2006-05-15
We present ferromagnetic Nb/Al{sub 2}O{sub 3}/Ni{sub 60}Cu{sub 40}/Nb Josephson junctions (SIFS) with an ultrathin Al{sub 2}O{sub 3} tunnel barrier. The junction fabrication was optimized regarding junction insulation and homogeneity of current transport. Using ion-beam-etching and anodic oxidation we defined and insulated the junction mesas. The additional 2 nm thin Cu-layer below the ferromagnetic NiCu (SINFS) lowered interface roughness and ensured very homogeneous current transport. A high yield of junctional devices with j {sub c} spreads less than 2% was obtained.
Direct Evidence of Washing out of Nuclear Shell Effects
Chaudhuri, A; Banerjee, K; Bhattacharya, S; Sadhukhan, Jhilam; Bhattacharya, C; Kundu, S; Meena, J K; Mukherjee, G; Pandey, R; Rana, T K; Roy, P; Roy, T; Srivastava, V; Bhattacharya, P
2015-01-01
Constraining excitation energy at which nuclear shell effect washes out has important implications on the production of super heavy elements and many other fields of nuclear physics research. We report the fission fragment mass distribution in alpha induced reaction on an actinide target for wide excitation range in close energy interval and show direct evidence that nuclear shell effect washes out at excitation energy ~40 MeV. Calculation shows that second peak of the ?fission barrier also vanishes around similar excitation energy.
Effective nucleon mass and the nuclear caloric curve
Shetty, D V; Galanopoulos, S; Yennello, S J
2009-01-01
Assuming a schematic form of the nucleon effective mass as a function of nuclear excitation energy and mass, we provide a simple explanation for understanding the experimentally observed mass dependence of the nuclear caloric curve. It is observed that the excitation energy at which the caloric curve enters into a plateau region, could be sensitive to the nuclear mass evolution of the effective nucleon mass.
Nuclear effects in deuteron and the Gottfried sum rule
Energy Technology Data Exchange (ETDEWEB)
Epele, L.N.; Sassot, R. (Lab. de Fisica Teorica, Univ. Nacional de La Plata (Argentina)); Fanchiotti, H. (Theory Div., CERN, Geneva (Switzerland)); Carcia Canal, C.A. (Lab. de Fisica Teorica, Univ. Nacional de La Plata (Argentina) Theory Div., CERN, Geneva (Switzerland))
1992-01-23
Recent NMC data on the ratio of the deep inelastic structure functions F{sub 2} per nucleon for deuterium relative to hydrogen are analysed in the context of the Gottfried sum rule. It is shown that the discrepancy between the Gottfried sum rule prediction and NMC data analysis may be interpreted as a nuclear effect in deuterium as it is suggested by several models. This fact, applied to nuclear-deuterium measured ratios, modifies the standard picture of nuclear effects. (orig.).
Charge creation and nucleation of the longitudinal plasma wave in coupled Josephson junctions
Shukrinov, Yu. M.; Hamdipour, M.
2010-11-01
We study the phase dynamics in coupled Josephson junctions described by a system of nonlinear differential equations. Results of detailed numerical simulations of charge creation in the superconducting layers and the longitudinal plasma wave (LPW) nucleation are presented. We demonstrate the different time stages in the development of the LPW and present the results of FFT analysis at different values of bias current. The correspondence between the breakpoint position on the outermost branch of current voltage characteristics (CVC) and the growing region in time dependence of the electric charge in the superconducting layer is established. The effects of noise in the bias current and the external microwave radiation on the charge dynamics of the coupled Josephson junctions are found. These effects introduce a way to regulate the process of LPW nucleation in the stack of IJJ.
Experimental demonstration of Aharonov-Casher interference in a Josephson junction circuit
Pop, I. M.; Douçot, B.; Ioffe, L.; Protopopov, I.; Lecocq, F.; Matei, I.; Buisson, O.; Guichard, W.
2012-03-01
A neutral quantum particle with magnetic moment encircling a static electric charge acquires a quantum-mechanical phase (Aharonov-Casher effect). In superconducting electronics, the neutral particle becomes a fluxon that moves around superconducting islands connected by Josephson junctions. The full understanding of this effect in systems of many junctions is crucial for the design of novel quantum circuits. Here, we present measurements and quantitative analysis of fluxon interference patterns in a six Josephson junction chain. In this multijunction circuit, the fluxon can encircle any combination of charges on five superconducting islands, resulting in a complex pattern. We compare the experimental results with predictions of a simplified model that treats fluxons as independent excitations and with the results of the full diagonalization of the quantum problem. Our results demonstrate the accuracy of the fluxon interference description and the quantum coherence of these arrays.
Effective interaction: From nuclear reactions to neutron stars
Indian Academy of Sciences (India)
D N Basu
2014-05-01
An equation of state (EoS) for symmetric nuclear matter is constructed using the density-dependent M3Y effective interaction and extended for isospin asymmetric nuclear matter. Theoretically obtained values of symmetric nuclear matter incompressibility, isobaric incompressibility, symmetry energy and its slope agree well with experimentally extracted values. Folded microscopic potentials using this effective interaction, whose density dependence is determined from nuclear matter calculations, provide excellent descriptions for proton, alpha and cluster radioactivities, elastic and inelastic scattering. The nuclear deformation parameters extracted from inelastic scattering of protons agree well with other available results. The high density behaviour of symmetric and asymmetric nuclear matter satisfies the constraints from the observed flow data of heavy-ion collisions. The neutron star properties studied using -equilibrated neutron star matter obtained from this effective interaction reconcile with the recent observations of the massive compact stars.
Comparative nuclear effects of biomedical interest. Civil effects study
Energy Technology Data Exchange (ETDEWEB)
White, C.S.; Bowen, I.G.; Richmond, D.R.; Corsbie, R.L.
1961-01-12
Selected physical and biological data bearing upon the environmental variations created by nuclear explosions are presented in simplified form. Emphasis is placed upon the ``early`` consequences of exposure to blast, thermal radiation, and ionizing radiation to elucidate the comparative ranges of the major effects as they vary with explosive yield and as they contribute to the total hazard to man. A section containing brief definitions of the terminology employed is followed by a section that utilizes text and tabular material to set forth events that follow nuclear explosions and the varied responses of exposed physical and biological materials. Finally, selected quantitative weapons-effects data in graphic and tabular form are presented over a wide range of explosive yields to show the relative distances from Ground Zero affected by significant levels of blast overpressures, thermal fluxes, and initial and residual penetrating ionizing radiations. However, only the ``early`` rather than the ``late`` effects of the latter are considered.
Negative differential resistance in Josephson junctions coupled to a cavity
DEFF Research Database (Denmark)
Pedersen, Niels Falsig; Filatrella, G.; Pierro, V.
2014-01-01
or external – is often used. A cavity may also induce a negative differential resistance region at the lower side of the resonance frequency. We investigate the dynamics of Josephson junctions with a negative differential resistance in the quasi particle tunnel current, i.e. in the McCumber curve. We find......Regions with negative differential resistance can arise in the IV curve of Josephson junctions and this phenomenon plays an essential role for applications, in particular for THz radiation emission. For the measurement of high frequency radiation from Josephson junctions, a cavity – either internal...
Some chaotic features of intrinsically coupled Josephson junctions
Energy Technology Data Exchange (ETDEWEB)
Kolahchi, M.R., E-mail: kolahchi@iasbs.ac.ir [Institute for Advanced Studies in Basic Sciences, Zanjan 45195-1159 (Iran, Islamic Republic of); Shukrinov, Yu.M. [BLTP, JINR, Dubna, Moscow Region 141980 (Russian Federation); Max-Planck-Institute for the Physics of Complex Systems, 01187 Dresden (Germany); Hamdipour, M. [Institute for Advanced Studies in Basic Sciences, Zanjan 45195-1159 (Iran, Islamic Republic of); BLTP, JINR, Dubna, Moscow Region 141980 (Russian Federation); Botha, A.E. [Department of Physics, University of South Africa, P.O. Box 392, Pretoria 0003 (South Africa); Suzuki, M. [Photonics and Electronics Science and Engineering Center and Department of Electronic Science and Engineering, Kyoto University, Kyoto 615-8510 (Japan)
2013-08-15
Highlights: ► Intrinsically coupled Josephson junctions model a high-T{sub c} superconductor. ► Intrinsically coupled Josephson junctions can act as a chaotic nonlinear system. ► Chaos could be due to resonance overlap. ► Avoiding parameters that lead to chaos is important for the design of resonators. -- Abstract: We look for chaos in an intrinsically coupled system of Josephson junctions. This study has direct applications for the high-T{sub c} resonators which require coherence amongst the junctions.
Created-by-current states in long Josephson junctions
Boyadjiev, T. L.; Andreeva, O. Yu.; Semerdjieva, E. G.; Shukrinov, Yu. M.
2008-08-01
Critical curves "critical current-external magnetic field" of long Josephson junctions with inhomogeneity and variable width are studied. We demonstrate the existence of regions of magnetic field where some fluxon states are stable only if the external current through the junction is different from zero. Position and size of such regions depend on the length of the junction, its geometry, parameters of inhomogeneity and form of the junction. The noncentral (left and right) pure fluxon states appear in the inhomogeneous Josephson junction with the increase in the junction length. We demonstrate new bifurcation points with change in width of the inhomogeneity and amplitude of the Josephson current through the inhomogeneity.
Dynamical coefficients for a Josephson vortex in an anisotropic junction
Coffey, Mark W.
2000-05-01
The mass per unit length μ and drag coefficient η for a Josephson vortex moving and aligned parallel to the plane of an anisotropic Josephson junction are calculated. The tilt angle between the vortex direction and the crystal uniaxial directions of the superconducting banks is allowed to vary, so that this type of misalignment of the banks is included. These low-field results are suitable for inclusion in the dynamic mobility of Josephson vortices. These dynamical coefficients should be applicable to the description of the intergrain motion of vortices in polycrystals of high-Tc superconductors. The extension of the approach for the regime of relativistic vortex motion is presented.
Influence of coupling between junctions on breakpoint current in intrinsic Josephson junctions
Shukrinov, Yu M.; Mahfouzi, F.
2006-01-01
We study theoretically the current-voltage characteristics of intrinsic Josephson junctions in high-$T_c$ superconductors. An oscillation of the breakpoint current on the outermost branch as a function of coupling $\\alpha$ and dissipation $\\beta$ parameters is found. We explain this oscillation as a result of the creation of longitudinal plasma waves at the breakpoint with different wave numbers. We demonstrate the commensurability effect and predict a group behavior of the current-voltage ch...
Josephson Dynamics of a Bose-Einstein Condensate Trapped in a Double-Well Potential
Institute of Scientific and Technical Information of China (English)
YANG Hong-Wei; ZUO Wei
2007-01-01
The Josephson equations for a Bose-Einstein Condensate gas trapped in a double-well potential are derived with the two-mode approximation by the Gross-Pitaevskii equation. The dynamical characteristics of the equations are obtained by the numerical phase diagrams. The nonlinear self-trapping effect appeared in the phase diagrams are emphatically discussed, and the condition EcN＞4EJ is presented.
Comment on "Thermal propagation in two-dimensional Josephson junction arrays"
De Leo, Cinzia
2009-01-01
In a recent paper, Filatrella et al. [Phys. Rev. B 75, 54510 (2007)] report results of numerical calculations of energy barriers for flux quanta propagation in two-dimensional arrays of Josephson junctions with finite self and mutual inductances. To avoid complex numerical calculations, they use an approximated inductance model to address the effects of the mutual couplings. Using a full inductance matrix model, we show that this approximated model cannot be used to calculate the energy barri...
Quantum fluctuation effects on nuclear fragment and atomic cluster formation
Energy Technology Data Exchange (ETDEWEB)
Ohnishi, Akira [Hokkaido Univ., Sapporo (Japan). Dept. of Physics; Randrup, J.
1997-05-01
We investigate the nuclear fragmentation and atomic cluster formation by means of the recently proposed quantal Langevin treatment. It is shown that the effect of the quantal fluctuation is in the opposite direction in nuclear fragment and atomic cluster size distribution. This tendency is understood through the effective classical temperature for the observables. (author)
Phase slips and vortex dynamics in Josephson oscillations between Bose-Einstein condensates
Abad, M.; Guilleumas, M.; Mayol, R.; Piazza, F.; Jezek, D. M.; Smerzi, A.
2015-02-01
We study the relation between Josephson dynamics and topological excitations in a dilute Bose-Einstein condensate confined in a double-well trap. We show that the phase slips responsible for the self-trapping regime are created by vortex rings entering and annihilating inside the weak-link region or created at the center of the barrier and expanding outside the system. Large amplitude oscillations just before the onset of self-trapping are also strictly connected with the dynamics of vortex rings at the edges of the inter-well barrier. Our results extend and analyze the dynamics of the vortex-induced phase slippages suggested a few decades ago in relation to the “ac” Josephson effect of superconducting and superfluid helium systems.
Band-gaps in long Josephson junctions with periodic phase-shifts
Ahmad, Saeed; Susanto, Hadi; Wattis, Jonathan A. D.
2017-04-01
We investigate analytically and numerically a long Josephson junction on an infinite domain, having arbitrary periodic phase shift of κ, that is, the so-called 0-κ long Josephson junction. The system is described by a one-dimensional sine-Gordon equation and has relatively recently been proposed as artificial atom lattices. We discuss the existence of periodic solutions of the system and investigate their stability both in the absence and presence of an applied bias current. We find critical values of the phase-discontinuity and the applied bias current beyond which static periodic solutions cease to exist. Due to the periodic discontinuity in the phase, the system admits regions of allowed and forbidden bands. We perturbatively investigate the Arnold tongues that separate the region of allowed and forbidden bands, and discuss the effect of an applied bias current on the band-gap structure. We present numerical simulations to support our analytical results.
Energy Technology Data Exchange (ETDEWEB)
Yokoyama, Tomohiro; Eto, Mikio [Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Nazarov, Yuli V. [Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands (Netherlands)
2013-12-04
We theoretically study the current-phase relation in semiconductor nanowire Josephson junction in the presence of spin-orbit interaction. In the nanowire, the impurity scattering with strong SO interaction is taken into account using the random matrix theory. In the absence of magnetic field, the Josephson current I and phase difference φ between the superconductors satisfy the relation of I(φ) = –I(–φ). In the presence of magnetic field along the nanowire, the interplay between the SO interaction and Zeeman effect breaks the current-phase relation of I(φ) = –I(–φ). In this case, we show that the critical current depends on the current direction, which qualitatively agrees with recent experimental findings.
Numerical study of fluxon dynamics in a system of two-stacked Josephson junctions
DEFF Research Database (Denmark)
Petraglia, Antonio; Ustinov, A. V.; Pedersen, Niels Falsig;
1995-01-01
The dynamics of magnetic fluxons in a system of two vertically stacked long Josephson junctions is investigated numerically. The model is based on the approach by S. Sakai, P. Bodin, and N. F. Pedersen [J. Appl. Phys. 73, 2411 (1993)] and is described by two strongly coupled sine-Gordon equations....... In agreement with recent experimental data, we confirm numerically the effect of splitting of the fluxon travelling mode into two separated modes with different characteristic velocities. The simulated current-voltage characteristics indicate stable phase-locked flux-flow resonances of two junctions....... These results support a possibility of application of the stacked long Josephson junctions as a system of coherent oscillators for millimeter and sub-millimeter wave bands. ©1995 American Institute of Physics....
Spin-orbit Josephson ϕ0-junction in nanowire quantum dots
Szombati, Daniel; Nadj-Perge, Stevan; Car, Diana; Bakkers, Erik; Kouwenhoven, Leo
The Josephson effect describes supercurrent flowing through a junction connecting two superconducting leads by a thin barrier. This current is driven by a superconducting phase difference ϕ between the leads and it is strictly zero when ϕ vanishes, due to the chiral and time reversal symmetry of the Cooper pair tunneling process. Only if these underlying symmetries are broken the supercurrent for ϕ = 0 may be finite. This corresponds to a ground state of the junction being offset by a phase ϕ0. Here, for the first time, we report such Josephson ϕ0-junction. Our realization is based on a nanowire quantum dot. We use a quantum interferometer device in order to investigate phase offsets and demonstrate that ϕ0 can be controlled by electrostatic gating. Our results have possible far reaching implications for superconducting flux and phase defined quantum bits as well as for exploring topological superconductivity in quantum dot systems.
Microbial Effects on Nuclear Waste Packaging Materials
Energy Technology Data Exchange (ETDEWEB)
Horn, J; Martin, S; Carrillo, C; Lian, T
2005-07-22
Microorganisms may enhance corrosion of components of planned engineered barriers within the proposed nuclear waste repository at Yucca Mountain (YM). Corrosion could occur either directly, through processes collectively known as Microbiologically Influenced Corrosion (MIC), or indirectly, by adversely affecting the composition of water or brines that come into direct contact with engineered barrier surfaces. Microorganisms of potential concern (bacteria, archea, and fungi) include both those indigenous to Yucca Mountain and those that infiltrate during repository construction and after waste emplacement. Specific aims of the experimental program to evaluate the potential of microorganisms to affect damage to engineered barrier materials include the following: Indirect Effects--(1) Determine the limiting factors to microbial growth and activity presently in the YM environment. (2) Assess these limiting factors to aid in determining the conditions and time during repository evolution when MIC might become operant. (3) Evaluate present bacterial densities, the composition of the YM microbial community, and determining bacterial densities if limiting factors are overcome. During a major portion of the regulatory period, environmental conditions that are presently extant become reestablished. Therefore, these studies ascertain whether biomass is sufficient to cause MIC during this period and provide a baseline for determining the types of bacterial activities that may be expected. (4) Assess biogenic environmental effects, including pH, alterations to nitrate concentration in groundwater, the generation of organic acids, and metal dissolution. These factors have been shown to be those most relevant to corrosion of engineered barriers. Direct Effects--(1) Characterize and quantify microbiological effects on candidate containment materials. These studies were carried out in a number of different approaches, using whole YM microbiological communities, a subset of YM
Nuclear effects in the structure functions
Indian Academy of Sciences (India)
E Marco; E Oset; S K Singh
2003-11-01
By using a relativistic framework and accurate nuclear spectral function the structure functions 2 and 3 of deep inelastic charged lepton and neutrino scattering are calculated in nuclei and results are presented.
Nuclear Deformation Effects in the Cluster Radioactivity
Misicu, S.; Protopopescu, D.(University of Glasgow, Glasgow, G12 8QQ, United Kingdom)
1998-01-01
We investigate the influence of the nuclear deformation on the decay rates of some cluster emission processes. The interaction between the daughter and the cluster is given by a double folding potential including quadrupole and hexadecupole deformed densities of both fragments. The nuclear part of the nucleus-nucleus interaction is density dependent and at small distances a repulsive core in the potential will occur. In the frame of the WKB- approximation the assault frequency of the cluster ...
Visualizing supercurrents in 0-{pi} ferromagnetic Josephson tunnel junctions
Energy Technology Data Exchange (ETDEWEB)
Goldobin, Edward; Guerlich, Christian; Gaber, Tobias; Koelle, Dieter; Kleiner, Reinhold [Physikalisches Institut and Center for Collective Quantum Phenomena, Universitaet Tuebingen (Germany); Weides, Martin; Kohlstedt, Hermann [Institute of Solid State Physics, Reserch Center Juelich (Germany)
2009-07-01
So-called 0 and {pi} Josephson junctions can be treated as having positive and negative critical currents. This implies that the same phase shift applied to a Josephson junction causes counterflow of supercurrents in 0 and in {pi} junctions connected in parallel provided they are short in comparison with Josephson penetration depth {lambda}{sub J}. We have fabricated several 0, {pi}, 0-{pi}, 0-{pi}-0 and 20 x (0-{pi}-) planar superconductor-insulator-ferromagnet-superconductor Josephson junctions and studied the spatial supercurrent density distribution j{sub s}(x,y) across the junction area using low temperature scanning electron microscopy. At zero magnetic field we clearly see counterflow of the supercurrents in 0 and {pi} regions. The picture also changes consistently in the applied magnetic field.
Fluxon bunching in supercurrent-coupled Josephson junctions
DEFF Research Database (Denmark)
Grønbech-Jensen, Niels; Lomdahl, Peter S.; Samuelsen, Mogens Rugholm
1993-01-01
We investigate analytically and numerically the interaction between fluxons of different Josephson junctions coupled through Cooper-pair tunneling. We find that the supercurrent interaction gives rise to attraction between fluxons regardless of their polarity, although fluxons of different polari...
Fluxons in long and annular intrinsic Josephson junction stacks
Clauss, T.; Oehmichen, V.; Mößle, M.; Müller, A.; Weber, A.; Koelle, D.; Kleiner, R.
2002-12-01
A promising approach towards a THz oscillator based on intrinsic Josephson junctions in high-temperature superconductors is based on the collective motion of Josephson fluxons, which are predicted to form various configurations ranging from a triangular to a quadratic lattice. Not only for this reason, but certainly also for the sake of basic physics, several experimental and theoretical investigations have been done on the subject of collective fluxon dynamics in stacked intrinsic Josephson junctions. In this paper we will present some experimental results on the fluxon dynamics of long intrinsic Josephson junction stacks made of Bi2Sr2CaCu2O8. The stacks were formed either in an open or in an annular geometry, and clear resonant fluxon modes were observed. Experiments discussed include measurements of current-voltage characteristics in external magnetic fields and in external microwave fields.
Fluxons in long and annular intrinsic Josephson junction stacks
Energy Technology Data Exchange (ETDEWEB)
Clauss, T; Oehmichen, V; Moessle, M; Mueller, A; Weber, A; Koelle, D; Kleiner, R [Physikalisches Institut-Experimentalphysik II, Universitaet Tuebingen, Auf der Morgenstelle 14, D-72076 Tuebingen (Germany)
2002-12-01
A promising approach towards a THz oscillator based on intrinsic Josephson junctions in high-temperature superconductors is based on the collective motion of Josephson fluxons, which are predicted to form various configurations ranging from a triangular to a quadratic lattice. Not only for this reason, but certainly also for the sake of basic physics, several experimental and theoretical investigations have been done on the subject of collective fluxon dynamics in stacked intrinsic Josephson junctions. In this paper we will present some experimental results on the fluxon dynamics of long intrinsic Josephson junction stacks made of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8}. The stacks were formed either in an open or in an annular geometry, and clear resonant fluxon modes were observed. Experiments discussed include measurements of current-voltage characteristics in external magnetic fields and in external microwave fields.
Fluxons in long and annular intrinsic Josephson junction stacks
Clauss, T; Moessle, M; Müller, A; Weber, A; Kölle, D; Kleiner, R
2002-01-01
A promising approach towards a THz oscillator based on intrinsic Josephson junctions in high-temperature superconductors is based on the collective motion of Josephson fluxons, which are predicted to form various configurations ranging from a triangular to a quadratic lattice. Not only for this reason, but certainly also for the sake of basic physics, several experimental and theoretical investigations have been done on the subject of collective fluxon dynamics in stacked intrinsic Josephson junctions. In this paper we will present some experimental results on the fluxon dynamics of long intrinsic Josephson junction stacks made of Bi sub 2 Sr sub 2 CaCu sub 2 O sub 8. The stacks were formed either in an open or in an annular geometry, and clear resonant fluxon modes were observed. Experiments discussed include measurements of current-voltage characteristics in external magnetic fields and in external microwave fields.
Radiation and Thermal Effects on Used Nuclear Fuel and Nuclear Waste Forms
Energy Technology Data Exchange (ETDEWEB)
Weber, William J. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Materials Science and Engineering; Zhang, Yanwen [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Materials Science and Engineering
2016-09-20
This is the final report of the NEUP project “Radiation and Thermal Effects on Used Nuclear Fuel and Nuclear Waste Forms.” This project started on July 1, 2012 and was successfully completed on June 30, 2016. This report provides an overview of the main achievements, results and findings through the duration of the project. Additional details can be found in the main body of this report and in the individual Quarterly Reports and associated Deliverables of this project, which have been uploaded in PICS-NE. The objective of this research was to advance understanding and develop validated models on the effects of self-radiation from beta and alpha decay on the response of used nuclear fuel and nuclear waste forms during high-temperature interim storage and long-term permanent disposition. To achieve this objective, model used-fuel materials and model waste form materials were identified, fabricated, and studied.
Chaos in extended linear arrays of Josephson weak links
Energy Technology Data Exchange (ETDEWEB)
Nerenberg, M.A.H.; Spiteri, R.J. (Department of Applied Mathematics, University of Western Ontario, London, Ontario, Canada N6A 5B9 (CA)); Blackburn, J.A. (Department of Physics and Computing, Wilfred Laurier University, Waterloo, Ontario, Canada N2L 3C5 (CA))
1989-12-01
Extended linear arrays of interacting Josephson weak links are studied by numerical simulation using the resistively shunted junction model. The minimum coupling strength for chaotic behavior is determined as a function of the number of links. This strength is found to diminish steadily with increasing number, despite the inclusion of only nearest-neighbor interaction. The implications for Josephson technology are briefly discussed. Mathematically, the results are confirmation of the Ruelle-Takens scenario for chaos.
Resonator coupled Josephson junctions; parametric excitations and mutual locking
DEFF Research Database (Denmark)
Jensen, H. Dalsgaard; Larsen, A.; Mygind, Jesper
1991-01-01
Self-pumped parametric excitations and mutual locking in systems of Josephson tunnel junctions coupled to multimode resonators are reported. For the very large values of the coupling parameter, obtained with small Nb-Al2O3-Nb junctions integrated in superconducting microstrip resonators, the DC I......-V characteristic shows an equidistant series of current steps generated by subharmonic pumping of the fundamental resonator mode. This is confirmed by measurement of frequency and linewidth of the emitted Josephson radiation...
Ballistic transport in InSb Josephson junctions
Damasco, John Jeffrey; Gill, Stephen; Car, Diana; Bakkers, Erik; Mason, Nadya
We present transport measurements on Josephson junctions consisting of InSb nanowires contacted by Al at various junction lengths. Junction behavior as a function of gate voltage, electric field, and magnetic field is discussed. We show that short junctions behave as 1D quantum wires, exhibiting quantized conductance steps. In addition, we show how Josephson behavior changes as transport evolves from ballistic to diffusive as a function of contact spacing.
A New Effect in the QCD Fusion of Nuclear Partons
Institute of Scientific and Technical Information of China (English)
RUAN Jian-Hong; ZHU Wei; LI Guang-Lie
2001-01-01
The parton fusion in nucleus at the leading order of recombination is investigated based on perturbative QCD. We compute various cut diagrams including the nuclear parton fusion, and find that the parton-fusion effects depend on the nuclear QCD structure.``
The ω-SQUIPT as a tool to phase-engineer Josephson topological materials
Strambini, E.; D'Ambrosio, S.; Vischi, F.; Bergeret, F. S.; Nazarov, Yu. V.; Giazotto, F.
2016-12-01
Multi-terminal superconducting Josephson junctions based on the proximity effect offer the opportunity to tailor non-trivial quantum states in nanoscale weak links. These structures can realize exotic topologies in several dimensions, for example, artificial topological superconductors that are able to support Majorana bound states, and pave the way to emerging quantum technologies and future quantum information schemes. Here we report the realization of a three-terminal Josephson interferometer based on a proximized nanosized weak link. Our tunnelling spectroscopy measurements reveal transitions between gapped (that is, insulating) and gapless (conducting) states that are controlled by the phase configuration of the three superconducting leads connected to the junction. We demonstrate the topological nature of these transitions: a gapless state necessarily occurs between two gapped states of different topological indices, in much the same way that the interface between two insulators of different topologies is necessarily conducting. The topological numbers that characterize such gapped states are given by superconducting phase windings over the two loops that form the Josephson interferometer. As these gapped states cannot be transformed to one another continuously without passing through a gapless condition, they are topologically protected. The same behaviour is found for all of the points of the weak link, confirming that this topology is a non-local property. Our observation of the gapless state is pivotal for enabling phase engineering of different and more sophisticated artificial topological materials.
Josephson coupling between superconducting islands on single- and bi-layer graphene
Mancarella, Francesco; Fransson, Jonas; Balatsky, Alexander
2016-05-01
We study the Josephson coupling of superconducting (SC) islands through the surface of single-layer graphene (SLG) and bilayer graphene (BLG) in the long-junction regime, as a function of the distance between the grains, temperature, chemical potential and external (transverse) gate-voltage. For SLG, we provide a comparison with existing literature. The proximity effect is analyzed through a Matsubara Green’s function approach. This represents the first step in a discussion of the conditions for the onset of a granular superconductivity within the film, made possible by Josephson currents flowing between superconductors. To ensure phase coherence over the 2D sample, a random spatial distribution can be assumed for the SC islands on the SLG sheet (or intercalating the BLG sheets). The tunable gate-voltage-induced band gap of BLG affects the asymptotic decay of the Josephson coupling-distance characteristic for each pair of SC islands in the sample, which results in a qualitatively strong field dependence of the relation between Berezinskii-Kosterlitz-Thouless transition critical temperature and gate voltage.
Engineering double-well potentials with variable-width annular Josephson tunnel junctions
Monaco, Roberto
2016-11-01
Long Josephson tunnel junctions are non-linear transmission lines that allow propagation of current vortices (fluxons) and electromagnetic waves and are used in various applications within superconductive electronics. Recently, the Josephson vortex has been proposed as a new superconducting qubit. We describe a simple method to create a double-well potential for an individual fluxon trapped in a long elliptic annular Josephson tunnel junction characterized by an intrinsic non-uniform width. The distance between the potential wells and the height of the inter-well potential barrier are controlled by the strength of an in-plane magnetic field. The manipulation of the vortex states can be achieved by applying a proper current ramp across the junction. The read-out of the state is accomplished by measuring the vortex depinning current in a small magnetic field. An accurate one-dimensional sine-Gordon model for this strongly non-linear system is presented, from which we calculate the position-dependent fluxon rest-mass, its Hamiltonian density and the corresponding trajectories in the phase space. We examine the dependence of the potential properties on the annulus eccentricity and its electrical parameters and address the requirements for observing quantum-mechanical effects, as discrete energy levels and tunneling, in this two-state system.
Tunable current-phase relation in double-dot Josephson junctions
Koch, Jens; Le Hur, Karyn
2008-03-01
The current-phase relation I() for a Josephson junction contains information about the microscopic nature of the Cooper pair transfer. In particular, junctions more complicated than the single tunnel junction exhibit characteristic non-sinusoidal forms. Here, we investigate the Josephson effect in a superconducting double dot device, similar to the devices studied experimentally by Y. A. Pashkin et al. [1] and E. Bibow et al. [2]. In the vicinity of a charge degeneracy line, the system reduces to a two-level system equivalent to a charge qubit. In this regime, we find that the interplay between sequential tunneling and cotunneling of Cooper pairs leads to a strongly non-sinusoidal current- phase relation, tunable via gate electrodes. We propose the measurement of I() in a SQUID configuration, analyze the implications of flux noise, and compare our results to different types of Josephson junctions such as single-dot systems and microbridges. [1] Y. A. Pashkin et al., Nature (London) 421 (2003), 823 [2] E. Bibow, P. Lafarge, L. L'evy, Phys. Rev. Lett. 88 (2002), 017003
Anomalous oscillations of the Josephson supercurrent in InSb nanowires
Geresdi, Attila; Szombati, Dániel B.; Cornelissen, Ludo J.; Car, Diana; Plissard, Sébastien R.; Bakkers, Erik P. A. M.; Kouwenhoven, Leo P.
2014-03-01
Semiconductor nanowires proximity coupled to superconducting leads provide an ideal experimental platform to investigate the Josephson effect in tunable ballistic channels in the presence of strong spin-orbit coupling and large Landé g-factor. The interplay of an external magnetic field perpendicular to the intrinsic spin-orbit field may lead to an anomalous supercurrent which is a proposed signature of the coupling between two Majorana modes through the channel. Here we present our experimental studies of the Josephson supercurrent in InSb nanowires. Ohmic contacts to bulk superconductor NbTiN leads enable us to trace supercurrents up to B = 3 T magnetic field. The gate control over the channel allows us to investigate the amplitude of the critical current from the tunneling regime to a few transparent modes, where nonsinusoidal current-phase relationship (CPR) is expected, verified by the presence of fractional Shapiro steps under microwave irradiation. The evolution of the critical current with the external magnetic field is shown to exhibit non-monotonic behavior depending on the gate configuration, consistently with the theory of Josephson junctions hosting Majorana modes.
Simplifying the circuit of Josephson parametric converters
Abdo, Baleegh; Brink, Markus; Chavez-Garcia, Jose; Keefe, George
Josephson parametric converters (JPCs) are quantum-limited three-wave mixing devices that can play various important roles in quantum information processing in the microwave domain, including amplification of quantum signals, transduction of quantum information, remote entanglement of qubits, nonreciprocal amplification, and circulation of signals. However, the input-output and biasing circuit of a state-of-the-art JPC consists of bulky components, i.e. two commercial off-chip broadband 180-degree hybrids, four phase-matched short coax cables, and one superconducting magnetic coil. Such bulky hardware significantly hinders the integration of JPCs in scalable quantum computing architectures. In my talk, I will present ideas on how to simplify the JPC circuit and show preliminary experimental results
Examining Nuclear Effects in Neutrino Interactions with Transverse Kinematic Imbalance
Pickering, Luke
We present a Monte Carlo truth study examining nuclear effects in charged-current neutrino interactions using observables constructed in the transverse plane. Three distributions are introduced that show very weak dependence on neutrino flux and its associated uncertainty. Measurements comparing these distributions between quasi-elastic-like and single charged pion final states will provide new constraints of nuclear effects. It is suggested that the on-axis position in the NuMI beam provides the correct flux to take advantage of this reduced energy dependence in measuring nuclear effect-generated transverse imbalances.
QCD Factorization Approach to Cold Nuclear Matter Effects
Qiu, Jianwe
2016-09-01
Cold nuclear matter effects exist in all high energy collisions involving identified nucleus (or nuclei). They have been manifested in very significant ways in e-A and p-A, as well as A-A collisions, where the cold nuclear effect is a part of the initial condition which plays a critical role in determining the outcome of heavy ion collisions. In this talk, I will discuss if it is possible to consistently calculate or extract the cold nuclear effect, the advantage and limitation of QCD factorization approach, and the predictive power or the testability of the QCD calculations.
Nuclear medium effects in Drell–Yan process
Haider, H.; Athar, M. Sajjad; Singh, S. K.; Ruiz Simo, I.
2017-04-01
We study the nuclear medium effects in Drell–Yan process using quark parton distribution functions calculated in a microscopic nuclear model which takes into account the effects of Fermi motion, nuclear binding and nucleon correlations through a relativistic nucleon spectral function. The contributions of π and ρ mesons as well as shadowing effects are also included. The beam energy loss is calculated using a phenomenological approach. The present theoretical results are compared with the experimental results of the E772 and E866 experiments. These results are applicable to the forthcoming experimental analysis of E906 Sea Quest experiment at the Fermi Lab.
Nuclear medium effects in Drell-Yan process
Haider, H; Singh, S K; Simo, I Ruiz
2016-01-01
We study the nuclear medium effects in Drell-Yan process using quark parton distribution functions calculated in a microscopic nuclear model which takes into account the effects of Fermi motion, nuclear binding and nucleon correlations through a relativistic nucleon spectral function. The contributions of $\\pi$ and $\\rho$ mesons as well as shadowing effects are also included. The beam energy loss is calculated using a phenomenological approach. The present theoretical results are compared with the experimental results of E772 and E886 experiments. These results are applicable to the forthcoming experimental analysis of E906 Sea Quest experiment at Fermi Lab.
Josephson tunnel junctions with ferromagnetic interlayer
Energy Technology Data Exchange (ETDEWEB)
Weides, M.P.
2006-07-01
Superconductivity and ferromagnetism are well-known physical properties of solid states that have been widely studied and long thought about as antagonistic phenomena due to difference in spin ordering. It turns out that the combination of both superconductor and ferromagnet leads to a very rich and interesting physics. One particular example, the phase oscillations of the superconducting order parameter inside the ferromagnet, will play a major role for the devices discussed in this work. In this thesis, I present Josephson junctions with a thin Al{sub 2}O{sub 3} tunnel barrier and a ferromagnetic interlayer, i.e. superconductor-insulator-ferromagnet-superconductor (SIFS) stacks. The fabrication of junctions was optimized regarding the insulation of electrodes and the homogeneity of the current transport. The junctions were either in the 0 or {pi} coupled ground state, depending on the thickness of the ferromagnetic layer and on temperature. The influence of ferromagnetic layer thickness on the transport properties and the coupling (0, {pi}) of SIFS tunnel junctions was studied. Furthermore, using a stepped ferromagnetic layer with well-chosen thicknesses, I obtained the so-called 0-{pi} Josephson junction. At a certain temperature this 0-{pi} junction can be made perfectly symmetric. In this case the ground state corresponds to a vortex of supercurrent creating a magnetic flux which is a fraction of the magnetic flux quantum {phi}{sub 0}. Such structures allow to study the physics of fractional vortices and to build various electronic circuits based on them. The SIFS junctions presented here have an exponentially vanishing damping at T {yields} 0. The SIFS technology developed within the framework of this work may be used to construct classical and quantum devices such as oscillators, memory cells and qubits. (orig.)
Nuclear polarization effects in muonic atoms
Ji, Chen; Bacca, Sonia; Barnea, Nir
2013-01-01
We illustrate how nuclear polarization corrections in muonic atoms can be formally connected to inelastic response functions of a nucleus. We first discuss the point-nucleon approximation and then include finite-nucleon-size corrections. As an example, we compare our ab-initio calculation of the third Zemach moment in the muonic Helium-4 ion to previous phenomenological results.
The Effects of Nuclear Terrorism Fizzles
Liolios, T E
2002-01-01
The September 11 terrorist attack against America has caused a lot of concern to the American public and the entire world, which is suspecting a new attack sooner or later. The most frightening scenario is the one involving the detonation of a nuclear device at the heart of a large metropolitan city. Unless the terrorists are in possession of a fully assembled modern nuclear weapons it is very likely that they will possess a crude nuclear device which has been assembled in a terrorist camp by people with relatively limited technological resources. It well known that the Oppenheimer team which designed and tested the first nuclear weapon (the gadget) had a lot of reservations as to whether the first test at Alamogordo would produce any yield at all. Therefore, the most likely scenario is that the terrorists will achieve either a nominal yield or no yield at all (Fizzle). In this study we will investigate all those parameters that play a decisive role in the number of casualties after such an attack so that we ...
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
In order to investigate the effects of different kinds of nuclear recipients from Kunming (KM) mouse on developmental potential of somatic nuclear transfer em- bryos, the enucleated MⅡ oocytes, enucleated zygotes and 2-cell blastomere were used to produce cloned mouse embryos. Using fibroblast deriving from C57/BL6 ear tissue as nuclear donor, we produced cloned embryos by transferring the fibroblast nuclei into enucleated KM mouse oocytes (single nuclear transfer, SNT), transferring pronuclei from the SNT embryos into enucleated KM zygotes (nuclear into zygote, NZ), and 2-cell blastomere nuclei from SNT embryos into enucleated KM mouse oocytes (nuclear into oocytes, NO); tetraploid embryos (tetraploid embryos, TE) were obtained by fusing two blastomeres, one is from the SNT cloned embryos, and the other from normal 2-cell KM mouse embryos. In group SNT, the cloned embryos could not develop beyond 8-cell stage and the rate of 8-cell stage is only 0.3%; in group NO, the reconstructed embryos could develop to morula stage, the rate of 8-cell stage was significantly greater than that of SNT group (P < 0.05); in group NZ, the development rate was further improved, and the reconstructed embryos could develop into blastocyst stage, the rate of blastocyst was 1.9%; in group TE, as high as 62.3% of the reconstructed embryos could develop into blastocyst. Results suggested that different nuclear recipients could significantly affect the developmental potential of cloned mouse embryos; KM MⅡ oocyte cytoplasm was not so effective as zygotes to reprogram the mouse somatic cell nuclei; serial nuclear transfer could improve the developmental potential of cloned mouse embryos.
Energy Technology Data Exchange (ETDEWEB)
Catalan, J. M.
2009-07-01
The health effects of nuclear facilities under the microscope. The forthcoming months will see the conclusion of the epidemiological study that the Nuclear Safety Council (CSN) and the Carlos III Institute of Health (ISCIII) are carrying out to investigate the possible effects on the population of the ionising radiations produced by the operation of nuclear facilities. (Author)
Obol, Mahmut
2013-01-01
Ferrites are distinct material for electromagnetic applications due to its unique spin precession. In this paper, Casimir pressure effect by deploying magnetically tunable surface plasmon quanta in stratified structure of using ferrite and metal wires is presented. Previously, oscillating surface plasmon quanta were successfully included to modify first reflection and first transmission characteristics. The oscillating surface plasmon quanta in the modified reflection in such a system, not only does resolve in a typical matter in metamaterial, but also provide new applications such as creating Casimir pressure effects through the metamaterial composite shown in this paper. The Casimir pressure flips from attractive state to repulsive state is referred to actual cause mechanism of radiation from surface plasmon quanta. Both Casimir force analysis and the measured data of radiations indicate us the system develops quantized states by electric flux induced by ferromagnetic resonance, so we also carried quantum a...
Energy Technology Data Exchange (ETDEWEB)
Lee, Y. E.; Byeon, M. J.; Yoo, J. W.; Lee, J. M.; Lim, J. H. [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)
2016-10-15
The donor countries need to make decisions on various steps such as whether to fully accept newcomers’ requests, the depth of support, and how the supportive action will be carried out. Such is not an easy task due to limited time, resources, manpower, etc. Thus, creating an infrastructure to support emerging nuclear energy countries is needed. This paper suggests the resource portfolio concept used in business management and aims to analyze the validity of supporting the new entrants’ development of regulatory infrastructure as a case study. This study tries to develop a very simple Excel-based tool for assessing the supporting strategy quantitatively and screening the activities that is projected to be less effective and attractive. There are many countries, so called newcomers, which have expressed interests in developing their own nuclear power program. It has been recognized by the international community that every country considering embarking upon their own nuclear power program should establish their nuclear safety infrastructure to sustain a high level of nuclear safety. The newcomers have requested for considerable assistance from the IAEA and they already have bilateral cooperation programs with the advanced countries with matured nuclear regulatory programs. Currently, the regulatory bodies that provide support are confronted with two responsibilities as follows; the primary objective of the regulatory bodies is to ensure that the operator fulfills the responsibility to protect human health.
Pion Effect of Nuclear Matter in a Chiral Sigma Model
Institute of Scientific and Technical Information of China (English)
HU Jin-niu; Y.Ogawa; H.Toki; A.Hosaka; SHEN Hong
2009-01-01
We develop a new framework for the study of the nuclear matter based on the linear sigma model.We introduce a completely new viewpoint on the treatment of the nuclear matter with the inclusion of the pion.We extend the relativistic chiral mean field model by using the similar method in the tensor optimized shell model.We also regulate the pion-nucleon interaction by considering the form-factor and short range repulsion effects.We obtain the equation of state of nuclear matter and study the importance of the pion effect.
Nuclear deformation effects in the cluster radioactivity
Energy Technology Data Exchange (ETDEWEB)
Misicu, S. [Department of Theoretical Physics, NINPE-HH, Bucharest-Magurele (Romania); Protopopescu, D. [Frank Laboratory of Neutron Physics, JINR, Dubna (Russian Federation)
1999-01-01
We investigate the influence of the nuclear deformation on the decay rates of some cluster emission processes. The interaction between the daughter and the cluster is given by a double folding potential including quadrupole and hexadecapole deformed densities of both fragments. The nuclear part of the nucleus-nucleus interaction is density dependent and at small distances a repulsive core in the potential will occur. In the frame of the WKB-approximation the assault frequency of the cluster will depend on the geometric properties of the potential pocket whereas the penetrability will be sensitive to changes in the barrier location. The results obtained in this paper point out that various combinations of cluster and daughter deformations may account for the measured values of the decay rate. The decay rates are however more sensitive to the changes in the daughter deformation due to the large mass asymmetry of the process. (author) 10 refs, 6 figs, 1 tab
Nuclear Deformation Effects in the Cluster Radioactivity
Misicu, Serban; Protopopescu, Dan
1999-01-01
We investigate the influence of the nuclear deformation on the decay rates of some cluster emission processes. The interaction between the daughter and the cluster is given by a double folding potential including quadrupole and hexadecupole deformed densities of both fragments. The nuclear part of the nucleus--nucleus interaction is density dependent and at small distances a repulsive core in the potential will occur. In the frame of the WKB-approximation the assault frequency of the cluster will depend on the geometric properties of the potential pocket whereas the penetrability will be sensitive to changes in the barrier location. The results obtained in this paper point out that various combinations of cluster and daughter deformations may account for the measured values of the decay rate. The decay rates are however more sensitive to the changes in the daughter deformation due to the large mass asymmetry of the process.
Nuclear Deformation Effects in the Cluster Radioactivity
Misicu, S
1998-01-01
We investigate the influence of the nuclear deformation on the decay rates of some cluster emission processes. The interaction between the daughter and the cluster is given by a double folding potential including quadrupole and hexadecupole deformed densities of both fragments. The nuclear part of the nucleus-nucleus interaction is density dependent and at small distances a repulsive core in the potential will occur. In the frame of the WKB-approximation the assault frequency of the cluster will depend on the geometric properties of the potential pocket whereas the penetrability will be sensitive to changes in the barrier location. The results obtained in this paper point out that various combinations of cluster and daughter deformations may account for the measured values of the decay rate.
Tammam, Salma N; Azzazy, Hassan M E; Breitinger, Hans G; Lamprecht, Alf
2015-12-07
Many recently discovered therapeutic proteins exert their main function in the nucleus, thus requiring both efficient uptake and correct intracellular targeting. Chitosan nanoparticles (NPs) have attracted interest as protein delivery vehicles due to their biocompatibility and ability to escape the endosomes offering high potential for nuclear delivery. Molecular entry into the nucleus occurs through the nuclear pore complexes, the efficiency of which is dependent on NP size and the presence of nuclear localization sequence (NLS). Chitosan nanoparticles of different sizes (S-NPs ≈ 25 nm; L-NP ≈ 150 nm) were formulated, and they were modified with different densities of the octapeptide NLS CPKKKRKV (S-NPs, 0.25, 0.5, 2.0 NLS/nm(2); L-NPs, 0.6, 0.9, 2 NLS/nm(2)). Unmodified and NLS-tagged NPs were evaluated for their protein loading capacity, extent of cell association, cell uptake, cell surface binding, and finally nuclear delivery efficiency in L929 fibroblasts. To avoid errors generated with cell fractionation and nuclear isolation protocols, nuclear delivery was assessed in intact cells utilizing Förster resonance energy transfer (FRET) fluorometry and microscopy. Although L-NPs showed ≈10-fold increase in protein loading per NP when compared to S-NPs, due to higher cell association and uptake S-NPs showed superior protein delivery. NLS exerts a size and density dependent effect on nanoparticle uptake and surface binding, with a general reduction in NP cell surface binding and an increase in cell uptake with the increase in NLS density (up to 8.4-fold increase in uptake of High-NLS-L-NPs (2 NLS/nm(2)) compared to unmodified L-NPs). However, for nuclear delivery, unmodified S-NPs show higher nuclear localization rates when compared to NLS modified NPs (up to 5-fold by FRET microscopy). For L-NPs an intermediate NLS density (0.9 NLS/nm(2)) seems to provide highest nuclear localization (3.7-fold increase in nuclear delivery compared to High
Medical response to effects of ionising radiation. [Nuclear facilities
Energy Technology Data Exchange (ETDEWEB)
Crosbie, W.A.; Gittus, J.H. (UKAEA Headquarters, London (UK))
1989-01-01
The proceedings of a conference on 'Medical Response to Effects of Ionising Radiation' in 1989 in the form of nineteen papers published as a book. Topics discussed include radiation accidents at nuclear facilities, the medical management of radiation casualties, the responsibilities, plans and resources for coping with a nuclear accident and finally the long term effects of radiation, including leukaemia epidemiology studies. All papers were selected and indexed separately. (UK).
Repulsive fluxons in a stack of Josephson junctions perturbed by a cavity
DEFF Research Database (Denmark)
Madsen, Søren; Pedersen, Niels Falsig; Christiansen, Peter Leth
2008-01-01
The BSCCO type intrinsic Josephson junction has been modeled as a stack of inductively coupled long Josephson junctions, which were described by a system of coupled sine-Gordon equations. In a system of 10 long Josephson junctions coupled to a linear cavity, we numerically investigate how...
Power Counting and Wilsonian Renormalization in Nuclear Effective Field Theory
Valderrama, Manuel Pavon
2016-01-01
Effective field theories are the most general tool for the description of low energy phenomena. They are universal and systematic: they can be formulated for any low energy systems we can think of and offer a clear guide on how to calculate predictions with reliable error estimates, a feature that is called power counting. These properties can be easily understood in Wilsonian renormalization, in which effective field theories are the low energy renormalization group evolution of a more fundamental ---perhaps unknown or unsolvable--- high energy theory. In nuclear physics they provide the possibility of a theoretically sound derivation of nuclear forces without having to solve quantum chromodynamics explicitly. However there is the problem of how to organize calculations within nuclear effective field theory: the traditional knowledge about power counting is perturbative but nuclear physics is not. Yet power counting can be derived in Wilsonian renormalization and there is already a fairly good understanding ...
Nucleon propagation through nuclear matter in chiral effective field theory
Mallik, S; Mishra, Hiranmaya
2007-01-01
We treat the propagation of nucleon in nuclear matter by evaluating the ensemble average of the two-point function of nucleon currents in the framework of the chiral effective field theory. We first derive the effective parameters of nucleon to one loop. The resulting formula for the effective mass was known previously and gives an absurd value at normal nuclear density. We then modify it following Weinberg's method for the two-nucleon system in the effective theory. Our results for the effective mass and the width of nucleon are compared with those in the literature.
Nucleon propagation through nuclear matter in chiral effective field theory
Energy Technology Data Exchange (ETDEWEB)
Mallik, S. [Saha Institute of Nuclear Physics, Kolkata (India); Mishra, H. [Physical Research Laboratory, Theory Divison, Ahmedabad (India)
2007-05-15
We treat the propagation of a nucleon in nuclear matter by evaluating the ensemble average of the two-point function of the nucleon currents in the framework of chiral effective field theory. We first derive the effective parameters of the nucleon to one loop. The resulting formula for the effective mass has been known since before and gives an absurd value at normal nuclear density. We then modify it following Weinberg's method for the two-nucleon system in the effective theory. Our results for the effective mass and the width of the nucleon are compared with those in the literature. (orig.)
Nucleon propagation through nuclear matter in chiral effective field theory
Mallik, S.; Mishra, H.
2007-05-01
We treat the propagation of a nucleon in nuclear matter by evaluating the ensemble average of the two-point function of the nucleon currents in the framework of chiral effective field theory. We first derive the effective parameters of the nucleon to one loop. The resulting formula for the effective mass has been known since before and gives an absurd value at normal nuclear density. We then modify it following Weinberg’s method for the two-nucleon system in the effective theory. Our results for the effective mass and the width of the nucleon are compared with those in the literature.
Studies of Health Effects from Nuclear Testing near the Semipalatinsk Nuclear Test Site, Kazakhstan
Directory of Open Access Journals (Sweden)
Bernd Grosche
2015-05-01
Full Text Available The nuclear bomb testing conducted at the Semipalatinsk nuclear test site in Kazakhstan is of great importance for today’s radiation protection research, particularly in the area of low dose exposures. This type of radiation is of particular interest due to the lack of research in this field and how it impacts population health. In order to understand the possible health effects of nuclear bomb testing, it is important to determine what studies have been conducted on the effects of low dose exposure and dosimetry, and evaluate new epidemiologic data and biological material collected from populations living in proximity to the test site. With time, new epidemiological data has been made available, and it is possible that these data may be linked to biological samples. Next to linking existing and newly available data to examine health effects, the existing dosimetry system needs to be expanded and further developed to include residential areas, which have not yet been taken into account. The aim of this paper is to provide an overview of previous studies evaluating the health effects of nuclear testing, including some information on dosimetry efforts, and pointing out directions for future epidemiologic studies.
Medium effects in $K^+$ nuclear interactions
Friedman, E; Mares, J
1997-01-01
Total and reaction cross sections are derived self consistently from the attenuation cross sections measured in transmission experiments at the AGS for K^+ on Li^6, C, Si and Ca in the momentum range of 500-700 MeV/c by using a V_{opt}=t_{eff}(rho)rho optical potential. Self consistency requires, for the KN in-medium t matrix, that Im t_{eff}(rho) increases linearly with the average nuclear density in excess of a threshold value of 0.088+-0.004 fm^-3. The density dependence of Re t_{eff}(rho) is studied phenomenologically, and also applying a relativistic mean field approach, by fitting the integral cross sections. The real part of the optical potential is found to be systematically less repulsive with increasing energy than expected from the free-space repulsive KN interaction. When the elastic scattering data for Li^6 and C at 715 MeV/c are included in the analysis, a tendency of Re V_{opt} to generate an attractive pocket at the nuclear surface is observed.
Effect of topological defects on "nuclear pasta" observables
Schneider, A S; Caplan, M E; Horowitz, C J; Lin, Z
2016-01-01
[Background] The "pasta" phase of nuclear matter may play an important role in the structure and evolution of neutron stars. Recent works suggest nuclear pasta has a high resistivity which could be explained by the presence of long lived topological defects. The defects act as impurities that decrease thermal and electrical conductivity of the pasta. [Purpose] To quantify how topological defects affect transport properties of nuclear pasta and estimate this effect using an impurity parameter $Q_{\\text{imp}}$. [Methods] Contrast molecular dynamics simulations of up to 409\\,600 nucleons arranged in parallel nuclear pasta slabs (perfect pasta) with simulations of pasta slabs connected by topological defects (impure pasta). From these simulations compare the viscosity and heat conductivity of perfect and impure pasta to obtain an effective impurity parameter $Q_{\\text{imp}}$ due to the presence of defects. [Results] Both the viscosity and thermal conductivity calculated for both perfect and impure pasta are aniso...
Nuclear medium effects in Drell-Yan process
Haider, H; Simo, I Ruiz; Singh, S K
2013-01-01
We study nuclear medium effects in Drell-Yan processes at small target x using quark parton distribution functions and nucleon structure functions for a bound nucleon calculated in a microscopic nuclear model which takes into account the effect of Fermi motion, nuclear binding and nucleon correlations through a relativistic spectral function. The contributions of $\\pi$ and $\\rho$ mesons, target mass corrections and nuclear shadowing are also included. The results are compared with the theoretical and experimental results. The model is able to successfully explain the low target x results of E772 and E866 Drell-Yan experiments and is applicable to the forthcoming experimental analysis of E906 Sea Quest experiment at Fermi Lab.
Chiral effective field theory for nuclear forces: Achievements and challenges
Directory of Open Access Journals (Sweden)
Machleidt R.
2014-03-01
Full Text Available I start with a historical review of the theories of nuclear forces and then shift to the main focus, which is the chiral effective field theory approach to nuclear forces. I summarize the current status of this approach and discuss the most important open issues: the proper renormalization of the chiral two-nucleon potential and sub-leading three-nucleon forces.
Determination of the dissipation in superconducting Josephson junctions
Energy Technology Data Exchange (ETDEWEB)
Mugnai, D., E-mail: d.mugnai@ifac.cnr.it; Ranfagni, A.; Cacciari, I. [“Nello Carrara” Institute of Applied Physics, CNR Florence Research Area, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Florence (Italy)
2015-02-07
The results relative to macroscopic quantum tunneling rate, out of the metastable state of Josephson junctions, are examined in view of determining the effect of dissipation. We adopt a simple criterion in accordance to which the effect of dissipation can be evaluated by analyzing the shortening of the semiclassical traversal time of the barrier. In almost all the considered cases, especially those with relatively large capacitance values, the relative time shortening turns out to be about 20% and with a corresponding quality factor Q ≃ 5.5. However, beyond the specific cases here considered, still in the regime of moderate dissipation, the method is applicable also to different situations with different values of the quality factor. The method allows, within the error limits, for a reliable determination of the load resistance R{sub L}, the less accessible quantity in the framework of the resistively and capacitively shunted junction model, provided that the characteristics of the junction (intrinsic capacitance, critical current, and the ratio of the bias current to the critical one) are known with sufficient accuracy.
Health effects of the nuclear accident at Three Mile Island
Energy Technology Data Exchange (ETDEWEB)
Fabrikant, J.I.
1980-05-01
Between March 28 and April 15, 1979 the collective dose resulting from the radioactivity released to the population living within a 50-mile radius of the Three Mile Island nuclear plant was about 2000 person-rems, less than 1% of the annual natural background level. The average dose to a person living within 5 miles of the nuclear plant was less than 10% of annual background radiation. The maximum estimated radiation dose received by any one individual in the general population (excluding the nuclear plant workers) during the accident was 70 mrem. The doses received by the general population as a result of the accident were so small that there will be no detectable additional cases of cancer, developmental abnormalities, or genetic ill-health. Three Three Mile Island nuclear workers received radiation doses of about 3 to 4 rem, exceeding maximum permissible quarterly dose of 3 rem. The major health effect of the accident at Three Mile Island was that of a pronounced demoralizing effect on the general population in the Three Mile Island area, including teenagers and mothers of preschool children and the nuclear plant workers. However, this effect proved transient in all groups studied except the nuclear workers.
Highly sensitive photodetection using a microwave-coupled BaPb0.7Bi0.3O3 Josephson junction array
Ito, Minoru; Enomoto, Youichi; Murakami, Toshiaki
1983-08-01
The BaPb0.7Bi0.3O3 sputtered film possesses tunnel Josephson junctions at boundary layers [boundary Josephson junction (BJJ)] normal to the film plane in a homogeneous junction array. The film has high efficiency for optical irradiation of the junctions because of the high optical transparency. The letter presents the optical effect on the current-voltage characteristics for this Josephson junction array locked to a microwave field. The microwave-induced hysteresis loop caused by voltage locking among junctions in a microwave field is highly sensitive to optical illumination with as low an incident power as a few nanowatts. This probably can be exploited in a future, highly sensitive photodetector.
Niobium nitride technology for Josephson junction devices
Energy Technology Data Exchange (ETDEWEB)
Meckbach, Johannes Maximilian; Merker, Michael; Il' in, Konstantin; Siegel, Michael [Institut fuer Mikro- und Nanoelektronische Systeme (IMS), Karlsruher Institut fuer Technologie (KIT), Hertzstrasse 16, 76187 Karlsruhe (Germany); Haeffelin, Andreas [Institut fuer Werkstoffe der Elektrotechnik (IWE), Karlsruher Institut fuer Technologie(KIT), Adenauerring 20b, 76131 Karlsruhe (Germany)
2013-07-01
Over the last decades Nb/Al-AlO{sub x}/Nb multi-layers have been the primary choice for Josephson junction (JJ) devices such as SIS mixers, SQUIDs and RSFQ. Various applications require high critical-current densities j{sub c} and low sub-gap leakage. Additionally, a large gap-voltage benefits the performance of most devices. Nb/Al-AlO{sub x}/Nb technology is limited in j{sub c} due to an increasing transparency of the barrier with increasing j{sub c}, and the energy-gap of the Nb electrodes poses an upper frequency limit for SIS mixers. NbN/AlN/NbN multi-layer technology has emerged as an alternative to Nb/Al-AlO{sub x}/Nb. The upper frequency limit of NbN-based SIS mixing element significantly exceeds that of Nb, and AlN-barriers result in higher j{sub c}'s at identical thicknesses as compared to AlO{sub x}. We have developed an in-situ fabrication technology for NbN/AlN/NbN multi-layers. We found a clear influence of the sputter parameters on the surface morphology of the NbN electrodes, which directly impacts on the quality of the JJs. Transport properties of JJs on different substrates are presented.
Qubit readout with the Josephson Photomultiplier
Ribeill, Guilhem
Recent demonstrations of error correction in many qubit circuits, as well as efforts to build a logical qubit, have shown the need for a simple and scalable superconducting quantum bit (qubit) readout. Current solutions based on heterodyne detection and cryogenic amplification of microwave readout tones may prove difficult to scale, while photon counting presents an attractive alternative. However, the development of counters operating at these frequencies has proved technically challenging. In this thesis, we describe the development of the Josephson Photomultiplier (JPM), a microwave photon counting circuit. We discuss the JPM theoretically, and describe the fabrication of the JPM using standard thin film lithography techniques. We measure its properties as a microwave photon counter using a qubit as an in-situ calibrated source of photons. We measure a JPM quantum efficiency at the few percent level. We then use the JPM to perform readout of a transmon qubit in both the dispersive and bright regimes. We observe raw measurement fidelities of 35% and 62% respectively. We discuss how the JPM and measurement protocol could be further optimized to achieve fidelities in excess of 90%.
Improved Josephson Qubits incorporating Crystalline Silicon Dielectrics
Gao, Yuanfeng; Maurer, Leon; Hover, David; Patel, Umeshkumar; McDermott, Robert
2010-03-01
Josephson junction phase quibts are a leading candidate for scalable quantum computing in the solid state. Their energy relaxation times are currently limited by microwave loss induced by a high density of two-level state (TLS) defects in the amorphous dielectric films of the circuit. It is expected that the integration of crystalline, defect-free dielectrics into the circuits will yield substantial improvements in qubit energy relaxation times. However, the epitaxial growth of a crystalline dielectric on a metal underlayer is a daunting challenge. Here we describe a novel approach in which the crystalline silicon nanomembrane of a Silicon-on-Insulator (SOI) wafer is used to form the junction shunt capacitor. The SOI wafer is thermocompression bonded to the device wafer. The handle and buried oxide layers of the SOI are then etched away, leaving the crystalline silicon layer for subsequent processing. We discuss device fabrication issues and present microwave transport data on lumped-element superconducting resonators incorporating the crystalline silicon.
Quantum dynamics of a strongly driven Josephson Junction
Energy Technology Data Exchange (ETDEWEB)
Gosner, Jennifer; Kubala, Bjoern; Ankerhold, Joachim [Institute for Complex Quantum Systems, University of Ulm (Germany)
2015-07-01
A Josephson Junction embedded in a dissipative circuit can be driven to exhibit non-linear oscillations. Classically the non-linear oscillator shows under sufficient strong driving and weak damping dynamical bifurcations and a bistable region similar to the conventional Duffing-oscillator. These features depend sensitively on initial conditions and parameters. The sensitivity of this circuit, called Josephson Bifurcation Amplifier, can be used to amplify an incoming signal, to form a sensing device or even for measuring a quantum system. The quantum dynamics can be described by a dissipative Lindblad master equation. Signatures of the classical bifurcation phenomena appear in the Wigner representation, used to characterize and visualize the resulting behaviour. In order to compare this quantum dynamics to that of the conventional Duffing-oscillator, the complete cosine-nonlinearity of the Josephson Junction is kept for the quantum description while going into a rotating frame.
Escape Time of Josephson Junctions for Signal Detection
Addesso, P; Pierro, V
2014-01-01
In this Chapter we investigate with the methods of signal detection the response of a Josephson junction to a perturbation to decide if the perturbation contains a coherent oscillation embedded in the background noise. When a Josephson Junction is irradiated by an external noisy source, it eventually leaves the static state and reaches a steady voltage state. The appearance of a voltage step allows to measure the time spent in the metastable state before the transition to the running state, thus defining an escape time. The distribution of the escape times depends upon the characteristics of the noise and the Josephson junction. Moreover, the properties of the distribution depends on the features of the signal (amplitude, frequency and phase), which can be therefore inferred through the appropriate signal processing methods. Signal detection with JJ is interesting for practical purposes, inasmuch as the superconductive elements can be (in principle) cooled to the absolute zero and therefore can add (in practi...
Memory cell operation based on small Josephson junctions arrays
Braiman, Y.; Nair, N.; Rezac, J.; Imam, N.
2016-12-01
In this paper we analyze a cryogenic memory cell circuit based on a small coupled array of Josephson junctions. All the basic memory operations (e.g., write, read, and reset) are implemented on the same circuit and different junctions in the array can in principle be utilized for these operations. The presented memory operation paradigm is fundamentally different from conventional single quantum flux operation logics (SFQ). As an example, we demonstrate memory operation driven by a SFQ pulse employing an inductively coupled array of three Josephson junctions. We have chosen realistic Josephson junction parameters based on state-of-the-art fabrication capabilities and have calculated access times and access energies for basic memory cell operations. We also implemented an optimization procedure based on the simulated annealing algorithm to calculate the optimized and typical values of access times and access energies.
HTS step-edge Josephson junction terahertz harmonic mixer
Du, Jia; Weily, Andrew R.; Gao, Xiang; Zhang, Ting; Foley, Cathy P.; Guo, Yingjie Jay
2017-02-01
A high-temperature superconducting (HTS) terahertz (THz) frequency down-converter or mixer based on a thin-film ring-slot antenna coupled YBa2Cu3O7-x (YBCO)/MgO step-edge Josephson junction is reported. The frequency down-conversion was achieved using higher order harmonics of an applied lower frequency (19-40 GHz) local oscillator signal in the Josephson junction mixing with a THz signal of over 600 GHz, producing a 1-3 GHz intermediate frequency signal. Up to 31st order of harmonic mixing was obtained and the mixer operated stably at temperatures up to 77 K. The design details of the antenna, HTS Josephson junction mixer, the matching and isolation circuits, and the DC and RF performance evaluation are described in this paper.
low crosstalk packaging design for Josephson logic circuits
Energy Technology Data Exchange (ETDEWEB)
Aoki, K.; Tazoh, Y.; Yoshikiyo, H.
1985-03-01
Theoretical and experimental studies are accomplished for inductive crosstalk noise reductions at Josephson chip-to-card connectors. This noise is induced by large AC power and high switching speed signal currents. The crosstalk mechanism was analyzed using a Partial Element Equivalent Circuits Model. Ground inductance causes not only crosstalk noise between connectors but also ground fluctuation noise inside the chip. This ground noise is large enough to cause false logic operations. Test chips and cards with improved connectors were produced for an experimental evaluation. Power crosstalk noise was measured using Josephson sampling circuits fabricated on the chip. The crosstalk noise - signal level ratio was less than 2.5%, when 250 MHz, 50 mA power currents were supplied. Crosstalk noise between neighboring signal connectors was also reduced to negligible level, including the worst case. These results favorably agree with calculations. This low crosstalk packaging design can be applied to high speed Josephson logic systems.
Carapella, G.; Sabatino, P.; Barone, C.; Pagano, S.; Gombos, M.
2016-01-01
Vortices are topological defects accounting for many important effects in superconductivity, superfluidity, and magnetism. Here we address the stability of a small number of such excitations driven by strong external forces. We focus on Abrikosov-Josephson vortex that appears in lateral superconducting S/S’/S weak links with suppressed superconductivity in S’. In such a system the vortex is nucleated and confined in the narrow S’ region by means of a small magnetic field and moves under the effect of a force proportional to an applied electrical current with a velocity proportional to the measured voltage. Our numerical simulations show that when a slow moving Abrikosov-Josephson vortex is driven by a strong constant current it becomes unstable with respect to a faster moving excitation: the Josephon-like vortex. Such a current-driven transition explains the structured dissipative branches that we observe in the voltage-current curve of the weak link. When vortex matter is strongly confined phenomena as magnetoresistance oscillations and reentrance of superconductivity can possibly occur. We experimentally observe these phenomena in our weak links. PMID:27752137
Nuclear effects in deep inelastic scattering and transition region
Kumano, S
2016-01-01
We discuss nuclear effects on neutrino-nuclear interactions in a wide kinematical range from shallow to deep inelastic scattering (DIS) region. There is necessity from neutrino communities to have precise neutrino-nucleus cross sections within several percent order for future measurements on neutrino oscillations and leptonic CP violation. We try to create a model to calculate neutrino cross sections in the wide kinematical range, from quasi-elastic scattering and resonance productions to the DIS. In this article, nuclear modifications of structure functions are mainly discussed, and a possible extension to the $Q^2 \\to 0$ region is explained. We also comment on the transition region between baryon resonances and the DIS. There are ongoing experimental efforts on nuclear modifications of structure functions or parton distribution functions such as by pA reactions at RHIC and LHC, Drell-Yan measurements at Fermilab, Miner$\
Zemlyanaya, E. V.; Bashashin, M. V.; Rahmonov, I. R.; Shukrinov, Yu. M.; Atanasova, P. Kh.; Volokhova, A. V.
2016-10-01
We consider a model of system of long Josephson junctions (LJJ) with inductive and capacitive coupling. Corresponding system of nonlinear partial differential equations is solved by means of the standard three-point finite-difference approximation in the spatial coordinate and utilizing the Runge-Kutta method for solution of the resulting Cauchy problem. A parallel algorithm is developed and implemented on a basis of the MPI (Message Passing Interface) technology. Effect of the coupling between the JJs on the properties of LJJ system is demonstrated. Numerical results are discussed from the viewpoint of effectiveness of parallel implementation.
Metastable states and macroscopic quantum tunneling in a cold atom josephson ring
Energy Technology Data Exchange (ETDEWEB)
Solenov, Dmitry [Los Alamos National Laboratory; Mozyrsky, Dmitry [Los Alamos National Laboratory
2009-01-01
We study macroscopic properties of a system of weakly interacting neutral bosons confined in a ring-shaped potential with a Josephson junction. We derive an effective low energy action for this system and evaluate its properties. In particular we find that the system possesses a set of metastable current-carrying states and evaluate the rates of transitions between these states due to macroscopic quantum tunneling. Finally we discuss signatures of different metastable states in the time-of-flight images and argue that the effect is observable within currently available experimental technique.
Diffusion current in a system of coupled Josephson junctions
Shukrinov, Yu. M.; Rahmonov, I. R.
2012-08-01
The role of a diffusion current in the phase dynamics of a system of coupled Josephson junctions (JJs) has been analyzed. It is shown that, by studying the temporal dependences of the superconducting, quasi-particle, diffusion, and displacement currents and the dependences of average values of these currents on the total current, it is possible to explain the main features of the current-voltage characteristic (CVC) of the system. The effect of a diffusion current on the character of CVC branching in the vicinity of a critical current and in the region of hysteresis, as well as on the part of CVC branch corresponding to a parametric resonance in the system is demonstrated. A clear interpretation of the differences in the character of CVC branching in a model of capacitively coupled JJs (CCJJ model) and a model of capacitive coupling with diffusion current (CCJJ+DC model) is proposed. It is shown that a decrease in the diffusion current in a JJ leads to the switching of this junction to an oscillating state. The results of model calculations are qualitatively consistent with the experimental data.
Breathing charge density waves in intrinsic Josephson junctions
Shukrinov, Yu. M.; Abdelhafiz, H.
2014-01-01
We demonstrate the creation of a charge density wave (CDW) along a stack of coupled Josephson junctions (JJs) in layered superconductors. Electric charge in each superconducting layer oscillates around some average value, forming a breathing CDW. We show the transformation of a longitudinal plasma wave to CDW in the state corresponding to the outermost branch. Transition between different types of CDW's related to the inner branches of IV characteristic is demonstrated. The effect of the external electromagnetic radiation on the states corresponding to the inner branches differs crucially from the case of the single JJ. The Shapiro steps in the IV characteristics of the junctions in the stack do not correspond directly to the frequency of radiation ω. The system of JJs behaves like a single whole system: the Shapiro steps or their harmonics in the total IV characteristics appear at voltage , where V l is the voltage in the lth junction, N R is the number of JJs in the rotating state, and m and n are integers.
Diffusion current in a system of coupled Josephson junctions
Energy Technology Data Exchange (ETDEWEB)
Shukrinov, Yu. M., E-mail: shukrinv@theor.jinr.ru; Rahmonov, I. R. [Joint Institute for Nuclear Research (Russian Federation)
2012-08-15
The role of a diffusion current in the phase dynamics of a system of coupled Josephson junctions (JJs) has been analyzed. It is shown that, by studying the temporal dependences of the superconducting, quasi-particle, diffusion, and displacement currents and the dependences of average values of these currents on the total current, it is possible to explain the main features of the current-voltage characteristic (CVC) of the system. The effect of a diffusion current on the character of CVC branching in the vicinity of a critical current and in the region of hysteresis, as well as on the part of CVC branch corresponding to a parametric resonance in the system is demonstrated. A clear interpretation of the differences in the character of CVC branching in a model of capacitively coupled JJs (CCJJ model) and a model of capacitive coupling with diffusion current (CCJJ+DC model) is proposed. It is shown that a decrease in the diffusion current in a JJ leads to the switching of this junction to an oscillating state. The results of model calculations are qualitatively consistent with the experimental data.
The Chern-Simons term in a dual Josephson junction
Grigorio, L S; Rougemont, R; Wotzasek, C; Zarro, C A D
2013-01-01
A dual Josephson junction corresponding to a (2+1)-dimensional non-superconducting layer sandwiched between two (3+1)-dimensional dual superconducting regions constitutes a model of localization of a U(1) gauge field within the layer. Monopole tunneling currents flow from one dual superconducting region to another due to a phase difference between the wave functions of the monopole condensate below and above the non-superconducting layer. These magnetic currents appear within the (2+1)-dimensional layer as a gas of magnetic instanton events and a weak electric charge confinement is expected to take place at very long distances within the layer. In the present work, we consider what happens when one introduces fermions in this physical scenario. Due to the dual Meissner effect featured in the dual superconducting bulk, it is argued that unconfined fermions would be localized within the (2+1)-dimensional layer, where their quantum fluctuations radiatively induce a Chern-Simons term, which is known to destroy th...
Josephson frequency meter for millimeter and submillimeter wavelengths
Energy Technology Data Exchange (ETDEWEB)
Anischenko, S.E.; Larkin, S.Y.; Chaikovsky, V.I. [State Research Center, Kiev (Ukraine)] [and others
1994-12-31
Frequency measurements of electromagnetic oscillations of millimeter and submillimeter wavebands with frequency growth due to a number of reasons become more and more difficult. First, these frequencies are considered to be cutoff for semiconductor converting devices and one has to use optical measurement methods instead of traditional ones with frequency transfer. Second, resonance measurement methods are characterized by using relatively narrow bands and optical ones are limited in frequency and time resolution due to the limited range and velocity of movement of their mechanical elements as well as the efficiency of these optical techniques decreases with the increase of wavelength due to diffraction losses. That requires the apriori information on the radiation frequency band of the source involved. Method of measuring frequency of harmonic microwave signals in millimeter and submillimeter wavebands based on the ac Josephson effect in superconducting contacts is devoid of all the above drawbacks. This approach offers a number of major advantages over the more traditional measurement methods, that is the one based on frequency conversion, resonance and interferrometric techniques. It can be characterized by high potential accuracy, wide range of frequencies measured, prompt measurement and the opportunity to obtain panoramic display of the results as well as full automation of the measuring process.
Superconducting Coset Topological Fluids in Josephson Junction Arrays
Diamantini, M C; Trugenberger, C A; Sodano, Pasquale; Trugenberger, Carlo A.
2006-01-01
We show that the superconducting ground state of planar Josephson junction arrays is a P- and T-invariant coset topological quantum fluid whose topological order is characterized by the degeneracy 2 on the torus. This new mechanism for planar superconductivity is the P- and T-invariant analogue of Laughlin's quantum Hall fluids. The T=0 insulator-superconductor quantum transition is a quantum critical point characterized by gauge fields and deconfined degrees of freedom. Experiments on toroidal Josephson junction arrays could provide the first direct evidence for topological order and superconducting quantum fluids.
Magnetic Field Dependence and Q of the Josephson Plasma Resonance
DEFF Research Database (Denmark)
Pedersen, Niels Falsig; Finnegan, T. F.; Langenberg, D. N.
1972-01-01
The results of an experimental study of the magnetic field dependence of the Josephson-plasma-resonance frequency and linewidth in Pb-Pb oxide-Pb tunnel junctions are reported. In the presence of an external magnetic field, the plasma mode is found to be sensitive to an antisymmetric component...... of supercurrent density which is not observed in conventional measurements of the field-dependent critical current. The frequency and field dependence of the plasma-resonance linewidth are interpreted as evidence that the previously unobserved quasiparticle-pair-interference tunnel current predicted by Josephson...
Chaotic phenomena in Josephson circuits coupled quantum cellular neural networks
Institute of Scientific and Technical Information of China (English)
Wang Sen; Cai Li; Li Qin; Wu Gang
2007-01-01
In this paper the nonlinear dynamical behaviour of a quantum cellular neural network (QCNN) by coupling Josephson circuits was investigated and it was shown that the QCNN using only two of them can cause the onset of chaotic oscillation. The theoretical analysis and simulation for the two Josephson-circuits-coupled QCNN have been done by using the amplitude and phase as state variables. The complex chaotic behaviours can be observed and then proved by calculating Lyapunov exponents. The study provides valuable information about QCNNs for future application in high-parallel signal processing and novel chaotic generators.
Controlling the dynamic range of a Josephson parametric amplifier
Energy Technology Data Exchange (ETDEWEB)
Eichler, Christopher; Wallraff, Andreas [ETH Zuerich, Department of Physics, Zuerich (Switzerland)
2014-12-01
One of the central challenges in the development of parametric amplifiers is the control of the dynamic range relative to its gain and bandwidth, which typically limits quantum limited amplification to signals which contain only a few photons per inverse bandwidth. Here, we discuss the control of the dynamic range of Josephson parametric amplifiers by using Josephson junction arrays. We discuss gain, bandwidth, noise, and dynamic range properties of both a transmission line and a lumped element based parametric amplifier. Based on these investigations we derive useful design criteria, which may find broad application in the development of practical parametric amplifiers. (orig.)
Coulomb and nuclear effects in breakup and reaction cross sections
Descouvemont, P.; Canto, L. F.; Hussein, M. S.
2017-01-01
We use a three-body continuum discretized coupled channel (CDCC) model to investigate Coulomb and nuclear effects in breakup and reaction cross sections. The breakup of the projectile is simulated by a finite number of square integrable wave functions. First we show that the scattering matrices can be split in a nuclear term and in a Coulomb term. This decomposition is based on the Lippmann-Schwinger equation and requires the scattering wave functions. We present two different methods to separate both effects. Then, we apply this separation to breakup and reaction cross sections of 7Li+208Pb . For breakup, we investigate various aspects, such as the role of the α +t continuum, the angular-momentum distribution, and the balance between Coulomb and nuclear effects. We show that there is a large ambiguity in defining the Coulomb and nuclear breakup cross sections, since both techniques, although providing the same total breakup cross sections, strongly differ for the individual components. We suggest a third method which could be efficiently used to address convergence problems at large angular momentum. For reaction cross sections, interference effects are smaller, and the nuclear contribution is dominant above the Coulomb barrier. We also draw attention to different definitions of the reaction cross section which exist in the literature and which may induce small, but significant, differences in the numerical values.
Huang, Lei; Zhou, Ying; Han, Yuting; Hammitt, James K; Bi, Jun; Liu, Yang
2013-12-03
We assessed the influence of the Fukushima nuclear accident (FNA) on the Chinese public's attitude and acceptance of nuclear power plants in China. Two surveys (before and after the FNA) were administered to separate subsamples of residents near the Tianwan nuclear power plant in Lianyungang, China. A structural equation model was constructed to describe the public acceptance of nuclear power and four risk perception factors: knowledge, perceived risk, benefit, and trust. Regression analysis was conducted to estimate the relationship between acceptance of nuclear power and the risk perception factors while controlling for demographic variables. Meanwhile, we assessed the median public acceptable frequencies for three levels of nuclear events. The FNA had a significant impact on risk perception of the Chinese public, especially on the factor of perceived risk, which increased from limited risk to great risk. Public acceptance of nuclear power decreased significantly after the FNA. The most sensitive groups include females, those not in public service, those with lower income, and those living close to the Tianwan nuclear power plant. Fifty percent of the survey respondents considered it acceptable to have a nuclear anomaly no more than once in 50 y. For nuclear incidents and serious incidents, the frequencies are once in 100 y and 150 y, respectively. The change in risk perception and acceptance may be attributed to the FNA. Decreased acceptance of nuclear power after the FNA among the Chinese public creates additional obstacles to further development of nuclear power in China and require effective communication strategies.
Power counting and Wilsonian renormalization in nuclear effective field theory
Valderrama, Manuel Pavón
2016-05-01
Effective field theories are the most general tool for the description of low energy phenomena. They are universal and systematic: they can be formulated for any low energy systems we can think of and offer a clear guide on how to calculate predictions with reliable error estimates, a feature that is called power counting. These properties can be easily understood in Wilsonian renormalization, in which effective field theories are the low energy renormalization group evolution of a more fundamental — perhaps unknown or unsolvable — high energy theory. In nuclear physics they provide the possibility of a theoretically sound derivation of nuclear forces without having to solve quantum chromodynamics explicitly. However there is the problem of how to organize calculations within nuclear effective field theory: the traditional knowledge about power counting is perturbative but nuclear physics is not. Yet power counting can be derived in Wilsonian renormalization and there is already a fairly good understanding of how to apply these ideas to non-perturbative phenomena and in particular to nuclear physics. Here we review a few of these ideas, explain power counting in two-nucleon scattering and reactions with external probes and hint at how to extend the present analysis beyond the two-body problem.
Lessons Learned in Applying Accelerometers to Nuclear Effects Testing
Directory of Open Access Journals (Sweden)
Patrick L. Walter
2008-01-01
Full Text Available Exoatmospheric nuclear effects, such as those that would be encounter by reentry bodies, provide instantaneous (near zero-duration, impulsive loading of structures. Endoatmospheric nuclear effects possess an impulse that is finite in duration, but whose rise time is still instantaneous. The commonality of these loadings is that they initiate waves propagating through structures, resulting in extremely short duration accelerations to free surfaces where accelerometers are mounted. Over the years, attempts have been made to measure free surface accelerations using ceramic, quartz, and piezoresistive accelerometers. This paper describes the lessons learned, and looks to the future. It also provides a history of shock accelerometer development.
Transformer configuration in three dimensional Josephson lattices at zero magnetic field
Energy Technology Data Exchange (ETDEWEB)
Dominguez, D.; Gronbech-Jensen, N.; Bishop, A.R. [Theoretical Division, MS B262, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Shenoy, S.R. [International Center for Theoretical Physics, P.O. Box 586, Miramare, 34100 Trieste (Italy)
1995-07-24
Recent experiments on Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8{minus}{ital y}} superconductors at zero magnetic field have been performed with a transformer configuration of contacts. We interpret the experimental data on the basis of large-scale Langevin dynamical simulations of a three dimensional (3D) Josephson lattice with a current bias through a single plane. We show that the experimentally observed effects can be attributed to linking thermal vortex loop excitations that cause voltages in neighboring superconducting planes to lock in a narrow temperature range near the 3D phase transition.
Parametric amplification on rf-induced steps in a Josephson tunnel junction
DEFF Research Database (Denmark)
Sørensen, O.H.; Pedersen, Niels Falsig; Mygind, Jesper
1979-01-01
Parametric effects including amplification in a singly degenerate mode have been observed in Josephson tunnel junctions at dc bias points on rf-induced steps. Net gain at 9 GHz was achieved with a bias on the fundamental 18-GHz step and subharmonic self-oscillations were seen on 18 and 70-GHz rf-......-induced steps even at voltages approaching the energy gap. A qualitative explanation of the results is presented. Journal of Applied Physics is copyrighted by The American Institute of Physics....
Quantitative description of hysteresis loops induced by rf radiation in long Josephson junctions
DEFF Research Database (Denmark)
Olsen, Ole H.; Samuelsen, Mogens Rugholm
1991-01-01
The effect of an applied rf signal on the radiation emitted from a long Josephson junction is examined by means of a model based on the sine-Gordon equation. This system exhibits a variety of interesting phenomena, e.g., chaos and hysteresis. The hysteresis loop is examined in detail. These simple...... analyses show that for rf frequencies larger than a certain threshold value no hysteresis is expected. This is verified in numerical simulations where the frequency and length of the junction have been varied....
Basic properties of an rf SQUID involving two Josephson junctions connected in series
Institute of Scientific and Technical Information of China (English)
Mao Bo; Tan Zhong-Kui; Meng Shu-Chao; Dai Yuan-Dong; Wang Fu-Ren
2004-01-01
We have studied the basic characteristics of a radio frequency superconducting quantum interference device (rf SQUID) involving two Josephson junctions connected in series, the case for the widely used grain boundary junction (GBJ) rf SQUID. It is found that the SQUID properties are determined mainly by the weaker junction when the critical current of the weaker junction is much lower than that of the other junction. Otherwise, the effect of the other junction is not negligible. We also find that only when the hysteresis parameter β is less than 1- α, where α is the critical current ratio of the two junctions, will the SQUID operate in the nonhysteretic mode.
Mutual Phase Locking of Fluxons in Stacked Long Josephson Junctions: Simulations and Experiment
DEFF Research Database (Denmark)
Carapella, Giovanni; Costabile, Giovanni; Filatrella, Giovanni
1997-01-01
We report on the experimental observation of reciprocal phase-locking in stacked $Nb-AlO_x-Nb$ Josephson junctions having overlap geometry. When the junctions are independently biased in zero external magnetic field, they each exhibit several Zero Field Steps. Biasing both the junctions on the Zero...... either the polarity of the bias current or the role of the junctions. An analogous investigation of the effect of the magnetic field on the stability of the bound state has been performed. Numerical simulations have shown that the underlying dynamics corresponding to this situation is a bound state...
Ballistic Josephson junctions in the presence of generic spin dependent fields
Konschelle, François; Tokatly, Ilya V.; Bergeret, F. Sebastián
2016-01-01
Ballistic Josephson junctions are studied in the presence of a spin-splitting field and spin-orbit coupling. A generic expression for the quasi-classical Green's function is obtained and with its help we analyze several aspects of the proximity effect between a spin-textured normal metal (N) and singlet superconductors (S). In particular, we show that the density of states may show a zero-energy peak which is a generic consequence of the spin-dependent couplings in heterostructures. In additi...
Hyperchaotic behaviours and controlling hyperchaos in an array of RCL-shunted Josephson junctions
Institute of Scientific and Technical Information of China (English)
Ri Ilmyong; Feng Yu-Ling; Yao Zhi-Hai; Fan Jian
2011-01-01
This paper deals with dynamical behaviours in an array composed of two resistive-capacitive-inductive-shunted (RCL-shunted) Josephson junctions (RCLSJJs) and a shunted resistor.Numerical simulations show that periodic,chaotic and hyperchaotic states can coexist in this array.Moreover,a scheme for controlling hyperchaos in this array is presented by adjusting the external bias current.Numerical results confirm that this scheme can be effectively used to control hyperchaotic states in this array into stable periodic states,and different stable periodic states with different period numbers can be obtained by appropriately choosing the intensity of the external bias current.
76 FR 65753 - Monitoring the Effectiveness of Maintenance at Nuclear Power Plants
2011-10-24
... COMMISSION Monitoring the Effectiveness of Maintenance at Nuclear Power Plants AGENCY: Nuclear Regulatory..., ``Monitoring the Effectiveness of Maintenance at Nuclear Power Plants,'' in the Federal Register for a 60 day... (NUMARC) 93-01, ``Industry Guideline for Monitoring the Effectiveness of Maintenance at Nuclear......
Experiments on non-equilibrium superconductor-normal metal-superconductor Josephson junctions
Crosser, Michael S.
By controlling the distribution function within the normal metal of a superconductor/normal metal/superconductor (SNS) Josephson junction, one can reverse the supercurrent-phase relation in the normal wire, creating a pi-junction. This manipulation is done by injecting normal quasiparticle current into the wire, via one or more leads attached at the middle of the junction. Two experiments evolve from this concept. First, in a sample of four reservoirs, two normal and two superconducting, all connected by a wire cross of normal metal, one may inject current either antisymmetrically (AS) or symmetrically (S). In the AS case, current is injected into one normal lead and extracted from the other, creating normal current flow that does not interact with the supercurrent except at the junction. In the S case, current is injected into both normal leads and extracted from the superconductors. Theory predicts that, in the absence of electron energy relaxation in the normal part of the junction, these two situations should result in identical behavior of the Josephson junction. However, due to Joule heating, the S case shows a slightly larger maximum pi-current than the AS case. The second experiment considers a more subtle effect resulting from normal current being injected symmetrically into a SNS Josephson junction. One side of the SNS junction has both normal current and supercurrent flowing in the same direction while the other side has opposing current flows. This situation creates an effective energy gradient across the SNS junction that can appear in the distribution function of the normal wire. Using superconductor/insulator/normal metal tunnelling spectroscopy, it is possible to extract these changes to the distribution function.
Experimental observation of subharmonic gap structures in long Josephson junctions
DEFF Research Database (Denmark)
Nordahn, M.A.; Manscher, Martin; Mygind, Jesper
1999-01-01
The subharmonic gap structure (SGS) in long-overlap Nb-AlOx-Nb Josephson tunnel junctions has been investigated. The experimental results show peaks in the differential conductance at both odd and even integer fractions of the gap voltage, VG Furthermore, the conductance peaks at V-G/2 has been...
Josephson flux-flow oscillators in nonuniform microwave fields
DEFF Research Database (Denmark)
Salerno, Mario; Samuelsen, Mogens Rugholm
2000-01-01
We present a simple theory for Josephson flux-flow oscillators in the presence of nonuniform microwave fields. In particular we derive an analytical expression for the I-V characteristic of the oscillator from which we show that satellite steps are spaced around the main flux-flow resonance by only...
Crises in a driven Josephson junction studied by cell mapping
DEFF Research Database (Denmark)
Sørensen, Mads Peter; Davidson, A.; Pedersen, Niels Falsig;
1988-01-01
We use the method of cell-to-cell mapping to locate attractors, basins, and saddle nodes in the phase plane of a driven Josephson junction. The cell-mapping method is discussed in some detail, emphasizing its ability to provide a global view of the phase plane. Our computations confirm the existe...
Zero-voltage nondegenerate parametric mode in Josephson tunnel junctions
DEFF Research Database (Denmark)
Pedersen, Niels Falsig
1976-01-01
A new parametric mode in a Josephson tunnel junction biased in the zero-voltage mode is suggested. It is a nondegenerate parametric excitation where the junction plasma resonance represents the input circuit, and a junction geometrical resonance represents the idler circuit. This nondegenerate mo...... for such a coupling. Journal of Applied Physics is copyrighted by The American Institute of Physics....
Parametric excitation of plasma oscillations in a Josephson tunnel junction
DEFF Research Database (Denmark)
Bak, Christen Kjeldahl; Kofoed, Bent; Pedersen, Niels Falsig
1975-01-01
Experimental evidence for subharmonic parametric excitation of plasma oscillations in Josephson tunnel junctions is presented. The experiments described are performed by measuring the microwave power necessary to switch a Josephson−tunnel junction biased in the zero−voltage state to a finite−volt......−voltage state. Journal of Applied Physics is copyrighted by The American Institute of Physics....
Josephson junctions in high-T/sub c/ superconductors
Falco, C.M.; Lee, T.W.
1981-01-14
The invention includes a high T/sub c/ Josephson sperconducting junction as well as the method and apparatus which provides the junction by application of a closely controlled and monitored electrical discharge to a microbridge region connecting two portions of a superconducting film.
Flux flow in high-Tc Josephson junctions
DEFF Research Database (Denmark)
Filatrella, G.; Pedersen, Niels Falsig
1993-01-01
The possibility of achieving fluxon nucleation in nonhysteretic high-T(c) Josephson junctions due to the presence of inhomogeneities is investigated numerically. For a large range of parameters the I- V characteristics in presence of such discontinuities show a strong similarity with those obtain...
Josephson tunnel junctions in a magnetic field gradient
DEFF Research Database (Denmark)
Monaco, R.; Mygind, Jesper; Koshelets, V.P.
2011-01-01
We measured the magnetic field dependence of the critical current of high-quality Nb-based planar Josephson tunnel junctions in the presence of a controllable nonuniform field distribution. We found skewed and slowly changing magnetic diffraction patterns quite dissimilar from the Fraunhofer-like...... be suppressed by an asymmetric magnetic field profile. © 2011 American Institute of Physics....
Phase locked fluxon-antifluxon states in stacked Josephson junctions
DEFF Research Database (Denmark)
Carapella, Giovanni; Constabile, Giovanni; Petraglia, Antonio;
1996-01-01
Measurements were made on a two-stack long Josephson junction with very similar parameters and electrical access to the thin middle electrode. Mutually phase-locked fluxon-antifluxon states were observed. The observed propagation velocity is in agreement with the theoretical prediction. The I...
How good are one-dimensional Josephson junction models?
DEFF Research Database (Denmark)
Lomdahl, P. S.; Olsen, O.H.; Eilbeck, J. C.
1985-01-01
A two-dimensional model of Josephson junctions of overlap type is presented and shown to reduce to the usual one-dimensional (1D) model in the limit of a very narrow junction. Comparisons between the stability limits for fluxon reflection obtained from the two models suggest that the many results...
Relaxation towards phase-locked dynamics in long Josephson junctions
DEFF Research Database (Denmark)
Salerno, M.; Grønbech-Jensen, Niels; Samuelsen, Mogens Rugholm
1995-01-01
We study the relaxation phenomenon towards phase-locked dynamics in long Josephson junctions. In particular the dependence of the relaxation frequency for the equal time of flight solution on the junction parameters is derived. The analysis is based on a phase-locked map and is compared with dire...
Parametric excitation of plasma oscillations in Josephson Junctions
DEFF Research Database (Denmark)
Pedersen, Niels Falsig; Samuelsen, Mogens Rugholm; Særmark, Knud
1973-01-01
A theory is presented for parametric excitation of plasma oscillations in a Josephson junction biased in the zero voltage mode. A threshold curve for the onset of the parametric excitation is deduced via the stability properties of a Mathieu differential equation obtained by a self...
Generators of the auxiliary signals based on the Josephson junctions
Directory of Open Access Journals (Sweden)
V. M. Kychak
2014-06-01
Full Text Available Introduction and problem statement. Generators based on the Josephson junctions are advisable to use to ensure the generation of signals in the wavelength range from infrared to millimeter. It is necessary to build a dependence of the phase difference of the wave functions superconductor Josephson junctions from the parameters of the equivalent circuit of the resistive shunted tunnel junction. Solution of the problem. An analytical expression for calculating the dependence of the instantaneous voltage values from the parameters of the equivalent circuit resistive shunted Josephson junction is obtained. The dependence of the oscillation period from the parameters of the equivalent circuit elements is researched and a comparison of its values with the period of the output voltage of the generator based on three Josephson junctions is carried out. Conclusions. It is shown that the synchronization leads to decrement in the line width generation and increment the output voltage. Comparison of theoretical calculations and computer modeling shows that the differences do not exceed 25% and therefore they can be used for approximate calculations.
Processing of Superconductor-Normal-Superconductor Josephson Edge Junctions
Kleinsasser, A. W.; Barner, J. B.
1997-01-01
The electrical behavior of epitaxial superconductor-normal-superconductor (SNS) Josephson edge junctions is strongly affected by processing conditions. Ex-situ processes, utilizing photoresist and polyimide/photoresist mask layers, are employed for ion milling edges for junctions with Yttrium-Barium-Copper-Oxide (YBCO) electrodes and primarily Co-doped YBCO interlayers.
Dayem bridge Josephson junctions. [for millimeter wave mixer
Barr, D. W.; Mattauch, R. J.
1977-01-01
The Josephson junction shows great promise as a millimeter wave mixer element. This paper discusses the physical mixing process from a first-order mathematical approach. Design and fabrication of such structures tailored for use in a 80-120 GHz mixer application is presented. Testing of the structures and a discussion of their interpretation is presented.
Phase-locked flux-flow Josephson oscillator
DEFF Research Database (Denmark)
Ustinov, A. V.; Mygind, Jesper; Oboznov, V. A.
1992-01-01
. The dependence of the amplitude of the phase-locked step on external magnetic field and microwave power has been measured. The observed zero-crossing steps have potential application in Josephson voltage standards. A simple model for the flux-flow as determined by the microwave driven boundary gate at the edge...
Vortex dynamics in Josephson ladders with II-junctions
DEFF Research Database (Denmark)
Kornev, Victor K.; Klenov, N. V.; Oboznov, V.A.;
2004-01-01
Both experimental and numerical studies of a self-frustrated triangular array of pi-junctions are reported. The array of SFS Josephson junctions shows a transition to the pi-state and self-frustration with a decrease in temperature. This manifests itself in a half-period shift of the bias critica...
Josephson current through a molecular transistor in a dissipative environment
DEFF Research Database (Denmark)
Novotny, T; Rossini, Gianpaolo; Flensberg, Karsten
2005-01-01
We study the Josephson coupling between two superconductors through a single correlated molecular level, including Coulomb interaction on the level and coupling to a bosonic environment. All calculations are done to the lowest, i.e., the fourth, order in the tunneling coupling and we find a suppr...
Microwave parametric amplifiers using externally pumped Josephson junctions
DEFF Research Database (Denmark)
Sørensen, O. H.; Mygind, Jesper; Pedersen, Niels Falsig
1978-01-01
Externally pumped parametric amplifiers are discussed. Theory and experiments on the singly degenerate parametric amplifier based on a Josephson junction are presented. Advantages and limitations of the singly degenerate and doubly degenerate parametric amplifiers are discussed. Some plans and pr...... and proposals for future research are presented....
Fluxon propagation and Fiske steps in long Josephson tunnel junctions
DEFF Research Database (Denmark)
Erné, S. N.; Ferrigno, A.; Parmentier, R. D.
1983-01-01
The dynamical behavior of fluxons propagating in the presence of an applied magnetic field on an overlap-geometry Josephson tunnel junction of length 5λJ having a McCumber βc=5π is studied by numerical integration of the circuit equations of a 50-section lumped RSJ-type (resistive shunted junctio...
Determination of Relaxation Time of a Josephson Tunnel Junction
Institute of Scientific and Technical Information of China (English)
WEN Xue-Da; YU Yang
2008-01-01
We propose a non-stationary method to measure the energy relaxation time of Josephson tunnel junctions from microwave enhanced escape phenomena.Compared with the previous methods,our method possesses simple and accurate features.Moreover,having determined the energy relaxation time,we can further obtain the coupling strength between the microwave source and the junction by changing the microwave power.
Shunted-Josephson-junction model. II. The nonautonomous case
DEFF Research Database (Denmark)
Belykh, V. N.; Pedersen, Niels Falsig; Sørensen, O. H.
1977-01-01
The shunted-Josephson-junction model with a monochromatic ac current drive is discussed employing the qualitative methods of the theory of nonlinear oscillations. As in the preceding paper dealing with the autonomous junction, the model includes a phase-dependent conductance and a shunt capacitance...
Psychosocial effects of the Chernobyl nuclear disaster.
Barnett, Lynn
2007-01-01
The psychological factors surrounding the Chernobyl disaster include the sudden trauma of evacuation, long-term effects of being a refugee, disruption of social networks, illness, separation and its effects on families, children's perception and effects on their development and the threat of a long-term consequence with an endless future. Added to this was the breakdown of the Soviet Union with consequent collapse of health services, increasing poverty and malnutrition. These complexities made necessary new individual and social treatment methods developed in UNESCO Community Centres, within which some positives have resulted, such as the development of individual and group self help and the professions of counselling, social work and community development, practices which did not previously exist in the Soviet Union.
Bubble Effect in Heterogeneous Nuclear Fuel Solution System
Institute of Scientific and Technical Information of China (English)
ZHOU; Xiao-ping; LUO; Huang-da; ZHANG; Wei; ZHU; Qing-fu
2013-01-01
Bubble effect means system reactivity changes due to the bubble induced solution volume,neutron leakage and absorption properties,neutron energy spectrum change in the nuclear fuel solution system.In the spent fuel dissolver,during uranium element shearing,the oxygen will be inlet to accelerate the
Exploring nuclear effects in neutrino interactions with MINERvA
Energy Technology Data Exchange (ETDEWEB)
Osmanov, B. [Department of Physics, University of Florida, Gainesville, FL, 32611 (United States)
2012-08-15
With the new era of neutrino-oscillation experiments, it becomes crucially important to know the neutrino interaction cross-sections with a high precision. This is the primary scientific aim of MINERvA experiment located in Fermilab. Another task is to examine the nuclear medium effects in neutrino-induced interactions such as final state modifications in the nucleus. The MINERvA collaboration has all the necessary tools in hand to achieve the above-stated goals: high-intensity neutrino beam, fine-granulated detector with EM and hadron calorimetry regions, various integrated nuclear targets and high-statistics event sample.
Energy Technology Data Exchange (ETDEWEB)
Kouzoudis, D.
1999-02-12
The prime interest of the present research is to measure the thermal energy needed for depinning a trapped vortex when an external magnetic field is perpendicular to the plane of the junction, and thus there are Meissner currents flowing along the edge of the film. These currents introduce an additional force and the author wishes to study thermal depinning under the influence of this force. These studies are of interest because Nb junctions are used in a wide range of electronic applications. Such junctions are useful, for instance, in superconducting quantum interference devices (SQUIDs) or in vortex-flow transistors because their performance can be enhanced by tuning the parameters of the individual junctions to optimum operation values. Furthermore gated Josephson junctions can be used as Josephson field-effect transistors (JOFETs).
The EMC effect of Nuclear Matter with Coulomb Corrections
Li, Shujie; Solvignon, Patricia; Arrington, John; Gaskell, Dave
2016-09-01
Extraction of the EMC effect for nuclear matter is of great interest since it allows comparison to theoretical calculations in a regime where ``exact'' nuclear wave functions can be used. Earlier extractions from (e,e') cross sections ignored the contribution of the Coulomb distortion, which can be approximated as an electron energy shift on the order of MeV. Though small, this shift can cause a noticeable change in cross sections in certain kinematic regimes. In this study, we applied Coulomb corrections on the per-nucleon ratios from the published SLAC E139 data and preliminary JLAB E03-103 data. I will show preliminary results for an extrapolation of the EMC ratios from finite nuclei to symmetric nuclear matter, including Coulomb Corrections and examining the sensitivity to different approximations for the nuclear density. The data from two experiments will also be combined to study the nuclear dependence of R =σL /σT . Supported in part by DOE Grant No. DE-AC05-06OR23177, No. DE-AC02-06CH11357, and No. DE-SC0014168.
Josephson critical current of long SNS junctions in the presence of a magnetic field
Meier, Hendrik; Fal'Ko, Vladimir I.; Glazman, Leonid I.
We evaluate the Josephson critical current of a long and wide two-dimensional superconductor-normal metal-superconductor (SNS) junction, taking into account the effect of electron reflection off the side edges of the junction. Considering clean junctions, we find that the effect of edges alters the usual Fraunhofer-like dependence of the Josephson critical current Ic on the magnetic flux Φ. At relatively weak fields, B edge effect lifts zeros of the Ic (Φ) dependence and gradually shifts the maxima of that function by Φ0 / 2 . (Here W is the width of the junction and Φ0 the magnetic flux quantum.) At higher fields, B >~Φ0 /W2 , the edge effect leads to an accelerated decay of the critical current Ic (Φ) with increasing Φ. Our results are robust with respect to the roughness of realistic boundaries. Finally, we discuss the role of mesoscopic fluctuations of Ic (Φ) originating from the scattering off the edges, and compare our findings to recent experiments.
Modelling Nuclear Effects in Neutrino Scattering
Leitner, T; Mosel, U
2006-01-01
We have developed a model to describe the interactions of neutrinos with nucleons and nuclei via charged and neutral currents, focusing on the region of the quasielastic and Delta(1232) peaks. For neutrino nucleon collisions a fully relativistic formalism is used. The extension to finite nuclei has been done in the framework of a coupled-channel BUU transport model where we have studied exclusive channels taking into account in-medium effects and final state interactions.
Effect of topological defects on "nuclear pasta" observables
Schneider, A. S.; Berry, D. K.; Caplan, M. E.; Horowitz, C. J.; Lin, Z.
2016-06-01
Background: The "pasta" phase of nuclear matter may play an important role in the structure and evolution of neutron stars. Recent works suggest nuclear pasta has a high resistivity which could be explained by the presence of long-lived topological defects. The defects act as impurities that decrease thermal and electrical conductivity of the pasta. Purpose: To quantify how topological defects affect transport properties of nuclear pasta and estimate this effect using an impurity parameter Qimp. Methods: Contrast molecular dynamics simulations of up to 409 600 nucleons arranged in parallel nuclear pasta slabs (perfect pasta) with simulations of pasta slabs connected by topological defects (impure pasta). From these simulations we compare the viscosity and heat conductivity of perfect and impure pasta to obtain an effective impurity parameter Qimp due to the presence of defects. Results: Both the viscosity and thermal conductivity calculated for both perfect and impure pasta are anisotropic, peaking along directions perpendicular to the slabs and reaching a minimum close to zero parallel to them. In our 409 600 nucleon simulation topological defects connecting slabs of pasta reduce both the thermal conductivity and viscosity on average by about 37%. We estimate an effective impurity parameter due to the defects of order Qimp˜30 . Conclusions: Topological defects in the pasta phase of nuclear matter have an effect similar to impurities in a crystal lattice. The irregularities introduced by the defects reduce the thermal and electrical conductivities and the viscosity of the system. This effect can be parametrized by a large impurity parameter Qimp˜30 .
Coulomb and nuclear effects in breakup and reaction cross sections
Descouvemont, Pierre; Hussein, Mahir S
2016-01-01
We use a three-body Continuum Discretized Coupled Channel (CDCC) model to investigate Coulomb and nuclear effects in breakup and reaction cross sections. The breakup of the projectile is simulated by a finite number of square integrable wave functions. First we show that the scattering matrices can be split in a nuclear term, and in a Coulomb term. This decomposition is based on the Lippmann-Schwinger equation, and requires the scattering wave functions. We present two different methods to separate both effects. Then, we apply this separation to breakup and reaction cross sections of 7Li + 208Pb. For breakup, we investigate various aspects, such as the role of the alpha + t continuum, the angular-momentum distribution, and the balance between Coulomb and nuclear effects. We show that there is a large ambiguity in defining the 'Coulomb' and 'nuclear' breakup cross sections, since both techniques, although providing the same total breakup cross sections, strongly differ for the individual components. We suggest...
Fabricating Nanogaps in YBa2 Cu3 O7 -δ for Hybrid Proximity-Based Josephson Junctions
Baghdadi, Reza; Arpaia, Riccardo; Charpentier, Sophie; Golubev, Dmitri; Bauch, Thilo; Lombardi, Floriana
2015-07-01
The advances of nanotechnologies applied to high-critical-temperature superconductors (HTSs) have recently given a huge boost to the field, opening new prospectives for their integration in hybrid devices. The feasibility of this research goes through the realization of HTS nanogaps with superconductive properties close to the as-grown bulk material at the nanoscale. Here we present a fabrication approach allowing the realization of YBa2 Cu3 O7 -δ (YBCO) nanogaps with dimensions as small as 35 nm. To assess the quality of the nanogaps, we measure, before and after an ozone treatment, the current-voltage characteristics and the resistance versus temperature of YBCO nanowires with various widths and lengths, fabricated by using different lithographic processes. The analysis of the superconducting transition with a thermally activated vortex-entry model allows us to determine the maximum damage the nanowires undergo during the patterning which relates to the upper bound for the dimension of the nanogap. We find that the effective width of the nanogap is of the order of 100 nm at the superconducting transition temperature while retaining the geometrical value of about 35 nm at lower temperatures. The feasibility of the nanogaps for hybrid Josephson devices is demonstrated by bridging them with thin Au films. We detect a Josephson coupling up to 85 K with an almost ideal magnetic-field response of the Josephson current. These results pave the way for the realization of complex hybrid devices, where tiny HTS nanogaps can be instrumental to study the Josephson effect through barriers such as topological insulators or graphene.
Multiwall carbon nanotube Josephson junctions with niobium contacts
Energy Technology Data Exchange (ETDEWEB)
Pallecchi, Emiliano
2009-02-17
The main goal of this thesis is the investigation of dissipationless supercurrent in multiwall carbon nanotubes embedded in a controlled environment. The experimental observation of a dissipationless supercurrent in gated carbon nanotubes remains challenging because of its extreme sensitivity to the environment and to noise fluctuations. We address these issues by choosing niobium as a superconductor and by designing an optimized on chip electromagnetic environment. The environment is meant to reduce the suppression of the supercurrent and allows to disentangle the effects of thermal fluctuations from the intrinsic behavior of the junction. This is crucial for the extraction of the value critical current from the measured data. When the transparency of the contacts is high enough we observed a fully developed supercurrent and we found that it depends on the gate voltage in a resonant manner. In average the critical current increases when the gate is tuned more negative, reflecting the increase of the transparency of the contacts, while the resonant behavior is due to quantum interference effects. We measured the temperature dependence of the switching current and we analyzed the data with an extended RCSJ model that allow to extract the critical current from the experimental data. The measured critical currents are very high with respect to previous reports on gated devices. At positive gate voltage the contacts transparency is lowered and Coulomb blockade is observed. This allows to use Coulomb blockade measurements to further characterize the nanotube and to study the physics of a quantum dot coupled to superconducting leads. The last part of this thesis is dedicated to the measurements of a carbon nanotube Josephson junction in the Coulomb blockade regime. (orig.)
Nuclear Effects in Neutrino Interactions at Low Momentum Transfer
Energy Technology Data Exchange (ETDEWEB)
Miltenberger, Ethan Ryan [Univ. of Minnesota, Minneapolis, MN (United States)
2015-05-01
This is a study to identify predicted effects of the carbon nucleus environment on neutrino - nucleus interactions with low momentum transfer. A large sample of neutrino interaction data collected by the MINERvA experiment is analyzed to show the distribution of charged hadron energy in a region with low momentum transfer. These distributions reveal a major discrepancy between the data and a popular interaction model with only the simplest Fermi gas nuclear effects. Detailed analysis of systematic uncertainties due to energy scale and resolution can account for only a little of the discrepancy. Two additional nuclear model effects, a suppression/screening effect (RPA), and the addition of a meson exchange current process (MEC), are shown to improve the description of the data.
Microstructural characterization of radiation effects in nuclear materials
2017-01-01
Microstructural Characterization of Radiation Effects in Nuclear Materials provides an overview into experimental techniques that can be used to examine those effects (both neutron and charged particle) and can be used by researchers, technicians or students as a tool to introduce them to the various techniques. The need to examine the effect of radiation on materials is becoming increasingly important as nuclear energy is emerging as a growing source of renewable energy. The book opens with a discussion of why it is important to study the effects of radiation on materials and looks at current and future reactor designs and the various constraints faced by materials as a result of those designs. The book also includes an overview of the radiation damage mechanisms. The next section explores the various methods for characterizing damage including transmission electron microscopy, scanning transmission electron microscopy, analytical electron microscopy, electron backscatter diffraction, atom probe tomography,...
Tunable 0–π transition by interband coupling in iron-based superconductor Josephson junctions
Tao, Y. C.; Liu, S. Y.; Bu, N.; Wang, J.; Di, Y. S.
2016-01-01
An extended four-component Bogoliubov–de Gennes equation is applied to study the Josephson effect in ballistic limit between either two iron-based superconductors (SCs) or an iron-based SC and a conventional s-wave SC, separated by a normal metal. A 0–π transition as a function of interband coupling strength α is always exhibited, arising from the tuning of mixing between the two trajectories with opposite phases. The novel property can be experimentally used to discriminate the {s}+/- -wave pairing symmetry in the iron-based SCs from the {s}++-wave one in MgB2. The effect of interface transparency on the 0–π transition is also presented. The 0–π transition as a function of α is wholly distinct from that as a function of barrier strength or temperature in recent theories (Linder et al 2009 Phys. Rev. B 80 020503(R)). The possible experimental probe of the phase-shift effect in iron-based SC Josephson junctions is commented on as well.
Energy Technology Data Exchange (ETDEWEB)
Benvenuto, O.G. [La Plata Univ. (Argentina). Fac. of Astron. and Geophys.; Civitarese, O. [Dept. of Physics, Univ. of La Plata (Argentina); Reboiro, M. [Dept. of Physics, Univ. of La Plata (Argentina)
1997-05-01
Effects due to the temperature dependence of the nuclear binding energy upon the equation of state (EOS) for hot nuclear matter are studied. Nuclear contributions to the free energy are represented by temperature dependent liquid drop model terms. Phase coexistence is assumed for temperatures of the order of 1 MeV {<=} T {<=} 6 MeV, baryon number densities {rho} of the order of 10{sup -4}fm{sup -3} {<=} {rho} {<=} 10{sup -1}fm{sup -3} and lepton fractions of the order of 0.2 {<=} y{sub 1} {<=} 0.4. It is found that the total pressure of the system is not affected by the temperature dependence of the nuclear free energy, in spite of changes observed in the nuclear pressure due to the different parametrizations used to represent the nuclear binding energy. (orig.).
Effect of Coulomb Screening Length on Nuclear Pasta Simulations
Alcain, P N; Nichols, J I; Dorso, C O
2013-01-01
We study the role of the effective Coulomb interaction strength and length on the dynamics of nucleons in conditions according to those in a neutron star's crust. Calculations were made with a semi-classical molecular dynamics model, studying isospin symmetric matter at sub-saturation densities and low temperatures. The electrostatic interaction between protons interaction is included in the form of a screened Coulomb potential in the spirit of the Thomas-Fermi approximation, but the screening length is artificially varied to explore its effect on the formation of the non-homogeneous nuclear structures known as ``nuclear pasta''. As the screening length increases, we can a transition from a one-per-cell pasta regime (due exclusively to finite size effects) to a more appealing multiple pasta per simulation box. This shows qualitative difference in the structure of neutron star matter at low temperatures, and therefore, special caution should be taken when the screening length is estimated for numerical simulat...
Energy Technology Data Exchange (ETDEWEB)
Benvenuto, O.G. (Facultad de Ciencias Astronomica y Geofisicas, Universidad Nacional de La Plata, La Plata, Buenos Aires (Argentina)); Civitarese, O.; Reboiro, M. (Departamento de Fisica, Universidad Nacional de La Plata, La Plata, Buenos Aires (Argentina))
1993-05-01
The influence of finite temperature nuclear effects upon the adiabatic index, for a system of nuclei, nucleons, and leptons, is discussed. It is found that the inclusion of temperature-dependent nuclear binding energies affects the behavior of the adiabats and of the adiabatic index, particularly, at low entropies.
Galteland, Peder Notto; Sudbø, Asle
2016-08-01
The N -component London U (1 ) superconductor is expressed in terms of integer-valued supercurrents. We show that the inclusion of interband Josephson couplings introduces monopoles in the current fields, which convert the phase transitions of the charge-neutral sector to crossovers. The monopoles only couple to the neutral sector, and leave the phase transition of the charged sector intact. The remnant noncritical fluctuations in the neutral sector influence the one remaining phase transition in the charged sector, and may alter this phase transition from a 3 D X Y inverted phase transition into a first-order phase transition depending on what the values of the gauge charge and the intercomponent Josephson coupling are. This preemptive effect becomes more pronounced with increasing number of components N , since the number of charge-neutral fluctuating modes that can influence the charged sector increases with N . We also calculate the gauge-field correlator, and by extension the Higgs mass, in terms of current-current correlators. We show that the onset of the Higgs mass of the photon (Meissner effect) is given in terms of a current loop blowout associated with going into the superconducting state as the temperature of the system is lowered.
Josephson junction-embedded transmission-line resonators: from Kerr medium to in-line transmon
Bourassa, J; Gambetta, Jay M; Blais, A
2012-01-01
We provide a general method to find the Hamiltonian of a linear circuit in the presence of a nonlinearity. Focussing on the case of a Josephson junction embedded in a transmission-line resonator, we solve for the normal modes of the system by taking into account exactly the effect of the quadratic (i.e. inductive) part of the Josephson potential. The nonlinearity is then found to lead to self and cross-Kerr effect, as well as beam-splitter type interactions between modes. By adjusting the parameters of the circuit, the Kerr coefficient K can be made to reach values that are weak (K \\kappa) or even very strong (K >> \\kappa) with respect to the photon-loss rate \\kappa. In the latter case, the resonator+junction circuit corresponds to an in-line version of the transmon. By replacing the single junction by a SQUID, the Kerr coefficient can be tuned in-situ, allowing for example the fast generation of Schr\\"odinger cat states of microwave light. Finally, we explore the maximal strength of qubit-resonator coupling...
Direct detection of the Josephson radiation emitted from superconducting thin-film microbridges
DEFF Research Database (Denmark)
Pedersen, Niels Falsig; Sørensen, O. H.; Mygind, Jesper;
1976-01-01
We report direct measurements of the Josephson radiation emitted in X band from a superconducting thin-film microbridge coupled to a resonance cavity. Power is emitted if one of the harmonics of the Josephson frequency is in the bandwidth of the receiver. The maximum power emitted during our expe...... experiment was 10−13 W. The Josephson radiation could easily be detected at frequencies off resonance. Applied Physics Letters is copyrighted by The American Institute of Physics....
Ohmic lines for one-dimensional in-line and two-dimensional cylindrical Josephson junctions
DEFF Research Database (Denmark)
Helweg, C.; Levring, O. A.; Samuelsen, Mogens Rugholm;
1985-01-01
Expressions for the ohmic lines in the IV characteristic for one-dimensional in-line geometry Josephson junctions as well as for two-dimensional cylindrical Josephson junctions are presented. The expressions are compared to numerical simulations of Josephson junctions using the fluxon model; the ......; however, depending on the initial conditions we find 1/2 and 1/3 harmonic generation. Journal of Applied Physics is copyrighted by The American Institute of Physics....
Topics in the Theory of Josephson Arrays and Disordered Magnetic Systems
Porter, Christopher D.
This thesis consists of two parts. In the first part, we discuss several topics in the theory of Josephson junction arrays. The second part is concerned with two problems in the theory of magnetic systems: charge transfer ferromagnetism, and the clustering of Fe adatoms on graphene. In the field of Josephson arrays we consider three topics. First, the effects of a current bias on arrays of underdamped junctions are considered, for several junction geometries including both 2D and 3D systems. Approximate phase diagrams are constructed for various values of the ratio of charging energy to Josephson coupling. The effects of finite temperature are also discussed. Next, we examine the rich response of Josephson arrays to magnetic fields in the case of Josephson ladders with nonuniform spacing, known as superconducting quantum interference filters (SQIFs). Such ladders are already used for the detection of DC magnetic fields, but here their applicability to detecting AC fields is also discussed. It is shown that, for sufficiently low frequencies, the voltage produced by an AC field is equivalent to a convolution of the DC voltage response with the sinusoidal field oscillation. These SQIFs are studied in an effort to greatly increase the period of their response to external magnetic fields. Finally, we investigate underdamped 2D and 3D arrays with a special inhomogeneity. Specifically, insulating regions of varying width are sandwiched between superconducting regions of the arrays. The phase ordering in the superconducting regions is shown to penetrate into the insulating regions, leading to an unusual type of proximity effect. Our calculations for these arrays are done using mean field and perturbation theory, mean field theory and numerical methods, and our results are quantitatively confirmed by quantum Monte Carlo calculations. The superconducting correlation length is calculated inside the insulating region and it is found that the structure yields multiple layers of
10 CFR 50.65 - Requirements for monitoring the effectiveness of maintenance at nuclear power plants.
2010-01-01
... maintenance at nuclear power plants. 50.65 Section 50.65 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... Construction Permits § 50.65 Requirements for monitoring the effectiveness of maintenance at nuclear power..., including normal shutdown operations. (a)(1) Each holder of an operating license for a nuclear power......
Radiation effects in nuclear waste materials. 1998 annual progress report
Energy Technology Data Exchange (ETDEWEB)
Weber, W.J.; Corrales, L.R. [Pacific Northwest National Lab., Richland, WA (US); Birtcher, R.C. [Argonne National Lab., IL (US); Nastasi, M. [Los Alamos National Lab., NM (US)
1998-06-01
'The objective of this multidisciplinary, multi-institutional research effort is to develop a fundamental understanding of radiation effects in glasses and ceramics at the atomic, microscopic, and macroscopic levels. The goal is to provide the underpinning science and models necessary to assess the performance of glasses and ceramics designed for the immobilization and disposal of high-level tank waste, plutonium residues, excess weapons plutonium, and other highly radioactive waste streams. A variety of experimental and computer simulation methods are employed in this effort. In general, research on glasses focuses on the electronic excitations due to ionizing radiation emitted from beta decay, since this is currently thought to be the principal mechanism for deleterious radiation effects in nuclear waste glasses. Research on ceramics focuses on defects and structural changes induced by the elastic interactions between alpha-decay particles and the atoms in the structure. Radiation effects can lead to changes in physical and chemical properties that may significantly impact long-term performance of nuclear waste materials. The current lack of fundamental understanding of radiation effects in nuclear waste materials makes it impossible to extrapolate the limited existing data bases to larger doses, lower dose rates, different temperature regimes, and different glass compositions or ceramic structures. This report summarizes work after almost 2 years of a 3-year project. Work to date has resulted in 9 publications. Highlights of the research over the past year are presented.'
Observation of 0–π transition in SIsFS Josephson junctions
Energy Technology Data Exchange (ETDEWEB)
Ruppelt, N., E-mail: nru@tf.uni-kiel.de; Vavra, O.; Kohlstedt, H. [Nanoelektronik, Technische Fakultät, Christian-Albrechts-Universität zu Kiel, Kaiserstr. 2, 24143 Kiel (Germany); Sickinger, H.; Menditto, R.; Goldobin, E.; Koelle, D.; Kleiner, R. [Physikalisches Institut and Center for Collective Quantum Phenomena in LISA" +, Universität Tübingen, Auf der Morgenstelle 14, 72076 Tübingen (Germany)
2015-01-12
The 0–π transition in Superconductor-Insulator-superconductor-Ferromagnet-Superconductor (SIsFS) Josephson junctions (JJs) was investigated experimentally. As predicted by theory, an s-layer inserted into a ferromagnetic SIFS junction can enhance the critical current density up to the value of an SIS tunnel junction. We fabricated Nb′ | AlO{sub x} | Nb | Ni{sub 60}Cu{sub 40} | Nb JJs with wedge-like s (Nb) and F (Ni{sub 60}Cu{sub 40}) layers and studied the Josephson effect as a function of the s- and F-layer thickness, d{sub s} and d{sub F}, respectively. For d{sub s} = 11 nm, π-JJs with SIFS-type j{sub c}(d{sub F}) and critical current densities up to j{sub c}{sup π}=60 A/cm{sup 2} were obtained at 4.2 K. Thicker d{sub s} led to a drastic increase of the critical current decay length, accompanied by the unexpected disappearance of the 0–π transition dip in the j{sub c}(d{sub F}) dependence. Our results are relevant for superconducting memories, rapid single flux quantum logic circuits, and solid state qubits.
Antiferromagnetic THz-frequency Josephson-like Oscillator Driven by Spin Current
Khymyn, Roman; Lisenkov, Ivan; Tiberkevich, Vasyl; Ivanov, Boris A.; Slavin, Andrei
2017-01-01
The development of compact and tunable room temperature sources of coherent THz-frequency signals would open a way for numerous new applications. The existing approaches to THz-frequency generation based on superconductor Josephson junctions (JJ), free electron lasers, and quantum cascades require cryogenic temperatures or/and complex setups, preventing the miniaturization and wide use of these devices. We demonstrate theoretically that a bi-layer of a heavy metal (Pt) and a bi-axial antiferromagnetic (AFM) dielectric (NiO) can be a source of a coherent THz signal. A spin-current flowing from a DC-current-driven Pt layer and polarized along the hard AFM anisotropy axis excites a non-uniform in time precession of magnetizations sublattices in the AFM, due to the presence of a weak easy-plane AFM anisotropy. The frequency of the AFM oscillations varies in the range of 0.1–2.0 THz with the driving current in the Pt layer from 108 A/cm2 to 109 A/cm2. The THz-frequency signal from the AFM with the amplitude exceeding 1 V/cm is picked up by the inverse spin-Hall effect in Pt. The operation of a room-temperature AFM THz-frequency oscillator is similar to that of a cryogenic JJ oscillator, with the energy of the easy-plane magnetic anisotropy playing the role of the Josephson energy. PMID:28262731
Josephson junction between two high Tc superconductors with arbitrary transparency of interface
Directory of Open Access Journals (Sweden)
GhR Rashedi
2010-03-01
Full Text Available In this paper, a dc Josephson junction between two singlet superconductors (d-wave and s-wave with arbitrary reflection coefficient has been investigated theoretically. For the case of high Tc superconductors, the c-axes are parallel to an interface with finite transparency and their ab-planes have a mis-orientation. The physics of potential barrier will be demonstrated by a transparency coefficient via which the tunneling will occur. We have solved the nonlocal Eilenberger equations and obtained the corresponding and suitable Green functions analytically. Then, using the obtained Green functions, the current-phase diagrams have been calculated. The effect of the potential barrier and mis-orientation on the currents is studied analytically and numerically. It is observed that, the current phase relations are totally different from the case of ideal transparent Josephson junctions between d-wave superconductors and two s-wave superconductors. This apparatus can be used to demonstrate d-wave order parameter in high Tc superconductors.
Nanoscale phase engineering of thermal transport with a Josephson heat modulator
Fornieri, Antonio; Blanc, Christophe; Bosisio, Riccardo; D'Ambrosio, Sophie; Giazotto, Francesco
2016-03-01
Macroscopic quantum phase coherence has one of its pivotal expressions in the Josephson effect, which manifests itself both in charge and energy transport. The ability to master the amount of heat transferred through two tunnel-coupled superconductors by tuning their phase difference is the core of coherent caloritronics, and is expected to be a key tool in a number of nanoscience fields, including solid-state cooling, thermal isolation, radiation detection, quantum information and thermal logic. Here, we show the realization of the first balanced Josephson heat modulator designed to offer full control at the nanoscale over the phase-coherent component of thermal currents. Our device provides magnetic-flux-dependent temperature modulations up to 40 mK in amplitude with a maximum of the flux-to-temperature transfer coefficient reaching 200 mK per flux quantum at a bath temperature of 25 mK. Foremost, it demonstrates the exact correspondence in the phase engineering of charge and heat currents, breaking ground for advanced caloritronic nanodevices such as thermal splitters, heat pumps and time-dependent electronic engines.
Antiferromagnetic THz-frequency Josephson-like Oscillator Driven by Spin Current
Khymyn, Roman; Lisenkov, Ivan; Tiberkevich, Vasyl; Ivanov, Boris A.; Slavin, Andrei
2017-03-01
The development of compact and tunable room temperature sources of coherent THz-frequency signals would open a way for numerous new applications. The existing approaches to THz-frequency generation based on superconductor Josephson junctions (JJ), free electron lasers, and quantum cascades require cryogenic temperatures or/and complex setups, preventing the miniaturization and wide use of these devices. We demonstrate theoretically that a bi-layer of a heavy metal (Pt) and a bi-axial antiferromagnetic (AFM) dielectric (NiO) can be a source of a coherent THz signal. A spin-current flowing from a DC-current-driven Pt layer and polarized along the hard AFM anisotropy axis excites a non-uniform in time precession of magnetizations sublattices in the AFM, due to the presence of a weak easy-plane AFM anisotropy. The frequency of the AFM oscillations varies in the range of 0.1–2.0 THz with the driving current in the Pt layer from 108 A/cm2 to 109 A/cm2. The THz-frequency signal from the AFM with the amplitude exceeding 1 V/cm is picked up by the inverse spin-Hall effect in Pt. The operation of a room-temperature AFM THz-frequency oscillator is similar to that of a cryogenic JJ oscillator, with the energy of the easy-plane magnetic anisotropy playing the role of the Josephson energy.
Effect of ground motion from nuclear excavation: interim canal studies
Energy Technology Data Exchange (ETDEWEB)
King, C. Y.; Nadolski, M. E.
1969-09-01
The effect of ground motion due to nuclear excavation of a sea-level canal at two alternative routes, 17A and 25E, are discussed from the aspects of motion prediction and structural response. The importance of the high-rise building problem is stressed because of its complexity. Several damage criteria are summarized for advance planning of excavation and operation. The 1964 shot schedule and the latest revised schedule are included for comparison.
Landau-Zener effect in superfluid nuclear systems
Mirea, M.
2002-01-01
The Landau--Zener effect is generalized for many-body systems with pairing residual interactions. The microscopic equations of motion are obtained and the $^{14}$C decay of $^{223}$Ra spectroscopic factors are deduced. An asymmetric nuclear shape parametrization given by two intersected spheres is used. The single particle level scheme is determined in the frame of the superasymmetric two-center shell. The deformation energy is computed in the microscopic-macroscopic approximation. The penetr...
Semiclassical Quantization of Spinning Quasiparticles in Ballistic Josephson Junctions
Konschelle, François; Bergeret, F. Sebastián; Tokatly, Ilya V.
2016-06-01
A Josephson junction made of a generic magnetic material sandwiched between two conventional superconductors is studied in the ballistic semiclassic limit. The spectrum of Andreev bound states is obtained from the single valuedness of a particle-hole spinor over closed orbits generated by electron-hole reflections at the interfaces between superconducting and normal materials. The semiclassical quantization condition is shown to depend only on the angle mismatch between initial and final spin directions along such closed trajectories. For the demonstration, an Andreev-Wilson loop in the composite position-particle-hole-spin space is constructed and shown to depend on only two parameters, namely, a magnetic phase shift and a local precession axis for the spin. The details of the Andreev-Wilson loop can be extracted via measuring the spin-resolved density of states. A Josephson junction can thus be viewed as an analog computer of closed-path-ordered exponentials.
High-temperature superconductor vertically-stacked Josephson junctions
Energy Technology Data Exchange (ETDEWEB)
Yoshinaga, Y; Kito, T; Izawa, S; Maruyama, M; Inoue, M; Fujimaki, A; Hayakawa, H [Department of Quantum Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)
2002-12-01
We study vertically-stacked interface-treated Josephson junctions (ITJs). The barriers of ITJs are formed by Ar ion etching and subsequent annealing, not by depositing an artificial barrier. We have investigated the dependences of the junction properties on the processing parameters. It is found that the control of junction properties can be realized by controlling the incidence angle of Ar, and that the higher accelerating voltage of Ar reduces leakage paths in a barrier. Moreover, we have successfully eliminated the excess current of the junctions using the PrGaO{sub 3} (PGO) doping process. We conclude that the conjunction of the interface treatment and the PGO doping technique leads to highly integrated Josephson circuits.
High-temperature superconductor vertically-stacked Josephson junctions
Yoshinaga, Y; Izawa, S; Maruyama, M; Inoue, M; Fujimaki, A; Hayakawa, H
2002-01-01
We study vertically-stacked interface-treated Josephson junctions (ITJs). The barriers of ITJs are formed by Ar ion etching and subsequent annealing, not by depositing an artificial barrier. We have investigated the dependences of the junction properties on the processing parameters. It is found that the control of junction properties can be realized by controlling the incidence angle of Ar, and that the higher accelerating voltage of Ar reduces leakage paths in a barrier. Moreover, we have successfully eliminated the excess current of the junctions using the PrGaO sub 3 (PGO) doping process. We conclude that the conjunction of the interface treatment and the PGO doping technique leads to highly integrated Josephson circuits.
Evidence for nonlocal electrodynamics in planar Josephson junctions.
Boris, A A; Rydh, A; Golod, T; Motzkau, H; Klushin, A M; Krasnov, V M
2013-09-13
We study the temperature dependence of the critical current modulation I(c)(H) for two types of planar Josephson junctions: a low-Tc Nb/CuNi/Nb and a high-Tc YBa2Cu3O(7-δ) bicrystal grain-boundary junction. At low T both junctions exhibit a conventional behavior, described by the local sine-Gordon equation. However, at elevated T the behavior becomes qualitatively different: the I(c)(H) modulation field ΔH becomes almost T independent and neither ΔH nor the critical field for the penetration of Josephson vortices vanish at Tc. Such an unusual behavior is in good agreement with theoretical predictions for junctions with nonlocal electrodynamics. We extract absolute values of the London penetration depth λ from our data and show that a crossover from local to nonlocal electrodynamics occurs with increasing T when λ(T) becomes larger than the electrode thickness.
Superconducting state of metallic nanoclusters and Josephson tunneling networks
Energy Technology Data Exchange (ETDEWEB)
Kresin, Vladimir, E-mail: vzkresin@lbl.gov [Lawrence Berkeley Laboratory, University of California at Berkeley, CA 94720 (United States); Ovchinnikov, Yurii [L. Landau Institute for Theoretical Physics, RAN, Moscow 117334 (Russian Federation)
2014-11-15
Highlights: • Specific nanoclusters form a new family of high T{sub c} superconductors. • For an isolated cluster the pairing affects its energy spectrum. • Nano-based Josephson tunneling network can transfer a macroscopic superconducting current at high temperatures. • A.c. tunneling network can be synchronized and radiates as a single junction. - Abstract: Metallic nanoclusters form a new family of high temperature superconductors. In principle, the value of T{sub c} can be raised up to room temperature. In addition, one can observe the Josephson tunneling between two clusters. One can build the nanocluster-based tunneling network capable to transfer a macroscopic supercurrent at high temperatures. Such a network can be synchronized and radiate as single junction.
Tailored Josephson phase: 0, {pi} and 0-{pi} SIFS Josephson junctions
Energy Technology Data Exchange (ETDEWEB)
Weides, Martin; Bannykh, Alexey; Peralagu, Uthayasankaran [Institute for Solid State Research, Research Centre Juelich (Germany); Pfeiffer, Judith; Kemmler, Matthias; Koelle, Dieter; Kleiner, Reinhold; Goldobin, Edward [Physikalisches Institut - Experimentalphysik II, (Germany)
2008-07-01
In superconducting/ferromagnet (S/F) systems the superconducting wave function extends into the ferromagnet with a damped oscillatory behavior. This results in novel and interesting physics, such as the possibility to realize a {pi} Josephson junction (JJ) - a JJ with the phase drop of {pi} in the ground state. Recently, we fabricated Nb/Al{sub 2}O{sub 3}/NiCu/Nb JJs with uniform as well as step-like ferromagnetic layer to obtain 0, {pi} and 0-{pi} JJs. Here we present our recent results on planar SIFS JJs with F-layer made of Ni, and compare them with the theory in the clean/dirty limit and with experiments by other groups. The critical current density in the {pi} state is larger and the order parameter decay is weaker than for {pi} JJs made using weak ferromagnetic alloys, e.g. NiCu. The 0-{pi} boundary in JJs with a step-like F-layer thickness may give rise to a pinned spontaneous vortex of supercurrent with magnetic flux {<=}{phi}{sub 0}/2. Latest experiments on short and long stepped SIFS JJs (0-{pi}, 0-{pi}-0 etc.) are discussed.
Josephson physics mediated by the Mott insulating phase
Vishveshwara, Smitha; Lannert, Courtney
2008-01-01
We investigate the static and dynamic properties of bosonic lattice systems in which condensed and Mott insulating phases co-exist due to the presence of a spatially-varying potential. We formulate a description of these inhomogeneous systems and calculate the bulk energy at and near equilibrium. We derive the explicit form of the Josephson coupling between disjoint superfluid regions separated by Mott insulating regions. We obtain detailed estimates for the experimentally-realized case of al...
Experiments on soliton motion in annular Josephson junctions
DEFF Research Database (Denmark)
Davidson, A.; Dueholm, B.; Pedersen, Niels Falsig
1986-01-01
We report here the results of an extensive experimental investigation of soliton dynamics in Josephson junctions of different annular geometries. The annular geometry is unique in that it allows for the study of undisturbed soliton motion as well as soliton–antisoliton collisons, since there are ...... for a single trapped soliton, and evidence linking the stability of the soliton to surface damping. Journal of Applied Physics is copyrighted by The American Institute of Physics....
Memory effects on descent from nuclear fission barrier
Kolomietz, V M; Shlomo, S
2001-01-01
Non-Markovian transport equations for nuclear large amplitude motion are derived from the collisional kinetic equation. The memory effects are caused by the Fermi surface distortions and depend on the relaxation time. It is shown that the nuclear collective motion and the nuclear fission are influenced strongly by the memory effects at the relaxation time $\\tau \\geq 5\\cdot 10^{-23}{\\rm s}$. In particular, the descent of the nucleus from the fission barrier is accompanied by characteristic shape oscillations. The eigenfrequency and the damping of the shape oscillations depend on the contribution of the memory integral in the equations of motion. The shape oscillations disappear at the short relaxation time regime at $\\tau \\to 0$, which corresponds to the usual Markovian motion in the presence of friction forces. We show that the elastic forces produced by the memory integral lead to a significant delay for the descent of the nucleus from the barrier. Numerical calculations for the nucleus $^{236}$U shows that ...
Nuclear matter from effective quark-quark interaction.
Baldo, M; Fukukawa, K
2014-12-12
We study neutron matter and symmetric nuclear matter with the quark-meson model for the two-nucleon interaction. The Bethe-Bruckner-Goldstone many-body theory is used to describe the correlations up to the three hole-line approximation with no extra parameters. At variance with other nonrelativistic realistic interactions, the three hole-line contribution turns out to be non-negligible and to have a substantial saturation effect. The saturation point of nuclear matter, the compressibility, the symmetry energy, and its slope are within the phenomenological constraints. Since the interaction also reproduces fairly well the properties of the three-nucleon system, these results indicate that the explicit introduction of the quark degrees of freedom within the considered constituent quark model is expected to reduce the role of three-body forces.
Finite size effects in Neutron Star and Nuclear matter simulations
Molinelli, P A Giménez
2014-01-01
In this work we study molecular dynamics simulations of symmetric nuclear matter using a semi-classical nucleon interaction model. We show that, at sub-saturation densities and low temperatures, the solutions are non-homogeneous structures reminiscent of the ``nuclear pasta'' phases expected in Neutron Star Matter simulations, but shaped by artificial aspects of the simulations. We explore different geometries for the periodic boundary conditions imposed on the simulation cell: cube, hexagonal prism and truncated octahedron. We find that different cells may yield different solutions for the same physical conditions (i.e. density and temperature). The particular shape of the solution at a given density can be predicted analytically by energy minimization. We also show that even if this behavior is due to finite size effects, it does not mean that it vanishes for very large systems and it actually is independent of the system size: The system size sets the only characteristic length scale for the inhomogeneitie...
Nuclear energy density functional inspired by an effective field theory
Papakonstantinou, Panagiota; Lim, Yeunhwan; Hyun, Chang Ho
2016-01-01
Inspired by an effective field theory (EFT) for Fermi systems, we write the nuclear energy density functional (EDF) as an expansion in powers of the Fermi momentum $k_F$, or the cubic root of the density $\\rho^{1/3}$. With the help of pseudodata from microscopic calculations we fit the coefficients of the functional within a wide range of densities relevant for nuclei and neutron stars. The functional already at low order can reproduce known or adopted values of nuclear matter near saturation, a range of existing microscopic results on asymmetric matter, and a neutron-star mass-radius relation consistent with observations. Our approach leads to a transparent expansion of Skyrme-type EDFs and opens up many possibilities for future explorations in nuclei and homogeneous matter.
Nuclear Parity-Violation in Effective Field Theory
Energy Technology Data Exchange (ETDEWEB)
Shi-Lin Zhu; C.M. Maekawa; B.R. Holstein; M.J. Ramsey-Musolf; U van Kolck
2005-02-21
We reformulate the analysis of nuclear parity-violation (PV) within the framework of effective field theory (EFT). To order Q, the PV nucleon-nucleon (NN) interaction depends on five a priori unknown constants that parameterize the leading-order, short-range four-nucleon operators. When pions are included as explicit degrees of freedom, the potential contains additional medium- and long-range components parameterized by PV piNN couplings. We derive the form of the corresponding one- and two-pion-exchange potentials. We apply these considerations to a set of existing and prospective PV few-body measurements that may be used to determine the five independent low-energy constants relevant to the pionless EFT and the additional constants associated with dynamical pions. We also discuss the relationship between the conventional meson-exchange framework and the EFT formulation, and argue that the latter provides a more general and systematic basis for analyzing nuclear PV.
Sloppy nuclear energy density functionals: effective model reduction
Niksic, Tamara
2016-01-01
Concepts from information geometry are used to analyse parameter sensitivity for a nuclear energy density functional, representative of a class of semi-empirical functionals that start from a microscopically motivated ansatz for the density dependence of the energy of a system of protons and neutrons. It is shown that such functionals are sloppy, characterized by an exponential range of sensitivity to parameter variations. Responsive to only a few stiff parameter combinations, they exhibit an exponential decrease of sensitivity to variations of the remaining soft parameters. By interpreting the space of model predictions as a manifold embedded in the data space, with the parameters of the functional as coordinates on the manifold, it is also shown that the exponential distribution of model manifold widths corresponds to the distribution of parameter sensitivity. Using the Manifold Boundary Approximation Method, we illustrate how to systematically construct effective nuclear density functionals of successively...
Detecting topological superconductivity with φ0 Josephson junctions
Schrade, Constantin; Hoffman, Silas; Loss, Daniel
2017-05-01
The recent experimental discovery of φ0 Josephson junctions by Szombati et al. [Nat. Phys. 12, 568 (2016), 10.1038/nphys3742], characterized by a finite phase offset in the supercurrent, requires the same ingredients as topological superconductors, which suggests a profound connection between these two distinct phenomena. Here, we show that a quantum dot φ0 Josephson junction can serve as a qualitative indicator for topological superconductivity: microscopically, we find that the phase shift in a junction of s -wave superconductors is due to the spin-orbit induced mixing of singly occupied states on the quantum dot, while for a topological superconductor junction it is due to singlet-triplet mixing. Because of this important difference, when the spin-orbit vector of the quantum dot and the external Zeeman field are orthogonal, the s -wave superconductors form a π Josephson junction, while the topological superconductors have a finite offset φ0 by which topological superconductivity can be distinguished from conventional superconductivity. Our prediction can be immediately tested in nanowire systems currently used for Majorana fermion experiments and thus offers a realistic approach for detecting topological bound states.
Josephson radiation from InSb-nanowire junction
van Woerkom, David; Proutski, Alexander; Krivachy, Tamas; Bouman, Daniel; van Gulik, Ruben; Gul, Onder; Cassidy, Maja; Car, Diana; Bakkers, Erik; Kouwenhoven, Leo; Geresdi, Attila
Semiconducting nanowire Josephson junctions has recently gained interest as building blocks for Majorana circuits and gate-tuneable superconducting qubits . Here we investigate the rich physics of the Andreev bound state spectrum of InSb nanowire junctions utilizing the AC Josephson relation 2eV_bias =hf . We designed and characterized an on-chip microwave circuit coupling the nanowire junction to an Al/AlOx/Al tunnel junction. The DC response of the tunnel junction is affected by photon-assisted quasiparticle current, which gives us the possibility to measure the radiation spectrum of the nanowire junction up to several tens of GHz in frequency. Our circuit design allows for voltage or phase biasing of the Josephson junction enabling direct mapping of Andreev bound states. We discuss our fabrication methods and choice of materials to achieve radiation detection up to a magnetic field of few hundred milliTesla, compatible with Majorana states in spin-orbit coupled nanowires. This work has been supported by the Netherlands Foundations FOM, Abstract NWO and Microsoft Corporation Station Q.
Effects of Neutron Skin Thickness in Peripheral Nuclear Reactions
Institute of Scientific and Technical Information of China (English)
FANG De-Qing; MA Yu-Gang; CAI Xiang-Zhou; TIAN Wen-Dong; WANG Hong-Wei
2011-01-01
Effects of neutron skin thickness in peripheral nuclear collisions are investigated using the statistical abrasion ablation (SAA) model. The reaction cross section, neutron (proton) removal cross section, one-neutron (proton) removal cross section as well as their ratios for nuclei with different neutron skin thickness are studied. It is demonstrated that there are good linear correlations between these observables and the neutron skin thickness for neutron-rich nuclei. The ratio between the (one-)neutron and proton removal cross section is found to be the most sensitive observable of neutron skin thickness. Analysis shows that the relative increase of this ratio could be used to determine the neutron skin size in neutron-rich nuclei.%Effects of neutron skin thickness in peripheral nuclear collisions are investigated using the statistical abrasion ablation (SAA ) model.The reaction cross section,neutron (proton) removal cross section,one-neutron (proton) removal cross section as well as their ratios for nuclei with different neutron skin thickness are studied.It is demonstrated that there are good linear correlations between these observables and the neutron skin thickness for neutron-rich nuclei.The ratio between the (one-)neutron and proton removal cross section is found to be the most sensitive observable of neutron skin thickness.Analysis shows that the relative increase of this ratio could be used to determine the neutron skin size in neutron-rich nuclei.Determining the size and shape of a nucleus is one of the most important subjects since the discovery of atomic nuclei.The rms radii of the neutron (rn) and proton (rp) density distributions are among the most prominent observables for this purpose.Studies for stable nuclei have shown that the nuclear radii are proportional to A1/3,with A being the nuclear mass number.Meanwhile,the density distributions of neutrons and protons in stable nuclei are very similar.
Effects of hypothetical improvised nuclear detonation on the electrical infrastructure
Energy Technology Data Exchange (ETDEWEB)
Barrett, Christopher L.; Eubank, Stephen; Evrenosoglu, C. Yaman; Marathe, Achla; Marathe, Madhav V.; Phadke, Arun; Thorp, James; Vullikanti, Anil [Virginia Tech, Blacksburg, VA (United States). Network Dynamics and Simulation Science Lab.
2013-07-01
We study the impacts of a hypothetical improvised nuclear detonation (IND) on the electrical infrastructure and its cascading effects on other urban inter-dependent infrastructures of a major metropolitan area in the US. We synthesize open source information, expert knowledge, commercial software and Google Earth data to derive a realistic electrical transmission and distribution network spanning the region. A dynamic analysis of the geo-located grid is carried out to determine the cause of malfunction of components, and their short-term and long-term effect on the stability of the grid. Finally a detailed estimate of the cost of damage to the major components of the infrastructure is provided.
Effects of the Fukushima Daiichi nuclear accident on goshawk reproduction.
Murase, Kaori; Murase, Joe; Horie, Reiko; Endo, Koichi
2015-03-24
Although the influence of nuclear accidents on the reproduction of top predators has not been investigated, it is important that we identify the effects of such accidents because humans are also top predators. We conducted field observation for 22 years and analysed the reproductive performance of the goshawk (Accipiter gentilis fujiyamae), a top avian predator in the North Kanto area of Japan, before and after the accidents at the Fukushima Daiichi nuclear power plant that occurred in 2011. The reproductive performance declined markedly compared with the pre-accident years and progressively decreased for the three post-accident study years. Moreover, it was suggested that these declines were primarily caused by an increase in the air dose rate of radio-active contaminants measured under the nests caused by the nuclear accidents, rather than by other factors. We consider the trends in the changes of the reproductive success rates and suggest that internal exposure may play an important role in the reproductive performance of the goshawk, as well as external exposure.
A new explanation to the cold nuclear matter effects in heavy ion collisions
Liu, Zhi-Feng
2014-01-01
The J/Psi cross section ratios of p-A/p-p under different collision energy is calculated with cold nuclear matter effects redefined in this paper. The advantage of these new definitions is that all cold nuclear matter effects have clear physical origins.The radios are compared with the corresponding experiment data and that calculated with classic nuclear effects. The ratios calculated with new definitions can reproduce almost all existing J/Psi measurements in p-A collisions more accuratly than that calculated with classic nuclear effects. Hence, this paper presents a new approach to explain cold nuclear effects in the hardproduction of quarkonium.
Effect of a strong magnetic field on the energy yield of nuclear reactions in dense nuclear matter
Energy Technology Data Exchange (ETDEWEB)
Sekerzhitskii, V.S. [Pushkin Pedagogical Institute, Brest (Belarus)
1995-01-01
According to modern concepts, the electron-neutron-nuclear (Aen) phase of dense highly degenerate matter can be realized in the shells of neutron stars. This phase has relatively stable and absolutely stable states of thermodynamic equilibrium. Strong magnetic fields can exist in neutron stars. For this reason, analysis of their effect on the characteristics of the Aen phase is of great interest. It is specially important to study the influence of strong magnetic fields on the energy yield of nuclear reactions in dense nuclear matter because the transition to the absolute equilibrium state proceeds through these reactions.
Influence of noise and near-resonant perturbations on bifurcations in Josephson junctions
DEFF Research Database (Denmark)
Svensmark, Henrik; Hansen, Jørn Bindslev; Pedersen, Niels Falsig
1987-01-01
The stabilization of a nonlinear system against period-doubling bifurcations by means of a periodic perturbation has been investigated. With the Josephson junction as a model system, both numerical simulations (including noise) and measurements on Josephson tunnel junctions have been performed...
Bifurcation and chaos in a dc-driven long annular Josephson junction
DEFF Research Database (Denmark)
Grnbech-Jensen, N.; Lomdahl, Peter S.; Samuelsen, Mogens Rugholm
1991-01-01
Simulations of long annular Josephson junctions in a static magnetic field show that in large regions of bias current the system can exhibit a period-doubling bifurcation route to chaos. This is in contrast to previously studied Josephson-junction systems where chaotic behavior has primarily been...
Static properties of small Josephson tunnel junctions in a transverse magnetic field
DEFF Research Database (Denmark)
Monaco, R.; Aarøe, Morten; Mygind, Jesper;
2008-01-01
The magnetic field distribution in the barrier of small planar Josephson tunnel junctions is numerically simulated in the case when an external magnetic field is applied perpendicular to the barrier plane. The simulations allow for heuristic analytical solutions for the Josephson static phase pro...
DEFF Research Database (Denmark)
Bak, Christen Kjeldahl; Kofoed, Bent; Pedersen, Niels Falsig;
1975-01-01
Experimental evidence for subharmonic, parametric excitation of plasma oscillations in Josephson tunnel junctions is presented. The experiments described are performed by measuring the microwave power necessary to switch a Josephson tunnel junction biased in the zero voltage state to a finite...
Institute of Scientific and Technical Information of China (English)
Zhan You-Bang
2004-01-01
We have investigated the reduced fluctuation properties in a mesoscopic Josephson junction with the squeezed state at a finite temperature. It is shown that the fluctuations increase with increasing temperature and the mesoscopic Josephson junction subsystem can exhibit squeezing behaviour at an appropriately low temperature.
2010-01-29
... Gamma Nuclear Radiology; Confirmatory Order Modifying License (Effective Immediately) I Beta Gamma Nuclear Radiology (BGNR) (Licensee) is the holder of medical License No. 52-25542-01, issued by the U.S...
Radiation and Thermal Effects on Used Nuclear Fuel and Nuclear Waste Forms
Energy Technology Data Exchange (ETDEWEB)
Weber, William [Univ. of Tennessee, Knoxville, TN (United States)
2016-09-20
This is the final report of the NEUP project “Radiation and Thermal Effects on Used Nuclear Fuel and Nuclear Waste Forms.” This project started on July 1, 2012 and was successfully completed on June 30, 2016. This report provides an overview of the main achievements, results and findings through the duration of the project. Additional details can be found in the main body of this report and in the individual Quarterly Reports and associated Deliverables of this project, which have been uploaded in PICS-NE. The objective of this research was to advance understanding and develop validated models on the effects of self-radiation from beta and alpha decay on the response of used nuclear fuel and nuclear waste forms during high-temperature interim storage and long-term permanent disposition. To achieve this objective, model used-fuel materials and model waste form materials were identified, fabricated, and studied. Two model used-fuel materials, nanograined CeO_{2} and ZrO_{2}, were fabricated as part of this study. To complement the work on damage evolution in nanocrystalline CeO_{2} and ZrO_{2} during helium implantation and heavy ion irradiation, additional irradiations were performed on single crystal CeO_{2} and ZrO_{2}. Samples were irradiated to ion fluences corresponding to an irradiation dose ranging from 0.11 to 100 dpa (displacements per atom), which is comparable to the irradiated dose expected during interim and long-term storage. Detailed transmission electron microscopy, Rutherford backscattering and Raman spectroscopy analysis have been carried out on these irradiated materials. The critical helium concentration for formation of helium bubbles was found to be 0.15 atomic percent (at%) in these samples, which is similar to that found in ^{238}Pu-doped UO_{2}. This critical helium concentration for bubble formation will be achieved in less than 100 years for MOX used fuels, in about 1000
Energy Technology Data Exchange (ETDEWEB)
Marques, Paulo, E-mail: pmarx@iq.usp.br [Universidade de Sao Paulo (USP), SP (Brazil)
2012-07-01
This work reports the severe nuclear incident occurred in Japan on March 11, 2011, due a earthquake followed by tsunami, where three of six existing reactors in Daiichi-Fukushima were damaged. The explosions with releasing of radioactive materials to environment have been discussed. It has shown the harmful effects of radiations to the exposed human being. Besides, the existence of the main impediment of the nuclear electric generation represented by production of non-disposable atomic waste has been discussed. (author)
Radiation effects on organic materials in nuclear plants. Final report
Energy Technology Data Exchange (ETDEWEB)
Bruce, M B; Davis, M V
1981-11-01
A literature search was conducted to identify information useful in determining the lowest level at which radiation causes damage to nuclear plant equipment. Information was sought concerning synergistic effects of radiation and other environmental stresses. Organic polymers are often identified as the weak elements in equipment. Data on radiation effects are summarized for 50 generic name plastics and 16 elastomers. Coatings, lubricants, and adhesives are treated as separate groups. Inorganics and metallics are considered briefly. With a few noted exceptions, these are more radiation resistant than organic materials. Some semiconductor devices and electronic assemblies are extremely sensitive to radiation. Any damage threshold including these would be too low to be of practical value. With that exception, equipment exposed to less than 10/sup 4/ rads should not be significantly affected. Equipment containing no Teflon should not be significantly affected by 10/sup 5/ rads. Data concerning synergistic effects and radiation sensitization are discussed. The authors suggest correlations between the two effects.
Medium effects in DIS from polarized nuclear targets
Energy Technology Data Exchange (ETDEWEB)
Fanchiotti, Huner; Garcia Canal, Carlos A.; Tarutina, Tatiana [Universidad Nacional de La Plata, Departamento de Fisica, C.C. 67, La Plata (Argentina); Universidad Nacional de La Plata, IFLP(CONICET), C.C. 67, La Plata (Argentina); Vento, Vicente [Universidad de Valencia, Consejo Superior de Investigaciones Cientificas, Departamento de Fisica Teorica and Instituto de Fisica Corpuscular, Burjassot (Valencia) (Spain)
2014-07-15
The behavior of the nucleon structure functions in lepton nuclei deep inelastic scattering, both polarized and unpolarized, due to nuclear structure effects is reanalyzed. The study is performed in two schemes: an x-rescaling approach, and one in which there is an increase of sea quark components in the in-medium nucleon, related to the low-energy N-N interaction. In view of a recent interesting experimental proposal to study the behavior of the proton spin structure functions in nuclei we proceed to compare these approaches in an effort to enlighten the possible phenomenological interest of such difficult experiment. (orig.)
Climate and chemistry effects of a regional scale nuclear conflict
Directory of Open Access Journals (Sweden)
A. Stenke
2013-05-01
Full Text Available Previous studies have highlighted the severity of detrimental effects for life on Earth after an assumed regionally limited nuclear war. These effects are caused by climatic, chemical and radiative changes persisting for up to one decade. However, so far only a very limited number of climate model simulations have been performed, giving rise to the question how realistic previous computations have been. This study uses the coupled chemistry climate model (CCM SOCOL, which belongs to a different family of CCMs than previously used, to investigate the consequences of such a hypothetical nuclear conflict. In accordance with previous studies, the present work assumes a scenario of a nuclear conflict between India and Pakistan, each applying 50 warheads with an individual blasting power of 15 kt ("Hiroshima size" against the major population centers, resulting in the emission of tiny soot particles, which are generated in the firestorms expected in the aftermath of the detonations. Substantial uncertainties related to the calculation of likely soot emissions, particularly concerning assumptions of target fuel loading and targeting of weapons, have been addressed by simulating several scenarios, with soot emissions ranging from 1 to 12 Tg. Their high absorptivity with respect to solar radiation leads to a tremendous self-lofting of the soot particles into the strato- and mesosphere, where they remain for several years. Consequently, the model suggests Earth's surface temperatures to drop by several degrees Celsius due to the shielding of solar irradiance by the soot, indicating a major global cooling. In addition, there is a substantial reduction of precipitation lasting 5 to 10 yr after the conflict, depending on the magnitude of the initial soot release. Extreme cold spells associated with massive sea ice formation are found during Northern Hemisphere winter, which expose the continental land masses of Northern America and Eurasia to chilling
Accelerated nuclear quantum effects sampling with open path integrals
Mazzola, Guglielmo
2016-01-01
We numericaly demonstrate that, in double well models, the autocorrelation time of open path integral Monte Carlo simulations can be much smaller compared to standard ones using ring polymers. We also provide an intuitive explanation based on the role of instantons as transition states of the path integral pseudodynamics. Therefore we propose that, in all cases when the ground state approximation to the finite temperature partition function holds, open path integral simulations can be used to accelerate the sampling in realistic simulations aimed to explore nuclear quantum effects.
The Hoyle state in nuclear lattice effective field theory
Indian Academy of Sciences (India)
Timo A Lähde; Evgeny Epelbaum; Hermann Krebs; Dean Lee; Ulf-G Meißner; Gautam Rupak
2014-11-01
We review the calculation of the Hoyle state of 12C in nuclear lattice effective field theory (NLEFT) and its anthropic implications in the nucleosynthesis of 12C and 16O in red giant stars. We also analyse the extension of NLEFT to the regime of medium-mass nuclei, with emphasis on the determination of the ground-state energies of the nuclei 16O, 20Ne, 24Mg, and 28Si by Euclidean time projection. Finally, we discuss recent NLEFT results for the spectrum, electromagnetic properties, and α-cluster structure of 16O.
Nuclear effects in F_3 structure function of nucleon
Athar, M Sajjad; Vacas, M J Vicente
2007-01-01
We study nuclear effects in the $F^A_3(x)$ structure function in the deep inelastic neutrino reactions on iron by using a relativistic framework to describe the nucleon spectral functions in the nucleus. The results for the ratio $R(x,Q^2)=\\frac{F^A_3(x,Q^2)}{AF^N_3(x, Q^2)}$ and the Gross-Llewellyn Smith(GLS) integral $G(x,Q^2)=\\int_x^1 dx F^A_3(x,Q^2)$ in nuclei are discussed and compared with the recent results available in literature from theoretical and phenomenological analyses of experimental data.
The effects on the atmosphere of a major nuclear exchange
Energy Technology Data Exchange (ETDEWEB)
1985-01-01
Most of the earth's population would survive the immediate horrors of a nuclear holocaust, but what long-term climatological changes would affect their ability to secure food and shelter. This sobering report considers the effects of fine dust from ground-level detonations, of smoke from widespread fires, and of chemicals released into the atmosphere. The authors use mathematical models of atmospheric processes and data from natural situations - e.g., volcanic eruptions and arctic haze - to draw their conclusions.
Nuclear EMC effect in non-extensive statistical model
Trevisan, Luis A.; Mirez, Carlos
2013-05-01
In the present work, we attempt to describe the nuclear EMC effect by using the proton structure functions obtained from the non-extensive statistical quark model. We record that such model has three fundamental variables, the temperature T, the radius, and the Tsallis parameter q. By combining different small changes, a good agreement with the experimental data may be obtained. Another interesting point of the model is to allow phenomenological interpretation, for instance, with q constant and changing the radius and the temperature or changing the radius and q and keeping the temperature.
Direct extraction of nuclear effects in quasielastic scattering on carbon
Wilkinson, Callum
2016-01-01
The differences between neutrino and antineutrino CCQE cross sections measured on hydrocarbon targets are due to fundamental differences in the cross section, different neutrino and antineutrino fluxes from the same beamline, and the additional interactions on hydrogen for antineutrinos that are absent for neutrinos. In this analysis we correct for the former two differences to extract a constraint on the ratio of the CCQE cross section for free and bound protons from MINERvA and MiniBooNE data. This measures nuclear effects in carbon, and we compare this measurement to models.
Nuclear Quantum Vibrational Effects in Shock Hugoniot Temperatures
Energy Technology Data Exchange (ETDEWEB)
Goldman, N; Reed, E; Fried, L E
2009-07-23
We present a straightforward method for the inclusion of quantum nuclear vibrational effects in molecular dynamics calculations of shock Hugoniot temperatures. Using a Grueneisen equation of state and a quasiharmonic approximation to the vibrational energies, we derive a simple, post-processing method for calculation of the quantum corrected Hugoniot temperatures. We have used our novel technique on ab initio simulations of shock compressed water. Our results indicate significantly closer agreement with all available experimental temperature data. Our formalism and technique can be easily applied to a number of different shock compressed molecular liquids or solids.
Nuclear Quantum Vibrational Effects in Shock Hugoniot Temperatures
Energy Technology Data Exchange (ETDEWEB)
Goldman, N; Reed, E; Fried, L E
2009-07-23
We present a straightforward method for the inclusion of quantum nuclear vibrational effects in molecular dynamics calculations of shock Hugoniot temperatures. Using a Grueneisen equation of state and a quasiharmonic approximation to the vibrational energies, we derive a simple, post-processing method for calculation of the quantum corrected Hugoniot temperatures. We have used our novel technique on ab initio simulations of shock compressed water. Our results indicate significantly closer agreement with all available experimental temperature data. Our formalism and technique can be easily applied to a number of different shock compressed molecular liquids or solids.
Climate and chemistry effects of a regional scale nuclear conflict
Stenke, A.; Hoyle, C. R.; Luo, B.; Rozanov, E.; Gröbner, J.; Maag, L.; Brönnimann, S.; Peter, T.
2013-05-01
Previous studies have highlighted the severity of detrimental effects for life on Earth after an assumed regionally limited nuclear war. These effects are caused by climatic, chemical and radiative changes persisting for up to one decade. However, so far only a very limited number of climate model simulations have been performed, giving rise to the question how realistic previous computations have been. This study uses the coupled chemistry climate model (CCM) SOCOL, which belongs to a different family of CCMs than previously used, to investigate the consequences of such a hypothetical nuclear conflict. In accordance with previous studies, the present work assumes a scenario of a nuclear conflict between India and Pakistan, each applying 50 warheads with an individual blasting power of 15 kt ("Hiroshima size") against the major population centers, resulting in the emission of tiny soot particles, which are generated in the firestorms expected in the aftermath of the detonations. Substantial uncertainties related to the calculation of likely soot emissions, particularly concerning assumptions of target fuel loading and targeting of weapons, have been addressed by simulating several scenarios, with soot emissions ranging from 1 to 12 Tg. Their high absorptivity with respect to solar radiation leads to a tremendous self-lofting of the soot particles into the strato- and mesosphere, where they remain for several years. Consequently, the model suggests Earth's surface temperatures to drop by several degrees Celsius due to the shielding of solar irradiance by the soot, indicating a major global cooling. In addition, there is a substantial reduction of precipitation lasting 5 to 10 yr after the conflict, depending on the magnitude of the initial soot release. Extreme cold spells associated with massive sea ice formation are found during Northern Hemisphere winter, which expose the continental land masses of Northern America and Eurasia to chilling coldness. In the
Pairing effects on spinodal decomposition of asymmetric nuclear matter
Directory of Open Access Journals (Sweden)
Burrello S.
2015-01-01
Full Text Available We present an analysis framed in the general context of two-component fermionic systems subjected to pairing correlations. The study is conducted for unstable asymmetric nuclear matter at low temperature, along the clusterization process driven by spinodal instabilities. It is shown that, especially around the transition temperature from the superfluid to the normal phase, pairing correlations may have non-negligible effects on the isotopic features of the clusterized low-density matter, which could be of interest also in the astrophysical context.
Josephson junction devices: Model quantum mechanical systems and medical applications
Chen, Josephine
In this dissertation, three experiments using Josephson junction devices are described. In Part I, the effect of dissipation on tunneling between charge states in a superconducting single-electron transistor (sSET) was studied. The sSET was fabricated on top of a semi-conductor heterostructure with a two-dimensional electron gas (2DEG) imbedded beneath the surface. The 2DEG acted as a dissipative ground plane. The sheet resistance of the 2DEG could be varied in situ by applying a large voltage to a gate on the back of the substrate. The zero-bias conductance of the sSET was observed to increase with increasing temperature and 2DEG resistance. Some qualitative but not quantitative agreement was found with theoretical calculations of the functional dependence of the conductance on temperature and 2DEG resistance. Part II describes a series of experiments performed on magnesium diboride point-contact junctions. The pressure between the MgB2 tip and base pieces could be adjusted to form junctions with different characteristics. With light pressure applied between the two pieces, quasiparticle tunneling in superconductor-insulator-superconductor junctions was measured. From these data, a superconducting gap of approximately 2 meV and a critical temperature of 29 K were estimated. Increasing the pressure between the MgB2 pieces formed junctions with superconductor-normal metal-superconductor characteristics. We used these junctions to form MgB2 superconducting quantum interference devices (SQUIDS). Noise levels as low as 35 fT/Hz1/2 and 4 muphi 0/Hz1/2 at 1 kHz were measured. In Part III, we used a SQUID-based instrument to acquire magnetocardiograms (MCG), the magnetic field signal measured from the human heart. We measured 51 healthy volunteers and 11 cardiac patients both at rest and after treadmill exercise. We found age and sex related differences in the MCG of the healthy volunteers that suggest that these factors should be considered when evaluating the MCG for
Finite size effects in neutron star and nuclear matter simulations
Energy Technology Data Exchange (ETDEWEB)
Giménez Molinelli, P.A., E-mail: pagm@df.uba.ar; Dorso, C.O.
2015-01-15
In this work we study molecular dynamics simulations of symmetric nuclear and neutron star matter using a semi-classical nucleon interaction model. Our aim is to gain insight on the nature of the so-called “finite size effects”, unavoidable in this kind of simulations, and to understand what they actually affect. To do so, we explore different geometries for the periodic boundary conditions imposed on the simulation cell: cube, hexagonal prism and truncated octahedron. For nuclear matter simulations we show that, at sub-saturation densities and low temperatures, the solutions are non-homogeneous structures reminiscent of the “nuclear pasta” phases expected in neutron star matter simulations, but only one structure per cell and shaped by specific artificial aspects of the simulations—for the same physical conditions (i.e. number density and temperature) different cells yield different solutions. The particular shape of the solution at low enough temperature and a given density can be predicted analytically by surface minimization. We also show that even if this behavior is due to the imposition of periodic boundary conditions on finite systems, this does not mean that it vanishes for very large systems, and it is actually independent of the system size. We conclude that, for nuclear matter simulations, the cells' size sets the only characteristic length scale for the inhomogeneities, and the geometry of the periodic cell determines the shape of those inhomogeneities. To model neutron star matter we add a screened Coulomb interaction between protons, and perform simulations in the three cell geometries. Our simulations indeed produce the well known nuclear pasta, with (in most cases) several structures per cell. However, we find that for systems not too large results are affected by finite size in different ways depending on the geometry of the cell. In particular, at the same certain physical conditions and system size, the hexagonal prism yields a
Temperature-dependent current-voltage characteristics of niobium SNIS Josephson junctions
Energy Technology Data Exchange (ETDEWEB)
Lacquaniti, V; Andreone, D; Cassiago, C; De Leo, N; Fretto, M; Sosso, A [National Institute of Metrological Research, Electromagnetism Division, Strada delle Cacce 91, 10135 Torino (Italy); Belogolovskii, M, E-mail: v.lacquaniti@inrim.i [Donetsk Physical and Technical Institute, National Academy of Sciences of Ukraine, Str. Rosa Luxemburg. 72, 83114 Donetsk (Ukraine)
2010-06-01
Motivated by a search for a suitable technology to fabricate Josephson junctions with a tunable damping regime, we performed a systematic study of the temperature effect on the critical current in Nb/Al-AlO{sub x}-Nb heterostructures with a nanometer-thick Al interlayer. For Al layer thicknesses ranging from 40 to 110 nm, we have observed a transition from hysteretic (below 4.2 K) to non-hysteretic (above 4.2 K) current-voltage curves. Measured supercurrent-vs-temperature characteristics which significantly differ from those of traditional SIS and SNS devices are interpreted in terms of the superconducting proximity effect between Al and Nb films. Thermal stability and good reproducibility of our junctions are demonstrated.
Nuclear and extra-nuclear effects of retinoid acid receptors: how they are interconnected.
Piskunov, Aleksandr; Al Tanoury, Ziad; Rochette-Egly, Cécile
2014-01-01
The nuclear retinoic acid receptors (RAR α, β and γ) and their isoforms are ligand-dependent regulators of transcription Transcription , which mediate the effects of all-trans retinoic acid (RA), the active endogenous metabolite of Vitamin A. They heterodimerize with Retinoid X Receptors (RXRs α, β and γ), and regulate the expression of a battery of target genes Target genes involved in cell growth and differentiation Differentiation . During the two last decades, the description of the crystallographic structures of RARs, the characterization of the polymorphic response elements of their target genes Target genes , and the identification of the multiprotein complexes involved in their transcriptional activity have provided a wealth of information on their pleiotropic effects. However, the regulatory scenario became even more complicated once it was discovered that RARs are phosphoproteins and that RA can activate kinase signaling cascades via a pool of RARs present in membrane lipid rafts. Now it is known that these RA-activated kinases Kinases translocate to the nucleus where they phosphorylate RARs and other retinoid signaling factors. The phosphorylation Phosphorylation state of the RARs dictates whether the transcriptional programs which are known to be induced by RA are facilitated and/or switched on. Thus, kinase signaling pathways appear to be crucial for fine-tuning the appropriate physiological activity of RARs.
Nuclear counter effect and pi-e misidentification
Zürcher, D
2000-01-01
The e sup+-/pi sup+- discrimination within the CMS(1) ECAL is investigated using GEANT simulations and the 1998 test beam results. If one takes into account the energy left in the ECAL crystals alone (i.e. without read-out effects), the probability that a pi sup+- leaves more than 95% of its initial energy decreases from about 0.01% for 10 GeV to about 0.001% for 50 GeV. The Nuclear Counter Effect within the Avalanche Photo-Diodes (APD) enhances the probability of an electron misidentification. With the expected value of this effect (approx 100 MeV), this probability appears then to be between 0.2% and 0.01% for initial momenta varying, respectively, between 5 and 50 GeV. Important consequences of the pion-electron misidentification could appear in the form of new possible backgrounds for physics channels.
Freudenburg, William R.; Davidson, Debra J.
2007-01-01
Studies of reactions to nuclear facilities have found consistent male/female differences, but the underlying reasons have never been well-clarified. The most common expectations involve traditional roles--with men focusing more on economic concerns and with women (especially mothers) being more concerned about family safety/health. Still, with…
Freudenburg, William R.; Davidson, Debra J.
2007-01-01
Studies of reactions to nuclear facilities have found consistent male/female differences, but the underlying reasons have never been well-clarified. The most common expectations involve traditional roles--with men focusing more on economic concerns and with women (especially mothers) being more concerned about family safety/health. Still, with…
Risk perception of nuclear energy and the effect of information
Energy Technology Data Exchange (ETDEWEB)
Taylor, Caroline
2000-08-01
Results from 4 studies are reported. A mixture of survey, experimental and quasi-experimental designs and a variety of samples (undergraduates, postgraduates and graduates of Nottingham University, visitors to Sellafield and a random national UK sample) were used to examine risk perceptions of nuclear energy. The roles of risk, benefit, preference, knowledge, control, trust, attitudes, intentions to act and personality, in relation to nuclear energy, were examined. A survey study examined and explored the above-mentioned variables. Then experimental and quasi-experimental studies were devised using a BNFL video advert, a BNFL written newspaper advert and BNFL's Sellafield Visitors' Centre (SVC), to test the effectiveness of information on these variables. Through pre-post experimental and quasi-experimental studies, it was shown that levels of knowledge could be increased through information. This increase was also seen to be sustained over time, especially when people engaged in their learning environment (reading a newspaper or going to Sellafield). Regarding levels of knowledge, passively watching a video had a significant but very small effect. Changes in attitudes were also recorded, although these were only sustained over time for the Visitors' Centre. Concerning the other variables in question, changes in perceived risk, perceived benefit and preference were also recorded for the samples, although these results either could not be attributed to the different types of information, were not sustained or were no different to observations in the control groups. Some changes were recorded for aspects of control in the advert study although none were seen in the SVC study. No changes were found in trust for any of the different types of information. The main, consistent finding, was that sustained changes were recorded for knowledge and attitudes. These were both found to be linked to many of the variables under investigation, including risk
Update on nuclear structure effects in light muonic atoms
Hernandez, Oscar Javier; Ji, Chen; Bacca, Sonia; Barnea, Nir
2016-01-01
We present calculations of the nuclear structure corrections to the Lamb shift in light muonic atoms, using state-of-the-art nuclear potentials. We outline updated results on finite nucleon size contributions.
Update on nuclear structure effects in light muonic atoms
Hernandez, Oscar Javier; Dinur, Nir Nevo; Ji, Chen; Bacca, Sonia; Barnea, Nir
2016-12-01
We present calculations of the nuclear structure corrections to the Lamb shift in light muonic atoms, using state-of-the-art nuclear potentials. We outline updated results on finite nucleon size contributions.
Update on nuclear structure effects in light muonic atoms
Energy Technology Data Exchange (ETDEWEB)
Hernandez, Oscar Javier, E-mail: javierh@triumf.ca; Dinur, Nir Nevo; Ji, Chen; Bacca, Sonia [TRIUMF (Canada); Barnea, Nir [The Hebrew University, Racah Institute of Physics (Israel)
2016-12-15
We present calculations of the nuclear structure corrections to the Lamb shift in light muonic atoms, using state-of-the-art nuclear potentials. We outline updated results on finite nucleon size contributions.
Josephson current and Andreev level dynamics in nanoscale superconducting weak links
Energy Technology Data Exchange (ETDEWEB)
Brunetti, Aldo
2014-11-15
In this thesis we focus on the interplay between proximity induced superconducting correlations and Coulomb interactions in a Josephson junction: i.e., in a system where two superconductors modeled as two s-wave superconductors at a phase difference φ are contacted by means of a weak link, in our case a quantum dot located in the contact. In the first part we study the Josephson current-phase relation for a multi-level quantum dot tunnel-contacted by two conventional s-waves superconductors. We determine in detail the conditions for observing a finite anomalous Josephson current, i.e. a supercurrent flowing at zero phase difference in a two-level dot with spin-orbit interactions, a weak magnetic (Zeeman) field, and in the presence of Coulomb interactions. This leads to an onset behavior I{sub a}∝sgn(B), interpreted as the sign of an incipient spontaneous breakdown of time-reversal symmetry. Moreover, we will provide conditions for realizing spatially separated - but topologically unprotected - Majorana bound states, whose signature in the system will be detectable via the current-phase relation. In the second part of the thesis, we address the Andreev bound state population dynamics in superconducting weak links (a superconducting 'atomic contact'), in which a poisoning mechanism due to the trapping of single quasiparticles can occur. Our motivation is that quantum coherent superconducting circuits are the most promising candidates for future large-scale quantum information processing devices. Moreover, quasiparticle poisoning has recently been observed in devices which contain a short superconducting weak link with few transport channels. We discuss a novel charge imbalance effect in the continuum quasiparticle population, which is due to phase fluctuations of the environment weakly coupled to the superconducting contact. This coupling enters the system as a transition rate connecting continuum quasiparticles and the Andreev bound state system. The
Understanding the proton radius puzzle: Nuclear structure effects in light muonic atoms
Ji, Chen; Dinur, Nir Nevo; Bacca, Sonia; Barnea, Nir
2015-01-01
We present calculations of nuclear structure effects to the Lamb shift in light muonic atoms. We adopt a modern ab-initio approach by combining state-of-the-art nuclear potentials with the hyperspherical harmonics method. Our calculations are instrumental to the determination of nuclear charge radii in the Lamb shift measurements, which will shed light on the proton radius puzzle.
2010-06-11
... Carolinas, LLC; McGuire Nuclear Station; Confirmatory Order (Effective Immediately) I Duke Energy Carolinas, LLC's (Duke Energy or Licensee) is the holder of License Nos. NPF-9 and NPF-17, issued by the Nuclear... Energy Nuclear Policy Manual, NSD 218.10.1, Revision 9, states in relevant part, that where unusual...
Ballistic Josephson junctions in the presence of generic spin dependent fields
Konschelle, François; Tokatly, Ilya V.; Bergeret, F. Sebastian
2016-07-01
Ballistic Josephson junctions are studied in the presence of a spin-splitting field and spin-orbit coupling. A generic expression for the quasiclassical Green's function is obtained and with its help we analyze several aspects of the proximity effect between a spin-textured normal metal (N) and singlet superconductors (S). In particular, we show that the density of states may show a zero-energy peak which is a generic consequence of the spin dependent couplings in heterostructures. In addition, we also obtain the spin current and the induced magnetic moment in a SNS structure and discuss possible coherent manipulation of the magnetization which results from the coupling between the superconducting phase and the spin degree of freedom. Our theory predicts a spin accumulation at the S/N interfaces, and transverse spin currents flowing perpendicular to the junction interfaces. Some of these findings can be understood in the light of a non-Abelian electrostatics.
Numerical Study of a System of Long Josephson Junctions with Inductive and Capacitive Couplings
Rahmonov, I. R.; Shukrinov, Yu. M.; Plecenik, A.; Zemlyanaya, E. V.; Bashashin, M. V.
2016-02-01
The phase dynamics of the stacked long Josephson junctions is investigated taking into account the inductive and capacitive couplings between junctions and the diffusion current. The simulation of the current-voltage characteristics is based on the numerical solution of a system of nonlinear partial differential equations by a fourth order Runge-Kutta method and finite-difference approximation. A parallel implementation is based on the MPI technique. The effectiveness of the MPI/C++ code is confirmed by calculations on the multi-processor cluster CICC (LIT JINR, Dubna). We demonstrate the appearance of the charge traveling wave (CTW) at the boundary of the zero field step. Based on this fact, we conclude that the CTW and the fluxons coexist.
Numerical Study of a System of Long Josephson Junctions with Inductive and Capacitive Couplings
Directory of Open Access Journals (Sweden)
Rahmonov I. R.
2016-01-01
Full Text Available The phase dynamics of the stacked long Josephson junctions is investigated taking into account the inductive and capacitive couplings between junctions and the diffusion current. The simulation of the current–voltage characteristics is based on the numerical solution of a system of nonlinear partial differential equations by a fourth order Runge–Kutta method and finite-difference approximation. A parallel implementation is based on the MPI technique. The effectiveness of the MPI/C++ code is confirmed by calculations on the multi-processor cluster CICC (LIT JINR, Dubna. We demonstrate the appearance of the charge traveling wave (CTW at the boundary of the zero field step. Based on this fact, we conclude that the CTW and the fluxons coexist.
Influence of Coupling between Junctions on Breakpoint Current in Intrinsic Josephson Junctions
Shukrinov, Yu. M.; Mahfouzi, F.
2007-04-01
We study theoretically the current-voltage characteristics of intrinsic Josephson junctions in high-Tc superconductors. An oscillation of the breakpoint current on the outermost branch as a function of coupling α and dissipation β parameters is found. We explain this oscillation as a result of the creation of longitudinal plasma waves at the breakpoint with different wave numbers. We demonstrate the commensurability effect and predict a group behavior of the current-voltage characteristics for the stacks with a different number of junctions. A method to determine the wave number of longitudinal plasma waves from α and β dependence of the breakpoint current is suggested. We model the α and β dependence of the breakpoint current and obtain good agreement with the results of the simulation.
2D SQIF arrays using 20 000 YBCO high R n Josephson junctions
Mitchell, E. E.; Hannam, K. E.; Lazar, J.; Leslie, K. E.; Lewis, C. J.; Grancea, A.; Keenan, S. T.; Lam, S. K. H.; Foley, C. P.
2016-06-01
Superconducting quantum interference filters (SQIFs) have been created using two dimensional arrays of YBCO step-edge Josephson junctions connected together in series and parallel configurations via superconducting loops with a range of loop areas and loop inductances. A SQIF response, as evidenced by a single large anti-peak at zero applied flux, is reported at 77 K for step-edge junction arrays with the junction number N = 1 000 up to 20 000. The SQIF sensitivity (slope of peak) increased linearly with N up to a maximum of 1530 V T-1. Array parameters related to geometry and average junction characteristics are investigated in order to understand and improve the SQIF performance in high temperature superconducting arrays. Initial investigations also focus on the effect of the SQUID inductance factor on the SQIF sensitivity by varying both the mean critical current and the mean inductance of the loops in the array. The RF response to a 30 MHz signal is demonstrated.
Macroscopic quantum tunneling induced by a spontaneous field in intrinsic Josephson junctions
Energy Technology Data Exchange (ETDEWEB)
Chizaki, Y., E-mail: y.chizaki@aist.go.jp [Nanosystem Research Institute (NRI), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan)] [CREST, Japan Science and Technology Corporation (JST), Kawaguchi, Saitama 332-0012 (Japan); Kashiwaya, H.; Kashiwaya, S. [Nanoelectronics Research Institute (NeRI), AIST, Tsukuba, Ibaraki 305-8568 (Japan); Koyama, T. [CREST, Japan Science and Technology Corporation (JST), Kawaguchi, Saitama 332-0012 (Japan)] [Institute for Materials Research, Tohoku University, Sendai, Miyagi 980-8577 (Japan); Kawabata, S. [Nanosystem Research Institute (NRI), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan)] [CREST, Japan Science and Technology Corporation (JST), Kawaguchi, Saitama 332-0012 (Japan)
2011-11-15
Derivation of an effective Hamiltonian in the case that one of the capacitively coupled junctions is in the finite voltage state. Calculation of MQT rate by using the Hamiltonian. The MQT rate is resonantly enhanced and the enhancement is found even when the bias current is off the resonant point. Discussion of the validity of the two types of enhancement. We theoretically study macroscopic quantum tunneling (MQT) in capacitively coupled Josephson junctions in the case that one of the junctions is in the finite voltage state. We find that the system can be mapped into a one dimensional model with a spontaneous periodic perturbation and calculate the MQT rate by using the time-dependent WKB method. Then the MQT rate is found to be resonantly enhanced and the enhancement of MQT rate is found even off the resonant point.
Two-dimensional Josephson junction arrays coupled through a high-Q cavity
DEFF Research Database (Denmark)
Filatrella, G.; Pedersen, Niels Falsig; Wiesenfeld, K.
2001-01-01
the cavity. The highly resonant cavity induces synchronized behavior, which is qualitatively different than what is familiar from other studies on nonlinear oscillator arrays, for example the Kuramoto model. We also address the effects of disorder, as well as the role of detuning between the spontaneous...... emission frequency of the junctions and the cavity resonant frequency. We show with a simple argument that we can predict the scaling behavior of disorder with the size of the array. The consequences for the design of microwave oscillators in the Gigahertz region are discussed......The problem of disordered two-dimensional arrays of underdamped Josephson junctions is addressed. Our simulations show that when coupled to a high-Q cavity, the array exhibits synchronized behavior, and the power emitted can be considerably increased once enough junctions are activated to pump...
4pi periodic Josephson current through a Quantum Spin-Hall edge
Dahlhaus, Jan; Beenakker, Carlo; Pikulin, Dmitry; Hyart, Timo; Schomerus, Henning
2014-03-01
The helical edge state of a quantum spin-Hall insulator can carry a supercurrent in equilibrium between two superconducting electrodes (separation L, coherence length ?). We calculate the maximum (critical) current Ic that can flow without dissipation along a single edge, going beyond the short-junction restriction L?? of earlier work, and find a dependence on the fermion parity of the ground state when L becomes larger than ?. Fermion-parity conservation doubles the critical current in the low-temperature, long-junction limit, while for a short junction Ic is the same with or without parity constraints. This provides a phase-insensitive, dc signature of the 4?-periodic Josephson effect.
Phase dynamics modeling of parallel stacks of Josephson junctions
Rahmonov, I. R.; Shukrinov, Yu. M.
2014-11-01
The phase dynamics of two parallel connected stacks of intrinsic Josephson junctions (JJs) in high temperature superconductors is numerically investigated. The calculations are based on the system of nonlinear differential equations obtained within the CCJJ + DC model, which allows one to determine the general current-voltage characteristic of the system, as well as each individual stack. The processes with increasing and decreasing base currents are studied. The features in the behavior of the current in each stack of the system due to the switching between the states with rotating and oscillating phases are analyzed.
Laminar phase flow for an exponentially tapered Josephson oscillator
DEFF Research Database (Denmark)
Benabdallah, A.; Caputo, J. G.; Scott, Alwyn C.
2000-01-01
Exponential tapering and inhomogeneous current feed were recently proposed as means to improve the performance of a Josephson flux flow oscillator. Extensive numerical results backed up by analysis are presented here that support this claim and demonstrate that exponential tapering reduces...... the small current instability region and leads to a laminar flow regime where the voltage wave form is periodic giving the oscillator minimal spectral width. Tapering also leads to an increased output power. Since exponential tapering is not expected to increase the difficulty of fabricating a flux flow...
Graphene-Based Josephson-Junction Single-Photon Detector
Walsh, Evan D.; Efetov, Dmitri K.; Lee, Gil-Ho; Heuck, Mikkel; Crossno, Jesse; Ohki, Thomas A.; Kim, Philip; Englund, Dirk; Fong, Kin Chung
2017-08-01
We propose to use graphene-based Josephson junctions (GJJs) to detect single photons in a wide electromagnetic spectrum from visible to radio frequencies. Our approach takes advantage of the exceptionally low electronic heat capacity of monolayer graphene and its constricted thermal conductance to its phonon degrees of freedom. Such a system could provide high-sensitivity photon detection required for research areas including quantum information processing and radio astronomy. As an example, we present our device concepts for GJJ single-photon detectors in both the microwave and infrared regimes. The dark count rate and intrinsic quantum efficiency are computed based on parameters from a measured GJJ, demonstrating feasibility within existing technologies.
Breathers in Josephson junction ladders: Resonances and electromagnetic wave spectroscopy
DEFF Research Database (Denmark)
Miroshnichenko, A. E.; Flach, S.; Fistul, M.
2001-01-01
We present a theoretical study of the resonant interaction between dynamical localized states (discrete breathers) and linear electromagnetic excitations (EE's) in Josephson junction ladders. By making use of direct numerical simulations we find that such an interaction manifests itself by resonant...... steps and various sharp switchings (voltage jumps) in the current-voltage characteristics. Moreover, the power of ac oscillations away from the breather center (the breather tail) displays singularities as the externally applied dc bias decreases. All these features may be mapped to the spectrum of EE...
Externally pumped millimeter-wave Josephson-junction parametric amplifier
DEFF Research Database (Denmark)
Levinsen, M.T; Pedersen, Niels Falsig; Sørensen, Ole;
1980-01-01
A unified theory of the singly and doubly degenerate Josephson-junction parametric amplifier is presented. Experiments with single junctions on both amplifier modes at frequencies 10, 35, and 70 GHz are discussed. Low-noise temperature (∼100 K, single sideband (SSB)) and reasonable gain (∼8 d......B) were obtained at 35 GHz in the singly degenerate mode. On the basis of the theory and experiments, a general procedure for optimizing junction parameters is discussed and illustrated by the specific design of a 100-GHz amplifier....
Strong environmental coupling in a Josephson parametric amplifier
Energy Technology Data Exchange (ETDEWEB)
Mutus, J. Y.; White, T. C.; Barends, R.; Chen, Yu; Chen, Z.; Chiaro, B.; Dunsworth, A.; Jeffrey, E.; Kelly, J.; Neill, C.; O' Malley, P. J. J.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; Cleland, A. N.; Martinis, John M., E-mail: martinis@physics.ucsb.edu [Department of Physics, University of California, Santa Barbara, California 93106-9530 (United States); Megrant, A. [Department of Physics, University of California, Santa Barbara, California 93106-9530 (United States); Department of Materials, University of California, Santa Barbara, California 93106 (United States); Sundqvist, K. M. [Department of Electrical and Computer Engineering, Texas A and M University, College Station, Texas 77843 (United States)
2014-06-30
We present a lumped-element Josephson parametric amplifier designed to operate with strong coupling to the environment. In this regime, we observe broadband frequency dependent amplification with multi-peaked gain profiles. We account for this behavior using the “pumpistor” model which allows for frequency dependent variation of the external impedance. Using this understanding, we demonstrate control over the complexity of gain profiles through added variation in the environment impedance at a given frequency. With strong coupling to a suitable external impedance, we observe a significant increase in dynamic range, and large amplification bandwidth up to 700 MHz giving near quantum-limited performance.
Soft nanostructuring of YBCO Josephson junctions by phase separation.
Gustafsson, D; Pettersson, H; Iandolo, B; Olsson, E; Bauch, T; Lombardi, F
2010-12-08
We have developed a new method to fabricate biepitaxial YBa2 Cu3 O7-δ (YBCO) Josephson junctions at the nanoscale, allowing junctions widths down to 100 nm and simultaneously avoiding the typical damage in grain boundary interfaces due to conventional patterning procedures. By using the competition between the superconducting YBCO and the insulating Y2 BaCuO5 phases during film growth, we formed nanometer sized grain boundary junctions in the insulating Y2 BaCuO5 matrix as confirmed by high-resolution transmission electron microscopy. Electrical transport measurements give clear indications that we are close to probing the intrinsic properties of the grain boundaries.
Fabrication of Josephson junctions by using an atomic force microscope
Song, I S; Kim, D H; Park, G S
2000-01-01
Josephson junctions have been fabricated by using an atomic foce microscope (AFM) for surface modification. YBCO films were fabricated on MgO substrates by using pulsed laser deposition. Surface modification of YBCO strips in the field of conductive AFM tips results in controlled and systematic growth of protrusions across the entire strip. Increasing the negative bias voltage to the AFM tip linearly increases the size of the modified structures. The offset superconducting transition temperature and the critical current values systematically shift to lower temperature and current values with increasing degree of AFM modification.
Displacement of microwave squeezed states with Josephson parametric amplifiers
Energy Technology Data Exchange (ETDEWEB)
Zhong, Ling; Baust, Alexander; Xie, Edwar; Schwarz, Manuel; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Nanosystems Initiative Munich (NIM), Muenchen (Germany); Fedorov, Kirill; Menzel, Edwin; Marx, Achim [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Betzenbichler, Martin; Pogorzalek, Stefan; Haeberlein, Max; Eder, Peter; Goetz, Jan; Wulschner, Karl Friedrich; Huebl, Hans; Deppe, Frank [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany)
2015-07-01
Propagating quantum microwaves are promising building blocks for quantum communication. Interestingly, such itinerant quantum microwaves can be generated in the form of squeezed photon states by Josephson parametric amplifiers (JPA). We employ a specific ''dual-path'' setup for both state reconstruction and JPA characterization. Displacement operations are performed by using a directional coupler after the squeezing. We compare our results with theory predictions. In particular, we discuss our experiments in the context of remote state preparation and quantum teleportation with propagating microwaves.
Study on the establishment of effective nuclear export system
Energy Technology Data Exchange (ETDEWEB)
Kim, Byung Koo; So, Dong Sup; Baik, Dae Hyun; Kwack, Eun Ho; Shin, Jang Soo; Yoon, Wan Ki; Park, Wan Soo; Kim, Hyun Tae
1997-02-01
To improve Korean nuclear export control system, the modification of the present export license procedure for the nuclear equipment and materials and the classification of control items and their related technologies are required. And it is also necessary to make a database of the original countries who have the right of prior consent. For the efficient export control of LWR items to DPRK, it is desirable to manage the export license scheme of nuclear reactor facility as a total package, and to prepare a control regime for the retransfer of nuclear reactor component such as reactor coolant pump and nuclear fuel whose technologies are not self-reliant. It is especially essential to prepare a systematic procedure for the supply of nuclear equipment and materials to DPRK in order to meet international guidelines of NSG and others through an accord on the nuclear cooperation between Republic of Korea (ROK) and DPRK. The principal elements to be included in the accord are the range of cooperation, the restriction within the peaceful uses, prior consent right in case of retransfer of important nuclear reactor components and of storage, transfer and changes of nuclear fuels, application of safeguards to the supplied Trigger list items, physical protection of nuclear material, requirement of the return of nuclear equipment and materials, and restriction right for the suspension or termination of the agreement. (author). 40 refs., 5 tabs., 8 figs.
Directory of Open Access Journals (Sweden)
O. B. Toon
2006-11-01
Full Text Available We assess the potential damage and smoke production associated with the detonation of small nuclear weapons in modern megacities. While the number of nuclear warheads in the world has fallen by about a factor of three since its peak in 1986, the number of nuclear weapons states is increasing and the potential exists for numerous regional nuclear arms races. Eight countries are known to have nuclear weapons, 2 are constructing them, and an additional 32 nations already have the fissile material needed to build substantial arsenals of low-yield (Hiroshima-sized explosives. Population and economic activity worldwide are congregated to an increasing extent in megacities, which might be targeted in a nuclear conflict. Our analysis shows that, per kiloton of yield, low yield weapons can produce 100 times as many fatalities and 100 times as much smoke from fires as high-yield weapons, if they are targeted at city centers. A single "small'' nuclear detonation in an urban center could lead to more fatalities, in some cases by orders of magnitude, than have occurred in the major historical conflicts of many countries. We analyze the likely outcome of a regional nuclear exchange involving 100 15-kt explosions (less than 0.1% of the explosive yield of the current global nuclear arsenal. We find that such an exchange could produce direct fatalities comparable to all of those worldwide in World War II, or to those once estimated for a "counterforce'' nuclear war between the superpowers. Megacities exposed to atmospheric fallout of long-lived radionuclides would likely be abandoned indefinitely, with severe national and international implications. Our analysis shows that smoke from urban firestorms in a regional war would rise into the upper troposphere due to pyro-convection. Robock et al. (2006 show that the smoke would subsequently rise deep into the stratosphere due to atmospheric heating, and then might induce significant climatic
Climate and chemistry effects of a regional scale nuclear conflict
Stenke, A.; Hoyle, C. R.; Luo, B.; Rozanov, E.; Gröbner, J.; Maag, L.; Brönnimann, S.; Peter, T.
2013-10-01
Previous studies have highlighted the severity of detrimental effects for life on earth after an assumed regionally limited nuclear war. These effects are caused by climatic, chemical and radiative changes persisting for up to one decade. However, so far only a very limited number of climate model simulations have been performed, giving rise to the question how realistic previous computations have been. This study uses the coupled chemistry climate model (CCM) SOCOL, which belongs to a different family of CCMs than previously used, to investigate the consequences of such a hypothetical nuclear conflict. In accordance with previous studies, the present work assumes a scenario of a nuclear conflict between India and Pakistan, each applying 50 warheads with an individual blasting power of 15 kt ("Hiroshima size") against the major population centers, resulting in the emission of tiny soot particles, which are generated in the firestorms expected in the aftermath of the detonations. Substantial uncertainties related to the calculation of likely soot emissions, particularly concerning assumptions of target fuel loading and targeting of weapons, have been addressed by simulating several scenarios, with soot emissions ranging from 1 to 12 Tg. Their high absorptivity with respect to solar radiation leads to a rapid self-lofting of the soot particles into the strato- and mesosphere within a few days after emission, where they remain for several years. Consequently, the model suggests earth's surface temperatures to drop by several degrees Celsius due to the shielding of solar irradiance by the soot, indicating a major global cooling. In addition, there is a substantial reduction of precipitation lasting 5 to 10 yr after the conflict, depending on the magnitude of the initial soot release. Extreme cold spells associated with an increase in sea ice formation are found during Northern Hemisphere winter, which expose the continental land masses of North America and Eurasia to a
Landau-Zener effect in superfluid nuclear systems
Mirea, M
2003-01-01
The Landau--Zener effect is generalized for many-body systems with pairing residual interactions. The microscopic equations of motion are obtained and the $^{14}$C decay of $^{223}$Ra spectroscopic factors are deduced. An asymmetric nuclear shape parametrization given by two intersected spheres is used. The single particle level scheme is determined in the frame of the superasymmetric two-center shell. The deformation energy is computed in the microscopic-macroscopic approximation. The penetrabilities are obtained within the WKB approximation. The fine structure of the cluster decay analyzed in the frame of this formalism gives a very good agreement with the experimental ratio of partial half-lives obtained in special conditions
Climate and chemistry effects of a regional scale nuclear conflict
Directory of Open Access Journals (Sweden)
A. Stenke
2013-10-01
Full Text Available Previous studies have highlighted the severity of detrimental effects for life on earth after an assumed regionally limited nuclear war. These effects are caused by climatic, chemical and radiative changes persisting for up to one decade. However, so far only a very limited number of climate model simulations have been performed, giving rise to the question how realistic previous computations have been. This study uses the coupled chemistry climate model (CCM SOCOL, which belongs to a different family of CCMs than previously used, to investigate the consequences of such a hypothetical nuclear conflict. In accordance with previous studies, the present work assumes a scenario of a nuclear conflict between India and Pakistan, each applying 50 warheads with an individual blasting power of 15 kt ("Hiroshima size" against the major population centers, resulting in the emission of tiny soot particles, which are generated in the firestorms expected in the aftermath of the detonations. Substantial uncertainties related to the calculation of likely soot emissions, particularly concerning assumptions of target fuel loading and targeting of weapons, have been addressed by simulating several scenarios, with soot emissions ranging from 1 to 12 Tg. Their high absorptivity with respect to solar radiation leads to a rapid self-lofting of the soot particles into the strato- and mesosphere within a few days after emission, where they remain for several years. Consequently, the model suggests earth's surface temperatures to drop by several degrees Celsius due to the shielding of solar irradiance by the soot, indicating a major global cooling. In addition, there is a substantial reduction of precipitation lasting 5 to 10 yr after the conflict, depending on the magnitude of the initial soot release. Extreme cold spells associated with an increase in sea ice formation are found during Northern Hemisphere winter, which expose the continental land masses of North
Andreeva, O. Yu; Boyadjiev, T. L.; Shukrinov, Yu M.
2008-10-01
Numerical experiment results on long Josephson junction with one and two rectangular inhomogeneities in the barrier layer are presented. We demonstrate the efiect of the shifting of the inhomogeneity and the value of the Josephson current on the vortex structure. The disappearance of mixed fluxon-antifluxon states is shown when the position of inhomogeneity shifted to the end of the junction. A change of the amplitude of Josephson current at the end makes a strong efiect on the stability of the fluxon states and smoothes the maximums of the dependence 'critical current-magnetic field'.
DEFF Research Database (Denmark)
Krasnov, V.M.; Oboznov, V.A.; Pedersen, Niels Falsig
1997-01-01
for the Josephson vortex motion. ZCFFS's were observed at certain magnetic fields when the critical current in one direction but not the other becomes zero. Possible applications of nonuniform Josephson junctions in flux flow oscillators and as a superconducting diode are discussed....... self-energy (from the cold to the hot end of the junction). A phenomenon, the ''zero crossing flux flow step'' (ZCFFS) with a nonzero voltage at a zero applied current, was observed in nonuniform long Josephson junctions. The phenomenon is due to the existence of a preferential direction...
Miniaturized vortex transitional Josephson memory cell by a vertically integrated device structure
Energy Technology Data Exchange (ETDEWEB)
Nagasawa, Shuichi; Tahara, Shuichi; Numata, Hideaki; Tsuchida, Sanae (NEC Corp., Tsukuba (Japan))
1994-03-01
We have developed the smallest Josephson nondestructive read-out (NDRO) memory cell, called a vortex transitional (VT) memory cell, for a Josephson high-speed 16-Kbit RAM. Its size is 22 x 22 microns(sup 2), which is only 16% of the size of previously developed VT memory cells used in Josephson 4-Kbit RAM. This is achieved by developing a vertically integrated device structure and refining small-junction technology. The cell consists of Nb/AlO(sub x)/Nb junctions, three Nb wirings, SiO2 insulators and Mo resistors. The VT memory cells operate properly, with a large operating margin of +/- 20%. 13 refs.
Controllable 0-π Josephson junctions containing a ferromagnetic spin valve
Gingrich, E. C.; Niedzielski, Bethany M.; Glick, Joseph A.; Wang, Yixing; Miller, D. L.; Loloee, Reza; Pratt, W. P., Jr.; Birge, Norman O.
2016-06-01
Superconductivity and ferromagnetism are antagonistic forms of order, and rarely coexist. Many interesting new phenomena occur, however, in hybrid superconducting/ferromagnetic systems. For example, a Josephson junction containing a ferromagnetic material can exhibit an intrinsic phase shift of π in its ground state for certain thicknesses of the material. Such `π-junctions' were first realized experimentally in 2001 (refs ,), and have been proposed as circuit elements for both high-speed classical superconducting computing and for quantum computing. Here we demonstrate experimentally that the phase state of a Josephson junction containing two ferromagnetic layers can be toggled between 0 and π by changing the relative orientation of the two magnetizations. These controllable 0-π junctions have immediate applications in cryogenic memory, where they serve as a necessary component to an ultralow power superconducting computer. Such a fully superconducting computer is estimated to be orders of magnitude more energy-efficient than current semiconductor-based supercomputers. Phase-controllable junctions also open up new possibilities for superconducting circuit elements such as superconducting `programmable logic', where they could function in superconducting analogues to field-programmable gate arrays.
Josephson quartic oscillator as a superconducting phase qubit
Energy Technology Data Exchange (ETDEWEB)
Zorin, Alexander [Physikalisch-Technische Bundesanstalt, 38116 Braunschweig (Germany); Chiarello, Fabio [Istituto di Fotonica e Nanotecnologie, CNR, 00156 Rome (Italy)
2010-07-01
Due to interplay between the cosine Josephson potential and parabolic magnetic-energy potential the radio-frequency SQUID with the screening parameter value {beta}{sub L} {identical_to}(2{pi}/{phi}{sub 0})LI{sub c} {approx}1 presents an oscillator circuit which energy well can dramatically change its shape. Ultimately, the magnetic flux bias of half flux quantum {phi}{sub e}={phi}{sub 0}/2 leads to the quartic polynomial shape of the well and, therefore, to significant anharmonicity of oscillations (> 30%). We show that the two lowest eigenstates in this symmetric global minimum perfectly suit for designing the qubit which is inherently insensitive to the charge variable, always biased in the optimal point and allows efficient dispersive and bifurcation-based readouts. Moreover, in the case of a double-SQUID configuration (dc SQUID instead of a single junction) the transition frequency in this Josephson phase qubit can be easy tuned within an appreciable range allowing variable qubit-qubit and qubit-resonator couplings.
Cryocooler operation of SNIS Josephson arrays for AC Voltage standards
Sosso, A.; De Leo, N.; Fretto, M.; Monticone, E.; Roncaglione, L.; Rocci, R.; Lacquaniti, V.
2014-05-01
Avoiding liquid helium is now a worldwide issue, thus cryocooler operation is becoming mandatory for a wider use of superconductive electronics. Josephson voltage standards hold a peculiar position among superconducting devices, as they are in use in high precision voltage metrology since decades. Higher temperature operation would reduce the refrigerator size and complexity, however, arrays of Josephson junctions made with high temperature superconductors for voltage standard applications are not to date available. The SNIS (Superconductor-Normal metal-Insulator-Superconductor) junction technology developed at INRIM, based on low temperature superconductors, but capable of operation well above liquid helium temperature, is interesting for application to a compact cryocooled standard, allowing to set a compromise between device and refrigerator requirements. In this work, the behavior of SNIS devices cooled with a closed-cycle refrigerator has been investigated, both in DC and under RF irradiation. Issues related to thermal design of the apparatus to solve specific problems not faced with liquid coolants, like reduced cooling power and minimization of thermal gradients for uniform operation of the chip are discussed in detail.
Measure synchronization in a two-species bosonic Josephson junction
Tian, Jing; Qiu, Haibo; Wang, Guanfang; Chen, Yong; Fu, Li-bin
2013-09-01
Measure synchronization (MS) in a two-species bosonic Josephson junction (BJJ) is studied based on semiclassical theory. Six different scenarios for MS, including two in the Josephson oscillation regime (the zero-phase mode) and four in the self-trapping regime (the π-phase mode), are clearly shown. Systematic investigations of the common features behind these different scenarios are performed. We show that the average energies of the two species merge at the MS transition point. The scaling of the power law near the MS transition is verified and the critical exponent is 1/2 for all of the different scenarios for MS. We also illustrate MS in a three-dimensional phase space; from this illustration, more detailed information on the dynamical process can be obtained. In particular, by analyzing the Poincaré sections with changing interspecies interactions, we find that the two-species BJJ exhibits separatrix crossing behavior at the MS transition point and such behavior depicts the general mechanism behind the different scenarios for the MS transitions. The new critical behavior found in a two-species BJJ is expected to be found in real systems of atomic Bose gases.
Thermalization of a quenched Bose-Josephson junction
Energy Technology Data Exchange (ETDEWEB)
Posazhennikova, Anna [Royal Holloway, University of London (United Kingdom); Trujillo-Martinez, Mauricio; Kroha, Johann [Universitaet Bonn (Germany)
2015-07-01
The experimental realization and control of quantum systems isolated from the environment, in ultracold atomic gases relaunched the interest in the fundamental non-equilibrium problem of how a finite system approaches thermal equilibrium. Despite intensive research there is still no conclusive answer to this question. We investigate theoretically how a quenched Bose-Josephson junction, where the Josephson coupling is switched on instantaneously, approaches its stationary state. We use the field theoretical approach for bosons out of equilibrium in a trap with discrete levels, developed by us previously. In this approach the operators for Bose-Einstein condensate (BEC) particles are treated on mean-field level, while excitations of the Bose gas in higher trap levels are treated fully quantum-mechanically. This leads to coupled equations of motion for the BEC amplitudes (Gross-Pitaevskii equation) and the quasiparticle propagators. The inelastic quasiparticle collisions responsible for the system relaxation during the time-dependent evolution are described within self-consistent second-order approximation.
Effect of the isovector coupling channel on the macroscopic part of the nuclear binding energy
Indian Academy of Sciences (India)
S Haddad
2013-05-01
The effect of isovector coupling channel on the macroscopic part of the nuclear binding energy is studied using the relativistic density-dependent Thomas–Fermi approach. The dependency of this effect on the number of neutrons and protons is also studied. The isovector coupling channel leads to increased nuclear binding energy, and this effect increases with the increasing neutron number in the nucleus.
Nuclear Quantum Effects on Aqueous Electron Attachment and Redox Properties.
Rybkin, Vladimir V; VandeVondele, Joost
2017-03-17
Nuclear quantum effects (NQEs) on the reduction and oxidation properties of small aqueous species (CO2, HO2, and O2) are quantified and rationalized by first-principles molecular dynamics and thermodynamic integration. Vertical electron attachment, or electron affinity, and detachment energies (VEA and VDE) are strongly affected by NQEs, decreasing in absolute value by 0.3 eV going from a classical to a quantum description of the nuclei. The effect is attributed to NQEs that lessen the solvent response upon oxidation/reduction. The reduction of solvent reorganization energy is expected to be general for small solutes in water. In the thermodynamic integral that yields the free energy of oxidation/reduction, these large changes enter with opposite sign, and only a small net effect (0.1 eV) remains. This is not obvious for CO2, where the integrand is strongly influenced by NQEs due to the onset of interaction of the reduced orbital with the conduction band of the liquid during thermodynamic integration. We conclude that NQEs might not have to be included in the computation of redox potentials, unless high accuracy is needed, but are important for VEA and VDE calculations.