Induced isospin mixing in direct nuclear reactions
International Nuclear Information System (INIS)
Lenske, H.
1979-07-01
The effect of charge-dependent interactions on nuclear reactions is investigated. First, a survey is given on the most important results concerning the charge dependence of the nucleon-nucleon interaction. The isospin symmetry and invariance principles are discussed. Violations of the isospin symmetry occuring in direct nuclear reactions are analysed using the soupled channel theory, the folding model and microscopic descriptions. Finally, induced isospin mixing in isospin-forbidden direct reactions is considered using the example of the inelastic scattering of deuterons on 12 C. (KBE)
Nuclear isospin mixing and elastic parity-violating electron scattering
International Nuclear Information System (INIS)
Moreno, O.; Sarriguren, P.; Moya de Guerra, E.; Udias, J.M.; Donnelly, T.W.; Sick, I.
2009-01-01
The influence of nuclear isospin mixing on parity-violating elastic electron scattering is studied for the even-even, N=Z nuclei 12 C, 24 Mg, 28 Si, and 32 S. Their ground-state wave functions have been obtained using a self-consistent axially-symmetric mean-field approximation with density-dependent effective two-body Skyrme interactions. Some differences from previous shell-model calculations appear for the isovector Coulomb form factors which play a role in determining the parity-violating asymmetry. To gain an understanding of how these differences arise, the results have been expanded in a spherical harmonic oscillator basis. Results are obtained not only within the plane-wave Born approximation, but also using the distorted-wave Born approximation for comparison with potential future experimental studies of parity-violating electron scattering. To this end, for each nucleus the focus is placed on kinematic ranges where the signal (isospin-mixing effects on the parity-violating asymmetry) and the experimental figure-of-merit are maximized. Strangeness contributions to the asymmetry are also briefly discussed, since they and the isospin mixing contributions may play comparable roles for the nuclei being studied at the low momentum transfers of interest in the present work.
Isospin Mixing In N $\\approx$ Z Nuclei
Srnka, D; Versyck, S; Zakoucky, D
2002-01-01
Isospin mixing in N $\\approx$ Z nuclei region of the nuclear chart is an important phenomenon in nuclear physics which has recently gained theoretical and experimental interest. It also forms an important nuclear physics correction in the precise determination of the $ft$-values of superallowed 0$^+ \\rightarrow 0^+ \\beta$- transitions. The latter are used in precision tests of the weak interaction from nuclear $\\beta$- decay. We propose to experimentally measure isospin mixing into nuclear ground states in the N $\\approx$ Z region by determining the isospin forbidden Fermi-component in the Gamow-Teller dominated $J^{\\pi} \\rightarrow J^{\\pi} \\beta$- transitions through the observation of anisotropic positron emission from oriented nuclei. First measurements were carried out with $^{71}$As and are being analyzed now.
Isospin mixing in light nuclei
International Nuclear Information System (INIS)
Ludwig, E.J.; Clegg, T.B.; Fauber, R.E.; Karwowski, H.J.; Mooney, T.M.; Thompson, W.J.
1985-01-01
This program has provided accurate measurements of isospin mixing (ΔT = 1,2) in proton elastic scattering on even-even target nuclei up to A = 40. In order to improve experimental results and to test the hypothesis that isospin mixing is dominated by mixing in the target ground state (as opposed to mixing in the compound system) the authors have undertaken to (1) extend the proton scattering results to additional T = 3/2 states in certain compound systems and (2) examine processes which can proceed by only isotensor mixing (ΔT = 2) in order to isolate the effects of that contribution
Nuclear spin and isospin excitations
International Nuclear Information System (INIS)
Osterfeld, F.
1992-01-01
A review is given of our present knowledge of collective spin-isospin excitations in nuclei. Most of this knowledge comes from intermediate-energy charge-exchange reactions and from inelastic electron- and proton-scattering experiments. The nuclear-spin dynamics is governed by the spin-isospin-dependent two-nucleon interaction in the medium. This interaction gives rise to collective spin modes such as the giant Gamow-Teller resonances. An interesting phenomenon is that the measured total Gamow-Teller transition strength in the resonance region is much less than a model-independent sum rule predicts. Two physically different mechanisms have been discussed to explain this so-called quenching of the total Gamow-Teller strength: coupling to subnuclear degrees of freedom in the form of Δ-isobar excitation and ordinary nuclear configuration mixing. Both detailed nuclear structure calculations and extensive analyses of the scattering data suggest that the nuclear configuration mixing effect is the more important quenching mechanism, although subnuclear degrees of freedom cannot be ruled out. The quenching phenomenon occurs for nuclear-spin excitations at low excitation energies (ω∼10--20 MeV) and small-momentum transfers (q≤0.5 fm -1 ). A completely opposite effect is anticipated in the high (ω,q)-transfer region (0≤ω≤500 MeV, 0.5≤q≤3 fm -1 ). The nuclear spin-isospin response might be enhanced due to the attractive pion field inside the nucleus. Charge-exchange reactions at GeV incident energies have been used to study the quasifree peak region and the Δ-resonance region. An interesting result of these experiments is that the Δ excitation in the nucleus is shifted downwards in energy relative to the Δ excitation of the free proton
Isospin-violating mixing in meson nonets
International Nuclear Information System (INIS)
Isgur, N.
1979-01-01
Segregation into ideally mixed nonets results when the OZI-violating interaction which would mix u anti u, d anti d, and s anti s mesons into isospin and SU(3) eigenstates is much weaker than the s anti s-d anti d mass difference. We show that the d anti d-u anti u mass difference can begin to induce a similar segregation into d anti d and anti u mesons which leads to large isospin violations. An experimental example of such large isospin breaking (approx. 30%) which we predict has probably already been seen in f → K anti K. (orig.)
Configuration mixing for spin-isospin modes
International Nuclear Information System (INIS)
Ichimura, Munetake
2005-01-01
Development of theories of configuration mixing is reviewed, concentrating on their application to spin-isospin modes, especially to the Gamow-Teller transitions. This talk is divided into three historical stages, the first order configuration mixing as the first stage, the second order configuration mixing as the second stage, and the delta-isobar-hole mixing as the third stage
Isospin dependent properties of asymmetric nuclear matter
Chowdhury, P. Roy; Basu, D. N.; Samanta, C.
2009-01-01
The density dependence of nuclear symmetry energy is determined from a systematic study of the isospin dependent bulk properties of asymmetric nuclear matter using the isoscalar and the isovector components of density dependent M3Y interaction. The incompressibility $K_\\infty$ for the symmetric nuclear matter, the isospin dependent part $K_{asy}$ of the isobaric incompressibility and the slope $L$ are all in excellent agreement with the constraints recently extracted from measured isotopic de...
Isospin Mixing in Nuclei Around N ∼ Z and the Superallowed β-Decay
International Nuclear Information System (INIS)
Satula, W.; Dobaczewski, J.; Nazarewicz, W.; Rafalski, M.
2011-01-01
Theoretical approaches that use one-body densities as dynamical variables, such as Hartree-Fock or the density functional theory (DFT), break isospin symmetry both explicitly, by virtue of charge-dependent interactions, and spontaneously. To restore the spontaneously broken isospin symmetry, we implemented the isospin-projection scheme on top of the Skyrme-DFT approach. This development allows for consistent treatment of isospin mixing in both ground and exited nuclear states. In this study, we apply this method to evaluate the isospin impurities in ground states of even-even and odd-odd N ∼ Z nuclei. By including simultaneous isospin and angular-momentum projection, we compute the isospin-breaking corrections to the 0 + → 0 + superallowed β-decay. (authors)
Nuclear symmetries at low isospin
International Nuclear Information System (INIS)
Juillet, Olivier
1999-01-01
With the development of radioactive beams, an area of intense research in nuclear physics concerns the structure of exotic systems with roughly equal numbers of protons and neutrons. These nuclei might in fact develop a proton-neutron superfluidity whose importance compared to pairing correlations between like nucleons is currently investigated. The work presented in this thesis suggests to look at such a competition in an algebraic framework based on a Wigner SU(4) symmetry that combines the pseudo-spin and isospin degrees of freedom. After a detailed review of group theory in quantum mechanics, the validity of the pseudo-SU(4) classification is shown via a direct analysis of realistic shell model states. Its consequences on binding energies and β decay are also studied. Moreover, a simplified boson realisation with zero orbital angular momentum is used to find some physical features of N=Z nuclei such as the condensation of α-like structures or the destruction of isoscalar superfluid correlations by the spin-orbit potential. Finally, another bosonization scheme that includes quadrupole degrees of freedom (IBM-4 model) is tested for the first time by diagonalization of a full Hamiltonian deduced from a realistic shell model interaction. The quality of the results, especially for odd-odd nuclei, allows one to consider this boson approximation as an alternative to standard fermionic approaches for the collective structure of the exotic line N∼Z=28-50. (author) [fr
Isospin dependent properties of asymmetric nuclear matter
Chowdhury, P. Roy; Basu, D. N.; Samanta, C.
2009-07-01
The density dependence of nuclear symmetry energy is determined from a systematic study of the isospin dependent bulk properties of asymmetric nuclear matter using the isoscalar and isovector components of the density dependent M3Y interaction. The incompressibility K∞ for the symmetric nuclear matter, the isospin dependent part Kasy of the isobaric incompressibility, and the slope L are all in excellent agreement with the constraints recently extracted from measured isotopic dependence of the giant monopole resonances in even-A Sn isotopes, from the neutron skin thickness of nuclei, and from analyses of experimental data on isospin diffusion and isotopic scaling in intermediate energy heavy-ion collisions. This work provides a fundamental basis for the understanding of nuclear matter under extreme conditions and validates the important empirical constraints obtained from recent experimental data.
Radiative annihilation and isospin mixing in protonium
International Nuclear Information System (INIS)
Gutsche, T.; Faessler, A.; Vinh Mau, R.
1999-01-01
In recent experiments by the Crystal Barrel collaboration at CERN, a systematic study of reactions of the type p-bar p → γX where X γ,π 0 ,η , ω and η' were performed and the branching ratios are measured. Thereby, a sensitive test for different NN interaction models in the p-bar p atom can be performed. We evaluate the branching ratio for radiative proton-antiproton annihilation in the framework of the constituent quark model. In setting up the annihilation mechanism we adopt a two-step process where the p-bar p system first annihilates into two mesons π 0 ρ, π 0 ω, ωω, ρ 0 ρ 0 , ωρ 0 , ηρ, ηω and where the produced vector meson converts into a photon analogous to the vector dominance model (VDM). Both steps can be derived from the underlying quark mechanism. Amplitudes for the strong annihilation of p-bar p into two mesons are calculated in the framework of the so-called A 2 quark model. Radiative decay channels, in contrast to nonstrange mesonic decay channels, couple to the isospin I = 0 and I = 1 components of the atomic p-bar p initial states. The resulting transition amplitudes interfere in the predictions for the branching ratios. Combining experimental inputs with the outlined theoretical derivation we are able to extract the interference terms from the data, which are sizable and depend strongly on the initial atomic state considered. The interference terms are used to determine the isospin mixing effects in the p-bar p atomic wave functions. Radiative decays offer a unique window to study isospin mixing effects in the p-bar p system, which are strongly dependent on the NN-bar initial state interaction model. (authors)
Measuring isospin mixing in nuclei using π+- inelastic scattering
International Nuclear Information System (INIS)
Cottingame, W.B.; Braithwaite, W.J.; Morris, C.L.
1979-01-01
A new strongly isospin-mixed doublet has been found in 12 C near 19.5 MeV. in a comparison of π - and π + inelastic scattering at 180 MeV, The present techniques may be universally employable, at least in self-conjugate nuclei, in extracting isospin-mixing matrix elements
Pseudo-Goldstone modes in isospin-asymmetric nuclear matter
International Nuclear Information System (INIS)
Cohen, T.D.; Broniowski, W.
1995-01-01
The authors analyze the chiral limit in dense isospin-asymmetric nuclear matter. It is shown that the pseudo-Goldstone modes in this system are qualitatively different from the case of isospin-symmetric matter
International Nuclear Information System (INIS)
Jiang Weizhou; Li Baoan
2009-01-01
We reexamine effects of the ρ-ω meson mixing mediated by nucleon polarizations on the symmetry energy in isospin-asymmetric nuclear matter. Taking into account the rearrangement term neglected in previous studies by others, we evaluate the ρ-ω mixing angle in a novel way within the relativistic mean-field models with and without chiral limits. It is found that the symmetry energy is significantly softened at high densities contrary to the finding in earlier studies. As the first step of going beyond the lowest-order calculations, we also solve the Dyson equation for the ρ-ω mixing. In this case, it is found that the symmetry energy is not only significantly softened by the ρ-ωmixing at suprasaturation densities, similar to the lowest-order ρ-ω mixing, but interestingly also softened at subsaturation densities. In addition, the softening of the symmetry energy at subsaturation densities can be partly suppressed by the nonlinear self-interaction of the σ meson.
Self-consistent description of the isospin mixing
International Nuclear Information System (INIS)
Gabrakov, S.I.; Pyatov, N.I.; Baznat, M.I.; Salamov, D.I.
1978-03-01
The properties of collective 0 + states built of unlike particle-hole excitations in spherical nuclei have been investigated in a self-consistent microscopic approach. These states arise when the broken isospin symmetry of the nuclear shell model Hamiltonian is restored. The numerical calculations were performed with Woods-Saxon wave functions
Isospin Mixing Impurities and Magnetic Moments Close to the N = Z Line
Golovko, V V
2005-01-01
One of the major topics of interest in experimental nuclear physics is the investigation and understanding of the fundamental properties of exotic nuclei with a neutron to proton ratio that differs significantly from that of stable nuclei. Only if these properties are understood and explained by nuclear models, can we have a better understanding of the nuclear forces holding nucleons together in an atomic nucleus.In order to contribute to this understanding, two nuclear properties that provide useful information about nuclear structure are studied in this work. Firstly, isospin mixing in nuclei close to the N=Z line was studied. Isospin is an important concept of hadron physics and was introduced in nuclear physics as an important tool for the classification of nuclear and hadronic states. There is currently great interest in the measurement of the size of isospin mixing in heavy nuclei which is expected to increase rapidly with nuclear mass along the N=Z line. This interest has recently intensified because o...
The uses of isospin in early nuclear and particle physics
Borrelli, Arianna
2017-11-01
This paper reconstructs the early history of isospin up to and including its employment in 1951sbnd 52 to conceptualize high-energy pion-proton scattering. Studying the history of isospin serves as an entry point for investigating the interplay of theoretical and experimental practices in early nuclear and particle physics, showing the complexity of processes of knowledge construction which have often been presented as straightforward both in physicists' recollections and in the historiography of science. The story of isospin has often been told in terms of the discovery of the first ;intrinsic property; of elementary particles, but I will argue that the isospin formalism emerged and was further developed because it proved to be a useful tool to match theory and experiment within the steadily broadening field of high-energy (nuclear) physics. Isospin was variously appropriated and adapted in the course of two decades, before eventually the physical-mathematical implications of its uses started being spelled out. The case study also highlights some interesting features of high-energy physics around 1950: the contribution to post-war research of theoretical methods developed before and during the war, the role of young theoretical post-docs in mediating between theorists and experimenters, and the importance of traditional formalisms such as those of spin and angular momentum as a template both for formalizing and conceptualizing experimental results.
RPA spin-isospin nuclear response in the deep inelastic region
International Nuclear Information System (INIS)
Alberico, W.M.; Molinari, A.; De Pace, A.; Johnson, M.B.; Ericson, M.
1985-11-01
The spin-isospin volume responses of a finite nucleus are evaluated in the RPA frame, utilizing a harmonic oscillator basis. Particular emphasis is given to the mixing between the longitudinal and transverse couplings, which arise at the nuclear surface. We show that it reduces somewhat the contrast between the two spin responses. We compare the calculated transverse response with the experimental one extracted from deep inelastic electron scattering
Isospin effects on collective nuclear dynamics
Di Toro, M; Baran, V; Larionov, A B
1999-01-01
We suggest several ways to study properties of the symmetry term in the nuclear equation of state, EOS, from collective modes in beta-unstable nuclei. After a general discussion on compressibility and saturation density in asymmetric nuclear matter we show some predictions on the collective response based on the solution of generalized Landau dispersion relations. Isoscalar-isovector coupling, disappearance of collectivity and possibility of new instabilities in low and high density regions are discussed with accent on their relation to the symmetry term of effective forces. The onset of chemical plus mechanical instabilities in a dilute asymmetric nuclear matter is discussed with reference to new features in fragmentation reactions.
Isospin dependence of nuclear charge radii and its microscopic demonstration
International Nuclear Information System (INIS)
Lei Yian; Zeng Jinyan
2007-01-01
The analysis of experimental nuclear charge radii R c indicates that R c deviates systematically from the A 1/3 law, i.e., R c /A 1/3 gradually decreases with increasing A, whereas R c /Z 1/3 remains almost a constant. This statement is also supported by the analysis of a large amount of experimental nuclear giant monopole resonance energy data E x ∝R -1 . The deviation of nuclear charge radii from the A 1/3 law is basically caused by the isospin independence of A 1/3 law, and the isospin dependence has been partly included in Z 1/3 law. In the frame of nuclear shell model, a microscopic demonstration of the Z 1/3 law is given. The difference in the harmonic oscillator potential strength between proton and neutron (ω p and ω n ) can be accounted for by the Z 1/3 law. Similar to Wigner's nuclear isobaric multiplet mass equation (IMME), a modified Z 1/3 law for nuclear charge radii is proposed. (authors)
Isospin mixing in the ground state of sup 5 sup 2 Mn
Schuurmans, P; Phalet, T; Severijns, N; Vereecke, B; Versyck, S
2000-01-01
The presence of isospin mixing into the ground state of sup 5 sup 2 Mn was studied via anisotropic positron emission from nuclei. With this method the isospin forbidden Fermi-component in the Gamow-Teller dominated beta decay was determined. It is shown that sample purity and the control of positron scattering is of vital importance. Comparison between theory and experiment shows that shell model calculations of the isospin mixing probability deviate by a factor three to seven from experiment. For more recent Hartree-Fock-RPA based calculations the difference is over two orders of magnitude.
Response function of spin-isospin nuclear excitations
International Nuclear Information System (INIS)
Salvetti, A.R.
1986-01-01
The selected aspects of spin-isospir nuclear excitations are studied. The spreading width of M/ states in even Ca isotopes for the purpose of trying to understand the missing strenght specially in 44 Ca, was estimated. The doorway calculation, was used, considering the level of complexity next to the independent particle M/ state. Using a nuclear matter context, the system response function to a spin-isospin probe and verify how the response function behaves for free fermions and in the ring approximation was studied. Higher correlations to polarization propagation such as the induced interaction and self-energy corrections was introduced. The dopping of colletive effects by such collisions terms was verified. It was investigate how to estimate the short range term of the effective interaction in the spin-isospin channel and the possibility of detecting a difference between these short range terms in the longitudinal and the transverse channel, for understanding the absence of pior condensation precursor states and negative results in a recent attempt to detect differences between longitudinal and transverse response functions one naively expects theoretically. (author) [pt
Differential isospin-fractionation in dilute asymmetric nuclear matter
International Nuclear Information System (INIS)
Li Baoan; Chen Liewen; Ma Hongru; Xu Jun; Yong Gaochan
2007-01-01
The differential isospin-fractionation (IsoF) during the liquid-gas phase transition in dilute asymmetric nuclear matter is studied as a function of nucleon momentum. Within a self-consistent thermal model it is shown that the neutron/proton ratio of the gas phase becomes smaller than that of the liquid phase for energetic nucleons, although the gas phase is overall more neutron-rich. Clear indications of the differential IsoF consistent with the thermal model predictions are demonstrated within a transport model for heavy-ion reactions. Future comparisons with experimental data will allow us to extract critical information about the momentum dependence of the isovector strong interaction
International Nuclear Information System (INIS)
Guo, Wenmei; Yong, Gaochan; Wang, Yongjia; Li, Qingfeng; Zhang, Hongfei; Zuo, Wei
2014-01-01
Within two different frameworks of isospin-dependent transport model, effect of nuclear symmetry energy at supradensities on the isospin-fractionation (IsoF) was investigated. With positive/negative symmetry potential at supradensities (i.e., values of symmetry energy increase/decrease with density above saturation density), for energetic nucleons, the value of neutron to proton ratio of free nucleons is larger/smaller than that of bound nucleon fragments. Compared with extensively studied quantitative observables of nuclear symmetry energy, the normal or abnormal isospin-fractionation of energetic nucleons can be a qualitative probe of nuclear symmetry energy at supradensities
Beta-decay strength and isospin mixing studies in the sd and fp-shells
International Nuclear Information System (INIS)
Jokinen, A.; Aeystoe, J.; Dendooven, P.; Honkanen, A.; Lipas, P.; Peraejaervi, K.; Oinonen, M.; Siiskonen, T.
1998-01-01
We have studied beta decays of M T 41 Ti shows a large, 10(8) %, isospin mixing of IAS and the Gamow-Teller strength is observed to be quenched by a factor of q 2 =0.64. These results can be reproduced qualitatively in our shell model calculations. We have observed for the first time proton and gamma decay of the isobaric analogue state in 23 Mg. Our results on the isospin mixing of the isobaric analogue state agrees well with the shell model calculations. The obtained proton branch of the IAS is used to extract the transition strength for the reaction 22 Na(p,γ) 23 Mg
Isospin and momentum dependence of liquid-gas phase transition in hot asymmetric nuclear matter
International Nuclear Information System (INIS)
Xu, Jun; Ma, Hongru; Chen, Liewen; Li, Baoan
2008-01-01
The liquid-gas phase transition in hot neutron-rich nuclear matter is investigated within a self-consistent thermal model using different interactions with or without isospin and/or momentum dependence. The boundary of the phase-coexistence region is shown to be sensitive to the density dependence of the nuclear symmetry energy as well as the isospin and momentum dependence of the nuclear interaction. (author)
Probing the nuclear matter at high baryon and isospin density with heavy ion collisions
International Nuclear Information System (INIS)
Di Toro, M.; Colonna, M.; Ferini, G.
2010-01-01
Heavy Ion Collisions (HIC) represent a unique tool to probe the in-medium nuclear interaction in regions away from saturation. High Energy Collisions are studied in order to access nuclear matter properties at high density. Particular attention is devoted to the selection of observables sensitive to the poorly known symmetry energy at high baryon density, of large fundamental interest, even for the astrophysics implications. Using fully consistent covariant transport simulations built on effective field theories we are testing isospin observables ranging from nucleon/cluster emissions, collective flows (in particular the elliptic, squeeze out, part) and meson production. The possibility to shed light on the controversial neutron/proton effective mass splitting in asymmetric matter is also stressed. The "symmetry" repulsion at high baryon density will also lead to an "earlier" hadron-deconfinement transition in n-rich matter. The phase transition of hadronic to quark matter at high baryon and isospin density is analyzed. Nonlinear relativistic mean field models are used to describe hadronic matter, and the MIT bag model is adopted for quark matter. The boundaries of the mixed phase and the related critical points for symmetric and asymmetric matter are obtained. Isospin effects appear to be rather significant. The binodal transition line of the (T,ρ B ) diagram is lowered in a region accessible to heavy ion collisions in the energy range of the new planned FAIR/NICA facilities. Some observable effects of the mixed phase are suggested, in particular a neutron distillation mechanism. Theoretically a very important problem appears to be the suitable treatment of the isovector part of the interaction in effective QCD lagrangian approaches. (author)
Tensor quasiparticle interaction and spin-isospin sound in nuclear matter
International Nuclear Information System (INIS)
Haensel, P.
1979-01-01
The effect of the tensor components of the quasiparticle interaction in nuclear matter on the spin-isospin sound type excitations is studied. Numerical results are obtained using a simplified model of the quasiparticle interaction in nuclear matter. The quasiparticle distribution matrix corresponding to the spin-isospin sound is found to be qualitatively different from that obtained for purely central quasiparticle interaction. The macroscopic effects, however, are restricted to a small change in the phase velocity of the spin-isospin sound. (Auth.)
Isospin-breaking nuclear forces in QCD sum rules and Nolen-Schiffer anomaly
International Nuclear Information System (INIS)
Drukarev, E.G.; Ryskin, M.G.
1994-01-01
We use QCD sum rules to investigate isospin-breaking effects in nuclear matter. The isospin-breaking condensate left angle NM vertical stroke uu-dd vertical stroke NM right angle is shown to play an important role. In a reasonable model the neutron becomes (0.9±0.6) MeV more bound than the proton, providing a possible solution for the Nolen-Schiffer anomaly. The various contributions to the value are analysed. The possible consequences for nucleon-nucleon isospin-breaking forces are discussed. ((orig.))
Isospin-dependent properties of asymmetric nuclear matter in relativistic mean field models
Chen, Lie-Wen; Ko, Che Ming; Li, Bao-An
2007-11-01
Using various relativistic mean-field models, including nonlinear ones with meson field self-interactions, models with density-dependent meson-nucleon couplings, and point-coupling models without meson fields, we have studied the isospin-dependent bulk and single-particle properties of asymmetric nuclear matter. In particular, we have determined the density dependence of nuclear symmetry energy from these different relativistic mean-field models and compared the results with the constraints recently extracted from analyses of experimental data on isospin diffusion and isotopic scaling in intermediate energy heavy-ion collisions as well as from measured isotopic dependence of the giant monopole resonances in even-A Sn isotopes. Among the 23 parameter sets in the relativistic mean-field model that are commonly used for nuclear structure studies, only a few are found to give symmetry energies that are consistent with the empirical constraints. We have also studied the nuclear symmetry potential and the isospin splitting of the nucleon effective mass in isospin asymmetric nuclear matter. We find that both the momentum dependence of the nuclear symmetry potential at fixed baryon density and the isospin splitting of the nucleon effective mass in neutron-rich nuclear matter depend not only on the nuclear interactions but also on the definition of the nucleon optical potential.
Role of isospin in nuclear-matter liquid-gas phase transition
International Nuclear Information System (INIS)
Ducoin, C.
2006-10-01
Nuclear matter presents a phase transition of the liquid-gas type. This well-known feature is due to the nuclear interaction profile (mean-range attractive, short-range repulsive). Symmetric-nuclear-matter thermodynamics is thus analogous to that of a Van der Waals fluid. The study shows up to be more complex in the case of asymmetric matter, composed of neutrons and protons in an arbitrary proportion. Isospin, which distinguishes both constituents, gives a measure of this proportion. Studying asymmetric matter, isospin is an additional degree of freedom, which means one more dimension to consider in the space of observables. The nuclear liquid-gas transition is associated with the multi-fragmentation phenomenon observed in heavy-ion collisions, and to compact-star physics: the involved systems are neutron rich, so they are affected by the isospin degree of freedom. The present work is a theoretical study of isospin effects which appear in the asymmetric nuclear matter liquid-gas phase transition. A mean-field approach is used, with a Skyrme nuclear effective interaction. We demonstrate the presence of a first-order phase transition for asymmetric matter, and study the isospin distillation phenomenon associated with this transition. The case of phase separation at thermodynamic equilibrium is compared to spinodal decomposition. Finite size effects are addressed, as well as the influence of the electron gas which is present in the astrophysical context. (author)
Effects of isospin and momentum-dependent interactions on thermal properties of nuclear matter
International Nuclear Information System (INIS)
Xu Jun; Ma Hongru; Chen Liewen; Li Baoan
2009-01-01
In this article, three models with different isospin and momentum dependence are used to study the thermodynamical properties of asymmetric nuclear matter. They are isospin and momentum-dependent MDI interaction constrained by the isospin diffusion data of heavy ion collision, the momentum-independent MID interaction and the isoscalar momentum-dependent eMDYI interaction. Temperature effects of symmetry energy, mechanical and chemical instability and liquid-gas phase transition are analyzed. It is found that for MDI model the temperature effects of the symmetry energy attribute from both the kinetic and potential energy, while only potential part contributes to the decreasing of the symmetry energy for MID and eMDYI models. We also find that the mechanical instability, chemical instability and liquid-gas phase transition are all sensitive to the isospin and momentum dependence and the density dependence of the symmetry energy. (authors)
Isospin-breaking nuclear forces with delta degrees of freedom
International Nuclear Information System (INIS)
Epelbaum, E.
2008-01-01
The leading contributions to the isospin-violating (IV) two- and three-nucleon forces in effective field theory with explicit delta degrees of freedom are discussed. Presented at the 20th Few-Body Conference, Pisa, Italy, 10-14 September 2007. (author)
Isospin Mixing in the Nucleon and 4He and the Nucleon Strange Electric Form Factor
International Nuclear Information System (INIS)
Viviani, M.; Girlanda, L.; Kievsky, A.; Marcucci, L. E.; Rosati, S.; Schiavilla, R.; Kubis, B.; Lewis, R.
2007-01-01
In order to isolate the contribution of the nucleon strange electric form factor to the parity-violating asymmetry measured in 4 He(e-vector,e ' ) 4 He experiments, it is crucial to have a reliable estimate of the magnitude of isospin-symmetry-breaking (ISB) corrections in both the nucleon and 4 He. We examine this issue in the present Letter. Isospin admixtures in the nucleon are determined in chiral perturbation theory, while those in 4 He are derived from nuclear interactions, including explicit ISB terms. A careful analysis of the model dependence in the resulting predictions for the nucleon and nuclear ISB contributions to the asymmetry is carried out. We conclude that, at the low momentum transfers of interest in recent measurements reported by the HAPPEX Collaboration at Jefferson Lab, these contributions are of comparable magnitude to those associated with strangeness components in the nucleon electric form factor
Isospin mixing in the nucleon and He-4 and the nucleon strange electric form-factor
International Nuclear Information System (INIS)
M. Viviani; R. Schiavilla; B. Kubis; R. Lewis; L. Girlanda; A. Kievsky; L.E. Marcucci; S. Rosati
2007-01-01
In order to isolate the contribution of the nucleon strange electric form factor to the parity-violating asymmetry measured in 4 He((rvec e),e(prime)) 4 He experiments, it is crucial to have a reliable estimate of the magnitude of isospin-symmetry-breaking (ISB) corrections in both the nucleon and 4 He. We examine this issue in the present letter. Isospin admixtures in the nucleon are determined in chiral perturbation theory, while those in 4 He are derived from nuclear interactions, including explicit ISB terms. A careful analysis of the model dependence in the resulting predictions for the nucleon and nuclear ISB contributions to the asymmetry is carried out. We conclude that, at the low momentum transfers of interest in recent measurements reported by the HAPPEX collaboration at Jefferson Lab, these contributions are of comparable magnitude to those associated with strangeness components in the nucleon electric form factor
Towards the improvement of spin-isospin properties in nuclear energy density functionals
International Nuclear Information System (INIS)
Roca-Maza, X.; Colò, G.; Liang, H. Z.; Sagawa, H.; Meng, J.; Ring, P.; Zhao, P. W.
2016-01-01
We address the problem of improving existing nuclear Energy Density Functionals (EDFs) in the spin-isospin channel. For that, we propose two different ways. The first one is to carefully take into account in the fitting protocol some of the key ground state properties for an accurate description of the most studied spin-isospin resonances: the Gamow-Teller Resonance (GTR) [1]. The second consists in providing a strategy to build local covariant EDF keeping the main features from their non-local counterparts [2]. The RHF model based on a Lagrangian where heavy mesons carry the nuclear effective interaction have been shown to be successful in the description of spin-isospin resonances [3]. (paper)
International Nuclear Information System (INIS)
Xu Chang; Li Baoan; Chen Liewen; Ko, Che Ming
2011-01-01
Using the Hugenholtz-Van Hove theorem, we derive general expressions for the quadratic and quartic symmetry energies in terms of the isoscalar and isovector parts of single-nucleon potentials in isospin asymmetric nuclear matter. These expressions are useful for gaining deeper insights into the microscopic origins of the uncertainties in our knowledge on nuclear symmetry energies especially at supra-saturation densities. As examples, the formalism is applied to two model single-nucleon potentials that are widely used in transport model simulations of heavy-ion reactions.
Isospin splitting of nucleon effective mass and symmetry energy in isotopic nuclear reactions
Guo, Ya-Fei; Chen, Peng-Hui; Niu, Fei; Zhang, Hong-Fei; Jin, Gen-Ming; Feng, Zhao-Qing
2017-10-01
Within an isospin and momentum dependent transport model, the dynamics of isospin particles (nucleons and light clusters) in Fermi-energy heavy-ion collisions are investigated for constraining the isospin splitting of nucleon effective mass and the symmetry energy at subsaturation densities. The impacts of the isoscalar and isovector parts of the momentum dependent interaction on the emissions of isospin particles are explored, i.e., the mass splittings of and (). The single and double neutron to proton ratios of free nucleons and light particles are thoroughly investigated in the isotopic nuclear reactions of 112Sn+112Sn and 124Sn+124Sn at incident energies of 50 and 120 MeV/nucleon, respectively. It is found that both the effective mass splitting and symmetry energy impact the kinetic energy spectra of the single ratios, in particular at the high energy tail (larger than 20 MeV). The isospin splitting of nucleon effective mass slightly impacts the double ratio spectra at the energy of 50 MeV/nucleon. A soft symmetry energy with stiffness coefficient of γ s=0.5 is constrained from the experimental data with the Fermi-energy heavy-ion collisions. Supported by Major State Basic Research Development Program in China (2014CB845405, 2015CB856903), National Natural Science Foundation of China (11722546, 11675226, 11675066, U1332207) and Youth Innovation Promotion Association of Chinese Academy of Sciences
International Nuclear Information System (INIS)
Xu Jun; Ma Hongru; Chen Liewen; Li Baoan
2008-01-01
Thermal properties of asymmetric nuclear matter are studied within a self-consistent thermal model using an isospin and momentum-dependent interaction (MDI) constrained by the isospin diffusion data in heavy-ion collisions, a momentum-independent interaction (MID), and an isoscalar momentum-dependent interaction (eMDYI). In particular, we study the temperature dependence of the isospin-dependent bulk and single-particle properties, the mechanical and chemical instabilities, and liquid-gas phase transition in hot asymmetric nuclear matter. Our results indicate that the temperature dependence of the equation of state and the symmetry energy are not so sensitive to the momentum dependence of the interaction. The symmetry energy at fixed density is found to generally decrease with temperature and for the MDI interaction the decrement is essentially due to the potential part. It is further shown that only the low momentum part of the single-particle potential and the nucleon effective mass increases significantly with temperature for the momentum-dependent interactions. For the MDI interaction, the low momentum part of the symmetry potential is significantly reduced with increasing temperature. For the mechanical and chemical instabilities as well as the liquid-gas phase transition in hot asymmetric nuclear matter, our results indicate that the boundaries of these instabilities and the phase-coexistence region generally shrink with increasing temperature and are sensitive to the density dependence of the symmetry energy and the isospin and momentum dependence of the nuclear interaction, especially at higher temperatures
Isospin-dependent properties of asymmetric nuclear matter in relativistic mean-field models
Chen, Lie-Wen; Ko, Che Ming; Li, Bao-An
2007-01-01
Using various relativistic mean-field models, including the nonlinear ones with meson field self-interactions, those with density-dependent meson-nucleon couplings, and the point-coupling models without meson fields, we have studied the isospin-dependent bulk and single-particle properties of asymmetric nuclear matter. In particular, we have determined the density dependence of nuclear symmetry energy from these different relativistic mean-field models and compare the results with the constra...
Isospin aspects in nuclear reactions involving Ca beams at 25 MeV/nucleon
Energy Technology Data Exchange (ETDEWEB)
Lombardo, I., E-mail: ilombardo@lns.infn.it; Agodi, C.; Alba, R.; Amorini, F.; Anzalone, A. [INFN Laboratori Nazionali del Sud (Italy); Auditore, L. [Universita di Messina, and INFN-Gr. Coll. Messina, Dipartimento di Fisica (Italy); Berceanu, I. [Institute for Physics and Nuclear Engineering (Romania); Cardella, G. [INFN, Sezione di Catania (Italy); Cavallaro, S. [INFN Laboratori Nazionali del Sud (Italy); Chatterjee, M. B. [Saha Institute of Nuclear Physics (India); Filippo, E. De [INFN, Sezione di Catania (Italy); Di Pietro, A.; Figuera, P. [INFN Laboratori Nazionali del Sud (Italy); Giuliani, G.; Geraci, E.; Grassi, L. [Dipartimento di Fisica e Astronomia Universita di Catania (Italy); Grzeszczuk, A. [University of Silesia, Institute of Physics (Poland); Han, J. [INFN Laboratori Nazionali del Sud (Italy); La Guidara, E. [INFN, Sezione di Catania (Italy); Lanzalone, G. [INFN Laboratori Nazionali del Sud (Italy); and others
2011-11-15
Isospin dependence of dynamical and thermodynamical properties observed in reactions {sup 40}Ca+ {sup 40,48}Ca and {sup 40}Ca + {sup 46}Ti at 25 MeV/nucleon has been studied. We used the CHIMERA multi-detector array. Strong isospin effects are seen in the isotopic distributions of light nuclei and in the competition between different reaction mechanisms in semi-central collisions. We will show also preliminary results obtained in nuclear collision {sup 48}Ca + {sup 48}Ca at 25MeV/nucleon, having very high N/Z value in the entrance channel (N/Z = 1.4). The enhancement of evaporation residue production confirms the strong role played by the N/Z degree of freedom in nuclear dynamics.
Jain, Anupriya; Kumar, Suneel
2014-10-01
We study the effect of isospin degree of freedom on nuclear stopping throughout the mass range 50 and 350 for two sets of isotopic systems with N/Z ≈ 1.5 and 1.8, as well as isobaric systems with N/Z = 1.0 and 1.4. Analysis is carried out at incident energies below, at, and above the energy of vanishing flow (EVF) using the isospin-dependent quantum molecular dynamics model. Our findings reveal that nuclear stopping does not show any particular behavior at the EVF. Moreover, system size effects dominate the isospin effects throughout the range of colliding geometry. The Coulomb effects, however, become important at peripheral geometry. The comparative study of the counterbalancing of Coulomb and mean field by removing the nucleon-nucleon collisions and symmetry potential clearly indicates the dominance of nucleon-nucleon cross-section over the Coulomb repulsions. Moreover, the theoretical results presented in this manuscript for the set of reactions can be experimentally verified.
International Nuclear Information System (INIS)
Jain, Anupriya; Kumar, Suneel
2014-01-01
We study the effect of isospin degree of freedom on nuclear stopping throughout the mass range 50 and 350 for two sets of isotopic systems with N/Z ≈ 1.5 and 1.8, as well as isobaric systems with N/Z = 1.0 and 1.4. Analysis is carried out at incident energies below, at, and above the energy of vanishing flow (EVF) using the isospin-dependent quantum molecular dynamics model. Our findings reveal that nuclear stopping does not show any particular behavior at the EVF. Moreover, system size effects dominate the isospin effects throughout the range of colliding geometry. The Coulomb effects, however, become important at peripheral geometry. The comparative study of the counterbalancing of Coulomb and mean field by removing the nucleon–nucleon collisions and symmetry potential clearly indicates the dominance of nucleon–nucleon cross-section over the Coulomb repulsions. Moreover, the theoretical results presented in this manuscript for the set of reactions can be experimentally verified. (paper)
The isospin dependent nucleon–nucleon inelastic cross section in the nuclear medium
Directory of Open Access Journals (Sweden)
Qingfeng Li
2017-10-01
Full Text Available The calculation of the energy-, density-, and isospin-dependent Δ production cross sections in nucleon–nucleon (NN scattering σNN→NΔ⁎ has been performed within the framework of the relativistic BUU approach. The NΔ cross sections are calculated in Born approximation taking into account the effective mass splitting of the nucleons and Δs in asymmetric matter. Due to the different mass splitting for neutron, proton and differently charged Δs, it is shown that, similar to the NN elastic ones, the reductions of NΔ inelastic cross sections in isospin-asymmetric nuclear medium are different from each other for all the individual channels and the effect is largest and of opposite sign for the Δ++ and Δ− states. This approach is also compared to calculations without effective mass splitting and with splitting derived from Dirac–Brueckerner (DB calculations. The isospin dependence of the NΔ cross sections is expected to influence the production of π+ and π− mesons as well as their yield ratio, and thus affect the use of the latter quantity as a probe of the stiffness of the symmetry energy at supranormal densities.
Isospin sum rule for nuclear photoabsorption: Effect of retardation
International Nuclear Information System (INIS)
Maize, M.A.; Fallieros, S.
1987-01-01
Motivated by the close similarity between a sum rule originally derived by Cabibbo and Radicati and a simplified version based on nonrelativistic nuclear physics in the long-wavelength limit, we have investigated the effect of retardation corrections. An account of the contributions due to higher multipolarities is presented, together with a physical interpretation of the results
Isospin breaking in nuclear physics: The Nolen-Schiffer effect
International Nuclear Information System (INIS)
Adami, C.; Brown, G.E.
1991-01-01
Using the QCD sum rules we calculate the neutron-proton mass difference at zero density as a function of the difference in bare quark mass m d -m u . We confirm results of Hatsuda, Hoegaasen and Prakash that the largest term results from the difference in up and down quark condensates, the explicit C (m d -m u ) entering with the opposite sign. The quark condensates are then extended to finite density to estimate the Nolen-Schiffer effect. The neutron-proton mass difference is extremely density dependent, going to zero at roughly nuclear matter density. The Ioffe formula for the nucleon mass is interpreted as a derivation, within the QCD sum rule approach, of the Nambu-Jona-Lasinio formula. This clarifies the N c counting and furthermore provides an alternative interpretation of the Borel mass. We compare calculations in the constituent quark model treated in the Nambu-Jona-Lasinio formalism with ours in the QCD sum rule approach. (orig.)
International Nuclear Information System (INIS)
Li Wenfei; Zhang Fengshou; Chen Liewen
2001-01-01
Within the framework of Hartree-Fock theory using the extended Skyrme effective interaction, the isospin excitation energy as a function of relative neutron excess δ was investigated at different temperatures and densities. It was found that the isospin excitation energy decreased with the increment of temperature and/or the decrement of density. The authors pointed out that the decrement of isospin excitation energy was resulted from the weakening of quantum effect with increment of temperature and/or decrement of density. Meanwhile, the relationship between the isospin excitation energy and the symmetry energy was discussed and found that the symmetry energy was just a part of the isospin excitation energy. With increasing temperature and decreasing density, the contribution of the symmetry energy to the isospin excitation energy becomes more and more important. The isospin excitation energy as a function of relative neutron excess was also investigated using different potential parameters. The results shows that the isospin excitation energy is almost independent of the incompressibility and the effective mass, but strongly depends on the symmetry energy strength coefficient, which indicates that it is possible to extract the symmetry energy of the nuclear equation of state by investigating the isospin excitation energy in experiments
Effects of Isospin mixing on statistical properties of 26Al and 30P
International Nuclear Information System (INIS)
Shriner, J.F. Jr.; Blackston, M.A.; Mahar, K.T.; Grossmann, C.A.; Mitchell, G.E.
2000-01-01
Odd-odd nuclides in the sd-shell have states of different isospin coexisting even near the ground state. Because isospin is not a perfect symmetry, this coexistence provides an opportunity to examine directly the effects of a broken symmetry on the statistical properties of a quantum system. We present results for the nuclides 26 Al and 30 P, for which the level schemes are relatively complete
Roca-Maza, X; Colò, G; Sagawa, H
2018-05-18
We analyze and propose a solution to the apparent inconsistency between our current knowledge of the equation of state of asymmetric nuclear matter, the energy of the isobaric analog state (IAS) in a heavy nucleus such as ^{208}Pb, and the isospin symmetry breaking forces in the nuclear medium. This is achieved by performing state-of-the-art Hartree-Fock plus random phase approximation calculations of the IAS that include all isospin symmetry breaking contributions. To this aim, we propose a new effective interaction that is successful in reproducing the IAS excitation energy without compromising other properties of finite nuclei.
Energy Technology Data Exchange (ETDEWEB)
Robin, Caroline; Litvinova, Elena [Western Michigan University, Department of Physics, Kalamazoo, MI (United States)
2016-07-15
A new theoretical approach to spin-isospin excitations in open-shell nuclei is presented. The developed method is based on the relativistic meson-exchange nuclear Lagrangian of Quantum Hadrodynamics and extends the response theory for superfluid nuclear systems beyond relativistic quasiparticle random phase approximation in the proton-neutron channel (pn-RQRPA). The coupling between quasiparticle degrees of freedom and collective vibrations (phonons) introduces a time-dependent effective interaction, in addition to the exchange of pion and ρ-meson taken into account without retardation. The time-dependent contributions are treated in the resonant time-blocking approximation, in analogy to the previously developed relativistic quasiparticle time-blocking approximation (RQTBA) in the neutral (non-isospin-flip) channel. The new method is called proton-neutron RQTBA (pn-RQTBA) and is applied to the Gamow-Teller resonance in a chain of neutron-rich nickel isotopes {sup 68-78}Ni. A strong fragmentation of the resonance along with quenching of the strength, as compared to pn-RQRPA, is obtained. Based on the calculated strength distribution, beta-decay half-lives of the considered isotopes are computed and compared to pn-RQRPA half-lives and to experimental data. It is shown that a considerable improvement of the half-life description is obtained in pn-RQTBA because of the spreading effects, which bring the lifetimes to a very good quantitative agreement with data. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Ducoin, C
2006-10-15
Nuclear matter presents a phase transition of the liquid-gas type. This well-known feature is due to the nuclear interaction profile (mean-range attractive, short-range repulsive). Symmetric-nuclear-matter thermodynamics is thus analogous to that of a Van der Waals fluid. The study shows up to be more complex in the case of asymmetric matter, composed of neutrons and protons in an arbitrary proportion. Isospin, which distinguishes both constituents, gives a measure of this proportion. Studying asymmetric matter, isospin is an additional degree of freedom, which means one more dimension to consider in the space of observables. The nuclear liquid-gas transition is associated with the multi-fragmentation phenomenon observed in heavy-ion collisions, and to compact-star physics: the involved systems are neutron rich, so they are affected by the isospin degree of freedom. The present work is a theoretical study of isospin effects which appear in the asymmetric nuclear matter liquid-gas phase transition. A mean-field approach is used, with a Skyrme nuclear effective interaction. We demonstrate the presence of a first-order phase transition for asymmetric matter, and study the isospin distillation phenomenon associated with this transition. The case of phase separation at thermodynamic equilibrium is compared to spinodal decomposition. Finite size effects are addressed, as well as the influence of the electron gas which is present in the astrophysical context. (author)
Theory of radiative muon capture with applications to nuclear spin and isospin doublets
International Nuclear Information System (INIS)
Hwang, W.P.; Primakoff, H.
1978-01-01
A theory of radiative muon capture, with applications to nuclear spin and isospin doublets, is formulated on the basis of the conservation of the hadronic electromagnetic current, the conservation of the hadronic weak polar currents, the partial conservation of the hadronic weak axial-vector current, the SU(2) x SU(2) current algebra for the various hadronic current, and a simplifying dynamical approximation for the hadron-radiating part of the transition amplitude: the ''linearity hypothesis''. The resultant total transition amplitude, which also includes the muon-radiating part, is worked out explicitly and applied to treat the processes μ - p → ν/sub μ/nγ and μ - 3 He → ν/sub μ/ 3 Hγ
Isospin Conservation in Neutron Rich Systems of Heavy Nuclei
Jain, Ashok Kumar; Garg, Swati
2018-05-01
It is generally believed that isospin would diminish in its importance as we go towards heavy mass region due to isospin mixing caused by the growing Coulomb forces. However, it was realized quite early that isospin could become an important and useful quantum number for all nuclei including heavy nuclei due to neutron richness of the systems [1]. Lane and Soper [2] also showed in a theoretical calculation that isospin indeed remains quite good in heavy mass neutron rich systems. In this paper, we present isospin based calculations [3, 4] for the fission fragment distributions obtained from heavy-ion fusion fission reactions. We discuss in detail the procedure adopted to assign the isospin values and the role of neutron multiplicity data in obtaining the total fission fragment distributions. We show that the observed fragment distributions can be reproduced rather reasonably well by the calculations based on the idea of conservation of isospin. This is a direct experimental evidence of the validity of isospin in heavy nuclei, which arises largely due to the neutron-rich nature of heavy nuclei and their fragments. This result may eventually become useful for the theories of nuclear fission and also in other practical applications.
Self-consistent green function calculations for isospin asymmetric nuclear matter
International Nuclear Information System (INIS)
Mansour, Hesham; Gad, Khalaf; Hassaneen, Khaled S.A.
2010-01-01
The one-body potentials for protons and neutrons are obtained from the self-consistent Green-function calculations of asymmetric nuclear matter, in particular their dependence on the degree of proton/neutron asymmetry. Results of the binding energy per nucleon as a function of the density and asymmetry parameter are presented for the self-consistent Green function approach using the CD-Bonn potential. For the sake of comparison, the same calculations are performed using the Brueckner-Hartree-Fock approximation. The contribution of the hole-hole terms leads to a repulsive contribution to the energy per nucleon which increases with the nuclear density. The incompressibility for asymmetric nuclear matter has been also investigated in the framework of the self-consistent Green-function approach using the CD-Bonn potential. The behavior of the incompressibility is studied for different values of the nuclear density and the neutron excess parameter. The nuclear symmetry potential at fixed nuclear density is also calculated and its value decreases with increasing the nucleon energy. In particular, the nuclear symmetry potential at saturation density changes from positive to negative values at nucleon kinetic energy of about 200 MeV. For the sake of comparison, the same calculations are performed using the Brueckner-Hartree-Fock approximation. The proton/neutron effective mass splitting in neutron-rich matter has been studied. The predicted isospin splitting of the proton/neutron effective mass splitting in neutron-rich matter is such that m n * ≥ m p * . (author)
Isospin symmetry breaking in sd shell nuclei
International Nuclear Information System (INIS)
Lam, Y.W.
2011-12-01
In the thesis, we develop a microscopic approach to describe the isospin-symmetry breaking effects in sd-shell nuclei. The work is performed within the nuclear shell model. A realistic isospin-conserving Hamiltonian is perfected by a charge-dependent part consisting of the Coulomb interaction and Yukawa-type meson exchange potentials to model charge-dependent forces of nuclear origin. The extended database of the experimental isobaric mass multiplet equation coefficients was compiled during the thesis work and has been used in a fit of the Hamiltonian parameters. The constructed Hamiltonian provides an accurate theoretical description of the isospin mixing nuclear states. A specific behaviour of the IMME (Isobaric Multiplet Mass Equation) coefficients have been revealed. We present two important applications: (i) calculations of isospin-forbidden proton emission amplitudes, which is often of interest for nuclear astrophysics, and (ii) calculation on corrections to nuclear Fermi beta decay, which is crucial for the tests of fundamental symmetries of the weak interaction. (author)
Nuclear spin-isospin excitations from covariant quasiparticle-vibration coupling
Robin, Caroline; Litvinova, Elena
2016-09-01
Methods based on the relativistic Lagrangian of quantum hadrodynamics and nuclear field theory provide a consistent framework for the description of nuclear excitations, naturally connecting the high- and medium-energy scales of mesons to the low-energy domain of nucleonic collective motion. Applied in the neutral channel, this approach has been quite successful in describing the overall transition strength up to high excitation energies, as well as fine details of the low-lying distribution. Recently, this method has been extended to the description of spin-isospin excitations in open-shell nuclei. In the charge-exchange channel, the coupling between nucleons and collective vibrations generates a time-dependent proton-neutron effective interaction, in addition to the static pion and rho-meson exchange, and introduces complex configurations that induce fragmentation and spreading of the resonances. Such effects have a great impact on the quenching of the strength and on the computing of weak reaction rates that are needed for astrophysics modeling. Gamow-Teller transitions in medium-mass nuclei and associated beta-decay half-lives will be presented. Further developments aiming to include additional ground-state correlations will also be discussed. This work is supported by US-NSF Grants PHY-1404343 and PHY-1204486.
International Nuclear Information System (INIS)
Xu, Jun; Ma, Hong-Ru; Chen, Lie-Wen; Li, Bao-An
2007-01-01
Within a self-consistent thermal model using an isospin and momentum dependent interaction (MDI) constrained by the isospin diffusion data in heavy-ion collisions, we investigate the temperature dependence of the symmetry energy E sym (ρ,T) and symmetry free energy F sym (ρ,T) for hot, isospin asymmetric nuclear matter. It is shown that the symmetry energy E sym (ρ,T) generally decreases with increasing temperature while the symmetry free energy F sym (ρ,T) exhibits opposite temperature dependence. The decrement of the symmetry energy with temperature is essentially due to the decrement of the potential energy part of the symmetry energy with temperature. The difference between the symmetry energy and symmetry free energy is found to be quite small around the saturation density of nuclear matter. While at very low densities, they differ significantly from each other. In comparison with the experimental data of temperature dependent symmetry energy extracted from the isotopic scaling analysis of intermediate mass fragments (IMF's) in heavy-ion collisions, the resulting density and temperature dependent symmetry energy E sym (ρ,T) is then used to estimate the average freeze-out density of the IMF's
International Nuclear Information System (INIS)
Benayoun, M.; David, P.; Del Buono, L.; O'Connell, H.B.; Leitner, O.
2008-01-01
A way to explain the puzzling difference between the pion form factor as measured in e + e - annihilations and in τ decays is discussed. We show that isospin symmetry breaking, beside the already identified effects, produces also a full mixing between the ρ 0 , ω and φ mesons which generates an isospin 0 component inside the ρ 0 meson. This effect, not accounted for in current treatments of the problem, seems able to account for the apparent mismatch between e + e - and τ data below the φ mass
Isospin-symmetry breaking in masses of N≃Z nuclei
Directory of Open Access Journals (Sweden)
P. Bączyk
2018-03-01
Full Text Available Effects of the isospin-symmetry breaking (ISB beyond mean-field Coulomb terms are systematically studied in nuclear masses near the N=Z line. The Coulomb exchange contributions are calculated exactly. We use extended Skyrme energy density functionals (EDFs with proton–neutron-mixed densities, to which we add new terms breaking the isospin symmetry. Two parameters associated with the new terms are determined by fitting mirror and triplet displacement energies (MDEs and TDEs of isospin multiplets. The new EDFs reproduce MDEs for the T=12 doublets and T=1 triplets, and TDEs for the T=1 triplets. Relative strengths of the obtained isospin-symmetry-breaking terms are not consistent with the differences in the NN scattering lengths, ann, app, and anp. Based on low-energy experimental data, it seems thus impossible to delineate the strong-force ISB effects from beyond-mean-field Coulomb-energy corrections.
Isospin-symmetry breaking in masses of N ≃ Z nuclei
Bączyk, P.; Dobaczewski, J.; Konieczka, M.; Satuła, W.; Nakatsukasa, T.; Sato, K.
2018-03-01
Effects of the isospin-symmetry breaking (ISB) beyond mean-field Coulomb terms are systematically studied in nuclear masses near the N = Z line. The Coulomb exchange contributions are calculated exactly. We use extended Skyrme energy density functionals (EDFs) with proton-neutron-mixed densities, to which we add new terms breaking the isospin symmetry. Two parameters associated with the new terms are determined by fitting mirror and triplet displacement energies (MDEs and TDEs) of isospin multiplets. The new EDFs reproduce MDEs for the T = 1/2 doublets and T = 1 triplets, and TDEs for the T = 1 triplets. Relative strengths of the obtained isospin-symmetry-breaking terms are not consistent with the differences in the NN scattering lengths, ann, app, and anp. Based on low-energy experimental data, it seems thus impossible to delineate the strong-force ISB effects from beyond-mean-field Coulomb-energy corrections.
Isospin Violation in Pion Production
International Nuclear Information System (INIS)
Niskanen, J.A.
2000-01-01
The charge symmetry breaking forward-backward asymmetry of the cross section in np→dπ 0 is discussed near threshold. Among standard sources of isospin breaking the mixing of the π and η mesons shows up as strongly dominant at these energies. This contrasts elastic np scattering or np→dπ 0 in the Δ region, where other mechanisms dominate. However, QCD based effective field theory suggests an even more important symmetry breaking mechanism. (author)
International Nuclear Information System (INIS)
Madsen, V.A.; Landau, R.H.
1985-12-01
Research on microscopic optical potentials, multistep processes, neutron-proton differences in nuclear vibrations, and exact calculations of Coulomb plus nuclear bound states of exotic systems is reported. 21 refs
International Nuclear Information System (INIS)
Chanfray, G.
1988-01-01
We derive a semi-classical Wigner-Kirkwood expansion (Planck constant expansion) of the linear response functions. We find that the semi-classical results compare very well to the quantum mechanical calculations. We apply our formalism to the spin-isospin responses and show that surface-peaked Planck constant 2 corrections considerably decrease the ratio longitudinal/transverse as obtained through the Los Alamos (longitudinal momentum) experiment
Parity and isospin in pion condensation and tensor binding
International Nuclear Information System (INIS)
Pace, E.; Palumbo, F.
1978-01-01
In infinite nuclear matter with pion condensates or tensor binding both parity and isospin symmetries are broken. Finite nuclei with pion condensates or tensor binding, however, can have definite parity. They cannot have a definite value of isospin, whose average value is of the order of the number of nucleons. (Auth.)
Model dependence of isospin sensitive observables at high densities
Energy Technology Data Exchange (ETDEWEB)
Guo, Wen-Mei [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); School of Science, Huzhou Teachers College, Huzhou 313000 (China); Yong, Gao-Chan, E-mail: yonggaochan@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); Wang, Yongjia [School of Science, Huzhou Teachers College, Huzhou 313000 (China); School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Li, Qingfeng [School of Science, Huzhou Teachers College, Huzhou 313000 (China); Zhang, Hongfei [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); Zuo, Wei [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China)
2013-10-07
Within two different frameworks of isospin-dependent transport model, i.e., Boltzmann–Uehling–Uhlenbeck (IBUU04) and Ultrarelativistic Quantum Molecular Dynamics (UrQMD) transport models, sensitive probes of nuclear symmetry energy are simulated and compared. It is shown that neutron to proton ratio of free nucleons, π{sup −}/π{sup +} ratio as well as isospin-sensitive transverse and elliptic flows given by the two transport models with their “best settings”, all have obvious differences. Discrepancy of numerical value of isospin-sensitive n/p ratio of free nucleon from the two models mainly originates from different symmetry potentials used and discrepancies of numerical value of charged π{sup −}/π{sup +} ratio and isospin-sensitive flows mainly originate from different isospin-dependent nucleon–nucleon cross sections. These demonstrations call for more detailed studies on the model inputs (i.e., the density- and momentum-dependent symmetry potential and the isospin-dependent nucleon–nucleon cross section in medium) of isospin-dependent transport model used. The studies of model dependence of isospin sensitive observables can help nuclear physicists to pin down the density dependence of nuclear symmetry energy through comparison between experiments and theoretical simulations scientifically.
International Nuclear Information System (INIS)
Baker, F.T.
1999-01-01
The work supported by this grant has had two main thrusts. One involved study of the spin, isospin, and multipole content of the continuum of nuclei, a continuation and completion of work done at LAMPF, Saturne, and TRIUMF. Most of the work has used (bar p, bar pprime) or (bar d, bar dprime) reactions, measuring spin observable to infer properties of the target nuclei. Publications resulting from this work have included seven refereed articles and letters, five abstracts and conference talks, one of which was invited. The second thrust involved preparatory work for experiments at CEBAF. The author was involved in Hall A work and the construction, installation, and initial experiments using the proton focal plane polarimeter. Experiments began in 1997 and no referred publications have yet been completed; ten abstracts and conference talks have been published
Importance of momentum dependence interaction on the isospin effects of two-body dissipation
International Nuclear Information System (INIS)
Yang Yanfang; Guo Wenjun; Zhao Qiang; Liu Jianye; Zuo Wei
2002-01-01
The role of momentum dependence equation of state on the nuclear stopping for the isospin dependence and the isospin independence of in-medium nucleon-nucleon cross section is studied by using the isospin dependence quantum molecular dynamics. The nuclear stopping depends strongly on the isospin dependence of in-medium nucleon-nucleon cross section and weakly on the isospin dependence of the mean field-symmetry potential from above the Fermi energy to about 150 MeV/u for the small impact parameters. A detail study indicates that the difference between the nuclear stopping for the isospin dependence and the isospin independence of in-medium nucleon-nucleon cross section depends sensitively on the momentum dependence interaction, namely, the difference between the nuclear stopping for the isospin dependence and the isospin independence of in-medium nucleon-nucleon cross section in the present of momentum dependence interaction is larger than that without the momentum dependence interaction (MDI) for the mass symmetry and mass asymmetry reaction systems, neutron-rich and neutron-poor reaction systems. Namely, MDI increases the sensitivity of the nuclear stopping on the isospin dependence nucleon-nucleon cross section. Therefore, the knowledge on the isospin dependence of in-medium nucleon-nucleon cross section can be extracted more accurately from nucleon stopping as a probe if the momentum dependence interaction is taken into account
International Nuclear Information System (INIS)
Jiang Weizhou; Li Baozn; Chen Liewen
2007-01-01
Using in-medium hadron properties according to the Brown-Rho scaling due to the chiral symmetry restoration at high densities and considering naturalness of the coupling constants, we have newly constructed several relativistic mean-field Lagrangians with chiral limits. The model parameters are adjusted such that the symmetric part of the resulting equation of state at supra-normal densities is consistent with that required by the collective flow data from high energy heavy-ion reactions, while the resulting density dependence of the symmetry energy at sub-saturation densities agrees with that extracted from the recent isospin diffusion data from intermediate energy heavy-ion reactions. The resulting equations of state have the special feature of being soft at intermediate densities but stiff at high densities naturally. With these constrained equations of state, it is found that the radius of a 1.4M o canonical neutron star is in the range of 11.9 km≤R≤13.1 km, and the maximum neutron star mass is around 2.0M o close to the recent observations
Coulomb-nuclear interference with 6Li: Isospin character of the 21+ excitation in 70,72,74Ge
International Nuclear Information System (INIS)
Barbosa, M.D.L.; Borello-Lewin, T.; Horodynski-Matsushigue, L.B.; Duarte, J.L.M.; Rodrigues, C.L.; Rodrigues, M.R.D.; Ukita, G.M.
2005-01-01
Ratios of B(E2) to B(IS2), that is, of the reduced quadrupole transition probabilities related, respectively, to charge and mass were extracted through Coulomb-nuclear interference (CNI) for the excitation of the 2 1 + states in 70,72,74 Ge, with a relative accuracy of less than 4%. For this purpose, the CNI angular distributions associated with the inelastic scattering of 28-MeV incident 6 Li ions accelerated by the Sao Paulo Pelletron, and momentum analyzed by the Enge magnetic spectrograph were interpreted within the DWBA-DOMP approach (distorted wave approximation for the scattering process and deformed optical model for the structure representation) with global 6 Li optical parameters. The present CNI results demonstrate an abrupt change in the B(E2)/B(IS2) ratio for 74 Ge: although for 70,72 Ge, values of the order of 1.0 or slightly higher were obtained, this ratio is 0.66 (7) for 74 Ge. The heavier Ge isotope is thus one of the few nuclei that, so far, have been shown to present clear mixed symmetry components in their ground-state band
Isospin impurity and super-allowed β transitions
International Nuclear Information System (INIS)
Sagawa, H.; Van Giai Nguyen; Suzuki, T.
1999-01-01
We study the effect of isospin impurity on the super-allowed Fermi β decay using microscopic HF and RPA (or TDA) model taking into account CSB and CIB interactions. It is found that the isospin impurity of N = Z nuclei gives enhancement of the sum rule of Fermi transition probabilities. On the other hand, the super-allowed transitions between odd-odd J = 0 nuclei and even-even J = 0 nuclei are quenched because on the cancellation of the isospin impurity effects of mother and daughter nuclei. An implication of the calculated Fermi transition rate on the unitarity of Cabbibo-Kobayashi-Maskawa mixing matrix is also discussed. (authors)
Experimental study of isospin mixing in 12C + n → 13C(T = 3/2) and 16O + n → 17O(T = 3/2) resonances
International Nuclear Information System (INIS)
Cierjacks, S.; Schmalz, G.; Hinterberger, F.; Rossen, P. v.
1981-12-01
Narrow resonances of 13 C and 17 O have been studied by a measurement of the total neutron cross sections of carbon and oxygen between 3 and 30 MeV. Employing the improved time-of-flight spectrometer at the Karlsruhe Isochronous Cyclotron and precise calibration methods, resonance cross sections were measured with an energy resolution of 1:2100 at 10 MeV and energy accuracies between 10 -4 and 10 -5 . Resonance analysis of the measured data provided parameters for numerous narrow states of both isospins, T = 1/2 and T = 3/2. These data in conjunction with information from broad T = 1/2 resonances provided a good means to experimentally determine isospin mixing matrix elements. Results were obtained for the first five T = 3/2 resonances in 17 O and the first T = 3/2 resonance in 13 C. The obtained mixing matrix elements are compared with previous experimental results and shell-modell predictions of this quantity. (orig.) [de
Martorana, N. S.; Auditore, L.; Berceanu, I.; Cardella, G.; Chatterjee, M. B.; De Luca, S.; De Filippo, E.; Dell'Aquila, D.; Gnoffo, B.; Lanzalone, G.; Lombardo, I.; Maiolino, C.; Norella, S.; Pagano, A.; Pagano, E. V.; Papa, M.; Pirrone, S.; Politi, G.; Porto, F.; Quattrocchi, L.; Rizzo, F.; Russotto, P.; Trifirò, A.; Trimarchi, M.; Verde, G.; Vigilante, M.
2017-11-01
We report on the results obtained by studying nuclear reactions between isotopes of Ca and Ti at 25 MeV/nucleon. We used the multidetector CHIMERA to detect charged reaction products. In particular, we studied two main effects: the isospin diffusion and the isospin drift. In order to study these processes we performed a moving-source analysis on kinetic energy spectra of the isobar nuclei ^{3H} and ^{3He} . This method allows to isolate the emission from the typical sources produced in reactions at Fermi energy: projectile like fragment (PLF), target like fragment (TLF), and mid-velocity (MV) emission. The obtained results are compared to previous experimental investigations and to simulations obtained with CoMD-II model.
International Nuclear Information System (INIS)
Varga, Kalman; Genovese, Marco; Richard, Jean-Marc; Silvestre-Brac, Bernard
1998-01-01
We discuss the isospin-breaking mass differences among baryons, with particular attention in the charm sector to the Σ c + -Σ c 0 , Σ c ++ -Σ c 0 , and Ξ c + -Ξ c 0 splittings. Simple potential models cannot accommodate the trend of the available data on charm baryons. More precise measurements would offer the possibility of testing how well potential models describe the non-perturbative limit of QCD
International Nuclear Information System (INIS)
Suzuki, T.; Sagawa, H.
2000-01-01
Complete text of publication follows. Spin and isospin modes in nuclei are investigated. We discuss some of the following topics. 1. Spin-dipole excitations in 12 C and 16 O are studied (1). Effects of tensor and spin-orbit interactions on the distribution of the strengths are investigated, and neutral current neutrino scattering cross sections in 16 O are obtained for heavy-flavor neutrinos from the supernovae. 2. Gamow-Teller (GT) and spin-dipole (SD) modes in 208 Bi are investigated. Quenching and fragmentation of the GT strength are discussed (2). SD excitations and electric dipole (E1) transitions between the GT and SD states are studied (3). Calculated E1 strengths are compared with the sum rule values obtained within the 1p-1h and 1p-1h + 2p-2h configuration spaces. 3. Coulomb displacement energy (CDE) of the IAS of 14 Be is calculated, and the effects of the halo on the CDE and the configuration of the halo state are investigated. 4. Spreading width of IAS and isospin dependence of the width are investigated (4). Our formula for the width explains very well the observed isospin dependence (5). (author)
Isospin and isospin / strangeness correlations in relativistic heavy-ion collisions
Energy Technology Data Exchange (ETDEWEB)
Mekjian, A. [Rutgers Univ., Dept. of Physics and Astronomy, NJ (United States); California Institute of Technology, Kellogg Radiation Lab 106-38 - Pasadena, CA (United States)
2007-10-15
A fundamental symmetry of nuclear and particle physics is isospin whose third component is the Gell-Mann/Nishijima expression I{sub Z} = Q-(B+S)/2. The role of isospin symmetry in relativistic heavy-ion collisions is studied. An isospin I{sub Z}, strangeness S correlation is shown to be a direct and simple measure of flavor correlations, vanishing in a Q{sub g} phase of uncorrelated flavors in both symmetric N = Z and asymmetric N {ne} Z systems. By contrast, in a hadron phase, a I{sub Z}/S correlation exists as long as the electrostatic charge chemical potential {mu}{sub q} {ne} 0 as in N {ne} Z asymmetric systems. A parallel is drawn with a Zeeman effect which breaks a spin degeneracy. (authors)
Isospin non-conservation in 14N(d,d')14N reaction
International Nuclear Information System (INIS)
Aoki, Y.; Sanada, J.; Yagi, K.; Kunori, S.; Higashi, Y.
1978-01-01
The deuteron inelastic scattering experiments on 14 N are made at E sub(d) = 10.03, 11.65, 14.82 and 17.88 MeV, laying an emphasis on the isospin-forbidden excitation of the 2.31 MeV (0 + , T = 1) state. In order to clarify the reaction mechanism, we have performed analyses assuming both the direct reaction mechanism and the compound nucleus formation. For the above isospin-forbidden transition, the calculation in the second-order DWBA which assumes the isospin mixing in the intermediate channels, reproduces fairly well the strong energy dependence of the angular distribution and the cross section. For the isospin-allowed transition the simple DWBA calculation gives reasonable agreement with the experiment. The present calculation shows that the observed isospin violation is well accounted for by the direct multi-step reaction mechanism assuming the isospin mixing in the intermediate channels. (author)
Nuclear level mixing resonance spectroscopy
International Nuclear Information System (INIS)
Coussement, R.; Put, P.; Scheveneels, G.; Hardeman, F.
1985-01-01
The existent methods for measuring quadrupole interactions are not suited to nuclei with lifetimes in the micro-seconds to minutes region. AD/NQR, a possible candidate in this lifetime gap, has not yet succeeded in overcoming its predicted difficulties. A new resonant method, recently developed and based on the principles of level mixing (cfr atomic spectroscopy) covers this less accessible lifetime range. Many other kinds of resonances can be described according to the level mixing formalism. The particular example of NMR as a level mixing resonance (LMR) is discussed. The underlying theory of LMR and its important consequences, leading to some interesting features of the method, is briefly formulated. Two successfully performed measurements demonstrate the feasibility and the predicted characteristics of this new promising method. (orig.)
Mixed beams for the nuclear microprobe
Energy Technology Data Exchange (ETDEWEB)
Saint, A.; Breese, M.B.H.; Legge, G.L.F. [Melbourne Univ., Parkville, VIC (Australia). School of Physics
1996-12-31
Recently the Micro-Analytical Research Centre (MARC) at Melbourne University has developed a technique to provide mixed beams of ions for a magnetically focussed nuclear microprobe. Such a mixed beam is defined as two (or more) beams of different species ions that can quickly and easily be made to have the same magnetic rigidity R{sub m} = (mE/q{sup 2}) and therefore be transported, focused and scanned the same in a magnetic nuclear microprobe. The production of mixed beams in an electrostatically focussed micro- probe have already been demonstrated. This paper will show how mixed beams can be produced on a single-ended accelerator. Indications of how to produce them on a tandem will also be given. Applications of these mixed beams in micro-lithography, scanning transmission ion microscopy (STIM) imaging and ion beam induced charge (IBIC) imaging will also be presented. 3 refs., 3 figs.
Mixed beams for the nuclear microprobe
Energy Technology Data Exchange (ETDEWEB)
Saint, A; Breese, M B.H.; Legge, G L.F. [Melbourne Univ., Parkville, VIC (Australia). School of Physics
1997-12-31
Recently the Micro-Analytical Research Centre (MARC) at Melbourne University has developed a technique to provide mixed beams of ions for a magnetically focussed nuclear microprobe. Such a mixed beam is defined as two (or more) beams of different species ions that can quickly and easily be made to have the same magnetic rigidity R{sub m} = (mE/q{sup 2}) and therefore be transported, focused and scanned the same in a magnetic nuclear microprobe. The production of mixed beams in an electrostatically focussed micro- probe have already been demonstrated. This paper will show how mixed beams can be produced on a single-ended accelerator. Indications of how to produce them on a tandem will also be given. Applications of these mixed beams in micro-lithography, scanning transmission ion microscopy (STIM) imaging and ion beam induced charge (IBIC) imaging will also be presented. 3 refs., 3 figs.
Physics motivation and concepts for the IsoSpin Laboratory
International Nuclear Information System (INIS)
Nitschke, J.M.
1994-01-01
In this article the author summarizes the issues which motivated the proposal for the IsoSpin Laboratory. Intense tunable radioactive ion beams can be used for studies in nuclear structure, nuclear reactions, astrophysics, and atomic physics and material science. The author discusses typical instrumentation needs of these experiments, as such a discussion is more limited than the range of experimental studies
Future energy mix - also without nuclear power?
International Nuclear Information System (INIS)
George, C.
2005-01-01
The considerable rises in the price of oil in the months of October and November 2004 assigned topical importance to the 'Future Energy Mix - also without Nuclear Power?' meeting of young nuclear engineers and students with experts from politics, industry, and research at the YOUNG GENERATION event organized at the Biblis nuclear power station on November 4-6, 2004. Specialized presentations were made about these topics: The Biblis Nuclear Power Plant Site. The Effects of Deregulation on the Electricity Market Emission Trading - a Combination of Economy and Ecology? Energy Mix for the 21 st Century. The event was completed by a round-table discussion among leading experts, and a presentation of perspectives in university education in areas encompassing power technology. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Chabanat, E.
1995-01-01
One of the main goal in nuclear physics research is the study of nuclei in extreme conditions of spin and isospin. The more performing tools for theoretical predictions in this field are microscopic methods such as the Hartree-Fock one based on independent particle approximation. The main ingredient for such an approach is the effective nucleon-nucleon interaction. The actual trend being the study of nuclei more and more far from the stability valley, it is necessary to cast doubt over the validity of usual effective interaction. This work constitute a study on the way one can construct a new interaction allowing some theoretical predictions on nuclei far from the stability. We have thus made a complete study of symmetric infinite nuclear matter and asymmetric one up to pure neutron matter. One shows that the asymmetry coefficient, which was considered until now as fixing isospin properties, is not sufficient to have a correct description of very exotic isospin states. A new type of constraint is shown for fixing this degree of freedom: the neutron matter equation of state. One include this equation of state, taken from a theoretical model giving a good description of radii and masses of neutron stars. One can thus expect to build up new Skyrme interaction with realistic properties of ground state of very neutron-rich nuclei. (author). 63 refs., 68 figs., 15 tabs.
Isospin effects in intermediate energy heavy ion collision
International Nuclear Information System (INIS)
Liu Jianye; Zuo Wei; Yang Yanfang; Zhao Qiang; Guo Wenjun
2001-01-01
Based on the achievements for the intermediate energy heavy ion collision in authors' recent work and the progresses in the world, the isospin effects and the dependence of the entrance channel conditions on them in the intermediate energy heavy ion collisions were introduced, analysed and commended. From the calculation results by using isospin dependence quantum molecular dynamics, it is clear to see that the nuclear stopping power strongly depends on the in-medium isospin dependence nucleon-nucleon cross section and weakly on the symmetry potential in the energy region from about Fermi energy to 150 MeV/u and the intermediate mass fragment multiplicity also sensitively depends on the in-medium isospin dependent nucleon-nucleon cross section and weakly on the symmetry potential in a selected energy region. But the preequilibrium emission neutron-proton ratio is quite contrary, it sensitively depends on the symmetry potential and weakly on the in-medium isospin dependent nucleon-nucleon cross section. In addition to the nuclear stopping sensitively depending on the beam energy, impact parameter and the mass of colliding system and weakly on the neutron-proton ratio of the colliding systems with about the same mass, the preequilibrium emission neutron-neutron ratio sensitively depends on the beam energy and the neutron-proton ratio of colliding system, but weakly on the impact parameter. From above results it is proposed that the nuclear stopping is a new probe to extract the information on the in-medium isospin dependence nucleon-nucleon cross section in energy region from about Fermi energy to 150 MeV/u and the preequilibrium emission neutron-proton ratio is a good probe for extracting the information about the symmetry potential from the lower energy to about 150 MeV/u
Study of an Isospin-Forbidden $0^{+} \\rightarrow 0^{+}$ Transition in $^{38m}$K
2002-01-01
There is at present a discrepancy between the precisely determined value of $V_{ud}^{2}$ obtained from $0^{+} \\rightarrow 0^{+} $ nuclear $\\beta$-decay and the less precisely determined value inferred from neutron decay. One possible explanation for this discrepancy involves the " Coulomb " corrections that must be applied to the nuclear decay rates. We propose to investigate one class of these corrections (for charge-dependent configuration-mixing) by measuring the isospin-forbidden $0^{+} \\rightarrow 0^{+}$ decay rate in $^{38m}$K. $^{38m}$K decay is particularly interesting because it is predicted to have the largest charge-dependent mixing correction of any of the transitions used in the $V_{ud}^{2}$ determination.
Energy Technology Data Exchange (ETDEWEB)
Sagawa, H. [Center for Mathematical Science, University of Aizu, Aizu-Wakamatsu, Fukushima 965 (Japan); Van Giai Nguyen [Theoretical Physics Division, Inst. de Physique Nucleaire, Paris-11 Univ., 91 - Orsay (France); Suzuki, T. [Department of Physics, Nihon University, Tokyo 156 (Japan)
1999-10-01
We study the effect of isospin impurity on the super-allowed Fermi {beta} decay using microscopic HF and RPA (or TDA) model taking into account CSB and CIB interactions. It is found that the isospin impurity of N = Z nuclei gives enhancement of the sum rule of Fermi transition probabilities. On the other hand, the super-allowed transitions between odd-odd J = 0 nuclei and even-even J = 0 nuclei are quenched because on the cancellation of the isospin impurity effects of mother and daughter nuclei. An implication of the calculated Fermi transition rate on the unitarity of Cabbibo-Kobayashi-Maskawa mixing matrix is also discussed. (authors) 3 refs., 1 fig.
International Nuclear Information System (INIS)
Landau, R.H.; Madsen, V.A.
1988-01-01
A progress report is presented for DOE grant FG06-86ER40283 supporting theoretical studies in nuclear and particle physics at Oregon State University. The research was led by Professors Landau and Madsen, and carried out in collaboration with graduate students in Corvallis, and scientists at LLNL-Livermore, TRIUMF, KFA-Juelich, Purdue University, and Florida State University. The studies include meson-exchange-current effects, quark effects, and relativistic (Dirac) effects deduced from spin observables in p- 3 He scattering, atomic and nuclear Gamow states in momentum space of kaons and antiprotons, and charge-symmetry violation in pion scattering. Additional studies include microscopic optical potential calculations, multiple step processes, and differences in neutron and proton multipole matrix elements and transition densities in low lying collective states and in giant resonances. 13 refs
International Nuclear Information System (INIS)
Madsen, V.A.; Landau, R.H.
1985-01-01
Progress is briefly described on the following research topics: a theory for proton -3 He scattering, momentum space Dirac equation, atomic and nuclear bound states of kaonic hydrogen and helium, calculation of the absorptive charge-exchange potential, role of higher-order processes in the absorptive optical potential W, the deformation-parameter reversal effect, and interference effect in T/sub i/ (p,n) reactions. Publications are listed. 23 refs
NUCLEAR MIXING METERS FOR CLASSICAL NOVAE
Energy Technology Data Exchange (ETDEWEB)
Kelly, Keegan J.; Iliadis, Christian; Downen, Lori; Champagne, Art [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255 (United States); José, Jordi [Departament de Física i Enginyeria Nuclear, EUETIB, Universitat Politècnica de Catalunya, E-08036 Barcelona (Spain)
2013-11-10
Classical novae are caused by mass transfer episodes from a main-sequence star onto a white dwarf via Roche lobe overflow. This material possesses angular momentum and forms an accretion disk around the white dwarf. Ultimately, a fraction of this material spirals in and piles up on the white dwarf surface under electron-degenerate conditions. The subsequently occurring thermonuclear runaway reaches hundreds of megakelvin and explosively ejects matter into the interstellar medium. The exact peak temperature strongly depends on the underlying white dwarf mass, the accreted mass and metallicity, and the initial white dwarf luminosity. Observations of elemental abundance enrichments in these classical nova events imply that the ejected matter consists not only of processed solar material from the main-sequence partner but also of material from the outer layers of the underlying white dwarf. This indicates that white dwarf and accreted matter mix prior to the thermonuclear runaway. The processes by which this mixing occurs require further investigation to be understood. In this work, we analyze elemental abundances ejected from hydrodynamic nova models in search of elemental abundance ratios that are useful indicators of the total amount of mixing. We identify the abundance ratios ΣCNO/H, Ne/H, Mg/H, Al/H, and Si/H as useful mixing meters in ONe novae. The impact of thermonuclear reaction rate uncertainties on the mixing meters is investigated using Monte Carlo post-processing network calculations with temperature-density evolutions of all mass zones computed by the hydrodynamic models. We find that the current uncertainties in the {sup 30}P(p, γ){sup 31}S rate influence the Si/H abundance ratio, but overall the mixing meters found here are robust against nuclear physics uncertainties. A comparison of our results with observations of ONe novae provides strong constraints for classical nova models.
International Nuclear Information System (INIS)
Madsen, V.A.; Landau, R.H.
1987-01-01
A progress report on a grant from the DOE supporting theoretical studies in nuclear physics at Oregon State University in 1986, 1987 is presented. The research was led by Professors Landau and Madsen and carried out in collaboration with graduate students in Corvallis and scientists at LLNL-Livermore, KFA-Juelich, Purdue University, Florida State University and TRIUMF. The studies included meson exchange current effects deduced from spin observables in p- 3 He scattering, coupled bound and continuum eigenstates in momentum space for kaons and antiprotons, and charge symmetry violation in π scattering from trinucleons. Additional studies included microscopic optical potential calculations, multiple step processes, and differences in neutron and proton multipole matrix elements and transition densities in low lying collective states and in giant resonances
International Nuclear Information System (INIS)
Madsen, V.A.; Landau, R.H.
1986-01-01
Final technical report on a contract supporting theoretical studies in nuclear physics at Oregon State University is presented. The research was led by Professors Landau and Madsen and carried out in collaboration with graduate students in Corvallis and scientists at LLNL-Livermore, KFA-Julich, Purdue University-West Lafayette, University of Oregon-Eugene, Florida State University-Talahasie, and TRIUMF-Vancouver. The studies included meson exchange current effects, quark effects,and relativistic/Dirac effects deduced from spin observables in p- 3 He scattering, coupled bound and continuum eigenstates in momentum space for kaons and antiprotons, and charge symmetry violation in π scattering from trinucleons. Additional studies included microscopic optical potential calculations, multiple step processes, and differences in neutron and proton multipole matrix elements in low lying collective states and in giant resonances. 45 refs
Directly detecting isospin-violating dark matter
Kelso, Chris; Kumar, Jason; Marfatia, Danny; Sandick, Pearl
2018-01-01
We consider the prospects for multiple dark matter direct detection experiments to determine if the interactions of a dark matter candidate are isospin-violating. We focus on theoretically well-motivated examples of isospin-violating dark matter (IVDM), including models in which dark matter interactions with nuclei are mediated by a dark photon, a Z, or a squark. We determine that the best prospects for distinguishing IVDM from the isospin-invariant scenario arise in the cases of dark photon–...
International Nuclear Information System (INIS)
1995-01-01
For the most part the work supported by this grant has involved study of the spin, isospin, and multipole content of the continuum of nuclei. Most of the work has used polarized (p,p') or (d,d') reactions, measuring spin observables to infer properties of the target nuclei. In addition some work has been done using the (p,nx) reaction to study the Δ excitation region of the continuum. Publications resulting from this work have included seventeen refereed articles and letters, seventeen abstracts and conference talks, three of which were invited. Experiments included: 12 C(p,p), E=318 MeV; 48 Ca(p,p), E=318 MeV; 40 Ca(p,p), E=800 MeV; 208 Pb(p,p), E=200 MeV; H, 12 C(n,p); 40 Ca(p,p), E=580 MeV; 208 Pb(p,p), E=200 MeV; 12 C(d,d), E d =400 MeV; 40 Ca(p,p), E=500 MeV; 12 C(p,p), E=800 MeV; 40 Ca(d,d), E d =400 MeV; 40 Ca(p,p), E p =318 MeV; 208 Pb(p,p), E p =200 MeV; 12 C(d,d), E d =400 MeV; 2 H, 12 C(p,nπ), E p =800 MeV; 12 C(d,d), E d =600 MeV
Liquid-gas phase transition and isospin fractionation in intermediate energy heavy ion collisions
International Nuclear Information System (INIS)
Xing Yongzhong; Liu Jianye; Guo Wenjun
2004-01-01
The liquid-gas phase transition in the heavy ion collisions and nuclear matter has been an important topic and got achievements, such as, based on the studies by H.Q. Song et al the critical temperature of liquid-gas phase transition enhances with increasing the mass of system and reduces as the increase of the neutron proton ratio of system. As authors know that both the liquid-gas phase transition and the isospin fractionation occur in the spinodal instability region at the nuclear density below the normal nuclear density. In particular, these two dynamical processes lead to the separation of nuclear matter into the liquid phase and gas phase. In this case to compare their dynamical behaviors is interested. The authors investigate the dependence of isospin fractionation degree on the mass and neutron proton ratio of system by using the isospin dependent quantum molecular dynamics model. The authors found that the degree of isospin fractionation (N/Z) n /(N/Z) imf decreases with increasing the mass of the system. This is just similar to the enhance of the critical temperature of liquid-gas phase transition T c as the increase of system mass. Because the enhance of T c is not favorable for the liquid-gas transition taking place, which reduces the isospin fractionation process and leads to decrease of (N/Z) n /(N/Z) imf . However the degree of isospin fractionation enhances with increasing the neutron proton ratio of the system. It is just corresponding to the reduce of T c of the liquid-gas phase transition as the increase of the isospin fractionation of the system. Because the reduce of T c enhances the liquid-gas phase transition process and also prompts the isospin fractionation process leading the increase of the isospin fractionation degree. To sum up, there are very similar dynamical behaviors for the degree of isospin fractionation and the critical temperature of the liquid-gas phase transition. So dynamical properties of the liquid-gas phase transition can
On the thermal properties of polarized nuclear matter
International Nuclear Information System (INIS)
Hassan, M.Y.M.; Montasser, S.S.; Ramadan, S.
1979-08-01
The thermal properties of polarized nuclear matter are calculated using Skyrme III interaction modified by Dabrowski for polarized nuclear matter. The temperature dependence of the volume, isospin, spin and spin isospin pressure and energies are determined. The temperature, isospin, spin and spin isospin dependence of the equilibrium Fermi momentum is also discussed. (author)
Remarks on the history of isospin
International Nuclear Information System (INIS)
Brown, L.M.
1988-01-01
The history of the isospin concept is reviewed from the introduction of the formalism by Heisenberg in 1932 to the isospin selection rules of Adair, Radicati, and Gell-Mann and Telegdi of the early 1950s, and the significance of the concept is assessed. 34 refs
Nuclear power - an inevitable component of a sustainable energy mix
International Nuclear Information System (INIS)
Mesarovic, M.
2000-01-01
Nuclear power plants already add consequential amounts of energy to the global energy supply and continue to offer advantages for large additions of capacity. If increased, the nuclear share in world's energy mix would reduce the environmental damages as well as the climate change threats caused by the use of fossil fuels, thus providing an essential element of sustainable development. Such a potential contribution of nuclear power on large scale in a sustainable energy mix is considered, with its actual burdens and challenges discussed. Sustainable energy development with or without nuclear power is presented, with public acceptance of nuclear energy and global warming issues discussed in more details. (author)
International Nuclear Information System (INIS)
Liu Jianye; Guo Wenjun; Li Xiguo; Xing Yongzhong
2004-01-01
The authors investigate the isospin effect of Coulomb interaction on the momentum dissipation or nuclear stopping in the intermediate energy heavy ion collisions by using the isospin-dependent quantum molecular dynamics model. The calculated results show that the Coulomb interaction induces obviously the reductions of the momentum dissipation. The authors also find that the variation amplitude of momentum dissipation induced by the Coulomb interaction depends sensitively on the form and strength of symmetry potential. However, the isospin effect of Coulomb interaction on the momentum dissipation is less than that induced by the in-medium nucleon-nucleon cross section. In this case, Coulomb interaction does not changes obviously the isospin effect of momentum dissipation induced by the in-medium two-body collision. In particular, the Coulomb interaction is preferable for standing up the isospin effect of in-medium nucleon-nucleon cross section on the momentum dissipation and reducing the isospin effect of symmetry potential on it, which is important for obtaining the feature about the sensitive dependence of momentum dissipation on the in-medium nucleon-nucleon cross section and weakly on the symmetry potential. (author)
China's mixed signals on nuclear weapons
International Nuclear Information System (INIS)
Fieldhouse, R.
1991-01-01
Ultimately, it is nuclear whether the Chinese leadership has made up its collective mind on practical nuclear weapons. It is known from Chinese official sources, including articles in Communist Party and military publications and histories of the Chinese nuclear program, that an internal debate has proceeded for more than two decades, punctuated by occasional nuclear exercises or low-yield warhead tests. But China presumably has less reason now to pursue development of tactical nuclear weapons than in previous decades: relations with the Soviet Union have improved and military confrontation has eased; China's relations with India and Vietnam are also improving. The decision may already have been made, however, and the weapons built. The mystery surrounding Chinese tactical nuclear weapons is itself interesting, but it is also symbolic of the difficulty of understanding China's nuclear weapons program and policies. The West has accumulated a considerable body of knowledge about China's nuclear forces, especially historical material. But important aspects of China's nuclear behavior and its future as a nuclear power are hard to discern. A key question is China's future role in the spread of nuclear-capable weapons to other countries. China might add to international efforts to stem the proliferation of nuclear related technology, or it might become the world's missile merchant. It could make a constructive contribution to arms control efforts in general, or it could act as a spoiler
Recent progress and new challenges in isospin physics with heavy-ion reactions
Energy Technology Data Exchange (ETDEWEB)
Li Baoan [Department of Physics, Texas A and M University-Commerce, Commerce, TX 75429-3011 (United States)], E-mail: Bao-An_Li@Tamu-Commerce.edu; Chen Liewen [Institute of Theoretical Physics, Shanghai Jiao Tong University, Shanghai 200240 (China)], E-mail: Lwchen@Sjtu.edu.cn; Ko, Che Ming [Cyclotron Institute and Physics Department, Texas A and M University, College Station, TX 77843-3366 (United States)], E-mail: Ko@Comp.tamu.edu
2008-08-15
The ultimate goal of studying isospin physics via heavy-ion reactions with neutron-rich, stable and/or radioactive nuclei is to explore the isospin dependence of in-medium nuclear effective interactions and the equation of state of neutron-rich nuclear matter, particularly the isospin-dependent term in the equation of state, i.e., the density dependence of the symmetry energy. Because of its great importance for understanding many phenomena in both nuclear physics and astrophysics, the study of the density dependence of the nuclear symmetry energy has been the main focus of the intermediate-energy heavy-ion physics community during the last decade, and significant progress has been achieved both experimentally and theoretically. In particular, a number of phenomena or observables have been identified as sensitive probes to the density dependence of nuclear symmetry energy. Experimental studies have confirmed some of these interesting isospin-dependent effects and allowed us to constrain relatively stringently the symmetry energy at sub-saturation densities. The impact of this constrained density dependence of the symmetry energy on the properties of neutron stars have also been studied, and they were found to be very useful for the astrophysical community. With new opportunities provided by the various radioactive beam facilities being constructed around the world, the study of isospin physics is expected to remain one of the forefront research areas in nuclear physics. In this report, we review the major progress achieved during the last decade in isospin physics with heavy ion reactions and discuss future challenges to the most important issues in this field.
Single isospin decay amplitude and CP violation
Energy Technology Data Exchange (ETDEWEB)
Deshpande, N.G. [Oregon Univ., Eugene, OR (United States). Inst. of Theoretical Science; He, Xiaogang [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Pakvasa, S. [Hawaii Univ., Honolulu, HI (United States). Dept. of Physics and Astronomy
1996-06-01
While for K meson or hyperon decays, the partial rate asymmetries are always zero if the final states are single isospin states, in B decays the situation is dramatically different and partial rate asymmetries can be non-zero if the final states are single isospin states. Partial rate asymmetries were calculated for several B decays with single isospin amplitude in the finale states using factorization approximation. It was found that more intermediate on-shell states with different Cabbibbo-Kobayashi-Maskawa factors are allowed in B decay and CP violating partial rate asymmetries need not to be zero even if the final state contains only a single isospin state. 17 refs., 4 figs.
Directly detecting isospin-violating dark matter
Kelso, Chris; Kumar, Jason; Marfatia, Danny; Sandick, Pearl
2018-03-01
We consider the prospects for multiple dark matter direct detection experiments to determine if the interactions of a dark matter candidate are isospin-violating. We focus on theoretically well-motivated examples of isospin-violating dark matter (IVDM), including models in which dark matter interactions with nuclei are mediated by a dark photon, a Z , or a squark. We determine that the best prospects for distinguishing IVDM from the isospin-invariant scenario arise in the cases of dark photon-or Z -mediated interactions, and that the ideal experimental scenario would consist of large exposure xenon- and neon-based detectors. If such models just evade current direct detection limits, then one could distinguish such models from the standard isospin-invariant case with two detectors with of order 100 ton-year exposure.
Microscopic Calculations of Isospin-Breaking Corrections to Superallowed Beta Decay
International Nuclear Information System (INIS)
Satula, W.; Rafalski, M.; Dobaczewski, J.; Nazarewicz, W.
2011-01-01
The superallowed β-decay rates that provide stringent constraints on physics beyond the standard model of particle physics are affected by nuclear structure effects through isospin-breaking corrections. The self-consistent isospin- and angular-momentum-projected nuclear density functional theory is used for the first time to compute those corrections for a number of Fermi transitions in nuclei from A=10 to A=74. The resulting leading element of the Cabibbo-Kobayashi-Maskawa matrix, |V ud |=0.974 47(23), agrees well with the recent result of Towner and Hardy [Phys. Rev. C 77, 025501 (2008)].
Effects of the ρ - ω mixing interaction in relativistic models
International Nuclear Information System (INIS)
Menezes, D.P.; Providencia, C.
2003-01-01
The effects of the ρ-ω mixing term in infinite nuclear matter and in finite nuclei are investigated with the non-linear Walecka model in a Thomas-Fermi approximation. For infinite nuclear matter the influence of the mixing term in the binding energy calculated with the NL3 and TM1 parametrizations can be neglected. Its influence on the symmetry energy is only felt for the TM1 with a unrealistically large value for the mixing term strength. For finite nuclei the contribution of the isospin mixing term is very large as compared with the expected value to solve the Nolen-Schiffer anomaly
Positioning of Nuclear in the Japanese Energy Mix
International Nuclear Information System (INIS)
Masuda, Tatsuo; Komiyama, Ryiochi
2012-08-01
Nuclear fission was discovered in the late 1930's. The first application went towards military use, and gradually expanded to civil use such as power generation. Power generation gained importance in two stages: firstly, to shift away from oil in power generation after the oil shocks in the 1970's, and second, to arrest climate change due to CO 2 -free nature of nuclear power more recently. This typically applies to Japan, which has become the world third largest in nuclear power generation. However, nuclear power is violent by nature, and major accidents of nuclear power plants shook the public confidence in nuclear safety. Japan has been put into such situation in a most radical way due to the Fukushima nuclear disaster of March 2011. This disaster may have its root causes in the history of nuclear development in Japan. Nuclear scientists failed to take the initiative in peaceful use of nuclear and lost the opportunity of making basic researches prior to the commercial introduction of nuclear power generation. Otherwise, safety issues could have been handled with greater care and 'nuclear safety myth' could not have prevailed. Today, the discussion is ongoing on how to position nuclear in the Japanese energy mix. Purely from economic viewpoint, due to the energy reality of Japan, it might be extremely difficult to sustain its economy without nuclear at least in short and medium term. However, the public opinions are divided with the vast majority in favor of zero-nuclear or decreased nuclear dependency. In this context, employing an energy-economic model, an attempt was made to analyze Japan's power generation mix in 2030 under possible nuclear scenarios and assessed the role of nuclear energy in its energy mix. A technical implication taken form this analysis is that, if intermittent renewables such as solar and wind may largely diffuse in power grid replacing nuclear power, output fluctuation from high penetration level of these energy sources will be
Institute of Scientific and Technical Information of China (English)
YE Wei; CHEN Na
2004-01-01
Isospin effects on particle emission of fissioning isobaric sources 202Fr, 202po, 202Tl and isotopic sources 189,202,212Po, and its dependence on the excitation energy are studied via Smoluchowski equations. It is shown that with increasing the isospin of fissioning systems, charged-particle emission is not sensitive to the strength of nuclear dissipation. In addition, we have found that increasing the excitation energy not only increases the influence of nuclear dissipation on particle emission but also greatly enhances the sensitivity of the emission of pre-scission neutrons or charged particles to the isospin of the system. Therefore, in order to extract dissipation strength more accurately by taking light particle multiplicities it is important to choose both a highly excited compound nucleus and a proper kind of particles for systems with different isospins.
Nuclear energy in the European energy mix operation
International Nuclear Information System (INIS)
Gueldner, R.
2009-01-01
The world nuclear energy is on the upswing. This is shown by lifetime extensions up to 60 years and the construction of new nuclear power plants. Especially, the progressive climate change requires new, definitive, fast and decisive solutions. Europe has to find the right energy mix for the future having the magic triangle of environmental sustainability, security of supply and economic affordability in mind. At the centre of all the efforts made by many countries all over the world, nuclear is one vital key technology to face and combat global warming. Nuclear has a positive eco-balance, nuclear gives security of supply and nuclear power generation is competitive. Beside this the most important fact is and will be the high safety to run a nuclear power plant. The energy mix in the EU of the next decades will be defined today. It is vital to consider every option, which can contribute to a sustainable energy mix. Nuclear alone is not the solution for all problems but there will be no sustainable solution without nuclear. (author)
International Nuclear Information System (INIS)
Chen, H.T.; Muether, H.; Faessler, A.
1978-01-01
Pairing vibrational and isospin rotational states are described in different approximations based on particle number and isospin projected, proton-proton, neutron-neutron and proton-neutron pairing wave functions and on the generator coordinate method (GCM). The investigations are performed in models for which an exact group theoretical solution exists. It turns out that a particle number and isospin projection is essential to yield a good approximation to the ground state or isospin yrast state energies. For strong pairing correlations (pairing force constant equal to the single-particle level distance) isospin cranking (-ωTsub(x)) yields with particle number projected pairing wave function also good agreement with the exact energies. GCM wave functions generated by particle number and isospin projected BCS functions with different amounts of pairing correlations yield for the lowest T=0 and T=2 states energies which are practically indistinguishable from the exact solutions. But even the second and third lowest energies of charge-symmetric states are still very reliable. Thus it is concluded that also in realistic cases isospin rotational and pairing vibrational states may be described in the framework of the GCM method with isospin and particle number projected generating wave functions. (Auth.)
Parity violating nuclear force by meson mixing
International Nuclear Information System (INIS)
Iqbal, M.J.; Niskanen, J.A.
1990-01-01
We study a mechanism for parity violation in the two nucleon meson-exchange interaction by way of the mixing of mesons of opposite parities. This mixing arises from parity violating W ± and Z exchange between the q bar q pair in the meson. Numerically its effect turns out to be as important as vector meson exchange with a weak meson-nucleon vertex and may partly be used to model this vertex. The calculation is performed using both the standard Born approximation adding the amplitude phases by Watson's theorem and also using the exact correlated two-nucleon wave functions. The effect of correlations and form factors is found to be crucially important at intermediate energies
Isospin corrections to charmless semileptonic {ital B}{r_arrow}{ital V} transitions
Energy Technology Data Exchange (ETDEWEB)
Diaz-Cruz, J.L. [Instituto de Fisica, Universidad Autonoma de Puebla, Apartado Postal J-48, 72500 Puebla, Puebla (Mexico); Lopez Castro, G. [Departamento de Fisica, Cinvestav del IPN, Apartado Postal 14-740, 07000 Mexico, D.F. (Mexico); Munoz, J.H. [Departamento de Fisica, Cinvestav del IPN, Apartado Postal 14-740, 07000 Mexico, D.F. (Mexico)]|[Departamento de Fisica, Universidad del Tolima, A. A. 546, Ibague (Colombia)
1996-08-01
We compute isospin corrections to the charmless semileptonic {ital B}{r_arrow}{ital V} transitions arising from {rho}-{omega} mixing and discuss its relevance in the determination of {ital V}{sub {ital ub}}. {copyright} {ital 1996 The American Physical Society.}
Organic analyses of mixed nuclear wastes
International Nuclear Information System (INIS)
Toste, A.P.; Lucke, R.B.; Lechner-Fish, T.J.; Hendren, D.J.; Myers, R.B.
1987-04-01
Analytical methods are being developed for the organic analysis of nuclear wastes. Our laboratory analyzed the organic content of three commercial wastes and an organic-rich, complex concentrate waste. The commercial wastes contained a variety of hydrophobic and hydrophilic organics, at concentrations ranging from nanomolar to micromolar. Alkyl phenols, chelating and complexing agents, as well as their degradation products, and carboxylic acids were detected in the commercial wastes. The complex concentrate waste contained chelating and complexing agents, as well as numerous degradation products, at millimolar concentrations. 75.1% of the complex concentrate waste's total organic carbon content has been identified. The presence of chelator fragments in all of the wastes analyzed, occasionally at elevated concentrations, indicates that organic diagenesis, or degradation, in nuclear wastes is both widespread and quite vigorous. 23 refs., 3 tabs
Isospin conservation in many-particle production
International Nuclear Information System (INIS)
Reinders, L.J.
1976-01-01
Exact isospin conservation is incorporated into independent pion emission models at high energies. A multipion wave function is constructed which is an eigen state of the isospin operators I 2 and I 3 , with the only restriction being that the wave function is completely symmetric in all momentum variables. In this way isospin conservation can account for the observed broadening of the changed particle distribution, but not the positive changed-neutral correlation for pp and π + p inelastic scattering. The author shows that these difficulties can be overcome by the introduction of clusters. Using the generating function technique a general formalism is given for the production of isospin-zero and isospin-one clusters. In the simplest case of the uncorrelated production of clusters and their subsequent isotropic decay, the topological cross-sections for proton-proton scattering could be fitted fairly well resulting also in a possitive changed-neutral correlation. The number of clusters is approximately constant in an energy range between 110 and 400 GeV
Best power mix under nuclear-decreasing society
International Nuclear Information System (INIS)
Koyama, Michihisa; Nakao, Kazuhide
2012-01-01
East Japan Great Earthquake and the subsequent failures of nuclear power plants compel Japanese to consider a new paradigm of national energy policy. In this study, we discuss the future power mix scenario considering a variety of power options; nuclear, coal fire, LNG fire, oil fire, LNG combined cycle, hydro, hydropump, battery, photovoltaic, wind, and geothermal. Future developments of installed capacity, properties such as efficiency, etc. are discussed for each type of power option. Seven sets of daily demand profile are used. Power generation mix model developed in preceding studies is used to estimate the installation and operation of each power option for representative years of 2010, 2020, 2030, 2040, and 2050. Future power mix is discussed on the basis of results from power generation mix model. (author)
Semi-classical calculation of the spin-isospin response functions
International Nuclear Information System (INIS)
Chanfray, G.
1987-03-01
We present a semi-classical calculation of the nuclear response functions beyond the Thomas-Fermi approximation. We apply our formalism to the spin-isospin responses and show that the surface peaked h/2π corrections considerably decrease the ratio longitudinal/transverse as obtained through hadronic probes
Neutron emission probability at high excitation and isospin
International Nuclear Information System (INIS)
Aggarwal, Mamta
2005-01-01
One-neutron and two-neutron emission probability at different excitations and varying isospin have been studied. Several degrees of freedom like deformation, rotations, temperature, isospin fluctuations and shell structure are incorporated via statistical theory of hot rotating nuclei
Dependence of balance energy on isospin degrees of freedom
International Nuclear Information System (INIS)
Gautam, S.; Sood, Aman D.; Puri, Rajeev K.; Hartnack, Ch.; Aichelin, J.
2009-01-01
Collective transverse in-plane flow in heavy ion collisions has been a subject of intensive theoretical and experimental studies, as it can provide information about the nuclear matter equation of state (EOS) as well as in medium nucleon-nucleon (nn) cross section. The study of dependence of collective transverse flow on various entrance channel parameters as beam energy and impact parameter has revealed much interesting physics about the origin and properties of the collective flow. From these studies, it has been found that the transverse in plane flow disappears at an incident energy termed as balance energy (E bal ), where attractive part of the nuclear interactions balances the repulsive part. Presently, due to availability of the radioactive beams, role of isospin degrees of freedom in EOS can be studied. The collective transverse in-plane flow has been found to depend on isospin of the colliding system. Here, we aim to study the dependence of E bal on N/Z ratio of the colliding system using IQMD model
The off shell ρ endash ω mixing in the QCD sum rules
International Nuclear Information System (INIS)
Hatsuda, T.
1993-01-01
The q 2 dependence of the ρ - ω mixing amplitude is analyzed with the use of the QCD sum rules and the dispersion relation. In going off shell the mixing decreases, changes sign at q 2 ≅ 0.4 m ρ 2 > 0, and is negative in the space-like region. Implications of this result to the isospin breaking part of the nuclear force are discussed
High energy spin isospin modes in nuclei
International Nuclear Information System (INIS)
Chanfray, G.; Ericson, M.
1984-01-01
The high energy response of nuclei to a spin-isospin excitation is investigated. We show the existence of a strong contrast between the spin transverse and spin longitudinal responses. The second one undergoes a shadow effect in the Δ region and displays the occurrence of the pionic branch
Present status of the Chimera-Isospin experiment
International Nuclear Information System (INIS)
Politi, G.; Arena, N.; Cardella, G.; DeFilippo, E.; Lanzano, G.; Nigro, S.L.; Pagano, A.; Papa, M.; Pirrone, S.; Russotto, P.; Alderighi, M.; Sechi, G.; Sperduto, M.L.; Amorini, F.; Anzalone, A.; Baran, V.; Bonasera, A.; Cavallaro, S.L.; Colonna, M.; Di Toro, M.; LaGuidara, E.; Lanzalone, G.; IaconoManno, M.; Giustolisi, F.; Maiolino, C.; Porto, F.; Rizzo, F.; Trifiro, A.; Trimarchi, M.; Auditore, L.; Barna, R.; DePasquale, D.; Berceanu, I.; Petrovici, M.; Pop, A.; Blicharska, J.; Grzeszczuk, A.; Kowalski, S.; Zipper, W.; Borderie, B.; LeNeindre, N.; Rivet, M.F.; Bougault, R.; Briczycnski, J.; Gawlikowicz, W.; Majka, Z.; Planeta, R.; Bruno, M.; D'Agostino, M.; Fuschini, E.; Geraci, E.; Vannini, G.; Chatterjee, M.B.; Chbihi, A.; Wieleczko, J.P.; Cibor, J.; Dayras, R.; Guazzoni, P.; Russo, S.; Sassi, M.; Zetta, L.; Guinet, D.; Li, S.; Wu, H.; Xiao, Z.; Nicolis, N.G.; Piasecki, E.; Swiderski, L.; Rosato, E.; Vigilante, M.; Wilczynski, J.; Siwek-Wilczynska, K.; Skwira, I.
2003-01-01
The CHIMERA detector was designed to significantly contribute to multifragmentation studies in the field of heavy ion collisions at intermediate energies. The device has been used at 'Laboratori Nazionali del Sud' (LNS) in Catania (Italy) to study different aspects of the relevant nuclear reaction mechanism, in two different campaigns: the first one in 2000, by using the forward part (1 - 30 degrees) of the device, and the second one in 2003, by using the 4π geometry. The experimental results have confirmed the capability of the apparatus for good isotopic identification of light charged particles and light fragments (3< Z<10) in a wide angular detection range. The data analysis relative to the first 2000 campaign (REVERSE) is presently aimed to disentangle dynamical and equilibrium emission components in multifragmentation reactions and to learn more about the role of the isospin degree of freedom in asymmetric nuclear matter. Reduction of the data of the second campaign is still in progress. (authors)
Inhomogeneous chiral symmetry breaking in isospin-asymmetric strong-interaction matter
Energy Technology Data Exchange (ETDEWEB)
Nowakowski, Daniel
2017-07-01
In this thesis we investigate the effects of an isospin asymmetry on inhomogeneous chiral symmetry breaking phases, which are characterized by spatially modulated quarkantiquark condensates. In order to determine the relevance of such phases for the phase diagram of strong-interaction matter, a two-flavor Nambu-Jona-Lasinio model is used to study the properties of the ground state of the system. Confirming the presence of inhomogeneous chiral symmetry breaking in isospin-asymmetric matter for a simple Chiral Density Wave, we generalize the modulation of the quark-antiquark pairs to more complicated shapes and study the effects of different degrees of flavor-mixing on the inhomogeneous phase at non-zero isospin asymmetry. Then, we investigate the occurrence of crystalline chiral symmetry breaking phases in charge-neutral matter, from which we determine the influence of crystalline phases on a quark star by calculating mass-radius sequences. Finally, our model is extended through color-superconducting phases and we study the interplay of these phases with inhomogeneous chiral-symmetry breaking at non-vanishing isospin asymmetry, before we discuss our findings.
Pion-nucleon scattering and isospin violation
International Nuclear Information System (INIS)
Meissner, U.G.
1999-01-01
The paper discusses low-energy pion-nucleon scattering in the framework of chiral perturbation theory. It is argued that using this theoretical method one is able to match the in some cases impressive experimental accuracy (for the low partial waves). It is also shown how strong and electromagnetic isospin violation can be treated simultaneously. Some first results for neutral pion scattering and the σ-term are given. Copyright (1999) World Scientific Publishing Co. Pte. Ltd
Isospin violation in pion-kaon scattering
Energy Technology Data Exchange (ETDEWEB)
Kubis, Bastian E-mail: b.kubis@fz-juelich.de; Meissner, Ulf-G. E-mail: ulf-g.meissner@fz-juelich.de
2002-03-11
We consider strong and electromagnetic isospin violation in near-threshold pion-kaon scattering. At tree level, such effects are small for all physical channels. We work out the complete one-loop corrections to the process {pi}{sup -}K{sup +}{yields}{pi}{sup 0}K{sup 0}. They come out rather small. We also show that the corresponding radiative cross section is highly suppressed at threshold.
Isospin violation in pion-kaon scattering
International Nuclear Information System (INIS)
Kubis, Bastian; Meissner, Ulf-G.
2002-01-01
We consider strong and electromagnetic isospin violation in near-threshold pion-kaon scattering. At tree level, such effects are small for all physical channels. We work out the complete one-loop corrections to the process π - K + →π 0 K 0 . They come out rather small. We also show that the corresponding radiative cross section is highly suppressed at threshold
Study of KN interaction in zero isospin
International Nuclear Information System (INIS)
Doria, R.M.
1977-04-01
The low-energy parameters for kaon-nucleon interaction in the isospin T = 0 state are computed. The differential cross section for K + - deuteron scattering with charge exchange is calculated using the multiple scattering expansion. The various kinematical and dynamical possibilities are discussed. Wave parameters for s, p1/2 and p3/2 are determined by fitting the obtained cross section with the experimental data at low and intermediate energies. (Author) [pt
Energy Technology Data Exchange (ETDEWEB)
Babacan, Tahsin [Department of Physics, Celal Bayar University, Manisa (Turkey); Salamov, Djavad [Department of Physics, Anadolu University, Eskisehir (Turkey); Kuecuekbursa, Atalay [Department of Physics, Dumlupinar University, Kuetahya (Turkey); Babacan, Halil [Department of Physics, Celal Bayar University, Manisa (Turkey); Maras, Ismail [Department of Physics, Celal Bayar University, Manisa (Turkey); Aygoer, Hasan A [Department of Physics, Celal Bayar University, Manisa (Turkey); Uenal, Arslan [Department of Physics, Dumlupinar University, Kuetahya (Turkey)
2004-06-01
In the present study, the effect of the pairing interaction and the isovector correlation between nucleons on the properties of the isobar analogue resonances (IAR) in {sup 112-124}Sb isotopes and the isospin admixture in {sup 100-124}Sn isotopes is investigated within the framework of the proton-neutron quasi-particle random phase approximation (pnQRPA). The form of the interaction strength parameter is related to the shell-model potential by restoring the isotopic invariance of the nuclear part of the total Hamiltonian. In this respect, the isospin admixtures in the {sup 100-124}Sn isotopes are calculated, and the dependence of the differential cross section and the volume integral J{sub F} for the Sn({sup 3}He,t)Sb reactions at E({sup 3}He) =200 MeV occurring by the excitation of IAR on mass number A is examined. Our results show that the calculated value for the isospin mixing in the {sup 100}Sn isotope is in good agreement with Colo et al's estimates (4-5%), and the obtained values for the volume integral change within the error range of the value reported by Fujiwara et al (53 {+-} 5 MeV fm{sup 3}). Moreover, it is concluded that although the differential cross section of the isobar analogue resonance for the ({sup 3}He,t) reactions is not sensitive to pairing correlations between nucleons, a considerable effect on the isospin admixtures in N {approx} Z isotopes can be seen with the presence of these correlations.
QCD at finite isospin chemical potential
Brandt, Bastian B.; Endrődi, Gergely; Schmalzbauer, Sebastian
2018-03-01
We investigate the properties of QCD at finite isospin chemical potential at zero and non-zero temperatures. This theory is not affected by the sign problem and can be simulated using Monte-Carlo techniques. With increasing isospin chemical potential and temperatures below the deconfinement transition the system changes into a phase where charged pions condense, accompanied by an accumulation of low modes of the Dirac operator. The simulations are enabled by the introduction of a pionic source into the action, acting as an infrared regulator for the theory, and physical results are obtained by removing the regulator via an extrapolation. We present an update of our study concerning the associated phase diagram using 2+1 flavours of staggered fermions with physical quark masses and the comparison to Taylor expansion. We also present first results for our determination of the equation of state at finite isospin chemical potential and give an example for a cosmological application. The results can also be used to gain information about QCD at small baryon chemical potentials using reweighting with respect to the pionic source parameter and the chemical potential and we present first steps in this direction.
Pion properties at finite isospin chemical potential with isospin symmetry breaking
Wu, Zuqing; Ping, Jialun; Zong, Hongshi
2017-12-01
Pion properties at finite temperature, finite isospin and baryon chemical potentials are investigated within the SU(2) NJL model. In the mean field approximation for quarks and random phase approximation fpr mesons, we calculate the pion mass, the decay constant and the phase diagram with different quark masses for the u quark and d quark, related to QCD corrections, for the first time. Our results show an asymmetry between μI 0 in the phase diagram, and different values for the charged pion mass (or decay constant) and neutral pion mass (or decay constant) at finite temperature and finite isospin chemical potential. This is caused by the effect of isospin symmetry breaking, which is from different quark masses. Supported by National Natural Science Foundation of China (11175088, 11475085, 11535005, 11690030) and the Fundamental Research Funds for the Central Universities (020414380074)
Passive measurements of mixed-oxide fuel for nuclear nonproliferation
International Nuclear Information System (INIS)
Dolan, Jennifer L.; Flaska, Marek; Pozzi, Sara A.; Chichester, David L.
2013-01-01
We present new results on passive measurements and simulations of mixed-oxide fuel-pin assemblies. Potential tools for mixed-oxide fuel pin characterization are discussed for future nuclear-nonproliferation applications. Four EJ-309 liquid scintillation detectors coupled with an accurate pulse timing and digital, offline and optimized pulse-shape discrimination method were used. Measurement analysis included pulse-height distributions to distinguish between purely fission neutron sources and alpha-n plus fission neutrons sources. Time-dependent cross-correlation functions were analyzed to measure the fission neutron contribution to the measured sample's neutron source. The use of Monte Carlo particle transport code MCNPX-PoliMi is discussed in conjunction with the measurements
The phases of isospin-asymmetric matter in the two-flavor NJL model
Energy Technology Data Exchange (ETDEWEB)
Lawley, S. [Special Research Centre for the Subatomic Structure of Matter, University of Adelaide, Adelaide, SA 5005 (Australia) and Jefferson Lab, 12000 Jefferson Avenue, Newport News, VA 23606 (United States)]. E-mail: slawley@jlab.org; Bentz, W. [Department of Physics, School of Science, Tokai University, Hiratsuka-shi, Kanagawa 259-1292 (Japan); Thomas, A.W. [Jefferson Lab, 12000 Jefferson Avenue, Newport News, VA 23606 (United States)
2006-01-19
We investigate the phase diagram of isospin-asymmetric matter at T=0 in the two-flavor Nambu-Jona-Lasinio model. Our approach describes the single nucleon as a confined quark-diquark state, the saturation properties of nuclear matter at normal densities, and the phase transition to normal or color superconducting quark matter at higher densities. The resulting equation of state of charge-neutral matter and the structure of compact stars are discussed.
Energy Technology Data Exchange (ETDEWEB)
Cuplov, V
2004-04-15
This thesis is dedicated to the impact of electromagnetic corrections on the decays of K{sub l4}. 2 types of electromagnetic contributions have to be considered: first the exchange of virtual photons and secondly the non-perturbative part of meson-photon interactions. We have also considered the effects of isospin breaking. We have shown that the isospin breaking and the electromagnetic corrections affect K{sub l4} decays in the neutral and mixed channels (respectively by 8% and -2%), while the charged channel is unaffected. It also appears that the tree approximation for the computation of the decay rates, is not accurate enough to explain experimental data. In the second part of this work, we give the analytical expressions of the F and G form factors associated with the amplitude of the K{sub l4} process in the charged mode. Infra-red divergencies counterbalance each other in the decay rates calculation when we consider the process K{sub l4{gamma}} where 1 photon is emitted with an energy below the sensitivity of the detector. We have found that the calculation in one loop order represents 75% of the measured value. The impact of radiative corrections is about 0.9% while the isospin breaking effect is about 1.6 per cent.
Mixed-waste minimization activities in the nuclear weapons complex
International Nuclear Information System (INIS)
Marchetti, J.A.; Suffern, J.S.
1991-01-01
Over the past 40 years, the US Department of Energy (DOE) and the nuclear weapons complex have successfully executed their mission of providing the country with a strong nuclear deterrent. Now, however, they must attain another mission at the same time: to eliminate or greatly reduce the environmental, safety, and health problems in the complex. Mixed-waste minimization activities have taken place in 11 of the complex production plants and laboratories: the Pinellas plant, the Mount plant, the Kansas City plant, the Y-12 plant, the Rocky Flats plant, the Savannah River Site (SRS), the Savannah River Site (SRS), the Pantex plant, the Nevada Test Site, Sandia National Laboratories, Los Alamos National Laboratory, and the Lawrence Livermore National Laboratory. The mixed-waste minimization opportunities that have been implemented to date by the production facilities are different from those that have been implemented by the laboratories. Areas of opportunity at the plants involve the following activities: (1) process design or improvement; (2) substitution of materials; (3) waste segregation; (4) recycling; and (5) administrative controls
Post-accelerator issues at the IsoSpin Laboratory
International Nuclear Information System (INIS)
Chattopadhyay, S.; Nitschke, J.M.
1994-05-01
The workshop on ''Post-Accelerator Issues at the Isospin Laboratory'' was held at the Lawrence Berkeley Laboratory from October 27--29, 1993. It was sponsored by the Center for Beam Physics in the Accelerator and Fusion Research Division and the ISL Studies Group in the Nuclear Science Division. About forty scientists from around the world participated vigorously in this two and a half day workshop, (c.f. Agenda, Appendix D). Following various invited review talks from leading practitioners in the field on the first day, the workshop focussed around two working groups: (1) the Ion Source and Separators working group and (2) the Radio Frequency Quadrupoles and Linacs working group. The workshop closed with the two working groups summarizing and outlining the tasks for the future. This report documents the proceedings of the workshop and includes the invited review talks, the two summary talks from the working groups and individual contributions from the participants. It is a complete assemblage of state-of-the-art thinking on ion sources, low-β, low(q/A) accelerating structures, e.g. linacs and RFQS, isobar separators, phase-space matching, cyclotrons, etc., as relevant to radioactive beam facilities and the IsoSpin Laboratory. We regret to say that while the fascinating topic of superconducting low-velocity accelerator structure was covered by Dr. K. Shepard during the workshop, we can only reproduce the copies of the transparencies of his talk in the Appendix, since no written manuscript was available at the time of publication of this report. The individual report have been catologed separately elsewhere
International Nuclear Information System (INIS)
Mohamed Akbar, A.; Veeraraghavan, S.; Arunachalam, N.
1998-01-01
The role of cranking frequency in hot rotating deformed nuclei has been studied with reference to the extraction of several nuclear parameters. In this work, the angular momentum degree of freedom is included in the isospin formalism using statistical theory of hot deformed nuclei
The Nolen-Schiffer anomaly and the ρ0-ω mixing
International Nuclear Information System (INIS)
Epele, L.N.; Fanchiotti, H.; Garcia Canal, C.A.; Gonzales Sprinberg, G.A.; Mendez Galain, R.
1992-01-01
The nuclear medium effects on the neutron-proton mass difference is analyzed in the framework of the Skyrme model. The ρ 0 -ω mixing, as the main source of the non-electromagnetic isospin violation in the model is included, together with the nucleon swelling hypothesis related to the EMC effect. These ingredients allow, as other models suggest, for a clearance of the Nolen-Schiffer anomaly. (orig.)
Isospin-dependent term in the relativistic microscopic optical potential
International Nuclear Information System (INIS)
Rong Jian; Ma Zhongyu; National Laboratory of Heavy Ion Accelerator of Lanzhou, Lanzhou; Chinese Academy of Sciences, Beijing
2005-01-01
The isospin-dependence of the relativistic microscopic optical potential is investigated in the Dirac Brueckner-Hartree-Fock approach. The isospin part of the microscopic optical potential is emphasized. A local density approximation is adopted for finite nuclei. Taking 208 Pb as example, the difference between proton and neutron optical potentials is studied and compared with the phenomenological Lane Model potential. (authors)
Isospin-symmetry-breaking effects in A∼70 nuclei within beyond-mean-field approach
Energy Technology Data Exchange (ETDEWEB)
Petrovici, A.; Andrei, O. [National Institute for Physics and Nuclear Engineering, R-077125 Bucharest (Romania)
2015-02-24
Particular isospin-symmetry-breaking probes including Coulomb energy differences (CED), mirror energy differences (MED), and triplet energy differences (TED) manifest anomalies in the A∼70 isovector triplets of nuclei. The structure of proton-rich nuclei in the A∼70 mass region suggests shape coexistence and competition between pairing correlations in different channels. Recent results concerning the interplay between isospin-mixing and shape-coexistence effects on exotic phenomena in A∼70 nuclei obtained within the beyond-mean-field complex Excited Vampir variational model with symmetry projection before variation using a realistic effective interaction in a relatively large model space are presented. Excited Vampir predictions concerning the Gamow-Teller β decay to the odd-odd N=Z {sup 66}As and {sup 70}Br nuclei correlated with the pair structure analysis in the T=1 and T=0 channel of the involved wave functions are discussed.
Present status of the Chimera-Isospin experiment
Energy Technology Data Exchange (ETDEWEB)
Politi, G.; Arena, N.; Cardella, G.; DeFilippo, E.; Lanzano, G.; Nigro, S.L.; Pagano, A.; Papa, M.; Pirrone, S.; Russotto, P. [Catania Univ., INFN (Italy); Alderighi, M.; Sechi, G.; Sperduto, M.L. [Milano Univ., INFN, CNR (Italy); Amorini, F.; Anzalone, A.; Baran, V.; Bonasera, A.; Cavallaro, S.L.; Colonna, M.; Di Toro, M.; LaGuidara, E.; Lanzalone, G.; IaconoManno, M.; Giustolisi, F.; Maiolino, C.; Porto, F.; Rizzo, F.; Trifiro, A.; Trimarchi, M. [Catania Univ., INFN, Lab. Nazionali del Sud (Italy); Auditore, L.; Barna, R.; DePasquale, D. [Messina Univ., INFN (Italy); Berceanu, I.; Petrovici, M.; Pop, A. [Inst. for Physics and Nuclear Engineering, Bucharest (Romania); Blicharska, J.; Grzeszczuk, A.; Kowalski, S.; Zipper, W. [Univ. of Silesia, Inst. of Physics, Katowice (Poland); Borderie, B.; LeNeindre, N.; Rivet, M.F. [Paris-11 Univ., IPN-IN2P3-CNRS, 91 - Orsay (France); Bougault, R. [Caen Univ., LPC-ISMRA (France); Briczycnski, J.; Gawlikowicz, W.; Majka, Z.; Planeta, R. [M. Smoluchowski Inst. of Physics, Jagellonian Univ., Cracow (Poland); Bruno, M.; D' Agostino, M.; Fuschini, E.; Geraci, E.; Vannini, G. [Bologna Univ., INFN (Italy); Chatterjee, M.B. [Saha Inst. of Nuclear Physics, NIS Div., Kolkata (India); Chbihi, A.; Wieleczko, J.P. [GANIL -CEA-IN2P3-CNRS, 14 - Caen (France); Cibor, J. [H.Niewodniczanski Inst. of Nuclear Physics, Cracow (Poland); Dayras, R. [CEA Saclay, Dept. d' Astrophysique, de Physique des Particules, de Physique Nucleaire et de l' Instrumentation Associee, SPhN, 91- Gif sur Yvette (France); Guazzoni, P.; Russo, S.; Sassi, M.; Zetta, L. [Milano Univ., INFN (Italy); Guinet, D. [Univ. Claude Bernard, IPN-IN2P3-CNRS, 69 - Lyon (France); Li, S.; Wu, H.; Xiao, Z. [Inst. of Modern Physics, Lanzhou (China); Nicolis, N.G. [Ioannina Univ., Dept. of Physics (Greece); Piasecki, E.; Swiderski, L.; Siwek-Wilczynska, K.; Skwira, I. [Warsaw Univ., Inst. for Experimental Physics (Poland); Rosato, E.; Vigilante, M.; Wilczynski, J.
2003-07-01
The CHIMERA detector was designed to significantly contribute to multifragmentation studies in the field of heavy ion collisions at intermediate energies. The device has been used at 'Laboratori Nazionali del Sud' (LNS) in Catania (Italy) to study different aspects of the relevant nuclear reaction mechanism, in two different campaigns: the first one in 2000, by using the forward part (1 - 30 degrees) of the device, and the second one in 2003, by using the 4{pi} geometry. The experimental results have confirmed the capability of the apparatus for good isotopic identification of light charged particles and light fragments (3
Generalized seniority states with definite isospin
International Nuclear Information System (INIS)
Talmi, Igal.
2001-01-01
Generalized seniority gives good description of the lowest states of semimagic nuclei. Recently, a very large fraction of eigenstates obtained with random two-nucleon matrix elements were shown to have the structure prescribed by generalized seniority, also for lower values of isospin. To study such states, this concept is generalized to states of nuclei with valence protons and neutrons in the same major shell. States of generalized seniority are defined and constructed. Conditions are derived on charge-independent shell-model Hamiltonians which have such states as eigenstates. From these conditions follow directly the corresponding eigenvalues. Even without an underlying group structure, these eigenvalues have the same form as in the case of protons and neutrons in the same j-orbit
Isospin asymmetry dependence of the α spectroscopic factor for heavy nuclei
International Nuclear Information System (INIS)
Seif, W. M.; Shalaby, M.; Alrakshy, M. F.
2011-01-01
Both the valence nucleons (holes) and the isospin asymmetry dependencies of the preformation probability of an α-cluster inside parents radioactive nuclei are investigated. The calculations are employed in the framework of the density-dependent cluster model of an α-decay process for the even-even spherical parents nuclei with protons number around the closed shell Z 0 = 82 and neutrons number around the closed shells Z 0 = 82 and Z 0 = 126. The microscopic α-daughter nuclear interaction potential is calculated in the framework of the Hamiltonian energy density approach based on the SLy4 Skyrme-like effective interaction. Also, the calculations based on the realistic effective M3Y-Paris nucleon-nucleon force have been used to confirm the results. The calculations then proceed to find the assault frequency and the α penetration probability within the WKB approximation. The half-lives of the different mentioned α decays are then determined and have been used in turn to find the α spectroscopic factor. We found that the spectroscopic factor increases with increasing the isospin asymmetry of the parent nuclei if they have valence protons and neutrons. When the parent nuclei have neutron or proton holes in addition to the valence protons or neutrons, then the spectroscopic factor is found to decrease with increasing isospin asymmetry. The obtained results show also that the deduced spectroscopic factors follow individual linear behaviors as a function of the multiplication of the valence proton (N p ) and neutron (N n ) numbers. These linear dependencies are correlated with the closed shells core (Z 0 ,N 0 ). The same individual linear behaviors are obtained as a function of the multiplication of N p N n and the isospin asymmetry parameter, N p N n I. Moreover, the whole deduced spectroscopic factors are found to exhibit a nearly general linear trend with the function N p N n /(Z 0 +N 0 ).
Isospin breaking in the pion-nucleon scattering lengths
International Nuclear Information System (INIS)
Hoferichter, Martin; Kubis, Bastian; Meissner, Ulf-G.
2009-01-01
We analyze isospin breaking through quark mass differences and virtual photons in the pion-nucleon scattering lengths in all physical channels in the framework of covariant baryon chiral perturbation theory.
Isospin breaking in the pion-nucleon scattering lengths
Energy Technology Data Exchange (ETDEWEB)
Hoferichter, Martin [Helmholtz-Institut fuer Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, Universitaet Bonn, D-53115 Bonn (Germany); Kubis, Bastian [Helmholtz-Institut fuer Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, Universitaet Bonn, D-53115 Bonn (Germany)], E-mail: kubis@itkp.uni-bonn.de; Meissner, Ulf-G. [Helmholtz-Institut fuer Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, Universitaet Bonn, D-53115 Bonn (Germany); Institut fuer Kernphysik (Theorie), Institute for Advanced Simulation, and Juelich Center for Hadron Physics, Forschungszentrum Juelich, D-52425 Juelich (Germany)
2009-07-06
We analyze isospin breaking through quark mass differences and virtual photons in the pion-nucleon scattering lengths in all physical channels in the framework of covariant baryon chiral perturbation theory.
Isospin sum rules for inclusive cross-sections
Rotelli, P.; Suttorp, L.G.
1972-01-01
A systematic analysis of isospin sum rules is presented for the distribution functions of strong, electromagnetic weak inclusive processes. The general expression for these sum rules is given and some new examples are presented.
Spin-isospin mixing without spontaneous symmetry breakdown
International Nuclear Information System (INIS)
Mukherjee, A.; Roy, P.
1983-01-01
The phenomenon advertised in the title is demonstrated in an exactly symmetric SU(2) classical gauge theory with a scalar isodoublet of matter fields. Possible implications for chromodynamics are discussed briefly. (orig.)
Mass and Isospin Effects in Multifragmentation
International Nuclear Information System (INIS)
Sfienti, C.; Adrich, P.; Aumann, T.
2005-01-01
A systematic study of isospin effects in the breakup of projectile spectators at relativistic energies has been performed with the ALADiN spectrometer at the GSI laboratory (Darmstadt). Four different projectiles 197 Au, 124 La, 124 Sn and 107 Sn, all with an incident energy of 600 AMeV, have been used, thus allowing a study of various combinations of masses and N/Z ratios in the entrance channel. The measurement of the momentum vector and of the charge of all projectile fragments with Z > 1 entering the acceptance of the ALADiN magnet has been performed with the high efficiency and resolution achieved with the TP-MUSIC IV detector. The Rise and Fall behavior of the mean multiplicity of IMFs as a function of Z bound and its dependence on the isotopic composition has been determined for the studied systems. Other observables investigated so far include mean N/Z values of the emitted light fragments and neutron multiplicities. Qualitative agreement has been obtained between the observed gross properties and the predictions of the Statistical Multifragmentation Model
The β+ decay of 234Np and other isospin-forbidden 0+ -> 0+ Fermi transitions
International Nuclear Information System (INIS)
Yap, C.T.; Saw, E.L.
1984-01-01
Although experimental values of the Fermi nuclear matrix elements vary widely from about 1x10 -3 to 40x10 -3 for isospin-forbidden 0 + ->0 + β transitions, theoretical calculations using the Coulomb potential and Nilsson wave functions yielded values of Msub(F) in reasonably good agreement, except that of 234 Np. However, our calculation of Msub(F) for this decay as a function of the deformation parameter β yielded a value of Msub(F) in good agreement with experiment for values of β between 0.1 and 0.2. (orig.)
Double beta decay, neutrino physics, nuclear structure and isospin and spin-isospin symmetries
International Nuclear Information System (INIS)
Krmpotic, F.
1989-12-01
Prominent features of the double beta decay processes are reviewed. Emphasis is placed on the neutrino masses and the quasiparticle random phase approximation (GRPA). The suppression mechanism for the ββ-decay transition rates, proposed by Vogel and Zirnbauer, is found to be closely related to the restoration of SU(4) symmetry. It is suggested that the extreme sensitivity of the ββ-decay amplitude on the proton-neutron coupling is a consequence of the explicit violation of the SU(4) symmetry and therefore an artifact of the model. A prescription is given for fixing this interaction strength within the GRPA itself, which in this way acquires predicting power on both single and double β-decay lifetimes. (author) [pt
Effective Giromagnetic Ratios in Artifical Nuclear Magnetization Pumping of the Noble Gases Mix
Directory of Open Access Journals (Sweden)
Popov E.N.
2015-01-01
Full Text Available Dynamic of the nuclear magnetization of the two noble gases mix was studied in this research. Nuclear magnetization pumped along the induction of external magnetic field. Vector of nuclear magnetization is given a tilt by the week rotational magnetic field, which makes NMR for noble gases. Interaction between the nuclear magnetic moments of the different noble gases adducted to shifts at the frequency of nuclear moments precession in external magnetic field. Effective gyromagnetic ratios of the nuclear of noble gases is defined and it different from the tabulated value. There is theoretical calculation of effective gyromagnetic ratios in this research.
On the graphical extraction of multipole mixing ratios of nuclear transitions
International Nuclear Information System (INIS)
Rezynkina, K.; Lopez-Martens, A.; Hauschild, K.
2017-01-01
We propose a novel graphical method for determining the mixing ratios δ and their associated uncertainties for mixed nuclear transitions. It incorporates the uncertainties on both the measured and the theoretical conversion coefficients. The accuracy of the method has been studied by deriving the corresponding probability density function. The domains of applicability of the method are carefully defined.
On the graphical extraction of multipole mixing ratios of nuclear transitions
Energy Technology Data Exchange (ETDEWEB)
Rezynkina, K., E-mail: kseniia.rezynkina@csnsm.in2p3.fr; Lopez-Martens, A.; Hauschild, K.
2017-02-01
We propose a novel graphical method for determining the mixing ratios δ and their associated uncertainties for mixed nuclear transitions. It incorporates the uncertainties on both the measured and the theoretical conversion coefficients. The accuracy of the method has been studied by deriving the corresponding probability density function. The domains of applicability of the method are carefully defined.
Isospin invariant forms of interacting boson model (IBM)
International Nuclear Information System (INIS)
Evans, A.
1989-01-01
In the original version of the interacting boson model, IBM1, there are only two quantum numbers with exact values: the angular momentum and the number of bosons. IBM2 distinguishes between two kinds of bosons. However, the IBM2 algebra does not include the operators T± and consequently the states in the model have no good isospin, generally. IBM3 includes the isospin in the algebra and therefore the construction of states with any number of bosons and good isospin presents no problem. In this work, IBM3 is compared with the shell model. IBFM3 is also studied, which describes an odd nucleus as a system of N bosons plus a single nucleon that is a neutron with some probability and a proton with the complementary probability. The spectra obtained in the shell model, IBFM3 and IBFM2 for 45 Ti and 45 Sc are compared. (Author) [es
Dosimetry of the Embalse nuclear power plant neutron/gamma mixed fields
International Nuclear Information System (INIS)
Salas, C.A.
1990-01-01
The aim of this work is to describe the method used at the Embalse nuclear power plant for carrying out personal dosimetry of the agents affected to the tasks on the Embalse nuclear power plant neutron-gamma mixed fields. (Author) [es
Further remarks on isospin breaking in charmless semileptonic B decays
Energy Technology Data Exchange (ETDEWEB)
Lopez Castro, G. [Institut de Physique Theorique, Universite Catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Lopez Castro, G; Muntildeoz, J.H.; Sanchez, G. Toledo [Departamento de Fisica, Centro de Investigacion y de Estudios, Avanzados del IPN, Apdo. Postal 14-740, 07000 Mexico, D.F. (Mexico); Muntildeoz, J.H [Departamento de Fisica, Universidad del Tolima, A.A. 546, Ibague (Colombia)
1997-11-01
We consider the isospin-breaking corrections to charmless semileptonic decays of B mesons. Both the recently measured branching ratios of exclusive decays by the CLEO Collaboration and the end-point region of the inclusive lepton spectrum in form factor models can be affected by these corrections. Isospin corrections can affect the determination of {vert_bar}V{sub ub}{vert_bar} from exclusive semileptonic B decays at a level comparable to present statistical uncertainties. {copyright} {ital 1997} {ital The American Physical Society}
Mirror nuclei emission and isospin transport at intermediate energies
Lombardo, I; Alba, R; Amorini,c, F; Anzalone, A; Berceanu, I; Chatterjee, M B; Cardella, G; Cavallaro, S; Coniglione, R; De Filippo, E; Di Pietro, A; Figuera, P; Geraci, E; Giuliani, G; Grassi, L; Grzeszczuk, A; La Guidara, E; Lanzalone, G; Le Neindre, N; Maiolino, C; Pagano, A; Papa, M; Pirrone, S; Pop, A; Politi, G; Porto,F; Rizzo, F; Russotto, P; Santonocito, D; Sapienza, P; Verde, G
2010-01-01
Isospin effects are studied in reactions induced by 40Ca projectiles at E/A=25 MeV on 40Ca, 48Ca and 46Ti targets. The N/Z of projectile-like, target-like and mid-velocity sources are probed by measuring isotopic (7Li/6Li and 9Be/7Be) and isobaric (7Li/7Be) yield ratios, for semi-peripheral events. The presence of isospin diffusion and drift phenomena is observed. It seems indeed that the interaction time between projectile and target does not allow a complete charge equilibration between quasi-projectile and quasi-target sources.
Effect of isospin degree of freedom on transverse momentum spectra
International Nuclear Information System (INIS)
Kaur, Sukhjit; Swati
2013-01-01
We study the effect of isospin degree of freedom, incident energy as well as system mass on the behavior of transverse momentum spectra, dN/p t dp t , of neutrons and protons. We find that most of the nucleons suffer soft collisions. The effect of isospin degree of freedom on transverse spectra diminishes with the increase in the incident energy. In Fermi energy region, transverse momentum spectra of both protons and neutrons show sensitivity toward the density dependence of symmetry energy. (author)
Managing plutonium in Britain. Current options[Mixed oxide nuclear fuels; Nuclear weapons
Energy Technology Data Exchange (ETDEWEB)
NONE
1998-09-01
This is the report of a two day meeting to discuss issues arising from the reprocessing of plutonium and production of mixed oxide nuclear fuels in Britain. It was held at Charney Manor, near Oxford, on June 25 and 26, 1998, and was attended by 35 participants, including government officials, scientists, policy analysts, representatives of interested NGO's, journalists, a Member of Parliament, and visiting representatives from the US and Irish governments. The topic of managing plutonium has been a consistent thread within ORG's work, and was the subject of one of our previous reports, CDR 12. This particular seminar arose out of discussions earlier in the year between Dr. Frank Barnaby and the Rt. Hon. Michael Meacher MP, Minister for the Environment. With important decisions about the management of plutonium in Britain pending, ORG undertook to hold a seminar at which all aspects of the subject could be aired. A number of on-going events formed the background to this initiative. The first was British Nuclear Fuels' [BNFL] application to the Environment Agency to commission a mixed oxide fuel [MOX] plant at Sellafield. The second was BNFL's application to vary radioactive discharge limits at Sellafield. Thirdly, a House of Lords Select Committee was in process of taking evidence, on the disposal of radioactive waste. Fourthly, the Royal Society, in a recent report entitled Management of Separated Plutonium, recommended that 'the Government should commission a comprehensive review... of the options for the management of plutonium'. Four formal presentations were made to the meeting, on the subjects of Britain's plutonium policy, commercial prospects for plutonium use, problems of plutonium accountancy, and the danger of nuclear terrorism, by experts from outside the nuclear industry. It was hoped that the industry's viewpoint would also be heard, and BNFL were invited to present a paper, but declined on the grounds that they
Energy Technology Data Exchange (ETDEWEB)
Jouault, B.; De La Mota, V.; Sebille, F.; Royer, G. [Laboratoire de Physique Subatomique et des Technologies Associees - SUBATECH, Centre National de la Recherche Scientifique, 44 - Nantes (France); Lecolley, J. F. [Lab. de Physique Corpusculaire, Caen Univ., 14 (France)
1997-10-01
The semi-classical Landau Vlasov model has been used to investigate the decay modes of peripheral Pb + Au reactions at 29 MeV/n. Statics and dynamics of these very massive nuclei are analyzed especially through the isospin dependence of the effective nuclear force. The degree of dissipation of the collisions is studied for different bins of impact parameter pointing out the influence of the nucleon-nucleon cross section. The appearance of intermediate mass fragments from neck-like structures is evidenced and the effects of angular momentum transfers are shown to play a fundamental role in this phenomenon. The theoretical results are compared with experimental data, showing the importance of the dynamical and out of equilibrium effects on the observables. (authors) 7 refs.
Numerical Boron mixing studies for Loviisa Nuclear Power Plant
Energy Technology Data Exchange (ETDEWEB)
Gango, P. [IVO International Ltd. (Finland)
1995-09-01
A program has been started for studying numerically boron mixing in the downcomer of Loviisa NPP (VVER-440). Mixing during the transport of a diluted slug from the loop to the core might serve as an inherent protection mechanism against severe reactivity accidents in inhomogenous boron dilution scenarios for PWRs. The commercial general purpose Computational Fluid Dynamics (CFD) core PHOENICS is used for solving the governing fluid flow equations in the downcomer geometry of VVER-440. So far numerical analyses have been performed for steady state operation conditions and two different pump driven transients. The steady state analyses focused on model development and validation against existing experimental data. The two pump driven transient scenarios reported are based on slug transport during the start of the sixth and first loop respectively. The results from the two transients show that mixing is case and plant specific; the high and open downcomer geometry of VVER-440 seems to be advantageous from mixing point of view. In addition the analyzing work for the {open_quotes}first pump start{close_quotes} scenario brought up some considerations about flow distribution in the existing experimental facilities.
Nuclear energy in future sustainable, competitive energy mixes
International Nuclear Information System (INIS)
Echavarri, L.
2002-01-01
Full text: Nuclear energy is an established component of electricity supply worldwide (16%) and in particular in OECD (nearly a quarter). It is supported by a mature industry benefiting from extensive experience (more than 8 000 reactor years of commercial operation) and dynamic R and D programmes implemented by governments and industries. Existing nuclear power plants are competing successfully in deregulated electricity markets owing to their low marginal production costs, their technical reliability (availability factors exceeding 80% in many countries) and good safety performance. Stringent safety requirements and radiation protection regulations in place in OECD countries allow potential impacts of nuclear energy facilities on human health and the environment to remain extremely low. Furthermore, nuclear energy, a nearly carbon free source, contributes to alleviating the risk of global climate change (worldwide, GHG emissions from the energy sector are already 8% lower than they would be without nuclear energy). Issues related to high-level waste management and disposal are being addressed in comprehensive, step by step approach. Progress towards the implementation of deep geological repositories is being demonstrated (e.g., Yucca Mountain in the US, Olkiluoto in Finland) and research on innovative fuel cycles aiming at partitioning and transmutation of minor actinides is being actively pursued. Up to 2010-2020, nuclear energy will maintain its role mainly through capacity upgrade and lifetime extension of existing plants, in many cases the most cost effective means to increase power capacity and generation. Examples are provided by utility policies and decisions in a number of OECD countries (e.g., Spain, Sweden, Switzerland, UK, US). Although only few new units are being or will be built in the very near term, their construction and operation is bringing additional experience on advanced evolutionary nuclear systems and paving the way for the renaissance of
Isospin effects in anti p3He annihilation at rest
International Nuclear Information System (INIS)
Balestra, F.; Barbieri, R.; Batusov, Yu.A.; Bendiscioli, G.; Breivik, F.O.; Bossolasco, S.; Bussa, M.P.; Busso, L.; Falomkin, I.V.; Ferrero, L.; Guaraldo, C.; Haatuft, A.; Halsteinslid, A.; Jacobsen, T.; Lodi Rizzini, E.; Maggiora, A.; Myklebost, K.; Olsen, J.M.; Panzieri, D.; Piragino, G.; Pontecorvo, G.B.; Rozhdestvensky, A.M.; Rotondi, A.; Salvini, P.; Sapozhnikov, M.G.; Soerensen, S.O.; Tosello, F.; Tretyak, V.I.; Venaglioni, A.; Zenoni, A.
1989-01-01
The analysis of anti p 3 He annihilation events at rest (from the PS 179 experiment at LEAR) gives the value 0.467±0.035 for the ratio between the annihilation cross sections on n and on p. This low value indicates a strong isospin dependence of the anti NN amplitude in P wave. (orig.)
Isospin analysis of CP asymmetries in B decays
International Nuclear Information System (INIS)
Gronau, M.; London, D.
1990-09-01
There is some theoretical uncertainty in the predictions for CP violating hadronic asymmetries in neutral B decays to CP eigenstates due to the existence of penguin diagrams. Using isospin relatins, we show that it is possible to remove this uncertainty for the decays B d 0 → ππ, up to a 4-fold ambiguity. (orig.)
Isospin Breaking Corrections to the HVP with Domain Wall Fermions
Boyle, Peter; Guelpers, Vera; Harrison, James; Juettner, Andreas; Lehner, Christoph; Portelli, Antonin; Sachrajda, Christopher
2018-03-01
We present results for the QED and strong isospin breaking corrections to the hadronic vacuum polarization using Nf = 2 + 1 Domain Wall fermions. QED is included in an electro-quenched setup using two different methods, a stochastic and a perturbative approach. Results and statistical errors from both methods are directly compared with each other.
Method of manufacturing mixed stock powders for nuclear fuel elements
International Nuclear Information System (INIS)
Hirayama, Satoshi.
1980-01-01
Purpose: To alleviate the limit of the present reactor operating conditions by uniformly mixing an additive to the main content as an uranium dioxide or mixture of the uranium dioxide with plutonium dioxide. Method: A mixed stock powder is obtained by adding an additive of at least two of aluminium oxide, beryllium oxide, calcium oxide, magnesium oxide, silicon oxide, sodium oxide, potassium oxide, phosphorus oxide, titanium oxide and iron oxide to suspension having ammonia water as dispersion medium to start the deposition of precipitation at a step of precipitating ammonium diuranate or plutionium hydroxide of a main content of uranium dioxide or mixture of uranium dioxide and plutonium dioxide and deposited precipitate is calcinated and reduced. (Yoshihara, H.)
International Nuclear Information System (INIS)
Neyens, Gerda
2001-01-01
The history of 'Nuclear Level Mixing' is closely related to the research that Prof. Coussement performed during the last 25 years. In particular, the impact of this quantum mechanical concept on different research fields will be discussed. Without going in detail, we aim to give the reader an idea of how one single concept may lead to different discoveries
Isospin equilibrium and non-equilibrium in heavy-ion collisions at intermediate energies
International Nuclear Information System (INIS)
Chen Liewen; Ge Lingxiao; Zhang Xiaodong; Zhang Fengshou
1997-01-01
The equilibrium and non-equilibrium of the isospin degree of freedom are studied in terms of an isospin-dependent QMD model, which includes isospin-dependent symmetry energy, Coulomb energy, N-N cross sections and Pauli blocking. It is shown that there exists a transition from the isospin equilibrium to non-equilibrium as the incident energy from below to above a threshold energy in central, asymmetric heavy-ion collisions. Meanwhile, it is found that the phenomenon results from the co-existence and competition of different reaction mechanisms, namely, the isospin degree of freedom reaches an equilibrium if the incomplete fusion (ICF) component is dominant and does not reach equilibrium if the fragmentation component is dominant. Moreover, it is also found that the isospin-dependent N-N cross sections and symmetry energy are crucial for the equilibrium of the isospin degree of freedom in heavy-ion collisions around the Fermi energy. (author)
Experimental research of isospin and spin exotic nuclei with an ion guide and γ multidetectors
International Nuclear Information System (INIS)
Astier, A.
1992-04-01
This work is concerned with nuclear studies of isospin and spin exotic nuclei by two complementary approaches: on-line radioactivity and fusion-evaporation reactions. An ion guide coupled to the SARA accelerator allowed the study of very refractory and short lived (down to 1 ms) elements. Using the 238 U (α 40 MeV, f) reaction to produce very neutron-rich radioisotopes, all mass chains from A=96 to 122 have been scanned by conventional nuclear spectroscopy. More than 60 production yields have been measured. The comparison of proton and α induced fission yields shows the predominance of symmetric fission around A=115 for α beam. The collective high spin states structures observed in the A=190 mass region are studied with different γ multidetectors
The energy mix for the next generation: with or without nuclear?
International Nuclear Information System (INIS)
Agnes, M.; Tounkara, N.
2001-01-01
This paper has been prepared as a contribution to the ongoing debate on nuclear energy and sustainable development. Some of the supporters of sustainable energy systems do not see nuclear power as part of the future: an UNDP (United Nations Development Program) document 'Energy after Rio' suggests a role for nuclear power in a sustainable energy future in very doubtful terms; the Swedish Parliament's February 1997 law launching the phase out of nuclear power is entitled 'Government Bill on a Sustainable Energy Supply'; many environmental organizations underlined the incompatibility of nuclear power and sustainable energy systems; the European Parliament recently excluded nuclear power from the energy sources that can fit into flexibility mechanisms because of its unsustainability. The supporters of nuclear power see climate change concerns as a way to revitalize interest in nuclear power. They call for a significant role of nuclear power in sustainable energy systems mainly because it does not emit any CO 2 . Member countries of International Energy Agency (IEA) recognize the potential contribution of nuclear power to a sustainable energy mix. The Nuclear Energy Agency of OECD recognizes the potential role of nuclear power in sustainable development. In the framework of the United Nations Convention on Climate Change, the nuclear industry as a Non Governmental Organization (NGO) involved in the climate negotiations, emphasizes the role of nuclear power in reducing the greenhouse gas effect. In this debate, radioactive waste is the main argument against the sustainability of nuclear power whilst the fact that nuclear power does not produce emissions of airborne pollutants or CO 2 is used to argue that it can be a great contributor to sustainable energy systems. Our purpose is to go further in the debate: sustainability is not only about climate change and the role of nuclear power in achieving a 'sustainable development' goes further than the reduction of greenhouse
Spacer grid with mixing blades for nuclear fuel assembly
International Nuclear Information System (INIS)
Noailly, J.
1986-01-01
The spacer grid for nuclear fuel assembly has two sets of intersecting metal plates provided with blades and defining cells. The plates are fitted only with half-blades associated with a single grid opening. The half-blades of adjacent cells are arranged at 90deg C to each other and each plate has at most one half-blade at each corner of a cell. The invention concerns fuel assemblies of pressurized water reactors. The blades arranged on a single side of the plate provide a good hydraulic uniformity. The invention provides a uniform distribution of blades (and thus of absorbing material in each hydraulic cell) [fr
Monopole strength as a probe of nuclear shape mixing
International Nuclear Information System (INIS)
Meyer, R.A.
1987-01-01
The monopole strength, MS, within a single set of nuclear shape excitations is compared with the MS between different shapes. After misconceptions are pointed out concerning the spin dependence of B(E2) values, MS properties are juxtaposed with gamma-ray and beta-decay properties of 70 Se, 96 Zr, 102 Pd, and the N = 60 isotones to illustrate the utility of combined investigations and evidence is given for the observation of a two-phonon octupole multiplet. Finally, consideration is given to the dominance of the 3 S 1 force in producing deformation in the N > 50 1g nuclei. 23 refs., 4 figs
After a nuclear year of mixed fortunes, let's embrace the challenges of 2016
Energy Technology Data Exchange (ETDEWEB)
Shepherd, John [nuclear 24, Brighton (United Kingdom)
2016-01-15
As we usher in the new year, it is worth taking time to reflect on the key developments for the world's nuclear energy industry in 2015. The past year was certainly one of mixed fortunes for the industry. Looking ahead into 2016, key challenges will include the need to recruit and train the skilled workforce that will be needed to support extended operations of nuclear plants, in addition to new-build and decommissioning projects.
Liquid concrete mixes for V-2 nuclear power plant at Jaslovske Bohunice
International Nuclear Information System (INIS)
Valenta, D.; Oravec, J.
1983-01-01
The liquid concrete mixes consist of aggregates, cement, water and plastifiers. The main component of aggregates is redeposited dolomite from the Dolinka locality and sand. Cement of the SPC-325 type is used while mixing water is taken from the service water pump station for the V-1 nuclear power plant. All concretes used for the V-2 nuclear power plant construction are treated using plastifier Plastifikator S. In concrete mix development, care was primarily taken to select sand with sufficient amounts of grain of a size up to 0.25 mm. Granularity curves of the sands and the resulting curve of the aggregates granularity of the concrete mix are shown graphically. The method of manufacture and conveying of concrete mixes are briefly described. The mathematical statistical analysis of the quality of the concrete mixes produced showed that the proposed concrete mixes meet the requirements for homogeneity in the controlled parameters and that they can be manufactured in the situation of building production provided suitable components are selected, suitable aggregates are available and the quality of production is systematically checked. (J.P.)
Theoretical studies in nuclear physics
International Nuclear Information System (INIS)
Landau, R.H.; Madsen, V.A.
1991-01-01
This report discusses: Imaginary Optical Potential; Isospin Effects; Scattering and Charge Exchange Reactions; Pairing Effects; bar K Interactions; Momentum Space Proton Scattering; Computational Nuclear Physics; Pion-Nucleus Interactions; and Antiproton Interactions
Theoretical studies in nuclear physics
International Nuclear Information System (INIS)
Landau, R.H.; Madsen, V.A.
1991-01-01
This report discusses research in nuclear theory in the following areas: Isospin effects and charge exchange; inelastic and charge exchange scattering; momentum space proton scattering; pion scattering from nuclei; and antiproton studies. 14 refs
Multipion correlations induced by isospin conservation of coherent emission
International Nuclear Information System (INIS)
Gangadharan, Dhevan
2016-01-01
Recent measurements have revealed a significant suppression of multipion Bose–Einstein correlations in heavy-ion collisions at the LHC. The suppression may be explained by postulating coherent pion emission. Typically, the suppression of Bose–Einstein correlations due to coherence is taken into account with the coherent state formalism in quantum optics. However, since charged pion correlations are most often measured, the additional constraint of isospin conservation, which is absent in quantum optics, needs to be taken into account. As a consequence, correlations emerge between pions of opposite charge. A calculation of the correlations induced by isospin conservation of coherent emission is made for two, three- and four-pion correlation functions and compared to the data from the LHC.
Isospin invariant boson models for fp-shell nuclei
International Nuclear Information System (INIS)
Van Isacker, P.
1994-01-01
Isospin invariant boson models, IBM-3 and IBM-4, applicable in nuclei with neutrons and protons in the same valence shell, are reviewed. Some basic results related to these models are discussed: the mapping onto the shell model, the relation to Wigner's supermultiplet scheme, the boson-number and isospin dependence of parameters, etc. These results are examined for simple single-j shell situations (e.g. f 7/2 ) and their extension to the f p shell is investigated. Other extensions discussed here concern the treatment of odd-mass nuclei and the classification of particle-hole excitations in light nuclei. The possibility of a pseudo-SU(4) supermultiplet scheme in f p -shell nuclei is discussed. (author) 4 figs., 3 tabs., 23 refs
Mixed Uranium/Refractory Metal Carbide Fuels for High Performance Nuclear Reactors
International Nuclear Information System (INIS)
Knight, Travis; Anghaie, Samim
2002-01-01
Single phase, solid-solution mixed uranium/refractory metal carbides have been proposed as an advanced nuclear fuel for advanced, high-performance reactors. Earlier studies of mixed carbides focused on uranium and either thorium or plutonium as a fuel for fast breeder reactors enabling shorter doubling owing to the greater fissile atom density. However, the mixed uranium/refractory carbides such as (U, Zr, Nb)C have a lower uranium densities but hold significant promise because of their ultra-high melting points (typically greater than 3700 K), improved material compatibility, and high thermal conductivity approaching that of the metal. Various compositions of (U, Zr, Nb)C were processed with 5% and 10% metal mole fraction of uranium. Stoichiometric samples were processed from the constituent carbide powders, while hypo-stoichiometric samples with carbon-to-metal (C/M) ratios of 0.92 were processed from uranium hydride, graphite, and constituent refractory carbide powders. Processing techniques of cold uniaxial pressing, dynamic magnetic compaction, sintering, and hot pressing were investigated to optimize the processing parameters necessary to produce high density (low porosity), single phase, solid-solution mixed carbide nuclear fuels for testing. This investigation was undertaken to evaluate and characterize the performance of these mixed uranium/refractory metal carbides for high performance, ultra-safe nuclear reactor applications. (authors)
Isospin and quarks in nuclear beta-decay
International Nuclear Information System (INIS)
Wilkinson, D.H.
1991-04-01
This paper exposes in some detail the technical problems relating to the extraction of the vector coupling constant from the beta decay of complex nuclei. It also considers the extraction of the axial coupling constant from the beta-decay of the neutron. The internal consistency of all data relating to beta-decay, including that of the muon, is also examined, within the standard model, with a view to the possible intervention of W R . (Author) 52 refs., 4 figs., 2 tabs
Evidence of isospin effects in antiproton-nucleus annihilation
International Nuclear Information System (INIS)
Balestra, F.; Bossolasco, S.; Bussa, M.P.; Busso, L.; Ferrero, L.; Panzieri, D.; Piragino, G.; Tosello, F.; Barbieri, R.; Bendiscioli, G.; Rotondi, A.; Salvini, P.; Venaglioni, A.; Zenoni, A.; Batusov, Yu.A.; Falomkin, I.V.; Pontecorvo, G.B.; Rozhdestvensky, A.M.; Sapozhnikov, M.G.; Tretyak, V.I.; Guaraldo, C.; Maggiora, A.; Haatuft, A.; Halsteinslid, A.; Myklebost, K.; Olsen, J.M.; Breivik, F.O.; Jacobsen, T.; Soerensen, S.O.
1989-01-01
Antiproton- 3 He annihilation events at rest have been detected using a self-shunted streamer chamber. The ratio of the cross section for annihilation on neutrons and on protons has been measured (0.467±0.035). It is compared with other results from annihilation on free nucleons, deuterium, 3 He and 4 He. The low value of the ratio seems to indicate a strong isospin dependence of the antinucleon-nucleon P-wave amplitude. (orig.)
Studies on simulated nuclear waste of mixed solvent type
International Nuclear Information System (INIS)
Aggarwal, S.
1989-09-01
Caesium 137, strontium 90 and ruthenium 106 are among the longest lived fission products present in reprocessing wastes and are therefore considered to be a long term hazard to the environment. A method for removal of 137-Cs, 90-Sr and 106-Ru from the nuclear waste is by ion-exchange and sorption. Radiochemical methods were employed to investigate the uptake of 137-Cs, 90-Sr and 106-Ru by synthetic type A, X, Y, zeolites and by mordenite and clinoptilolite. The solvents employed were tributylphosphate (TBP) and kerosene (OK). The dependence of the exchange process on time was studied at room temperature. The exchange equilibrium was strongly dependent on time during the first hour but then attained equilibrium. It was also noted that the distribution coefficient (Kd) values for 137-Cs were higher than those for 90-Sr which were higher than those for 106-Ru. Thus the order of extraction was: 137-Cs > 90-Sr > 106-Ru. Ethanol was also used as the solvent to see the effect on the Kds by varying the amount of water present, i.e. from 0% water to 10% water. It was observed that the Kd increased with an increase in water content. The effect of pH and different ratios of TBP:OK were also studied. There was no relationship between the Kds and the different ratios. Some work was also done on the adsorption of 137-Cs on cements and cement phases. The sorption of 137-Cs on to all types of cements was low. (author)
Nuclear and intermittent renewables: Two compatible supply options? The case of the French power mix
International Nuclear Information System (INIS)
Cany, Camille; Mansilla, Christine; Costa, Pascal da; Mathonnière, Gilles; Duquesnoy, Thierry; Baschwitz, Anne
2016-01-01
The complementary features of low-carbon power sources are a central issue in designing energy transition policies. The French current electricity mix is characterised by a high share of nuclear power which equalled 76% of the total electric production in 2015. With the increase in intermittent renewable sources, nuclear flexibility is examined as part of the solution to balance electricity supply and demand. Our proposed methodology involves designing scenarios with nuclear and intermittent renewable penetration levels, and developing residual load duration curves in each case. The load modulation impact on the nuclear production cost is estimated. This article shows to which extent the nuclear annual energy production will decrease with high shares of intermittent renewables (down to load factors of 40% for proactive assumptions). However, the production cost increase could be compensated by progressively replacing the plants. Moreover, incentives are necessary if nuclear is to compete with combined-cycle gas turbines as its alternative back-up option. In order to reconcile the social planner with plant operator goals, the solution could be to find new outlets rather than reducing nuclear load factors. Nuclear flexibility could then be considered in terms of using its power to produce heat or hydrogen. - Highlights: •Nuclear flexibility is examined to balance the system with high renewables share. •Impacts of wind and solar shares on the nuclear load factor and LCOE are assessed. •Nuclear fleet replacement must be progressive to ensure competitive load-following. •Incentives are needed for nuclear to compete with CCGT gas back-up. •We recommend considering nuclear flexibility through the power use.
Isospin Symmetry of Transitions Probed by Weak and Strong Interactions
Roeckl, E
2002-01-01
Under the assumption that isospin is a good quantum number, isospin symmetry is expected for the transitions from the ground states of the pair of T = 1, T$_{z}$ = $\\pm$ 1 nuclei to excited states of the T = 0 nucleus situated in between the pair. In order to study the isospin symmetry of these transitions, we propose to perform an accurate comparison of Gamow-Teller (GT) transitions for the A = 58 system. This system is the heaviest for which such a comparison is possible. The $^{58}$Ni(T$_{z}$ = 1 ) $\\rightarrow^{58}$Cu(T$_{z}$ = 0 ) GT transitions are presently studied by using high-resolution charge exchange reaction at RNCP Osaka, while those of $^{58}$Zn(T$_{z}$ = -1) $\\rightarrow^{58}$Cu will be investigated in the $\\beta$-decay study at ISOLDE. Due to the large $Q\\scriptstyle_\\textrm{EC}$-value of $^{58}$Zn, GT transitions can be observed up to high excitation energies in $^{58}$Cu. In order to reach this goal, it is proposed to measure $\\beta$-delayed protons and $\\gamma$-rays by using a dedicated de...
Isospin and angular momentum effects in the peripheral heavy ion reactions
International Nuclear Information System (INIS)
Jouault, B.; De La Mota, V.; Sebille, F.; Royer, G.; Lecolley, J. F.
1997-01-01
The semi-classical Landau Vlasov model has been used to investigate the decay modes of peripheral Pb + Au reactions at 29 MeV/n. Statics and dynamics of these very massive nuclei are analyzed especially through the isospin dependence of the effective nuclear force. The degree of dissipation of the collisions is studied for different bins of impact parameter pointing out the influence of the nucleon-nucleon cross section. The appearance of intermediate mass fragments from neck-like structures is evidenced and the effects of angular momentum transfers are shown to play a fundamental role in this phenomenon. The theoretical results are compared with experimental data, showing the importance of the dynamical and out of equilibrium effects on the observables. (authors)
Nuclear power fleet replacement: an opportunity for the French energy mix? - 5044
International Nuclear Information System (INIS)
Cany, C.; Mansilla, C.; Mathonniere, G.; Duquesnoy, T.; Baschwitz, A.; Da Costa, P.
2015-01-01
In France, 27% of the electricity is to be produced by renewable resources by 2020. This share is intended to grow up to 2050. The recent European agreement and the French 'energy transition law' will promote such a development. The French power system is characterized by high nuclear penetration and nuclear power is meant to remain a significant contributor in the medium and long term, as a low-carbon power source. More than half the French nuclear power fleet was installed in the late seventies / early eighties. Thus, the issue of its replacement is at the core of the French power mix issue. The objective of this paper is to provide some insights about the opportunity it enables for the energy mix. Two plausible replacement scenarios are developed and analyzed as regards to the energy cost provided by nuclear power. For a given target level of nuclear installed capacities, the penetration of non-dispatchable renewable energies with dispatch priority will increase the need for nuclear power modulation at reduced average load factor. The impact of modulation on the nuclear levelized cost of electricity is assessed, according to the considered replacement scenario and for different renewable and nuclear energy penetration scenarios. Results show that, according to the selected assumptions, implementing a progressive shut-down (based on an increased operation lifetime of Nuclear Power Plants) appears a relevant choice since it both provides a lowest power production cost even at reduced average load factor to participate to load following and allows the possibility of 'waiting' for choosing most sustainable technologies. (authors)
Isospin Mass Splittings and the $\\ms$ Corrections in the Semibosonized SU(3)-NJL-Model
Blotz, Andree; Goeke, K.; Praszalowicz, M.
1994-01-01
The mass splittings of hyperons including the isospin splittings are calculated with $O(\\ms^2)$ and $O(\\ms \\dm)$ accuracy respectively within the semibosonized SU(3)-NJL model. The pattern of the isospin splittings is not spoiled by the terms of the order $O(\\ms \\dm)$, and both splittings between the different isospin multiplets and within the same multiplet are well reproduced for acceptable values of $\\ms$ and $\\dm$.
Design of a mixing system for simulated high-level nuclear waste melter feed slurries
International Nuclear Information System (INIS)
Peterson, M.E.; McCarthy, D.; Muhlstein, K.D.
1986-03-01
The Nuclear Waste Treatment Program development program consists of coordinated nonradioactive and radioactive testing combined with numerical modeling of the process to provide a complete basis for design and operation of a vitrification facility. The radioactive demonstration tests of equipment and processes are conducted before incorporation in radioactive pilot-scale melter systems for final demonstration. The mixing system evaluation described in this report was conducted as part of the nonradioactive testing. The format of this report follows the sequence in which the design of a large-scale mixing system is determined. The initial program activity was concerned with gaining an understanding of the theoretical foundation of non-Newtonian mixing systems. Section 3 of this report describes the classical rheological models that are used to describe non-Newtonian mixing systems. Since the results obtained here are only valid for the slurries utilized, Section 4, Preparation of Simulated Hanford and West Valley Slurries, describes how the slurries were prepared. The laboratory-scale viscometric and physical property information is summarized in Section 5, Laboratory Rheological Evaluations. The bench-scale mixing evaluations conducted to define the effects of the independent variables described above on the degree of mixing achieved with each slurry are described in Section 6. Bench-scale results are scaled-up to establish engineering design requirements for the full-scale mixing system in Section 7. 24 refs., 37 figs., 44 tabs
Energy Technology Data Exchange (ETDEWEB)
Agrawal, Nilesh, E-mail: nilesh_agrawal@igcar.gov.in [Safety Research Institute, Atomic Energy Regulatory Board, Government of India, Kalpakkam (India); Das, Sarit K. [Department of Mechanical Engineering, Indian Institute of Technology, Madras, Chennai 600036 (India)
2013-06-15
Highlights: • Four indices for mixing and deflagration potential of H{sub 2} distributions are presented. • Theoretical basis and significance are explained through illustrations. • The influence of steam condensation on H{sub 2} distributions is studied numerically. • The indices depict the rate of mixing and changes in deflagration potential. • Results show that the indices can give useful integral information for comparison. -- Abstract: Studies on hydrogen distribution in the nuclear reactor containment and the effect of a distribution on subsequent combustion are important to nuclear safety. Contour plots, concentration profiles and ternary diagrams are routinely used to represent a distribution. The significance to safety has to be qualitatively inferred from these representations. Thus, there is a need to quantify distributions in terms of gross parameters that are important to safety. In the present study, four numerical indices are developed to obtain quantitative information on the mixing and deflagration potential of a distribution of hydrogen, steam and air. Two indices, namely, Average mole fraction and Non-uniformity index can be used to give the state of mixing of hydrogen in an enclosure at any instant of time. Similarly, the other two indices, namely, deflagration volume fraction and deflagration pressure ratio can be used to indicate the relative size of combustible cloud and the expected pressure rise in case of deflagration in the cloud at any instant of time. The significance and utility of the indices are brought forth through simple illustrations and numerical studies on the influence of steam condensation on hydrogen distributions. The indices depict the rate of mixing and changes in deflagration potential for the situations considered. Results form the simple studies show that the indices can give useful integral information for comparison of mixing and mitigation measures deployed in the nuclear reactor containment.
Economic principles of optimizing mixed nuclear and non-nuclear electricity systems
International Nuclear Information System (INIS)
Gouni, L.
1984-01-01
In this chapter, an attempt will be made to show how and why, viewed from the economic angle, nuclear energy and electricity systems supplement each other, since the former requires large size facilities, and the latter provide already existing networks for the supply of all users. Consequently, it is primarily through the electric vector that the rational development of the nuclear industry may be ensured. Section 2.1 sets forth the essential rules for economic calculation. In Section 2.2 we discuss the competitive factors among final-use forms of energy in regard to utilization, and we attempt to show how nuclear energy transmitted through electricity systems may meet such terms. Finally, Section 2.3 deals with, and specifies the characteristics of, electricity systems based on nuclear energy and, in particular, the rates to which they lead. (author)
Global zero-carbon energy pathways using viable mixes of nuclear and renewables
International Nuclear Information System (INIS)
Hong, Sanghyun; Bradshaw, Corey J.A.; Brook, Barry W.
2015-01-01
Highlights: • A proper mix of nuclear power and renewables achieves sustainable energy future. • A high nuclear share provides cost and land effectiveness compared to nuclear-free. • Only-renewable mix will increase negative economic and environmental impacts. • A deployment of advanced reactor technologies is essential to overcome limitations. - Abstract: What are the most viable global pathways for a major expansion of zero-carbon emissions electricity sources given the diversity of regional technical, socio-political and economic constraints? We modelled a range of zero-emissions energy scenarios across nations that were designed to meet projected final energy demand in 2060, and optimised to derive the best globally aggregated results in terms of minimising costs and land use (a surrogate for environmental impacts). We found that a delayed energy transition to a zero-emissions pathway will decrease investment costs (−$3,431 billion), but increase cumulative CO 2 emissions (additional 696 Gt). A renewable-only scenario would convert >7.4% of the global land area to energy production, whereas a maximum nuclear scenario would affect <0.4% of land area, including mining, spent-fuel storage, and buffer zones. Moreover, a nuclear-free pathway would involve up to a 50% greater cumulative capital investment compared to a high nuclear penetration scenario ($73.7 trillion). However, for some nations with a high current share of renewables and a low projected future energy demand (e.g., Norway), pursuit of a higher nuclear share is suboptimal. In terms of the time frame for replacement of fossil fuels, achieving a global nuclear share of about 50% by 2060 would be a technically and economically plausible target if progressing at a pace of the average historical growth of nuclear power penetration in France from 1970 to 1986 (0.28 MWh person −1 year -1 ). For effective climate-change mitigation, a high penetration of nuclear in association with a nationally
Energy Technology Data Exchange (ETDEWEB)
Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Najjar, J. [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Nakamura, Y. [RIKEN Advanced Institute for Computational Science, Kobe (Japan); Perlt, H.; Schiller, A. [Leipzig Univ. (Germany). Inst. fuer Theoretische Physik; Pleiter, D. [Forschungszentrum Juelich GmbH (Germany). Juelich Supercomputing Centre (JSC); Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Theoretical Physics Div.; Schierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Stueben, H. [Hamburg Univ. (Germany). Regionales Rechenzentrum; Zanotti, J.M. [Adelaide Univ. (Australia). CSSM, School of Chemistry and Physics
2014-12-15
SU2 isospin breaking effects in baryon octet (and decuplet) masses are due to a combination of up and down quark mass differences and electromagnetic effects. These mass differences are small. Between the Sigma and Lambda the mass splitting is much larger, but this is mostly due to their different wavefunctions. However there is now also mixing between these states. We determine the QCD mixing matrix and hence find the mixing angle and mass splitting.
Antiproton-nucleus inelastic scattering and the spin-isospin dependence of the N anti N interaction
International Nuclear Information System (INIS)
Dover, C.B.
1985-01-01
A general overview of the utility of antinucleon (anti N)-nucleus inelastic scattering studies is presented, emphasizing both the sensitivity of the cross sections to various components of the N anti N transition amplitudes and the prospects for the exploration of some novel aspects of nuclear structure. We start with an examination of the relation between NN and N anti N potentials, focusing on the coherences predicted for the central, spin-orbit and tensor components, and how these may be revealed by measurements of two-body spin observables. We next discuss the role of the nucleus as a spin and isospin filter, and show how, by a judicious choice of final state quantum numbers (natural or unnatural parity states, isospin transfer ΔT=0 or 1) and momentum transfer q, one can isolate different components of the N anti N transition amplitude. Various models for the N anti N interaction which give reasonable fits to the available two-body data are shown to lead to strikingly different predictions for certain spin-flip nuclear transitions. We suggest several possible directions for future anti N-nucleus inelastic scattering experiments at LEAR, for instance the study of spin observables which would be accessible with polarized anti N beams, charge exchange reactions, and higher resolution studies of the (anti p, anti p') reaction. We compare the antinucleon and the nucleon as a probe of nuclear modes of excitation. 34 refs
International Nuclear Information System (INIS)
Quast, U.
1973-01-01
In order to test the Barshay-Temmer isospin theorem by the reaction 3 H( 3 He,d) 4 He, the angular distributions of the relative differential cross section were recorded at anti E 3 = 291, 369, 600 and 800 keV using a solid Ti-tritium target. A d-p discrimination enabled a practically background-free detection of the deuterons. The relative errors were of 0.5% to 3%. A 400 kV Sames accelerator plant was equiped and supplemented by an ion beam conducting system and energy analyser system. The angular distributions are almost symmetrical around 90 0 in the centre of gravity system at all energies. By developing according to Legendre polynomials, the small forward-backward asymmetry could be determined which has its greatest value Wsub(max) = -0.013 +- 0.005 at anti E 3 sub(He) = 291 keV. The possible causes for the found violation of the Barstray-Temmer theorem are discussed. Using a simple model of the isospin mixture of two states, the results of this work can be described as interferences in the transition over an isospin allowed (Jsup(π),T) = (1 - ,0) and an overlapping, forbidden (2 + ,1) state in the compound nucleus 6 Li whose positions and widths can be estimated to be from the cross section course of the reaction Esub(x)( 6 Li) approximately 17 MeV, Gamma approximately 1.6 MeV, Jsup(π) = 1 - , T = 0, Esub(x)( 6 Li) approximately 16.2 MeV, Gamma approximately 0.5 MeV, Jsup(π) = 2 + , T = 1. (orig./LH) [de
On the origin of the narrow peak and the isospin symmetry breaking of the X(3872)
International Nuclear Information System (INIS)
Takeuchi, Sachiko; Shimizu, Kiyotaka; Takizawa, Makoto
2014-01-01
The X(3872) formation and decay processes in B-decay are investigated by a cc-bar–two-meson hybrid model. The two-meson state consists of the D 0 D-bar ∗0 , D + D ∗− , J / ψρ, and J / ψω channels. The energy-dependent decay widths of the ρ and ω mesons are introduced. The D–D-bar ∗ interaction is taken to be consistent with a lack of the BB-bar ∗ bound state. The coupling between the DD-bar ∗ and J / ψρ or the DD-bar ∗ and J / ψω channels is obtained from a quark model. The cc-bar–DD-bar ∗ coupling is taken as a parameter to fit the X(3872) mass. The spectrum is calculated up to 4 GeV. It is found that very narrow J / ψρ and J / ψω peaks appear around the D 0 D-bar ∗0 threshold. The size of the J / ψπ 3 peak that we calculated is 1.27–2.24 times as large as that of J / ψπ 2 . The isospin symmetry breaking in the present model comes from the mass difference of the charged and neutral D and D ∗ mesons, which gives a sufficiently large isospin mixing to explain the experiments. It is also found that values of the ratios of the transfer strengths can give information on the X(3872) mass or the size of the cc-bar–DD-bar ∗ coupling
Dynamical isospin effects in nucleon-induced reactions
International Nuclear Information System (INIS)
Ou Li; Li Zhuxia; Wu Xizhen
2008-01-01
The isospin effects in proton-induced reactions on isotopes of 112-132 Sn and the corresponding β-stable isobars are studied by means of the improved quantum molecular dynamics model and some sensitive probes for the density dependence of the symmetry energy at subnormal densities are proposed. The beam energy range is chosen to be 100-300 MeV. Our study shows that the system size dependence of the reaction cross sections for p+ 112-132 Sn deviates from the Carlson's empirical expression obtained by fitting the reaction cross sections for proton on nuclei along the β-stability line and sensitively depends on the stiffness of the symmetry energy. We also find that the angular distribution of elastic scattering for p+ 132 Sn at large impact parameters is very sensitive to the density dependence of the symmetry energy, which is uniquely due to the effect of the symmetry potential with no mixture of the effect from the isospin dependence of the nucleon-nucleon cross sections. The isospin effects in neutron-induced reactions are also studied and it is found that the effects are just opposite to that in proton-induced reactions. We find that the difference between the peaks of the angular distributions of elastic scattering for p+ 132 Sn and n+ 132 Sn at E p,n =100 MeV and b=7.5 fm is positive for soft symmetry energy U sym sf and negative for super-stiff symmetry energy U sym nlin and close to zero for linear density dependent symmetry energy U sym lin , which seems very useful for constraining the density dependence of the symmetry energy at subnormal densities
Fuel/propellant mixing in an open-cycle gas core nuclear rocket engine
International Nuclear Information System (INIS)
Guo, X.; Wehrmeyer, J.A.
1997-01-01
A numerical investigation of the mixing of gaseous uranium and hydrogen inside an open-cycle gas core nuclear rocket engine (spherical geometry) is presented. The gaseous uranium fuel is injected near the centerline of the spherical engine cavity at a constant mass flow rate, and the hydrogen propellant is injected around the periphery of the engine at a five degree angle to the wall, at a constant mass flow rate. The main objective is to seek ways to minimize the mixing of uranium and hydrogen by choosing a suitable injector geometry for the mixing of light and heavy gas streams. Three different uranium inlet areas are presented, and also three different turbulent models (k-var-epsilon model, RNG k-var-epsilon model, and RSM model) are investigated. The commercial CFD code, FLUENT, is used to model the flow field. Uranium mole fraction, axial mass flux, and radial mass flux contours are obtained. copyright 1997 American Institute of Physics
Generation Mix Study Focusing on Nuclear Power by Practical Peak Forecast
International Nuclear Information System (INIS)
Shin, Jung Ho; Roh, Myung Sub
2013-01-01
The excessive underestimation can lead to a range of problem; expansion of LNG plant requiring short construction period, the following increase of electricity price, low reserve margin and inefficient configuration of power source. With regard to nuclear power, the share of the stable and economic base load plant, nuclear power, can reduce under the optimum level. Amongst varied factors which contribute to the underestimate, immoderate target for demand side management (DSM) including double deduction of the constraint amount by DSM from peak demand forecast is one of the causes. The hypothesis in this study is that the better optimum generation mix including the adequate share of nuclear power can be obtained under the condition of the peak demand forecast without deduction of DSM target because this forecast is closer to the actual peak demand. In this study, the hypothesis is verified with comparison between peak demand forecast before (or after) DSM target application and the actual peak demand in the 3 rd through 5 th BPE from 2006 to 2010. Furthermore, this research compares and analyzes several generation mix in 2027 focusing on the nuclear power by a few conditions using the WASP-IV program on the basis of the 6 th BPE in 2013. According to the comparative analysis on the peak demand forecast and actual peak demand from 2006 to 2010, the peak demand forecasts without the deduction of the DSM target is closer to the actual peak demand than the peak demand forecasts considering the DSM target in the 3 th , 4 th , 5 th entirely. In addition, the generation mix until 2027 is examined by the WASP-IV. As a result of the program run, when considering the peak demand forecast without DSM reflection, since the base load plants including nuclear power take up adequate proportion, stable and economic supply of electricity can be achieved. On the contrary, in case of planning based on the peak demand forecast with DSM reflected and then compensating the shortage by
Generation Mix Study Focusing on Nuclear Power by Practical Peak Forecast
Energy Technology Data Exchange (ETDEWEB)
Shin, Jung Ho; Roh, Myung Sub [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)
2013-10-15
The excessive underestimation can lead to a range of problem; expansion of LNG plant requiring short construction period, the following increase of electricity price, low reserve margin and inefficient configuration of power source. With regard to nuclear power, the share of the stable and economic base load plant, nuclear power, can reduce under the optimum level. Amongst varied factors which contribute to the underestimate, immoderate target for demand side management (DSM) including double deduction of the constraint amount by DSM from peak demand forecast is one of the causes. The hypothesis in this study is that the better optimum generation mix including the adequate share of nuclear power can be obtained under the condition of the peak demand forecast without deduction of DSM target because this forecast is closer to the actual peak demand. In this study, the hypothesis is verified with comparison between peak demand forecast before (or after) DSM target application and the actual peak demand in the 3{sup rd} through 5{sup th} BPE from 2006 to 2010. Furthermore, this research compares and analyzes several generation mix in 2027 focusing on the nuclear power by a few conditions using the WASP-IV program on the basis of the 6{sup th} BPE in 2013. According to the comparative analysis on the peak demand forecast and actual peak demand from 2006 to 2010, the peak demand forecasts without the deduction of the DSM target is closer to the actual peak demand than the peak demand forecasts considering the DSM target in the 3{sup th}, 4{sup th}, 5{sup th} entirely. In addition, the generation mix until 2027 is examined by the WASP-IV. As a result of the program run, when considering the peak demand forecast without DSM reflection, since the base load plants including nuclear power take up adequate proportion, stable and economic supply of electricity can be achieved. On the contrary, in case of planning based on the peak demand forecast with DSM reflected and then
Directory of Open Access Journals (Sweden)
Pau Baya
2011-05-01
Full Text Available Remenat (Catalan (Mixed, "revoltillo" (Scrambled in Spanish, is a dish which, in Catalunya, consists of a beaten egg cooked with vegetables or other ingredients, normally prawns or asparagus. It is delicious. Scrambled refers to the action of mixing the beaten egg with other ingredients in a pan, normally using a wooden spoon Thought is frequently an amalgam of past ideas put through a spinner and rhythmically shaken around like a cocktail until a uniform and dense paste is made. This malleable product, rather like a cake mixture can be deformed pulling it out, rolling it around, adapting its shape to the commands of one’s hands or the tool which is being used on it. In the piece Mixed, the contortion of the wood seeks to reproduce the plasticity of this slow heavy movement. Each piece lays itself on the next piece consecutively like a tongue of incandescent lava slowly advancing but with unstoppable inertia.
Debates of the Vista 2011 Colloquium 'Towards a low carbon energy mix: which role for nuclear?'
International Nuclear Information System (INIS)
Barre, Bertrand; Garribba, Massimo; ); Poyer, Luc; Bigot, Bernard; Ducre, Henri; Giraud, Yves; Wehrling, Yann
2011-12-01
During two debates (the first one addresses stakes and challenges at the international level, and the second one addresses the French context), the interveners discuss the evolution of energy mixes at the international level and the share of nuclear energy. They address the conditions under which several energy types are being or can be used within the frame of energy transition, and in a context where the growth of energy consumption is mainly due the development of emerging countries. They discuss how western countries will be able to finance huge investments required by the climate challenge for the development of low carbon energies and energy efficiency in a context of economic recession. They discuss the issue of nuclear energy safety after Fukushima, how the share of nuclear energy could be decreased and whether it is possible, which will be the role of renewable energies, how energy mixes are organised at the international level (different approaches in different countries, differences between France and Germany in a European context). They also address the issues related to the EPR (costs, perspectives)
Preliminary study on acceptability of scope of thermal discharge mixing zone for nuclear power plant
International Nuclear Information System (INIS)
Liu Yongye; Yang Yang; Wang Liang; Chen Xiaoqiu; Liu Senlin
2012-01-01
Based on the situation that the existing domestic temperature control standards are not performable, the preliminary study on the acceptability of the mixing zone scope of thermal discharge for nuclear power plant was conducted in this paper, taking a coastal power station SNP as a case. The following preliminary conclusions could be drawn from the results of cluster analysis of the SNP site under different results of mathematical modeling and physical model test: 1) The influence intensity of ecological function of the SNP site seawater is small and the scope of thermal discharge mixing zone is acceptable under SNP-1 (Unit 1 and 2) operating condition; 2) the influence intensity of ecological function of the SNP site seawater is small and the scope of thermal discharge mixing zone is acceptable in spring under SNP-1 (Unit 1 and 2) and SNP-2 (Unit 3 and 4) operating condition, while the influence intensity of ecological function of the SNP site seawater is large and the scope of mixing zone is unacceptable in autumn under the same operating condition. (authors)
Numerical analysis of coolant mixing in the pressure vessel of WWER-440 type nuclear reactors
International Nuclear Information System (INIS)
Boros, I.; Aszodi, A.
2003-01-01
The precise description of the coolant mixing processes taking place in the reactor pressure vessel (RPV) of pressurized water nuclear reactors has an essential importance during power operation, as well as in case of incidental or accidental conditions. In this paper the detailed CFD model of the pressure vessel of a WWER-440 type reactor and calculations performed with this RPV model are presented. The CFD model of the pressure vessel contains all the important internal structural elements of the RPV. Sensitivity study on the effect of these elements was also carried out. Both steady-state and transient calculation were performed using the CFD code CFX-5.5.1. The results of the steady-state calculations give the so called mixing factors, i.e. the effect of each single primary loop at the core inlet. The mixing factors can be given for nominal circumstances (i.e. all main coolant pumps are working) or in case of less than six working MCPs. In order to validate the model the calculated mixing factors are compared with the values measured in the Paks NPP (Authors)
Heat transfer coefficient testing in nuclear fuel rod bundles with mixing vane grids
International Nuclear Information System (INIS)
Conner, Michael E.; Smith, L. David III; Holloway, Mary V.; Beasley, Donald E.
2005-01-01
An air heat transfer test facility was developed to test the heat transfer downstream of support grids in simulated PWR nuclear fuel rod bundles. The goal of this testing is to study the single-phase heat transfer coefficients downstream of grids with mixing vanes in a square-pitch rod bundle. The technique developed utilizes fully-heated grid spans and a specially designed thermocouple holder that can be moved axially down the rod bundle and aximuthally within a test rod. From this testing, the axial and aximuthally varying heat transfer coefficient can be determined. Different grid designs are tested and compared to determine the heat transfer enhancement associated with key grid features such as mixing vanes. (author)
Thermal fatigue crack growth in mixing tees nuclear piping - An analytical approach
International Nuclear Information System (INIS)
Radu, V.
2009-01-01
The assessment of fatigue crack growth due to cyclic thermal loads arising from turbulent mixing presents significant challenges, principally due to the difficulty of establishing the actual loading spectrum. So-called sinusoidal methods represent a simplified approach in which the entire spectrum is replaced by a sine-wave variation of the temperature at the inner pipe surface. The need for multiple calculations in this process has lead to the development of analytical solutions for thermal stresses in a pipe subject to sinusoidal thermal loading, described in previous work performed at JRC IE Petten, The Netherlands, during the author's stage as seconded national expert. Based on these stress distributions solutions, the paper presents a methodology for assessment of thermal fatigue crack growth life in mixing tees nuclear piping. (author)
Lateral Flow Field Behavior Downstream of Mixing Vanes In a Simulated Nuclear Fuel Rod Bundle
International Nuclear Information System (INIS)
Conner, Michael E.; Smith, L. David III; Holloway, Mary V.; Beasley, Donald E.
2004-01-01
To assess the fuel assembly performance of PWR nuclear fuel assemblies, average subchannel flow values are used in design analyses. However, for this highly complex flow, it is known that local conditions around fuel rods vary dependent upon the location of the fuel rod in the fuel assembly and upon the support grid design that maintains the fuel rod pitch. To investigate the local flow in a simulated nuclear fuel rod bundle, a testing technique has been employed to measure the lateral flow field in a 5 x 5 rod bundle. Particle Image Velocimetry was used to measure the lateral flow field downstream of a support grid with mixing vanes for four unique subchannels in the 5 x 5 bundle. The dominant lateral flow structures for each subchannel are compared in this paper including the decay of these flow structures. (authors)
2$^{+}$ anomaly and configurational isospin polarization of $^{136}$Te
It is proposed to perform a Coulomb excitation experiment on beams of radioactive ions of $^{136}$Te delivered by HIE-ISOLDE impinging on a $^{58}$Ni target. Scattered particles will be detected by a DSSSD detector and $\\gamma$-rays will be detected by the MINIBALL array. The proposed Configurational Isospin Polarization (CIP) of the two lowest 2$^+$ states will be determined by measuring the E2 excitation yield distribution to them. The expected proton-dominated one-phonon character of the second excited 2$^+$ state of $^{136}$Te will be tested on the basis of absolute electromagnetic matrix elements from the observed Coulomb excitation cross sections. Complementary lifetime information on this predominant 2$^+_{1,ms}$ state will be extracted using the differential DSAM technique. The experiment will clarify to what extent CIP is responsible for the 2$^+$ anomaly in $^{136}$Te.
Isospin properties of electric dipole excitations in 48Ca
Derya, V.; Savran, D.; Endres, J.; Harakeh, M. N.; Hergert, H.; Kelley, J. H.; Papakonstantinou, P.; Pietralla, N.; Ponomarev, V. Yu.; Roth, R.; Rusev, G.; Tonchev, A. P.; Tornow, W.; Wörtche, H. J.; Zilges, A.
2014-03-01
Two different experimental approaches were combined to study the electric dipole strength in the doubly-magic nucleus 48Ca below the neutron threshold. Real-photon scattering experiments using bremsstrahlung up to 9.9 MeV and nearly mono-energetic linearly polarized photons with energies between 6.6 and 9.51 MeV provided strength distribution and parities, and an (α,α‧γ) experiment at Eα=136 MeV gave cross sections for an isoscalar probe. The unexpected difference observed in the dipole response is compared to calculations using the first-order random-phase approximation and points to an energy-dependent isospin character. A strong isoscalar state at 7.6 MeV was identified for the first time supporting a recent theoretical prediction.
Trojan Penguins and Isospin Violation in Hadronic B Decays
International Nuclear Information System (INIS)
Grossman, Yuval
1999-01-01
Some rare hadronic decays of B mesons, such as B → πK, are sensitive to isospin-violating contributions from physics beyond the Standard Model. Although commonly referred to as electroweak penguins, such contributions can often arise through tree-level exchanges of heavy particles, or through strong-interaction loop diagrams. The Wilson coefficients of the corresponding electroweak penguin operators are calculated in a large class of New Physics models, and in many cases are found not to be suppressed with respect to the QCD penguin coefficients. Several tests for these effects using observables in B ± → πK decays are discussed, and nontrivial bounds on the couplings of the various New Physics models are derived
Helicity and isospin asymmetries in the electroproduction of nucleon resonances
International Nuclear Information System (INIS)
Warns, M.; Pfeil, W.; Rollnik, H.
1989-10-01
We investigate the helicity asymmetries and isospin ratios of ratiative transition amplitudes for nucleon resonances electroproduced off proton and neutron targets at momentum transfers of Q 2 ≤3 GeV 2 . Calculations were done in the framework of a relativized constituent quark model which includes many-body effects due to the quark interaction potential and to a relativistic treatment of the center-of-mass motion of the three quark system. We find significant deviations from the predictions of the nonrelativistic quark models and the SU(6) W algebraic approach based on the single quark transition hypothesis. Our calculated relativistic corrections lead to an overall better agreement with the experimental data. The question if some of the low-lying P-wave baryons are of hermaphrodite nature is briefly discussed. Finally we analyse the electroexcitation of the missing [20,1 + ] P-wave resonances. (orig.)
Light stops, blind spots, and isospin violation in the MSSM
Crivellin, Andreas; Procura, Massimiliano; Tunstall, Lewis C
2015-01-01
In the framework of the MSSM, we examine several simplified models where only a few superpartners are light. This allows us to study WIMP--nucleus scattering in terms of a handful of MSSM parameters and thereby scrutinize their impact on dark matter direct-detection experiments. Focusing on spin-independent WIMP--nucleon scattering, we derive simplified, analytic expressions for the Wilson coefficients associated with Higgs and squark exchange. We utilize these results to study the complementarity of constraints due to direct-detection, flavor, and collider experiments. We also identify parameter configurations that produce (almost) vanishing cross sections. In the proximity of these so-called blind spots, we find that the amount of isospin violation may be much larger than typically expected in the MSSM. This feature is a generic property of parameter regions where cross sections are suppressed, and highlights the importance of a careful analysis of the nucleon matrix elements and the associated hadronic unc...
Isospin properties of electric dipole excitations in {sup 48}Ca
Energy Technology Data Exchange (ETDEWEB)
Derya, V., E-mail: derya@ikp.uni-koeln.de [Institut für Kernphysik, Universität zu Köln, 50937 Köln (Germany); Savran, D. [ExtreMe Matter Institute EMMI and Research Division, GSI, 64291 Darmstadt (Germany); Frankfurt Institute for Advanced Studies FIAS, 60438 Frankfurt am Main (Germany); Endres, J. [Institut für Kernphysik, Universität zu Köln, 50937 Köln (Germany); Harakeh, M.N. [Kernfysisch Versneller Instituut, University of Groningen, 9747 AA Groningen (Netherlands); GANIL, CEA/DSM-CNRS/IN2P3, 14076 Caen (France); Hergert, H. [Department of Physics, Ohio State University, Columbus, OH 43210 (United States); Kelley, J.H. [Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Department of Physics, North Carolina State University, Raleigh, NC 27695 (United States); Papakonstantinou, P. [Rare Isotope Science Project, Institute for Basic Science, Daejeon 305-811 (Korea, Republic of); Pietralla, N.; Ponomarev, V.Yu.; Roth, R. [Institut für Kernphysik, TU Darmstadt, 64289 Darmstadt (Germany); Rusev, G.; Tonchev, A.P.; Tornow, W. [Department of Physics, Duke University, Durham, NC 27708 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Wörtche, H.J. [Kernfysisch Versneller Instituut, University of Groningen, 9747 AA Groningen (Netherlands); Zilges, A. [Institut für Kernphysik, Universität zu Köln, 50937 Köln (Germany)
2014-03-07
Two different experimental approaches were combined to study the electric dipole strength in the doubly-magic nucleus {sup 48}Ca below the neutron threshold. Real-photon scattering experiments using bremsstrahlung up to 9.9 MeV and nearly mono-energetic linearly polarized photons with energies between 6.6 and 9.51 MeV provided strength distribution and parities, and an (α,α{sup ′}γ) experiment at E{sub α}=136MeV gave cross sections for an isoscalar probe. The unexpected difference observed in the dipole response is compared to calculations using the first-order random-phase approximation and points to an energy-dependent isospin character. A strong isoscalar state at 7.6 MeV was identified for the first time supporting a recent theoretical prediction.
A model with isospin doublet U(1)D gauge symmetry
Nomura, Takaaki; Okada, Hiroshi
2018-05-01
We propose a model with an extra isospin doublet U(1)D gauge symmetry, in which we introduce several extra fermions with odd parity under a discrete Z2 symmetry in order to cancel the gauge anomalies out. A remarkable issue is that we impose nonzero U(1)D charge to the Standard Model Higgs, and it gives the most stringent constraint to the vacuum expectation value of a scalar field breaking the U(1)D symmetry that is severer than the LEP bound. We then explore relic density of a Majorana dark matter candidate without conflict of constraints from lepton flavor violating processes. A global analysis is carried out to search for parameters which can accommodate with the observed data.
Isospin diffusion in 58Ni-induced reactions at intermediate energies. I. Experimental results
International Nuclear Information System (INIS)
Galichet, E.; Rivet, M. F.; Borderie, B.; Colonna, M.; Bougault, R.; Durand, D.; Lopez, O.; Manduci, L.; Tamain, B.; Vient, E.; Chbihi, A.; Frankland, J. D.; Wieleczko, J. P.; Dayras, R.; Volant, C.; Guinet, D. C. R.; Lautesse, P.; Neindre, N. Le; Parlog, M.; Rosato, E.
2009-01-01
Isospin diffusion in semiperipheral collisions is probed as a function of the dissipated energy by studying two systems 58 Ni+ 58 Ni and 58 Ni+ 197 Au, over the incident energy range 52A-74A MeV. A close examination of the multiplicities of light products in the forward part of the phase space clearly shows an influence of the isospin of the target on the neutron richness of these products. A progressive isospin diffusion is observed when collisions become more central, in connection with the interaction time.
Quark masses, isospin breaking and the vector piece of pi --> enugamma
Bernabeu, J; Ynduráin, F
1978-01-01
The authors discuss a direct way to detect isospin breaking generated by the current quark mass matrix. With PCAC the vector form factor of pi to e nu gamma can be described by a pure current process. In the chiral symmetry limit they prove, to all orders in QCD, that xi =m/sub d//m/sub u/ zero or infinity induces a 50% isospin breaking in the physical amplitude. Detailed effects, as function of xi , are calculated from the quark triangle diagram. Experiments to look for this possible departure from isospin invariance are feasible. (15 refs).
Nuclear power: How competitive down the line? [The world's latest energy outlook sees a mixed future
International Nuclear Information System (INIS)
Birol, F.
2007-01-01
The world is facing twin energy-related threats: that of not having adequate and secure supplies of energy at affordable prices and that of environmental harm caused by its use. Soaring energy prices and recent geopolitical events have reminded us of the essential role affordable energy plays in economic growth and human development, and of the vulnerability of the global energy system to supply disruptions. Safeguarding energy supplies is once again at the top of the international policy agenda. Yet the current pattern of energy supply carries the threat of severe and irreversible environmental damage. Reconciling the goals of energy security and environmental protection requires strong and coordinated government action and public support. These concerns have revived discussion about the role of nuclear power. Over the past two years, several governments have made statements favouring an increased role of nuclear power in the future energy mix and a few have taken concrete steps towards the construction of a new generation of safe and cost-effective reactors. Over the next two and a half decades, nuclear power along with energy efficiency and renewables, could help address concerns about over-reliance on fossil-fuelled electricity generation, especially worries about climate change and increasing dependence on gas imports: Nuclear power is a low-carbon source of electricity. Operation of one gigawatt of nuclear power generating capacity, if replacing coal-fired generation, avoids the emission of 5.6 million tonnes of CO 2 per year. Nuclear power plants do not emit any airborne pollutants such as sulphur dioxide, nitrogen oxides or particulate matter. Nuclear power plants can help reduce dependence on imported gas; and unlike gas, uranium resources are widely distributed around the world. Under current policies, gas-import dependence will rise in all regions of the OECD (Organization for Economic Cooperation and Development) and in key developing countries by 2030
On the mixing model for calculating the temperature fields in nuclear reactor fuel assemblies
International Nuclear Information System (INIS)
Mikhin, V.I.; Zhukov, A.V.
1985-01-01
One of the alternatives of the mixing model applied for calculating temperature fields in nuclear reactor fuel assemblies,including the fuel assemblies with nonequilibrium energy-release in fuel element cross section, is consistently described. The equations for both constant and variable values of coolant density and heat capacity are obtained. The mixing model is based on a set of mass, heat and longitudinal momentum balance equations. This set is closed by the ratios connecting the unknown values for gaps between fuel elements with the averaged values for neighbouring channels. The ratios to close momentum and heat balance equations, explaining, in particular, the nonequivalent heat and mass, momentum and mass transfer coefficients, are suggested. The balance equations with variable coolant density and heat capacity are reduced to the form coinciding with those of the similar equations with constant values of these parameters. Application of one of the main ratios of the mixing model relating the coolant transverse overflow in the gaps between fuel elements to the averaged coolant rates (flow rates) in the neighbouring channels is mainly limited by the coolant stabilized flow in the fuel assemblies with regular symmetrical arrangement of elements. Mass transfer coefficients for these elements are experimentally determined. The ratio in the paper is also applicable for calculation of fuel assembly temperature fields with a small relative shift of elements
Hydrogen storage for mixed wind-nuclear power plants in the context of a hydrogen economy
International Nuclear Information System (INIS)
Taljan, Gregor; Fowler, Michael; Canizares, Claudio; Verbic, Gregor
2008-01-01
A novel methodology for the economic evaluation of hydrogen production and storage for a mixed wind-nuclear power plant considering some new aspects such as residual heat and oxygen utilization is applied in this work. This analysis is completed in the context of a hydrogen economy and competitive electricity markets. The simulation of the operation of a combined nuclear-wind-hydrogen system is discussed first, where the selling and buying of electricity, the selling of excess hydrogen and oxygen, and the selling of heat are optimized to maximize profit to the energy producer. The simulation is performed in two phases: in a pre-dispatch phase, the system model is optimized to obtain optimal hydrogen charge levels for the given operational horizons. In the second phase, a real-time dispatch is carried out on an hourly basis to optimize the operation of the system as to maximize profits, following the hydrogen storage levels of the pre-dispatch phase. Based on the operation planning and dispatch results, an economic evaluation is performed to determine the feasibility of the proposed scheme for investment purposes; this evaluation is based on calculations of modified internal rates of return and net present values for a realistic scenario. The results of the present studies demonstrate the feasibility of a hydrogen storage and production system with oxygen and heat utilization for existent nuclear and wind power generation facilities. (author)
Goodness of isospin in neutron rich systems from the fission fragment distribution
Garg, Swati; Jain, Ashok Kumar
2017-09-01
We present the results of our calculations for the relative yields of neutron-rich fission fragments emitted in 208Pb (18O, fission) reaction by using the concept of the conservation of isospin and compare with the experimental data. We take into account a range of isospin values allowed by the isospin algebra and assume that the fission fragments are formed in isobaric analog states. We also take into account the neutron multiplicity data for various neutron-emission channels in each partition, and use them to obtain the weight factors in calculating the yields. We then calculate the relative yields of the fission fragments. Our calculated results are able to reproduce the experimental trends reasonably well. This is the first direct evidence of the isospin conservation in neutron-rich systems and may prove a very useful tool in their studies.
A lattice determination of Sigma-Lambda mixing
Energy Technology Data Exchange (ETDEWEB)
Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Najjar, J. [Regensburg Univ. (Germany). Institut fuer Theoretische Physik; Nakamura, Y. [RIKEN Advanced Institute for Computational Science, Kobe (Japan); Perlt, H.; Schiller, A. [Leipzig Univ. (Germany). Inst. fuer Theoretische Physik; Pleiter, D. [Forschungszentrum Juelich (Germany). Juelich Supercomputer Centre; Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Theoretical Physics Division; Schierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Stueben, H. [Hamburg Univ. (Germany). Regionales Rechenzentrum; Zanotti, J.M. [Adelaide Univ. (Australia). CSSM, Dept. of Physics; Collaboration: QCDSF-UKQCD Collaboration
2014-11-15
Isospin breaking effects in baryon octet (and decuplet) masses are due to a combination of up and down quark mass differences and electromagnetic effects and lead to small mass splittings. Between the Sigma and Lambda this mass splitting is much larger, this being mostly due to their different wavefunctions. However when isospin is broken, there is a mixing between between these states. We describe the formalism necessary to determine the QCD mixing matrix and hence find the mixing angle and mass splitting between the Sigma and Lambda particles due to QCD effects.
A study of isospin symmetry breaking in carbon 12 with 50 MeV pions
International Nuclear Information System (INIS)
Applegate, J.M.
1993-03-01
In the first experiment to use the superconducting RF cavity at LAMPF known as the Scruncher, cross sections have been measured for the 1+ doublet in 12 C by 50 MeV πr ± scattering. The cross section ratio of the isoscalar to the isovector states was found to be 6.8 ± 1.3 for π + + scattering and 3.9 ± 1.4 for π - scattering. These ratios give an isospin mixing matrix element H 01 , of 119 ± 40 key, in good agreement with the average value of 123 ± 26 key deduced from previous pion-scattering data and with values deduced from other probes. The ratio of π + + p to π - + p cross sections was determined experimentally to be 2.60 ± 0.11, in agreement with a theoretical value of 2.85. The agreement of these results indicates that the impulse approximation is valid at 50 MeV. Cross sections were also measured for the elastic and collective states in 12 C and were generally described well by distorted wave Born approximation calculations published previously
International Nuclear Information System (INIS)
Liu Jianye; Xing Yongzhong; Guo Wenjun
2003-01-01
We study the isospin effects of the mean field and two-body collision on the nucleon emissions at the intermediate energy heavy-ion collisions by using an isospin-dependent transport theory. The calculated results show that the nucleon emission number N n depends sensitively on the isospin effect of nucleon-nucleon cross section and weakly on the isospin-dependent mean field for neutron-poor system in higher beam energy region. In particular, the correlation between the medium correction of two-body collision and the momentum-dependent interaction enhances the dependence of nucleon emission number N n on the isospin effect of nucleon-nucleon cross section. On the contrary, the ratio of the neutron-proton ratio of the gas phase to the neutron-proton ratio of the liquid phase, i.e., the degree of isospin fractionation [(N/Z) gas ] b /[(N/Z) liq ] b depends sensitively on the isospin-dependent mean field and weakly on the isospin effect of two-body collision for neutron-rich system in the lower beam energy region. In this case, N n and [(N/Z) gas ] b /[(N/Z) liq ] b are the probes for extracting the information about the isospin-dependent nucleon-nucleon cross section in the medium and the isospin-dependent mean field, respectively
Isospin term of the real part of the Lane optical-model potential
International Nuclear Information System (INIS)
Brandenberger, J.D.; Schrils, R.
1976-01-01
Previous neutron differential cross section measurements for Ni, Fe, and Co at 9 MeV are reanalyzed to obtain the isospin term in the real part of the Lane optical model potential employing a surface-centered form factor. The strength determined is 1.4 +- 0.2 MeV. It is further shown that analysis of the data is little affected by the choice of a volume or surface form for the isospin term in the real potential
X(3872 in Heavy Quark Limit of QCD: Its Partners and Isospin Structure
Directory of Open Access Journals (Sweden)
Ozpineci A.
2014-01-01
Full Text Available Although it has been more than ten years since the discovery of the X(3872 meson, its properties still contain puzzles. In this work, the results obtained using a correlation function approach on the degenerate partners of the X(3872 will be presented. The isospin structure is also discussed in the same framework. Finally, the X(3872 → D0 D̄0 π decay is proposed to study the isospin structure of the X(3872 meson.
Latest developments in critical nuclear opalescence
International Nuclear Information System (INIS)
Delorme, J.
It is first recalled how the nuclear spin-isospin mode generated by pion exchange gives rise to critical opalescence phenomena precursor to pion condensation. Parallel descriptions are presented by the pion field renormalization method and the RPA approach. Various detection possibilities are reviewed. Though available data indicate that nuclei are rather far from the critical regime, emphasis is put on the interest of further investigation of the longitudinal spin-isospin mode [fr
International Nuclear Information System (INIS)
Valcov, N.; Celarel, A.; Purghel, L.
1999-01-01
By using the statistical discrimination technique, the components of on ionization current, due to a mixed radiation field, may be simultaneously measured. A functional model, including a serially manufactured gamma-ray ratemeter was developed, as an intermediate step in the design of specialised nuclear instrumentation, in order to check the concept of statistical discrimination method. The obtained results are in good agreement with the estimations of the statistical discrimination method. The main characteristics of the functional model are the following: - dynamic range of measurement: >300: l; - simultaneous measurement of natural radiation background and gamma-ray fields; - accuracy (for equal exposure rates from gamma's and natural radiation background): 17%, for both radiation fields; - minimum detectable exposure rate: 2μR/h. (authors)
Pressure fluctuation characteristics of flow field of mixed flow nuclear primary pump
International Nuclear Information System (INIS)
Wang Chunlin; Yang Xiaoyong; Li Changjun; Jia Fei; Zhao Binjuan
2013-01-01
In order to research the pressure fluctuation characteristics of flow field of mixed flow nuclear primary pump, this study used the technique of ANSYS-Workbench and CFX fluid solid heat coupling to do numerical simulation analysis for model pump. According to the situation of pressure fluctuation of time domain and frequency domain, the main cause of pressure fluctuation was discussed. For different flow, the pressure fluctuations were compared. This study shows it is feasible that large eddy simulation method is used for the research of pressure fluctuation. The pressure fluctuation amplitudes of four sections are increasing from wheel hub to wheel rim. The pressure fluctuation of inlet and outlet of impeller depends on the rotational frequency of impeller. Along with the fluid flowing away from the impeller, the effect of the impeller on the fluid pressure fluctuation weakens gradually. Comparing the different results of three flow conditions, the pressure fluctuation in design condition flow is superior to the others. (authors)
Isospin degree of freedom in even-even 68-76Ge and 62-70Zn isotopes
International Nuclear Information System (INIS)
Jalili Majarshin, A.
2018-01-01
The introduction of isotopic spin is significant in light nuclei as Ge and Zn isotopes in order to take into account isospin effects on energy spectra. Dynamical symmetries in spherical, γ-soft limits and transition in the interacting boson model IBM-3 are analyzed. Analytic expressions and exact eigenenergies, electromagnetic transitions probabilities are obtained for the transition between spherical and γ-soft shapes by using the Bethe ansatz within an infinite-dimensional Lie algebra in light mass nuclei. The corresponding algebraic structure and reduction chain are studied in IBM-3. For examples, the nuclear structure of the 68-76 Ge and 62-70 Zn isotopes is calculated in IBM-3 and compared with experimental results. (orig.)
Isospin degree of freedom in even-even 68-76Ge and 62-70Zn isotopes
Jalili Majarshin, A.
2018-01-01
The introduction of isotopic spin is significant in light nuclei as Ge and Zn isotopes in order to take into account isospin effects on energy spectra. Dynamical symmetries in spherical, γ-soft limits and transition in the interacting boson model IBM-3 are analyzed. Analytic expressions and exact eigenenergies, electromagnetic transitions probabilities are obtained for the transition between spherical and γ-soft shapes by using the Bethe ansatz within an infinite-dimensional Lie algebra in light mass nuclei. The corresponding algebraic structure and reduction chain are studied in IBM-3. For examples, the nuclear structure of the 68-76Ge and 62-70Zn isotopes is calculated in IBM-3 and compared with experimental results.
Isospin degree of freedom in even-even {sup 68-76}Ge and {sup 62-70}Zn isotopes
Energy Technology Data Exchange (ETDEWEB)
Jalili Majarshin, A. [University of Tabriz, Department of Physics, Tabriz (Iran, Islamic Republic of)
2018-01-15
The introduction of isotopic spin is significant in light nuclei as Ge and Zn isotopes in order to take into account isospin effects on energy spectra. Dynamical symmetries in spherical, γ-soft limits and transition in the interacting boson model IBM-3 are analyzed. Analytic expressions and exact eigenenergies, electromagnetic transitions probabilities are obtained for the transition between spherical and γ-soft shapes by using the Bethe ansatz within an infinite-dimensional Lie algebra in light mass nuclei. The corresponding algebraic structure and reduction chain are studied in IBM-3. For examples, the nuclear structure of the {sup 68-76}Ge and {sup 62-70}Zn isotopes is calculated in IBM-3 and compared with experimental results. (orig.)
Characterization of aerosols from industrial fabrication of mixed-oxide nuclear reactor fuels
International Nuclear Information System (INIS)
Hoover, M.D.; Newton, G.J.
1997-01-01
Recycling plutonium into mixed-oxide (MOX) fuel for nuclear reactors is being given serious consideration as a safe and environmentally sound method of managing plutonium from weapons programs. Planning for the proper design and safe operation of the MOX fuel fabrication facilities can take advantage of studies done in the 1970s, when recycling of plutonium from nuclear fuel was under serious consideration. At that time, it was recognized that the recycle of plutonium and uranium in irradiated fuel could provide a significant energy source and that the use of 239 Pu in light water reactor fuel would reduce the requirements for enriched 235 U as a reactor fuel. It was also recognized that the fabrication of uranium and plutonium reactor fuels would not be risk-free. Despite engineered safety precautions such as the handling of uranium and plutonium in glove-box enclosures, accidental releases of radioactive aerosols from normal containment might occur. Workers might then be exposed to the released materials by inhalation
Drell-Yan Study of Sea Isospin Symmetry
2002-01-01
The purpose of the experiment is to study the isospin symmetry in the light quark sea of the proton. Its violation is one possible explanation of recent unexpected muon deep inelastic scattering experimental results which disagree with the Gottfried sum rule. \\\\ \\\\ The experiment makes use of the large acceptance muon spectrometer used previously by NA10 and NA38. It detects muon pairs produced by the Drell-Yan mechanism in p-p and p-d reactions. A beam of 450 GeV/c protons impinges on alternating liquid hydrogen and deuterium targets. \\\\ \\\\ The aim is to measure the cross-section ratio :USERDOC. .nameit symbol=bp size=9 text='p-p' .nameit symbol=bd size=9 text='p-d' .nameit symbol=DY size=8 text='DY' .namef symbol=nom fpart='sigma .adj(u 6 r 2) bp .adj(d 6 l 10) DY .adj(l 5)' .namef symbol=denom fpart='sigma .adj(u 6 r 2) bd .adj(d 6 l 10) DY .adj(l 4)' $ nom / denom 'at':eF. dimuon masses above 4 GeV/$c ^{2} $, :USERDOC. which is a sensitive probe of the relative content of light antiquarks $ u bar $ and $ ...
On the structure of spin-isospin excitations in nuclei
International Nuclear Information System (INIS)
Haerting, A.
1984-01-01
In this thesis properties of spin-isospin operators in nuclei are studied. Corresponding excited states carry the quantum numbers of the pion and couple therefore strongly to the virtual meson fields existing in the nucleus. The main emphasis in this thesis lies on the 1 + states in 48 Ca at 10.23 MeV and in 88 Sr at 3.48 MeV, the (e,e') form factors of which were measured over a large range of momentum transfers. Many-particle calculations yield against the one-particle model an essential improvement of the description of these form factors. But in the first maximum always by about a factor 2 too large values are obtained. Also the dependence on the momentum transfer cannot be explained correctly. The model space of these many-particle calculations must therefore be extended. We start from a shell-model calculation which regards many-particle-many-hole correlations completely in a relatively small model space and study furthermore nucleonic and non-nucleonic degrees of freedom. (orig./HSI) [de
Isospin analysis of charmless B-meson decays
Energy Technology Data Exchange (ETDEWEB)
Charles, J. [CNRS, Aix Marseille Univ., Universite de Toulon, CPT, Marseille (France); Deschamps, O.; Niess, V. [CNRS/Universite Clermont Auvergne, UMR 6533, Laboratoire de Physique de Clermont, Aubiere (France); Descotes-Genon, S. [CNRS, Univ. Paris-Sud, Universite Paris-Saclay, Laboratoire de Physique Theorique (UMR 8627), Orsay (France)
2017-08-15
We discuss the determination of the CKM angle α using the non-leptonic two-body decays B → ππ, B → ρρ and B → ρπ using the latest data available. We illustrate the methods used in each case and extract the corresponding value of α. Combining all these elements, we obtain the determination α{sub dir} = (86.2{sub -4.0}{sup +4.4} union 178.4{sub -5.1}{sup +3.9}) {sup circle}. We assess the uncertainties associated to the breakdown of the isospin hypothesis and the choice of the statistical framework in detail. We also determine the hadronic amplitudes (tree and penguin) describing the QCD dynamics involved in these decays, briefly comparing our results with theoretical expectations. For each observable of interest in the B → ππ, B → ρρ and B → ρπ systems, we perform an indirect determination based on the constraints from all the other observables available and we discuss the compatibility between indirect and direct determinations. Finally, we review the impact of future improved measurements on the determination of α. (orig.)
Laminar simulation of intersubchannel mixing in a triangular nuclear fuel bundle geometry
International Nuclear Information System (INIS)
Zaretsky, A.; Lightstone, M.F.; Tullis, S.
2015-01-01
Highlights: • Quasi-periodic flow was observed through rod-to-wall gaps. • Triangular subchannel flows were fundamentally irregular. • Cross-gap flow was influenced both by local and adjacent cross-gap intensity. • Phase-linking between gaps induced cross-plane peripheral circulation through rod–wall gaps. • Cross-gap flow structure was dependent on subchannel geometry. - Abstract: Predicting temperature distributions in fuel rod bundles is an important component of nuclear reactor safety analysis. Intersubchannel mixing acts to homogenize coolant temperatures thus reducing the likelihood of localized regions of high fuel temperature. Previous research has shown that intersubchannel mixing in nuclear fuel rod bundles is enhanced by a large-scale quasi-periodic energetic fluid motion, which transports fluid on the cross-plane between the narrow gaps connecting subchannels. This phenomenon has also been observed in laminar flows. Unsteady laminar flow simulations were performed in a simplified bundle of three rods with a pipe. Three similar geometries of varying gap width were examined, and a thermal trace was implemented on the first geometry. Thermal mixing was driven by the advection of energy between subchannels by the cross-plane flow. Flow through the rod-to-wall gaps in the wall subchannels alternated with a dominant frequency, particularly when rod-to-wall gaps were smaller than rod-to-rod gaps. Significant phase-linking between rod-to-wall gaps was also observed such that a peripheral circulation occurred through each gap simultaneously. Cross-plane flow through the rod-to-rod gaps in the triangular subchannel was irregular in each case. This was due to the fundamental irregularity of the triangular subchannel geometry. Vortices were continually broken up by cross-plane flow from other gaps due to the odd number of fluid pathways within the central subchannel. Cross-plane flow in subchannel geometries is highly interconnected between gaps. The
Thermal aspects of mixed oxide fuel in application to supercritical water-cooled nuclear reactors
Energy Technology Data Exchange (ETDEWEB)
Grande, L.; Peiman, W.; Rodriguez-Prado, A.; Villamere, B.; Mikhael, S.; Allison, L.; Pioro, I., E-mail: lisa.grande@mycampus.uoit.ca, E-mail: igor.pioro@uoit.ca [Univ. of Ontario Inst. of Tech., Faculty of Energy Systems and Nuclear Science, Oshawa, Ontario (Canada)
2010-07-01
SuperCritical Water-cooled nuclear Reactors (SCWRs) are a renewed technology being developed as one of the Generation IV reactor concepts. This reactor type uses a light water coolant at temperatures and pressures above its critical point. These elevated operating conditions will improve Nuclear Power Plant (NPP) thermal efficiencies by 10 - 15% compared to those of current NPPs. Also, SCWRs will have the ability to utilize a direct cycle, thus decreasing NPP capital and operational costs. The SCWR core has 2 configurations: 1) Pressure Vessel (PV) -type enclosing a fuel assembly and 2) Pressure Tube (PT) -type consisting of individual pressurized channels containing fuel bundles. Canada and Russia are developing PT-type SCWRs. In particular, the Canadian SCWR reactor has an output of 1200 MW{sub el} and will operate at a pressure of 25 MPa with inlet and outlet fuel-channel temperatures of 350 and 625°C, respectively. These extreme operating conditions require alternative fuels and materials to be investigated. Current CANadian Deuterium Uranium (CANDU) nuclear reactor fuel-channel design is based on the use of uranium dioxide (UO{sub 2}) fuel; zirconium alloy sheath (clad) bundle, pressure and calandria tubes. Alternative fuels should be considered to supplement depleting world uranium reserves. This paper studies general thermal aspects of using Mixed OXide (MOX) fuel in an Inconel-600 sheath in a generic PT-type SCWR. The bulk fluid, sheath and fuel centerline temperatures along with the Heat Transfer Coefficient (HTC) profiles were calculated at uniform and non-uniform Axial Heat Flux Profiles (AHFPs). (author)
International Nuclear Information System (INIS)
Eidson, A.F.; Mewhinney, J.A.
1987-01-01
Twelve representative materials that might be accidentally released during the fabrication of mixed-oxide nuclear fuel pellets were studied using x-ray diffraction, infrared spectroscopy, energy dispersive x-ray fluorescence, alpha spectroscopy and in vitro dissolution methods. The results are related to a postulated exposure accident and to inhalation experiments using laboratory animals. 19 refs., 5 figs., 19 tabs
Directory of Open Access Journals (Sweden)
Epelbaum E.
2010-04-01
Full Text Available We review recent progress on nuclear lattice simulations using chiral eﬀective ﬁeld theory. We discuss lattice results for dilute neutron matter at next-to-leading order, three-body forces at next-to-next-toleading order, isospin-breaking and Coulomb eﬀects, and the binding energy of light nuclei.
International Nuclear Information System (INIS)
Roques, Fabien A.; Nuttall, William J.; Newbery, David M.; Neufville, Richard de; Connors, Stephen
2005-01-01
Despite recent revived interest, the prospects for new nuclear power investment in liberalized electricity industries without government support do not seem promising. The objective of this paper is twofold. First it aims to identify the specific features of nuclear power technology that makes it an unattractive choice. The second objective is to estimate the value to a utility of a nuclear investment as a hedge against uncertain gas and carbon prices. A stylized 5-plant Real Option utility model shows that while the nuclear option value represents about 18% of the net present value (NPV) of the nuclear plant investment in the case where electricity and gas prices are uncorrelated, it reduces to nearly zero for correlation factors between electricity and gas price greater than 30%. These results suggest that the private diversification incentives in electricity markets might not be aligned with the social value of a diverse fuel-mix at the country level. (Author)
Licensing issues associated with the use of mixed-oxide fuel in U.S. commercial nuclear reactors
International Nuclear Information System (INIS)
Williams, D.L. Jr.
1997-04-01
On January 14, 1997, the Department of Energy, as part of its Record of Decision on the storage and disposition of surplus nuclear weapons materials, committed to pursue the use of excess weapons-usable plutonium in the fabrication of mixed-oxide (MOX) fuel for consumption in existing commercial nuclear power plants. Domestic use of MOX fuel has been deferred since the late 1970s, principally due to nuclear proliferation concerns. This report documents a review of past and present literature (i.e., correspondence, reports, etc.) on the domestic use of MOX fuel and provides discussion on the technical and regulatory issues that must be addressed by DOE (and the utility/consortia selected by DOE to effect the MOX fuel consumption strategy) in obtaining approval from the Nuclear Regulatory Commission to use MOX fuel in one or a group of existing commercial nuclear power plants
Directory of Open Access Journals (Sweden)
Thomas A. Contreras
2011-01-01
Full Text Available The tufted titmouse (Baeolophus bicolor, TUTI is a nuclear species in winter foraging flocks whose antipredator calls are used to manage predation risk by diverse heterospecifics. We hypothesized that satellite species in mixed flocks follow TUTI (not vice versa, thereby defining the role of TUTI as a “passive” nuclear species. We followed 20 winter mixed-species flocks in North-Central Florida and assessed angular-angular correlations between overall flock, TUTI, and satellite species movement directions. We observed significant correlations between overall flock movement directions and those of TUTI, confirming our central prediction. Within flocks, however, fine-scale movement directions of satellite species were often more highly correlated with those of other satellites than with TUTI movements. We conclude that TUTI are passive nuclear species whose movements define flock paths, but within flocks, TUTI movements may have less influence on satellite movements than do other factors.
From nuclear reactions to neutron stars
Indian Academy of Sciences (India)
2014-04-30
Apr 30, 2014 ... An equation of state (EoS) for symmetric nuclear matter is constructed using the density-dependent M3Y effective interaction and extended for isospin asymmetric nuclear matter. Theoretically obtained values of symmetric nuclear matter incompressibility, isobaric incompressibility, symmetry energy and its ...
Experimental and computational studies of thermal mixing in next generation nuclear reactors
Landfried, Douglas Tyler
The Very High Temperature Reactor (VHTR) is a proposed next generation nuclear power plant. The VHTR utilizes helium as a coolant in the primary loop of the reactor. Helium traveling through the reactor mixes below the reactor in a region known as the lower plenum. In this region there exists large temperature and velocity gradients due to non-uniform heat generation in the reactor core. Due to these large gradients, concern should be given to reducing thermal striping in the lower plenum. Thermal striping is the phenomena by which temperature fluctuations in the fluid and transferred to and attenuated by surrounding structures. Thermal striping is a known cause of long term material failure. To better understand and predict thermal striping in the lower plenum two separate bodies of work have been conducted. First, an experimental facility capable of predictably recreating some aspects of flow in the lower plenum is designed according to scaling analysis of the VHTR. Namely the facility reproduces jets issuing into a crossflow past a tube bundle. Secondly, extensive studies investigate the mixing of a non-isothermal parallel round triple-jet at two jet-to-jet spacings was conducted. Experimental results were validation with an open source computational fluid dynamics package, OpenFOAMRTM. Additional care is given to understanding the implementation of the realizable k-a and Launder Gibson RSM turbulence Models in OpenFOAMRTM. In order to measure velocity and temperature in the triple-jet experiment a detailed investigation of temperature compensated hotwire anemometry is carried out with special concern being given to quantify the error with the measurements. Finally qualitative comparisons of trends in the experimental results and the computational results is conducted. A new and unexpected physical behavior was observed in the center jet as it appeared to spread unexpectedly for close spacings (S/Djet = 1.41).
International Nuclear Information System (INIS)
Xu, Chang; Li, Bao-An; Chen, Lie-Wen
2014-01-01
In this contribution, we review the most important physics presented originally in our recent publications. Some new analyses, insights and perspectives are also provided. We showed recently that the symmetry energy E sym (ρ) and its density slope L(ρ) at an arbitrary density ρ can be expressed analytically in terms of the magnitude and momentum dependence of the single-nucleon potentials using the Hugenholtz-Van Hove (HVH) theorem. These relationships provide new insights about the fundamental physics governing the density dependence of nuclear symmetry energy. Using the isospin and momentum (k) dependent MDI interaction as an example, the contribution of different terms in the single-nucleon potential to the E sym (ρ) and L(ρ) are analyzed in detail at different densities. It is shown that the behavior of E sym is mainly determined by the first-order symmetry potential U sym,1 (ρ, k) of the single-nucleon potential. The density slope L(ρ) depends not only on the first-order symmetry potential U sym,1 (ρ, k) but also on the second-order one U sym,2 (ρ, k). Both the U sym,1 (ρ, k) and U sym,2 (ρ, k) at normal density ρ 0 are constrained by the isospin- and momentum-dependent nucleon optical potential extracted from the available nucleon-nucleus scattering data. The U sym,2 (ρ, k) especially at high density and momentum affects significantly the L(ρ), but it is theoretically poorly understood and currently there is almost no experimental constraints known. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Xu, Chang [Nanjing University, Department of Physics, Nanjing (China); Li, Bao-An [Texas A and M University-Commerce, Department of Physics and Astronomy, Commerce, Texas (United States); Chen, Lie-Wen [Shanghai Jiao Tong University, Department of Physics and Astronomy and Shanghai Key Laboratory for Particle Physics and Cosmology, Shanghai (China)
2014-02-15
In this contribution, we review the most important physics presented originally in our recent publications. Some new analyses, insights and perspectives are also provided. We showed recently that the symmetry energy E{sub sym} (ρ) and its density slope L(ρ) at an arbitrary density ρ can be expressed analytically in terms of the magnitude and momentum dependence of the single-nucleon potentials using the Hugenholtz-Van Hove (HVH) theorem. These relationships provide new insights about the fundamental physics governing the density dependence of nuclear symmetry energy. Using the isospin and momentum (k) dependent MDI interaction as an example, the contribution of different terms in the single-nucleon potential to the E{sub sym} (ρ) and L(ρ) are analyzed in detail at different densities. It is shown that the behavior of E{sub sym} is mainly determined by the first-order symmetry potential U{sub sym,1}(ρ, k) of the single-nucleon potential. The density slope L(ρ) depends not only on the first-order symmetry potential U{sub sym,1}(ρ, k) but also on the second-order one U{sub sym,2}(ρ, k). Both the U{sub sym,1}(ρ, k) and U{sub sym,2}(ρ, k) at normal density ρ {sub 0} are constrained by the isospin- and momentum-dependent nucleon optical potential extracted from the available nucleon-nucleus scattering data. The U{sub sym,2}(ρ, k) especially at high density and momentum affects significantly the L(ρ), but it is theoretically poorly understood and currently there is almost no experimental constraints known. (orig.)
Campbell's MSV method the neutron-gamma discrimination in mixed field of nuclear reactor
International Nuclear Information System (INIS)
Stankovic, S. J.; Loncar, B.; Avramovic, I.; Osmokrovic, P.
2003-10-01
In this paper it is carried out the analysis some capabilities of Campbell's MSV (Mean Square Value) measuring chain on base the principles derived by Campbell's theorem. Nevertheless, measurements have performed with digitized MSV method and results have compared related to they attained with classic measuring chain, when the mean value of signal from detector output has measured. In our case, detector element was uncompensated ionization chamber for mixed n-gamma fields. Thermal neutron flux, absorbed dose rate, equivalent dose rate and exposure rate in surrounding the reactor vessel of system HERBE, at nuclear reactor RB in 'VINCA' Institute, are determined. The examination of discrimination for gamma relate to neutron component in signal of detector output is performed whereby experimental work and the calculation according to linear theoretical model. The dependencies of changes for variance and mean value output detector signal versus four-decade change of fission reactor power, in range from 10 mW to 22W, are obtained. The advantage of MSV method is confirmed and concluded that the order n-gamma discrimination in MSV signal processing is around fifty times larger than classical measuring method. (author)
International Nuclear Information System (INIS)
Nifenecker, H.
2011-01-01
After having recalled the situation of the French energy mix in 2010, this paper analyses the consequences of the different options which can be chosen to balance a reduction of the nuclear share in this mix. These different scenarios are: replacement by fossil (gas or coal) energy plants, replacement by renewable energies (here comes a discussion of wind energy limitations), decrease of energy consumption and increase of gas-based energy production. The author also discusses a comparison between the use of a direct gas or fuel heating and the use of electricity produced by gas power plants
Isospin effects on pt-differential flow in heavy ion collisions at intermediate energies
International Nuclear Information System (INIS)
Bansal, Rubina; Jain, Anupriya; Kumar, Suneel
2014-01-01
This paper aims to study the role of isospin degree of freedom in heavy-ion collisions through the transverse momentum (p t ), neutron to proton ratio and system mass dependence of p t -differential transverse flow. Our study shows that (p t )-differential transverse flow dependence can act as sensitive probe to study symmetry energy and its density dependence compared to the energy of vanishing flow. Symmetry energy and its density dependence play a dominant role over the isospin-dependence of nucleon–nucleon cross-section at Fermi energy. (author)
Constraints on isospin breaking in the light quark sea from the Drell- Yan process
International Nuclear Information System (INIS)
Ellis, S.D.; Stirling, W.J.
1990-11-01
One possible interpretation of recent deep inelastic scattering data applied to the Gottfried sum rule is that SU(2) isospin symmetry is violated in the light quark sea in the proton, i.e., bar u ≠ d. The data can equally well be described by retaining SU(2) symmetry but postponing the onset of Regge behavior to much smaller x values than are currently samples experimentally. We show how the Drell-Yan process can provide definitive, discriminating information on this issue. We suggest a new Drell-Yan experiment, which should prove decisive, and show how existing data may already rule out the isospin-breaking hypothesis. 13 refs., 6 figs
International Nuclear Information System (INIS)
Cohen, J.
1984-01-01
We present a unified study of the role of the rho-exchange interaction in spin-isospin strength distribution effects in a finite nuclear system. We study both the longitudinal (sigma-arrow-rightxqtau/sub lambda/, where q is the momentum transfer to the nucleus) and the transverse (sigma-arrow-right x qtau/sub lambda/) spin channels for a large range of momentum transfer (qapprox.0--600 MeV/c). We examine a number of effective rho-coupling schemes used in the literature. Using the finite-nucleus formalism of Toki and Weise, we examine in detail the response function in the presence of the rho-meson exchange term. The renormalization of matrix elements of spin-isospin sensitive probes is given for the J/sup P/ = 1 + , T = 1 level of 12 C. We analyze the results, gaining some insight into the nature of the longitudinal versus transverse channels and into approximations suggested in the past for handling finite-nucleus calculations. A comparison with local density approximation and infinite nuclear matter with a constant density results is presented for a variety of cases
International Nuclear Information System (INIS)
1975-01-01
The opportunity of developing the mixed production of electricity and steam from nuclear power plants in the nine countries of the European Community is studied. Both public distribution and autonomous production are envisaged. An attempt is made to estimate the potentiel market for district heating and for chemical, agricultural and alimentary, textile, paper, car manufacture and wood industries. The reactors considered are LWR reactors of at least 1000MWth. Suggestions are given to overcome the difficulties and constraints that stand in the way of a nuclear solution [fr
International Nuclear Information System (INIS)
2011-01-01
This paper briefly comments different evolution options regarding the French electric mix (replacement of nuclear plants by natural gas plants, maximum development of photovoltaic and wind energy, drastic reduction of electricity consumption) and of their consequences in terms of CO 2 emissions. As none of these options is acceptable with respect to climatic and economic requirements, another option is proposed: keeping the nuclear at its current level, increasing electricity production by means of natural gas plants, and increasing heat production. The benefits of this solution are briefly outlined
International Nuclear Information System (INIS)
Luszik-Bhadra, M.; Reginatto, M.; Schuhmacher, H.; Lacoste, V.; Muller, M.; Boschung, M.; Fiechtner, A.; Coeck, M.; Vanhavere, F.; Curzio, G.; D'errico, F.; Kyllonen, J.E.; Lindborg, L.; Molinos, C.; Tanner, R.; Derdau, D.; Lahaye, Th.
2005-01-01
Within its 5. Framework Programme, the EC is funding the project EVIDOS ('Evaluation of Individual Dosimetry in Mixed Neutron and Photon Radiation Fields'). The aim of this project is the optimisation of individual monitoring at workplaces of the nuclear fuel cycle with special regard to neutrons. Various dosemeters for mixed field application - passive and new electronic devices - are tested in selected workplace fields in nuclear installations in Europe. The fields are characterised using a series of spectrometers that provide the energy distribution of neutron fluence (Bonner spheres) and newly developed devices that provide the energy and directional distribution of the neutron fluence. Results from the first measurement campaign, carried out in simulated workplace fields (IRSN, Cadarache. France), and those of a second measurement campaign, carried out at workplaces at a boiling water reactor and at a storage cask with used fuel elements (Kernkraftwerk Kriimmel, Germany), are described. (authors)
International Nuclear Information System (INIS)
Arima, A.; Hyuga, H.
1979-01-01
The authors review systematically several important mechanisms which affect magnetic moments, magnetic dipole transitions and allowed beta-decays. They are first order configuration mixing, second order configuration mixing, the Sachs moment and other exchange magnetic moments, the contribution of the Sachs moment and other exchange magnetic moments with first order configuration mixing. It is shown that first order configuration mixing and the Sachs moment are important for heavy nuclei, and that all the effects except first order mixing are important for light nuclei. (Auth.)
International Nuclear Information System (INIS)
Silin, Nicolas; Juanico, Luis; Delmastro, Dario
2004-01-01
In this work a new experimental method is used to experimentally evaluate the performance of different appendages promoting the turbulent mixing between the coupled subchannels of nuclear fuel elements.The method used will be introduced in another presentation and consists in the generation and measurement of small thermal traces in the refrigerating water flow between the fuel rods.Because it is suitable for heterogeneous and compact subchannels (as Argentinean fuels) with high water flows in simple and affordable tests at atmospheric pressure, this new method is specially well suited for the design of fuel elements, while it offers advantages over other methods of mixing measurement.The experiments carried out on a small test section proved that the buttons brazed to the fuel rods (similar to the 'turbulence promoters' of the Canflex fuel) had an excellent thermohydraulic performance as compared to different mixing vane designs studied.The thermal traces method developed has shown its potential as a thermohydraulic design tool for the development of advanced nuclear fuels, that eventually incorporate mixing promoter elements. In the case of CARA, and as it includes spacer grids, it could be possible to use them to incorporate these elements without the need of brazing them to the rods (as is the case in Canflex), and therefore without penalizing its integrity [es
High Efficiency of Mixed Th-U Fuel Utilisation in Innovative Nuclear Burning Wave Reactor
International Nuclear Information System (INIS)
Fomin, Sergii; Fomin, A.; Mel’nik, Yu.; Pilipenko, V.; Shul’ga, N.
2013-01-01
The presentation provides information about nuclear fuel reproduction and the U-Pu fuel cycle; the history of the Breed and Burn concept and the traveling wave concept; the non-stationary theory of nuclear burning wave; the Nuclear Burning Wave in Fast Reactor with U-Pu Fuel; nuclear burning wave in 5m length cylindrical FR for different reactor radius R and about the Reactor Power Control by Reflector Efficiency
Eoet-Wash constraints on multiple Yukawa interactions and on a coupling to ''isospin''
International Nuclear Information System (INIS)
Stubbs, C.W.
1989-01-01
The final results of our lead-source runs are presented. Our data rule out at 2σ the possibility of accounting for all the composition-dependent results in terms of a coupling to ''isospin.'' By exploiting the fact that our hillside layout is fairly complex, we have also set limits on multiple-Yukawa scenarios. 15 refs., 3 figs
Measurement of the isospin asymmetry in B -> K-(*)mu(+)mu(-) decays
Aaij, R.; Collaboration, LHCb; Abellan Beteta, C.; Adametz, A.; Adeva, B.; Adinolfi, M.; Adrover, C.; Affolder, A.; Ajaltouni, Z.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amhis, Y.; Appleby, R. B.; Gutierrez, O. Aquines; Archilli, F.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Bachmann, S.; Back, J. J.; Balagura, V.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Bates, A.; Bauer, C.; Bauer, Th; Beddow, J.; Bediaga, I.; Belogurov, S.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Benayoun, M.; Bencivenni, G.; Benson, S.; Benton, J.; Bernet, R.; Bettler, M. -O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Bird, T.; Bizzeti, A.; Bjornstad, P. M.; Blake, T.; Blanc, F.; Blanks, C.; Blouw, J.; Blusk, S.; Bobrov, A.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borgia, A.; Bowcock, T. J. V.; Bozzi, C.; Brambach, T.; van den Brand, J.; Bressieux, J.; Brett, D.; Britsch, M.; Britton, T.; Brook, N. H.; Brown, H.; Buechler-Germann, A.; Burducea, I.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Callot, O.; Calvi, M.; Calvo Gomez, M.; Camboni, A.; Campana, P.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cattaneo, M.; Cauet, Ch; Charles, M.; Charpentier, Ph; Chen, P.; Chiapolini, N.; Chrzaszcz, M.; Ciba, K.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coca, C.; Coco, V.; Cogan, J.; Cogneras, E.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Corti, G.; Couturier, B.; Cowan, G. A.; Craik, D.; Currie, R.; D'Ambrosio, C.; David, P.; David, P. N. Y.; De Bonis, I.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Simone, P.; Decamp, D.; Deckenhoff, M.; Degaudenzi, H.; Del Buono, L.; Deplano, C.; Derkach, D.; Deschamps, O.; Dettori, F.; Dickens, J.; Diniz Batista, P.; Domingo Bonal, F.; Donleavy, S.; Dordei, F.; Dosil Suarez, A.; Dossett, D.; Dovbnya, A.; Dupertuis, F.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; van Eijk, D.; Eisele, F.; Eisenhardt, S.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch; Elsby, D.; Esperante Pereira, D.; Falabella, A.; Faerber, C.; Fardell, G.; Farinelli, C.; Farry, S.; Fave, V.; Fernandez Albor, V.; Ferro-Luzzi, M.; Filippov, S.; Fitzpatrick, C.; Fontana, M.; Fontanelli, F.; Forty, R.; Francisco, O.; Frei, C.; Frosini, M.; Furcas, S.; Gallas Torreira, A.; Galli, D.; Gandelman, M.; Gandini, P.; Garnier, J-C.; Garofoli, J.; Tico, J. Garra; Garrido, L.; Gascon, D.; Gaspar, C.; Gauld, R.; Gauvin, N.; Gersabeck, M.; Gershon, T.; Ghez, Ph; Gibson, V.; Gligorov, V. V.; Goebel, C.; Golubkov, D.; Golutvin, A.; Gordon, H.; Grabalosa Gandara, M.; Graciani Diaz, R.; Cardoso, L. A. Granado; Grauges, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Gruenberg, O.; Gui, B.; Gushchin, E.; Guz, Yu; Gys, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hampson, T.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; Harrison, P. F.; Hartmann, T.; He, J.; Heijne, V.; Hennessy, K.; Henrard, P.; Hernando Morata, J. A.; van Herwijnen, E.; Hoballah, M.; Hopchev, P.; Hulsbergen, W.; Hunt, P.; Huse, T.; Huston, R. S.; Hutchcroft, D.; Hynds, D.; Iakovenko, V.; Ilten, P.; Imong, J.; Jacobsson, R.; Jahjah Hussein, M.; Jans, E.; Jaton, P.; Jean-Marie, B.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Jost, B.; Kaballo, M.; Kandybei, S.; Karacson, M.; Karbach, T. M.; Keaveney, J.; Kenyon, I. R.; Kerzel, U.; Ketel, T.; Keune, A.; Khanji, B.; Knecht, M.; Kochebina, O.; Komarov, I.; Koppenburg, P.; Korolev, M.; Kozlinskiy, A.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruzelecki, K.; Kucharczyk, M.; Kudryavtsev, V.; Kvaratskheliya, T.; La Thi, V. N.; Lacarrere, D.; Erty, G. La Ff; Lai, A.; Lambert, D.; Lambert, R. W.; Lanciotti, E.; Lanfranchi, G.; Langenbruch, C.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J. -P.; Lefevre, R.; Le At, A.; Lefrancois, J.; Leroy, O.; Lesiak, T.; Gioi, L. Li; Lieng, M.; Liles, M.; Lindner, R.; Linn, C.; von Loeben, J.; Lopes, J. H.; Lopez Asamar, E.; Lopez-March, N.; Lu, H.; Luisier, J.; Mac Raighne, A.; Machefert, F.; Machikhiliyan, I. V.; Maciuc, F.; Maev, O.; Magnin, J.; Malde, S.; Mamunur, R. M. D.; Manca, G.; Mancinelli, G.; Mangiafave, N.; Marconi, U.; Maerki, R.; Marks, J.; Martellotti, G.; Sanchez, A. Martin; Martinelli, M.; Santos, D. Martinez; Massafferri, A.; Mathe, Z.; Matteuzzi, C.; Matveev, M.; Maurice, E.; Maynard, B.; Mazurov, A.; McCarthy, J.; McGregor, G.; McNulty, R.; Merk, M.; Merkel, J.; Milanes, D. A.; Minard, M. -N.; Molina Rodriguez, J.; Monteil, S.; Moran, D.; Morawski, P.; Mountain, R.; Mous, I.; Muheim, F.; Mueller, K.; Muresan, R.; Muryn, B.; Muster, B.; Mylroie-Smith, J.; Naik, P.; Nakada, T.; Nandakumar, R.; Nasteva, I.; Needham, M.; Neufeld, N.; Nguyen, A. D.; Nguyen-Mau, C.; Nicol, M.; Niess, V.; Nikitin, N.; Nikodem, T.; Nomerotski, A.; Novoselov, A.; Oblakowska-Mucha, A.; Obraztsov, V.; Oggero, S.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Orlandea, M.; Otalora Goicochea, J. M.; Owen, P.; Pal, B. K.; Palacios, J.; Palano, A.; Palutan, M.; Papanestis, A.; Pappagallo, M.; Parkes, C.; Parkinson, C. J.; Passaleva, G.; Patel, G. D.; Patrick, G. N.; Patrignani, C.; Pavel-Nicorescu, C.; Pazos Alvarez, A.; Pellegrino, A.; Penso, G.; Altarelli, M. Pepe; Perazzini, S.; Perego, D. L.; Perez Trigo, E.; Perez-Calero Yzquierdo, A.; Perret, P.; Perrin-Terrin, M.; Pessina, G.; Petrolini, A.; Phan, A.; Olloqui, E. Picatoste; Valls, B. Pie; Pietrzyk, B.; Pilar, T.; Pinci, D.; Plackett, R.; Playfer, S.; Plo Casasus, M.; Polci, F.; Polok, G.; Poluektov, A.; Polycarpo, E.; Popov, D.; Popovici, B.; Potterat, C.; Powell, A.; Prisciandaro, J.; Pugatch, V.; Puig Navarro, A.; Qian, W.; Rademacker, J. H.; Rakotomiaramanana, B.; Rangel, M. S.; Raniuk, I.; Raven, G.; Redford, S.; Reid, M. M.; dos Reis, A. C.; Ricciardi, S.; Richards, A.; Rinnert, K.; Roa Romero, D. A.; Rodrigues, E.; Rodrigues, F.; Rodriguez Perez, P.; Rogers, G. J.; Roiser, S.; Romanovsky, V.; Rosello, M.; Rouvinet, J.; Ruf, T.; Ruiz, H.; Sabatino, G.; Saborido Silva, J. J.; Sagidova, N.; Sail, P.; Saitta, B.; Salzmann, C.; Sanmartin Sedes, B.; Sannino, M.; Santacesaria, R.; Santamarina Rios, C.; Santinelli, R.; Santovetti, E.; Sapunov, M.; Sarti, A.; Satriano, C.; Satta, A.; Savrie, M.; Savrina, D.; Schaack, P.; Schindler, H.; Schleich, S.; Schlupp, M.; Schmelling, M.; Schmidt, B.; Schneider, O.; Schopper, A.; Schune, M. -H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Seco, M.; Semennikov, A.; Senderowska, K.; Sepp, I.; Serra, N.; Serrano, J.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shatalov, P.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, O.; Shevchenko, V.; Shires, A.; Coutinho, R. Silva; Skwarnicki, T.; Smith, N. A.; Sobczak, K.; Soler, F. J. P.; Solomin, A.; Soomro, F.; Souza, D.; Souza De Paula, B.; Spaan, B.; Sparkes, A.; Spradlin, P.; Stagni, F.; Stahl, S.; Steinkamp, O.; Stone, S.; Storaci, B.; Straticiuc, M.; Straumann, U.; Subbiah, V. K.; Swientek, S.; Szczekowski, M.; Szczypka, P.; Szumlak, T.; T'Jampens, S.; Teklishyn, M.; Teodorescu, E.; Teubert, F.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Tolk, S.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Tsaregorodtsev, A.; Tuning, N.; Garcia, M. Ubeda; Ukleja, A.; Uwer, U.; Vagnoni, V.; Valenti, G.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vecchi, S.; Velthuis, J. J.; Veltri, M.; Vesterinen, M.; Viaud, B.; Videau, I.; Vieira, D.; Vilasis-Cardona, X.; Visniakov, J.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voss, C.; Voss, H.; Waldi, R.; Wallace, R.; Wandernoth, S.; Ward, D. R.; Watson, N. K.; Webber, A. D.; Websdale, D.; Whitehead, M.; Wicht, J.; Wiedner, D.; Wilkinson, G.; Wilson, F. F.; Wishahi, J.; Witek, M.; Witzeling, W.; Wotton, S. A.; Wright, S.; Wyllie, K.; Xie, Y.; Xing, F.; Xing, Z.; Yang, Z.; Young, R.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhelezov, A.; Zhong, L.; Zvyagin, A.
The isospin asymmetries of B -> K-(*)mu(+)mu(-) decays and the partial branching fractions of B-0 -> K-0 mu(+)mu(-) and B+ -> K*+mu(+)mu(-) are measured as a function of the di-muon mass squared q(2) using an integrated luminosity of 1.0 fb(-1) collected with the LHCb detector. The B -> K mu(+)mu(-)
Isospin dependence of physical observables in Incomplete Fusion reactions at 25 MeV/nucleon
Energy Technology Data Exchange (ETDEWEB)
Lombardo, I., E-mail: ilombardo@lns.infn.i [Dipartimento di Fisica, Universita di Catania, Catania (Italy); INFN Laboratori Nazionali del Sud, Catania (Italy); Agodi, C.; Alba, R. [INFN Laboratori Nazionali del Sud, Catania (Italy); Amorini, F. [INFN, Sezione di Catania, Catania (Italy); Dipartimento di Fisica, Universita di Catania, Catania (Italy); Anzalone, A. [INFN Laboratori Nazionali del Sud, Catania (Italy); Berceanu, I. [Institute for Physics and Nuclear Engineering, Bucharest (Romania); Cardella, G. [INFN, Sezione di Catania, Catania (Italy); Cavallaro, S. [Dipartimento di Fisica, Universita di Catania, Catania (Italy); INFN Laboratori Nazionali del Sud, Catania (Italy); Chatterjee, M.B. [Saha Institute of Nuclear Physics, Kolkata (India); Coniglione, R. [INFN Laboratori Nazionali del Sud, Catania (Italy); DeFilippo, E. [INFN, Sezione di Catania, Catania (Italy); DiPietro, A.; Figuera, P. [INFN Laboratori Nazionali del Sud, Catania (Italy); Geraci, E.; Giuliani, G.; Grassi, L. [Dipartimento di Fisica, Universita di Catania, Catania (Italy); INFN, Sezione di Catania, Catania (Italy); Grzeszczuk, A. [Institute of Physics, University of Silesia, Katowice (Poland); LaGuidara, E. [INFN, Sezione di Catania, Catania (Italy); Centro Siciliano di Fisica Nucleare e Struttura della Materia, Catania (Italy); Lanzalone, G. [INFN Laboratori Nazionali del Sud, Catania (Italy); Libera Universita Kore, Enna (Italy); LeNeindre, N. [LPC Caen, CNRS-IN2P3, ENSICAEN, Universite de Caen, Caen (France)
2010-03-01
Isospin dependence of dynamical and thermodynamical physical quantities observed in the reactions {sup 40}Ca + {sup 40,48}Ca and {sup 40}Ca + {sup 46}Ti at 25 MeV/nucleon has been analyzed by means of the CHIMERA multi-detector.
A test of Wigner's spin-isospin symmetry from double binding energy differences
International Nuclear Information System (INIS)
Van Isacker, P.; Warner, D.D.; Brenner, D.S.
1996-01-01
The spin-isospin or SU(4) symmetry is investigated. It is shown that the N = Z enhancements of |δV np | are an unavoidable consequence of Wigner's SU(4) symmetry and that the degree of the enhancement provides a sensitive test of the quality of the symmetry itself. (K.A.)
Effect of isospin degree of freedom on the counterbalancing of collective transverse in-plane flow
International Nuclear Information System (INIS)
Sood, Aman D.
2011-01-01
Isospin degrees of freedom play an important role in heavy-ion collisions (HIC) through both nn collisions and equation of state (EOS). To access the EOS and its isospin dependence it is important to describe observables which are sensitive to isospin degree of freedom. Collective transverse in-plane flow as well as its disappearance has been found to be one such observable where it is well known that there exists a particular incident energy called as balance energy (E bal ) at which in-plane transverse flow disappears. The disappearance of flow occurs due to the counterbalancing of attractive and repulsive interactions. In literature the isospin dependence of collective flow as well as its disappearance has been explained to be a result of complex interplay between various reaction mechanisms, such as nn collisions, symmetry energy, surface properties of colliding nuclei and Coulomb repulsion. Here the aim was to understand the effect of above mentioned mechanisms on the counterbalancing of collective flow. The present study is carried out within the framework of IQMD model
International Nuclear Information System (INIS)
Kalthoff, B.
1997-01-01
The primary energy demand of Germany currently is met to more than 50 per cent by imports of crude oil, natural gas and coal, with crude oil imports representing by far the largest quota, due to minor inland resources. Nuclear power is the energy source that reduces the country's dependence on imports, so that, also thanks to the nuclear energy source, oil consumption in Germany could be cut back to half in the years from 1970 until 1995. Although nuclear fuels have to be imported, too, uranium resources are plenty, and fuel supplies in the nuclear fuel cycle are guaranteed, so that this energy source can be considered as a quasi inland energy source. (orig.) [de
Devito, R. P.; Khoa, Dao T.; Austin, Sam M.; Berg, U. E. P.; Loc, Bui Minh
2012-02-01
Background: Analysis of data involving nuclei far from stability often requires the optical potential (OP) for neutron scattering. Because neutron data are seldom available, whereas proton scattering data are more abundant, it is useful to have estimates of the difference of the neutron and proton optical potentials. This information is contained in the isospin dependence of the nucleon OP. Here we attempt to provide it for the nucleon-208Pb system.Purpose: The goal of this paper is to obtain accurate n+208Pb scattering data and use it, together with existing p+208Pb and 208Pb(p,n)208BiIAS* data, to obtain an accurate estimate of the isospin dependence of the nucleon OP at energies in the 30-60-MeV range.Method: Cross sections for n+208Pb scattering were measured at 30.4 and 40.0 MeV, with a typical relative (normalization) accuracy of 2-4% (3%). An angular range of 15∘ to 130∘ was covered using the beam-swinger time-of-flight system at Michigan State University. These data were analyzed by a consistent optical-model study of the neutron data and of elastic p+208Pb scattering at 45 and 54 MeV. These results were combined with a coupled-channel analysis of the 208Pb(p,n) reaction at 45 MeV, exciting the 0+ isobaric analog state (IAS) in 208Bi.Results: The new data and analysis give an accurate estimate of the isospin impurity of the nucleon-208Pb OP at 30.4 MeV caused by the Coulomb correction to the proton OP. The corrections to the real proton OP given by the CH89 global systematics were found to be only a few percent, whereas for the imaginary potential it was greater than 20% at the nuclear surface. On the basis of the analysis of the measured elastic n+208Pb data at 40 MeV, a Coulomb correction of similar strength and shape was also predicted for the p+208Pb OP at energies around 54 MeV.Conclusions: Accurate neutron scattering data can be used in combination with proton scattering data and (p,n) charge exchange data leading to the IAS to obtain reliable
Isospin diffusion in binary collisions of 32S+Ca,4840 and 32S+48Ti at 17.7 MeV/nucleon
Piantelli, S.; Valdré, S.; Barlini, S.; Casini, G.; Colonna, M.; Baiocco, G.; Bini, M.; Bruno, M.; Camaiani, A.; Carboni, S.; Cicerchia, M.; Cinausero, M.; D'Agostino, M.; Degerlier, M.; Fabris, D.; Gelli, N.; Gramegna, F.; Gruyer, D.; Kravchuk, V. L.; Mabiala, J.; Marchi, T.; Morelli, L.; Olmi, A.; Ottanelli, P.; Pasquali, G.; Pastore, G.
2017-09-01
The systems 32S+Ca,4840 and 32S+48Ti at 17.7 MeV/nucleon were investigated with the setup general array for fragment identification and for emitted light particles in dissipative collisions (GARFIELD) plus ring counter (RCo) at Laboratori Nazionali di Legnaro (LNL) of Istituto Nazionale di Fisica Nucleare (INFN). Fusion evaporation (FE), fusion fission (FF), and deep inelastic (DIC) events were identified, also through the comparison with the prediction of a transport model (stochastic mean field, SMF), coupled to GEMINI++ as an afterburner. This work mainly deals with the study of isospin transport phenomena in DIC events. In particular, the isospin diffusion is highlighted by comparing the average isotopic content of the quasiprojectile (QP) remnants observed when the target is the N =Z nucleus 40Ca and when it is the neutron-rich 48Ca. Also, the d /p and t /p ratios for particles forward emitted with respect to the QP were found to increase with increasing N /Z of the target.
Incompressibility of asymmetric nuclear matter
International Nuclear Information System (INIS)
Chen, Liewen; Cai, Baojun; Shen, Chun; Ko, Cheming; Xu, Jun; Li, Baoan
2010-01-01
Using an isospin- and momentum-dependent modified Gogny (MDI) interaction, the Skyrme-Hartree-Fock (SHF) approach, and a phenomenological modified Skyrme-like (MSL) model, we have studied the incompressibility K sat (δ) of isospin asymmetric nuclear matter at its saturation density. Our results show that in the expansion of K sat (δ) in powers of isospin asymmetry δ, i.e., K sat (δ) = K 0 + K sat,2 δ 2 + K sat,4 δ 4 + O(δ 6 ), the magnitude of the 4th-order K sat,4 parameter is generally small. The 2nd-order K sat,2 parameter thus essentially characterizes the isospin dependence of the incompressibility of asymmetric nuclear matter at saturation density. Furthermore, the K sat,2 can be expressed as K sat,2 = K sym – 6L – J 0 /K 0 L in terms of the slope parameter L and the curvature parameter K sym of the symmetry energy and the third-order derivative parameter J 0 of the energy of symmetric nuclear matter at saturation density, and we find the higher order J 0 contribution to K sat,2 generally cannot be neglected. Also, we have found a linear correlation between K sym and L as well as between J 0 /K 0 and K 0 . Using these correlations together with the empirical constraints on K 0 and L, the nuclear symmetry energy E sym (ρ0) at normal nuclear density, and the nucleon effective mass, we have obtained an estimated value of K sat,2 = -370 ± 120 MeV for the 2nd-order parameter in the isospin asymmetry expansion of the incompressibility of asymmetric nuclear matter at its saturation density. (author)
International Nuclear Information System (INIS)
Shoji, Kimiaki
2017-01-01
After the accident at Tokyo Electric Company's Fukushima No. 1 nuclear power plant, decommissioning projects of nuclear power plants exceeding 40 years since the start of operation began to move in full swing. And four nuclear power plants have already been under decommissioning. Several decommissioning engineering systems (ES) have been developed according to these decommissioning projects. Various problems were clarified and many findings were obtained by these efforts. On the other, advanced information technologies and products such as three-dimensional CAD, CG, 3D laser measurement, computer aided engineering (CAE) and mixed reality (MR) are progressing rapidly. By combining these technologies and products, it has become possible not only to enhance the usefulness of existing 3D CAD data but also to enable high-level digital study that combines reality and virtual models. Furthermore, it can be applied to a wide range of fields such as demolition simulation for dismantling works of nuclear facilities, which is expected to increase in future, human resource development and skill transfer. In this paper, focusing on a video see-through method capable of displaying a virtual object at a correct position of a real image accurately reflecting the positional relationship between the real image and the virtual object, we introduce items that should contribute to the feasibility and usefulness of application to decommissioning of nuclear facilities. (author)
Chiral thermodynamics of nuclear matter
Energy Technology Data Exchange (ETDEWEB)
Fiorilla, Salvatore
2012-10-23
The equation of state of nuclear matter is calculated at finite temperature in the framework of in-medium chiral perturbation theory up to three-loop order. The dependence of its thermodynamic properties on the isospin-asymmetry is investigated. The chiral quark condensate is evaluated for symmetric nuclear matter. Its behaviour as a function of density and temperature sets important nuclear physics constraints for the QCD phase diagram.
Chiral thermodynamics of nuclear matter
International Nuclear Information System (INIS)
Fiorilla, Salvatore
2012-01-01
The equation of state of nuclear matter is calculated at finite temperature in the framework of in-medium chiral perturbation theory up to three-loop order. The dependence of its thermodynamic properties on the isospin-asymmetry is investigated. The chiral quark condensate is evaluated for symmetric nuclear matter. Its behaviour as a function of density and temperature sets important nuclear physics constraints for the QCD phase diagram.
Chemical, mass spectrometric, and spectrochemical analysis of nuclear-grade mixed oxides [(U,Pu)O2
International Nuclear Information System (INIS)
Anon.
1981-01-01
Mixed oxide, a mixture of uranium and plutonium oxides, is used as a nuclear-reactor fuel in the form of pellets. The plutonium content may be up to 10 wt %, and the diluent uranium may be of any U-235 enrichment. In order to be suitable for use as a nuclear fuel, the material must meet certain criteria for combined uranium and plutonium content, effective fissile content, and impurity content. Analytical procedures used to determine if mixed oxides comply with specifications are: uranium by controlled-potential coulometry; plutonium by controlled-potential coulometry; plutonium by amperometric titration with iron (II); nitrogen by distillation spectrophotometry using Nessler reagent; carbon (total) by direct combustion-thermal-conductivity; total chlorine and fluorine by pyrohydrolysis; sulfur by distillation-spectrophotometry; moisture by the coulometric, electrolytic moisture analyzer; isotopic composition by mass spectrometry; rare earths by copper spark spectroscopy; trace impurities by carrier distillation spectroscopy; impurities by spark-source mass spectrography; total gas in reactor-grade mixed dioxide pellets; tungsten by dithiol-spectrophotometry; rare earth elements by spectroscopy; plutonium-238 isotopic abundance by alpha spectrometry; uranium and plutonium isotopic analysis by mass spectrometry; oxygen-to-metal atom ratio by gravimetry
Nuclear energy - will it have a place in Florida's future energy mix?
International Nuclear Information System (INIS)
Harvey, J.
1990-01-01
This paper discusses the aspects of nuclear power to consider in determining its place in the power production of an electric utility. The topics discussed in the paper include potentially enormous construction costs, uncertainty in the licensing process, disposal of spent nuclear fuel, public opinion, improvements in technology, licensing reforms, financial and regulatory risks, environmental benefits, and using a combination of generation technologies
Nuclear tests of lepton number and CP nonconservation
International Nuclear Information System (INIS)
Haxton, W.C.
1984-01-01
I will discuss two topics, double beta decay and time-reversal-odd nuclear moments, in which important questions of nuclear structure must be addressed. These problems are taken from a growing class of nuclear and atomic experiments in which the special properties of many-body systems are exploited to test properties of elementary particles. Nuclei can serve as filters for interactions by providing kinematic windows where only certain processes can occur and by isolating quantum numbers such as spin, isospin, and parity. In addition, the strengths of interesting interactions can be enhanced through the mixing of nearly degenerate levels in nuclei. However, the most important asset of nuclear and atomic experiments is their precision. For example, experiments searching for T-odd nuclear moments exploit techniques for measuring changes in atomic energies of 10 -22 eV. Such precision techniques will play an increasingly important role in particle physics. In the discussion of double beta decay and T-odd nuclear moments it will become clear that important nuclear structure issues must be resolved in order to fully exploit the experimental results. During this talk I will highlight this aspect. 29 references
Risk reducation of nuclear energy and its role in energy mix
International Nuclear Information System (INIS)
Tanaka, Satoru
2013-01-01
This article was newly written for useful discussion on energy policy based on the lecture at the Japan Science Council symposium 'How to amend energy policy after the Fukushima nuclear accident' held in July 2012. Basic standpoints of energy policy and positioning of nuclear power according to the 2010 energy basic program were reviewed. Nuclear power capacity was expected to increase from 49.5 GWe in 2007 to 68 GWe in 2030 to assure energy security. The accident forced energy policy to be amended starting with nuclear power zero base. The accident actualized the safety risks of nuclear power utilization, which were discussed from fragilities of three areas: (1) design basis, (2) emergency preparedness/response and (3) regulation system. Concrete measures to reduce risks of nuclear disaster were proposed. Role and responsibility of scientists was commented. Trend of energy policy based on basic philosophy selection for three scenarios in 2030 at the lecture time was confirmed and significance of nuclear power utilization was summarized from many-sided view points. (T. Tanaka)
A microscopic derivation of the dependence of the IBM3 hamiltonian on the boson number and isospin
International Nuclear Information System (INIS)
Evans, J.A.; Long, G.L.P.; Elliott, J.P.
1993-01-01
The number and isospin dependence of the hamiltonian in the isospin invariant form (IBM3) of the boson model has been deduced from a seniority mapping into a single j-shell, making use of shell-model formulae recently obtained from vector coherent state theory. Numerical results are given for a specific shell-model example and the qualitative behaviour of the different parameters in the hamiltonian is discussed. (orig.)
{gamma} decay of spin-isospin states in {sup 13}N via ({sup 3}He, t{gamma}) reaction
Energy Technology Data Exchange (ETDEWEB)
Ihara, F; Akimune, H; Daito, I; Fujimura, H; Fujiwara, M; Inomata, T; Ishibashi, K; Yoshida, H [Osaka Univ., Ibaraki (Japan). Research Center for Nuclear Physics; Fujita, Y
1998-03-01
Spin-isospin states in {sup 13}N have been studied by means of the {sup 13}C ({sup 3}He,t) reaction at and near zero degree, at E({sup 3}He)=450 MeV. Decayed {gamma}-rays from each state were measured at backward angle in coincidence with the ejectile tritons. The branching ratio of {gamma} decay for some of spin-isospin states were determined and were compared to those from previous data. (author)
Nuclear energy is not the prevailing energy in the French energetic mix
International Nuclear Information System (INIS)
Destais, G.
2011-01-01
The author first shows that the share of nuclear energy in the French electricity production is in fact of 76% (and not 80% as usually said), and that the share of this energy in the final electricity consumption was 69% in 2009. She also outlines that nuclear electricity is only 16,5% of the total final energy consumption in France in 2009, whereas oil still prevails with 42%
Size of isospin breaking in charged $K_{l4}$ decay
Nehme, A
2005-01-01
We evaluate the size of isospin breaking corrections to form factors f and g of the K/sub l4/ decay process K/sup +/ to pi /sup +/ pi /sup -/l/sup +/vl which is actually measured by the extended NA48 setup at CERN. We found that, keeping apart the effect of Coulomb interaction, isospin breaking does not affect the moduli. This is due to the cancellation between corrections of electromagnetic origin and those generated by the difference between up and down quark masses. On the other hand, electromagnetism affects considerably the phases if the infrared divergence is dropped out using a minimal subtraction scheme. Consequently, the greatest care must be taken in the extraction of pi pi phase shifts from experiment.
Differential branching fractions and isospin asymmetries of $B \\to K^{(*)}\\mu^+\\mu^+$ decays
Aaij, Roel; Adinolfi, Marco; Affolder, Anthony; Ajaltouni, Ziad; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Anderson, Jonathan; Andreassen, Rolf; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Aquines Gutierrez, Osvaldo; Archilli, Flavio; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Bachmann, Sebastian; Back, John; Badalov, Alexey; Balagura, Vladislav; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Batozskaya, Varvara; Bauer, Thomas; Bay, Aurelio; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Belogurov, Sergey; Belous, Konstantin; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bien, Alexander; Bifani, Simone; Bird, Thomas; Bizzeti, Andrea; Bjørnstad, Pål Marius; Blake, Thomas; Blanc, Frédéric; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borghi, Silvia; Borgia, Alessandra; Borsato, Martino; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Brambach, Tobias; van den Brand, Johannes; Bressieux, Joël; Brett, David; Britsch, Markward; Britton, Thomas; Brook, Nicholas; Brown, Henry; Bursche, Albert; Busetto, Giovanni; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Callot, Olivier; Calvi, Marta; Calvo Gomez, Miriam; Camboni, Alessandro; Campana, Pierluigi; Campora Perez, Daniel; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carranza-Mejia, Hector; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Cheung, Shu-Faye; Chiapolini, Nicola; Chrzaszcz, Marcin; Ciba, Krzystof; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coca, Cornelia; Coco, Victor; Cogan, Julien; Cogneras, Eric; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombes, Matthew; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Counts, Ian; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Dalseno, Jeremy; David, Pascal; David, Pieter; Davis, Adam; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Silva, Weeraddana; De Simone, Patrizia; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Déléage, Nicolas; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Di Canto, Angelo; Dijkstra, Hans; Donleavy, Stephanie; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Dossett, David; Dovbnya, Anatoliy; Dupertuis, Frederic; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; El Rifai, Ibrahim; Elsasser, Christian; Esen, Sevda; Evans, Timothy; Falabella, Antonio; Färber, Christian; Farinelli, Chiara; Farry, Stephen; Ferguson, Dianne; Fernandez Albor, Victor; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fontana, Marianna; Fontanelli, Flavio; Forty, Roger; Francisco, Oscar; Frank, Markus; Frei, Christoph; Frosini, Maddalena; Fu, Jinlin; Furfaro, Emiliano; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; Garofoli, Justin; Garra Tico, Jordi; Garrido, Lluis; Gaspar, Clara; Gauld, Rhorry; Gavardi, Laura; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianelle, Alessio; Giani', Sebastiana; Gibson, Valerie; Giubega, Lavinia-Helena; Gligorov, Vladimir; Göbel, Carla; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gordon, Hamish; Gotti, Claudio; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graziani, Giacomo; Grecu, Alexandru; Greening, Edward; Gregson, Sam; Griffith, Peter; Grillo, Lucia; Grünberg, Oliver; Gui, Bin; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hall, Samuel; Hamilton, Brian; Hampson, Thomas; Han, Xiaoxue; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; Hartmann, Thomas; He, Jibo; Head, Timothy; Heijne, Veerle; Hennessy, Karol; Henrard, Pierre; Henry, Louis; Hernando Morata, Jose Angel; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hoballah, Mostafa; Hombach, Christoph; Hulsbergen, Wouter; Hunt, Philip; Hussain, Nazim; Hutchcroft, David; Hynds, Daniel; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jaeger, Andreas; Jalocha, Pawel; Jans, Eddy; Jaton, Pierre; Jawahery, Abolhassan; Jezabek, Marek; Jing, Fanfan; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kaballo, Michael; Kandybei, Sergii; Kanso, Walaa; Karacson, Matthias; Karbach, Moritz; Kelsey, Matthew; Kenyon, Ian; Ketel, Tjeerd; Khanji, Basem; Khurewathanakul, Chitsanu; Klaver, Suzanne; Kochebina, Olga; Kolpin, Michael; Komarov, Ilya; Koopman, Rose; Koppenburg, Patrick; Korolev, Mikhail; Kozlinskiy, Alexandr; Kravchuk, Leonid; Kreplin, Katharina; Kreps, Michal; Krocker, Georg; Krokovny, Pavel; Kruse, Florian; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kurek, Krzysztof; Kvaratskheliya, Tengiz; La Thi, Viet Nga; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lambert, Dean; Lambert, Robert W; Lanciotti, Elisa; Lanfranchi, Gaia; Langenbruch, Christoph; Langhans, Benedikt; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; van Leerdam, Jeroen; Lees, Jean-Pierre; Lefèvre, Regis; Leflat, Alexander; Lefrançois, Jacques; Leo, Sabato; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Yiming; Liles, Myfanwy; Lindner, Rolf; Linn, Christian; Lionetto, Federica; Liu, Bo; Liu, Guoming; Lohn, Stefan; Longstaff, Iain; Lopes, Jose; Lopez-March, Neus; Lowdon, Peter; Lu, Haiting; Lucchesi, Donatella; Luo, Haofei; Lupato, Anna; Luppi, Eleonora; Lupton, Oliver; Machefert, Frederic; Machikhiliyan, Irina V; Maciuc, Florin; Maev, Oleg; Malde, Sneha; Manca, Giulia; Mancinelli, Giampiero; Manzali, Matteo; Maratas, Jan; Marchand, Jean François; Marconi, Umberto; Marin Benito, Carla; Marino, Pietro; Märki, Raphael; Marks, Jörg; Martellotti, Giuseppe; Martens, Aurelien; Martín Sánchez, Alexandra; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Martins Tostes, Danielle; Massafferri, André; Matev, Rosen; Mathe, Zoltan; Matteuzzi, Clara; Mazurov, Alexander; McCann, Michael; McCarthy, James; McNab, Andrew; McNulty, Ronan; McSkelly, Ben; Meadows, Brian; Meier, Frank; Meissner, Marco; Merk, Marcel; Milanes, Diego Alejandro; Minard, Marie-Noelle; Molina Rodriguez, Josue; Monteil, Stephane; Moran, Dermot; Morandin, Mauro; Morawski, Piotr; Mordà, Alessandro; Morello, Michael Joseph; Moron, Jakub; Mountain, Raymond; Muheim, Franz; Müller, Katharina; Muresan, Raluca; Muster, Bastien; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Neuner, Max; Nguyen, Anh Duc; Nguyen, Thi-Dung; Nguyen-Mau, Chung; Nicol, Michelle; Niess, Valentin; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Novoselov, Alexey; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Oggero, Serena; Ogilvy, Stephen; Okhrimenko, Oleksandr; Oldeman, Rudolf; Onderwater, Gerco; Orlandea, Marius; Otalora Goicochea, Juan Martin; Owen, Patrick; Oyanguren, Maria Arantza; Pal, Bilas Kanti; Palano, Antimo; Palombo, Fernando; Palutan, Matteo; Panman, Jacob; Papanestis, Antonios; Pappagallo, Marco; Parkes, Christopher; Parkinson, Christopher John; Passaleva, Giovanni; Patel, Girish; Patel, Mitesh; Patrignani, Claudia; Pazos Alvarez, Antonio; Pearce, Alex; Pellegrino, Antonio; Pepe Altarelli, Monica; Perazzini, Stefano; Perez Trigo, Eliseo; Perret, Pascal; Perrin-Terrin, Mathieu; Pescatore, Luca; Pesen, Erhan; Petridis, Konstantin; Petrolini, Alessandro; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pilař, Tomas; Pinci, Davide; Pistone, Alessandro; Playfer, Stephen; Plo Casasus, Maximo; Polci, Francesco; Poluektov, Anton; Polycarpo, Erica; Popov, Alexander; Popov, Dmitry; Popovici, Bogdan; Potterat, Cédric; Powell, Andrew; Prisciandaro, Jessica; Pritchard, Adrian; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Punzi, Giovanni; Qian, Wenbin; Rachwal, Bartolomiej; Rademacker, Jonas; Rakotomiaramanana, Barinjaka; Rama, Matteo; Rangel, Murilo; Raniuk, Iurii; Rauschmayr, Nathalie; Raven, Gerhard; Reichert, Stefanie; Reid, Matthew; dos Reis, Alberto; Ricciardi, Stefania; Richards, Alexander; Rinnert, Kurt; Rives Molina, Vincente; Roa Romero, Diego; Robbe, Patrick; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Perez, Pablo; Roiser, Stefan; Romanovsky, Vladimir; Romero Vidal, Antonio; Rotondo, Marcello; Rouvinet, Julien; Ruf, Thomas; Ruffini, Fabrizio; Ruiz, Hugo; Ruiz Valls, Pablo; Sabatino, Giovanni; Saborido Silva, Juan Jose; Sagidova, Naylya; Sail, Paul; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanchez Mayordomo, Carlos; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santovetti, Emanuele; Sapunov, Matvey; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Savrie, Mauro; Savrina, Darya; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Seco, Marcos; Semennikov, Alexander; Senderowska, Katarzyna; Sepp, Indrek; Serra, Nicola; Serrano, Justine; Sestini, Lorenzo; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Vladimir; Shires, Alexander; Silva Coutinho, Rafael; Simi, Gabriele; Sirendi, Marek; Skidmore, Nicola; Skwarnicki, Tomasz; Smith, Anthony; Smith, Edmund; Smith, Eluned; Smith, Jackson; Smith, Mark; Snoek, Hella; Sokoloff, Michael; Soler, Paul; Soomro, Fatima; Souza, Daniel; Souza De Paula, Bruno; Spaan, Bernhard; Sparkes, Ailsa; Spinella, Franco; Spradlin, Patrick; Stagni, Federico; Stahl, Sascha; Steinkamp, Olaf; Stenyakin, Oleg; Stevenson, Scott; Stoica, Sabin; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Straticiuc, Mihai; Straumann, Ulrich; Stroili, Roberto; Subbiah, Vijay Kartik; Sun, Liang; Sutcliffe, William; Swientek, Krzysztof; Swientek, Stefan; Syropoulos, Vasileios; Szczekowski, Marek; Szczypka, Paul; Szilard, Daniela; Szumlak, Tomasz; T'Jampens, Stephane; Teklishyn, Maksym; Tellarini, Giulia; Teodorescu, Eliza; Teubert, Frederic; Thomas, Christopher; Thomas, Eric; van Tilburg, Jeroen; Tisserand, Vincent; Tobin, Mark; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Topp-Joergensen, Stig; Torr, Nicholas; Tournefier, Edwige; Tourneur, Stephane; Tran, Minh Tâm; Tresch, Marco; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tuning, Niels; Ubeda Garcia, Mario; Ukleja, Artur; Ustyuzhanin, Andrey; Uwer, Ulrich; Vagnoni, Vincenzo; Valenti, Giovanni; Vallier, Alexis; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vázquez Sierra, Carlos; Vecchi, Stefania; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Vesterinen, Mika; Viaud, Benoit; Vieira, Daniel; Vieites Diaz, Maria; Vilasis-Cardona, Xavier; Vollhardt, Achim; Volyanskyy, Dmytro; Voong, David; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; Voss, Helge; de Vries, Jacco; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Walsh, John; Wandernoth, Sebastian; Wang, Jianchun; Ward, David; Watson, Nigel; Webber, Adam Dane; Websdale, David; Whitehead, Mark; Wicht, Jean; Wiedner, Dirk; Wilkinson, Guy; Williams, Matthew; Williams, Mike; Wilson, Fergus; Wimberley, Jack; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wright, Simon; Wu, Suzhi; Wyllie, Kenneth; Xie, Yuehong; Xing, Zhou; Xu, Zhirui; Yang, Zhenwei; Yuan, Xuhao; Yushchenko, Oleg; Zangoli, Maria; Zavertyaev, Mikhail; Zhang, Feng; Zhang, Liming; Zhang, Wen Chao; Zhang, Yanxi; Zhelezov, Alexey; Zhokhov, Anatoly; Zhong, Liang; Zvyagin, Alexander
2014-01-01
The isospin asymmetries of $B \\to K\\mu^+\\mu^-$ and $B \\to K^{*}\\mu^+\\mu^-$ decays and the partial branching fractions of the $B^0 \\to K^0\\mu^+\\mu^-$, $B^+ \\to K^+\\mu^+\\mu^-$ and $B^+ \\to K^{*+}\\mu^+\\mu^-$ decays are measured as functions of the dimuon mass squared, $q^2$. The data used correspond to an integrated luminosity of 3 fb$^{-1}$ from proton-proton collisions collected with the LHCb detector at centre-of-mass energies of 7 TeV and 8 TeV in 2011 and 2012, respectively. The isospin asymmetries are both consistent with the Standard Model expectations. The three measured branching fractions, while individually consistent, all favour lower values than their respective Standard Model predictions.
Equation of state for isospin asymmetric matter of nucleons and deltas
International Nuclear Information System (INIS)
Lu Xiaohua; Zhang Yingxun; Li Zhuxia; Zhao Zhixiang
2008-01-01
An investigation on the equation of state of the isospin asymmetric, hot, dense matter of nucleons and deltas is performed based on the relativistic mean field theory. The QHD-II-type effective Lagrangian extending to the delta degree of freedom is adopted. Our results show that the equation of state is softened due to the inclusion of the delta degree of freedom. The baryon resonance isomer may occur depending on the delta-meson coupling. The results show that the densities for appearing the baryon resonance isomer, the densities for starting softening the equation of state and the extent of the softening depend not only on the temperature, the coupling strengths but also the isospin asymmetry of the baryon matter. (authors)
Spin-isospin excitation of 3He with three-proton final state
Ishikawa, Souichi
2018-01-01
Spin-isospin excitation of the {}^3He nucleus by a proton-induced charge exchange reaction, {}^3He(p,n)ppp, at forward neutron scattering angle is studied in a plane wave impulse approximation (PWIA). In PWIA, cross sections of the reaction are written in terms of proton-neutron scattering amplitudes and response functions of the transition from {}3He to the three-proton state by spin-isospin transition operators. The response functions are calculated with realistic nucleon-nucleon potential models using a Faddeev three-body method. Calculated cross sections agree with available experimental data in substance. Possible effects arising from the uncertainty of proton-neutron amplitudes and three-nucleon interactions in the three-proton system are examined.
On isospin dependence of low energy N-bar N interaction
International Nuclear Information System (INIS)
Kudryavtsev, A.E.; Druzjinin, B.L.
1996-01-01
The amplitude analysis of the N-bar N scattering data at very low energies in zero-effective-range approximation to get a model-independent solution for N-bar N scattering lengths of definite isospin is performed. As input the recent experimental data on the p-bar p annihilation cross section below 100 MeV/c as well as the (p-bar p) atomic data are used. The analysis gives a possibility to get limitations on the N-bar N scattering lengths of definite isospin, but it is impossible to get the unique solution of the problem. Measurement of the charge-exchange cross section p-bar p → n-bar n at 120 MeV/c would be useful tool for getting the unambiguous solution of the problem. 18 refs., 6 figs., 3 tabs
Isospin effects in the disappearance of flow as a function of colliding geometry
International Nuclear Information System (INIS)
Gautam, Sakshi; Puri, Rajeev K.; Sood, Aman D.; Aichelin, J.
2011-01-01
We study the effect of isospin degree of freedom on the balance energy (E bal ) as well as its mass dependence throughout the mass range 48-270 for two sets of isobaric systems with N/Z=1 and 1.4 at different colliding geometries ranging from central to peripheral ones. Our findings reveal the dominance of Coulomb repulsion in isospin effects on E bal as well as its mass dependence throughout the range of the colliding geometry. Our results also indicate that the effect of symmetry energy and nucleon-nucleon cross section on E bal is uniform throughout the mass range and throughout the colliding geometry. We also present the counterbalancing of nucleon-nucleon collisions and mean field by reducing the Coulomb and the counterbalancing of Coulomb and mean field by removing the nucleon-nucleon collisions.
Extra-mixing in red giant stars: Challenges for nuclear physics
Energy Technology Data Exchange (ETDEWEB)
Palmerini, Sara; Maiorca, Enrico, E-mail: sara.pamerini@fisica.unipg.i [I.N.F.N. sezione di Perugia Dipartimento di Fisica Universita degli Studi di Perugia, via Pascoli, 06123, Perugia (Italy)
2010-01-01
The existence of extra-mixing phenomena has been often invoked as a possible solution for the Li-abundance puzzle in low-mass red giant stars. In particular, [1] have shown that extra-mixing phenomena induced by stellar magnetic fields can justify the surface Li enrichment as well as its depletion in low mass giants. In the framework of this model, we test here how sensitive is the Li production to the reaction rate for the {sup 7}Be electron capture, in order to establish whether the presence of intense magnetic fields can alter the Li yield.
Isospin transport in 84Kr+112,124Sn reactions at Fermi energies
Directory of Open Access Journals (Sweden)
Piantelli S.
2014-03-01
Full Text Available Isospin transport phenomena in dissipative heavy ion collisions have been investigated at Fermi energies with a beam of 84Kr at 35AMeV. A comparison of the 〈N〉/Z of light and medium products forward-emitted in the centre of mass frame when the beam impinges on two different targets, the n-poor 112Sn and the n-rich 124Sn, is presented. Data were collected by means of a three-layer telescope with very good performances in terms of mass identification (full isotopic resolution up to Z ~ 20 for ions punching through the first detector layer built by the FAZIA Collaboration and located just beyond the grazing angle for both reactions. The 〈N〉/Z of the products detected when the n-rich target is used is always higher than that associated to the n-poor one; since the detector was able to measure only fragments coming from the QuasiProjectile decay and/or neck emission, the observed behaviour can be ascribed to the isospin diffusion process, driven by the isospin gradient between QuasiProjectile and QuasiTarget. Moreover, for light fragments the 〈N〉/Z as a function of the lab velocity of the fragment is observed to increase when we move from the QuasiProjectile velocity to the centre of mass (neck zone. This effect can be interpreted as an evidence of isospin drift driven by the density gradient between the QuasiProjectile zone (at normal density and the more diluted neck zone.
Precise determination of 40Ti mass by measuring the 40Sc isospin analogue state
International Nuclear Information System (INIS)
Liu Weiping; Hellstroem, M.; Collatz, R.; Benlliure, J.; Cortina, G.D.; Farget, F.; Grawe, H.; Hu, Z.; Iwasa, N.; Pfuetzner, M.; Roeckl, E.; Chulkov, L.; Piechaczek, A.; Raabe, R.; Reusen, I.; Vancraeynest, G.; Woehr, A.
2001-01-01
The mass of 40 Ti has been determined by using the isobaric multiplet mass equation method. The experimental data of the 40 Ti β-decay were used to determine the level of the isospin analogue state of 40 Sc. The ground-state mass excess and the Q EC value for 40 Ti were determined to be -9060 +- 12 keV and 11466 +- 13 keV, respectively
Isospin violation in low-energy pion-nucleon scattering revisited
Energy Technology Data Exchange (ETDEWEB)
Hoferichter, Martin, E-mail: hoferichter@hiskp.uni-bonn.d [Helmholtz-Institut fuer Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, Universitaet Bonn, D-53115 Bonn (Germany); Kubis, Bastian [Helmholtz-Institut fuer Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, Universitaet Bonn, D-53115 Bonn (Germany); Meissner, Ulf-G. [Helmholtz-Institut fuer Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, Universitaet Bonn, D-53115 Bonn (Germany); Institut fuer Kernphysik (IKP-3), Institute for Advanced Simulation, and Juelich Center for Hadron Physics, Forschungszentrum Juelich, D-52425 Juelich (Germany)
2010-02-01
We calculate isospin breaking in pion-nucleon scattering in the threshold region in the framework of covariant baryon chiral perturbation theory. All effects due to quark mass differences as well as real and virtual photons are consistently included. As an application, we discuss the energy dependence of the triangle relation that connects elastic scattering on the proton pi{sup +}-p->pi{sup +}-p with the charge exchange reaction pi{sup -}p->pi{sup 0}n.
Isospin violation in low-energy pion-nucleon scattering revisited
International Nuclear Information System (INIS)
Hoferichter, Martin; Kubis, Bastian; Meissner, Ulf-G.
2010-01-01
We calculate isospin breaking in pion-nucleon scattering in the threshold region in the framework of covariant baryon chiral perturbation theory. All effects due to quark mass differences as well as real and virtual photons are consistently included. As an application, we discuss the energy dependence of the triangle relation that connects elastic scattering on the proton π ± p→π ± p with the charge exchange reaction π - p→π 0 n.
Massless fermions coupled to N-pseudoparticle field: isospin 3/2
International Nuclear Information System (INIS)
Viswanathan, K.S.; Yee, J.H.
1978-01-01
Adapting the spinorial formalism of Jackiw and Rebbi, we treat the problem of masslss fermions of isospin 3/2 in an N-pseudoparticle field. The Atiyah-Singer index theorem, applied to this problem, indicates the existence of 10N zero energy normalizable solutions. 3N solutions are explicitly constructed. The remaining 7N solutions are reduced to quadratures. We demonstrate the regularity and normalizability of these solutions. (author)
Determination of the G parity and isospin of psi (3095) by study of multipion decays
International Nuclear Information System (INIS)
Jean-Marie, B.; Abrams, G.S.; Boyarski, A.M.; Breidenbach, M.; Bulos, F.; Chinowsky, W.; Feldman, G.J.; Friedberg, C.E.; Fryberger, D.; Goldhaber, G.; Hanson, G.; Hartill, D.L.; Kadyk, J.A.; Larsen, R.R.; Litke, A.M.; Luke, D.; Lulu, B.A.; Luth, V.; Lynch, H.L.; Morehouse, C.C.; Paterson, J.M.; Perl, M.L.; Pierre, F.M.; Pun, T.P.; Rapidis, P.; Richter, B.; Sadoulet, B.; Schwitters, R.F.; Tanenbaum, W.; Trilling, G.H.; Vannucci, F.; Whitaker, J.S.; Winkelmann, F.C.; Wiss, J.E.
1976-01-01
We present here a measurement of six branching ratios of psi (3095) corresponding to the decays psi (3095) →rhoπ, 2(π + π - ), 2(π + π - )1π 0 , 3(π + π - ), 3(π + π - )1π 0 , and 4(π + π - )1π 0 . From this study, the isospin and G-parity quantum numbers are found to be I/supG/=0 -
Isospin nonconservation in nucleon-nucleon scattering by a color force
International Nuclear Information System (INIS)
Braeuer, K.; Henley, E.M.; Miller, G.A.
1986-01-01
A recently performed high accuracy measurement indicates the existence of a spin and isospin nonconserving force in neutron-proton scattering. One origin of this effect can be the influence of the up and down quark mass difference on the one gluon exchange spin-orbit force. We include this effect in a resonating group calculation, and find that its contribution is very small compared to that conventional meson-exchange forces
Calculation of the spin-isospin response functions in an extended semi-classical theory
International Nuclear Information System (INIS)
Chanfray, G.
1987-01-01
We present a semi-classical calculation of the spin isospin response-functions beyond Thomas-Fermi theory. We show that surface-peaked ℎ 2 corrections reduce the collective effects predicted by Thomas-Fermi calculations. These effects, small for a volume response, become important for surface responses probed by hadrons. This yields a considerable improvement of the agreement with the (p, p') Los Alamos data
International Nuclear Information System (INIS)
Seebregts, A.J.; Snoep, H.J.M.; Van Deurzen, J.; Lako, P.; Poley, A.D.
2010-03-01
This report presents facts and figures on new nuclear energy in the Netherlands, in the period after 2020. The information is meant to support a stakeholder discussion process on the role of new nuclear power in the transition to a sustainable energy supply for the Netherlands. The report covers a number of issues relevant to the subject. Facts and figures on the following issues are presented: Nuclear power and the power market (including impact of nuclear power on electricity market prices); Economic aspects (including costs of nuclear power and external costs and benefits, impact on end user electricity prices); The role of nuclear power with respect to security of supply; Sustainability aspects, including environmental aspects; The impact of nuclear power in three 'nuclear energy scenarios' for the Netherlands, within the context of a Northwest European energy market. The scenarios are: (1a) No new nuclear power in the Netherlands ('Base case'); (1b) After closure of the existing Borssele nuclear power plant by the end of 2033, the construction of new nuclear power plant that will operate in 2040. That plant is assumed to be designed not to have a serious core melt down accident (e.g. PBMR) (200 to 500 MWe); (2) New nuclear power shortly after closure the Borssele nuclear power plant in 2033 (1000 to 1600 MWe, 3rd Generation); (3) New nuclear power plants shortly after 2020 (2000 to 5000 MWe, 3rd Generation). Two electricity demand scenario background scenario variants have been constructed based on an average GDP growth of about 2% per year up to 2040. The first variant is based on a steadily growing electricity demand and on currently established NL and EU policies and instruments. It is expected to be largely consistent with a new and forthcoming reference projection 'Energy and Emissions 2010-2020' for the Netherlands (published by ECN and PBL in 2010). A lower demand variant is based on additional energy savings and on higher shares of renewable
International Nuclear Information System (INIS)
Panakkal, J.P.; Ghosh, J.K.; Roy, P.R.
1989-01-01
Nondestructive evaluation of nuclear fuel pellets after the welding of fuel pins plays a vital role in assuring a safe and reliable operation of reactors. Some of the important characteristics to be monitored in low plutonium enriched mixed oxide fuel pellets are plutonium enrichment, size of plutonium dioxide agglomerates, incorrect loading and geometric shape. Experiments were carried out at Bhabha Atomic Research Centre, Bombay on experimental fuel pins containing mixed oxide pellets of different geometry (solid and annular), of different plutonium enrichment (0-6 w% of plutonium dioxide) and containing PuO 2 agglomerates of size 125-2000 microns to evaluate these characteristics nondestructively. Neutron radiography of these fuel pins was carried out using a swimming pool type reactor 'APSARA'. Results of quantitative evaluation of the neutron radiographs and a simple model correlating neutron interaction probability and the optical density are presented. Gamma autoradiography of these fuel pins showed that these parameters could be evaluated with a few limitations. This paper presents the experimental details, quantitative analysis of the radiographs by microdensitometry and merits and demerits of neutron radiography and gamma autoradiography for nondestructive charcterisation of nuclear fuel pellets. (orig.)
Measurement of the isospin asymmetry in $B \\to K^{(*)}\\mu^+ \\mu^-$ decays
INSPIRE-00258707; Abellan Beteta, C; Adametz, A; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves Jr, A A; Amato, S; Amhis, Y; Anderson, J; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Bachmann, S; Back, J J; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bates, A; Bauer, C; Bauer, Th; Bay, A; Beddow, J; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Benayoun, M; Bencivenni, G; Benson, S; Benton, J; Bernet, R; Bettler, M -O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blanks, C; Blouw, J; Blusk, S; Bobrov, A; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Büchler-Germann, A; Burducea, I; Bursche, A; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casse, G; Cattaneo, M; Cauet, Ch; Charles, M; Charpentier, Ph; Chen, P; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Corti, G; Couturier, B; Cowan, G A; Craik, D; Currie, R; D'Ambrosio, C; David, P; David, P N Y; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Simone, P; Decamp, D; Deckenhoff, M; Degaudenzi, H; Del Buono, L; Deplano, C; Derkach, D; Deschamps, O; Dettori, F; Dickens, J; Dijkstra, H; Diniz Batista, P; Domingo Bonal, F; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisele, F; Eisenhardt, S; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Elsby, D; Esperante Pereira, D; Falabella, A; Färber, C; Fardell, G; Farinelli, C; Farry, S; Fave, V; Fernandez Albor, V; Ferro-Luzzi, M; Filippov, S; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furcas, S; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garnier, J-C; Garofoli, J; Garra Tico, J; Garrido, L; Gascon, D; Gaspar, C; Gauld, R; Gauvin, N; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hampson, T; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Harrison, P F; Hartmann, T; He, J; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicks, E; Hoballah, M; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Huston, R S; Hutchcroft, D; Hynds, D; Iakovenko, V; Ilten, P; Imong, J; Jacobsson, R; Jaeger, A; Jahjah Hussein, M; Jans, E; Jansen, F; Jaton, P; Jean-Marie, B; Jing, F; John, M; Johnson, D; Jones, C R; Jost, B; Kaballo, M; Kandybei, S; Karacson, M; Karbach, T M; Keaveney, J; Kenyon, I R; Kerzel, U; Ketel, T; Keune, A; Khanji, B; Kim, Y M; Knecht, M; Kochebina, O; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kruzelecki, K; Kucharczyk, M; Kudryavtsev, V; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J -P; Lefèvre, R; Leflat, A; Lefrançois, J; Leroy, O; Lesiak, T; Li, L; Li, Y; Li Gioi, L; Lieng, M; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; von Loeben, J; Lopes, J H; Lopez Asamar, E; Lopez-March, N; Lu, H; Luisier, J; Mac Raighne, A; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Magnin, J; Malde, S; Mamunur, R M D; Manca, G; Mancinelli, G; Mangiafave, N; Marconi, U; Märki, R; Marks, J; Martellotti, G; Martens, A; Martin, L; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Massafferri, A; Mathe, Z; Matteuzzi, C; Matveev, M; Maurice, E; Maynard, B; Mazurov, A; McCarthy, J; McGregor, G; McNulty, R; Meissner, M; Merk, M; Merkel, J; Milanes, D A; Minard, M -N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Mylroie-Smith, J; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neufeld, N; Nguyen, A D; Nguyen-Mau, C; Nicol, M; Niess, V; Nikitin, N; Nikodem, T; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Pal, B K; Palacios, J; Palano, A; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perego, D L; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pessina, G; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pie Valls, B; Pietrzyk, B; Pilař, T; Pinci, D; Plackett, R; Playfer, S; Plo Casasus, M; Polci, F; Polok, G; Poluektov, A; Polycarpo, E; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pugatch, V; Puig Navarro, A; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Raven, G; Redford, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Roa Romero, D A; Robbe, P; Rodrigues, E; Rodrigues, F; Rodriguez Perez, P; Rogers, G J; Roiser, S; Romanovsky, V; Rosello, M; Rouvinet, J; Ruf, T; Ruiz, H; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salzmann, C; Sanmartin Sedes, B; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santinelli, R; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schindler, H; Schleich, S; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M -H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Skwarnicki, T; Smith, N A; Smith, E; Smith, M; Sobczak, K; Soler, F J P; Solomin, A; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Swientek, S; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teklishyn, M; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tsaregorodtsev, A; Tuning, N; Ubeda Garcia, M; Ukleja, A; Uwer, U; Vagnoni, V; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; Velthuis, J J; Veltri, M; Vesterinen, M; Viaud, B; Videau, I; Vieira, D; Vilasis-Cardona, X; Visniakov, J; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; Waldi, R; Wallace, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wicht, J; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wishahi, J; Witek, M; Witzeling, W; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, F; Xing, Z; Yang, Z; Young, R; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhong, L; Zvyagin, A
2012-01-01
The isospin asymmetries of $B \\to K^{(*)}\\mu^+\\mu^-$ decays and the partial branching fractions of $B^0 \\to K^0\\mu^+\\mu^-$ and $B^+ \\to K^{*+}\\mu^+\\mu^-$ are measured as a function of the di-muon mass squared $q^2$ using an integrated luminosity of 1.0 fb$^{-1}$ collected with the LHCb detector. The $B \\to K\\mu^+\\mu^-$ isospin asymmetry integrated over $q^2$ is negative, deviating from zero with over 4 $\\sigma$ significance. The $B \\to K^{*}\\mu^+\\mu^-$ decay measurements are consistent with the Standard Model prediction of negligible isospin asymmetry. The observation of the decay $B^0 \\to K^0_{\\rm\\scriptscriptstyle S}\\mu^+\\mu^-$ is reported with 5.7 $\\sigma$ significance. Assuming that the branching fraction of $B^0 \\to K^0\\mu^+\\mu^-$ is twice that of $B^0 \\to K^0_{\\rm\\scriptscriptstyle S}\\mu^+\\mu^-$, the branching fractions of $B^0 \\to K^0\\mu^+\\mu^-$ and $B \\to K^{*+}\\mu^+\\mu^-$ are found to be ($0.31^{+0.07}_{-0.06}) \\times 10^{-6}$ and ($1.16\\pm0.19) \\times 10^{-6}$, respectively.
Random interactions, isospin, and the ground states of odd-A and odd-odd nuclei
International Nuclear Information System (INIS)
Horoi, Mihai; Volya, Alexander; Zelevinsky, Vladimir
2002-01-01
It was recently shown that the ground state quantum numbers of even-even nuclei have a high probability to be reproduced by an ensemble of random but rotationally invariant two-body interactions. In the present work we extend these investigations to odd-A and odd-odd nuclei, considering in particular the isospin effects. Studying the realistic shell model as well as the single-j model, we show that random interactions have a tendency to assign the lowest possible total angular momentum and isospin to the ground state. In the sd shell model this reproduces correctly the isospin but not the spin quantum numbers of actual odd-odd nuclei. An odd-even staggering effect in probability of various ground state quantum numbers is present for even-even and odd-odd nuclei, while it is smeared out for odd-A nuclei. The observed regularities suggest the underlying mechanism of bosonlike pairing of fermionic pairs in T=0 and T=1 states generated by the off-diagonal matrix elements of random interactions. The relation to the models of random spin interactions is briefly discussed
Directory of Open Access Journals (Sweden)
A. A. Barinov
2016-01-01
Full Text Available Coolant flow mixing processes with different temperatures and concentrations of diluted additives widely known in nuclear power units operation. In some cases these processes make essential impact on the resource and behavior of the nuclear unit during transient and emergency situations. The aim of the study was creation of measurement system and test facility to carry out basic tests and to embed spatial conductometry method in investigation practice of turbulent coolant flows. In the course of investigation measurement system with sensors and experimental facility was designed, several first tests were carried out. A special attention was dedicated to calibration and clarification of conductometry sensor application methodologies in studies of turbulent flow characteristics. Investigations involved method of electrically contrast tracer jet with concurrent flow in closed channel of round crosssection. The measurements include both averaged and unsteady realizations of measurement signal. Experimental data processing shows good agreement with other tests acquired from another measurement systems based on different physical principles. Calibration functions were acquired, methodical basis of spatial conductometry measurement system application was created. Gathered experience of spatial sensor application made it possible to formulate the principles of further investigation that involve large-scale models of nuclear unit equipment. Spatial wire-mesh sensors proved to be a perspective type of eddy resolving measurement devices.
Design optimization of a T mixing vane in nuclear fuel assembly
International Nuclear Information System (INIS)
Jung, Sang-Ho; Moon, Mi-Ae; Kim, Kwang-Yong
2009-01-01
The purposes of present work are to analyze the convective heat transfer with three-dimensional Reynolds-averaged Navier-Stokes analysis, and to optimize shape of the mixing vane using the analysis results. PLUS7 that is designed by KNF and Westinghouse is used as reference geometry. Shear stress transport turbulence model is used as a turbulence closure. Two bend angles of mixing vane are selected as design variable. The objective function is defined as a combination of inverse of heat transfer rate and friction loss. Response surface method is employed as an optimization technique. The calculation domains of 1x2 geometry are analyzed with translational and rotational periodic boundary conditions which take flow directions into account. The fluid flow and heat transfer characteristics have been explained through velocity vectors, streamlines and Nusselt numbers. The results show that the optimized geometry improves the heat transfer performance of the mixing vane with a relatively small pressure drop increment and has higher Critical Heat Flux. (author)
International Nuclear Information System (INIS)
Chambers, Scott D.; Galeriu, Dan; Williams, Alastair G.; Melintescu, Anca; Griffiths, Alan D.; Crawford, Jagoda; Dyer, Leisa; Duma, Marin; Zorila, Bogdan
2016-01-01
A radon-based nocturnal stability classification scheme is developed for a flat inland site near Bucharest, Romania, characterised by significant local surface roughness heterogeneity, and compared with traditional meteorologically-based techniques. Eight months of hourly meteorological and atmospheric radon observations from a 60 m tower at the IFIN-HH nuclear research facility are analysed. Heterogeneous surface roughness conditions in the 1 km radius exclusion zone around the site hinder accurate characterisation of nocturnal atmospheric mixing conditions using conventional meteorological techniques, so a radon-based scheme is trialled. When the nocturnal boundary layer is very stable, the Pasquill–Gifford “radiation” scheme overestimates the atmosphere's capacity to dilute pollutants with near-surface sources (such as tritiated water vapour) by 20% compared to the radon-based scheme. Under these conditions, near-surface wind speeds drop well below 1 m s"−"1 and nocturnal mixing depths vary from ∼25 m to less than 10 m above ground level (a.g.l.). Combining nocturnal radon with daytime ceilometer data, we were able to reconstruct the full diurnal cycle of mixing depths. Average daytime mixing depths at this flat inland site range from 1200 to 1800 m a.g.l. in summer, and 500–900 m a.g.l. in winter. Using tower observations to constrain the nocturnal radon-derived effective mixing depth, we were able to estimate the seasonal range in the Bucharest regional radon flux as: 12 mBq m"−"2 s"−"1 in winter to 14 mBq m"−"2 s"−"1 in summer. - Highlights: • Site climatology accurately characterised by season and atmospheric stability class. • Comparison of "2"2"2Rn-based, Pasquill–Gifford and Richardson number stability indices. • Seasonal mixing depth estimates over the whole diurnal cycle by ceilometer and radon. • Seasonal variability in the regional radon source function well constrained.
International Nuclear Information System (INIS)
Xing Yongzhong; Liu Jianye; Fang Yutian; Guo Wenjun
2004-01-01
The degree of isospin fractionation is measured by the ratio of saturated neutron-proton: i.e. the ratio of gas phase (nucleon emission) to that of liquid phase (fragment emission) in heavy ion collisions. The authors have studied the dependence of the degree of isospin fractionation on the neutron-proton ratio in the colliding system by using isospin-dependent quantum molecular dynamical model. The calculated results show that the degree of isospin fractionation depends sensitively on the symmetry potential and weakly on the isospin effect of nucleon-nucleon cross section. In particular, the degree of isospin fractionation increases with increasing neutron-proton ratio in the colliding system for the neutron-rich system, in this process the neutron-rich gas phase and neutron-poor liquid phase are produced. The degree of isospin fractionation is very sensitive to the degree of symmetry potential. On the contrary, for the neutron-poor system the neutron-poor gas phase and neutron-rich liquid phase are produced. In this case, the degree of isospin fractionation is not sensitive to the symmetry potential. The authors also find that the role of momentum dependent interaction in the isospin fractionation process is not obvious. The authors propose that our calculated results can compared directly with the experimental data to get the information about the symmetry potential in the intermediate energy heavy-ion collisions
International Nuclear Information System (INIS)
Woosley, S.; Fowler, W.A.
1977-09-01
CRSEC is a FORTRAN IV computer code designed for the efficient calculation of average nuclear cross sections in situations where a statistical theory of nuclear reactions is applicable and where compound nuclear formation is the dominant reaction mechanism. This code generates cross sections of roughly factor of 2 accuracy for incident particle energies in the range of 10 keV to 10 MeV for most target nuclei from magnesium to bismuth. Exceptions usually involve reactions that enter the compound nucleus at such a low energy that fewer than 10 levels are present in the ''energy window of interest.'' The incident particle must be a neutron, proton, or alpha particle, and only binary reactions resulting in the emission of a single n, p, α, or γ (cascade) are calculated. CRSEC is quite fast, a complete calculation of 12 different reactions over a grid of roughly 150 energy points and the generation of Maxwellian averaged rates taking about 30 seconds of CDC7600 time. Also the semi-empirical parameterization of nuclear properties contained in CRSEC is very general. Greater accuracy may be obtained, however, by furnishing specific low-lying excited states, level density parameterization, and nuclear strength functions. A more general version of CRSEC, called CRSECI, is available that conserves isospin properly in all reactions and allows the user to specify a given degree of isospin mixing in the highly excited states of the compound nucleus. Besides the cross section as a function of center-of-mass energy, CRSEC also generates the Maxwell--Boltzmann averaged thermonuclear reaction rate and temperature dependent nuclear partition function for a grid of temperatures from 10 8 to 10 10 0 K. Sections of this report describe in greater detail the physics employed in CRSEC and how to use the code. 2 tables
International conference on spin observables of nuclear probes: Summary talk
International Nuclear Information System (INIS)
Garvey, G.T.
1988-01-01
A selected summary of the presentation and discussions at the 4th Telluride Conference is presented. The summary deals mainly with the effects of nuclear spin and isospin on the interaction between nucleons and their consequences in nuclear structure. 11 figs
International Nuclear Information System (INIS)
Kropaczek, David J.
2008-01-01
A new concept for performing nuclear fuel optimization over a multi-cycle planning horizon is presented. The method provides for an implicit coupling between traditionally separate in-core and out-of-core fuel management decisions including determination of: fresh fuel batch size, enrichment and bundle design; exposed fuel reuse; and core loading pattern. The algorithm uses simulated annealing optimization, modified with a technique called mixing of states that allows for deployment in a scalable parallel environment. Analysis of algorithm performance for a transition cycle design (i.e. a PWR 6 month cycle length extension) demonstrates the feasibility of the approach as a production tool for fuel procurement and multi-cycle core design. (authors)
International Nuclear Information System (INIS)
Binh, Do Quang; Huy, Ngo Quang; Hai, Nguyen Hoang
2014-01-01
This paper presents a new approach based on a binary mixed integer coded genetic algorithm in conjunction with the weighted sum method for multi-objective optimization of fuel loading patterns for nuclear research reactors. The proposed genetic algorithm works with two types of chromosomes: binary and integer chromosomes, and consists of two types of genetic operators: one working on binary chromosomes and the other working on integer chromosomes. The algorithm automatically searches for the most suitable weighting factors of the weighting function and the optimal fuel loading patterns in the search process. Illustrative calculations are implemented for a research reactor type TRIGA MARK II loaded with the Russian VVR-M2 fuels. Results show that the proposed genetic algorithm can successfully search for both the best weighting factors and a set of approximate optimal loading patterns that maximize the effective multiplication factor and minimize the power peaking factor while satisfying operational and safety constraints for the research reactor.
Energy Technology Data Exchange (ETDEWEB)
Binh, Do Quang [University of Technical Education Ho Chi Minh City (Viet Nam); Huy, Ngo Quang [University of Industry Ho Chi Minh City (Viet Nam); Hai, Nguyen Hoang [Centre for Research and Development of Radiation Technology, Ho Chi Minh City (Viet Nam)
2014-12-15
This paper presents a new approach based on a binary mixed integer coded genetic algorithm in conjunction with the weighted sum method for multi-objective optimization of fuel loading patterns for nuclear research reactors. The proposed genetic algorithm works with two types of chromosomes: binary and integer chromosomes, and consists of two types of genetic operators: one working on binary chromosomes and the other working on integer chromosomes. The algorithm automatically searches for the most suitable weighting factors of the weighting function and the optimal fuel loading patterns in the search process. Illustrative calculations are implemented for a research reactor type TRIGA MARK II loaded with the Russian VVR-M2 fuels. Results show that the proposed genetic algorithm can successfully search for both the best weighting factors and a set of approximate optimal loading patterns that maximize the effective multiplication factor and minimize the power peaking factor while satisfying operational and safety constraints for the research reactor.
International Nuclear Information System (INIS)
Luszik-Bhadra, M.; Bartlett, D.; Bolognese-Milsztajn, T.; Boschung, M.; Coeck, M.; Curzio, G.; D'Errico, F.; Fiechtner, A.; Lacoste, V.; Lindborg, L.; Reginatto, M.; Schuhmacher, H.; Tanner, R.; Vanhavere, F.
2007-01-01
Within the EC project EVIDOS, 17 different mixed neutron-photon workplace fields at nuclear facilities (boiling water reactor, pressurised water reactor, research reactor, fuel processing, storage of spent fuel) were characterised using conventional Bonner sphere spectrometry and newly developed direction spectrometers. The results of the analysis, using Bayesian parameter estimation methods and different unfolding codes, some of them especially adapted to simultaneously unfold energy and direction distributions of the neutron fluence, showed that neutron spectra differed strongly at the different places, both in energy and direction distribution. The implication of the results for the determination of reference values for radiation protection quantities (ambient dose equivalent, personal dose equivalent and effective dose) and the related uncertainties are discussed. (authors)
Schmit, P F; Knapp, P F; Hansen, S B; Gomez, M R; Hahn, K D; Sinars, D B; Peterson, K J; Slutz, S A; Sefkow, A B; Awe, T J; Harding, E; Jennings, C A; Chandler, G A; Cooper, G W; Cuneo, M E; Geissel, M; Harvey-Thompson, A J; Herrmann, M C; Hess, M H; Johns, O; Lamppa, D C; Martin, M R; McBride, R D; Porter, J L; Robertson, G K; Rochau, G A; Rovang, D C; Ruiz, C L; Savage, M E; Smith, I C; Stygar, W A; Vesey, R A
2014-10-10
Magnetizing the fuel in inertial confinement fusion relaxes ignition requirements by reducing thermal conductivity and changing the physics of burn product confinement. Diagnosing the level of fuel magnetization during burn is critical to understanding target performance in magneto-inertial fusion (MIF) implosions. In pure deuterium fusion plasma, 1.01 MeV tritons are emitted during deuterium-deuterium fusion and can undergo secondary deuterium-tritium reactions before exiting the fuel. Increasing the fuel magnetization elongates the path lengths through the fuel of some of the tritons, enhancing their probability of reaction. Based on this feature, a method to diagnose fuel magnetization using the ratio of overall deuterium-tritium to deuterium-deuterium neutron yields is developed. Analysis of anisotropies in the secondary neutron energy spectra further constrain the measurement. Secondary reactions also are shown to provide an upper bound for the volumetric fuel-pusher mix in MIF. The analysis is applied to recent MIF experiments [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)] on the Z Pulsed Power Facility, indicating that significant magnetic confinement of charged burn products was achieved and suggesting a relatively low-mix environment. Both of these are essential features of future ignition-scale MIF designs.
Integrated conception of hardware/software mixed systems used in nuclear instrumentation
International Nuclear Information System (INIS)
Dias, Ailton F.; Sorel, Yves; Akil, Mohamed
2002-01-01
Hardware/software codesign carries out the design of systems composed by a hardware portion, with specific components, and a software portion, with microprocessor based architecture. This paper describes the Algorithm Architecture Adequation (AAA) design methodology - originally oriented to programmable multicomponent architectures, its extension to reconfigurable circuits and its application to design and development of nuclear instrumentation systems composed by programmable and configurable circuits. AAA methodology uses an unified model to describe algorithm, architecture and implementation, based on graph theory. The great advantage of AAA methodology is the utilization of a same model from the specification to the implementation of hardware/software systems, reducing the complexity and design time. (author)
International Nuclear Information System (INIS)
Omokanye, Qanitalillahi; Biggs, Simon
2007-01-01
In order to gain good control over a particulate dispersion it is necessary to accurately characterise the strength of inter-particle forces that may be operating. Such control is not routinely used, as yet, in the nuclear industry despite the possible benefits. We are investigating the impact of mixed electrolyte systems, for example NaCl and Na 2 SO 4 , on the stability of oxide simulant particle dispersions. The electro-acoustic zeta potentials and shear yield stresses for concentrated dispersions have been measured across a range of pH conditions and electrolyte concentrations (0.001 M - 1.0 M). This paper summarizes initial data from these studies showing how the shear yield stress of concentrated aqueous oxide particle dispersions, can be adjusted through regulation of pH and the addition of background electrolytes (salt). The yield stress as a function of pH for these dispersions in mixed electrolytes showed a direct correlation with corresponding measurements of the zeta potential. Changes in the background electrolyte concentration or type were seen to cause a shift in the position of the isoelectric point (iep). Measurements of the shear yield stress showed a maximum at the iep corresponding to the position of maximum instability in the suspension. The consequences of these data for the efficient treatment of solid-liquid systems will be discussed. (authors)
Spectral properties of nuclear matter
International Nuclear Information System (INIS)
Bozek, P
2006-01-01
We review self-consistent spectral methods for nuclear matter calculations. The in-medium T-matrix approach is conserving and thermodynamically consistent. It gives both the global and the single-particle properties the system. The T-matrix approximation allows to address the pairing phenomenon in cold nuclear matter. A generalization of nuclear matter calculations to the super.uid phase is discussed and numerical results are presented for this case. The linear response of a correlated system going beyond the Hartree-Fock+ Random-Phase-Approximation (RPA) scheme is studied. The polarization is obtained by solving a consistent Bethe-Salpeter (BS) equation for the coupling of dressed nucleons to an external field. We find that multipair contributions are important for the spin(isospin) response when the interaction is spin(isospin) dependent
Molecular data of mixed metal oxides with importance in nuclear safety
Energy Technology Data Exchange (ETDEWEB)
Kovács, Attila, E-mail: attila.kovacs@ec.europa.eu; Konings, Rudy J.M.
2016-08-15
The gas-phase structural and spectroscopic properties of selected mixed metal oxides (Cs{sub 2}CrO{sub 4}, Cs{sub 2}MnO{sub 4}, Cs{sub 2}MoO{sub 4}, Cs{sub 2}RuO{sub 4}, BaMoO{sub 4}, BaMoO{sub 3}) have been calculated using Density Functional Theory (DFT). The possible structural isomers have been analyzed and for the found global minima the vibrational (IR, Raman) spectra have been predicted taking into account also anharmonic corrections. The bonding properties have been characterized by means of the Natural Bond Orbital analysis model while the low-lying excited electronic states have been calculated using time-dependent DFT. In order to assess the stability of the target species the dissociation enthalpies have been evaluated.
Steam--water mixing in nuclear reactor safety loss-of-coolant experiments
International Nuclear Information System (INIS)
Naff, S.A.; Schwarz, W.F.
1978-01-01
Computer models used to predict the response of reactors to hypothesized accidents necessarily incorporate approximating assumptions. To verify the models by comparing predicted and measured responses in test facilities, these assumptions must be confirmed to be realistic. Recent experiments in facilities capable of repeatedly duplicating the transient behavior of a pressurized water reactor undergoing a pipe rupture show that the assumption of complete water-steam mixing during the transient results in the predicted decompression being faster than that observed. Water reactor safety studies currently in progress include programs aimed at the verification of computer models or ''codes'' used to predict reactor system responses to various hypothesized accidents. The approach is to compare code predictions of transients with the actual test transients in experimental facilities. The purpose of this paper is to explain an important instance in which predictions and data are not in complete agreement and to indicate the significance to water reactor safety studies
Autoradiographic measurement of Pu distribution in mixed-oxide nuclear fuel
International Nuclear Information System (INIS)
Green, D.R.; Rasmussen, D.E.; Gray, W.H.
1976-09-01
The autoradiographic method described was developed for rapid, economical determination of the Pu distribution and microhomogeneity in mixed oxide fuel. High Pu concentration regions of any size down to 13 microns in diameter can be reproducibly resolved using this method. The new method uses computerized scanning and analysis, and includes automatic self-calibration to virtually elimate variations resulting from photographic film and processing. The speed of this new method allows analysis of enough data to ensure statistical reliability of occurrence frequencies, even for sparse populations of Pu-rich regions with diameters greater than 60 microns. Determination of these occurrence frequencies is an important factor in controlling fuel quality to ensure safe, efficient operation in a Liquid Metal Fast Breeder Reactor
International Nuclear Information System (INIS)
Röttger, Annette; Honig, Anja; Schrammel, Dieter; Strauss, Heinrich F.
2016-01-01
Closed nuclear track detectors are widely used for the determination of Rn-222 exposures. There are also partial open systems available, which are specially designed for the determination of the exposure to Rn-220, which is a relevant exposure in special workplaces or in specific regions of the world. This paper presents data and a detail analysis of how to determine the cross-correlation by calibration in pure Rn-222 and pure Rn-220 atm. By these means calibration coefficients for the analysis of real mixed atmospheres can be obtained. The respective decision threshold, detection limit and limits of the confidence interval were determined according to ISO 11929 (ISO 11929:2010, 2010). The exposure of detectors was performed at the radon reference chamber and the thoron progeny chamber of the Physikalisch-Technische Bundesanstalt (PTB). The analysis of track response was done at Parc RGM, while the analytical routines were developed in the Leibniz University Hanover, Institute Radioökologie und Strahlenschutz IRS at the working Group AK SIGMA (Arbeitskreis Nachweisgrenzen). - Highlights: • Analysis of exposure in reference atmospheres according ISO 11929. • Calibration of nuclear track detectors for 222 Rn and 220 Rn. • Calculation of cross-correlation by calibration in pure 222 Rn and 220 Rn atmospheres. • Thoron activity concentration should not be omitted in radon exposure determinations.
The choice of equipment mix and parameters for HTGR-based nuclear cogeneration plants
Energy Technology Data Exchange (ETDEWEB)
Malevski, A L; Stoliarevski, A Ya; Vladimirov, V T; Larin, E A; Lesnykh, V V; Naumov, Yu V; Fedotov, I L
1990-07-01
Improvement of heat and electricity supply systems based on cogeneration is one of the high-priority problems in energy development of the USSR. Fossil fuel consumption for heat supply exceeds now its use for electricity production and amounts to about 30% of the total demands. District heating provides about 80 million t.c.e. of energy resources conserved annually and meets about 50% of heat consumption of the country, including about 30% due to cogeneration. The share of natural gas and liquid fuel in the fuel consumption for district heating is about 70%. The analysis of heat consumption dynamics in individual regions and industrial-urban agglomerations shows the necessity of constructing cogeneration plants with the total capacity of about 60 million kW till the year 2000. However, their construction causes some serious problems. The most important of them are provision of environmentally clean fuels for cogeneration plants and provision of clear air. The limited reserves of oil and natural gas and the growing expenditures on their production require more intensive introduction of nuclear energy in the national energy balance. Possible use of nuclear energy based on light-water reactors for substitution of deficient hydrocarbon fuels is limited by the physical, technical and economic factors and requirements of safety. Further development of nuclear energy in the USSR can be realized on a new technological base with construction of domestic reactors of increased and ultimate safety. The most promising reactors under design are high-temperature gas-cooled reactors (HTGR) of low and medium capacity with the intrinsic property of safety. HTGR of low (about 200-250 MW(th) in a steel vessel), medium (about 500 MW(th) in a steel-concrete vessel) and high (about 1000-2500 MW(th) in a prestressed concrete vessel) are now designed and studied in the country. At outlet helium temperature of 920-1020 K it is possible to create steam turbine installations producing both
The choice of equipment mix and parameters for HTGR-based nuclear cogeneration plants
International Nuclear Information System (INIS)
Malevski, A.L.; Stoliarevski, A.Ya.; Vladimirov, V.T.; Larin, E.A.; Lesnykh, V.V.; Naumov, Yu.V.; Fedotov, I.L.
1990-01-01
Improvement of heat and electricity supply systems based on cogeneration is one of the high-priority problems in energy development of the USSR. Fossil fuel consumption for heat supply exceeds now its use for electricity production and amounts to about 30% of the total demands. District heating provides about 80 million t.c.e. of energy resources conserved annually and meets about 50% of heat consumption of the country, including about 30% due to cogeneration. The share of natural gas and liquid fuel in the fuel consumption for district heating is about 70%. The analysis of heat consumption dynamics in individual regions and industrial-urban agglomerations shows the necessity of constructing cogeneration plants with the total capacity of about 60 million kW till the year 2000. However, their construction causes some serious problems. The most important of them are provision of environmentally clean fuels for cogeneration plants and provision of clear air. The limited reserves of oil and natural gas and the growing expenditures on their production require more intensive introduction of nuclear energy in the national energy balance. Possible use of nuclear energy based on light-water reactors for substitution of deficient hydrocarbon fuels is limited by the physical, technical and economic factors and requirements of safety. Further development of nuclear energy in the USSR can be realized on a new technological base with construction of domestic reactors of increased and ultimate safety. The most promising reactors under design are high-temperature gas-cooled reactors (HTGR) of low and medium capacity with the intrinsic property of safety. HTGR of low (about 200-250 MW(th) in a steel vessel), medium (about 500 MW(th) in a steel-concrete vessel) and high (about 1000-2500 MW(th) in a prestressed concrete vessel) are now designed and studied in the country. At outlet helium temperature of 920-1020 K it is possible to create steam turbine installations producing both
International Nuclear Information System (INIS)
Takahashi, Yoshiyuki
1997-01-01
This report describes the research results of the study of high energy heavy-ion interactions and multi-cluster correlations at the University of Alabama in Huntsville (UAH). This study has been performed as the CERN experiments, EMU05, EMU09 and EMU16, and a part of the RHIC PHENIX and its MVD Collaboration work. Physics objectives and methods are described in chapters 1, 2, 3 and Appendices A1 and A2. The experimental set-up, measurements, an the data analyses at UAH are described in chapters 4 through 10 and Appendices. The UAH research was a quest for high density state of nuclear matter, in terms of finding analysis methods of multi-isospin correlations. The present work emphasized a study of the fluctuation of the particle density, discriminating the isospin for exploring the Disoriented Chiral Condensate (DCC). The analysis methods developed are: (1) Chi-square density test; (2) Run-test; (3) G-test; (4) Fourier analysis; and (5) Lomb's Periodogram. The application of these methods for central collision events in 2,000 GeV/n S + Pb and 167 GeV/n Pb + Pb produced interesting DCC correlations for a few events. However, further investigation of fluctuations with Monte Carlo method guided them to understand various hidden degree of freedoms in such analyses. The results of the analysis of the experimental data in comparison with the Monte Carlo data did not support the DCC process as compelling. The developed methods evolved for a plan to investigate the DCC in the PHENIX. The study has obtained several mathematical analysis methods from the CERN EMU05/16 experiments for a possible use in RHIC experiments
Study of the isospin properties of single-pion production by neutrinos
International Nuclear Information System (INIS)
Barnes, V.E.; Carmony, D.D.; Garfinkel, A.F.
1978-01-01
Results are presented on the three single-pion production reactions νP-μ - Pπ + , νn-μ - nπ + , and νn-μ - Pπ 0 . Measurements were made from threshold to a neutrino energy of 1.5 GeV using the Argonne National Laboratory 12-foot bubble chamber filled with deuterium and exposed to a broad band neutrino beam. In addition to a resonant isospin I = 3/2 N/sub π/ amplitude, a large I = 1/2 amplitude was found as predicted by Adler
Isospin breaking in pion-nucleon scattering at threshold by radiative processes
Ericson, Torleif Eric Oskar
2006-01-01
We investigate the dispersive contribution by radiative processes such as (pi- proton to neutron gamma) and (pi- proton to Delta gamma) to the pion-nucleon scattering lengths of charged pions in the heavy baryon limit. They give a large isospin violating contribution in the corresponding isoscalar scattering length, but only a small violation in the isovector one. These terms contribute 6.3(3)% to the 1s level shift of pionic hydrogen and give a chiral constant F_pi^2f_1=-25.8(8) MeV.
Flavor distributions in the nucleons: SU(2) sea asymmetry or isospin symmetry breaking?
International Nuclear Information System (INIS)
Ma, B.; Schaefer, A.; Greiner, W.
1993-01-01
The Gottfried sum-rule violation reported by the New Muon Collaboration was interpreted as an indication for a flavor asymmetry of the sea quark in the nucleon. We investigate the alternative possibility that isospin symmetry between the proton and the neutron is breaking for small x. We examine systematically the consequences of this possibility for several processes, namely, neutrino deep inelastic scattering, the charged pion Drell-Yan process, the proton Drell-Yan process, and semi-inclusive deep inelastic scattering, and conclude that a decision between the two alternative explanations is possible
Isospin dependent Boltzmann-langevin equation and the production cross section of 19Na
International Nuclear Information System (INIS)
Ming Zhaoyu; Zhang Fengshou; Chen Liewen; Zhu Zhiyuan; Zhang Wenlong; Guo Zhongyan; Xiao Guoqing
2000-01-01
A new transport model (isospin dependent Boltzmann-Langevin equation) is developed and it is shown that this model can regenerate the experimental data for reaction of 12 C + 12 C at 28.7 MeV/u. The production cross section of 19 Na is systematically studied for reactions of 17-20,22 Ne + 12 C at 28.7 MeV/u. It is found that a neutron deficient projectile has larger 19 Na cross section than a stable projectile
A possible relation between the spin of hadrons and their isospin, strangeness and charm
International Nuclear Information System (INIS)
Tangherlini, F.R.
1980-01-01
A possible relation between the spin of hadrons and their isospin, strangeness and charm is given: J = I - 1 + n + 1/2 [S + C], where n is an integer. Tables are presented to show that the relation is perfectly obeyed by the hadrons (including the quarks) through the charmed particles, and with a trivial modification it can include the b and t states. The relation is put in an operator form whose projection on the 3-axis of isospace is shown to be consistent with the Gell-Mann and Nishijima relation generalized to include charm. (author)
The isospin dependence of the nucleus-nucleus inelastic cross-section at high energy
International Nuclear Information System (INIS)
Rashdan, M.; Farhan, A.M.; Hassib, E.; Kareem, W. Abdel
2006-01-01
The isospin dependence of the nucleus-nucleus inelastic cross-section at high energy is investigated within the multiple scattering theory. The multiple integrals are evaluated by Monte Carlo method as well as by the optical limit approximation of the Glauber model. Calculations are performed for 14-23 N, 16-24 O and 18-26 F isotopes colliding with carbon target around 1 GeV. It is found that rms radii and the density distributions show a halo structure of 22 N, 23 O and 24 F
Spin-isospin excitations induced by heavy ions at Saturne energies
International Nuclear Information System (INIS)
Hennino, T.
1989-01-01
Our program on the Spin-Isospin excitations started with the ( 3 He, 3 H) and ( 2 H, 2 He) reactions was extended with the heavy ion beams available at Saturne ( 12 C, 16 0, 20 Ne and 40 Ar) to study systematically the Δ excitation energy region. Projectile-ejectile dependences were measured. The Δ peak shift appears as a common feature in all charge exchange reactions. The first cross section calculations for the ( 12 C, 12 N) reaction are in good quantitative agreement with the data [fr
International Nuclear Information System (INIS)
Kuperman, A.Ya.; Moiseev, I.V.; Galkina, V.N.; Yakushina, G.S.; Nikitskaya, V.N.
1977-01-01
Product solution occurs in HClO 4 + HNO 3 mixing. In prepared plutonium (6) and uranium (6) perchloric acid solution Cl and Cr (6), Mn (7,6,3) foreign oxidizers are selectively reduced with formic and malonic acids. Potentiostatic variant of method is based on successive reduction of Pu(6) to Pu(3) and U(6) to U(4) in 4.5M HCl, containing 5x10 -4 M bismuth (3). In using amperostatic variant of method plutonium and uranium are determined separately. In sulfur-phosphoric acid media plutonium (6) is titrated to Pu(4) with continuously generated iron (2) ions. Uranium (6) in phosphoric acid media is initially reduced to U(4) with Fe(2), and then after Fe(2) excess reduction with nitric acid it is titrated to uranium (6) with continuously electrogenerated manganese (3) ions or vanadium (5). To obtain equivalent point in plutonium (6) and uranium (4) titration amperometric method is used. Coefficient of variation is 0.2-0.3 % rel
Pion-nuclear many body problems
International Nuclear Information System (INIS)
Weise, W.
1981-01-01
This chapter examines pion-nucleus scattering data produced at the meson factories in order to gain information about the ''optical'' branches of the pion-nuclear excitation spectrum. Discusses basic meson-baryon effective Lagrangians and elementary processes; pion-baryon vertex form factors; the spin-isospin dependent baryon-baryon interaction; pions in nuclear matter; nuclear spin-isospin correlations; the baryon-hole model; photon-induced excitation of baryon-hole states; high momentum transfer properties of pion-like nuclear states; a response function for pionic low-frequency modes in finite nuclei; and applications. Finds that there is no clear evidence for pionic critical opalescence, as in agreement with the expectation that the minimal density for the appearance of a pion condensate is certainly not lower than two or three times nuclear matter density
Energy Technology Data Exchange (ETDEWEB)
Tanihata, I; Kogo, S; Sugimoto, K [Osaka Univ., Toyonaka (Japan). Lab. of Nuclear Studies
1977-04-25
Electric quadrupole interactions on polarized /sup 12/B and /sup 12/N implanted in a Mg single crystal have been studied by a new method in which the nuclear depolarization due to level mixing caused by an external magnetic field is detected.
Hyperon interactions in nuclear matter
Energy Technology Data Exchange (ETDEWEB)
Dhar, Madhumita; Lenske, Horst [Institut fuer Theoretische Physik, Universitaet Giessen (Germany)
2014-07-01
Baryon-baryon interactions within the SU(3)-octet are investigated in free space and nuclear matter. A meson exchange model is used for determining the interaction. The Bethe-Salpeter equations are solved in a 3-D reduction scheme. In-medium effects have been incorporated by including a two particle Pauli projection operator in the scattering equation. The coupling of the various channels of total strangeness S=-1,-2 and conserved total charge is studied in detail. Calculations and the corresponding results are compared for using the isospin and the particle basis. Matrix elements are compared in detail, in particular discussing mixing effects of different hyperon channels. Special attention is paid to the physical thresholds. The density dependence of interaction is clearly seen in the variation of the in-medium low-energy parameters. The approach is compared to descriptions derived from chiral-EFT and other meson-exchange models e.g. the Nijmegen and the Juelich model.
Analyzing power for π-p charge exchange and a test of isospin invariance up to eta threshold
International Nuclear Information System (INIS)
Wightman, J.A.; Eichon, A.D.; Kim, G.J.; Mokhtari, A.; Nefkens, B.M.K.; Fitzgerald, D.H.; Sadler, M.E.
1987-01-01
The analyzing power for π - p→π 0 n has been measured at five incident momenta from 547 to 687 MeV/c using a transversely polarized target. Data were obtained with scintillation counters at 10 angles simultaneously covering the range -0.9 ≤ cosθ/sub c.m.//sup π/ ≤ 0.9. Our results and those of Kim et al. are used for a model-independent test of isospin invariance which is based on the triangle inequalities applied to the transversity-up as well as the transversity-down cross sections. No evidence is found for isospin violation
Aerial deposition of plutonium in mixed forest stands from nuclear fuel reprocessing
International Nuclear Information System (INIS)
Adriano, D.C.; Pinder, J.E. III
1977-01-01
Concentrations of 238 Pu and 239 , 240 Pu were determined in bark, organic matter, and soil samples collected in the summer of 1975 from pine (Pinus taeda) and hardwood (Quercus falcata; Carya tormentosa) stands near a nuclear fuel reprocessing plant at the U.S. Energy Res. and Dev. Admin.'s Savannah River Plant near Aiken, S.C. The results indicated that tree crowns intercepted fallout Pu (Pu-bearing particles) and produced higher Pu concentrations in the organic matter and soil under tree crowns. Higher 239 , 240 Pu concentrations were found under pines than under hardwoods. Plutonium concentrations in the O1 (litter, A 00 ) and O2 (organic matter, A 0 ) layers were higher than those in mineral soil, but most of the Pu was contained in the mineral soil. Higher contents of 239 , 240 Pu were observed near the tree stems than in locations outside of the tree crowns. In pines these values were 163 and 80 nCi 239 , 240 Pu/m 2 , and in hardwoods, 122 and 80 nCi 239 , 240 Pu/m 2 , for the respective locations, from the litter to the 15-cm depth. The proportion of 238 Pu contained in foliage, litter, and organic matter was greater than for 239 , 240 Pu. However, the latter radionuclides had a greater proportion contained in the mineral soil. This observation is consistent with the more recent releases containing a higher percentage of 238 Pu from reprocessing operation. Plutonium concentrations in the 5 to 15 cm depth indicated limited Pu mobility in soil, but 238 , 240 Pu concentrations at this depth were higher near tree stems, suggesting greater mobility perhaps as a result of stem flow
Gómez, Javier B; Gimeno, María J; Auqué, Luis F; Acero, Patricia
2014-01-15
This paper presents the mixing modelling results for the hydrogeochemical characterisation of groundwaters in the Laxemar area (Sweden). This area is one of the two sites that have been investigated, under the financial patronage of the Swedish Nuclear Waste and Management Co. (SKB), as possible candidates for hosting the proposed repository for the long-term storage of spent nuclear fuel. The classical geochemical modelling, interpreted in the light of the palaeohydrogeological history of the system, has shown that the driving process in the geochemical evolution of this groundwater system is the mixing between four end-member waters: a deep and old saline water, a glacial meltwater, an old marine water, and a meteoric water. In this paper we put the focus on mixing and its effects on the final chemical composition of the groundwaters using a comprehensive methodology that combines principal component analysis with mass balance calculations. This methodology allows us to test several combinations of end member waters and several combinations of compositional variables in order to find optimal solutions in terms of mixing proportions. We have applied this methodology to a dataset of 287 groundwater samples from the Laxemar area collected and analysed by SKB. The best model found uses four conservative elements (Cl, Br, oxygen-18 and deuterium), and computes mixing proportions with respect to three end member waters (saline, glacial and meteoric). Once the first order effect of mixing has been taken into account, water-rock interaction can be used to explain the remaining variability. In this way, the chemistry of each water sample can be obtained by using the mixing proportions for the conservative elements, only affected by mixing, or combining the mixing proportions and the chemical reactions for the non-conservative elements in the system, establishing the basis for predictive calculations. © 2013 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Hassan, M.Y.; Ramadan, S.
1978-01-01
The binding energy of nuclear matter with an excess of neutrons, with spin-up neutrons and spin-up protons (characterized by the corresponding parameters αsub(tau)=(N-Z)/A, αsub(n)=(N(up)-N(down))/A, and αsub(p)=(Z(up)-Z(down))/A) contains three symmetry energies: the isospin symmetry energy epsilon sub(tau), the spin symmetry energy epsilon sub(sigma) and the spin-isospin symmetry energy epsilon sub(sigma tau). These energies are calculated using velocity-dependent effective potential of s-wave interaction, which was developed by Dzhibuti and Mamasakhlisov. The spin, isospin and spin-isospin dependent parts of the single-particle potential in nuclear matter are also calculated using the same effective nucleon-nucleon potentials. The spin-spin part of the optical model potential is estimated. (author)
Charged pion electroproduction, a selective probe of nuclear spin isospin responses
International Nuclear Information System (INIS)
Chanfray, G.; Delorme, J.
1983-05-01
We study the reaction of pion electroproduction on nuclei in the quasi-elastic region. We show that detection of the pion in the direction of the virtual photon permits the separation of the spin longitudinal and transverse responses through a Rosenbluth plot. Emphasis is also put on consistency between medium effects and gauge invariance
International Nuclear Information System (INIS)
Li, Zheng
2014-09-01
The advent of free electron lasers and high harmonic sources enables the investigation of electronic and nuclear dynamics of molecules and solids with atomic spatial resolution and femtosecond/attosecond time resolution, using bright and ultrashort laser pulses of frequency from terahertz to hard x-ray range. With the help of ultrashort laser pulses, the nuclear and electronic dynamics can be initiated, monitored and actively controlled at the typical time scale in the femtosecond to attosecond realm. Meanwhile, theoretical tools are required to describe the underlying mechanism. This doctoral thesis focuses on the development of theoretical tools based on full quantum mechanical multiconfiguration time-dependent Hartree (MCTDH) and mixed quantum classical approaches, which can be applied to describe the dynamical behavior of gas phase molecules and strongly correlated solids in the presence of ultrashort laser pulses. In the first part of this thesis, the focus is on the motion of electron holes in gas phase molecular ions created by extreme ultraviolet (XUV) photoionization and watched by spectroscopic approaches. The XUV photons create electron-hole in the valence orbitals of molecules by photoionization, the electron hole, as a positively charged quasi-particle, can then interact with the nuclei and the rest of electrons, leading to coupled non-Born-Oppenheimer dynamics. I present our study on electron-hole relaxation dynamics in valence ionized molecular ions of moderate size, using quantum wave packet and mixed quantum-classical approaches, using photoionized [H + (H 2 O) n ] + molecular ion as example. We have shown that the coupled motion of the electron-hole and the nuclei can be mapped out with femtosecond resolution by core-level x-ray transient absorption spectroscopy. Furthermore, in specific cases, the XUV photon can create a coherent electron hole, that can maintain its coherence to time scales of ∝ 1 picosecond. Employing XUV pump - IR probe
International Nuclear Information System (INIS)
Zhang Ming; Xiao Zhigang; Li Baoan; Chen Liewen; Yong Gaochan; Zhu Shengjiang
2010-01-01
Based on the isospin-and momentum-dependent hadronic transport model IBUU04, we have investigated the π - /π + ratio in the following three reactions: 48 Ca+ 48 Ca, 124 Sn + 124 Sn and 197 Au + 197 Au with nearly the same isospin asymmetry but different masses, at the bombarding energies from 0.25 to 0.6 AGeV. It is shown that the sensitivity of probing the E sym (ρ) with π - /π + increases with increasing the system size or decreasing the beam energy, showing a correlation to the degree of isospin fractionation. Therefore, with a given isospin asymmetry, heavier system at energies near the pion threshold is preferential to study the behavior of nuclear symmetry energy at supra-saturation densities.
International Nuclear Information System (INIS)
Gómez, Javier B.; Gimeno, María J.; Auqué, Luis F.; Acero, Patricia
2014-01-01
This paper presents the mixing modelling results for the hydrogeochemical characterisation of groundwaters in the Laxemar area (Sweden). This area is one of the two sites that have been investigated, under the financial patronage of the Swedish Nuclear Waste and Management Co. (SKB), as possible candidates for hosting the proposed repository for the long-term storage of spent nuclear fuel. The classical geochemical modelling, interpreted in the light of the palaeohydrogeological history of the system, has shown that the driving process in the geochemical evolution of this groundwater system is the mixing between four end-member waters: a deep and old saline water, a glacial meltwater, an old marine water, and a meteoric water. In this paper we put the focus on mixing and its effects on the final chemical composition of the groundwaters using a comprehensive methodology that combines principal component analysis with mass balance calculations. This methodology allows us to test several combinations of end member waters and several combinations of compositional variables in order to find optimal solutions in terms of mixing proportions. We have applied this methodology to a dataset of 287 groundwater samples from the Laxemar area collected and analysed by SKB. The best model found uses four conservative elements (Cl, Br, oxygen-18 and deuterium), and computes mixing proportions with respect to three end member waters (saline, glacial and meteoric). Once the first order effect of mixing has been taken into account, water–rock interaction can be used to explain the remaining variability. In this way, the chemistry of each water sample can be obtained by using the mixing proportions for the conservative elements, only affected by mixing, or combining the mixing proportions and the chemical reactions for the non-conservative elements in the system, establishing the basis for predictive calculations. - Highlights: • Laxemar (Sweden) groundwater is the combined result
Energy Technology Data Exchange (ETDEWEB)
Gómez, Javier B., E-mail: jgomez@unizar.es; Gimeno, María J., E-mail: mjgimeno@unizar.es; Auqué, Luis F., E-mail: lauque@unizar.es; Acero, Patricia, E-mail: patriace@unizar.es
2014-01-01
This paper presents the mixing modelling results for the hydrogeochemical characterisation of groundwaters in the Laxemar area (Sweden). This area is one of the two sites that have been investigated, under the financial patronage of the Swedish Nuclear Waste and Management Co. (SKB), as possible candidates for hosting the proposed repository for the long-term storage of spent nuclear fuel. The classical geochemical modelling, interpreted in the light of the palaeohydrogeological history of the system, has shown that the driving process in the geochemical evolution of this groundwater system is the mixing between four end-member waters: a deep and old saline water, a glacial meltwater, an old marine water, and a meteoric water. In this paper we put the focus on mixing and its effects on the final chemical composition of the groundwaters using a comprehensive methodology that combines principal component analysis with mass balance calculations. This methodology allows us to test several combinations of end member waters and several combinations of compositional variables in order to find optimal solutions in terms of mixing proportions. We have applied this methodology to a dataset of 287 groundwater samples from the Laxemar area collected and analysed by SKB. The best model found uses four conservative elements (Cl, Br, oxygen-18 and deuterium), and computes mixing proportions with respect to three end member waters (saline, glacial and meteoric). Once the first order effect of mixing has been taken into account, water–rock interaction can be used to explain the remaining variability. In this way, the chemistry of each water sample can be obtained by using the mixing proportions for the conservative elements, only affected by mixing, or combining the mixing proportions and the chemical reactions for the non-conservative elements in the system, establishing the basis for predictive calculations. - Highlights: • Laxemar (Sweden) groundwater is the combined result
International Nuclear Information System (INIS)
Smotritskij, L.M.
2001-01-01
Application of resonance phase for two quasi-stationary states with similar spin and unlike parity is shown to enable to coordinate the experimentally observed signed dependence of P-odd effects in neutron reactions with the theory. The developed approach enables to obtain information on isospin structure of a weak nucleon-nucleon interaction [ru
Isospin symmetry of T-z=+/- 3/2 ->+/- 1/2 Gamow-Teller transitions in A=41 nuclei
Fujita, Y; Shimbara, Y; Adachi, T; Berg, GPA; Fujita, H; Hatanaka, K; Kamiya, J; Nakanishi, K; Sakemi, Y; Sasaki, S; Shimizu, Y; Tameshige, Y; Uchida, M; Wakasa, T; Yosoi, M
2004-01-01
Under the assumption that isospin T is a good quantum number, isobaric analog states and various analogous transitions are expected in isobars with mass number A. The, strengths of T-z = +/-3/2 --> 1/2 analogous Gamow-Teller (GT) transitions and analogous M1 transitions within the A = 41 isobar
Isospin symmetry of T-z=+/- 3/2 ->+/- 1/2 Gamow-Teller transitions in A=41 nuclei
Fujita, Y; Shimbara, Y; Adachi, T; Berg, GPA; Fujita, H; Hatanaka, K; Kamiya, J; Nakanishi, K; Sakemi, Y; Sasaki, S; Shimizu, Y; Tameshige, Y; Uchida, M; Wakasa, T; Yosoi, M
Under the assumption that isospin T is a good quantum number, isobaric analog states and various analogous transitions are expected in isobars with mass number A. The, strengths of T-z = +/-3/2 --> 1/2 analogous Gamow-Teller (GT) transitions and analogous M1 transitions within the A = 41 isobar
Infra-red asymptotic behaviour of the one-fermion Green's function in a scalar model with isospin
International Nuclear Information System (INIS)
Popov, V.N.; Wu, T.T.
1979-01-01
In a theory where massive fermions interact with a massless scalar field of isospin 1, the behaviour of the one-fermion Green's function is found to differ from the free Green's function by a factor (1 - (2g 2 /π 2 )ln mmod(x-y))sup(-3/8), in the limit of large separation mod(x-y). (Auth.)
Up-down quark mass difference effect in nuclear many-body systems
International Nuclear Information System (INIS)
Nakamura, S.; Muto, K.; Oka, M.; Takeuchi, S.; Oda, T.
1995-01-01
A charge-symmetry-breaking nucleon-nucleon force due to the up-down quark mass difference is evaluated in the quark cluster model. It is applied to the shell-model calculation for the isovector mass shifts of isospin multiplets and the isospin-mixing matrix elements in 1s0d-shell nuclei. We find that the contribution of the quark mass difference effect is large and agrees with experiment. This contribution may explain the Okamoto-Nolen-Schiffer anomaly, alternatively to the meson-mixing contribution, which is recently predicted to be reduced by the large off-shell correction. (author)
Role of strangeness and isospin in low density expansions of hadronic matter
de Oliveira, Thamirys; Menezes, Débora P.; Pinto, Marcus B.; Gulminelli, Francesca
2018-05-01
We compare relativistic mean-field models with their low density expansion counterparts used to mimic nonrelativistic models by consistently expanding the baryonic scalar density in powers of the baryonic number density up to O (13 /3 ) , which goes two orders beyond the order considered in previous works. We show that, due to the nontrivial density dependence of the Dirac mass, the convergence of the expansion is very slow, and the validity of the nonrelativistic approximation is questionable even at subsaturation densities. In order to analyze the roles played by strangeness and isospin we consider n -Λ and n -p matter separately. Our results indicate that these degrees of freedom play quite different roles in the expansion mechanism and n -Λ matter can be better described by low density expansions than n -p matter in general.
Experimental Guidance for Isospin Symmetry Breaking Calculations via Single Neutron Pickup Reactions
Leach, K. G.; Garrett, P. E.; Bangay, J. C.; Bianco, L.; Demand, G. A.; Finlay, P.; Green, K. L.; Phillips, A. A.; Rand, E. T.; Sumithrarachchi, C. S.; Svensson, C. E.; Triambak, S.; Wong, J.; Ball, G.; Faestermann, T.; Krücken, R.; Hertenberger, R.; Wirth, H.-F.; Towner, I. S.
2013-03-01
Recent activity in superallowed isospin-symmetry-breaking correction calculations has prompted interest in experimental confirmation of these calculation techniques. The shellmodel set of Towner and Hardy (2008) include the opening of specific core orbitals that were previously frozen. This has resulted in significant shifts in some of the δC values, and an improved agreement of the individual corrected {F}t values with the adopted world average of the 13 cases currently included in the high-precision evaluation of Vud. While the nucleus-to-nucleus variation of {F}t is consistent with the conserved-vector-current (CVC) hypothesis of the Standard Model, these new calculations must be thoroughly tested, and guidance must be given for their improvement. Presented here are details of a 64Zn(ěcd, t)63Zn experiment, undertaken to provide such guidance.
Apparent violation of isospin symmetry in the 3H(3He,2H)4He reaction
International Nuclear Information System (INIS)
Rai, G.; Blyth, C.O.; England, J.B.A.; Farooq, A.; Karban, O.; Rawas, E.; Roman, S.; Vlastou, R.
1988-01-01
Angular distributions of the vector analyzing powers for the 3 H( 3 He, 2 H) 4 He reaction have been measured over the incident energy range 18--33 MeV. The measurements centered about 18 MeV display a deviation from the antisymmetric shape expected from isospin symmetry. Concentrating on the explanation of the 90 0 analyzing powers, we report the results of a distorted-wave Born approximation (DWBA) analysis which includes the direct and exchange processes and the spin-orbit potential. It is shown that the anomalous behavior of the 90 0 vector analyzing powers can be largely explained by the effect of a single F-wave potential resonance which leads to the magnification of the short-range differences between the 3 He and 3 H wave functions
Owen, Patrick Haworth
This thesis describes measurements of rare electroweak penguin decays performed with data collected by the Large Hadron Collider beauty experiment corresponding to 3 $\\rm{fb}^{-1}$ of integrated luminosity. The purpose of these measurements is to search for physics beyond the theoretical framework known as the Standard Model (SM). Electroweak penguin decays are sensitive to virtual particles in extensions to the SM whose influence on the decay amplitude can be of similar strength to the SM contribution. The particular measurements that are described in this thesis are the differential branching fractions and isospin asymmetries of $B\\to K^{(*)}\\mu^{+}\\mu^{-}$ decays as well as the angular observables in $B\\to K\\mu^{+}\\mu^{-}$ decays. Although results are consistent with the SM, all the branching fractions of $B\\to K^{(*)}\\mu^{+}\\mu^{-}$ decays tend to favour a lower value than theoretical predictions.
Rho meson self-energy and dielectron emissivity in an isospin-asymmetric pion medium
International Nuclear Information System (INIS)
Gulamov, T.I.; Titov, A.I.; Forschungszentrum Rossendorf e.V.; Kaempfer, B.; Technische Univ., Dresden
1995-06-01
The ρ meson self-energy in an isospin asymmetric pion gas at finite temperature and charged-pion chemical potential is evaluated. We utilize a conventional effective π-ρ Lagrangian and the functional integral representation of the partition function in the second order in the ρππ coupling constant. We analyze the gauge invariant rho meson polarization operator and its dependence on the invariant mass M and spatial momentum vertical stroke pvertical stroke of the ρ meson. The pole positions and the values of the imaginary parts of the self-energy for different polarization states have different functional dependences on M and vertical stroke pvertical stroke . The corresponding dielectron rate (calculated from the imaginary part of the polarization operators) shows a distinctive asymmetry when the momentum t=p + -p - is perpendicular or parallel to p, where p ± are the momenta of the electron pair. (orig.)
Study of ν+N→ν+N+π and isospin analysis of the hadronic neutral current
International Nuclear Information System (INIS)
Longuemare, C.
1978-04-01
Experimental results are presented on neutrino induced single pion production in the bubble chamber Gargamelle filled with a light propane-freon mixture and exposed to the CERN PS neutrino beam. After corrections for reinteractions in the target nuclei, the neutrino neutral current cross section and the branching ratios are determined. The isospin structure of the hadronic neutral current is analysed. The conclusions are compatible with the Weinberg-Salam theory for weak and electromagnetic interactions. The isoscalar component of the neutral current is observed at the level of two standard deviations. The charged to neutral current ratio may be intepreted with the one pion production model of Adler in the framework of the above theory [fr
Isospin and the proton-absorptive-potential anomaly near mass 100
International Nuclear Information System (INIS)
Flynn, D.S.; Hershberger, R.L.; Gabbard, F.
1982-01-01
An isospin coupled-channels analysis of sub-Coulomb-proton-absorption cross sections has been performed for /sup 92,94,96/Zr and /sup 94,96,98,100/Mo. Introduction of coupling to the nA channel is shown to shift and damp the single-particle resonances, in addition to giving rise to isobaric-analog resonances. In spite of these effects due to the coupling, large variations in the absorptive potentials were still required to fit measured (p,n) cross sections. 96 Zr(p,n) and 100 Mo(p,n) cross sections were measured and analyzed with a standard optical model for this work. Other Zr(p,n) and Mo(p,n) cross sections were taken from previous results
Shining LUX on isospin-violating dark matter beyond leading order
DEFF Research Database (Denmark)
Cirigliano, V.; Graesser, M. L.; Ovanesyan, G.
2014-01-01
Isospin-violating dark matter (IVDM) has been proposed as a viable scenario to reconcile conflicting positive and null results from direct detection dark matter experiments. We show that the lowest-order dark matter-nucleus scattering rate can receive large and nucleus-dependent corrections at next......-to-leading order (NLO) in the chiral expansion. The size of these corrections depends on the specific couplings of dark matter to quark flavors and gluons. In general the full NLO dark-matter-nucleus cross-section is not adequately described by just the zero-energy proton and neutron couplings. These statements...... are concretely illustrated in a scenario where the dark matter couples to quarks through scalar operators. We find the canonical IVDM scenario can reconcile the null XENON and LUX results and the recent CDMS-Si findings provided its couplings to second and third generation quarks either lie on a special line...
ρ-meson self-energy and dielectron emissivity in an isospin-asymmetric pion medium
International Nuclear Information System (INIS)
Titov, A.I.; Gulamov, T.I.; Kaempfer, B.
1996-01-01
The ρ-meson self-energy in an isospin-asymmetric pion gas at finite temperature and charged-pion chemical potential is evaluated. We utilize a conventional effective π-ρ Lagrangian and the functional integral representation of the partition function in the second order in the ρππ coupling constant. We analyze the ρ-meson polarization operator and its dependence on the invariant mass M and spatial momentum parallel p parallel of the ρ meson. The pole positions and the values of the imaginary parts of the self-energy for different polarization states have different functional dependences on M and parallel p parallel. The corresponding dielectron rate (calculated from the imaginary part of the in-medium ρ-meson propagator) shows a distinctive asymmetry when the momentum t=p + -p - is perpendicular or parallel to p, where p ± are the e ± momenta of the electron pair. copyright 1996 The American Physical Society
Isospin quantum number and structure of the excited states in halo nuclei. Halo-isomers
International Nuclear Information System (INIS)
Izosimov, I.N.
2015-01-01
It has been shown that isobar-analog (IAS), double isobar-analog (DIAS), configuration (CS), and double configuration states (DCS) can simultaneously have n-n, n-p, and p-p halo components in their wave functions. Differences in halo structure of the excited and ground states can result in the formation of isomers (halo-isomers). Both the Borromean and tango halo types can be observed for n-p configurations of atomic nuclei. The structure of the ground and excited states with different isospin quantum number in halo-like nuclei is discussed. B(Mλ) and B(Eλ) for γ-transitions in 6-8 Li, 8-10 Be, 8,10,11 B, 10-14 C, 13-17 N, 15-17,19 O, and 17 F are analyzed. Special attention is given to nuclei whose ground state does not exhibit halo structure, but the excited state may have one.
Ferreira, V. dos S.; Krmpotić, F.; Barbero, C. A.; Samana, A. R.
2017-10-01
The one-quasiparticle random-phase approximation (one-QRPA) method is used to describe simultaneously both double-β -decay modes, giving special attention to the partial restoration of spin-isospin SU(4 ) symmetry. To implement this restoration and to fix the model parameters, we resort to the energetics of Gamow-Teller resonances and to the minima of the single-β+-decay strengths. This makes the theory predictive regarding the β β2 ν decay, producing the 2 ν moments in 48Ca, 76Ge, 82Se, 96Zr, 100Mo, Te,130128, and 150Nd, that are of the same order of magnitude as the experimental ones; however, the agreement with β β2 ν data is only modest. To include contributions coming from induced nuclear weak currents, we extend the β β0 ν -decay formalism employed previously in C. Barbero et al., Nucl. Phys. A 628, 170 (1998), 10.1016/S0375-9474(97)00614-3, which is based on the Fourier-Bessel expansion. The numerical results for the β β0 ν moments in the above mentioned nuclei are similar to those obtained in other theoretical studies although smaller on average by ˜40 % . We attribute this difference basically to the one-QRPA method, employed here for the first time, instead of the currently used two-QRPA method. The difference is partially due also to the way of carrying out the restoration of the spin-isospin symmetry. It is hard to say which is the best way to make this restoration, since the β β0 ν moments are not experimentally measurable. The recipe proposed here is based on physically robust arguments. The numerical uncertainties in the β β moments, related to (i) their strong dependence on the residual interaction in the particle-particle channel when evaluated within the QRPA, and (ii) lack of proper knowledge of single-particle energies, have been quantified. It is concluded that the partial restoration of the SU(4 ) symmetry, generated by the residual interaction, is crucial in the description of the β β decays, regardless of the nuclear
Khunjua, T. G.; Klimenko, K. G.; Zhokhov, R. N.
2018-03-01
In this paper the phase structure of dense quark matter has been investigated at zero temperature in the presence of baryon, isospin and chiral isospin chemical potentials in the framework of massless (3 +1 )-dimensional Nambu-Jona-Lasinio model with two quark flavors. It has been shown that in the large-Nc limit (Nc is the number of colors of quarks) there exists a duality correspondence between the chiral symmetry breaking phase and the charged pion condensation one. The key conclusion of our studies is the fact that chiral isospin chemical potential generates charged pion condensation in dense quark matter with isotopic asymmetry.
Energy Technology Data Exchange (ETDEWEB)
Goldmann, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1967-02-15
This work describes methods of dynamic nuclear polarization in solids based on the thermal mixing between nuclear spin systems. The description of the thermal mixing processes involves most of the fundamental aspects of the spin temperature theory. The experiments, conducted with paradichlorobenzene and para-dibromobenzene, yield a detailed confirmation of the theoretical predictions. (author) [French] Ce travail decrit des methodes de polarisation dynamique nucleaire dans les solides basees sur le melange thermique entre systemes de spins nucleaires. La description des processus de melange thermique met en jeu la plupart des aspects fondamentaux de la theorie de la temperature de spin. Les experiences, realisees avec du paradichlorobenzene et du paradibromobenzene, apportent une confirmation detaillee des previsions theoriques. (auteur)
International Nuclear Information System (INIS)
Ma Yugang
2000-01-01
Isospin dependent classical molecular dynamics model is used to investigate the nuclear disassembly of 129 Xe. Zpif-type plot in the field of linguistics is tested for the rank-classified cluster arrangement from this nuclear disassembly. It is found that the average cluster charge (or mass) of rank n in the charge (or mass) list is exactly inverse to its rank, i.e. there exists Zpif's law at the point of the liquid gas phase transition. This novel criterion can be used to diagnose the nuclear liquid gas phase transition experimentally and theoretically
International Nuclear Information System (INIS)
Xu Chang; Li Baoan
2010-01-01
Taking into account more accurately the isospin dependence of nucleon-nucleon interactions in the in-medium many-body force term of the Gogny effective interaction, new expressions for the single-nucleon potential and the symmetry energy are derived. Effects of both the spin (isospin) and the density dependence of nuclear effective interactions on the symmetry potential and the symmetry energy are examined. It is shown that they both play a crucial role in determining the symmetry potential and the symmetry energy at suprasaturation densities. The improved single-nucleon potential will be useful for more accurate simulation of nuclear reactions induced by rare-isotope beams within transport models.
International Nuclear Information System (INIS)
Hassan, M.Y.M.; Ramadan, S.
1983-11-01
The binding energy of nuclear matter with an excess of neutrons, of spin-up neutrons, and of spin-up protons (characterized by the corresponding parameters, αsub(tau)=(N-Z/A), αsub(n)=(Nup-Ndown)/A, and αsub(rho)=(Zup-Zdown)/A), contains three symmetry energies: the isospin symmetry energy Esub(tau), the spin symmetry energy Esub(σ), and spin-isospin symmetry energy Esub(σtau). General expressions for Esub(σ), Esub(tau) and Esub(σtau) are given in the case of the Skyrme interaction. These values are compared with previous results obtained by Dabrowski and Haensel (DH) with Brueckner-Gammel-Thaler, the Hamada-Johnston, and the Reid soft core nucleon-nucleon potentials. The spin, isospin and spin-isospin dependent parts of the single-particle potential in nuclear matter are also calculated using the Skyrme interaction. The spin, isospin and spin-isospin incompressibility are calculated using the Skyrme interaction. The spin-spin part of the optical model potential is estimated. The results are compared with those of Dabrowski and Haensel (DH) and Hassan and Ramadan. (author)
Directory of Open Access Journals (Sweden)
Gnoffo B.
2016-01-01
Full Text Available The results of the analysis of the reactions 78,86Kr +40,48 Ca at 10 AMeV are presented. The experiment was performed at the INFN Laboratori Nazionali del Sud (LNS in Catania by using the 4π multidetector CHIMERA, with beams delivered by the Superconductive Cyclotron. The competition among the various disintegration paths and in particular the isospin effects on the decay modes of the produced composite systems are investigated; this provides information about fundamental nuclear quantities such as level density, fission barrier and viscosity. Different isotopic composition and relative richness are observed among the reaction products of the two systems. An odd-even staggering effect is present in the charge distributions, in particular for the light fragments produced by the neutron-poor system. The kinematical characteristics of the IMF seem to indicate a high degree of the relaxation of the formed system. Besides, global features analysis seems to show some differences in the contribution arising from the various reaction mechanisms for the two reactions.
On the Faddeev-Yacubovsky model of four nucleon scattering problem with account of spin and isospin
International Nuclear Information System (INIS)
Sharma, V.K.
1976-01-01
The Faddeev-Yacubovsky model of four nucleons taking into account their spin and isospin with the two-channel resonating group approximation, is considered. In this approximation, one employs a completely antisymmetric wave function which can be written as the clustering of d + d and n+He 3 (or p+H 3 ) systems with antisymmetric spin isospin states. The two-nucleon interactions used are of the separable Yamaguchi form in Ssub(1)sup(3) and Ssub(0)sup(3) states. The equations for the states with quantum numbers S=0,1,2 T=0 are obtained. It is shown that with subsequent separable representation of two-particle t-matrix reduces the equations to a set of one-dimensional coupled integral equations. (author)
International Nuclear Information System (INIS)
Seebregts, A.
2011-03-01
This report presents facts and figures on new nuclear energy in the Netherlands, in the period after 2020. The information is meant to support a stakeholder discussion process on the role of new nuclear power in the transition to a sustainable energy supply for the Netherlands. The report covers a number of issues relevant to the subject. Facts and figures on the following issues are presented: Nuclear power and the power market (including impact of nuclear power on electricity market prices); Economic aspects (including costs of nuclear power and external costs and benefits, impact on end user electricity prices); The role of nuclear power with respect to security of supply; Sustainability aspects, including environmental aspects; The impact of nuclear power in three nuclear energy scenarios for the Netherlands, within the context of a Northwest European energy market: (1a) No new nuclear power in the Netherlands (Base case), (1b) After closure of the existing Borssele nuclear power plant by the end of 2033, the construction of new nuclear power plant that will operate in 2040. That plant is assumed to be designed not to have a serious core melt down accident (e.g. PBMR) (200 to 500 MWe), (2) New nuclear power shortly after closure the Borssele nuclear power plant in 2033 (1000 to 1600 MWe, Generation 3), and (3) New nuclear power plants shortly after 2020 (2000 to 5000 MWe, Generation 3). Two electricity demand scenario background scenario variants have been constructed based on an average GDP growth of about 2% per year up to 2040. The first variant is based on a steadily growing electricity demand and on currently established Dutch and European Union policies and instruments. It is expected to be largely consistent with a new and forthcoming reference projection 'Energy and Emissions 2010-2020' for the Netherlands (published by ECN and PBL in 2010). A lower demand variant is based on additional energy savings and on higher shares of renewable electricity
On the renormalization of the pion propagator and on the particle-hole in the spin-isospin channel
International Nuclear Information System (INIS)
Chanfray, G.; Delorme, J.; Ericson, M.
1983-06-01
The momentum behavior of the spin-isospin interaction was investigated. It is shown that in a model with meson exchange in presence of short range correlations the latter produce a natural cut-off of the interaction irrespective of form factor effects. This result is the equivalent for virtual particles of a theorem due to Beg on the scattering of real particles on a correlated medium
International Nuclear Information System (INIS)
Adelberger, E.G.
1975-01-01
The field of parity mixing in light nuclei bears upon one of the exciting and active problems of physics--the nature of the fundamental weak interaction. It is also a subject where polarization techniques play a very important role. Weak interaction theory is first reviewed to motivate the parity mixing experiments. Two very attractive systems are discussed where the nuclear physics is so beautifully simple that the experimental observation of tiny effects directly measures parity violating (PV) nuclear matrix elements which are quite sensitive to the form of the basic weak interaction. Since the measurement of very small analyzing powers and polarizations may be of general interest to this conference, some discussion is devoted to experimental techniques
American Society for Testing and Materials. Philadelphia
2010-01-01
1.1 These test methods cover procedures for the chemical, mass spectrometric, and spectrochemical analysis of nuclear-grade mixed oxides, (U, Pu)O2, powders and pellets to determine compliance with specifications. 1.2 The analytical procedures appear in the following order: Sections Uranium in the Presence of Pu by Potentiometric Titration Plutonium by Controlled-Potential Coulometry Plutonium by Amperometric Titration with Iron (II) Nitrogen by Distillation Spectrophotometry Using Nessler Reagent 7 to 14 Carbon (Total) by Direct Combustion-Thermal Conductivity 15 to 26 Total Chlorine and Fluorine by Pyrohydrolysis 27 to 34 Sulfur by Distillation-Spectrophotometry 35 to 43 Moisture by the Coulometric, Electrolytic Moisture Analyzer 44 to 51 Isotopic Composition by Mass Spectrometry Rare Earths by Copper Spark Spectroscopy 52 to 59 Trace Impurities by Carrier Distillation Spectroscopy 60 to 69 Impurities by Spark-Source Mass Spectrography 70 to 76 Total Gas in Reactor-Grade Mixed Dioxide P...
Meson effective mass in the isospin medium in hard-wall AdS/QCD model
Energy Technology Data Exchange (ETDEWEB)
Mamedov, Shahin [Gazi University, Department of Physics, Ankara (Turkey); Baku State University, Institute for Physical Problems, Baku (Azerbaijan); Azerbaijan National Academy of Sciences, Institute of Physics, Baku (Azerbaijan)
2016-02-15
We study a mass splitting of the light vector, axial-vector, and pseudoscalar mesons in the isospin medium in the framework of the hard-wall model. We write an effective mass definition for the interacting gauge fields and scalar field introduced in gauge field theory in the bulk of AdS space-time. Relying on holographic duality we obtain a formula for the effective mass of a boundary meson in terms of derivative operator over the extra bulk coordinate. The effective mass found in this way coincides with the one obtained from finding of poles of the two-point correlation function. In order to avoid introducing distinguished infrared boundaries in the quantization formula for the different mesons from the same isotriplet we introduce extra action terms at this boundary, which reduces distinguished values of this boundary to the same value. Profile function solutions and effective mass expressions were found for the in-medium ρ, a{sub 1}, an π mesons. (orig.)
Comprehending isospin breaking effects of X (3872 ) in a Friedrichs-model-like scheme
Zhou, Zhi-Yong; Xiao, Zhiguang
2018-02-01
Recently, we have shown that the X (3872 ) state can be naturally generated as a bound state by incorporating the hadron interactions into the Godfrey-Isgur quark model using a Friedrichs-like model combined with the quark pair creation model, in which the wave function for the X (3872 ) as a combination of the bare c c ¯ state and the continuum states can also be obtained. Under this scheme, we now investigate the isospin-breaking effect of X (3872 ) in its decays to J /ψ π+π- and J /ψ π+π-π0. By coupling its dominant continuum parts to J /ψ ρ and J /ψ ω through the quark rearrangement process, one could obtain the reasonable ratio of B (X (3872 )→J /ψ π+π-π0)/B (X (3872 )→J /ψ π+π-)≃ (0.58 - 0.92 ) . It is also shown that the D ¯D* invariant mass distributions in the B →D ¯D*K decays could be understood qualitatively at the same time. This scheme may provide more insight into the enigmatic nature of the X (3872 ) state.
Leading isospin-breaking corrections to meson masses on the lattice
Giusti, Davide; Lubicz, Vittorio; Martinelli, Guido; Sanfilippo, Francesco; Simula, Silvano; Tantalo, Nazario; Tarantino, Cecilia
2018-03-01
We present a study of the isospin-breaking (IB) corrections to pseudoscalar (PS) meson masses using the gauge configurations produced by the ETM Collaboration with Nf = 2+1+1 dynamical quarks at three lattice spacings varying from 0.089 to 0.062 fm. Our method is based on a combined expansion of the path integral in powers of the small parameters (m⌢d-m⌢u)/ΛQCD and αem, where m⌢f is the renormalized quark mass and αem the renormalized fine structure constant. We obtain results for the pion, kaon and Dmeson mass splitting; for the Dashen's theorem violation parameters εγ(MM, 2 GeV), επ0 εK0(MS, 2 GeV) for the light quark masses (m⌢d-m⌢u)(MS¯,2 GeV),(m⌢u/m⌢d)(MS¯,2 GeV); for the flavour symmetry breaking parameters R(MS, 2 GeV) and Q(MS, 2 GeV) and for the strong IB effects on the kaon decay constants.
Nuclear forces and chiral theories
International Nuclear Information System (INIS)
Friar, J.L.; Washington Univ., Seattle, WA
1995-01-01
Recent successes in ab initio calculations of light nuclei (A=2-6) will be reviewed and correlated with the dynamical consequences of chiral symmetry. The tractability of nuclear physics evinced by these results is evidence for that symmetry. The relative importance of three-nucleon forces, four-nucleon forces, multi-pion exchanges, and relativistic corrections will be discussed in the context of effective field theories and dimensional power counting. Isospin violation in the nuclear force will also be discussed in this context
International Nuclear Information System (INIS)
Trellue, Holly R.
2004-01-01
The use of light water reactors (LWRs) for the destruction of plutonium and other actinides [especially those in spent nuclear fuel (SNF)] is being examined worldwide. One possibility for transmutation of this material is the use of mixed-oxide (MOX) fuel, which is a combination of uranium and plutonium oxides. MOX fuel is used in nuclear reactors worldwide, so a large experience base for its use already exists. However, to limit implementation of SNF transmutation to only a fraction of the LWRs in the United States with a reasonable number of license extensions, full cores of MOX fuel probably are required. This paper addresses the logistics associated with using LWRs for this mission and the design issues required for full cores of MOX fuel. Given limited design modifications, this paper shows that neutronic safety conditions can be met for full cores of MOX fuel with up to 8.3 wt% of plutonium
International Nuclear Information System (INIS)
Ranjit, M.; Meeravali, N.N.; Kumar, S.J.
2010-01-01
Full text: Recently, spend nuclear fuel waste of thermal and fast reactors are emerging as an alternative valuable resource for Rh, Ru and Pd. In addition, its presence causes the difficulty in the vitrification process. Hence, its safe extraction from these wastes has to be carried out by using the environmental friendly extraction procedure. In this study, we have reported the simple mixed-micelle cloud point extraction (MM-CPE) procedure for separation as well as pre-concentration of Rh, Ru and Pd. This MM-CPE is carried out preliminarily from aqueous chloride medium with Aliquat-336/Triton X-114 mixed-micelles in the absence and presence of tin(II) chloride. In presence of chloride medium alone, only Pd get extracted quantitatively, while extraction of Rh and Ru are negligible. In presence of tin chloride, the extraction of Rh and Ru increases and becomes quantitative, without affecting the extraction of Pd. The MM-CPE conditions are optimized under influence of variables such as HCI, Aliquat-336, Triton X-114 and tin chloride concentrations and incubation time and temperature. Under the optimized conditions, the accuracy of the procedure is verified by using recovery study carried out from real water samples. This work is under progress to apply real nuclear fuel waste samples
International Nuclear Information System (INIS)
Schmidt-Kuester, W.J.
2002-01-01
The author illustrates the decision-making process in Finland referring to the following aspects: options and cost - cost comparison fossil fuels vs nuclear power - alternatives examined - potential benefit - commitments resulting from the Kyoto Protocol - jobs - acceptance of the population - safety and waste management. (orig./CB) [de
International Nuclear Information System (INIS)
Mueller, H.; Diefallah, E.H.M.; Martin, S.
1981-01-01
The solid-state reactions occurring during the moderation of recoiling 36 Cl, produced by the (n,γ) reaction, have been studied in K 2 ReCl 6 -K 2 ReBr 6 mixed crystals. The main reaction products are Re 36 ClCl 5 2- , Re 36 ClBr 5 2- , and 36 Cl - , but the more intimately mixed species Re 36 ClCl/sub n/Br/sub 5-n/ 2- (n = 1, 2, 3, 4) are found in significant amounts. The production of the different recoil-labeled species can be explained by elementary impact models: 6% of the recoils do not leave their original lattice site (primary retetion); between 6% and 23%, dependent upon the mixed-crystal composition, appear as interstitials; 31 to 48% give rise to direct displacement reactions of one halide ligand; and 40% produce larger disruption by substitution of at least two halide ligands. The results have been compared with Roessler's 38 Cl recoil experiments
International Nuclear Information System (INIS)
Baker, T.L.
1998-01-01
This report summarizes the results of a full-scale demonstration of a high density polyethylene (HDPE) package, manufactured by Arrow Construction, Inc. of Montgomery, Alabama. The HDPE package, called ARROW-PAK, was designed and patented by Arrow as both a method to macroencapsulation of radioactively contaminated lead and as an improved form of waste package for treatment and interim and final storage and/or disposal of drums of mixed waste. Mixed waste is waste that is radioactive, and meets the criteria established by the United States Environmental Protection Agency (US EPA) for a hazardous material. Results from previous testing conducted for the Department of Energy (DOE) at the Idaho National Engineering Laboratory in 1994 found that the ARROW-PAK fabrication process produces an HDPE package that passes all helium leak tests and drop tests, and is fabricated with materials impervious to the types of environmental factors encountered during the lifetime of the ARROW-PAK, estimated to be from 100 to 300 years. Arrow Construction, Inc. has successfully completed full-scale demonstration of its ARROW-PAK mixed waste macroencapsulation treatment unit at the DOE Hanford Site. This testing was conducted in accordance with Radiological Work Permit No. T-860, applicable project plans and procedures, and in close consultation with Waste Management Federal Services of Hanford, Inc.'s project management, health and safety, and quality assurance representatives. The ARROW-PAK field demonstration successfully treated 880 drums of mixed waste debris feedstock which were compacted and placed in 149 70-gallon overpack drums prior to macroencapsulation in accordance with the US EPA Alternate Debris Treatment Standards, 40 CFR 268.45. Based on all of the results, the ARROW-PAK process provides an effective treatment, storage and/or disposal option that compares favorably with current mixed waste management practices
International Nuclear Information System (INIS)
2014-01-01
This document proposes a presentation and discussion of the main notions, issues, principles, or characteristics related to nuclear energy: radioactivity (presence in the environment, explanation, measurement, periods and activities, low doses, applications), fuel cycle (front end, mining and ore concentration, refining and conversion, fuel fabrication, in the reactor, back end with reprocessing and recycling, transport), the future of the thorium-based fuel cycle (motivations, benefits and drawbacks), nuclear reactors (principles of fission reactors, reactor types, PWR reactors, BWR, heavy-water reactor, high temperature reactor of HTR, future reactors), nuclear wastes (classification, packaging and storage, legal aspects, vitrification, choice of a deep storage option, quantities and costs, foreign practices), radioactive releases of nuclear installations (main released radio-elements, radioactive releases by nuclear reactors and by La Hague plant, gaseous and liquid effluents, impact of releases, regulation), the OSPAR Convention, management and safety of nuclear activities (from control to quality insurance, to quality management and to sustainable development), national safety bodies (mission, means, organisation and activities of ASN, IRSN, HCTISN), international bodies, nuclear and medicine (applications of radioactivity, medical imagery, radiotherapy, doses in nuclear medicine, implementation, the accident in Epinal), nuclear and R and D (past R and D programmes and expenses, main actors in France and present funding, main R and D axis, international cooperation)
Single Particle Potential of a Σ Hyperon in Nuclear Matter. II Rearrangement Effects
International Nuclear Information System (INIS)
Dabrowski, J.
2000-01-01
The rearrangement contribution to the real part of the single particle potential of a Σ hyperon in nuclear matter, U Σ , is investigated. The isospin and spin dependent parts of U Σ are considered. Results obtained for four models of the Nijmegen baryon-baryon interaction are presented and discussed. (author)
International Nuclear Information System (INIS)
Khoa, Dao T.; Thang, Dang Ngoc; Loc, Bui Minh
2014-01-01
The Fermi transition (ΔL = ΔS = 0 and ΔT = 1) between the nuclear isobaric analog states (IAS), induced by the charge-exchange (p, n) or ( 3 He, t) reaction, can be considered as ''elastic'' scattering of proton or 3 He by the isovector term of the optical potential (OP) that flips the projectile isospin. The accurately measured (p, n) or ( 3 He, t) scattering cross section to the IAS can be used, therefore, to probe the isospin dependence of the proton or 3 He optical potential. Within the folding model, the isovector part of the OP is determined exclusively by the neutron-proton difference in the nuclear densities and the isospin dependence of the effective nucleon-nucleon (NN) interaction. Because the isovector coupling explicitly links the isovector part of the proton or 3 He optical potential to the cross section of the charge-exchange (p, n) or ( 3 He, t) scattering to the IAS, the isospin dependence of the effective (in-medium) NN interaction can be well tested in the folding model analysis of these charge-exchange reactions. On the other hand, the same isospin- and density-dependent NN interaction can also be used in a Hartree-Fock calculation of asymmetric nuclear matter, to estimate the nuclear matter energy and its asymmetry part (the nuclear symmetry energy). As a result, the fine-tuning of the isospin dependence of the effective NN interaction against the measured (p, n) or ( 3 He, t) cross sections should allow us to make some realistic prediction of the nuclear symmetry energy and its density dependence. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Khoa, Dao T.; Thang, Dang Ngoc [VINATOM, Institute for Nuclear Science and Technique, Hanoi (Viet Nam); Loc, Bui Minh [VINATOM, Institute for Nuclear Science and Technique, Hanoi (Viet Nam); University of Pedagogy, Ho Chi Minh City (Viet Nam)
2014-02-15
The Fermi transition (ΔL = ΔS = 0 and ΔT = 1) between the nuclear isobaric analog states (IAS), induced by the charge-exchange (p, n) or ({sup 3}He, t) reaction, can be considered as ''elastic'' scattering of proton or {sup 3}He by the isovector term of the optical potential (OP) that flips the projectile isospin. The accurately measured (p, n) or ({sup 3}He, t) scattering cross section to the IAS can be used, therefore, to probe the isospin dependence of the proton or {sup 3}He optical potential. Within the folding model, the isovector part of the OP is determined exclusively by the neutron-proton difference in the nuclear densities and the isospin dependence of the effective nucleon-nucleon (NN) interaction. Because the isovector coupling explicitly links the isovector part of the proton or {sup 3}He optical potential to the cross section of the charge-exchange (p, n) or ({sup 3}He, t) scattering to the IAS, the isospin dependence of the effective (in-medium) NN interaction can be well tested in the folding model analysis of these charge-exchange reactions. On the other hand, the same isospin- and density-dependent NN interaction can also be used in a Hartree-Fock calculation of asymmetric nuclear matter, to estimate the nuclear matter energy and its asymmetry part (the nuclear symmetry energy). As a result, the fine-tuning of the isospin dependence of the effective NN interaction against the measured (p, n) or ({sup 3}He, t) cross sections should allow us to make some realistic prediction of the nuclear symmetry energy and its density dependence. (orig.)
Momentum dependence of the symmetry potential and its influence on nuclear reactions
International Nuclear Information System (INIS)
Feng Zhaoqing
2011-01-01
A Skyrme-type momentum-dependent nucleon-nucleon force distinguishing isospin effect is parametrized and further implemented in the Lanzhou quantum molecular dynamics model, which leads to a splitting of nucleon effective mass in nuclear matter. Based on the isospin- and momentum-dependent transport model, we investigate the influence of momentum-dependent symmetry potential on several isospin-sensitive observables in heavy-ion collisions. It is found that symmetry potentials with and without the momentum dependence but corresponding to the same density dependence of the symmetry energy result in different distributions of the observables. The midrapidity neutron/proton ratios at high transverse momenta and the excitation functions of the total π - /π + and K 0 /K + yields are particularly sensitive to the momentum dependence of the symmetry potential.
Nuclear Symmetry Energy with QCD Sum Rule
International Nuclear Information System (INIS)
Jeong, K.S.; Lee, S.H.
2013-01-01
We calculate the nucleon self-energies in an isospin asymmetric nuclear matter using QCD sum rule. Taking the difference of these for the neutron and proton enables us to express an important part of the nuclear symmetry energy in terms of local operators. Calculating the operator product expansion up to mass dimension six operators, we find that the main contribution to the difference comes from the iso-vector scalar and vector operators, which is reminiscent to the case of relativistic mean field type theories where mesons with aforementioned quantum numbers produce the difference and provide the dominant mechanism for nuclear symmetry energy. (author)
Understanding the major uncertainties in the nuclear symmetry energy at suprasaturation densities
International Nuclear Information System (INIS)
Xu Chang; Li Baoan
2010-01-01
Within the interacting Fermi gas model for isospin asymmetric nuclear matter, effects of the in-medium three-body interaction and the two-body short-range tensor force owing to the ρ meson exchange, as well as the short-range nucleon correlation on the high-density behavior of the nuclear symmetry energy, are demonstrated respectively in a transparent way. Possible physics origins of the extremely uncertain nuclear symmetry energy at suprasaturation densities are discussed.
Energy Technology Data Exchange (ETDEWEB)
Powell, M.R.; Onishi, Y.; Shekarriz, R.
1997-09-01
Jet mixer pumps will be used in the Hanford Site double-shell tanks to mobilize and mix the settled solids layer (sludge) with the tank supernatant liquid. Predicting the performance of the jet mixer pumps has been the subject of analysis and testing at Hanford and other U.S. Department of Energy (DOE) waste sites. One important aspect of mixer pump performance is sludge mobilization. The research that correlates mixer pump design and operation with the extent of sludge mobilization is the subject of this report. Sludge mobilization tests have been conducted in tanks ranging from 1/25-scale (3 ft-diameter) to full scale have been conducted at Hanford and other DOE sites over the past 20 years. These tests are described in Sections 3.0 and 4.0 of this report. The computational modeling of sludge mobilization and mixing that has been performed at Hanford is discussed in Section 5.0.
International Nuclear Information System (INIS)
Powell, M.R.; Onishi, Y.; Shekarriz, R.
1997-09-01
Jet mixer pumps will be used in the Hanford Site double-shell tanks to mobilize and mix the settled solids layer (sludge) with the tank supernatant liquid. Predicting the performance of the jet mixer pumps has been the subject of analysis and testing at Hanford and other U.S. Department of Energy (DOE) waste sites. One important aspect of mixer pump performance is sludge mobilization. The research that correlates mixer pump design and operation with the extent of sludge mobilization is the subject of this report. Sludge mobilization tests have been conducted in tanks ranging from 1/25-scale (3 ft-diameter) to full scale have been conducted at Hanford and other DOE sites over the past 20 years. These tests are described in Sections 3.0 and 4.0 of this report. The computational modeling of sludge mobilization and mixing that has been performed at Hanford is discussed in Section 5.0
International Nuclear Information System (INIS)
Mueller, H.; Hagenlocher, I.
1990-01-01
Damage initiated by halogen recoil atoms in mixed hexabromochlorometallates has been evaluated with the help of the Impact-induced Multiple Ligand Abstraction (IMULA) model. The essential reactions within the scope of the model are primary retention for recoil atoms with energies below some threshold of displacement energy; halide-halide substitution reactions; reactions in which two or more halide ligands are displaced with subsequent reoccupation of the vacancies by adjacent halides; formation of interstitials which form free halide during the dissolution of the irradiated substances. It was found that for all recoil atoms and both potassium hexabromochlorometallates the contributions of the different reaction channels are very similar. These results do not differ essentially from results so far obtained in mixed crystal systems. (author) 12 refs.; 15 tabs
Drones, quasi-spin or iso-spin. A comparison of many-body techniques for general spin
International Nuclear Information System (INIS)
McKenzie, B.J.; Stedman, G.E.
1976-01-01
For an effective-spin system with 2S + 1 levels there are a number of possible mappings of spin onto pseudo-fermion operators. The relative merits of three of these methods are investigated by calculating to second order the dispersion relation for coupled spin-phonon modes in crystals containing S = 1 effective spin impurities. It is found that the drone formalism quickly becomes intractable at higher spin values, as does the related quasi-spin formalism developed in contrast with the iso-spin (or Abrinkosov projection) formalism. (author)
Chakraborty, B.; Davies, C. T. H.; Detar, C.; El-Khadra, A. X.; Gámiz, E.; Gottlieb, Steven; Hatton, D.; Koponen, J.; Kronfeld, A. S.; Laiho, J.; Lepage, G. P.; Liu, Yuzhi; MacKenzie, P. B.; McNeile, C.; Neil, E. T.; Simone, J. N.; Sugar, R.; Toussaint, D.; van de Water, R. S.; Vaquero, A.; Fermilab Lattice, Hpqcd,; Milc Collaborations
2018-04-01
All lattice-QCD calculations of the hadronic-vacuum-polarization contribution to the muon's anomalous magnetic moment to date have been performed with degenerate up- and down-quark masses. Here we calculate directly the strong-isospin-breaking correction to aμHVP for the first time with physical values of mu and md and dynamical u , d , s , and c quarks, thereby removing this important source of systematic uncertainty. We obtain a relative shift to be applied to lattice-QCD results obtained with degenerate light-quark masses of δ aμHVP ,mu≠md=+1.5 (7 )% , in agreement with estimates from phenomenology.
International Nuclear Information System (INIS)
Johnson, G.L.
1988-09-01
Lawrence Livermore National Laboratory will design, model, and test nuclear waste packages for use at the Nevada Nuclear Waste Storage Repository at Yucca Mountain, Nevada. One such package would store lightly packed spent fuel rods from both pressurized and boiling water reactors. The storage container provides the primary containment of the nuclear waste and the spent fuel rod cladding provides secondary containment. A series of transient conduction and radiation heat transfer analyses was run to determine for the first 1000 yr of storage if the temperature of the tuff at the borehole wall ever falls below 97/degree/C and whether the cladding of the stored spent fuel ever exceeds 350/degree/C. Limiting the borehole to temperatures of 97/degree/C or greater helps minimize corrosion by assuring that no condensed water collects on the container. The 350/degree/C cladding limit minimizes the possibility of creep-related failure in the spent fuel rod cladding. For a series of packages stored in a 8 x 30 m borehole grid where each package contains 10-yr-old spent fuel rods generating 4.74 kW or more, the borehole wall stays above 97/degree/C for the full 1000-yr analysis period
International Nuclear Information System (INIS)
Johnson, G.L.
1991-11-01
Lawrence Livermore National Laboratory will design, model, and test nuclear waste packages for use at the Nevada Nuclear Waste Storage Repository at Yucca Mountain, Nevada. On such package would store tightly packed spent fuel rods from both pressurized and boiling water reactors. The storage container provides the primary containment of the nuclear waste and the spent fuel rod cladding provides secondary containment. A series of transient conduction and radiation heat transfer analyses was run to determine for the first 1000 yr of storage if the temperature of the tuff at the borehole wall ever falls below 97 degrees C and whether the cladding of the stored spent fuel ever exceeds 350 degrees C. Limiting the borehole to temperatures of 97 degrees C or greater helps minimize corrosion by assuring that no condensed water collects on the container. The 350 degrees C cladding limit minimizes the possibility of creep- related failure in the spent fuel rod cladding. For a series of packages stored in a 8 x 30 m borehole grid where each package contains 10-yr-old spent fuel rods generating 4.74 kW or more, the borehole wall stays above 97 degrees C for the full 10000-yr analysis period. For the 4.74-kW load, the peak cladding temperature rises to just below the 350 degrees C limit about 4 years after emplacement. If the packages are stored using the spacing specified in the Site Characterization Plan (15 ft x 126 ft), a maximum of 4.1 kW per container may be stored. If the 0.05-m-thick void between the container and the borehole wall is filled with loosely packed bentonite, the peak cladding temperature rises more than 40 degrees C above the allowed cladding limit. In all cases the dominant heat transfer mode between container components is thermal radiation
Sun, Bao-Xi; Wan, Da-Ming; Zhao, Si-Yu
2018-05-01
The {{{D}}\\bar{{{D}}}}{{* }} interaction via a ρ or ω exchange is constructed within an extended hidden gauge symmetry approach, where the strange quark is replaced by the charm quark in the SU(3) flavor space. With this {{{D}}\\bar{{{D}}}}{{* }} interaction, a bound state slightly lower than the {{{D}}\\bar{{{D}}}}{{* }} threshold is generated dynamically in the isospin zero sector by solving the Bethe-Salpeter equation in the coupled-channel approximation, which might correspond to the X(3872) particle announced by many collaborations. This formulism is also used to study the {{{B}}\\bar{{{B}}}}{{* }} interaction, and a {{{B}}\\bar{{{B}}}}{{* }} bound state with isospin zero is generated dynamically, which has no counterpart listed in the review of the Particle Data Group. Furthermore, the one-pion exchange between the D meson and the {\\bar{{{D}}}}{{* }} is analyzed precisely, and we do not think the one-pion exchange potential need be considered when the Bethe-Salpeter equation is solved.
Cross channel isospin amplitude analysis of the reaction pN→NNπ at 19 GeV/c
International Nuclear Information System (INIS)
Bakken, V.; Gennow, H.; Hansen, J.D.; Lundborg, P.; Maekelae, J.; Pimiae, M.; Sellden, B.; Skjevling, G.; Sundell, E.
1976-10-01
The reaction N 1 N 2 →N 3 (N 4 π) is analysed in terms of three isospin amplitudes Msub(I)sup(Isub(x)) where Isub(x) and I are the isospin of the exchanged particle and the N 4 π combination respectively. The amplitudes are studied as functions of the momentum transfer to and the mass of the N 4 π system. The M 0 sub(1/2) amplitude exhibits the characteristics of diffraction dissociation with a broad low mass enhancement centered around 1.35 GeV. The dsigma/dt' distribution of M 0 sub(1/2) shows a clear break around 0.2 (GeV/c) 2 for masses smaller than 1.36 GeV. For higher masses the break disappears and the slope of the forward peak becomes smaller. The interference between M 0 sub(1/2) and M 1 sub(1/2) is zero for small values of t' and becomes large in magnitude and negative for larger t' values. The other interference terms are consistent with being zero. The hypothesis of factorization is tested for the M 0 sub(1/2) amplitude by comparison with the corresponding amplitude of π +- N reactions. The agreement is excellent over the whole mass range. (Auth.)
Techniques of nuclear structure calculations
International Nuclear Information System (INIS)
Dyson, R.D.
1967-04-01
The quasiparticle method for identical particles interacting through pairing forces has been extended by others for use with systems of neutrons and protons. The method is to project isospin from separately considered neutron and proton quasiparticle wavefunctions. This is discussed in detail, and it seems that the projection may not be important. Therefore unprojected quasiparticle wavefunctions are tried with some success as a basis of states in which to diagonalize a realistic nuclear Hamiltonian. Brief unrelated calculations on nuclei of mass 19 and the SU(3) classification of states in the p-f shell are also presented. (author)
International Nuclear Information System (INIS)
EL-Zahhar, A.Abd El Wahed M.
1998-01-01
As solvent extraction is a technique which has been highly developed within various national energy programs because of its suitability as selective separation process for fission products, actinides and other radioactive substances. It is very important to look for to be used as extractants and to study the optimum condition under which these compounds can be used as such. This work aims at studying the use of the carbamoyl phosphonate as an extractant in the extraction of certain elements. Also studying the effect of mixed extraction (possibility of enhancing extraction or synergism) as will as temperature effect on the extraction process and calculating the thermodynamic parameters of the proposed extraction reactions. To compare the extraction behavior of the phosphonate compound with other chelating agents as HTTA and HDEHP , studying the extraction of the same elements with these cheating agents under the same conditions is also one of the objectives of this work. This work also aims at studying the extraction of certain elements in comparable oxidation states. The selected elements; uranium which represents the main pert in the nuclear fuel, cobalt which is produced in the nuclear fission products, europium which is also produced as a fission product and is analog of the trivalent actinides series and chromium which is a corrosion product in the nuclear fuel cycle and is an analogue of transition elements. The work also aims at studying the extraction of the selected elements from different aqueous media of low acidic nature to classify the effect of the aqueous phase on the extraction systems handled
Energy Technology Data Exchange (ETDEWEB)
Varani, J L; Comandu, J F [Comision Nacional de Energia Atomica, Buenos Aires (Argentina)
1998-07-01
Full text: During decontamination works of the fueling machine of Atucha I nuclear power plant (AINPP), a liquid waste with special characteristics was generated, which needed the development of a treatment method. The waste consisted of an emulsion designed for the cleaning of mechanical components and was formed by an organic solvent dispersed in water with aid of an emulsifier additive. After several cleaning operations, the emulsion contained an important quantity of lubricants and radioactive dirt. The treatment had the objective of recycling a toxic waste such as the organic solvent and reducing the volume of the residual mass. Laboratory tests were made tending to the emulsion separation in their components. Ionic force and ionic mobility were modified for join the emulsion micelles and produce their coalescence. Different salts and working temperatures were tried and it was stated that the combination of 1% of Na{sub 2}SO{sub 4} added and 40 degree C temperature were the optimum taking into account the available equipment in AINPP and cost considerations. The process was carried out in batch mode and 3 residual streams were obtained, an aqueous one which was sent to Residual Water System of AINPP, an organic liquid consisting of decontaminated hydrocarbons, useful for other cleaning tasks and finally a solid one, sited in the in-between interface of the other two liquids, consisting of insoluble soaps used as lubricant thickness, containing the principal proportion of radioactivity. As a result of this process we have achieved a volume reduction higher than 90%, the recycling of the organic solvent and concentration of radioactivity in a solid greasy mass with low water solubility. (author) [Spanish] Texto completo: Como resultado de tareas de descontaminacion de la maquina de carga de la central nuclear Atucha I (CNAI) se genero un residuo liquido de caracteristicas especiales, que requirio el desarrollo de un metodo de tratamiento. El residuo consistia en
Joliot-Curie nuclear physics school 1983
International Nuclear Information System (INIS)
The 1983 Joliot-Curie school was aimed at reviewing some outstanding aspects of current research in nuclear spectroscopy. The recent developments of high and very high spin states study are presented. The most important experimental methods and explaining concepts concerning the ground states and the first excited levels of nuclei far from beta stability are reviewed. Spin-isospin excitations are dealt with from a theoretical point of view and also for the most outstanding experimental results. At last, basic concepts and limits of the shell model nuclear description are outlined and illustrated [fr
Nuclear chiral dynamics and thermodynamics
Holt, Jeremy W.; Kaiser, Norbert; Weise, Wolfram
2013-11-01
This presentation reviews an approach to nuclear many-body systems based on the spontaneously broken chiral symmetry of low-energy QCD. In the low-energy limit, for energies and momenta small compared to a characteristic symmetry breaking scale of order 1 GeV, QCD is realized as an effective field theory of Goldstone bosons (pions) coupled to heavy fermionic sources (nucleons). Nuclear forces at long and intermediate distance scales result from a systematic hierarchy of one- and two-pion exchange processes in combination with Pauli blocking effects in the nuclear medium. Short distance dynamics, not resolved at the wavelengths corresponding to typical nuclear Fermi momenta, are introduced as contact interactions between nucleons. Apart from a set of low-energy constants associated with these contact terms, the parameters of this theory are entirely determined by pion properties and low-energy pion-nucleon scattering observables. This framework (in-medium chiral perturbation theory) can provide a realistic description of both isospin-symmetric nuclear matter and neutron matter, with emphasis on the isospin-dependence determined by the underlying chiral NN interaction. The importance of three-body forces is emphasized, and the role of explicit Δ(1232)-isobar degrees of freedom is investigated in detail. Nuclear chiral thermodynamics is developed and a calculation of the nuclear phase diagram is performed. This includes a successful description of the first-order phase transition from a nuclear Fermi liquid to an interacting Fermi gas and the coexistence of these phases below a critical temperature Tc. Density functional methods for finite nuclei based on this approach are also discussed. Effective interactions, their density dependence and connections to Landau Fermi liquid theory are outlined. Finally, the density and temperature dependences of the chiral (quark) condensate are investigated.
International Nuclear Information System (INIS)
Anon.
2000-01-01
The first text deals with a new circular concerning the collect of the medicine radioactive wastes, containing radium. This campaign wants to incite people to let go their radioactive wastes (needles, tubes) in order to suppress any danger. The second text presents a decree of the 31 december 1999, relative to the limitations of noise and external risks resulting from the nuclear facilities exploitation: noise, atmospheric pollution, water pollution, wastes management and fire prevention. (A.L.B.)
D mesons in asymmetric nuclear matter
International Nuclear Information System (INIS)
Mishra, Amruta; Mazumdar, Arindam
2009-01-01
We calculate the in-medium D and D meson masses in isospin-asymmetric nuclear matter in an effective chiral model. The D and D mass modifications arising from their interactions with the nucleons and the scalar mesons in the effective hadronic model are seen to be appreciable at high densities and have a strong isospin dependence. These mass modifications can open the channels of the decay of the charmonium states (Ψ ' ,χ c ,J/Ψ) to DD pairs in dense hadronic matter. The isospin asymmetry in the doublet D=(D 0 ,D + ) is seen to be particularly appreciable at high densities and should show in observables such as their production and flow in asymmetric heavy-ion collisions in the compressed baryonic matter experiments in the future facility of FAIR, GSI. The results of the present work are compared to calculations of the D(D) in-medium masses in the literature using the QCD sum rule approach, quark meson coupling model, and coupled channel approach as well as to those from studies of quarkonium dissociation using heavy-quark potentials from lattice QCD at finite temperatures
Leach, K. G.; Garrett, P. E.; Towner, I. S.; Ball, G. C.; Bildstein, V.; Brown, B. A.; Demand, G. A.; Faestermann, T.; Finlay, P.; Green, K. L.; Hertenberger, R.; Krücken, R.; Phillips, A. A.; Rand, E. T.; Sumithrarachchi, C. S.; Svensson, C. E.; Triambak, S.; Wirth, H.-F.; Wong, J.
2013-06-01
With the recent inclusion of core orbitals to the radial-overlap component of the isospin-symmetry-breaking (ISB) corrections for superallowed Fermi β decay, experimental data are needed to test the validity of the theoretical model. This work reports measurements of single-neutron pickup reaction spectroscopic factors into 63Zn, one neutron away from 62Zn, the superallowed daughter of 62Ga. The experiment was performed using a 22-MeV polarized deuteron beam, a Q3D magnetic spectrograph, and a cathode-strip focal-plane detector to analyze outgoing tritons at nine angles between 10∘ and 60∘. Angular distributions and vector analyzing powers were obtained for all 162 observed states in 63Zn, including 125 newly observed levels, up to an excitation energy of 4.8 MeV. Spectroscopic factors are extracted and compared to several shell-model predictions, and implications for the ISB calculations are discussed.
Atar, L.; Paschalis, S.; Barbieri, C.; Bertulani, C. A.; Díaz Fernández, P.; Holl, M.; Najafi, M. A.; Panin, V.; Alvarez-Pol, H.; Aumann, T.; Avdeichikov, V.; Beceiro-Novo, S.; Bemmerer, D.; Benlliure, J.; Boillos, J. M.; Boretzky, K.; Borge, M. J. G.; Caamaño, M.; Caesar, C.; Casarejos, E.; Catford, W.; Cederkall, J.; Chartier, M.; Chulkov, L.; Cortina-Gil, D.; Cravo, E.; Crespo, R.; Dillmann, I.; Elekes, Z.; Enders, J.; Ershova, O.; Estrade, A.; Farinon, F.; Fraile, L. M.; Freer, M.; Galaviz Redondo, D.; Geissel, H.; Gernhäuser, R.; Golubev, P.; Göbel, K.; Hagdahl, J.; Heftrich, T.; Heil, M.; Heine, M.; Heinz, A.; Henriques, A.; Hufnagel, A.; Ignatov, A.; Johansson, H. T.; Jonson, B.; Kahlbow, J.; Kalantar-Nayestanaki, N.; Kanungo, R.; Kelic-Heil, A.; Knyazev, A.; Kröll, T.; Kurz, N.; Labiche, M.; Langer, C.; Le Bleis, T.; Lemmon, R.; Lindberg, S.; Machado, J.; Marganiec-Gałązka, J.; Movsesyan, A.; Nacher, E.; Nikolskii, E. Y.; Nilsson, T.; Nociforo, C.; Perea, A.; Petri, M.; Pietri, S.; Plag, R.; Reifarth, R.; Ribeiro, G.; Rigollet, C.; Rossi, D. M.; Röder, M.; Savran, D.; Scheit, H.; Simon, H.; Sorlin, O.; Syndikus, I.; Taylor, J. T.; Tengblad, O.; Thies, R.; Togano, Y.; Vandebrouck, M.; Velho, P.; Volkov, V.; Wagner, A.; Wamers, F.; Weick, H.; Wheldon, C.; Wilson, G. L.; Winfield, J. S.; Woods, P.; Yakorev, D.; Zhukov, M.; Zilges, A.; Zuber, K.; R3B Collaboration
2018-01-01
Quasifree one-proton knockout reactions have been employed in inverse kinematics for a systematic study of the structure of stable and exotic oxygen isotopes at the R3B /LAND setup with incident beam energies in the range of 300 - 450 MeV /u . The oxygen isotopic chain offers a large variation of separation energies that allows for a quantitative understanding of single-particle strength with changing isospin asymmetry. Quasifree knockout reactions provide a complementary approach to intermediate-energy one-nucleon removal reactions. Inclusive cross sections for quasifree knockout reactions of the type O A (p ,2 p )N-1A have been determined and compared to calculations based on the eikonal reaction theory. The reduction factors for the single-particle strength with respect to the independent-particle model were obtained and compared to state-of-the-art ab initio predictions. The results do not show any significant dependence on proton-neutron asymmetry.
Directory of Open Access Journals (Sweden)
Laurent Vuataz
Full Text Available Aquatic larvae of many Rhithrogena mayflies (Ephemeroptera inhabit sensitive Alpine environments. A number of species are on the IUCN Red List and many recognized species have restricted distributions and are of conservation interest. Despite their ecological and conservation importance, ambiguous morphological differences among closely related species suggest that the current taxonomy may not accurately reflect the evolutionary diversity of the group. Here we examined the species status of nearly 50% of European Rhithrogena diversity using a widespread sampling scheme of Alpine species that included 22 type localities, general mixed Yule-coalescent (GMYC model analysis of one standard mtDNA marker and one newly developed nDNA marker, and morphological identification where possible. Using sequences from 533 individuals from 144 sampling localities, we observed significant clustering of the mitochondrial (cox1 marker into 31 GMYC species. Twenty-one of these could be identified based on the presence of topotypes (expertly identified specimens from the species' type locality or unambiguous morphology. These results strongly suggest the presence of both cryptic diversity and taxonomic oversplitting in Rhithrogena. Significant clustering was not detected with protein-coding nuclear PEPCK, although nine GMYC species were congruent with well supported terminal clusters of nDNA. Lack of greater congruence in the two data sets may be the result of incomplete sorting of ancestral polymorphism. Bayesian phylogenetic analyses of both gene regions recovered four of the six recognized Rhithrogena species groups in our samples as monophyletic. Future development of more nuclear markers would facilitate multi-locus analysis of unresolved, closely related species pairs. The DNA taxonomy developed here lays the groundwork for a future revision of the important but cryptic Rhithrogena genus in Europe.
International Nuclear Information System (INIS)
Kim, Byung Seok; Sohn, Chang Hyun; Ahn, Kwang Il
2004-01-01
The retention of a molten pool vessel cooled by internal vessel reflooding and/or external vessel reactor cavity flooding has been considered as one of severe accident management strategies. The present numerical study investigates the effect of both internal and external vessel mixed cooling on an internally heated molten pool. The molten pool is confined in a hemispherical vessel with reference to the thermal behavior of the vessel wall. In this study, our numerical model used a scaled-down reactor vessel of a KSNP (Korea Standard Nuclear Power) reactor design of 1000 MWe (a pressurized water reactor with a large and dry containment). Well-known temperature-dependent boiling heat transfer curves are applied to the internal and external vessel cooling boundaries. Radiative heat transfer has been considered in the case of dry internal vessel boundary condition. Computational results show that the external cooling vessel boundary conditions have better effectiveness than internal vessel cooling in the retention of the melt pool vessel failure
International Nuclear Information System (INIS)
Kinlen, L.J.; O'Brien, F.; Clarke, K.; Balkwill, A.; Matthews, F.
1993-01-01
The objective of this study was to determine if any excess of childhood leukaemia and non-Hodgkin's lymphoma was associated with certain striking examples of population mixing in rural Scotland produced by the North Sea oil industry. Details were traced for over 30 000 workers (25 yrs old) involved in the construction of the large oil terminals in the Shetland and Orkney islands in northern Scotland or employed offshore. Home addresses of the 17160 Scottish residents were postcoded, integrated with census data, and then classified as urban or rural. Rural postcode sectors, ranked by proportion of oil workers, were grouped into three categories with similar numbers of children but contrasting densities of oil workers. The incidence of leukaemia and non-Hodgkin's lymphoma was examined in these rural (and also in urban) categories in the periods 1974-8, 1979-83 and 1984-8. A significant excess of leukaemia and non-Hodgkin's lymphoma was found in 1979-83 in the group of rural home areas with the largest proportion of oil workers, following closely on large increases in the workforce. The area near the Dounreay nuclear installation, where an excess of leukaemia is already well known, was within the rural high oil category. (Author)
American Society for Testing and Materials. Philadelphia
2002-01-01
1.1 These product consistency test methods A and B evaluate the chemical durability of homogeneous glasses, phase separated glasses, devitrified glasses, glass ceramics, and/or multiphase glass ceramic waste forms hereafter collectively referred to as “glass waste forms” by measuring the concentrations of the chemical species released to a test solution. 1.1.1 Test Method A is a seven-day chemical durability test performed at 90 ± 2°C in a leachant of ASTM-Type I water. The test method is static and conducted in stainless steel vessels. Test Method A can specifically be used to evaluate whether the chemical durability and elemental release characteristics of nuclear, hazardous, and mixed glass waste forms have been consistently controlled during production. This test method is applicable to radioactive and simulated glass waste forms as defined above. 1.1.2 Test Method B is a durability test that allows testing at various test durations, test temperatures, mesh size, mass of sample, leachant volume, a...
International Nuclear Information System (INIS)
Lutz, M.F.M.; Korpa, C.L.
2001-05-01
We evaluate the antikaon spectral density in isospin symmetric nuclear matter. The in-medium antikaon-nucleon scattering process and the antikaon propagation is treated in a self consistent and relativistic manner where a maximally scheme-independent formulation is derived by performing a partial density resummation in terms of the free-space antikaon-nucleon scattering amplitudes. The latter amplitudes are taken from a relativistic and chiral coupled-channel SU(3) approach which includes s-, p- and d-waves systematically. Particular care is taken on the proper evaluation of the in-medium mixing of the partial waves. Our analysis establishes a rich structure of the antikaon spectral function with considerable strength at small energies. At nuclear saturation density we predict attractive mass shifts for the Λ(1405), Σ(1385) and Λ(1520) of about 130 MeV, 60 MeV and 100 MeV respectively. The hyperon states are found to exhibit at the same time an increased decay width of about 150 MeV for the s-wave Λ(1405), 70 MeV for the p-wave Σ(1385) and 100 MeV for the d-wave Λ(1520) resonance. (orig.)
The nuclear equation of state: A tool to constrain in-medium hadronic interactions
International Nuclear Information System (INIS)
Sammarruca, F.; Krastev, P. G.
2006-01-01
Recently we have been concerned with the properties of the nuclear equation of state (EOS), a relation between thermodynamic variables characterizing a medium. At zero temperature, such relation can be expressed in terms of energy (or pressure) as a function of density. Mechanisms such as isospin and/or spin asymmetry can have a dramatic impact on the equation of state. After briefly reviewing our previous work concerning the isospin asymmetries of the EOS, we will concentrate on our most recent results and their relevance towards a better understanding of the nuclear force in exotic matter. The approach we take is microscopic and relativistic. The calculated EOS properties are derived self-consistently from realistic nucleon-nucleon interactions. This makes it possible to understand the predictions in terms of specific features of the nuclear force model.
Energy Technology Data Exchange (ETDEWEB)
Bello, Mollie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Welch, Cynthia F. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Goodwin, Lynne Alese [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Keller, Jennie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2014-08-22
Sylgard® 184 and Sylgard® 186 silicone elastomers form Dow Corning® are used as potting agents across the Nuclear Weapons Complex. A standardized mixing procedure is required for filled versions of these products. The present study is a follow-up to a mixing study performed by MST-7 which established the best mixing procedure to use when adding filler to either 184 or 186 base resins. The most effective and consistent method of mixing resin and curing agent for three modified silicone elastomer recipes is outlined in this report. For each recipe, sample size, mixing type, and mixing time was varied over 10 separate runs. The results show that the THINKY™ Mixer gives reliable mixing over varying batch sizes and mixing times. Hand Mixing can give improved mixing, as indicated by reduced initial viscosity; however, this method is not consistent.
Heavy quarkonium hybrids: Spectrum, decay, and mixing
Oncala, Ruben; Soto, Joan
2017-07-01
We present a largely model-independent analysis of the lighter heavy quarkonium hybrids based on the strong coupling regime of potential nonrelativistic QCD. We calculate the spectrum at leading order, including the mixing of static hybrid states. We use potentials that fulfill the required short and long distance theoretical constraints and fit well the available lattice data. We argue that the decay width to the lower lying heavy quarkonia can be reliably estimated in some cases and provide results for a selected set of decays. We also consider the mixing with heavy quarkonium states. We establish the form of the mixing potential at O (1 /mQ) , mQ being the mass of the heavy quarks, and work out its short and long distance constraints. The weak coupling regime of potential nonrelativistic QCD and the effective string theory of QCD are used for that goal. We show that the mixing effects may indeed be important and produce large spin symmetry violations. Most of the isospin zero XYZ states fit well in our spectrum, either as a hybrid or standard quarkonium candidate.
Two-body correlation functions in dilute nuclear matter
International Nuclear Information System (INIS)
Isayev, A A
2006-01-01
Finding the distinct features of the crossover from the regime of large overlapping Cooper pairs to the limit of non-overlapping pairs of fermions (Shafroth pairs) in multicomponent Fermi systems remains one of the actual problems in a quantum many-body theory. Here this transition is studied by calculating the two-body density, spin and isospin correlation functions in dilute asymmetric nuclear matter. It is shown that criterion of the crossover (Phys. Rev. Lett. 95, 090402 (2005)), consisting in the change of the sign of the density correlation function at low momentum transfer, fails to describe correctly the density-driven BEC-BCS transition at finite isospin asymmetry or finite temperature. As an unambiguous signature of the BEC-BCS transition, there can be used the presence (BCS regime) or absence (BEC regime) of the singularity in the momentum distribution of the quasiparticle density of states
Somarelli, J A; Mesa, A; Rodriguez, R; Avellan, R; Martinez, L; Zang, Y J; Greidinger, E L; Herrera, R J
2011-03-01
Systemic lupus erythematosus (SLE) and mixed connective tissue disease (MCTD) are autoimmune illnesses characterized by the presence of high titers of autoantibodies directed against a wide range of 'self ' antigens. Proteins of the U1 small nuclear ribonucleoprotein particle (U1 snRNP) are among the most immunogenic molecules in patients with SLE and MCTD. The recent release of a crystallized U1 snRNP provides a unique opportunity to evaluate the effects of tertiary and quaternary structures on autoantigenicity within the U1 snRNP. In the present study, an epitope map was created using the U1 snRNP crystal structure. A total of 15 peptides were tested in a cohort of 68 patients with SLE, 29 with MCTD and 26 healthy individuals and mapped onto the U1 snRNP structure. Antigenic sites were detected in a variety of structures and appear to include RNA binding domains, but mostly exclude regions necessary for protein-protein interactions. These data suggest that while some autoantibodies may target U1 snRNP proteins as monomers or apoptosis-induced, protease-digested fragments, others may recognize epitopes on assembled protein subcomplexes of the U1 snRNP. Although nearly all of the peptides are strong predictors of autoimmune illness, none were successful at distinguishing between SLE and MCTD. The antigenicity of some peptides significantly correlated with several clinical symptoms. This investigation implicitly highlights the complexities of autoimmune epitopes, and autoimmune illnesses in general, and demonstrates the variability of antigens in patient populations, all of which contribute to difficult clinical diagnoses.
Finite rank separable approximation for Skyrme interactions: spin-isospin excitations
International Nuclear Information System (INIS)
Severyukhin, A.P.; Voronov, V.V.; Borzov, I.N.; Nguyen Van Giai
2012-01-01
A finite rank separable approximation for the quasiparticle random phase approximation with the Skyrme interactions is applied for the case of charge-exchange nuclear modes. The coupling between one- and two-phonon terms in the wave functions is taken into account. It has been shown that the approximation reproduces reasonably well the full charge-exchange RPA results for the spin-dipole resonances in 132 Sn. As an illustration of the method, the phonon-phonon coupling effect on the β-decay half-life of 78 Ni is considered
International Nuclear Information System (INIS)
Takahashi, Y.
2003-01-01
This report describes the research work performed under the support of the DOE research grant E-FG02-97ER4108. The work is composed of three parts: (1) Visual analysis and quality control of the Micro Vertex Detector (MVD) of the PHENIX experiments carried out of Brookhaven National Laboratory. (2) Continuation of the data analysis of the EMU05/09/16 experiments for the study of the inclusive particle production spectra and multi-particle correlation. (3) Exploration of a new statistical means to study very high-multiplicity of nuclear-particle ensembles and its perspectives to apply to the higher energy experiments
International Nuclear Information System (INIS)
Haxton, W.C.
1992-01-01
The problem of core-collapse supernovae is used to illustrate the many connections between nuclear astrophysics and the problems nuclear physicists study in terrestrial laboratories. Efforts to better understand the collapse and mantle ejection are also motivated by a variety of interdisciplinary issues in nuclear, particle, and astrophysics, including galactic chemical evolution, neutrino masses and mixing, and stellar cooling by the emission of new particles. The current status of theory and observations is summarized
International Nuclear Information System (INIS)
Mathews, G.J.; Bloom, S.D.; Hausman, R.F. Jr.
1983-01-01
Shell-model calculations of the Gamow-Teller strength function for 90 Zr have been performed utilizing a realistic finite-range two-body interaction in a model space consisting of the 2p and 1g shells. The effects of admixtures of two-particle two-hole excitations in 90 Nb, mostly due to the spin and isospin exchange components of the nucleon-nucleon force, are discussed. Ground state correlations in 90 Zr are also added via seniority-zero two-proton excitations from the 2p shell into the 1g/sub 9/2/ shell. With the correlations the Gamow-Teller strength function is in good agreement with the experimental results and accounts for essentially all of the observed dispersion of strength. The inclusion of these correlations does not, however, produce either a displacement of Gamow-Teller strength to higher excitation energies, or a significant change in the total strength. Thus, they cannot account for the observed Gamow-Teller quenching. The quenching factor derived by a comparison of our calculated results with experiment is 0.52
Giusti, D.; Lubicz, V.; Tarantino, C.; Martinelli, G.; Sanfilippo, F.; Simula, S.; Tantalo, N.; RM123 Collaboration
2017-06-01
We present a lattice computation of the isospin-breaking corrections to pseudoscalar meson masses using the gauge configurations produced by the European Twisted Mass Collaboration with Nf=2 +1 +1 dynamical quarks at three values of the lattice spacing (a ≃0.062 , 0.082, and 0.089 fm) with pion masses in the range Mπ≃210 - 450 MeV . The strange and charm quark masses are tuned at their physical values. We adopt the RM123 method based on the combined expansion of the path integral in powers of the d - and u -quark mass difference (m^d-m^u) and of the electromagnetic coupling αe m. Within the quenched QED approximation, which neglects the effects of the sea-quark charges, and after the extrapolations to the physical pion mass and to the continuum and infinite volume limits, we provide results for the pion, kaon, and (for the first time) charmed-meson mass splittings, for the prescription-dependent parameters ɛπ0, ɛγ(M S ¯ ,2 GeV ) , ɛK0(M S ¯ ,2 GeV ) , related to the violations of the Dashen's theorem, and for the light quark mass difference (m^ d-m^ u)(M S ¯ ,2 GeV ) .
Atar, L; Paschalis, S; Barbieri, C; Bertulani, C A; Díaz Fernández, P; Holl, M; Najafi, M A; Panin, V; Alvarez-Pol, H; Aumann, T; Avdeichikov, V; Beceiro-Novo, S; Bemmerer, D; Benlliure, J; Boillos, J M; Boretzky, K; Borge, M J G; Caamaño, M; Caesar, C; Casarejos, E; Catford, W; Cederkall, J; Chartier, M; Chulkov, L; Cortina-Gil, D; Cravo, E; Crespo, R; Dillmann, I; Elekes, Z; Enders, J; Ershova, O; Estrade, A; Farinon, F; Fraile, L M; Freer, M; Galaviz Redondo, D; Geissel, H; Gernhäuser, R; Golubev, P; Göbel, K; Hagdahl, J; Heftrich, T; Heil, M; Heine, M; Heinz, A; Henriques, A; Hufnagel, A; Ignatov, A; Johansson, H T; Jonson, B; Kahlbow, J; Kalantar-Nayestanaki, N; Kanungo, R; Kelic-Heil, A; Knyazev, A; Kröll, T; Kurz, N; Labiche, M; Langer, C; Le Bleis, T; Lemmon, R; Lindberg, S; Machado, J; Marganiec-Gałązka, J; Movsesyan, A; Nacher, E; Nikolskii, E Y; Nilsson, T; Nociforo, C; Perea, A; Petri, M; Pietri, S; Plag, R; Reifarth, R; Ribeiro, G; Rigollet, C; Rossi, D M; Röder, M; Savran, D; Scheit, H; Simon, H; Sorlin, O; Syndikus, I; Taylor, J T; Tengblad, O; Thies, R; Togano, Y; Vandebrouck, M; Velho, P; Volkov, V; Wagner, A; Wamers, F; Weick, H; Wheldon, C; Wilson, G L; Winfield, J S; Woods, P; Yakorev, D; Zhukov, M; Zilges, A; Zuber, K
2018-02-02
Quasifree one-proton knockout reactions have been employed in inverse kinematics for a systematic study of the structure of stable and exotic oxygen isotopes at the R^{3}B/LAND setup with incident beam energies in the range of 300-450 MeV/u. The oxygen isotopic chain offers a large variation of separation energies that allows for a quantitative understanding of single-particle strength with changing isospin asymmetry. Quasifree knockout reactions provide a complementary approach to intermediate-energy one-nucleon removal reactions. Inclusive cross sections for quasifree knockout reactions of the type ^{A}O(p,2p)^{A-1}N have been determined and compared to calculations based on the eikonal reaction theory. The reduction factors for the single-particle strength with respect to the independent-particle model were obtained and compared to state-of-the-art ab initio predictions. The results do not show any significant dependence on proton-neutron asymmetry.
Centrality dependence of isospin effect signatures in 124Sn+64Ni and 112Sn+58Ni reactions
International Nuclear Information System (INIS)
Planeta, R.; Brzychczyk, J.; Majka, Z.; Sochocka, A.; Amorini, F.; Cavallaro, S.; Toro, M. Di; Giustolisi, F.; Lanzalone, G.; Anzalone, A.; Bonasera, A.; Colonna, M.; Maiolino, C.; Porto, F.; Rizzo, F.; Russotto, P.; Auditore, L.; Trifiro, A.; Trimarchi, M.; Baran, V.
2008-01-01
Signatures of isospin effects were investigated for neutron-rich ( 124 Sn+ 64 Ni) and neutron-poor ( 112 Sn+ 58 Ni) systems at 35 MeV/nucleon for noncentral collisions. The centrality dependence of these signatures was tested for several impact parameter estimators. Our main observations are (i) the yields of 1 H and 3 He particles in the neutron-poor system are strongly enhanced with respect to the neutron-rich system, and the yields of 3 H, 6 He, and 7,8 Li are suppressed at all impact parameters, (ii) the yields of 2 H, 4 He, and 6 Li particles are almost the same for both systems, (iii) the N/Z ratio of intermediate mass fragments is correlated with the neutron richness of the system and is weakly dependent on the centrality of the collision, and (iv) the neutron richness of the detected fragments increases strongly with decreasing rapidity in the range from that of the projectile-like fragment to the c.m. region. The gross features of experimental data are reproduced by quantum molecular dynamics model calculations. A comparison between model calculations and the data indicates that the fragments produced in the c.m. regions are weakly excited
Nuclear theory research. Technical progress report
International Nuclear Information System (INIS)
1982-01-01
Progress is briefly described on the following studies: (1) Dirac phenomenology for deuteron elastic scattering, (2) Dirac wave functions in nuclear distorted wave calculations, (3) impulse approximation for p→p → dπ + reaction above the 3-3 resonance, (4) coherent π production, (5) nuclear potentials from Dirac bound state wavefunctions, (6) nonlocality effects in nuclear reactions, (7) unhappiness factors in DWBA description of (t,p) and (p,t) reactions, (8) absolute normalization of three-nucleon transfer reactions, (9) formulation of a finite-range CCBA computer program, (10) crossing symmetric solutions of the low equations, (11) pion scattering from quark bags, (12) study of the p 11 channel in the delta model, (13) isovector corrections in pion-nucleus scattering, (14) pionic excitation of nuclear giant resonances, and (15) isospin dependence of the second-order pion-nucleus optical potential
Study of Electron Gas on a Neutron-Rich Nuclear Pasta
Ramirez-Homs, Enrique
This study used a classical molecular dynamics model to observe the role of electron gas on the formation of nuclear structures at subsaturation densities (rho pasta structures was observed even with the absence of the Coulomb interaction but with a modication of the shapes formed. It was found that the presence of the electron gas tends to distribute matter more evenly, forms less compact objects, decreases the isospin content of clusters, modies the nucleon mobility, reduces the persistence and the fragment size multiplicity, but does not alter the inter-particle distance in clusters. The degree of these effects also varied on the nuclear structures and depended on their isospin content, temperature, and density.
Probing properties of neutron stars with terrestrial nuclear reactions
International Nuclear Information System (INIS)
Li Baoan; Chen Liewen; Ko, C.M.; Steiner, Andrew W.; Yong Gaochan
2006-01-01
Heavy-ion reactions induced by neutron-rich nuclei provide the unique opportunity in terrestrial laboratories to constrain the nuclear symmetry energy Esym in a broad density range. A conservative constraint, 32(ρ/ρ0)0.7 < Esym(ρ) < 32(ρ/ρ0)1.1, around the nuclear matter saturation density ρ0 has recently been obtained from analyzing the isospin diffusion data within a transport model for intermediate energy heavy-ion reactions. This subsequently puts a stringent constraint on properties of neutron stars, especially their radii and cooling mechanisms
Thermal properties of nuclear matter under the periodic boundary condition
International Nuclear Information System (INIS)
Otuka, Naohiko; Ohnishi, Akira
1999-01-01
We present the thermal properties of nuclear matter under the periodic boundary condition by the use of our hadronic nucleus-nucleus cascade model (HANDEL) which is developed to treat relativistic heavy-ion collisions from BNL-AGS to CERN-SPS. We first show some results of p-p scattering calculation in our new version which is improved in order to treat isospin ratio and multiplicity more accurately. We then display the results of calculation of nuclear matter with baryon density ρ b = 0.77 fm 3 at some energy densities. Time evolution of particle abundance and temperature are shown. (author)
International Nuclear Information System (INIS)
Grossman, Y.
1997-10-01
In supersymmetric models with nonvanishing Majorana neutrino masses, the sneutrino and antisneutrino mix. The conditions under which this mixing is experimentally observable are studied, and mass-splitting of the sneutrino mass eigenstates and sneutrino oscillation phenomena are analyzed
3D2 pairing in asymmetric nuclear matter
International Nuclear Information System (INIS)
Alm, T.
1996-01-01
The superfluid 3 D 2 pairing instability in isospin-asymmetric nuclear matter is studied, using the Paris nucleon-nucleon interaction as an input. It is found that the critical temperature associated with the transition to the superfluid phase becomes strongly suppressed with increasing isospin asymmetry, and vanishes for asymmetry parameter values α (≡(n n -n p )/(n n +n p )) that are larger than several percent. It is shown that for neutron star models based on relativistic, field-theoretical equations of state, a large fraction of their interior may exist in a 3 D 2 -paired superfluid phase. The implications of such a 3 D 2 superfluid in massive neutron stars is discussed with respect to observable pulsar phenomena. Another interesting phenomenon, discussed in the paper, concerns the numerical finding of two critical superfluid temperatures for a given density in the case of isospin-asymmetric matter. Using the BCS cut-off ansatz, a mathematical expression for the critical temperature is derived which confirms this finding analytically. (orig.)
γ-rays as a probe to study nuclear dynamics and nuclear structure at intermediate energies
International Nuclear Information System (INIS)
Schutz, Y.
1987-01-01
The usefulness of gamma rays in nuclear physics is reviewed, and it is shown how they offer insight into the structure and damping of giant resonances, and how they can be used as an isospin filter. Results from inclusive and exclusive experiments at GANIL are discussed. It is stressed that although the production of high energy gamma rays in heavy ion reactions between 30 MeV/A and 86 MeV/A is understood qualitatively, most models fail in being more quantitative
International Nuclear Information System (INIS)
Gangwani, Saloni; Chakrabortty, Sumita
2011-01-01
Nuclear fuel is a material that can be consumed to derive nuclear energy, by analogy to chemical fuel that is burned for energy. Nuclear fuels are the most dense sources of energy available. Nuclear fuel in a nuclear fuel cycle can refer to the fuel itself, or to physical objects (for example bundles composed of fuel rods) composed of the fuel material, mixed with structural, neutron moderating, or neutron reflecting materials. Long-lived radioactive waste from the back end of the fuel cycle is especially relevant when designing a complete waste management plan for SNF. When looking at long-term radioactive decay, the actinides in the SNF have a significant influence due to their characteristically long half-lives. Depending on what a nuclear reactor is fueled with, the actinide composition in the SNF will be different. The following paper will also include the uses. advancements, advantages, disadvantages, various processes and behavior of nuclear fuels
Energy Technology Data Exchange (ETDEWEB)
Garrett, J.D. [ed.
1992-12-31
These proceedings report the deliberations of a 3 1/2 day workshop on the Production and Use of Intense Radioactive Ion Beams at the Isospin Laboratory, which was held at the Joint Institute for Heavy Ion Research in Oak Ridge, Tennessee, October 1992. The purpose of this workshop was not to duplicate the programs of other recent radioactive ion beam workshops or international conferences that have focused on the scientific concepts which radioactive beams can, and in fact already are, addressing. Instead, the intent was to address the technical problems associated with the construction of the next generation ISOL facility and to initiate a discussion of the type of experimental equipment that should be developed for such a facility. We have tried to bring together in Oak Ridge the world`s experts in radioactive targets/ion sources, light and heavy-ion accelerators, and detection systems. After 1 1/2 days of overview presentations, the participants divided into three discussion groups (Experiments with Radioactive Beams, Target Ion Sources and Mass Separation, and Accelerators-Primary and Secondary) for 1 1/2 days of detailed discussions of the most pertinent issues. The final session was devoted to reports from each of the discussion groups and a general discussion of where to go from here. An outgrowth of these discussions was the establishment of working groups to coordinate future technical developments associated with the pertinent issues. The proceedings include the text of all the overview presentations, reports from each discussion group, as well as contributions from those participants who chose to provide the text of their presentations in the discussion groups and the Concluding Remarks. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.
International Nuclear Information System (INIS)
Garrett, J.D.
1992-01-01
These proceedings report the deliberations of a 3 1/2 day workshop on the Production and Use of Intense Radioactive Ion Beams at the Isospin Laboratory, which was held at the Joint Institute for Heavy Ion Research in Oak Ridge, Tennessee, October 1992. The purpose of this workshop was not to duplicate the programs of other recent radioactive ion beam workshops or international conferences that have focused on the scientific concepts which radioactive beams can, and in fact already are, addressing. Instead, the intent was to address the technical problems associated with the construction of the next generation ISOL facility and to initiate a discussion of the type of experimental equipment that should be developed for such a facility. We have tried to bring together in Oak Ridge the world's experts in radioactive targets/ion sources, light and heavy-ion accelerators, and detection systems. After 1 1/2 days of overview presentations, the participants divided into three discussion groups (Experiments with Radioactive Beams, Target Ion Sources and Mass Separation, and Accelerators-Primary and Secondary) for 1 1/2 days of detailed discussions of the most pertinent issues. The final session was devoted to reports from each of the discussion groups and a general discussion of where to go from here. An outgrowth of these discussions was the establishment of working groups to coordinate future technical developments associated with the pertinent issues. The proceedings include the text of all the overview presentations, reports from each discussion group, as well as contributions from those participants who chose to provide the text of their presentations in the discussion groups and the Concluding Remarks. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database
Local-duality QCD sum rules for strong isospin breaking in the decay constants of heavy-light mesons
Energy Technology Data Exchange (ETDEWEB)
Lucha, Wolfgang [Austrian Academy of Sciences, Institute for High Energy Physics, Vienna (Austria); Melikhov, Dmitri [Austrian Academy of Sciences, Institute for High Energy Physics, Vienna (Austria); M.V. Lomonosov Moscow State University, D.V. Skobeltsyn Institute of Nuclear Physics, Moscow (Russian Federation); University of Vienna, Faculty of Physics, Vienna (Austria); Simula, Silvano [Istituto Nazionale di Fisica Nucleare, Sezione di Roma Tre, Rome (Italy)
2018-02-15
We discuss the leptonic decay constants of heavy-light mesons by means of Borel QCD sum rules in the local-duality (LD) limit of infinitely large Borel mass parameter. In this limit, for an appropriate choice of the invariant structures in the QCD correlation functions, all vacuum-condensate contributions vanish and all nonperturbative effects are contained in only one quantity, the effective threshold. We study properties of the LD effective thresholds in the limits of large heavy-quark mass m{sub Q} and small light-quark mass m{sub q}. In the heavy-quark limit, we clarify the role played by the radiative corrections in the effective threshold for reproducing the pQCD expansion of the decay constants of pseudoscalar and vector mesons. We show that the dependence of the meson decay constants on m{sub q} arises predominantly (at the level of 70-80%) from the calculable m{sub q}-dependence of the perturbative spectral densities. Making use of the lattice QCD results for the decay constants of nonstrange and strange pseudoscalar and vector heavy mesons, we obtain solid predictions for the decay constants of heavy-light mesons as functions of m{sub q} in the range from a few to 100 MeV and evaluate the corresponding strong isospin-breaking effects: f{sub D{sup +}} - f{sub D{sup 0}} = (0.96 ± 0.09) MeV, f{sub D}{sup {sub *}{sub +}} - f{sub D}{sup {sub *}{sub 0}} = (1.18 ± 0.35) MeV, f{sub B{sup 0}} - f{sub B{sup +}} = (1.01 ± 0.10) MeV, f{sub B}{sup {sub *}{sub 0}} - f{sub B}{sup {sub *}{sub +}} = (0.89 ± 0.30) MeV. (orig.)
Future prospects for radioactive nuclear beams in North America
International Nuclear Information System (INIS)
Nitschke, J.M.
1993-05-01
In 1989 this author proposed the construction of a dedicated, flexible, radioactive nuclear beams facility that would provide intense beams of nearly all elements for a program of scientific studies in nuclear structure, nuclear reaction dynamics, astrophysics, high-spin physics, nuclei far from stability, material- and surface science, and atomic- and hyperfine-interaction physics. The initial name proposed for the new facility was ''IsoSpin Factory'' to underscore the key feature of this new physics tool; it was later changed to ''IsoSpin Laboratory'' (ISL). The ISL is now supported by a broad base of nuclear scientists and has been identified in the US Long Range Plan on Nuclear Science as one of the new potential construction projects for the second part of this decade. Since 1989 a number of conferences and workshops has been held in which the scientific and technical case for RNB facilities has been made. The purpose of this paper is to focus on the North American plan for the ISL, which was initially summarized in a ''White Paper'' but has since evolved in its scientific and technical scop
Neutrino propagation in neutron matter and the nuclear equation of state
Margueron, J; Nguyen Van Giai; Jiang, W
2001-01-01
We study the propagation of neutrinos inside dense matter under the conditions prevailing in a proto-neutron star. Equations of state obtained with different nuclear effective interactions (Skyrme type and Gogny type) are first discussed. It is found that for many interactions, spin and/or isospin instabilities occur at densities larger than the saturation density of nuclear matter. From this study we select two representative interactions, SLy230b and D1P. We calculate the response functions in pure neutron matter where nuclear correlations are described at the Hartree-Fock plus RPA level. These response functions allow us to evaluate neutrino mean free paths corresponding to neutral current processes.
International Nuclear Information System (INIS)
Durganandini, P.
1990-01-01
We systematize the procedure developed by Mathur, Mukhi and Sen to derive differential equations for correlators in rational conformal field theories on the torus in those cases when it is necessary to study not only leading-order behaviour but also the nonleading behaviour of the solutions in the asymptotic limit Imτ→∞, Imz→∞. As an illustration, we derive the differential equation for the two-point correlator of the isospin-1 primary fields in the k=3 SU(2) WZW model on the torus. (orig.)
Isospin breaking in chiral perturbation theory and the decays η → πlν and τ → ηπν
International Nuclear Information System (INIS)
Neufeld, H.; Rupertsberger, H.
1994-01-01
Violation of isospin due to m u ≠ m d and electromagnetism is discussed within the framework of the standard model. The decay η → πlν is calculated at the one-loop level in chiral perturbation theory including an estimate of the electromagnetic contributions. Adding all four decay channels, we obtain 2.0*10 -13 as a rather accurate upper bound for the branching ratio. We determine the leading meson resonance contributions to τ → ηπν predicting a branching ratio of 1.2*10 -5 . (authors)
International Nuclear Information System (INIS)
Madsen, V.A.; Landau, R.H.
1986-01-01
The studies included meson exchange current effects, quark effects, and relativistic/Dirac effects deduced from spin observables in p -3 He scattering, coupled bound and continuum eigenstates in momentum space for kaons and antiprotons, and charge symmetry violation in π scattering from trinucleons. Additional studies included microscopic optical potential calculations, multiple step rpocesses, and differences in neutron and proton mutipole matrix elements in low lying collective states and in giant resonances
International Nuclear Information System (INIS)
Varlamov, V.V.; Stepanov, M.E.
2002-01-01
Data published in the literature on various photonuclear reactions for the 20,22 Ne isotopes and for their natural mixture are analyzed with the aim of exploring special features of the decay of giant-dipole-resonance states in these two isotopes. With the aid of data on the abundances of the isotopes and on the energy reaction thresholds, the cross sections for the reactions 20,22 Ne[(γ, n) + (γ, np)] and 20,22 Ne[(γ, p) + (γ, np)] are broken down into the contributions from the one-nucleon reactions (γ, n) and (γ, p) and the contributions from the reactions (γ, np). The cross sections evaporation model used here to treat the deexcitation of residual nucle(γ, p) 19,21 F in the energy range E γ = 16.0-28.0 MeV and the cross sections for the reactions 20,22 Ne(γ, np) 18,20 F in the energy range E γ = 23.3-28.0 MeV are estimated. The behavior of the cross-section ratio r = σ(γ, p)/σ(γ, n) for the 22 Ne nucleus as a function of energy is analyzed, and the isospin components of the giant dipole resonance in the 22 Ne nucleus are identified. The contributions of the isospin components of the giant dipole resonance in the 22 Ne nucleus to the cross sections for various photonuclear reactions are determined on the basis of an analysis of the diagram of the excitation and decay of pure isospin states in the 22 Ne nucleus and in nuclei neighboring it, which are members of the corresponding isospin multiplets. The isospin splitting of the giant dipole resonance and the ratio of the intensities of the isospin components are determined to be ΔE = 4.57 ± 0.69 MeV and R = 0.24 ± 0.04, respectively
DEFF Research Database (Denmark)
Kandzia, Claudia; Kosonen, Risto; Melikov, Arsen Krikor
In this guidebook most of the known and used in practice methods for achieving mixing air distribution are discussed. Mixing ventilation has been applied to many different spaces providing fresh air and thermal comfort to the occupants. Today, a design engineer can choose from large selection...
Phase diagram of dilute nuclear matter: Unconventional pairing and the BCS-BEC crossover
Energy Technology Data Exchange (ETDEWEB)
Stein, Martin; Sedrakian, Armen [Frankfurt Univ. (Germany). Inst. fuer Theoretische Physik
2013-07-01
We report on a comprehensive study of the phase structure of cold, dilute nuclear matter featuring a {sup 3}S{sub 1}-{sup 3}D{sub 1} condensate at non-zero isospin asymmetry, within wide ranges of temperatures and densities. We find a rich phase diagram comprising three superfluid phases, namely a LOFF phase, the ordinary BCS phase, and a heterogeneous, phase-separated BCS phase, with associated crossovers from the latter two phases to a homogeneous or phase-separated Bose-Einstein condensate of deuterons. The phase diagram contains two tri-critical points (one a Lifshitz point), which may degenerate into a single tetra-critical point for some degree of isospin asymmetry.
International Nuclear Information System (INIS)
Anon.
2005-01-01
This issue of Alternatives newsletter contains a main press-kit about the economics of interconnected power distribution systems and 4 articles dealing with reactors safety, the advantages and drawbacks of coal in the energy mix, the environmental policy of Hanover city, and the energy situation in sub-Saharan Africa: 1 - 'The energy highways': Spotlight on the electrical power grids. From the much needed modernization of existing installations to the extension of networks in developing countries, Alternatives takes a look at these infrastructures that shape our environment, which can be considered as veritable 'energy highways' ensuring the coverage of our planet. 2 - 'The three safety barriers at nuclear power plants': Review of the three protective barriers deployed in the nuclear industry to ensure reactor safety. 3 - 'Where does coal fit into the energy mix?': Two experts put into perspective the challenges related to the use of coal, its efficiency and its environmental impact, on the basis of the Chinese and Polish examples. 4 - 'Sustainable urban development in Hanover': Bringing together quality of living and energy savings, this is the challenge taken up by Hanover in the Kronsberg area. Alternatives has examined this original model, which could serve as an example for other European cities. 5 - 'Energy in sub-Saharan Africa': Relatively abundant resources but which are poorly utilized and distributed characterize the energy situation in sub-Saharan Africa. Analysis of the situation and explanation of this paradox
Hänninen, Mikko M; Välivaara, Juha; Mota, Antonio J; Colacio, Enrique; Lloret, Francesc; Sillanpää, Reijo
2013-02-18
A series of six mixed-valence Mn(II)/Mn(III) dinuclear complexes were synthesized and characterized by X-ray diffraction. The reactivity of the complexes was surveyed, and structures of three additional trinuclear mixed-valence Mn(III)/Mn(II)/Mn(III) species were resolved. The magnetic properties of the complexes were studied in detail both experimentally and theoretically. All dinuclear complexes show ferromagnetic intramolecular interactions, which were justified on the basis of the electronic structures of the Mn(II) and Mn(III) ions. The large Mn(II)-O-Mn(III) bond angle and small distortion of the Mn(II) cation from the ideal square pyramidal geometry were shown to enhance the ferromagnetic interactions since these geometrical conditions seem to favor the orthogonal arrangement of the magnetic orbitals.
Nuclear charge-exchange excitations in a self-consistent covariant approach
International Nuclear Information System (INIS)
Liang, Haozhao
2010-01-01
Nowadays, charge-exchange excitations in nuclei become one of the central topics in nuclear physics and astrophysics. Basically, a systematic pattern of the energy and collectivity of these excitations could provide direct information on the spin and isospin properties of the in-medium nuclear interaction, and the equation of state of asymmetric nuclear matter. Furthermore, a basic and critical quantity in nuclear structure, neutron skin thickness, can be determined indirectly by the sum rule of spin-dipole resonances (SDR) or the excitation energy spacing between the isobaric analog states (IAS) and Gamow-Teller resonances (GTR). More generally, charge-exchange excitations allow one to attack other kinds of problems outside the realm of nuclear structure, like the description of neutron star and supernova evolutions, the β-decay of nuclei which lie on the r-process path of stellar nucleosynthesis, and the neutrino-nucleus cross sections. They also play an essential role in extracting the value of the Cabibbo-Kobayashi-Maskawa (CKM) matrix element V ud via the nuclear 0 + → 0 + superallowed Fermi β decays. For all these reasons, it is important to develop the microscopic theories of charge-exchange excitations and it is the main motivation of the present work. In this work, a fully self-consistent charge-exchange relativistic random phase approximation (RPA) based on the relativistic Hartree-Fock (RHF) approach is established. Its self-consistency is verified by the so-called IAS check. This approach is then applied to investigate the nuclear spin-isospin resonances, isospin symmetry-breaking corrections for the superallowed β decays, and the charged-current neutrino-nucleus cross sections. For two important spin-isospin resonances, GTR and SDR, it is shown that a very satisfactory agreement with the experimental data can be obtained without any readjustment of the energy functional. Furthermore, the isoscalar mesons are found to play an essential role in spin-isospin
Probing the nuclear symmetry energy with heavy-ion collisions
Directory of Open Access Journals (Sweden)
De Filippo E.
2015-01-01
Full Text Available Heavy ion collisions (HIC have been widely used to extract the parametrization of symmetry energy term of nuclear equation of state as a function of barionic density. HIC in fact are a unique tool in terrestrial laboratories to explore the symmetry energy around the saturation density (ρ0 = 0.16fm−3 from sub-saturation densities (Fermi energies towards compressed nuclear matter (ρ > 2 − 3ρ0 that can be reached at relativistic energies, as a function of different conditions of temperature, mass asymmetry and isospin. One of the main study at present is to reach a coherent description of EOS of asymmetric nuclear matter from heavy ion collisions of stable and exotic nuclei, nuclear structure studies and astrophysical observations. In this work an overview of the current status of the research is shortly reviewed together with new perspectives aimed to reduce the present experimental and theoretical uncertainties.
Isospin symmetry of Tz =±3/2→±1/2 Gamow-Teller transitions in A=41 nuclei
Fujita, Y.; Shimbara, Y.; Adachi, T.; Berg, G. P.; Brown, B. A.; Fujita, H.; Hatanaka, K.; Kamiya, J.; Nakanishi, K.; Sakemi, Y.; Sasaki, S.; Shimizu, Y.; Tameshige, Y.; Uchida, M.; Wakasa, T.; Yosoi, M.
2004-11-01
Under the assumption that isospin T is a good quantum number, isobaric analog states and various analogous transitions are expected in isobars with mass number A . The strengths of Tz =±3/2→±1/2 analogous Gamow-Teller (GT) transitions and analogous M1 transitions within the A=41 isobar quartet are compared in detail. The Tz =+3/2→+1/2 GT transitions from the Jπ = 3/2+ ground state of 41K leading to excited Jπ = 1/2+ , 3/2+ , and 5/2+ states in 41Ca were measured using the ( 3He ,t) charge-exchange reaction. With a high energy resolution of 35 keV , many fragmented states were observed, and the GT strength distribution was determined up to 10 MeV excitation energy ( Ex ) . The main part of the strength was concentrated in the Ex =4 6 MeV region. A shell-model calculation could reproduce the concentration, but not so well details of the strength distribution. The obtained distribution was further compared with two results of 41Ti β decay studying the analogous Tz =-3/2→-1/2 GT strengths. They reported contradicting distributions. One-to-one correspondences of analogous transitions and analog states were assigned up to Ex =6 MeV in the comparison with one of these 41Ti β -decay results. Combining the spectroscopic information of the analog states in 41Ca and 41Sc , the most probable Jπ values were deduced for each pair of analog states. It was found that 5/2+ states carry the main part of the observed GT strength, while much less GT strength was carried by 1/2+ and 3/2+ states. The gross features of the GT strength distributions for each J were similar for the isospin analogous Tz =±3/2→±1/2 transitions, but the details were somewhat different. From the difference of the distributions, isospin-asymmetry matrix elements of ≈8 keV were deduced. The Coulomb displacement energy, which is sensitive to the configuration of states, showed a sudden increase of about 50 keV at the excitation energy of 3.8 MeV . The strengths of several M1 transitions to the
Variational method for infinite nuclear matter with noncentral forces
International Nuclear Information System (INIS)
Takano, M.; Yamada, M.
1998-01-01
Approximate energy expressions are proposed for infinite zero-temperature nuclear matter by taking into account noncentral forces. They are explicitly expressed as functionals of spin- (isospin-) dependent radial distribution functions, tensor distribution functions and spin-orbit distribution functions, and can be used conveniently in the variational method. A notable feature of these expressions is that they automatically guarantee the necessary conditions on the spin-isospin-dependent structure functions. The Euler-Lagrange equations are derived from these energy expressions and numerically solved for neutron matter and symmetric nuclear matter. The results show that the noncentral forces bring down the total energies too much with too dense saturation densities. Since the main reason for these undesirable results seems to be the long tails of the noncentral distribution functions, an effective theory is proposed by introducing a density-dependent damping function into the noncentral potentials to suppress the long tails of the non-central distribution functions. By adjusting the value of a parameter included in the damping function, we can reproduce the saturation point (both the energy and density) of symmetric nuclear matter with the Hamada-Johnston potential. (Copyright (1998) World Scientific Publishing Co. Pte. Ltd)
International Nuclear Information System (INIS)
Brottes, Francois; Baupin, Denis
2014-01-01
fourth-generation reactors: choice made by France of the MOX option, research options for fourth-generation reactors. The seventh part addresses the nuclear risks: new tools of crisis management, a compensation system which only partially takes risks into account. The next part addresses the share of nuclear in the French energy mix: national debate on energy transition, characteristics of the main scenarios. The inquiry commission states that a life extension of the nuclear fleet seems necessary to face the increasing demand, but useless in case of a possible demand decrease. The last part addresses issues of commercialization of nuclear electricity in a context of market liberalization
International Nuclear Information System (INIS)
Izumi, Takeshi; Ohtsu, Takashi; Inagawa, Hirofumi; Kawakami, Takashi; Hagiwara, Masahiro; Ino, Takao; Ishiyama, Yuji
2011-01-01
In nuclear power plants, ion exchange resins are used at water purification systems such as condensate demineralizers. After usage, used ion exchange resins are stored at plants as low level radioactive wastes. Ion exchange resins contain water and so, those are flame resistant materials. At present, ion exchange resins are incinerated with other inflammable materials at incinerators. Furthermore, ion exchange resins are fine particle beads and are easy to be scattered in all directions, so operators must pay attentions for treatment. Then, we have developed the new solidification system of ion exchange resins with paraffin wax. Ion exchange resins are mixed and extruded with paraffin wax and these solids are enabled to incinerate at existing incinerators. In order to demonstrate this new method, we made the large amount of solids and incinerated them at actual incinerator. From these results, we have estimated to be able to incinerate the solids only at actual incinerator. (author)
Energy Technology Data Exchange (ETDEWEB)
Mekjian, Aram [Rutgers Univ., Piscataway, NJ (United States). Dept. of Physics and Astronomy
2016-10-18
The main emphasis of the entire project is on issues having to do with medium energy and ultra-relativistic energy and heavy ion collisions. A major goal of both theory and experiment is to study properties of hot dense nuclear matter under various extreme conditions and to map out the phase diagram in density or chemical potential and temperature. My studies in medium energy nuclear collisions focused on the liquid-gas phase transition and cluster yields from such transitions. Here I developed both the statistical model of nuclear multi-fragmentation and also a mean field theory.
International Nuclear Information System (INIS)
Fineschi, F.; Lanza, S.
1979-01-01
In light water nuclear power plants hydrogen releases from the pressure containment system may take place following a loss-of-coolant accident. In view of preparing technical safeguards aiming at the control of the flame propagation probability and of explosions, it is important to know the space-time distribytion of hydrogen concentrations in the safety containers. It is shown that an experimental study on a scale model is praticable only in the case when full turbulence conditions occur in the container and in the model. Then general aspects of a methodology capable to verify with a reasonable confiance degree the validity of the assumptions is illustrated
DEFF Research Database (Denmark)
Bang Appel, Helene; Singla, Rashmi
2016-01-01
Despite an increase in cross border intimate relationships and children of mixed parentage, there is little mention or scholarship about them in the area of childhood and migrancy in the Nordic countries. The international literature implies historical pathologisation, contestation and current...... of identity formation in the . They position themselves as having an “in-between” identity or “ just Danes” in their every day lives among friends, family, and during leisure activities. Thus a new paradigm is evolving away- from the pathologisation of mixed children, simplified one-sided categories...
Hyland, B.; Svensson, C. E.; Ball, G. C.; Leslie, J. R.; Achtzehn, T.; Albers, D.; Andreoiu, C.; Bricault, P.; Churchman, R.; Cross, D.; Dombsky, M.; Finlay, P.; Garrett, P. E.; Geppert, C.; Grinyer, G. F.; Hackman, G.; Hanemaayer, V.; Lassen, J.; Lavoie, J. P.; Melconian, D.; Morton, A. C.; Pearson, C. J.; Pearson, M. R.; Phillips, A. A.; Schumaker, M. A.; Smith, M. B.; Towner, I. S.; Valiente-Dobón, J. J.; Wendt, K.; Zganjar, E. F.
2006-09-01
A high-precision branching ratio measurement for the superallowed β+ decay of Ga62 was performed at the Isotope Separator and Accelerator radioactive ion beam facility. Nineteen γ rays emitted following β+ decay of Ga62 were identified, establishing the dominant superallowed branching ratio to be (99.861±0.011)%. Combined with recent half-life and Q-value measurements, this branching ratio yields a superallowed ft value of 3075.6±1.4s for Ga62 decay. These results demonstrate the feasibility of high-precision superallowed branching ratio measurements in the A≥62 mass region and provide the first stringent tests of the large isospin-symmetry-breaking effects predicted for these decays.
Liang, Wei-Hong; Sakai, S.; Xie, Ju-Jun; Oset, E.
2018-04-01
We perform calculations for the {\\bar{{{B}}}}{{s}}0\\to {{J}}/{{\\psi }}{π }0{{{f}}}0(980) and {\\bar{{{B}}}}{{s}}0\\to {{J}}/{{\\psi }}{π }0{{{a}}}0(980) reactions, showing that the first is isospin-suppressed while the second is isospin-allowed. The reaction proceeds via a triangle mechanism, with {\\bar{{{B}}}}{{s}}0\\to {{J}}/{{\\psi }}{{{K}}}{{* }}\\bar{{{K}}}+{{c}}.{{c}}., followed by the decay K* → Kπ and a further fusion of {{K}}\\bar{{{K}}} into the {{{f}}}0(980) or a0(980). We show that the mechanism develops a singularity around the π0 f0(980) or π0 a0(980) invariant mass of 1420 MeV, where the π0 f0 and π0 a0 decay modes are magnified and also the ratio of π0 f0 to π0 a0 production. Using experimental information for the {\\bar{{{B}}}}{{s}}0\\to {{J}}/{{\\psi }}{{{K}}}{{* }}\\bar{{{K}}}+{{c}}.{{c}}. decay, we are able to obtain absolute values for the reactions studied which fall into the experimentally accessible range. The reactions proposed and the observables evaluated, when contrasted with actual experiments, should be very valuable to obtain information on the nature of the low lying scalar mesons. Supported by National Natural Science Foundation of China (11565007, 11747307, 11647309, 11735003, 11475227), the Youth Innovation Promotion Association CAS (2016367). This work is also partly supported by the Spanish Ministerio de Economia y Com- petitividad and European FEDER funds (FIS2011-28853-C02-01, FIS2011-28853-C02-02, FIS2014-57026-REDT, FIS2014-51948-C2-1-P, FIS2014-51948-C2-2-P) and the Generalitat Valenciana in the program Prometeo (II-2014/068)
International Nuclear Information System (INIS)
Gharib, A.G.; Ahmadiniar, A.; Aminpour, A.A.
2001-01-01
Neutron activation analysis, inductively coupled plasma emission spectrometry (ICP-ES) and atomic absorption spectroscopy (AAS) have been used to determine actual daily dietary intakes of minerals and trace elements in the Iranian population. Trace elemental analysis of daily diets of the Iranian population differentiated with respect to food habits, geographical variability, literacy and income is examined. Three study groups in five regions were defined. Thirty total daily diet samples were prepared based on the method of dietary records. Also a few samples representing the intakes of two other study groups, males and females, were prepared by the duplicate diet method. Therefore, not only representative dietary patterns of almost all adult people in Iran are covered in a pilot study, but also the validity of the sampling methodology for total mixed diet simulation is checked. (author)
International Nuclear Information System (INIS)
Dahmani, M.; Baudron, A.M.; Lautard, J.J.; Erradi, L.
2001-01-01
The mixed dual nodal method MINOS is used to solve the reactor kinetics equations with improved quasistatic IQS model and the θ method is used to solve the precursor equations. The speed of calculation which is the main advantage of the MINOS method and the possibility to use the large time step for shape flux calculation permitted by the IQS method, allow us to reduce considerably the computing time. The IQS/MINOS method is implemented in CRONOS 3D reactor code. Numerical tests on different transient benchmarks show that the results obtained with the IQS/MINOS method and the direct numerical method used to solve the kinetics equations, are very close and the total computing time is largely reduced
International Nuclear Information System (INIS)
Knee, G C; Briggs, G A D; Benjamin, S C; Gauger, E M
2012-01-01
A recent paper by Souza, Oliveira and Sarthour (SOS) reports the experimental violation of a Leggett-Garg (LG) inequality (sometimes referred to as a temporal Bell inequality). The inequality tests for quantum mechanical superposition: if the inequality is violated, the dynamics cannot be explained by a large class of classical theories under the heading of macrorealism. Experimental tests of the LG inequality are beset by the difficulty of carrying out the necessary so-called ‘non-invasive’ measurements (which for the macrorealist will extract information from a system of interest without disturbing it). SOS argue that they nevertheless achieve this difficult goal by putting the system in a maximally mixed state. The system then allegedly undergoes no perturbation during their experiment. Unfortunately, the method is ultimately unconvincing to a skeptical macrorealist and so the conclusions drawn by SOS are unjustified. (comment)
DEFF Research Database (Denmark)
Brabrand, Helle
2010-01-01
levels than those related to building, and this exploration is a special challenge and competence implicit artistic development work. The project Mixed Movements generates drawing-material, not primary as representation, but as a performance-based media, making the body being-in-the-media felt and appear...... as possible operational moves....
2014-09-30
negative (right panel c) and the kinetic energy dissipation is larger than that expected from meterological forcing alone (right panel a). This is...10.1002/grl.50919. Shcherbina, A. et al., 2014, The LatMix Summer Campaign: Submesoscale Stirring in the Upper Ocean., Bull. American Meterological
AECL's mixed waste management program
International Nuclear Information System (INIS)
Peori, R.; Hulley, V.
2006-01-01
Every nuclear facility has it, they wish that they didn't but they have generated and do possess m ixed waste , and until now there has been no permanent disposition option; it has been for the most been simply maintained in interim storage. The nuclear industry has been responsibly developing permanent solutions for solid radioactive waste for over fifty years and for non-radioactive, chemically hazardous waste, for the last twenty years. Mixed waste (radioactive and chemically hazardous waste) however, because of its special, duo-hazard nature, has been a continuing challenge. The Hazardous Waste and Segregation Program (HW and SP) at AECL's CRL has, over the past ten years, been developing solutions to deal with their own in-house mixed waste and, as a result, have developed solutions that they would like to share with other generators within the nuclear industry. The main aim of this paper is to document and describe the early development of the solutions for both aqueous and organic liquid wastes and to advertise to other generators of this waste type how these solutions can be implemented to solve their mixed waste problems. Atomic Energy of Canada Limited (AECL) and in particular, CRL has been satisfactorily disposing of mixed waste for the last seven years. CRL has developed a program that not only disposes of mixed waste, but offers a full service mixed waste management program to customers within Canada (that could eventually include U.S. sites as well) that has developed the experience and expertise to evaluate and optimize current practices, dispose of legacy inventories, and set up an efficient segregation system to reduce and effectively manage, both the volumes and expense of, the ongoing generation of mixed waste for all generators of mixed waste. (author)
International Nuclear Information System (INIS)
Olson, P.S.
1983-01-01
The energy demand complexion of this country is always changing and promises to change in the future. The nuclear industry is responding to changing energy demands through standards writing activities. Since the oil embargo of 1973, there has been a change in the mix of fuels contributing to energy growth in this country; virtually all of the energy growth has come from coal and nuclear power. The predicted expansion of coal use by 1985, over 1977 level, is 37%, while the use of oil is expected to decline by 17%. Use of nuclear power is expected to increase 62% from the 1977 level. The feasibility of using nuclear energy to meet the needs of the USA for electric power is discussed
Department of Nuclear Reactions: Overview
International Nuclear Information System (INIS)
Rusek, K.
2004-01-01
Full text: In spite of reduced personnel the number of papers published and in press exceeded fifty, almost ten more than a year ago. Another good sign is the growing number of PhD students. The following short reports cover the three major domains of our scientific activities: nuclear, material and atomic physics. Nuclear physics: The structure of light nuclei was investigated, and studies of nuclear reactions induced by heavy ions were performed including experiments at the Heavy Ion Laboratory of Warsaw University. The experiments were carried out in collaboration with scientists from the Institute of Nuclear Research from Kiev, Ukraine. Proton induced reactions on zirconium were investigated theoretically by means of a multistep-direct model extended for the unbound particle - hole states. Good agreement with the experimental data was achieved. Isospin effects in multifragmentation of relativistic heavy ions were studied by the ALADIN Collaboration. Elements of a new generation detector PANDA were tested experimentally using a proton beam provided by the C-30 compact cyclotron at Swierk. Evidence of a narrow baryon state was found in a quasi - real photoproduction on the deuterium target by the HERMES Collaboration. Atomic physics: Ionisation of selected heavy elements by sulphur ions was investigated in collaboration with the Swietokrzyska Academy, Kielce. Materials research: Hydrogen release from ultrahigh molecular weight polythene was investigated by means of an α - particle beam from the Van de Graaff accelerator of our Department. Last but not least, many of our colleagues have been involved in education. Lectures on nuclear physics, accelerators, detectors used in nuclear research as well as nuclear methods applied in solid state studies for students from many high schools of Warsaw and for students of Warsaw University were given by Dr. Andrzej Korman and Dr. Lech Nowicki. Also, our Department made a significant contribution to the 7 th Science
Regulatory aspects of mixed waste
International Nuclear Information System (INIS)
Boyle, R.R.; Orlando, D.A.
1990-01-01
Mixed waste is waste that satisfies the definition of low-level radioactive waste in the Low-Level Radioactive Waste Policy Amendments Act of 1985 (LLRWPAA) and contains hazardous waste that is either: (1) listed as a hazardous waste in 40 CFR 261, Subpart D; or (2) causes the waste to exhibit any of the characteristics identified in 40 CFR 261, Subpart C. Low-level radioactive waste is defined in the LLRWPAA as radioactive material that is not high level waste, spent nuclear fuel, or byproduct material, as defined in Section 11e(2) of the Atomic Energy Act of 1954, and is classified as low-level waste by the U.S. Nuclear Regulatory Commission (NRC). This paper discusses dual regulatory (NRC and Environmental Protection Agency) responsibility, overview of joint NRC/EPA guidance, workshops, national mixed waste survey, and principal mixed waste uncertainties
Mixing and thermonuclear processes in stars
International Nuclear Information System (INIS)
Langer, Norbert; Heger, Alexander; Herwig, Falk; Wellstein, Stephan
2001-01-01
According to standard wisdom, six different nuclear burning stages, from hydrogen to silicon burning, can occur during the hydrostatic evolution of stars. However, several instabilities can lead to the mixing of layers with different compositions and produce non-standard composition mixtures. Those--when at high enough temperatures--burn due to nuclear reactions which are unimportant otherwise. We provide various examples of such occurrences, for different ratios of burning over mixing time scale
Finch, Warren Irvin
1997-01-01
The many aspects of uranium, a heavy radioactive metal used to generate electricity throughout the world, are briefly described in relatively simple terms intended for the lay reader. An adequate glossary of unfamiliar terms is given. Uranium is a new source of electrical energy developed since 1950, and how we harness energy from it is explained. It competes with the organic coal, oil, and gas fuels as shown graphically. Uranium resources and production for the world are tabulated and discussed by country and for various energy regions in the United States. Locations of major uranium deposits and power reactors in the United States are mapped. The nuclear fuel-cycle of uranium for a typical light-water reactor is illustrated at the front end-beginning with its natural geologic occurrence in rocks through discovery, mining, and milling; separation of the scarce isotope U-235, its enrichment, and manufacture into fuel rods for power reactors to generate electricity-and at the back end-the reprocessing and handling of the spent fuel. Environmental concerns with the entire fuel cycle are addressed. The future of the use of uranium in new, simplified, 'passively safe' reactors for the utility industry is examined. The present resource assessment of uranium in the United States is out of date, and a new assessment could aid the domestic uranium industry.
Czech Academy of Sciences Publication Activity Database
Henzlová, D.; Audouin, L.; Henzl, Vladimír; Krása, Antonín; Pleskač, Radek
2005-01-01
Roč. 749, - (2005), 110C-113C ISSN 0375-9474 R&D Projects: GA AV ČR IAA1048304 Institutional research plan: CEZ:AV0Z10480505 Keywords : TEMPERATURE Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.950, year: 2005
International Nuclear Information System (INIS)
Bansal, R.
2014-01-01
We study the effect of different equations of state, momentum dependence of nuclear forces and in-medium nucleon-nucleon cross-sections on the directed flow and its disappearance. Our findings reveal that soft momentum-dependent equation of state along with reduced cross-section shows good agreement with the experimentally observed mass dependence of balance energy. (authors)
International Nuclear Information System (INIS)
Chen, C.H.-T.
1980-10-01
A unified description of the following classes of nuclear collective states in terms of an interacting sp-boson model is proposed: (i) Low-lying collective states in the light nuclei, both odd-odd and even-even; (ii) Giant multipole resonances (GMR), and (iii) pairing collective motions. (Author) [pt
Energy Technology Data Exchange (ETDEWEB)
Carasik, Lane B., E-mail: lcarasik@tamu.edu [Texas A& M University, Department of Nuclear Engineering, 3133 TAMU, College Station, TX 77843-3133 (United States); Sebilleau, Frédéric, E-mail: Frederic.sebilleau11@imperial.ac.uk [Imperial College London, Mechanical Engineering Department, London SW7 SBX (United Kingdom); Walker, Simon P., E-mail: s.p.walker@imperial.ac.uk [Imperial College London, Mechanical Engineering Department, London SW7 SBX (United Kingdom); Hassan, Yassin A., E-mail: y-hassan@tamu.edu [Texas A& M University, Department of Nuclear Engineering, 3133 TAMU, College Station, TX 77843-3133 (United States)
2017-02-15
Highlights: • Simulations of thermal stratification in large enclosures using different turbulence models. • The recent elliptic blending k–ε was implemented in this work. • Direct comparisons of experimental temperature measurements to CFD predictions. • Spurious prediction of jet stabilisation and diffuse stratification by both low-Re k–ε and SST k–ω. - Abstract: An ability to predict the behavior of buoyant jets entering a large body of relatively stationary fluid is important in analysis of a wide variety of nuclear accidents, including for example the use of large tanks of water as heat sinks, or the release of hot gases into the secondary containment. In particular, the degree to which temperature stratification occurs is important, as it can affect markedly the effectiveness of the body of fluid as a heat sink. In this paper, we report the results of measurements on an experimental facility designed to exhibit such behavior, and the results of attempts to predict this experiment using CFD. In particular, we here investigate the effectiveness of three alternative turbulence models for this analysis; low-Re k–e, elliptic-blended k–e and Shear Stress Transport k–ω models. Both the degree of thermal stratification and the stability of the jet that were predicted differed markedly between the three models. Two of the models, the low-Re k–e and the Shear Stress Transport k–ω, tend to predict, wrongly, significant turbulent intensity in regions where fluid velocities are essentially zero. This spurious high turbulent intensity in turn causes (i) a high turbulent viscosity to be applied, wrongly stabilizing the jet, and (ii) increased turbulent diffusion of heat, causing too deep and diffuse a stratification to be predicted.
Chiral approach to nuclear matter: Role of two-pion exchange with virtual delta-isobar excitation
Fritsch, S.; Kaiser, N.; Weise, W.
2004-01-01
We extend a recent three-loop calculation of nuclear matter in chiral perturbation theory by including the effects from two-pion exchange with single and double virtual $\\Delta(1232)$-isobar excitation. Regularization dependent short-range contributions from pion-loops are encoded in a few NN-contact coupling constants. The empirical saturation point of isospin-symmetric nuclear matter, $\\bar E_0 = -16 $MeV, $\\rho_0 = 0.16 $fm$^{-3}$, can be well reproduced by adjusting the strength of a two-...
Global study of nuclear modifications on parton distribution functions
Directory of Open Access Journals (Sweden)
Rong Wang
2017-07-01
Full Text Available A global analysis of nuclear medium modifications of parton distributions is presented using deeply inelastic scattering data of various nuclear targets. Two obtained data sets are provided for quark and gluon nuclear modification factors, referred as nIMParton16. One is from the global fit only to the experimental data of isospin-scalar nuclei (Set A, and the other is from the fit to all the measured nuclear data (Set B. The scale-dependence is described by DGLAP equations with nonlinear corrections in this work. The Fermi motion and off-shell effect, nucleon swelling, and parton–parton recombination are taken into account together for modeling the complicated x-dependence of nuclear modification. The nuclear gluon shadowing in this paper is dynamically generated by the QCD evolution of parton splitting and recombination processes with zero gluon density at the input scale. Sophisticated nuclear dependence of nuclear medium effects is studied with only two free parameters. With the obtained free parameters from the global analysis, the nuclear modifications of parton distribution functions of unmeasured nuclei can be predicted in our model. Nuclear modification of deuteron is also predicted and shown with recent measurement at JLab.
International Nuclear Information System (INIS)
Chakrabarty, D.R.; Eswaran, M.A.; Ragoowansi, N.L.
1983-01-01
The α capture reaction 32 S(α,γ) 36 Ar was studied in the bombarding energy range of E/sub α/ = 4.13 to 5.00 MeV corresponding to the excitation energy range of E/sub x/ = 10.31 to 11.08 MeV in 36 Ar. Seven resonances have been located and their resonance strengths determined. Two of the resonances decay predominantly to the ground state while the other five decay predominantly to the first excited state of 36 Ar. Angular distribution measurements of the predominant decay gamma ray have been performed and the spin and parity of all the resonances assigned. The isospin of two of the resonances have been assigned as T = 0 while T = 1 has been assigned for three others. Evidence has been obtained for the operation of the isospin selection rule for the dipole (E1 and M1) and quadrupole (E2) gamma decay
Up-down quark mass difference effect in nuclear many-body systems
International Nuclear Information System (INIS)
Nakamura, S.; Muto, K.; Oka, M.; Takeuchi, S.; Oda, T.
1996-01-01
A charge-symmetry-breaking nucleon-nucleon force due to the up-down quark mass difference is evaluated in the quark cluster model. It is applied to the shell-model calculation for the isovector mass shifts of isospin multiplets in 1s0d-shell nuclei. We find that the contribution of the quark mass difference effect explains the systematic behavior of experiment. This contribution is large and may explain the Okamoto-Nolen-Schiffer anomaly, alternatively to the meson-mixing contribution, which is recently predicted to be reduced by the large off-shell correction. copyright 1996 The American Physical Society
International Nuclear Information System (INIS)
De Filippo, E; Cardella, G; Guidara, E La; Pagano, A; Papa, M; Amorini, F; Colonna, M; Gianì, S; Grassi, L; Han, J; Maiolino, C; Auditore, L; Minniti, T; Baran, V; Berceanu, I; Geraci, E; Grzeszczuk, A; Guazzoni, P; Lanzalone, G; Lombardo, I
2013-01-01
We show new data from the 64 Ni+ 124 Sn and 58 Ni+ 112 Sn reactions studied in direct kinematics with the CHIMERA detector at INFN-LNS and compared with the reverse kinematics reactions at the same incident beam energy (35 A MeV). Analyzing the data with the method of relative velocity correlations, fragments coming from statistical decay of an excited projectile-like (PLF) or target-like (TLF) fragments are discriminated from the ones coming from dynamical emission in the early stages of the reaction. By comparing data of the reverse kinematics experiment with a stochastic mean field (SMF) + GEMINI calculations our results show that observables from neck fragmentation mechanism add valuable constraints on the density dependence of symmetry energy. An indication is found for a moderately stiff symmetry energy potential term of EOS.
Energy Technology Data Exchange (ETDEWEB)
Nakano, H [Power Reactor and Nuclear Fuel Development Corp., Tokyo (Japan)
1976-10-01
It is expected that nuclear power generation will reach 49 million kW in 1985 and 129 million kW in 1995, and the nuclear fuel having to be supplied and processed will increase in proportion to these values. The technical problems concerning nuclear fuel are presented on the basis of the balance between the benefit for human beings and the burden on the human beings. Recently, especially the downstream of nuclear fuel attracts public attention. Enriched uranium as the raw material for light water reactor fuel is almost monopolized by the U.S., and the technical information has not been published for fear of the diversion to nuclear weapons. In this paper, the present situations of uranium enrichment, fuel fabrication, transportation, reprocessing and waste disposal and the future problems are described according to the path of nuclear fuel cycle. The demand and supply of enriched uranium in Japan will be balanced up to about 1988, but afterwards, the supply must rely upon the early establishment of the domestic technology by centrifugal separation method. No problem remains in the fabrication of light water reactor fuel, but for the fabrication of mixed oxide fuel, the mechanization of the production facility and labor saving are necessary. The solution of the capital risk for the construction of the second reprocessing plant is the main problem. Japan must develop waste disposal techniques with all-out efforts.
Mixed waste, preparing for 1996
International Nuclear Information System (INIS)
Duke, D.L.
1995-01-01
The Environmental Protection Agency has recently approved an extension to the enforcement policy for the storage of restricted mixed waste. Under this policy, EPA assigns a reduced enforcement priority to violations of the 40CFR268.50 prohibition on storage of restricted waste. Eligibility for the lower enforcement priority afforded by the policy is subject to specified conditions. The recent extension is for a two year period, and agency personnel have advised that it may be difficult to extend the enforcement policy again. This paper reviews anticipated changes in mixed waste treatment and disposal capabilities. Types of mixed waste that may be generated, or in storage, at commercial nuclear power plants are identified. This information is evaluated to determine if the two year extension in the storage enforcement policy will be adequate for the nuclear power industry to treat or dispose of the mixed waste inventories that are identified, and if not, where potential problem areas may reside. Recommendations are then made on mixed waste management strategies
Nuclear Structure in China 2010
Bai, Hong-Bo; Meng, Jie; Zhao, En-Guang; Zhou, Shan-Gui
2011-08-01
Personal view on nuclear physics research / Jie Meng -- High-spin level structures in [symbol]Zr / X. P. Cao ... [et al.] -- Constraining the symmetry energy from the neutron skin thickness of tin isotopes / Lie-Wen Chen ... [et al.] -- Wobbling rotation in atomic nuclei / Y. S. Chen and Zao-Chun Gao -- The mixing of scalar mesons and the possible nonstrange dibaryons / L. R. Dai ... [et al.] -- Net baryon productions and gluon saturation in the SPS, RHIC and LHC energy regions / Sheng-Qin Feng -- Production of heavy isotopes with collisions between two actinide nuclides / Z. Q. Feng ... [et al.] -- The projected configuration interaction method / Zao-Chun Gao and Yong-Shou Chen -- Applications of Nilsson mean-field plus extended pairing model to rare-earth nuclei / Xin Guan ... [et al.] -- Complex scaling method and the resonant states / Jian-You Guo ... [et al.] -- Probing the equation of state by deep sub-barrier fusion reactions / Hong-Jun Hao and Jun-Long Tian -- Doublet structure study in A[symbol]105 mass region / C. Y. He ... [et al.] -- Rotational bands in transfermium nuclei / X. T. He -- Shape coexistence and shape evolution [symbol]Yb / H. Hua ... [et al.] -- Multistep shell model method in the complex energy plane / R. J. Liotta -- The evolution of protoneutron stars with kaon condensate / Ang Li -- High spin structures in the [symbol]Lu nucleus / Li Cong-Bo ... [et al.] -- Nuclear stopping and equation of state / QingFeng Li and Ying Yuan -- Covariant description of the low-lying states in neutron-deficient Kr isotopes / Z. X. Li ... [et al.] -- Isospin corrections for superallowed [symbol] transitions / HaoZhao Liang ... [et al.] -- The positive-parity band structures in [symbol]Ag / C. Liu ... [et al.] -- New band structures in odd-odd [symbol]I and [symbol]I / Liu GongYe ... [et al.] -- The sd-pair shell model and interacting boson model / Yan-An Luo ... [et al.] -- Cross-section distributions of fragments in the calcium isotopes projectile
Circumstantial Evidence for a Soft Nuclear Symmetry Energy at Suprasaturation Densities
International Nuclear Information System (INIS)
Xiao Zhigang; Zhang Ming; Li Baoan; Chen Liewen; Yong Gaochan
2009-01-01
Within an isospin- and momentum-dependent hadronic transport model, it is shown that the recent FOPI data on the π - /π + ratio in central heavy-ion collisions at SIS/GSI energies [Willy Reisdorf et al., Nucl. Phys. A 781, 459 (2007)] provide circumstantial evidence suggesting a rather soft nuclear symmetry energy E sym (ρ) at ρ≥2ρ 0 compared to the Akmal-Pandharipande-Ravenhall prediction. Some astrophysical implications and the need for further experimental confirmations are discussed
Initialization effects via the nuclear radius on transverse in-plane flow and its disappearance
Directory of Open Access Journals (Sweden)
Bansal Rajni
2014-04-01
Full Text Available We study the dependence of collective transverse flow and its disappearance on initialization effects via the nuclear radius within the framework of the Isospin-dependent Quantum Molecular Dynamics (IQMD model. We calculate the balance energy using different parametrizations of the radius available in the literature for the reaction of 12C+12C to explain its measured balance energy. A mass-dependent analysis of the balance energy through out the periodic table is also carried out by changing the default liquid drop IQMD radius.
Two-body tensor interactions in the nuclear matter response function
International Nuclear Information System (INIS)
Besprosvany, J.
1997-01-01
The inclusive scattering response of nuclear matter is studied in the regime of large momentum transfer q, and around the quasielastic peak. We review interaction corrections to free propagation as embodied in the impulse approximation. Calculations of the two-body and many-body corrections within an eikonal approach are presented. These use an approximated two-body density matrix which takes account of spin and isospin degrees of freedom. Both calculations give similar and sizable corrections at q = 550 MeV and reproduce data extrapolated from finite nuclei; this indicates the relevance of two-body tensor contributions in this regime. (Author)
Baryonic forces and hyperons in nuclear matter from SU(3) chiral effective field theory
Energy Technology Data Exchange (ETDEWEB)
Petschauer, Stefan Karl
2016-02-12
In this work the baryon-baryon interaction is studied at next-to-leading order in SU(3) chiral effective field theory and applied to hyperon-nucleon scattering. The properties of hyperons in isospin-symmetric as well as asymmetric nuclear matter are calculated within the Bruecker-Hartree-Fock formalism. Moreover, the leading three-baryon interaction is derived and its low-energy constants are estimated from decuplet intermediate states. We conclude, that chiral effective field theory is a well-suited tool to describe the baryonic forces.
Initialization effects via the nuclear radius on transverse in-plane flow and its disappearance
International Nuclear Information System (INIS)
Bansal, Rajni; Gautam, Sakshi
2014-01-01
We study the dependence of collective transverse flow and its disappearance on initialization effects via the nuclear radius within the framework of the Isospin-dependent Quantum Molecular Dynamics (IQMD) model. We calculate the balance energy using different parametrizations of the radius available in the literature for the reaction of 12 C + 12 C to explain its measured balance energy. A mass-dependent analysis of the balance energy through out the periodic table is also carried out by changing the default liquid drop IQMD radius. (author)
Directory of Open Access Journals (Sweden)
Pirrone S.
2016-01-01
Full Text Available The study of the decay modes competition of the compound systems produced in the collisions 78Kr+40Ca and 86Kr+48Ca at 10AMeV is presented. In particular, the N/Z entrance channel influence on the decay paths of the compound systems, directly connected to the isospin influence, is investigated. The experiment was performed at the INFN Laboratori Nazionali del Sud (LNS in Catania by using the 4π multi-detector CHIMERA. Charge, mass, angular distributions and kinematical features of the reaction products were studied. The analysis shows some differences in the contribution arising from the various reaction mechanisms for the neutron poor and neutron rich systems. Comparison with theoretical statistical and dynamical models are presented for the two systems. Besides a study of the influence of the energy on the entrance channel is performed for the 78Kr+40Ca reaction, by comparing the results of this experiment to those obtained for the same system at 5.5 AMeV with the INDRA device at GANIL.
Is a condensed state of nuclear matter possible?
International Nuclear Information System (INIS)
D'yakonov, D.I.; Mirlin, A.D.
1988-01-01
Nucleon chiral models naturally lead to the concept of ''generalized'' or ''classical'' nucleons which are characterized by a definite orientation in spin-isospin space. Nucleons and Δ resonances are different rotational states of generalized nucleons. Interaction of two generalized nucleons is sharply anisotropic and at a definite relative orientation leads to very strong attraction. This gives an idea of possible existence of a condensed state of nuclear matter, i.e. of a crystal or Fermi liquid with a short-range order which consists of N and Δ coherent superpositions. The variational estimate shows that at densities a few times that of the standard nuclear density this condensed state may be energetically favourable
Nuclear Physics Laboratory annual report
International Nuclear Information System (INIS)
Trainor, T.A.; Weitkamp, W.G.
1985-04-01
Progress is reported in these areas: nuclear physics relevant to astrophysics and cosmology; nuclear structure of 14 N; the Cabibbo angle in Fermi matrix elements of high j states; giant resonances; heavy ion reactions; 0 + - 0 - isoscalar parity mixing in 14 N; parity mixing in hydrogen and deuterium; medium energy physics; and accelerator mass spectrometry. Accelerators and ion sources, nuclear instrumentation, and computer systems at the university are discussed, including the booster linac project
Boiling Patterns of Iso-asymmetric Nuclear Matter
International Nuclear Information System (INIS)
Tõke, Jan
2013-01-01
Limits of thermodynamic metastability of self-bound neutron-rich nuclear matter are explored within the framework of microcanonical thermodynamics of interacting Fermi Gas model in Thomas-Fermi approximation. It is found that as the excitation energy per nucleon of the system is increased beyond a certain limiting value, the system loses metastability and becomes unstable with respect to joint fluctuations in excitation energy per nucleon and in isospin per nucleon. As a result, part of the system is forced to boil off in a form of iso-rich non-equilibrated vapors. Left behind in such a process, identifiable with distillation, is a more iso-symmetric metastable residue at a temperature characteristic of its residual isospin content. With a progressing increase in the initial excitation energy per nucleon, more neutron-rich matter is boiled off and a more iso-symmetric residue is left behind with progressively increasing characteristic temperature. Eventually, when all excess neutrons are shed, the system boils uniformly with a further supply of excitation energy, leaving behind a smaller and smaller residue at a characteristic boiling-point temperature of iso-symmetric matter.
In-medium and isospin effects on eta production in heavy-ion collisions near threshold energies
Energy Technology Data Exchange (ETDEWEB)
Chen, Jie; Chen, Peng-Hui [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China); University of Chinese Academy of Sciences, Beijing (China); Feng, Zhao-Qing; Wang, Jian-Song [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China); Niu, Fei [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China); Henan Normal University, Institute of Particle and Nuclear Physics, Xinxiang (China); Guo, Ya-Fei [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China); Lanzhou University, School of Nuclear Science and Technology, Lanzhou (China)
2017-06-15
The dynamics of η meson produced in heavy-ion collisions has been investigated within the Lanzhou quantum molecular dynamics model (LQMD). The in-medium corrections have been considered in the model, in which an attractive η-nucleon potential is implemented. The impacts of the η optical potential and the nuclear symmetry energy on the η dynamics are investigated. It is found that the total yields are slightly influenced by the potential and weakly depend on the symmetry energy. However, the structure of the kinetic spectra is related to the optical potential and the stiffness of symmetry energy. The attractive potential leads to the reduction of high-momentum (kinetic energy) η production, i.e., the spectra of momentum and transverse mass distributions, increasing the reabsorption process by surrounding nucleons, and favoring the in-plane eta emissions. The reabsorption process in η-nucleon collisions plays a significant role on the η dynamics. (orig.)
The (n,p) reaction as a probe of nuclear structure
International Nuclear Information System (INIS)
Jackson, K.P.; Celler, A.
1988-08-01
An account is given of some results of studies of the (n,p) reaction on nuclear targets at TRIUMF. The (n,p) reaction, inducing spin flip transitions in isospin space, appears to exhibit a unique sensitivity to certain aspects of nuclear structure. The TRIUMF facility is the first to exploit the (n,p) reaction as a detailed probe of nuclear structure at energies above 65 MeV. In the (n,p) reaction Fermi transitions are absent, but there is a dramatic impact on Gamow-Teller and other collective transactions. Some nuclear transition matrix elements can be estimated on the basis of (n,p) measurements. Experiments have been carried out at TRIUMF on Li 6 , Fe 5 4, and Zr 9 0 targets. The calibration of the (n,p) reaction as a probe of the Gamow-Teller strength B + GT has been achieved for three targets. (L.L.) (45 refs., 10 figs.)
Hyperons in nuclear matter from SU(3) chiral effective field theory
Energy Technology Data Exchange (ETDEWEB)
Petschauer, Stefan; Kaiser, Norbert [Technische Universitaet Muenchen (Germany); Haidenbauer, Johann [Forschungszentrum Juelich (Germany); Meissner, Ulf G. [Forschungszentrum Juelich (Germany); Universitaet Bonn (Germany); Weise, Wolfram [Technische Universitaet Muenchen (Germany); ECT, Trento (Italy)
2016-07-01
Brueckner theory is used to investigate the properties of hyperons in nuclear matter. The hyperon-nucleon interaction is taken from chiral effective field theory at next-to-leading order with SU(3) symmetric low-energy constants. Furthermore, the underlying nucleon-nucleon interaction is also derived within chiral effective field theory. We present the single-particle potentials of Λ and Σ hyperons in symmetric and asymmetric nuclear matter computed with the continuous choice for intermediate spectra. The results are in good agreement with the empirical information. In particular, our calculation gives a repulsive Σ-nuclear potential and a weak Λ-nuclear spin-orbit force. The splittings among the Σ{sup +}, Σ{sup 0} and Σ{sup -} potentials have a non-linear dependence on the isospin asymmetry which goes beyond the usual parametrization in terms of an isovector Lane potential.
International Nuclear Information System (INIS)
Villota, C. de
2007-01-01
Carlos Villota. Director of Nuclear Energy of UNESA gave an overview of the Spanish nuclear industry, the utility companies and the relevant institutions. Companies of the nuclear industry include firms that produce heavy components or equipment (ENSA), manufacturers of nuclear fuel (ENUSA), engineering companies, the National Company for Radioactive Waste Management (ENRESA), and nuclear power plants (nine units at seven sites). Nuclear energy is a significant component of the energy mix in Spain: 11% of all energy produced in Spain is of nuclear origin, whilst the share of nuclear energy in the total electricity generation is approximately 23%. The five main players of the energy sector that provide for the vast majority of electricity production, distribution, and supply have formed the Spanish Electricity Industry Association (UNESA). The latter carries out co-ordination, representation, management and promotion tasks for its members, as well as the protection of their business and professional interests. In the nuclear field, UNESA through its Nuclear Energy Committee co-ordinates aspects related to nuclear safety and radiological protection, regulation, NPP operation and R and D. Regarding the institutional framework of the nuclear industry, ENSA, ENUSA and ENRESA are controlled by the national government through the Ministry of Economy and Finance and the Ministry of Science and Technology. All companies of the nuclear industry are licensed by the Ministry of Industry, Tourism and Trade (MITYC), while the regulatory body is the Nuclear Safety Council (CSN). It is noteworthy that CSN is independent of the government, as it reports directly to Parliament. (author)
Nuclear energy prospects to 2000
International Nuclear Information System (INIS)
1982-01-01
This report describes the potential and trends of electricity use in OECD-countries as the main parameter of nuclear power development, including oil displacement and future generation mix, gives a most recent assessment of nuclear power growth to the year 2000, deals with supply and demand considerations covering the whole fuel cycle, assesses the impact of the nuclear contribution on the overall energy situation according to three energy scenarios and the consequences of a possible nuclear shortfall, and finally reviews other factors influencing nuclear energy growth such as security of supply, economics of nuclear power production as wells as public and utility confidence in nuclear power
Sintering method for nuclear fuel pellet
International Nuclear Information System (INIS)
Omuta, Hirofumi; Nakabayashi, Shigetoshi.
1997-01-01
When sintering a compressed nuclear fuel powder in an atmosphere of a mixed gas comprising hydrogen and nitrogen, steams are added to the mixed gas to suppress the nitrogen content in sintered nuclear fuel pellets. In addition, the content of nitrogen impurities in the nuclear fuel pellets can be controlled by controlling the amount of steams to be added to the mixed gas, namely, by controlling the dew point as an index thereof. If the addition amount of steams to the mixed gas is determined by controlling the dew point as an index, the content of nitrogen impurities in the sintered nuclear fuel pellets can be controlled reliably to a specified value of 0.0075% or less. If ammonolyzed gas is used as the mixed gas, a more economical mixed gas can be obtained than in the case of forming mixed gas by mixing the hydrogen gas and the nitrogen gas. (N.H.)
Statistical spectroscopic studies in nuclear structure physics
International Nuclear Information System (INIS)
Halemane, T.R.
1979-01-01
The spectral distribution theory establishes the centroid and width of the energy spectrum as quantities of fundamental importance and gives credence to a geometry associated with averages of the product of pairs of operators acting within a model space. Utilizing this fact and partitioning the model space according to different group symmetries, simple and physically meaningful expansions are obtained for the model interactions. In the process, a global measure for the goodness of group symmetries is also developed. This procedure could eventually lead to a new way of constructing model interactions for nuclear structure studies. Numerical results for six (ds)-shell interactions and for scalar-isospin, configuration-isospin, space symmetry, supermultiplet and SU(e) x SU(4) group structures are presented. The notion of simultaneous propagation of operator averages in the irreps of two or more groups (not necessarily commuting) is also introduced. The non-energy-weighted sum rule (NEWSR) for electric and magnetic multipole excitations in the (ds)-shell nuclei 20 Ne, 24 Mg, 28 Si, 32 S, and 36 Ar are evaluated. A generally applicable procedure for evaluating the eigenvalue bound to the NEWSR is presented and numerical results obtained for the said excitations and nuclei. Comparisons are made with experimental data and shell-model results. Further, a general theory is given for the linear-energy-weighted sum rule (LEWSR). When the Hamiltonian is one-body, this has a very simple form (expressible in terms of occupancies) and amounts to an extension of the Kurath sum rule to other types of excitations and to arbitrary one-body Hamiltonians. Finally, we develop a statistical approach to perturbation theory and inverse-energy-weighted sum rules, and indicate some applications
Isospin excitation of nucleus in 42,44,48Ca (p,n)42,44,48Sc
International Nuclear Information System (INIS)
Suzuki, Keiji
2002-01-01
To obtain information of (p,n) reaction of heavy nucleus in 100 MeV or less, 42,44,48 Ca(p,n) 42,44,48 Sc was observed on the Cyclotron Radio Isotope Center in Tohoku University. The experimental results showed that 7, 8 and 10 spin parities were determined for 42 Sc, 44 Sc and 48 SC, respectively. It was the first determination of one and two negative parity transition of 42 Sc and 48 Sc,respectively, by (p,n) reaction. The full space wave function made by 0f1p shell effective interaction by Richter,et al is good accuracy and reliability. On the (p,n) reaction at E p =35 MeV, the transition matrix elements of 42 Ca, 44 Ca and 48 Ca were derived. On the experiment of 42 Ca(p,n) 42 Sc at E p 2 on energy was agreed with the calculation results by Franey and Love. The nuclear structure of 42 Ca was thought to show more stronger U(4) symmetry, because strong GT transition at T=1 was not observed, which was expected by j-j bonding shell model calculation. (S.Y.)
Energy Technology Data Exchange (ETDEWEB)
Margueron, J
2001-07-01
We study the elementary interactions between neutrinos and dense matter in a proto-neutron star. Equations of state obtained with different nuclear effective interactions (Skyrme, Gogny, Relativistic Lagrangians) are first discussed. Then, we characterize their stability in spin and isospin. We derive magnetic susceptibilities for all isospin asymmetry values as a function of Landau parameters G{sup {pi}}{sup {pi}}{sup '}{sub 0} (where {pi}, {pi}' = proton or neutron). From this work, we select a parametrization for each of the 3 effective forces: Sly230b,D1P,NL3. We calculate the pure neutron matter and asymmetric nuclear matter response functions with and without charge exchange, describing nuclear correlations in both approaches: non-relativistic (Hartree-Fock with Skyrme forces, then complete RPA) and relativistic (in the Hartree approximation). At the end, we calculate neutrino mean free paths neutral current and charged current reactions. Comparisons between relativistic and non-relativistic approaches allow us to identify relativistic effects in nuclear matter at densities as low as twice the saturation density. RPA correlations make the medium more transparent to neutrinos compared to free Fermi gas. The importance of the effective mass in mean free path calculations is also shown. (author)
Theoretical studies in nuclear physics
International Nuclear Information System (INIS)
Landau, R.H.; Madsen, V.A.
1990-01-01
This report discusses: microscopic imaginary optical potential; isospin effects and charge exchange; multistep inelastic and charge exchange scattering; momentum space proton scattering; pion scattering from nuclei; antiproton studies; antikaons-nucleon interactions; and quantum mechanics. 11 refs
International Nuclear Information System (INIS)
Pontier, Jean-Marie; Roux, Emmanuel; Leger, Marc; Deguergue, Maryse; Vallar, Christian; Pissaloux, Jean-Luc; Bernie-Boissard, Catherine; Thireau, Veronique; Takahashi, Nobuyuki; Spencer, Mary; Zhang, Li; Park, Kyun Sung; Artus, J.C.
2012-01-01
This book contains the contributions presented during a one-day seminar. The authors propose a framework for a legal approach to nuclear safety, a discussion of the 2009/71/EURATOM directive which establishes a European framework for nuclear safety in nuclear installations, a comment on nuclear safety and environmental governance, a discussion of the relationship between citizenship and nuclear, some thoughts about the Nuclear Safety Authority, an overview of the situation regarding the safety in nuclear waste burying, a comment on the Nome law with respect to electricity price and nuclear safety, a comment on the legal consequences of the Fukushima accident on nuclear safety in the Japanese law, a presentation of the USA nuclear regulation, an overview of nuclear safety in China, and a discussion of nuclear safety in the medical sector
International Nuclear Information System (INIS)
Anon.
1986-01-01
Representatives of the waste disposal industry, environmental agencies and organizations, and nuclear medicine were among the nine witnesses at a hearing held to discuss S. 892, which clarifies the Environmental Protection Agency (EPA) responsibility for radioactive materials mixed with solid wastes. The witnesses responded to questions about procedures at commercial waste sites to protect public health and safety and about the long-term potential of alternatives to land disposal. At issue were the overlapping jurisdictions of EPA and the Nuclear Regulatory Commission and the validity of traditional self-management in the waste area. Witnesses described how nuclear medicine and other depends upon one disposal site, and their concern that regulations permit the states to proceed with site planning to handle these wastes. The text of S. 892 and additional statements submitted for the record follow the testimony
Mixed Connective Tissue Disease
Mixed connective tissue disease Overview Mixed connective tissue disease has signs and symptoms of a combination of disorders — primarily lupus, scleroderma and polymyositis. For this reason, mixed connective tissue disease ...
International Nuclear Information System (INIS)
Harnby, N.
1988-01-01
Covering all aspects of mixing, this work presents research and developments in industrial applications, flow patterns and mixture analysis, mixing of solids into liquids, and mixing of gases into liquids
International Nuclear Information System (INIS)
Johnson, V.
1982-01-01
Brazil has been expanding its nuclear power since 1975, following the Bonn-Brasilia sales agreement and the 1974 denial of US enriched uranium, in an effort to develop an energy mix that will reduce dependence and vulnerability to a single energy source or supplier. An overview of the nuclear program goes on to describe domestic non-nuclear alternatives, none of which has an adequate base. The country's need for transfers of capital, technology, and raw materials raises questions about the advisability of an aggressive nuclear program in pursuit of great power status. 33 references
International Nuclear Information System (INIS)
Le Ngoc, Boris
2015-01-01
As most studies outline that nuclear energy is necessary to face climate challenges, projects of construction of new nuclear plants remain however insufficient with respect to the world energy mix. The author refers to some conclusions of various world energy scenarios to outline that all energy types will be required, to notice the different shares assigned to nuclear energy by these scenarios, to highlight the peculiarities of the main nuclear markets (China, USA, France, European Union), and to discuss the role of the French industry in these scenarios
International Nuclear Information System (INIS)
Wang, Dong; Ban, Yong; Li, Gang
2014-01-01
The study of ρ-ω mixing has mainly focused on vector meson decays with isospin I=1, namely the ρ(ω)→π + π − process. In this paper, we present a study of ρ-ω mixing in ρ(ω)→π + π − π 0 (I=0) using a flavor parameterization model for the J/ψ→VP process. By fitting a theoretical framework to PDG data, we obtain the SU(3)-breaking effect parameters s V =0.03±0.12, s P =0.17±0.17 and the ρ-ω mixing polarization operator Π ρω =(0.006±0.011) GeV 2 . New values are found for the branching ratios when the mixing effect is incorporated: Br(J/ψ→ωπ 0 )=(3.64±0.37)×10 −4 , Br(J/ψ→ωη)=(1.48±0.17)×10 −3 , Br(J/ψ→ωη ′ )=(1.55±0.56)×10 −4 , these are different from the corresponding PDG2012 values by 19%, 15% and 15%, respectively
Mixed plastics recycling technology
Hegberg, Bruce
1995-01-01
Presents an overview of mixed plastics recycling technology. In addition, it characterizes mixed plastics wastes and describes collection methods, costs, and markets for reprocessed plastics products.
International Nuclear Information System (INIS)
Bel'kov, A.A.; Lanyov, A.V.; Ebert, D.
1990-08-01
In the framework of recently proposed effective Lagrangians for weak nonleptonic meson interactions the amplitudes of the decays K 0 → 3π have been calculated with inclusion of isospin breaking and meson rescattering effects. The imaginary part of the penguin diagram contribution, which determines direct CP-violation in nonleptonic kaon decays, has been fixed with the help of the measured ratio ε'/ε of CP-violation parameters. The modification of the Li-Wolfenstein relation for the direct CP-violation parameter in K 0 (K-bar 0 ) → π + π - π 0 decays is discussed. (author). 27 refs, 3 figs, 1 tab
Neutrino nuclear responses for double beta decays and astro neutrinos by charge exchange reactions
Ejiri, Hiroyasu
2014-09-01
Neutrino nuclear responses are crucial for neutrino studies in nuclei. Charge exchange reactions (CER) are shown to be used to study charged current neutrino nuclear responses associated with double beta decays(DBD)and astro neutrino interactions. CERs to be used are high energy-resolution (He3 ,t) reactions at RCNP, photonuclear reactions via IAR at NewSUBARU and muon capture reactions at MUSIC RCNP and MLF J-PARC. The Gamow Teller (GT) strengths studied by CERs reproduce the observed 2 neutrino DBD matrix elements. The GT and spin dipole (SD) matrix elements are found to be reduced much due to the nucleon spin isospin correlations and the non-nucleonic (delta isobar) nuclear medium effects. Impacts of the reductions on the DBD matrix elements and astro neutrino interactions are discussed.
Sigma-omega meson coupling and properties of nuclei and nuclear matter
International Nuclear Information System (INIS)
Haidari, Maryam M.; Sharma, Madan M.
2008-01-01
We have constructed a Lagrangian model with a coupling of σ and ω mesons in the relativistic mean-field theory. Properties of finite nuclei and nuclear matter are explored with the new Lagrangian model SIG-OM. The study shows that an excellent description of binding energies and charge radii of nuclei over a large range of isospin is achieved with SIG-OM. With an incompressibility of nuclear matter K=265 MeV, it is also able to describe the breathing-mode isoscalar giant monopole resonance energies appropriately. It is shown that the high-density behaviour of the equation of state of nuclear and neutron matter with the σ-ω coupling is much softer than that of the non-linear scalar coupling model
Nuclear power generation and nuclear nonproliferation
International Nuclear Information System (INIS)
Walske, C.
1978-01-01
In the future outlook around year 2000 of nuclear power, thought must be given to fuel reprocessing and plutonium utilization. The adverse utilization of plutonium may be prevented by the means balanced with its economical value. As the method of less cost with lower effect of nonproliferation, combination of fuel reprocessing and fuel fabrication facilities and mixed plutonium/uranium processing are possible. As the method of more cost with higher effect of nonproliferation the maintenance of high radioactivity and inaccessibility of plutonium is conceivable. As for the agreeable methods in 2000, seven principles may be mentioned, such as the dependence upon the agreements among major nations and upon nuclear exporting countries. These are still inadequate, however. What is important is to provide with the sufficient safeguards to countries concerned to negate the need for nuclear weapons. Efforts are then necessary for leading nuclear countries to extend aids to other nuclear-oriented countries. (Mori, K.)
Mixing ratio sensor of alcohol mixed fuel
Energy Technology Data Exchange (ETDEWEB)
Miyata, Shigeru; Matsubara, Yoshihiro
1987-08-07
In order to improve combustion efficiency of an internal combustion engine using gasoline-alcohol mixed fuel and to reduce harmful substance in its exhaust gas, it is necessary to control strictly the air-fuel ratio to be supplied and the ignition timing and change the condition of control depending upon the mixing ratio of the mixed fuel. In order to detect the mixing ratio of the mixed fuel, the above mixing ratio has so far been detected by casting a ray of light to the mixed fuel and utilizing a change of critical angle associated with the change of the composition of the fluid of the mixed fuel. However, in case when a light emitting diode is used for the light source above, two kinds of sensors are further needed. Concerning the two kinds of sensors above, this invention offers a mixing ratio sensor for the alcohol mixed fuel which can abolish a temperature sensor to detect the environmental temperature by making a single compensatory light receiving element deal with the compensation of the amount of light emission of the light emitting element due to the temperature change and the compensation of the critical angle caused by the temperature change. (6 figs)
International Nuclear Information System (INIS)
Fujii, Yasumasa
2011-01-01
After the Fukushima accident occurred in March 2011, reform of Japan's basic energy plan and energy supply system was reported to be under discussion such as to reduce dependence on nuclear power. Planning of energy policy should be considered based on four evaluation indexes of 'economics'. 'environmental effects', 'stable supply of energy' and 'sustainability'. 'Stable supply of energy' should include stability of domestic energy supply infrastructure against natural disasters in addition to stable supply of overseas resources. 'Sustainability' meant long-term availability of resources. Since there did not exist an almighty energy source and energy supply system superior in terms of every above-mentioned evaluation index, it would be wise to use combining various energy sources and supply system in rational way. This combination lead to optimum energy mix, so-called 'Energy Best Mix'. The author evaluated characteristics of energy sources and energy supply system in terms of four indexes and showed best energy mix from short-, medium- and long-term perspectives. Since fossil fuel resources would deplete anyhow, it would be inevitable for human being to be dependent on non-fossil energy resources regardless of greenhouse effects. At present it would be difficult and no guarantee to establish society fully dependent on renewable energy, then it would be probable to need utilization of nuclear energy in the long term. (T. Tanaka)
Department of Nuclear Reactions - Overview
International Nuclear Information System (INIS)
Rusek, K.
2009-01-01
Full text: Our activity in 2008 has focused on well-established domains of research: nuclear and atomic physics, and applications. · As far as nuclear physics is concerned; our interests are very broad, ranging from the structure of the nucleon to the structure of the nucleus including high-energy multifragmentation studies. Our colleagues led by Prof. Pawel Zupranski, members of the HERMES collaboration that comprises 32 institutions from eleven countries at the Deutsches Elektronen Synchrotron (DESY) in Hamburg, worked last year on the extraction of Spin Density Matrix Elements of vector mesons from scattering experiments on hydrogen targets. They also studied the distribution of quarks and gluons in nucleon. A team led by Prof. B. Zwieglinski was involved in the large-scale international collaboration PANDA (antiProton ANnihilation at DArmstadt). They studied the response of cooled PWO scintillators irradiated by gammas in the energy range of 4-20 MeV. The gammas were produced radiative proton capture on light by nuclei using a proton beam from the Van de Graaff accelerator of our Department. As a result, an important extrapolation of measurements performed by another group of physicists at much higher γ-ray energies was obtained. Low energy nuclear physics experiments were continued at the Heavy Ion Laboratory of Warsaw University in collaboration with foreign institutions: the University of Jyvaeskylae, the Institute of Nuclear Research of the Ukrainian Academy of Science and the Institute de Recherches Subatomique in Strasbourg. At high energies, a study of the isospin - dependence of the caloric curve was performed by the ALADIN Collaboration in a series of experiments at GSI - Darmstadt using radioactive beams of Sn and La. It was found that the asymmetry due to isospin is very weak. · Atomic physics studies were devoted to ionisation of heavy atoms by oxygen ions from the tandem accelerator of Erlangen-Nuernberg University. X-rays generated in the
Department of Nuclear Reactions - Overview
Energy Technology Data Exchange (ETDEWEB)
Rusek, K [The Andrzej Soltan Institute for Nuclear Studies, Swierk-Otwock (Poland)
2009-07-01
Full text: Our activity in 2008 has focused on well-established domains of research: nuclear and atomic physics, and applications. {center_dot} As far as nuclear physics is concerned; our interests are very broad, ranging from the structure of the nucleon to the structure of the nucleus including high-energy multifragmentation studies. Our colleagues led by Prof. Pawel Zupranski, members of the HERMES collaboration that comprises 32 institutions from eleven countries at the Deutsches Elektronen Synchrotron (DESY) in Hamburg, worked last year on the extraction of Spin Density Matrix Elements of vector mesons from scattering experiments on hydrogen targets. They also studied the distribution of quarks and gluons in nucleon. A team led by Prof. B. Zwieglinski was involved in the large-scale international collaboration PANDA (antiProton ANnihilation at DArmstadt). They studied the response of cooled PWO scintillators irradiated by gammas in the energy range of 4-20 MeV. The gammas were produced radiative proton capture on light by nuclei using a proton beam from the Van de Graaff accelerator of our Department. As a result, an important extrapolation of measurements performed by another group of physicists at much higher {gamma}-ray energies was obtained. Low energy nuclear physics experiments were continued at the Heavy Ion Laboratory of Warsaw University in collaboration with foreign institutions: the University of Jyvaeskylae, the Institute of Nuclear Research of the Ukrainian Academy of Science and the Institute de Recherches Subatomique in Strasbourg. At high energies, a study of the isospin - dependence of the caloric curve was performed by the ALADIN Collaboration in a series of experiments at GSI - Darmstadt using radioactive beams of Sn and La. It was found that the asymmetry due to isospin is very weak. {center_dot} Atomic physics studies were devoted to ionisation of heavy atoms by oxygen ions from the tandem accelerator of Erlangen-Nuernberg University. X
ρ - ω Mixing Effects in Relativistic Heavy-Ion Collisions
International Nuclear Information System (INIS)
Broniowski, W.; Florkowski, W.
1999-01-01
Full text: We have shown that even moderate excess of neutrons over protons in nuclear matter, such as in 208 Pb, can lead to large ρ - ω mixing at densities of the order of twice the nuclear saturation density and higher. The typical mixing angle is of the order of 10 o . The mixing may result in noticeable shifts of the positions and widths of resonances. We also analyze temperature effects and find that temperatures up to 50 MeV have practically no effect on the mixing. The results have relevance for the explanation of dilepton production in relativistic heavy-ion collisions. (author)