WorldWideScience

Sample records for nuclear ion beam

  1. Ion beam coolers in nuclear physics

    CERN Document Server

    Äystö, J

    2003-01-01

    Cooling techniques for low-energy radioactive ion beams are reviewed together with applications on high-precision measurements of ground state properties of exotic nuclei. The emphasis in the presentation is on cooling, bunching and improving the overall characteristics of ion beams by RFQ-driven buffer gas cooling devices. Application of cooled and bunched beams in collinear laser spectroscopy to extract isotope shifts and hyperfine structure are presented with examples on radioactive Ti, Zr and Hf isotopes. The impact of the new-generation coolers on mass measurements of short-lived nuclei is discussed with examples on precision measurements of masses of super-allowed beta emitters. As a new concept, decay spectroscopy of radioactive ions trapped in a cooler Penning trap is presented.

  2. Development of a nuclear data base for relativistic ion beams

    International Nuclear Information System (INIS)

    Townsend, L.W.; Wong, M.; Schimmerling, W.; Wilson, J.W.

    1987-01-01

    The primary limitation on the development of heavy ion beam transport methods is the lack of an accurate nuclear data base. Because of the large number of ion/target combinations, the complexity of the reaction products, and the broad range of energies required, it is unlikely that the data base will ever be compiled from experiments alone. For the last 15 years, relativistic heavy-ion accelerators have been available, but the experimental data base remains inadequate. However, theoretical models of heavy-ion reactions are being derived to provide cross section data for beam transport problems. A concurrent experimental program to provide sufficient experimental data to validate the model is also in progress. Model development and experimental results for model validation are discussed. The need for additional nuclear fragmentation data is identified

  3. Nuclear physics with radioactive ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Kozub, Raymond L. [Tennessee Technological Univ., Cookeville, TN (United States)

    2015-07-23

    This is a final report on DOE Grant No. DE FG02 96ER40955, which was active at Tennessee Technological University (TTU) from 1 March 1996 to 29 May 2015. Generally, this report will provide an overall summary of the more detailed activities presented in the progress reports, numbered DOE/ER/40955-1 through DOE/ER/40955-18, which were submitted annually to the DOE Office of Nuclear Physics.

  4. Medical applications of nuclear physics and heavy-ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, Jose R.

    2000-08-01

    Isotopes and accelerators, hallmarks of nuclear physics, are finding increasingly sophisticated and effective applications in the medical field. Diagnostic and therapeutic uses of radioisotopes are now a $10B/yr business worldwide, with over 10 million procedures and patient studies performed every year. This paper will discuss the use of isotopes for these applications. In addition, beams of protons and heavy ions are being more and more widely used clinically for treatment of malignancies. To be discussed here as well will be the rationale and techniques associated with charged-particle therapy, and the progress in implementation and optimization of these technologies for clinical use.

  5. Medical applications of nuclear physics and heavy-ion beams

    International Nuclear Information System (INIS)

    Alonso, Jose R.

    2000-01-01

    Isotopes and accelerators, hallmarks of nuclear physics, are finding increasingly sophisticated and effective applications in the medical field. Diagnostic and therapeutic uses of radioisotopes are now a $10B/yr business worldwide, with over 10 million procedures and patient studies performed every year. This paper will discuss the use of isotopes for these applications. In addition, beams of protons and heavy ions are being more and more widely used clinically for treatment of malignancies. To be discussed here as well will be the rationale and techniques associated with charged-particle therapy, and the progress in implementation and optimization of these technologies for clinical use

  6. Nuclear Structure Studies with Stable and Radioactive Beams: The SPES radioactive ion beam project

    Science.gov (United States)

    de Angelis, G.; SPES Collaboration; Prete, G.; Andrighetto, A.; Manzolaro, M.; Corradetti, S.; Scarpa, D.; Rossignoli, M.; Monetti, A.; Lollo, M.; Calderolla, M.; Vasquez, J.; Zafiropoulos, D.; Sarchiapone, L.; Benini, D.; Favaron, P.; Rigato, M.; Pegoraro, R.; Maniero, D.; Calabretta, L.; Comunian, M.; Maggiore, M.; Lombardi, A.; Piazza, L.; Porcellato, A. M.; Roncolato, C.; Bisoffi, G.; Pisent, A.; Galatà, A.; Giacchini, M.; Bassato, G.; Canella, S.; Gramegna, F.; Valiente, J.; Bermudez, J.; Mastinu, P. F.; Esposito, J.; Wyss, J.; Russo, A.; Zanella, S.

    2015-04-01

    A new Radioactive Ion Beam (RIB) facility (SPES) is presently under construction at the Legnaro National Laboratories of INFN. The SPES facility is based on the ISOL method using an UCx Direct Target able to sustain a power of 10 kW. The primary proton beam is provided by a high current Cyclotron accelerator with energy of 35-70 MeV and a beam current of 0.2-0.5 mA. Neutron-rich radioactive ions are produced by proton induced fission on an Uranium target at an expected fission rate of the order of 1013 fissions per second. After ionization and selection the exotic isotopes are re-accelerated by the ALPI superconducting LINAC at energies of 10A MeV for masses in the region A=130 amu. The expected secondary beam rates are of the order of 107 - 109 pps. Aim of the SPES facility is to deliver high intensity radioactive ion beams of neutron rich nuclei for nuclear physics research as well as to be an interdisciplinary research centre for radio-isotopes production for medicine and for neutron beams.

  7. Applications of laser produced ion beams to nuclear analysis of materials

    International Nuclear Information System (INIS)

    Mima, K.; Azuma, H.; Fujita, K.; Yamazaki, A.; Okuda, C.; Ukyo, Y.; Kato, Y.; Arrabal, R. Gonzalez; Soldo, F.; Perlado, J. M.; Nishimura, H.; Nakai, S.

    2012-01-01

    Laser produced ion beams have unique characteristics which are ultra-short pulse, very low emittance, and variety of nuclear species. These characteristics could be used for analyzing various materials like low Z ion doped heavy metals or ceramics. Energies of laser produced ion beam extend from 0.1MeV to 100MeV. Therefore, various nuclear processes can be induced in the interactions of ion beams with samples. The ion beam driven nuclear analysis has been developed for many years by using various electrostatic accelerators. To explore the applicability of laser ion beam to the analysis of the Li ion battery, a proton beam with the diameter of ∼ 1.0 μm at Takasaki Ion Acceleration for Advanced Radiation Application (TIARA), JAEA was used. For the analysis, the PIGE (Particle-Induced Gamma Ray Emission) is used. The proton beam scans over Li battery electrode samples to diagnose Li density in the LiNi 0.85 Co 0.15 O 2 anode. As the results, PIGE images for Li area density distributions are obtained with the spatial resolution of better than 1.5μm FWHM. By the Li PIGE images, the depth dependence of de-intercalation levels of Li in the anode is obtained. By the POP experiments at TIARA, it is clarified that laser produced ion beam is appropriate for the Li ion battery analysis. 41.85.Lc, 41.75.Jv, 42.62.cf.

  8. Nuclear Fragmentation in Clinical Heavy Ion Beams, Should We Worry?

    DEFF Research Database (Denmark)

    Bassler, Niels; Hansen, David Christoffer; Toftegaard, Jakob

    Particle therapy with fast ions is increasingly applied as a treatment option for localized inoperable tumour sites. One of the reasons for the increased complications of understanding heavy ion dosimetry and radiobiology stems from the mixed particle spectrum which occurs due to nuclear fragment......Particle therapy with fast ions is increasingly applied as a treatment option for localized inoperable tumour sites. One of the reasons for the increased complications of understanding heavy ion dosimetry and radiobiology stems from the mixed particle spectrum which occurs due to nuclear....... However, the dose is by convention expressed in dose relative to water. The link between these different ways of calculating dose is primarily provided by stopping power ratios, i.e. atomic physics, however since the average stopping powers are weighted by fluence, one might expect a weak dependence...... the secondary neutron spectrum in surrounding tissue, and the production of secondary radiation for retrospective (or online) treatment plan verification. We change essential parameters in the underlying nuclear models of the Monte Carlo particle transport code SHIELD-HIT10A, in order to quantify...

  9. Radioactive ion beams for biomedical research and nuclear medical application

    CERN Document Server

    Beyer, Gerd-Jürgen

    2002-01-01

    The ISOLDE facility at CERN is the world leading on On-Line Isotope Separator installation. The main aspects which makes ISOLDE produced radio-isotopes such valuable for use in biomedical research are: the availability of exotic or uncommon radioisotopes, the high purity and the ion beam quality. A short overview on research strategies, on experimental work and application of ISOLDE produced radionuclides used in the field of biomedicine over a period of more than 2 decades will be given. Special attention will be directed to the radio- lanthanides, because they can be seen as one single element providing the unique possibility to study systematically relationships between molecule parameters and a biological response without changes in the basic tracer molecule. Among those radionuclides we find any radiation properties we wish (single photon emission) suitable for SPECT, positron emission suitable for positron emission tomography (PET), alpha -, beta /sup -/- and Auger electron emission. (21 refs).

  10. Application of laser produced ion beams to nuclear analysis of materials

    Directory of Open Access Journals (Sweden)

    Mima Kunioki

    2013-11-01

    Full Text Available The ion beam driven nuclear analysis has been developed for many years by using various electrostatic accelerators. A proton micro-beam with the beam diameter of ∼1.5 μm at Takasaki Ion Acceleration for Advanced Radiation Application (TIARA, JAEA was used to analyze the positive electrode of the Li-ion battery with PIGE and PIXE. WThe PIGE and PIXE images of Li and Ni respectively for LixNi0.8Co0.15Al0.05O2(x = 0.75 ∼ 1.0 anodes have been taken. The PIGE images of LixNi0.8Co0.15Al0.05O2 particles and the depth profile of the Li density have been obtained with high spatial resolution (a few μm. The images of the Li density distribution are very useful for the R&D of the Li ion battery. In order to make the in-situ ion beam analysis of the Li battery possible, a compact accelerator for a high quality MeV proton beam is necessary. Form this point of view, the diagnostics of Li ion battery is an appropriate field for the applications of laser produced ion beams.

  11. Accelerated Nuclear Energy Materials Development with Multiple Ion Beams

    Energy Technology Data Exchange (ETDEWEB)

    Fluss, M J; Bench, G

    2009-08-19

    A fundamental issue in nuclear energy is the changes in material properties as a consequence of time, temperature, and neutron fluence. Usually, candidate materials for nuclear energy applications are tested in nuclear reactors to understand and model the changes that arise from a combination of atomic displacements, helium and hydrogen production, and other nuclear transmutations (e.g. fission and the production of fission products). Experiments may be carried out under neutron irradiation conditions in existing nuclear materials test reactors (at rates of 10 to 20 displacements per atom (DPA) per year or burn-up rates of a few percent per year for fertile fuels), but such an approach takes much too long for many high neutron fluence scenarios (300 DPA for example) expected in reactors of the next generation. Indeed it is reasonable to say that there are no neutron sources available today to accomplish sufficiently rapid accelerated aging let alone also provide the temperature and spectral characteristics of future fast spectrum nuclear energy systems (fusion and fission both). Consequently, materials research and development progress continues to be severely limited by this bottleneck.

  12. Dependence of simulated positron emitter yields in ion beam cancer therapy on modeling nuclear fragmentation

    DEFF Research Database (Denmark)

    Lühr, Armin; Priegnitz, Marlen; Fiedler, Fine

    2014-01-01

    In ion beam cancer therapy, range verification in patients using positron emission tomography (PET) requires the comparison of measured with simulated positron emitter yields. We found that (1) changes in modeling nuclear interactions strongly affected the positron emitter yields and that (2) Monte...... Carlo simulations with SHIELD-HIT10A reasonably matched the most abundant PET isotopes 11C and 15O. We observed an ion-energy (i.e., depth) dependence of the agreement between SHIELD-HIT10A and measurement. Improved modeling requires more accurate measurements of cross-section values....

  13. Ion beam analysis - development and application of nuclear reaction analysis methods, in particular at a nuclear microprobe

    International Nuclear Information System (INIS)

    Sjoeland, K.A.

    1996-11-01

    This thesis treats the development of Ion Beam Analysis methods, principally for the analysis of light elements at a nuclear microprobe. The light elements in this context are defined as having an atomic number less than approx. 13. The work reported is to a large extent based on multiparameter methods. Several signals are recorded simultaneously, and the data can be effectively analyzed to reveal structures that can not be observed through one-parameter collection. The different techniques are combined in a new set-up at the Lund Nuclear Microprobe. The various detectors for reaction products are arranged in such a way that they can be used for the simultaneous analysis of hydrogen, lithium, boron and fluorine together with traditional PIXE analysis and Scanning Transmission Ion Microscopy as well as photon-tagged Nuclear Reaction Analysis. 48 refs

  14. Ion beam analysis - development and application of nuclear reaction analysis methods, in particular at a nuclear microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Sjoeland, K.A.

    1996-11-01

    This thesis treats the development of Ion Beam Analysis methods, principally for the analysis of light elements at a nuclear microprobe. The light elements in this context are defined as having an atomic number less than approx. 13. The work reported is to a large extent based on multiparameter methods. Several signals are recorded simultaneously, and the data can be effectively analyzed to reveal structures that can not be observed through one-parameter collection. The different techniques are combined in a new set-up at the Lund Nuclear Microprobe. The various detectors for reaction products are arranged in such a way that they can be used for the simultaneous analysis of hydrogen, lithium, boron and fluorine together with traditional PIXE analysis and Scanning Transmission Ion Microscopy as well as photon-tagged Nuclear Reaction Analysis. 48 refs.

  15. The nuclear interaction analysis methods for diagnostics of high power ion beam technologies

    International Nuclear Information System (INIS)

    Ryzhkov, V.A.; Grushin, I.I.; Remnev, G.E.

    1996-01-01

    The complex of Nuclear Interaction Analysis Methods including charged particle activation analysis (CPAA and HIAA), spectrometry of ion induced gamma-emission (PIGE and HIIGE) , characteristic X-ray emission (PIXE), and Rutherford Backscattering Spectrometry (RBS), have been used for diagnostics of the High Power Ion Beam (HPIB) assisted technologies. Accelerated ion beams from the EG-2.5 electrostatic generator and U-120 cyclotron were used for implementation of the techniques. The complex allows a lot of problems of elemental and isotopic analysis to be addressed. First, it is the determination of micro- and macrocomponents of modified materials; second, determination of surface density of thin films, multilayers and coatings, total surface gaseous contamination and amounts of the elements implanted in specimens; third, measurement of concentration depth profiles of the elements. Experiments have shown that the preferable application of nuclear analysis methods allows us to avoid the considerable errors arising when the concentration depth profiles of elements are measured by SIMS or AES in studies of mass transfer processes induced by HPIBs. (author). 1 tab., 2 figs., 3 refs

  16. Nuclear Structure Studies of Exotic Nuclei with Radioactive Ion Beams A Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Winger, Jeff Allen [Mississippi State Univ., Mississippi State, MS (United States)

    2016-04-21

    Beta-decay spectroscopy provides important information on nuclear structure and properties needed to understand topics as widely varied as fundamental nuclear astrophysics to applied nuclear reactor design. However, there are significant limitations of our knowledge due to an inability to experimentally measure everything. Therefore, it is often necessary to rely on theoretical calculations which need to be vetted with experimental results. The focus of this report will be results from experimental research performed by the Principal Investigator (PI) and his research group at Mississippi State University in which the group played the lead role in proposing, implementing, performing and analyzing the experiment. This research was carried out at both the National Superconduction Cyclotron Laboratory (NSCL) at Michigan State University and the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory. The primary emphasis of the research was the use of \\bdec spectroscopy as a tool to understand the evolution of nuclear structure in neutron-rich nuclei which could then be applied to improve theory and to increase the overall knowledge of nuclear structure.

  17. Nuclear reactions with 11C and 14O radioactive ion beams

    International Nuclear Information System (INIS)

    Guo, Fanqing

    2004-01-01

    Radioactive ion beams (RIBs) have been shown to be a useful tool for studying proton-rich nuclides near and beyond the proton dripline and for evaluating nuclear models. To take full advantage of RIBs, Elastic Resonance Scattering in Inverse Kinematics with Thick Targets (ERSIKTT), has proven to be a reliable experimental tool for investigations of proton unbound nuclei. Following several years of effort, Berkeley Experiments with Accelerated Radioactive Species (BEARS), a RIBs capability, has been developed at the Lawrence Berkeley National Laboratory's 88-Inch Cyclotron. The current BEARS provides two RIBs: a 11C beam of up to 2x108 pps intensity on target and an 14O beam of up to 3x104 pps intensity. While the development of the 11C beam has been relatively easy, a number of challenges had to be overcome to obtain the 14O beam. The excellent 11C beam has been used to investigate several reactions. The first was the 197Au(11C,xn)208-xnAt reaction, which was used to measure excitation functions for the 4n to 8n exit channels. The measured cross sections were generally predicted quite well using the fusion-evaporation code HIVAP. Possible errors in the branching ratios of ?? decays from At isotopes as well as the presence of incomplete fusion reactions probably contribute to specific overpredictions. 15F has been investigated by the p(14O,p)14O reaction with the ERSIKTT technology. Several 14O+p runs have been performed. Excellent energy calibration was obtained using resonances from the p(14N,p)14N reaction in inverse kinematics, and comparing the results to those obtained earlier with normal kinematics. The differences between 14N+p and 14O+p in the stopping power function have been evaluated for better energy calibration. After careful calibration, the energy levels of 15F were fitted with an R-matrix calculation. Spins and parities were assigned to the two observed resonances. This new measurement of the 15F ground state supports the disappearance of the Z = 8

  18. Ion beam monitoring

    International Nuclear Information System (INIS)

    McKinney, C.R.

    1980-01-01

    An ion beam analyzer is specified, having an ion source for generating ions of a sample to be analyzed, means for extracting the sample ions, means for focusing the sample ions into a beam, separation means positioned along the ion beam for selectively deflecting species of ions, and means for detecting the selected species of ions. According to the specification, the analyzer further comprises (a) means for disabling at least a portion of the separation means, such that the ion beam from the source remains undeflected; (b) means located along the path of the undeflected ion beam for sensing the sample ions; and (c) enabling means responsive to the sensing means for automatically re-enabling the separation means when the sample ions reach a predetermined intensity level. (author)

  19. Ion beam diagnosis

    International Nuclear Information System (INIS)

    Strehl, P.

    1994-04-01

    This report is an introduction to ion beam diagnosis. After a short description of the most important ion beam parameters measurements of the beam current by means of Faraday cups, calorimetry, and beam current transformers and measurements of the beam profile by means of viewing screens, profile grids and scanning devices, and residual gas ionization monitors are described. Finally measurements in the transverse and longitudinal phase space are considered. (HSI)

  20. Intense beams of light ions

    International Nuclear Information System (INIS)

    Camarcat, Noel

    1985-01-01

    Results of experiments performed in order to accelerate intense beams of light and heavier ions are presented. The accelerating diodes are driven by existing pulsed power generators. Optimization of the generator structure is described in chapter I. Nuclear diagnostics of the accelerated light ion beams are presented in chapter II. Chapter III deals with the physics of intense charged particle beams. The models developed are applied to the calculation of the performances of the ion diodes described in the previous chapters. Chapter IV reports preliminary results on a multiply ionized carbon source driven by a 0.1 TW pulsed power generator. (author) [fr

  1. Electron Beam Ion Sources

    CERN Document Server

    Zschornacka, G.; Thorn, A.

    2013-12-16

    Electron beam ion sources (EBISs) are ion sources that work based on the principle of electron impact ionization, allowing the production of very highly charged ions. The ions produced can be extracted as a DC ion beam as well as ion pulses of different time structures. In comparison to most of the other known ion sources, EBISs feature ion beams with very good beam emittances and a low energy spread. Furthermore, EBISs are excellent sources of photons (X-rays, ultraviolet, extreme ultraviolet, visible light) from highly charged ions. This chapter gives an overview of EBIS physics, the principle of operation, and the known technical solutions. Using examples, the performance of EBISs as well as their applications in various fields of basic research, technology and medicine are discussed.

  2. The 6 MV tandem accelerator project for nuclear physics and ion beam applications at the University of Tsukuba

    Science.gov (United States)

    Sasa, Kimikazu

    2013-05-01

    The 12UD Pelletron tandem accelerator at the University of Tsukuba suffered serious damage from the Great East Japan Earthquake on 11 March 2011. A post-quake reconstruction project has been started to construct a new middle-sized tandem accelerator instead of the broken 12UD Pelletron tandem accelerator at the 2nd target room connecting the beam line to existing facilities at the 1st target room. The new accelerator system consists of the 6 MV Pelletron tandem accelerator, new 4 ion sources, an existing Lam-shift polarized ion source and 12 beam lines. It is expected to apply for nuclear physics, accelerator mass spectrometry and ion beam applications. The construction of the new accelerator system will be completed by spring 2014.

  3. Method of generating intense nuclear polarized beams by selective photodetachment of negative ions

    International Nuclear Information System (INIS)

    Hershcovitch, A.

    1986-01-01

    A novel method for production of nuclear polarized negative hydrogen ions by selective neutralization with a laser of negative hydrogen ions in a magnetic field is described. This selectivity is possible since a final state of the neutralized atom, and hence the neutralization energy, depends on its nuclear polarization. The main advantages of this scheme are the availability of multi-ampere negative ion sources and the possibility of neutralizing negative ions with very high efficiency. An assessment of the required laser power indicates that this method is in principle feasible with today's technology

  4. Studies of extraction and transport system for highly charged ion beam of 18 GHz superconducting electron cyclotron resonance ion source at Research Center for Nuclear Physics.

    Science.gov (United States)

    Yorita, T; Hatanaka, K; Fukuda, M; Ueda, H; Yasuda, Y; Morinobu, S; Tamii, A; Kamakura, K

    2014-02-01

    An 18 GHz superconducting electron cyclotron resonance ion source is installed to increase beam currents and to extend the variety of ions especially for highly charged heavy ions which can be accelerated by cyclotrons of Research Center for Nuclear Physics (RCNP), Osaka University. The beam production developments of several ions from B to Xe have been already done [T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 79, 02A311 (2008) and T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 81, 02A332 (2010)] and the further studies for those beam extraction and its transport have been done in order to increase the beam current more. The plasma electrode, extraction electrode, and einzel lens are modified. Especially extraction electrode can be applied minus voltage for the beam extraction and it works well to improve the extracted beam current. The extraction voltage dependences of transmission and emittance also have been studied for beam current improvement which is injected into azimuthally varying field cyclotron at RCNP.

  5. Radioactive Ion Beams and Radiopharmaceuticals

    Science.gov (United States)

    Laxdal, R. E.; Morton, A. C.; Schaffer, P.

    2014-02-01

    Experiments performed at radioactive ion beam facilities shed new light on nuclear physics and nuclear structure, as well as nuclear astrophysics, materials science and medical science. The many existing facilities, as well as the new generation of facilities being built and those proposed for the future, are a testament to the high interest in this rapidly expanding field. The opportunities inherent in radioactive beam facilities have enabled the search for radioisotopes suitable for medical diagnosis or therapy. In this article, an overview of the production techniques and the current status of RIB facilities and proposals will be presented. In addition, accelerator-generated radiopharmaceuticals will be reviewed.

  6. ECR ion source based low energy ion beam facility

    Indian Academy of Sciences (India)

    Mass analyzed highly charged ion beams of energy ranging from a few keV to a few MeV plays an important role in various aspects of research in modern physics. In this paper a unique low energy ion beam facility (LEIBF) set up at Nuclear Science Centre (NSC) for providing low and medium energy multiply charged ion ...

  7. Formation of plasmid DNA strand breaks induced by low-energy ion beam: indication of nuclear stopping effects

    International Nuclear Information System (INIS)

    Chen Yu; Jiang Bingyao; Chen Youshan; Ding Xingzhao; Liu Xianghuai; Chen Ceshi; Guo Xinyou; Yin Guanglin

    1998-01-01

    Plasmid pGEM 3zf(+) was irradiated by nitrogen ion beam with energies between 20 and 100 keV and the fluence kept as 1 x 10 12 ions/cm 2 . The irradiated plasmid was assayed by neutral electrophoresis and quantified by densitometry. The yields of DNA with single-strand and double-strand breaks first increased then decreased with increasing ion energy. There was a maximal yield value in the range of 20-100 keV. The relationship between DNA double-strand breaks (DSB) cross-section and linear energy transfer (LET) also showed a peak-shaped distribution. To understand the physical process during DNA strand breaks, a Monte Carlo calculation code known as TRIM (Transport of Ions in Matter) was used to simulate energy losses due to nuclear stopping and to electronic stopping. It can be assumed that nuclear stopping plays a more important role in DNA strand breaks than electronic stopping in this energy range. The physical mechanisms of DNA strand breaks induced by a low-energy ion beam are also discussed. (orig.)

  8. Design issues of radioactive ion beam facilities

    International Nuclear Information System (INIS)

    Lieuvin, M.

    1996-01-01

    There is an increasing interest in Radioactive Ion Beams throughout the world. These ions open new domains of research for nuclear physics, nuclear astrophysics and atomic physics. Two methods are used for the production of these beams: fragmentation of a primary, high energy heavy ion beam passing through a thin target or nuclei production in a thick target bombarded either by a heavy ion beam, a proton beam or by neutrons. When radioactive species are produced in a thick target, they must be extracted, ionised, separated, identified and finally accelerated. This requires a radioactive ion source, a mass separator and a post accelerator. This paper reviews these two methods, their respective domains and the specific problems related to the control and the accelerator of radioactive ion beams. (author). 39 refs., 3 figs., 2 tabs

  9. Ion-beam technologies

    Energy Technology Data Exchange (ETDEWEB)

    Fenske, G.R. [Argonne National Lab., IL (United States)

    1993-01-01

    This compilation of figures and diagrams reviews processes for depositing diamond/diamond-like carbon films. Processes addressed are chemical vapor deposition (HFCVD, PACVD, etc.), plasma vapor deposition (plasma sputtering, ion beam sputtering, evaporation, etc.), low-energy ion implantation, and hybrid processes (biased sputtering, IBAD, biased HFCVD, etc.). The tribological performance of coatings produced by different means is discussed.

  10. Ion beam studies

    International Nuclear Information System (INIS)

    Freeman, J.H.; Chivers, D.J.; Gard, G.A.; Temple, W.

    1977-04-01

    A description of techniques for the production of intense beams of heavy ions is given. A table of recommended operational procedures for most elements is included. The ionisation of boron is considered in some detail because of its particular importance as a dopant for ion implantation. (author)

  11. Production of negatively charged radioactive ion beams

    Science.gov (United States)

    Liu, Y.; Stracener, D. W.; Stora, T.

    2017-08-01

    Beams of short-lived radioactive nuclei are needed for frontier experimental research in nuclear structure, reactions, and astrophysics. Negatively charged radioactive ion beams have unique advantages and allow for the use of a tandem accelerator for post-acceleration, which can provide the highest beam quality and continuously variable energies. Negative ion beams can be obtained with high intensity and some unique beam purification techniques based on differences in electronegativity and chemical reactivity can be used to provide beams with high purity. This article describes the production of negative radioactive ion beams at the former holifield radioactive ion beam facility at Oak Ridge National Laboratory and at the CERN ISOLDE facility with emphasis on the development of the negative ion sources employed at these two facilities. ).

  12. Application of ion beams in materials science of radioactive waste forms: focus on the performance of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Garrido, Frederico [Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse, CNRS-IN2P3-Universite Paris-Sud, Batiments 104-108, 91405 Orsay Campus (France)]. E-mail: garrido@csnsm.in2p3.fr; Nowicki, Lech [Andrzej Soltan Institute for Nuclear Studies, Hoza 69, 00-681 Warsaw (Poland); Thome, Lionel [Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse, CNRS-IN2P3-Universite Paris-Sud, Ba-hat timents 104-108, 91405 Orsay Campus (France)

    2005-10-15

    Ion beam techniques provide unique tools for the qualification of radioactive waste forms. They address three major issues: (i) the simulation by ion irradiation of the stability of a matrix submitted to radiative environment; (ii) the doping of a material with stable or radioactive elements which simulate the species to be confined; (iii) the characterisation of a material via nuclear microanalysis techniques. Among various classes of nuclear matrices the spent nuclear fuel is widely considered as a potential candidate for the stabilisation of radioactive wastes in scenarios of long term interim storage or final geological disposal. Illustrative examples revealing the potentialities of the use of ion beams either as a pure characterisation tool - to investigate the chemical stability of the UO{sub 2} matrix under an oxygen potential - or in a combined way (e.g. irradiation/characterisation, doping/characterisation) - to explore the radiation stability and the behaviour of foreign species - are presented. Transformations (stoichiometry, depth and structure of growing hyperstoichiometric U{sub 4}O{sub 9}/U{sub 3}O{sub 7} oxides) occurring during low-temperature air oxidation of uranium dioxide single crystals are reported. Swift heavy ion irradiation of UO{sub 2} single crystals leads to a peculiar single crystal-polycrystal transformation (i.e. polygonisation of the fluorite-type structure of the material). Irradiation of UO{sub 2} at low energy shows that the damage production is directly linked to the energy deposited in nuclear elastic collisions. The lattice location of helium atoms (generated in large amount during the storage period) in interstitial octahedral positions is discussed.

  13. ECR ion source based low energy ion beam facility

    Indian Academy of Sciences (India)

    Abstract. Mass analyzed highly charged ion beams of energy ranging from a few keV to a few. MeV plays an important role in various aspects of research in modern physics. In this paper a unique low energy ion beam facility (LEIBF) set up at Nuclear Science Centre (NSC) for providing low and medium energy multiply ...

  14. National Centre for Radioactive Ion Beams (NCRIB)

    International Nuclear Information System (INIS)

    Chintalapudi, S.N.

    1999-01-01

    A dedicated National Centre for RIB (NCRIB) proposed discussed at several forums is presented. The production of (RIB) radioactive ion beams and applications of beams leading to competitive studies in nuclear structure, nuclear reactions, condensed matter, bio-science and radioactive isotope production etc. are mentioned

  15. Ion Accelerator Merges Several Beams

    Science.gov (United States)

    Aston, G.

    1984-01-01

    Intense ion beam formed by merging multiple ion beamlets into one concentrated beam. Beamlet holes in graphite screen and focusing grids arranged in hexagonal pattern. Merged beam passes through single hole in each of aluminum accelerator and decelerator grids. Ion extraction efficiency, beam intensity, and focusing improved.

  16. Chemical reactivity and ion beam irradiation behaviour of perovskite- and zirconolite-nuclear ceramics type

    Energy Technology Data Exchange (ETDEWEB)

    Larguem, H. [Laboratoire des Geomateriaux, Universite de Marne la Vallee, 5 Boulevard Descartes Champs sur Marne, 77454 Marne la Vallee Cedex 2 (France)]. E-mail: larguem@univ-mlv.fr; Trocellier, P. [Service de Recherche de Metallurgie Physique, Institut National des Sciences et Techniques Nucleaires, CEA-DEN/DMN, Centre d' Etudes de Saclay, 91191 Gif sur Yvette Cedex (France); Tarrida, M. [Laboratoire des Geomateriaux, Universite de Marne la Vallee, 5 Boulevard Descartes Champs sur Marne, 77454 Marne la Vallee Cedex 2 (France); Madon, M. [Laboratoire des Geomateriaux, Universite de Marne la Vallee, 5 Boulevard Descartes Champs sur Marne, 77454 Marne la Vallee Cedex 2 (France); Poissonnet, S. [Service de Recherche de Metallurgie Physique, Institut National des Sciences et Techniques Nucleaires, CEA-DEN/DMN, Centre d' Etudes de Saclay, 91191 Gif sur Yvette Cedex (France); Gosset, D. [Service de Recherche de Metallurgie Appliquee, Institut National des Sciences et Techniques Nucleaires, CEA-DEN/DMN, Centre d' Etudes de Saclay, 91191 Gif sur Yvette Cedex (France); Leseigneur, O. [Service de Recherche de Metallurgie Physique, Institut National des Sciences et Techniques Nucleaires, CEA-DEN/DMN, Centre d' Etudes de Saclay, 91191 Gif sur Yvette Cedex (France); Martin, H. [Service de Recherche de Metallurgie Physique, Institut National des Sciences et Techniques Nucleaires, CEA-DEN/DMN, Centre d' Etudes de Saclay, 91191 Gif sur Yvette Cedex (France); Bonnaillie, P. [Service de Recherche de Metallurgie Physique, Institut National des Sciences et Techniques Nucleaires, CEA-DEN/DMN, Centre d' Etudes de Saclay, 91191 Gif sur Yvette Cedex (France); Beck, L.; Vaubaillon, S.; Miro, S. [Laboratoire du Van de Graaff, Institut National des Sciences et Techniques Nucleaires, CEA-DEN/DMN, Centre d' Etudes de Saclay, 91191 Gif sur Yvette Cedex (France)

    2006-08-15

    Oxide ceramics of two neighboring families: perovskite A(II)B(IV)O{sub 3} and zirconolite A(II)B(IV)C(IV){sub 2}O{sub 7} have been synthesized by a classical solid route. Substitution of divalent cation (Ca) by trivalent cation (Nd) was tested on zirconolite compositions. Then, the ceramic pellets were submitted to aqueous leaching tests at 90 deg. C in deionized water. Some of them were previously ion irradiated with 150 keV Xe{sup +} within a fluence range 5 x 10{sup 13}-1 x 10{sup 15} cm{sup -2} in order to study the effect of ion damaging on their intrinsic chemical reactivity. X-ray diffraction (XRD), electron microprobe analysis (EMA), scanning electron microscopy (SEM) and ion beam analysis (IBA) methods were used to characterize the evolution of the crystallinity level and the surface chemical composition of the ceramics after each step (synthesis, irradiation, leaching). The alteration mechanism of unirradiated titanate ceramics appears to be not uniform at the sample surface. Chemical durability of zirconolite is shown to be dependent both on the pH of the aqueous solution and the ceramic composition. Surface hydration only concerns a very thin layer, typically 200 nm and the hydrogen content does not go beyond 1-2 at.%. No differences have been detected in the leaching behaviour of unirradiated or irradiated perovskite samples.

  17. Proceedings of national seminar on physics with radioactive ion beams

    International Nuclear Information System (INIS)

    Chintalapudi, S.N.; Shyam, R.

    1991-01-01

    This volume containing the proceedings of the national seminar on physics with radioactive ion beams gives a broad overview of the developments taking place in the area of nuclear physics and accelerator physics with special emphasis on the utilization of radioactive ion beams for various studies. Topics covered include studies on nuclear structure and nuclear astrophysics and the wide ranging applications of radioactive ion beams in these and other areas of nuclear sciences. Papers relevant to INIS are indexed separately

  18. Lanthanides in Nuclear Medicine. The Production of Terbium-149 by Heavy Ion Beams

    CERN Document Server

    Dmitriev, S N; Zaitseva, N G; Maslov, O D; Molokanova, L G; Starodub, G Ya; Shishkin, S V; Shishkina, T V

    2001-01-01

    Among radioactive isotopes of lanthanide series elements, finding the increasing using in nuclear medicine, alpha-emitter {149}Tb (T_{1/2} = 4.118 h; EC 76.2 %; beta^+ 7.1 %; alpha 16.7 %) is considered as a perspective radionuclide for radioimmunotherapy. The aim of the present work is to study experimental conditions of the {149}Tb production in reactions Nd({12}C, xn){149}Dy (4.23 min; beta^+, EC)\\to {149}Tb when the Nd targets have been irradiated by heavy ions of carbon. On the basis of results of formation and decay of {149}Dy\\to{149}Tb evaluation of the {149}Tb activity, is made which can be received under optimum conditions (enriched {142}Nd target, {12}C ions with the energy 120 MeV and up to current 100 mu A, time of irradiating 8-10 hours). Under these conditions {149}Tb can be obtained up to 30 GBq (up to 0.8 Ci).

  19. Nuclear physics with radioactive beams

    International Nuclear Information System (INIS)

    Bimbot, R.

    1994-01-01

    Radioactive beams can be produced through two different and complementary ways:i. the production at rest of radioactive nuclei, followed by their acceleration using conventional techniques.This method is the best for producing low energy radioactive beams. ii. the fragmentation of high energy heavy ion beams ( over 30 MeV/u), followed by the selection and purification of a given secondary beam using magnetic spectrometers. This technique leads to high energy radioactive beams. Both methods have now been used in several laboratories in the world. Examples of the corresponding experimental equipment will be presented, and especially Lise 3, Sissi, and the spiral project at GANIL. Radioactive beams have used for several purposes in nuclear physics: i. they constitute the fastest technique ever used for transferring exotic nuclei from the production point to a well shielded place where detectors can be operated for studying their properties in good conditions. At the same time, they can be identified using solid state detectors and the time-of-flight/energy-loss technique. Illustrations of the results obtained in this domain (mass and half-life measurements, recent identification of the isotope sup 1 sup 0 sup 0 Sn) is given. ii. they are used to induce nuclear reactions which may bring new information on nuclear structure. For example, the measurement of total reaction cross-sections for many radioactive projectiles revealed the existence of halo nuclei such as sup 1 sup 1 Li and sup 1 sup 1 Be. Beams of these isotopes have been extensively used to precise their structure.iii. in the domain of nuclear astrophysics, radioactive beams are used to measure, through direct or indirect methods, the cross sections for reactions of crucial interest in nucleosynthesis. Finally, radioactive beams of light positron emitters, such as sup 1 sup 9 Ne have considerable interest for medical purposes and especially in the growing field of heavy-ion radiotherapy. 8 figs., 24 refs

  20. Mixed beams for the nuclear microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Saint, A.; Breese, M.B.H.; Legge, G.L.F. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    Recently the Micro-Analytical Research Centre (MARC) at Melbourne University has developed a technique to provide mixed beams of ions for a magnetically focussed nuclear microprobe. Such a mixed beam is defined as two (or more) beams of different species ions that can quickly and easily be made to have the same magnetic rigidity R{sub m} = (mE/q{sup 2}) and therefore be transported, focused and scanned the same in a magnetic nuclear microprobe. The production of mixed beams in an electrostatically focussed micro- probe have already been demonstrated. This paper will show how mixed beams can be produced on a single-ended accelerator. Indications of how to produce them on a tandem will also be given. Applications of these mixed beams in micro-lithography, scanning transmission ion microscopy (STIM) imaging and ion beam induced charge (IBIC) imaging will also be presented. 3 refs., 3 figs.

  1. Materials research with ion beams

    International Nuclear Information System (INIS)

    Meyer, J.D.

    1988-01-01

    This report gives a series of helpful programs which are used in materials research with ion beams. In this context algorithms which can substitute table books are dealt with. This is true for the programs DEDX and PRAL; they are used in order to determine the energy loss of ions in solid bodies, their working range and straggling. Furthermore, simulator routines and analyzers are described. The program TRIM simulates the physical phenomena which occur with the penetration of high-energy ions into solid bodies. In this context electronic excitations, phonons and lattice distortions which are caused by the ions are dealt with. For the experimental ion implantation it is interesting to know the final distribution of the simulated ions in the solid body. The program RBS simulates the Rutherford spectrum of ions which are scattered from a solid body which may consist of up to nine elements and up to one hundred layers. The unknown composition of a solid body can be determined in direct comparison with the experimental spectrum. The program NRA determines concentration and penetrative distribution of an impurity by means of the experimental nuclear reaction spectrum of this impurity. All programs are written in FORTRAN 77. (orig./MM) [de

  2. National Centre for Radioactive Ion Beams (NCRIB)

    International Nuclear Information System (INIS)

    Chintalapudi, S.N.

    1999-01-01

    Radioactive Ion (nuclear) Beams have become prolific recently. Nuclear physics and associated subjects have staged a comeback to almost the beginning with the advent of RIB. A dedicated National Centre for RIB (NCRIB) proposed, discussed at several forums and under serious consideration is described

  3. Ion Beam Extraction by Discrete Ion Focusing

    DEFF Research Database (Denmark)

    2010-01-01

    An apparatus (900) and methods are disclosed for ion beam extraction. In an implementation, the apparatus includes a plasma source (or plasma) (802) and an ion extractor (804). The plasma source is adapted to generate ions and the ion extractor is immersed in the plasma source to extract a fraction...... of the generated ions. The ion extractor is surrounded by a space charge (810) formed at least in part by the extracted ions. The ion extractor includes a biased electrode (806) forming an interface with an insulator (808). The interface is customized to form a strongly curved potential distribution (812......) in the space-charge surrounding the ion extractor. The strongly curved potential distribution focuses the extracted ions towards an opening (814) on a surface of the biased electrode thereby resulting in an ion beam....

  4. Heavy ion beam probing

    Energy Technology Data Exchange (ETDEWEB)

    Hickok, R L

    1980-07-01

    This report consists of the notes distributed to the participants at the IEEE Mini-Course on Modern Plasma Diagnostics that was held in Madison, Wisconsin in May 1980. It presents an overview of Heavy Ion Beam Probing that briefly describes the principles and discuss the types of measurements that can be made. The problems associated with implementing beam probes are noted, possible variations are described, estimated costs of present day systems, and the scaling requirements for large plasma devices are presented. The final chapter illustrates typical results that have been obtained on a variety of plasma devices. No detailed calculations are included in the report, but a list of references that will provide more detailed information is included.

  5. Heavy ion beam probing

    International Nuclear Information System (INIS)

    Hickok, R.L.

    1980-07-01

    This report consists of the notes distributed to the participants at the IEEE Mini-Course on Modern Plasma Diagnostics that was held in Madison, Wisconsin in May 1980. It presents an overview of Heavy Ion Beam Probing that briefly describes the principles and discuss the types of measurements that can be made. The problems associated with implementing beam probes are noted, possible variations are described, estimated costs of present day systems, and the scaling requirements for large plasma devices are presented. The final chapter illustrates typical results that have been obtained on a variety of plasma devices. No detailed calculations are included in the report, but a list of references that will provide more detailed information is included

  6. Focused ion beam technology

    International Nuclear Information System (INIS)

    Gamo, K.

    1993-01-01

    Focussed ion beam (FIB) technology has the advantage of being a maskless process compatible with UHV processing. This makes it attractive for use in in situ processing and has been applied to the fabrication of various mesoscopic structures. The present paper reviews these results whilst putting emphasis on in situ processing by a combined FIB and molecular beam epitaxy system. The typical performance of present FIB systems is also presented. In order to utilize the potential advantages of FIB processing, reduction of damage and improvement of throughput are important, and much effort has been devoted to developing processing techniques which require a reduced dose. The importance of low-energy FIB is discussed. (author)

  7. Neurosurgical applications of ion beams

    Science.gov (United States)

    Fabrikant, Jacob I.; Levy, Richard P.; Phillips, Mark H.; Frankel, Kenneth A.; Lyman, John T.

    1989-04-01

    The program at Donner Pavilion has applied nuclear medicine research to the diagnosis and radiosurgical treatment of life-threatening intracranial vascular disorders that affect more than half a million Americans. Stereotactic heavy-charged-particle Bragg peak radiosurgery, using narrow beams of heavy ions, demonstrates superior biological and physical characteristics in brain over X-and γ-rays, viz., improved dose distribution in the Bragg peak and sharp lateral and distal borders and less scattering of the beam. Examination of CNS tissue response and alteration of cerebral blood-flow dynamics related to heavy-ion Bragg peak radiosurgery is carried out using three-dimensional treatment planning and quantitative imaging utilizing cerebral angiography, computerized tomography (CT), magnetic resonance imaging (MRI), cine-CT, xenon X-ray CT and positron emission tomography (PET). Also under examination are the physical properties of narrow heavy-ion beams for improving methods of dose delivery and dose distribution and for establishing clinical RBE/LET and dose-response relationships for human CNS tissues. Based on the evaluation and treatment with stereotactically directed narrow beams of heavy charged particles of over 300 patients, with cerebral angiography, CT scanning and MRI and PET scanning of selected patients, plus extensive clinical and neuroradiological followup, it appears that Stereotactic charged-particle Bragg peak radiosurgery obliterates intracranial arteriovenous malformations or protects against rebleeding with reduced morbidity and no mortality. Discussion will include the method of evaluation, the clinical research protocol, the Stereotactic neuroradiological preparation, treatment planning, the radiosurgery procedure and the protocol for followup. Emphasis will be placed on the neurological results, including the neuroradiological and clinical response and early and late delayed injury in brain leading to complications (including vasogenic edema

  8. Ion beam assisted film growth

    CERN Document Server

    Itoh, T

    2012-01-01

    This volume provides up to date information on the experimental, theoretical and technological aspects of film growth assisted by ion beams.Ion beam assisted film growth is one of the most effective techniques in aiding the growth of high-quality thin solid films in a controlled way. Moreover, ion beams play a dominant role in the reduction of the growth temperature of thin films of high melting point materials. In this way, ion beams make a considerable and complex contribution to film growth. The volume will be essential reading for scientists, engineers and students working in thi

  9. Nuclear reactions with 11C and 14O radioactive ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Fanqing [Univ. of California, Berkeley, CA (United States)

    2004-01-01

    Radioactive ion beams (RIBs) have been shown to be a useful tool for studying proton-rich nuclides near and beyond the proton dripline and for evaluating nuclear models. To take full advantage of RIBs, Elastic Resonance Scattering in Inverse Kinematics with Thick Targets (ERSIKTT), has proven to be a reliable experimental tool for investigations of proton unbound nuclei. Following several years of effort, Berkeley Experiments with Accelerated Radioactive Species (BEARS), a RIBs capability, has been developed at the Lawrence Berkeley National Laboratory's 88-Inch Cyclotron. The current BEARS provides two RIBs: a 11C beam of up to 2x108 pps intensity on target and an 14O beam of up to 3x104 pps intensity. While the development of the 11C beam has been relatively easy, a number of challenges had to be overcome to obtain the 14O beam. The excellent 11C beam has been used to investigate several reactions. The first was the 197Au(11C,xn)208-xnAt reaction, which was used to measure excitation functions for the 4n to 8n exit channels. The measured cross sections were generally predicted quite well using the fusion-evaporation code HIVAP. Possible errors in the branching ratios of ?? decays from At isotopes as well as the presence of incomplete fusion reactions probably contribute to specific overpredictions. 15F has been investigated by the p(14O,p)14O reaction with the ERSIKTT technology. Several 14O+p runs have been performed. Excellent energy calibration was obtained using resonances from the p(14N,p)14N reaction in inverse kinematics, and comparing the results to those obtained earlier with normal kinematics. The differences between 14N+p and 14O+p in the stopping power function have been evaluated for better energy calibration. After careful calibration, the energy levels of 15F

  10. Ion beam generation and focusing

    International Nuclear Information System (INIS)

    Miller, P.A.; Mendel, C.W.; Swain, D.W.; Goldstein, S.A.

    1975-01-01

    Calculations have shown that efficiently generated and focused ion beams could have significant advantages over electron beams in achieving ignition of inertially-confined thermonuclear fuel. Efficient ion beam generation implies use of a good ion source and suppression of net electron current. Net electron flow can be reduced by allowing electrons to reflex through a highly transparent anode or by use of transverse magnetic fields (either beam self-fields or externally applied fields). Geometric focusing can be achieved if the beam is generated by appropriately shaped electrodes. Experimental results are presented which demonstrate ion beam generation in both reflexing and pinched-flow diodes. Spherically shaped electrodes are used to concentrate a proton beam, and target response to proton deposition is studied

  11. Experimental studies with radioactive ion beams

    International Nuclear Information System (INIS)

    Sastry, D.L.; Sree Krishna Murty, G.; Chandrasekhar Rao, M.V.S.

    1991-01-01

    The sources of information presented are essentially taken from the papers reported at several international seminars and those appeared in the Journal of Nuclear Instruments and Methods in Physics Research. Production and usage of radioactive ion beams (RIB) in research have received the attention of scientists all over the world during the past six years. The first radioactive ion beams ( 19 Ne) were produced at Bevalac for the purpose of medical research using a primary beam of energy 800 MeV/a.m.u. (author). 19 refs., 2 figs., 3 tabs

  12. NRABASE 2.0. Charged-particle nuclear reaction data for ion beam analysis

    International Nuclear Information System (INIS)

    Gurbich, A.F.

    1997-01-01

    For 30 targets between H-1 and Ag-109, differential cross sections for reactions induced by protons, deuterons, He-3 and alpha particles are given in tabular and graphical form. The data were compiled from original experimental references. The database was developed under a research contract with the IAEA Physics Section and is available on diskette from the IAEA Nuclear Data Section. (author)

  13. Contribution to cadmium telluride characterizations by ion beams and nuclear detection

    International Nuclear Information System (INIS)

    Hage-Ali, Makram.

    1980-01-01

    A short survey of the thermodynamics and crystal growth of CdTe is followed by the description of high mass and depth resolution Rutherford backscattering (RBS) with light and heavy ions. Energy losses in CdTe have been measured. Analysis of CdTe surfaces by RBS, SIMS, ellipsometry have also been performed. Diffused, implanted, or simply contacted CdTe junctions have been analyzed and then investigated as gamma spectrometers. The problem of polarization was specially studied [fr

  14. Spacecraft ion beam noise effects

    Science.gov (United States)

    Anenberg, G. L.

    1972-01-01

    An estimate of the antenna noise temperature and the uplink signal-to-noise ratio has been made for Bremsstrahlung radiation emitted by a spacecraft ion beam; a worst-case situation in which the spacecraft antenna is located in the exit plane of the ion beam and directed at varying angles into the ion beam is assumed. Numerical results of the antenna noise temperature versus antenna pointing angle are given for a typical set of ion beam and antenna pattern parameters. The uplink signal-to-noise ratio due to the ion beam noise alone is given in terms of a critical range in AU at which a typical ranging transmission is received with S/N = 0 db. The effects of the ion beam divergence angle and antenna distance on the ion beam are also presented. Results of the study show typical increases in the antenna noise temperature of about 0.2 K and critical ranges of the order of 3-5 AU. An ion engine thus generally introduces an undetectable level of noise into a spacecraft receiver.

  15. Sciences with radioactive nuclear beams

    International Nuclear Information System (INIS)

    Kawase, Yoichi

    1992-01-01

    The unstable nuclei which are produced with accelerators and nuclear reactors and are far apart from the stability line have been used mainly in nuclear physics field as the object of the systematic research on atomic nucleus structure. Recently, the projects for developing the advanced research in many fields by accelerating the obtained unstable nuclei have been proposed. The unstable nucleus beam which was accelerated to high energy and controlled precisely keeps the possibility of qualitatively improve further conventional ion beam science, and it is expected as the breakthrough in the interdisciplinary basic research related to atomic energy, therefore, its recent trend in the world is explained, hoping for the new development. The stable isotopes existing naturally distribute along the N-Z straight line, and as they are apart from the natural stability line, they become unstable to beta decay, and their life becomes short exponentially. The significance of unstable nucleus beam science and its recent trend, the production of unstable nucleus beam, the interdisciplinary research using unstable nucleus beam, and the present state and future plan in Research Reactor Institute, Kyoto University are reported. (K.I.)

  16. Beam loss mechanisms in relativistic heavy-ion colliders

    CERN Document Server

    Bruce, Roderik; Gilardoni, S; Wallén, E

    2009-01-01

    The Large Hadron Collider (LHC), the largest particle accelerator ever built, is presently under commissioning at the European Organization for Nuclear Research (CERN). It will collide beams of protons, and later Pb82+ ions, at ultrarelativistic energies. Because of its unprecedented energy, the operation of the LHC with heavy ions will present beam physics challenges not encountered in previous colliders. Beam loss processes that are harmless in the presently largest operational heavy-ion collider, the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory, risk to cause quenches of superconducting magnets in the LHC. Interactions between colliding beams of ultrarelativistic heavy ions, or between beam ions and collimators, give rise to nuclear fragmentation. The resulting isotopes could have a charge-to-mass ratio different from the main beam and therefore follow dispersive orbits until they are lost. Depending on the machine conditions and the ion species, these losses could occur in loca...

  17. Intense nonrelativistic cesium ion beam

    International Nuclear Information System (INIS)

    Lampel, M.C.

    1984-01-01

    The Heavy Ion Fusion group at Lawrence Berkeley Laboratory has constructed the One Ampere Cesium injector as a proof of principle source to supply an induction linac with a high charge density and high brightness ion beam. This is studied here. An electron beam probe was developed as the major diagnostic tool for characterizing ion beam space charge. Electron beam probe data inversion is accomplished with the EBEAM code and a parametrically adjusted model radial charge distribution. The longitudinal charge distribution was not derived, although it is possible to do so. The radial charge distribution that is derived reveals an unexpected halo of trapped electrons surrounding the ion beam. A charge fluid theory of the effect of finite electron temperature on the focusing of neutralized ion beams (Nucl Fus. 21, 529(1981)) is applied to the problem of the cesium beam final focus at the end of the injector. It is shown that the theory's predictions and assumptions are consistent with the experimental data, and that it accounts for the observed ion beam radius of approx.5 cm and the electron halo, including the determination of an electron Debye length of approx.10 cm

  18. Propagation of light ion beam

    International Nuclear Information System (INIS)

    Okada, Toshio; Murakami, Hiroyuki; Niu, Keishiro.

    1983-01-01

    A method of rotating ion layer is proposed as a possible driver for inertial confinement fusion for the purpose of obtaining more stable ion beam against various micro- and macroinstabilities. The analysis was carried out within the frameworks of Vlasov and fluid models. A rotating ion layer propagating in the Z-direction is considered. The beam is described by a distribution function which satisfies the Vlasov equation. The equilibrium and microstability were studied. The filamentation instability is suppressed by a magnetic field due to the rotation of ion beam. To study the properties of the equilibrium state from the macroscopic standpoint, the equation of continuity of ion beam, the equation of motion and the Maxwell equations are considered. It is shown that the macroinstability is stabilized by the magnetic field in the Z-direction. It was found that the most dangerous instability for the problem of the propagation of ion beam was able to be atabilized by using a rotating ion layer. (Kato, T.)

  19. A pencil beam algorithm for helium ion beam therapy.

    Science.gov (United States)

    Fuchs, Hermann; Strobele, Julia; Schreiner, Thomas; Hirtl, Albert; Georg, Dietmar

    2012-11-01

    To develop a flexible pencil beam algorithm for helium ion beam therapy. Dose distributions were calculated using the newly developed pencil beam algorithm and validated using Monte Carlo (MC) methods. The algorithm was based on the established theory of fluence weighted elemental pencil beam (PB) kernels. Using a new real-time splitting approach, a minimization routine selects the optimal shape for each sub-beam. Dose depositions along the beam path were determined using a look-up table (LUT). Data for LUT generation were derived from MC simulations in water using GATE 6.1. For materials other than water, dose depositions were calculated by the algorithm using water-equivalent depth scaling. Lateral beam spreading caused by multiple scattering has been accounted for by implementing a non-local scattering formula developed by Gottschalk. A new nuclear correction was modelled using a Voigt function and implemented by a LUT approach. Validation simulations have been performed using a phantom filled with homogeneous materials or heterogeneous slabs of up to 3 cm. The beams were incident perpendicular to the phantoms surface with initial particle energies ranging from 50 to 250 MeV/A with a total number of 10(7) ions per beam. For comparison a special evaluation software was developed calculating the gamma indices for dose distributions. In homogeneous phantoms, maximum range deviations between PB and MC of less than 1.1% and differences in the width of the distal energy fall off of the Bragg-Peak from 80% to 20% of less than 0.1 mm were found. Heterogeneous phantoms using layered slabs satisfied a γ-index criterion of 2%/2mm of the local value except for some single voxels. For more complex phantoms using laterally arranged bone-air slabs, the γ-index criterion was exceeded in some areas giving a maximum γ-index of 1.75 and 4.9% of the voxels showed γ-index values larger than one. The calculation precision of the presented algorithm was considered to be sufficient

  20. NSUF Ion Beam Investment Options Workshop Report

    Energy Technology Data Exchange (ETDEWEB)

    Heidrich, Brenden John [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-03-01

    The workshop that generated this data was convened to develop a set of recommendations (a priority list) for possible funding in the area of US domestic ion beam irradiation capabilities for nuclear energy-focused RD&D. The results of this workshop were intended for use by the Department of Energy - Office of Nuclear Energy (DOE-NE) for consideration of support for these facilities. The workshop considered, as part of the initial potential future support discussions, input submitted through the Office of Nuclear Energy Request for Information (RFI) (DE-SOL-0008318, April 13, 2015), but welcomed discussion (and presentation) of other options, whether specific or general in scope. Input from users, including DOE-NE program interests and needs for ion irradiation RD&D were also included. Participants were selected from various sources: RFI respondents, NEUP/NEET infrastructure applicants, universities with known expertise in nuclear engineering and materials science and other developed sources. During the three days from March 22-24, 2016, the workshop was held at the Idaho National Laboratory Meeting Center in the Energy Innovation Laboratory at 775 University Drive, Idaho Falls, ID 83401. Thirty-one members of the ion beam community attended the workshop, including 15 ion beam facilities, six representatives of Office of Nuclear Energy R&D programs, an industry representative from EPRI and the chairs of the NSUF User’s Organization and the NSUF Scientific Review Board. Another four ion beam users were in attendance acting as advisors to the process, but did not participate in the options assessment. Three members of the sponsoring agency, the Office of Science and Technology Innovation (NE-4) also attended the workshop.

  1. Report of cooperative research programs in the field of ion-beam breeding between Japan Atomic Energy Agency and Malaysian Nuclear Agency (Bilateral cooperative research)

    International Nuclear Information System (INIS)

    Ahmad, Zaiton; Oono, Yutaka

    2016-03-01

    This report summarizes Bilateral Cooperative Research between Japan Atomic Energy Agency and Malaysian Nuclear Agency (a representative of the Government of Malaysia) implemented from 2002 to 2012 under 'THE IMPLEMENTING ARRANGEMENT BETWEEN THE GOVERNMENT OF MALAYSIA AND THE JAPAN ATOMIC ENERGY AGENCY ON THE RESEARCH COOPERATION IN THE FIELD OF RADIATION PROCESSING'. The research activities in two Cooperative Research Programs, 'Mutation Induction of Orchid Plants by Ion Beams' and 'Generating New Ornamental Plant Varieties Using Ion Beams' performed 2002-2007 and 2007-2012, respectively, are contained. The lists of steering committee meetings, irradiation experiments, and publications/presentations of each program are also attached in the Appendixes. (author)

  2. Beam halo collimation in heavy ion synchrotrons

    Directory of Open Access Journals (Sweden)

    I. Strašík

    2015-08-01

    Full Text Available This paper presents a systematic study of the halo collimation of ion beams from proton up to uranium in synchrotrons. The projected Facility for Antiproton and Ion Research synchrotron SIS100 is used as a reference case. The concepts are separated into fully stripped (e.g., ^{238}U^{92+} and partially stripped (e.g., ^{238}U^{28+} ion collimation. An application of the two-stage betatron collimation system, well established for proton accelerators, is intended also for fully stripped ions. The two-stage system consists of a primary collimator (a scattering foil and secondary collimators (bulky absorbers. Interaction of the particles with the primary collimator (scattering, momentum losses, and nuclear interactions was simulated by using fluka. Particle-tracking simulations were performed by using mad-x. Finally, the dependence of the collimation efficiency on the primary ion species was determined. The influence of the collimation system adjustment, lattice imperfections, and beam parameters was estimated. The concept for the collimation of partially stripped ions employs a thin stripping foil in order to change their charge state. These ions are subsequently deflected towards a dump location using a beam optical element. The charge state distribution after the stripping foil was obtained from global. The ions were tracked by using mad–x.

  3. Nuclear physics with radioactive beams

    International Nuclear Information System (INIS)

    Bimbot, R.

    1994-01-01

    Radioactive beam production through two different mechanisms: acceleration of radioactive nuclei, and production of secondary beams from projectile fragmentation is overviewed. Some topics of the applications of radioactive beams in nuclear physics, such as identification and study of exotic nuclei, neutron halos, nuclear astrophysics and medical applications are discussed. (K.A.). 24 refs., 8 figs

  4. Determination of absorbed dose to water in a clinical carbon ion beam by means of fluorescent nuclear track detectors, ionization chambers, and water calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Osinga-Blaettermann, Julia-Maria

    2016-12-20

    Until now, dosimetry of carbon ions with ionization chambers has not reached the same level of accuracy as of high-energy photons. This is mainly caused by the threefold higher uncertainty of the k{sub Q,Q{sub 0}}-factor of ionization chambers, which is derived by calculations due to a lack of experimental data. The current thesis comprises two major aims with respect to the dosimetry of carbon ion beams: first, the investigation of the potential of fluorescent nuclear track detectors for fluence-based dosimetry and second, the experimental determination of the k{sub Q,Q{sub 0}}-factor. The direct comparison of fluence- and ionization-based measurements has shown a significant discrepancy of 4.5 %, which re-opened the discussion on the accuracy of calculated k{sub Q,Q{sub 0}}-factors. Therefore, absorbed dose to water measurements by means of water calorimetry have been performed allowing for the direct calibration of ionization chambers and thus for the experimental determination of k{sub Q,Q{sub 0}}. For the first time it could be shown that the experimental determination of k{sub Q,Q{sub 0}} for carbon ion beams is achievable with a standard measurement uncertainty of 0.8 %. This corresponds to a threefold reduction of the uncertainty compared to calculated values and therefore enables to significantly decrease the overall uncertainty related to ionization-based dosimetry of clinical carbon ion beams.

  5. Prospects for ion beam fusion

    Energy Technology Data Exchange (ETDEWEB)

    Martin, R.L.

    1977-01-01

    The promise of pellet fusion by high energy heavy ions has evolved very rapidly, partly because of prior pellet work in the laser and e beam programs and partly because of an inherently good match to the application. ERDA sponsored a summer study in 1976 which has had a significant impact on the direction the ion beam fusion program has evolved. Experimental R and D work has been initiated in three of the U.S. accelerator laboratories. Argonne's development program is described. This development work, if successful, should lead to a great deal of confidence that the concept of pellet fusion by high energy heavy ions is indeed practical.

  6. Ion beams in materials processing and analysis

    CERN Document Server

    Schmidt, Bernd

    2012-01-01

    This book covers ion beam application in modern materials research, offering the basics of ion beam physics and technology and a detailed account of the physics of ion-solid interactions for ion implantation, ion beam synthesis, sputtering and nano-patterning.

  7. Ion beam analysis of metal ion implanted surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Evans, P.J.; Chu, J.W.; Johnson, E.P.; Noorman, J.T. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Sood, D.K. [Royal Melbourne Inst. of Tech., VIC (Australia)

    1993-12-31

    Ion implantation is an established method for altering the surface properties of many materials. While a variety of analytical techniques are available for the characterisation of implanted surfaces, those based on particle accelerators such as Rutherford backscattering (RBS) and nuclear reaction analysis (NRA) provide some of the most useful and powerful for this purpose. Application of the latter techniques to metal ion implantation research at ANSTO will be described with particular reference to specific examples from recent studies. Where possible, the information obtained from ion beam analysis will be compared with that derived from other techniques such as Energy Dispersive X-ray (EDX) and Auger spectroscopies. 4 refs., 5 figs.

  8. Funneling of heavy ion beams

    International Nuclear Information System (INIS)

    Bongardt, K.; Karlsruhe Univ.; Sanitz, D.

    1982-01-01

    The funneling of heavy ion beams can be achieved by first bending the beams by septum magnets towards the common axis, and then deflecting them onto the axis by rf-deflector elements with time varying electric field strength. The main properties of these deflection elements are discussed, especially the increase of the transverse emittance. As an example beam envelopes are shown for funneling two 100 mA, 1.7 MEV/N Bisup(+2) beams into one 108 MHz Alvarez accelerator. (orig.)

  9. Development of ion/proton beam equipment for industrial uses

    International Nuclear Information System (INIS)

    Choi, Byung Ho; Lee, J. H.; Cho, Y. S.; Joo, P. K.; Kang, S. S.; Song, W. S.; Kim, H. J.; Lee, J. H.; Chang, G. H.; Bang, S. W.

    1999-12-01

    KAERI has possessed design and fabrication technologies of various ion sources including Duoplasmatron and DuoPiGatron developed by R and D projects of the long-term nuclear technology development program. In order to industrialize ion beam equipments utilizing these ion sources, a technology transfer project for a technology transfer project for a domestic firm has been performed. Under this project, engineers of the firm have been trained through classroom lectures of ion beam principles and OJT, an ion/proton beam equipment (DEMO equipment) has been designed, assembled and commissioned jointly with the engineers. Quality of the ion sources has been quantified, and technologies for ion beam equipment construction, functional test and application research have been developed. The DEMO equipment, which consists of an ion source, power supplies, vacuum, cooling and target systems, has been fabricated and tested to secure stability and reliability for industrial uses. Various characteristic tests including high voltage insulation, beam extraction, beam current measuring, etc. have been performed. This DEMO can be utilized for ion sources development as well as ion beam process development for various industrial products. Engineers of the firm have been trained for the industrialization of ion beam equipment and joined in beam application technology development to create industrial needs of beam equipment. (author)

  10. Assembling of a low energy ion beam analysis facility and use of Nuclear Microprobe techniques in geological studies

    International Nuclear Information System (INIS)

    Utui, R.

    1996-11-01

    In this work, both PIXE and ion beam induced luminescence, or just Ionoluminescence (IL) were used for geochemical studies. The possibility of rapid absolute quantification of elements in the ppm level by PIXE combined with the yet higher sensitivity of IL to transition metals and Rare Earth Elements (REE) activators, in the absence of quenching phenomena, allow for a synergic use of the two methods in geological applications with enhanced sensitivity. IL and PIXE were combined for studying REE distribution in apatite minerals and ion beam induced damage in inorganic material in general with emphasis to synthetically grown zircon crystals doped with REE. Due to the sensitivity of IL to changes in chemical bonding in the material, beam damage effects can be studied even at low integrated doses, through wavelength shift or fading of the induced light. Micro PIXE technique was used for studying profile concentrations of trace elements in pyrite grains and of elements used as geothermometers. Geothermometry allowed to assess the cooling rates in iron meteorites and the mineralization conditions in metamorphic rocks, attempting to describe the tectonic history of the terranes, with application in petrologic studies and geological prospecting. 148 refs

  11. Assembling of a low energy ion beam analysis facility and use of Nuclear Microprobe techniques in geological studies

    Energy Technology Data Exchange (ETDEWEB)

    Utui, R.

    1996-11-01

    In this work, both PIXE and ion beam induced luminescence, or just Ionoluminescence (IL) were used for geochemical studies. The possibility of rapid absolute quantification of elements in the ppm level by PIXE combined with the yet higher sensitivity of IL to transition metals and Rare Earth Elements (REE) activators, in the absence of quenching phenomena, allow for a synergic use of the two methods in geological applications with enhanced sensitivity. IL and PIXE were combined for studying REE distribution in apatite minerals and ion beam induced damage in inorganic material in general with emphasis to synthetically grown zircon crystals doped with REE. Due to the sensitivity of IL to changes in chemical bonding in the material, beam damage effects can be studied even at low integrated doses, through wavelength shift or fading of the induced light. Micro PIXE technique was used for studying profile concentrations of trace elements in pyrite grains and of elements used as geothermometers. Geothermometry allowed to assess the cooling rates in iron meteorites and the mineralization conditions in metamorphic rocks, attempting to describe the tectonic history of the terranes, with application in petrologic studies and geological prospecting. 148 refs.

  12. Development of Emittance Analysis Software for Ion Beam Characterization

    International Nuclear Information System (INIS)

    Padilla, M.J.; Liu, Yuan

    2007-01-01

    Transverse beam emittance is a crucial property of charged particle beams that describes their angular and spatial spread. It is a figure of merit frequently used to determine the quality of ion beams, the compatibility of an ion beam with a given beam transport system, and the ability to suppress neighboring isotopes at on-line mass separator facilities. Generally, a high-quality beam is characterized by a small emittance. In order to determine and improve the quality of ion beams used at the Holifield Radioactive Ion Beam Facility (HRIBF) for nuclear physics and nuclear astrophysics research, the emittances of the ion beams are measured at the off-line Ion Source Test Facilities. In this project, emittance analysis software was developed to perform various data processing tasks for noise reduction, to evaluate root-mean-square emittance, Twiss parameters, and area emittance of different beam fractions. The software also provides 2D and 3D graphical views of the emittance data, beam profiles, emittance contours, and RMS. Noise exclusion is essential for accurate determination of beam emittance values. A Self-Consistent, Unbiased Elliptical Exclusion (SCUBEEx) method is employed. Numerical data analysis techniques such as interpolation and nonlinear fitting are also incorporated into the software. The software will provide a simplified, fast tool for comprehensive emittance analysis. The main functions of the software package have been completed. In preliminary tests with experimental emittance data, the analysis results using the software were shown to be accurate

  13. Summary Report of Consultants' Meeting on Accuracy of Experimental and Theoretical Nuclear Cross-Section Data for Ion Beam Analysis and Benchmarking

    International Nuclear Information System (INIS)

    Abriola, Daniel; Dimitriou, Paraskevi; Gurbich, Alexander F.

    2013-11-01

    A summary is given of a Consultants' Meeting assembled to assess the accuracy of experimental and theoretical nuclear cross-section data for Ion Beam Analysis and the role of benchmarking experiments. The participants discussed the different approaches to assigning uncertainties to evaluated data, and presented results of benchmark experiments performed in their laboratories. They concluded that priority should be given to the validation of cross- section data by benchmark experiments, and recommended that an experts meeting be held to prepare the guidelines, methodology and work program of a future coordinated project on benchmarking.

  14. Ion-induced nuclear radiotherapy

    Science.gov (United States)

    Horn, K.M.; Doyle, B.L.

    1996-08-20

    Ion-induced Nuclear Radiotherapy (INRT) is a technique for conducting radiosurgery and radiotherapy with a very high degree of control over the spatial extent of the irradiated volume and the delivered dose. Based upon the concept that low energy, ion induced atomic and nuclear reactions can be used to produce highly energetic reaction products at the site of a tumor, the INRT technique is implemented through the use of a conduit-needle or tube which conducts a low energy ion beam to a position above or within the intended treatment area. At the end of the conduit-needle or tube is a specially fabricated target which, only when struck by the ion beam, acts as a source of energetic radiation products. The inherent limitations in the energy, and therefore range, of the resulting reaction products limits the spatial extent of irradiation to a pre-defined volume about the point of reaction. Furthermore, since no damage is done to tissue outside this irradiated volume, the delivered dose may be made arbitrarily large. INRT may be used both as a point-source of radiation at the site of a small tumor, or as a topical bath of radiation to broad areas of diseased tissue. 25 figs.

  15. Maskless, resistless ion beam lithography

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Qing [Univ. of California, Berkeley, CA (United States)

    2003-01-01

    As the dimensions of semiconductor devices are scaled down, in order to achieve higher levels of integration, optical lithography will no longer be sufficient for the needs of the semiconductor industry. Alternative next-generation lithography (NGL) approaches, such as extreme ultra-violet (EUV), X-ray, electron-beam, and ion projection lithography face some challenging issues with complicated mask technology and low throughput. Among the four major alternative NGL approaches, ion beam lithography is the only one that can provide both maskless and resistless patterning. As such, it can potentially make nano-fabrication much simpler. This thesis investigates a focused ion beam system for maskless, resistless patterning that can be made practical for high-volume production. In order to achieve maskless, resistless patterning, the ion source must be able to produce a variety of ion species. The compact FIB system being developed uses a multicusp plasma ion source, which can generate ion beams of various elements, such as O2+, BF2+, P+ etc., for surface modification and doping applications. With optimized source condition, around 85% of BF2+, over 90% of O2+ and P+ have been achieved. The brightness of the multicusp-plasma ion source is a key issue for its application to maskless ion beam lithography. It can be substantially improved by optimizing the source configuration and extractor geometry. Measured brightness of 2 keV He+ beam is as high as 440 A/cm2 • Sr, which represents a 30x improvement over prior work. Direct patterning of Si thin film using a focused O2+ ion beam has been investigated. A thin surface oxide film can be selectively formed using 3 keV O2+ ions with the dose of 1015 cm-2. The oxide can then serve as a hard mask for patterning of the Si film. The

  16. Maskless, resistless ion beam lithography

    International Nuclear Information System (INIS)

    Ji, Qing

    2003-01-01

    As the dimensions of semiconductor devices are scaled down, in order to achieve higher levels of integration, optical lithography will no longer be sufficient for the needs of the semiconductor industry. Alternative next-generation lithography (NGL) approaches, such as extreme ultra-violet (EUV), X-ray, electron-beam, and ion projection lithography face some challenging issues with complicated mask technology and low throughput. Among the four major alternative NGL approaches, ion beam lithography is the only one that can provide both maskless and resistless patterning. As such, it can potentially make nano-fabrication much simpler. This thesis investigates a focused ion beam system for maskless, resistless patterning that can be made practical for high-volume production. In order to achieve maskless, resistless patterning, the ion source must be able to produce a variety of ion species. The compact FIB system being developed uses a multicusp plasma ion source, which can generate ion beams of various elements, such as O 2 + , BF 2 + , P + etc., for surface modification and doping applications. With optimized source condition, around 85% of BF 2 + , over 90% of O 2 + and P + have been achieved. The brightness of the multicusp-plasma ion source is a key issue for its application to maskless ion beam lithography. It can be substantially improved by optimizing the source configuration and extractor geometry. Measured brightness of 2 keV He + beam is as high as 440 A/cm 2 · Sr, which represents a 30x improvement over prior work. Direct patterning of Si thin film using a focused O 2 + ion beam has been investigated. A thin surface oxide film can be selectively formed using 3 keV O 2 + ions with the dose of 10 15 cm -2 . The oxide can then serve as a hard mask for patterning of the Si film. The process flow and the experimental results for directly patterned poly-Si features are presented. The formation of shallow pn-junctions in bulk silicon wafers by scanning focused P

  17. Ion beam analysis fundamentals and applications

    CERN Document Server

    Nastasi, Michael; Wang, Yongqiang

    2015-01-01

    Ion Beam Analysis: Fundamentals and Applications explains the basic characteristics of ion beams as applied to the analysis of materials, as well as ion beam analysis (IBA) of art/archaeological objects. It focuses on the fundamentals and applications of ion beam methods of materials characterization.The book explains how ions interact with solids and describes what information can be gained. It starts by covering the fundamentals of ion beam analysis, including kinematics, ion stopping, Rutherford backscattering, channeling, elastic recoil detection, particle induced x-ray emission, and nucle

  18. Ion Beam Therapy in Europe

    International Nuclear Information System (INIS)

    Kraft, Gerhard

    2009-01-01

    At present, seven facilities in Europe treat deep-seated tumors with particle beams, six with proton beams and one with carbon ions. Three of these facilities are in Moscow, St. Petersburg and Dubna, Russia. Other facilities include the TSL Uppsala, Sweden, CPO Orsay, France, and PSI Villigen, Switzerland, all for proton therapy, and GSI, Darmstadt, Germany, which utilizes carbon ions only. But only two of these facilities irradiate with scanned ion beams: the Paul Scherer Institute (PSI), Villigen (protons) and the Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt. These two facilities are experimental units within physics laboratories and have developed the technique of intensity-modulated beam scanning in order to produce irradiation conforming to a 3-D target. There are three proton centers presently under construction in Munich, Essen and Orsay, and the proton facility at PSI has added a superconducting accelerator connected to an isocentric gantry in order to become independent of the accelerator shared with the physics research program. The excellent clinical results using carbon ions at National Institute of Radiological Science (NIRS) in Chiba and GSI have triggered the construction of four new heavy-ion therapy projects (carbon ions and protons), located in Heidelberg, Pavia, Marburg and Kiel. The projects in Heidelberg and Pavia will begin patient treatment in 2009, and the Marburg and Kiel projects will begin in 2010 and 2011, respectively. These centers use different accelerator designs but have the same kind of treatment planning system and use the same approach for the calculation of the biological effectiveness of the carbon ions as developed at GSI [1]. There are many other planned projects in the works. Do not replace the word ''abstract,'' but do replace the rest of this text. If you must insert a hard line break, please use Shift+Enter rather than just tapping your ''Enter'' key. You may want to print this page and refer to it as a style

  19. High current DC ion beams

    International Nuclear Information System (INIS)

    Shubaly, M.R.; de Jong, M.S.

    1983-01-01

    Development of high-current cw accelerators such as ZEBRA and FMIT, use of high current dc ion beams in industry for sputtering and material treatment, and scientific applications such as heavy-ion fusion and plasma physics diagnostics have provided the impetus for ion source development programs at many laboratories. At Chalk River, development of efficient plasma generators and reliable extraction columns to provide high quality beams of hydrogen, nitrogen, argon and xenon is underway. DC beams of up to 850 mA (limited by available power supplies) of hydrogen, 200 mA of nitrogen, 155 mA of argon and 100 mA of xenon have been produced with good reliability. DuoPIGatrons, with and without magnetic cusps, are used to generate a high density, reasonably quiescent plasma. Multi-aperture accel-decel columns are used for extraction with shaped apertures and beamlet steering to improve beam quality. This paper describes the performance of these sources and identifies some of the remaining problems. Guidelines for extraction column design, and experience with transporting high current beams are also presented

  20. Radioactive ion beams at TRIUMF

    International Nuclear Information System (INIS)

    D'Auria, J.M.; Dombsky, M.; Buchmann, L.; Sprenger, H.; McNeely, P.; Roy, G.

    1992-01-01

    The thick target, on-line isotope separator, TISOL, located at the high intensity, 500 MeV proton cyclotron, TRIUMF, has now been upgraded to a production facility, and can produce mass separated radioisotopic beams for a wide range of elements. Two different types of ion sources, an Electron Cyclotron Resonance (ECR) system and a heated surface ion source are presently operational for alkali, alkaline, and gaseous elements. A new class of target materials, zeolites, have been developed to allow the use of beam intensities approaching 5 μA. A summary of the experimental program underway is presented along with planned future upgrades, and recent results on the properties of nuclides far from stability. The role of TISOL in future planned accelerated radioactive beams facilities is also discussed

  1. Nanostructuring by ion beam

    International Nuclear Information System (INIS)

    Valbusa, U.; Boragno, C.; Buatier de Mongeot, F.

    2003-01-01

    In metals, the surface curvature dependence of the sputtering yield and the presence of an extra energy barrier whenever diffusing adatoms try to descend step edges, produce a similar surface instability, which builds up regular patterns. By tuning the competition between these two mechanisms, it is possible to create self-organized structures of the size of few nanometers. Height, lateral distance and order of the structures change with the deposition parameters like ion energy, dose, incident angle and substrate temperature. The paper offers an overview of the experiments carried out and foresees possible applications of these results in the area of material science

  2. Materials Science with Ion Beams

    CERN Document Server

    Bernas, Harry

    2010-01-01

    This book introduces materials scientists and designers, physicists and chemists to the properties of materials that can be modified by ion irradiation or implantation. These techniques can help design new materials or to test modified properties; novel applications already show that ion-beam techniques are complementary to others, yielding previously unattainable properties. Also, ion-beam interactions modify materials at the nanoscale, avoiding the often detrimental results of lithographic or chemical techniques. Here, the effects are related to better-known quasi-equilibrium thermodynamics, and the consequences to materials are discussed with concepts that are familiar to materials science. Examples addressed concern semiconductor physics, crystal and nanocluster growth, optics, magnetism, and applications to geology and biology.

  3. On the energy gain enhancement of DT+D3He fuel configuration in nuclear fusion reactor driven by heavy ion beams

    Directory of Open Access Journals (Sweden)

    S Khoshbinfar

    2016-09-01

    Full Text Available It is expected that advanced fuels be employed in the second generation of nuclear fusion reactors. Theoretical calculations show that in such a fuel, a high plasma temperature about 100 keV is a requisite for reaction rate improvement of nuclear fusion. However, creating such a temporal condition requires a more powerful driver than we have today. Here, introducing an optimal fuel configuration consisting of DT and D-3He layers, suitable for inertial fusion reactors and driven by heavy ion beams, the optimal energy gain conditions have been simulated and derived for 1.3 MJ system. It was found that, in this new fuel configuration, the ideal energy gain, is 22 percent more comparing with energy gain in corresponding single DT fuel layer. Moreover, the inner DT fuel layer contributed as an ignition trigger, while the outer D3He fuel acts as particle and radiation shielding as well as fuel layer.

  4. Underling modification in ion beam induced Si wafers

    International Nuclear Information System (INIS)

    Hazra, S.; Chini, T.K.; Sanyal, M.K.; Grenzer, J.; Pietsch, U.

    2005-01-01

    Subsurface (amorphous-crystalline interface) structure of keV ion beam modified Si(001) wafers was studied for the first time using non-destructive technique and compared with that of the top one. Ion-beam modifications of the Si samples were done using state-of-art high-current ion implanter facility at Saha Institute of Nuclear Physics by changing energy, dose and angle of incidence of the Ar + ion beam. To bring out the underlying modification depth-resolved x-ray grazing incidence diffraction has been carried out using synchrotron radiation facility, while the structure of the top surface was studied through atomic force microscopy

  5. Ion beam modification of solids ion-solid interaction and radiation damage

    CERN Document Server

    Wesch, Werner

    2016-01-01

    This book presents the method of ion beam modification of solids in realization, theory and applications in a comprehensive way. It provides a review of the physical basics of ion-solid interaction and on ion-beam induced structural modifications of solids. Ion beams are widely used to modify the physical properties of materials. A complete theory of ion stopping in matter and the calculation of the energy loss due to nuclear and electronic interactions are presented including the effect of ion channeling. To explain structural modifications due to high electronic excitations, different concepts are presented with special emphasis on the thermal spike model. Furthermore, general concepts of damage evolution as a function of ion mass, ion fluence, ion flux and temperature are described in detail and their limits and applicability are discussed. The effect of nuclear and electronic energy loss on structural modifications of solids such as damage formation, phase transitions and amorphization is reviewed for ins...

  6. Laboratory of ion beam applications at ATOMKI

    International Nuclear Information System (INIS)

    Borbely-Kiss, I.; Huszank, R.; Kertesz, Zs.; Kiss, A.Z.; Koltay, E.; Rajta, I.; Simon, A.; Szabo, Gy.; Szikszai, Z.; Szilasi, S.Z.; Szoboszlai, Z.; Uzonyi, I.

    2008-01-01

    Introduction. The Laboratory of Ion Beam Applications of ATOMKI is devoted to applications of atomic and nuclear physics in the fields of environmental research, biomedicine, geology, materials and surface science (including ion beam induced damage investigations and proton beam lithography) and cultural heritage research. We perform our work in the frame of various projects and collaborations: EU, IAEA, R and D, OTKA, etc. Our laboratory provides service for external (national and international) and internal users and contributes to higher education, as well. The Laboratory is based on the home-made 5 MV Van de Graaff (VdG) electrostatic accelerator of the institute. The accelerator was put into operation in 1971 and in the beginning it supplied ion beams exclusively for nuclear physics. A few years later with the measurements of K-shell ionization cross sections the door became open also for basic atomic physics. In parallel with this basic study, the application of proton induced X-ray emission (PIXE) for the elemental analysis of biological (hair, erythrocyte and blood plasma) samples and atmospheric aerosols also started. The first paper on PIXE, a methodological one, was published in 1978. The experience gained on these applications and later on archaeology led to the construction of complex PIXE chambers, which were sold, together with the corresponding know-how, to institutions in China, Portugal, Bangladesh, Jordan, North Korea, Singapore, Cuba and Mexico through the International Atomic Energy Agency (IAEA). For the evaluation of PIXE spectra the laboratory has been continuously developing its own computer programme package. The first version of this continuous development was published in 1988. In the meantime a second IBA analysis method, the proton induced gamma ray emission (PIGE), was introduced in the laboratory and was applied simultaneously with PIXE. Application of deuteron induced gamma ray emission (DIGE) started more than a decade later. A

  7. Ion-beam Plasma Neutralization Interaction Images

    Energy Technology Data Exchange (ETDEWEB)

    Igor D. Kaganovich; Edward Startsev; S. Klasky; Ronald C. Davidson

    2002-04-09

    Neutralization of the ion beam charge and current is an important scientific issue for many practical applications. The process of ion beam charge and current neutralization is complex because the excitation of nonlinear plasma waves may occur. Computer simulation images of plasma neutralization of the ion beam pulse are presented.

  8. Ion beam modification of polymers

    International Nuclear Information System (INIS)

    Sofield, C.J.; Sugden, S.; Ing, J.; Bridwell, L.B.; Wang, Y.Q.

    1993-01-01

    The implantation of polymers has received considerable attention in recent years, primarily to examine doping of conducting polymers and to increase the surface conductivity (by many orders of magnitude) of highly insulating polymers. The interest in these studies was partly motivated by possible applications to microelectronic device fabrication. More recently it has been observed that ion implantation can under some conditions lead to the formation of a hard (e.g. as hard as steel, ca. 3 MPa) and conducting surface layer. This paper will review the ion beam modification of polymers resulting from ion implantation with reference to fundamental ion-solid interactions. This leads us to examine whether or not implantation of polymers is a contradiction in terms. (Author)

  9. Status of radioactive ion beams at the HRIBF

    CERN Document Server

    Stracener, D W

    2003-01-01

    Radioactive Ion Beams (RIBs) at the Holifield Radioactive Ion Beam Facility (HRIBF) are produced using the isotope separation on-line technique and are subsequently accelerated up to a few MeV per nucleon for use in nuclear physics experiments. The first RIB experiments at the HRIBF were completed at the end of 1998 using sup 1 sup 7 F beams. Since then other proton-rich ion beams have been developed and a large number of neutron-rich ion beams are now available. The neutron-rich radioactive nuclei are produced via proton-induced fission of uranium in a low-density matrix of uranium carbide. Recently developed RIBs include sup 2 sup 5 Al from a silicon carbide target and isobarically pure beams of neutron-rich Ge, Sn, Br and I isotopes from a uranium carbide target.

  10. Ion beam sputter implantation method

    International Nuclear Information System (INIS)

    King, W.J.

    1978-01-01

    By means of ion beam atomizing or sputtering an integrally composed coating, the composition of which continuously changes from 100% of the substrate to 100% of the coating, can be surfaced on a substrate (e.g. molten quartz on plastic lenses). In order to do this in the facility there is directed a primary beam of accelerated noble gas ions on a target from the group of the following materials: SiO 2 , Al 2 O 3 , Corning Glass 7070, Corning Glass 7740 or borosilicate glass. The particles leaving the target are directed on the substrate by means of an acceleration potential of up to 10 KV. There may, however, be coated also metal layers (Ni, Co) on a mylar film resulting in a semireflecting metal film. (RW) [de

  11. Large area ion and plasma beam sources

    Energy Technology Data Exchange (ETDEWEB)

    Waldorf, J. [IPT Ionen- und Plasmatech. GmbH, Kaiserslautern (Germany)

    1996-06-01

    In the past a number of ion beam sources utilizing different methods for plasma excitation have been developed. Nevertheless, a widespread use in industrial applications has not happened, since the sources were often not able to fulfill specific demands like: broad homogeneous ion beams, compatibility with reactive gases, low ion energies at high ion current densities or electrical neutrality of the beam. Our contribution wants to demonstrate technical capabilities of rf ion and plasma beam sources, which can overcome the above mentioned disadvantages. The physical principles and features of respective sources are presented. We report on effective low pressure plasma excitation by electron cyclotron wave resonance (ECWR) for the generation of dense homogeneous plasmas and the rf plasma beam extraction method for the generation of broad low energy plasma beams. Some applications like direct plasma beam deposition of a-C:H and ion beam assisted deposition of Al and Cu with tailored thin film properties are discussed. (orig.).

  12. Large area ion and plasma beam sources

    International Nuclear Information System (INIS)

    Waldorf, J.

    1996-01-01

    In the past a number of ion beam sources utilizing different methods for plasma excitation have been developed. Nevertheless, a widespread use in industrial applications has not happened, since the sources were often not able to fulfill specific demands like: broad homogeneous ion beams, compatibility with reactive gases, low ion energies at high ion current densities or electrical neutrality of the beam. Our contribution wants to demonstrate technical capabilities of rf ion and plasma beam sources, which can overcome the above mentioned disadvantages. The physical principles and features of respective sources are presented. We report on effective low pressure plasma excitation by electron cyclotron wave resonance (ECWR) for the generation of dense homogeneous plasmas and the rf plasma beam extraction method for the generation of broad low energy plasma beams. Some applications like direct plasma beam deposition of a-C:H and ion beam assisted deposition of Al and Cu with tailored thin film properties are discussed. (orig.)

  13. A fast beam-ion instability

    Energy Technology Data Exchange (ETDEWEB)

    Stupakov, G.V. [Stanford Linear Accelerator Center, Menlo Park, CA (United States)

    1996-08-01

    The ionization of residual gas by an electron beam in an accelerator generates ions that can resonantly couple to the beam through a wave propagating in the beam-ion system. Results of the study of a beam-ion instability are presented for a multi-bunch train taking into account the decoherence of ion oscillations due to the ion frequency spread and spatial variation of the ion frequency. It is shown that the combination of both effects can substantially reduce the growth rate of the instability. (author)

  14. Physics with radioactive nuclear beams

    International Nuclear Information System (INIS)

    Boyd, R.N.

    1995-01-01

    Recently developed facilities allow a wide range of new investigations of the reactions and properties of short-lived nuclei. These studies may help to solve puzzles of nuclear structure and the Big Bang. The purpose of nuclear physics is to measure properties of specific nuclides and infer from them global properties common to all nuclides, for example, is to understand nuclear sizes and matter distributions in terms of basic nuclear forces. Another is to understand the variation throughout the periodic table of the dominant quantum states, which are known as the open-quotes nuclear shell model close quotes states and are characterized, much as are atomic states, by a principal quantum number and by orbital and total angular momentum quantum numbers. In turn other nuclear phenomena, such as the collective excitations known as giant resonances, can be understood in terms of the shell-model configurations and basic nuclear parameters. Radioactive nuclear beam studies of reactions of short-lived nuclides have already yielded results with important ramifications in both nuclear physics and astrophysics. Nuclear physicists expect unstable nuclides to exhibit unusual structures or features that may test their understanding of known nuclear phenomena at extreme conditions, and perhaps even to reveal previously unknown nuclear phenomena, Astrophysicists, for their part, have known for several decades that processes in both Big Bang nucleosynthesis and stellar nucleosynthesis involve short-lived nuclides. Indeed, the original motivation for developing radioactive nuclear beams was astrophysical. (author). 25 refs., 7 figs

  15. Physics with radioactive nuclear beams

    International Nuclear Information System (INIS)

    Boyd, R.N.; Tanihata, I.

    1992-01-01

    Recently developed facilities allow a wide range of new investigations of the reactions and properties of short-lived nuclei. These studies may help to solve puzzles of nuclear structure and the Big Bang. The purpose of nuclear physics is to measure properties of specific nuclides and infer from them global properties common to all nuclides. One goal, for example, is to understand nuclear sizes and matter distributions in terms of basic nuclear forces. Another is to understand the variation throughout the periodic table of the dominant quantum states, which are known as the open-quotes nuclear shell modelclose quotes states and are characterized, much as are atomic states, by a principal quantum number and by orbital and total angular momentum quantum numbers. In turn other nuclear phenomena, such as the collective excitations known as giant resonances, can be understood in terms of the shell-model configurations and basic nuclear parameters. Radioactive nuclear beam studies of reactions of short-lived nuclides have already yielded results with important ramifications in both nuclear physics and astrophysics. Nuclear physicists expect unstable nuclides to exhibit unusual structures or features that may test their understanding of known nuclear phenomena at extreme conditions, and perhaps even to reveal previously unknown nuclear phenomena, Astrophysicists, for their part, have known for several decades that processes in both Big Bang nucleosynthesis and stellar nucleosynthesis involve short-lived nuclides. Indeed, the original motivation for developing radioactive nuclear beams was astrophysical. 25 refs., 7 figs

  16. Ion beam processes in Si

    International Nuclear Information System (INIS)

    Holland, O.W.; Narayan, J.; Fathy, D.

    1984-07-01

    Observation of the effects of implants of energetic ions at high dose rates into Si have produced some exciting and interesting results. The mechanism whereby displacement damage produced by ions self-anneals during high dose rate implantation is discussed. It is shown that ion beam annealing (IBA) offers in certain situations unique possibilities for damage annealing. Annealing results of the near surface in Si with a buried oxide layer, formed by high dose implantation, are presented in order to illustrate the advantages offered by IBA. It is also shown that ion irradiation can stimulate the epitaxial recrystallization of amorphous overlayers in Si. The nonequilibrium alloying which results from such epitaxial processes is discussed as well as mechanisms which limit the solid solubility during irradiation. Finally, a dose rate dependency for the production of stable damage by ion irradiation at a constant fluence has been observed. For low fluence implants, the amount of damage is substantially greater in the case of high flux rather than low flux implantation

  17. Ion spectroscopy for improvement of the physical beam model for therapy planning in ion beam therapy

    Energy Technology Data Exchange (ETDEWEB)

    Arico, Giulia

    2016-11-23

    Helium and carbon ions enable a more conformal dose distribution, narrower penumbra and higher relative biological effectiveness than photon and proton radiotherapy. However, they may undergo nuclear fragmentation in the patient tissues and the arising secondary fragments affect the delivered biological dose distributions. Currently there is a lack of data regarding ion nuclear fragmentation. One reason is the large size (up to some meters) of the experimental setups required for the investigations. In this thesis a new method is presented, which makes use of versatile pixelated semiconductor detectors (Timepix). This method is based on tracking of single particles and pattern recognition of their signals in the detectors. Measurements were performed at the HIT facility. The mixed radiation field arising from 430 MeV/u carbon ion beams and 221 MeV/u helium ion beams in water and in PMMA targets was investigated. The amounts of primary (carbon or helium) ions detected behind targets with the same water equivalent thickness (WET) were found to be in agreement within the statistical uncertainties. However, more fragments (differences up to 20% in case of H) and narrower lateral particle distributions were measured behind the PMMA than the water targets. The spectra of ions behind tissue surrogates and corresponding water targets with the same WET were analysed. The results obtained with adipose and inner bone surrogates and with the equivalent water phantoms were found to be consistent within the uncertainties. Significant differences in the results were observed in the case of lung and cortical bone surrogates when compared to the water phantoms. The experimental results were compared to FLUKA Monte Carlo simulations. This comparison could contribute to enhance the ion interaction models currently implemented for {sup 12}C and {sup 4}He ion beams.

  18. Production of polarized negative deuterium ion beam with dual optical pumping in KEK

    Energy Technology Data Exchange (ETDEWEB)

    Kinsho, M.; Ikegami, K.; Takagi, A. [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan); Mori, Y.

    1997-02-01

    To obtain highly nuclear-spin vector polarized negative deuterium ion beam, a dual optically pumped polarized negative deuterium ion source has been developed at KEK. It is possible to select a pure nuclear-spin state with this scheme, and negative deuterium ion beam with 100% nuclear-spin vector polarization can be produced in principle. We have obtained about 70% of nuclear-spin vector polarized negative deuterium ion beam so far. This result may open up a new possibilities for the optically pumped polarized ion source. (author)

  19. Unstable Electrostatic Ion Cyclotron Waves Exited by an Ion Beam

    DEFF Research Database (Denmark)

    Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens

    1976-01-01

    Electrostatic ion cyclotron waves were observed in a quiescent cesium plasma into which a low‐energy beam of sodium ions was injected. The instability appeared when the beam velocity was above 12 times the ion thermal velocity. The waves propagated along the magnetic field with a velocity somewhat...

  20. Facilities for radiotherapy with ion beams status and worldwide developments

    CERN Document Server

    Wolf, B H

    1999-01-01

    Forty-five years after the first ion beam therapy in Berkeley around 25,000 cancer patients worldwide have been treated successfully. Ion accelerators, designed for nuclear research, delivered most of this treatment. The first hospital-based facility started operation in 1998 at Loma Linda California, the first for heavier ions at Chiba, Japan in 1994 and the first commercially delivered facilities started operation in 1998 at Kashiwa, Japan. In 2000, the Harvard Medical Centre, Boston, US, will commence operation and several new facilities are planned or under construction worldwide, although none in Australia. This paper will discuss the physical and biological advantages of ion beams over x-rays and electrons. In the treatment of cancer patients ion beam therapy is especially suited for localised tumours in radiation sensitive areas like skull or spine. Heavier ions are also effective in anoxic tumour cells (found around the normally oxygenated cell population). An additional advantage of the heavier carbo...

  1. Final project report for NEET pulsed ion beam project

    Energy Technology Data Exchange (ETDEWEB)

    Kucheyev, S. O. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2018-01-11

    The major goal of this project was to develop and demonstrate a novel experimental approach to access the dynamic regime of radiation damage formation in nuclear materials. In particular, the project exploited a pulsed-ion-beam method in order to gain insight into defect interaction dynamics by measuring effective defect interaction time constants and defect diffusion lengths. This project had the following four major objectives: (i) the demonstration of the pulsed ion beam method for a prototypical nuclear ceramic material, SiC; (ii) the evaluation of the robustness of the pulsed beam method from studies of defect generation rate effects; (iii) the measurement of the temperature dependence of defect dynamics and thermally activated defect-interaction processes by pulsed ion beam techniques; and (iv) the demonstration of alternative characterization techniques to study defect dynamics. As we describe below, all these objectives have been met.

  2. Nuclear spectroscopy with fast exotic beams

    International Nuclear Information System (INIS)

    Gade, Alexandra

    2013-01-01

    The often surprising properties of neutron-rich nuclei have prompted extensive experimental and theoretical studies aimed at identifying the driving forces behind the dramatic changes encountered in the exotic regime. Challenging discovery experiments that search for new isotopes in the quest to delineate the limits of nuclear existence provide fundamental benchmarks for nuclear theory, addressing the question what combinations of protons and neutrons can be made into nuclei. As will be discussed here, the existence of certain nuclear species and their production cross sections can provide a first glimpse at nuclear structure effects in the most exotic regime. Striving for more detail on the evolution of nuclear structure, in-beam nuclear spectroscopy with fast beams and thick reaction targets—where γ-ray spectroscopy is used to tag the final state—provides information on the single-particle structure as well as on collective degrees of freedom in nuclei that are available for experiments at beam rates of only a few ions/s. This article will outline—with the example of shell evolution along the N = 40 isotone line—how in-beam experiments measure complementary observables, starting from the nuclear existence and production cross sections to the collective and single-particle properties of the lowest-lying excited states in the vicinity of the very neutron-rich Ti, Cr and Fe N = 40 isotones. The interplay of experimental results and theory will be emphasized at the intersection of nuclear structure and reactions in the joined quest of unraveling the driving forces of shell evolution. (paper)

  3. Radioactive ion beams for solid state research

    CERN Document Server

    Correia, J G

    1996-01-01

    Radioactive isotopes are widely used in many research fields. In some applications they are used as tracers after diffusion or after activation in the material itself through nuclear reactions. For research in solid state physics, the ion implantation technique is the most flexible and convenient method to introduce the radioactive isotopes in the materials to be studied, since it allows the control of the ion dose, the implantation depth and the isotopic purity. The on-line coupling of isotope separators to particle accelerators, as is the case of the ISOLDE facility at CERN, allows the obtention of a wide range of high purity short lived isotopes. Currently, the most stringent limitation for some applications is the low acceleration energy of 60 keV of the ISOLDE beam. In this communication a short review of the current applications of the radioactive beams for research in solid state physics at ISOLDE is done. The development of a post-accelerator facility for MeV radioactive ions is introduced and the adv...

  4. Electron beam ion sources for student education at universities

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, Erik [DREEBIT GmbH, Dresden (Germany); Zschornack, Guenter [TU Dresden, Dresden (Germany)

    2014-07-01

    Ion beams have become essential tools used in many fields of fundamental research as well as industrial applications. Thus, it is important for todays physics students to understand the basics of ion beam creation, transportation as well as ion-surface interactions. We present results from laboratory training courses using table-top sized electron beam ion sources of the Dresden EBIT type which is able to produce a large spectrum of ions with low or high charge states. The initial ion beam is guided through several ion optical elements like Einzel lenses and deflectors, is separated by the charge-to-mass ratio of its components with a Wien-Filter or dipole analyzing magnet and is detected in a Faraday Cup. A specific assembly for laboratory training as used at the Technische Universitaet Dresden and the Jagiellonian University in Krakow, Poland, is introduced. In typical experiments, students analyze the charge-to-mass ratio spectrum from a Dresden EBIT measured using a Wien Filter. The composition of the extracted ion beam can be manipulated by the gas pressure or the ionisation time. In a wider context, the atomic physics processes occurring especially during the production of highly charged ions also appear in nuclear fusion facilities as well as in many astrophysical phenomena, for example supernovas. Such aspects can be discussed in order to help students connect to modern research carried out at large international facilities.

  5. Ion-Beam-Excited Electrostatic Ion Cyclotron Waves

    DEFF Research Database (Denmark)

    Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens

    1976-01-01

    Self-excited electrostatic ion cyclotron waves were observed in an ion-beam-plasma system produced in a DP-operated Q-machine. The frequency of the waves showed the theoretically predicted variation with the magnetic field.......Self-excited electrostatic ion cyclotron waves were observed in an ion-beam-plasma system produced in a DP-operated Q-machine. The frequency of the waves showed the theoretically predicted variation with the magnetic field....

  6. Beam structure studies of low-energy ion beams

    Science.gov (United States)

    Saadatmand, K.; Schneider, J. D.; Geisik, C.; Stevens, R. R.

    1991-05-01

    The ion beam structure at various axial positions along the beam-transport line has been monitored and studied utilizing a fluor screen and a video camera. The fluor material is aluminum oxide that is plasma-jet sprayed onto the surface of an aluminum or a water-cooled copper substrate. The visual representation of the beam structure is digitized and enhanced through use of false-color coding and displayed on a TV monitor for the on-line viewing by the experimentalist. Digitized video signals are stored for further off-line processing and extracting more information about the beam, such as beam profiles. This inexpensive and effective diagnostic enables the experimentalist to observe the real-time beam response (such as evolution of the beam structure, shifts in the beam intensity at various spatial locations within the beam perimeter, and shifts in the beam center and position) to parameter changes.

  7. Radiation effects of ion beams on polymers

    International Nuclear Information System (INIS)

    Tagawa, Seiichi

    1993-01-01

    Recent progress in the radiation effects of ion beams on polymers are reviewed briefly. Our recent work on the radiation effects of ion beams on polystyrene thin films on silicon wafers and time resolved emission studies on polymers are described. (orig.)

  8. Heavy ion beams for inertial fusion

    Energy Technology Data Exchange (ETDEWEB)

    Godlove, T.F.; Herrmannsfeldt, W.B.

    1980-05-01

    The United States' program in inertial confinement fusion (ICF) is described in this paper, with emphasis on the studies of the use of intense high energy beams of heavy ions to provide the power and energy needed to initiate thermonuclear burn. Preliminary calculations of the transport of intense ion beams in an electrostatic quadrupole focussing structure are discussed.

  9. Beam emittance measurements on multicusp ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Sarstedt, M.; Lee, Y.; Leung, K.N. [and others

    1995-08-01

    Multicusp ion sources are used for various applications. Presently, the implementation of this type of ion source planned for the development of an ion beam lithography machine, which will be used for the projection of sub-0.2 {mu}m patterns onto a wafer substrate. Since, for this application, a very good beam quality and a small ion energy spread are required, emittance measurements have been performed on a multicusp ion source for various source conditions. It is shown that the installation of proper capacitors between the extraction electrodes is necessary to avoid rf-pickup, which otherwise leads to a distortion of the beam emittance. The influence of the magnetic filter field on the beam emittance has been investigated, and the beam emittance of a dc filament-discharge plasma has also been compared to that of an rf-generated plasma.

  10. Beam emittance measurements on multicusp ion sources

    International Nuclear Information System (INIS)

    Sarstedt, M.; Lee, Y.; Leung, K.N.

    1995-08-01

    Multicusp ion sources are used for various applications. Presently, the implementation of this type of ion source planned for the development of an ion beam lithography machine, which will be used for the projection of sub-0.2 μm patterns onto a wafer substrate. Since, for this application, a very good beam quality and a small ion energy spread are required, emittance measurements have been performed on a multicusp ion source for various source conditions. It is shown that the installation of proper capacitors between the extraction electrodes is necessary to avoid rf-pickup, which otherwise leads to a distortion of the beam emittance. The influence of the magnetic filter field on the beam emittance has been investigated, and the beam emittance of a dc filament-discharge plasma has also been compared to that of an rf-generated plasma

  11. Intense ion beams for inertial confinement fusion

    International Nuclear Information System (INIS)

    Mehlhorn, T.A.

    1997-01-01

    Intense beams of light of heavy ions are being studied as inertial confinement fusion (ICF) drivers for high yield and energy. Heavy and light ions have common interests in beam transport, targets, and alternative accelerators. Self-pinched transport is being jointly studied. This article reviews the development of intense ion beams for ICF. Light-ion drivers are highlighted because they are compact, modular, efficient and low cost. Issues facing light ions are: (1) decreasing beam divergence; (2) increasing beam brightness; and (3) demonstrating self-pinched transport. Applied-B ion diodes are favored because of efficiency, beam brightness, perceived scalability, achievable focal intensity, and multistage capability. A light-ion concept addressing these issues uses: (1) an injector divergence of ≤ 24 mrad at 9 MeV; (2) two-stage acceleration to reduce divergence to ≤ 12 mrad at 35 MeV; and (3) self-pinched transport accepting divergences up to 12 mrad. Substantial progress in ion-driven target physics and repetitive ion diode technology is also presented. Z-pinch drivers are being pursued as the shortest pulsed power path to target physics experiments and high-yield fusion. However, light ions remain the pulsed power ICF driver of choice for high-yield fusion energy applications that require driver standoff and repetitive operation. 100 refs

  12. Beam brilliance investigation of high current ion beams at GSI heavy ion accelerator facility.

    Science.gov (United States)

    Adonin, A A; Hollinger, R

    2014-02-01

    In this work the emittance measurements of high current Ta-beam provided by VARIS (Vacuum Arc Ion Source) ion source are presented. Beam brilliance as a function of beam aperture at various extraction conditions is investigated. Influence of electrostatic ion beam compression in post acceleration gap on the beam quality is discussed. Use of different extraction systems (single aperture, 7 holes, and 13 holes) in order to achieve more peaked beam core is considered. The possible ways to increase the beam brilliance are discussed.

  13. Mutation induction by ion beams in plants

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Atsushi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2001-03-01

    The effect of ion beams such as C, He, and Ne ions was investigated on the mutation induction in plants with the expectation that ion beams of high linear energy transfer (LET) can frequently produce large DNA alternation such as inversion, translocation and large deletion rather than point mutation. Mutation frequency was investigated using Arabidopsis visible phenotype loci and was 8 to 33 fold higher for 220 MeV carbon ions than for electrons. Mutation spectrum was investigated on the flower color of chrysanthemum cv to find that flower mutants induced by ion beams show complex and stripe types rather than single color. Polymerase chain reaction analysis was performed to investigate DNA alteration of mutations. In conclusion, the characteristics of ion beams for the mutation induction are 1) high frequency, 2) broad mutation spectrum, and 3) novel mutants. (S. Ohno)

  14. SPES: exotic beams for nuclear physics studies

    International Nuclear Information System (INIS)

    Andrighetto, A.; Manzolaro, M.; Corradetti, S.; Scarpa, D.; Vasquez, J.; Rossignoli, M.; Monetti, A.; Calderolla, M.; Prete, G.

    2014-01-01

    The SPES project at Laboratori di Legnaro of INFN (Italy) is concentrating on the production of neutron-rich radioactive nuclei for nuclear physics experiments using uranium fission at a rate of 10 13 fission/s. The emphasis on neutron-rich isotopes is justified by the fact that this vast territory has been little explored. The Radioactive Ion Beam (RIB) will be produced by the ISOL technique using proton induced fission on a direct target of UCx. The most critical element of the SPES project is the Multi-Foil Direct Target. Up to the present time, the proposed target represents an innovation in terms of its capability to sustain the primary beam power. This talk will present the status of the project financed by INFN, which is actually in the construction phase at Legnaro. In particular, developments related to the target and the ion-source activities using the surface ion source, plasma ion source, and laser ion source techniques will be reported. (author)

  15. Constraints on ion beam handling for intersecting beam experiments

    International Nuclear Information System (INIS)

    Kruse, T.

    1981-01-01

    The intense synchrotron radiation beams from the NSLS uv or x-ray storage rings still do not compare in monochromatized photon flux with a laser beam, a fact which becomes apparent in considering reaction rates for interaction of photon and ion beams. There are two prototypical interaction geometries, parallel and perpendicular. Calculations should properly be done in the rest frame of the ion beam; however, expected beta values are small, so the lab frame will be employed and aberration and Doppler shift effects neglected

  16. Beam-beam observations in the Relativistic Heavy Ion Collider

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Y. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Fischer, W. [Brookhaven National Laboratory (BNL), Upton, NY (United States); White, S. [Brookhaven National Laboratory (BNL), Upton, NY (United States)

    2015-06-24

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory has been operating since 2000. Over the past decade, thanks to the continuously increased bunch intensity and reduced β*s at the interaction points, the maximum peak luminosity in the polarized proton operation has been increased by more than two orders of magnitude. In this article, we first present the beam-beam observations in the previous RHIC polarized proton runs. Then we analyze the mechanisms for the beam loss and emittance growth in the presence of beam-beam interaction. The operational challenges and limitations imposed by beam-beam interaction and their remedies are also presented. In the end, we briefly introduce head-on beam-beam compensation with electron lenses in RHIC.

  17. Ion and electron beam interaction on surfaces - a detection mechanism for obtaining visual ion beam images

    International Nuclear Information System (INIS)

    Fine, J.; Gorden, R. Jr.

    1978-01-01

    Two-dimensional images have been obtained of ion beam impact cross sections on solid surfaces by the coincident interaction of a rastered electron beam. This detection method is effective in producing images in real time on various insulator surfaces. The size of these images correlates well with ion beam current density profile measurements (at full width) and, therefore, can be very useful for ion beam diagnostics and alignment. (Auth.)

  18. Atomic and Nuclear Analytical Methods XRF, Mössbauer, XPS, NAA and Ion-Beam Spectroscopic Techniques

    CERN Document Server

    Verma, H R

    2007-01-01

    This book is a blend of analytical methods based on the phenomenon of atomic and nuclear physics. It comprises comprehensive presentations about X-ray Fluorescence (XRF), Mössbauer Spectroscopy (MS), X-ray Photoelectron Spectroscopy (XPS), Neutron- Activation Analysis (NAA), Particle Induced X-ray Emission Analysis (PIXE), Rutherford Backscattering Analysis (RBS), Elastic Recoil Detection (ERD), Nuclear Reaction Analysis (NRA), Particle Induced Gamma-ray Emission Analysis (PIGE), and Accelerator Mass Spectrometry (AMS). These techniques are commonly applied in the fields of medicine, biology, environmental studies, archaeology or geology et al. and pursued in major international research laboratories.

  19. Pulsed high current ion beam processing equipment

    International Nuclear Information System (INIS)

    Korenev, S.A.; Perry, A.

    1995-01-01

    A pulsed high voltage ion source is considered for use in ion beam processing for the surface modification of materials, and deposition of conducting films on different substrates. The source consists of an Arkad'ev-Marx high voltage generator, a vacuum ion diode based on explosive ion emission, and a vacuum chamber as substrate holder. The ion diode allows conducting films to be deposited from metal or allow sources, with ion beam mixing, onto substrates held at a pre-selected temperature. The main variables can be set in the ranges: voltage 100-700 kV, pulse length 0.3 μs, beam current 1-200 A depending on the ion chosen. The applications of this technology are discussed in semiconductor, superconductor and metallizing applications as well as the direction of future development and cost of these devices for commercial application. 14 refs., 6 figs

  20. Cobalt alloy ion sources for focused ion beam implantation

    Energy Technology Data Exchange (ETDEWEB)

    Muehle, R.; Doebeli, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Zimmermann, P. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-09-01

    Cobalt alloy ion sources have been developed for silicide formation by focused ion beam implantation. Four eutectic alloys AuCo, CoGe, CoY and AuCoGe were produced by electron beam welding. The AuCo liquid alloy ion source was investigated in detail. We have measured the emission current stability, the current-voltage characteristics, and the mass spectrum as a function of the mission current. (author) 1 fig., 2 refs.

  1. Scattering of ion beams from surfaces

    International Nuclear Information System (INIS)

    Heiland, W.; Taglauer, E.

    1978-01-01

    A review is presented of the scattering of ion beams from surfaces and the physical phenomena which are probably most important for the formation of the final state (charge and excitation) of the secondary particles. The subject is treated under the headings: ion scattering, desorption by ion impact, and neutralization. (U.K.)

  2. Intense non-relativistic cesium ion beam

    International Nuclear Information System (INIS)

    Lampel, M.C.

    1984-02-01

    The Heavy Ion Fusion group at Lawrence Berkeley Laboratory has constructed the One Ampere Cesium Injector as a proof of principle source to supply an induction linac with a high charge density and high brightness ion beam. This is studied here. An electron beam probe was developed as the major diagnostic tool for characterizing ion beam space charge. Electron beam probe data inversion is accomplished with the EBEAM code and a parametrically adjusted model radial charge distribution. The longitudinal charge distribution was not derived, although it is possible to do so. The radial charge distribution that is derived reveals an unexpected halo of trapped electrons surrounding the ion beam. A charge fluid theory of the effect of finite electron temperature on the focusing of neutralized ion beams (Nucl. Fus. 21, 529 (1981)) is applied to the problem of the Cesium beam final focus at the end of the injector. It is shown that the theory's predictions and assumptions are consistent with the experimental data, and that it accounts for the observed ion beam radius of approx. 5 cm, and the electron halo, including the determination of an electron Debye length of approx. 10 cm

  3. Spin observables in reactions with radioactive ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Galindo U, A.; Urrego B, J.P. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2007-12-15

    Polarization observables in nuclear reactions with exotic nuclei will provide important information concerning structural properties of nuclei and reaction mechanisms. We are currently engaged in exploring the use of polarization observables with radioactive ion beams and in the development of a polarized proton cryogenic target. (Author)

  4. Investigation of ion capture in an electron beam ion trap charge-breeder for rare isotopes

    Science.gov (United States)

    Kittimanapun, Kritsada

    Charge breeding of rare isotope ions has become an important ingredient for providing reaccelerated rare isotope beams for science. At the National Superconducting Cyclotron Laboratory (NSCL), a reaccelerator, ReA, has been built that employs an advanced Electron Beam Ion Trap (EBIT) as a charge breeder. ReA will provide rare-isotope beams with energies of a few hundred keV/u up to tens of MeV/u to enable the study of properties of rare isotopes via low energy Coulomb excitation and transfer reactions, and to investigate nuclear reactions important for nuclear astrophysics. ReA consists of an EBIT charge breeder, a charge-over-mass selector, a room temperature radio-frequency quadrupole accelerator, and a superconducting radio-frequency linear accelerator. The EBIT charge breeder features a high-current electron gun, a long trap structure, and a hybrid superconducting magnet to reach both high acceptance for injected low-charge ions as well as high-electron beam current densities for fast charge breeding. In this work, continuous ion injection and capture in the EBIT have been investigated with a dedicated Monte-Carlo simulation code and in experimental studies. The Monte-Carlo code NEBIT considers the electron-impact ionization cross sections, space charge due to the electron beam current, ion dynamics, electric field from electrodes, and magnetic field from the superconducting magnet. Experiments were performed to study the capture efficiency as a function of injected ion beam current, electron beam current, trap size, and trap potential depth. The charge state evolution of trapped ions was studied, providing information about the effective current density of the electron beam inside the EBIT. An attempt was made to measure the effective space-charge potential of the electron beam by studying the dynamics of a beam injected and reflected inside the trap.

  5. Imaging instrument for positron emitting heavy ion beam injection

    Energy Technology Data Exchange (ETDEWEB)

    Llacer, J.; Chatterjee, A.; Jackson, H.C.; Lin, J.C.; Zunzunegui, M.V.

    1978-10-01

    The design and performance of an instrument for the imaging of coincidence annihilation gamma rays emitted from the end point of the trajectories of radioactive high-energy heavy ions is described. The positron-emitting heavy ions are the result of nuclear fragmentation of accelerated heavy ions used in cancer therapy or diagnostic medicine. The instrument constructed is capable of locating the ion beam trajectory end point within 1 mm for an injected activity of 200 nanoCi in a measurement time of 1 sec in some favorable conditions. Limited imaging in three dimensions is also demonstrated.

  6. Imaging instrument for positron emitting heavy ion beam injection

    International Nuclear Information System (INIS)

    Llacer, J.; Chatterjee, A.; Jackson, H.C.; Lin, J.C.; Zunzunegui, M.V.

    1978-10-01

    The design and performance of an instrument for the imaging of coincidence annihilation gamma rays emitted from the end point of the trajectories of radioactive high-energy heavy ions is described. The positron-emitting heavy ions are the result of nuclear fragmentation of accelerated heavy ions used in cancer therapy or diagnostic medicine. The instrument constructed is capable of locating the ion beam trajectory end point within 1 mm for an injected activity of 200 nanoCi in a measurement time of 1 sec in some favorable conditions. Limited imaging in three dimensions is also demonstrated

  7. Technical Aspects of Delivering Simultaneous Dual and Triple Ion Beams to a Target at the Michigan Ion Beam Laboratory

    Science.gov (United States)

    Toader, O.; Naab, F.; Uberseder, E.; Kubley, T.; Taller, S.; Was, G.

    The Michigan Ion Beam Laboratory (MIBL) at the University of Michigan in Ann Arbor, Michigan, USA, plays a significant role in supporting the mission of the U.S. DOE Office of Nuclear Energy. MIBL is a charter laboratory of the NSUF (National Scientific User Facility - US DoE) and hosts users worldwide. The laboratory has evolved from a single accelerator laboratory to a highly versatile facility with three accelerators (3 MV Tandem, a 400 kV Ion Implanter and a 1.7 MV Tandem), seven beam lines and five target chambers that together, provide unique capabilities to capture the extreme environment experienced by materials in reactor systems. This capability now includes simultaneous multiple (dual, triple) ion irradiations, an irradiation accelerated corrosion cell, and soon, in-situ dual beam irradiation in a transmission electron microscope (TEM) for the study of radiation damage coupled with injection of transmutation elements. The two beam lines that will connect to the 300 kV FEI Tecnai G2 F30 microscope are expected to be operational by the end of 2017. Multiple simultaneous ion beam experiments involving light and heavy ions are already in progress. This paper will outline the current equipment and will focus on the new capability of running dual and triple ion beam experiments.

  8. Ion beam processing of bio-ceramics

    Science.gov (United States)

    Ektessabi, A. M.

    1995-05-01

    Thin films of bio-inert (TiO 2+α, Al 2O 3+α) and bio-active (compounds of calcium and phosphorus oxides, hydroxyapatite) were deposited on the most commonly used implant materials such as titanium and stainless steel, using a dual-ion-beam deposition system. Rutherford backscattering spectroscopy was carried out for quantitative measurement of the interfacial atomic mixing and the composition of the elements. The experimental results show that by controlling the ion beam energy and current, thin films with very good mechanical properties are obtained as a result of the ion beam mixing within the film and at the interface of the film and substrate.

  9. Advanced characterization of materials using swift ion beams

    International Nuclear Information System (INIS)

    Tabacniks, Manfredo H.

    2011-01-01

    Swift ion beams are powerful non destructive tools for material analysis especially thin films. In spite of their high energy, usually several MeV/u, little energy is deposited by the ion on the sample. Energetic ions also use to stop far away (or outside) the inspected volume, hence producing negligible damage to the sample. Ion beam methods provide quantitative trace element analysis of any atomic element (and some isotopes) in a sample and are able to yield elemental depth profiles with spatial resolution of the order of 10mm. Relying on nuclear properties of the atoms, these methods are insensitive to the chemical environment of the element, consequently not limited by matrix effects. Ion beam methods are multielemental, can handle insulating materials, are quick (an analysis usually takes less than 15 minutes), and need little (if any) sample preparation. Ion beams are also sensitive to surface roughness and sample porosity and can be used to quickly inspect these properties in a sample. The Laboratory for Ion Beam Analysis of the University of Sao Paulo, LAMFI, is a multi-user facility dedicated to provide Ion Beam Methods like PIXE, RBS, FRS and NRA techniques for the analysis of materials and thin films. Operating since 1994, LAMFI is being used mostly by many researchers from within and outside USP, most of them non specialists in ion beam methods, but in need of ion beam analysis to carry out their research. At LAMFI, during the last 9 years, more than 50% of the accelerator time was dedicated to analysis, usually PIXE or RBS. 21% was down time and about 14% of the time was used for the development of ion beam methods which includes the use of RBS for roughness characterization exploring the shading of the beam by structures on the surface and by modeling the RBS spectrum as the product of a normalized RBS spectrum and a height density distribution function of the surface. Single element thick target PIXE analysis is being developed to obtain the thin

  10. Plasma ion sources and ion beam technology inmicrofabrications

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Lili [Univ. of California, Berkeley, CA (United States)

    2007-01-01

    For over decades, focused ion beam (FIB) has been playing a very important role in microscale technology and research, among which, semiconductor microfabrication is one of its biggest application area. As the dimensions of IC devices are scaled down, it has shown the need for new ion beam tools and new approaches to the fabrication of small-scale devices. In the meanwhile, nanotechnology has also deeply involved in material science research and bioresearch in recent years. The conventional FIB systems which utilize liquid gallium ion sources to achieve nanometer scale resolution can no longer meet the various requirements raised from such a wide application area such as low contamination, high throughput and so on. The drive towards controlling materials properties at nanometer length scales relies on the availability of efficient tools. In this thesis, three novel ion beam tools have been developed and investigated as the alternatives for the conventional FIB systems in some particular applications. An integrated focused ion beam (FIB) and scanning electron microscope (SEM) system has been developed for direct doping or surface modification. This new instrument employs a mini-RF driven plasma source to generate focused ion beam with various ion species, a FEI two-lens electron (2LE) column for SEM imaging, and a five-axis manipulator system for sample positioning. An all-electrostatic two-lens column has been designed to focus the ion beam extracted from the source. Based on the Munro ion optics simulation, beam spot sizes as small as 100 nm can be achieved at beam energies between 5 to 35 keV if a 5 μm-diameter extraction aperture is used. Smaller beam spot sizes can be obtained with smaller apertures at sacrifice of some beam current. The FEI 2LE column, which utilizes Schottky emission, electrostatic focusing optics, and stacked-disk column construction, can provide high-resolution (as small as 20 nm) imaging capability, with fairly long working distance (25

  11. Plasma ion sources and ion beam technology in microfabrications

    International Nuclear Information System (INIS)

    Ji, Lili

    2007-01-01

    For over decades, focused ion beam (FIB) has been playing a very important role in microscale technology and research, among which, semiconductor microfabrication is one of its biggest application area. As the dimensions of IC devices are scaled down, it has shown the need for new ion beam tools and new approaches to the fabrication of small-scale devices. In the meanwhile, nanotechnology has also deeply involved in material science research and bioresearch in recent years. The conventional FIB systems which utilize liquid gallium ion sources to achieve nanometer scale resolution can no longer meet the various requirements raised from such a wide application area such as low contamination, high throughput and so on. The drive towards controlling materials properties at nanometer length scales relies on the availability of efficient tools. In this thesis, three novel ion beam tools have been developed and investigated as the alternatives for the conventional FIB systems in some particular applications. An integrated focused ion beam (FIB) and scanning electron microscope (SEM) system has been developed for direct doping or surface modification. This new instrument employs a mini-RF driven plasma source to generate focused ion beam with various ion species, a FEI two-lens electron (2LE) column for SEM imaging, and a five-axis manipulator system for sample positioning. An all-electrostatic two-lens column has been designed to focus the ion beam extracted from the source. Based on the Munro ion optics simulation, beam spot sizes as small as 100 nm can be achieved at beam energies between 5 to 35 keV if a 5 (micro)m-diameter extraction aperture is used. Smaller beam spot sizes can be obtained with smaller apertures at sacrifice of some beam current. The FEI 2LE column, which utilizes Schottky emission, electrostatic focusing optics, and stacked-disk column construction, can provide high-resolution (as small as 20 nm) imaging capability, with fairly long working distance

  12. Consideration of beam plasma ion-source

    International Nuclear Information System (INIS)

    Sano, Fumimichi; Kusano, Norimasa; Ishida, Yoshihiro; Ishikawa, Junzo; Takagi, Toshinori

    1976-01-01

    Theoretical and experimental analyses and their comparison were made on the plasma generation and on the beam extraction for the beam plasma ion-source. The operational principle and the structure of the ion-source are explained in the first part. Considerations are given on the electron beam-plasma interaction and the resulting generation of high frequency or microwaves which in turn increases the plasma density. The flow of energy in this system is also explained in the second part. The relation between plasma density and the imaginary part of frequency is given by taking the magnetic flux density, the electron beam energy, and the electron beam current as parameters. The relations between the potential difference between collector and drift tube and the plasma density or the ion-current are also given. Considerations are also given to the change of the plasma density due to the change of the magnetic flux density at drift tube, the change of the electron beam energy, and the change of the electron beam current. The third part deals with the extraction characteristics of the ion beam. The structure of the multiple-aperture electrode and the relation between plasma density and the extracted ion current are explained. (Aoki, K.)

  13. The Heidelberg CSR: Stored Ion Beams in a Cryogenic Environment

    International Nuclear Information System (INIS)

    Wolf, A.; Hahn, R. von; Grieser, M.; Orlov, D. A.; Fadil, H.; Welsch, C. P.; Andrianarijaona, V.; Diehl, A.; Schroeter, C. D.; Crespo Lopez-Urrutia, J. R.; Weber, T.; Mallinger, V.; Schwalm, D.; Ullrich, J.; Rappaport, M.; Urbain, X.; Haberstroh, Ch.; Quack, H.; Zajfman, D.

    2006-01-01

    A cryogenic electrostatic ion storage ring CSR is under development at the Max-Planck Institute for Nuclear Physics in Heidelberg, Germany. Cooling of the ultrahigh vacuum chamber is envisaged to lead to extremely low pressures as demonstrated by cryogenic ion traps. The ring will apply electron cooling with electron beams of a few eV up to 200 eV. Through long storage times of 1000 s as well as through the low wall temperature, internal cooling of infrared-active molecular ions to their rotational ground state will be possible and their collisions with merged collinear beams of electrons and neutral atoms can be detected with high energy resolution. In addition storage of slow highly charged ions is foreseen. Using a fixed in-ring gas target and a reaction microscope, collisions of the stored ions at a speed of the order of the atomic unit can be kinematically reconstructed. The layout and the cryogenic concept are introduced

  14. Heavy ion beams from the new Hungarian ECR ion source

    International Nuclear Information System (INIS)

    Biri, S.; Valek, A.; Ditroi, F.; Koivisto, H.; Arje, J.; Stiebing, K.; Schmidt, L.

    1998-01-01

    The first beams of highly charged ions in Hungary were obtained in fall of 1996. The new 14.5 GHz ECR ion source of ATOMKI produced beams of multiply charged ions with remarkable intensities at first experiments. Since then, numerous further developments were carried out. An external electrondonor electrode drastically increased the plasma density and, consequently, the intensity of highly charged ions. These upgrades concentrated mainly on beams from gaseous elements and were carried out by the ECRIS team of ATOMKI. Another series of experiments - ionising from solids - however, was done in the framework of an international collaboration. The first metal ion beam has been extracted from the ECRIS in November 1997 using the known method of Metal Ions from Volatile Compounds (MIVOC). The possibility to put the MIVOC chamber inside the ion source was also tested and the dosing regulation problem of metal vapours inside the ion source was solved. As a result, beams of more than 10 μA of highly charged Fe and Ni ions were produced. (author)

  15. Potential biomedical applications of ion beam technology

    Science.gov (United States)

    Banks, B. A.; Weigand, A. J.; Van Kampen, C. L.; Babbush, C. A.

    1976-01-01

    Electron bombardment ion thrusters used as ion sources have demonstrated a unique capability to vary the surface morphology of surgical implant materials. The microscopically rough surface texture produced by ion beam sputtering of these materials may result in improvements in the biological response and/or performance of implanted devices. Control of surface roughness may result in improved attachment of the implant to soft tissue, hard tissue, bone cement, or components deposited from blood. Potential biomedical applications of ion beam texturing discussed include: vascular prostheses, artificial heart pump diaphragms, pacemaker fixation, percutaneous connectors, orthopedic prosthesis fixation, and dental implants.

  16. Application of ion beams for polymeric carbon based biomaterials

    Science.gov (United States)

    Evelyn, A. L.

    2001-07-01

    Ion beams have been shown to be quite suitable for the modification and analysis of carbon based biomaterials. Glassy polymeric carbon (GPC), made from cured phenolic resins, has a high chemical inertness that makes it useful as a biomaterial in medicine for drug delivery systems and for the manufacture of heart valves and other prosthetic devices. Low and high-energy ion beams have been used, with both partially and fully cured phenolic resins, to enhance biological cell/tissue growth on, and to increase tissue adhesion to GPC surfaces. Samples bombarded with energetic ion beams in the keV to MeV range exhibited increased surface roughness, measured using optical microscopy and atomic force microscopy. Ion beams were also used to perform nuclear reaction analyses of GPC encapsulated drugs for use in internal drug delivery systems. The results from the high energy bombardment were more dramatic and are shown in this paper. The interaction of energetic ions has demonstrated the useful application of ion beams to enhance the properties of carbon-based biomaterials.

  17. Primary beams of an electron beam ion source (EBIS)

    International Nuclear Information System (INIS)

    Lenoir-Zink, E.

    1986-06-01

    Electron guns for the ion sources of the SATURN II facility were tested and compared with models. The guns tested were a gun with 36 mm diameter cathode, 7 mm, 4 mm, 4 mm with insulated Whenelt, and 8 mm. A lanthanium hexaboride cathode is presented. For the primary ion beams, zeolite and plasma sources were realized. In DIONE, which will replace CRYEBIS as ion source in SATURNE, the density of the electron beam compressed within the maximum magnetic field can be evaluated. Results indicate a factor of 3 improvement compared with CRYEBIS. Lithium sources can be used, but gas sources do not produce significant improvements [fr

  18. Applications of focused ion beams in microelectronics

    International Nuclear Information System (INIS)

    Broughton, C.; Beale, M.I.J.; Deshmukh, V.G.I.

    1986-04-01

    We present the conclusions of the RSRE programme on the application of focused ion beams in microelectronics and review the literature published in this field. We discuss the design and performance of focused beam implanters and the viability of their application to semiconductor device fabrication. Applications in the areas of lithography, direct implantation and micromachining are discussed in detail. Comparisons are made between the use of focused ion beams and existing techniques for these fabrication processes with a strong emphasis placed on the relative throughputs. We present results on a novel spot size measurement technique and the effect of beam heating on resist. We also present the results of studies into implantation passivation of resist to oxygen plasma attack as basis for a dry development lithography scheme. A novel lithography system employing flood electron exposure from a photocathode which is patterned by a focused ion beam which can also be used to repair mask defects is considered. (author)

  19. Intense pulsed ion beams for fusion applications

    International Nuclear Information System (INIS)

    Humphries, S. Jr.

    1980-04-01

    The subject of this review paper is the field of intense pulsed ion beam generation and the potential application of the beams to fusion research. Considerable progress has been made over the past six years. The ion injectors discussed utilize the introduction of electrons into vacuum acceleration gaps in conjunction with high voltage pulsed power technology to achieve high output current. Power levels from injectors exceeding 1000 MW/cm 2 have been obtained for pulse lengths on the order of 10 -7 sec. The first part of the paper treats the physics and technology of intense ion beams. The second part is devoted to applications of intense ion beams in fusion research. A number of potential uses in magnetic confinement systems have been proposed

  20. Accelerated ion beam research at ATOMKI

    International Nuclear Information System (INIS)

    Kiss, A.Z.

    2009-01-01

    The paper summarizes the studies on accelerated ion beams at ATOMKI and their technical background, their use from chemical analysis to biological, medical, geological, archaeological applications, their advance from material science to micromachining. (TRA)

  1. Uses of laser optical pumping to produce polarized ion beams

    International Nuclear Information System (INIS)

    Anderson, L.W.

    1983-01-01

    Laser optical pumping can be used to produce polarized alkali atom beams or polarized alkali vapor targets. Polarized alkali atom beams can be converted into polarized alkali ion beams, and polarized alkali vapor targets can be used to produce polarized H - or 3 He - ion beams. In this paper the authors discuss how the polarized alkali atom beams and polarized alkali vapor targets are used to produce polarized ion beams with emphasis on the production of polarized negative ion beams

  2. Ion beam processing of advanced electronic materials

    International Nuclear Information System (INIS)

    Cheung, N.W.; Marwick, A.D.; Roberto, J.B.

    1989-01-01

    This report contains research programs discussed at the materials research society symposia on ion beam processing of advanced electronic materials. Major topics include: shallow implantation and solid-phase epitaxy; damage effects; focused ion beams; MeV implantation; high-dose implantation; implantation in III-V materials and multilayers; and implantation in electronic materials. Individual projects are processed separately for the data bases

  3. Ion beam processing of advanced electronic materials

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, N.W.; Marwick, A.D.; Roberto, J.B. (eds.) (California Univ., Berkeley, CA (USA); International Business Machines Corp., Yorktown Heights, NY (USA). Thomas J. Watson Research Center; Oak Ridge National Lab., TN (USA))

    1989-01-01

    This report contains research programs discussed at the materials research society symposia on ion beam processing of advanced electronic materials. Major topics include: shallow implantation and solid-phase epitaxy; damage effects; focused ion beams; MeV implantation; high-dose implantation; implantation in III-V materials and multilayers; and implantation in electronic materials. Individual projects are processed separately for the data bases. (CBS)

  4. TXRF spectrometry at ion beam excitation

    Science.gov (United States)

    Egorov, V.; Egorov, E.; Afanas'ef, M.

    2017-02-01

    The work presents short discussion of TXRF and PIXE methods peculiarities. Taking into account of these peculiarities we elaborate the experimental scheme for TXRF measurements at ion beam excitation of characteristical fluorescence. The scheme is built on base of the planar X-ray waveguide-resonator with specific design. Features of the new experimental method and possibilities of Sokol-3 ion beam analytical complex were used for the method application in real measurements.

  5. Techniques to produce and accelerate radioactive ion beams

    CERN Document Server

    Penescu, Liviu Constantin; Lettry, Jacques; Cata-Danil, Gheorghe

    The production and acceleration of the Radioactive Ion Beams (RIB) continues the long line of nuclear investigations started in the XIXth century by Pierre and Marie Curie, Henri Becquerel and Ernest Rutherford. The contemporary applications of the RIBs span a wide range of physics fields: nuclear and atomic physics, solid-state physics, life sciences and material science. ISOLDE is a world-leading Isotope mass-Separation On-Line (ISOL) facility hosted at CERN in Geneva for more than 40 years, offering the largest variety of radioactive ion beams with, until now, more than 1000 isotopes of more than 72 elements (with Z ranging from 2 to 88), with half-lives down to milliseconds and intensities up to 1011 ions/s. The post acceleration of the full variety of beams allows reaching final energies between 0.8 and 3.0 MeV/u. This thesis describes the development of a new series of FEBIAD (“Forced Electron Beam Induced Arc Discharge”) ion sources at CERN-ISOLDE. The VADIS (“Versatile Arc Discharge Ion Source�...

  6. Experiments with radioactive nuclear beams II

    International Nuclear Information System (INIS)

    Aguilera R, E.F.; Martinez Q, E.; Gomez C, A.; Lizcano C, D.; Garcia M, H.; Rosales M, P.

    2001-12-01

    The studies of nuclear reactions with heavy ions have been carried out for years for the group of heavy ions of the laboratory of the Accelerator of the ININ. Especially in the last years the group has intruded in the studies of nuclear reactions with radioactive beams, frontier theme at world level. Presently Technical Report is presented in detailed form the experimental methods and the analysis procedures of the research activities carried out by the group. The chpater II is dedicated to the procedures used in the analysis of the last two experiments with radioactive beams carried out by the group. In the chapter III is presented the procedure followed to carrying out an extended analysis with the CCDEF code, to consider the transfer channel of nucleons in the description of the fusion excitation functions of a good number of previously measured systems by the group. Finally, in the chapter IV the more important steps to continue in the study of the reaction 12 C + 12 C experiment drifted to be carried out using the available resources of the Tandem Accelerator Laboratory of the ININ are described. At the end of each chapter some of the more representative results obtained in the analysis are presented and emphasis on the scientific production generated by the group for each case is made. (Author)

  7. A synchronous beam sweeper for heavy ions

    International Nuclear Information System (INIS)

    Bogaty, J.M.

    1989-01-01

    The Argonne Tandem Linac Accelerator System (ATLAS) facility at Argonne National Laboratory provides a wide range of accelerated heavy ions from the periodic table. Frequently, the beam delivery rate of 12 MHz is too fast for the type of experiment on line. Reaction by-products from a target bombardment may have a decay interval much longer than the dead time between beam bunches. To prevent data from being corrupted by incoming ions a beam sweeper was developed which synchronously eliminates selected beam bunches to suit experimental needs. As the SWEEPER is broad band (DC to 6 MHz) beam delivery rates can be instantaneously changed. Ion beam bunches are selectively kicked out by an electrostatic dipole electrode pulsed to 2 kVDC. The system has been used for almost three years with several hundred hours of operating time logged to date. Beam bunch delivery rates of 6 MHz down to 25 kHz have been provided. Since this is a non-resonant system any beam delivery rate from 6 MHz down to zero can be set. In addition, burst modes have been used where beam is supplied in 12 MHz bursts and then shut down for a period of time set by the user. 3 figs

  8. Resonant ionization by laser beams: application to ions sources and to study the nuclear structure of radioactive tellurium isotopes; Ionisation resonante par faisceaux laser: application aux sources d'ions et a l'etude de la structure des noyaux radioactifs de tellure

    Energy Technology Data Exchange (ETDEWEB)

    Sifi, R

    2007-07-15

    The radioactive ion beams that are produced through current isotope separators are well separated according to the A mass but not according to the Z parameter. The resonant ionization through laser beams applied to ion sources allows the production of radioactive ion beam in a very selective and efficient way by eliminating the isobaric contamination. The first chapter is dedicated to the resonant ionization by laser beams, we describe the principle, the experimental setting, the lasers used, the ionization schemes and the domain of application. The second chapter deals with the application of resonant ionization to laser ion sources for the production of radioactive ion beams. We present experimental tests performed for getting copper ion beams. Resonant ionization through laser is also used in the spectroscopy experiments performed at the Isolde (isotope separation on-line device) installation in CERN where more than 20 elements are ionized very efficiently. The technique is based on a frequency scanning around the excitation transition of the atoms in order to probe the hyperfine structure. Laser spectroscopy allows the determination of the hyperfine structure as well as the isotopic shift of atoms. In the third chapter the method is applied to the spectroscopy of tellurium atoms. First, we define the 2 parameters on which the extraction is based: charge radius and nuclear moments, then we present several theoretical models that we have used to assess our experimental results. (A.C.)

  9. Beam current controller for laser ion source

    Science.gov (United States)

    Okamura, Masahiro

    2014-10-28

    The present invention relates to the design and use of an ion source with a rapid beam current controller for experimental and medicinal purposes. More particularly, the present invention relates to the design and use of a laser ion source with a magnetic field applied to confine a plasma flux caused by laser ablation.

  10. A Monte Carlo code for ion beam therapy

    CERN Multimedia

    Anaïs Schaeffer

    2012-01-01

    Initially developed for applications in detector and accelerator physics, the modern Fluka Monte Carlo code is now used in many different areas of nuclear science. Over the last 25 years, the code has evolved to include new features, such as ion beam simulations. Given the growing use of these beams in cancer treatment, Fluka simulations are being used to design treatment plans in several hadron-therapy centres in Europe.   Fluka calculates the dose distribution for a patient treated at CNAO with proton beams. The colour-bar displays the normalized dose values. Fluka is a Monte Carlo code that very accurately simulates electromagnetic and nuclear interactions in matter. In the 1990s, in collaboration with NASA, the code was developed to predict potential radiation hazards received by space crews during possible future trips to Mars. Over the years, it has become the standard tool to investigate beam-machine interactions, radiation damage and radioprotection issues in the CERN accelerator com...

  11. On- and off-line monitoring of ion beam treatment

    Science.gov (United States)

    Parodi, Katia

    2016-02-01

    Ion beam therapy is an emerging modality for high precision radiation treatment of cancer. In comparison to conventional radiation sources (photons, electrons), ion beams feature major dosimetric advantages due to their finite range with a localized dose deposition maximum, the Bragg peak, which can be selectively adjusted in depth. However, due to several sources of treatment uncertainties, full exploitation of these dosimetric advantages in clinical practice would require the possibility to visualize the stopping position of the ions in vivo, ideally in real-time. To this aim, different imaging methods have been proposed and investigated, either pre-clinically or even clinically, based on the detection of prompt or delayed radiation following nuclear interaction of the beam with the irradiated tissue. However, the chosen or ad-hoc developed instrumentation has often relied on technologies originally conceived for different applications, thus compromising on the achievable performances for the sake of cost-effectiveness. This contribution will review major examples of used instrumentation and related performances, identifying the most promising detector developments for next generation devices especially dedicated to on-line monitoring of ion beam treatment. Moreover, it will propose an original combination of different techniques in a hybrid detection scheme, aiming to make the most of complementary imaging methods and open new perspectives of image guidance for improved precision of ion beam therapy.

  12. Ion beam source construction and applications

    International Nuclear Information System (INIS)

    Torab, S.I.R.

    2011-01-01

    The aim of this thesis is to improve the performance of a new shape cold cathode Penning ion source to be suitable for some applications. In this work, many trials have been made to reach the optimum dimensions of the new shape of cold Molybdenum cathode Penning ion source with radial extraction. The high output ion beam can be extracted in a direction transverse to the discharge region. The new shape cold cathode Penning ion source consists of Copper cylindrical hollow anode of 40 mm length, 12 mm diameter and has two similar cone ends of 15 mm length, 22 mm upper cone diameter and 12 mm bottom cone diameter. The two movable Molybdenum cathodes are fixed in Perspex insulator and placed symmetrically at two ends of the anode. The Copper emission disc of 2 mm thickness and has central aperture of different diameters is placed at the middle of the anode for ion beam exit. The inner surface of the emission disc is isolated from the anode by Perspex insulator except an area of diameter 5 mm to confine the electrical discharge in this area. A movable Faraday cup is placed at different distances from the emission electrode aperture and used to collect the output ion beam from the ion source. The working gases are admitted to the ion source through a hole in the anode via a needle valve which placed between the gas cylinder and the ion source. The optimum anode- cathode distance, the uncovered area diameter of the emission disc, the central aperture diameter of the emission electrode, the distance between emission electrode and Faraday cup have been determined using Argon gas. The optimum distances of the ion source were found to be equal to 6 mm, 5 mm, 2.5 mm, and 3 cm respectively where stable discharge current and maximum output ion beam current at low discharge current can be obtained. The discharge characteristics, ion beam characteristics, and the efficiency of the ion source have been measured at different operating conditions and different gas pressures using

  13. An ASEAN Ion Beam Analysis Center at Chiang Mai University, Thailand

    International Nuclear Information System (INIS)

    Tippawan, U.; Kamwann, T.; Yu, L.D.; Intarasiri, S.; Puttaraksa, N.; Unai, S.; Thongleurm, C.; Singkarat, S.

    2014-01-01

    To contribute to the development of nuclear science and technology in Thailand, a comprehensive ion beam analysis center unique in the ASEAN region has recently been established at Chiang Mai University, Thailand. The center is equipped with a 1.7-MV Tandetron tandem accelerator with an ion beam analysis beam line. The beam line is currently capable of performing ion beam analysis techniques such as Rutherford Backscattering Spectrometry (RBS), RBS/channeling, Elastic BackScattering (EBS), Particle Induced X-ray Emission (PIXE) and Ionoluminescence (IL) with assistance of commercial and in-house-developed softwares. Micro ion beam for MeV-ion mapping using programmable aperture or capillary focusing techniques is being developed. Ion beam analysis experiments and applications have been vigorously developed, especially for novel materials analysis focused on archeological, gemological and biological materials besides other conventional materials.

  14. The role of space charge compensation for ion beam extraction and ion beam transport (invited)

    International Nuclear Information System (INIS)

    Spädtke, Peter

    2014-01-01

    Depending on the specific type of ion source, the ion beam is extracted either from an electrode surface or from a plasma. There is always an interface between the (almost) space charge compensated ion source plasma, and the extraction region in which the full space charge is influencing the ion beam itself. After extraction, the ion beam is to be transported towards an accelerating structure in most cases. For lower intensities, this transport can be done without space charge compensation. However, if space charge is not negligible, the positive charge of the ion beam will attract electrons, which will compensate the space charge, at least partially. The final degree of Space Charge Compensation (SCC) will depend on different properties, like the ratio of generation rate of secondary particles and their loss rate, or the fact whether the ion beam is pulsed or continuous. In sections of the beam line, where the ion beam is drifting, a pure electrostatic plasma will develop, whereas in magnetic elements, these space charge compensating electrons become magnetized. The transport section will provide a series of different plasma conditions with different properties. Different measurement tools to investigate the degree of space charge compensation will be described, as well as computational methods for the simulation of ion beams with partial space charge compensation

  15. Cellular radiobiology of heavy-ion beams

    International Nuclear Information System (INIS)

    Tobias, C.A.; Blakely, E.A.; Ngo, F.Q.H.; Roots, R.J.; Yang, T.C.

    1981-01-01

    Progress is reported in the following areas of this research program: relative biological effectiveness and oxygen enhancement ratio of silicon ion beams; heavy ion effects on the cell cycle; the potentiation effect (2 doses of high LET heavy-ion radiations separated by 2 to 3 hours); potentially lethal damage in actively growing cells and plateau growth cells; radiation induced macromolecular lesions and cellular radiation chemistry; lethal effects of dual radiation; and the development of a biophysical repair/misrepair model

  16. An ion beam facility based on a 3 MV tandetron accelerator in Sichuan University, China

    Science.gov (United States)

    Han, Jifeng; An, Zhu; Zheng, Gaoqun; Bai, Fan; Li, Zhihui; Wang, Peng; Liao, Xiaodong; Liu, Mantian; Chen, Shunli; Song, Mingjiang; Zhang, Jun

    2018-03-01

    A new ion beam facility based on a 3 MV tandetron accelerator system has been installed in Sichuan University, China. The facility was developed by High Voltage Engineering Europa and consists of three high-energy beam lines including the ion beam analysis, ion implantation and nuclear physics experiment end stations, respectively. The terminal voltage stability of the accelerator is better than ±30 V, and the brightness of the proton beam is approximately 5.06 A/rad2/m2/eV. The system demonstrates a great application potential in fields such as nuclear, material and environmental studies.

  17. Light ion beam transport research at NRL

    International Nuclear Information System (INIS)

    Hinshelwood, D.D.; Boller, J.R.; Cooperstein, G.

    1996-01-01

    Transport of light ion beams through low-pressure background gas is under investigation at NRL in support of the light-ion ICF program at Sandia National Laboratories. Scaling experiments and the field solver/orbit code ATHETA have been used to design and construct a focusing, extraction applied-B diode for transport experiments. An active anode source has been developed to provide a high proton fraction in the ion beam and a fast ion turn-on time. A very sensitive Zeeman diagnostic is being developed to determine the net current distribution in the beam/transport system. Both analytical and numerical techniques using several codes are being applied to transport modeling, leading to the capability of full system studies. (author). 1 tab., 5 figs., 10 refs

  18. Funneling of low energy ion beams

    International Nuclear Information System (INIS)

    Barth, W.; Schempp, A.

    1992-01-01

    Funneling two or more beams together is a way of increasing the brightness of ion beams by filling all rf-buckets of an rf-accelerator. Thus higher current transport capability results at higher energies and operating frequencies. It can be used to reduce the cost and complexity of accelerators designed to produce intense beams with high brightness. Results of numerical simulations and funneling experiments are reported, where a setup with a 50-keV proton beam and an rf deflector is investigated to study emittance growth effects in funneling lines. (R.P.) 13 refs.; 9 figs.; 1 tab

  19. Negative ion beam extraction in ROBIN

    Energy Technology Data Exchange (ETDEWEB)

    Bansal, Gourab, E-mail: bansal@ipr.res.in [Institute for Plasma Research (IPR), Bhat, Gandhinagar, Gujarat 382428 (India); Gahlaut, Agrajit; Soni, Jignesh; Pandya, Kaushal; Parmar, Kanu G.; Pandey, Ravi; Vuppugalla, Mahesh; Prajapati, Bhavesh; Patel, Amee; Mistery, Hiren [Institute for Plasma Research (IPR), Bhat, Gandhinagar, Gujarat 382428 (India); Chakraborty, Arun; Bandyopadhyay, Mainak; Singh, Mahendrajit J.; Phukan, Arindam; Yadav, Ratnakar K.; Parmar, Deepak [ITER-India, Institute for Plasma Research, A-29, Sector 25, GIDC, Gandhinagar, Gujarat 380025 (India)

    2013-10-15

    Highlights: ► A RF based negative hydrogen ion beam test bed has been set up at IPR, India. ► Ion source has been successfully commissioned and three campaigns of plasma production have been carried out. ► Extraction system (35 kV) has been installed and commissioning has been initiated. Negative ion beam extraction is immediate milestone. -- Abstract: The RF based single driver −ve ion source experiment test bed ROBIN (Replica Of BATMAN like source in INDIA) has been set up at Institute for Plasma Research (IPR), India in a technical collaboration with IPP, Garching, Germany. A hydrogen plasma of density 5 × 10{sup 12} cm{sup −3} is expected in driver region of ROBIN by launching 100 kW RF power into the driver by 1 MHz RF generator. The cesiated source is expected to deliver a hydrogen negative ion beam of 10 A at 35 kV with a current density of 35 mA/cm{sup 2} as observed in BATMAN. In first phase operation of the ROBIN ion source, a hydrogen plasma has been successfully generated (without extraction system) by coupling 80 kW RF input power through a matching network with high power factor (cos θ > 0.8) and different plasma parameters have been measured using Langmuir probes and emission spectroscopy. The plasma density of 2.5 × 10{sup 11} cm{sup −3} has been measured in the extraction region of ROBIN. For negative hydrogen ion beam extraction in second phase operation, extraction system has been assembled and installed with ion source on the vacuum vessel. The source shall be first operated in volume mode for negative ion beam extraction. The commissioning of the source with high voltage power supply has been initiated.

  20. Production of a helium beam in a focused ion beam machine using an electron beam ion trap

    International Nuclear Information System (INIS)

    Ullmann, F.; Grossmann, F.; Ovsyannikov, V. P.; Gierak, J.; Zschornack, G.

    2007-01-01

    Gallium liquid-metal ion sources that have been introduced in the late 1970s have allowed the development of a new class of micro- and nanofabrication tools collectively denominated as focused ion beam (FIB) machines. To investigate the potential of a helium beam in such a FIB instrument the authors have tested a room-temperature electron beam ion trap coupled with a high resolution FIB machine. In this letter they present their first results in target imaging using a helium beam with a resolution that allows to account for a beam diameter in the submicrometer range

  1. Characterization of ion beam induced nanostructures

    International Nuclear Information System (INIS)

    Ghatak, J.; Satpati, B.; Umananda, M.; Kabiraj, D.; Som, T.; Dev, B.N.; Akimoto, K.; Ito, K.; Emoto, T.; Satyam, P.V.

    2006-01-01

    Tailoring of nanostructures with energetic ion beams has become an active area of research leading to the fundamental understanding of ion-solid interactions at nanoscale regime and with possible applications in the near future. Rutherford backscattering spectrometry (RBS), high resolution transmission electron microscopy (HRTEM) and asymmetric X-ray Bragg-rocking curve experimental methods have been used to characterize ion-induced effects in nanostructures. The possibility of surface and sub-surface/interface alloying at nano-scale regime, ion-beam induced embedding, crater formation, sputtering yield variations for systems with isolated nanoislands, semi-continuous and continuous films of noble metals (Au, Ag) deposited on single crystalline silicon will be reviewed. MeV-ion induced changes in specified Au-nanoislands on silicon substrate are tracked as a function of ion fluence using ex situ TEM. Strain induced in the bulk silicon substrate surface due to 1.5 MeV Au 2+ and C 2+ ion beam irradiation is determined by using HRTEM and asymmetric Bragg X-ray rocking curve methods. Preliminary results on 1.5 MeV Au 2+ ion-induced effects in nanoislands of Co deposited on silicon substrate will be discussed

  2. Characterization of ion beam induced nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Ghatak, J. [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751 005 (India); Satpati, B. [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751 005 (India); Umananda, M. [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751 005 (India); Kabiraj, D. [Nuclear Science Center, Aruna Asaf Ali Marg, New Delhi 110 067 (India); Som, T. [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751 005 (India); Dev, B.N. [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751 005 (India); Akimoto, K. [Department of Quantum Engineering, Nagoya University, Nagoya 464-8603 (Japan); Ito, K. [Department of Quantum Engineering, Nagoya University, Nagoya 464-8603 (Japan); Emoto, T. [Toyota National College of Technology, 2-1, Toyota, Aichi 471-8525 (Japan); Satyam, P.V. [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751 005 (India)]. E-mail: satyam@iopb.res.in

    2006-03-15

    Tailoring of nanostructures with energetic ion beams has become an active area of research leading to the fundamental understanding of ion-solid interactions at nanoscale regime and with possible applications in the near future. Rutherford backscattering spectrometry (RBS), high resolution transmission electron microscopy (HRTEM) and asymmetric X-ray Bragg-rocking curve experimental methods have been used to characterize ion-induced effects in nanostructures. The possibility of surface and sub-surface/interface alloying at nano-scale regime, ion-beam induced embedding, crater formation, sputtering yield variations for systems with isolated nanoislands, semi-continuous and continuous films of noble metals (Au, Ag) deposited on single crystalline silicon will be reviewed. MeV-ion induced changes in specified Au-nanoislands on silicon substrate are tracked as a function of ion fluence using ex situ TEM. Strain induced in the bulk silicon substrate surface due to 1.5 MeV Au{sup 2+} and C{sup 2+} ion beam irradiation is determined by using HRTEM and asymmetric Bragg X-ray rocking curve methods. Preliminary results on 1.5 MeV Au{sup 2+} ion-induced effects in nanoislands of Co deposited on silicon substrate will be discussed.

  3. Mutation induction by ion beams in arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Atsushi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1999-07-01

    An investigation was made on characteristics of ion beams for the biological effects and the induction of mutation using Arabidopsis plant as a model plant for the molecular genetics. Here, the characteristics of mutation at the molecular level as well as new mutants induced by ion beams were described. The ast and sep1 were obtained from the offspring of 1488 carbon ion-irradiated seeds respectively. The uvi1-uvi4 mutants were also induced from 1280 M{sub 1} lines. Thus, ion beams can induce not only known mutants such as tt, gl and hy but also novel mutants with high frequency. Even in the tt phenotype, two new mutant loci other than known loci were found. In chrysanthemum, several kinds of single, complex or stripped flower-color mutants that have been never induced by {gamma}irradiation, indicating that ion beams could produce a variety of mutants with the same phenotype. In conclusion, ion beams for the mutation induction are characterized by 1) to induce mutants with high frequency, 2) to show broad mutation spectrum and 3) to produce novel mutants. For these reasons, chemical mutagens such as EMS and low LET ionizing radiation such as X-rays and {gamma}-rays will predominantly induce many but small modifications or DNA damages on the DNA strands. As the result, several point mutations will be produced on the genome. On the contrary, ion beams as a high LET ionizing radiation will not cause so many but large and irreparable DNA damage locally, resulting in production of limited number of null mutation. (M.N.)

  4. The quest for crystalline ion beams

    CERN Document Server

    Schramm, U; Bussmann, M; Habs, D

    2002-01-01

    The phase transition of an ion beam into its crystalline state has long been expected to dramatically influence beam dynamics beyond the limitations of standard accelerator physics. Yet, although considerable improvement in beam cooling techniques has been made, strong heating mechanisms inherent to existing high-energy storage rings have prohibited the formation of the crystalline state in these machines up to now. Only recently, laser cooling of low-energy beams in the table-top rf quadrupole storage ring PAaul Laser cooLing Acceleration System (PALLAS) has lead to the experimental realization of crystalline beams. In this article, the quest for crystalline beams as well as their unique properties as experienced in PALLAS will be reviewed.

  5. Filamentation of a converging heavy ion beam

    International Nuclear Information System (INIS)

    Lee, E.P.; Buchanan, H.L.; Rosenbluth, M.N.

    1980-01-01

    A major concern in the use of heavy ion beams as igniters in pellet fusion systems is the vulnerability of the beam to the transverse flamentation instability. The undesirable consequence of this mode is the transverse heating of the beam to the extent that convergence on the pellet becomes impossible. This work considers the case of a beam injected into a gas filled reactor vessel, where finite pulse length and propagation distance play an important role in limiting growth. Two geometries are analyzed: a nonconverging case where the radius at injection is nearly equal to the desired radius at the pellet, and a converging case in which the injection radius is large and the beam is pre-focused to converge at the target. It is found that a cold beam will be severely disrupted if the product of the magnetic plasma frequency and the propagation distance is much larger than unity

  6. The SPES Radioactive-Ion Beam Facility of INFN

    Science.gov (United States)

    de Angelis, G.; Prete, G.; Andrighetto, A.; Manzolaro, M.; Corradetti, S.; Scarpa, D.; Rossignoli, M.; Monetti, A.; Lollo, M.; Calderolla, M.; Vasquez, J.; Zafiropoulos, D.; Sarchiapone, L.; Benini, D.; Favaron, P.; Rigato, M.; Pegoraro, R.; Maniero, D.; Comunian, M.; Maggiore, M.; Lombardi, A.; Piazza, L.; Porcellato, A. M.; Roncolato, C.; Bisoffi, G.; Pisent, A.; Galatà, A.; Giacchini, M.; Bassato, G.; Canella, S.; Gramegna, F.; Valiente, J.; Bermudez, J.; Mastinu, P. F.; Esposito, J.; Wyss, J.; Russo, A.; Zanella, S.; Calabretta, L.

    2015-11-01

    A new radioactive-ion beam (RIB) facility (SPES) is presently under construction at the Legnaro National Laboratories of INFN. The SPES facility is based on the ISOL method using a UCx direct target able to sustain a power of 10 kW. The primary proton beam will be provided by a high-current cyclotron accelerator with energy of 35-70 MeV and a beam current of 0.2-0.5 mA. Neutron-rich radioactive ions will be produced by proton-induced fission on a uranium target at an expected fission rate of the order of 1013 fissions per second. After ionization and selection the exotic isotopes will be re-accelerated by the ALPI superconducting LINAC at energies of 10A MeV for masses in the region A=130 amu. The expected secondary beam rates are of the order of 107-109 pps. The aim of the SPES facility is to deliver high-intensity radioactive-ion beams of neutron-rich nuclei for nuclear physics research, as well as to be an interdisciplinary research center for radioisotope production for medicine and for neutron beams.

  7. The SPES Radioactive Ion Beam facility of INFN

    Science.gov (United States)

    de Angelis, G.; Spes Collaboration; Prete, G.; Andrighetto, A.; Manzolaro, M.; Corradetti, S.; Scarpa, D.; Rossignoli, M.; Monetti, A.; Lollo, M.; Calderolla, M.; Vasquez, J.; Zafiropoulos, D.; Sarchiapone, L.; Benini, D.; Favaron, P.; Rigato, M.; Pegoraro, R.; Maniero, D.; Calabretta, L.; Comunian, M.; Maggiore, M.; Lombardi, A.; Piazza, L.; Porcellato, A. M.; Roncolato, C.; Bisoffi, G.; Pisent, A.; Galatà, A.; Giacchini, M.; Bassato, G.; Canella, S.; Gramegna, F.; Valiente, J.; Bermudez, J.; Mastinu, P. F.; Esposito, J.; Wyss, J.; Russo, A.; Zanella, S.

    2015-02-01

    A new Radioactive Ion Beam (RIB) facility (SPES) is presently under construction at the Legnaro National Laboratories of INFN. The SPES facility is based on the ISOL method using an UCx Direct Target able to sustain a power of 10 kW. The primary proton beam is provided by a high current Cyclotron accelerator with energy of 40 MeV and a beam current of 0.2-0.5 mA. Neutron-rich radioactive ions are produced by proton induced fission at an expected fission rate of the order of 1013 fissions per second. After ionization and selection the exotic isotopes are re-accelerated by the ALPI superconducting LINAC at energies of 10A MeV for masses in the region A=130 amu. The expected secondary beam rates are of the order of 107 - 109 pps. Aim of the SPES facility is to deliver high intensity radioactive ion beams of neutron rich nuclei for nuclear physics research as well as to be an interdisciplinary research center for radio-isotopes production for medicine and for neutron beams.

  8. An improved Green s function technique for ion beam transport

    Science.gov (United States)

    Tweed, J.; Wilson, J.; Tripathi, R.

    Ion beam transport theory is of importance to space radiation in that testing of materials in the laboratory environment generated by particle accelerators is a necessary step in materials development and evaluation for space use. The approximations used in solving the Boltzmann transport equation for the space setting are often not sufficient for laboratory work and those issues are the main emphasis of the present work. In space radiation transport, the energy lost through atomic collisions is treated as averaged processes over the many events which occur over even relatively small dimensions of most materials and is referred to as the continuous slowing down approximation. It is reasoned that the few percent energy fluctuation in energy loss has little meaning for ions of broad energy spectra and especially in comparison to the many nuclear events for which uncertainties are still relatively large. In contrast, the laboratory testing of potential shielding materials uses nearly monoenergetic ion beams in which the interpretation of the interaction with shield materials requires a detailed description of the interaction process for comparison to detector responses. The development of a Green's function approach to ion transport facilitates the modeling of laboratory radiation environments and allows for the direct testing of transport approximations of material transmission properties. Using this approach radiation investigators at the NASA, Langley Research Center have established that simple solutions can be found for the HZE ions by ignoring nuclear energy downshifts and dispersion. Such solutions were found to be supported by experimental evidence with HZE ion beams when multiple scattering was added. Lacking from the prior solutions were range and energy straggling and energy downshift and dispersion associated with nuclear events. Recently, we have found global solutions to energy/range straggling and derived a broader class of HZE ion solutions which with

  9. Ion beam processing of bio-ceramics

    International Nuclear Information System (INIS)

    Ektessabi, A.M.

    1995-01-01

    Thin films of bio-inert (TiO 2+α , Al 2 O 3+α ) and bio-active (compounds of calcium and phosphorus oxides, hydroxy-apatite) were deposited on the most commonly used implant materials such as titanium and stainless steel, using a dual-ion-beam deposition system. Rutherford backscattering spectroscopy was carried out for quantitative measurement of the interfacial atomic mixing and the composition of the elements. The experimental results show that by controlling the ion beam energy and current, thin films with very good mechanical properties are obtained as a result of the ion beam mixing within the film and at the interface of the film and substrate. (orig.)

  10. Self-pinched transport of intense ion beams

    International Nuclear Information System (INIS)

    Ottinger, P.F.; Neri, J.M.; Stephanakis, S.J.

    1999-01-01

    Electron beams with substantial net currents have been routinely propagated in the self-pinched mode for the past two decades. However, as the physics of gas breakdown and beam neutralization is different for ion beams, previous predictions indicated insufficient net current for pinching so that ion beam self-pinched transport (SPT) was assumed impossible. Nevertheless, recent numerical simulations using the IPROP code have suggested that ion SPT is possible. These results have prompted initial experiments to investigate SPT of ion beams. A 100-kA, 1.2-MeV, 3-cm-radius proton beam, generated on the Gamble II pulsed-power accelerator at NRL, has been injected into helium in the 30- to 250-mTorr regime to study this phenomenon. Evidence of self-pinched ion beam transport was observed in the 35- to 80-mTorr SPT pressure window predicted by IPROP. Measured signals from a time- and space-resolved scattered proton diagnostic and a time-integrated Li(Cu) nuclear activation diagnostic, both of which measure protons striking a 10-cm diameter target 50 cm into the transport region, are significantly larger in this pressure window than expected for ballistic transport. These results are consistent with significant self-magnetic fields and self-pinching of the ion beam. On the other hand, time-integrated signals from these same two diagnostics are consistent with ballistic transport at pressures above and below the SPT window. Interferometric electron line-density measurements, acquired during beam injection into the helium gas, show insignificant ionization below 35 mTorr, a rapidly rising ionization fraction with pressure in the SPT window, and a plateau in ionization fraction at about 2% for pressures above 80 mTorr. These and other results are consistent with the physical picture for SPT. IPROP simulations, which closely model the Gamble II experimental conditions, produce results that are in qualitative agreement with the experimental results. The advantages of SPT for

  11. Dynamics of the ion-ion acoustic instability in the thermalization of ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Han, J.H.; Horton, W. (Texas Univ., Austin, TX (United States). Inst. for Fusion Studies); Leboeuf, J.N. (Oak Ridge National Lab., TN (United States))

    1992-07-01

    Particle simulation using a nonlinear adiabatic electron response with two streaming ion species and nonlinear theory are used to study the collisionless thermalization of ion beams in a hot electron plasma. The slow beam or subsonic regime is investigated and the criterion for the transition from predominantly light ion to predominantly heavy ion heating is developed. Long-lived ion hole structures a-re observed in the final state.

  12. Ion beam dump for JT-60 NBI

    International Nuclear Information System (INIS)

    Kuriyama, Masaaki; Horiike, Hiroshi; Matsuda, Shinzaburo; Morita, Hiroaki; Shibanuma, Kiyoshi

    1981-10-01

    The design of the active cooling type ion beam dump for JT-60 NBI which receives the total beam power of 5.6 MW for 10 sec continuously is described. It is composed of array of many finned tubes which is made of oxygen free copper with 0.2% silver content. The safety margin against thermal and mechanical troubles is estimated by the heat transfer and the thermal stress calculation. (author)

  13. ISOL based radioactive nuclear beam facilities

    International Nuclear Information System (INIS)

    Nomura, T.

    1991-07-01

    High-intensity and high-quality unstable nuclear beams can be realized by coupling an isotope separator on-line and a proper post accelerator in various primary beams. Some technical features and problems in the production of such beams are discussed. A brief description is given on 'Exotic Nuclei Arena' in Japanese Hadron Project. (author)

  14. Ion beam processing of surgical materials

    Science.gov (United States)

    Williams, James M.; Buchanan, Raymond A.; Lee, In-Seop

    1989-02-01

    Ion beam processing has now achieved a secure place in surface treatment of biomaterials. This development is largely a result of the success of the process for wear prevention of orthopedic Ti-alloy in rubbing contact with ultrahigh molecular-weight polyethylene. Basic contributions of the authors in this area, together with other pertinent literature will be reviewed. Research in ion beam processing of biomaterials is turning to other areas. Among these, bioelectronics is considered to be a promising area for further effort. Pertinent experiments on effects of implantation of iridium into titanium and Ti-6Al-4V alloy on corrosion and charge injection properties are presented.

  15. Ion beam pulse radiolysis system at HIMAC

    Energy Technology Data Exchange (ETDEWEB)

    Chitose, N.; Katsumura, Y.; Domae, M.; Ishigure, K. [Tokyo Univ. (Japan); Murakami, T.

    1997-03-01

    An ion beam pulse radiolysis system has been constructed at HIMAC facility. Ion beam of 24MeV He{sup 2+} with the duration longer than 1 {mu}s is available for irradiation. Three kinds of aqueous solutions, (C{sub 6}H{sub 5}){sub 2}CO, NaHCO{sub 3}, and KSCN, were irradiated and the absorption signals corresponding to (C{sub 6}H{sub 5}){sub 2}CO{sup -}, CO{sub 3}{sup -}, and (SCN){sub 2}{sup -} respectively were observed. Ghost signals which interfere with the measurement are also discussed. (author)

  16. Aluminum and aluminum nitride formation in sapphire by ion beam synthesis

    OpenAIRE

    Stritzker, Bernd

    2000-01-01

    Aluminum and aluminum nitride formation in sapphire by ion beam synthesis / J. K. N. Lindner, W. Schlosser, and B. Stritzker. - In: Nuclear instruments & methods in physics research. B. 166. 2000. S. 133-139

  17. High-powered pulsed-ion-beam acceleration and transport

    Energy Technology Data Exchange (ETDEWEB)

    Humphries, S. Jr.; Lockner, T.R.

    1981-11-01

    The state of research on intense ion beam acceleration and transport is reviewed. The limitations imposed on ion beam transport by space charge effects and methods available for neutralization are summarized. The general problem of ion beam neutralization in regions free of applied electric fields is treated. The physics of acceleration gaps is described. Finally, experiments on multi-stage ion acceleration are summarized.

  18. High-powered pulsed-ion-beam acceleration and transport

    International Nuclear Information System (INIS)

    Humphries, S. Jr.; Lockner, T.R.

    1981-11-01

    The state of research on intense ion beam acceleration and transport is reviewed. The limitations imposed on ion beam transport by space charge effects and methods available for neutralization are summarized. The general problem of ion beam neutralization in regions free of applied electric fields is treated. The physics of acceleration gaps is described. Finally, experiments on multi-stage ion acceleration are summarized

  19. Beam divergence and ion current in multiaperture ion sources

    International Nuclear Information System (INIS)

    Ott, W.; Penningsfeld, F.P.

    1992-03-01

    Two different measurements of the divergence of high-current ion beams formed in a multiaperture ion source have been made. The current dependence of both measurements shows characteristic differences which are explained as a result of an inhomogeneity of the current density across the emission area. The model of Coupland et al. with a spherical beam geometry in the acceleration gap is reexamined. It is shown that a rigorous application of this model gives a beamlet defocusing in the decel electrode which is stronger by a factor of 1.35 than assumed hitherto. The implications on offset steering are discussed. (orig.)

  20. Ion beams make new blood

    International Nuclear Information System (INIS)

    Larousserie, D.

    2006-01-01

    In Russia a cyclotron has been designed and is now operating to make holes in plastic membranes: the impact of the ions produce tiny holes whose diameter is less than half a micrometer. These membranes are used in the fabrication of blood filters that are needed to separate blood corpuscles from plasma for instance. (A.C.)

  1. Treatment planning with ion beams

    International Nuclear Information System (INIS)

    Foss, M.H.

    1985-01-01

    Ions have higher linear energy transfer (LET) near the end of their range and lower LET away from the end of their range. Mixing radiations of different LET complicates treatment planning because radiation kills cells in two statistically independent ways. In some cases, cells are killed by a single-particle, which causes a linear decrease in log survival at low dosage. When the linear decrease is subtracted from the log survival curve, the remaining curve has zero slope at zero dosage. This curve is the log survival curve for cells that are killed only by two or more particles. These two mechanisms are statistically independent. To calculate survival, these two kinds of doses must be accumulated separately. The effect of each accumulated dosage must be read from its survival curve, and the logarithms of the two effects added to get the log survival. Treatment plans for doses of protons, He 3 ions, and He 4 ions suggest that these ions will be useful therapeutic modalities

  2. Ion-beam texturing of uniaxially textured Ni films

    International Nuclear Information System (INIS)

    Park, S.J.; Norton, D.P.; Selvamanickam, Venkat

    2005-01-01

    The formation of biaxial texture in uniaxially textured Ni thin films via Ar-ion irradiation is reported. The ion-beam irradiation was not simultaneous with deposition. Instead, the ion beam irradiates the uniaxially textured film surface with no impinging deposition flux, which differs from conventional ion-beam-assisted deposition. The uniaxial texture is established via a nonion beam process, with the in-plane texture imposed on the uniaxial film via ion beam bombardment. Within this sequential ion beam texturing method, grain alignment is driven by selective etching and grain overgrowth

  3. Detection systems for radioactive ion beams; Systeme de detection en ions radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Savajols, H

    2002-07-01

    Two main methods are used to produce radioactive ion beams: -) the ISOL method (isotope separation on-line) in which the stable beam interacts with a thick target, the reaction products diffuse outside the target and are transferred to a source where they are ionized, a mass separator and a post-accelerator drive the selected radioactive ions to the right energy; -) the in-flight fragmentation method in which the stable beam interacts with a thin target, the reaction products are emitted from the target with a restricted angular distribution and a velocity close to that of the incident beam, the experimenter has to take advantage from the reaction kinetics to get the right particle beam. Characteristic time is far longer with the ISOL method but the beam intensity is much better because of the use of a post-accelerator. In both cases, the beam intensity is lower by several orders of magnitude than in the case of a stable beam. This article presents all the constraints imposed by radioactive beams to the detection systems of the reaction products and gives new technical solutions according to the type of nuclear reaction studied. (A.C.)

  4. Ion beam production and study of radioactive isotopes with the laser ion source at ISOLDE

    Science.gov (United States)

    Fedosseev, Valentin; Chrysalidis, Katerina; Day Goodacre, Thomas; Marsh, Bruce; Rothe, Sebastian; Seiffert, Christoph; Wendt, Klaus

    2017-08-01

    At ISOLDE the majority of radioactive ion beams are produced using the resonance ionization laser ion source (RILIS). This ion source is based on resonant excitation of atomic transitions by wavelength tunable laser radiation. Since its installation at the ISOLDE facility in 1994, the RILIS laser setup has been developed into a versatile remotely operated laser system comprising state-of-the-art solid state and dye lasers capable of generating multiple high quality laser beams at any wavelength in the range of 210-950 nm. A continuous programme of atomic ionization scheme development at CERN and at other laboratories has gradually increased the number of RILIS-ionized elements. At present, isotopes of 40 different elements have been selectively laser-ionized by the ISOLDE RILIS. Studies related to the optimization of the laser-atom interaction environment have yielded new laser ion source types: the laser ion source and trap and the versatile arc discharge and laser ion source. Depending on the specific experimental requirements for beam purity or versatility to switch between different ionization mechanisms, these may offer a favourable alternative to the standard hot metal cavity configuration. In addition to its main purpose of ion beam production, the RILIS is used for laser spectroscopy of radioisotopes. In an ongoing experimental campaign the isotope shifts and hyperfine structure of long isotopic chains have been measured by the extremely sensitive in-source laser spectroscopy method. The studies performed in the lead region were focused on nuclear deformation and shape coexistence effects around the closed proton shell Z = 82. The paper describes the functional principles of the RILIS, the current status of the laser system and demonstrated capabilities for the production of different ion beams including the high-resolution studies of short-lived isotopes and other applications of RILIS lasers for ISOLDE experiments. This article belongs to the Focus on

  5. Production of highly charged ion beams from ECR ion sources

    International Nuclear Information System (INIS)

    Xie, Z.Q.

    1997-09-01

    Electron Cyclotron Resonance (ECR) ion source development has progressed with multiple-frequency plasma heating, higher mirror magnetic fields and better technique to provide extra cold electrons. Such techniques greatly enhance the production of highly charged ions from ECR ion sources. So far at cw mode operation, up to 300 eμA of O 7+ and 1.15 emA of O 6+ , more than 100 eμA of intermediate heavy ions for charge states up to Ar 13+ , Ca 13+ , Fe 13+ , Co 14+ and Kr 18+ , and tens of eμA of heavy ions with charge states to Kr 26+ , Xe 28+ , Au 35+ , Bi 34+ and U 34+ have been produced from ECR ion sources. At an intensity of at least 1 eμA, the maximum charge state available for the heavy ions are Xe 36+ , Au 46+ , Bi 47+ and U 48+ . An order of magnitude enhancement for fully stripped argon ions (I ≥ 60 enA) also has been achieved. This article will review the ECR ion source progress and discuss key requirement for ECR ion sources to produce the highly charged ion beams

  6. Ion beam ablation of polytetrafluoroethylene

    Czech Academy of Sciences Publication Activity Database

    Švorčík, V.; Miček, I.; Rybka, V.; Palmetshofer, L.; Hnatowicz, Vladimír

    1998-01-01

    Roč. 69, - (1998), s. 1257-1261 ISSN 0021-8995 R&D Projects: GA ČR GA202/96/0077; GA AV ČR KSK1010601 Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.886, year: 1998

  7. Dosimetry in heavy ion beams using various detectors

    Czech Academy of Sciences Publication Activity Database

    Brabcová, Kateřina; Jadrníčková, Iva; Molokanov, A. G.; Spurný, František

    2010-01-01

    Roč. 45, č. 10 (2010), s. 1384-1386 ISSN 1350-4487. [Neutron and Ion Dosimetry Symposium /11./. Cape Town, 12.10.2009-16.10.2009] R&D Projects: GA ČR GA205/09/0171; GA AV ČR IAA100480902 Institutional research plan: CEZ:AV0Z10480505 Keywords : tack-etched detectors * LET spectra * TLD * heavy ion beams Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.019, year: 2010

  8. Report on the IAEA technical meeting on database of evaluated cross sections for ion beam applications

    International Nuclear Information System (INIS)

    Vickridge, I.C.; Schwerer, O.

    2003-11-01

    Results of the IAEA Technical Meeting on Database of Evaluated Cross Sections for Ion Beam Applications held at the IAEA Headquarters, Vienna, Austria, 29 to 30 October 2003, are summarized in this report. The meeting discussed the nuclear data needs for ion beam analysis and produced recommendations concerning the compilation, assessment and evaluation of cross section data for ion beam analysis, as well as the related databases and their formats and their inclusion in the data collections of the IAEA Nuclear Data Section. (author)

  9. Profiling hydrogen in materials using ion beams

    International Nuclear Information System (INIS)

    Ziegler, J.F.; Wu, C.P.; Williams, P.

    1977-01-01

    Over the last few years many ion beam techniques have been reported for the profiling of hydrogen in materials. Nine of these were evaluated using similar samples of hydrogen ion-implanted into silicon. When possible the samples were analyzed using two or more techniques to confirm the ion-implanted accuracy. The results of this analysis which has produced a consensus profile of H in silicon which is useful as a calibration standard are reported. The analytical techniques used have capabilities ranging from very high depth resolution (approximately 50 A) and high sensitivity (less than 1 ppM) to deep probes for hydrogen which can sample throughout thin sheets

  10. BEARS: Radioactive ion beams at LBNL

    International Nuclear Information System (INIS)

    Powell, J.; Guo, F.Q.; Haustein, P.E.

    1998-01-01

    BEARS (Berkeley Experiments with Accelerated Radioactive Species) is an initiative to develop a radioactive ion-beam capability at Lawrence Berkeley National Laboratory. The aim is to produce isotopes at an existing medical cyclotron and to accelerate them at the 88 inch Cyclotron. To overcome the 300-meter physical separation of these two accelerators, a carrier-gas transport system will be used. At the terminus of the capillary, the carrier gas will be separated and the isotopes will be injected into the 88 inch Cyclotron's Electron Cyclotron Resonance (ECR) ion source. The first radioactive beams to be developed will include 20-min 11 C and 70-sec 14 O, produced by (p,n) and (p,α) reactions on low-Z targets. A test program is currently being conducted at the 88 inch Cyclotron to develop the parts of the BEARS system. Preliminary results of these tests lead to projections of initial 11 C beams of up to 2.5 x 10 7 ions/sec and 14 O beams of 3 x 10 5 ions/sec

  11. Treatment Planning for Ion Beam Therapy

    Science.gov (United States)

    Jäkel, Oliver

    The special aspects of treatment planning for ion beams are outlined in this chapter, starting with positioning and immobilization of the patient, describing imaging and segmentation, definition of treatment parameters, dose calculation and optimization, and, finally, plan assessment, verification, and quality assurance.

  12. Corrected electrostatic lens systems for ion beams

    International Nuclear Information System (INIS)

    Dalgish, R.L.

    1981-01-01

    Recent work in our laboratory has introduced a new class of electrostatic focus forming element for beams, the ELCO lens. It compares favourably with the electrostatic and magnetic quadrupole elements conventionally used for microbeam formation. The ELCO lens does however have disadvantages associated with apertures and alignment. We have continued with the development of ion beam lenses and have evolved a further class of lens element which eliminates aperture and alignment problems. This new element can be combined like optical lenses into an aberration corrected system. Experimental measurement on the basic lens element has confirmed mathematical analysis of ion trajectories through the element. This mathematical analysis predicts that the basic element can be combined into a corrected lens system for, either: (1) high resolution microprobe formation with intrinsic rastering ability, the spot size limited only by the beam properties; or (2) high quality image formation with large magnification/demagnification ratio and wide angular aperture. (orig.)

  13. High repetition rate intense ion beam source

    International Nuclear Information System (INIS)

    Hammer, D.A.; Glidden, S.C.; Noonan, B.

    1992-01-01

    This final report describes a ≤ 150kV, 40kA, 100ns high repetition rate pulsed power system and intense ion beam source which is now in operation at Cornell University. Operation of the Magnetically-controlled Anode Plasma (MAP) ion diode at > 100Hz (burst mode for up to 10 pulse bursts) provides an initial look at repetition rate limitations of both the ion diode and beam diagnostics. The pulsed power systems are capable of ≥ 1kHz operation (up to 10 pulse bursts), but ion diode operation was limited to ∼100Hz because of diagnostic limitations. By varying MAP diode operating parameters, ion beams can be extracted at a few 10s of keV or at up to 150keV, the corresponding accelerating gap impedance ranging from about 1Ω to about 10Ω. The ability to make hundreds of test pulses per day at an average repetition rate of about 2 pulses per minute permits statistical analysis of diode operation as a function of various parameters. Most diode components have now survived more than 10 4 pulses, and the design and construction of the various pulsed power components of the MAP diode which have enabled us to reach this point are discussed. A high speed data acquisition system and companion analysis software capable of acquiring pulse data at 1ms intervals (in bursts of up to 10 pulses) and processing it in ≤ min is described

  14. Ion-Beam-Excited, Electrostatic, Ion Cyclotron Instability

    DEFF Research Database (Denmark)

    Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens

    1977-01-01

    The stability limits of the ion‐beam‐excited, electrostatic, ion cyclotron instability were investigated in a Q‐machine plasma where the electrons could be heated by microwaves. In agreement with theory, the beam energy necessary for excitation decreased with increasing electron temperature....

  15. Ion-Beam-Excited Electrostatic Ion Cyclotron Instability

    DEFF Research Database (Denmark)

    Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens

    1977-01-01

    The stability limits of the ion‐beam‐excited, electrostatic, ion cyclotron instability were investigated in a Q‐machine plasma where the electrons could be heated by microwaves. In agreement with theory, the beam energy necessary for excitation decreased with increasing electron temperature....

  16. Study on broad beam heavy ion CT

    International Nuclear Information System (INIS)

    Ohno, Yumiko; Kohno, Toshiyuki; Sasaki, Hitomi; Nanbu, S.; Kanai, Tatsuaki

    2003-01-01

    To achieve the heavy ion radiotherapy more precisely, it is important to know the distribution of the electron density in a human body, which is highly related to the range of charged particles. From a heavy ion CT image, we can directly obtain the 2-D distribution of the electron density in a sample. For this purpose, we have developed a broad beam heavy ion CT system. The electron density was obtained using some kinds of solutions targets. Also the dependence of the spatial resolution on the target size and the kinds of beams was estimated in this work using cylinders targets of 40, 60 and 80 mm in diameter, each of them has a hole of 10 mm in diameter at the center of it. (author)

  17. Ions kinematics in an electrostatic ion beam trap

    Energy Technology Data Exchange (ETDEWEB)

    Attia, D

    2004-06-01

    In this study, I have tried to provide a better understanding of the dynamics of ions inside an electrostatic ion beam trap. The electrostatic ion trap allows to store ions moving between two electrostatic mirrors. Although the trap has been developed already seven years ago, no direct measurement of the transversal velocity distribution of the ions has been performed. Such quantity is central for understanding the conditions under which a beam should be produced (mainly emittance) in order to be trapped by such a device. The data I have obtained during the course of this work are based on an experimental technique which relies on the direct imaging of the particles exiting the trap, as well as on numerical simulations of the ion trajectories inside the trap. I have personally been involved in the hardware development of the imaging system, the data acquisition and analysis of the data as well as il all numerical calculations presented here. These results allow us to obtain, for the first time, experimental information on the transverse phase space of the trap, and contribute to the overall understanding of the ion motion in this system. (author)

  18. Nuclear spin polarized alkali beams (Na, Li): Optical pumping with electro-optically modulated laser beam

    International Nuclear Information System (INIS)

    Reich, H.; Jaensch, H.J.

    1990-01-01

    An improvement of the Heidelberg source for polarized heavy ions (PSI) is described. To produce a nuclear spin polarized atomic Na beam an electro-optically modulated laser beam has been used for optical pumping. An electro-optic modulator (EOM) was constructed with a bandwidth of 1.8 GHz. Without a spin separating Stern-Gerlach magnet it is now possible to prepare a Na atomic beam in one single hyperfine magnetic substate. Thus the beam figure of merit (polarization 2 x intensity of the beam) has been improved by a factor of 4 as compared to the previous setup. Experiences with the new system collected from several beam times are discussed. (orig.)

  19. Research and development of advanced materials using ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Namba, Susumu [Nagasaki Inst. of Applied Science, Nagasaki (Japan)

    1997-03-01

    A wide range of research and development activities of advanced material synthesis using ion beams will be discussed, including ion beam applications to the state-of-the-art electronics from giant to nano electronics. (author)

  20. Negative ion based neutral beams for plasma heating

    International Nuclear Information System (INIS)

    Prelec, K.

    1978-01-01

    Neutral beam systems based on negative ions have been considered because of a high expected power efficiency. Methods for the production, acceleration and neutralization of negative ions will be reviewed and possibilities for an application in neutral beam lines explored

  1. Relativistic, QED and nuclear effects in highly charged ions revealed by resonant electron-ion recombination in storage rings

    OpenAIRE

    Schippers, Stefan

    2008-01-01

    Dielectronic recombination (DR) of few-electron ions has evolved into a sensitive spectroscopic tool for highly charged ions. This is due to technological advances in electron-beam preparation and ion-beam cooling techniques at heavy-ion storage rings. Recent experiments prove unambiguously that DR collision spectroscopy has become sensitive to 2nd order QED and to nuclear effects. This review discusses the most recent developments in high-resolution spectroscopy of low-energy DR resonances, ...

  2. Ion beam heating for fast ignition

    International Nuclear Information System (INIS)

    Gus'kov, S.Yu.; Limpouch, J.; Klimo, O.

    2010-01-01

    Complete text of publication follows. The characteristics features of the formation of the spatial distribution of the energy transferred to the plasma from a beam of ions with different initial energies, masses and charges under fast ignition conditions are determined. The motion of the Bragg peak is extended with respect to the spatial distribution of the temperature of the ion-beam-heated medium. The parameters of the ion beams are determined to initiate different regimes of fast ignition of thermonuclear fuel precompressed to a density of 300-500 g/cm 3 - the edge regime, in which the ignition region is formed at the outer boundary of the fuel, and the internal regime, in which the ignition region is formed in central parts of the fuel. The conclusion on the requirements for fast ignition by light and heavy ion beams is presented. It is shown that the edge heating with negative temperature gradient is described by a self-similar solution. Such a temperature distribution is the reason of the fact that the ignited beam energy at the edge heating is larger than the minimal ignition energy by factor 1.65. The temperature Bragg peak may be produced by ion beam heating in the reactor scale targets with pR-parameter larger than 3-4 g/cm 2 . In particular, for central ignition of the targets with pR-parameters in the range of 4-8 g/cm 2 the ion beam energy should be, respectively, from 5 to 7 times larger than the minimal ignition energy. The work by S.Ye. Gus'kov, D.V. Il'in, and V.E. Sherman was supported by the Ministry of Education and Science of the Russian Federation under the program 'Development of the Scientific Potential of High Education for 2009-2010' (project no. 2.1.1/1505) and the Russian Foundation for Basic Research (project no. 08-02-01394 a ). The work by J. Limpouch and O. Klimo was supported by the Czech Ministry of Education (project no. LC528, MSM6840770022).

  3. Applications of ion beam analysis workshop. Workshop handbook

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    A workshop on applications of ion beam analysis was held at ANSTO, immediate prior to the IBMM-95 Conference in Canberra. It aims was to review developments and current status on use of ion beams for analysis, emphasizing the following aspects: fundamental ion beam research and secondary effects of ion beams; material sciences, geological, life sciences, environmental and industrial applications; computing codes for use in accelerator research; high energy heavy ion scattering and recoil; recent technological development using ion beams. The handbook contains the workshop`s program, 29 abstracts and a list of participants.

  4. Applications of ion beam analysis workshop. Workshop handbook

    International Nuclear Information System (INIS)

    1995-01-01

    A workshop on applications of ion beam analysis was held at ANSTO, immediate prior to the IBMM-95 Conference in Canberra. It aims was to review developments and current status on use of ion beams for analysis, emphasizing the following aspects: fundamental ion beam research and secondary effects of ion beams; material sciences, geological, life sciences, environmental and industrial applications; computing codes for use in accelerator research; high energy heavy ion scattering and recoil; recent technological development using ion beams. The handbook contains the workshop's program, 29 abstracts and a list of participants

  5. Intensive Ion Beam In Storage Rings With Electron Cooling

    CERN Document Server

    Korotaev, Yu V; Kamerdjiev, V; Maier, R; Meshkov, I; Noda, K; Prasuhn, D; Sibuya, S; Sidorin, A; Stein, H J; Stockhorst, H; Syresin, E M; Uesugi, T

    2004-01-01

    Results of experimental studies of the electron cooling of a proton beam at COSY (Juelich, Germany) and an ion beam at HIMAC (Chiba, Japan) are presented. Intensity of the ion beam is limited by two general effects: particle loss directly after the injection and development of instability in a deep cooled ion beam. Methods of the instability suppression, which allow increasing the cooled beam intensity, are described.

  6. Image-projection ion-beam lithography

    International Nuclear Information System (INIS)

    Miller, P.A.

    1989-01-01

    Image-projection ion-beam lithography is an attractive alternative for submicron patterning because it may provide high throughput; it uses demagnification to gain advantages in reticle fabrication, inspection, and lifetime; and it enjoys the precise deposition characteristics of ions which cause essentially no collateral damage. This lithographic option involves extracting low-mass ions (e.g., He + ) from a plasma source, transmitting the ions at low voltage through a stencil reticle, and then accelerating and focusing the ions electrostatically onto a resist-coated wafer. While the advantages of this technology have been demonstrated experimentally by the work of IMS (Austria), many difficulties still impede extension of the technology to the high-volume production of microelectronic devices. We report a computational study of a lithography system designed to address problem areas in field size, telecentricity, and chromatic and geometric aberration. We present a novel ion-column-design approach and conceptual ion-source and column designs which address these issues. We find that image-projection ion-beam technology should in principle meet high-volume-production requirements. The technical success of our present relatively compact-column design requires that a glow-discharge-based ion source (or equivalent cold source) be developed and that moderate further improvement in geometric aberration levels be obtained. Our system requires that image predistortion be employed during reticle fabrication to overcome distortion due to residual image nonlinearity and space-charge forces. This constitutes a software data preparation step, as do correcting for distortions in electron lithography columns and performing proximity-effect corrections. Areas needing further fundamental work are identified

  7. Development of a beam ion velocity detector for the heavy ion beam probe

    International Nuclear Information System (INIS)

    Fimognari, P. J.; Crowley, T. P.; Demers, D. R.

    2016-01-01

    In an axisymmetric plasma, the conservation of canonical angular momentum constrains heavy ion beam probe (HIBP) trajectories such that measurement of the toroidal velocity component of secondary ions provides a localized determination of the poloidal flux at the volume where they originated. We have developed a prototype detector which is designed to determine the beam angle in one dimension through the detection of ion current landing on two parallel planes of detecting elements. A set of apertures creates a pattern of ion current on wires in the first plane and solid metal plates behind them; the relative amounts detected by the wires and plates determine the angle which beam ions enter the detector, which is used to infer the toroidal velocity component. The design evolved from a series of simulations within which we modeled ion beam velocity changes due to equilibrium and fluctuating magnetic fields, along with the ion beam profile and velocity dispersion, and studied how these and characteristics such as the size, cross section, and spacing of the detector elements affect performance.

  8. MEV Energy Electrostatic Accelerator Ion Beam Emittance Measurement

    OpenAIRE

    I.G. Ignat’ev; M.I. Zakharets; S.V. Kolinko; D.P. Shulha

    2014-01-01

    The testing equipment was designed, manufactured and tried out permitting measurements of total current, current profile and emittance of an ion beam extracted from the ion beam. MeV energy electrostatic accelerator ion H + beam emittance measurement results are presented.

  9. Dual ion beam irradiation system for in situ observation with electron microscope

    International Nuclear Information System (INIS)

    Tsukamoto, Tetuo; Hojou, Kiiti; Furuno, Sigemi; Otsu, Hitosi; Izui, Kazuhiko.

    1993-01-01

    We have developed a new in situ observation system for dynamic processes under dual ion beam irradiation. The system consists of a modified 400 keV analytical electron microscope (JEOL, JEM-4000FX) and two 40 kV ion beam accelerators. This system allows evaluation of microscopic changes of structure and chemical bonding state of materials in the dynamic processes under two kinds of ion beam irradiations, that is required for the simulation test of the first wall of nuclear fusion reactors onto which He + , H + , and H 2 + ions are irradiated simultaneously. These two ion accelerators were equipped symmetrically both sides of the electron microscope and individually controlled. Each ion beam extracted from a duo-plasmatron ion gun is bent downward by an angle of 30deg with a mass-separating magnet, and introduced into specimen chamber of the electron microscope. Inside the specimen chamber the beam is deflected again by an angle of 30deg with an electrostatic prism so as to be incident on the specimen surface. Finally, two ion beams from both side are incident on the specimen surface at an angle of 60deg. The maximum ion current density of helium is more than 250μA/cm 2 at the specimen at an ion energy of 17 keV. Images of the electron microscope during dual ion beam irradiation are observed through a TV camera and recorded with a VTR. (author)

  10. Funnel cone for focusing intense ion beams on a target

    International Nuclear Information System (INIS)

    Bieniosek, F.M.; Henestroza, E.; Ni, P.

    2009-01-01

    We describe a funnel cone for concentrating an ion beam on a target. The cone utilizes the reflection characteristic of ion beams on solid walls to focus the incident beam andincrease beam intensity on target. The cone has been modeled with the TRIM code. A prototype has been tested and installed for use in the 350-keV K+ NDCX target chamber.

  11. Aifira: An ion beam facility for multidisciplinary research

    Science.gov (United States)

    Sorieul, S.; Alfaurt, Ph.; Daudin, L.; Serani, L.; Moretto, Ph.

    2014-08-01

    During the last decade, the CENBG (Centre d'Études Nucléaires de Bordeaux Gradignan) commissioned a new facility called AIFIRA (Applications Interdisciplinaires des Faisceaux d'ions en Région Aquitaine). It allowed the development of a multidisciplinary activity based on the "in-house" expertise of CENBG in ion beam analysis. The great flexibility offered by the five beam lines confers a lot of possibilities for chemical analysis and nuclear physics. Indeed, not only the macrobeam and the external beam lines provide the full set of IBA techniques for routine sample analysis but an additional beam line is devoted to the production of monoenergetic neutrons through the interaction of the incoming ion with selected targets. In addition, the two high-resolution microbeam lines are used for chemical analyses, 2D/3D imaging, and targeted cell irradiation. Besides, the combination of the nanobeam line flexibility, the uniqueness of the micro-irradiation design completed by the internal CENBG expertise confers a great specificity to AIFIRA in biomedical field. After a detailed technical overview of the platform, the article focuses on the two high-resolution lines as they tap most of the activity. Thus a quick overview of the most significant results concerning biomedical samples is proposed in order to highlight the analytical possibilities of AIFIRA microbeam lines. A summary of the development status of the micro-irradiation line is also done.

  12. Aifira: An ion beam facility for multidisciplinary research

    Energy Technology Data Exchange (ETDEWEB)

    Sorieul, S., E-mail: sorieul@cenbg.in2p3.fr; Alfaurt, Ph.; Daudin, L.; Serani, L.; Moretto, Ph.

    2014-08-01

    During the last decade, the CENBG (Centre d’Études Nucléaires de Bordeaux Gradignan) commissioned a new facility called AIFIRA (Applications Interdisciplinaires des Faisceaux d’ions en Région Aquitaine). It allowed the development of a multidisciplinary activity based on the “in-house” expertise of CENBG in ion beam analysis. The great flexibility offered by the five beam lines confers a lot of possibilities for chemical analysis and nuclear physics. Indeed, not only the macrobeam and the external beam lines provide the full set of IBA techniques for routine sample analysis but an additional beam line is devoted to the production of monoenergetic neutrons through the interaction of the incoming ion with selected targets. In addition, the two high-resolution microbeam lines are used for chemical analyses, 2D/3D imaging, and targeted cell irradiation. Besides, the combination of the nanobeam line flexibility, the uniqueness of the micro-irradiation design completed by the internal CENBG expertise confers a great specificity to AIFIRA in biomedical field. After a detailed technical overview of the platform, the article focuses on the two high-resolution lines as they tap most of the activity. Thus a quick overview of the most significant results concerning biomedical samples is proposed in order to highlight the analytical possibilities of AIFIRA microbeam lines. A summary of the development status of the micro-irradiation line is also done.

  13. Funneling of low energy ion beams

    International Nuclear Information System (INIS)

    Barth, W.; Schempp, A.

    1992-01-01

    Funneling is a way of increasing the brightness of ion beams by filling all buckets of a rf-accelerator and using the higher current transport capability at higher energies. Funnel systems have been proposed, e.g. for HIIF type drivers and spallation neutron sources. Results of numerical simulations and funneling experiments at Frankfurt are reported, where a setup with a 50 keV proton beam and a rf deflector is investigated to study especially emittance growth effects in funneling lines. (Author) 9 figs., tab., 13 refs

  14. Ion beam irradiation effects on aromatic polymers

    International Nuclear Information System (INIS)

    Shukushima, Satoshi; Ueno, Keiji

    1995-01-01

    We studied the optical and thermal properties of aromatic polymer films which had been irradiated with 1 MeV H + , H 2 + and He + ions. The examined aromatic polymers were polyetherether ketone(PEEK), polyetherimide(PEI), polyether sulfon(PES), polysulfon(PSF), and polyphenylene sulfide(PPS). The optical densities at 300nm of PES and PSF greatly increased after the irradiation. The optical densities at 400nm of all the examined polymer lineally increased with the irradiation dose. The PEEK film which had been irradiated with 1 MeV H + was not deformed above melting point. This demonstrates that cross-linking occurs in PEEK films by ion beam irradiation. As for the effects, depending on the mass of the irradiated ions, it was found that the ions with a high mass induced larger effects on the aromatic polymers for the same absorption energy. (author)

  15. Surface generation of negative hydrogen ion beams

    International Nuclear Information System (INIS)

    Bommel, P.J.M. van.

    1984-01-01

    This thesis describes investigations on negative hydrogen ion sources at the ampere level. Formation of H - ions occurs when positive hydrogen ions capture two electrons at metal surfaces. The negative ionization probability of hydrogen at metal surfaces increases strongly with decreasing work function of the surface. The converters used in this study are covered with cesium. Usually there are 'surface plasma sources' in which the hydrogen source plasma interacts with a converter. In this thesis the author concentrates upon investigating a new concept that has converters outside the plasma. In this approach a positive hydrogen ion beam is extracted from the plasma and is subsequently reflected from a low work function converter surface. (Auth.)

  16. An improved Green's function for ion beam transport.

    Science.gov (United States)

    Tweed, J; Wilson, J W; Tripathi, R K

    2004-01-01

    Ion beam transport theory allows testing of material transmission properties in the laboratory environment generated by particle accelerators. This is a necessary step in materials development and evaluation for space use. The approximations used in solving the Boltzmann transport equation for the space setting are often not sufficient for laboratory work and those issues are the main emphasis of the present work. In consequence, an analytic solution of the linear Boltzmann equation is pursued in the form of a Green's function allowing flexibility in application to a broad range of boundary value problems. It has been established that simple solutions can be found for high charge and energy (HZE) ions by ignoring nuclear energy downshifts and dispersion. Such solutions were found to be supported by experimental evidence with HZE ion beams when multiple scattering was added. Lacking from the prior solutions were range and energy straggling and energy downshift with dispersion associated with nuclear events. Recently, we have found global solutions including these effects providing a broader class of HZE ion solutions. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  17. An improved Green's function for ion beam transport

    Science.gov (United States)

    Tweed, J.; Wilson, J. W.; Tripathi, R. K.

    2004-01-01

    Ion beam transport theory allows testing of material transmission properties in the laboratory environment generated by particle accelerators. This is a necessary step in materials development and evaluation for space use. The approximations used in solving the Boltzmann transport equation for the space setting are often not sufficient for laboratory work and those issues are the main emphasis of the present work. In consequence, an analytic solution of the linear Boltzmann equation is pursued in the form of a Green's function allowing flexibility in application to a broad range of boundary value problems. It has been established that simple solutions can be found for high charge and energy (HZE) ions by ignoring nuclear energy downshifts and dispersion. Such solutions were found to be supported by experimental evidence with HZE ion beams when multiple scattering was added. Lacking from the prior solutions were range and energy straggling and energy downshift with dispersion associated with nuclear events. Recently, we have found global solutions including these effects providing a broader class of HZE ion solutions.

  18. Neutralization principles for the Extraction and Transport of Ion Beams

    CERN Document Server

    Riege, H

    2000-01-01

    The strict application of conventional extraction techniques of ion beams from a plasma source is characterized by a natural intensity limit determined by space charge.The extracted current may be enhanced far beyond this limit by neutralizing the space charge of the extracted ions in the first extraction gap of the source with electrons injected from the opposite side. The transverse and longitudinal emittances of a neutralized ion beam, hence its brightness, are preserved. Results of beam compensation experiments, which have been carried out with a laser ion source, are resumed for proposing a general scheme of neutralizing ion sources and their adjacent low-energy beam transport channels with electron beams. Many technical applications of high-mass ion beam neutralization technology may be identified: the enhancement of ion source output for injection into high-intensity, low-and high-energy accelerators, or ion thrusters in space technology, for the neutral beams needed for plasma heating of magnetic conf...

  19. Baseline ion production dedicated to beta-beams

    CERN Document Server

    Stora, Thierry

    2010-01-01

    Beta-beams, a concept introduced in 1991, require a large facility that produces and accelerates to high energy electron neutrino and antineutrino beams for oscillation experiments. They are produced by b decay of radioactive ion beams in a dedicated ring directed towards underground detectors. This article addresses the production of the 6He and 18Ne baseline ions. Part of the results were obtained within EURISOL-DS, a design study for the next generation OnLine Isotope Separation facility for nuclear physics in Europe. 200 kW, 2 GeV protons on a solid neutron spallation source surrounded by a thick beryllium oxide target produce the required 6He rates, while 18Ne production falls short by more than an order of magnitude. A first alternative might fulfil the objectives with a 30 MeV 3He primary beam onto large solid oxide target disks at several MW. A second 18Ne production alternative is based on a 700 kW proton beam at medium energy (70-160 MeV) and a target made of a circulating molten salt loop.

  20. Design study of primary ion provider for relativistic heavy ion collider electron beam ion source.

    Science.gov (United States)

    Kondo, K; Kanesue, T; Tamura, J; Okamura, M

    2010-02-01

    Brookhaven National Laboratory has developed the new preinjector system, electron beam ion source (EBIS) for relativistic heavy ion collider (RHIC) and National Aeronautics and Space Administration Space Radiation Laboratory. Design of primary ion provider is an essential problem since it is required to supply beams with different ion species to multiple users simultaneously. The laser ion source with a defocused laser can provide a low charge state and low emittance ion beam, and is a candidate for the primary ion source for RHIC-EBIS. We show a suitable design with appropriate drift length and solenoid, which helps to keep sufficient total charge number with longer pulse length. The whole design of primary ion source, as well as optics arrangement, solid targets configuration and heating about target, is presented.

  1. Time resolved ion beam induced charge collection

    International Nuclear Information System (INIS)

    Sexton W, Frederick; Walsh S, David; Doyle L, Barney; Dodd E, Paul

    2000-01-01

    Under this effort, a new method for studying the single event upset (SEU) in microelectronics has been developed and demonstrated. Called TRIBICC, for Time Resolved Ion Beam Induced Charge Collection, this technique measures the transient charge-collection waveform from a single heavy-ion strike with a -.03db bandwidth of 5 GHz. Bandwidth can be expanded up to 15 GHz (with 5 ps sampling windows) by using an FFT-based off-line waveform renormalization technique developed at Sandia. The theoretical time resolution of the digitized waveform is 24 ps with data re-normalization and 70 ps without re-normalization. To preserve the high bandwidth from IC to the digitizing oscilloscope, individual test structures are assembled in custom high-frequency fixtures. A leading-edge digitized waveform is stored with the corresponding ion beam position at each point in a two-dimensional raster scan. The resulting data cube contains a spatial charge distribution map of up to 4,096 traces of charge (Q) collected as a function of time. These two dimensional traces of Q(t) can cover a period as short as 5 ns with up to 1,024 points per trace. This tool overcomes limitations observed in previous multi-shot techniques due to the displacement damage effects of multiple ion strikes that changed the signal of interest during its measurement. This system is the first demonstration of a single-ion transient measurement capability coupled with spatial mapping of fast transients

  2. Moessbauer Effect applications using intense radioactive ion beams

    International Nuclear Information System (INIS)

    Taylor, R.D.

    1990-01-01

    The Moessbauer Effect is reviewed as a promising tool for a number of new solid state studies when used in combination with radioactive beam/implantation facilities. The usual Moessbauer Effect involves long-lived radioactive parents (days to years) that populate low-lying nuclear excited states that subsequently decay to the ground state. Resonant emission/absorption of recoil-free gamma rays from these states provide information on a number of properties of the host materials. Radioactive ion beams (RIB) produced on-line allow new Moessbauer nuclei to be studied where there is no suitable parent. The technique allows useful sources to be made having extremely low local concentrations. The ability to separate the beams in both Z and A should provide high specific activity ''conventional'' sources, a feature important in some applications such as Moessbauer studies in diamond anvil high pressure cells. Exotic chemistry is proposed using RIB and certain Krypton and Xenon Moessbauer isotopes

  3. Spectrometer for cluster ion beam induced luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Ryuto, H., E-mail: ryuto@kuee.kyoto-u.ac.jp; Sakata, A.; Takeuchi, M.; Takaoka, G. H. [Photonics and Electronics Science and Engineering Center, Kyoto University, Kyoto 615-8510 (Japan); Musumeci, F. [Department of Physics and Astronomy, Catania University, Catania 95123 (Italy); INFN Laboratori Nazionali del Sud, Catania 95123 (Italy)

    2015-02-15

    A spectrometer to detect the ultra-weak luminescence originated by the collision of cluster ions on the surfaces of solid materials was constructed. This spectrometer consists of 11 photomultipliers with band-pass interference filters that can detect the luminescence within the wavelength ranging from 300 to 700 nm and of a photomultiplier without filter. The calibration of the detection system was performed using the photons emitted from a strontium aluminate fluorescent tape and from a high temperature tungsten filament. Preliminary measurements show the ability of this spectrometer to detect the cluster ion beam induced luminescence.

  4. Measurement of ultra-low ion energy of decelerated ion beam using a deflecting electric field

    Energy Technology Data Exchange (ETDEWEB)

    Thopan, P.; Suwannakachorn, D.; Tippawan, U. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Yu, L.D., E-mail: yuld@thep-center.org [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand)

    2015-12-15

    In investigation on ultra-low-energy ion bombardment effect on DNA, an ion beam deceleration lens was developed for high-quality ultra-low-energy ion beam. Measurement of the ion energy after deceleration was necessary to confirm the ion beam really decelerated as theoretically predicted. In contrast to conventional methods, this work used a simple deflecting electrostatic field after the deceleration lens to bend the ion beam. The beam bending distance depended on the ion energy and was described and simulated. A system for the measurement of the ion beam energy was constructed. It consisted of a pair of parallel electrode plates to generate the deflecting electrical field, a copper rod measurement piece to detect ion beam current, a vernier caliper to mark the beam position, a stepping motor to translate the measurement rod, and a webcam-camera to read the beam bending distance. The entire system was installed after the ion-beam deceleration lens inside the large chamber of the bioengineering vertical ion beam line. Moving the measurement rod across the decelerated ion beam enabled to obtain beam profiles, from which the beam bending distance could be known and the ion beam energy could be calculated. The measurement results were in good agreement with theoretical and simulated results.

  5. Nuclear astrophysics experiments with radioactive beams

    International Nuclear Information System (INIS)

    Leleux, P.

    2000-01-01

    In Nuclear Astrophysics, experiments with radioactive beams present particular problems (e.g. low beam intensity, large background) to which specific solutions (i.e. non-standard detection setup) can be brought. Selected reactions measured in Louvain-la-Neuve are treated as practical examples. (author)

  6. European research activities on charge state breeding related to radioactive ion beam facilities.

    Science.gov (United States)

    Lamy, T; Angot, J; Thuillier, T

    2008-02-01

    European effort on charge breeders is mainly dedicated to present and future Radioactive Ion Beam facilities. The main projects are High Intensity and Energy-ISOLDE at CERN, SPIRAL2 at GANIL, and EURISOL. Most of the experimental developments are funded by the European programs EURONS (European Nuclear Structure) and EURISOL (European Isotope Separation On-Line Radioactive Ion Beam Facility). Two ion source types (electron beam ion source and electron cyclotron resonance ion source) have been adapted to accept the injection and the capture of an ion beam, in order to increase its charge with the highest efficiency within the shortest time. Both charge breeders have advantages and disadvantages with regard to their use in a Radioactive Ion Beam facility. The most important parameters studied are acceptance (in emittance and intensity) of the charge breeder, efficiency, and charge breeding time of a specific n+ charge state, emittance of the extracted n+ beam. The charge breeder parameters are studied with different 1+ ion sources dedicated to 1+ radioactive ion beam production, and the tuning procedure of the charge breeder as a beam line section of a specific accelerator is established and measured too.

  7. Production of microbunched beams of very highly charged ions with an electron beam ion source

    International Nuclear Information System (INIS)

    Stoeckli, M.P.

    1998-01-01

    Electron beam ion sources produce very highly charged ions most efficiently in a batch mode as the confinement time can be directly optimized for the production of the desired charge state. If, after confinement, the voltage of the ion-confining downstream dam is lowered rapidly, all ions escape and form an ion beam pulse with a length of a few tens of μs. Raising the main trap voltage while maintaining a constant dam voltage in a open-quotes spill-over expulsionclose quotes reduces the energy spread of the expelled ions. The longer time periods of open-quotes slow-,close quotes open-quotes leaky batch mode-,close quotes and open-quotes direct current (dc) batch mode-close quotes expulsions allow for increasing the ion beam duty cycle. Combining the rapid expulsion with one of the latter methods allows for the expulsion of the ions of a single batch in many small microbunches with variable intervals, maintaining the low energy spread and the increased duty cycle of slow expulsions. Combining the open-quotes microbunchingclose quotes with open-quotes dc batch mode productionclose quotes and a multitrap operation will eventually allow for the production of equally intense ion bunches over a wide range of frequencies without any deadtime, and with minimal compromise on the most efficient production parameters. copyright 1998 American Institute of Physics

  8. Ion beam therapy fundamentals, technology, clinical applications

    CERN Document Server

    2012-01-01

    The book provides a detailed, up-to-date account of the basics, the technology, and the clinical use of ion beams for radiation therapy. Theoretical background, technical components, and patient treatment schemes are delineated by the leading experts that helped to develop this field from a research niche to its current highly sophisticated and powerful clinical treatment level used to the benefit of cancer patients worldwide. Rather than being a side-by-side collection of articles, this book consists of related chapters. It is a common achievement by 76 experts from around the world. Their expertise reflects the diversity of the field with radiation therapy, medical and accelerator physics, radiobiology, computer science, engineering, and health economics. The book addresses a similarly broad audience ranging from professionals that need to know more about this novel treatment modality or consider to enter the field of ion beam therapy as a researcher. However, it is also written for the interested public an...

  9. The JANNUS Saclay facility: A new platform for materials irradiation, implantation and ion beam analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pellegrino, S., E-mail: stephanie.pellegrino@cea.fr [CEA, INSTN, UEPTN, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France); Trocellier, P.; Miro, S.; Serruys, Y.; Bordas, E.; Martin, H. [CEA, DEN, Service de Recherches de Metallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France); Chaabane, N.; Vaubaillon, S. [CEA, INSTN, UEPTN, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France); Gallien, J.P.; Beck, L. [CEA, DEN, Service de Recherches de Metallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France)

    2012-02-15

    The third accelerator of the multi-ion irradiation platform JANNUS (Joint Accelerators for Nanosciences and NUclear Simulation), a 6SDH-2 Pelletron from National Electrostatic Corporation, Middleton was installed at Saclay in October 2009. The first triple beam irradiation combining Fe, He and H ion beams has been performed in March 2010. In the first part of this paper, we give a technical description of the triple beam facility, its performances and experimental capabilities. Typically, damage dose up to 100 dpa can be reached in 10 h irradiation with heavy ion beams, with or without simultaneous bombardment by protons, helium-4 ions or any other heavy ion beam. In the second part of this paper, we illustrate some IBA results obtained after irradiation and implantation experiments.

  10. The JANNUS Saclay facility: A new platform for materials irradiation, implantation and ion beam analysis

    Science.gov (United States)

    Pellegrino, S.; Trocellier, P.; Miro, S.; Serruys, Y.; Bordas, É.; Martin, H.; Chaâbane, N.; Vaubaillon, S.; Gallien, J. P.; Beck, L.

    2012-02-01

    The third accelerator of the multi-ion irradiation platform JANNUS (Joint Accelerators for Nanosciences and NUclear Simulation), a 6SDH-2 Pelletron from National Electrostatic Corporation, Middleton was installed at Saclay in October 2009. The first triple beam irradiation combining Fe, He and H ion beams has been performed in March 2010. In the first part of this paper, we give a technical description of the triple beam facility, its performances and experimental capabilities. Typically, damage dose up to 100 dpa can be reached in 10 h irradiation with heavy ion beams, with or without simultaneous bombardment by protons, helium-4 ions or any other heavy ion beam. In the second part of this paper, we illustrate some IBA results obtained after irradiation and implantation experiments.

  11. Heavy ion beam excitation of rare gases

    International Nuclear Information System (INIS)

    Ribitzki, G.; Ulrich, A.; Busch, B.; Kroetz, W.; Miller, R.; Wieser, J.

    1991-01-01

    The emission of light from rare gas targets at pressures of more than 100 Pa excited by a pulsed heavy ion beam has been studied. The absolute intensity of several spectral lines has been measured as a function of time at different target gas pressures. Population densities, excitation cross sections, and rate constants for collisional quenching were determined from the line intensities and the lifetimes of the excited states. (orig.)

  12. Calorimetry of ion beam damage in silicon

    International Nuclear Information System (INIS)

    Roorda, S.; Kajrys, G.; Graham, J.

    1994-01-01

    Annealing of ion-beam damage in crystalline Si has been characterized by differential scanning calorimetry and infrared absorption spectroscopy. Si discs of 100 μm thickness have been bombarded with 3.4 MeV protons. Scanning calorimetry reveals a sharp peak riding on a broad background signal. From infrared absorption, this peak is tentatively identified as heat release associated with divacancy annihilation. (orig.)

  13. Analytical possibilities of highly focused ion beams in biomedical field

    Science.gov (United States)

    Ren, M. Q.; Ji, X.; Vajandar, S. K.; Mi, Z. H.; Hoi, A.; Walczyk, T.; van Kan, J. A.; Bettiol, A. A.; Watt, F.; Osipowicz, T.

    2017-09-01

    At the Centre for Ion Beam Applications (CIBA), a 3.5 MV HVEE Singletron™ accelerator serves to provide MeV ion beams (mostly protons or He+) to six state-of-the-art beam lines, four of which are equipped with Oxford triplet magnetic quadrupole lens systems. This facility is used for a wide range of research projects, many of which are in the field of biomedicine. Here we presented a discussion of currently ongoing biomedical work carried out using two beamlines: The Nuclear Microscopy (NM) beamline is mainly used for trace elemental quantitative mapping using a combination of Particle Induced X-ray Emission (PIXE), to measure the trace elemental concentration of inorganic elements, Rutherford Backscattering Spectrometry (RBS), to characterise the organic matrix, and Scanning Transmission Ion Microscopy (STIM) to provide information on the lateral areal density variations of the specimen. Typically, a 2.1 MeV proton beam, focused to 1-2 μm spot size with a current of 100 pA is used. The high resolution single cell imaging beamline is equipped with direct STIM to image the interior structure of single cells with proton and alpha particles of sub-50 nm beam spot sizes. Simultaneously, forward scattering transmission ion microscopy (FSTIM) is utilized to generate images with improved contrast of nanoparticles with higher atomic numbers, such as gold nanoparticles, and fluorescent nanoparticles can be imaged using Proton Induced Fluorescence (PIF). Lastly, in this facility, RBS has been included as an option if required to determine the depth distribution of nanoparticles in cells, albeit with reduced spatial resolution.

  14. Simulations of multistage intense ion beam acceleration

    International Nuclear Information System (INIS)

    Slutz, S.A.; Poukey, J.W.

    1992-01-01

    An analytic theory for magnetically insulated, multistage acceleration of high intensity ion beams, where the diamagnetic effect due to electron flow is important, has been presented by Slutz and Desjarlais. The theory predicts the existence of two limiting voltages called V 1 (W) and V 2 (W), which are both functions of the injection energy qW of ions entering the accelerating gap. As the voltage approaches V 1 (W), unlimited beam-current density can penetrate the gap without the formation of a virtual anode because the dynamic gap goes to zero. Unlimited beam current density can penetrate an accelerating gap above V 2 (W), although a virtual anode is formed. It was found that the behavior of these limiting voltages is strongly dependent on the electron density profile. The authors have investigated the behavior of these limiting voltages numerically using the 2-D particle-in-cell (PIC) code MAGIC. Results of these simulations are consistent with the superinsulated analytic results. This is not surprising, since the ignored coordinate eliminates instabilities known to be important from studies of single stage magnetically insulated ion diodes. To investigate the effect of these instabilities the authors have simulated the problem with the 3-D PIC code QUICKSILVER, which indicates behavior that is consistent with the saturated model

  15. Ion accumulation and space charge neutralization in intensive electron beams for ion sources and electron cooling

    International Nuclear Information System (INIS)

    Shirkov, G.D.

    1996-01-01

    The Electron Beam Ion Sources (EBIS), Electron Beam Ion Traps (EBIT) and electron beams for electron cooling application have the beam parameters in the same ranges of magnitudes. EBIS and EBIT produce and accumulate ions in the beam due to electron impact ionization. The cooling electron beam accumulates positive ions from the residual gas in the accelerator chamber during the cooling cycle. The space charge neutralization of cooling beam is also used to reduce the electron energy spread and enhance the cooling ability. The advanced results of experimental investigations and theoretical models of the EBIS electron beams are applied to analyze the problem of beam neutralization in the electron cooling techniques. The report presents the analysis of the most important processes connected with ion production, accumulation and losses in the intensive electron beams of ion sources and electron cooling systems for proton and ion colliders. The inelastic and elastic collision processes of charged particles in the electron beams are considered. The inelastic processes such as ionization, charge exchange and recombination change the charge states of ions and neutral atoms in the beam. The elastic Coulomb collisions change the energy of particles and cause the energy redistribution among components in the electron-ion beams. The characteristic times and specific features of ionization, beam neutralization, ion heating and loss in the ion sources and electron cooling beams are determined. The dependence of negative potential in the beam cross section on neutralization factor is studied. 17 refs., 5 figs., 1 tab

  16. Study on space charge compensation in negative hydrogen ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, A. L.; Chen, J. E. [University of Chinese Academy of Sciences, Beijing 100049 (China); State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871 (China); Peng, S. X., E-mail: sxpeng@pku.edu.cn; Ren, H. T.; Zhang, T.; Zhang, J. F.; Xu, Y.; Guo, Z. Y. [State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871 (China)

    2016-02-15

    Negative hydrogen ion beam can be compensated by the trapping of ions into the beam potential. When the beam propagates through a neutral gas, these ions arise due to gas ionization by the beam ions. However, the high neutral gas pressure may cause serious negative hydrogen ion beam loss, while low neutral gas pressure may lead to ion-ion instability and decompensation. To better understand the space charge compensation processes within a negative hydrogen beam, experimental study and numerical simulation were carried out at Peking University (PKU). The simulation code for negative hydrogen ion beam is improved from a 2D particle-in-cell-Monte Carlo collision code which has been successfully applied to H{sup +} beam compensated with Ar gas. Impacts among ions, electrons, and neutral gases in negative hydrogen beam compensation processes are carefully treated. The results of the beam simulations were compared with current and emittance measurements of an H{sup −} beam from a 2.45 GHz microwave driven H{sup −} ion source in PKU. Compensation gas was injected directly into the beam transport region to modify the space charge compensation degree. The experimental results were in good agreement with the simulation results.

  17. The status and new trends of ion beam induced charge technique

    International Nuclear Information System (INIS)

    Lu Rongrong; Qiu Huiyuan; Zhu Dezhang

    2002-01-01

    Ion beam induced charge technique (IBIC) with low beam current (fA level) and high efficiency is a new development of nuclear microscopy. It has been widely applied to the fields of semiconductor and microelectronic materials. The principle and the experimental method of the IBIC technique were described and reviewed its status and new trends were reviewed

  18. Overview of Light-Ion Beam Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Chu, William T.

    2006-03-16

    treatment volume compared to those in conventional (photon) treatments. Wilson wrote his personal account of this pioneering work in 1997. In 1954 Cornelius Tobias and John Lawrence at the Radiation Laboratory (former E.O. Lawrence Berkeley National Laboratory) of the University of California, Berkeley performed the first therapeutic exposure of human patients to hadron (deuteron and helium ion) beams at the 184-Inch Synchrocyclotron. By 1984, or 30 years after the first proton treatment at Berkeley, programs of proton radiation treatments had opened at: University of Uppsala, Sweden, 1957; the Massachusetts General Hospital-Harvard Cyclotron Laboratory (MGH/HCL), USA, 1961; Dubna (1967), Moscow (1969) and St Petersburg (1975) in Russia; Chiba (1979) and Tsukuba (1983) in Japan; and Villigen, Switzerland, 1984. These centers used the accelerators originally constructed for nuclear physics research. The experience at these centers has confirmed the efficacy of protons and light ions in increasing the tumor dose relative to normal tissue dose, with significant improvements in local control and patient survival for several tumor sites. M.R. Raju reviewed the early clinical studies. In 1990, the Loma Linda University Medical Center in California heralded in the age of dedicated medical accelerators when it commissioned its proton therapy facility with a 250-MeV synchrotron. Since then there has been a relatively rapid increase in the number of hospital-based proton treatment centers around the world, and by 2006 there are more than a dozen commercially-built facilities in use, five new facilities under construction, and more in planning stages. In the 1950s larger synchrotrons were built in the GeV region at Brookhaven (3-GeV Cosmotron) and at Berkeley (6-GeV Bevatron), and today most of the world's largest accelerators are synchrotrons. With advances in accelerator design in the early 1970s, synchrotrons at Berkeley and Princeton accelerated ions with atomic numbers

  19. Overview of Light-Ion Beam Therapy

    International Nuclear Information System (INIS)

    Chu, William T.

    2006-01-01

    compared to those in conventional (photon) treatments. Wilson wrote his personal account of this pioneering work in 1997. In 1954 Cornelius Tobias and John Lawrence at the Radiation Laboratory (former E.O. Lawrence Berkeley National Laboratory) of the University of California, Berkeley performed the first therapeutic exposure of human patients to hadron (deuteron and helium ion) beams at the 184-Inch Synchrocyclotron. By 1984, or 30 years after the first proton treatment at Berkeley, programs of proton radiation treatments had opened at: University of Uppsala, Sweden, 1957; the Massachusetts General Hospital-Harvard Cyclotron Laboratory (MGH/HCL), USA, 1961; Dubna (1967), Moscow (1969) and St Petersburg (1975) in Russia; Chiba (1979) and Tsukuba (1983) in Japan; and Villigen, Switzerland, 1984. These centers used the accelerators originally constructed for nuclear physics research. The experience at these centers has confirmed the efficacy of protons and light ions in increasing the tumor dose relative to normal tissue dose, with significant improvements in local control and patient survival for several tumor sites. M.R. Raju reviewed the early clinical studies. In 1990, the Loma Linda University Medical Center in California heralded in the age of dedicated medical accelerators when it commissioned its proton therapy facility with a 250-MeV synchrotron. Since then there has been a relatively rapid increase in the number of hospital-based proton treatment centers around the world, and by 2006 there are more than a dozen commercially-built facilities in use, five new facilities under construction, and more in planning stages. In the 1950s larger synchrotrons were built in the GeV region at Brookhaven (3-GeV Cosmotron) and at Berkeley (6-GeV Bevatron), and today most of the world's largest accelerators are synchrotrons. With advances in accelerator design in the early 1970s, synchrotrons at Berkeley and Princeton accelerated ions with atomic numbers between 6 and 18, at

  20. Ion range measurements using fluorescent nuclear track detectors

    DEFF Research Database (Denmark)

    Klimpki, G.; Osinga, J.-M.; Herrmann, R.

    2013-01-01

    Fluorescent nuclear track detectors (FNTDs) show excellent detection properties for heavy charged particles and have, therefore, been investigated in this study in terms of their potential for in-vivo range measurements. We irradiated FNTDs with protons as well as with C, Mg, S, Fe and Xe ion beams...

  1. Transport of ion beams by magnetic fields on the beam edges

    International Nuclear Information System (INIS)

    Hooper, E.B.

    1975-01-01

    The transport of low energy ion beams (less than 10 keV) by magnetic fields on the edge of the beam is analyzed. Calculations indicate that beams with low transverse temperature can be transported. (U.S.)

  2. Mutation induction of orchids by ion beams

    International Nuclear Information System (INIS)

    Affrida Abu Hassan; Zaiton Ahmad; Sakinah Ariffin; Oono, Yutaka; Hase, Yoshihiro; Shikazono; Naoya; Narumi, Issay; Tanaka, Atsushi

    2010-01-01

    Mutation induction using ionizing radiation provides an effective alternative means for improvement of orchids. In this study, ion beams were used because they have much higher linear energy transfer (LET) than X-rays or gamma rays, and subsequently lead to higher mutation frequency and broad mutation spectrum. The proto corm-like bodies (PLBs) of three orchid species (Dendrobium crumenatum, Dendrobium mirbellianum) were irradiated at various doses with 320 MeV 12 C 6+ ions accelerated by Azimuthally Varying Field (AVF) cyclotron at JAEAs Takasaki Ion Accelerators for Advanced Radiation Application (TIARA). The optimum irradiation condition and the effect of irradiation on each species were studied, particularly on flower colour and morphology, flowering habit and insect resistance. Dose effects on plantlet regeneration for each species were also obtained. Some morphological changes were observed in flowers of Dendrobium crumenatum, whilst one insect resistant mutant was obtained in Dendrobium mirbellianum. (author)

  3. Production of multi-, oligo- and single-pore membranes using a continuous ion beam

    Czech Academy of Sciences Publication Activity Database

    Apel, P. Yu.; Ivanov, O.; Lizunov, N. E.; Mamonova, T. I.; Nechaev, A. N.; Olejniczak, K.; Vacík, Jiří; Dmitriev, S. N.

    2015-01-01

    Roč. 365, DEC (2015), s. 641-645 ISSN 0168-583X R&D Projects: GA MŠk LG14004 Institutional support: RVO:61389005 Keywords : ion beam * irradiation * ion track * etching * single nanopore Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.389, year: 2015

  4. The AMS-02 RICH Imager Prototype - In-Beam Tests with 20 GeV/c per Nucleon Ions -

    CERN Document Server

    Buenerd, M.; Aguilar Benitez, M.; Arruda, L.; Barao, F.; Barrau, A.; Baret, B.; Belmont, E.; Berdugo, J.; Boudoul, G.; Borges, J.; Casadei, D.; Casaus, J.; Delgado, C.; Diaz, C.; Derome, L.; Eraud, L.; Gallin-Martel, L.; Giovacchini, F.; Goncalves, P.; Lanciotti, E.; Laurenti, G.; Malinine, A.; Mana, C.; Marin, J.; Martinez, G.; Menchaca-Rocha, A.; Palomares, C.; Pimenta, M.; Protasov, K.; Sanchez, E.; Seo, E-S.; Sevilla, I.; Torrento, A.; Vargas-Trevino, M.

    2003-01-01

    A prototype of the AMS Cherenkov imager (RICH) has been tested at CERN by means of a low intensity 20 GeV/c per nucleon ion beam obtained by fragmentation of a primary beam of Pb ions. Data have been collected with a single beam setting, over the range of nuclear charges 2beam conditions and using different radiators. The charge Z and velocity beta resolutions have been measured.

  5. Target-ion source unit ionization efficiency measurement by method of stable ion beam implantation

    CERN Document Server

    Panteleev, V.N; Fedorov, D.V; Moroz, F.V; Orlov, S.Yu; Volkov, Yu.M

    The ionization efficiency is one of the most important parameters of an on-line used target-ion source system exploited for production of exotic radioactive beams. The ionization efficiency value determination as a characteristic of a target-ion source unit in the stage of its normalizing before on-line use is a very important step in the course of the preparation for an on-line experiment. At the IRIS facility (Petersburg Nuclear Physics Institute, Gatchina) a reliable and rather precise method of the target-ion source unit ionization efficiency measurement by the method of stable beam implantation has been developed. The method worked out exploits an off-line mass-separator for the implantation of the ion beams of selected stable isotopes of different elements into a tantalum foil placed inside the Faraday cup in the focal plane of the mass-separator. The amount of implanted ions has been measured with a high accuracy by the current integrator connected to the Faraday cup. After the implantation of needed a...

  6. Relativistic, QED and nuclear effects in highly charged ions revealed by resonant electron-ion recombination in storage rings

    International Nuclear Information System (INIS)

    Schippers, Stefan

    2009-01-01

    Dielectronic recombination (DR) of few-electron ions has evolved into a sensitive spectroscopic tool for highly charged ions. This is due to technological advances in electron-beam preparation and ion beam cooling techniques at heavy-ion storage rings. Recent experiments prove unambiguously that DR collision spectroscopy has become sensitive to 2nd order QED and to nuclear effects. This review discusses the most recent developments in high-resolution spectroscopy of low-energy DR resonances, experimental studies of KLL DR of very heavy hydrogen like ions, isotope shift measurements of DR resonances, and the experimental determination of hyperfine induced decay rates in divalent ions utilizing DR.

  7. Fabrication of optical channel waveguides in crystals and glasses using macro- and micro ion beams

    Czech Academy of Sciences Publication Activity Database

    Banyasz, I.; Rajta, I.; Nagy, G. U. L.; Zolnai, Z.; Havránek, Vladimír; Veres, M.; Berneschi, S.; Nunzi-Conti, G.; Righini, G. C.

    2014-01-01

    Roč. 331, JUL (2014), s. 157-162 ISSN 0168-583X R&D Projects: GA MŠk(XE) LM2011019 Institutional support: RVO:61389005 Keywords : channel optical waveguides * ion beam irradiation * focussed ion beam * Er-doped tungsten-tellurite glass * Bismuth germanate * Micro Raman spectroscopy Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.124, year: 2014

  8. Physics and Technology for the Next Generation of Radioactive Ion Beam Facilities: EURISOL

    CERN Document Server

    Kadi, Y; Catherall, R; Giles, T; Stora, T; Wenander, F K

    2012-01-01

    Since the discovery of artificial radioactivity in 1935, nuclear scientists have developed tools to study nuclei far from stability. A major breakthrough came in the eighties when the first high energy radioactive beams were produced at Berkeley, leading to the discovery of neutron halos. The field of nuclear structure received a new impetus, and the major accelerator facilities worldwide rivalled in ingenuity to produce more intense, purer and higher resolution rare isotope beams, leading to our much improved knowledge and understanding of the general evolution of nuclear properties throughout the nuclear chart. However, today, further progress is hampered by the weak beam intensities of current installations which correlate with the difficulty to reach the confines of nuclear binding where new phenomena are predicted, and where the r-process path for nuclear synthesis is expected to be located. The advancement of Radioactive Ion Beam (RIB) science calls for the development of so-called next-generation facil...

  9. Focused ion beam milling of carbon fibres

    International Nuclear Information System (INIS)

    Huson, Mickey G.; Church, Jeffrey S.; Hillbrick, Linda K.; Woodhead, Andrea L.; Sridhar, Manoj; Van De Meene, Allison M.L.

    2015-01-01

    A focused ion beam has been used to mill both individual carbon fibres as well as fibres in an epoxy composite, with a view to preparing flat surfaces for nano-indentation. The milled surfaces have been assessed for damage using scanning probe microscopy nano-indentation and Raman micro-probe analysis, revealing that FIB milling damages the carbon fibre surface and covers surrounding areas with debris of disordered carbon. The debris is detected as far as 100 μm from the milling site. The energy of milling as well as the orientation of the beam was varied and shown to have an effect when assessed by Raman spectroscopy. - Highlights: • Focused ion beam (FIB) milling was used to mill flat surfaces on carbon fibres. • Raman spectroscopy showed amorphous carbon was generated during FIB milling. • The amorphous debris is detected as far as 100 μm from the milling site. • This surface degradation was confirmed by nano-indentation experiments.

  10. Ion beam induces nitridation of silicon

    International Nuclear Information System (INIS)

    Petravic, M.; Williams, J.S.; Conway, M.

    1998-01-01

    High dose ion bombardment of silicon with reactive species, such as oxygen and nitrogen, has attracted considerable interest due to possible applications of beam-induced chemical compounds with silicon. For example, high energy oxygen bombardment of Si is now routinely used to form buried oxide layers for device purposes, the so called SIMOX structures. On the other hand, Si nitrides, formed by low energy ( 100 keV) nitrogen beam bombardment of Si, are attractive as oxidation barriers or gate insulators, primarily due to the low diffusivity of many species in Si nitrides. However, little data exists on silicon nitride formation during bombardment and its angle dependence, in particular for N 2 + bombardment in the 10 keV range, which is of interest for analytical techniques such as SIMS. In SIMS, low energy oxygen ions are more commonly used as bombarding species, as oxygen provides stable ion yields and enhances the positive secondary ion yield. Therefore, a large body of data can be found in the literature on oxide formation during low energy oxygen bombardment. Nitrogen bombardment of Si may cause similar effects to oxygen bombardment, as nitrogen and oxygen have similar masses and ranges in Si, show similar sputtering effects and both have the ability to form chemical compounds with Si. In this work we explore this possibility in some detail. We compare oxide and nitride formation during oxygen and nitrogen ion bombardment of Si under similar conditions. Despite the expected similar behaviour, some large differences in compound formation were found. These differences are explained in terms of different atomic diffusivities in oxides and nitrides, film structural differences and thermodynamic properties. (author)

  11. Performance with lead ions of the LHC beam dump system

    CERN Document Server

    Bruce, R; Jensen, L; Lefèvre, T; Weterings, W

    2007-01-01

    The LHC beam dump system must function safely with 208Pb82+ions. The differences with respect to the LHC proton beams are briefly recalled, and the possible areas for performance concerns discussed, in particular the various beam intercepting devices and the beam instrumentation. Energy deposition simulation results for the most critical elements are presented, and the conclusions drawn for the lead ion operation. The expected performance of the beam instrumentation systems are reviewed in the context of the damage potential of the ion beam and the required functionality of the various safety and post-operational analysis requirements.

  12. A Rare-Ion Beam Facility at iThemba LABS

    Science.gov (United States)

    Bark, R. A.

    2015-11-01

    iThemba LABS, chiefly based around a k=200 Separated Sector Cyclotron (SSC), is a multidisciplinary facility engaged in basic nuclear physics research, materials research, radionuclide production and hadron therapy. A proposal to acquire a new cyclotron to produce rare-ion beams for nuclear and materials research is outlined.

  13. Recent radioactive ion beam program at RIKEN and related topics

    Indian Academy of Sciences (India)

    525–533. Recent radioactive ion beam program at RIKEN and related topics. AKIRA OZAWA. RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan. Abstract. Recent experimental programs at RIKEN concerning RI beams are reviewed. RIKEN has the ring cyclotron (RRC) with high intense heavy-ion beams and large ...

  14. Plasma-Immersion Formation of High-Intensity Ion Beams

    Science.gov (United States)

    Ryabchikov, A. I.; Anan'in, P. S.; Dektyarev, S. V.; Sivin, D. O.; Shevelev, A. E.

    2017-12-01

    For the first time, the possibility of forming high-intensity beams of low-energy metal and gas ions is demonstrated experimentally. The use of a hybrid system for ion-beam formation including plasmaimmersion extraction and ion acceleration and their subsequent ballistic focusing in an equipotential space with neutralization of the space charge of the beam made possible the pulse-periodic formation of titanium and nitrogen ion beams with an ion-current density of more than 1 A/cm2 and a pulsed power density of 2.6 kW/cm2.

  15. The GSI plans for an international accelerator facility for beams of ions and antiprotons

    International Nuclear Information System (INIS)

    Suemmerer, K.

    2003-01-01

    GSI proposes to build a next-generation facility for research with relativistic beams of ions and antiprotons. This facility allows a broad range of topics in nuclear and astrophysics, plasma and atomic physics to be addressed. The topic most interesting in the context of this conference is physics with high-intensity beams of exotic nuclei. In addition, a short overview of the opportunities in the other fields of nuclear physics is given

  16. Wien filter for cooled low-energy radioactive ion beams

    NARCIS (Netherlands)

    Nummela, S; Dendooven, P; Heikkinen, P; Huikari, J; Nieminen, A; Jokinen, A; Rinta-Antila, S; Rubchenya, V.; Aysto, J

    2002-01-01

    A Wien filter for cooled radioactive ion beams has been designed at Ion Guide Isotope Separator On Line technique (IGISOL). The purpose of such device is to eliminate doubly charged ions from the mass separated singly charged ions, based on q = +2-->q = +1 charge exchange process in an ion cooler,

  17. A radioactive ion beam facility using photofission

    CERN Document Server

    Diamond, W T

    1999-01-01

    Use of a high-power electron linac as the driver accelerator for a Radioactive Ion Beam (RIB) facility is proposed. An electron beam of 30 MeV and 100 kW can produce nearly 5x10 sup 1 sup 3 fissions/s from an optimized sup 2 sup 3 sup 5 U target and about 60% of this from a natural uranium target. An electron beam can be readily transmitted through a thin window at the exit of the accelerator vacuum system and transported a short distance through air to a water-cooled Bremsstrahlung-production target. The Bremsstrahlung radiation can, in turn, be transported through air to the isotope-production target. This separates the accelerator vacuum system, the Bremsstrahlung target and the isotope-production target, reducing remote handling problems. The electron beam can be scanned over a large target area to reduce the power density on both the Bremsstrahlung and isotope-production targets. These features address one of the most pressing technological challenges of a high-power RIB facility, namely the production o...

  18. Development of a negative ion-based neutral beam injector in Novosibirsk.

    Science.gov (United States)

    Ivanov, A A; Abdrashitov, G F; Anashin, V V; Belchenko, Yu I; Burdakov, A V; Davydenko, V I; Deichuli, P P; Dimov, G I; Dranichnikov, A N; Kapitonov, V A; Kolmogorov, V V; Kondakov, A A; Sanin, A L; Shikhovtsev, I V; Stupishin, N V; Sorokin, A V; Popov, S S; Tiunov, M A; Belov, V P; Gorbovsky, A I; Kobets, V V; Binderbauer, M; Putvinski, S; Smirnov, A; Sevier, L

    2014-02-01

    A 1000 keV, 5 MW, 1000 s neutral beam injector based on negative ions is being developed in the Budker Institute of Nuclear Physics, Novosibirsk in collaboration with Tri Alpha Energy, Inc. The innovative design of the injector features the spatially separated ion source and an electrostatic accelerator. Plasma or photon neutralizer and energy recuperation of the remaining ion species is employed in the injector to provide an overall energy efficiency of the system as high as 80%. A test stand for the beam acceleration is now under construction. A prototype of the negative ion beam source has been fabricated and installed at the test stand. The prototype ion source is designed to produce 120 keV, 1.5 A beam.

  19. Deflagration wave formed by ion beam, 3

    International Nuclear Information System (INIS)

    Niu, Keishiro; Abe, Takashi; Tamba, Moritake.

    1980-01-01

    An analysis is given for the structure of the deflagration wave which is formed in a target bombarded by an ion beam. Stationary deflagration and/or detonation waves are formed at the surface of the target in a case in which the reaction energy of direct fusion and/or the beam energy deposited in the target are less than a critical value. On the other hand, no solution for stationary wave exists, if the energy deposited in the wave exceeds a critical value. In the latter case, the time-dependent fundamental equations reduce approximately to a self-similar type of equations. Numerical integrations are carried out for this type of differential equations, and an example of self-similar deflagration wave numerically obtained is plotted in the figures. (author)

  20. Development of a focused ion beam micromachining system

    Energy Technology Data Exchange (ETDEWEB)

    Pellerin, J.G.; Griffis, D.; Russell, P.E.

    1988-12-01

    Focused ion beams are currently being investigated for many submicron fabrication and analytical purposes. An FIB micromachining system consisting of a UHV vacuum system, a liquid metal ion gun, and a control and data acquisition computer has been constructed. This system is being used to develop nanofabrication and nanomachining techniques involving focused ion beams and scanning tunneling microscopes.

  1. Focused Ion Beam Fabrication of Microelectronic Structures

    Science.gov (United States)

    1990-12-01

    Focused Ion Beams and Applications, Portland, OR Dec. 1990. 28. Y.L. Wang, H. Temkin , L.R. Harriott, R.A. Logan, and T. Tanban-Ek. Appi. Phys. Lett. 571864...been used.(2 8 ,3 0) In addition, in-situ measurement of adsorption rates and deposition rates can be readily obtained by using a quartz crystal...not well understood at the present time. Possible rate limiting steps in this process " .. are adsorption of molecules, decomposition of molecules, and

  2. Electron temperature effects for an ion beam source

    International Nuclear Information System (INIS)

    Uramoto, Joshin.

    1979-05-01

    A hydrogen high temperature plasma up to 200 eV is produced by acceleration of electrons in a hot hollow cathode discharge and is used as an ion beam source. Then, two characteristics are observed: A rate of the atomic ion (H + ) number increases above 70%. A perveance of the ion beam increases above 30 times compared with that of a cold plasma, while a floating potential of an ion acceleration electrode approaches an ion acceleration potential (- 500 V) according as an increment of the electron temperature. Moreover, a neutralized ion beam can be produced by only the negative floating electrode without an external power supply. (author)

  3. Probing surface magnetism with ion beams

    International Nuclear Information System (INIS)

    Winter, H.

    2007-01-01

    Ion beams can be used to probe magnetic properties of surfaces by a variety of different methods. Important features of these methods are related to trajectories of atomic projectiles scattered from the surface of a solid target and to the electronic interaction mechanisms in the surface region. Both items provide under specific conditions a high sensitivity for the detection of magnetic properties in the region at the topmost layer of surface atoms. This holds in particular for scattering under planar surface channeling conditions, where under grazing impact atoms or ions are reflected specularly from the surface without penetration into the subsurface region. Two different types of methods are employed based on the detection of the spin polarization of emitted or captured electrons and on spin blocking effects for capture into atomic terms. These techniques allow one to probe the long range and short range magnetic order in the surface region

  4. Preliminary results of spatially resolved ECR ion beam profile investigations

    International Nuclear Information System (INIS)

    Panitzsch, L.; Stalder, M.; Wimmer-Schweingruber, R.F.

    2012-01-01

    The profile of an ion beam produced in an Electron Cyclotron Resonance Ion Source (ECRIS) can vary greatly depending on the source settings and the ion-optical tuning. Strongly focussed ion beams form circular structures (hollow beams) as predicted by simulations and observed in experiments. Each of the rings is predicted to be dominated by ions with same or at least similar m/q-ratios due to ion-optical effects. To check this we performed a series of preliminary investigations to test the required tuning capabilities of our ion source. This includes beam focussing (A) and beam steering (B) using a 3D-movable extraction. Having tuned the source to deliver a beam of strongly focussed ions of different ion species and having steered this beam to match the transmittance area of the sector magnet we also recorded the ion charge state distribution of the strongly focussed beam profile at different, spatially limited positions (C). The preliminary results will be introduced within this paper: it appears that our 3D-movable extraction is very efficient to steer and to focus the beam strongly. The paper is followed by the slides of the presentation. (authors)

  5. Important atomic physics issues for ion beam fusion

    International Nuclear Information System (INIS)

    Bangerter, R.O.

    1985-01-01

    This paper suggests several current atomic physics questions important to ion beam fusion. Among the topics discussed are beam transport, beam-target interaction, and reactor design. The major part of the report is discussion concerning areas of research necessary to better understand beam-target interactions

  6. Recent radioactive ion beam program at RIKEN and related topics

    Indian Academy of Sciences (India)

    Recent experimental programs at RIKEN concerning RI beams are reviewed. RIKEN has the ring cyclotron (RRC) with high intense heavy-ion beams and large acceptance fragment separator, RIPS. The complex can provide high intense RI-beams. By using the high intense RI-beams, a variety of experiments have been ...

  7. Materials processing with intense pulsed ion beams

    International Nuclear Information System (INIS)

    Rej, D.J.; Davis, H.A.; Olson, J.C.

    1996-01-01

    We review research investigating the application of intense pulsed ion beams (IPIBs) for the surface treatment and coating of materials. The short range (0.1-10 μm) and high-energy density (1-50 J/cm 2 ) of these short-pulsed (≤ 1 μs) beams (with ion currents I = 5 - 50 kA, and energies E = 100 - 1000 keV) make them ideal to flash-heat a target surface, similar to the more familiar pulsed laser processes. IPIB surface treatment induces rapid melt and solidification at up to 10 10 K/s to cause amorphous layer formation and the production of non-equilibrium microstructures. At higher energy density the target surface is vaporized, and the ablated vapor is condensed as coatings onto adjacent substrates or as nanophase powders. Progress towards the development of robust, high-repetition rate IPIB accelerators is presented along with economic estimates for the cost of ownership of this technology

  8. Air Quality Monitoring with Routine Utilization of Ion Beam Analysis

    International Nuclear Information System (INIS)

    Wegrzynek, D.

    2013-01-01

    Full text: Information on source contributions to ambient air particulate concentrations is a vital tool for air quality management. Traditional gravimetric analysis of airborne particulate matter is unable to provide information on the sources contributing to air particulate concentrations. Ion beam analysis is used to identify the elemental composition of air particulates for source apportionment and determining the relative contribution of biogenic and anthropogenic sources to air particulate pollution. The elemental composition is obtained by proton induced X-ray emission technique (PIXE), which is an ion beam analysis (IBA) technique. The element concentrations are deduced from the X ray spectra produced when the particulate collected on a filter is bombarded with a high-energy proton beam. As part of the UNDP/IAEA/RCA Project RAS/8/082 ‘Better Management of the Environment, Natural Resources and Industrial Growth through Isotope and Radiation Technology,’ a collaborative alliance was formed between the Institute of Geological and Nuclear Sciences Limited and the Wellington Regional Council, New Zeland [1]. The purpose of the project was to examine the elemental composition of air particulate matter and determine the origins through source apportionment techniques. In New Zealand PM 10 and PM 2.5 fractions have been collected at the industrial area of Seaview, Wellington over two years using a GENT stacked filter unit sampler. Concentrations of elements with atomic mass above neon were determined using ion beam analysis and elemental carbon concentrations were determined using a reflectometer. Specific ambient source elemental 'fingerprints' were then determined by factor analysis and the relative contributions of various local and regional sources were assessed. The significant factors (sources) were determined to be sea salt, soil, industry, and combustion sources. Local industry was found to contribute to ambient lead concentrations. (author)

  9. Recent US advances in ion-beam-driven high energy density physics and heavy ion fusion

    International Nuclear Information System (INIS)

    Logan, B.G.; Bieniosek, F.M.; Celata, C.M.; Coleman, J.; Greenway, W.; Henestroza, E.; Kwan, J.W.; Lee, E.P.; Leitner, M.; Roy, P.K.; Seidl, P.A.; Vay, J.-L.; Waldron, W.L.; Yu, S.S.; Barnard, J.J.; Cohen, R.H.; Friedman, A.; Grote, D.P.; Kireeff Covo, M.; Molvik, A.W.; Lund, S.M.; Meier, W.R.; Sharp, W.; Davidson, R.C.; Efthimion, P.C.; Gilson, E.P.; Grisham, L.; Kaganovich, I.D.; Qin, H.; Sefkow, A.B.; Startsev, E.A.; Welch, D.; Olson, C.

    2007-01-01

    During the past two years, significant experimental and theoretical progress has been made in the US heavy ion fusion science program in longitudinal beam compression, ion-beam-driven warm dense matter, beam acceleration, high brightness beam transport, and advanced theory and numerical simulations. Innovations in longitudinal compression of intense ion beams by >50X propagating through background plasma enable initial beam target experiments in warm dense matter to begin within the next two years. We are assessing how these new techniques might apply to heavy ion fusion drivers for inertial fusion energy

  10. Design of a negative ion neutral beam system for TNS

    International Nuclear Information System (INIS)

    Easoz, J.R.

    1978-05-01

    A conceptual design of a neutral beam line based on the neutralization of negative deuterium ions is presented. This work is a detailed design of a complete neutral beam line based on using negative ions from a direct extraction source. Anticipating major technological advancements, beam line components have been scaled including the negative ion sources and components for the direct energy recovery of charged beams and high speed cryogenic pumping. With application to the next step in experimental fusion reactors (TNS), the neutral beam injector system that has been designed provides 10 MW of 200 keV neutral deuterium atoms. Several arms are required for plasma ignition

  11. Biological effect of penetration controlled irradiation with ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Atsushi; Shimizu, Takashi; Kikuchi, Masahiro; Kobayashi, Yasuhiko; Watanabe, Hiroshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Yamashita, Takao

    1997-03-01

    To investigate the effect of local irradiation with ion beams on biological systems, technique for penetration controlled irradiation has been established. The range in a target was controlled by changing the distance from beam window in the atmosphere, and could be controlled linearly up to about 31 {mu}m in biological material. In addition, the effects of the penetration controlled irradiations with 1.5 MeV/u C and He ions were examined using tobacco pollen. The increased frequency of leaky pollen produced by ion beams suggests that the efficient pollen envelope damages would be induced at the range-end of ion beams. (author)

  12. Monoenergetic ion beams from ultrathin foils irradiated by ultrahigh-contrast circularly polarized laser pulses

    Directory of Open Access Journals (Sweden)

    O. Klimo

    2008-03-01

    Full Text Available Acceleration of ions from ultrathin foils irradiated by intense circularly polarized laser pulses is investigated using one- and two-dimensional particle simulations. A circularly polarized laser wave heats the electrons much less efficiently than the wave of linear polarization and the ion acceleration process takes place on the front side of the foil. The ballistic evolution of the foil becomes important after all ions contained in the foil have been accelerated. In the ongoing acceleration process, the whole foil is accelerated as a dense compact bunch of quasineutral plasma implying that the energy spectrum of ions is quasimonoenergetic. Because of the ballistic evolution, the velocity spread of an accelerated ion beam is conserved while the average velocity of ions may be further increased. This offers the possibility to control the parameters of the accelerated ion beam. The ion acceleration process is described by the momentum transfer from the laser beam to the foil and it might be fairly efficient in terms of the energy transferred to the heavy ions even if the foil contains a comparable number of light ions or some surface contaminants. Two-dimensional simulations confirm the formation of the quasimonoenergetic spectrum of ions and relatively good collimation of the ion bunch, however the spatial distribution of the laser intensity poses constraints on the maximum velocity of the ion beam. The present ion acceleration mechanism might be suitable for obtaining a dense high energy beam of quasimonoenergetic heavy ions which can be subsequently applied in nuclear physics experiments. Our simulations are complemented by a simple theoretical model which provides the insights on how to control the energy, number, and energy spread of accelerated ions.

  13. Prototype ion source for JT-60 neutral beam injectors

    International Nuclear Information System (INIS)

    Akiba, M.

    1981-01-01

    A prototype ion source for JT-60 neutral beam injectors has been fabricated and tested. Here, we review the construction of the prototype ion source and report the experimental results about the source characteristics that has been obtained at this time. The prototype ion source is now installed at the prototype unit of JT-60 neutral beam injection units and the demonstration of the performances of the ion source and the prototype unit has just started

  14. New method of beam bunching in free-ion lasers

    Energy Technology Data Exchange (ETDEWEB)

    Bessonov, E.G. [Lebedev Physics Institute, Moscow (Russian Federation)

    1995-12-31

    An effective ion beam bunching method is suggested. This method is based on a selective interaction of line spectrum laser light (e.g. axial mode structure light) with non-fully stripped ion beam cooled in a storage rings, arranging the ion beam in layers in radial direction of an energy-longitudinal coordinate plane and following rotation of the beam at the right angle after switching on the RF cavity or undulator grouper/buncher. Laser cooling of the ion beam can be used at this position after switching off the resonator to decrease the energy spread caused by accelerating field of the resonator. A relativistic multilayer ion mirror will be produced this way. Both monochromatic laser beams and intermediate monochromaticity and bandwidth light sources of spontaneous incoherent radiation can be used for production of hard and high power electromagnetic radiation by reflection from this mirror. The reflectivity of the mirror is rather high because of the cross-section of the backward Rayleigh scattering of photon light by non-fully stripped relativistic ions ({approximately}{lambda}{sup 2}) is much greater ({approximately} 10{divided_by}15 orders) then Thompson one ({approximately} r{sub e}{sup 2}). This position is valid even in the case of non-monochromatic laser light ({Delta}{omega}/{omega} {approximately} 10{sup -4}). Ion cooling both in longitudinal plane and three-dimensional radiation ion cooling had been proposed based on this observation. The using of these cooling techniques will permit to store high current and low emittance relativistic ion beams in storage rings. The bunched ion beam can be used in ordinary Free-Ion Lasers as well. After bunching the ion beam can be extracted from the storage ring in this case. Storage rings with zero momentum compaction function will permit to keep bunching of the ion beam for a long time.

  15. Molecular characterization of microbial mutations induced by ion beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ichida, Hiroyuki [Graduate School of Science and Technology, Chiba University, Matsudo, Chiba 271-8510 (Japan); Accelerator Applications Research Group, Nishina Center for Accelerator-Based Science, RIKEN, Wako, Saitama 351-0198 (Japan)], E-mail: ichida@riken.jp; Matsuyama, Tomoki [Cellular Biochemistry Laboratory, Discovery Research Institute, RIKEN, Wako, Saitama 351-0198 (Japan); Ryuto, Hiromichi [Accelerator Operation Group, Nishina Center for Accelerator-Based Science, RIKEN, Wako, Saitama 351-0198 (Japan); Hayashi, Yoriko [Accelerator Applications Research Group, Nishina Center for Accelerator-Based Science, RIKEN, Wako, Saitama 351-0198 (Japan); Fukunishi, Nobuhisa [Accelerator Operation Group, Nishina Center for Accelerator-Based Science, RIKEN, Wako, Saitama 351-0198 (Japan); Abe, Tomoko [Accelerator Applications Research Group, Nishina Center for Accelerator-Based Science, RIKEN, Wako, Saitama 351-0198 (Japan); Koba, Takato [Graduate School of Science and Technology, Chiba University, Matsudo, Chiba 271-8510 (Japan)

    2008-03-01

    A positive selection system for gene disruption using a sucrose-sensitive transgenic rhizobium was established and used for the molecular characterization of mutations induced by ion beam irradiations. Single nucleotide substitutions, insertions, and deletions were found to occur in the sucrose sensitivity gene, sacB, when the reporter line was irradiated with highly accelerated carbon and iron ion beams. In all of the insertion lines, fragments of essentially the same sequence and of approximately 1188 bp in size were identified in the sacB regions. In the deletion lines, iron ions showed a tendency to induce larger deletions than carbon ions, suggesting that higher LET beams cause larger deletions. We found also that ion beams, particularly 'heavier' ion beams, can produce single gene disruptions and may present an effective alternative to transgenic approaches.

  16. A new ion beam facility based on a 3 MV Tandetron™ at IFIN-HH, Romania

    Energy Technology Data Exchange (ETDEWEB)

    Burducea, I.; Straticiuc, M. [Horia Hulubei National Institute of Physics and Nuclear Engineering, IFIN-HH, Măgurele 077125 (Romania); Ghiță, D.G., E-mail: dan.ghita@nipne.ro [Horia Hulubei National Institute of Physics and Nuclear Engineering, IFIN-HH, Măgurele 077125 (Romania); Moșu, D.V.; Călinescu, C.I. [Horia Hulubei National Institute of Physics and Nuclear Engineering, IFIN-HH, Măgurele 077125 (Romania); Podaru, N.C.; Mous, D.J.W. [High Voltage Engineering Europa B.V., P.O. Box 99, 3800AB Amersfoort (Netherlands); Ursu, I.; Zamfir, N.V. [Horia Hulubei National Institute of Physics and Nuclear Engineering, IFIN-HH, Măgurele 077125 (Romania)

    2015-09-15

    A 3 MV Tandetron™ accelerator system has been installed and commissioned at the “Horia Hulubei” National Institute for Physics and Nuclear Engineering – IFIN-HH, Măgurele, Romania. The main purpose of this machine is to strengthen applied nuclear physics research ongoing in our institute for more than four decades. The accelerator system was developed by High Voltage Engineering Europa B.V. (HVE) and comprises three high energy beam lines. The first beam line is dedicated to ion beam analysis (IBA) techniques: Rutherford Backscattering Spectrometry – RBS, Nuclear Reaction Analysis – NRA, Particle Induced X-ray and γ-ray Emission – PIXE and PIGE and micro-beam experiments – μ-PIXE. The second beam line is dedicated to high energy ion implantation experiments and the third beam line was designed mainly for nuclear cross-sections measurements used in nuclear astrophysics. A unique feature, the first time in operation at an accelerator facility is the Na charge exchange canal (CEC), which is used to obtain high intensity beams of He{sup −} of at least 3 μA. The results of the acceptance tests demonstrate the huge potential of this new facility in various fields, from IBA to radiation hardness studies and from medical or environmental applications to astrophysics. The main features of the accelerator are presented in this paper.

  17. Impact of Various Beam Parameters on Lateral Scattering in Proton and Carbon-ion Therapy.

    Science.gov (United States)

    Ebrahimi Loushab, M; Mowlavi, A A; Hadizadeh, M H; Izadi, R; Jia, S B

    2015-12-01

    In radiation therapy with ion beams, lateral distributions of absorbed dose in the tissue are important. Heavy ion therapy, such as carbon-ion therapy, is a novel technique of high-precision external radiotherapy which has advantages over proton therapy in terms of dose locality and biological effectiveness. In this study, we used Monte Carlo method-based Geant4 toolkit to simulate and calculate the effects of energy, shape and type of ion beams incident upon water on multiple scattering processes. Nuclear reactions have been taken into account in our calculation. A verification of this approach by comparing experimental data and Monte Carlo methods will be presented in an upcoming paper. Increasing particle energies, the width of the Bragg curve becomes larger but with increasing mass of particles, the width of the Bragg curve decreases. This is one of the advantages of carbon-ion therapy to treat with proton. The transverse scattering of dose distribution is increased with energy at the end of heavy ion beam range. It can also be seen that the amount of the dose scattering for carbon-ion beam is less than that of proton beam, up to about 160mm depth in water. The distortion of Bragg peak profiles, due to lateral scattering of carbon-ion, is less than proton. Although carbon-ions are primarily scattered less than protons, the corresponding dose distributions, especially the lateral dose, are not much less.

  18. Broad beam ion source operation with four common gases

    Science.gov (United States)

    Pak, S.; Sites, J. R.

    1980-01-01

    A Kaufman-type broad beam ion source, used for sputtering and etching purposes, has been operated with Ar, Kr, O2 and N2 gas inputs over a wide range of beam energies (200-1200 eV) and gas flow rates (1-10 sccm). The maximum ion beam current density for each gas saturates at about 2.5 mA/sq cm as gas flow is increased. The discharge threshold voltage necessary to produce a beam and the beam efficiency (beam current/molecular current), however, varied considerably. Kr had the lowest threshold and highest efficiency, Ar next, then N2 and O2. The ion beam current varied only weakly with beam energy for low gas flow rates, but showed a factor of two increase when the gas flow was higher.

  19. 12th International Symposium on Electron Beam Ion Sources and Traps and Their Applications

    CERN Document Server

    Schwarz, Stefan; Baumann, Thomas M

    2014-01-01

    The EBIST symposia date back to 1977 and have taken place every 3 to 4 years to specifically discuss progress and exchange ideas in the design, development, applications of electron beam ion sources and traps, and the physics with highly charged ions. The topics to be covered in 2014 are: - Progress and status of EBIS/T facilities, - Atomic spectroscopy of highly charged ions, - Charge-exchange and surface interaction with highly charged ions, - Charge breeding of stable and radioactive isotopes, - Nuclear physics with highly charged ions.

  20. Prototyping of beam position monitor for medium energy beam transport section of RAON heavy ion accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Hyojae, E-mail: lkcom@ibs.re.kr; Jin, Hyunchang; Jang, Ji-Ho; Hong, In-Seok [Rare Isotope Science Project, Institute for Basic Science, Daejeon (Korea, Republic of)

    2016-02-15

    A heavy ion accelerator, RAON is going to be built by Rare Isotope Science Project in Korea. Its target is to accelerate various stable ions such as uranium, proton, and xenon from electron cyclotron resonance ion source and some rare isotopes from isotope separation on-line. The beam shaping, charge selection, and modulation should be applied to the ions from these ion sources because RAON adopts a superconducting linear accelerator structure for beam acceleration. For such treatment, low energy beam transport, radio frequency quadrupole, and medium energy beam transport (MEBT) will be installed in injector part of RAON accelerator. Recently, development of a prototype of stripline beam position monitor (BPM) to measure the position of ion beams in MEBT section is under way. In this presentation, design of stripline, electromagnetic (EM) simulation results, and RF measurement test results obtained from the prototyped BPM will be described.

  1. Molecular-beam epitaxial growth and ion-beam analysis systems for functional materials research

    International Nuclear Information System (INIS)

    Takeshita, H.; Aoki, Y.; Yamamoto, S.; Naramoto, H.

    1992-01-01

    Experimental systems for molecular beam epitaxial growth and ion beam analysis have been designed and constructed for the research of inorganic functional materials such as thin films and superlattices. (author)

  2. Proceedings of the third workshop on negative ion formation and beam handling

    International Nuclear Information System (INIS)

    Takagi, Akira; Mori, Yoshiharu

    1994-02-01

    The workshop was held on August 18 and 19, 1993, at the National Laboratory for High Energy Physics. By the recent remarkable development of negative ion sources and negative ion control technology, the fields of application of negative ions extended, such as accelerators, nuclear fusion, surface analysis and ion implantation. However, there are many problems which are not yet clarified, for example the formation of negative ions, beam conveyance, the behavior of negative ions in plasma. At the workshop, lectures were given on 350 keV, 0.2 A negative ion source, simulation of hybrid negative ion source, RF negative ion source, ECR-BLAKE negative ion source, energy extension by tandem acceleration of heavy ion beam, development of negative ion source for NBI in National Institute for Fusion Science, direct extraction of Na - and Na 2 - from sodium plasma, negative ion formation from Li-H system, negative ion measurement in plasma by laser, experimental results of Uramoto type sheet plasma negative ion source in Kyoto University and others. (K.I.)

  3. PIXE and ion beam analysis in forensics

    International Nuclear Information System (INIS)

    Bailey, Melanie; Warmenhoven, John; Chrislopher, Matt; Kirkby, Karen; Palitsin, Vladimir; Grime, Geoff; Jeynes, Chris; Jones, Brian; Wenn, Roger

    2013-01-01

    Full text: University of Surrey has, for the past four years, collaborated with police institutions from across Europe and the rest of the world lo scope potential applications of ion beam analysis (IBA) in forensic science. In doing this we have consulted practitioners across a range of forensic disciplines, and critically compared IBA with conventional characterisation techniques to investigate the areas in which IBA can add evidential value. In this talk, the results of this feasibility study will be presented, showing the types of sample for which IBA shows considerable promise. We will show how a combination of PIXE with other IBA techniques (EBS, PIGE, MeV-SIMS) can be used to give unprecedented characterisation of forensic samples and comment on the significance of these results for forensic casework. We will also show cases where IBA not appear to add any significant improvement over conventional techniques. (author)

  4. The emittance of high current heavy ion beams

    International Nuclear Information System (INIS)

    White, N.R.; Devaney, A.S.

    1989-01-01

    Ion implantation is the main application for high current heavy ion beams. Transfer ratio is defined as the ratio of the total ion current leaving the ion source to the current delivered to the endstation. This ratio is monitored and logged and its importance is explained. It is also affected by other factors, such as the isotopic and molecular composition of the total ion beam. The transfer ratio reveals the fraction of ions which are intercepted by parts of the beamline system. The effects of these ions are discussed in two categories: processing purity and reliability. In discussing the emittance of ribbon beams, the two orthogonal planes are usually considered separately. Longitudinal emittance is determined by slot length and by plasma ion temperature. It has already been revealed that the longitudinal divergence of the beams from BF3 is perhaps double that of the beam from arsenic vapour or argon, at the same total perveance from the ion source. This poses the question: why is the ion temperature higher for BF3 than for As or Ar? The transverse emittance is in practical terms dominated by the divergence. It is the most fruitful area for improvement in most real-world systems. There is an intrinsic divergence arising from initial ion energies within the plasma, and there is emittance growth that can occur as a result of aberration in the beam extraction optics. (N.K.)

  5. Application of ECR ion source beams in atomic physics

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, F.W.

    1987-01-01

    The availability of intense, high charge state ion beams from ECR ion sources has had significant impact not only on the upgrading of cyclotron and synchrotron facilities, but also on multicharged ion collision research, as evidenced by the increasing number of ECR source facilities used at least on a part time basis for atomic physics research. In this paper one such facility, located at the ORNL ECR source, and dedicated full time to the study of multicharged ion collisions, is described. Examples of applications of ECR ion source beams are given, based on multicharged ion collision physics studies performed at Oak Ridge over the last few years. 21 refs., 18 figs., 2 tabs.

  6. Generation of an intense ion beam by a pinched relativistic electron beam

    International Nuclear Information System (INIS)

    Gilad, P.; Zinamon, Z.

    1976-01-01

    The pinched electron beam of a pulsed electron accelerator is used to generate an intense beam of ions. A foil anode and vacuum drift tube are used. The space charge field of the pinched beam in the tube accelerates ions from the foil anode. Ion currents of 10 kA at a density of 5kA/cm 2 with pulse length of 50 ns are obtained using a 5 kJ, 450 kV, 3 Ω diode. (author)

  7. High energy density in matter produced by heavy ion beams

    International Nuclear Information System (INIS)

    1987-08-01

    This annual report summarizes the results of research carried out in 1986 within the framework of the program 'High Energy Density in Matter Produced by Heavy Ion Beams' which is funded by the Federal Ministry for Research and Technology. Its initial motivation and its ultimate goal is the question whether inertial confinement can be achieved by intense beams of heavy ions. (orig./HSI)

  8. Wave Propagation in an Ion Beam-Plasma System

    DEFF Research Database (Denmark)

    Jensen, T. D.; Michelsen, Poul; Juul Rasmussen, Jens

    1979-01-01

    The spatial evolution of a velocity- or density-modulated ion beam is calculated for stable and unstable ion beam plasma systems, using the linearized Vlasov-Poisson equations. The propagation properties are found to be strongly dependent on the form of modulation. In the case of velocity...

  9. Effect of ion beam irradiation on metal particle doped polymer ...

    Indian Academy of Sciences (India)

    that the surface roughness increases after ion beam irradiation. Keywords. Composite materials; ion beam irradiation; dielectric properties; X-ray diffraction. 1. Introduction. Various metal fillers were incorporated in polymers to pro- duce novel functionalized composites, which have found extensive applications, such as ...

  10. Focused Ion Beam Nano-structuring for Applications in Photonics

    NARCIS (Netherlands)

    Ay, F.; de Ridder, R.M.; Pollnau, Markus

    2010-01-01

    To date, nano- and micro-structuring has commonly been implemented by a combination of specifically optimized processes of electron-beam lithography and reactive ion etching, thus limiting the range of materials that can be structured to only a few. In this talk we will introduce focused ion beam

  11. Analysis of Beam-Beam Kink Instability in a Linac-Ring Electron-Ion Collider

    International Nuclear Information System (INIS)

    V. Lebedev; J. Bisognano; R. Li; B. Yunn

    2001-01-01

    A linac-ring collision scheme was considered in recent proposals of electron-gold colliders (eRHIC) and polarized-electron light-ion colliders (EPIC). The advantages of using an energy-recovered linac for the electron beam is that it avoids the limitation of beam-beam tune shift inherent in a storage ring, pertains good beam quality and easy manipulation of polarization. However, the interaction of the ion beam in the storage ring with the electron beam from the linac acts analogously to a transverse impedance, and can induce unstable behavior of the ion beam similar to the strong head-tail instability. In this paper, this beam-beam kink instability with head-tail effect is analyzed using the linearized Vlasov equation, and the threshold of transverse mode coupling instability is obtained

  12. Reconstruction of negative hydrogen ion beam properties from beamline diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Ruf, Benjamin

    2014-09-25

    For the experimental fusion reactor ITER, which should show the feasibility of sustaining a fusion plasma with a positive power balance, some technology still has to be developed, amongst others also the plasma heating system. One heating technique is the neutral beam injection (NBI). A beam of fast deuterium atoms is injected into the fusion plasma. By heavy particle collisions the beam particles give their energy to the plasma. A NBI system consists of three major components. First, deuterium ions are generated in a low temperature, low pressure plasma of an ion source. At ITER, the requirements on the beam energy of 1 MeV cause the necessity of negative charged deuterium ions. Secondly, the ions are accelerated within an acceleration system with several grids, where the plasma grid is the first grid. The grids are on different descending high voltage potentials. The source itself is on the highest negative potential. Thirdly, the fast deuterium ions have to be neutralised. This thesis deals with the second step in the mentioned beam system, the ion acceleration and beam formation. The underlying experiments and measurements were carried out at the testbeds BATMAN (BAvarianTest MAchine for Negative ions) and ELISE (Extraction from a Large Ion Source Experiment) at the Max-Planck-Institut fuer Plasmaphysik Garching (IPP Garching). The main goal of this thesis is to provide a tool which allows the determination of the beam properties. These are beam divergence, stripping losses and beam inhomogeneity. For this purpose a particle trajectory code has been developed from scratch, namely BBC-NI (Bavarian Beam Code for Negative Ions). The code is able to simulate the whole beam and the outcome of several beam diagnostic tools. The data obtained from the code together with the measurements of the beam diagnostic tools should allow the reconstruction of the beam properties. The major beam diagnostic tool, which is used in this thesis, is the beam emission spectroscopy

  13. Experiments on Ion Beam Space-Charge Neutralization with Pulsed Electron Beams

    CERN Document Server

    Herleb, U

    1998-01-01

    Space-charge neutralization of heavy ion beams with electron beam pulses generated by electron guns incorporating ferroelectric cathodes has been experimentally investigated. Several experiments are described, the results of which prove that the intensity of selected ion beam parts with defined charge states generated in a laser ion source can be increased by an order of magnitude. For elevated charge states the intensity amplification is more significant than for low charge states. A charge enhancement factor of four has been achieved by neutralization with pulsed electron beams for Al7+ ions generated from an aluminium target.

  14. Can one crystallize a heavy ion beam?

    International Nuclear Information System (INIS)

    Hasse, R.W.

    1990-05-01

    We study the possibility of obtaining liquid or crystalline ordered structures in a cooled heavy ion beam in a storage ring. First the structure of very cold ions confined in a cylindrically symmetric static potential is explored by means of molecular dynamics calculations. Liquid like structures are obtained for the ratio of average Coulomb to thermal energies and Γ ≅ 10 and crystalline structures like strings, zigzags, helices, tetrehedra, intertwined helices, polygons, etc. emerge for Γ > 25. For larger densities, the particles arrange in cylindrical shells and form equilateral triangles on their surfaces arranged in hexagons which are characteristic of two-dimensional Coulomb solids. The molecular dynamics results are compared to results of energy minimization of these structures or of geometrical models. Realistic molecular dynamics calculations in the lattice of the Experimental Storage Ring at GSI Darmstadt including the effects of the bending, focussing and defocussing magnets, of the free sections and of the electron cooler revealed that such structures at higher densities are easily destroyed by heating through shearing forces. Therefore the dynamics of the simple Coulomb string is explored in more detail. The potential energy for large amplitude longitudinal and transverse vibrations is calculated and the dispersion relations and response functions in the harmonic limit are given and possible excitation mechanisms are discussed. (orig.)

  15. Ion beam characteristics of a gas filled accelerator tube

    International Nuclear Information System (INIS)

    Berg, R.S.; Bickes, R.W. Jr.; Boers, J.E.; Shope, L.A.

    1980-01-01

    A gas filled tube used to produce a pulsed neutron flux with the D(T, 4 He)n reaction is described. Deuterium and tritium ions generated in a reflex discharge are extracted and accelerated to 100 keV by means of an accelerator electrode onto a deutero-tritide target electrode. The electrodes are designed to focus the ion beam onto the target. Total tube currents consisting of extracted ions, unsuppressed secondary electrons, and ions generated by interactions with the background gas are typically 100mA. Characteristics of the extracted ion beam are discussed. Accelerating voltages greater than 50kV are required to focus the beam through the accelerator aperture for configurations that give beams with the proper energy density at the target. The perveance of the beam is defined. Maximum perveance values are 2 to 10 nanopervs. Tube focussing and neutron production characteristics are described

  16. Heavy ion beams from an Alphatross source for use in calibration and testing of diagnostics

    Science.gov (United States)

    Ward, R. J.; Brown, G. M.; Ho, D.; Stockler, B. F. O. F.; Freeman, C. G.; Padalino, S. J.; Regan, S. P.

    2016-10-01

    Ion beams from the 1.7 MV Pelletron Accelerator at SUNY Geneseo have been used to test and calibrate many inertial confinement fusion (ICF) diagnostics and high energy density physics (HEDP) diagnostics used at the Laboratory for Laser Energetics (LLE). The ion source on this accelerator, a radio-frequency (RF) alkali-metal charge exchange source called an Alphatross, is designed to produce beams of hydrogen and helium isotopes. There is interest in accelerating beams of carbon, oxygen, argon, and other heavy ions for use in testing several diagnostics, including the Time Resolved Tandem Faraday Cup (TRTF). The feasibility of generating these heavy ion beams using the Alphatross source will be reported. Small amounts of various gases are mixed into the helium plasma in the ion source bottle. A velocity selector is used to allow the desired ions to pass into the accelerator. As the heavy ions pass through the stripper canal of the accelerator, they emerge in a variety of charge states. The energy of the ion beam at the high-energy end of the accelerator will vary as a function of the charge state, however the maximum energy deliverable to target is limited by the maximum achievable magnetic field produced by the accelerator's steering magnet. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  17. Electromagnetic ion beam instability upstream of the earth's bow shock

    International Nuclear Information System (INIS)

    Gary, S.P.; Gosling, J.T.; Forslund, D.W.

    1981-01-01

    The linear theory of the electromagnetic ion beam instability for arbitrary angles of propagation has been studied. The parameters considered in the theory are typical of the solar wind upstream of the earth's bow shock when a 'reflected' proton beam is present. Maximum growth occurs for propagation parallel to the ambient field B, but this instability also displays significant growth at wave-vectors oblique to B, Oblique, unstable modes seem to be the likely source of the compressive magnetic fluctuations recently observed in conjunction with 'diffuse' ion population. An energetic ion beam does not directly give rise to linear growth of either ion acoustic or whistler mode instabilities

  18. Heavy ion particle beam interaction with a hot ionized target

    International Nuclear Information System (INIS)

    Dei-Cas, R.; Bardy, J.; Beuve, M.A.; Laget, J.P.; Menier, A.; Renaud, M.

    1983-03-01

    The present status of the experimental facility consisting of a heavy ion beam travelling through a laser created plasma target is described. Some aspects such as laser-tandem coupling, beam performances, constraints on the plasma parameter ranges, plasma and beam diagnostics are analyzed

  19. Ion beam probe diagnostic system for the LITE experiment

    International Nuclear Information System (INIS)

    Stufflebeam, J.H.; Jennings, W.C.; Hickok, R.L.

    1974-11-01

    The problem of defocusing of the ion beam by the strong gradients in the magnetic field was discussed. It was shown this can be overcome by a linear field lens to shape the initial beam, or by proper selection of the size and position of the secondary ion detector. The results of the preliminary beam alignment were presented and the favorable comparison of the scaling formula and computer simulation was evident

  20. Beam dynamics calculations for the acceleration of different ions in a heavy ion linac

    International Nuclear Information System (INIS)

    Deitinghoff, H.; Parisi, G.; Sauer, A.; Pabst, M.

    1996-01-01

    Heavy ion linear accelerators are well suited as driver in heavy ion inertial fusion facilities. In present scenarios the acceleration of different ion species or the simultaneous acceleration of different isotopes in the same linac are discussed. Beam dynamics calculations have been performed to check the beam behaviour and the conditions for such a kind of operation in RFQ and DTL. (author)

  1. Study of biomaterials by ion-beam based methods

    International Nuclear Information System (INIS)

    Racolta, Petru; Craciun, Liviu; Cincu, Emanuela; Voiculescu, Dana; Muresan, Ofelia; Serban, Alin; Filip, Andrei Ilie; Bunea, Danil; Antoniac, Vasile; Tudor, Tiberiu Laurian; Visan, Teodor; Visan, Sanda; Ibris, Neluta

    2002-01-01

    The extension lifetime of prosthetic devices, dental materials and orthodontic devices is one main goal of the international medical supply community. In the frame of an interdisciplinary national project, IFIN-HH has started experimentation on some alternative procedures to study the wear/corrosion phenomena of biological materials by using ion-beam based techniques. Since joint prostheses are mechanical bearings there are concerns over friction and wear just as there are with any bearing. These concerns date back to the early introduction of total hip prostheses and were shown to be justified by the early failures due to wear. Subsequently, changes in materials and designs reduced the incidence of wear failure to a low level at which failures due to other mechanisms became dominant. Interest turned to preventing femoral component fracture, reducing the rates of infection, and reducing the rates of loosening. Attention to wear as a mechanism of failure has recently increased. The failure rate for joint replacement at the hip or knee has been progressively reduced. The biologic effects of wear debris have been recognized; wearing out of the prosthesis is no longer a prerequisite for an adverse outcome. There is an active search for new materials with increased wear resistance. In the case of metallic component from hip, knee prostheses and dental alloys, we present the optimum nuclear reactions according with the main parameters of our U-120 Cyclotron (p, d, E max = 13 MeV and α particle, E max = 26 MeV). In the case of polymers, one of an articulating couple of the prosthetic devices, direct activation causes severe changes in its surface morphology and its structure (formation of defects and free radicals). We have developed an indirect activation mode using the principle of recoil ion implantation, applied to 56 Co radioactive ions generated by proton particle beams on a Fe target (thickness ∼ 10 mm). A thin target of elementary composition A is bombarded by

  2. Beam stopper and ion source for SECAR experiments at FRIB

    Science.gov (United States)

    Duncan, Austin; Liu, Yuan; Smith, Michael; Kozub, Raymond

    2017-09-01

    The SEparator for CApture Reactions (SECAR) being built at the Facility for Rare Isotope Beams (FRIB) is optimized for direct measurements of low energy capture reactions important in novae, supernovae, X-ray bursts, and other astrophysical environments. SECAR is designed to have a performance that significantly exceeds that of all previous recoil separators used for astrophysics measurements, and when completed will be the flagship apparatus for the FRIB nuclear astrophysics community. For these experiments, rare isotope beams produced via fast fragmentation will be stopped, ionized, and subsequently reaccelerated up to energies of 3 MeV/u. A system with a solid stopper coupled to an ion source is currently being designed at ORNL for use at FRIB. This system has no rate limitation and is expected to produce the highest rates of certain isotopes, such as 15O and 11C. A description of the solid stopper system will be presented. This research is supported by the Office of Nuclear Physics in the US Department of Energy Office of Science.

  3. Space-charge compensation of highly charged ion beam from laser ion source

    International Nuclear Information System (INIS)

    Kondrashev, S.A.; Collier, J.; Sherwood, T.R.

    1996-01-01

    The problem of matching an ion beam delivered by a high-intensity ion source with an accelerator is considered. The experimental results of highly charged ion beam transport with space-charge compensation by electrons are presented. A tungsten thermionic cathode is used as a source of electrons for beam compensation. An increase of ion beam current density by a factor of 25 is obtained as a result of space-charge compensation at a distance of 3 m from the extraction system. The process of ion beam space-charge compensation, requirements for a source of electrons, and the influence of recombination losses in a space-charge-compensated ion beam are discussed. (author)

  4. Production and Characterization of Ion Beams from Magnetically Insulated Diodes.

    Science.gov (United States)

    Neri, Jesse Martin

    1982-03-01

    The operation of magnetically insulated diodes and the characteristics of the resulting ion beams have been investigated using two pulsed power generators, LYNX at the 10('9)W power level, and Neptune at the 10('11)W power level. LYNX is a small magnetically insulated diode driven directly by a Marx bank. By changing the material used as the surface flashover ion source, the majority ion species generated by the diode could be chosen. Ion beams produced so far by this device are: protons, lithium, boron, carbon, sodium, strontium, and barium. Typical beam parameters for the ion beams are peak energies of 300 keV, current densities of 40-60 A/cm('2,) and pulse durations of 300 -400 nsec. The ion beam uniformity, divergence, and reproducibility were shown to be a function of the surface flashover source geometry. Finally, the LYNX ion beam was also used to anneal silicon crystals and other materials science experiments. The diode used on the Neptune generator was designed to study virtual cathode formation in a high power magnetically insulated diode. The physical cathode was replaced by electrons that ExB drift on the applied magnetic field lines. It was found that the best electrode configuration is one in which the electrons are required to only undergo the Hall drift to form the cathode. The divergence of the ion beam was examined with time-dependent and time -integrated shadowbox diagnostics. It was found that the intrinsic divergence of the ion beam does not have a strong directional dependence. However, the beam suffers a time -dependent aiming error in the plane of the ion beam acceleration and the Hall drift, which is attributed to the dynamics of the virtual cathode electrons. Low time-integrated divergence of the ion beam was attributed to the portion of the ion beam that was carbon (typically 50%). Analysis and discussion of the results is presented on the anode plasma formation and heating process, the virtual cathode flow in the Neptune diode, and the

  5. Effect of ion beam energy on density, roughness & uniformity of Co film deposited using ion beam sputtering system

    Science.gov (United States)

    Dhawan, Rajnish; Rai, Sanjay; Lodha, G. S.

    2012-06-01

    Cobalt (Co) films were prepared, using ion beam sputtering technique. Films were prepared by varying beam voltage from 700 to 1100 V at room temperature. The influence of ion beam energy on the density, surface roughness and thickness uniformity of Co film was investigated. X-ray reflectivity study shows that surface roughness of film decreases with increasing beam energy and lowest surface roughness of 1.3 Å was achieved for 1000 V beam voltage at 4 cm3/min Ar gas flow. The density of the film was 93% of bulk density of Co. These ultra low roughness films are very promising for studying the magnetic properties of Co films.

  6. Dynamics of heavy ion beams during longitudinal compression

    International Nuclear Information System (INIS)

    Ho, D.D.M.; Bangerter, R.O.; Lee, E.P.; Brandon, S.; Mark, J.W.K.

    1987-01-01

    Heavy ion beams with initially uniform line charge density can be compressed longitudinally by an order of magnitude in such a way that the compressed beam has uniform line charge density and velocity-tilt profiles. There are no envelope mismatch oscillations during compression. Although the transverse temperature varies along the beam and also varies with time, no substantial longitudinal and transverse emittance growth has been observed. Scaling laws for beam radius and transport system parameters are given

  7. Modeling space charge in beams for heavy-ion fusion

    International Nuclear Information System (INIS)

    Sharp, W.M.

    1995-01-01

    A new analytic model is presented which accurately estimates the radially averaged axial component of the space-charge field of an axisymmetric heavy-ion beam in a cylindrical beam pipe. The model recovers details of the field near the beam ends that are overlooked by simpler models, and the results compare well to exact solutions of Poisson's equation. Field values are shown for several simple beam profiles and are compared with values obtained from simpler models

  8. Dielectronic recombination measurements using the Electron Beam Ion Trap

    International Nuclear Information System (INIS)

    Knapp, D.A.

    1991-01-01

    We have used the Electron Beam Ion Trap at LLNL to study dielectronic recombination in highly charged ions. Our technique is unique because we observe the x-rays from dielectronic recombination at the same time we see x-rays from all other electron-ion interactions. We have recently taken high-resolution, state-selective data that resolves individual resonances

  9. Structural and electrical properties of swift heavy ion beam irradiated ...

    Indian Academy of Sciences (India)

    Synthesis of swift heavy ion induced metal silicide is a new advancement in materials science research. We have investigated the mixing at Co/Si interface by swift heavy ion beam induced irradiation in the electronic stopping power regime. Irradiations were undertaken at room temperature using 120 MeV Au ions at the ...

  10. Surface composition of biomedical components by ion beam analysis

    International Nuclear Information System (INIS)

    Kenny, M.J.; Wielunski, L.S.; Baxter, G.R.

    1991-01-01

    Materials used for replacement body parts must satisfy a number of requirements such as biocompatibility and mechanical ability to handle the task with regard to strength, wear and durability. When using a CVD coated carbon fibre reinforced carbon ball, the surface must be ion implanted with uniform dose of nitrogen ions in order to make it wear resistant. The mechanism by which the wear resistance is improved is one of radiation damage and the required dose of about 10 16 cm -2 can have a tolerance of about 20%. To implant a spherical surface requires manipulation of the sample within the beam and control system (either computer or manually operated) to enable uniform dose all the way from polar to equatorial regions on the surface. A manipulator has been designed and built for this purpose. In order to establish whether the dose is uniform, nuclear reaction analysis using the reaction 14 N(d,α) 12 C is an ideal method of profiling. By taking measurements at a number of points on the surface, the uniformity of nitrogen dose can be ascertained. It is concluded that both Rutherford Backscattering and Nuclear Reaction Analysis can be used for rapid analysis of surface composition of carbon based materials used for replacement body components. 2 refs., 2 figs

  11. Ion beam notcher using a laser

    Energy Technology Data Exchange (ETDEWEB)

    Ray Tomlin

    2001-07-20

    The FNAL LINAC will soon be asked to produce beam at 7.5 Hz. FNAL LINAC extraction involves sweeping the H-minus beam over a Lambertson magnet. The higher repetition rates are expected to activate the Lambertson magnet. A pulsed laser has been installed to make a notch in the beam so that beam will not sweep over the magnet.

  12. Instrumentation for diagnostics and control of laser-accelerated proton (ion) beams.

    Science.gov (United States)

    Bolton, P R; Borghesi, M; Brenner, C; Carroll, D C; De Martinis, C; Fiorini, Francesca; Flacco, A; Floquet, V; Fuchs, J; Gallegos, P; Giove, D; Green, J S; Green, S; Jones, B; Kirby, D; McKenna, P; Neely, D; Nuesslin, F; Prasad, R; Reinhardt, S; Roth, M; Schramm, U; Scott, G G; Ter-Avetisyan, S; Tolley, M; Turchetti, G; Wilkens, J J

    2014-05-01

    Suitable instrumentation for laser-accelerated proton (ion) beams is critical for development of integrated, laser-driven ion accelerator systems. Instrumentation aimed at beam diagnostics and control must be applied to the driving laser pulse, the laser-plasma that forms at the target and the emergent proton (ion) bunch in a correlated way to develop these novel accelerators. This report is a brief overview of established diagnostic techniques and new developments based on material presented at the first workshop on 'Instrumentation for Diagnostics and Control of Laser-accelerated Proton (Ion) Beams' in Abingdon, UK. It includes radiochromic film (RCF), image plates (IP), micro-channel plates (MCP), Thomson spectrometers, prompt inline scintillators, time and space-resolved interferometry (TASRI) and nuclear activation schemes. Repetition-rated instrumentation requirements for target metrology are also addressed. Copyright © 2013 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  13. In-air ion beam analysis with high spatial resolution proton microbeam

    Energy Technology Data Exchange (ETDEWEB)

    Jakšić, M.; Chokheli, D.; Fazinić, S.; Grilj, V.; Skukan, N.; Sudić, I.; Tadić, T.; Antičić, T.

    2016-03-15

    One of the possible ways to maintain the micrometre spatial resolution while performing ion beam analysis in the air is to increase the energy of ions. In order to explore capabilities and limitations of this approach, we have tested a range of proton beam energies (2–6 MeV) using in-air STIM (Scanning Ion Transmission Microscopy) setup. Measurements of the spatial resolution dependence on proton energy have been compared with SRIM simulation and modelling of proton multiple scattering by different approaches. Results were used to select experimental conditions in which 1 micrometre spatial resolution could be obtained. High resolution in-air microbeam could be applied for IBIC (Ion Beam Induced Charge) tests of large detectors used in nuclear and high energy physics that otherwise cannot be tested in relatively small microbeam vacuum chambers.

  14. Element Synthesis Calculations for Stellar Explosions: Robust Uncertainties, Sensitivities, and Radioactive Ion Beam Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Michael Scott [ORNL; Hix, William Raphael [ORNL; Parete-Koon, Suzanne T [ORNL; Dessieux Jr, Luc Lucius [ORNL; Ma, Zhanwen [ORNL; Starrfield, Sumner [Arizona State University; Bardayan, Daniel W [ORNL; Guidry, Mike W [ORNL; Smith, Donald L. [Argonne National Laboratory (ANL); Blackmon, Jeff C [ORNL; Mezzacappa, Anthony [ORNL

    2004-12-01

    We utilize multiple-zone, post-processing element synthesis calculations to determine the impact of recent ORNL radioactive ion beam measurements on predictions of novae and X-ray burst simulations. We also assess the correlations between all relevant reaction rates and all synthesized isotopes, and translate nuclear reaction rate uncertainties into abundance prediction uncertainties, via a unique Monte Carlo technique.

  15. Element synthesis calculations for stellar explosions: robust uncertainties, sensitivities, and radioactive ion beam measurements

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Michael S. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Hix, W. Raphael [Dept. of Physics and Astronomy, Univ. of Tennessee, Knoxville, TN (United States); Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Parete-Koon, Suzanne [Dept. of Physics and Astronomy, Univ. of Tennessee, Knoxville, TN (United States); Dessieux, Luc [Dept. of Physics and Astronomy, Univ. of Tennessee, Knoxville, TN (United States); Ma, Zhanwen [Dept. of Physics and Astronomy, Univ. of Tennessee, Knoxville, TN (United States); Starrfield, Sumner [Department of Physics and Astronomy, Arizona State Univ., Tempe, AZ (United States); Bardayan, Daniel W. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Guidry, Michael W. [Dept. of Physics and Astronomy, Univ. of Tennessee, Knoxville, TN (United States); Smith, Donald L. [Nuclear Engineering Division, Argonne National Laboratory, Argonne, IL (United States); Blackmon, Jeffery C. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Mezzacappa, Anthony [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    2004-12-27

    We utilize multiple-zone, post-processing element synthesis calculations to determine the impact of recent ORNL radioactive ion beam measurements on predictions of novae and X-ray burst simulations. We also assess the correlations between all relevant reaction rates and all synthesized isotopes, and translate nuclear reaction rate uncertainties into abundance prediction uncertainties, via a unique Monte Carlo technique.

  16. Broad ion beam serial section tomography.

    Science.gov (United States)

    Winiarski, B; Gholinia, A; Mingard, K; Gee, M; Thompson, G E; Withers, P J

    2017-01-01

    Here we examine the potential of serial Broad Ion Beam (BIB) Ar + ion polishing as an advanced serial section tomography (SST) technique for destructive 3D material characterisation for collecting data from volumes with lateral dimensions significantly greater than 100µm and potentially over millimetre sized areas. Further, the associated low level of damage introduced makes BIB milling very well suited to 3D EBSD acquisition with very high indexing rates. Block face serial sectioning data registration schemes usually assume that the data comprises a series of parallel, planar slices. We quantify the variations in slice thickness and parallelity which can arise when using BIB systems comparing Gatan PECS and Ilion BIB systems for large volume serial sectioning and 3D-EBSD data acquisition. As a test case we obtain 3D morphologies and grain orientations for both phases of a WC-11%wt. Co hardmetal. In our case we have carried out the data acquisition through the manual transfer of the sample between SEM and BIB which is a very slow process (1-2 slice per day), however forthcoming automated procedures will markedly speed up the process. We show that irrespective of the sectioning method raw large area 2D-EBSD maps are affected by distortions and artefacts which affect 3D-EBSD such that quantitative analyses and visualisation can give misleading and erroneous results. Addressing and correcting these issues will offer real benefits when large area (millimetre sized) automated serial section BIBS is developed. Copyright © 2016. Published by Elsevier B.V.

  17. Important atomic physics issues for ion beam fusion

    International Nuclear Information System (INIS)

    Bangerter, Roger.

    1986-01-01

    The nearly endless variety of interesting and challenging problems makes physics research enjoyable. Most of us would choose to be physicists even if physics had no practical applications. However, physics does have practical applications. This workshop deals with one of those applications, namely ion beam fusion. Not all interesting and challenging atomic physics questions are important for ion beam fusion. This paper suggests some questions that may be important for ion beam fusion. It also suggests some criteria for determining if a question is only interesting, or both interesting and important. Importance is time dependent and, because of some restrictions on the flow of information, also country dependent. In the early days of ion beam fusion, it was important to determine if ion beam fusion made sense. Approximate answers and bounds on various parameters were required. Accurate, detailed answers were not needed. Because of the efforts of many people attending this workshop, we now know that ion beam fusion does make some sense. We must still determine if ion beam fusion truly makes good sense. If it does make good sense, we must determine how to make it work. Accurate detailed answers are becoming increasingly important. (author)

  18. DIAGNOSTICS FOR ION BEAM DRIVEN HIGH ENERGY DENSITY PHYSICS EXPERIMENTS

    International Nuclear Information System (INIS)

    Bieniosek, F.M.; Henestroza, E.; Lidia, S.; Ni, P.A.

    2010-01-01

    Intense beams of heavy ions are capable of heating volumetric samples of matter to high energy density. Experiments are performed on the resulting warm dense matter (WDM) at the NDCX-I ion beam accelerator. The 0.3 MeV, 30-mA K + beam from NDCX-I heats foil targets by combined longitudinal and transverse neutralized drift compression of the ion beam. Both the compressed and uncompressed parts of the NDCX-I beam heat targets. The exotic state of matter (WDM) in these experiments requires specialized diagnostic techniques. We have developed a target chamber and fielded target diagnostics including a fast multi-channel optical pyrometer, optical streak camera, laser Doppler-shift interferometer (VISAR), beam transmission diagnostics, and high-speed gated cameras. We also present plans and opportunities for diagnostic development and a new target chamber for NDCX-II.

  19. Diagnostics for ion beam driven high energy density physics experiments.

    Science.gov (United States)

    Bieniosek, F M; Henestroza, E; Lidia, S; Ni, P A

    2010-10-01

    Intense beams of heavy ions are capable of heating volumetric samples of matter to high energy density. Experiments are performed on the resulting warm dense matter (WDM) at the NDCX-I ion beam accelerator. The 0.3 MeV, 30 mA K(+) beam from NDCX-I heats foil targets by combined longitudinal and transverse neutralized drift compression of the ion beam. Both the compressed and uncompressed parts of the NDCX-I beam heat targets. The exotic state of matter (WDM) in these experiments requires specialized diagnostic techniques. We have developed a target chamber and fielded target diagnostics including a fast multichannel optical pyrometer, optical streak camera, laser Doppler-shift interferometer (Velocity Interferometer System for Any Reflector), beam transmission diagnostics, and high-speed gated cameras. We also present plans and opportunities for diagnostic development and a new target chamber for NDCX-II.

  20. Determination of the nuclear incompressibility from the rapidity-dependent elliptic flow in heavy-ion collisions at beam energies 0.4A–1.0A GeV

    Directory of Open Access Journals (Sweden)

    Yongjia Wang

    2018-03-01

    Full Text Available Background: The nuclear incompressibility (K0 plays a crucial role in understanding diverse phenomena in nuclear structure and reactions, as well as in astrophysics. Heavy-ion-collision measurements in combination with transport model simulations serve as important tools for extracting the nuclear incompressibility. However, uncertainties in transport models (or model dependence partly affect the reliability of the extracted result. Purpose: In the present work, by using the recently measured data of rapidity-dependent flows, we constrain the incompressibility of nuclear matter and analyze the impact of model uncertainties on the obtained value. Method: The method is based on the newly updated version of the ultrarelativistic quantum molecular dynamics (UrQMD model in which the Skyrme potential energy-density functional is introduced. Three different Skyrme interactions which give different incompressibilities varying from K0=201 to 271 MeV are adopted. The incompressibility is deduced from the comparison of the UrQMD model simulations and the FOPI data for rapidity-dependent elliptic flow in Au+Au collisions at beam energies 0.4A–1.0A GeV. Results: The elliptic flow v2 as a function of rapidity y0 can be well described by a quadratic fit v2=v20+v22⋅y02. It is found that the quantity v2n defined by v2n=|v20|+|v22| is quite sensitive to the incompressibility K0 and the in-medium nucleon–nucleon cross section, but not sensitive to the slope parameter L of the nuclear symmetry energy. Conclusions: With the FU3FP4 parametrization of the in-medium nucleon–nucleon cross section, an averaged K0=220±40 MeV is extracted from the v2n of free protons and deuterons. However, remaining systematic uncertainties, partly related to the choice of in-medium nucleon–nucleon cross sections, are of the same magnitude (±40 MeV. Overall, the rapidity dependent elliptic flow supports a soft symmetric-matter equation-of-state.

  1. Determination of the nuclear incompressibility from the rapidity-dependent elliptic flow in heavy-ion collisions at beam energies 0.4A-1.0A GeV

    Science.gov (United States)

    Wang, Yongjia; Guo, Chenchen; Li, Qingfeng; Le Fèvre, Arnaud; Leifels, Yvonne; Trautmann, Wolfgang

    2018-03-01

    Background: The nuclear incompressibility (K0) plays a crucial role in understanding diverse phenomena in nuclear structure and reactions, as well as in astrophysics. Heavy-ion-collision measurements in combination with transport model simulations serve as important tools for extracting the nuclear incompressibility. However, uncertainties in transport models (or model dependence) partly affect the reliability of the extracted result. Purpose: In the present work, by using the recently measured data of rapidity-dependent flows, we constrain the incompressibility of nuclear matter and analyze the impact of model uncertainties on the obtained value. Method: The method is based on the newly updated version of the ultrarelativistic quantum molecular dynamics (UrQMD) model in which the Skyrme potential energy-density functional is introduced. Three different Skyrme interactions which give different incompressibilities varying from K0 = 201 to 271 MeV are adopted. The incompressibility is deduced from the comparison of the UrQMD model simulations and the FOPI data for rapidity-dependent elliptic flow in Au + Au collisions at beam energies 0.4A-1.0A GeV. Results: The elliptic flow v2 as a function of rapidity y0 can be well described by a quadratic fit v2 =v20 +v22 ṡ y02 . It is found that the quantity v2n defined by v2n = |v20 | + |v22 | is quite sensitive to the incompressibility K0 and the in-medium nucleon-nucleon cross section, but not sensitive to the slope parameter L of the nuclear symmetry energy. Conclusions: With the FU3FP4 parametrization of the in-medium nucleon-nucleon cross section, an averaged K0 = 220 ± 40 MeV is extracted from the v2n of free protons and deuterons. However, remaining systematic uncertainties, partly related to the choice of in-medium nucleon-nucleon cross sections, are of the same magnitude (± 40 MeV). Overall, the rapidity dependent elliptic flow supports a soft symmetric-matter equation-of-state.

  2. Beam optics study of a negative ion source for neutral beam injection application at ASIPP

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Jiang-Long; Liang, Li-Zhen [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Jiang, Cai-Chao [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Graduate school, University of Science and Technology of China, Hefei 230026 (China); Xie, Ya-Hong, E-mail: xieyh@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Hu, Chun-Dong; Li, Jun; Gu, Yu-Ming; Chen, Yu-Qian [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Li, Jing-Yong; Wu, Ming-Shan [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Graduate school, University of Science and Technology of China, Hefei 230026 (China)

    2017-04-15

    In order to study the generation and extraction of negative ions for neutral beam injection application, a negative ion source is being designed and constructed at Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP). Through a four electrode grids system inside the accelerator, a negative ion beam will be extracted and accelerated up to −60 kV on a reduced scale extraction area of 12 × 50 cm{sup 2} (the area of PG apertures is 185 cm{sup 2}). The beam optics is a key issue for the accelerator design, and greatly determine the source experimental performance in term of beam current, heat load on the grid, beam divergence, and so on. In this paper, the trajectories of electrons and negative ions were simulated in the electrode grids of the negative ion source. The filter capability of electron deflection magnet on the co-extracted electrons is evaluated and confirmed. The negative ion beam optics was designed according to the calculated results of beam divergence and beam radius along the beamlet in different acceleration voltages. The deflection effect of the electron deflection magnet on the negative ion beam was investigated in the single beamlet case and multi-beamlets case.

  3. Development of intense pulsed heavy ion beam diode using gas puff plasma gun as ion source

    International Nuclear Information System (INIS)

    Ito, H.; Higashiyama, M.; Takata, S.; Kitamura, I.; Masugata, K.

    2006-01-01

    A magnetically insulated ion diode with an active ion source of a gas puff plasma gun has been developed in order to generate a high-intensity pulsed heavy ion beam for the implantation process of semiconductors and the surface modification of materials. The nitrogen plasma produced by the plasma gun is injected into the acceleration gap of the diode with the external magnetic field system. The ion diode is operated at diode voltage approx. =200 kV, diode current approx. =2 kA and pulse duration approx. =150 ns. A new acceleration gap configuration for focusing ion beam has been designed in order to enhance the ion current density. The experimental results show that the ion current density is enhanced by a factor of 2 and the ion beam has the ion current density of 27 A/cm 2 . In addition, the coaxial type Marx generator with voltage 200 kV and current 15 kA has been developed and installed in the focus type ion diode. The ion beam of ion current density approx. =54 A/cm 2 is obtained. To produce metallic ion beams, an ion source by aluminum wire discharge has been developed and the aluminum plasma of ion current density ∼70 A/cm 2 is measured. (author)

  4. Simulations of Beam Injection and Extraction into Ion Sources

    CERN Document Server

    Cavenago, Marco

    2005-01-01

    Charge breeding, consistiting of injecting singly charged ion into ECRIS(Electron Cyclotron Resonance Ion Sources) to extract an highly charged ion beam, is a promising technique for rare or radioactive ion beam. Efficiency and extracted beam temperature are dominated by the strong collisional diffusion of charged ion inside source. A computer code, named BEAM2ECR, written to simulate details of the injection, ionization, collision and extraction processes is described.* A model of injection plasma sheath and of source fringe field were recently added. Neutral injection is also supported, for comparison with other techniques, like gas feeding or metal vapor injection. Results, clearly favouring near axis injection for most cases are described. Code is written in C-language and possibility of concurrent execution over a Linux cluster was recently added.

  5. Ion source for ion beam deposition employing a novel electrode assembly

    Science.gov (United States)

    Hayes, A. V.; Kanarov, V.; Yevtukhov, R.; Hegde, H.; Druz, B.; Yakovlevitch, D.; Cheesman, W.; Mirkov, V.

    2000-02-01

    A rf inductively coupled ion source employing a novel electrode assembly for focusing a broad ion beam on a relatively small target area was developed. The primary application of this ion source is the deposition of thin films used in the fabrication of magnetic sensors and optical devices. The ion optics consists of a three-electrode set of multiaperture concave dished grids with a beam extraction diameter of 150 mm. Also described is a variation in the design providing a beam extraction diameter of 120 mm. Grid hole diameters and grid spacing were optimized for low beamlet divergence and low grid impingement currents. The radius of curvature of the grids was optimized to obtain an optimally focused ion beam at the target location. A novel grid fabrication and mounting design was employed which overcomes typical limitations of such grid assemblies, particularly in terms of maintaining optimum beam focusing conditions after multiple cycles of operation. Ion beam generation with argon and xenon gases in energy ranges from 0.3 to 2.0 keV was characterized. For operation with argon gas, beam currents greater than 0.5 A were obtained with a beam energy of 800 eV. At optimal beam formation conditions, beam profiles at distances about equal to the radius of curvature were found to be close to Gaussian, with 99.9% of the beam current located within a 150 mm target diameter. Repeatability of the beam profile over long periods of operation is also reported.

  6. Ion beams: from plasma physics to applications in analysis and irradiation fields

    International Nuclear Information System (INIS)

    Khodja, Hicham

    2012-01-01

    In this HDR (Accreditation to supervise research) report, the author proposes an overview of his research activities. A first part comments a research which aimed at determining the distribution of ion populations in an electron cyclotron resonance (ECR) plasma. Then, after a brief recall of the principles and techniques of analysis based on ion beams, he presents some characteristics of the CEA/Saclay nuclear microprobe. He reports various works related to material science and to biology, and discusses the associated perspectives [fr

  7. Neutralisation and transport of negative ion beams: physics and diagnostics

    Science.gov (United States)

    Serianni, G.; Agostinetti, P.; Agostini, M.; Antoni, V.; Aprile, D.; Baltador, C.; Barbisan, M.; Brombin, M.; Cavenago, M.; Chitarin, G.; Dalla Palma, M.; Delogu, R.; Fellin, F.; Fonnesu, N.; Marconato, N.; Pasqualotto, R.; Pimazzoni, A.; Sartori, E.; Spagnolo, S.; Spolaore, M.; Veltri, P.; Zaniol, B.; Zaupa, M.

    2017-04-01

    Neutral beam injection is one of the most important methods of plasma heating in thermonuclear fusion experiments, allowing the attainment of fusion conditions as well as driving the plasma current. Neutral beams are generally produced by electrostatically accelerating ions, which are neutralised before injection into the magnetised plasma. At the particle energy required for the most advanced thermonuclear devices and particularly for ITER, neutralisation of positive ions is very inefficient so that negative ions are used. The present paper is devoted to the description of the phenomena occurring when a high-power multi-ampere negative ion beam travels from the beam source towards the plasma. Simulation of the trajectory of the beam and of its features requires various numerical codes, which must take into account all relevant phenomena. The leitmotiv is represented by the interaction of the beam with the background gas. The main outcome is the partial neutralisation of the beam particles, but ionisation of the background gas also occurs, with several physical and technological consequences. Diagnostic methods capable of investigating the beam properties and of assessing the relevance of the various phenomena will be discussed. Examples will be given regarding the measurements collected in the small flexible NIO1 source and regarding the expected results of the prototype of the neutral beam injectors for ITER. The tight connection between measurements and simulations in view of the operation of the beam is highlighted.

  8. Ion beams provided by small accelerators for material synthesis and characterization

    Science.gov (United States)

    Mackova, Anna; Havranek, Vladimir

    2017-06-01

    The compact, multipurpose electrostatic tandem accelerators are extensively used for production of ion beams with energies in the range from 400 keV to 24 MeV of almost all elements of the periodic system for the trace element analysis by means of nuclear analytical methods. The ion beams produced by small accelerators have a broad application, mainly for material characterization (Rutherford Back-Scattering spectrometry, Particle Induced X ray Emission analysis, Nuclear Reaction Analysis and Ion-Microprobe with 1 μm lateral resolution among others) and for high-energy implantation. Material research belongs to traditionally progressive fields of technology. Due to the continuous miniaturization, the underlying structures are far beyond the analytical limits of the most conventional methods. Ion Beam Analysis (IBA) techniques provide this possibility as they use probes of similar or much smaller dimensions (particles, radiation). Ion beams can be used for the synthesis of new progressive functional nanomaterials for optics, electronics and other applications. Ion beams are extensively used in studies of the fundamental energetic ion interaction with matter as well as in the novel nanostructure synthesis using ion beam irradiation in various amorphous and crystalline materials in order to get structures with extraordinary functional properties. IBA methods serve for investigation of materials coming from material research, industry, micro- and nano-technology, electronics, optics and laser technology, chemical, biological and environmental investigation in general. Main research directions in laboratories employing small accelerators are also the preparation and characterization of micro- and nano-structured materials which are of interest for basic and oriented research in material science, and various studies of biological, geological, environmental and cultural heritage artefacts are provided too.

  9. Basic aspects of ion beam mixing

    International Nuclear Information System (INIS)

    Averback, R.S.

    1985-07-01

    Irradiation of solids with energetic particles results in the reorganization of constituent target atoms, i.e., ion beam mixing (IM). At low temperatures, IM is characterized by prompt (10 -10 s) diffusion processes which are localized in the vicinity of the displacement cascade. Mixing at low temperatures can cause the system to depart far from the equilibrium state. At elevated temperatures, the diffusion of radiation-induced defects extends the mixing to longer times and greater distances. These delayed IM processes tend to return the system toward equilibrium. Recent experimental progress has led to a qualitative understanding of the fundamental aspects of IM in both temperature regimes. This has been achieved through systematic measurements of the influences of temperature, dose, dose-rate, cascade energy density, and chemical interactions on IM. The results of these experiments will be reviewed and compared to IM models based on collisional, thermal spike, and radiation-enhanced diffusion processes. The relation of IM to other fundamental radiation damage effects will also be discussed. 75 refs., 8 figs., 2 tabs

  10. Ion beam characterisation of nanometre structures

    International Nuclear Information System (INIS)

    Persson, Leif.

    1995-08-01

    Ion beam analysis methods have been applied to the study of technologically important issues in III-V nanometre structure science. In the first application, the incorporation of hydrogen in GaAs during electron cyclotron resonance etching was studied using the 1 H( 15 N,αγ) 12 C reaction analysis method. The major part of the work was carried out using mass and energy dispersive Recoil Spectrometry (RS). RS was used to study reactions of thin metal films InP reactions. The metals investigated include Cr, Ti, Ni, Pd and Pt and the reactions as a function of temperature were studied to elucidate suitable compounds for contacts and metallization. Using 127 I in the 0.5A to 0.7A MeV region as the projectile, the depth profiles for the different elements were obtained. Complementary measurements with X-ray diffraction to obtain chemical phase information as well as scanning electron microscopy to study the surface morphology were also carried out. 59 refs, 15 figs

  11. Edge effect correction using ion beam figuring.

    Science.gov (United States)

    Yang, Bing; Xie, Xuhui; Li, Furen; Zhou, Lin

    2017-11-10

    The edge effect is regarded as one of the most difficult technical issues for fabricating large primary mirrors, as it can greatly reduce the key performance of the optical system. Ion beam figuring (IBF) has the advantage of no edge effect, so we can use it to remove high points on the edge and improve surface accuracy. The edge local correction method (ELCM) of IBF processes only the surface edge zone, and is very different from the current full caliber figuring method (FCFM). Therefore, it is necessary to study the ELCM of IBF. In this paper, the key factors of ELCM are analyzed, such as dwell time algorithm, edge data extension methods, and the outward dimension of the starting figuring point. At the same time, the distinctions between ELCM and FCFM are compared. Finally, a 142 mm diameter fused silica mirror is fabricated to verify the validity of the theoretical of ELCM. The experimental results indicate that the figuring precision and efficiency can be obviously improved by ELCM.

  12. Wien filter for cooled low-energy radioactive ion beams

    Science.gov (United States)

    Nummela, S.; Dendooven, P.; Heikkinen, P.; Huikari, J.; Nieminen, A.; Jokinen, A.; Rinta-Antila, S.; Rubchenya, V.; Äystö, J.

    2002-04-01

    A Wien filter for cooled radioactive ion beams has been designed at Ion Guide Isotope Separator On Line technique (IGISOL). The purpose of such device is to eliminate doubly charged ions from the mass separated singly charged ions, based on q=+2→ q=+1 charge exchange process in an ion cooler. The performance of the Wien filter has been tested off-line with a discharge ion source as well as on-line with a radioactive beam. The electron capture process of cooled q=+2 ions has been investigated in a radiofrequency quadrupole ion cooler with varying partial pressures of nitrogen. Also, the superasymmetric fission production yields of 68< A<78 nuclei have been deduced.

  13. Wien filter for cooled low-energy radioactive ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Nummela, S. E-mail: saara.nummela@phys.jyu.fi; Dendooven, P.; Heikkinen, P.; Huikari, J.; Nieminen, A.; Jokinen, A.; Rinta-Antila, S.; Rubchenya, V.; Aeystoe, J

    2002-04-01

    A Wien filter for cooled radioactive ion beams has been designed at Ion Guide Isotope Separator On Line technique (IGISOL). The purpose of such device is to eliminate doubly charged ions from the mass separated singly charged ions, based on q=+2{yields}q=+1 charge exchange process in an ion cooler. The performance of the Wien filter has been tested off-line with a discharge ion source as well as on-line with a radioactive beam. The electron capture process of cooled q=+2 ions has been investigated in a radiofrequency quadrupole ion cooler with varying partial pressures of nitrogen. Also, the superasymmetric fission production yields of 68

  14. Radioactive ion beams at the Bevalac: Greatly enhanced fragment separation for high energy beams

    International Nuclear Information System (INIS)

    Feinberg, B.; Kalnins, J.G.; Krebs, G.F.

    1990-09-01

    Radioactive beams are routinely produced at the Bevalac by the fragmentation process. High energy beams (energies ∼ 800 MeV/u) produce fragments with nearly the original beam momentum, forming a radioactive ion beam. A new beamline is being constructed which will provide resolution for ions approaching the mass 100 region, compared to the present mass 20 capability, by strongly increasing the dispersion and also increasing the beam size for easier tuning and more effective collimation. In addition, the angular acceptance has been more than doubled. Details of the design will be presented. 6 refs., 4 figs., 1 tab

  15. Two-stage acceleration of an ion beam for high power ion source

    International Nuclear Information System (INIS)

    Ohara, Yoshihiro

    1979-07-01

    In research and development of a high power ion source for the JT-60 neutral beam injector, beam optics in the two-stage acceleration system has been investigated both numerically and experimentally. A computer code for cylindrically symmetric ion beam was developed for the simulation. By making use of this code, behaviour of the two-stage ion beam optics was clarified. The calculation results agreed well with the experimental ones. Experimentally, the gradient grid current and the grid heat loading proved to depend largely on the beam optics. The beam focusing by aperture displacement was investigated in thin lens approximation. The results obtained contributed to design and development of a high power ion source for the JT-60 neutral beam injector. (author)

  16. High harmonic ion cyclotron heating in DIII-D: Beam ion absorption and sawtooth stabilization

    International Nuclear Information System (INIS)

    Heidbrink, W.W.; Fredrickson, E.D.; Mau, T.K.; Petty, C.C.; Pinsker, R.I.; Porkolab, M.; Rice, B.W.

    1999-01-01

    Combined neutral beam injection and fast wave heating at the fourth cyclotron harmonic produce an energetic deuterium beam ion tail in the DIII-D tokamak. When the concentration of thermal hydrogen exceeds ∼ 5%, the beam ion absorption is suppressed in favour of second harmonic hydrogen absorption. As theoretically expected, the beam absorption increases with beam ion gyro-radius; also, central absorption at the fifth harmonic is weaker than central absorption at the fourth harmonic. For central heating at the fourth harmonic, an energetic, perpendicular, beam population forms inside the q = 1 surface. The beam ion tail transiently stabilizes the sawtooth instability but destabilizes toroidicity induced Alfven eigenmodes (TAEs). Saturation of the central heating correlates with the onset of the TAEs. Continued expansion of the q = 1 radius eventually precipitates a sawtooth crash; complete magnetic reconnection is observed. (author)

  17. Determination of the meniscus shape of a negative ion beam from an experimentally obtained beam profile

    Science.gov (United States)

    Ichikawa, M.; Kojima, A.; Chitarin, G.; Agostinetti, P.; Aprile, D.; Baltador, C.; Barbisan, M.; Delogu, R.; Hiratsuka, J.; Marconato, N.; Nishikiori, R.; Pimazzoni, A.; Sartori, E.; Serianni, G.; Tobari, H.; Umeda, N.; Veltri, P.; Watanabe, K.; Yoshida, M.; Antoni, V.; Kashiwagi, M.

    2017-08-01

    In order to understand the physics mechanism of a negative ion extraction in negative ion sources, an emission surface of the negative ions around an aperture at a plasma grid, so-called a meniscus, has been analyzed by an inverse calculation of the negative ion trajectory in a two dimensional beam analysis code. In this method, the meniscus is defined as the final position of the negative ion trajectories which are inversely calculated from the measured beam profile to the plasma grid. In a case of the volume-produced negative ions, the calculated meniscus by the inverse calculation was similar to that obtained in conventional beam simulation codes for positive ion extractions such as BEAMORBT and SLACCAD. The negative ion current density was uniform along the meniscus. This indicates that the negative ions produced in the plasma are transported to the plasma grid uniformly as considered in the transportation of the positive ions. However, in a surface production case of negative ions, where the negative ions are generated near the plasma grid with lower work function by seeding cesium, the current density in the peripheral region of the meniscus close to the plasma grid surface was estimated to be 2 times larger than the center region, which suggested that the extraction process of the surface-produced negative ions was much different with that for the positive ions. Because this non-uniform profile of the current density made the meniscus shape strongly concave, the beam extracted from the peripheral region could have a large divergence angle, which might be one of origins of so-called beam halo. This is the first results of the determination of the meniscus based on the experiment, which is useful to improve the prediction of the meniscus shape and heat loads based on the beam trajectories including beam halo.

  18. Pragmatic development of a laser ion source for intense highly-charged ion beam

    International Nuclear Information System (INIS)

    Shibuya, Shinji; Takeuchi, Takeshi; Maruyama, Toshiyuki; Mochizuki, Tetsuro; Nakagawa, Jun

    2010-01-01

    Recently, applications of high-charge-state (including fully stripped) heavy-ion beams have been attracting interest in both physics and industry. To enhance their usefulness, more intense beams are required. Cancer therapy using carbon ions is a particularly promising heavy-ion beam application. Due to advances in laser technology, the laser ion source (LIS) has become one of the most popular sources for generating highly charged and intense heavy-ion beams. The project to develop a high-intensity LIS was started on June 2009. In our project, whose ultimate goal is to apply a heavy-ion accelerator for cancer therapy, we have almost completed designing the LIS, and manufacturing will commence soon. We intend to measure the source performance by performing plasma and beam tests up until the end of March 2011. We will report the outline and a progress of the project. (author)

  19. Multiple-charge beam dynamics in an ion linac

    Directory of Open Access Journals (Sweden)

    P. N . Ostroumov

    2000-03-01

    Full Text Available An advanced facility for the production of nuclei far from stability could be based on a high-power driver accelerator providing ion beams over the full mass range from protons to uranium. A beam power of several hundred kilowatts is highly desirable for this application. At present, however, the beam power available for the heavier ions would be limited by ion source capabilities. A simple and cost-effective method to enhance the available beam current would be to accelerate multiple charge states through a superconducting ion linac. This paper presents results of numerical simulation of multiple charge state beams through a 1.3 GeV ion linac, the design of which is based on current state-of-the-art superconducting elements. The dynamics of multiple charge state beams are detailed, including the effects of possible errors in rf field parameters and misalignments of transverse focusing elements. The results indicate that operation with multiple charge state beams is not only feasible but straightforward and can increase the beam current by a factor of 3 or more.

  20. Intense beams from gases generated by a permanent magnet ECR ion source at PKU.

    Science.gov (United States)

    Ren, H T; Peng, S X; Lu, P N; Yan, S; Zhou, Q F; Zhao, J; Yuan, Z X; Guo, Z Y; Chen, J E

    2012-02-01

    An electron cyclotron resonance (ECR) ion source is designed for the production of high-current ion beams of various gaseous elements. At the Peking University (PKU), the primary study is focused on developing suitable permanent magnet ECR ion sources (PMECRs) for separated function radio frequency quadrupole (SFRFQ) accelerator and for Peking University Neutron Imaging Facility. Recently, other kinds of high-intensity ion beams are required for new acceleration structure demonstration, simulation of fusion reactor material irradiation, aviation bearing modification, and other applications. So we expanded the ion beam category from O(+), H(+), and D(+) to N(+), Ar(+), and He(+). Up to now, about 120 mA of H(+), 83 mA of D(+), 50 mA of O(+), 63 mA of N(+), 70 mA of Ar(+), and 65 mA of He(+) extracted at 50 kV through a φ 6 mm aperture were produced by the PMECRs at PKU. Their rms emittances are less than 0.2 π mm mrad. Tungsten samples were irradiated by H(+) or He(+) beam extracted from this ion source and H∕He holes and bubbles have been observed on the samples. A method to produce a high intensity H∕He mixed beam to study synergistic effect is developed for nuclear material irradiation. To design a He(+) beam injector for coupled radio frequency quadruple and SFRFQ cavity, He(+) beam transmission experiments were carried out on PKU low energy beam transport test bench and the transmission was less than 50%. It indicated that some electrode modifications must be done to decrease the divergence of He(+) beam.

  1. Intense beams from gases generated by a permanent magnet ECR ion source at PKU

    Energy Technology Data Exchange (ETDEWEB)

    Ren, H. T.; Chen, J. E. [College of Physical Sciences, Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); SKLNPT, Institute of Heavy Ion Physics, Peking University, Beijing 100871 (China); Peng, S. X.; Lu, P. N.; Yan, S.; Zhou, Q. F.; Zhao, J.; Yuan, Z. X.; Guo, Z. Y. [SKLNPT, Institute of Heavy Ion Physics, Peking University, Beijing 100871 (China)

    2012-02-15

    An electron cyclotron resonance (ECR) ion source is designed for the production of high-current ion beams of various gaseous elements. At the Peking University (PKU), the primary study is focused on developing suitable permanent magnet ECR ion sources (PMECRs) for separated function radio frequency quadrupole (SFRFQ) accelerator and for Peking University Neutron Imaging Facility. Recently, other kinds of high-intensity ion beams are required for new acceleration structure demonstration, simulation of fusion reactor material irradiation, aviation bearing modification, and other applications. So we expanded the ion beam category from O{sup +}, H{sup +}, and D{sup +} to N{sup +}, Ar{sup +}, and He{sup +}. Up to now, about 120 mA of H{sup +}, 83 mA of D{sup +}, 50 mA of O{sup +}, 63 mA of N{sup +}, 70 mA of Ar{sup +}, and 65 mA of He{sup +} extracted at 50 kV through a {phi} 6 mm aperture were produced by the PMECRs at PKU. Their rms emittances are less than 0.2 {pi} mm mrad. Tungsten samples were irradiated by H{sup +} or He{sup +} beam extracted from this ion source and H/He holes and bubbles have been observed on the samples. A method to produce a high intensity H/He mixed beam to study synergistic effect is developed for nuclear material irradiation. To design a He{sup +} beam injector for coupled radio frequency quadruple and SFRFQ cavity, He{sup +} beam transmission experiments were carried out on PKU low energy beam transport test bench and the transmission was less than 50%. It indicated that some electrode modifications must be done to decrease the divergence of He{sup +} beam.

  2. JT-60 negative ion beam NBI apparatus. Present state of its construction and initial experimental results

    Energy Technology Data Exchange (ETDEWEB)

    Kuriyama, Masaaki [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    1997-02-01

    The NBI (Neutral Beam Injection) apparatus used for negative ion at first in the world, has an aim to actually prove heating and electric current drive with high density plasma at the JT-60 and to constitute physical and technical bases for selection and design of heating apparatus of ITER (International Thermal Nuclear Fusion Experimental Reactor). Construction of 500 KeV negative ion NBI apparatus for the JT-60 started to operate on 1993 was completed at March, 1996. On the way, at a preliminary test on forming and acceleration of the negative ion beam using a portion of this apparatus, 400 KeV and 13.5 A/D of the highest deuterium negative ion beam acceleration in the world was obtained successfully, which gave a bright forecasting of the plasma heating and electric current drive experiment using the negative ion NBI apparatus. After March, 1996, some plans to begin beam incident experiment at the JT-60 using the negative ion NBI apparatus and to execute the heating and electric current drive experiment at the JT-60 under intending increase of beam output are progressed. (G.K.)

  3. Ion beam microanalysis of human hair follicles

    International Nuclear Information System (INIS)

    Kertesz, Zs.; Szikszai, Z.; Telek, A.; Biro, T.; Debrecen Univ.

    2006-01-01

    Complete text of publication follows. Hair follicle (HF) is an appendage organ of the skin which is of importance to the survival of mammals and still maintains significance for the human race - not just biologically, but also through cosmetic and commercial considerations. However data on the composition of hair follicles are scarce and mostly limited to the hair shaft. In addition, to the best of our knowledge, no data are available concerning the distribution of elements in human hair follicle with various growth and cycling phases. In this study [1] we provided detailed quantitative elemental distribution of organ-cultured hair follicle in anagen and catagen growth phases using ion microscopy in order to reach a better understanding of the function, development, and cyclic activity of the hair follicle. The microprobe analysis was carried out at the scanning ion microprobe facilities at the ATOMKI Debrecen, and at the Jozef Stefan Institute, Ljubljana, Slovenia, using combined STIM and PIXE ion beam analytical techniques. Human anagen hair follicles were isolated from skin obtained from females undergoing face-lift surgery. Cultured anagen HFs were treated by either vehicle or by 10 μM capsaicin for 5 days. Elemental distributions and absolute concentrations were determined along 5 capsaicin treated (catagen), and 4 control (anagen) hair follicles. The investigated length varied between 1.5 and 2 mm. Average elemental concentration values of the whole sample and the different morphological parts were also determined. Concentrations for most of the elements were found to be the same in the corresponding parts of the anagen and the catagen hair follicles. However, significant differences were observed in the Ca concentration between the anagen and catagen HFs. With respect to the distribution of Ca, in anagen (control) HFs, the following concentrations were measured (given in μg/g dry weight): dermal papilla, ∼500; matrix of the bulb, 1000-1500; outer/ inner

  4. Measurement of secondary radiation during ion beam therapy with the pixel detector Timepix

    Science.gov (United States)

    Martišíková, Mária; Jakubek, Jan; Granja, Carlos; Hartmann, Bernadette; Opálka, Lukáš; Pospíšil, Stanislav; Jäkel, Oliver

    2011-11-01

    In ion beam therapy the finite range of the ion beams in tissue and the presence of the Bragg-peak are exploited. Unpredictable changes in the patient`s condition can alter the range of the ion beam in the body. Therefore it is desired to verify the actual ion range during the treatment, preferably in a non-invasive way. Positron emission tomography (PET) has been used successfully to monitor the applied dose distributions. This method however suffers from limited applicability and low detection efficiency. In order to increase the detection efficiency and to decrease the uncertainties, in this study we investigate the possibility to measure secondary charged particles emerging from the patient during irradiation. An initial experimental study to register the particle radiation coming out of a patient phantom during the therapy was performed at the Heidelberg Ion Beam Therapy Center (HIT) in Germany. A static narrowly-focused beam of carbon ions was directed into a head phantom. The emerging secondary radiation was measured with the position-sensitive Timepix detector outside of the phantom. The detector, developed by the Medipix Collaboration, consists of a silicon sensor bump bonded to a pixelated readout chip (256 × 256 pixels with 55 μm pitch). Together with the USB-based readout interface, Timepix can operate as an active nuclear emulsion registering single particles online with 2D-track visualization. In this contribution we measured the signal behind the head phantom and investigated its dependence on the beam energy (corresponding to beam range in water 2-30 cm). Furthermore, the response was measured at four angles between 0 and 90 degrees. At all investigated energies some signal was registered. Its pattern corresponds to ions. Differences in the total amount of signal for different beam energies were observed. The time-structure of the signal is correlated with that of the incoming beam, showing that we register products of prompt processes. Such

  5. Measurement of secondary radiation during ion beam therapy with the pixel detector Timepix

    International Nuclear Information System (INIS)

    Martišíková, Mária; Hartmann, Bernadette; Jäkel, Oliver; Jakubek, Jan; Granja, Carlos; Opálka, Lukáš; Pospíšil, Stanislav

    2011-01-01

    In ion beam therapy the finite range of the ion beams in tissue and the presence of the Bragg-peak are exploited. Unpredictable changes in the patient's condition can alter the range of the ion beam in the body. Therefore it is desired to verify the actual ion range during the treatment, preferably in a non-invasive way. Positron emission tomography (PET) has been used successfully to monitor the applied dose distributions. This method however suffers from limited applicability and low detection efficiency. In order to increase the detection efficiency and to decrease the uncertainties, in this study we investigate the possibility to measure secondary charged particles emerging from the patient during irradiation. An initial experimental study to register the particle radiation coming out of a patient phantom during the therapy was performed at the Heidelberg Ion Beam Therapy Center (HIT) in Germany. A static narrowly-focused beam of carbon ions was directed into a head phantom. The emerging secondary radiation was measured with the position-sensitive Timepix detector outside of the phantom. The detector, developed by the Medipix Collaboration, consists of a silicon sensor bump bonded to a pixelated readout chip (256 × 256 pixels with 55 μm pitch). Together with the USB-based readout interface, Timepix can operate as an active nuclear emulsion registering single particles online with 2D-track visualization. In this contribution we measured the signal behind the head phantom and investigated its dependence on the beam energy (corresponding to beam range in water 2–30 cm). Furthermore, the response was measured at four angles between 0 and 90 degrees. At all investigated energies some signal was registered. Its pattern corresponds to ions. Differences in the total amount of signal for different beam energies were observed. The time-structure of the signal is correlated with that of the incoming beam, showing that we register products of prompt processes. Such

  6. The beam diagnostic instruments in Beijing radioactive ion-beam facilities isotope separator on-line

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Y., E-mail: yjma@ciae.ac.cn; Cui, B.; Ma, R.; Tang, B.; Chen, L.; Huang, Q.; Jiang, W. [China Institute of Atomic Energy, Beijing 102413 (China)

    2014-02-15

    The beam diagnostic instruments for Beijing Radioactive Ion-beam Facilities Isotope Separator On-Line are introduced [B. Q. Cui, Z. H. Peng, Y. J. Ma, R. G. Ma, B. Tang, T. Zhang, and W. S. Jiang, Nucl. Instrum. Methods 266, 4113 (2008); T. J. Zhang, X. L. Guan, and B. Q. Cui, in Proceedings of APAC 2004, Gyeongju, Korea, 2004, http://www.jacow.org , p. 267]. For low intensity ion beam [30–300 keV/1 pA–10 μA], the beam profile monitor, the emittance measurement unit, and the analyzing slit will be installed. For the primary proton beam [100 MeV/200 μA], the beam profile scanner will be installed. For identification of the nuclide, a beam identification unit will be installed. The details of prototype of the beam diagnostic units and some experiment results will be described in this article.

  7. The beam diagnostic instruments in Beijing radioactive ion-beam facilities isotope separator on-line

    Science.gov (United States)

    Ma, Y.; Cui, B.; Ma, R.; Tang, B.; Chen, L.; Huang, Q.; Jiang, W.

    2014-02-01

    The beam diagnostic instruments for Beijing Radioactive Ion-beam Facilities Isotope Separator On-Line are introduced [B. Q. Cui, Z. H. Peng, Y. J. Ma, R. G. Ma, B. Tang, T. Zhang, and W. S. Jiang, Nucl. Instrum. Methods 266, 4113 (2008); T. J. Zhang, X. L. Guan, and B. Q. Cui, in Proceedings of APAC 2004, Gyeongju, Korea, 2004, http://www.jacow.org, p. 267]. For low intensity ion beam [30-300 keV/1 pA-10 μA], the beam profile monitor, the emittance measurement unit, and the analyzing slit will be installed. For the primary proton beam [100 MeV/200 μA], the beam profile scanner will be installed. For identification of the nuclide, a beam identification unit will be installed. The details of prototype of the beam diagnostic units and some experiment results will be described in this article.

  8. Measuring radiation damage dynamics by pulsed ion beam irradiation: 2016 project annual report

    Energy Technology Data Exchange (ETDEWEB)

    Kucheyev, Sergei O. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-01-04

    The major goal of this project is to develop and demonstrate a novel experimental approach to access the dynamic regime of radiation damage formation in nuclear materials. In particular, the project exploits a pulsed-ion-beam method in order to gain insight into defect interaction dynamics by measuring effective defect interaction time constants and defect diffusion lengths. For Year 3, this project had the following two major milestones: (i) the demonstration of the measurement of thermally activated defect-interaction processes by pulsed ion beam techniques and (ii) the demonstration of alternative characterization techniques to study defect dynamics. As we describe below, both of these milestones have been met.

  9. Ion collective acceleration and high current beam transport

    International Nuclear Information System (INIS)

    Kolomenskij, A.A.

    1983-01-01

    Results of investigation of high-current beam (HCB) transport in vacuum channels with dielectric walls (VCDW) are presented. It is shown, that HCB transport can be realized not only in rectilinear dielectric channels, but also in curvili also in curvilitear oges. In particular, it proved to be possible to bend the beam with parameters 50 kA, 400 keV by 90 deg. A problem of negative ion intense beam production is considered. It is shown, that in magnetic insulation diodes hydrogen ion currents of about several kA are obtained at current densities 10 A/cm 2 . Results of collective ion acceleration in VCDW are given. Two regions with different physical mechanisms of ion acceleration should be distinguished. In the first region (''plasma''), corresponding to HCB motion in VCDW ion generation and their acceleration in quasipotential field of HCB up to the energy of the order of electrons or less takes place. In the second region (''beam''), corresponding to joint motion of ''extracted'' ions and HCB electrons, ion acceleration takes place in the fields of waves, which can be excited due to the mechanism of two-beam instability type. Considerable contribution can also be made by stochastic mechanism of ion acceleration

  10. Use of energetic ion beams in materials synthesis and processing

    International Nuclear Information System (INIS)

    Appleton, B.R.

    1992-01-01

    A brief review of the use energetic ion beams and related techniques for the synthesis, processing, and characterization of materials is presented. Selected opportunity areas are emphasized with examples, and references are provided for more extensive coverage. (author)

  11. Nanoscale insights into ion-beam cancer therapy

    CERN Document Server

    2017-01-01

    This book provides a unique and comprehensive overview of state-of-the-art understanding of the molecular and nano-scale processes that play significant roles in ion-beam cancer therapy. It covers experimental design and methodology, and reviews the theoretical understanding of the processes involved. It offers the reader an opportunity to learn from a coherent approach about the physics, chemistry and biology relevant to ion-beam cancer therapy, a growing field of important medical application worldwide. The book describes phenomena occurring on different time and energy scales relevant to the radiation damage of biological targets and ion-beam cancer therapy from the molecular (nano) scale up to the macroscopic level. It illustrates how ion-beam therapy offers the possibility of excellent dose localization for treatment of malignant tumours, minimizing radiation damage in normal tissue whilst maximizing cell-killing within the tumour, offering a significant development in cancer therapy. The full potential ...

  12. Modeling and computer simulation of ion beam synthesis of nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Strobel, M.

    1999-11-01

    The following topics were dealt with: ion beam synthesis of nanoclusters, kinetic three dimensional lattice Monte Carlo method, Ostwald ripening, redistribution of implanted impurities, buried layer formation, comparisation to experimental results.

  13. Current neutralization in ballistic transport of light ion beams

    International Nuclear Information System (INIS)

    Hubbard, R.F.; Slinker, S.P.; Lampe, M.; Joyce, G.; Ottinger, P.

    1992-01-01

    Intense light ion beams are being considered as drivers to ignite fusion targets in the Laboratory Microfusion Facility (LMF). Ballistic transport of these beams from the diode to the target is possible only if the beam current is almost completely neutralized by plasma currents. This paper summarizes related work on relativistic electron beam and heavy ion beam propagation and describes a simple simulation model (DYNAPROP) which has been modified to treat light ion beam propagation. DYNAPROP uses an envelope equation to treat beam dynamics and uses rate equations to describe plasma and conductivity generation. The model has been applied both to the high current, 30 MeV Li +3 beams for LMF as well as low current, 1.2 MeV proton beams which are currently being studied on GAMBLE B at the Naval Research Laboratory. The predicted ratio of net currents to beam current is ∼0.1--0.2 for the GAMBLE experiment and ∼0.01 for LMF. The implications of these results for LMF and the GAMBLE experiments art discussed in some detail. The simple resistive model in DYNAPROP has well-known limitations in the 1 torr regime which arise primarily from the neglect of plasma electron transport. Alternative methods for treating the plasma response are discussed

  14. Materials science and biophysics applications at the ISOLDE radioactive ion beam facility

    CERN Document Server

    Wahl, U

    2011-01-01

    The ISOLDE isotope separator facility at CERN provides a variety of radioactive ion beams, currently more than 800 different isotopes from ~65 chemical elements. The radioisotopes are produced on-line by nuclear reactions from a 1.4 GeV proton beam with various types of targets, outdiffusion of the reaction products and, if possible, chemically selective ionisation, followed by 60 kV acceleration and mass separation. While ISOLDE is mainly used for nuclear and atomic physics studies, applications in materials science and biophysics account for a significant part (currently ~15%) of the delivered beam time, requested by 18 different experiments. The ISOLDE materials science and biophysics community currently consists of ~80 scientists from more than 40 participating institutes and 21 countries. In the field of materials science, investigations focus on the study of semiconductors and oxides, with the recent additions of nanoparticles and metals, while the biophysics studies address the toxicity of metal ions i...

  15. An Ion Beam Tracking System based on a Parallel Plate Avalanche Counter

    Directory of Open Access Journals (Sweden)

    Carter I. P.

    2013-12-01

    Full Text Available A pair of twin position-sensitive parallel plate avalanche counters have been developed at the Australian National University as a tracking system to aid in the further rejection of unwanted beam particles from a 6.5 T super conducting solenoid separator named SOLEROO. Their function is to track and identify each beam particle passing through the detectors on an event-by-event basis. In-beam studies have been completed and the detectors are in successful operation, demonstrating the tracking capability. A high efficiency 512-pixelwide-angle silicon detector array will then be integrated with the tracking system for nuclear reactions studies of radioactive ions.

  16. Proceedings of the workshop on prospects for research with radioactive beams from heavy ion accelerators

    International Nuclear Information System (INIS)

    Nitschke, J.M.

    1984-04-01

    The SuperHILAC Users Executive Committee organized a workshop on Prospects for Research with Radioactive Beams from Heavy Ion Accelerators. The main purpose of the workshop was to bring together a diverse group of scientists who had already done experients with radioactive beams or were interested in their use in the future. The topics of the talks ranged from general nuclear physics, astrophysics, production of radioactive beams and high energy projectile fragmentation to biomedical applications. This publication contains the abstracts of the talks given at the workshop and copies of the viewgraphs as they were supplied to the editor

  17. Beam-front dynamics and ion acceleration in drifting intense relativistic electron beams

    International Nuclear Information System (INIS)

    Alexander, K.F.; Hintze, W.

    1976-01-01

    Collective ion acceleration at the injection of a relativistic electron beam into a low-pressure gas or a plasma is discussed and its strong dependence on the beam-front dynamics is shown. A simple one-dimensional model taking explicitly into account the motion and ionizing action of the ions in the beam-front region is developed for the calculation of the beam drift velocity. The obtained pressure dependence is in good agreement with experimental data. The energy distribution is shown of the ions accelerated in the moving potential well of the space charge region. Scaling laws for the beam-front dynamics and ion acceleration are derived. (J.U.)

  18. Mutation induced with ion beam irradiation in rose

    Science.gov (United States)

    Yamaguchi, H.; Nagatomi, S.; Morishita, T.; Degi, K.; Tanaka, A.; Shikazono, N.; Hase, Y.

    2003-05-01

    The effects of mutation induction by ion beam irradiation on axillary buds in rose were investigated. Axillary buds were irradiated with carbon and helium ion beams, and the solid mutants emerged after irradiation by repeated cutting back. In helium ion irradiation, mutations were observed in plants derived from 9 buds among 56 irradiated buds in 'Orange Rosamini' and in plants derived from 10 buds among 61 irradiated buds in 'Red Minimo'. In carbon ion, mutations were observed in plants derived from 12 buds among 88 irradiated buds in 'Orange Rosamini'. Mutations were induced not only in higher doses but also in lower doses, with which physiological effect by irradiation was hardly observed. Irradiation with both ion beams induced mutants in the number of petals, in flower size, in flower shape and in flower color in each cultivar.

  19. Beam dynamics of mixed high intensity highly charged ion Beams in the Q/A selector

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.H., E-mail: zhangxiaohu@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Yuan, Y.J.; Yin, X.J.; Qian, C.; Sun, L.T. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Du, H.; Li, Z.S.; Qiao, J.; Wang, K.D. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhao, H.W.; Xia, J.W. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2017-06-11

    Electron cyclotron resonance (ECR) ion sources are widely used in heavy ion accelerators for their advantages in producing high quality intense beams of highly charged ions. However, it exists challenges in the design of the Q/A selection systems for mixed high intensity ion beams to reach sufficient Q/A resolution while controlling the beam emittance growth. Moreover, as the emittance of beam from ECR ion sources is coupled, the matching of phase space to post accelerator, for a wide range of ion beam species with different intensities, should be carefully studied. In this paper, the simulation and experimental results of the Q/A selection system at the LECR4 platform are shown. The formation of hollow cross section heavy ion beam at the end of the Q/A selector is revealed. A reasonable interpretation has been proposed, a modified design of the Q/A selection system has been committed for HIRFL-SSC linac injector. The features of the new design including beam simulations and experiment results are also presented.

  20. Beam dynamics of mixed high intensity highly charged ion Beams in the Q/A selector

    Science.gov (United States)

    Zhang, X. H.; Yuan, Y. J.; Yin, X. J.; Qian, C.; Sun, L. T.; Du, H.; Li, Z. S.; Qiao, J.; Wang, K. D.; Zhao, H. W.; Xia, J. W.

    2017-06-01

    Electron cyclotron resonance (ECR) ion sources are widely used in heavy ion accelerators for their advantages in producing high quality intense beams of highly charged ions. However, it exists challenges in the design of the Q/A selection systems for mixed high intensity ion beams to reach sufficient Q/A resolution while controlling the beam emittance growth. Moreover, as the emittance of beam from ECR ion sources is coupled, the matching of phase space to post accelerator, for a wide range of ion beam species with different intensities, should be carefully studied. In this paper, the simulation and experimental results of the Q/A selection system at the LECR4 platform are shown. The formation of hollow cross section heavy ion beam at the end of the Q/A selector is revealed. A reasonable interpretation has been proposed, a modified design of the Q/A selection system has been committed for HIRFL-SSC linac injector. The features of the new design including beam simulations and experiment results are also presented.

  1. Ribbon Ion Beam with Controlled Directionality and Local Reactive Chemistry

    Science.gov (United States)

    Biloiu, Costel; Gilchrist, Glen; Kontos, Alex; Basame, Solomon; Rockwell, Tyler; Campbell, Chris; Daniels, Kevin; Allen, Ernest; Wallace, Jay; Ballou, Jon; Hertel, Richard; Chen, Tsung-Liang; Liang, Shurong; Singh, Vikram

    2016-09-01

    A plasma processing technology designed for etch of 3D semiconductor structures is presented. The technology is characterized by controllable ion directionality and local reactive chemistry and it is based on proprietary Applied Materials - Varian Semiconductor Equipment ribbon ion beam architecture. It uses a combination of inert gas ion beam and injection of reactive chemical species at the Point-of-Use (PoU), i.e., at the wafer surface. The ion source uses an inductively coupled plasma source and a diode-type extraction optics. A beam shaping electrode allows extraction of two symmetrical ribbon-like beamlets. The ion beam has in situ controllable ion angular distribution in both mean angle and angular spread. The beam has a uniform distribution of beam current and angles over a waist exceeding 300 mm, allowing full wafer processing in one pass. Chemical compounds are delivered at PoU through linear shower heads. The reactive chemical compound delivered in this fashion maintains its molecular integrity. This result in protection of the trench side walls from deposition of etch residue and facilitates formation of volatile byproducts. The technology was used successfully for mitigation of Magnetic Tunel Junction etch residue. Other applications were this technology differentiate from present technologies are contact liner etch, Co recess, and 1D hole elongation.

  2. Frequency threshold for ion beam formation in expanding RF plasma

    Science.gov (United States)

    Chakraborty Thakur, Saikat; Harvey, Zane; Biloiu, Ioana; Hansen, Alex; Hardin, Robert; Przybysz, William; Scime, Earl

    2008-11-01

    We observe a threshold frequency for ion beam formation in expanding, low pressure, argon helicon plasma. Mutually consistent measurements of ion beam energy and density relative to the background ion density obtained with a retarding field energy analyzer and laser induced fluorescence indicate that a stable ion beam of 15 eV appears for source frequencies above 11.5 MHz. Reducing the frequency increases the upstream beam amplitude. Downstream of the expansion region, a clear ion beam is seen only for the higher frequencies. At lower frequencies, large electrostatic instabilities appear and an ion beam is not observed. The upstream plasma density increases sharply at the same threshold frequency that leads to the appearance of a stable double layer. The observations are consistent with the theoretical prediction that downstream electrons accelerated into the source by the double layer lead to increased ionization, thus balancing the higher loss rates upstream [1]. 1. M. A. Lieberman, C. Charles and R. W. Boswell, J. Phys. D: Appl. Phys. 39 (2006) 3294-3304

  3. Beam optics optimization of a negative-ion sputter source

    Indian Academy of Sciences (India)

    A negative-ion sputter source has been studied in order to increase the beam intensity delivered by the Vivitron tandem injector. The aim was to characterize the influence on the beam intensity of some factors related to the configuration of the source such as the shape of the target holder, the target surface topography and ...

  4. Structuring of silicon with low energy focused ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Nebiker, P.W.; Doebeli, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Muehle, R. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-09-01

    The defect production in silicon induced by focused ion beam irradiation as a function of energy and projectile mass has been investigated and compared to the measured sputter yield. The aim was to find optimal beam parameters for the structuring of semiconductors with a minimum amount of defects produced per removed atom. (author) 2 figs., 2 refs.

  5. Therapy tumor with the heavy ions beam

    International Nuclear Information System (INIS)

    Dang Bingrong; Wei Zengquan; Li Wenjian

    2002-01-01

    As physical characteristic of heavy ions Bragg peak, therapy tumor with heavy ions is becoming advanced technology. So, many countries have developed the technology and used to treat tumor, the societal and economic effects are beneficial to people. The authors show the development, present situation and information of research in world of advanced radiotherapy with heavy ions

  6. Evaporative cooling of highly charged ions in EBIT [Electron Beam Ion Trap]: An experimental realization

    International Nuclear Information System (INIS)

    Schneider, M.B.; Levine, M.A.; Bennett, C.L.; Henderson, J.R.; Knapp, D.A.; Marrs, R.E.

    1988-01-01

    Both the total number and trapping lifetime of near-neon-like gold ions held in an electron beam ion trap have been greatly increased by a process of 'evaporative cooling'. A continuous flow of low-charge-state ions into the trap cools the high-charge-state ions in the trap. Preliminary experimental results using titanium ions as a coolant are presented. 8 refs., 6 figs., 2 tabs

  7. Emittance growth due to space charge compensation and beam intensity instabilities in negative ion beams

    Directory of Open Access Journals (Sweden)

    C. A. Valerio-Lizarraga

    2018-03-01

    Full Text Available The need to extract the maximum beam intensity with low transversal emittance often comes with the drawback of operating the ion source to limits where beam current instabilities arise, such fluctuations can change the beam properties producing a mismatch in the following sections of the machine. The space charge compensation (SCC generated by the beam particles colliding with the residual gas reaches a steady state after a build-up time. This paper shows how once in the steady state, the beam ends with a transversal emittance value bigger than the case without compensation. In addition, we study how the beam intensity variation can disturb the SCC dynamics and its impact on the beam properties. The results presented in this work come from 3-D simulations using tracking codes taking into account the secondary ions to estimate the degree of the emittance growth due to space charge and SCC.

  8. Emittance growth due to space charge compensation and beam intensity instabilities in negative ion beams

    Science.gov (United States)

    Valerio-Lizarraga, C. A.

    2018-03-01

    The need to extract the maximum beam intensity with low transversal emittance often comes with the drawback of operating the ion source to limits where beam current instabilities arise, such fluctuations can change the beam properties producing a mismatch in the following sections of the machine. The space charge compensation (SCC) generated by the beam particles colliding with the residual gas reaches a steady state after a build-up time. This paper shows how once in the steady state, the beam ends with a transversal emittance value bigger than the case without compensation. In addition, we study how the beam intensity variation can disturb the SCC dynamics and its impact on the beam properties. The results presented in this work come from 3-D simulations using tracking codes taking into account the secondary ions to estimate the degree of the emittance growth due to space charge and SCC.

  9. A cooler for intense low-energy ion beams

    International Nuclear Information System (INIS)

    Varentsov, V.L.; Habs, D.

    2002-01-01

    A new efficient cooling technique for intense low-energy ion beams is explored. The primary ions are directly injected through a converging-diverging nozzle into a cold expanding supersonic He carrier gas jet. There they adopt the temperature and overall velocity of the gas jet, creating an e - He + plasma in the slowing down process. In the RF-funnel that is placed on axis in the immediate vicinity of the nozzle exit plane the He + ions and electrons penetrate into the funnel walls and the He + ions have neutralized, while the desired more heavy ions are confined and focused inside the funnel. After reducing the plasma to a small level in the funnel the ion beam is further purified and compressed passing through a RFQ channel. Finally, the cooled low-emittance ion beam is extracted into high vacuum conditions through the skimmer placed behind the RFQ channel. The operation of the new ion beam cooling technique has been studied by means of numerical simulations. The results of calculations are presented

  10. Advanced surface polishing using gas cluster ion beams

    Science.gov (United States)

    Insepov, Z.; Hassanein, A.; Norem, J.; Swenson, D. R.

    2007-08-01

    The gas cluster ion beam (GCIB) treatment can be an important treatment for mitigation of the Q-slope in superconducting cavities. The existing surface smoothening methods were analyzed and a new surface polishing method was proposed based on employing extra-large gas cluster ions (X-GCIB).

  11. Effects of ion beam irradiation on semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Nashiyama, Isamu; Hirao, Toshio; Itoh, Hisayoshi; Ohshima, Takeshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    Energetic heavy-ion irradiation apparatus has been developed for single-event effects (SEE) testing. We have applied three irradiation methods such as a scattered-ion irradiation method, a recoiled-atom irradiation method, and a direct-beam irradiation method to perform SEE testing efficiently. (author)

  12. A cooler for intense low-energy ion beams

    CERN Document Server

    Varentsov, V L

    2002-01-01

    A new efficient cooling technique for intense low-energy ion beams is explored. The primary ions are directly injected through a converging-diverging nozzle into a cold expanding supersonic He carrier gas jet. There they adopt the temperature and overall velocity of the gas jet, creating an e sup - He sup + plasma in the slowing down process. In the RF-funnel that is placed on axis in the immediate vicinity of the nozzle exit plane the He sup + ions and electrons penetrate into the funnel walls and the He sup + ions have neutralized, while the desired more heavy ions are confined and focused inside the funnel. After reducing the plasma to a small level in the funnel the ion beam is further purified and compressed passing through a RFQ channel. Finally, the cooled low-emittance ion beam is extracted into high vacuum conditions through the skimmer placed behind the RFQ channel. The operation of the new ion beam cooling technique has been studied by means of numerical simulations. The results of calculations are...

  13. Beam optics optimization of a negative-ion sputter source

    Indian Academy of Sciences (India)

    795–804. Beam optics optimization of a negative-ion sputter source. F OSSWALD£ and R REBMEISTER. Institut de Recherches Subatomiques, UMR 7500 CNRS-IN2P3/ULP, BP 28,. 67037 Strasbourg Cedex 2, France. £Email: francis.osswald@ires.in2p3.fr. Abstract. A negative-ion sputter source has been studied in order ...

  14. Atomic physics measurements in an electron beam ion trap

    Science.gov (United States)

    Marrs, R. E.; Beiersdorfer, P.; Bennett, C.; Chen, M. H.; Cowan, T.; Dietrich, D.; Henderson, J. R.; Knapp, D. A.; Osterheld, S.; Schneider, M. B.; Scofield, J. H.; Levine, M. A.

    1989-06-01

    An electron Beam Ion Trap at Lawrence Livermore National Laboratory is being used to produce and trap very-highly-charged ions (q≥70+) for x-ray spectroscopy measurements. Recent measurements of transition energies and electron excitation cross sections for x-ray line emission are summarized.

  15. Two dimensional simulation of ion beam-plasm interaction | Echi ...

    African Journals Online (AJOL)

    Hybrid plasma simulation is a model in which different components of the plasma are treated differently. In this work the ions are treated as particles while the electrons are treated as a neutralizing background fluid through which electric signals may propagate. Deuterium ion beams incident on the tritium plasma interact ...

  16. A cryogenic electrostatic trap for long-time storage of keV ion beams

    Science.gov (United States)

    Lange, M.; Froese, M.; Menk, S.; Varju, J.; Bastert, R.; Blaum, K.; López-Urrutia, J. R. Crespo; Fellenberger, F.; Grieser, M.; von Hahn, R.; Heber, O.; Kühnel, K.-U.; Laux, F.; Orlov, D. A.; Rappaport, M. L.; Repnow, R.; Schröter, C. D.; Schwalm, D.; Shornikov, A.; Sieber, T.; Toker, Y.; Ullrich, J.; Wolf, A.; Zajfman, D.

    2010-05-01

    We report on the realization and operation of a fast ion beam trap of the linear electrostatic type employing liquid helium cooling to reach extremely low blackbody radiation temperature and residual gas density and, hence, long storage times of more than 5 min which are unprecedented for keV ion beams. Inside a beam pipe that can be cooled to temperatures <15 K, with 1.8 K reached in some locations, an ion beam pulse can be stored at kinetic energies of 2-20 keV between two electrostatic mirrors. Along with an overview of the cryogenic trap design, we present a measurement of the residual gas density inside the trap resulting in only 2×103 cm-3, which for a room temperature environment corresponds to a pressure in the 10-14 mbar range. The device, called the cryogenic trap for fast ion beams, is now being used to investigate molecules and clusters at low temperatures, but has also served as a design prototype for the cryogenic heavy-ion storage ring currently under construction at the Max-Planck Institute for Nuclear Physics.

  17. A cryogenic electrostatic trap for long-time storage of keV ion beams.

    Science.gov (United States)

    Lange, M; Froese, M; Menk, S; Varju, J; Bastert, R; Blaum, K; López-Urrutia, J R Crespo; Fellenberger, F; Grieser, M; von Hahn, R; Heber, O; Kühnel, K-U; Laux, F; Orlov, D A; Rappaport, M L; Repnow, R; Schröter, C D; Schwalm, D; Shornikov, A; Sieber, T; Toker, Y; Ullrich, J; Wolf, A; Zajfman, D

    2010-05-01

    We report on the realization and operation of a fast ion beam trap of the linear electrostatic type employing liquid helium cooling to reach extremely low blackbody radiation temperature and residual gas density and, hence, long storage times of more than 5 min which are unprecedented for keV ion beams. Inside a beam pipe that can be cooled to temperatures <15 K, with 1.8 K reached in some locations, an ion beam pulse can be stored at kinetic energies of 2-20 keV between two electrostatic mirrors. Along with an overview of the cryogenic trap design, we present a measurement of the residual gas density inside the trap resulting in only 2 x 10(3) cm(-3), which for a room temperature environment corresponds to a pressure in the 10(-14) mbar range. The device, called the cryogenic trap for fast ion beams, is now being used to investigate molecules and clusters at low temperatures, but has also served as a design prototype for the cryogenic heavy-ion storage ring currently under construction at the Max-Planck Institute for Nuclear Physics.

  18. AFM surface morphology investigation of ion beam modified polyimide

    Science.gov (United States)

    Švorčík, V.; Arenholz, E.; Rybka, V.; Hnatowicz, V.

    1997-03-01

    Polyimide Upilex R was irradiated with 90 keV N + ions to the fluences of 1 × 10 14-2 × 10 17 cm -2. The surface morphology and the structure of the ion beam modified PI were examined using atomic force microscopy and X-ray difraction. Sheet resistance as a function of the ion fluence and the sample temperature was measured by standard two point technique. Significant changes of the surface morphology and production of graphitic phase in the sample surface layer modified by the ion irradiation were observed. Strong decrease of the sheet resistance (by 11 orders of magnitude) in the ion beam modified samples is connected with progressive carbonization and graphitization of the degraded polymer. Electrical charge transport is mediated by variable-range hopping mechanism. Drastic structural changes initiated by the ion irradiation to high fluences are similar to those observed in polymer pyrolysis.

  19. Ion collection efficiency of ionization chambers in electron beams

    International Nuclear Information System (INIS)

    Garcia, S.; Cecatti, E.R.

    1984-01-01

    When ionization chambers are used in pulsed radiation beams the high-density of ions produced per pulse permits ion recombination, demanding the use of a correction factor. An experimental technique using the charge collected at two different voltages permits the calculation of the ion collection efficiency. The ion collection efficiency of some common ionization chambers in pulsed electron beams were studied as a function of electron energy, dose rate and depth. Accelerators with magnetic scanning system, in which the instantaneous dose rate is much greater than the average dose rate, present a smaller collection efficiency than accelerators with scattering foil. The results lead to the introduction of a correction factor for ion recombination that is the reciprocal of the ion collection efficiency. It is also suggested a simple technique to connect an external variable DC power supply in a Baldwin Farmer dosemeter. (Author) [pt

  20. Investigation of Nuclear Fragmentation in Relativistic Heavy Ion Collisions Using Plastic - Nuclear - Track Detectors

    CERN Multimedia

    2002-01-01

    In this experiment CR39 plastic nuclear track detectors will be used which are sensitive to detect relativistic nuclear fragments with charges Z@$>$5. They will be analyzed using an automatic track measuring system which was developed at the University of Siegen.\\\\ \\\\ This allows to measure large quantities of tracks in these passive detectors and to perform high statistics experiments. We intend to measure cross sections for the production of nuclear fragments from heavy ion beams at the SPS. \\\\ \\\\ The energy independence of the cross sections predicted by the idea of limiting fragmentation will be tested at high energies. In exposures with different targets we plan to analyze the factorization of the fragmentation cross sections into a target depending factor and a factor depending on the beam particle and the fragment. The cross sections for one proton remov Coulomb dissociation. \\\\ \\\\ We plan to investigate Coulomb dissociation for different targets and different energies. Fragment and projectile charges ...

  1. A compact, versatile low-energy electron beam ion source

    Energy Technology Data Exchange (ETDEWEB)

    Zschornack, G., E-mail: g.zschornack@hzdr.de [Department of Physics, Dresden University of Technology, 01062 Dresden, Germany and Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, 01328 Dresden (Germany); König, J.; Schmidt, M.; Thorn, A. [DREEBIT GmbH, 01109 Dresden (Germany)

    2014-02-15

    A new compact Electron Beam Ion Source, the Dresden EBIT-LE, is introduced as an ion source working at low electron beam energies. The EBIT-LE operates at an electron energy ranging from 100 eV to some keV and can easily be modified to an EBIT also working at higher electron beam energies of up to 15 keV. We show that, depending on the electron beam energy, electron beam currents from a few mA in the low-energy regime up to about 40 mA in the high-energy regime are possible. Technical solutions as well as first experimental results of the EBIT-LE are presented. In ion extraction experiments, a stable production of low and intermediate charged ions at electron beam energies below 2 keV is demonstrated. Furthermore, X-ray spectroscopy measurements confirm the possibility of using the machine as a source of X-rays from ions excited at low electron energies.

  2. Understanding the ion beam in EUV mask blank production

    Science.gov (United States)

    Kearney, Patrick; Jindal, Vibhu; Weaver, Alfred; Teora, Pat; Sporre, John; Ruzic, David; Goodwin, Frank

    2012-03-01

    One of the major technical hurdles to be overcome before EUV lithography can enter high volume manufacturing is the amount of defects in EUV mask blanks, many of which occur during the EUV reflector deposition process. The technology currently used to deposit this reflector is ion beam sputter deposition. Understanding the properties of the ion beam and the nature of the plasma in the deposition chamber is therefore critical to understanding defect production mechanisms and subsequently eliminating them. In this work, we have studied how the source parameters influence ion beam divergence, its footprint on the target, and the amount of beam that misses the target and hits the shielding. By optimizing the source parameters, we can modulate certain target- and shield-specific defect types. We have compared our data with models of source performance and found general agreement, enabling the theory to be fine-tuned based on the results of the measurements. Models are being developed to better describe actual source performance. We have also investigated the plasma conditions the ion beam creates in the tool, which is crucial to understanding the transport of defects from their source to the mask. A well characterized ion beam and plasma will lead to process and tool changes that will ultimately reduce defect levels in EUV mask blanks.

  3. Direct deposition of gold on silicon with focused ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Nebiker, P.W.; Doebeli, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Muehle, R. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-09-01

    Irradiation with ions at very low energies (below 500 eV) no longer induces a removal of substrate material, but the ions are directly deposited on the surface. In this way, gold has been deposited on silicon with focused ion beam exposure and the properties of the film have been investigated with atomic force microscopy and Auger electron spectroscopy. (author) 3 figs., 1 ref.

  4. LET effects of high energy ion beam irradiation on polysilanes

    Energy Technology Data Exchange (ETDEWEB)

    Seki, Shu; Kanzaki, Kenichi; Tagawa, Seiichi; Yoshida, Yoichi [Osaka Univ., Ibaraki (Japan). Inst. of Scientific and Industrial Research; Kudoh, Hisaaki; Sugimoto, Masaki; Sasuga, Tsuneo; Seguchi, Tadao; Shibata, Hiromi

    1997-03-01

    Thin films of poly(di-n-hexylsilane) were irradiated with 2-20 MeV H{sup +} and He{sup +} ion beams. The beams caused heterogeneous reactions of crosslinking and main chain scission in the films. The relative efficiency of the crosslinking was drastically changed in comparison with that of main chain scission. The anomalous change in the molecular weight distribution was analyzed with increasing irradiation fluence, and the ion beam induced reaction radius; track radius was determined for the radiation sources by the function of molecular weight dispersion. Obtained values were 59{+-}15 A and 14{+-}6 A for 2 MeV He{sup +} and 20 MeV H{sup +} ion beams respectively. (author)

  5. Laser cooling and ion beam diagnosis of relativistic ions in a storage ring

    International Nuclear Information System (INIS)

    Schroeder, S.

    1990-08-01

    Particle accelerator and storage ring technology has reached an advanced state, so that different heavy ion storage rings are coming into operation by now, capable of storing even fully stripped ions up to U 92+ . The main purpose of these machines are the accumulation of ions and the ability of improving the beam quality, that is the phase space density of the stored beams. This beam cooling is done successfully by the well established stochastic and electron cooling techniques. A new cooling method, the laser cooling, is taken over from atomic beam and ion trap experiments, where it has yielded extremely low temperatures of atomic samples. As a canditate at storage rings 7 Li + ions are stored in the Heidelberg TSR at 13.3 MeV. The ion beam properties of the metastable fraction like momentum spread, storage time and the influence of residual gas scattering are investigated by colinear laser spectroscopy in the experimental section of the TSR. An optical pumping experiment using two dye laser systems yields information about ion kinematics and velocity mixing processes in the ring. Lifetimes in the order of 100 ms for velocity classes marked in this way show that laser cooling can be applied to the stored 7 Li + beam. In an experimental situation of two strong counterpropagating laser beams, both tuned near resonance, a dramatic reduction of the ion beam momentum spread is observed. With a special geometrical control of laser and ion beam the longitudinal beam temperature is reduced from 260 K to at least 3 K with very high collection efficiency. (orig./HSI) [de

  6. Accelerator complex for a radioactive ion beam facility at ATLAS

    International Nuclear Information System (INIS)

    Nolen, J.A.

    1995-01-01

    Since the superconducting heavy ion linac ATLAS is an ideal post-accelerator for radioactive beams, plans are being developed for expansion of the facility with the addition of a driver accelerator, a production target/ion source combination, and a low q/m pre-accelerator for radioactive ions. A working group including staff from the ANL Physics Division and current ATLAS users are preparing a radioactive beam facility proposal. The present paper reviews the specifications of the accelerators required for the facility

  7. Dose Response of Alanine Detectors Irradiated with Carbon Ion Beams

    DEFF Research Database (Denmark)

    Herrmann, Rochus; Jäkel, Oliver; Palmans, Hugo

    2011-01-01

    Purpose: The dose response of the alanine detector shows a dependence on particle energy and type, when irradiated with ion beams. The purpose of this study is to investigate the response behaviour of the alanine detector in clinical carbon ion beams and compare the results with model predictions....... Methods: Alanine detectors have been irradiated with carbon ions with an energy range of 89-400 MeV/u. The relative effectiveness of alanine has been measured in this regime. Pristine and spread out Bragg peak depth-dose curves have been measured with alanine dosimeters. The track-structure based alanine...

  8. Shunting arc plasma source for pure carbon ion beam.

    Science.gov (United States)

    Koguchi, H; Sakakita, H; Kiyama, S; Shimada, T; Sato, Y; Hirano, Y

    2012-02-01

    A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA∕mm(2) at the peak of the pulse.

  9. Radioactive ion beam facility at Louvain-La-Neuve, Belgium and its features

    International Nuclear Information System (INIS)

    Chintalapudi, S.N.

    1991-01-01

    Use of radioactive ion beams for the study of nuclear structure as well as the astrophysical reaction cross sections become the current interest in physics. A full-fledged facility based on two coupled cyclotrons comprising a compact high current cyclotron and a medium energy cyclotron with an intermediate target and ion source system has been recently commissioned at the Louvain-La-Neuve University in Belgium by its accelerator group and has been successfully used for the measurement of cross sections for the primordial nucleosynthesis reactions of astrophysical interest, directly. A brief description of the system, its operational features together with some details of the target and the ion source arrangement for the production of the radioactive ion beams and their acceleration to energies required for the proposed studies is presented. Description of the reactions studied by the Louvain La Neuve group for astrophysical interest is also given. (author). 20 refs., 6 figs., 4 tabs

  10. A high energy, heavy ion microprobe for ion beam research on the tandem accelerator at ANSTO

    International Nuclear Information System (INIS)

    Cohen, D.D.; Siegele, R.; Dytlewski, N.

    1996-04-01

    A comprehensive review is given on the production and use of heavy ion beams with spot sizes of a few μm. The development of a high energy, heavy ion microprobe at ANSTO and its possible applications are discussed. The microprobe is designed to focus a wide range of ion beam types, from light ions such as protons up to ions as heavy as iodine. Details of the ion beam optics, optical calculations and a description of the proposed microbeam design are given. The unique combination of high energy, heavy ions and improved detection systems will provide high sensitivity elemental composition and depth profiling information, allowing surface topography and 3D surface reconstruction to be performed on a broad range of materials

  11. A high energy, heavy ion microprobe for ion beam research on the tandem accelerator at ANSTO

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, D.D.; Siegele, R.; Dytlewski, N.

    1996-04-01

    A comprehensive review is given on the production and use of heavy ion beams with spot sizes of a few {mu}m. The development of a high energy, heavy ion microprobe at ANSTO and its possible applications are discussed. The microprobe is designed to focus a wide range of ion beam types, from light ions such as protons up to ions as heavy as iodine. Details of the ion beam optics, optical calculations and a description of the proposed microbeam design are given. The unique combination of high energy, heavy ions and improved detection systems will provide high sensitivity elemental composition and depth profiling information, allowing surface topography and 3D surface reconstruction to be performed on a broad range of materials. 86 refs., 5 tabs., 15 figs.

  12. Microfabricated Ion Beam Drivers for Magnetized Target Fusion

    Science.gov (United States)

    Persaud, Arun; Seidl, Peter; Ji, Qing; Ardanuc, Serhan; Miller, Joseph; Lal, Amit; Schenkel, Thomas

    2015-11-01

    Efficient, low-cost drivers are important for Magnetized Target Fusion (MTF). Ion beams offer a high degree of control to deliver the required mega joules of driver energy for MTF and they can be matched to several types of magnetized fuel targets, including compact toroids and solid targets. We describe an ion beam driver approach based on the MEQALAC concept (Multiple Electrostatic Quadrupole Array Linear Accelerator) with many beamlets in an array of micro-fabricated channels. The channels consist of a lattice of electrostatic quadrupoles (ESQ) for focusing and of radio-frequency (RF) electrodes for ion acceleration. Simulations with particle-in-cell and beam envelope codes predict >10x higher current densities compared to state-of-the-art ion accelerators. This increase results from dividing the total ion beam current up into many beamlets to control space charge forces. Focusing elements can be biased taking advantage of high breakdown electric fields in sub-mm structures formed using MEMS techniques (Micro-Electro-Mechanical Systems). We will present results on ion beam transport and acceleration in MEMS based beamlets. Acknowledgments: This work is supported by the U.S. DOE under Contract No. DE-AC02-05CH11231.

  13. A large ion beam device for laboratory solar wind studies

    Science.gov (United States)

    Ulibarri, Zach; Han, Jia; Horányi, Mihály; Munsat, Tobin; Wang, Xu; Whittall-Scherfee, Guy; Yeo, Li Hsia

    2017-11-01

    The Colorado Solar Wind Experiment is a new device constructed at the Institute for Modeling Plasma, Atmospheres, and Cosmic Dust at the University of Colorado. A large cross-sectional Kaufman ion source is used to create steady state plasma flow to model the solar wind in an experimental vacuum chamber. The plasma beam has a diameter of 12 cm at the source, ion energies of up to 1 keV, and ion flows of up to 0.1 mA/cm2. Chamber pressure can be reduced to 4 × 10-5 Torr under operating conditions to suppress ion-neutral collisions and create a monoenergetic ion beam. The beam profile has been characterized by a Langmuir probe and an ion energy analyzer mounted on a two-dimensional translation stage. The beam profile meets the requirements for planned experiments that will study solar wind interaction with lunar magnetic anomalies, the charging and dynamics of dust in the solar wind, plasma wakes and refilling, and the wakes of topographic features such as craters or boulders. This article describes the technical details of the device, initial operation and beam characterization, and the planned experiments.

  14. Study of ion beam induced depolymerization using positron annihilation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Puglisi, O. E-mail: opuglisi@dipchi.unict.it; Fragala, M.E.; Lynn, K.G.; Petkov, M.; Weber, M.; Somoza, A.; Dupasquier, A.; Quasso, F

    2001-04-01

    Ion beam induced depolymerization of polymers is a special class of ion beam induced chemical reaction which gives rise to catastrophic 'unzipping' of macromolecules with production of large amounts of the monomer, of the order of many hundreds monomer molecules per each macromolecule. The possible modification of the density at microscopic level prompted us to undertake a study of this effect utilizing positron annihilation techniques in Poly(methylmethacrylate) (PMMA) before and after bombardment with He{sup +} 300 keV ions at 200 deg. C. Preliminary results shown here indicate that before bombardment there is a reproducible dependence of nano-hole distribution on the sample history. Moreover at 200 deg. C we do not detect formation of new cavities as a consequence of the strong depolymerization that occurs under the ion beam. The possible correlation of these findings with transport properties of PMMA at temperature higher than the glass transition temperature will be discussed.

  15. Longitudinal dynamics of laser-cooled fast ion beams

    DEFF Research Database (Denmark)

    Weidemüller, M.; Eike, B.; Eisenbarth, U.

    1999-01-01

    We present recent results of our experiments on laser cooling of fast stored ion beams at the Heidelberg Test Storage Ring. The longitudinal motion of the ions is directly cooled by the light pressure force, whereas efficient transverse cooling is obtained indirectly by longitudinal-transverse co......We present recent results of our experiments on laser cooling of fast stored ion beams at the Heidelberg Test Storage Ring. The longitudinal motion of the ions is directly cooled by the light pressure force, whereas efficient transverse cooling is obtained indirectly by longitudinal....... When applying laser cooling in square-well buckets over long time intervals, hard Coulomb collisions suddenly disappear and the longitudinal temperature drops by about a factor of three. The observed longitudinal behaviour of the beam shows strong resemblance with the transition to an Coulomb...

  16. Investigation on heavy ion irradiation for producing nuclear track membrane at HI-13 tandem accelerator at CIAE

    International Nuclear Information System (INIS)

    Zhang Canzhe

    1997-10-01

    Some technical parameters and experimental results of heavy ion irradiation to produce nuclear track membrane at HI-13 tandem accelerator at CIAE are given, including the selection of heavy ions, the effect of energy and beam intensity on properties of nuclear track membrane, and the means for increasing irradiation uniformity. For production of nuclear track membrane, S ion beam with energy of 3.5∼4.5 MeV/N were used. The pore density and uniformity of nuclear track membrane produced at HI-13 Tandem Accelerator are 10 5 ∼10 8 cm -2 and ∼80% respectively. (9 refs., 4 figs., 1 tab.)

  17. HIGH ENERGY DENSITY PHYSICS EXPERIMENTS WITH INTENSE HEAVY ION BEAMS

    Energy Technology Data Exchange (ETDEWEB)

    Bieniosek, F.M.; Henestroza, E.; Leitner, M.; Logan, B.G.; More, R.M.; Roy, P.K.; Ni, P.; Seidl, P.A.; Waldron, W.L.; Barnard, J.J.

    2008-08-01

    The US heavy ion fusion science program has developed techniques for heating ion-beam-driven warm dense matter (WDM) targets. The WDM conditions are to be achieved by combined longitudinal and transverse space-charge neutralized drift compression of the ion beam to provide a hot spot on the target with a beam spot size of about 1 mm, and pulse length about 1-2 ns. As a technique for heating volumetric samples of matter to high energy density, intense beams of heavy ions are capable of delivering precise and uniform beam energy deposition dE/dx, in a relatively large sample size, and the ability to heat any solid-phase target material. Initial experiments use a 0.3 MeV K+ beam (below the Bragg peak) from the NDCX-I accelerator. Future plans include target experiments using the NDCX-II accelerator, which is designed to heat targets at the Bragg peak using a 3-6 MeV lithium ion beam. The range of the beams in solid matter targets is about 1 micron, which can be lengthened by using porous targets at reduced density. We have completed the fabrication of a new experimental target chamber facility for WDM experiments, and implemented initial target diagnostics to be used for the first target experiments in NDCX-1. The target chamber has been installed on the NDCX-I beamline. The target diagnostics include a fast multi-channel optical pyrometer, optical streak camera, VISAR, and high-speed gated cameras. Initial WDM experiments will heat targets by compressed NDCX-I beams and will explore measurement of temperature and other target parameters. Experiments are planned in areas such as dense electronegative targets, porous target homogenization and two-phase equation of state.

  18. HIGH ENERGY DENSITY PHYSICS EXPERIMENTS WITH INTENSE HEAVY ION BEAMS

    Energy Technology Data Exchange (ETDEWEB)

    Henestroza, E.; Leitner, M.; Logan, B.G.; More, R.M.; Roy, P.K.; Ni, P.; Seidl, P.A.; Waldron, W.L.; Barnard, J.J.

    2010-03-16

    The US heavy ion fusion science program has developed techniques for heating ion-beam-driven warm dense matter (WDM) targets. The WDM conditions are to be achieved by combined longitudinal and transverse space-charge neutralized drift compression of the ion beam to provide a hot spot on the target with a beam spot size of about 1 mm, and pulse length about 1-2 ns. As a technique for heating volumetric samples of matter to high energy density, intense beams of heavy ions are capable of delivering precise and uniform beam energy deposition dE/dx, in a relatively large sample size, and the ability to heat any solid-phase target material. Initial experiments use a 0.3 MeV K+ beam (below the Bragg peak) from the NDCX-I accelerator. Future plans include target experiments using the NDCX-II accelerator, which is designed to heat targets at the Bragg peak using a 3-6 MeV lithium ion beam. The range of the beams in solid matter targets is about 1 micron, which can be lengthened by using porous targets at reduced density. We have completed the fabrication of a new experimental target chamber facility for WDM experiments, and implemented initial target diagnostics to be used for the first target experiments in NDCX-1. The target chamber has been installed on the NDCX-I beamline. The target diagnostics include a fast multi-channel optical pyrometer, optical streak camera, VISAR, and high-speed gated cameras. Initial WDM experiments will heat targets by compressed NDCX-I beams and will explore measurement of temperature and other target parameters. Experiments are planned in areas such as dense electronegative targets, porous target homogenization and two-phase equation of state.

  19. HIGH ENERGY DENSITY PHYSICS EXPERIMENTS WITH INTENSE HEAVY ION BEAMS

    International Nuclear Information System (INIS)

    Bieniosek, F.M.; Henestroza, E.; Leitner, M.; Logan, B.G.; More, R.M.; Roy, P.K.; Ni, P.; Seidl, P.A.; Waldron, W.L.; Barnard, J.J.

    2008-01-01

    The US heavy ion fusion science program has developed techniques for heating ion-beam-driven warm dense matter (WDM) targets. The WDM conditions are to be achieved by combined longitudinal and transverse space-charge neutralized drift compression of the ion beam to provide a hot spot on the target with a beam spot size of about 1 mm, and pulse length about 1-2 ns. As a technique for heating volumetric samples of matter to high energy density, intense beams of heavy ions are capable of delivering precise and uniform beam energy deposition dE/dx, in a relatively large sample size, and the ability to heat any solid-phase target material. Initial experiments use a 0.3 MeV K+ beam (below the Bragg peak) from the NDCX-I accelerator. Future plans include target experiments using the NDCX-II accelerator, which is designed to heat targets at the Bragg peak using a 3-6 MeV lithium ion beam. The range of the beams in solid matter targets is about 1 micron, which can be lengthened by using porous targets at reduced density. We have completed the fabrication of a new experimental target chamber facility for WDM experiments, and implemented initial target diagnostics to be used for the first target experiments in NDCX-1. The target chamber has been installed on the NDCX-I beamline. The target diagnostics include a fast multi-channel optical pyrometer, optical streak camera, VISAR, and high-speed gated cameras. Initial WDM experiments will heat targets by compressed NDCX-I beams and will explore measurement of temperature and other target parameters. Experiments are planned in areas such as dense electronegative targets, porous target homogenization and two-phase equation of state

  20. Special design issues. Ion beam driver-reaction chamber interfaces

    International Nuclear Information System (INIS)

    Moir, R.W.; Peterson, R.R.; Kessler, G.

    1995-01-01

    Design issues of the interface between ion beam drivers and the reaction chamber for heavy ion beam and light ion beam inertial fusion drivers are discussed. The interface must provide for radiation protection of final focusing magnets, pumping of evaporated material and non-condensable gas that enter the beam ports, thermal insulation, heat removal, a.o.. Beam ports and focal magnets must be protected by neutronically thick shielding between the beam path and the magnet conductor. The required thickness of the shielding determines the minimum spacing between individual beams in a cluster of beams. The cone angle of this cluster can affect target performance. The beamlines are subjected to evaporated material, debris, and rapidly moving droplets. The reaction chambers used here are HYLIFE-II for indirect, HIBALL-II for direct drive. The light ion beam interface is based on the LIBRA and LIBRA-LiTE studies. In the case of HYLIFE-II, liquid jets must be demonstrated with a thickness of 0.5 m and with an edge that comes to within 10 mm of the beam edges to protect the ports. Design of compact focal arrays with enough shielding to give magnets an adequate lifetime must be achieved. As shielding is added the size of the beam array will grow and the target will drop. For HIBALL neutron shielding of the focal magnets provides an adequate lifetime. Replaceable special INPORT units will have to be developed in the region of the beam ports. For light ions transport issues have led to structures being placed close enough to the target that they experience a higher neutron damage rate and must be replaced once or twice a year, which would require remote maintenance. Light ion concepts could greatly benefit from a self-pinched transport scheme, though the details are unclear and the effect on availability is uncertain. Light and heavy ions have similar problems in keeping the gas in the drivers at a low density. Both will require active means to preserve this low density, while

  1. Improving depth resolutions in positron beam spectroscopy by concurrent ion-beam sputtering

    Science.gov (United States)

    John, Marco; Dalla, Ayham; Ibrahim, Alaa M.; Anwand, Wolfgang; Wagner, Andreas; Böttger, Roman; Krause-Rehberg, Reinhard

    2018-05-01

    The depth resolution of mono-energetic positron annihilation spectroscopy using a positron beam is shown to improve by concurrently removing the sample surface layer during positron beam spectroscopy. During ion-beam sputtering with argon ions, Doppler-broadening spectroscopy is performed with energies ranging from 3 keV to 5 keV allowing for high-resolution defect studies just below the sputtered surface. With this technique, significantly improved depth resolutions could be obtained even at larger depths when compared to standard positron beam experiments which suffer from extended positron implantation profiles at higher positron energies. Our results show that it is possible to investigate layered structures with a thickness of about 4 microns with significantly improved depth resolution. We demonstrated that a purposely generated ion-beam induced defect profile in a silicon sample could be resolved employing the new technique. A depth resolution of less than 100 nm could be reached.

  2. Near spherical illumination of ion-beam and laser targets

    International Nuclear Information System (INIS)

    Mark, J.W.K.

    1985-01-01

    A procedure is developed for reducing energy-deposition asymmetry in spherical targets driven directly by ion or laser beams. This work is part of a strategy for achieving illumination symmetry in such targets, which is proposed as an alternative to those in the literature. This strategy allows an axially symmetric placement of beamlets, which would be convenient for some driven or reactor scenarios. It also allows the use of beam currents or energy fluxes and beam transverse profiles to help reduce deposition asymmetry with fewer beamlets. In the ideal limit of thin deposition layers and controlled beam profiles, at most six beamlets are needed for target symmetry

  3. Multiple-ion-beam time-of-flight mass spectrometer

    International Nuclear Information System (INIS)

    Rohrbacher, Andreas; Continetti, Robert E.

    2001-01-01

    An innovative approach to increase the throughput of mass spectrometric analyses using a multiple-ion-beam mass spectrometer is described. Two sample spots were applied onto a laser desorption/ionization target and each spot was simultaneously irradiated by a beam of quadrupled Nd:YLF laser radiation (261.75 nm) to produce ions by laser-desorption ionization. Acceleration of the ions in an electric field created parallel ion beams that were focused by two parallel einzel lens systems. After a flight path of 2.34 m, the ions were detected with a microchannel plate-phosphor screen assembly coupled with a charge coupled device camera that showed two resolved ion beams. Time-of-flight mass spectra were also obtained with this detector. Experiments were performed using both metal atom cations (Ti + and Cr + ) produced by laser desorption/ionization and the molecular ions of two different proteins (myoglobin and lysozyme), created by matrix assisted laser desorption/ionization using an excess of nicotinic acid as matrix

  4. Multiple-ion-beam time-of-flight mass spectrometer

    Science.gov (United States)

    Rohrbacher, Andreas; Continetti, Robert E.

    2001-08-01

    An innovative approach to increase the throughput of mass spectrometric analyses using a multiple-ion-beam mass spectrometer is described. Two sample spots were applied onto a laser desorption/ionization target and each spot was simultaneously irradiated by a beam of quadrupled Nd:YLF laser radiation (261.75 nm) to produce ions by laser-desorption ionization. Acceleration of the ions in an electric field created parallel ion beams that were focused by two parallel einzel lens systems. After a flight path of 2.34 m, the ions were detected with a microchannel plate-phosphor screen assembly coupled with a charge coupled device camera that showed two resolved ion beams. Time-of-flight mass spectra were also obtained with this detector. Experiments were performed using both metal atom cations (Ti+ and Cr+) produced by laser desorption/ionization and the molecular ions of two different proteins (myoglobin and lysozyme), created by matrix assisted laser desorption/ionization using an excess of nicotinic acid as matrix.

  5. Progress in bright ion beams for industry, medicine and fusion at LBNL

    International Nuclear Information System (INIS)

    Kwan, Joe W.

    2002-01-01

    Recent progresses at LBNL in developing ion beams for industry, radiation therapy and inertial fusion applications were discussed. The highlights include ion beam lithography, boron neutron capture therapy (BNCT), and heavy ion fusion (HIF) drivers using multiple linacs

  6. Nuclear spin polarized alkali beams (Li and Na): Production and acceleration

    International Nuclear Information System (INIS)

    Jaensch, H.; Becker, K.; Blatt, K.; Leucker, H.; Fick, D.

    1987-01-01

    Recent improvements of the Heidelberg source for polarized heavy ions (PSI) are described. By means of optical pumping in combination with the existing multipole separation magnet the beam figure of merit (polarization 2 x intensity) was doubled. 7 Li and 23 Na atomic beams can now be produced in pure hyperfine magnetic substates. Fast switching of the polarization is achieved by an adiabatic medium field transition. The hyperfine magnetic substate population is determined by laser-induced fluorescence spectroscopy. In routine operation atomic beams with nuclear polarization p α ≥0.85 (α=z, zz) are obtained. The acceleration of polarized 23 Na - ions by a 12 MV tandem accelerator introduces a new problem: the energy at the terminal stripper foil is not sufficient to produce a usable yield of naked ions. For partially stripped ions hyperfine interaction of the remaining electrons with the nuclear spin reduces the nuclear polarization. Using in addition the Heidelberg postaccelerator 23 Na 9+ beams of energies between 49 and 184 MeV were obtained with an alignment on target of P zz ≅0.45. 7 Li beams have also been accelerated up to 45 MeV with an alignment of P zz =0.69. (orig.)

  7. Ion beam induced luminescence from diamond using an MeV ion microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Bettiol, A.A.; Jamieson, D. N.; Prawer, S.; Allen, M.G. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1993-12-31

    Analysis of the luminescence induced by a MeV ion beam offers the potential to provide useful information about the chemical properties of atoms in crystals to complement the information provided by more traditional Ion Beam Analysis (IBA) such as Rutherford Backscattering Spectrometry (RBS), ion channeling and Particle Induced X-ray Emission (PIXE). Furthermore, the large penetration depth of the MeV ion beam offers several advantages over the relatively shallow penetration of keV electrons typically employed in cathodoluminescence. An Ion Beam Induced Luminescence (IBIL) detection system was developed for the Melbourne microprobe that allows the spatial mapping of the luminescence signal along with the signals from RBS and PIXE. Homoepitaxial diamond growth has been studied and remarkable shifts in the characteristic blue luminescence of diamond towards the green were observed in the overgrowth. This has been tentatively identified as being due to transition metal inclusions in the epitaxial layers. 8 refs., 2 refs.

  8. Beam structure and transverse emittance studies of high-energy ion beams

    International Nuclear Information System (INIS)

    Saadatmand, K.; Johnson, K.F.; Schneider, J.D.

    1991-01-01

    A visual diagnostic technique has been developed to monitor and study ion beam structure shape and size along a transport line. In this technique, a commercially available fluorescent screen is utilized in conjunction with a video camera. This visual representation of the beam structure is digitized and enhanced through use of false-color coding and displayed on a TV monitor for on-line viewing. Digitized information is stored for further off-line processing (e.g., extraction of beam profiles). An optional wire grid placed upstream of the fluor screen adds the capability of transverse emittance (or angular spread) measurement to this technique. This diagnostic allows real-time observation of the beam response to parameter changes (e.g., evolution of the beam structure, shifts in the beam intensity at various spatial locations within the beam perimeter, and shifts in the beam center and position). 3 refs., 5 figs

  9. Beam structure and transverse emittance studies of high-energy ion beams

    Science.gov (United States)

    Saadatmand, K.; Johnson, K. F.; Schneider, J. D.

    1991-05-01

    A visual diagnostic technique was developed to monitor and study ion beam structure shape and size along a transport line. In this technique, a commercially available fluorescent screen is utilized in conjunction with a video camera. This visual representation of the beam structure is digitized and enhanced through use of false color coding and displayed on a TV monitor for on-line viewing. Digitized information is stored for further off-line processing (e.g., extraction of beam profiles). An optional wire grid placed upstream of the fluor screen adds the capability of transverse emittance (or angular spread) measurement to this technique. This diagnostic allows real time observation of the beam response to parameter changes (e.g., evolution of the beam structure, shifts in the beam intensity at various spatial locations within the beam perimeter, and shifts in the beam center and position).

  10. Beam dynamics design studies of a superconducting radioactive ion beam postaccelerator

    CERN Document Server

    Fraser, M A; Jones, R M

    2011-01-01

    The HIE-ISOLDE project at CERN proposes a superconducting upgrade to increase the energy range and quality of the radioactive ion beams produced at ISOLDE, which are currently postaccelerated by the normal conducting radioactive ion beam experiment linac. The specification and design choices for the HIE-ISOLDE linac are outlined along with a comprehensive beam dynamics study undertaken to understand and mitigate the sources of beam emittance dilution. The dominant cause of transverse emittance growth was attributed to the coupling between the transverse and longitudinal motions through the phase dependence of the rf defocusing force in the accelerating cavities. A parametric resonance induced by the coupling was observed and its excitation surveyed as a function of transverse phase advance using numerical simulations and analytic models to understand and avoid the regions of transverse beam instability. Other sources of emittance growth were studied and where necessary ameliorated, including the beam steering...

  11. Intense Ion Beams for Warm Dense Matter Physics

    International Nuclear Information System (INIS)

    Heimbucher, Lynn; Coleman, Joshua Eugene

    2008-01-01

    The Neutralized Drift Compression Experiment (NDCX) at Lawrence Berkeley National Laboratory is exploring the physical limits of compression and focusing of ion beams for heating material to warm dense matter (WDM) and fusion ignition conditions. The NDCX is a beam transport experiment with several components at a scale comparable to an inertial fusion energy driver. The NDCX is an accelerator which consists of a low-emittance ion source, high-current injector, solenoid matching section, induction bunching module, beam neutralization section, and final focusing system. The principal objectives of the experiment are to control the beam envelope, demonstrate effective neutralization of the beam space-charge, control the velocity tilt on the beam, and understand defocusing effects, field imperfections, and limitations on peak intensity such as emittance and aberrations. Target heating experiments with space-charge dominated ion beams require simultaneous longitudinal bunching and transverse focusing. A four-solenoid lattice is used to tune the beam envelope to the necessary focusing conditions before entering the induction bunching module. The induction bunching module provides a head-to-tail velocity ramp necessary to achieve peak axial compression at the desired focal plane. Downstream of the induction gap a plasma column neutralizes the beam space charge so only emittance limits the focused beam intensity. We present results of beam transport through a solenoid matching section and simultaneous focusing of a singly charged K + ion bunch at an ion energy of 0.3 MeV. The results include a qualitative comparison of experimental and calculated results after the solenoid matching section, which include time resolved current density, transverse distributions, and phase-space of the beam at different diagnostic planes. Electron cloud and gas measurements in the solenoid lattice and in the vicinity of intercepting diagnostics are also presented. Finally, comparisons of

  12. Characterization of polymeric films subjected to lithium ion beam irradiation

    Science.gov (United States)

    Groenewold, Gary S.; Cannon, W. Roger; Lessing, Paul A.; Avci, Recep; Deliorman, Muhammedin; Wolfenden, Mark; Akers, Doug W.; Jewell, J. Keith; Zuck, Larry D.

    2013-02-01

    Two different polymeric materials that are candidate materials for use as binders for mixed uranium-plutonium oxide nuclear fuel pellets were subjected to Li ion beam irradiation, in order to simulate intense alpha irradiation. The materials (a polyethylene glycol 8000 and a microcrystalline wax) were then analyzed using a combination of mass spectrometry (MS) approaches and X-ray photoelectron spectroscopy (XPS). Samples of the irradiated PEG materials were dissolved in H2O and then analyzed using electrospray ionization-MS, which showed the formation of a series of small oligomers in addition to intact large PEG oligomers. The small oligomers were likely formed by radiation-induced homolytic scissions of the C-O and C-C bonds, which furnish radical intermediates that react by radical recombination with Hrad and OHrad . Surface analysis using SIMS revealed a heterogeneous surface that contained not only PEG-derived polymers, but also hydrocarbon-based entities that are likely surface contaminants. XPS of the irradiated PEG samples indicated the emergence of different carbon species, with peak shifts suggesting the presence of sp2 carbon atoms. Analysis of the paraffinic film using XPS showed the emergence of oxygen on the surface of the sample, and also a broadening and shifting of the C1s peak, demonstrating a change in the chemistry on the surface. The paraffinic film did not dissolve in either H2O or a H2O-methanol solution, and hence the bulk of the material could not be analyzed using electrospray. However a series of oligomers was leached from the bulk material that produced ion series in the ESI-MS analyses that were identified octylphenyl ethoxylate oligomers. Upon Li ion bombardment, these shifted to a lower average molecular weight, but more importantly showed the emergence of three new ion series that are being formed as a result of radiation damage. Surface analysis of the paraffinic polymers using SIMS produced spectra that were wholly dominated by

  13. Negative-ion-based neutral beams for fusion

    International Nuclear Information System (INIS)

    Cooper, W.S.; Anderson, O.A.; Chan, C.F.

    1987-10-01

    To maximize the usefulness of an engineering test reactor (e.g., ITER, TIBER), it is highly desirable that it operate under steady-state conditions. The most attractive option for maintaining the circulating current needed in the center of the plasma is the injection of powerful beams of neutral deuterium atoms. The beam simultaneously heats the plasma. At the energies required, in excess of 500 keV, such beams can be made by accelerating D - ions and then removing the electron. Sources are being developed that generate the D - ions in the volume of a specially constructed plasma discharge, without the addition of cesium. These sources must operate with minimum gas flow, to avoid stripping the D - beam, and with minimum electron output. We are designing at LBL highly efficient electrostatic accelerators that combine electric strong-focusing with dc acceleration and offer the possibility of varying the beam energy at constant current while minimizing breakdown. Some form of rf acceleration may also be required. To minimize irradiation of the ion sources and accelerators, the D - beam can be transported through a maze in the neutron shielding. The D - ions can be converted to neutrals in a gas or plasma target, but advances in laser and mirror technology may make possible very efficient photodetachment systems by the time an ETR becomes operational. 9 refs., 4 figs

  14. Modification of mechanical properties by ion-beam mixing

    Science.gov (United States)

    Hirvonen, J.-P.; Mayer, J. W.; Nastasi, M.; Stone, D.

    1987-05-01

    We have been investigating the application of ion-beam mixing of multilayer films on metal substrates to improve wear resistance and friction. With ion-beam mixed multilayers, the surface composition can be chosen independently of the substrate and adhesion can be obtained by a slight mixing at the multilayer/substrate interface. As a final state, the material has a modified surface which is an essential part of the substrate but tailored to provide the desired properties. As a result of ion-beam mixing, one can obtain a variety of microstructures ranging from amorphous to extended solid solutions to stable crystalline phases. Multilayer, Pd-Al, Fe-Ti, and Pd-Ti samples are prepared where each individual sublayer is a wedge so that as a result of ion beam mixing, a homogenous composition is formed throughout the thickness but the composition varies in the lateral direction from Ti-rich to Pd- or Fe-rich. The structure depends on composition. For example, in Fe-Ti a pure amorphous phase is obtained in a narrow composition range around FeTi and in Pd-Ti the microstructure is amorphous over a broad composition range. Wear and friction measurements of Fe-Ti layers on AISI 304 stainless steel show that both ion beam mixing and composition are important for improved tribology.

  15. Simulation of ion beam scattering in a gas stripper

    Science.gov (United States)

    Maxeiner, Sascha; Suter, Martin; Christl, Marcus; Synal, Hans-Arno

    2015-10-01

    Ion beam scattering in the gas stripper of an accelerator mass spectrometer (AMS) enlarges the beam phase space and broadens its energy distribution. As the size of the injected beam depends on the acceleration voltage through phase space compression, the stripper becomes a limiting factor of the overall system transmission especially for low energy AMS system in the sub MV region. The spatial beam broadening and collisions with the accelerator tube walls are a possible source for machine background and energy loss fluctuations influence the mass resolution and thus isotope separation. To investigate the physical processes responsible for these effects, a computer simulation approach was chosen. Monte Carlo simulation methods are applied to simulate elastic two body scattering processes in screened Coulomb potentials in a (gas) stripper and formulas are derived to correctly determine random collision parameters and free path lengths for arbitrary (and non-homogeneous) gas densities. A simple parametric form for the underlying scattering cross sections is discussed which features important scaling behaviors. An implementation of the simulation was able to correctly model the data gained with the TANDY AMS system at ETH Zurich. The experiment covered transmission measurements of uranium ions in helium and beam profile measurements after the ion beam passed through the He-stripper. Beam profiles measured up to very high stripper densities could be understood in full system simulations including the relevant ion optics. The presented model therefore simulates the fundamental physics of the interaction between an ion beam and a gas stripper reliably. It provides a powerful and flexible tool for optimizing existing AMS stripper geometries and for designing new, state of the art low energy AMS systems.

  16. High energy density in matter produced by heavy ion beams

    International Nuclear Information System (INIS)

    1989-07-01

    This Annual Report summarizes research activities carried out in 1988 in the framework of the government-funded program 'High Energy Density in Matter produced by Heavy Ion Beams'. It addresses fundamental problems of the generation of heavy ion beams and the investigation of hot dense plasmas produced by these beams. Its initial motivation and its long-term goal is the feasibility of inertial confinement fusion by intense heavy ion beams. Two outstanding events deserve to be mentioned explicity, the Heavy Ion Inertial Fusion Conference held in Darmstadt and organized by GSI end of June and the first heavy ion beam injected into the new SIS facility in November. The former event attracted more than hundred scientists for three days to the 4th Conference in this field. This symposium showed the impressive progress since the last conference in Washington two years ago. In particular the first beams in MBE-4 at LBL and results of beam plasma interaction experiments at GSI open new directions for future investigations. The ideas for non-Lionvillean injection into storage rings presented by Carlo Rubbia will bring the discussion of driver scenarios into a new stage. The latter event is a milestone for both machine and target experiments. It characterizes the beginning of the commissioning phase for the new SIS/ESR facility which will be ready for experiments at the end of this year. The commissioning of SIS is on schedule and first experiments can start at the beginning of 1990. A status report of the accelerator project is included. Theoretical activities were continued as in previous years, many of them providing guide lines for future experiments, in particular for the radiation transport aspects and for beam-plasma interaction. (orig.)

  17. Development of an ion beam analyzing system for the KBSI heavy-ion accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Bahng, Jungbae [Department of Physics, Kyungpook National University, Daegu 41566 (Korea, Republic of); Busan Center, Korea Basic Science Institute, Busan 46241 (Korea, Republic of); Hong, Jonggi; Park, Jin Yong; Kim, Seong Jun; Ok, Jung-Woo; Choi, Seyong; Shin, Chang Seouk; Yoon, Jang-Hee; Won, Mi-Sook; Lee, Byoung-Seob, E-mail: bslee@kbsi.re.kr [Busan Center, Korea Basic Science Institute, Busan 46241 (Korea, Republic of); Kim, Eun-San, E-mail: eskim1@korea.ac.kr [Department of Accelerator Science, Korea University Sejong Campus, Sejong 339-770 (Korea, Republic of)

    2016-02-15

    The Korea Basic Science Institute (KBSI) has been developing a heavy ion accelerator system to accelerate high current, multi-charge state ions produced by a 28 GHz superconducting electron cyclotron ion source. A beam analyzing system as a part of the low energy beam transport apparatus was developed to select charged particles with desirable charge states from the ion beams. The desired species of ion, which is generated and extracted from the ECR ion source including various ion particles, can be selected by 90° dipole electromagnet. Due to the non-symmetrical structure in the coil as well as the non-linear permeability of the yoke material coil, a three dimensional analysis was carried out to confirm the design parameters. In this paper, we present the experimental results obtained as result of an analysis of KBSI accelerator. The effectiveness of beam selection was confirmed during the test of the analyzing system by injecting an ion beam from an ECR ion source.

  18. Chemical effects of heavy ion beams on organic materials

    International Nuclear Information System (INIS)

    Koizumi, Hitoshi; Ichikawa, Tsuneki; Taguchi, Mitsumasa; Kobayashi, Yasuhiko; Namba, Hideki

    2003-01-01

    Effects of ion beam irradiation on α-alanine, adipic acid and polydimethylsiloxane were examined. Stable radicals were generated in the radiolysis of solids of α-alanine and adipic acid by γ-ray, 220 MeV C ions, 350 MeV Ne ions and 175 MeV Ar ions. The G-value decreases in this order. The G-value for adipic acid decreases more than that for α-alanine. The decreases in the G-value are ascribed to high local dose in the ion tracks. Effective G-value of the radicals for γ-irradiations decreases at high doses. The local dose in the ion tracks exceeds those doses, and the G-values for the ion irradiation are hence smaller than the G-value for γ-irradiations. The difference in the dependence of the G-values for α-alanine and adipic acid on the ion beams is due to difference in the dose-yield relationship for radical formation. The high local dose in the ion tracks exceeds the gelation dose of some of polymers. Formation of gel strings of polydimethylsiloxanes generated in heavy ion tracks was observed by atomic force microscopy

  19. Production of highly charged ion beams with SECRAL

    International Nuclear Information System (INIS)

    Sun, L. T.; Zhao, H. W.; Zhang, X. Z.; Feng, Y. C.; Li, J. Y.; Guo, X. H.; Ma, H. Y.; Zhao, H. Y.; Ma, B. H.; Wang, H.; Li, X. X.; Jin, T.; Xie, D. Z.; Lu, W.; Cao, Y.; Shang, Y.

    2010-01-01

    Superconducting electron cyclotron resonance ion source with advanced design in Lanzhou (SECRAL) is an all-superconducting-magnet electron cyclotron resonance ion source (ECRIS) for the production of intense highly charged ion beams to meet the requirements of the Heavy Ion Research Facility in Lanzhou (HIRFL). To further enhance the performance of SECRAL, an aluminum chamber has been installed inside a 1.5 mm thick Ta liner used for the reduction of x-ray irradiation at the high voltage insulator. With double-frequency (18+14.5 GHz) heating and at maximum total microwave power of 2.0 kW, SECRAL has successfully produced quite a few very highly charged Xe ion beams, such as 10 e μA of Xe 37+ , 1 e μA of Xe 43+ , and 0.16 e μA of Ne-like Xe 44+ . To further explore the capability of the SECRAL in the production of highly charged heavy metal ion beams, a first test run on bismuth has been carried out recently. The main goal is to produce an intense Bi 31+ beam for HIRFL accelerator and to have a feel how well the SECRAL can do in the production of very highly charged Bi beams. During the test, though at microwave power less than 3 kW, more than 150 e μA of Bi 31+ , 22 e μA of Bi 41+ , and 1.5 e μA of Bi 50+ have been produced. All of these results have again demonstrated the great capability of the SECRAL source. This article will present the detailed results and brief discussions to the production of highly charged ion beams with SECRAL.

  20. Ion beam modification of metals: Compositional and microstructural changes

    Science.gov (United States)

    Was, Gary S.

    Ion implantation has become a highly developed tool for modifying the structure and properties of metals and alloys. In addition to direct implantation, a variety of other ion beam techniques such as ion beam mixing, ion beam assisted deposition and plasma source ion implantation have been used increasingly in recent years. The modifications constitute compositional and microstructural changes in the surface of the metal. This leads to alterations in physical properties (transport, optical, corrosion, oxidation), as well as mechanical properties (strength, hardness, wear resistance, fatigue resistance). The compositional changes brought about by ion bombardment are classified into recoil implantation, cascade mixing, radiation-enhanced diffusion, radiation-induced segregation, Gibbsian adsorption and sputtering which combine to produce an often complicated compositional variation within the implanted layer and often, well beyond. Microstructurally, the phases present are often altered from what is expected from equilibrium thermodynamics giving rise to order-disorder transformations, metastable (crystalline, amorphous or quasicrystalline) phase formation and growth, as well as densification, grain growth, formation of a preferred texture and the formation of a high density dislocation network. All these effects need to be understood before one can determine the effect of ion bombardment on the physical and mechanical properties of metals. This paper reviews the literature in terms of the compositional and microstructural changes induced by ion bombardment, whether by direct implantation, ion beam mixing or other forms of ion irradiation. The topics are introduced as well as reviewed, making this a more pedogogical approach as opposed to one which treats only recent developments. The aim is to provide the tools needed to understand the consequent changes in physical and mechanical properties.

  1. Heavy ion linac as a high current proton beam injector

    Directory of Open Access Journals (Sweden)

    Winfried Barth

    2015-05-01

    Full Text Available A significant part of the experimental program at Facility for Antiproton and Ion Research (FAIR is dedicated to pbar physics requiring a high number of cooled pbars per hour. The primary proton beam has to be provided by a 70 MeV proton linac followed by two synchrotrons. The new FAIR proton linac will deliver a pulsed proton beam of up to 35 mA of 36  μs duration at a repetition rate of 4 Hz (maximum. The GSI heavy ion linac (UNILAC is able to deliver world record uranium beam intensities for injection into the synchrotrons, but it is not suitable for FAIR relevant proton beam operation. In an advanced machine investigation program it could be shown that the UNILAC is able to provide for sufficient high intensities of CH_{3} beam, cracked (and stripped in a supersonic nitrogen gas jet into protons and carbon ions. This advanced operational approach will result in up to 3 mA of proton intensity at a maximum beam energy of 20 MeV, 100  μs pulse duration and a repetition rate of up to 2.7 Hz delivered to the synchrotron SIS18. Recent linac beam measurements will be presented, showing that the UNILAC is able to serve as a proton FAIR injector for the first time, while the performance is limited to 25% of the FAIR requirements.

  2. A new approach to nuclear microscopy: The ion-electron emission microscope

    International Nuclear Information System (INIS)

    Doyle, B.L.; Vizkelethy, G.; Walsh, D.S.; Senftinger, B.; Mellon, M.

    1998-01-01

    A new multidimensional high lateral resolution ion beam analysis technique, Ion-Electron Emission Microscopy or IEEM is described. Using MeV energy ions, IEEM is shown to be capable of Ion Beam Induced Charge Collection (IBICC) measurements in semiconductors. IEEM should also be capable of microscopically and multidimensionally mapping the surface and bulk composition of solids. As such, IIEM has nearly identical capabilities as traditional nuclear microprobe analysis, with the advantage that the ion beam does not have to be focused. The technique is based on determining the position where an individual ion enters the surface of the sample by projection secondary electron emission microscopy. The x-y origination point of a secondary electron, and hence the impact coordinates of the corresponding incident ion, is recorded with a position sensitive detector connected to a standard photoemission electron microscope (PEEM). These signals are then used to establish coincidence with IBICC, atomic, or nuclear reaction induced ion beam analysis signals simultaneously caused by the incident ion

  3. The SPES radioactive ion beam project of LNL: status and perspectives

    Science.gov (United States)

    de Angelis, Giacomo; Prete, G.; Andrigetto, A.; Manzolaro, M.; Corradetti, S.; Scarpa, D.; Rossignoli, M.; Monetti, A.; Lollo, M.; Calderolla, M.; Vasquez, J.; Zafiropoulos, D.; Sarchiapone, L.; Benini, D.; Favaron, P.; Rigato, M.; Pegoraro, R.; Maniero, D.; Calabretta, L.; Comunian, M.; Maggiore, M.; Lombardi, A.; Porcellato, A. M.; Roncolato, C.; Bisoffi, G.; Pisent, A.; Galatà, A.; Giacchini, M.; Bassato, G.; Canella, S.; Gramegna, F.; Valiente, J.; Bermudez, J.; Mastinu, P. F.; Esposito, J.; Wyss, J.; Russo, A.; Zanella, S.

    2016-01-01

    A new Radioactive Ion Beam (RIB) facility (SPES) is presently under construction at the Legnaro National Laboratories of INFN. The SPES facility is based on the ISOL method using an UCx Direct Target able to sustain a power of 8 kW. The primary proton beam is provided by a high current Cyclotron accelerator with energy of 35-70 MeV and a beam current of 0.2-0.7 mA. Neutron-rich radioactive ions are produced by proton induced fission on an Uranium target at an expected fission rate of the order of 1013 fissions per second. After ionization and selection the exotic isotopes are re-accelerated by the ALPI superconducting LINAC at energies of 10A MeV for masses in the region A=130 amu. The expected secondary beam rates are of the order of 107 - 109 pps. Aim of the SPES facility is to deliver high intensity radioactive ion beams of neutron rich nuclei for nuclear physics research as well as to be an interdisciplinary research centre for radio-isotopes production for medicine and for neutron beams.

  4. Radioactive ion beam facilities in Europe

    International Nuclear Information System (INIS)

    Blumenfeld, Y.

    2008-01-01

    The past two decades have seen extraordinarily rapid development of radioactive beam physics throughout the world and in particular in Europe. The important scientific advances have stemmed from a large number of facilities. Previously existing stable beam machines have been adapted to produce rare isotope beams and dedicated facilities have come on-line. This talk gives an overview of the present European installations highlighting their complementary nature. The European roadmap calls for the construction of two next generation facilities: FAIR making use of projectile fragmentation and EURISOL based on the ISOL technique. The future FAIR facility will be described and the path towards EURISOL presented in the light of the construction of 'intermediate' generation facilities SPIRAL2, HIE ISOLDE and SPES and results from the ongoing EURISOL Design Study.

  5. Investigations on transport and storage of high ion beam intensities

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Ninad Shrikrishna

    2009-08-25

    In the framework of this thesis the intense low energy ion beam transport was investigated. Especially, the beam transport in toroidal magnetic field configurations was discussed, as it may allow the accumulation of high intensive beams in the future. One of the specific tasks is to design an injection system that can be used for the proposed low energy accumulator ring. A simulation code (TBT) was written to describe the particle motion in curved segments. Particle in Cell techniques were utilized to simulate a multi particle dynamics. A possibility of reading an external data file was made available so that a measured distribution can be used to compare simulation results with measured ones. A second order cloud in cell method was used to calculate charge density and in turn to solve Poisson's equation. Further simulations were performed to study the self field effects on beam transport. Experiments were performed to compare the simulation results and gain practical experience. The preparatory experiments consisted of building and characterization of the ion source in a first step. Along with the momentum spectrometer and emittance scanner the beam properties were studied. Low mass ion beams He{sup +} and mixed p, H{sup 2+}, H{sup 3+} beams were analyzed. In the second stage, beams were transported through a solenoid and the phase space distribution was measured as a function of the magnetic field for different beam energies. The phase-space as distributions measured in a first stage were simulated backward and then again forward transported through the solenoid. The simulated results were then compared with the measured distribution. The LINTRA transport program was used. The phase-space distribution was further simulated for transport experiments in a toroidal magnetic field. The transport program that was used to simulate the beam in the toroid was also used to design the injection system. The injection system with its special field configurations was

  6. Investigations on transport and storage of high ion beam intensities

    International Nuclear Information System (INIS)

    Joshi, Ninad Shrikrishna

    2009-01-01

    In the framework of this thesis the intense low energy ion beam transport was investigated. Especially, the beam transport in toroidal magnetic field configurations was discussed, as it may allow the accumulation of high intensive beams in the future. One of the specific tasks is to design an injection system that can be used for the proposed low energy accumulator ring. A simulation code (TBT) was written to describe the particle motion in curved segments. Particle in Cell techniques were utilized to simulate a multi particle dynamics. A possibility of reading an external data file was made available so that a measured distribution can be used to compare simulation results with measured ones. A second order cloud in cell method was used to calculate charge density and in turn to solve Poisson's equation. Further simulations were performed to study the self field effects on beam transport. Experiments were performed to compare the simulation results and gain practical experience. The preparatory experiments consisted of building and characterization of the ion source in a first step. Along with the momentum spectrometer and emittance scanner the beam properties were studied. Low mass ion beams He + and mixed p, H 2+ , H 3+ beams were analyzed. In the second stage, beams were transported through a solenoid and the phase space distribution was measured as a function of the magnetic field for different beam energies. The phase-space as distributions measured in a first stage were simulated backward and then again forward transported through the solenoid. The simulated results were then compared with the measured distribution. The LINTRA transport program was used. The phase-space distribution was further simulated for transport experiments in a toroidal magnetic field. The transport program that was used to simulate the beam in the toroid was also used to design the injection system. The injection system with its special field configurations was designed to perform

  7. SABRE (Sandia Accelerator and Beam Research Experiment): A test bed for the light ion fusion program

    International Nuclear Information System (INIS)

    Cuneo, M.E.; Hanson, D.L.; McKay, P.F.; Maenchen, J.E.; Tisone, G.C.; Adams, R.G.; Nash, T.; Bernard, M.; Boney, C.; Chavez, J.R.; Fowler, W.F.; Ruscetti, J.; Stearns, W.F.; Noack, D.; Wenger, D.F.

    1992-01-01

    Extraction applied-B ion diode experiments are underway on the recently completed SABRE positive polarity linear induction accelerator (6 MV, 220 kA). The authors are performing these experiments in direct support of the light ion fusion program on PBFAII at Sandia. SABRE provides a test bed with a higher shot rate and improved diagnostic access for ion source development and ion beam divergence control experiments. These experiments will also address the coupling of an ion diode to the turbulent, wide spectrum feed electrons which occur on these inductive adders in positive polarity. This work continues previous work on the HELIA accelerator. The diode is a uniformly magnetically insulated, extraction ion diode, with a 5-cm mean anode surface radius. The uniform insulation field profiles are generated by four individual 60 kJ capacitor banks. Field-exclusion profiles are also anticipated. They have developed a wide array of electrical, ion beam, and plasma diagnostics to accomplish their objectives. MITL (magnetically insulated transmission line) and diode voltages are being measured with a magnetic spectrometer, a range-filtered-scintillator (RFS) fiber optic/PMT system, and a range-filtered CR-39 nuclear track film based system. Beam energy can be determined by these diagnostics as well as a filtered Faraday cup array. MITL and ion currents are being measured with an array of Rogowski coils, common-mode rejection and single turn Bs, and resistive shunts. The ion source experiments will investigate thin-film lithium ion sources, particularly the active LEVIS (Laser EVaporation Ion Source) and the passive LiF source. LEVIS uses two pulsed lasers to evaporate and then ionize lithium from a lithium bearing thin-film on the anode. A ruby laser (20 ns, 12 J) for evaporation, and a dye laser for resonant lithium ionization have been developed. The performance of LEVIS with an array of active and passive surface cleaning techniques will be studied

  8. Ion source developments for stable and radioactive ion beams at GANIL

    CERN Document Server

    Leroy, R; Lecesne, N; Jardin, P; Gaubert, G; Huguet, Y; Pacquet, J Y; Villari, A C C; Lecler, D; Been, T

    1999-01-01

    Since now many years, the Ganil ion source team has in charge to develop ion sources with three main purposes. The first one concerns the radioactive ion production that implies high efficiency ion sources as the amount of created exotic atoms is very low (between 10 to 108 particle per second). The second one deals with high intensities of stable metallic ion beams for the injectors of the accelerator while the last one tries to increase the intensities of very high charge state ion beams for atomic physic. Concerning radioactive ion production, the recent results obtained, in collaboration with the ISN Grenoble group, with the 1+/n+ method drove us to develop a new concept of ecr ion source for monocharged ion production. The results of the first tests of this source will be given. This new idea for the construction of ecr ion source can be applied to multicharged ion production. Concerning the high charge state ion beam production, a new source called SUPERSHYPIE has been built that allow to increase by a ...

  9. Electron Accelerators for Radioactive Ion Beams

    Energy Technology Data Exchange (ETDEWEB)

    Lia Merminga

    2007-10-10

    The summary of this paper is that to optimize the design of an electron drive, one must: (a) specify carefully the user requirements--beam energy, beam power, duty factor, and longitudinal and transverse emittance; (b) evaluate different machine options including capital cost, 10-year operating cost and delivery time. The author is convinced elegant solutions are available with existing technology. There are several design options and technology choices. Decisions will depend on system optimization, in-house infrastructure and expertise (e.g. cryogenics, SRF, lasers), synergy with other programs.

  10. Ion beam mixing in Ag-Pd alloys

    International Nuclear Information System (INIS)

    Klatt, J.L.; Averback, R.S.; Peak, D.

    1989-01-01

    Ion beam mixing during 750 keV Kr + irradiation at 80 K was measured on a series of Ag-Pd alloys using Au marker atoms. The mixing in pure Ag was the greatest and it decreased monotonically with increasing Pd content, being a factor of 10 higher in pure Ag than in pure Pd. This large difference in mixing cannot be explained by the difference in cohesion energy between Ag and Pd in the thermodynamic model of ion beam mixing proposed by Johnson et al. [W. L. Johnson, Y. T. Cheng, M. Van Rossum, and M-A. Nicolet, Nucl. Instrum. Methods B 7/8, 657 (1985)]. An alternative model based on local melting in the cascade is shown to account for the ion beam mixing results in Ag and Pd

  11. Longitudinal dynamics of laser-cooled fast ion beams

    DEFF Research Database (Denmark)

    Weidemüller, M.; Eike, B.; Eisenbarth, U.

    1999-01-01

    -transverse coupling mechanisms. Laser cooling in novel bunch forms consisting of square-well buckets leads to longitudinally space-charge dominated beams. The observed longitudinal ion density distributions can be well described by a self-consistent mean-field model based on a thermodynamic Debye-Huckel approach......We present recent results of our experiments on laser cooling of fast stored ion beams at the Heidelberg Test Storage Ring. The longitudinal motion of the ions is directly cooled by the light pressure force, whereas efficient transverse cooling is obtained indirectly by longitudinal....... When applying laser cooling in square-well buckets over long time intervals, hard Coulomb collisions suddenly disappear and the longitudinal temperature drops by about a factor of three. The observed longitudinal behaviour of the beam shows strong resemblance with the transition to an Coulomb...

  12. RF plasma source for heavy ion beam charge neutralization

    International Nuclear Information System (INIS)

    Efthimion, Philip C.; Gilson, Erik; Grisham, Larry; Davidson, Ronald C.; Yu, Simon S.; Logan, B. Grant

    2003-01-01

    Highly ionized plasmas are being used as a medium for charge neutralizing heavy ion beams in order to focus the ion beam to a small spot size. A radio frequency (RF) plasma source has been built at the Princeton Plasma Physics Laboratory (PPPL) in support of the joint Neutralized Transport Experiment (NTX) at the Lawrence Berkeley National Laboratory (LBNL) to study ion beam neutralization with plasma. The goal is to operate the source at pressures ∼ 10 -5 Torr at full ionization. The initial operation of the source has been at pressures of 10 -4 -10 -1 Torr and electron densities in the range of 10 8 -10 11 cm -3 . Recently, pulsed operation of the source has enabled operation at pressures in the 10 -6 Torr range with densities of 10 11 cm -3 . Near 100% ionization has been achieved. The source has been integrated with the NTX facility and experiments have begun

  13. Use of molecular ion beams from a tandem accelerator

    International Nuclear Information System (INIS)

    Faibis, A.; Goldring, G.; Hass, M.; Kaim, R.; Plesser, I.; Vager, Z.

    1981-01-01

    A large variety of positive molecular ion beams can be produced by gaseous charge exchange in the terminal of a tandem accelerator. After acceleration the molecules are usually dissociated by passage through a thin foil. Measurements of the break-up products provide a way to study both the structure of incident ions and the effects of electronic potentials on the internuclear interaction inside the foil. Beam intensities of a few picoamperes are quite adequate for these measurements, and the relatively high energy obtained by use of a tandem accelerator has the advantage of minimizing multiple scattering effects in the foil. The main difficulty in using the molecular beams lies in the large magnetic rigidity of singly-charged heavy molecular ions

  14. Numerical simulation of crystalline ion beams in storage ring

    CERN Document Server

    Meshkov, I N; Katayama, T; Sidorin, A; Smirnov, A Yu; Syresin, E M; Trubnikov, G; Tsutsui, H

    2004-01-01

    The use of crystalline ion beams can increase luminosity in the collider and in experiments with targets for investigation of rare radioactive isotopes. The ordered state of circulating ion beams was observed at several storage rings: NAP-M (Proceedings of the Fourth All Union Conference on Charged Particle Accelerators, Vol. 2, Nauka, Moscow, 1975 (in Russian); Part. Accel. 7 (1976) 197; At. Energy 40 (1976) 49; Preprint CERN/PS/AA 79-41, Geneva, 1979) (Novosibirsk), ESR (Phys. Rev. Lett. 77 (1996) 3803) and SIS (Proceedings of EPAC'2000, 2000) (Darmstadt), CRYRING (Proceedings of PAC'2001, 2001) (Stockholm) and PALLAS (Proceedings of the Conference on Applications of Accelerators in Research and Industry, AIP Conference Proceedings, p. 576, in preparation) (Munchen). New criteria of the beam orderliness are derived and verified with a new program code. Molecular dynamics technique is inserted in BETACOOL program (Proceedings of Beam Cooling and Related Topics, Bad Honnef, Germany, 2001) and used for numeric...

  15. Pierce instability in neutralized inertial confinement fusion ion beams

    International Nuclear Information System (INIS)

    Lemons, D.S.; Cary, J.R.

    1982-01-01

    The stability of a charge and current neutralized electron-ion beam propagating between two planar boundaries is investigated. For equipotential boundaries the beam is, as originally shown by Pierce, electrostatically unstable for electron current densities above a certain limiting value. If, however, the electric field at the upstream boundary is required to vanish, there is no instability. An intermediate case, in which the two boundaries are electrically connected with a finite conductivity plasma, corresponds to the proposed use of neutralized light and heavy ion beams for inertial confinement fusion drivers. Results indicate such beams can propagate either stably or with zero-frequency Pierce instability growth rates which are probably insignificant. lectric currents; boundary conditions; current density; electric fields; plasma;

  16. Imprint reduction in rotating heavy ions beam energy deposition

    Energy Technology Data Exchange (ETDEWEB)

    Bret, A., E-mail: antoineclaude.bret@uclm.es [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-51, Cambridge, MA 02138 (United States); ETSI Industriales, Universidad Castilla-La Mancha, 13071 Ciudad Real (Spain); Instituto de Investigaciones Energéticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real (Spain); Piriz, A.R., E-mail: Roberto.Piriz@uclm.es [ETSI Industriales, Universidad Castilla-La Mancha, 13071 Ciudad Real (Spain); Instituto de Investigaciones Energéticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real (Spain); Tahir, N.A., E-mail: n.tahir@gsi.de [GSI Darmstadt, Plankstrasse 1, 64291 Darmstadt (Germany)

    2014-01-01

    The compression of a cylindrical target by a rotating heavy ions beam is contemplated in certain inertial fusion schemes or in heavy density matter experiments. Because the beam has its proper temporal profile, the energy deposition is asymmetric and leaves an imprint which can have important consequences for the rest of the process. In this paper, the Fourier components of the deposited ion density are computed exactly in terms of the beam temporal profile and its rotation frequency Ω. We show that for any beam profile of duration T, there exist an infinite number of values of ΩT canceling exactly any given harmonic. For the particular case of a parabolic profile, we find possible to cancel exactly the first harmonic and nearly cancel every other odd harmonics. In such case, the imprint amplitude is divided by 4 without any increase of Ω.

  17. Hydrodynamics of layer structured targets impinged by intense ion beams

    International Nuclear Information System (INIS)

    Davila, J.; Barrero, A.

    1989-01-01

    To minimize the energy loss in the corona outflow, a layer structured spherical hollow shell has been proposed to be used as target in inertial confinement fusion. For ion beam drivers, the major part of the beam energy is absorbed in the middle layer, which is called either absorber or pusher. The outer layer, called tamper, slows down the outward expansion of the absorbed low density region. The materials of the tamper and pusher are usually in the inner layer. The knowledge of the hydrodynamics of the interaction of an intense beam with a structured target is then an essential point in order to achieve break-even conditions in ion-beam fusion. (author) 2 refs., 2 figs

  18. Ion mass and energy selective hyperthermal ion-beam assisted deposition setup

    Science.gov (United States)

    Gerlach, J. W.; Schumacher, P.; Mensing, M.; Rauschenbach, S.; Cermak, I.; Rauschenbach, B.

    2017-06-01

    For the synthesis of high-quality thin films, ion-beam assisted deposition (IBAD) is a frequently used technique providing precise control over several substantial film properties. IBAD typically relies on the use of a broad-beam ion source. Such ion sources suffer from the limitation that they deliver a blend of ions with different ion masses, each of them possessing a certain distribution of kinetic energy. In this paper, a compact experimental setup is presented that enables the separate control of ion mass and ion kinetic energy in the region of hyperthermal energies (few 1 eV - few 100 eV). This ion energy region is of increasing interest not only for ion-assisted film growth but also for the wide field of preparative mass spectrometry. The setup consists of a constricted glow-discharge plasma beam source and a tailor-made, compact quadrupole system equipped with entry and exit ion optics. It is demonstrated that the separation of monoatomic and polyatomic nitrogen ions (N+ and N2+) is accomplished. For both ion species, the kinetic energy is shown to be selectable in the region of hyperthermal energies. At the sample position, ion current densities are found to be in the order of 1 μA/cm2 and the full width at half maximum of the ion beam profile is in the order of 10 mm. Thus, the requirements for homogeneous deposition processes in sufficiently short periods of time are fulfilled. Finally, employing the described setup, for the first time in practice epitaxial GaN films were deposited. This opens up the opportunity to fundamentally study the influence of the simultaneous irradiation with hyperthermal ions on the thin film growth in IBAD processes and to increase the flexibility of the technique.

  19. Investigation of accelerated neutral atom beams created from gas cluster ion beams

    Science.gov (United States)

    Kirkpatrick, A.; Kirkpatrick, S.; Walsh, M.; Chau, S.; Mack, M.; Harrison, S.; Svrluga, R.; Khoury, J.

    2013-07-01

    A new concept for ultra-shallow processing of surfaces known as accelerated neutral atom beam (ANAB) technique employs conversion of energetic gas cluster ions produced by the gas cluster ion beam (GCIB) method into intense collimated beams of coincident neutral gas atoms having controllable average energies from less than 10 eV per atom to beyond 100 eV per atom. A beam of accelerated gas cluster ions is first produced as is usual in GCIB, but conditions within the source ionizer and extraction regions are adjusted such that immediately after ionization and acceleration the clusters undergo collisions with non-ionized gas atoms. Energy transfer during these collisions causes the energetic cluster ions to release many of their constituent atoms. An electrostatic deflector is then used to eliminate charged species, leaving the released neutral atoms to still travel collectively at the same velocities they had as bonded components of their parent clusters. Upon target impact, the accelerated neutral atom beams produce effects similar to those normally associated with GCIB, but to shallower depths, with less surface damage and with superior subsurface interfaces. The paper discusses generation and characterization of the accelerated neutral atom beams, describes interactions of the beams with target surfaces, and presents examples of ongoing work on applications for biomedical devices.

  20. Development of a Compton camera for online ion beam range verification via prompt γ detection

    Energy Technology Data Exchange (ETDEWEB)

    Aldawood, S. [LMU Munich, Garching (Germany); King Saud University, Riyadh (Saudi Arabia); Liprandi, S.; Marinsek, T.; Bortfeldt, J.; Lang, C.; Lutter, R.; Dedes, G.; Parodi, K.; Thirolf, P.G. [LMU Munich, Garching (Germany); Maier, L.; Gernhaeuser, R. [TU Munich, Garching (Germany); Kolff, H. van der [LMU Munich, Garching (Germany); TU Delft (Netherlands); Castelhano, I. [LMU Munich, Garching (Germany); University of Lisbon, Lisbon (Portugal); Schaart, D.R. [TU Delft (Netherlands)

    2015-07-01

    Precise and preferably online ion beam range verification is a mandatory prerequisite to fully exploit the advantages of hadron therapy in cancer treatment. An imaging system is being developed in Garching aiming to detect promptγ rays induced by nuclear reactions between the ion beam and biological tissue. The Compton camera prototype consists of a stack of six customized double-sided Si-strip detectors (DSSSD, 50 x 50 mm{sup 2}, 0.5 mm thick, 128 strips/side) acting as scatterer, while the absorber is formed by a monolithic LaBr{sub 3}:Ce scintillator crystal (50 x 50 x 30 mm{sup 3}) read out by a position-sensitive multi-anode photomultiplier (Hamamatsu H9500). The on going characterization of the Compton camera properties and its individual components both offline in the laboratory as well as online using proton beam are presented.

  1. Charge breeding results and future prospects with electron cyclotron resonance ion source and electron beam ion source (invited).

    Science.gov (United States)

    Vondrasek, R; Levand, A; Pardo, R; Savard, G; Scott, R

    2012-02-01

    The Californium Rare Ion Breeder Upgrade (CARIBU) of the Argonne National Laboratory ATLAS facility will provide low-energy and reaccelerated neutron-rich radioactive beams for the nuclear physics program. A 70 mCi (252)Cf source produces fission fragments which are thermalized and collected by a helium gas catcher into a low-energy particle beam with a charge of 1+ or 2+. An electron cyclotron resonance (ECR) ion source functions as a charge breeder in order to raise the ion charge sufficiently for acceleration in the ATLAS linac. The final CARIBU configuration will utilize a 1 Ci (252)Cf source to produce radioactive beams with intensities up to 10(6) ions∕s for use in the ATLAS facility. The ECR charge breeder has been tested with stable beam injection and has achieved charge breeding efficiencies of 3.6% for (23)Na(8+), 15.6% for (84)Kr(17+), and 13.7% for (85)Rb(19+) with typical breeding times of 10 ms∕charge state. For the first radioactive beams, a charge breeding efficiency of 11.7% has been achieved for (143)Cs(27+) and 14.7% for (143)Ba(27+). The project has been commissioned with a radioactive beam of (143)Ba(27+) accelerated to 6.1 MeV∕u. In order to take advantage of its lower residual contamination, an EBIS charge breeder will replace the ECR charge breeder in the next two years. The advantages and disadvantages of the two techniques are compared taking into account the requirements of the next generation radioactive beam facilities.

  2. Fabrication of a free standing resolution standard for focusing MeV ion beams to sub 30 nm dimensions

    International Nuclear Information System (INIS)

    Kan, J.A. van; Shao, P.G.; Molter, P.; Saumer, M.; Bettiol, A.A.; Osipowicz, T.; Watt, F.

    2005-01-01

    With recent advances in nuclear microscopy, proton beam writing and the recent development of MeV ion nano probe facilities it is becoming increasingly important to have resolution standards with a high degree of side wall verticality. We present here a way of producing a high quality free standing resolution standards which can be used for high beam current applications like Rutherford Backscattering Spectrometry (RBS), particle induced X-ray emissions (PIXE), and low beam current applications such as secondary electron emission, scanning transmission ion microscopy (STIM) and ion beam induced current (IBIC). These standards allow rapid focusing of MeV ion beams for high resolution nuclear microscopy applications as well as proton beam writing, where knowledge of the exact beam size is vital to guarantee reproducibility in writing nanostructures. This new standard has been used to measure a one-dimensional beam profile with 1 MeV protons and gave a FWHM of 29.2 nm which is the smallest value reported for MeV protons in STIM mode

  3. ELECTRON BEAM ION SOURCE PREINJECTOR PROJECT (EBIS) CONCEPTUAL DESIGN REPORT.

    Energy Technology Data Exchange (ETDEWEB)

    ALESSI, J.; BARTON, D.; BEEBE, E.; GASSNER, D.; ET AL.

    2005-02-28

    This report describes a new heavy ion pre-injector for the Relativistic Heavy Ion Collider (RHIC) based on a high charge state Electron Beam Ion Source (EBIS), a Radio Frequency Quadrupole (RFQ) accelerator, and a short Linac. The highly successful development of an EBIS at BNL now makes it possible to replace the present pre-injector that is based on an electrostatic Tandem with a reliable, low maintenance Linac-based pre-injector. Linac-based pre-injectors are presently used at most accelerator and collider facilities with the exception of RHIC, where the required gold beam intensities could only be met with a Tandem until the recent EBIS development. EBIS produces high charge state ions directly, eliminating the need for the two stripping foils presently used with the Tandem. Unstable stripping efficiencies of these foils are a significant source of luminosity degradation in RHIC. The high reliability and flexibility of the new Linac-based pre-injector will lead to increased integrated luminosity at RHIC and is an essential component for the long-term success of the RHIC facility. This new pre-injector, based on an EBIS, also has the potential for significant future intensity increases and can produce heavy ion beams of all species including uranium beams and, as part of a future upgrade, might also be used to produce polarized {sup 3}He beams. These capabilities will be critical to the future luminosity upgrades and electron-ion collisions in RHIC. The new RFQ and Linac that are used to accelerate beams from the EBIS to an energy sufficient for injection into the Booster are both very similar to existing devices already in operation at other facilities. Injection into the Booster will occur at the same location as the existing injection from the Tandem.

  4. Production of hypernuclei in relativistic ion beams

    International Nuclear Information System (INIS)

    Bando, H.; Sano, M.; Wakai, M.; Zofka, J.

    1988-05-01

    The hypernuclear formation in collisions of relativistic beams of 4 He, 7 Li, 12 C and 19 F with target of 12 C is calculated at energies used in the recent Dubna experiment. The hyperfragments optimal for observation are pointed out and the secondary (π + K + ) formation is evaluated and found to be nonnegligible. (author)

  5. Review of ion beam therapy: Present and Future

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, Jose R.

    2000-06-01

    First therapy efforts at the Bevalac using neon ions took place in the 70's and 80's. Promising results led to construction of HIMAC in Chiba Japan, and more recently to therapy trials at GSI. Both these facilities are now treating patients with carbon beams. Advances in both accelerator technology and beam delivery have taken place at these two centers. Plans are well along for new facilities in Europe and Japan.

  6. TECHNOLOGIES FOR DELIVERY OF PROTON AND ION BEAMS FOR RADIOTHERAPY

    CERN Document Server

    Owen, H; Alonso, J; Mackay, R

    2014-01-01

    Recent developments for the delivery of proton and ion beam therapy have been significant, and a number of technological solutions now exist for the creation and utilisation of these particles for the treatment of cancer. In this paper we review the historical development of particle accelerators used for external beam radiotherapy and discuss the more recent progress towards more capable and cost-effective sources of particles.

  7. Generation of High Quality Laser Accelerated Ion Beams

    OpenAIRE

    Esirkepov, T. Zh.; Bulanov, S. V.; Nishihara, K.; Tajima, T.; Pegoraro, F.; Khoroshkov, V. S.; Mima, K.; Daido, H.; Kato, Y.; Kitagawa, Y.; Nagai, K.; Sakabe, S.

    2002-01-01

    In order to achieve a high quality, i. e. monoergetic, intense ion beam, we propose the use of a double layer target. The first layer, at the target front, consists of high-Z atoms, while the second (rear) layer is a thin coating of low-Z atoms. The high quality proton beams from the double layer target, irradiated by an ultra-intense laser pulse, are demonstrated with three dimensional Particle-in-Cell simulations.

  8. Amorphization of metals by ion implantation and ion beam mixing

    International Nuclear Information System (INIS)

    Rauschenbach, B.; Heera, V.

    1988-01-01

    Amorphous metallic systems can be formed either by high-fluence ion implantation of glassforming species or by irradiation of layered metal systems with inert gas ions. Both techniques and experimental examples are presented. Empirical rules are discussed which predict whether a given system can be transformed into an amorphous phase. Influence of temperature, implantation dose and pre-existing crystalline metal composition on amorphization is considered. Examples are given of the implantation induced amorphous structure, recrystallization and formation of quasicrystalline structures. (author)

  9. Dosimetry in radiobiological studies with the heavy ion beam of the Warsaw cyclotron

    International Nuclear Information System (INIS)

    Kaźmierczak, U.; Banaś, D.; Braziewicz, J.; Czub, J.; Jaskóła, M.; Korman, A.; Kruszewski, M.; Lankoff, A.; Lisowska, H.; Malinowska, A.; Stępkowski, T.; Szefliński, Z.

    2015-01-01

    The aim of this study was to verify various dosimetry methods in the irradiation of biological materials with a 12 C ion beam at the Heavy Ion Laboratory of the University of Warsaw. To this end the number of ions hitting the cell nucleus, calculated on the basis of the Si-detector system used in the set-up, was compared with the number of ion tracks counted in irradiated Solid State Nuclear Track Detectors and with the number of ion tracks detected in irradiated Chinese Hamster Ovary cells processed for the γ-H2AX assay. Tests results were self-consistent and confirmed that the system serves its dosimetric purpose.

  10. Evaluation of beam divergence of a negative hydrogen ion beam using Doppler shift spectroscopy diagnostics

    Science.gov (United States)

    Deka, A. J.; Bharathi, P.; Pandya, K.; Bandyopadhyay, M.; Bhuyan, M.; Yadav, R. K.; Tyagi, H.; Gahlaut, A.; Chakraborty, A.

    2018-01-01

    The Doppler Shift Spectroscopy (DSS) diagnostic is in the conceptual stage to estimate beam divergence, stripping losses, and beam uniformity of the 100 keV hydrogen Diagnostics Neutral Beam of International Thermonuclear Experimental Reactor. This DSS diagnostic is used to measure the above-mentioned parameters with an error of less than 10%. To aid the design calculations and to establish a methodology for estimation of the beam divergence, DSS measurements were carried out on the existing prototype ion source RF Operated Beam Source in India for Negative ion Research. Emissions of the fast-excited neutrals that are generated from the extracted negative ions were collected in the target tank, and the line broadening of these emissions were used for estimating beam divergence. The observed broadening is a convolution of broadenings due to beam divergence, collection optics, voltage ripple, beam focusing, and instrumental broadening. Hence, for estimating the beam divergence from the observed line broadening, a systematic line profile analysis was performed. To minimize the error in the divergence measurements, a study on error propagation in the beam divergence measurements was carried out and the error was estimated. The measurements of beam divergence were done at a constant RF power of 50 kW and a source pressure of 0.6 Pa by varying the extraction voltage from 4 kV to10 kV and the acceleration voltage from 10 kV to 15 kV. These measurements were then compared with the calorimetric divergence, and the results seemed to agree within 10%. A minimum beam divergence of ˜3° was obtained when the source was operated at an extraction voltage of ˜5 kV and at a ˜10 kV acceleration voltage, i.e., at a total applied voltage of 15 kV. This is in agreement with the values reported in experiments carried out on similar sources elsewhere.

  11. Upgrade of the electron beam ion trap in Shanghai

    Energy Technology Data Exchange (ETDEWEB)

    Lu, D.; Yang, Y.; Xiao, J.; Shen, Y.; Fu, Y.; Wei, B.; Yao, K.; Hutton, R.; Zou, Y., E-mail: zouym@fudan.edu.cn [The Key Lab of Applied Ion Beam Physics, Ministry of Education, 200433 Shanghai (China); Shanghai EBIT Lab, Institute of Modern Physics, Fudan University, 200433 Shanghai (China)

    2014-09-15

    Over the last few years the Shanghai electron beam ion trap (EBIT) has been successfully redesigned and rebuilt. The original machine, developed under collaboration with the Shanghai Institute of Applied Physics, first produced an electron beam in 2005. It could be tuned with electron energies between 1 and 130 keV and beam current up to 160 mA. After several years of operation, it was found that several modifications for improvements were necessary to reach the goals of better electron optics, higher photon detection, and ion injection efficiencies, and more economical running costs. The upgraded Shanghai-EBIT is made almost entirely from Ti instead of stainless steel and achieves a vacuum of less than 10{sup −10} Torr, which helps to minimize the loss of highly changed ions through charge exchange. Meanwhile, a more compact structure and efficient cryogenic system, and excellent optical alignment have been of satisfactory. The magnetic field in the central trap region can reach up till 4.8 T with a uniformity of 2.77 × 10{sup −4}. So far the upgraded Shanghai-EBIT has been operated up to an electron energy of 151 keV and a beam current of up to 218 mA, although promotion to even higher energy is still in progress. Radiation from ions as highly charged as Xe{sup 53+,} {sup 54+} has been produced and the characterization of current density is estimated from the measured electron beam width.

  12. Ion beam modification of surfaces for biomedical applications

    International Nuclear Information System (INIS)

    Sommerfeld, Jana

    2014-01-01

    Human life expectancy increased significantly within the last century. Hence, medical care must ever be improved. Optimizing artificial replacements such as hip joints or stents etc. is of special interest. For this purpose, new materials are constantly developed or known ones modified. This work focused on the possibility to change the chemistry and topography of biomedically relevant materials such as diamond-like carbon (DLC) and titanium dioxide (TiO 2 ) by means of ion beam irradiation. Mass-separated ion beam deposition was used in order to synthesize DLC layers with a high sp 3 content (> 70%), a sufficiently smooth surface (RMS<1 nm) and a manageable film thickness (50 nm). The chemistry of the DLC layers was changed by ion beam doping with different ion species (Ag,Ti) and concentrations. Additionally, the surface topography of silicon and titanium dioxide was altered by ion beam irradiation under non-perpendicular angle of incidence. The created periodic wave structures (so-called ripples) were characterized and their dependency on the ion energy was investigated. Moreover, ripples on silicon were covered with a thin DLC layer in order to create DLC ripples. The biocompatibility of all samples was investigated by adsorption experiments. For this purpose, human plasma fibrinogen (HPF) was used due to its ambiphilic character, which allows the protein to assume different conformations on materials with different hydrophilicities. Moreover, HPF is a crucial factor in the blood coagulation process. This work comes to the conclusion that the interaction of both, the surface chemistry and topography, has a strong influence on the adsorption behavior of HPF and thus the biocompatibility of a material. Both factors can be specifically tuned by means of ion beam irradiation.

  13. Ion beam irradiation of ceramics at fusion relevant conditions

    International Nuclear Information System (INIS)

    Zinkle, S.J.

    1991-01-01

    Ceramic materials are required at a variety of locations in proposed fusion reactors where significant ionizing and displacive fields may be present. Energetic ion beams are a useful tool for probing the effects of irradiation on the structure and electrical properties of ceramics over a wide range of experimental conditions. The advantages and disadvantages of using ion beams to provide information on anticipated ceramic radiation effects in a fusion reactor environment are discussed. In this paper particular emphasis is placed on microstructural changes and how the high helium generation rates associated with DT fusion neutrons affect cavity swelling

  14. In Situ TEM Multi-Beam Ion Irradiation as a Technique for Elucidating Synergistic Radiation Effects

    Directory of Open Access Journals (Sweden)

    Caitlin Anne Taylor

    2017-09-01

    Full Text Available Materials designed for nuclear reactors undergo microstructural changes resulting from a combination of several environmental factors, including neutron irradiation damage, gas accumulation and elevated temperatures. Typical ion beam irradiation experiments designed for simulating a neutron irradiation environment involve irradiating the sample with a single ion beam and subsequent characterization of the resulting microstructure, often by transmission electron microscopy (TEM. This method does not allow for examination of microstructural effects due to simultaneous gas accumulation and displacement cascade damage, which occurs in a reactor. Sandia’s in situ ion irradiation TEM (I3TEM offers the unique ability to observe microstructural changes due to irradiation damage caused by concurrent multi-beam ion irradiation in real time. This allows for time-dependent microstructure analysis. A plethora of additional in situ stages can be coupled with these experiments, e.g., for more accurately simulating defect kinetics at elevated reactor temperatures. This work outlines experiments showing synergistic effects in Au using in situ ion irradiation with various combinations of helium, deuterium and Au ions, as well as some initial work on materials utilized in tritium-producing burnable absorber rods (TPBARs: zirconium alloys and LiAlO2.

  15. Applications of focused MeV light ion beams for high resolution channeling contrast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Jamieson, D.N.; Breese, M.B.H.; Prawer, S.; Dooley, S.P.; Allen, M.G.; Bettiol, A.A.; Saint, A. [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Ryan, C.G. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, NSW (Australia). Div. of Exploration Geoscience

    1993-12-31

    The technique of Nuclear Microscopy, utilizing a focused ion probe of typically MeV H{sup +} or He{sup +} ions, can produce images where the contrast depends on typical Ion Beam Analysis (lBA) processes. The probe forming lens system usually utilizes strong focusing, precision magnetic quadrupole lenses and the probe is scanned over the target to produce images. Originally, this imaging technique was developed to utilize backscattered particles with incident beam currents typically of a few nA, and the technique became known as Channeling Contrast Microscopy (CCM). Recently, the technique has been developed further to utilize the forward scattering of ions incident along a major crystal axis in thin crystals. This technique is known as Channeling Scanning Transmission Ion Microscopy (CSTIM). Since nearly all incident ions are detected, CSTIM is highly efficient and very low beam currents are sufficient for imaging, typically as low as a few fA. This allows probes as small as 50 nm to be used. In this paper we briefly review the recent applications of these emerging techniques to a variety of single crystal materials (authors). 13 refs., 5 figs.

  16. In Situ TEM Multi-Beam Ion Irradiation as a Technique for Elucidating Synergistic Radiation Effects

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Caitlin; Bufford, Daniel; Muntifering, Brittany; Senor, David; Steckbeck, Mackenzie; Davis, Justin; Doyle, Barney; Buller, Daniel; Hattar, Khalid

    2017-09-29

    Materials designed for nuclear reactors undergo microstructural changes resulting from a combination of several environmental factors, including neutron irradiation damage, gas accumulation and elevated temperatures. Typical ion beam irradiation experiments designed for simulating a neutron irradiation environment involve irradiating the sample with a single ion beam and subsequent characterization of the resulting microstructure, often by transmission electron microscopy (TEM). This method does not allow for examination of microstructural effects due to simultaneous gas accumulation and displacement cascade damage, which occurs in a reactor. Sandia’s in situ ion irradiation TEM (I3TEM) offers the unique ability to observe microstructural changes due to irradiation damage caused by concurrent multi-beam ion irradiation in real time. This allows for time-dependent microstructure analysis. A plethora of additional in situ stages can be coupled with these experiments, e.g., for more accurately simulating defect kinetics at elevated reactor temperatures. This work outlines experiments showing synergistic effects in Au using in situ ion irradiation with various combinations of helium, deuterium and Au ions, as well as some initial work on materials utilized in tritium-producing burnable absorber rods (TPBARs): zirconium alloys and LiAlO2.

  17. Thin copper oxide films prepared by ion beam sputtering with subsequent thermal oxidation: Application in chemiresistors

    Czech Academy of Sciences Publication Activity Database

    Horák, Pavel; Bejšovec, Václav; Vacík, Jiří; Lavrentiev, Vasyl; Vrňata, M.; Kormunda, M.; Daniš, S.

    2016-01-01

    Roč. 389, DEC (2016), s. 751-759 ISSN 0169-4332 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA MŠk(CZ) LM2011019 Institutional support: RVO:61389005 Keywords : Copper oxide * ion beam sputtering * Van der Pauw * nuclear reaction analysis * gas sensing Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.387, year: 2016

  18. Experiments with radioactive nuclear beams II; Experimentos con haces nucleares radiactivos II

    Energy Technology Data Exchange (ETDEWEB)

    Aguilera R, E.F.; Martinez Q, E.; Gomez C, A.; Lizcano C, D.; Garcia M, H.; Rosales M, P. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2001-12-15

    The studies of nuclear reactions with heavy ions have been carried out for years for the group of heavy ions of the laboratory of the Accelerator of the ININ. Especially in the last years the group has intruded in the studies of nuclear reactions with radioactive beams, frontier theme at world level. Presently Technical Report is presented in detailed form the experimental methods and the analysis procedures of the research activities carried out by the group. The chpater II is dedicated to the procedures used in the analysis of the last two experiments with radioactive beams carried out by the group. In the chapter III is presented the procedure followed to carrying out an extended analysis with the CCDEF code, to consider the transfer channel of nucleons in the description of the fusion excitation functions of a good number of previously measured systems by the group. Finally, in the chapter IV the more important steps to continue in the study of the reaction {sup 12}C + {sup 12}C experiment drifted to be carried out using the available resources of the Tandem Accelerator Laboratory of the ININ are described. At the end of each chapter some of the more representative results obtained in the analysis are presented and emphasis on the scientific production generated by the group for each case is made. (Author)

  19. Ion beam enhancement in magnetically insulated ion diodes for high-intensity pulsed ion beam generation in non-relativistic mode

    Science.gov (United States)

    Zhu, X. P.; Zhang, Z. C.; Pushkarev, A. I.; Lei, M. K.

    2016-01-01

    High-intensity pulsed ion beam (HIPIB) with ion current density above Child-Langmuir limit is achieved by extracting ion beam from anode plasma of ion diodes with suppressing electron flow under magnetic field insulation. It was theoretically estimated that with increasing the magnetic field, a maximal value of ion current density may reach nearly 3 times that of Child-Langmuir limit in a non-relativistic mode and close to 6 times in a highly relativistic mode. In this study, the behavior of ion beam enhancement by magnetic insulation is systematically investigated in three types of magnetically insulated ion diodes (MIDs) with passive anode, taking into account the anode plasma generation process on the anode surface. A maximal enhancement factor higher than 6 over the Child-Langmuir limit can be obtained in the non-relativistic mode with accelerating voltage of 200-300 kV. The MIDs differ in two anode plasma formation mechanisms, i.e., surface flashover of a dielectric coating on the anode and explosive emission of electrons from the anode, as well as in two insulation modes of external-magnetic field and self-magnetic field with either non-closed or closed drift of electrons in the anode-cathode (A-K) gap, respectively. Combined with ion current density measurement, energy density characterization is employed to resolve the spatial distribution of energy density before focusing for exploring the ion beam generation process. Consistent results are obtained on three types of MIDs concerning control of neutralizing electron flows for the space charge of ions where the high ion beam enhancement is determined by effective electron neutralization in the A-K gap, while the HIPIB composition of different ion species downstream from the diode may be considerably affected by the ion beam neutralization during propagation.

  20. Ion beam enhancement in magnetically insulated ion diodes for high-intensity pulsed ion beam generation in non-relativistic mode

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, X. P. [Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian 116024 (China); Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Zhang, Z. C.; Lei, M. K., E-mail: surfeng@dlut.edu.cn [Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Pushkarev, A. I. [Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Laboratory of Beam and Plasma Technology, High Technologies Physics Institute, Tomsk Polytechnic University, 30, Lenin Ave, 634050 Tomsk (Russian Federation)

    2016-01-15

    High-intensity pulsed ion beam (HIPIB) with ion current density above Child-Langmuir limit is achieved by extracting ion beam from anode plasma of ion diodes with suppressing electron flow under magnetic field insulation. It was theoretically estimated that with increasing the magnetic field, a maximal value of ion current density may reach nearly 3 times that of Child-Langmuir limit in a non-relativistic mode and close to 6 times in a highly relativistic mode. In this study, the behavior of ion beam enhancement by magnetic insulation is systematically investigated in three types of magnetically insulated ion diodes (MIDs) with passive anode, taking into account the anode plasma generation process on the anode surface. A maximal enhancement factor higher than 6 over the Child-Langmuir limit can be obtained in the non-relativistic mode with accelerating voltage of 200–300 kV. The MIDs differ in two anode plasma formation mechanisms, i.e., surface flashover of a dielectric coating on the anode and explosive emission of electrons from the anode, as well as in two insulation modes of external-magnetic field and self-magnetic field with either non-closed or closed drift of electrons in the anode-cathode (A-K) gap, respectively. Combined with ion current density measurement, energy density characterization is employed to resolve the spatial distribution of energy density before focusing for exploring the ion beam generation process. Consistent results are obtained on three types of MIDs concerning control of neutralizing electron flows for the space charge of ions where the high ion beam enhancement is determined by effective electron neutralization in the A-K gap, while the HIPIB composition of different ion species downstream from the diode may be considerably affected by the ion beam neutralization during propagation.

  1. Mini biased collimated faraday cups for measurement of intense pulsed ion beams

    International Nuclear Information System (INIS)

    He Xiaoping; Shi Lei; Zhang Jiasheng; Qiu Aici

    2000-01-01

    An analysis of principle of a biased Faraday cup for measuring ion beams density and the main reasons related to the measuring accuracy were presented. An array of mini biased collimated Faraday cups was manufactured for the measurement of ion beam density of a compact 200 keV high power ion beam source. In the experiments the maximum density of ion beam was in the center of the beam, and it was about 170 A/cm 2

  2. Modelling radiation fields of ion beams in tissue-like materials

    International Nuclear Information System (INIS)

    Burigo, Lucas Norberto

    2014-01-01

    Fast nuclei are ionizing radiation which can cause deleterious effects to irradiated cells. The modelling of the interactions of such ions with matter and the related effects are very important to physics, radiobiology, medicine and space science and technology. A powerful method to study the interactions of ionizing radiation with biological systems was developed in the field of microdosimetry. Microdosimetry spectra characterize the energy deposition to objects of cellular size, i.e., a few micrometers. In the present thesis the interaction of ions with tissue-like media was investigated using the Monte Carlo model for Heavy-Ion Therapy (MCHIT) developed at the Frankfurt Institute for Advanced Studies. MCHIT is a Geant4-based application intended to benchmark the physical models of Geant4 and investigate the physical properties of therapeutic ion beams. We have implemented new features in MCHIT in order to calculate microdosimetric quantities characterizing the radiation fields of accelerated nucleons and nuclei. The results of our Monte Carlo simulations were compared with recent experimental microdosimetry data. In addition to microdosimetry calculations with MCHIT, we also investigated the biological properties of ion beams, e.g. their relative biological effectiveness (RBE), by means of the modified Microdosimetric-Kinetic model (MKM). The MKM uses microdosimetry spectra in describing cell response to radiation. MCHIT+MKM allowed us to study the physical and biological properties of ion beams. The main results of the thesis are as follows: MCHIT is able to describe the spatial distribution of the physical dose in tissue-like media and microdosimetry spectra for ions with energies relevant to space research and ion-beam cancer therapy; MCHIT+MKM predicts a reduction of the biological effectiveness of ions propagating in extended medium due to nuclear fragmentation reactions; We predicted favourable biological dose-depth profiles for monoenergetic helium and

  3. Broad-beam, high current, metal ion implantation facility

    International Nuclear Information System (INIS)

    Brown, I.G.; Dickinson, M.R.; Galvin, J.E.; Godechot, X.; MacGill, R.A.

    1990-07-01

    We have developed a high current metal ion implantation facility with which high current beams of virtually all the solid metals of the Periodic Table can be produced. The facility makes use of a metal vapor vacuum arc ion source which is operated in a pulsed mode, with pulse width 0.25 ms and repetition rate up to 100 pps. Beam extraction voltage is up to 100 kV, corresponding to an ion energy of up to several hundred keV because of the ion charge state multiplicity; beam current is up to several Amperes peak and around 10 mA time averaged delivered onto target. Implantation is done in a broad-beam mode, with a direct line-of-sight from ion source to target. Here we describe the facility and some of the implants that have been carried out using it, including the 'seeding' of silicon wafers prior to CVD with titanium, palladium or tungsten, the formation of buried iridium silicide layers, and actinide (uranium and thorium) doping of III-V compounds. 16 refs., 6 figs

  4. Ion beam figuring of CVD silicon carbide mirrors

    Science.gov (United States)

    Gailly, P.; Collette, J.-P.; Fleury Frenette, K.; Jamar, C.

    2017-11-01

    Optical and structural elements made of silicon carbide are increasingly found in space instruments. Chemical vapor deposited silicon carbide (CVD-SiC) is used as a reflective coating on SiC optics in reason of its good behavior under polishing. The advantage of applying ion beam figuring (IBF) to CVD-SiC over other surface figure-improving techniques is discussed herein. The results of an IBF sequence performed at the Centre Spatial de Liège on a 100 mm CVD-SiC mirror are reported. The process allowed to reduce the mirror surface errors from 243 nm to 13 nm rms . Beside the surface figure, roughness is another critical feature to consider in order to preserve the optical quality of CVD-SiC . Thus, experiments focusing on the evolution of roughness were performed in various ion beam etching conditions. The roughness of samples etched at different depths down to 3 ≠m was determined with an optical profilometer. These measurements emphasize the importance of selecting the right combination of gas and beam energy to keep roughness at a low level. Kaufman-type ion sources are generally used to perform IBF but the performance of an end-Hall ion source in figuring CVD-SiC mirrors was also evaluated in this study. In order to do so, ion beam etching profiles obtained with the end-Hall source on CVD-SiC were measured and used as a basis for IBF simulations.

  5. Production of a thermal stress resistant mutant Euglena gracilis strain using Fe-ion beam irradiation.

    Science.gov (United States)

    Yamada, Koji; Kazama, Yusuke; Mitra, Sharbanee; Marukawa, Yuka; Arashida, Ryo; Abe, Tomoko; Ishikawa, Takahiro; Suzuki, Kengo

    2016-08-01

    Euglena gracilis is a common phytoplankton species, which also has motile flagellate characteristics. Recent research and development has enabled the industrial use of E. gracilis and selective breeding of this species is expected to further expand its application. However, the production of E. gracilis nuclear mutants is difficult because of the robustness of its genome. To establish an efficient mutation induction procedure for E. gracilis, we employed Fe-ion beam irradiation in the RIKEN RI beam factory. A decrease in the survival rate was observed with the increase in irradiation dose, and the upper limit used for E. gracilis selective breeding was around 50 Gy. For a practical trial of Fe-ion irradiation, we conducted a screening to isolate high-temperature-tolerant mutants. The screening yielded mutants that proliferated faster than the wild-type strain at 32 °C. Our results demonstrate the effectiveness of heavy-ion irradiation on E. gracilis selective breeding.

  6. Measurements of beam-ion confinement during tangential beam-driven instabilities in PBX [Princeton Beta Experiment

    International Nuclear Information System (INIS)

    Heidbrink, W.W.; Kaita, R.; Takahashi, H.; Gammel, G.; Hammett, G.W.; Kaye, S.

    1987-01-01

    During tangential injection of neutral beams into low density tokamak plasmas with β > 1% in the Princeton Beta Experiment (PBX), instabilities are observed that degrade the confinement of beam ions. Neutron, charge-exchange, and diamagnetic loop measurements are examined in order to identify the mechanism or mechanisms responsible for the beam-ion transport. The data suggest a resonant interaction between the instabilities and the parallel energetic beam ions. Evidence for some nonresonant transport also exists

  7. INERTIAL FUSION DRIVEN BY INTENSE HEAVY-ION BEAMS

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, W. M.; Friedman, A.; Grote, D. P.; Barnard, J. J.; Cohen, R. H.; Dorf, M. A.; Lund, S. M.; Perkins, L. J.; Terry, M. R.; Logan, B. G.; Bieniosek, F. M.; Faltens, A.; Henestroza, E.; Jung, J. Y.; Kwan, J. W.; Lee, E. P.; Lidia, S. M.; Ni, P. A.; Reginato, L. L.; Roy, P. K.; Seidl, P. A.; Takakuwa, J. H.; Vay, J.-L.; Waldron, W. L.; Davidson, R. C.; Gilson, E. P.; Kaganovich, I. D.; Qin, H.; Startsev, E.; Haber, I.; Kishek, R. A.; Koniges, A. E.

    2011-03-31

    Intense heavy-ion beams have long been considered a promising driver option for inertial-fusion energy production. This paper briefly compares inertial confinement fusion (ICF) to the more-familiar magnetic-confinement approach and presents some advantages of using beams of heavy ions to drive ICF instead of lasers. Key design choices in heavy-ion fusion (HIF) facilities are discussed, particularly the type of accelerator. We then review experiments carried out at Lawrence Berkeley National Laboratory (LBNL) over the past thirty years to understand various aspects of HIF driver physics. A brief review follows of present HIF research in the US and abroad, focusing on a new facility, NDCX-II, being built at LBNL to study the physics of warm dense matter heated by ions, as well as aspects of HIF target physics. Future research directions are briefly summarized.

  8. ELECTRON BEAM ION SOURCE PREINJECTOR PROJECT (EBIS) CONCEPTUAL DESIGN REPORT.

    Energy Technology Data Exchange (ETDEWEB)

    ALESSI, J.; BARTON, D.; BEEBE, E.; GASSNER, D.; GRANDINETTI, R.; HSEUH, H.; JAVIDFAR, A.; KPONOU, A.; LAMBIASE, R.; LESSARD, E.; LOCKEY, R.; LODESTRO, V.; MAPES, M.; MIRABELLA, D.; NEHRING, T.; OERTER, B.; PENDZICK, A.; PIKIN, A.; RAPARIA, D.; RITTER, J.; ROSER, T.; RUSSO, T.; SNYDSTRUP, L.; WILINSKI, M.; ZALTSMAN, A.; ZHANG, S.

    2005-09-01

    This report describes a new heavy ion pre-injector for the Relativistic Heavy Ion Collider (RHIC) based on a high charge state Electron Beam Ion Source (EBIS), a Radio Frequency Quadrupole (RFQ) accelerator, and a short Linear accelerator (Linac). The highly successful development of an EBIS at Brookhaven National Laboratory (BNL) now makes it possible to replace the present pre-injector that is based on an electrostatic Tandem with a reliable, low maintenance Linac-based pre-injector. Linac-based preinjectors are presently used at most accelerator and collider facilities with the exception of RHIC, where the required gold beam intensities could only be met with a Tandem until the recent EBIS development. EBIS produces high charge state ions directly, eliminating the need for the two stripping foils presently used with the Tandem. Unstable stripping efficiencies of these foils are a significant source of luminosity degradation in RHIC. The high reliability and flexibility of the new Linac-based pre-injector will lead to increased integrated luminosity at RHIC and is an essential component for the long-term success of the RHIC facility. This new pre-injector, based on an EBIS, also has the potential for significant future intensity increases and can produce heavy ion beams of all species including uranium beams and, as part of a future upgrade, might also be used to produce polarized {sup 3}He beams. These capabilities will be critical to the future luminosity upgrades and electron-ion collisions in RHIC. The proposed pre-injector system would also provide for a major enhancement in capability for the NASA Space Radiation Laboratory (NSRL), which utilizes heavy-ion beams from the RHIC complex. EBIS would allow for the acceleration of all important ion species for the NASA radiobiology program, such as, helium, argon, and neon which are unavailable with the present Tandem injector. In addition, the new system would allow for very rapid switching of ion species for

  9. In situ electrostatic characterisation of ion beams in the region of ion acceleration

    Science.gov (United States)

    Bennet, Alexander; Charles, Christine; Boswell, Rod

    2018-02-01

    In situ and ex situ techniques have been used to measure directional ion beams created by a sharp axial potential drop in low pressure expanding plasmas. Although Retarding Field Energy Analysers (RFEAs) are the most convenient technique to measure the ion velocities and plasma potentials along with the plasma density, they are bulky and are contained in a grounded shield that may perturb the electric potential profile of the expanding plasma. In principle, ex situ techniques produce a more reliable measurement and Laser Induced Fluorescence spectroscopy (LIF) has previously been used to characterise the spatial velocity profile of ion beams in the same region of acceleration for a range of pressures. Here, satisfactory agreement between the ion velocity profiles measured by LIF and RFEA techniques has allowed the RFEA method to be confidently used to probe the ion beam characteristics in the regions of high gradients in plasma density and DC electric fields which have previously proven difficult.

  10. ILIAS. Ion and laser beam interaction and application studies. Progress report no. 3 of the PHELIX theory group

    Energy Technology Data Exchange (ETDEWEB)

    Mulser, P. (ed.)

    2008-04-15

    The following topics are dealt with: The PHELIX laser-plasma facility, coupling of nuclear matter to intense photon fields, QED effects in strong laser fields, relativistic critical density increase in a linearly polarized laser beam, absorption of ultrashort laser pulses in strongly overdense targets, Coulomb focusing in electron-ion collisions in a strong laser field, quasiperiodic waves in relativistic plasmas, high-energy-density physics studied by intense particle beams, heavy ions in a high-power laser beam, Monte-Carlo study of electron dynamics in silicon during irradiation with an ultrashort VUV laser pulse. (HSI)

  11. The status of the Electron Beam Ion Sources

    Energy Technology Data Exchange (ETDEWEB)

    Stockli, M.P.

    1990-01-01

    More than twenty years after its invention, 13 examples of the Electron Beam Ion Sources (EBIS) are in operation worldwide. The substantial progress in operation and insight, achieved over the last few years, made the EBISes become reliable tools for the production of beams of very highly charged, low-energy ions. For example, 8 EBISes produce bare argon on a standard basis. The successful production of hydrogen-like xenon presents the ions with the highest ionization energy, whereas the production of Th80+ presents the highest achieved charge state. Several synchrotrons are fed by EBIS injectors, taking advantage of the EBIS batch mode production, which yields the highest charge states. A few EBISes are used for ion source development. However, most of the EBISes' efforts are directed to research the physics of highly charged ions. Some of those are used to study the electron--ion interaction inside the source. But normally, most EBISes deliver the ions for external experiments, which so far concentrate on the recombination of the highly charged ions with atoms, molecules and surfaces. The ions are typically produced at a potential of 1 to a few kilovolts per charge; but in most cases, the EBIS is mounted on a high voltage platform or is followed by an RFQ, and therefore can generate ion energies from a few hundred volts up to a few hundred kilovolts per charge. The delivered beams have a low emittance and a low energy spread, which is an advantage for high-resolution experiments. This paper presents briefly all operational EBISes, their capabilities, their achievements, and their contribution to physics research. 5 figs., 1 tab., 59 refs.

  12. The status of the Electron Beam Ion Sources

    International Nuclear Information System (INIS)

    Stockli, M.P.

    1990-01-01

    More than twenty years after its invention, 13 examples of the Electron Beam Ion Sources (EBIS) are in operation worldwide. The substantial progress in operation and insight, achieved over the last few years, made the EBISes become reliable tools for the production of beams of very highly charged, low-energy ions. For example, 8 EBISes produce bare argon on a standard basis. The successful production of hydrogen-like xenon presents the ions with the highest ionization energy, whereas the production of Th80+ presents the highest achieved charge state. Several synchrotrons are fed by EBIS injectors, taking advantage of the EBIS batch mode production, which yields the highest charge states. A few EBISes are used for ion source development. However, most of the EBISes' efforts are directed to research the physics of highly charged ions. Some of those are used to study the electron--ion interaction inside the source. But normally, most EBISes deliver the ions for external experiments, which so far concentrate on the recombination of the highly charged ions with atoms, molecules and surfaces. The ions are typically produced at a potential of 1 to a few kilovolts per charge; but in most cases, the EBIS is mounted on a high voltage platform or is followed by an RFQ, and therefore can generate ion energies from a few hundred volts up to a few hundred kilovolts per charge. The delivered beams have a low emittance and a low energy spread, which is an advantage for high-resolution experiments. This paper presents briefly all operational EBISes, their capabilities, their achievements, and their contribution to physics research. 5 figs., 1 tab., 59 refs

  13. The status of the Electron Beam Ion Sources

    Energy Technology Data Exchange (ETDEWEB)

    Stockli, M.P.

    1990-12-31

    More than twenty years after its invention, 13 examples of the Electron Beam Ion Sources (EBIS) are in operation worldwide. The substantial progress in operation and insight, achieved over the last few years, made the EBISes become reliable tools for the production of beams of very highly charged, low-energy ions. For example, 8 EBISes produce bare argon on a standard basis. The successful production of hydrogen-like xenon presents the ions with the highest ionization energy, whereas the production of Th80+ presents the highest achieved charge state. Several synchrotrons are fed by EBIS injectors, taking advantage of the EBIS batch mode production, which yields the highest charge states. A few EBISes are used for ion source development. However, most of the EBISes` efforts are directed to research the physics of highly charged ions. Some of those are used to study the electron--ion interaction inside the source. But normally, most EBISes deliver the ions for external experiments, which so far concentrate on the recombination of the highly charged ions with atoms, molecules and surfaces. The ions are typically produced at a potential of 1 to a few kilovolts per charge; but in most cases, the EBIS is mounted on a high voltage platform or is followed by an RFQ, and therefore can generate ion energies from a few hundred volts up to a few hundred kilovolts per charge. The delivered beams have a low emittance and a low energy spread, which is an advantage for high-resolution experiments. This paper presents briefly all operational EBISes, their capabilities, their achievements, and their contribution to physics research. 5 figs., 1 tab., 59 refs.

  14. Mass Analyses of Cluster Ion Beams by Wien Filter

    Science.gov (United States)

    Yano, Katsuki; Be, Suck Hee

    1980-06-01

    Distributions of mass of cluster ion beams were investigated by using a Wien filter with permanent magnets, which is 200 mm in length. Resolving powers of the Wien filter in the mass range of 103 to 106 a.m.u. were estimated. The Wien filter is useful for studies of clusters having 102-104 molecules/cluster. Argon cluster beams were ionized up to about ten charges when ionizing current was 15 mA. There were two different mass groups in hydrogen cluster beams produced, even at gas temperature of 77.3 K.

  15. Ion-beam-driven plasma described by rate equations

    Energy Technology Data Exchange (ETDEWEB)

    Kaercher, B.; Meyer-ter-Vehn, J. (Max-Planck-Institut fuer Quantenoptik, Garching (Germany, F.R.))

    1990-01-01

    Ionization distributions and radiation spectra of a dense plasma driven by intense ion beams are studied by solving stationary rate equations. Expressions for the rate coefficients are derived. Optically thin plasmas of hydrogen and carbon are considered neglecting hydrodynamic motion. Results on level populations versus temperature, on power balance and equilibrium states, and also on emission spectra are given. In particular, the transition from beam-determined plasma states to thermal equilibrium states is discussed. Beam parameters are chosen close to those in experiments now being planned. (author).

  16. Improved beam-energy calibration technique for heavy ion accelerators

    International Nuclear Information System (INIS)

    Ferrero, A.M.J.; Garcia, A.; Gil, Salvador

    1989-01-01

    A simple technique for beam energy calibration of heavy-ion accelerators is presented. A thin hydrogenous target was bombarded with 12 C and 19 F, and the energies of the protons knocked out, elastically were measured at several angles using two detectors placed at equal angles on opposite sides of the beam. The use of these two detectors cancels the largest errors due to uncertainties in the angle and position at which the beam hits the target. An application of this energy calibration method to an electrostatic accelerator is described and the calibration constant of the analyzing magnet was obtained with an estimated error of 0.4 (Author) [es

  17. Digital pulse processor for ion beam microprobe imaging

    International Nuclear Information System (INIS)

    Bogovac, M.; Jaksic, M.; Wegrzynek, D.; Markowicz, A.

    2009-01-01

    Capabilities of spectroscopic ion beam analysis (IBA) techniques that are available in ion microprobe facilities can be greatly improved by the use of digital pulse processing. We report here development of a digital multi parameter data acquisition system suitable for IBA imaging applications. Input signals from charge sensitive preamplifier are conditioned by using a simple circuit and digitized with fast ADCs. The digitally converted signals are processed in real time using FPGA. Implementation of several components of the system is presented.

  18. Overview of the Livermore electron beam ion trap project

    International Nuclear Information System (INIS)

    Beiersdorfer, P.; Behar, E.; Boyce, K.R.; Brown, G.V.; Chen, H.; Gendreau, K.C.; Graf, A.; Gu, M.-F.; Harris, C.L.; Kahn, S.M.; Kelley, R.L.; Lepson, J.K.; May, M.J.; Neill, P.A.; Pinnington, E.H.; Porter, F.S.; Smith, A.J.; Stahle, C.K.; Szymkowiak, A.E.; Tillotson, A.; Thorn, D.B.; Traebert, E.; Wargelin, B.J.

    2003-01-01

    The Livermore electron beam ion trap facility has recently been moved to a new location within LLNL, and new instrumentation was added, including a 32-pixel microcalorimeter. The move was accompanied by a shift of focus toward in situ measurements of highly charged ions, which continue with increased vigor. Overviews of the facility, which includes EBIT-I and SuperEBIT, and the research projects are given, including results from optical spectroscopy, QED, and X-ray line excitation measurements

  19. A study of the ion-beam process technology

    International Nuclear Information System (INIS)

    Kanayama, Toshihiko

    1990-01-01

    This paper concerns the ion-beam technology for fabrication of semiconductor devices. The purpose of the present work is to find out useful irradiation effects of ion beams and to develop them into fabrication-process technologies. In particular, the advantage of the focused ion beam (FIB) is pursued to be utilized in fabrication of fine structures; the mask for the x-ray lithography is selected as a test target for this purpose. The mechanism of each irradiation effect is also investigated in detail to give the basis of the process developed. This paper consists of seven chapters. The first one gives an overview of the present work. Chapter 2 deals with ion-bombardment effect on the internal stress of deposited metals. The subject of Chapter 3 is the enhancement effect of chemical etching rate by ion bombardment. This chapter also discusses pattern replicability of the synchrotron-radiation x-ray lithography using the exposure results of the x-ray masks fabricated with the Al 2 O 3 resist and the stress compensation technique discussed in Chapter 2. Chapter 4 is devoted to the atomic intermixing effect caused by ion bombardment. The purpose of the latter half of this chapter is to demonstrate that this mixing effect has a high spatial resolution and deserves to be used as a definition process of fine structures by the FIB. Chapter 5 describes a unique effect of the ion beam: solid phase epitaxy of amorphous Si induced by bombardment at elevated temperatures. Chapter 6 demonstrates that maskless ion implantation using the FIB is a very efficient and productive technique for fabrication of small Hall sensors with sub-micron feature sizes. Finally, Chapter 7 summarizes the conclusions obtained in this work. (J.P.N.) 270 refs

  20. Theory of Nanocluster Size Distributions from Ion Beam Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, C.W.; Yi, D.O.; Sharp, I.D.; Shin, S.J.; Liao, C.Y.; Guzman, J.; Ager III, J.W.; Haller, E.E.; Chrzan, D.C.

    2008-06-13

    Ion beam synthesis of nanoclusters is studied via both kinetic Monte Carlo simulations and the self-consistent mean-field solution to a set of coupled rate equations. Both approaches predict the existence of a steady state shape for the cluster size distribution that depends only on a characteristic length determined by the ratio of the effective diffusion coefficient to the ion flux. The average cluster size in the steady state regime is determined by the implanted species/matrix interface energy.

  1. Waferscale Electrostatic Quadrupole Array for Multiple Ion Beam Manipulation

    OpenAIRE

    Vinayakumar, K. B.; Persaud, A.; Seidl, P. A.; Ji, Q.; Waldron, W. L.; Schenkel, T.; Ardanuc, S.; Lal, A.

    2018-01-01

    We report on the first through-wafer silicon-based Electrostatic Quadrupole Array (ESQA) to focus high energy ion beams. This device is a key enabler for a wafer based accelerator architecture that lends itself to orders-of-magnitude reduction in cost, volume and weight of charged particle accelerators. ESQs are a key building block in developing compact Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) [1]. In a MEQALAC electrostatic forces are used to focus ions, and elec...

  2. Production of an {sup 15}O beam using a stable oxygen ion beam for in-beam PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadi, Akram, E-mail: mohammadi.akram@qst.go.jp; Yoshida, Eiji; Tashima, Hideaki; Nishikido, Fumihiko; Inaniwa, Taku; Kitagawa, Atsushi; Yamaya, Taiga

    2017-03-21

    In advanced ion therapy, the {sup 15}O ion beam is a promising candidate to treat hypoxic tumors and simultaneously monitor the delivered dose to a patient using PET imaging. This study aimed at production of an {sup 15}O beam by projectile fragmentation of a stable {sup 16}O beam in an optimal material, followed by in-beam PET imaging using a prototype OpenPET system, which was developed in the authors’ group. The study was carried out in three steps: selection of the optimal target based on the highest production rate of {sup 15}O fragments; experimental production of the beam using the optimal target in the Heavy Ion Medical Accelerator Chiba (HIMAC) secondary beam course; and realization of in-beam PET imaging for the produced beam. The optimal target evaluations were done using the Monte Carlo simulation code PHITS. The fluence and mean energy of the secondary particles were simulated and the optimal target was selected based on the production rate of {sup 15}O fragments. The highest production rate of {sup 15}O was observed for a liquid hydrogen target, 3.27% for a 53 cm thick target from the {sup 16}O beam of 430 MeV/u. Since liquid hydrogen is not practically applicable in the HIMAC secondary beam course a hydrogen-rich polyethylene material, which was the second optimal target from the simulation results, was selected as the experimental target. Three polyethylene targets with thicknesses of 5, 11 or 14 cm were used to produce the {sup 15}O beam without any degrader in the beam course. The highest production rate was measured as around 0.87% for the 11 cm thick polyethylene target from the {sup 16}O beam of 430 MeV/u when the angular acceptance and momentum acceptance were set at ±13 mrad and ±2.5%, respectively. The purity of the produced beam for the three targets were around 75%, insufficient for clinical application, but it was increased to 97% by inserting a wedge shape aluminum degrader with a thickness of 1.76 cm into the beam course and that is

  3. Production of an 15O beam using a stable oxygen ion beam for in-beam PET imaging

    Science.gov (United States)

    Mohammadi, Akram; Yoshida, Eiji; Tashima, Hideaki; Nishikido, Fumihiko; Inaniwa, Taku; Kitagawa, Atsushi; Yamaya, Taiga

    2017-03-01

    In advanced ion therapy, the 15O ion beam is a promising candidate to treat hypoxic tumors and simultaneously monitor the delivered dose to a patient using PET imaging. This study aimed at production of an 15O beam by projectile fragmentation of a stable 16O beam in an optimal material, followed by in-beam PET imaging using a prototype OpenPET system, which was developed in the authors' group. The study was carried out in three steps: selection of the optimal target based on the highest production rate of 15O fragments; experimental production of the beam using the optimal target in the Heavy Ion Medical Accelerator Chiba (HIMAC) secondary beam course; and realization of in-beam PET imaging for the produced beam. The optimal target evaluations were done using the Monte Carlo simulation code PHITS. The fluence and mean energy of the secondary particles were simulated and the optimal target was selected based on the production rate of 15O fragments. The highest production rate of 15O was observed for a liquid hydrogen target, 3.27% for a 53 cm thick target from the 16O beam of 430 MeV/u. Since liquid hydrogen is not practically applicable in the HIMAC secondary beam course a hydrogen-rich polyethylene material, which was the second optimal target from the simulation results, was selected as the experimental target. Three polyethylene targets with thicknesses of 5, 11 or 14 cm were used to produce the 15O beam without any degrader in the beam course. The highest production rate was measured as around 0.87% for the 11 cm thick polyethylene target from the 16O beam of 430 MeV/u when the angular acceptance and momentum acceptance were set at ±13 mrad and ±2.5%, respectively. The purity of the produced beam for the three targets were around 75%, insufficient for clinical application, but it was increased to 97% by inserting a wedge shape aluminum degrader with a thickness of 1.76 cm into the beam course and that is sufficiently high. In-beam PET imaging was also

  4. Conceptual design of heavy ion beam compression using a wedge

    Directory of Open Access Journals (Sweden)

    Jonathan C. Wong

    2015-10-01

    Full Text Available Heavy ion beams are a useful tool for conducting high energy density physics (HEDP experiments. Target heating can be enhanced by beam compression, because a shorter pulse diminishes hydrodynamic expansion during irradiation. A conceptual design is introduced to compress ∼100  MeV/u to ∼GeV/u heavy ion beams using a wedge. By deflecting the beam with a time-varying field and placing a tailor-made wedge amid its path downstream, each transverse slice passes through matter of different thickness. The resulting energy loss creates a head-to-tail velocity gradient, and the wedge shape can be designed by using stopping power models to give maximum compression at the target. The compression ratio at the target was found to vary linearly with (head-to-tail centroid offset/spot radius at the wedge. The latter should be approximately 10 to attain tenfold compression. The decline in beam quality due to projectile ionization, energy straggling, fragmentation, and scattering is shown to be acceptable for well-chosen wedge materials. A test experiment is proposed to verify the compression scheme and to study the beam-wedge interaction and its associated beam dynamics, which will facilitate further efforts towards a HEDP facility.

  5. Generation of monoenergetic ion beams with a laser accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Pfotenhauer, Sebastian M.

    2009-01-29

    A method for the generation of monoenergetic proton and ion beams from a laser-based particle accelerator is presented. This method utilizes the unique space-charge effects occurring during relativistic laser-plasma interactions on solid targets in combination with a dot-like particle source. Due to this unique interaction geometry, MeV proton beams with an intrinsically narrow energy spectrum were obtained, for the first time, from a micrometer-scale laser accelerator. Over the past three years, the acceleration scheme has been consistently improved to enhance both the maximum particle energy and the reliability of the setup. The achieved degree of reliability allowed to derive the first scaling laws specifically for monoenergetic proton beams. Furthermore, the acceleration scheme was expanded on other target materials, enabling the generation of monoenergetic carbon beams. The experimental work was strongly supported by the parallel development of a complex theoretical model, which fully accounts for the observations and is in excellent agreement with numerical simulations. The presented results have an extraordinarily broad scope way beyond the current thesis: The availability of monoenergetic ion beams from a compact laser-plasma beam source - in conjunction with the unique properties of laser-produced particle beams - addresses a number of outstanding applications in fundamental research, material science and medical physics, and will help to shape a new generation of accelerators. (orig.)

  6. Generation of monoenergetic ion beams with a laser accelerator

    International Nuclear Information System (INIS)

    Pfotenhauer, Sebastian M.

    2009-01-01

    A method for the generation of monoenergetic proton and ion beams from a laser-based particle accelerator is presented. This method utilizes the unique space-charge effects occurring during relativistic laser-plasma interactions on solid targets in combination with a dot-like particle source. Due to this unique interaction geometry, MeV proton beams with an intrinsically narrow energy spectrum were obtained, for the first time, from a micrometer-scale laser accelerator. Over the past three years, the acceleration scheme has been consistently improved to enhance both the maximum particle energy and the reliability of the setup. The achieved degree of reliability allowed to derive the first scaling laws specifically for monoenergetic proton beams. Furthermore, the acceleration scheme was expanded on other target materials, enabling the generation of monoenergetic carbon beams. The experimental work was strongly supported by the parallel development of a complex theoretical model, which fully accounts for the observations and is in excellent agreement with numerical simulations. The presented results have an extraordinarily broad scope way beyond the current thesis: The availability of monoenergetic ion beams from a compact laser-plasma beam source - in conjunction with the unique properties of laser-produced particle beams - addresses a number of outstanding applications in fundamental research, material science and medical physics, and will help to shape a new generation of accelerators. (orig.)

  7. Electron and ion beam transport to fusion targets

    International Nuclear Information System (INIS)

    Freeman, J.R.; Baker, L.; Miller, P.A.; Mix, L.P.; Olsen, J.N.; Poukey, J.W.; Wright, T.P.

    1979-01-01

    ICF reactors have been proposed which incorporate a gas-filled chamber to reduce x-ray and debris loading of the first wall. Focused beams of either electrons or ions must be transported efficiently for 2-4 m to a centrally located fusion target. Laser-initiated current-carrying plasma discharge channels provide the guiding magnetic field and the charge- and current-neutralizing medium required for beam propagation. Computational studies of plasma channel formation in air using a 1-D MHD model with multigroup radiation diffusion have provided a good comparison with the expansions velocity and time dependent refractivity profile determined by holographic interferometry. Trajectory calculations have identified a beam expansion mechanism which combines with the usual ohmic dissipation to reduce somewhat the transported beam fluence for electrons. Additional trajectory calculations have been performed for both electrons and light ions to predict the limits on the particle current density which can be delivered to a central target by overlapping the many independently-generated beams. Critical features of the use of plasma channels for transport and overlap of charged particle beams are being tested experimentally with up to twelve electron beams from the Proto II accelerator

  8. Induction of surface modification of polytetrafluoroethylene with proton ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Noh, I. S.; Kim, H. R.; Choi, Y. J.; Park, H. S. [Seoul National Univ. of Technology, Seoul (Korea, Republic of)

    2007-04-15

    Cardiovascular disease is one of the leading causes of the death in the USA and developed countries. More than 570,000 artery bypass graft surgeries per USA are performed each year, though percutaneous devices have abounded in extreme cases. Based on the surgery follow-ups, large diameter expanded polytetrafluoroethylene (ePTFE) (>5 mm) are clinically employed with good results but its clinical applications in smaller vessels is still problematic due to thrombosis and neointima formation. Achievement of high patency grafts has been to some extent achieved by numerous methods of surface modification techniques, but its results are less than its initial hopes. As examples, endothelial cells coated on the luminal surface of ePTFE has demonstrated limited success after recirculation. Surface modifications of PTFE film with either argon ion beam or UV light from Xe-excimer lamp were reported to increase its interaction with vascular endothelial cell. Surface modification of poly(lactide-co-glycolide)[PLGA] is also very important in tissue engineering, in where induction of its initial high cellular adhesion and spreading is a critical step for development of tissue engineering medical products. We previously reported tissue engineering of the hybrid ePTFE scaffold by seeding smooth muscle cells and subsequently evaluation of its tissue regeneration behaviors and stabilities with circulation of pulsatile flow. To improve its tissue engineering more quickly, we here performed surface modification of ePTFE and porous PLGA scaffold and evaluated its subsequent chemical and biological properties after treating its surface with low energy ion beams. The porous ePTFE was prepared in a round shape (diameter = 1 cm) and dried after organic solvent extraction for ion beam treatment. Another porous PLGA layers (d = 1 cm, t = 1 cm with approximately 92% porosity) were fabricated and treated its surface by irradiating low energy either nitrogen or argon ion beams (1 keV, 1x1015 ions

  9. Induction of surface modification of polytetrafluoroethylene with proton ion beams

    International Nuclear Information System (INIS)

    Noh, I. S.; Kim, H. R.; Choi, Y. J.; Park, H. S.

    2007-04-01

    Cardiovascular disease is one of the leading causes of the death in the USA and developed countries. More than 570,000 artery bypass graft surgeries per USA are performed each year, though percutaneous devices have abounded in extreme cases. Based on the surgery follow-ups, large diameter expanded polytetrafluoroethylene (ePTFE) (>5 mm) are clinically employed with good results but its clinical applications in smaller vessels is still problematic due to thrombosis and neointima formation. Achievement of high patency grafts has been to some extent achieved by numerous methods of surface modification techniques, but its results are less than its initial hopes. As examples, endothelial cells coated on the luminal surface of ePTFE has demonstrated limited success after recirculation. Surface modifications of PTFE film with either argon ion beam or UV light from Xe-excimer lamp were reported to increase its interaction with vascular endothelial cell. Surface modification of poly(lactide-co-glycolide)[PLGA] is also very important in tissue engineering, in where induction of its initial high cellular adhesion and spreading is a critical step for development of tissue engineering medical products. We previously reported tissue engineering of the hybrid ePTFE scaffold by seeding smooth muscle cells and subsequently evaluation of its tissue regeneration behaviors and stabilities with circulation of pulsatile flow. To improve its tissue engineering more quickly, we here performed surface modification of ePTFE and porous PLGA scaffold and evaluated its subsequent chemical and biological properties after treating its surface with low energy ion beams. The porous ePTFE was prepared in a round shape (diameter = 1 cm) and dried after organic solvent extraction for ion beam treatment. Another porous PLGA layers (d = 1 cm, t = 1 cm with approximately 92% porosity) were fabricated and treated its surface by irradiating low energy either nitrogen or argon ion beams (1 keV, 1x1015 ions

  10. Dose reporting in ion beam therapy. Proceedings of a meeting

    International Nuclear Information System (INIS)

    2007-06-01

    Following the pioneering work in Berkeley, USA, ion beam therapy for cancer treatment is at present offered in Chiba and Hyogo in Japan, and Darmstadt in Germany. Other facilities are coming close to completion or are at various stages of planning in Europe and Japan. In all these facilities, carbon ions have been selected as the ions of choice, at least in the first phase. Taking into account this fast development, the complicated technical and radiobiological research issues involved, and the hope it raises for some types of cancer patients, the IAEA and the International Commission on Radiation Units and measurements (ICRU) jointly sponsored a technical meeting held in Vienna, 23-24 June 2004. That first meeting was orientated mainly towards radiobiology: the relative biological effectiveness (RBE) of carbon ions versus photons, and related issues. One of the main differences between ion beam therapy and other modern radiotherapy techniques (such as proton beam therapy or intensity modulated radiation therapy) is related to radiobiology and in particular the increased RBE of carbon ions compared to both protons and photons (i.e., high linear energy transfer (LET) versus low LET radiation). Another important issue for international agencies and commissions, such as the IAEA and the ICRU, is a worldwide agreement and harmonisation for reporting the treatments. In order to evaluate the merits of ion beam therapy, it is essential that the treatments be reported in a similar/comparable way in all centres so that the clinical reports and protocols can be understood and interpreted without ambiguity by the radiation therapy community in general. For the last few decades, the ICRU has published several reports containing recommendations on how to report external photon beam or electron beam therapy, and brachytherapy. A report on proton beam therapy, jointly prepared by the ICRU and the IAEA, is now completed and is being published in the ICRU series. In line with this

  11. Spectroscopic investigations on ion beam irradiated polycarbonate

    Energy Technology Data Exchange (ETDEWEB)

    Puglisi, O.; Chipara, M. E-mail: mchipara@unlserve.unl.edu; Enge, W.; Compagnini, G.; Reyes-Romero, J. E-mail: vetr@caracas.c-com.net; Bacmeister, U.; Chipara, M.D

    2000-05-02

    Luminescence investigations on polycarbonate irradiated with accelerated uranium ions are reported. The dependence of luminescence spectra on the penetration length, deposited energy and dose and track radius is investigated. The luminescence spectrum has been assigned to phenyls. It is suggested that most phenyls are located within the latent track. The experimental results are in good agreement with data obtained by electron spin resonance spectroscopy.

  12. Cavity-enhanced photoionization of an ultracold rubidium beam for application in focused ion beams

    Science.gov (United States)

    ten Haaf, G.; Wouters, S. H. W.; Mutsaers, P. H. A.; Vredenbregt, E. J. D.

    2017-11-01

    A two-step photoionization strategy of an ultracold rubidium beam for application in a focused ion beam instrument is analyzed and implemented. In this strategy the atomic beam is partly selected with an aperture after which the transmitted atoms are ionized in the overlap of a tightly cylindrically focused excitation laser beam and an ionization laser beam whose power is enhanced in a build-up cavity. The advantage of this strategy, as compared to without the use of a build-up cavity, is that higher ionization degrees can be reached at higher currents. Optical Bloch equations including the photoionization process are used to calculate what ionization degree and ionization position distribution can be reached. Furthermore, the ionization strategy is tested on an ultracold beam of 85Rb atoms. The beam current is measured as a function of the excitation and ionization laser beam intensity and the selection aperture size. Although details are different, the global trends of the measurements agree well with the calculation. With a selection aperture diameter of 52 μ m , a current of (170 ±4 ) pA is measured, which according to calculations is 63% of the current equivalent of the transmitted atomic flux. Taking into account the ionization degree the ion beam peak reduced brightness is estimated at 1 ×107 A/(m2sr eV ).

  13. Development of a simple, low cost, indirect ion beam fluence measurement system for ion implanters, accelerators

    Science.gov (United States)

    Suresh, K.; Balaji, S.; Saravanan, K.; Navas, J.; David, C.; Panigrahi, B. K.

    2018-02-01

    We developed a simple, low cost user-friendly automated indirect ion beam fluence measurement system for ion irradiation and analysis experiments requiring indirect beam fluence measurements unperturbed by sample conditions like low temperature, high temperature, sample biasing as well as in regular ion implantation experiments in the ion implanters and electrostatic accelerators with continuous beam. The system, which uses simple, low cost, off-the-shelf components/systems and two distinct layers of in-house built softwarenot only eliminates the need for costly data acquisition systems but also overcomes difficulties in using properietry software. The hardware of the system is centered around a personal computer, a PIC16F887 based embedded system, a Faraday cup drive cum monitor circuit, a pair of Faraday Cups and a beam current integrator and the in-house developed software include C based microcontroller firmware and LABVIEW based virtual instrument automation software. The automatic fluence measurement involves two important phases, a current sampling phase lasting over 20-30 seconds during which the ion beam current is continuously measured by intercepting the ion beam and the averaged beam current value is computed. A subsequent charge computation phase lasting 700-900 seconds is executed making the ion beam to irradiate the samples and the incremental fluence received by the sampleis estimated usingthe latest averaged beam current value from the ion beam current sampling phase. The cycle of current sampling-charge computation is repeated till the required fluence is reached. Besides simplicity and cost-effectiveness, other important advantages of the developed system include easy reconfiguration of the system to suit customisation of experiments, scalability, easy debug and maintenance of the hardware/software, ability to work as a standalone system. The system was tested with different set of samples and ion fluences and the results were verified using

  14. Study on ion beam for development of micro devices

    International Nuclear Information System (INIS)

    Menon, Ranjini

    2013-01-01

    In recent years, increasing demand for micro devices has necessitated improvements in the miniaturization techniques. Focused ion beam (FIB) system is one of the tools that is widely used in micro machining. Conventional FIB that is based on Liquid Metal Ion Source (LMIS-FIB) suffers from several limitations. This thesis, describes the design and development of an FIB system based on plasma ion sources that overcomes all the limitations of the LMIS-FIB systems and creates features in the range of 2-30 micron at two orders of higher speeds. This system is first of its kind developed in India and it is one of the two systems developed in the world successfully. In this thesis, details of design and development of high current and highly stable ion source, plasma diagnostics, low aberration and high demagnification ion beam focusing column, micron size ion beam diagnostics and demonstration of high speed micro milling of several materials including tough materials like, Molybdenum and Tungsten Carbide etc are described

  15. A high-flux low-energy hydrogen ion beam using an end-Hall ion source

    NARCIS (Netherlands)

    Veldhoven, J. van; Sligte, E. te; Janssen, J.P.B.

    2016-01-01

    Most ion sources that produce high-flux hydrogen ion beams perform best in the high energy range (keV). Alternatively, some plasma sources produce very-lowenergy ions (<< 10 eV). However, in an intermediate energy range of 10-200 eV, no hydrogen ion sources were found that produce high-flux beams.

  16. Investigation of beam deflection reduction and multi-beamlet focus at a large-area negative ion source for a neutral beam injector with 3-D beam trajectory simulation

    CERN Document Server

    Tanaka, M; Asano, E; Oka, Y; Osakabe, M; Tsumori, K; Kaneko, O; Yamashita, Y

    2000-01-01

    We investigated the reduction of ion beam deflection caused by electron deflection magnets, and focus of multi-beamlets at a large-area negative ion source of a neutral beam injector (NBI) in order to reduce beam loss during long-distance beam transport (>10 m) and beam injection into a nuclear fusion device. The electrostatic lens effect by displacement of the beam extraction aperture of a grounded grid (GG) was utilized for the beam deflection reduction and the multi-beamlet focus. We proposed an analysis process to adjust the aperture displacement which avoids beam collision with the GG by too much displacement. The analysis process includes a 3-D beam trajectory simulation used for analyzing the beam deflection angle and beam radius as well as theoretical calculations, which are used to calculate the aperture displacement based on the 3-D simulation results. Applicability of the analysis process was examined for a large-area high-current H sup - ion source of an NBI (0.25 mx1.25 m, 40 A, 180 keV). The ana...

  17. Improvement of extracted ion beam from cold cathode Penning ion source

    Science.gov (United States)

    Radwan, Samah I.; El-Khabeary, H.; Helal, A. G.

    2018-03-01

    A direct current cold cathode Penning ion source is operated at the optimum parameters and pressure equal to 7×10-4 mmHg using argon gas. It consists of a copper cylindrical hollow anode and two movable molybdenum discs cathodes are placed symmetrically at two ends of the anode. Argon ion beam is extracted from the ion source by using extractor of different aperture diameter equal to 2.5, 3, 3.5, 4 and 4.5 mm respectively. The extractor is placed at different distances from the ion exit aperture equal to 5, 10, 15 and 20 mm respectively. It is found that at extractor aperture diameter equal to 3.5 mm, ion exit aperture - extractor distance equal to 10 mm and extraction potential applied on the extractor is equal to -500 V, the optimum extracted ion beam current equal to 543 μA can be obtained. A comparison for Penning ion source without and with the extractor is made at the same optimum operating parameters, it is found that the extracted ion beam current from Penning ion source with the extractor increases about twice its initial value of Penning ion source without the extractor.

  18. Liquid metal alloy ion sources—An alternative for focussed ion beam technology

    International Nuclear Information System (INIS)

    Bischoff, Lothar; Mazarov, Paul; Bruchhaus, Lars; Gierak, Jacques

    2016-01-01

    Today, Focused Ion Beam (FIB) processing is nearly exclusively based on gallium Liquid Metal Ion Sources (LMIS). But, many applications in the μm- or nm range could benefit from ion species other than gallium: local ion implantation, ion beam mixing, ion beam synthesis, or Focused Ion Beam Lithography (IBL). Therefore, Liquid Metal Alloy Ion Sources (LMAIS) represent a promising alternative to expand the remarkable application fields for FIB. Especially, the IBL process shows potential advantages over, e.g., electron beam or other lithography techniques: direct, resistless, and three-dimensional patterning, enabling a simultaneous in-situ process control by cross-sectioning and inspection. Taking additionally into account that the used ion species influences significantly the physical and chemical nature of the resulting nanostructures—in particular, the electrical, optical, magnetic, and mechanic properties leading to a large potential application area which can be tuned by choosing a well suited LMAIS. Nearly half of the elements of the periodic table are recently available in the FIB technology as a result of continuous research in this area during the last forty years. Key features of a LMAIS are long life-time, high brightness, and stable ion current. Recent developments could make these sources feasible for nano patterning issues as an alternative technology more in research than in industry. The authors will review existing LMAIS, LMIS other than Ga, and binary and ternary alloys. These physical properties as well as the fabrication technology and prospective domains for modern FIB applications will similarly be reviewed. Other emerging ion sources will be also presented and their performances discussed.

  19. Development of a Tracking System of Exotic Nuclear Beams for FAIR

    International Nuclear Information System (INIS)

    Fernandez, B.; Abou-Haidar, Z.; Alvarez, M. A. G.; Pancin, J.; Drouart, A.; Kebbiri, M.; Riallot, M.

    2010-01-01

    New accelerators like SPIRAL2 (GANIL, France) or FAIR (GSI, Germany) will be soon constructed, and they will be able to produce radioactive ion beams (RIB) with high intensities of current (≥10 6 pps). These beams, at low energy, lower than 20 MeV/n, usually have high emittance, which imposes the use of tracking detectors before the target in order to reconstruct the trajectory of the ions. The group of Nuclear Physics at CNA (Centro Nacional de Aceleradores), is in charge of developing a tracking system for the low energy branch of FAIR (the HISPEC/DESPEC project). A collaboration with CEA-SACLAY was established, with the aim of developing, building and testing low pressure Secondary electron Detectors (SeD). Within this proposal we have projected and constructed a new Nuclear Physics Line in the CNA in order to be able to receive any kind of detector tests and the associated nuclear instruments.

  20. Portable test bench for the studies concerning ion sources and ion beam extraction and focusing systems

    International Nuclear Information System (INIS)

    Cordero Lopez, F.

    1961-01-01

    A portable test bench is described, which was designed to check ion sources, ion beam extraction and focusing systems before its use in a 600 KeV Cockcroft-Walton accelerator. The vacuum possibilities of the system are specially analyzed in connection with its particular use. The whole can be considered as a portable accelerator of low energy (50 keV). (Author)