WorldWideScience

Sample records for nuclear instrumentation

  1. Nuclear instrumentation

    International Nuclear Information System (INIS)

    Weill, Jacky; Fabre, Rene.

    1981-01-01

    This article sums up the Research and Development effort at present being carried out in the five following fields of applications: Health physics and Radioprospection, Control of nuclear reactors, Plant control (preparation and reprocessing of the fuel, testing of nuclear substances, etc.), Research laboratory instrumentation, Detectors. It also sets the place of French industrial activities by means of an estimate of the French market, production and flow of trading with other countries [fr

  2. Troubleshooting in nuclear instruments

    International Nuclear Information System (INIS)

    1987-06-01

    This report on troubleshooting of nuclear instruments is the product of several scientists and engineers, who are closely associated with nuclear instrumentation and with the IAEA activities in the field. The text covers the following topics: Preamplifiers, amplifiers, scalers, timers, ratemeters, multichannel analyzers, dedicated instruments, tools, instruments, accessories, components, skills, interfaces, power supplies, preventive maintenance, troubleshooting in systems, radiation detectors. The troubleshooting and repair of instruments is illustrated by some real examples

  3. Instrumentation for Nuclear Applications

    International Nuclear Information System (INIS)

    1998-01-01

    The objective of this project was to develop and coordinate nuclear instrumentation standards with resulting economies for the nuclear and radiation fields. There was particular emphasis on coordination and management of the Nuclear Instrument Module (NIM) System, U.S. activity involving the CAMAC international standard dataway system, the FASTBUS modular high-speed data acquisition and control system and processing and management of national nuclear instrumentation and detector standards, as well as a modest amount of assistance and consultation services to the Pollutant Characterization and Safety Research Division of the Office of Health and Environmental Research. The principal accomplishments were the development and maintenance of the NIM instrumentation system that is the predominant instrumentation system in the nuclear and radiation fields worldwide, the CAMAC digital interface system in coordination with the ESONE Committee of European Laboratories, the FASTBUS high-speed system and numerous national and international nuclear instrumentation standards

  4. Nuclear reactor instrumentation

    International Nuclear Information System (INIS)

    Duncombe, E.; McGonigal, G.

    1975-01-01

    A liquid metal cooled nuclear reactor is described which has an equal number of fuel sub-assemblies and sensing instruments. Each instrument senses temperature and rate of coolant flow of a coolant derived from a group of three sub-assemblies so that an abnormal value for one sub-assembly will be indicated on three instruments thereby providing for redundancy of up to two of the three instruments. The abnormal value may be a precurser to unstable boiling of coolant

  5. Nuclear instrument technician training

    International Nuclear Information System (INIS)

    Wollesen, E.S.

    1991-01-01

    This paper reports on Nuclear Instrument Technician (NIT) training that has developed at an accelerated rate over the past three decades. During the 1960's commercial nuclear power plants were in their infancy. For that reason, there is little wonder that NIT training had little structure and little creditability. NIT training, in many early plants, was little more than On-The Job Training (OJT). The seventies brought changes in Instrumentation and Controls as well as emphasis on the requirements for more in depth training and documentation. As in the seventies, the eighties saw not only changes in technologies but tighter requirements, standardized training and the development of accredited Nuclear Instrument Training; thus the conclusion: Nuclear Instrument Training Isn't What It Used To Be

  6. Nuclear electronic instrumentation

    International Nuclear Information System (INIS)

    Ramirez J, F. J.

    2010-01-01

    The activities carried out in the Instituto Nacional de Investigaciones Nucleares (ININ) in the field of the nuclear electronic instrumentation included those activities corresponding to the design and production of nuclear instruments in a first stage, as well as the internal activities of design, repair and maintenance that have supported to other projects of the institution during many years. It is mentioned of the presence and constant collaboration of the ININ with the IAEA in different projects and programs. Also, it is mentioned on the establishment of the Radiation Detectors Laboratory, which for their characteristics and repair capacities of radiation detectors of cooled semiconductor, it is only in their specialty. It is emphasized the investigation and the development in the field of new radiation detectors and applications, as well as the important contribution in this field, in institutions like: Mexican Petroleum, National Commission of Nuclear Safety and Safeguards and Federal Commission of Electricity. Finally a position of the future of these activities is made, considering the speed of the advances of the electronic and nuclear technology. (Author)

  7. Maintenance of nuclear instruments

    International Nuclear Information System (INIS)

    Oliveira Rebelo, A.M. de; Santos, C.J.F. dos; Jesus, E.F.O. de; Silva, L.E.M.C.; Borges, J.C.

    1988-01-01

    A program to design and repairing of nuclear instruments for teaching and research was founded in the UFRJ to find solutions for technical support problem - The GEMD-RADIACOES. This group has assisted to several groups of the University in recuperation and conservation of devices like: Linear scanner, Cromatograph and system of radiation detection in general. Recuperation of these devices had required a study of theirs operations modes, to make it possible the setting up of a similar system. Recuperation also involves operation tests, calibration and technical for users, orienting them to get the best performance. (Author) [pt

  8. Nuclear instrumentation for research reactors

    International Nuclear Information System (INIS)

    Hofer, Carlos G.; Pita, Antonio; Verrastro, Claudio A.; Maino, Eduardo J.

    1997-01-01

    The nuclear instrumentation for research reactors in Argentina was developed in 70'. A gradual modernization of all the nuclear instrumentation is planned. It includes start-up and power range instrumentation, as well as field monitors, clamp, scram and rod movement control logic. The new instrumentation is linked to a computer network, based on real time operating system for data acquisition, display and logging. This paper describes the modules and whole system aspects. (author). 2 refs

  9. Nuclear instrumentation evaluation and analysis

    International Nuclear Information System (INIS)

    Park, Suk Jun; Han, Sang Joon; Chung, Chong Eun; Han, Kwang Soo; Kim, Dong Hwa; Park, Byung Hae; Moon, Je Sun; Lee, Chel Kwon; Song, Ki Sang; Choi, Myung Jin; Kim, Seung Bok; Kim, Jung Bok

    1986-12-01

    This project provides the program for improving instrumentation reliability as well as developing a cost-effective preventive maintenance activity through evaluation and analysis of nuclear instrumentation concerning pilot plants, large-scale test facilities and various laboratories on KAERI site. In addition, it discusses the program for enhancing safe operations and improving facility availability through establishment of maintenance technology. (Author)

  10. Nuclear reactor instrumentation

    International Nuclear Information System (INIS)

    Duncombe, E.; McGonigal, G.

    1976-01-01

    Reference is made to the instrumentation of liquid metal cooled fast reactors. In order to ensure the safe operation of such reactors it is necessary to constantly monitor the coolant flowing through the fuel assemblies for temperature and rate of flow, requiring a large number of sensors. An improved and simplified arrangement is claimed in which the fuel assemblies feed a fraction of coolant to three instrument units arranged to sense the temperature and rate of flow of samples of coolant. Each instrument unit comprises a sleeve housing a sensing unit and has a number of inlet ducts arranged for receiving coolant from a fuel assembly together with a single outlet. The sensing unit has three thermocouple hot junctions connected in series, the hot junctions and inlet ducts being arranged in pairs. Electromagnetic windings around an inductive core are arranged to sense variation in flow of liquid metal by flux distortion. Fission product sensing means may also be provided. Full constructional details are given. (U.K.)

  11. Nuclear instrumentation for radiation measurement

    International Nuclear Information System (INIS)

    Madan, V.K.

    2012-01-01

    Nuclear radiation cannot be detected by human senses. Nuclear detectors and associated electronics facilitate detection and measurement of different types of radiation like alpha particles, beta particles, gamma radiation, and detection of neutrons. Nuclear instrumentation has evolved greatly since the discovery of radioactivity. There has been tremendous advancement in detector technology, electronics, computer technology, and development of efficient algorithms and methods for spectral processing to extract precisely qualitative and quantitative information of the radiation. Various types of detectors and nuclear instruments are presently available and are used for different applications. This paper describes nuclear radiation, its detection and measurement and associated electronics, spectral information extraction, and advances in these fields. The paper also describes challenges in this field

  12. Smart antennas for nuclear instruments

    International Nuclear Information System (INIS)

    Jain, Ranjan Bala; Singhi, B.M.

    2005-01-01

    The advances in the field of computer and communications are leading to the development of smart embedded nuclear instruments. These instruments have highly sophisticated signal-processing algorithms based on FPGA and ASICS, provisions of present day connectivity and user interfaces. The developments in the connectivity, standards and bus technologies have made possible to access these instruments on LAN and WAN with suitable reliability and security. To get rid of wires i.e. in order to access these instruments, without wires at any place, wireless technology has evolved and become integral part of day-to-day activities. The environment monitoring can be done remotely, if smart antennas are incorporated on these instruments

  13. Meteorological instrumentation for nuclear facilities

    International Nuclear Information System (INIS)

    Costa, A.C.L. da.

    1983-01-01

    The main requirements of regulatory agencies, concerning the meteorological instrumentation needed for the licensing of nuclear facilities are discussed. A description is made of the operational principles of sensors for the various meteorological parameters and associated electronic systems. An analysis of the problems associated with grounding of a typical meteorological station is presented. (Author) [pt

  14. Meteorological instrumentation for nuclear installations

    International Nuclear Information System (INIS)

    Costa, A.C.L. da.

    1983-01-01

    The main requirements of regulatory agencies, concerning the meteorological instrumentation needed for the licensing of nuclear facilities are discussed. A description is made of the operational principles of sensors for the various meteorological parameters and associated electronic systems. Finally, it is presented an analysis of the problems associated with grounding of a typical meteorological station. (Author) [pt

  15. Recent developments in nuclear instruments

    International Nuclear Information System (INIS)

    Vaidya, P.P.

    2004-01-01

    Full text : Nuclear Instrumentation is a field of vital importance for DAE. It has important applications in many areas of interest such as Reactor Monitoring and control, Accelerator based research, Laser and nuclear physics experiments, Health and environmental monitoring, Astrophysics experiments etc. It is a specialized field involving expertise in detection of radioactivity down to the level of few events per minute as well as processing and analysis of signals which can be as small as few hundred micro volts embedded in noise. Some applications involve digitizing and processing these signals with 0.001% accuracy and timing accuracies of a fraction of nano sec. Rapid developments in semiconductor related technologies have influenced the field of nuclear instrumentation. Development of FPGA's and ASIC's have made it possible to develop miniaturized smart and portable instruments for field applications. Advancements in field of computers, communications and various field buses have been successfully utilized for smart, portable and DSP based instrumentation. Smart sensor with detector and front-end electronics on a single silicon chip is now a reality. These instruments are also made intelligent by addition of fuzzy logic, artificial neural networks and expert systems. Electronics Division of BARC has made significant contribution to the field of nuclear instrumentation to achieve self-reliance in this area. This has also led to development of several new methods, which have been published in international journals and appreciated worldwide. As a step towards achieving complete self-reliance a programme for development of FPGA's, HMC's and ASIC's has been undertaken and is being followed with special emphasis. This also includes development of detector and front- end electronics on a single chip. This talk brings out details of these developments and describes the 'state of art' work done in India

  16. Nuclear instrumentation cable end seal

    International Nuclear Information System (INIS)

    Cannon, C.P.; Brown, D.P.

    1979-01-01

    An improved coaxial end seal for hermetically sealed nuclear instrumentation cable exhibiting an improved breakdown pulse noise characteristic under high voltage, high temperature conditions is described. A tubular insulator body has metallized interior and exterior surface portions which are braze sealed to a center conductor and an outer conductive sheath. The end surface of the insulator body which is directed toward the coaxial cable to which it is sealed has a recessed surface portion within which the braze seal material terminates

  17. Maintenance of nuclear medicine instruments

    Energy Technology Data Exchange (ETDEWEB)

    Ambro, P

    1993-12-31

    Maintenance of instruments is generally of two kinds: (a) corrective maintenance, on a non-scheduled basis, to restore equipment to a functional status by repairs; (b) preventive maintenance, to keep equipment in a specified functional condition by providing systematic inspection, quality control, detection and correction of early malfunctions. Most of the instruments used in nuclear medicine are rather complex systems built from mechanical, electrical and electronic parts. Any one of these components is liable to fail at some time or other. Repair could be done only by a specialist who is able to evaluate the condition of the various parts ranging from cables to connectors, from scintillators to photomultipliers, from microprocessors to microswitches. The knowledge of the intricacies of the various electronic components required for their repairs is quite wide and varied. The electronics industry turns out more and more multi-purpose chips which can carry out the functions of many parts used in the instruments of the earlier generation. This provides protection against unauthorized copying of the circuits but it serves another purpose as well of inhibiting repairs by non-factory personnel. These trends of the instrument design should be taken into consideration when a policy has to be developed for the repairs of the hospital based equipment 1 fig., 1 tab

  18. Maintenance of nuclear medicine instruments

    International Nuclear Information System (INIS)

    Ambro, P.

    1992-01-01

    Maintenance of instruments is generally of two kinds: (a) corrective maintenance, on a non-scheduled basis, to restore equipment to a functional status by repairs; (b) preventive maintenance, to keep equipment in a specified functional condition by providing systematic inspection, quality control, detection and correction of early malfunctions. Most of the instruments used in nuclear medicine are rather complex systems built from mechanical, electrical and electronic parts. Any one of these components is liable to fail at some time or other. Repair could be done only by a specialist who is able to evaluate the condition of the various parts ranging from cables to connectors, from scintillators to photomultipliers, from microprocessors to microswitches. The knowledge of the intricacies of the various electronic components required for their repairs is quite wide and varied. The electronics industry turns out more and more multi-purpose chips which can carry out the functions of many parts used in the instruments of the earlier generation. This provides protection against unauthorized copying of the circuits but it serves another purpose as well of inhibiting repairs by non-factory personnel. These trends of the instrument design should be taken into consideration when a policy has to be developed for the repairs of the hospital based equipment

  19. Nuclear reactor instrumentation power monitor

    International Nuclear Information System (INIS)

    Suzuki, Shigeru.

    1989-01-01

    The present invention concerns a nuclear reactor instrumentation power monitor that can be used in, for example, BWR type nuclear power plants. Signals from multi-channel detectors disposed on field units are converted respectively by LPRM signal circuits. Then, the converted signals are further converted by a multiplexer into digital signals and transmitted as serial data to a central monitor unit. The thus transmitted serial data are converted into parallel data in the signal processing section of the central monitor unit. Then, LPRM signals are taken out from each of channel detectors to conduct mathematical processing such as trip judgment or averaging. Accordingly, the field unit and the central monitor unit can be connected by way of only one data transmission cable thereby enabling to reduce the number of cables. Further, since the data are transmitted on digital form, it less undergoes effect of noises. (I.S.)

  20. Virtual experiment instrument of nuclear pulse measuring

    International Nuclear Information System (INIS)

    Shan Jian; Zhao Xiuliang; Yu Hong; Zhang Meiqin

    2009-01-01

    Study on the scheme of application of virtual instrument(VI) technique in measuring of nuclear pulse. The system of Counter based on technology of LabVIEW and NI company's products USB-6009-DAQ is developed. Virtual nuclear instrument-Virtual Counter is realized. This system extends the application of technology of virtual instrument. The experimental results indicate that the system of Counter had the good counting measuring function of Nuclear Pulse. (authors)

  1. Essentials of nuclear medicine physics and instrumentation

    CERN Document Server

    Powsner, Rachel A; Powsner, Edward R

    2013-01-01

    An excellent introduction to the basic concepts of nuclear medicine physics This Third Edition of Essentials of Nuclear Medicine Physics and Instrumentation expands the finely developed illustrated review and introductory guide to nuclear medicine physics and instrumentation. Along with simple, progressive, highly illustrated topics, the authors present nuclear medicine-related physics and engineering concepts clearly and concisely. Included in the text are introductory chapters on relevant atomic structure, methods of radionuclide production, and the interaction of radiation with matter. Fu

  2. Hybrid microcircuits for nuclear instrumentation

    International Nuclear Information System (INIS)

    Kulkarni, R.G.

    2005-01-01

    Hybrid microcircuits (HMCs) have distinct advantages over their rival products like printed circuit boards (PCBs) and integrated circuits (ICs), and are able to survive the onslaught of Moore's law, by retaining the niche market for themselves. The ASIC development cost is normally huge and when the volumes are small (less than ten thousand or so), the prohibitively high unit cost deters the potential customers. However the HMCs can be developed at a small fraction of an ASIC development cost and thus they are attractive when the volumes are small, as in the case of professional electronics industries like defense, broadcast, or instrumentation industries. The hybrid microcircuit (HMC) technology can involve one of the two processes: thick-film and thin- film. Broadly the thick-film process consists of printing and firing of, conductor and resistor pastes, on an Alumina substrate. The thin-film process consists of photo lithographic etching of, conductor and resistor patterns, on a metal/resistor sputtered high purity Alumina substrate. The active devices, either in die-form or in surface-mount form, are attached to the thick-film or the thin-film substrate. The passive devices like chip inductors and chip capacitors are also attached to the substrate. This paper discusses in detail the thick-film and the thin-film processes and their relative merits and demerits. The associated qualification and screening procedures followed to provide reliable HMCs to the customer are described. The existing HMC facilities and the product range available in Bharat Electronics including the HMCs developed for nuclear instrumentation are presented. (author)

  3. Nuclear reactor instrumentation at research reactor renewal

    International Nuclear Information System (INIS)

    Baers, B.; Pellionisz, P.

    1981-10-01

    The paper overviews the state-of-the-art of research reactor renewals. As a case study the instrumentation reconstruction of the Finnish 250 kW TRIGA reactor is described, with particular emphasis on the nuclear control instrumentation and equipment which has been developed and manufactured by the Central Research Institute for Physics, Budapest. Beside the presentation of the nuclear instrument family developed primarily for research reactor reconstructions, the quality assurance policy conducted during the manufacturing process is also discussed. (author)

  4. Seismic instrumentation for nuclear power plants

    International Nuclear Information System (INIS)

    Senne Junior, M.

    1983-07-01

    A seismic instrumentation system used in Nuclear Power Plants to monitor the design parameters of systems, structures and components, needed to provide safety to those plants, against the action of earth quarks is described. The instrumentation is based on the nuclear standards and other components used, as well as their general localization is indicated. The operation of the instrumentation system as a whole and the handling of the recovered data are dealt with accordingly. The accelerometer is described in detail. (Author) [pt

  5. Digital study of nuclear reactor instrument

    International Nuclear Information System (INIS)

    Lv Gongxiang; Yang Zhijun

    2006-01-01

    The paper introduces the design method of nuclear reactor's digital instrument developed by authors based on the AT89C52 single chip microcomputer. Also the instrument system hardware structure and software framework are given. The instrument apply DDC112 which is responsible for the measure of lower current. When designing the instrument system, anti-interference measure of software, especially hardware is considered seriously. (authors)

  6. Seismic instrumentation for nuclear power plants

    International Nuclear Information System (INIS)

    Senne Junior, M.

    1983-01-01

    A seismic instrumentation system used in Nuclear Power Plants to monitor the design parameters of systems, structures and components, needed to provide safety to those Plants, against the action of earthquakes is described. The instrumentation described is based on the nuclear standards in force. The minimum amount of sensors and other components used, as well as their general localization, is indicated. The operation of the instrumentation system as a whole and the handling of the recovered data are dealt with accordingly. The various devices used are not covered in detail, except for the accelerometer, which is the seismic instrumentation basic component. (Author) [pt

  7. Advances in instrumentation for nuclear astrophysics

    Directory of Open Access Journals (Sweden)

    S. D. Pain

    2014-04-01

    Full Text Available The study of the nuclear physics properties which govern energy generation and nucleosynthesis in the astrophysical phenomena we observe in the universe is crucial to understanding how these objects behave and how the chemical history of the universe evolved to its present state. The low cross sections and short nuclear lifetimes involved in many of these reactions make their experimental determination challenging, requiring developments in beams and instrumentation. A selection of developments in nuclear astrophysics instrumentation is discussed, using as examples projects involving the nuclear astrophysics group at Oak Ridge National Laboratory. These developments will be key to the instrumentation necessary to fully exploit nuclear astrophysics opportunities at the Facility for Rare Isotope Beams which is currently under construction.

  8. IAEA programme on maintenance of nuclear instruments

    International Nuclear Information System (INIS)

    Vuister, P.H.

    1986-01-01

    The Medical Applications Section in the Division of Life Sciences of the International Atomic Energy Agency has been engaged since 1975 in activities aimed at the more effective use of nuclear instruments. Activities and achievements are described concerning the conditioning of laboratories, preventive maintenance and repair of instruments, the management thereof, space parts and the promotion of local training in these subjects. (author)

  9. Quality assurance of nuclear medicine instruments

    International Nuclear Information System (INIS)

    Soni, P.S.

    1998-01-01

    Quality assurance in nuclear medicine refers collectively to all aspects of a nuclear medicine programme that may contribute directly or indirectly to the quality of the results obtained. For examples, patients scheduling; preparation and dispensing of radiopharmaceutical; the protection of patients, staff and the general public against radiation hazards and accidents caused by faulty instruments; methodology, data interpretation and record keeping

  10. Single-purpose nuclear medicine instruments

    International Nuclear Information System (INIS)

    Boucek, J.

    Nuclear medicine requires the most up-to-date specialized technical facilities. The paper underlines the factor of reliability in purpose-designed equipment used for basic examinations. The possibility is also discussed of the automation of standard nuclear medicine instruments

  11. Quality control of nuclear medicine instruments 1991

    International Nuclear Information System (INIS)

    1991-05-01

    This document gives detailed guidance on the quality control of various instruments used in nuclear medicine. A first preliminary document was drawn up in 1979. A revised and extended version, incorporating recommended procedures, test schedules and protocols was prepared in 1982. The first edition of ''Quality Control of Nuclear Medicine Instruments'', IAEA-TECDOC-317, was printed in late 1984. Recent advances in the field of nuclear medicine imaging made it necessary to add a chapter on Camera-Computer Systems and another on SPECT Systems. Figs and tabs

  12. Quality control of nuclear medicine instruments, 1991

    International Nuclear Information System (INIS)

    1996-12-01

    This document gives detailed guidance on the quality control of various instruments used in nuclear medicine. A first preliminary document was drawn up in 1979. A revised and extended version, incorporating recommended procedures, test schedules and protocols was prepared in 1982. The first edition of 'Quality Control of Nuclear Medicine Instruments', IAEA-TECDOC-317, was printed in late 1984. Recent advances in the field of nuclear medicine imaging made it necessary to add a chapter on Camera-Computer Systems and another on SPECT Systems

  13. Regional cooperation on nuclear instrument maintenance

    International Nuclear Information System (INIS)

    1991-04-01

    Proper nuclear instrument maintenance is the essential precondition for any experimental work in nuclear sciences and technology. With the rapidly increasing sophistication of nuclear instrumentation, and considering the rather specific conditions that prevail in many IAEA Member States, this topic is gaining in importance, and has a strong economic implication. There is a general opinion that a regional, and possibly interregional cooperation in the field might be advantageous, and economically beneficial to all participating parties. The experience in such cooperation is limited, but sufficient that some reliable observations can be made, some conclusion can be drawn, and some recommendation for the possible future development can be presented

  14. Nuclear instrumentation for uranium exploration

    International Nuclear Information System (INIS)

    Sarma, Ch. V.N.; Sarma, C.V.R.; Sreehari, R.

    1999-01-01

    Instrumentation required for uranium exploration may be broadly classified based on surface and sub-surface measurement of gamma-ray intensity. Surface measurement of gross and spectral gamma intensity are carried out by employing portable Geiger Mueller/scintillation counters and four-channel spectrometers. Measurement of thoron ( 220 Rn) and radon ( 222 Rn) in the soil gas is being carried out by closed circuit technique using radon measuring system. Radiometric mapping of trenches, pits and mine-faces are carried out using shielded probe with 2π source geometry, whereas logging sonde with instruments through the steel armoured cable are employed for point to 4π geometry. Spectral borehole logging system with built-in multi-channel analyser (MCA) has been developed for the uranium exploration programme for AMD. Note-book PC based high sensitivity air-borne gamma-ray spectrometric survey system has been designed, developed and test flown. (author)

  15. Nuclear instrument maintenance and technical training in Nuclear Energy Unit

    International Nuclear Information System (INIS)

    Mohamad Nasir Abdul Wahid

    1987-01-01

    Instrument maintenance service is a necessity in a Nuclear Research Institute, such as the Nuclear Energy Unit (NEU) to ensure the smooth running of our research activities. However, realising that maintenance back-up service for either nuclear or other scientific equipment is a major problem in developing countries such as Malaysia, NEU has set up an Instrumentation and Control Department to assist in rectifying the maintenance problem. Beside supporting in house activities in NEU, the Instrumentation and Control Department (I and C) is also geared into providing services to other organisations in Malaysia. This paper will briefly outline the activities of NEU in nuclear instrument maintenance as well as in technical training. (author)

  16. Digital instrumentation system for nuclear research reactors

    International Nuclear Information System (INIS)

    Aghina, Mauricio A.C.; Carvalho, Paulo Vitor R.

    2002-01-01

    This work describes a proposal for a system of nuclear instrumentation and safety totally digital for the Argonauta Reactor. The system divides in the subsystems: channel of pulses, channel of current, conventional instrumentation and safety system. The connection of the subsystems is made through redundant double local net, using the protocol modbus/rtu. So much the channel of pulses, the current channel and safety's system use modules operating in triple redundancy. (author)

  17. Proceedings of the Scientific Meeting in Nuclear Instrumentation Engineering

    International Nuclear Information System (INIS)

    Achmad Suntoro; Rony Djokorayono; Ferry Sujatno; Utaja

    2010-11-01

    The Proceeding of the Scientific Meeting in Nuclear Instrumentation Engineering held on Nov, 30, 2010 by the Centre for Nuclear Instrumentation Engineering - National Nuclear Energy Agency. The Proceedings of the Scientific Contains 40 papers Consist of Nuclear Instrumentation Engineering for Industry, Environment, and Nuclear Facilities. (PPIKSN)

  18. Process instrumentation for nuclear power station

    International Nuclear Information System (INIS)

    Yanai, Katsuya; Shinohara, Katsuhiko

    1978-01-01

    Nuclear power stations are the large scale compound system composed of many process systems. Accordingly, for the safe and high reliability operation of the plants, it is necessary to grasp the conditions of respective processes exactly and control the operation correctly. For this purpose, the process instrumentation undertakes the important function to monitor the plant operation. Hitachi Ltd. has exerted ceaseless efforts since long before to establish the basic technology for the process instrumentation in nuclear power stations, to develop and improve hardwares of high reliability, and to establish the quality control system. As for the features of the process instrumentation in nuclear power stations, the enormous quantity of measurement, the diversity of measured variables, the remote measurement and monitoring method, and the ensuring of high reliability are enumerated. Also the hardwares must withstand earthquakes, loss of coolant accidents, radiations, leaks and fires. Hitachi Unitrol Sigma Series is the measurement system which is suitable to the general process instrumentation in nuclear power stations, and satisfies sufficiently the basic requirements described above. It has various features as the nuclear energy system, such as high reliability by the use of ICs, the methods of calculation and transmission considering signal linkage, loop controller system and small size. HIACS-1000 Series is the analog controller of high reliability for water control. (Kako, I.)

  19. Nuclear instrumentation for the industrial measuring systems

    International Nuclear Information System (INIS)

    Normand, S.

    2010-01-01

    This work deals with nuclear instrumentation and its application to industry, power plant fuel reprocessing plant and finally with homeland security. The first part concerns the reactor instrumentation, in-core and ex-core measurement system. Ionization Uranium fission chamber will be introduced with their acquisition system especially Campbell mode system. Some progress have been done on regarding sensors failure foresee. The second part of this work deals with reprocessing plant and associated instrumentation for nuclear waste management. Proportional counters techniques will be discussed, especially Helium-3 counter, and new development on electronic concept for reprocessing nuclear waste plant (one electronic for multipurpose acquisition system). For nuclear safety and security for human and homeland will be introduce. First we will explain a new particular approach on operational dosimetric measurement and secondly, we will show new kind of organic scintillator material and associated electronics. Signal treatment with real time treatment is embedded, in order to make neutron gamma discrimination possible even in solid organic scintillator. Finally, the conclusion will point out future, with most trends in research and development on nuclear instrumentation for next years. (author) [fr

  20. Development of nuclear imaging instrument and software

    International Nuclear Information System (INIS)

    Kim, Jang Hee; Chung Jae Myung; Nam, Sang Won; Chang, Hyung Uk

    1999-03-01

    In the medical diagnosis, the nuclear medical instrument using the radioactive isotope are commonly utilized. In the foreign countries, the medical application and development of the most advanced nuclear medical instrument such as Single Photon Emission Computer Tomography (SPECT) and position emission tomograph (PET), have been extensively carried out. However, in Korea, such highly expensive instruments have been all, imported, paying foreign currency. Since 1997, much efforts, the development of the radio nuclide medical instrument, the drive of the domestic production, etc. have been made to establish our own technologies and to balance the international payments under the support of the Ministry of Science and Technology. At present time, 180 nuclear imaging instruments are now in operation and 60 of them are analog camera. In analog camera, the vector X-Y monitor is need for are image display. Since the analog camera, signal can not be process in the digital form, we have difficulties to transfer and store the image data. The image displayed at the monitor must be stored in the form of polaroid or X ray film. In order to discard these disadvantages, if we developed the computer interface system, the performance analog camera will be comparable with that of the digital camera. The final objective of the research is that using the interface system developed in this research, we reconstruct the image data transmitted to the personal computer in the form of the generalized data file

  1. Nuclear instrument maintenance - problems, solutions, and obstacles

    International Nuclear Information System (INIS)

    Vuister, P.H.

    1983-01-01

    In 200 laboratories of South-East Asia, Latin America and Africa a survey was made of the state of instrumentation for nuclear medicine. The principal cause of failures and defects was inadequate quality control and preventive maintenance. On the basis of the survey coordinated research programs were compiled for the maintenance of nuclear instruments. The four principal points of the programs are: to safeguard quality and stable electric power supplies for the instruments, to safeguard permanent temperature and humidity in the environment in which the equipment is operated, effective maintenance, and training of personnel. In the years 1981 and 1982, 14 local training courses were run in which emphasis was put on practicals and tests in mechanics and electronics

  2. Development of smart nuclear instrumentation for reactors

    International Nuclear Information System (INIS)

    Chaganty, S.P.; Das, D.; Bhatnagar, P.V.; Das, A.; Sreedharan, Preetha; Kataria, S.K.

    2001-01-01

    Variety of nuclear instruments are required for different applications in reactors such as reactor start-up, reactor protection and regulating system, area monitoring, failed fuel detection, stack monitoring etc. Attempts are made to develop a standardized microcomputer based hardware for configuring different types of instruments. PC architecture is chosen due to easy availability of components/boards and software. These instruments have dual redundant Network Interface Cards for connecting to a Primary Radiation Data LAN which in turn can be connected to Plant Information Bus through Gateways. These SMART instruments can be tested/calibrated through specific commands from remote computers connected over the LAN. This paper describes the various issues involved and the design details. (author)

  3. Development of BC based nuclear instrument

    International Nuclear Information System (INIS)

    Nolida Yussup; Atsushi Birumachi; Kazuaki Shimizu

    2005-01-01

    This paper describes the development of a low-power portable dose rate meter with RS232 interface for data acquisition during 6 months course under MEXT Nuclear Researchers Exchange Program 2004 at JAERI, Japan. The development involved defining the system, selection of detector and components, designing the pre-amplifier, main amplifier, noise discriminator and testing. Software programming was developed on PC to acquire the data via RS232 and display the real-time data. This will allow a small nuclear instrument to have powerful data processing and bigger data storage capability. (Author)

  4. Programming for a nuclear reactor instrument simulation

    International Nuclear Information System (INIS)

    Cohn, C.

    1988-01-01

    This note discusses 8086/8087 machine-language programming for simulation of nuclear reactor instrument current inputs by means of a digital-analog converter (DAC) feeding a bank of series input resistors. It also shows FORTRAN programming for generating the parameter tales used in the simulation. These techniques would be generally useful for high-speed simulation of quantities varying over many orders of magnitude

  5. Advanced Measuring (Instrumentation Methods for Nuclear Installations: A Review

    Directory of Open Access Journals (Sweden)

    Wang Qiu-kuan

    2012-01-01

    Full Text Available The nuclear technology has been widely used in the world. The research of measurement in nuclear installations involves many aspects, such as nuclear reactors, nuclear fuel cycle, safety and security, nuclear accident, after action, analysis, and environmental applications. In last decades, many advanced measuring devices and techniques have been widely applied in nuclear installations. This paper mainly introduces the development of the measuring (instrumentation methods for nuclear installations and the applications of these instruments and methods.

  6. Verification and software validation for nuclear instrumentation

    International Nuclear Information System (INIS)

    Gaytan G, E.; Salgado G, J. R.; De Andrade O, E.; Ramirez G, A.

    2014-10-01

    In this work is presented a Verification Methodology and Software Validation, to be applied in instruments of nuclear use with associate software. This methodology was developed under the auspices of IAEA, through the regional projects RLA4022 (ARCAL XCIX) and RLA1011 (RLA CXXIII), led by Mexico. In the first project three plans and three procedures were elaborated taking into consideration IEEE standards, and in the second project these documents were updated considering ISO and IEC standards. The developed methodology has been distributed to the participant countries of Latin America in the ARCAL projects and two related courses have been imparted with the participation of several countries, and participating institutions of Mexico like Instituto Nacional de Investigaciones Nucleares (ININ), Comision Federal de Electricidad (CFE) and Comision Nacional de Seguridad Nuclear y Salvaguardias (CNSNS). In the ININ due to the necessity to work with Software Quality Guarantee in systems for the nuclear power plant of the CFE, a Software Quality Guarantee Plan and five procedures were developed in the year 2004, obtaining the qualification of the ININ for software development for the nuclear power plant of CFE. These first documents were developed taking like reference IEEE standards and regulator guides of NRC, being the first step for the development of the methodology. (Author)

  7. 78 FR 55118 - Seismic Instrumentation for Nuclear Power Plants

    Science.gov (United States)

    2013-09-09

    ... NUCLEAR REGULATORY COMMISSION [NRC-2013-0202] Seismic Instrumentation for Nuclear Power Plants... Reports for Nuclear Power Plants: LWR Edition,'' Section 3.7.4, ``Seismic Instrumentation.'' DATES: Submit... Nuclear Power Plants: LWR Edition'' (SRP, from the current Revision 2 to a new Revision 3). The proposed...

  8. Novel seismic instrumentation for nuclear power plants

    International Nuclear Information System (INIS)

    Bolleter, W.; Savary, C.

    1998-01-01

    Conforming to the latest issues of the Nuclear Regulatory Commission Regulatory Guide, a novel hardware and software solution for seismic instrumentation is presented. Both instrumentation and PC-based data evaluation software for post-earthquake actions are type-tested and approved by the German TUeV. Reference installations replacing obsolete analog instrumentation were successfully completed and are presented. The instrumentation consists of highly linear, solid-state capacitive accelerometers as well as digital recorders storing the signals from the sensors in situ. These recorders are linked in a star-topology network to a central unit that permanently communicates with them via fiber-optic cable or current-loop links. The central unit is responsible for alerting and synchronizes all recorders which otherwise act autonomously. Data evaluation is handled by a PC-based software package. It includes automatic data evaluation after earthquakes (batch mode), interactive data evaluation software for detailed data analysis, and software tools for remote operation, maintenance and data storage. (author)

  9. Nuclear instrumentation for research reactors; Instrumentacion nuclear para reactores nucleares de investigacion

    Energy Technology Data Exchange (ETDEWEB)

    Hofer, Carlos G.; Pita, Antonio; Verrastro, Claudio A.; Maino, Eduardo J. [Comision Nacional de Energia Atomica, Buenos Aires (Argentina). Unidad de Actividades de Reactores y Centrales Nucleares. Sector Instrumentacion y Control

    1997-10-01

    The nuclear instrumentation for research reactors in Argentina was developed in 70`. A gradual modernization of all the nuclear instrumentation is planned. It includes start-up and power range instrumentation, as well as field monitors, clamp, scram and rod movement control logic. The new instrumentation is linked to a computer network, based on real time operating system for data acquisition, display and logging. This paper describes the modules and whole system aspects. (author). 2 refs.

  10. Quality control of nuclear medicine instrumentation

    International Nuclear Information System (INIS)

    Mould, R.F.

    1983-09-01

    The proceedings of a conference held by the Hospital Physicists' Association in London 1983 on the quality control of nuclear medicine instrumentation are presented. Section I deals with the performance of the Anger gamma camera including assessment during manufacture, acceptance testing, routine testing and long-term assessment of results. Section II covers interfaces, computers, the quality control problems of emission tomography and the quality of software. Section III deals with radionuclide measurement and impurity assessment and Section IV the presentation of images and the control of image quality. (U.K.)

  11. Design of nuclear instruments for industrial use

    International Nuclear Information System (INIS)

    Maggio, G.E.

    1988-01-01

    Following an introduction to the atomic structure and the radioactive desintegration, the applications of radioisotopic sealed sources are described. The laws that govern the interaction of radiation with matter and the statistics applied to the radioactive measurements are presented. Different measurement techniques, basic equations of design, the way to provide the activity calculation of a source and the detector's characteristics are given, according to the parameters to be measured and the conditions imposed. Finally, the principles of operation and the most important characteristics of different nuclear instruments to be used in industrial measurements are described. (Author) [es

  12. Nuclear medicine imaging instrumentations for molecular imaging

    International Nuclear Information System (INIS)

    Chung, Yong Hyun; Song, Tae Yong; Choi, Yong

    2004-01-01

    Small animal models are extensively utilized in the study of biomedical sciences. Current animal experiments and analysis are largely restricted to in vitro measurements and need to sacrifice animals to perform tissue or molecular analysis. This prevents researchers from observing in vivo the natural evolution of the process under study. Imaging techniques can provide repeatedly in vivo anatomic and molecular information noninvasively. Small animal imaging systems have been developed to assess biological process in experimental animals and increasingly employed in the field of molecular imaging studies. This review outlines the current developments in nuclear medicine imaging instrumentations including fused multi-modality imaging systems for small animal imaging

  13. Quality control of nuclear medicine instruments

    International Nuclear Information System (INIS)

    1984-11-01

    This document, which gives detailed guidance on the quality control of the various electronic instruments used for radiation detection and measurement in nuclear medicine, stems from the work of two Advisory Groups convened by the International Atomic Energy Agency (IAEA). A preliminary document, including recommended test schedules but lacking actual protocols for the tests, was drawn up by the first of these groups, meeting at the IAEA Headquarters in Vienna in 1979. A revised and extended version, incorporating recommended test protocols, was prepared by the second Group, meeting likewise in Vienna in 1982. This version is the model for the present text. The document should be of value to all nuclear medicine units, and especially to those in developing countries, in the initiation or revision of schemes for the quality control of their instruments. Its recommendations have provided the basis for instruction in two IAEA regional technical co-operation projects in the subject field, one initiated in 1981 for countries of Latin America and one initiated in 1982 for countries of Asia and the Pacific

  14. Digital nuclear instrumentation application to nuclear power plant

    International Nuclear Information System (INIS)

    Burel, J.-P.; Fanet, H.

    1993-01-01

    The use of digital techniques for the control of nuclear reactors offers an interesting prospect in the improvement of the operation and safety of reactors. Thanks to close collaboration between Merlin Gerin and the French Atomic Energy Commission, a new piece of technology for nuclear instrumentation systems has been developed in order to meet the needs of different types of reactors. The principles of measurement are presented and the technology used is described. Other interesting points of this technology in addition to installation, operation and safety are examined. The digital neutron measurements are already operating in research reactors in France and will be installed in a different configuration in the new 1400 MW nuclear power plant. Integration into different designs is easily attainable by adapting the information transmission mode according to the technology present in the protection system and the treatment and visualization systems. (author)

  15. Proceedings of national symposium on advanced instrumentation for nuclear research

    International Nuclear Information System (INIS)

    1993-01-01

    The National Symposium on Advanced Instrumentation for Nuclear Research was held in Bombay during January 27-29, 1993 at BARC. Progress of modern nuclear research is closely related to the availability of state of the art instruments and systems. With the advancements in experimental techniques and sophisticated detector developments, the performance specifications have become more stringent. State of the art techniques and diverse applications of sophisticated nuclear instrumentation systems are discussed along with indigenous efforts to meet the specific instrumentation needs of research programs in nuclear sciences. Papers of relevance to nuclear science and technology are indexed separately. (original)

  16. Proceedings of symposium on intelligent nuclear instrumentation-2001

    International Nuclear Information System (INIS)

    Kataria, S.K.; Vaidya, P.P.; Das, Debashis; Narurkar, P.V.

    2001-02-01

    Advances in the field of instrumentation are relevant to many areas of importance such as nuclear and accelerator based research, reactor monitoring and control, non-destructive testing and evaluation, laser programme and health and environment monitoring etc. The nuclear instrumentation is a specialized field with very specific expertise in detection, processing and its analysis. The symposium covers various fields of nuclear interest such as radiation detectors, application of ASICs and FPGA in instruments, field instruments, nuclear instrumentation for basic research, accelerator, reactor, health and environmental monitoring instrumentation, medical instrumentation, instrument net working inclusive of field buses, WEB based and wireless technologies, software tools, AI technique in instrumentation etc., in this specialized area. Papers relevant to INIS are indexed separately

  17. Instrument failure monitoring in nuclear power systems

    International Nuclear Information System (INIS)

    Tylee, J.L.

    1982-01-01

    Methods of monitoring dynamic systems for instrument failures were developed and evaluated. In particular, application of these methods to nuclear power plant components is addressed. For a linear system, statistical tests on the innovations sequence of a Kalman filter driven by all system measurements provides a failure detection decision and identifies any failed sensor. This sequence (in an unfailed system) is zero-mean with calculable covariance; hence, any major deviation from these properties is assumed to be due to an instrument failure. Once a failure is identified, the failed instrument is replaced with an optimal estimate of the measured parameter. This failure accommodation is accomplished using optimally combined data from a bank of accommodation Kalman filters (one for each sensor), each driven by a single measurement. Using such a sensor replacement allows continued system operation under failed conditions and provides a system operator with information otherwise unavailable. To demonstrate monitor performance, a liner failure monitor was developed for the pressurizer in the Loss-of-Fluid Test (LOFT) reactor plant. LOFT is a small-scale pressurized water reactor (PWR) research facility located at the Idaho National Engineering Laboratory. A linear, third-order model of the pressurizer dynamics was developed from first principles and validated. Using data from the LOFT L6 test series, numerous actual and simulated water level, pressure, and temperature sensor failures were employed to illustrate monitor capabilities. Failure monitor design was applied to nonlinear dynamic systems by replacing all monitor linear Kalman filters with extended Kalman filters. A nonlinear failure monitor was derived for LOFT reactor instrumentation. A sixth-order reactor model, including descriptions of reactor kinetics, fuel rod heat transfer, and core coolant dynamics, was obtained and verified with test data

  18. Nuclear instrumentation in VENUS-F

    Science.gov (United States)

    Wagemans, J.; Borms, L.; Kochetkov, A.; Krása, A.; Van Grieken, C.; Vittiglio, G.

    2018-01-01

    VENUS-F is a fast zero power reactor with 30 wt% U fuel and Pb/Bi as a coolant simulator. Depending on the experimental configuration, various neutron spectra (fast, epithermal, and thermal islands) are present. This paper gives a review of the nuclear instrumentation that is applied for reactor control and in a large variety of physics experiments. Activation foils and fission chambers are used to measure spatial neutron flux profiles, spectrum indices, reactivity effects (with positive period and compensation method or the MSM method) and kinetic parameters (with the Rossi-alpha method). Fission chamber calibrations are performed in the standard irradiation fields of the BR1 reactor (prompt fission neutron spectrum and Maxwellian thermal neutron spectrum).

  19. Radiation monitoring instrumentation for nuclear power plants

    International Nuclear Information System (INIS)

    Bharath Kumar, M.

    2013-01-01

    Measurement of nucleonic signals is required to control and operate the reactor in a safe and reliable manner. To achieve this, parameters like Neutron flux, other radiation fields, contamination levels, source strength, release thru stack etc. are required to be monitored and controlled. The above are required to be monitored throughout the life of the reactor whether it is operational or in shutdown condition. In addition such monitoring is also required during decommissioning phase of the reactor as needed. To measure these parameters a large number of instruments are used in Nuclear Power Plants (NPP) which includes sensors and electronics for detecting alpha, beta, gamma and neutron radiation with qualification to withstand harsh environment

  20. The nuclear instrumentation system of the French 1400 MWe reactors

    International Nuclear Information System (INIS)

    Bourgerette, A.; Mauduit, J.P.

    1993-01-01

    The nuclear instrumentation systems in power reactors in France have made considerable advances thanks to technological progress. The appearance of an integrated digital protection system (SPIN) and the extension of digital techniques have considerably improved performance and operating flexibility. Working on the basis of technology developed jointly with the Nuclear Electronics and Instrumentation Department at the French Atomic Energy Commission (CEA), Framatome and Merlin Gerin have designed the new nuclear instrumentation system for 1400 MW reactors. (authors). 4 figs

  1. Instrumentation control system in nuclear power plant

    International Nuclear Information System (INIS)

    Hanai, Koi; Tai, Ichiro.

    1982-01-01

    Purpose: To improve the reliability of instrumentation control system in a nuclear power plant by using an optical fiber cable as a transmission path between a multiplexer and a central control room to thereby eliminate noises resulted from electromagnetic inductions or the likes. Constitution: Signals from neutron detectors are sent by way of ceramic-insulated cables to pre-amplifiers disposed outside of the pressure vessel of a nuclear reactor, converted into voltage pulse signals and then sent by way of coaxial cables to a multiplexer. The multiplexer receives a plurality of voltage pulse signals corresponding to the neutron detectors respectively, converts them into a time-shared electric signal train and sends it to an optical pulse transmitter. The transmitter converts the supplied signals into an optical pulse signal train corresponding to the electric signal train from the multiplexer and sends it by way of an optical fiber cable to an optical pulse receiver disposed in a central control room. (Kawakami, Y.)

  2. Nuclear Power Plant Control and Instrumentation 1989

    International Nuclear Information System (INIS)

    1990-11-01

    The meeting of the International Working Group on Nuclear Power Plant Control and Instrumentation (IWG-NPPCI) was organized in order to summarize operating experience of nuclear power plant control systems, gain a general overview of activities in development of modern control systems and receive recommendations on the further directions and particular measures within the Agency's programme. The meeting was held at the IAEA Headquarters in Vienna and was attended by 21 national delegates and observers from 18 countries. The present volume contains: (1) report on the meeting of the IWG-NPPCI, Vienna, 8-10 May 1989, (2) report of the scientific secretary on the major activities of IAEA during 1987-89 in the NPPCI area, (3) terms of reference International Working Group on NPPCI and (4) reports of the national representatives to the International Working Group on NPPCI. The paper and discussions with practical experience and described actual problems encountered. Emphasis was placed on the technical, industrial and economical aspects of the introduction of modern control systems and on the improvement of plant availability and safety. A separate abstract was prepared for each of the 19 papers presented by members of the International Working Group. Refs, figs and tabs

  3. Nuclear instrumentation system operating experience and nuclear instrument testing in the EBR-II

    International Nuclear Information System (INIS)

    Yingling, G.E.; Curran, R.N.

    1980-01-01

    In March of 1972 three wide range nuclear channels were purchased from Gulf Atomics Corporation and installed in EBR-II as a test. The three channels were operated as a test until April 1975 when they became a permanent part of the reactor shutdown system. Also described are the activities involved in evaluating and qualifying neutron detectors for LMFBR applications. Included are descriptions of the ANL Components Technology Division Test Program and the EBR-II Nuclear Instrument Test Facilities (NITF) used for the in-reactor testing and a summary of program test results from EBR-II

  4. Standardization of Nuclear Instrumentation Applied in the NPP and in other nuclear installations

    International Nuclear Information System (INIS)

    Kusnowo, Arlinah; Darmawati, Suzie

    2002-01-01

    Nuclear power plant (NPP) and other nuclear installations have been recognized as applications needing very sophisticated technologies. One of technologies used in this all nuclear facilities is nuclear instrumentation. In order that NPP and other nuclear installations be operated safely, nuclear instrumentation requires standardization from design to its operation. Internationally, standardizations of nuclear instrumentation have been issued by IEC (International Electrotechnical Commission). Formulation of standard in nuclear instrumentation in IEC is carried out by Technical Committee (TC) 45. This paper describes briefly the standardization of nuclear instrumentation applied in Indonesia as Indonesian National Standard (SNI, Standard National Indonesia), standardization of nuclear instrumentation developed by TC 45, SC 45A, and SC 45B, as well as the possibility to adopt and apply those IEC standard in Indonesia

  5. Design of instrument for monitoring nuclear radiation and baneful gas

    International Nuclear Information System (INIS)

    Xiong Jianping; Chen Jun; Zhu Wenkai

    2006-01-01

    Counters and ionization chambers are applied to sensors, and microprocessor based on ARM IP is applied to center controller in the instrument. It is achieved to monitor nuclear radiation and baneful gas in an instrument. The instrument is capable of LCD displaying, menu operating and speech alarming. (authors)

  6. Human factors aspects of advanced instrumentation in the nuclear industry

    International Nuclear Information System (INIS)

    Carter, R.J.

    1989-01-01

    An important consideration in regards to the use of advanced instrumentation in the nuclear industry is the interface between the instrumentation system and the human. A survey, oriented towards identifying the human factors aspects of digital instrumentation, was conducted at a number of United States (US) and Canadian nuclear vendors and utilities. Human factors issues, subsumed under the categories of computer-generated displays, controls, organizational support, training, and related topics were identified. 20 refs., 2 tabs

  7. A practicable signal processing algorithm for industrial nuclear instrument

    International Nuclear Information System (INIS)

    Tang Yaogeng; Gao Song; Yang Wujiao

    2006-01-01

    In order to reduce the statistical error and to improve dynamic performances of the industrial nuclear instrument, a practicable method of nuclear measurement signal processing is developed according to industrial nuclear measurement features. The algorithm designed is implemented with a single-chip microcomputer. The results of application in (radiation level gauge has proved the effectiveness of this method). (authors)

  8. The single chip microcomputer technique in an intelligent nuclear instrument

    International Nuclear Information System (INIS)

    Wang Tieliu; Sun Punan; Wang Ying

    1995-01-01

    The authors present that how to acquire and process the output signals from the nuclear detector adopting single chip microcomputer technique, including working principles and the designing method of the computer's software and hardware in the single chip microcomputer instrument

  9. Instrumental nuclear physics: elements for a proper choice

    International Nuclear Information System (INIS)

    1994-01-01

    This report consists of 11 documents about instrumental nuclear physics. It describes several detectors and data analysis techniques. Separate abstracts were prepared for all the papers in this volume. (TEC)

  10. New technology in nuclear power plant instrumentation and control

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The primary topic of this book is what can be done to improve nuclear power plant operation safety and the economic benefits that can be gained with the utilization of advance instrumentation and control technology. Other topics discussed are the industry's reluctance to accept new designs determining cost effective improvements, and difficulties in meeting regulatory standards with new technology control. The subjects will be useful when considering the area of instrumentation and control for enhancing plant operation and safety. Contents: Advanced Instrumention, Plant Control and Monitoring, Plant Diagnostics and Failure Detection, Human Factors Considerations in Instrumentation and Control, NRC and Industry Perspective on Advanced Instrumentation and Control

  11. Instrumentation

    International Nuclear Information System (INIS)

    Decreton, M.

    2000-01-01

    SCK-CEN's research and development programme on instrumentation aims at evaluating the potentials of new instrumentation technologies under the severe constraints of a nuclear application. It focuses on the tolerance of sensors to high radiation doses, including optical fibre sensors, and on the related intelligent data processing needed to cope with the nuclear constraints. Main achievements in these domains in 1999 are summarised

  12. Single-chip microcomputer application in nuclear radiation monitoring instruments

    International Nuclear Information System (INIS)

    Zhang Songshou

    1994-01-01

    The single-chip microcomputer has advantage in many respects i.e. multiple function, small size, low-power consumption,reliability etc. It is widely used now in industry, instrumentation, communication and machinery. The author introduced usage of single-chip microcomputer in nuclear radiation monitoring instruments for control, linear compensation, calculation, changeable parameter presetting and military training

  13. Nuclear electronic instrument systems using the Harwell 6000 series

    International Nuclear Information System (INIS)

    Seymour, F.D.; Snelling, G.F.; Hawthorn, I.

    1980-01-01

    This report describes some of the more recent equipment designed by the Systems Instrumentation Unit (AERE, Harwell), in the Harwell 6000 modular format. The units include: Laboratory Instruments (alpha monitors, beta-gamma detectors, spectrometers, automatic sample changer systems, automated counting laboratory systems, low power systems). Environmental Monitors (nuclear plant monitor, air monitor, sea bed monitor). Process Instruments (plutonium waste control, x-ray fluorescence monitor, process monitor, beam current monitor, effluent monitors). (U.K.)

  14. Maintenance of nuclear medicine instruments in developing countries

    International Nuclear Information System (INIS)

    1976-01-01

    This report reviews the current nature and severity of the problems related to nuclear medicine instruments in developing countries and gives the recommendations of the Advisory Group on the development of improved strategies to assure that the instruments are effectively maintained while in use. A compilation of data from the Register of Medical Radioisotope Units (IAEA-167) on medical radioisotope instrumentation installed in developing countries and some comments and suggestions contained in reports of Agency Technical Assistance Experts are also presented

  15. Programming for a nuclear reactor instrument simulator

    International Nuclear Information System (INIS)

    Cohn, C.E.

    1989-01-01

    A new computerized control system for a transient test reactor incorporates a simulator for pre-operational testing of control programs. The part of the simulator pertinent to the discussion here consists of two microprocessors. An 8086/8087 reactor simulator calculates simulated reactor power by solving the reactor kinetics equations. An 8086 instrument simulator takes the most recent power value developed by the reactor simulator and simulates the appropriate reading on each of the eleven reactor instruments. Since the system is required to run on a one millisecond cycle, careful programming was required to take care of all eleven instruments in that short time. This note describes the special programming techniques used to attain the needed performance

  16. Nuclear Power Plant Control and Instrumentation in Pakistan

    International Nuclear Information System (INIS)

    Iqleem, J.; Hashmi, J.A.; Siddiqui, Z.H.

    1990-01-01

    Nuclear reactors generate 15% of the world's supply electric power. The substantial growth in world energy demand is inevitably continuing throughout the next century. Nuclear power which has already paid more than enough for itself and its development, will provide increasing share of electricity production both in the developed and developing countries. For Pakistan with limited natural resources such as oil, gas, and fully tapped hydel power, nuclear power is the only viable option. However, things are not simple for developing countries which embark on nuclear power program. A technical infrastructure should be established as it has been shown by the experience of Control and Instrumentation of the Karachi Nuclear Power Plant. The national report describes the program of Pakistan Atomic Energy Commission in (NPP) Computers, Control and Instrumentation for design, construction, operation, and maintenance of nuclear power plants. (author)

  17. Build of virtual instrument laboratory related to nuclear species specialized

    International Nuclear Information System (INIS)

    Shan Jian; Zhao Guizhi; Zhao Xiuliang; Tang Lingzhi

    2009-01-01

    As rapid development of specialized related to nuclear science,the requirement of laboratory construct is analyzed in this article at first, One total conceive, One scheme deploy soft and hardware,three concrete characteristics targets and five different phases of put in practice of virtual instrument laboratory of specialized related to nuclear science are suggest in the paper,the concrete hardware structure and the headway of build of virtual instrument laboratory are described,and the first step effect is introduced.Lastly,the forward target and the further deliberateness that the virtual instrument laboratory construct are set forth in the thesis. (authors)

  18. Performance and quality control of nuclear medicine instrumentation

    International Nuclear Information System (INIS)

    Paras, P.

    1981-01-01

    The status and the recent developments of nuclear medicine instrumentation performance, with an emphasis on gamma-camera performance, are discussed as the basis for quality control. New phantoms and techniques for the measurement of gamma-camera performance parameters are introduced and their usefulness for quality control is discussed. Tests and procedures for dose calibrator quality control are included. Also, the principles of quality control, tests, equipment and procedures for each type of instrument are reviewed, and minimum requirements for an effective quality assurance programme for nuclear medicine instrumentation are suggested. (author)

  19. The design of nuclear radiation measuring instrument of embedded network

    International Nuclear Information System (INIS)

    Zhang Huaiqiang; Ge Liangquan; Xiong Shengqing

    2009-01-01

    The design and realization of nuclear radiation measuring instrument is introduced. Due to the current nuclear instrument often used serial interface to communicate the PC, it is widely used for simple design and easy operation. However, as the demand of remote data acquisition and the call of sharing resources, the design of embedded the TCP/IP protocol stack into MCU, it may send the nuclear signal in Internet. Some devices that link each other with the network can be networked. The design is not only realizing remote data acquisition and sharing resources, but also reducing costs and improving the maintainability of the system. (authors)

  20. Recognition of Instrumentation Gauge in the Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jai Wan; Jeong, Kyung Min [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Nuclear emergency robots were developed in 2001 as the countermeasure following the criticality accident at the JCO (uranium refinery facility) in Tokaimura, Japan in 1999. We assumed that these nuclear emergency robots were deployed (or put into) for a mitigation (or management) of severe accident, for example, occurred at Fukushima Daiichi nuclear power plant. In the case, the image understanding using a color CCD camera, loaded on the nuclear emergency robot, is important. We proposed an image processing technique to read indication value of the IC water level gauges using the structural characteristics of the instrumentation panels (water level gauges) located inside the reactor building. At first, we recognized the scales on the instrumentation panel using the geometric shape of the panel. And then, we could read the values of the instrumentation gauge by calculating the slope of the needle on the gauge. Using the proposed algorithm, we deciphered instrumentation panels for the four water level gauges and indicators shown on the IC video released by TEPCO and Japanese Nuclear Regulatory Commission of Japan. In this paper, recognition of the instrumentation gauges inside reactor building of the nuclear power plant by an image processing technology is described.

  1. Scintigraphic instruments and techniques in nuclear medicine

    International Nuclear Information System (INIS)

    Bornand, Bernard; Soussaline, Francoise; CEA, 91 - Orsay

    1978-01-01

    A short survey of data processing techniques in medical scintigraphy is presented. Three lists of abstracts being firstly from reviews, secondly from proceedings, and thirdly of reports and thesis, are presented as an addendum to the bibliography CEA-BIB-214, for the period 1975 up to march 1977. An index of authors and subjects is included. Finally an appendix with 18 patents is attached. Several bibliographical reviews: Excerpta Medica (Nuclear Medicine) Abstract Journal, INIS Atomindex, Nuclear Science Abstracts, together with a number of special journals and documents, recently published, have been used for this work [fr

  2. Nuclear data collection on virtual instrument

    International Nuclear Information System (INIS)

    Yang Qiang; Lai Wanchang; Hua Yongtai

    2007-01-01

    This paper introduced a kind of nuclear data collection system using a technique of mixed programming. The system uses parallel port to transport data, MATLAB signal processing software is used for data analysis. It has significantly reduced the difficult of spectral analysis software by using the technique. It has realized signal acquisition in real time and data analysis. (authors)

  3. Nuclear physics experiments with low cost instrumentation

    Science.gov (United States)

    Oliveira Bastos, Rodrigo; Adelar Boff, Cleber; Melquiades, Fábio Luiz

    2016-11-01

    One of the difficulties in modern physics teaching is the limited availability of experimental activities. This is particularly true for teaching nuclear physics in high school or college. The activities suggested in the literature generally symbolise real phenomenon, using simulations. It happens because the experimental practices mostly include some kind of expensive radiation detector and an ionising radiation source that requires special care for handling and storage, being subject to a highly bureaucratic regulation in some countries. This study overcomes these difficulties and proposes three nuclear physics experiments using a low-cost ion chamber which construction is explained: the measurement of 222Rn progeny collected from the indoor air; the measurement of the range of alpha particles emitted by the 232Th progeny, present in lantern mantles and in thoriated welding rods, and by the air filter containing 222Rn progeny; and the measurement of 220Rn half-life collected from the emanation of the lantern mantles. This paper presents the experimental procedures and the expected results, indicating that the experiments may provide support for nuclear physics classes. These practices may outreach wide access to either college or high-school didactic laboratories, and the apparatus has the potential for the development of new teaching activities for nuclear physics.

  4. Availability analysis of the nuclear instrumentation of a research reactor

    International Nuclear Information System (INIS)

    Vianna Filho, Alfredo Marques

    2016-01-01

    The maintenance of systems and equipment is a central question related to Production Engineering. Although systems are not fully reliable, it is often necessary to minimize the failure occurrence likelihood. The failures occurrences can have disastrous consequences during a plane flight or operation of a nuclear power plant. The elaboration of a maintenance plan has as objective the prevention and recovery from system failures, increasing reliability and reducing the cost of unplanned shutdowns. It is also important to consider the issues related to organizations safety, especially those dealing with dangerous technologies. The objective of this thesis is to propose a method for maintenance analysis of a nuclear research reactor, using a socio-technical approach, and focused on existing conditions in Brazil. The research reactor studied belongs to the federal government and it is located in the city of Rio de Janeiro. The specific objective of this thesis is to develop the availability analysis of one of the principal systems of the research reactor, the nuclear instrumentation system. In this analysis, were taken into account not only the technical aspects of the modules related to nuclear instrumentation system, but also the human and organizational factors that could affect the availability of the nuclear instrumentation system. The results showed the influence of these factors on the availability of the nuclear instrumentation system. (author)

  5. Comparison and selection of client computer in nuclear instrument

    International Nuclear Information System (INIS)

    Ma Guizhen; Xie Yanhui; Peng Jing; Xu Feiyan

    2012-01-01

    The function of modern new nuclear instrument is very much. And the information degree is high requested. Through close matching for host computer and client computer, the data processing function can be carried out. This article puts forward a few of projects for the client computer of general nuclear instrument. The function and features of several common client computers, such as FPGA, ARM and DSP, are analyzed and compared. The applied scope is discussed also. At the same time, using a practical design as an example, the selection ideas of client computer are described. This article can be used for reference for the hardware design of data acquisition processing unit in nuclear instrument. (authors)

  6. Scintigraphic instruments and techniques in nuclear medicine

    International Nuclear Information System (INIS)

    Bornand, Bernard; Soussaline Francoise

    1979-11-01

    This bibliographical supplement brings out the importance assumed from now on by comparative studies on various imagery systems: radioisotopic scintigraphy, computerized tomography and ultra sonography. Another aspect to emerge is the anxiety of the medical world faced with ethical and economic problems in weighing up as accurately as possible the justifiability and consequences of clinical decisions, hence the value of visual observations and interpretations of images, as well as the quality of the instruments used. Four lists of bibliographical notices with abstracts covering the period late 1976-early 1979 mention 258 articles from journals, 67 conference lectures, 13 reports, 3 theses and 44 invention patents respectively. To these lists are attached the author, inventor and subject indices [fr

  7. Scintigraphic instruments and techniques in nuclear medicine

    International Nuclear Information System (INIS)

    Bornand, B.; Soussaline, F.

    1977-03-01

    The development of new radiopharmaceuticals, cyclotron-produced radionuclides and improvement of detector, scanner and gamma camera characteristics have enable a remarkable recent progress in scintigraphic techniques for organ visualization and functional studies. Using a variety of techniques, positron cameras, section scanners, gamma holography, tomographic imaging appear to be playing an increasing important role. Data processing techniques, for example image processing and three dimensional reconstruction have significantly increased their impact. The principal research work and advances in technique achieved up to 1972 are summarized and the subjects which have been further exploited are outlined. The main section comprises references and abstracts of articles from scientific journals and conference proceedings (191 articles and 221 papers mentioned) for the period 1972-1975 to illustrate advances in this domain: Excerpta Medica (Nuclear Medicine) Abstract Journals and Nuclear Science Abstracts (1972-1975) were used as abstracting publications. This survey is completed with an index of authors and subject-matters. Eleven thesis are mentionned in an appendix [fr

  8. Prospects for the applications of computer in the field of domestic nuclear medicinal instrument

    International Nuclear Information System (INIS)

    Zhao Changhe

    1993-01-01

    The current situation and prospects about domestic nuclear medical instrument, as well as the comparisons of computer application in nuclear medical instruments with in other medical instruments from various points of view have all been described in the paper

  9. Nuclear and fundamental physics instrumentation for the ANS project

    International Nuclear Information System (INIS)

    Robinson, S.J.; Faust, H.; Piotrowski, A.E.

    1996-05-01

    This report summarizes work carried out during the period 1991-1995 in connection with the refinement of the concepts and detailed designs for nuclear and fundamental physics research instrumentation at the proposed Advanced Neutron source at Oak Ridge National Laboratory. Initially, emphasis was placed on refining the existing System Design Document (SDD-43) to detail more accurately the needs and interfaces of the instruments that are identified in the document. The conceptual designs of these instruments were also refined to reflect current thinking in the field of nuclear and fundamental physics. In particular, the on-line isotope separator (ISOL) facility design was reconsidered in the light of the development of interest in radioactive ion beams within the nuclear physics community. The second stage of this work was to define those instrument parameters that would interface directly with the reactor systems so that these parameters could be considered for the ISOL facility and particularly for its associated ion source. Since two of these options involved ion sources internal to the long slant beam tube, these were studied in detail. In addition, preliminary work was done to identify the needs for the target holder and changing facility to be located in the tangential through-tube. Because many of the planned nuclear and fundamental physics instruments have similar needs in terms of detection apparatus, some progress was also made in defining the parameters for these detectors. 21 refs., 32 figs., 2 tabs

  10. International economic association on production of nuclear instrumentation - ''INTERINSTRUMENT''

    International Nuclear Information System (INIS)

    Twardon, Z.

    1979-01-01

    History of establishment and development of the International economic association ''Interinstrument'' is stated. Structure of the Association is given and directions of its activity, as well as structure of its budget. List is given of organizations, performing works according to the agreements with the Association. Main directions are stated of activity of the Association in the field of specialization of production of items of nuclear equipment; co-ordination of activity in the sphere of foreign trade; information about new instruments. Activity is stated of the branch offices of the Association, engaged in maintenance of instruments and nuclear equipment [ru

  11. Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2000-07-01

    SCK-CEN's research and development programme on instrumentation aims at evaluating the potentials of new instrumentation technologies under the severe constraints of a nuclear application. It focuses on the tolerance of sensors to high radiation doses, including optical fibre sensors, and on the related intelligent data processing needed to cope with the nuclear constraints. Main achievements in these domains in 1999 are summarised.

  12. Proceedings of the 9. Workshop on Nuclear Physics - Communications of applied nuclear physics and instrumentation

    International Nuclear Information System (INIS)

    1986-01-01

    The communications of applied nuclear physics and intrumentation of 9. Workshop on Nuclear Physics in Brazil are presented. Several intruments for radiation measurements, such as detectors, dosemeters and spectrometers were developed. Techniques of environmental monitoring and instrument monitoring for nuclear medicine are evaluated. (M.C.K.) [pt

  13. Preventive maintenance instrumentation results in Spanish nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Curiel, M. [Logistica y Acondicionamientos Industriales SAU, Sorolla Center, local 10, Av. de las Cortes Valencianas No. 58, 46015 Valencia (Spain); Palomo, M. J.; Verdu, G. [ISIRYM, Universidad Politecnica de Valencia, Camino de Vera s/n, Valencia (Spain); Arnaldos, A., E-mail: m.curiel@lainsa.co [TITANIA Servicios Tecnologicos SL, Sorolla Center, local 10, Av. de las Cortes Valencianas No. 58, 46015 Valencia (Spain)

    2010-10-15

    This paper is a recompilation of the most significance results in relation to the researching in preventive and predictive maintenance in critical nuclear instrumentation for power plant operation, which it is being developed by Logistica y Acondicionamientos Industriales and the Isirym Institute of the Polytechnic University of Valencia. Instrumentation verification and test, it is a priority of the power plants control and instrumentation department's technicians. These procedures are necessary information for the daily power plant work. It is performed according to different procedures and in different moments of the fuel cycle depending on the instrumentation critical state and the monitoring process. Normally, this study is developed taking into account the instantaneous values of the instrumentation measures and, after their conversion to physical magnitude, they are analyzed according to the power plant operation point. Moreover, redundant sensors measurements are taken into consideration to the equipment and/or power plant monitoring. This work goes forward and it is in advanced to the instrument analysis as it is, independently of the operation point, using specific signal analysis techniques for preventive and predictive maintenance, with the object to obtain not only information about possible malfunctions, but the degradation scale presented in the instrument or in the system measured. We present seven real case studies of Spanish nuclear power plants each of them shall give a significant contribution to problem resolution and power plant performance. (Author)

  14. Preventive maintenance instrumentation results in Spanish nuclear power plants

    International Nuclear Information System (INIS)

    Curiel, M.; Palomo, M. J.; Verdu, G.; Arnaldos, A.

    2010-10-01

    This paper is a recompilation of the most significance results in relation to the researching in preventive and predictive maintenance in critical nuclear instrumentation for power plant operation, which it is being developed by Logistica y Acondicionamientos Industriales and the Isirym Institute of the Polytechnic University of Valencia. Instrumentation verification and test, it is a priority of the power plants control and instrumentation department's technicians. These procedures are necessary information for the daily power plant work. It is performed according to different procedures and in different moments of the fuel cycle depending on the instrumentation critical state and the monitoring process. Normally, this study is developed taking into account the instantaneous values of the instrumentation measures and, after their conversion to physical magnitude, they are analyzed according to the power plant operation point. Moreover, redundant sensors measurements are taken into consideration to the equipment and/or power plant monitoring. This work goes forward and it is in advanced to the instrument analysis as it is, independently of the operation point, using specific signal analysis techniques for preventive and predictive maintenance, with the object to obtain not only information about possible malfunctions, but the degradation scale presented in the instrument or in the system measured. We present seven real case studies of Spanish nuclear power plants each of them shall give a significant contribution to problem resolution and power plant performance. (Author)

  15. Instrument evaluation no. 13. Nuclear enterprises portable meter type PDR

    International Nuclear Information System (INIS)

    Burgess, P.H.; Iles, W.J.

    1978-06-01

    The various radiations encountered in radiological protection cover a wide range of energies and radiation measurements have to be carried out under an equally broad spectrum of environmental conditions. This report is one of a series intended to give information on the performance characteristics of radiological protection instruments, to assist in the selection of appropriate instruments for a given purpose, to interpret the results obtained with such instruments, and, in particular, to know the likely sources and magnitude of errors that might be associated with measurements in the field. The radiation, electrical and environmental characteristics of radiation protection instruments are considered together with those aspects of the construction which make an instrument convenient for routine use. To provide consistent criteria for instrument performance, the range of tests performed on any particular class of instrument, the test methods and the criteria of acceptable performance are based broadly on the appropriate Recommendations of the International Electrotechnical Commission. The radiations in the tests are, in general, selected from the range of reference radiations for instrument calibration being drawn up by the International Standards Organisation. Normally, each report deals with the capabilities and limitations of one model of instrument and no direct comparison with other instruments intended for similar purposes is made, since the significance of particular performance characteristics largely depends on the radiations and environmental conditions in which the instrument is to be used. The results quoted here have all been obtained from tests on instruments in routine production, with the appropriate measurements being made by the NRPB. This report deals with the evaluation of Nuclear Enterprises Portable Dose Rate Meter Type PDR 2

  16. Nuclear instrument engineering - the measuring and informative basis of nuclear science and technology

    International Nuclear Information System (INIS)

    Matveev, V.V.; Krasheninnikov, I.S.; Murin, I.D.; Stas', K.N.

    1977-01-01

    The cornerstones of developing nuclear instrument engineering in the USSR are shortly discussed. The industry is based on a well developed theory. A system approach is a characteristic feature of the present-day measuring and control systems engineering. Major functions of reactor instruments measuring different types of ionizing radiation are discussed at greater length. Nuclear measuring and control instruments and methods are widely used in different fields of science and technoloay and in different industries in the USSR. The efficient and safe operation of a nuclear facility is underlined to depend strongly upon a correlation between a technological process and the information and control system of the facility

  17. Use and maintenance of nuclear medicine instruments in Southeast Asia

    International Nuclear Information System (INIS)

    1983-02-01

    Nuclear medicine instruments are rather sophisticated. They are difficult to maintain in effective working condition, especially in developing countries. The present document describes a survey conducted in Bangladesh, India, Malaysia, Pakistan, Philippines, Singapore, Sri Lanka and Thailand from October 1977 to March 1978, on the use and maintenance of nuclear medicine equipment. The survey evaluated the existing problems of instrument maintenance in the 8 countries visited. The major instruments in use were (1) scintillation probe counters, (2) well scintillation counters and (3) rectilinear cameras. Gamma camera was not widely available in the region at the time of the survey. Most of the surveyed instruments were kept in a detrimental environment resulting in a high failure rate, that caused the relatively high instrument unavailability of 11%. Insufficient bureaucratic handling of repair cases, difficulties with the supply of spare- and replacement parts and lack of training proved to be the main reasons for long periods of instrument inoperation. Remedial actions, based on the survey data, have been initiated

  18. CAMAC-controlled calibration system for nuclear reactor instruments

    International Nuclear Information System (INIS)

    McDowell, W.P.; Cornella, R.J.

    1977-01-01

    The hardware and the software which have been developed to implement a nuclear instrument calibration system for the Argonne National Laboratory ZPR-VI and ZPR-IX reactor complex are described. The system is implemented using an SEL-840 computer with its associated CAMAC crates and a hardware interface to generate input parameters and measure the required outputs on the instrument under test. Both linear and logarithmic instruments can be calibrated by the system and output parameters can be measured at various automatically selected values of ac line voltage. A complete report on each instrument is printed as a result of the calibration and out-of-tolerance readings are flagged. Operator interface is provided by a CAMAC-controlled Hazeltine terminal. The terminal display leads the operator through the complete calibration procedure. This computer-controlled system is a significant improvement over previously used methods of calibrating nuclear instruments since it reduces reactor downtime and allows rapid detection of long-term changes in instrument calibration

  19. Efforts onto electricity and instrumentation technology for nuclear power generation

    International Nuclear Information System (INIS)

    Hayakawa, Toshifumi

    2000-01-01

    Nuclear power generation shares more than 1/3 of all amounts of in-land generation at present, as a supplying source of stable electric energy after 2000 either. As a recent example of efforts onto electricity and instrumentation technology for nuclear power generation, there are, on instrumentation control system a new central control board aiming at reduction of operator's load, protection of human error, and upgrading of system reliability and economics by applying high level micro-processor applied technique and high speed data transfer technique to central monitoring operation and plant control protection, on a field of reactor instrumentation a new digital control rod position indicator improved of conventional system on a base of operation experience and recent technology, on a field of radiation instrumentation a new radiation instrumentation system accumulating actual results in a wide application field on a concept of application to nuclear power plant by adopting in-situ separation processing system using local network technique, and on a field of operation maintenance and management a conservation management system for nuclear generation plant intending of further effectiveness of operation maintenance management of power plant by applying of operation experience and recent data processing and communication technology. And, in the large electric apparatus, there are some generators carried out production and verification of a model one with actual size in lengthwise dimension, to correspond to future large capacity nuclear power plant. By this verification, it was proved that even large capacity generator of 1800 MVA class could be manufactured. (G.K.)

  20. WTEC panel report on European nuclear instrumentation and controls

    International Nuclear Information System (INIS)

    White, J.D.; Lanning, D.D.; Johnson, P.M.H.

    1991-12-01

    A study of instrumentation and controls (I and C) technology used in nuclear power plants in Europe was conducted by a panel of US specialists. This study plants in Europe was conducted by a panel of US specialists. This study included a review of the literature on the subject, followed by a visit to some of the leading organizations in Europe in the field nuclear I and C. Areas covered are: (1) role of the operator and control room design; (2) transition from analog to digital technology; (3) computerized operator support systems for fault management; (4) control strategies and techniques; (5) Nuclear power plant I and C architecture; (6) instrumentation and (7) computer standards and tools. The finding relate to poor reactions

  1. Malaysian Preparation for Nuclear Power Plant Instrumentation and Control System

    International Nuclear Information System (INIS)

    Mohd Idris Taib; Nurfarhana Ayuni Joha; Kamarudin Sulaiman; Izhar Abu Hussin

    2011-01-01

    Instrumentation and Control System is required in Nuclear Power Plant for their safe and effective operation. The system is combination and integrated from detectors, actuators, analog system as well as digital system. Current design of system definitely follows of electronic as well as computer technology, with strictly follow regulation and guideline from local regulator as well as International Atomic Energy Agency. Commercial Off-The-Shelf products are extensively used with specific nucleonic instrumentation. Malaysian experiences depend on Reactor TRIGA PUSPATI Instrumentation and Control, Power Plant Instrumentation and Control as well as Process Control System. However Malaysians have capabilities to upgrade themself from Electronics, Computers, Electrical and Mechanical based. Proposal is presented for Malaysian preparation. (author)

  2. Laboratory instrumentation modernization at the WPI Nuclear Reactor Facility

    International Nuclear Information System (INIS)

    1995-01-01

    With partial funding from the Department of Energy (DOE) University Reactor Instrumentation Program several laboratory instruments utilized by students and researchers at the WPI Nuclear Reactor Facility have been upgraded or replaced. Designed and built by General Electric in 1959, the open pool nuclear training reactor at WPI was one of the first such facilities in the nation located on a university campus. Devoted to undergraduate use, the reactor and its related facilities have been since used to train two generations of nuclear engineers and scientists for the nuclear industry. The low power output of the reactor and an ergonomic facility design make it an ideal tool for undergraduate nuclear engineering education and other training. The reactor, its control system, and the associate laboratory equipment are all located in the same room. Over the years, several important milestones have taken place at the WPI reactor. In 1969, the reactor power level was upgraded from 1 kW to 10 kW. The reactor's Nuclear Regulatory Commission operating license was renewed for 20 years in 1983. In 1988, under DOE Grant No. DE-FG07-86ER75271, the reactor was converted to low-enriched uranium fuel. In 1992, again with partial funding from DOE (Grant No. DE-FG02-90ER12982), the original control console was replaced

  3. Handbook on care, handling and protection of nuclear medicine instruments

    International Nuclear Information System (INIS)

    2000-11-01

    Instruments are fundamental to successful nuclear medicine practice. They must be properly installed in an environment in which they can give accurate and uninterrupted service. They have to be properly and carefully operated and supported throughout their life by regular care and maintenance. If something is wrong with a key instrument all well trained staff members are idle and all purchased radiopharmaceuticals become useless. Overall responsibility for instrumentation rests with the directors of nuclear medicine centres. They should support their electronic engineers, medical physicists, technologists and physicians to plan and implement the care and protection of nuclear medicine instruments, see that they are properly maintained, and kept in optimum working condition by regular checks. Protection should be considered, and provided for, before installing any new instrument. The protective devices are part of the new installation and should be well maintained along with the instrument throughout its life. Thus protection needs careful planning, particularly at the beginning of a new instrumentation programme. It can affect selection, procurement, acceptance testing, and the design of quality control and maintenance routines. These activities should be considered as important in their own right. They should not be mixed in with other functions or left to take care of themselves in the daily rush to get through routine work. Experience suggests that more than half of all failures of electronic equipment are due to damage by external electrical disturbances. Section 2 of this handbook aims to help instrument users in nuclear medicine centres to understand the nature of the various types of disturbance, and to protect against them. Section 3 shows how air conditioning can help to protect instrumentation. Section 4 lists some practical tips to avoid accidental damage due to mishandling. A computer program for use with Personal Computers, ''EPC Expert'' is described

  4. Nuclear Instrumentation and Control Cyber Testbed Considerations – Lessons Learned

    Energy Technology Data Exchange (ETDEWEB)

    Jonathan Gray; Robert Anderson; Julio G. Rodriguez; Cheol-Kwon Lee

    2014-08-01

    Abstract: Identifying and understanding digital instrumentation and control (I&C) cyber vulnerabilities within nuclear power plants and other nuclear facilities, is critical if nation states desire to operate nuclear facilities safely, reliably, and securely. In order to demonstrate objective evidence that cyber vulnerabilities have been adequately identified and mitigated, a testbed representing a facility’s critical nuclear equipment must be replicated. Idaho National Laboratory (INL) has built and operated similar testbeds for common critical infrastructure I&C for over ten years. This experience developing, operating, and maintaining an I&C testbed in support of research identifying cyber vulnerabilities has led the Korean Atomic Energy Research Institute of the Republic of Korea to solicit the experiences of INL to help mitigate problems early in the design, development, operation, and maintenance of a similar testbed. The following information will discuss I&C testbed lessons learned and the impact of these experiences to KAERI.

  5. Nuclear Instrumentation and Control Cyber Testbed Considerations - Lessons Learned

    International Nuclear Information System (INIS)

    Jonathan, Peter Grey; Robert, S Anderson; Julio, G Rodriguez; Lee, Cheol Kwon

    2014-01-01

    Identifying and understanding digital instrumentation and control (I and C) cyber vulnerabilities within nuclear power plants and other nuclear facilities is critical if nation states desire to operate nuclear facilities safely, reliably, and securely. To demonstrate objective evidence that cyber vulnerabilities have been adequately identified and mitigated, a test bed representing a facility's critical nuclear equipment must be replicated. Idaho National Laboratory (INL) has built and operated similar test beds for common critical infrastructure I and C for over 10 years. This experience developing, operating, and maintaining an I and C test bed in support of research identifying cyber vulnerabilities has led the Korean Atomic Energy Research Institute of the Republic of Korea to solicit the experiences of INL to help mitigate problems early in the design, development, operation, and maintenance of a similar test bed. The following information will discuss I and C test bed lessons learned and the impact of these experiences to KAERI

  6. Advanced instrumentation and control techniques for nuclear power plants

    International Nuclear Information System (INIS)

    Hayakawa, Hiroyasu; Makino, Maomi

    1989-01-01

    Toshiba has been promoting the development and improvement of control and instrumentation (C and I) systems employing the latest technologies, to fulfill the requirements of nuclear power plants for increased reliability, the upgrading of functions, improved maintainability, and reasonable cost. Such development has been systematically performed based on a schematic view of integrated digital control and instrumentation systems, actively adopting state-of-the-art techniques such as the latest man-machine interfaces, digital and optical multiplexing techniques, and artificial intelligence. In addition, comprehensive feedback has been obtained from the accumulation of operating experience. This paper describes the purpose, contents and status of applications of representative newly-developed systems. (author)

  7. Present problems of standardization in nuclear instrumentation in Romania

    International Nuclear Information System (INIS)

    Purghel, Lidia

    2001-01-01

    The continuos development of nuclear techniques, based on international cooperation, led to the need for producing national and international standards referring to terminology, classification, technical characteristic, testing and calibration methods for nuclear instrumentation. The international standardization activity is organised in the frame of the well-known organization like IEC, ISO, ICRU, ICRP, IOLM, CENELEC, EFOMP, WHO. High advances were obtained in the standardization of the ionising radiation dosimetry in the frame of the International Commission for Radiation Units (ICRU) which started its works 1925. Romania is member of the International Electrotechnical Commission (IEC) from 1920 when its president was the formal member of Romanian Academy, professor Remus Radulet. Romania is effectively involved in standardization activities in the field nuclear instrumentation both as user and manufacturer of nuclear instrumentation. At national level the Technical Committee 45, as a branch of the Romanian Electrotechnical Committee is hosted by Horia Hulubei National Institute for Physics and Nuclear Engineering. The technical committee has the tasks of analysing the market, the regulations and the industry requirements and proposing new standards or revision for existing one. A table is given showing the number of IEC standards considered by TC 45, adopted RS - IEC standards (prepared/published) and planned for 2000/2001. Romania hosted IEC international plenary meetings in 1962 and 1974 and an IEC workshop 1997 with participation of specialists from USA, Sweden, Germany, France, Japan and Romania. As industry is striving to use more and more standard products, that means best quality and safety for less money, more than ever one have to convince the industry about the usefulness and specificity of the nuclear standards

  8. Preventive maintenance instrumentation results in Spanish nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Palomo Anaya, M. Jose; Verdu Martin, Gumersindo, E-mail: mpalomo@iqn.upv.es, E-mail: gverdu@iqn.upv.es [ISIRYM Universidad Politecnica de Valencia, Valencia (Spain); Arnaldos Gonzalvez, Adoracion, E-mail: a.arnaldos@titaniast.com [TITANIA Servicios Tecnologicos SL, Valencia (Spain); Nieva, Marcelino Curiel, E-mail: m.curiel@lainsa.com [Logistica y Acondicionamientos Industriales SAU (LAINSA), Valencia (Spain)

    2011-07-01

    This paper is a recompilation of the most significant results in relation to the researching in Preventive and Predictive Maintenance in critical nuclear instrumentation for power plant operation, which it is being developed by Logistica y Acondicionamientos Industriales and The Isirym Institute of the Polytechnic University of Valencia. Instrumentation verification and test, it is a priority of the Power Plants Control and Instrumentation Department technicians. These procedures are necessary information for the daily power plant work. It is performed according to different procedures and in different moments of the fuel cycle depending on the instrumentation critical state and the monitoring process. Normally, this study is developed taking into account the instantaneous values of the instrumentation measures and, after their conversion to physical magnitude, they are analyzed according to the power plant operation point. Moreover, redundant sensors measurements are taken into consideration to the equipment and/or power plant monitoring. This work goes forward and it is in advanced to the instrument analysis as it is, independently of the operation point, using specific signal analysis techniques for preventive and predictive maintenance, with the aim to obtain not only information about possible malfunctions, but the degradation scale presented in the instrument or in the system measured. We present seven real case studies of Spanish Nuclear Power Plants each of them shall give a significant contribution to problem resolution and power plant performance: Fluctuations in sensor lines (case 1), Air presence in feed water lines (case 2), Root valve partially closed (case 3), Sensor malfunctions (case 4), Electrical source malfunctions (case 5), RTD malfunctions (case 6) and LPRM malfunctions (case 7). (author)

  9. Preventive maintenance instrumentation results in Spanish nuclear power plants

    International Nuclear Information System (INIS)

    Palomo Anaya, M. Jose; Verdu Martin, Gumersindo; Arnaldos Gonzalvez, Adoracion; Nieva, Marcelino Curiel

    2011-01-01

    This paper is a recompilation of the most significant results in relation to the researching in Preventive and Predictive Maintenance in critical nuclear instrumentation for power plant operation, which it is being developed by Logistica y Acondicionamientos Industriales and The Isirym Institute of the Polytechnic University of Valencia. Instrumentation verification and test, it is a priority of the Power Plants Control and Instrumentation Department technicians. These procedures are necessary information for the daily power plant work. It is performed according to different procedures and in different moments of the fuel cycle depending on the instrumentation critical state and the monitoring process. Normally, this study is developed taking into account the instantaneous values of the instrumentation measures and, after their conversion to physical magnitude, they are analyzed according to the power plant operation point. Moreover, redundant sensors measurements are taken into consideration to the equipment and/or power plant monitoring. This work goes forward and it is in advanced to the instrument analysis as it is, independently of the operation point, using specific signal analysis techniques for preventive and predictive maintenance, with the aim to obtain not only information about possible malfunctions, but the degradation scale presented in the instrument or in the system measured. We present seven real case studies of Spanish Nuclear Power Plants each of them shall give a significant contribution to problem resolution and power plant performance: Fluctuations in sensor lines (case 1), Air presence in feed water lines (case 2), Root valve partially closed (case 3), Sensor malfunctions (case 4), Electrical source malfunctions (case 5), RTD malfunctions (case 6) and LPRM malfunctions (case 7). (author)

  10. Design aspects of safety critical instrumentation of nuclear installations

    Energy Technology Data Exchange (ETDEWEB)

    Swaminathan, P. [Electronics Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamil Nadu (India)]. E-mail: swamy@igcar.ernet.in

    2005-07-01

    Safety critical instrumentation systems ensure safe shutdown/configuration of the nuclear installation when process status exceeds the safety threshold limits. Design requirements for safety critical instrumentation such as functional and electrical independence, fail-safe design, and architecture to ensure the specified unsafe failure rate and safe failure rate, human machine interface (HMI), etc., are explained with examples. Different fault tolerant architectures like 1/2, 2/2, 2/3 hot stand-by are compared for safety critical instrumentation. For embedded systems, software quality assurance is detailed both during design phase and O and M phase. Different software development models such as waterfall model and spiral model are explained with examples. The error distribution in embedded system is detailed. The usage of formal method is outlined to reduce the specification error. The guidelines for coding of application software are outlined. The interface problems of safety critical instrumentation with sensors, actuators, other computer systems, etc., are detailed with examples. Testability and maintainability shall be taken into account during design phase. Online diagnostics for safety critical instrumentation is detailed with examples. Salient details of design guides from Atomic Energy Regulatory Board, International Atomic Energy Agency and standards from IEEE, BIS are given towards the design of safety critical instrumentation systems. (author)

  11. Design aspects of safety critical instrumentation of nuclear installations

    International Nuclear Information System (INIS)

    Swaminathan, P.

    2005-01-01

    Safety critical instrumentation systems ensure safe shutdown/configuration of the nuclear installation when process status exceeds the safety threshold limits. Design requirements for safety critical instrumentation such as functional and electrical independence, fail-safe design, and architecture to ensure the specified unsafe failure rate and safe failure rate, human machine interface (HMI), etc., are explained with examples. Different fault tolerant architectures like 1/2, 2/2, 2/3 hot stand-by are compared for safety critical instrumentation. For embedded systems, software quality assurance is detailed both during design phase and O and M phase. Different software development models such as waterfall model and spiral model are explained with examples. The error distribution in embedded system is detailed. The usage of formal method is outlined to reduce the specification error. The guidelines for coding of application software are outlined. The interface problems of safety critical instrumentation with sensors, actuators, other computer systems, etc., are detailed with examples. Testability and maintainability shall be taken into account during design phase. Online diagnostics for safety critical instrumentation is detailed with examples. Salient details of design guides from Atomic Energy Regulatory Board, International Atomic Energy Agency and standards from IEEE, BIS are given towards the design of safety critical instrumentation systems. (author)

  12. Instrumentation for chemical and radiochemical monitoring in nuclear power plants

    International Nuclear Information System (INIS)

    Nordmann, F.; Ballard, G.

    2009-01-01

    This article details the instrumentation implemented in French nuclear power plants for the monitoring of chemical and radiochemical effluents with the aim of limiting their environmental impact. It describes the controls performed with chemical automata for the search for drifts, anomalies or pollution in a given circuit. The operation principles of the different types of chemical automata are explained as well as the manual controls performed on samples manually collected. Content: 1 - general considerations; 2 - objectives of the chemical monitoring: usefulness of continuous monitoring with automata, transmission to control rooms and related actions, redundancy of automata; 3 - instrumentation and explanations for the main circuits: principle of chemical automata monitoring, instrumentation of the main primary circuit, instrumentation of the main secondary circuit, instrumentation of the tertiary circuit, preparation of water makeup (demineralized water), other loops, instrumentation for effluents and environment monitoring, measurement principles of chemical automata, control and maintenance of chemical automata; 4 - manual controls after sampling; 5 - radiochemical monitoring: automatized radiochemical measurements, manual radiochemical measurements; 6 - conclusion

  13. Reactor instrumentation and control in nuclear power plants in Germany

    International Nuclear Information System (INIS)

    Aleite, W.

    1993-01-01

    The pertinent legislation, guidelines and standards of importance for nuclear power plant construction as well as the relevant committees in Germany are covered. The impact of international developments on the German regulatory scene is mentioned. A series of 15 data sheets on reactor control, followed by 5 data sheets on instrumentation and control in nuclear power plants, which were drawn up for German plants, are compared and commented in some detail. Digitalization of instrumentation and control systems continues apace. To illustrate the results that can be achieved with a digitalized information system, a picture series that documents a plant test of behavior on simulated steam generator tube rupture is elaborately commented. An outlook on backfitting and upgrading applications concludes this paper. (orig.) [de

  14. USB technique and its application in nuclear instruments

    International Nuclear Information System (INIS)

    Zhou Tong; Wei Yixiang; Wang Yuemin

    2001-01-01

    This paper introduces the technique of communication of USB between computer and collection interface in nuclear instruments. Because Universal Serial Bus has many advantages such as high speed, low energy consuming and Plug and Play. It has been a universal interface of computer. The realization of communication by USB is a step to digital, modularization, and universality of instruments. The mainly content of this paper is the design of circuit and program of the USB intelligent interface, which include how to program a driver and how the software and the hardware interplay with each other. At the end, a testing result in a Multi-Channel Analyzer also is presented. This technique can also be used in other data acquisition instruments

  15. Virtual instrumentation on mobile devices for deployment in nuclear installations

    International Nuclear Information System (INIS)

    Farias, Marcos Santana; Santos, Isaac Jose A. Luquetti dos; Jesus, Miller F. de; Sant'Anna, Claudio Reis de; Szabo, Andre Pedro; Carvalho, Paulo Victor R. de

    2013-01-01

    The virtual instrumentation can be defined as a layer of software and hardware, added to a general purpose computer, so that users can interact with the computer in the same way that they interacted with traditional electronic instruments such as oscilloscopes, multi-meters and signal generators, and may add other functions defined by software. The virtual instrumentation gets a new integration environment, little explored yet, with the great growth that occurred in the mobile devices area. Nowadays it is possible to take measurements in more places by combining mobile devices with data acquisition hardware to create extremely portable and interconnected measurement systems. This paper shows the development of software and hardware that make possible the use of instrumentation on mobile devices for monitoring nuclear installations. It's presented the hardware and the application software for data acquisition of radiation monitors, developed to iOS devices. It's also shown the possibilities of hardware and software to develop near real-time data transfer to and from the field in nuclear installations, with benefits in efficiency, safety and productivity. (author)

  16. The introduction of radiation monitor produced by several nuclear instrument factories

    International Nuclear Information System (INIS)

    Yu Liying

    2005-01-01

    The paper introduce some radiation monitor products of several nuclear instrument factories include Xi'an Nuclear Instrument Factory, MGP Instruments Inc, and Canberra Industries Inc. The introduction aspects include the range, configuration, and application of products. So, the paper is reference for the designer with responsibility for radiation monitoring system of new nuclear project. (authors)

  17. Nuclear power plant control and instrumentation 1982. Proceedings of an international symposium on nuclear power plant control and instrumentation

    International Nuclear Information System (INIS)

    1983-01-01

    Ever increasing demands for nuclear power plant safety and availability imply a need for the introduction of modern measurement and control methods, together with data processing techniques based on the latest advances in electronic components, transducers and computers. Nuclear power plant control and instrumentation is therefore an extremely rapidly developing field. The present symposium, held in Munich, FR Germany, was prepared with the help of the IAEA International Working Group on Nuclear Power Plant Control and Instrumentation and organized in close co-operation with the Gesellschaft fur Reaktorsicherheit, Federal Republic of Germany. A number of developments were highlighted at the Munich symposium: - The increased use of computers can bring clear advantages and this technique is now proven as a tool for supervising and controlling plant operation. Advanced computerized systems for operator support are being developed on a large scale in many countries. The progress in this field is quite obvious, especially in disturbance analysis, safety parameter display, plant operator guidance and plant diagnostics. The new trend of introducing computers and microprocessors in protection systems makes it easy to implement 'defence-in-depth' strategies which give better assurance of correct system responses and also prevent unnecessary reactor trips, thus improving plant availability. The introduction of computerized systems for control of reactor power, reactor water level and reactor pressure as well as for reactor start-up and shut-down could improve the reliability and availability of nuclear power plants. The rapid technical development in the area of control and instrumentation makes it necessary to plan for at least one replacement of obsolete equipment in the course of the 30 years lifetime of a nuclear power plant and retrofitting of currently operating reactors with new control systems. Major design improvements and regulatory requirements also require

  18. Fact sheet on nuclear power plant instrumentation and control technologies

    International Nuclear Information System (INIS)

    2006-01-01

    Nuclear power plants (NPPs) are facing challenges in several instrumentation and control (I and C) areas with ageing and obsolete components and equipment. With license renewals and power uprates, the long-term operation and maintenance of obsolete I and C systems may not be a cost-effective and reliable option. The effort needed to maintain or increase the reliability and useful life of existing I and C systems may be greater in the long run than modernizing I and C systems or replacing them completely with new digital systems. The increased functionality of the new I and C systems can also open up new possibilities to better support the operation and maintenance activities in the plant. The IAEA recognizes the importance of the profound role the I and C systems play in the reliable, safe, efficient, and cost-effective operations of NPPs by supporting the activities of the Department of Nuclear Energy's Technical Working Group on Nuclear Power Plant Control and Instrumentation (TWG-NPPCI). The group was established in March 1970. Its membership currently includes thirty Member States and three international organizations. The most recent meeting of the TWG-NPPCI was held in May 2005 in Vienna. The meeting report is available at http://www.iaea.org/OurWork/ST/NE/NENP/twg_nppc.html. The next meeting of the TWGNPPCI will be the 21st meeting of the advisory body, and it will be held in May 2007

  19. Instrumentation

    International Nuclear Information System (INIS)

    Decreton, M.

    2002-01-01

    SCK-CEN's R and D programme on instrumentation involves the development of advanced instrumentation systems for nuclear applications as well as the assessment of the performance of these instruments in a radiation environment. Particular emphasis is on the use of optical fibres as umbilincal links of a remote handling unit for use during maintanance of a fusion reacor, studies on the radiation hardening of plasma diagnostic systems; investigations on new instrumentation for the future MYRRHA accelerator driven system; space applications related to radiation-hardened lenses; the development of new approaches for dose, temperature and strain measurements; the assessment of radiation-hardened sensors and motors for remote handling tasks and studies of dose measurement systems including the use of optical fibres. Progress and achievements in these areas for 2001 are described

  20. Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2002-04-01

    SCK-CEN's R and D programme on instrumentation involves the development of advanced instrumentation systems for nuclear applications as well as the assessment of the performance of these instruments in a radiation environment. Particular emphasis is on the use of optical fibres as umbilincal links of a remote handling unit for use during maintanance of a fusion reacor, studies on the radiation hardening of plasma diagnostic systems; investigations on new instrumentation for the future MYRRHA accelerator driven system; space applications related to radiation-hardened lenses; the development of new approaches for dose, temperature and strain measurements; the assessment of radiation-hardened sensors and motors for remote handling tasks and studies of dose measurement systems including the use of optical fibres. Progress and achievements in these areas for 2001 are described.

  1. Design aid system for nuclear power plant instrumentations

    International Nuclear Information System (INIS)

    Hattori, Yoshiaki; Ito, Toshiichiro; Fujii, Makoto; Shimada, Nobuhide.

    1987-01-01

    Purpose: To enable to provide design aid for the nuclear power plant instrumentation of high reliability with the minimum cost while eliminating unrequired condition even if there are no data for the ground of the instrumentation design. Constitution: The information data base for the design of process radiation ray monitors are administrated by a data base administration device. The conditions to be satisfied in the process radiation monitors designed based on the data for the circumstances where particular predetermined process radiation monitors are installed, are derived by deduction using information obtained from the data base by way of the data base administration device. The derived design conditions are displayed and the optimum conditions are again reduced and displayed. In this way, the designers are assisted such that optimum designs can be obtained while sufficiently satisfying the safety and also in view of the cost. (Kamimura, M.)

  2. A digital instrument for reactivity measurements in a nuclear reactor

    International Nuclear Information System (INIS)

    Chwaszczewski, S.

    1979-01-01

    An instrument for digital determination of the reactivity in nuclear reactors is described. It is based on the CAMAC standard apparatus, suitable for the use of pulse or current type neutron detectors and operates with prompt response and an output signal proportional to the core neutron flux. The measured data of neutron flux and reactivity can be registered by a digital display unit, an indicator, or, by request of the operator, a paper type punch. The algorithms used for reactivity calculation are considered and the results of numerical studies on those algorithms are discussed. The instrument has been used for determining the reactivity of the control elements in the fast-thermal assembly ANNA and in the research reactor MARIA. Some results of these measurements are given. (author)

  3. Digital instrument for reactivity measurements in a nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chwaszczewski, S [Institute of Nuclear Research, Warsaw (Poland)

    1979-07-01

    An instrument for digital determination of the reactivity in nuclear reactors is described. It is based on the CAMAC standard apparatus, suitable for the use of pulse or current type neutron detectors and operates with prompt response and an output signal proportional to the core neutron flux. The measured data of neutron flux and reactivity can be registered by a digital display unit, an indicator, or, by request of the operator, a paper type punch. The algorithms used for reactivity calculation are considered and the results of numerical studies on those algorithms are discussed. The instrument has been used for determining the reactivity of the control elements in the fast-thermal assembly ANNA and in the research reactor MARIA. Some results of these measurements are given.

  4. ASIC and HMC designs for portable nuclear instruments

    International Nuclear Information System (INIS)

    Chandratre, V.B.

    2005-01-01

    This paper describes the seed activity done so far for realizing the goal of compact portable nuclear instruments and related instrumentation that can be designed, developed and manufactured without external constraints. This important activity requires critical components to be made in the country by tapping and gearing the established industrial units for this activity. A good deal of ground work has been carried out over a period of time in setting up IC design facility and CAD-FAB interface. There has been a close interaction with the production and semiconductor facilities to design and develop ASIC, hybrids, display devices, detectors/sensors etc. Efforts are also undertaken to develop the critical technologies that are required to fulfill the requirement. A status report on various technologies, ASIC, hybrids and their application development done in the face of out-standing challenges is being presented here. (author)

  5. Advanced Instrumentation and control techniques for nuclear power plants

    International Nuclear Information System (INIS)

    Mori, Nobuyuki; Makino, Maomi; Naito, Norio

    1992-01-01

    Toshiba has been promoting the development of an advanced instrumentation and control system for nuclear power plants to fulfill the requirements for increased reliability, improved functionality and maintainability, and more competitive economic performance. This system integrates state-of-the-art technologies such as those for the latest man-machine interface, digital processing, optical multiplexing signal transmission, human engineering, and artificial intelligence. Such development has been systematically accomplished based on a schematic view of integrated digital control and instrumentation systems, and the development of whole systems has now been completed. This paper describes the purpose, design philosophy, and contents of newly developed systems, then considers the future trends of advanced man-machine systems. (author)

  6. Report on nuclear power plant instrumentation and control in Germany

    International Nuclear Information System (INIS)

    Bastl, W.

    1992-01-01

    The paper describes the status of the NPP control and instrumentation in Germany. The general technology underlying most aspects of NPP C and I in Germany has not altered since the last progress report although there has been many improvements in detail. Since the beginning of 1990 the GRS carried out the safety investigations of NPPs in East Germany. The USSR as the vendor of the plants and France were also involved in the project. The following fields are briefly described: Status of nuclear power in Germany; training simulators; backfitting of computers and information systems; operator support/new control rooms. (author). 6 refs, 1 tab

  7. In-line analytical instrumentation in nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Rao, V.K.; Bhargava, V.K.; Marathe, S.G.

    1979-01-01

    In nuclear fuel reprocessing plants where uranium and plutonium are separated from highly radioactive fission products, continuous monitoring of these constituents is helpful in many ways. Apart from quick detection of possible process malfunctions, in-line monitoring protects operating personnel from radiation hazards, reduces the cost of laboratory analysis and increases the overall efficiency of the process. A review of a proqramme of work on the design, fabrication and testing of some in-line instruments viz. gamma absorptiometer for uranium, neutron monitor for plutonium, acidity monitor for scrub nitric acid etc., their feasibility studies in the laboratory as well as in the pilot plant is presented. (auth.)

  8. Risk Informed Optimization of Nuclear Instrumentation for Emergency Conditions

    International Nuclear Information System (INIS)

    Knoll, Alexander

    2013-06-01

    Emergency conditions after a nuclear accident are different in each case and cannot be predicted accurately. The accident at TMI did not contaminate the environment. The accident at Chernobyl had a large, early release of nuclear contamination, widely dispersed over many countries. Although there was no large, early release of contamination at Fukushima Daiichi, the timeline of the accident included days of later contamination of various degrees of severity. A large amount of the contamination has been released to the ocean and an exclusion zone still exists around the station. In all of these accidents there were no adequate radiation monitoring systems distant from the origin point that could provide accurate status to the authorities and the local population. In the recent years a number of new nuclear monitoring systems have been implemented or are under development to be installed in areas that might be exposed to nuclear contamination in emergencies. Based on the risk informed optimization methodology, this paper provides recommendations for selecting the quantity and type of instrumentation, the location and sampling of data, and the real-time processing of information. (authors)

  9. Development of indigenous technology at CNEN in the fields of nuclear medicine, nuclear detectors, instrumentation, radioisotope production and application of nuclear techniques

    International Nuclear Information System (INIS)

    Mafra, O.

    1990-01-01

    The main objectives of the program developed at CNEN in the field of nuclear medicine, nuclear detectors, instrumentation, radioisotope production and application of nuclear technique are described. (E.G.) [pt

  10. Instrumentation

    International Nuclear Information System (INIS)

    Umminger, K.

    2008-01-01

    A proper measurement of the relevant single and two-phase flow parameters is the basis for the understanding of many complex thermal-hydraulic processes. Reliable instrumentation is therefore necessary for the interaction between analysis and experiment especially in the field of nuclear safety research where postulated accident scenarios have to be simulated in experimental facilities and predicted by complex computer code systems. The so-called conventional instrumentation for the measurement of e. g. pressures, temperatures, pressure differences and single phase flow velocities is still a solid basis for the investigation and interpretation of many phenomena and especially for the understanding of the overall system behavior. Measurement data from such instrumentation still serves in many cases as a database for thermal-hydraulic system codes. However some special instrumentation such as online concentration measurement for boric acid in the water phase or for non-condensibles in steam atmosphere as well as flow visualization techniques were further developed and successfully applied during the recent years. Concerning the modeling needs for advanced thermal-hydraulic codes, significant advances have been accomplished in the last few years in the local instrumentation technology for two-phase flow by the application of new sensor techniques, optical or beam methods and electronic technology. This paper will give insight into the current state of instrumentation technology for safety-related thermohydraulic experiments. Advantages and limitations of some measurement processes and systems will be indicated as well as trends and possibilities for further development. Aspects of instrumentation in operating reactors will also be mentioned.

  11. Nuclear instrument upgrade at Connecticut Yankee Atomic Power Station

    International Nuclear Information System (INIS)

    Brothers, M.H.; Flynn, B.J.; Shugars, H.G.

    1989-01-01

    After 20 years of commercial operation, the Connecticut Yankee Atomic Power Station decided to replace the original nuclear instrument system. The plant was motivated primarily by reliability and maintainability problems, the former attributed to equipment wearout and discrete component failure, and the latter to the unavailability of qualified spare parts, another effect of the equipment's age. In replacing the system, the plant also had to address current regulatory, design, and plant technical specification requirements, including physical separation, signal isolation, and changes in equipment qualification. This paper discusses the motivation for the system's replacement, the challenges to the plant engineers and equipment designers, the ways in which the new design met the challenges, the test results of the new system, and other potential benefits supported by the test results

  12. Nuclear instrumentation systems in prototype fast breeder reactor

    International Nuclear Information System (INIS)

    Vijayakumaran, P.M.; Nagaraj, C.P.; Paramasivan-Pillai, C.; Ramakrishnan, R.; Sivaramakrishna, M.

    2004-01-01

    The nuclear instrumentation systems of the Prototype Fast Breeder Reactor (PFBR) primarily comprise of global Neutron Flux Monitoring, Failed Fuel Detection and Location, Radiation Monitoring and Post-Accident Monitoring. High temperature fission chambers are provided at in-vessel locations for monitoring neutron flux. Failed fuel detection and location is by monitoring the cover gas for fission gases and primary sodium for delayed neutrons. Signals of the core monitoring detectors are used to initiate SCRAM (safety action) to protect the reactor from various postulated initiating events. Radiation levels in all potentially radioactive areas are monitored to act as an early warning system to keep the release of radioactivity to the environment and exposure to personnel well below the permissible limits. Fission Chambers and Gamma Ionisation Chambers are located in the reactor vault concrete for monitoring the neutron flux and gamma radiation levels during and after an accident. (authors)

  13. About the automated instrumentation in nuclear power plants; Sobre la instrumentacion automatizada en plantas nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Segovia de los Rios, J. A.; Benitez R, J. S. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Garduno G, M P., E-mail: armando.segovia@inin.gob.mx [Instituto Tecnologica de Toluca, Av. Tecnologico s/n, 52140 Metepec, Estado de Mexico (Mexico)

    2011-11-15

    The automation of the inspection processes and monitoring in nuclear facilities have as main objective the reduction of acquired radiation dose for the operators of the diverse work programs. For example, a typical maintenance task is the problems correction of leaks in the hydraulic facilities of the vapor circuits where is necessary the repair of pipes, measuring and control elements, as the valves. A program of effective maintenance should contemplate strategies of appropriate monitoring for the immediate detection of possible failures, with the purpose of the remedy them opportunely. For this function of failures detection is necessary to have instruments that allow the measuring of the parameters that facilitate their characterization. Given the prevailing conditions in the nuclear facilities, such instruments should possess special characteristics, reason why is necessary a study of them, as well as a careful selection of the susceptible apparatuses of being used. For this reason, this work presents a discussion about some of the existent conditions in the nuclear power plants, as well as the aspects to consider for the automated instrumentation of some places of a nuclear power plant. (Author)

  14. Surveillance of instrumentation channels at nuclear power plants

    International Nuclear Information System (INIS)

    Thie, J.A.

    1989-06-01

    Surveillance activities at nuclear plants, involving-calibrations, functional tests, and simple checks, have many associated problems. These problems are of the following four types: administrative, equipment, human, and systemic. An extensive search of the literature has led to 63 generic classes of problems falling within these types and involving instrumentation department activities. The classification system is that which writers of incidents are essentially using, based on historical traditions, in naming their problems' causes. An interesting finding in the search was the strong correlation of this project to many aspects of industrial safety; technology transfer opportunities from the latter are identified. A survey of plant instrumentation experts was conducted to obtain a ranking of the most important problems. Classes of solutions to these problems are listed and discussed. Outlined is a possible methodology of matching these solutions to problems. Finally applications of this study are listed, and include extensions to training, operations, and maintenance departments of power plants. Appendices give several general examples for each problem class and many specific suggestions from experts on addressing the problems felt to be more important. 15 refs., 2 figs., 6 tabs

  15. Radiation-hardened micro-electronics for nuclear instrumentation

    International Nuclear Information System (INIS)

    Van Uffelen, M.

    2007-01-01

    The successful development and deployment of future fission and thermonuclear fusion reactors depends to a large extent on the advances of different enabling technologies. Not only the materials need to be custom engineered but also the instrumentation, the electronics and the communication equipment need to support operation in this harsh environment, with expected radiation levels during maintenance up to several MGy. Indeed, there are yet no commercially available electronic devices available off-the-shelf which demonstrated a satisfying operation at these extremely high radiation levels. The main goal of this task is to identify commercially available radiation tolerant technologies, and to design dedicated and integrated electronic circuits, using radiation hardening techniques, both at the topological and architectural level. Within a stepwise approach, we first design circuits with discrete components and look for an equivalent integrated technology. This will enable us to develop innovative instrumentation and communication tools for the next generation of nuclear reactors, where both radiation hardening and miniaturization play a dominant role

  16. Experience with diagnostic instrumentation in nuclear power plants

    International Nuclear Information System (INIS)

    Gopal, R.; Ciaramitaro, W.

    1977-01-01

    Over the past several years, Westinghouse has developed a coordinated system of on-line diagnostic instrumentation for the acquisition and analysis of data for diagnostics and incipient failure detection of critical plant equipment and systems. Primary motivation for this work is to improve NSSS availability and Maintainability through the detection of malfunctions at their inception. These systems encompass the following areas: (1) Vibration Monitoring System for detection of changes in vibrational characteristics of the major components of Nuclear Steam Supply System (NSSS) and Balance of Plant (BOP); (2) Acoustic Monitoring System for detection and location of leaks in the primary system pressure boundary and other piping systems in PWRs; (3) Metal Impact Monitoring for detection of loose debris in the reactor vessel and steam generators; (4) Nuclear Noise Monitoring System for monitoring core barrel vibration; (5) Sensor Response Time Measurement System for detecting any degradation of process sensors; and (6) Transit Time Flow Meter for determining primary coolant flow rate. Summarized in this paper are some of the features of the systems and in-plant experience. These experiences demonstrate that diagnostic systems in combination with analytical and laboratory work for data interpretation do improve plant availability. (author)

  17. Nuclear power plant control and instrumentation 1993. Working material

    International Nuclear Information System (INIS)

    1994-01-01

    The regular meeting of the International Working Group on Nuclear Power Plant Control and Instrumentation (IWG-NPPCI) was organized in order to summarize operating experience of nuclear power plant control systems, gain a general overview of activities in development of modern control systems and receive recommendations on the further directions and particular measures within the Agency's programme. The meeting was held at the Merlin-Gerin Headquarters in Paris and was attended by twenty one national delegates and observers from 17 countries. The present volume contains: (1) report on the meeting of the IWG-NPPCI, Paris, 21-22 October 1993, (2) report by the scientific secretary on the major activities of IAEA during 1991-1993 in the NPPCI area, and (3) reports of the national representatives to the International Working Group on NPPCI. The papers and discussions with practical experience and described actual problems encountered. Emphasis was placed on the technical, industrial and economic aspects of the introduction of modern control systems and on the improvement of plant availability and safety. Refs, figs and tabs

  18. Recent developments and future trends in nuclear medicine instrumentation

    International Nuclear Information System (INIS)

    Zaidi, H.

    2006-01-01

    Molecular imaging using high-resolution single-photon emission computed tomography (SPECT) and positron emission tomography (PET) has advanced elegantly and has steadily gained importance in the clinical and research arenas. Continuous efforts to integrate recent research findings for the design of different geometries and various detector technologies of SPECT and PET cameras have become the goal of both the academic community and nuclear medicine industry. As PET has recently become of more interest for clinical practice, several different design trends seem to have developed. Systems are being designed for ''low cost'' clinical applications, very high-resolution research applications (including small-animal imaging), and just about everywhere in-between. The development of dual-modality imaging systems has revolutionized the practice of nuclear medicine. The major advantage being that SPECT/PET data are intrinsically aligned to anatomical information from the X-ray computed tomography (CT), without the use of external markers or internal landmarks. On the other hand, combining PET with magnetic resonance imaging (MRI) technology is scientifically more challenging owing to the strong magnetic fields. Nevertheless, significant progress has been made resulting in the design of a prototype small animal PET scanner coupled to three multichannel photomultipliers via optical fibers, so that the PET detector can be operated within a conventional MR system. Thus, many different design paths are being pursued - which ones are likely to be the main stream of future commercial systems? It will be interesting, indeed, to see which technologies become the most popular in the future. This paper briefly summarizes state-of-the art developments in nuclear medicine instrumentation. Future prospects will also be discussed. (orig.)

  19. N + 1 redundancy on ATCA instrumentation for Nuclear Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Correia, Miguel, E-mail: miguelfc@ipfn.ist.utl.pt [Associação EURATOM/IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico – Universidade Técnica de Lisboa, Lisboa (Portugal); Sousa, Jorge; Rodrigues, António P.; Batista, António J.N.; Combo, Álvaro; Carvalho, Bernardo B.; Santos, Bruno; Carvalho, Paulo F.; Gonçalves, Bruno [Associação EURATOM/IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico – Universidade Técnica de Lisboa, Lisboa (Portugal); Correia, Carlos M.B.A. [Centro de Instrumentação, Departamento de Física, Universidade de Coimbra, Coimbra (Portugal); Varandas, Carlos A.F. [Associação EURATOM/IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico – Universidade Técnica de Lisboa, Lisboa (Portugal)

    2013-10-15

    Highlights: ► In Nuclear Fusion, demanding security and high-availability requirements call for redundancy to be available. ► ATCA standard features desirable redundancy features for Fusion instrumentation. ► The developed control and data acquisition hardware modules support additional redundancy schemes. ► Implementation of N + 1 redundancy of host processor and I/O data modules. -- Abstract: The role of redundancy on control and data acquisition systems has gained a significant importance in the case of Nuclear Fusion, as demanding security and high-availability requirements call for redundancy to be available. IPFN's control and data acquisition system hardware is based on an Advanced Telecommunications Computing Architecture (ATCA) set of I/O (DAC/ADC endpoints) and data/timing switch modules, which handle data and timing from all I/O endpoints. Modules communicate through Peripheral Component Interconnect Express (PCIe), established over the ATCA backplane and controlled by one or more external hosts. The developed hardware modules were designed to take advantage of ATCA specification's redundancy features, namely at the hardware management level, including support of: (i) multiple host operation with N + 1 redundancy – in which a designated failover host takes over data previously assigned to a suddenly malfunctioning host and (ii) N + 1 redundancy of I/O and data/timing switch modules. This paper briefly describes IPFN's control and data acquisition system, which is being developed for ITER fast plant system controller (FPSC), and analyses the hardware implementation of its supported redundancy features.

  20. Nuclear measurements, techniques and instrumentation, industrial applications, plasma physics and nuclear fusion 1986-1996. International Atomic Energy Agency publications

    International Nuclear Information System (INIS)

    1997-03-01

    This catalogue lists all sales publications of the International Atomic Energy Agency dealing with Nuclear Measurements, Techniques, and Instrumentation, Industrial Applications, Plasma Physics and Nuclear Fusion, issued during the period 1986-1996. Most publications are in English. Proceedings of conferences, symposia and panels of experts may contain some papers in languages other than English (French, Russian or Spanish), but all of these papers have abstracts in English. Contents cover the three main areas of (i) Nuclear Measurements, Techniques and Instrumentation (Physics, Dosimetry Techniques, Nuclear Analytical Techniques, Research Reactor and Particle Accelerator Applications, and Nuclear Data), (ii) Industrial Applications (Radiation Processing, Radiometry, and Tracers), and (iii) Plasma Physics and Controlled Thermonuclear Fusion

  1. Seminar-meeting on maintenance of nuclear instruments, 24 October -3 November 1980, Quezon City, Philippines

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    This collection is composed of twenty (20) papers on the repair, maintenance and maintenance plans, of nuclear instruments, training programs for maintenance technicians, and experiences in the maintenance of nuclear instruments in Indonesia, Japan, Philippines, India, Thailand, Sri Lanka, Pakistan, Korea and Malaysia. (author)

  2. General presentation of the instrumentation area of IPEN (Instituto de Pesquisas Energeticas e Nucleares)

    International Nuclear Information System (INIS)

    Anon.

    The area of electronic instrumentation of IPEN (Instituto de Pesquisas Energeticas e Nucleares), is presented. The activities of AIE (Electronic Instrumentation Area) is constituted basically in a technical attendance to the IPEN research centers and sometimes to industry that needs maintenance in nuclear equipments. (E.G.) [pt

  3. Applying Online Monitoring for Nuclear Power Plant Instrumentation and Control

    Science.gov (United States)

    Hashemian, H. M.

    2010-10-01

    This paper presents a practical review of the state-of-the-art means for applying OLM data acquisition in nuclear power plant instrumentation and control, qualifying or validating the OLM data, and then analyzing it for static and dynamic performance monitoring applications. Whereas data acquisition for static or steady-state OLM applications can require sample rates of anywhere from 1 to 10 seconds to 1 minutes per sample, for dynamic data acquisition, higher sampling frequencies are required (e.g., 100 to 1000 Hz) using a dedicated data acquisition system capable of providing isolation, anti-aliasing and removal of extraneous noise, and analog-to-digital (A/D) conversion. Qualifying the data for use with OLM algorithms can involve removing data `dead' spots (for static data) and calculating, examining, and trending amplitude probability density, variance, skewness, and kurtosis. For static OLM applications with redundant signals, trending and averaging qualification techniques are used, and for single or non-redundant signals physical and empirical modeling are used. Dynamic OLM analysis is performed in the frequency domain and/or time domain, and is based on the assumption that sensors' or transmitters' dynamic characteristics are linear and that the input noise signal (i.e., the process fluctuations) has proper spectral characteristics.

  4. Upgrading instrumentation and control in nuclear power plants. Design criteria

    International Nuclear Information System (INIS)

    Rodriguez Rodriguez, M.C.; Alvarez Menendez, A.

    1997-01-01

    The use of programmed digital technology in Protection, Control, Monitoring and Information Systems in new generation nuclear power plants, or the use of this technology to replace or upgrade existing systems based on wired analog instrumentation and electromechanical relays, has led to new international standards which establish new design requirements or adapt existing requirements to this technology. Additionally, both regulatory organisations and the industry are discussing the reliability of this technology, regarding common mode failures that may occur in redundant protection channels, due to the use of equipment and software with the same characteristics. The first part of this paper addresses the most important aspects of new international standards regarding classification criteria for I and C systems, equipment and functions, depending on their importance to safety and the design criteria applicable to each category. Special attention is drawn to requirements concerning software quality assurance and the design of new control rooms. The paper then goes on to discuss the different technical solutions being implemented, using equipment and software diversification, in order to prevent the possibility of common mode failures affecting the protection function. (Author)

  5. Tamper and radiation resistant instrumentation for safeguarding special nuclear materials

    International Nuclear Information System (INIS)

    Parsons, B.B.; Wells, J.L.

    1977-01-01

    A tamper-resistant liquid level/accountability instrumentation system for safeguards use has been developed and tested. The tests demonstrate the accuracy of liquid level measurement using TDR (Time Domain Reflectometry) techniques and the accuracy of differential pressure and temperature measurements utilizing a custom designed liquid level sensor probe. The calibrated liquid level, differential pressure, and temperature data provide sufficient information to accurately determine volume, density, and specific gravity. Test solutions used include ordinary tap water, diluted nitric acid in varying concentrations, and diluted uranium trioxide also in varying concentrations. System operations and preliminary test results conducted at the General Electric Midwest Fuel Recovery Plant and the National Bureau of Standards, respectively, suggest that the system will provide the safeguards inspector with an additional tool for real-time independent verification of normal operations and special nuclear materials accountancy data for chemical reprocessing plants. This paper discusses the system design concepts, including a brief description of the tamper and radiation resistant features, the preliminary test results, and the significance of the work

  6. Verification and software validation for nuclear instrumentation; Verificacion y validacion de software para instrumentacion nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Gaytan G, E. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Salgado G, J. R. [Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Barragan No. 779, Col. Narvarte, 03020 Mexico D. F. (Mexico); De Andrade O, E. [Universidad Federal de Rio de Janeiro, Caixa Postal 68509, 21945-970 Rio de Janeiro (Brazil); Ramirez G, A., E-mail: elvira.gaytan@inin.gob.mx [Comision Federal de Electricidad, Gerencia de Centrales Nucleoelectricas, Alto Lucero, Veracruz (Mexico)

    2014-10-15

    In this work is presented a Verification Methodology and Software Validation, to be applied in instruments of nuclear use with associate software. This methodology was developed under the auspices of IAEA, through the regional projects RLA4022 (ARCAL XCIX) and RLA1011 (RLA CXXIII), led by Mexico. In the first project three plans and three procedures were elaborated taking into consideration IEEE standards, and in the second project these documents were updated considering ISO and IEC standards. The developed methodology has been distributed to the participant countries of Latin America in the ARCAL projects and two related courses have been imparted with the participation of several countries, and participating institutions of Mexico like Instituto Nacional de Investigaciones Nucleares (ININ), Comision Federal de Electricidad (CFE) and Comision Nacional de Seguridad Nuclear y Salvaguardias (CNSNS). In the ININ due to the necessity to work with Software Quality Guarantee in systems for the nuclear power plant of the CFE, a Software Quality Guarantee Plan and five procedures were developed in the year 2004, obtaining the qualification of the ININ for software development for the nuclear power plant of CFE. These first documents were developed taking like reference IEEE standards and regulator guides of NRC, being the first step for the development of the methodology. (Author)

  7. Proceedings of the Seminar on the Development of Nuclear Instrumentation Technology and Engineering

    International Nuclear Information System (INIS)

    Utaja; Setyanto; Suryanto; Martono, Herlan; Kristejo; Pribadi, Rukmono

    2003-01-01

    Proceedings of the Seminar on the Development of Nuclear Instrumentation Technology Engineering,all aspects of result research activity report that have been presented in Seminar of Development and Engineering on Medicine Industry and Environment was held on May 20, 2003. The Seminar encompass Instrumentation : Reactor Control, Industry, Medicine and based on Nuclear Instrumentation and Application, software relevant to Nuclear Engineering . The purpose of this seminar be able to information exchange among research walkers in National Nuclear Energy Agency. There are 20 papers which have separated Index

  8. Nuclear energy as an instrument of economic policy

    International Nuclear Information System (INIS)

    Thiriet, L.

    1984-01-01

    This chapter is a review of how nuclear power can help achieve energy policy objectives, illustrated with examples based on experience in France. It is preceded by a preliminary consideration of the global economic background for the development of nuclear power today. Headings are: introduction; world-wide economic environment; nuclear energy and inflation; nuclear energy and external constraints; nuclear energy, foreign currency and employment in the French context. (U.K.)

  9. Nuclear radiation monitoring instruments for personnel in nuclear disaster for defence needs

    International Nuclear Information System (INIS)

    Bhatnagar, P.K.; Vaijapurkar, S.G.; Yadav, Ashok

    2005-01-01

    Ever since the tragedy of nuclear device exploding over Japan by USA in 1945 awareness exists amongst the armed forces personnel all over the world that a requirement of implementing radiological protection is imminent. Towards this adoption of radiological safety programme is a criterion. In a nuclear war disaster scenario, one encounters initial nuclear radiation (gamma and neutron radiations), gamma radiations from fallout, heat and blast. At certain distances Tanks/ armoured vehicles will survive and 4 R/s radiation level sensing to actuate relays for closing the ports of vehicles is essential, leading to reduction in inhalation, ingestion of fallout radioactivity and reduction in radiation dose received by occupants of the vehicle. Towards this sturdy radiation monitors to indicate gamma dose rate of the order of 1000 R/h, gamma and neutron dosimeters of the order of 1000 cGy with reading instruments are to be developed. These must work in harsh environment and sustain JSS 55555 conditions of army. Defence Laboratory, Jodhpur over past one decade has been involved in developing personnel, area and field monitoring instruments like dosimeters, survey meters, which are useful, acceptable to army personnel, armoured and personnel carrier vehicles, field structures/shelters. Technology transfer after satisfaction of armed forces, product ionisation and supply, maintenance, training has been the endeavor of the DRDO. Herein it is proposed to highlight the techno electronics nuclear radiation monitoring sensors and associated electronics systems developed first time in the country and productionised in bulk for Services for implementing personnel protection. The sensors developed and described are - Radiophotoluminescent Glass (RPLG) for gamma radiation dosimetry , neutron sensitive PIN diode for fast neutron dosimetry, gamma radiation sensitive PIN diode, superheated liquid neutron and gamma sensors. The dosimeter, dose rate meter and field/area instruments are

  10. Report from the Netherlands [nuclear power plant control and instrumentation

    International Nuclear Information System (INIS)

    Plas, Y. van der

    2007-01-01

    A view is given on status and developments of NPP instrumentation and control related subjects in The Netherlands. Induced by a first periodic safety review NPP Borssele finalised an extensive upgrading programme in summer 1997. An additional optimisation in smaller parts of the I and C was completed in the 1998 outage. A second periodic safety review of Borssele was finished in 2004, concluding the plant applies to the current rules and regulations and to the state of the art. Nevertheless an improvement plan describing technical design and operational modifications by which nuclear safety has almost been finished now. The job was done in the long outage of autumn 2006 in combination with a turbine and turbine control upgrade. The latter led to a nett electric power output increase of around 7%. Also the HFR research reactor in Petten was subjected to an extensive first periodic safety review, leading to a new license. A major part of the resulting modification plan has been implemented now. Realisation of some safety enhancements in Petten are not easy and remained longer than expected in a stage of innovation. The electricity market was subjected to a liberalisation process. Production and transmission of electric energy has been separated. Electricity is produced now in a rather free market and many power plants have been sold to foreign investors. Only the Borssele power plants remained self- reliant in a period with a threat of closing. NPP Dodewaard is in decommissioning since 1997. It has been partially dismantled and entered a preservation period of 40 years. The radioactive waste storage organisation COVRA is further expanded for low radiating waste and also for storage of rest products from the Urenco enrichment facilities. This article concludes with mentioning some topics for IAEA's attention. (author)

  11. ER-E3 regulation. Minimal instrumentation that must operate nuclear medicine in Cuba

    International Nuclear Information System (INIS)

    2015-01-01

    The purpose of this regulation is to define the instrumentation that must exist in any institution conducting the practice of nuclear medicine in Cuba. This regulation emphasizes two aspects: The minimum equipment necessary to operate a nuclear medicine laboratory for use 'in vitro' and the minimum equipment required to operate a Nuclear Medicine use 'in vivo'

  12. Supervision of electrical and instrumentation systems and components at nuclear facilities

    International Nuclear Information System (INIS)

    1986-01-01

    The general guidelines for the supervision of nuclear facilities carried out by the Finnish Centre for Radiation and Nuclear Safety (STUK) are set forth in the guide YVL 1.1. This guide shows in more detail how STUK supervises the electrical and instrumentation systems and components of nuclear facilities

  13. Validation procedures of software applied in nuclear instruments. Proceedings of a technical meeting

    International Nuclear Information System (INIS)

    2007-09-01

    The IAEA has supported the availability of well functioning nuclear instruments in Member States over more than three decades. Some older or aged instruments are still being used and are still in good working condition. However, those instruments may not meet modern software requirements for the end-user in all cases. Therefore, Member States, mostly those with emerging economies, modernize/refurbish such instruments to meet the end-user demands. New advanced software is not only applied in case of new instrumentation, but often also for new and improved applications of modernized and/or refurbished instruments in many Member States for which in few cases the IAEA also provided support. Modern software applied in nuclear instrumentation plays a key role for their safe operation and execution of commands in a user friendly manner. Correct data handling and transfer has to be ensured. Additional features such as data visualization, interfacing to PC for control and data storage are often included. To finalize the task, where new instrumentation which is not commercially available is used, or aged instruments are modernized/refurbished, the applied software has to be verified and validated. A Technical Meeting on 'Validation Procedures of Software Applied in Nuclear Instruments' was organized in Vienna, 20-23 November 2006, to discuss the verification and validation process of software applied to operation and use of nuclear instruments. The presentations at the technical meeting included valuable information, which has been compiled and summarized in this publication, which should be useful for technical staff in Member States when modernizing/refurbishing nuclear instruments. 22 experts in the field of modernization/refurbishment of nuclear instruments as well as users of applied software presented their latest results. Discussion sessions followed the presentations. This publication is the outcome of deliberations during the meeting

  14. Nuclear measurements, techniques and instrumentation industrial applications plasma physics and nuclear fusion. 1980-1994. International Atomic Energy Agency publications

    International Nuclear Information System (INIS)

    1995-04-01

    This catalogue lists all sales publications of the International Atomic Energy Agency dealing with Nuclear Measurements, Techniques and Instrumentation, with Industrial Applications (of Nuclear Physics and Engineering), and with Plasma Physics and Nuclear Fusion, issued during the period 1980-1994. Most publications are in English. Proceedings of conferences, symposia, and panels of experts may contain some papers in other languages (French, Russian, or Spanish), but all papers have abstracts in English. Price quotes are in Austrian Schillings, do not include local taxes, and are subject to change without notice. Contents cover the three main categories of (i) Nuclear Measurements, Techniques and Instrumentation (Physics, Chemistry, Dosimetry Techniques, Nuclear Analytical Techniques, Research Reactors and Particle Accelerator Applications, Nuclear Data); (ii) Industrial Applications (Radiation Processing, Radiometry, Tracers); and (iii) Plasma Physics and Nuclear Fusion

  15. Nuclear measurements, techniques and instrumentation industrial applications plasma physics and nuclear fusion, 1980-1993. International Atomic Energy Agency publications

    International Nuclear Information System (INIS)

    1994-01-01

    This catalogue lists all sales publications of the International Atomic Energy Agency dealing with Nuclear Measurements, Techniques and Instrumentation, with Industrial Applications (of Nuclear Physics and Engineering), and with Plasma Physics and Nuclear Fusion, issued during the period 1980-1993. Most publications are in English. Proceedings of conferences, symposia, and panels of experts may contain some papers in other languages (French, Russian, or Spanish), but all papers have abstracts in English. Price quotes are in Austrian Schillings, do not include local taxes, and are subject to change without notice. Contents cover the three main categories of (I) Nuclear Measurements, Techniques and Instrumentation (Physics, Chemistry, Dosimetry Techniques, Nuclear Analytical Techniques, Research Reactors and Particle Accelerator Applications, Nuclear Data); (ii) Industrial Applications (Radiation Processing, Radiometry, Tracers); and (iii) Plasma Physics and Nuclear Fusion

  16. A novel digital pulse processing architecture for nuclear instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Moline, Yoann; Thevenin, Mathieu; Corre, Gwenole [CEA, LIST - Laboratoire Capteurs et Architectures electroniques, F-91191 Gif-sur-Yvette, (France); Paindavoine, Michel [CNRS, Universite de Bourgogne - Laboratoire d' Etude de l' Apprentissage et du Developpement, 21000 DIJON, (France)

    2015-07-01

    The field of nuclear instrumentation covers a wide range of applications, including counting, spectrometry, pulse shape discrimination and multi-channel coincidence. These applications are the topic of many researches, new algorithms and implementations are constantly proposed thanks to advances in digital signal processing. However, these improvements are not yet implemented in instrumentation devices. This is especially true for neutron-gamma discrimination applications which traditionally use charge comparison method while literature proposes other algorithms based on frequency domain or wavelet theory which show better performances. Another example is pileups which are generally rejected while pileup correction algorithms also exist. These processes are traditionally performed offline due to two issues. The first is the Poissonian characteristic of the signal, composed of random arrival pulses which requires to current architectures to work in data flow. The second is the real-time requirement, which implies losing pulses when the pulse rate is too high. Despite the possibility of treating the pulses independently from each other, current architectures paralyze the acquisition of the signal during the processing of a pulse. This loss is called dead-time. These two issues have led current architectures to use dedicated solutions based on re-configurable components like Field Programmable Gate Arrays (FPGAs) to overcome the need of performance necessary to deal with dead-time. However, dedicated hardware algorithm implementations on re-configurable technologies are complex and time-consuming. For all these reasons, a programmable Digital pulse Processing (DPP) architecture in a high level language such as Cor C++ which can reduce dead-time would be worthwhile for nuclear instrumentation. This would reduce prototyping and test duration by reducing the level of hardware expertise to implement new algorithms. However, today's programmable solutions do not meet

  17. A novel digital pulse processing architecture for nuclear instrumentation

    International Nuclear Information System (INIS)

    Moline, Yoann; Thevenin, Mathieu; Corre, Gwenole; Paindavoine, Michel

    2015-01-01

    The field of nuclear instrumentation covers a wide range of applications, including counting, spectrometry, pulse shape discrimination and multi-channel coincidence. These applications are the topic of many researches, new algorithms and implementations are constantly proposed thanks to advances in digital signal processing. However, these improvements are not yet implemented in instrumentation devices. This is especially true for neutron-gamma discrimination applications which traditionally use charge comparison method while literature proposes other algorithms based on frequency domain or wavelet theory which show better performances. Another example is pileups which are generally rejected while pileup correction algorithms also exist. These processes are traditionally performed offline due to two issues. The first is the Poissonian characteristic of the signal, composed of random arrival pulses which requires to current architectures to work in data flow. The second is the real-time requirement, which implies losing pulses when the pulse rate is too high. Despite the possibility of treating the pulses independently from each other, current architectures paralyze the acquisition of the signal during the processing of a pulse. This loss is called dead-time. These two issues have led current architectures to use dedicated solutions based on re-configurable components like Field Programmable Gate Arrays (FPGAs) to overcome the need of performance necessary to deal with dead-time. However, dedicated hardware algorithm implementations on re-configurable technologies are complex and time-consuming. For all these reasons, a programmable Digital pulse Processing (DPP) architecture in a high level language such as Cor C++ which can reduce dead-time would be worthwhile for nuclear instrumentation. This would reduce prototyping and test duration by reducing the level of hardware expertise to implement new algorithms. However, today's programmable solutions do not meet

  18. Installation Of A Training Center With Nuclear Instruments In The I.N.E.A

    International Nuclear Information System (INIS)

    Camargo B, Ana C.; Periaza C, A.

    1993-01-01

    In the framework of the regional technical cooperation of the countries in development, at present, the IAEA executes some investigation projects such as the program of Regional Arrangements of Technical Cooperation for Latin America and Caribbean (ARCAL), from which the program of nuclear instrumentation ARCAL II is derived and by agreement the INEA should install a reference center in Electronic and Nuclear Instrumentation. To complete this objective it has assigned the development of different sub projects, among which is the installation of a training center for operation, cares and quality control of nuclear instruments of medical applications

  19. Quality control procedures applied to nuclear instruments. Proceedings of a technical meeting

    International Nuclear Information System (INIS)

    2008-11-01

    Quality Control (QC), test procedures for Nuclear Instrumentation are important for assurance of proper and safe operation of the instruments, especially with regard to equipment related to radiological safety, human health and national safety. Correct measurements of radiation parameters must be ensured, i.e., accurate measurement of the number of radioactive events, counting times and in some cases accurate measurements of the radiation energy and occurring time of the nuclear events. There are several kinds of testing on nuclear instruments, for example, type-testing done by suppliers, acceptance testing made by the end users, Quality Control tests after repair and Quality Assurance/Quality Controls tests made by end-users. All of these tests are based in many cases on practical guidelines or on the experience of the own specialist, the available standards on this topic also need to be adapted to specific instruments. The IAEA has provided nuclear instruments and supported the operational maintenance efforts of the Member States. Although Nuclear Instrumentation is continuously upgraded, some older or aged instruments are still in use and in good working condition. Some of these instruments may not, however, meet modern requirements for the end-user therefore, Member States, mostly those with emerging economies, modernize/refurbish such instruments to meet the end-user demands. As a result, new instrumentation which is not commercially available, or modernized/refurbished instruments, need to be tested or verified with QC procedures to meet national or international certification requirements. A technical meeting on QC procedures applied to nuclear instruments was organized in Vienna from 23 to 24 August 2007. Existing and required QC test procedures necessary for the verification of operation and measurement of the main characteristics of nuclear instruments was the focus of discussion at this meeting. Presentations made at the technical meeting provided

  20. The effects of nuclear power generators upon electronic instrumentation

    Science.gov (United States)

    Miller, C. G.; Truscello, V. C.

    1970-01-01

    Radiation sensitivity of electronic instruments susceptible to neutron and gamma radiation is evaluated by means of a radioisotope thermoelectric generator /RTG/. The gamma field of the RTG affects instrument operation and requires shielding, the neutron field does not affect operation via secondary capture-gamma production.

  1. Irradiation test on connector part for nuclear instrumentation of nuclear powered ship 'Mutsu'

    International Nuclear Information System (INIS)

    Kudo, Takahiro; Mizushima, Toshihiko; Tsunoda, Tsunemi; Nakazawa, Toshio

    1991-01-01

    The nuclear instrumetnation facility of the nuclear powered ship 'Mutsu' is composed of neutron detectors, signal cables and the circuits for measurement, and ocntinuously monitors neutron flux. Since this facility treats very faint signals, for the signal cables, coaxial cables and triple coaxial cables are used. The coaxial cables for the nuclear instrumentation are equipped with connectors at both ends, and those are called prefabricated cable. The prefabricated cables are connected to neutron detectors, and installed in the detection holes of the primary shielding tank in the containment vessel. Therefore, at the time of reactor operation, they are exposed to high radiation, and the deterioration of the characteristics of the prefabricated cables is feared. For the purpose of confirming that the part of deteriorating the insulation of the prefabricated cables is connectors, and clarifying the cause of the deterioration of insulation in connector part, the irradiation test of this time was carried out. The environment in which the prefabricated cables are laid, the specifications of the cables and connectors, the materials, gamma ray irradiation and the test results are reported. (K.I.)

  2. Nuclear Power Plant Control and Instrumentation activities in Finland

    International Nuclear Information System (INIS)

    Haapanen, P.; Wahlstroem, B.

    1990-01-01

    Finland has achieved some remarkable achievements in nuclear power production. Existing four plants have some of the best operating records in the world - high capacity factors, low occupational doses and short refuelling outages. Although public opinion was strongly turned against nuclear power after Chernobyl accident, and no decisions for new nuclear plants can be made before next elections in 1991, the nuclear option is still open. Utility companies are maintaining readiness to start new construction immediately after a positive political decision is made. One important component of the good operation history of the Finnish nuclear power plants is connected to the continuous research, development, modification and upgrading work, which is proceeding in Finland. In the following a short description is given on recent activities related to the I and C-systems of the nuclear power plants. (author). 2 tabs

  3. Group fellowship training in nuclear spectroscopy instrumentation maintenance at the Seibersdorf Laboratories

    International Nuclear Information System (INIS)

    Xie, Y.; Abdel-Rassoul, A.A.

    1989-01-01

    Nuclear spectroscopy instruments are important tools for nuclear research and applications. Several types of nuclear spectrometers are being sent to numerous laboratories in developing countries through technical co-operation projects. These are mostly sophisticated systems based on different radiation detectors, analogue and digital circuitry. In most cases, they use microprocessor or computer techniques involving software and hardware. Maintenance service and repair of these systems is a major problem in many developing countries because suppliers do not set up service stations. The Agency's Laboratories at Seibersdorf started conducting group fellowship training on nuclear spectroscopy instrumentation maintenance in 1987. This article describes the training programme

  4. Quality control of nuclear medicine instruments, 1991; Control de calidad de los instrumentos de medicina nuclear, 1991

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    This document gives detailed guidance on the quality control of various instruments used in nuclear medicine. A first preliminary document was drawn up in 1979. A revised and extended version, incorporating recommended procedures, test schedules and protocols was prepared in 1982. The first edition of 'Quality Control of Nuclear Medicine Instruments', IAEA-TECDOC-317, was printed in late 1984. Recent advances in the field of nuclear medicine imaging made it necessary to add a chapter on Camera-Computer Systems and another on SPECT Systems.

  5. Intelligent data-acquisition instrumentation for special nuclear material assay data analysis

    International Nuclear Information System (INIS)

    Ethridge, C.D.

    1980-01-01

    The Detection, Surveillance, Verification, and Recovery Group of the Los Alamos Scientific Laboratory Energy Division/Nuclear Safeguards Programs is now utilizing intelligent data-acquisition instrumentation for assay data analysis of special nuclear material. The data acquisition and analysis are enabled by the incorporation of a number-crunching microprocessor sequenced by a single component microcomputer. Microcomputer firmware establishes the capability for processing the computation of several selected functions and also the ability of instrumentation self-diagnostics

  6. Design concepts for a nuclear digital instrumentation and control system platform

    International Nuclear Information System (INIS)

    Ou, T. C.; Chen, C. K.; Chen, P. J.; Shyu, S. S.; Lee, C. L.; Hsieh, S. F.

    2010-10-01

    The objective of this paper is to present the development results of the nuclear instrumentation and control system in Taiwan. As the Taiwan nuclear power plants age, the need to consider upgrading of both their safety and non-safety-related instrumentation and control systems becomes more urgent. Meanwhile, the digital instrumentation and control system that is based on current fast evolving electronic and information technologies are difficult to maintain effectively. Therefore, Institute of Nuclear Energy Research was made a decision to promote the Taiwan Nuclear Instrumentation and Control System project to collaborate with domestic electronic industry to establish self-reliant capabilities on the design, manufacturing, and application of nuclear instrumentation and control systems with newer technology. In the case of safety-related applications like nuclear instrumentation and control, safety-oriented quality control is required. In order to establish a generic qualified digital platform, the world-wide licensing experience should be considered in the licensing process. This paper describes the qualification and certification tools by IEC 61508 for design and development of safety related equipment and explains the basis for many decisions made while performing the digital upgrade. (Author)

  7. Managing modernization of nuclear power plant instrumentation and control systems

    International Nuclear Information System (INIS)

    2004-02-01

    There are many reasons why I and C systems need to be modernized in nuclear power plants, including obsolescence, results of aging technology, failure rates, and the need for additional functionality and improved performance. For many plants, Instrumentation and Control (I and C) modernization will be one of the largest and most important activities over the next decade or longer. Modernization of I and C systems will represent a major capital investment for the plants in the future. Therefore, good and informed management to determine what needs to be modernized, how it should be modernized, and then to do the actual modernization is essential in order to minimize the costs and maximize the benefits. While many reports have discussed I and C modernization topics, one topic that needs more work is how to management I and C modernization projects efficiently. In order to have an efficient modernization project, it is essential that the plant does strategic planning to determine what needs to be done with I and C systems in the context of the overall plant goals, objectives, and commitments. This includes determining what features the the overall I and C, and control room, of the plant should look like at the end of the time period considered by the strategic planning effort, what systems need to be modernized, what systems can be maintained, the priority order of the systems to be modernized, how the systems should be modernized, and so on. To ensure that the individual I and C and control room modernization projects are done consistently with the strategic plan and the overall plant goals, objectives, and commitments, it is important that management establishes a set of plant specific guidelines and generic requirements and processes that the project will need to follow and that can be used as part of the requirements specifications for the new systems. High level management leadership and support is needed for I and C modernization in order to maintain the high

  8. Managing modernization of nuclear power plant instrumentation and control systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-02-01

    There are many reasons why I and C systems need to be modernized in nuclear power plants, including obsolescence, results of aging technology, failure rates, and the need for additional functionality and improved performance. For many plants, Instrumentation and Control (I and C) modernization will be one of the largest and most important activities over the next decade or longer. Modernization of I and C systems will represent a major capital investment for the plants in the future. Therefore, good and informed management to determine what needs to be modernized, how it should be modernized, and then to do the actual modernization is essential in order to minimize the costs and maximize the benefits. While many reports have discussed I and C modernization topics, one topic that needs more work is how to management I and C modernization projects efficiently. In order to have an efficient modernization project, it is essential that the plant does strategic planning to determine what needs to be done with I and C systems in the context of the overall plant goals, objectives, and commitments. This includes determining what features the the overall I and C, and control room, of the plant should look like at the end of the time period considered by the strategic planning effort, what systems need to be modernized, what systems can be maintained, the priority order of the systems to be modernized, how the systems should be modernized, and so on. To ensure that the individual I and C and control room modernization projects are done consistently with the strategic plan and the overall plant goals, objectives, and commitments, it is important that management establishes a set of plant specific guidelines and generic requirements and processes that the project will need to follow and that can be used as part of the requirements specifications for the new systems. High level management leadership and support is needed for I and C modernization in order to maintain the high

  9. Recent developments in the field of nuclear power plant control and instrumentation in Hungary

    International Nuclear Information System (INIS)

    Pellionisz, P.

    1992-01-01

    A considerable percentage (32.8% in 1989) of electric energy in Hungary is produced by nuclear power plant Paks. The paper presents an overview of activities on control and instrumentation in the following areas: Control and instrumentation upgrading; training simulators; diagnostic systems. (author). 1 tab

  10. Application specific integrated circuits and hybrid micro circuits for nuclear instrumentation

    International Nuclear Information System (INIS)

    Chandratre, V.B.; Sukhwani, Menka; Mukhopadhyay, P.K.; Shastrakar, R.S.; Sudheer, M.; Shedam, V.; Keni, Anubha

    2009-01-01

    Rapid development in semiconductor technology, sensors, detectors and requirements of high energy physics experiments as well as advances in commercially available nuclear instruments have lead to challenges for instrumentation. These challenges are met with development of Application Specific Integrated Circuits and Hybrid Micro Circuits. This paper discusses various activities in ASIC and HMC development in Bhabha Atomic Research Centre. (author)

  11. Implementation of a communication and control network for the instruments of a nuclear analytical laboratory

    International Nuclear Information System (INIS)

    Cunya, Eduardo; Baltuano, Oscar; Bedregal, Patricia

    2013-01-01

    This paper describes the implementation of a communication network and control for a conventional laboratory instruments and nuclear analytical processes based on CAN open field bus to control devices and machines. Hardware components and software developed as well as installation and configuration tools for incorporating new instruments to the network re presented. (authors).

  12. Nuclear power plant control and instrumentation in Italy

    International Nuclear Information System (INIS)

    Lantieri, A.

    1992-01-01

    The National Energy Plan (PEN) approved by the Government of Italy in August 1988 provides a programme of research and industrial development or reactors with inherent and passive safety features. For the Control Systems and Instrumentation there is the aim to define rules and design criteria, by evaluating the impact of inherent safety goals on the C and I design. The effort on man-machine interface is considered essential to increase safety and efficiency of advanced reactors. The paper briefly describes the activity in control systems and in the instrumentation area. (author)

  13. The selection of embedded computer using in the nuclear physics instruments

    International Nuclear Information System (INIS)

    Zhang Jianchuan; Nan Gangyang; Wang Yanyu; Su Hong

    2010-01-01

    It introduces the requirement for embedded PC and the benefits of using it in the experimental nuclear physics instrument developing and improving project. A cording to the specific requirements in the project of improving laboratory instruments. several kinds of embedded computer are compared and specifically tested. Thus, a x86 architecture embedded computer, which have ultra-low-power consumption and a small in size, is selected to be the main component of the controller using in the nuclear physics instrument, and this will be used in the high-speed data acquisition and electronic control system. (authors)

  14. Validation of smart sensor technologies for instrument calibration reduction in nuclear power plants

    International Nuclear Information System (INIS)

    Hashemian, H.M.; Mitchell, D.W.; Petersen, K.M.; Shell, C.S.

    1993-01-01

    This report presents the preliminary results of a research and development project on the validation of new techniques for on-line testing of calibration drift of process instrumentation channels in nuclear power plants. These techniques generally involve a computer-based data acquisition and data analysis system to trend the output of a large number of instrument channels and identify the channels that have drifted out of tolerance. This helps limit the calibration effort to those channels which need the calibration, as opposed to the current nuclear industry practice of calibrating essentially all the safety-related instrument channels at every refueling outage

  15. Electronic constant current and current pulse signal generator for nuclear instrumentation testing

    International Nuclear Information System (INIS)

    Brown, R.A.

    1994-01-01

    Circuitry is described for testing the ability of an intermediate range nuclear instrument to detect and measure a constant current and a periodic current pulse. The invention simulates the resistance and capacitance of the signal connection of a nuclear instrument ion chamber detector and interconnecting cable. An LED flasher/oscillator illuminates an LED at a periodic rate established by a timing capacitor and circuitry internal to the flasher/oscillator. When the LED is on, a periodic current pulse is applied to the instrument. When the LED is off, a constant current is applied. An inductor opposes battery current flow when the LED is on. 1 figures

  16. XML for nuclear instrument control and monitoring: an approach towards standardisation

    International Nuclear Information System (INIS)

    Bharade, S.K.; Ananthakrishnan, T.S.; Kataria, S.K.; Singh, S.K.

    2004-01-01

    Communication among heterogeneous system with applications running under different operating systems and applications developed under different platforms has undergone rapid changes due to the adoption of XML standards. These are being developed for different industries like Chemical, Medical, Commercial etc. The High Energy Physics community has already a standard for exchange of data among different applications , under heterogeneous distributed systems like the CMS Data Acquisition System. There are a large number of Nuclear Instruments supplied by different manufactures which are increasingly getting connected. This approach is getting wider acceptance in instruments at reactor sites, accelerator sites and complex nuclear experiments -especially at centres like CERN. In order for these instruments to be able to describe the data which is available from them in a platform independent manner XML approach has been developed. This paper is the first attempt at Electronics Division for proposing an XML standard for control, monitoring, Data Acquisition and Analysis generated by Nuclear Instruments at Accelerator sites, Nuclear Reactor plant and Laboratory. The gamut of Nuclear Instruments include Multichannel Analysers, Health Physics Instruments, Accelerator Control Systems, Reactor Regulating systems, Flux mapping Systems etc. (author)

  17. Nuclear power plant control and instrumentation activities in Finland

    International Nuclear Information System (INIS)

    Haapanen, P.; Wahlstroem, B.

    1992-01-01

    Finland has remarkable achievements in nuclear power. The existing four plants have some of the best operating records in the world - high capacity factors, low occupational doses and short refuelling outages. Public opinion was strongly turned against nuclear power after Chernobyl accident, and the previous government decided not to allow for the construction of a fifth nuclear unit during its period of reign. The opposition has however slowly been diminishing. According to the latest polls the opinion is almost balanced. Finnish power companies are going to file an application for a decision-in-principle to build a new plant to the new government appointed in April 1991. A readiness to start new construction project immediately after a positive political decision is made has been maintained during the intermediate period. Continuous research, development, modification and upgrading work provide important components of the good operational history of the Finnish nuclear power plants. Efforts have also been devoted to identifying possible new problems arising from the use of distributed digital C and I technology. The following a short description is summarizing recent activities related to the C and I-systems of the nuclear power plants. (author). 3 tab

  18. Soil–structure interaction analyses to locate nuclear power plant free-field seismic instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, James J., E-mail: jasjjoh@aol.com [James J. Johnson and Associates, Alamo, CA (United States); Ake, Jon P. [US Nuclear Regulatory Commission, Washington, DC (United States); Maslenikov, Oleg R. [James J. Johnson and Associates, Alamo, CA (United States); Kenneally, Roger M. [Consultant, Seminole, FL (United States)

    2015-12-15

    Highlights: • Determine the location of seismic instrumentation so that recorded motion will be free-field motion. • Certified Designs of nuclear island for AP1000 and EPR; ABWR Reactor Building were analyzed. • Three site conditions and multiple recorded time histories were considered. • Instrumentation located 1-diameter from the edge of structure/foundation is adequate. • Acceptance criteria were probability of non-exceedance of response spectra values. - Abstract: The recorded earthquake ground motion at the nuclear power plant site is needed for several purposes. US Nuclear Regulatory Commission (NRC) Regulatory Guide 1.12, Nuclear Power Plant Instrumentation for Earthquakes, NRC (1997a), describes acceptable instrumentation to meet the requirements in NRC's regulations pertaining to earthquake engineering criteria for nuclear power plants. The ground motion data recorded by the free-field seismic instrumentation are used to compare the actual earthquake motion at the site with the design input motion. The result of the comparison determines if the Operating Basis Earthquake ground motion (OBE) has been exceeded and plant shutdown is required per the guidance in NRC Regulatory Guide 1.166, Pre-Earthquake Planning and Immediate Nuclear Power Plant Operator Postearthquake Actions, NRC (1979b). The free-field is defined as a location on the ground surface or in the site soil column that is sufficiently distant from the site structures to be essentially unaffected by the vibration of the site structures.

  19. Maintenance of process instrumentation in nuclear power plants

    International Nuclear Information System (INIS)

    Hashemian, H.M.

    2006-01-01

    The resurgence of the nuclear power industry at a time when the nuclear plant I and C workforce is diminishing due to aging and retirements has been the motivation for writing this book. This book compiles 30 years of practical knowledge gained by the author and his staff in testing the I and C systems of nuclear power plants around the world. It focuses on process temperature and pressure sensors and the verification of these sensors' calibration and response time. In spite of great advances in electronics, computers, and measurement technologies, important process parameters such as temperature and pressure are still measured with conventional sensing techniques found in RTDs, thermocouples, and conventional pressure and differential pressure sensors. Furthermore, no improved technology providing comparable performance is currently on the horizon. Therefore, it is important to understand how these sensors function and the testing techniques for verifying their performance. This book is intended to help provide this understanding. (orig.)

  20. Maintenance quality surveillance for nuclear reactor instrument and control systems

    International Nuclear Information System (INIS)

    Clement, T.M.

    1976-01-01

    A description is given of a formal program of mandatory testing and inspection for assurance of reliability at the N-reactor. The techniques and procedures are called Equipment Maintenance Standards (EMS) and cover the nuclear plant systems which affect nuclear safety, environmental control, continuity of operation and reactor life. The scope of the program is such that all electrical, chemical, mechanical, and nuclear devices with interconnecting circuitry, linkages, and piping are functionally checked and/or inspected from sensors through actuating media necessary for carrying out the defined functions under startup, operating, and shutdown conditions and also under any credible accident condition. Records are kept of the AS FOUND results of the tests and inspections along with adjustments and repairs required to correct any out-of-limits conditions found. These records are accumulated and are used as a source for quantitative reliability information and for evaluating wear-out or design problems

  1. Instrumentation and Controls evaluation for space nuclear power systems

    International Nuclear Information System (INIS)

    Anderson, J.L.; Oakes, L.C.

    1984-01-01

    Design of control and protection systems should be coordinated with the design of the neutronic, thermal-hydraulic, and mechanical aspects of the core and plant at the earliest possible stage of concept development. An integrated systematic design approach is necessary to prevent uncoordinated choices in one technology area from imposing impractical or impossible requirements in another. Significant development and qualification will be required for virtually every aspect of reactor control and instrumentation. In-core instrumentation widely used in commercial light water reactors will not likely be usable in the higher temperatures of a space power plant. Thermocouples for temperature measurement and gamma thermometers for flux measurement appear to be the only viable candidates. Recent developments in ex-core neutron detectors may provide achievable alternatives to in-core measurements. Reliable electronic equipment and high-temperature actuators will require major development efforts

  2. Maintenance of process instrumentation in nuclear power plants

    CERN Document Server

    Hashemian, H M

    2006-01-01

    Compiles 30 years of practical knowledge gained by the author and his staff in testing the I and C systems of nuclear power plants around the world. This book focuses on process temperature and pressure sensors and the verification of these sensors' calibration and response time.

  3. Instrumentation in the nuclear medicine modern achievements and perspective developments

    International Nuclear Information System (INIS)

    Narkevich, B.Ya.

    1999-01-01

    Most important achievement and tendencies of development of physical maintenance of modern nuclear medicine are analysed. The urgent problems and directions of researches are considered in the field of development of the equipment, technologies of measurements and software maintenance, and also means and procedures of the warranty of radiodiagnostic researches [ru

  4. Russian Nuclear Power: an Instrument of Deterrence and Intimidation

    International Nuclear Information System (INIS)

    Marange, Celine

    2017-01-01

    Given current tensions with Western countries, nuclear power is assuming a new importance for Moscow. It serves as ever to compensate for the relative weakness of Russian forces in comparison to those of NATO and China. Furthermore, it increasingly serves as an intimidation to an adversary by demonstrating renewed power

  5. Recent control and instrumentation systems for BWR nuclear power plant

    International Nuclear Information System (INIS)

    Fujii, Hiroaki; Higashikawa, Yuichi; Sato, Hideyuki

    1990-01-01

    For the needs of the more stable operation of nuclear power stations, the upgrading of the measurement and control system for BWRs has been promoted by positively introducing remarkably advancing electronic technology. Further, it is aimed at to construct the synthetic digitized measurement and control system for nuclear power stations to heighten the operation reliability in ABWRs. As the first step of the development in the synthetic digitization, the monitoring and control system for radioactive waste treatment was put in practical use for No.5 plant of Kashiwazaki, Kariwa Nuclear Power Station, Tokyo Electric Power Co., Inc. Hitachi Ltd. has promoted the development and the application to actual plants of the measurement and control system for BWRs, in which digital control technology, optical information transmission technology and the operation-supporting technology using a computer were utilized. Hereafter, it is intended to expand the application of digital measurement and control aiming at improving the reliability, operation performance and maintainability. The nuclear power plant control complex with advanced man-machine interface-90 (NUCAMM-90) was developed, and its application to actual plants is planned. (K.I.)

  6. Quality assurance of imaging instruments for nuclear medicine

    International Nuclear Information System (INIS)

    Sera, T.; Csernay, L.

    1993-01-01

    Advanced quality control and assurance techniques for imaging instrumentation used in medical diagnosis are overviewed. The measurement systems for the homogeneity, linearity, geometrical resolution, energy resolution, sensitivity and pulse yield output of gamma camera detectors are presented in detail. The two most important quality control standards, the National Electrical Manufacturers' Association (NEMA) and the International Atomic Energy Agency standards and tests are described. Their use in gamma camera calibration is proposed. (R.P.) 22 refs.; 1 tabs

  7. Design of the power sources for portable nuclear instruments

    International Nuclear Information System (INIS)

    Chen Wei; Fang Fang; Cui Yan; Cui Junliang; Zhou Wei

    2007-01-01

    How to charge for the portable equipments is always a topical subject aimed by people, the application of new type batteries and Battery Management brings great facility to people's life, the rechargeable battery for portable equipments is widely used in portable equipments, but the convenience of the charging power source is limited in special situation. This paper will discuss how to combining rechargeable battery with traditional alkaline batteries for charging the portable instruments. (authors)

  8. Instrumentation

    International Nuclear Information System (INIS)

    Prieur, G.; Nadi, M.; Hedjiedj, A.; Weber, S.

    1995-01-01

    This second chapter on instrumentation gives little general consideration on history and classification of instrumentation, and two specific states of the art. The first one concerns NMR (block diagram of instrumentation chain with details on the magnets, gradients, probes, reception unit). The first one concerns precision instrumentation (optical fiber gyro-meter and scanning electron microscope), and its data processing tools (programmability, VXI standard and its history). The chapter ends with future trends on smart sensors and Field Emission Displays. (D.L.). Refs., figs

  9. Nuclear safety considerations with emphasis on instrumentation and control systems

    International Nuclear Information System (INIS)

    Beare, J.W.

    1978-01-01

    The conceptual model of a nuclear power plant in Canada is that it consists basically of two kinds of systems. The first kind is the process systems, that is, those structures and components associated with the production of nuclear energy and its conversion to other forms of energy. The second kind is the special safety systems, whose purpose it is to protect the public in the event of a serious failure in the process systems which might otherwise lead to unacceptable radiological consequences. Quantitative limits are set on the unavailability of the special safety systems. These limits are low enough to be consistent with low overall risk and yet can be demonstrated by test during operation of the plant. Low unavailability is an important but not the only condition required for low unrealiability for the special safety systems. The special safety systems minimize the chance of a cross-linked failure particularly under the conditions experienced as a result of the more severe types of postulated serious process failures. Nuclear power plants must also withstand, without a major hazard to the public, certain rare events associated with natural phenomena or man-made activities off-site and also certain in-plant events such as fire or break-up of a turbine-generator which might have a cross-linking effect on process and safety systems. In the latest designs, Canadian nuclear power plants have emergency systems to deal with such events. The emergency systems have an enhanced degree of physical and functional separation from other plant systems. (author)

  10. Digitization of instrumentation and control in nuclear power plants

    International Nuclear Information System (INIS)

    Hofmann, A.; Buschhorn, W.; Pache, K.; Kimmel, W.; Hoeing, M.

    1997-01-01

    Unit 1 of the Chooz NPP was connected to the grid in August 1996. Unit 2 will soon be connected. In the western part of the center of France, not far from the town Poitiers, there is an identical construction site where likewise two NPP units are being erected. The French firm Sema Group is the supplier of the control and monitoring system (KIC) and as the prime contractor also is responsible for coordination of work and cooperation with the firm Hartmann and Braun. Hartmann and Braun developed the Contronic E automation system and are one of the major instrumentation and control suppliers for these units. (orig./DG) [de

  11. Response of Nuclear Power Plant Instrumentation Cables Exposed to Fire Conditions.

    Energy Technology Data Exchange (ETDEWEB)

    Muna, Alice Baca [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); LaFleur, Chris Bensdotter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brooks, Dusty Marie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    This report presents the results of instrumentation cable tests sponsored by the US Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research and performed at Sandia National Laboratories (SNL). The goal of the tests was to assess thermal and electrical response behavior under fire-exposure conditions for instrumentation cables and circuits. The test objective was to assess how severe radiant heating conditions surrounding an instrumentation cable affect current or voltage signals in an instrumentation circuit. A total of thirty-nine small-scale tests were conducted. Ten different instrumentation cables were tested, ranging from one conductor to eight-twisted pairs. Because the focus of the tests was thermoset (TS) cables, only two of the ten cables had thermoplastic (TP) insulation and jacket material and the remaining eight cables were one of three different TS insulation and jacket material. Two instrumentation cables from previous cable fire testing were included, one TS and one TP. Three test circuits were used to simulate instrumentation circuits present in nuclear power plants: a 4–20 mA current loop, a 10–50 mA current loop and a 1–5 VDC voltage loop. A regression analysis was conducted to determine key variables affecting signal leakage time.

  12. Preparation of human resources for future nuclear energy using FBNR as the instrument of learning

    International Nuclear Information System (INIS)

    Sefidvash, Farhang; Espinoza, Patricio; Guerrero, Victor Hugo

    2015-01-01

    An increasing number of developing countries are showing interest to become the emerging countries to nuclear energy. Most of these countries lack human resources and adequate infrastructures to enter such a venture. The principle objective of activities of FBNR Group is to train human resources for the countries that at the present lack the necessary conditions, but aim at the future clean and safe nuclear energy through the fourth generation and INPRO compatible nuclear reactors. The preparation for the future nuclear energy is done through development of innovative nuclear reactor that meets the INPRO philosophies and criteria. These countries may or may not have decided as yet to utilize nuclear energy, but are interested to gain a strong educational foundation for their future. The research and development of a small innovative nuclear reactor FBNR is used as the instrument for learning. The young scientists will learn how to be innovative with the vision of INPRO philosophy and criteria.

  13. Preparation of human resources for future nuclear energy using FBNR as the instrument of learning

    Energy Technology Data Exchange (ETDEWEB)

    Sefidvash, Farhang; Espinoza, Patricio; Guerrero, Victor Hugo [Escuela Politecnica Nacional (EPN), Quito (Ecuador); and others

    2015-11-15

    An increasing number of developing countries are showing interest to become the emerging countries to nuclear energy. Most of these countries lack human resources and adequate infrastructures to enter such a venture. The principle objective of activities of FBNR Group is to train human resources for the countries that at the present lack the necessary conditions, but aim at the future clean and safe nuclear energy through the fourth generation and INPRO compatible nuclear reactors. The preparation for the future nuclear energy is done through development of innovative nuclear reactor that meets the INPRO philosophies and criteria. These countries may or may not have decided as yet to utilize nuclear energy, but are interested to gain a strong educational foundation for their future. The research and development of a small innovative nuclear reactor FBNR is used as the instrument for learning. The young scientists will learn how to be innovative with the vision of INPRO philosophy and criteria.

  14. Instrument reliability for high-level nuclear-waste-repository applications

    International Nuclear Information System (INIS)

    Rogue, F.; Binnall, E.P.; Armantrout, G.A.

    1983-01-01

    Reliable instrumentation will be needed to evaluate the characteristics of proposed high-level nuclear-wasted-repository sites and to monitor the performance of selected sites during the operational period and into repository closure. A study has been done to assess the reliability of instruments used in Department of Energy (DOE) waste repository related experiments and in other similar geological applications. The study included experiences with geotechnical, hydrological, geochemical, environmental, and radiological instrumentation and associated data acquisition equipment. Though this paper includes some findings on the reliability of instruments in each of these categories, the emphasis is on experiences with geotechnical instrumentation in hostile repository-type environments. We review the failure modes, rates, and mechanisms, along with manufacturers modifications and design changes to enhance and improve instrument performance; and include recommendations on areas where further improvements are needed

  15. The development process and tendency of nuclear instruments applied in industry

    International Nuclear Information System (INIS)

    Ji Changsong

    2005-01-01

    The development process of nuclear technique application in industry may be divided into three stages: early stage--density, thickness and level measurement; middle stage--neutron moisture, ash content and X-ray fluorescence analysis; recent state--container inspection and industrial CT, nuclear magnetic resonance, neutron capture and non-elastic collision analysis techniques. The development tendency of nuclear instruments applied in industry is: spectrum measurement; detector array and image technique; nuclide analysis and new kinds of nuclear detectors are widely adopted. (authors)

  16. Report on the status of instrumentation and control in Swedish nuclear power plants

    International Nuclear Information System (INIS)

    Stroebeck, E.

    1992-01-01

    Nuclear power plants accounted for 46% of the total electric power production in Sweden in 1990. The availability of the Swedish reactors remains at a very high level. The oldest Swedish nuclear power plant has been in operation for nearly 20 years, and in the next 5 to 10 years a large portion of the NPP electrical equipment has to be replaced. The paper presents an overview of activities on control and instrumentation in the following: Future developments; implementation of computer-based systems; training simulators; nuclear safety research. The operating experience in Swedish nuclear power plants in 1991 is also presented. (author)

  17. Instrumentation report 1: specification, design, calibration, and installation of instrumentation for an experimental, high-level, nuclear waste storage facility

    International Nuclear Information System (INIS)

    Brough, W.G.; Patrick, W.C.

    1982-01-01

    The Spent Fuel Test-Climax (SFT-C) is being conducted 420 m underground at the Nevada Test Site under the auspices of the US Department of Energy. The test facility houses 11 spent fuel assemblies from an operating commercial nuclear reactor and numerous other thermal sources used to simulate the near-field effects of a large repository. We developed a large-scale instrumentation plan to ensure that a sufficient quality and quantity of data were acquired during the three- to five-year test. These data help satisfy scientific, operational, and radiation safety objectives. Over 800 data channels are being scanned to measure temperature, electrical power, radiation, air flow, dew point, stress, displacement, and equipment operation status (on/off). This document details the criteria, design, specifications, installation, calibration, and current performance of the entire instrumentation package

  18. Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2001-04-01

    SCK-CEN's research and development programme on instrumentation involves the assessment and the development of sensitive measurement systems used within a radiation environment. Particular emphasis is on the assessment of optical fibre components and their adaptability to radiation environments. The evaluation of ageing processes of instrumentation in fission plants, the development of specific data evaluation strategies to compensate for ageing induced degradation of sensors and cable performance form part of these activities. In 2000, particular emphasis was on in-core reactor instrumentation applied to fusion, accelerator driven and water-cooled fission reactors. This involved the development of high performance instrumentation for irradiation experiments in the BR2 reactor in support of new instrumentation needs for MYRRHA, and for diagnostic systems for the ITER reactor.

  19. Instrumentation

    International Nuclear Information System (INIS)

    Decreton, M.

    2001-01-01

    SCK-CEN's research and development programme on instrumentation involves the assessment and the development of sensitive measurement systems used within a radiation environment. Particular emphasis is on the assessment of optical fibre components and their adaptability to radiation environments. The evaluation of ageing processes of instrumentation in fission plants, the development of specific data evaluation strategies to compensate for ageing induced degradation of sensors and cable performance form part of these activities. In 2000, particular emphasis was on in-core reactor instrumentation applied to fusion, accelerator driven and water-cooled fission reactors. This involved the development of high performance instrumentation for irradiation experiments in the BR2 reactor in support of new instrumentation needs for MYRRHA, and for diagnostic systems for the ITER reactor

  20. Development mineral insulated cables for nuclear instrumentation of reactors

    International Nuclear Information System (INIS)

    Calvo, W.A.P.; Hess Junior, A.; Brito Maciel, R. de

    1990-01-01

    In-core and out-of-core neutron detectors for reactor and safety control systems are usually connected by means of mineral insulated cables. The electrical signal, either a pulse or a current, is transmitted along the cable at high temperature, pressure and radiation and should not be influenced by electromagnetic interfereces from the environment. In this paper it is presented the result of the analysis of the mechanical and electrical properties of several types of mineral insulated cables and also the design, manufacture, sealing, cable ends and their applications to nuclear detectors of various types. (author) [pt

  1. Discussion of several problems in nuclear instrument scale

    International Nuclear Information System (INIS)

    Li Xuezhen; Zhou Sichun; Xiao Caijin

    2005-01-01

    The equipment scale is the first problem in measurement, including nuclear apparatus, otherwise there are different methods of equipment scale, then how to get the best way to seek the scale equation is the keystone of study. The article discusses several methods to get scale equation from the angle of error transformation, and compares their superiority, then gets the most precision method--Deming method, in addition, there is another simple and applied method, that is method of the mean, in the end, validates the theory through X fluorescence equipment scale. (authors)

  2. The 5th questionnaire report of safety control on instrument in nuclear medicine laboratory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-08-01

    The questionnaire was done every three years from 1986 for the ultimate purpose of safe medical examinations and this 5th one was performed in May, 1998 for the period of April, 1995-March, 1998. Subjects were 1,258 nuclear medicine facilities and answers were obtained in 81.6%. Questionnaire concerned the personnel involved in nuclear medical examinations, instruments, accidents occurred, matters possibly leading to accident, improvement in safety control, serious trouble and breakage of the instrument, request for the instrument manufacturers and so on. Summaries were: numbers of medical radiology technicians were increased, in vitro tests were decreased, SPECT instruments came into wide use, in accident and improvement cases, examination beds were arousing much interest, concerns to examine were further required, communication with the manufacturers was insufficient, and problems for Y2K were pointed out to be resolved. (K.H.)

  3. A study of the modifications of nuclear instrumentation systems for JRR-2

    International Nuclear Information System (INIS)

    Azim, Mohammad; Horiki, Ooichiro; Sato, Mitsugu

    1978-04-01

    In this report a comparative study has been carried out between the original A.M.F. design and the modified design for the nuclear instrumentation systems of the Research Reactor JRR-2, at the Tokai Research Establishment of JAERI. Due to a fire accident in the control room, in July 1968, the originally designed nuclear instrumentation systems, using conventional vacuum tube circuits, were destroyed and were replaced by the modified design, incorporating solid state linear integrated circuits as basic circuit components. The results of the reactor instrumentation systems modification at JRR-2 are very encouraging as the operating efficiency of the Reactor registered an improvement of 43%. Moreover the safety aspects have been fully taken care of in the new design and the reactor is well guarded against all possible instrument failures and human errors. This report presents the basic theory of operation of the two designs alongwith a comparative safety analysis. (auth.)

  4. A compact HV supply for field/PC based nuclear instrumentation

    International Nuclear Information System (INIS)

    Manna, A.; Nikhare, D.M.; Madhavi, V.; Bayala, A.K.; Mukhopadhyay, P.K.; Kataria, S.K.

    2001-01-01

    In the recent years, most of the nuclear instruments that were earlier based on NIM Bin standards, are becoming available as PC Add-on cards. This trend is due to the decreasing prices of desktop personal computers and the necessity for automation in radioactivity measurements. This paper describes the design and development of a HV supply module and its PC Add-on card version for field portable/ PC based nuclear instrumentation. The HV supply though being very compact in size meets all the stringent specifications required for detector biasing applications and it has been tested for use with NaI, BF 3 . (author)

  5. Real-time simulation of ex-core nuclear instrumentation system

    International Nuclear Information System (INIS)

    Zhao Qiang; Zhang Zhijian; Cao Xinrong

    2005-01-01

    Real-time simulation of ex-core nuclear instrumentation system is an indispensable part of nuclear power plant (NPP) full-scope training simulator. The simulation method, which is based upon the theory of measurement, is introduced in the paper. The fitting formula between the measured data and the three-dimensional neutron flux distribution in the core is established. The fitting parameter is adjusted according to the reactor physical calculation or the experiment of power calibration. The simulation result shows that the method can simulate the ex-core neutron instrumentation system accurately in real-time and meets the needs of NPP full-scope training simulator. (authors)

  6. Verification and validation of software related to nuclear power plant instrumentation and control

    International Nuclear Information System (INIS)

    1999-01-01

    This report is produced in response to a recommendation of the IAEA International Working Group on Nuclear Power Plant Control and Instrumentation. The report has objectives of providing practical guidance on the methods available for verification of the software and validation of computer based systems, and on how and when these methods can be effectively applied. It is meant for those who are in any way involved with the development, implementation, maintenance and use of software and computer based instrumentation and control systems in nuclear power plants. The report is intended to be used by designers, software producers, reviewers, verification and validation teams, assessors, plant operators and licensers of computer based systems

  7. Optimization criteria for control and instrumentation systems in nuclear power plants

    International Nuclear Information System (INIS)

    Gonzalez, A.J.

    1978-01-01

    The system of dose limitation recently recommended by the International Commission on Radiation Protection includes, as a base for deciding what is reasonably achievable in dose reduction, the optimization of radioprotection systems. This paper, after compiling relevant points in the new system, discusses the application of optimization to control and instrumentation of radioprotection systems in nuclear power plants. Furthermore, an extension of the optimization criterion to nuclear safety systems is also presented and its application to control and instrumentation is discussed; systems including majority logics are particularly scrutinized. Finally, eventual regulatory implications are described. (author)

  8. Single cables for nuclear instrumentation : Experiences at TAPS

    International Nuclear Information System (INIS)

    Chalam, K.V.; Joshi, S.V.

    1977-01-01

    For fast response and good accuracy, cables of special type are required to be interposed between radiation detectors and preamplifiers/ monitors in a nuclear reactor. The essential characteristics which these signal cables must possess and the tests which they have to undergo are enumerated. Signal cables used in various individual neutron monitoring systems at the Tarapur Atomic Power Station are described in detail. The systems considered are : (1) source range monitoring systems, (2) intermediate range monitoring system, (3) power range monitoring systtem, (4) local power range monitoring system, (5) traversing in-core probe system and (6) area radiation monitoring system. Experience with signal cabling during power operation is given. (M.G.B.)

  9. Distributed control and instrumentation systems for future nuclear power plants

    International Nuclear Information System (INIS)

    Yan, G.; L'Archeveque, J.V.R.

    1976-01-01

    The centralized dual computer system philosophy has evolved as the key concept underlying the highly successful application of direct digital control in CANDU power reactors. After more than a decade, this basis philosophy bears re-examination in the light of advances in system concepts--notably distributed architectures. A number of related experimental programs, all aimed at exploring the prospects of applying distributed systems in Canadian nuclear power plants are discussed. It was realized from the outset that the successful application of distributed systems depends on the availability of a highly reliable, high capacity, low cost communications medium. Accordingly, an experimental facility has been established and experiments have been defined to address such problem areas as interprocess communications, distributed data base design and man/machine interfaces. The design of a first application to be installed at the NRU/NRX research reactors is progressing well

  10. Time series analysis of nuclear instrumentation in EBR-II

    International Nuclear Information System (INIS)

    Imel, G.R.

    1996-01-01

    Results of a time series analysis of the scaler count data from the 3 wide range nuclear detectors in the Experimental Breeder Reactor-II are presented. One of the channels was replaced, and it was desired to determine if there was any statistically significant change (ie, improvement) in the channel's response after the replacement. Data were collected from all 3 channels for 16-day periods before and after detector replacement. Time series analysis and statistical tests showed that there was no significant change after the detector replacement. Also, there were no statistically significant differences among the 3 channels, either before or after the replacement. Finally, it was determined that errors in the reactivity change inferred from subcritical count monitoring during fuel handling would be on the other of 20-30 cents for single count intervals

  11. Nuclear Power Plant Control and Instrumentation activities in Czechoslovakia

    International Nuclear Information System (INIS)

    Stirsky, P.; Karpeta, C.; Rubek, J.

    1990-01-01

    After giving a survey of the Czechoslovak nuclear power plants a description of I and C systems of the operating plants is presented together with a brief outlook for future developments to be implemented at plants which are under construction. Special attention is paid to the adopted techniques for power distribution investigation and control in the WWER 1000 reactor core in the case of load changes. Basic futures of the in-core measurement systems are outlined. Measures implemented in the I and C systems of the operating units to improve their performance are described. Information on the country's approach to NPP personnel training and training aids usage as well as information on development work in the area of surveillance and monitoring systems completes the paper. (author). 9 refs, 1 tab

  12. Application of data mining techniques for nuclear data and instrumentation

    International Nuclear Information System (INIS)

    Toshniwal, Durga

    2013-01-01

    Data mining is defined as the discovery of previously unknown, valid, novel, potentially useful, and understandable patterns in large databases. It encompasses many different techniques and algorithms which differ in the kinds of data that can be analyzed and the form of knowledge representation used to convey the discovered knowledge. Patterns in the data can be represented in many different forms, including classification rules, association rules, clusters, etc. Data mining thus deals with the discovery of hidden trends and patterns from large quantities of data. The field of data mining is emerging as a new, fundamental research area with important applications to science, engineering, medicine, business, and education. It is an interdisciplinary research area and draws upon several roots, including database systems, machine learning, information systems, statistics and expert systems. Data mining, when performed on time series data, is known as time series data mining (TSDM). A time series is a sequence of real numbers, each number representing a value at a point of time. During the past few years, there has been an explosion of research in the area of time series data mining. This includes attempts to model time series data, to design languages to query such data, and to develop access structures to efficiently process queries on such data. Time series data arises naturally in many real-world applications. Efficient discovery of knowledge through time series data mining can be helpful in several domains such as: Stock market analysis, Weather forecasting etc. An important application area of data mining techniques is in nuclear power plant and related data. Nuclear power plant data can be represented in form of time sequences. Often it may be of prime importance to analyze such data to find trends and anomalies. The general goals of data mining include feature extraction, similarity search, clustering and classification, association rule mining and anomaly

  13. WTEC panel report on European nuclear instrumentation and controls. Final report

    International Nuclear Information System (INIS)

    White, J.D.; Lanning, D.D.; Beltracchi, L.; Best, F.R.; Easter, J.R.

    1991-12-01

    A study of instrumentation and controls (I and C) technology used in nuclear power plants in Europe was conducted by a panel of American specialists. The study included a review of the literature on the subject, followed by a visit to some of the leading organizations in Europe in the field of nuclear I and C. The findings of the study are presented in the report. The scope is limited to pressurized water reactors in Czechoslovakia, France, Germany, Norway and Russia. Specific topics include: The role of the operator and control room design; the transition from analog to digital technology; computerized operator support systems for fault management; control strategies and techniques; an investigation of nuclear power plant I and C architecture; instrumentation; computer standards and tools. A companion study is JTEC Panel Report on Nuclear Power in Japan (PB90-215724)

  14. Nuclear physics: large instruments and challenges; La physique nucleaire: les grands instruments et les defis

    Energy Technology Data Exchange (ETDEWEB)

    Harar, S. [CEA Centre d`Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France). Direction des Sciences de la Matiere

    1997-12-31

    Researches on nuclear physics and atomic nucleus can be divided into three periods of time at the CEA: from 1950 to 1970, the characteristics of atomic nucleus structure are measured and accelerators are used; in the early 70`s, heavy ion physics, with the Ganil accelerator, allows for the study of large perturbations in nuclei, while the meson physics study the nucleon interactions using the Saclay 700 MeV electron linear accelerator. In the early 90`s, the radioactive beams provided by the SPIRAL/Ganil device allows for the study of the nucleon internal structure, the quarks, and their effects while their deconfinement is studied by the means of the relativistic heavy ions provided by the LHC accelerator

  15. Nuclear data and the effects of its inconsistency on instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Ahmed, Y.A.; Ewa, I.O.B.; Umar, I.M.

    2006-04-01

    In this study, we examine the role of nuclear data in Instrumental Neutron Activation Analysis (INAA) particularly as it affects determination of reactor flux parameters and application of comparator methods. The work reviewed the available sources of nuclear data, the variations that exist from one source to the other and the effects of such variations on INAA. Measurement of Neutron flux parameters in inner and outer irradiation channel of a miniature neutron source reactor was carried out using two independent nuclear data sources to investigate the effects of inconsistency of nuclear data on the precision of analytical result. The result obtained shows a slight variation of flux parameters with nuclear data source. It was also observed that modification of the earlier compiled basic nuclear data lead to inconsistencies in the secondary data that applies it. (author)

  16. Detection of instrument or component failures in a nuclear plant by Luenberger observers

    International Nuclear Information System (INIS)

    Wilburn, N.P.; Colley, R.W.; Alexandro, F.J.; Clark, R.N.

    1985-01-01

    A diagnostic system, which will distinguish between instrument failures (flowmeters, etc.) and component failures (valves, filters, etc.) that show the same symptoms, has been developed for nuclear Plants using Luenberger observers. Luenberger observers are online computer based modules constructed following the technology of Clark [3]. A seventh order model of an FFTF subsystem was constructed using the Advanced Continuous Simulation Language (ACSL) and was used to show through simulation that Luenberger observers can be applied to nuclear systems

  17. A quantitative preliminary evaluation of nuclear medicine instruments in the Philippines

    International Nuclear Information System (INIS)

    Valdezco, E.M.; Caseria, E.S.; Lopez, L.B.; Pasion, I.S.; Linilitan, V.E.

    1986-01-01

    This paper is the result of a survey conducted on several nuclear medicine centers in Metro Manila including one in Baguio City to assess the performance of nuclear medicine instruments and the extent of quality procedures being carried out. It was revealed that prompt and competent service seems to be a major problem. Of the eleven sites visited, 4 have cameras only, 4 with cameras with computers, 3 with rectilinear scanners only and 1 with cameras + rectilinear scanners. (ELC) 8 figs

  18. Report on the status of instrumentation and control in Swedish nuclear power plants

    International Nuclear Information System (INIS)

    Blomberg, P.E.

    1990-01-01

    During 1988 the twelve nuclear power units in Sweden generated 69 TWh, which was 45% of the total electric power produced in Sweden. The production capacity of the nuclear power plants increased successively by upgrading the units to higher nominal power levels. The paper presents an overview of activities on control and instrumentation in the following: maintenance, renewal of the I and C systems, training. The operational data of Swedish reactor units are presented. (author). 1 tab

  19. Molecular Structure Laboratory. Fourier Transform Nuclear Magnetic Resonance (FTNMR) Spectrometer and Ancillary Instrumentation at SUNY Geneseo

    Energy Technology Data Exchange (ETDEWEB)

    Geiger, David K [State Univ. of New York (SUNY), Geneseo, NY (United States)

    2015-12-31

    An Agilent 400-MR nuclear magnetic resonance (NMR) spectrometer and ancillary equipment were purchased, which are being used for molecular structure elucidation.  The instrumentation is housed in a pre-existing facility designed specifically for its use. This instrument package is being used to expand the research and educational efforts of the faculty and students at SUNY-Geneseo and is made available to neighboring educational institutions and business concerns.  Funds were also used for training of College personnel, maintenance of the instrumentation, and installation of the equipment.

  20. Geotechnical assessment and instrumentation needs for isolation of nuclear waste in crystalline rocks: symposium proceedings

    International Nuclear Information System (INIS)

    Ubbes, W.F.; Duguid, J.O.

    1985-09-01

    On October 15-19, 1984, the Geotechnical Assessment and Instrumentation Needs (GAIN) Symposium was convened to examine the status of technology for the isolation of nuclear waste in crystalline rock. The objective of the 1984 GAIN Symposium was to provide technical input to the Crystalline Repository Project concerning: critical issues and information needs associated with development and assessment of a repository in crystalline rock; appropriate techniques and instrumentation for determining the information needed; and technology required to provide the measurement techniques and instrumentation for application in an exploratory shaft in crystalline rock. The findings and recommendations of the symposium are presented in these proceedings

  1. Diversity Strategies for Nuclear Power Plant Instrumentation and Control Systems

    International Nuclear Information System (INIS)

    Wood, Richard Thomas; Belles, Randy; Cetiner, Mustafa Sacit; Holcomb, David Eugene; Korsah, Kofi; Loebl, Andy; Mays, Gary T.; Muhlheim, Michael David; Mullens, James Allen; Poore, Willis P. III; Qualls, A.L.; Wilson, Thomas L.; Waterman, Michael E.

    2010-01-01

    This report presents the technical basis for establishing acceptable mitigating strategies that resolve diversity and defense-in-depth (D3) assessment findings and conform to U.S. Nuclear Regulatory Commission (NRC) requirements. The research approach employed to establish appropriate diversity strategies involves investigation of available documentation on D3 methods and experience from nuclear power and nonnuclear industries, capture of expert knowledge and lessons learned, determination of best practices, and assessment of the nature of common-cause failures (CCFs) and compensating diversity attributes. The research described in this report does not provide guidance on how to determine the need for diversity in a safety system to mitigate the consequences of potential CCFs. Rather, the scope of this report provides guidance to the staff and nuclear industry after a licensee or applicant has performed a D3 assessment per NUREG/CR-6303 and determined that diversity in a safety system is needed for mitigating the consequences of potential CCFs identified in the evaluation of the safety system design features. Succinctly, the purpose of the research described in this report was to answer the question, 'If diversity is required in a safety system to mitigate the consequences of potential CCFs, how much diversity is enough?' The principal results of this research effort have identified and developed diversity strategies, which consist of combinations of diversity attributes and their associated criteria. Technology, which corresponds to design diversity, is chosen as the principal system characteristic by which diversity criteria are grouped to form strategies. The rationale for this classification framework involves consideration of the profound impact that technology-focused design diversity provides. Consequently, the diversity usage classification scheme involves three families of strategies: (1) different technologies, (2) different approaches within the same

  2. Diversity Strategies for Nuclear Power Plant Instrumentation and Control Systems

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Richard Thomas [ORNL; Belles, Randy [ORNL; Cetiner, Mustafa Sacit [ORNL; Holcomb, David Eugene [ORNL; Korsah, Kofi [ORNL; Loebl, Andy [ORNL; Mays, Gary T [ORNL; Muhlheim, Michael David [ORNL; Mullens, James Allen [ORNL; Poore III, Willis P [ORNL; Qualls, A L [ORNL; Wilson, Thomas L [ORNL; Waterman, Michael E. [U.S. Nuclear Regulatory Commission

    2010-02-01

    This report presents the technical basis for establishing acceptable mitigating strategies that resolve diversity and defense-in-depth (D3) assessment findings and conform to U.S. Nuclear Regulatory Commission (NRC) requirements. The research approach employed to establish appropriate diversity strategies involves investigation of available documentation on D3 methods and experience from nuclear power and nonnuclear industries, capture of expert knowledge and lessons learned, determination of best practices, and assessment of the nature of common-cause failures (CCFs) and compensating diversity attributes. The research described in this report does not provide guidance on how to determine the need for diversity in a safety system to mitigate the consequences of potential CCFs. Rather, the scope of this report provides guidance to the staff and nuclear industry after a licensee or applicant has performed a D3 assessment per NUREG/CR-6303 and determined that diversity in a safety system is needed for mitigating the consequences of potential CCFs identified in the evaluation of the safety system design features. Succinctly, the purpose of the research described in this report was to answer the question, 'If diversity is required in a safety system to mitigate the consequences of potential CCFs, how much diversity is enough?' The principal results of this research effort have identified and developed diversity strategies, which consist of combinations of diversity attributes and their associated criteria. Technology, which corresponds to design diversity, is chosen as the principal system characteristic by which diversity criteria are grouped to form strategies. The rationale for this classification framework involves consideration of the profound impact that technology-focused design diversity provides. Consequently, the diversity usage classification scheme involves three families of strategies: (1) different technologies, (2) different approaches within

  3. International Working Group on Nuclear Power Plant Control and Instrumentation: Recent activities and future prospects

    International Nuclear Information System (INIS)

    Kossilov, A.

    1992-01-01

    The IWG-NPPCI working group exists to consider developments, disseminate and exchange experience in all aspects of instrumentation, control and information technology relevant to the safety and economics of NPP design and operation. The main topics dealt with are: nuclear instrumentation, control systems, protection systems, early failure detection and diagnosis, use of computer technology in NPP operation, instrumentation for accidental situation, operator support systems, man-machine interface. The main objectives of the IWG-NPPCI are: to assist the IAEA to provide the Member States with information and recommendations on technical aspects of the NPP control and instrumentation with the aim to assure reliable functions; to promote and exchange of information on national programs, new developments and experience from operating NPPs, and to stimulate the coordination of research on NPP control and instrumentation

  4. International Working Group on Nuclear Power Plant Control and Instrumentation: Recent activities and future prospects

    Energy Technology Data Exchange (ETDEWEB)

    Kossilov, A [International Atomic Energy Agency, Vienna (Austria)

    1992-07-01

    The IWG-NPPCI working group exists to consider developments, disseminate and exchange experience in all aspects of instrumentation, control and information technology relevant to the safety and economics of NPP design and operation. The main topics dealt with are: nuclear instrumentation, control systems, protection systems, early failure detection and diagnosis, use of computer technology in NPP operation, instrumentation for accidental situation, operator support systems, man-machine interface. The main objectives of the IWG-NPPCI are: to assist the IAEA to provide the Member States with information and recommendations on technical aspects of the NPP control and instrumentation with the aim to assure reliable functions; to promote and exchange of information on national programs, new developments and experience from operating NPPs, and to stimulate the coordination of research on NPP control and instrumentation.

  5. Development status of irradiation devices and instrumentation for material and nuclear fuel irradiation tests in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bong Goo; Sohn, Jae Min; Choo, Kee Nam [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-04-15

    The High flux Advanced Neutron Application ReactOr (HANARO), an open-tank-in-pool type reactor, is one of the multi-purpose research reactors in the world. Since the commencement of HANARO's operations in 1995, a significant number of experimental facilities have been developed and installed at HANARO, and continued efforts to develop more facilities are in progress. Owing to the stable operation of the reactor and its frequent utilization, more experimental facilities are being continuously added to satisfy various fields of study and diverse applications. The irradiation testing equipment for nuclear fuels and materials at HANARO can be classified into capsules and the Fuel Test Loop (FTL). Capsules for irradiation tests of nuclear fuels in HANARO have been developed for use under the dry conditions of the coolant and materials at HANARO and are now successfully utilized to perform irradiation tests. The FTL can be used to conduct irradiation testing of a nuclear fuel under the operating conditions of commercial nuclear power plants. During irradiation tests conducted using these capsules in HANARO, instruments such as the thermocouple, Linear Variable Differential Transformer (LVDT), small heater, Fluence Monitor (F/M) and Self-Powered Neutron Detector (SPND) are used to measure various characteristics of the nuclear fuel and irradiated material. This paper describes not only the status of HANARO and the status and perspective of irradiation devices and instrumentation for carrying out nuclear fuel and material tests in HANARO but also some results from instrumentation during irradiation tests

  6. Brazing refractory metals used in high-temperature nuclear instrumentation

    International Nuclear Information System (INIS)

    Palmer, A. J.; Woolstenhulme, C. J.

    2009-01-01

    As part of the U. S. Department of Energy (DOE)-sponsored Next Generation Nuclear Project (NGNP) currently ongoing at Idaho National Laboratory (INL), the irradiation performance of candidate high-temperature gas reactor fuels and materials is being evaluated at INL's Advanced Test Reactor (ATR). The design of the first Advanced Gas Reactor (AGR-1) TRISO fuel experiment, currently being irradiated in the ATR, required development of special techniques for brazing niobium and molybdenum. Brazing is one technique used to join refractory metals to each other and to stainless steel alloys. Although brazing processes are well established, it is difficult to braze niobium, molybdenum, and most other refractory metals because they quickly develop adherent oxides when exposed to room-temperature air. Specialized techniques and methods were developed by INL to overcome these obstacles. This paper describes the techniques developed for removing these oxides, as well as the ASME Section IX-qualified braze procedures that were developed as part of the AGR-1 project. All brazes were made using an induction coil with an inert or reducing atmosphere at low pressure. Other parameters, such as filler metals, fluxes used, and general setup procedures, are also discussed. (authors)

  7. Brazing Refractory Metals Used In High-Temperature Nuclear Instrumentation

    International Nuclear Information System (INIS)

    Palmer, A.J.; Woolstenhulme, C.J.

    2009-01-01

    As part of the U. S. Department of Energy (DOE) sponsored Next Generation Nuclear Project (NGNP) currently ongoing at Idaho National Laboratory (INL), the irradiation performance of candidate high-temperature gas reactor fuels and materials is being evaluated at INL's Advanced Test Reactor (ATR). The design of the first Advanced Gas Reactor (AGR 1) experiment, currently being irradiated in the ATR, required development of special techniques for brazing niobium and molybdenum. Brazing is one technique used to join refractory metals to each other and to stainless steel alloys. Although brazing processes are well established, it is difficult to braze niobium, molybdenum, and most other refractory metals because they quickly develop adherent oxides when exposed to room-temperature air. Specialized techniques and methods were developed by INL to overcome these obstacles. This paper describes the techniques developed for removing these oxides, as well as the ASME Section IX-qualified braze procedures that were developed as part of the AGR-1 project. All brazes were made using an induction coil with an inert or reducing atmosphere at low pressure. Other parameters, such as filler metals, fluxes used, and general setup procedures, are also discussed

  8. Brazing refractory metals used in high-temperature nuclear instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, A. J. [Idaho National Laboratory, MS 3840, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Woolstenhulme, C. J. [EG and G Services, Inc., (United States)

    2009-07-01

    As part of the U. S. Department of Energy (DOE)-sponsored Next Generation Nuclear Project (NGNP) currently ongoing at Idaho National Laboratory (INL), the irradiation performance of candidate high-temperature gas reactor fuels and materials is being evaluated at INL's Advanced Test Reactor (ATR). The design of the first Advanced Gas Reactor (AGR-1) TRISO fuel experiment, currently being irradiated in the ATR, required development of special techniques for brazing niobium and molybdenum. Brazing is one technique used to join refractory metals to each other and to stainless steel alloys. Although brazing processes are well established, it is difficult to braze niobium, molybdenum, and most other refractory metals because they quickly develop adherent oxides when exposed to room-temperature air. Specialized techniques and methods were developed by INL to overcome these obstacles. This paper describes the techniques developed for removing these oxides, as well as the ASME Section IX-qualified braze procedures that were developed as part of the AGR-1 project. All brazes were made using an induction coil with an inert or reducing atmosphere at low pressure. Other parameters, such as filler metals, fluxes used, and general setup procedures, are also discussed. (authors)

  9. Statistical pulses generator. Application to nuclear instrumentation (1962); Generateur d'impulsions aleatoires. Application a l'instrumentation nucleaire (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Beranger, R [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1962-07-01

    This report describes a random pulses generator adapted to nuclear instrumentation. After a short survey on the statistical nature of electronic signals, the different ways for generating pulses with a Poisson's time-distribution are studied. The final generator built from a gaseous thyratron in a magnetic field is then described. Several tests are indicated : counting-rate stability, Pearson's criterion, distribution of time-intervals. Applications of the generator in 'whole testing' of nuclear instrumentation are then indicated for sealers, dead time measurements, time analyzers. In this application, pulse-height spectrums have been made by Poissonian sampling of a recurrent or random low-frequency signal. (author) [French] Cette etude decrit un generateur d'impulsions aleatoires et ses applications a l'instrumentation nucleaire. Apres un bref rappel sur la nature statistique des signaux en electronique nucleaire, sont passes en revue les principaux moyens d'obtenir des impulsions distribuees en temps suivant une loi de Poisson. Le generateur utilisant un thyratron a gaz dans un champ magnetique est ensuite decrit; diverses methodes de test sont appliquees (stabilite du taux de comptage, criterium de Pearson, spectre des intervalles ds temps). Les applications du generateur a l'electronique nucleaire dans le domaine des 'essais globaux' sont indiques: test des echelles de comptage et mesure des temps morts, test des analyseurs en temps apres division du taux de comptage par une puissance de deux, test des analyseurs multicanaux en amplitude. Pour cette derniere application, on a realise des spectres d'amplitudes suivant une loi connue, par echantillonnage poissonien d'un signal basse frequence recurrent ou aleatoire. (auteur)

  10. Instrument evaluation no. 11. ESI nuclear model 271 C contamination monitor

    International Nuclear Information System (INIS)

    Burgess, P.H.; Iles, W.J.

    1978-06-01

    The various radiations encountered in radiological protection cover a wide range of energies and radiation measurements have to he carried out under an equally broad spectrum of environmental conditions. This report is one of a series intended to give information on the performance characteristics of radiological protection instruments, to assist in the selection of appropriate instruments for a given purpose, to interpret the results obtained with such instruments, and, in particular, to know the likely sources and magnitude of errors that might be associated with measurements in the field. The radiation, electrical and environmental characteristics of radiation protection instruments are considered together with those aspects of the construction which make an instrument convenient for routine use. To provide consistent criteria for instrument performance, the range of tests performed on any particular class of instrument, the test methods and the criteria of acceptable performance are based broadly on the appropriate Recommendations of the International Electrotechnical Commission. The radiations in the tests are, in general, selected from the range of reference radiations for instrument calibration being drawn up by the International Standards Organisation. Normally, each report deals with the capabilities and limitations of one model of instrument and no direct comparison with other instruments intended for similar purposes is made, since the significance of particular performance characteristics largely depends on the radiations and environmental conditions in which the instrument is to be used. The results quoted here have all been obtained from tests on instruments in routine production, with the appropriate measurements being made by the NRPB. This report deals with the ESI Nuclear Model 271 C; a general purpose contamination monitor, comprising a GM tube connected by a coiled extensible cable to a ratemeter

  11. A performance improvement program applied to the Perry Nuclear Power Plant instrumentation and control section

    International Nuclear Information System (INIS)

    Anderson, G.R.

    1987-01-01

    The management at Cleveland Electric Illuminating Company sought to avoid problems typically encountered in the start-up of new nuclear generating units. In response to early indications that such problems may have been developing at their Perry Nuclear Power Plant, several performance improvement initiatives were undertaken. One of these initiatives was a performance improvement evaluation (PIE) for the instrumentation and control (IandC) section at Perry. The IandC PIE, which used a method designed to be adaptable to other disciplines as well, had important results that are applicable to other nuclear power plants

  12. Instrumentation and control systems for CANDU-PHW nuclear power plants

    International Nuclear Information System (INIS)

    Lepp, R.M.; Watkins, L.M.

    1982-02-01

    The instrumentation and control of CANDU nuclear power plants takes advantage of modern electronics technology in the extensive computerization of important control and man-machine functions. A description of these functions as well as those of the four Special Safety Systems is provided

  13. Welding of sule elements for nuclear reactors with solid state YAG laser using instrumentated testing equipments

    International Nuclear Information System (INIS)

    Bourgault, F.; Lacoste, J.; Schley, R.; Kluzinski, C.; Piednoir, P.

    1985-09-01

    The instrumentation of the equipment for carrying out safety tests on fuel elements for nuclear reactors requires special thermocouples adapted to the prevailing agressive medium. The investigations described deal essentially with the operational and metallurgical weldability tests out on the safety test zircaloy piping in the pressurized water circuit (PHEBUS-programme) [fr

  14. Measurement of two phase flow properties using the nuclear reactor instruments

    International Nuclear Information System (INIS)

    Albrecht, R.W.; Washington Univ., Seattle; Crowe, R.D.; Dailey, D.J.; Kosaly, G.; Damborg, M.J.

    1982-01-01

    A procedure is introduced for characterizing one dimensional, two phase flow in terms of three properties; propagation, structure, and dynamics. It is shown that all of these properties can be measured by analyzing the response of the reactor neutron field to a two phase flow perturbation. Therefore, a nuclear reactor can be regarded as a two phase flow instrument. (author)

  15. TRU waste-assay instrumentation and application in nuclear-facility decommissioning

    International Nuclear Information System (INIS)

    Umbarger, C.J.

    1982-01-01

    The Los Alamos TRU waste assay program is developing measurement techniques for TRU and other radioactive waste materials generated by the nuclear industry, including decommissioning programs. Systems are now being fielded for test and evaluation purposes at DOE TRU waste generators. The transfer of this technology to other facilities and the commercial instrumentation sector is well in progress. 6 figures

  16. A low power consumption and multi-function mini-printer for the portable nuclear instruments

    International Nuclear Information System (INIS)

    Jin Yuheng; Zhang Jiahong

    1994-01-01

    The authors presents a method of fitting a commercial printing calculator to the low power consumption and multi-function mini-printer. It can be employed as a compact data recorder and simple data processing device attached to the portable nuclear instruments, which are powered by dry batteries

  17. Nuclear medicine and imaging research (instrumentation and quantitative methods of evaluation)

    International Nuclear Information System (INIS)

    Beck, R.N.; Cooper, M.; Chen, C.T.

    1992-07-01

    This document is the annual progress report for project entitled ''Instrumentation and Quantitative Methods of Evaluation.'' Progress is reported in separate sections individually abstracted and indexed for the database. Subject areas reported include theoretical studies of imaging systems and methods, hardware developments, quantitative methods of evaluation, and knowledge transfer: education in quantitative nuclear medicine imaging

  18. Master on Nuclear Engineering and Applications (MINA): instrument of knowledge management in the nuclear sector

    International Nuclear Information System (INIS)

    Herranz, L. E.; Garcia Cuesta, J. C.; Falcon, S.; Casas, J. A.

    2013-01-01

    Knowledge Management in nuclear industry is indespensable to ensure excellence in performance and safety of nuclear installations. The Master on Nuclear Engineering and Applications (MINA) is a Spanish education venture which foundations and evolution have meant and adaptation to the European Education system and to the domestic and international changes occured in the nuclear environment. This paper summarizes the most relevant aspects of such transformation, its motivation and the final outcome. Finally, it discusses the potential benefit of a closer collaboration among the existing national education ventures in the frame of Nuclear Engineering. (Author)

  19. Strategy for improving instrumentation and control in operating nuclear power plants

    International Nuclear Information System (INIS)

    Abad Bassols, L.; Nino Perote, R.

    1996-01-01

    There are three basic reasons why nuclear power plants need to systematically upgrade their instrumentation and control equipment: Obsolete instrumentation and lack spares Little capacity of flexibility for extension Possibility of attaining better systems integration and improving systems-operations interface This article shows how to approach these issues using the following strategies: Use of distributed control systems and PLCs for control, signalling, command, communications, etc, in both nuclear and conventional applications Upgrading of process instrumentation equipment, sensors, transmitters, etc Upgrading of alarm-signalling systems In each group of equipment items consideration should be given to: Aspects regarding manufacturers-suppliers Effects on design, adaptation and documentation of operating plants Effects on the training and handling skills of operation and maintenance staff Strategy for incorporating the new system into the Plant with minimum impact on operation (Author)

  20. An instrumentation and control philosophy for high-level nuclear waste processing facilities

    International Nuclear Information System (INIS)

    Weigle, D.H.

    1990-01-01

    The purpose of this paper is to present an instrumentation and control philosophy which may be applied to high-level nuclear waste processing facilities. This philosophy describes the recommended criteria for automatic/manual control, remote/local control, remote/local display, diagnostic instrumentation, interlocks, alarm levels, and redundancy. Due to the hazardous nature of the process constituents of a high-level nuclear waste processing facility, it is imperative that safety and control features required for accident-free operation and maintenance be incorporated. A well-instrumented and controlled process, while initially more expensive in capital and design costs, is generally safer and less expensive to operate. When the long term cost savings of a well designed process is coupled with the high savings enjoyed by accident avoidance, the benefits far outweigh the initial capital and design costs

  1. Instruments

    International Nuclear Information System (INIS)

    Buehrer, W.

    1996-01-01

    The present paper mediates a basic knowledge of the most commonly used experimental techniques. We discuss the principles and concepts necessary to understand what one is doing if one performs an experiment on a certain instrument. (author) 29 figs., 1 tab., refs

  2. International legal instruments promoting synergy's in nuclear safety, security and safeguards: myth of reality?

    International Nuclear Information System (INIS)

    Vasmant, A.

    2009-01-01

    The purpose of this article is to assess the existing synergies between nuclear safety, nuclear security and non-proliferation/safeguards resulting from the adoption of international legal instruments. Keeping in mind that a synergy is the extra success achieved by two or more elements of a system working together instead of on their own, this paper will try to evaluate the possibility of a so-called '3 S' approach to optimize the benefits so defined. to achieve this, Part 1 focuses on the history of the three regimes and their major features, while Part 2, 3 and 4 explore the various benefits of, limits to, synergies between the nuclear safety, nuclear security and safeguards regimes. Part 5 describes the potential '3 S' approach in international nuclear law. (N.C.)

  3. Authentication of nuclear-material assays made with in-plant instruments

    International Nuclear Information System (INIS)

    Hatcher, C.R.; Hsue, S.T.; Russo, P.A.

    1982-01-01

    This paper develops a general approach for International Atomic Energy Agency (IAEA) authentication of nuclear material assays made with in-plant instruments under facility operator control. The IAEA is evaluating the use of in-plant instruments as a part of international safeguards at large bulk-handling facilities, such as reprocessing plants, fuel fabrication plants, and enrichment plants. One of the major technical problems associated with IAEA use of data from in-plant instruments is the need to show that there has been no tampering with the measurements. Two fundamentally different methods are discussed that can be used by IAEA inspectors to independently verify (or authenticate) measurements made with in-plant instruments. Method 1, called external authentication, uses a protected IAEA measurement technique to compare in-plant instrument results with IAEA results. Method 2, called internal authentication, uses protected IAEA standards, known physical constants, and special test procedures to determine the performance characteristics of the in-plant instrument. The importance of measurement control programs to detect normally expected instrument failures and procedural errors is also addressed. The paper concludes with a brief discussion of factors that should be considered by the designers of new in-plant instruments in order to facilitate IAEA authentication procedures

  4. Design and manufacturing of 05F-01K instrumented capsule for nuclear fuel irradiation in Hanaro

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, J. M.; Shin, Y. T.; Park, S. J. (and others)

    2007-07-15

    An instrumented capsule was developed to be able to measure fuel characteristics, such as fuel temperature, internal pressure of fuel rod, fuel pellet elongation, and neutron flux, etc., during the irradiation test of nuclear fuel in Hanaro. The instrumented capsule(02F-11K) for measuring and monitoring and monitoring fuel centerline temperature and neutron flux was designed and manufactured. It was successfully irradiated in the test hole OR5 of Hanaro from March 14, 2003 to June 1, 2003 (53.84 full power days at 24 MW). In the year of 2004, 3 test fuel rods and the instrumented capsule(03F-05K) were designed and manufactured to measure fuel centerline temperature, internal pressure of fuel rod, and fuel axial deformation during irradiation test. This capsule was irradiated in the test hole OR5 of Hanaro reactor from April 26, 2004 to October 1, 2004 (59.5 EFPD at 24 {approx} 30 MW). The six typed dual instrumented fuel rods, which allow for two characteristics to be measured simultaneously in one fuel rod, have been designed and manufactured to enhance the efficiency of the irradiation test using the instrumented fuel capsule. The 05F-01K instrumented fuel capsule was designed and manufactured for a design verification test of the three dual instrumented fuel rods. The irradiation test of the 05F-01K instrumented fuel capsule will be carried out at the OR5 vertical experimental hole of Hanaro.

  5. WTEC panel report on European nuclear instrumentation and controls. Final report

    Energy Technology Data Exchange (ETDEWEB)

    White, J.D.; Lanning, D.D.; Johnson, P.M.H. [eds.] [World Technology Evaluation Center, Baltimore, MD (United States); Shelton, R.D. [World Technology Evaluation Center, Baltimore, MD (United States)

    1991-12-01

    A study of instrumentation and controls (I and C) technology used in nuclear power plants in Europe was conducted by a panel of US specialists. This study plants in Europe was conducted by a panel of US specialists. This study included a review of the literature on the subject, followed by a visit to some of the leading organizations in Europe in the field nuclear I and C. Areas covered are: (1) role of the operator and control room design; (2) transition from analog to digital technology; (3) computerized operator support systems for fault management; (4) control strategies and techniques; (5) Nuclear power plant I and C architecture; (6) instrumentation and (7) computer standards and tools. The finding relate to poor reactions.

  6. Nuclear electronic equipment for control and monitoring panel. Procedure guide for on-site tests of nuclear reactor instruments

    International Nuclear Information System (INIS)

    1975-10-01

    By the use of a procedure for on-site testing of nuclear reactor instruments it should be possible to judge their ability to guarantee the reactor safety and availability at the moment of divergence or during operation. Such a procedure must therefore be created as a work implement for the quick and reliable installation of electronic devices necessary for nuclear reactor control and supervision. A standard document is proposed for this purpose, allowing a ''test programme'' to be set up before the equipment is installed on the site [fr

  7. Progress of nuclear safety for symbiosis and sustainability advanced digital instrumentation, control and information systems for nuclear power plants

    CERN Document Server

    Yoshikawa, Hidekazu

    2014-01-01

    This book introduces advanced methods of computational and information systems allowing readers to better understand the state-of-the-art design and implementation technology needed to maintain and enhance the safe operation of nuclear power plants. The subjects dealt with in the book are (i) Full digital instrumentation and control systems and human?machine interface technologies (ii) Risk? monitoring methods for large and? complex? plants (iii) Condition monitors for plant components (iv) Virtual and augmented reality for nuclear power plants and (v) Software reliability verification and val

  8. Development of Welding and Instrumentation Technology for Nuclear Fuel Test Rod

    International Nuclear Information System (INIS)

    Joung, Chang Young; Ahn, Sung Ho; Heo, Sung Ho; Hong, Jin Tae; Kim, Ka Hye

    2013-01-01

    It is necessary to develop various types of welding, instrumentation and helium gas filling techniques that can conduct TIG spot welding exactly at a pin-hole of the end-cap on the nuclear fuel rod to fill up helium gas. The welding process is one of the most important among the instrumentation processes of the nuclear fuel test rod. To manufacture the nuclear fuel test rod, a precision welding system needs to be fabricated to develop various welding technologies of the fuel test rod jointing the various sensors and end-caps on a fuel cladding tube, which is charged with fuel pellets and component parts. We therefore designed and fabricated an orbital TIG welding system and a laser welding system. This paper describes not only some experiment results from weld tests for the parts of a nuclear fuel test rod, but also the contents for the instrumentation process of the dummy fuel test rod installed with the C-type T. C. A dummy nuclear fuel test rod was successfully fabricated with the welding and instrumentation technologies acquired with various tests. In the test results, the round welding has shown a good weldability at both the orbital TIG welding system and the fiber laser welding system. The spot welding to fill up helium gas has shown a good welding performance at a welding current of 30A, welding time of 0.4 sec and gap of 1 mm in a helium gas atmosphere. The soundness of the nuclear fuel test rod sealed by a mechanical sealing method was confirmed by helium leak tests and microstructural analyses

  9. Development of Welding and Instrumentation Technology for Nuclear Fuel Test Rod

    Energy Technology Data Exchange (ETDEWEB)

    Joung, Chang Young; Ahn, Sung Ho; Heo, Sung Ho; Hong, Jin Tae; Kim, Ka Hye [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    It is necessary to develop various types of welding, instrumentation and helium gas filling techniques that can conduct TIG spot welding exactly at a pin-hole of the end-cap on the nuclear fuel rod to fill up helium gas. The welding process is one of the most important among the instrumentation processes of the nuclear fuel test rod. To manufacture the nuclear fuel test rod, a precision welding system needs to be fabricated to develop various welding technologies of the fuel test rod jointing the various sensors and end-caps on a fuel cladding tube, which is charged with fuel pellets and component parts. We therefore designed and fabricated an orbital TIG welding system and a laser welding system. This paper describes not only some experiment results from weld tests for the parts of a nuclear fuel test rod, but also the contents for the instrumentation process of the dummy fuel test rod installed with the C-type T. C. A dummy nuclear fuel test rod was successfully fabricated with the welding and instrumentation technologies acquired with various tests. In the test results, the round welding has shown a good weldability at both the orbital TIG welding system and the fiber laser welding system. The spot welding to fill up helium gas has shown a good welding performance at a welding current of 30A, welding time of 0.4 sec and gap of 1 mm in a helium gas atmosphere. The soundness of the nuclear fuel test rod sealed by a mechanical sealing method was confirmed by helium leak tests and microstructural analyses.

  10. Instrumentation

    International Nuclear Information System (INIS)

    Muehllehner, G.; Colsher, J.G.

    1982-01-01

    This chapter reviews the parameters which are important to positron-imaging instruments. It summarizes the options which various groups have explored in designing tomographs and the methods which have been developed to overcome some of the limitations inherent in the technique as well as in present instruments. The chapter is not presented as a defense of positron imaging versus single-photon or other imaging modality, neither does it contain a description of various existing instruments, but rather stresses their common properties and problems. Design parameters which are considered are resolution, sampling requirements, sensitivity, methods of eliminating scattered radiation, random coincidences and attenuation. The implementation of these parameters is considered, with special reference to sampling, choice of detector material, detector ring diameter and shielding and variations in point spread function. Quantitation problems discussed are normalization, and attenuation and random corrections. Present developments mentioned are noise reduction through time-of-flight-assisted tomography and signal to noise improvements through high intrinsic resolution. Extensive bibliography. (U.K.)

  11. Future Direction of the Instrumentation and Control System for Security of Nuclear Facilities

    International Nuclear Information System (INIS)

    Kim, Woo Jin; Kim, Jae Kwang

    2014-01-01

    Instrumentation and control systems are pervasively used as a vital component in modern industries. Nuclear facilities, such as nuclear power plants (NPPs), originally use I and C systems for plant status monitoring, processes control, and many other purposes. After some events that raised security concerns, application areas of I and C systems have been expanded to physical protection of nuclear material and facilities. As nuclear policies over the world are strengthening security issues, the future direction of roles and technical requirements of security related I and C systems is described: An introduction of I and C systems, especially digitalized I and C systems, to security of nuclear facilities requires many careful considerations, such as system integration, verification and validation (V/V), etc. Institute of Nuclear Nonproliferation and Control (KINAC) established 'International Nuclear Nonproliferation and Security Academy, INSA' in 2014. One of the main achievements of INSA is test-bed implementation for technical criteria development of nuclear facilities' physical protection systems (PPSs) as well as for education and training of those systems. The test bed was modified and improved more suitably from the previous version to modern PPSs including state-of-the-art I and C technologies. KINAC is confident in the new test bed to become a fundamental technical basis of security related I and C systems in near future

  12. Design and manufacturing of instrumented capsule(03F-05K) for nuclear fuel irradiation in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bong Goo; Sohn, J. M.; Shin, Y. T. [and others

    2004-06-01

    An instrumented capsule is being developed to be able to measure fuel characteristics, such as fuel temperature, internal pressure of fuel rod, fuel elongation, and neutron flux, etc., during the irradiation test of nuclear fuel in HANARO. The instrumented capsule(02F-11K) for measuring and monitoring fuel centerline temperature and neutron flux was designed and manufactured. The instrumented capsule includes three test fuel rods installed thermocouple to measure fuel centerline temperature and three SPNDs (self-powered neutron detector) to monitor the neutron flux. Its stability was verified by out-of-pile performance test, and its safety evaluation was also shown that the safety requirements were satisfied. And then, to verify the design of the instrumented capsule in the test hole, it was successfully irradiated in the test hole of HANARO from March 14, 2003 to June 1, 2003 (53.8 full power days at 24 MWth). During irradiation, the centerline temperature of PWR UO{sub 2} fuel pellets fabricated by KEPCO Nuclear Fuel Company and the neutron flux were continuously measured and monitored. In the year of 2004, 3 test fuel rods and the instrumented capsule(03F-05K) were designed and fabricated to measure fuel centerline temperature, internal pressure of fuel rod, and fuel axial deformation during irradiation test. This capsule is being irradiated in the test hole OR5 of HANARO reactor from April 26, 2004.

  13. Nuclear instrumentation system for the integrated digital I and C system

    International Nuclear Information System (INIS)

    Isobe, Yuji; Nakamura, Shingo

    2005-01-01

    Development of a new nuclear instrumentation (NI) system has been done. The new system is suitable for the digital instrumentation and control (I and C) systems. Higher reliability and lower development costs have been achieved by applying good performance circuits with sufficient experience of the conventional NI system. Human-system interface (HSI) and maintainability have been improved comparing with the conventional NI system because of the partial digitalisation. The new NI system has been manufactured and validated. We are finally verifying the total performance now

  14. Nuclear instrumentation system for the integrated digital I and C system

    Energy Technology Data Exchange (ETDEWEB)

    Isobe, Yuji [Mitsubishi Heavy Industries, Tokyo (Japan); Nakamura, Shingo [Mitsubishi, Electric Corporation, Tokyo (Japan)

    2005-11-15

    Development of a new nuclear instrumentation (NI) system has been done. The new system is suitable for the digital instrumentation and control (I and C) systems. Higher reliability and lower development costs have been achieved by applying good performance circuits with sufficient experience of the conventional NI system. Human-system interface (HSI) and maintainability have been improved comparing with the conventional NI system because of the partial digitalisation. The new NI system has been manufactured and validated. We are finally verifying the total performance now.

  15. Instrumentation and control engineering at ENACE (Argentine Nuclear Enterprise of Electric Power Plants S.A.)

    International Nuclear Information System (INIS)

    Roca, J.L.; Garzon, D.

    1987-01-01

    This paper describes the techniques used in the project of instrumentation and control for the Atucha II nuclear power plant, from the original flow diagram of the system whose instrumentation and control is requested to the functional binary diagrams and control loops, through measurement sheets and other documentation. An account of the organization and handling of this mass of information is given, using an electronic processing system of data file for the project. A brief description of the task implied in the completing and updating of these files defines the scheme in which all the documentation development associated with a given process is included. (Author)

  16. Concept and structure of instrumentation and control of the Atucha II nuclear power plant

    International Nuclear Information System (INIS)

    Garzon, D.; Roca, J.L.

    1987-01-01

    The general structure of instrumentation and control of Atucha II nuclear power plant as well as the technologies used, are described: concepts of functional decentralization and physical centralization; concept of functional group and functional complex; description of the technologies used (physical support) in the project of plant instrumentation and control; description of the different automation levels on the basis of concepts of control interface, automatism, regulation, group and subgroup controls; principles of signal conditioning; concept of announcement of alarms and state: supervisory computer, description of HAS (Hard wired Alarm System) and CAS (Computer Alarm System); application of the above mentioned structure to the project of another type of plants. (Author)

  17. Nuclear instrumentation

    International Nuclear Information System (INIS)

    Batista, R.S.

    1984-01-01

    The design and assembly of a prototype for study radioactive particles is presented. The objective for constructing this equipment and the theoretical fundamentals are shown. The electronic circuits and its distribution in blocks according its functions are also described. (author)

  18. Computer-based nuclear radiation detection and instrumentation teaching laboratory system

    International Nuclear Information System (INIS)

    Ellis, W.H.; He, Q.

    1993-01-01

    The integration of computers into the University of Florida's Nuclear Engineering Sciences teaching laboratories is based on the innovative use of MacIntosh 2 microcomputers, IEEE-488 (GPIB) communication and control bus system and protocol, compatible modular nuclear instrumentation (NIM) and test equipment, LabVIEW graphics and applications software, with locally prepared, interactive, menu-driven, HyperCard based multi-exercise laboratory instruction sets and procedures. Results thus far have been highly successful with the majority of the laboratory exercises having been implemented

  19. On-line calibration of process instrumentation channels in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hashemian, H.M.; Farmer, J.P. [Analysis and Measurement Services Corp., Knoxville, TN (United States)

    1995-04-01

    An on-line instrumentation monitoring system was developed and validated for use in nuclear power plants. This system continuously monitors the calibration status of instrument channels and determines whether or not they require manual calibrations. This is accomplished by comparing the output of each instrument channel to an estimate of the process it is monitoring. If the deviation of the instrument channel from the process estimate is greater than an allowable limit, then the instrument is said to be {open_quotes}out of calibration{close_quotes} and manual adjustments are made to correct the calibration. The success of the on-line monitoring system depends on the accuracy of the process estimation. The system described in this paper incorporates both simple intercomparison techniques as well as analytical approaches in the form of data-driven empirical modeling to estimate the process. On-line testing of the calibration of process instrumentation channels will reduce the number of manual calibrations currently performed, thereby reducing both costs to utilities and radiation exposure to plant personnel.

  20. SMART instruments for radiological surveillance at the back end of nuclear fuel cycle

    International Nuclear Information System (INIS)

    Pendharkar, K.A.; Jauhri, G.S.; Ganesh, G.; Kulkarni, V.V.

    2001-01-01

    The back end of Nuclear Fuel Cycle mainly consists of Fuel Reprocessing Plant and Waste Management Plant for treatment of different types of wastes generated during processing of spent fuel. A fuel reprocessing plant handles annually several million curies of fission product activity and few hundred kg of plutonium. A Waste Management Facility associated with a reprocessing plant also handles several million curies of fission product activity. In both the plants several types of radiological measurements have to be carried out to ensure that the individual doses are well below regulatory limits and release of radioactivity to environment (through stack and through liquid effluent) is below the limit stipulated in technical specifications of the plant. The measurements comprise individual external dose, measurement of radiation level in different areas of the plant, assessment of air-borne activity due to plutonium and fission products in different areas of the plant, radioactivity release to environment through liquid effluents and through stack. In order to carry out the above mentioned measurements large number of different types of instruments are required. The existing instruments are analog instruments. These instruments have served well. However they have certain limitations with respect to flexibility and extra functionality. In this respect the 'SMART' instruments have distinct advantages. The advantages, that are offered by the 'SMART' instrument in making the radiological surveillance programme more effective, are brought out in the paper. (author)

  1. Advanced control and instrumentation systems in nuclear power plants. Design, verification and validation

    International Nuclear Information System (INIS)

    Haapanen, P.

    1995-01-01

    The Technical Committee Meeting on design, verification and validation of advanced control and instrumentation systems in nuclear power plants was held in Espoo, Finland on 20 - 23 June 1994. The meeting was organized by the International Atomic Energy Agency's (IAEA) International Working Group's (IWG) on Nuclear Power Plant Control and Instrumentation (NPPCI) and on Advanced Technologies for Water Cooled Reactors (ATWR). VTT Automation together with Imatran Voima Oy and Teollisuuden Voima Oy responded about the practical arrangements of the meeting. In total 96 participants from 21 countries and the Agency took part in the meeting and 34 full papers and 8 posters were presented. Following topics were covered in the papers: (1) experience with advanced and digital systems, (2) safety and reliability analysis, (3) advanced digital systems under development and implementation, (4) verification and validation methods and practices, (5) future development trends. (orig.)

  2. Measurement and instrumentation techniques for monitoring plutonium and uranium particulates released from nuclear facilities

    International Nuclear Information System (INIS)

    Nero, A.V. Jr.

    1976-08-01

    The purpose of this work has been an analysis and evaluation of the state-of-the-art of measurement and instrumentation techniques for monitoring plutonium and uranium particulates released from nuclear facilities. The occurrence of plutonium and uranium in the nuclear fuel cycle, the corresponding potential for releases, associated radiological protection standards and monitoring objectives are discussed. Techniques for monitoring via decay radiation from plutonium and uranium isotopes are presented in detail, emphasizing air monitoring, but also including soil sampling and survey methods. Additionally, activation and mass measurement techniques are discussed. The availability and prevalence of these various techniques are summarized. Finally, possible improvements in monitoring capabilities due to alterations in instrumentation, data analysis, or programs are presented

  3. Recent applications of microprocessor-based instruments in nuclear power stations

    International Nuclear Information System (INIS)

    Cash, N.R.; Dennis, U.E.

    1988-01-01

    The incorporation of microprocessors in the design of nuclear power plant instrumentation has led to levels of measurement and control not available previously. In addition to the expected expansion of functional (system) capability, numerous desirable features now are possible. The added ability to both self-calibrate and perform compensation algorithms has led to dramatic improvements in accuracies, response times, and noise rejection. Automated performance checking and self-testing simplify troubleshooting and required periodic surveillance. Alphanumeric displays allow both menu-driven operation and user-prompting, which, in turn, contribute to mistake avoidance. New features of these microprocessor-based instruments are of specific benefit in nuclear power reactors, were safety is of prime concern. Greater reliability and accuracy can be provided. Shortened calibration, surveillance, and repair times reduce the exposure to unnecessary challenges of the plant's protection systems that can arise from spurious noise signals

  4. Gradual instrumentation and control upgrades in U.S. nuclear power plants

    International Nuclear Information System (INIS)

    Welk, S.

    1997-01-01

    Since the late 1980s, US nuclear power plants have been struggling with the technical and licensing realities associated with installing digital protection and control systems into existing facilities. The industry, regulators and equipment vendors are finally reaching agreements regarding acceptable practices and requirements. The present paper explains the philosophy for gradual instrumentation and control replacements being pursued and the technical issues being addressed. It also describes some of the future challenges facing the industry. (author)

  5. Recent activities in the field of nuclear power plant control and instrumentation in Czechoslovakia

    International Nuclear Information System (INIS)

    Rubek, J.

    1992-01-01

    The report presents a review of Czechoslovak nuclear power plants that are in operation and in the course of construction. The present state of the instrumentation of the newly built NPP's is described, and a special attention is given to work on the control of spatial power distribution in the reactor core of WWER 1000, the first unit to be installed in NPP Temelin. A project of a secondary circuit diagnostic system of this unit is described. (author). 6 refs, 1 tab

  6. Research on conceptual design of simplified nuclear safety instrument and control system

    International Nuclear Information System (INIS)

    Huang Jie

    2015-01-01

    The Nuclear safety instrument and control system is directly related to the safety of the reactor. So redundant and diversity design is used to ensure the system's security and reliability. This make the traditional safety system large, more cabinets and wiring complexity. To solve these problem, we can adopt new technology to make the design more simple. The simplify conceptual design can make the system less cabinets, less wiring, but high security, strong reliability. (author)

  7. Development of a green mode DC/DC converter available to portable nuclear instrument

    International Nuclear Information System (INIS)

    Gao Feiyan; Wu Longxiong; Tan Wei; Tang Yaogeng

    2010-01-01

    A green mode DC/DC converter was developed which suitable to the portable nuclear instrument which is powered by battery and is sometime at stand-by mode. Some updated control approaches such as pseudo-resonant type power supply control and synchronous rectification were adopted to makethe DC/DC converter operate with low power consumption and high efficiency. The test results the battery can be prolonged with this converter. (authors)

  8. Nuclear Instrumentation Module (NIM) standard logic processor as a portal signal analyzer

    International Nuclear Information System (INIS)

    Minges, G.P.

    1978-01-01

    A general purpose electronic logic processor has been designed into a 2 wide NIM (Nuclear Instrumentation Module) bin module. The unit utilizes a microprocessor to achieve necessary versatility. The processor's first use is as a new generation signal analyzer for use in radiometric personnel and vehicle portal monitors. Significant improvements have been obtained in sensitivity and stability over existing analog discriminators. The new analyzer is presently being used to update personnel and vehicle portal monitoring systems

  9. Research within the coordinated programme on investigation of maintenance of nuclear instrumentation in developing countries. Latin America

    International Nuclear Information System (INIS)

    Guzman-Acevedo, C.

    1980-06-01

    The situation in Peru with regard to the maintenance and repair of instruments used in nuclear medicine is presented. On the basis of responses to questionnaires it appears that 56 instruments for nuclear medicine are in use in the country, almost exclusively in the capital Lima. The average age of the instruments is 9.5 years. They are in use about 16.4% of the possible time. The development of nuclear medicine in Peru is in its initial stages and difficulties encountered arise both from the lack of training and experience in nuclear medicine on the part of the medical personnel as well as lack of experience of the technicians responsible for instrument maintenance. Practically no preventive maintenance ever takes place; action is only taken when an instrument breaks down. Various suggestions are made in order to attempt an improvement of the situation

  10. Design of coordinated controller in nuclear power plant based on digital instrument and control technology

    International Nuclear Information System (INIS)

    Cheng Shouyu; Peng Minjun; Liu Xinkai; Zhao Qiang; Deng Xiangxin

    2014-01-01

    Nuclear power plant (NPP) is a multi-input and multi-output, no-linear and time-varying complex system. The conventional PID controller is usually used in NPP control system which is based on analog instrument. The system parameters are easy to overshoot and the response time is longer in the control mode of the conventional PID. In order to improve this condition, a new coordinated control strategy which is based on expert system and the original controllers in the digital instrument and control technology was presented. In order to verify and validate it, the proposed coordinated control technology was tested by the full-scope real-time simulation system. The results prove that using digital instrument and control technology to achieve coordinated controller is feasible, the coordinated controller can effectively improve the dynamic operating characteristics of the system, and the coordinated controller is superior to the conventional PID controller in control performance. (authors)

  11. Performance Monitoring for Nuclear Safety Related Instrumentation at PUSPATI TRIGA Reactor (RTP)

    International Nuclear Information System (INIS)

    Zareen Khan Abdul Jalil Khan; Ridzuan Abdul Mutalib; Mohd Sabri Minhat

    2015-01-01

    The Reactor TRIGA PUSPATI (RTP) at Malaysia Nuclear Agency is a TRIGA Mark II type reactor and pool type cooled by natural circulation of light water. This paper describe on performance monitoring for nuclear safety related instrumentation in TRIGA PUSPATI Reactor (RTP) of based on various parameter of reactor safety instrument channel such as log power, linear power, Fuel temperature, coolant temperature will take into consideration. Methodology of performance on estimation and monitoring is to evaluate and analysis of reactor parameters which is important of reactor safety and control. And also to estimate power measurement, differential of log and linear power and fuel temperature during reactor start-up, operation and shutdown .This study also focus on neutron power fluctuation from fission chamber during reactor start-up and operation. This work will present result of performance monitoring from RTP which indicated the safety parameter identification and initiate safety action on crossing the threshold set point trip. Conclude that performance of nuclear safety related instrumentation will improved the reactor control and safety parameter during reactor start-up, operation and shutdown. (author)

  12. Design of a Prototype Differential Die‐Away Instrument Proposed for Swedish Spent Nuclear Fuel Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Martinik, Tomas, E-mail: tomas.martinik@physics.uu.se [Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala (Sweden); Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Henzl, Vladimir [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Grape, Sophie; Jansson, Peter [Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala (Sweden); Swinhoe, Martyn T.; Goodsell, Alison V. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Tobin, Stephen J. [Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala (Sweden); Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Swedish Nuclear Fuel and Waste Management Company, Blekholmstorget 30, Box 250, SE-101 24 Stockholm (Sweden)

    2016-06-11

    As part of the United States (US) Department of Energy's Next Generation Safeguards Initiative Spent Fuel (NGSI-SF) project, the traditional Differential Die-Away (DDA) method that was originally developed for waste drum assay has been investigated and modified to provide a novel application to characterize or verify spent nuclear fuel (SNF). Following the promising, yet largely theoretical and simulation based, research of physics aspects of the DDA technique applied to SNF assay during the early stages of the NGSI-SF project, the most recent effort has been focused on the practical aspects of developing the first fully functional and deployable DDA prototype instrument for spent fuel. As a result of the collaboration among US research institutions and Sweden, the opportunity to test the newly proposed instrument's performance with commercial grade SNF at the Swedish Interim Storage Facility (Clab) emerged. Therefore the design of this instrument prototype has to accommodate the requirements of the Swedish regulator as well as specific engineering constrains given by the unique industrial environment. Within this paper, we identify key components of the DDA based instrument and we present methodology for evaluation and the results of a selection of the most relevant design parameters in order to optimize the performance for a given application, i.e. test-deployment, including assay of 50 preselected spent nuclear fuel assemblies of both pressurized (PWR) as well as boiling (BWR) water reactor type.

  13. Design verification test of instrumented capsule (02F-11K) for nuclear fuel irradiation in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bong Goo; Sohn, J. M.; Oh, J. M. [and others

    2004-01-01

    An instrumented capsule is being developed to be able to measure fuel characteristics, such as fuel temperature, internal pressure of fuel rod, fuel elongation, and neutron flux, etc., during the irradiation test of nuclear fuel in HANARO. The instrumented capsule for measuring and monitoring fuel centerline temperature and neutron flux was designed and manufactured. The instrumented capsule includes three test fuel rods installed thermocouple to measure fuel centerline temperature and three SPNDs (Self-Powered Neutron Detector) to monitor the neutron flux. Its stability was verified by out-of-pile performance test, and its safety evaluation was also shown that the safety requirements were satisfied. And then, to verify the design of the instrumented capsule in the test hole, it was successfully irradiated in the test hole of HANARO from March 14, 2003 to June 1, 2003 (53.8 full power days at 24 MWth). During irradiation, the centerline temperature of PWR UO{sub 2} fuel pellets fabricated by KEPCO Nuclear Fuel Company and the neutron flux were continuously measured and monitored. The test fuel rods were irradiated at less than 350 W/cm to 5.13 GWD/MTU with fuel centerline peak temperature below 1,375 .deg. C. The structural stability of the capsule was satisfied by the naked eye in service pool of HANARO. The capsule and test fuel rods were dismantled and test fuel rods were examined at the hot cell of IMEF (Irradiated Material Examination Facility)

  14. Instrumentation Technologies for Improving an Irradiation Testing of Nuclear Fuels and Materials at the HANARO

    International Nuclear Information System (INIS)

    Kim, Bong Goo; Park, Sung Jae; Choo, Ki Nam

    2011-01-01

    Over 50 years of nuclear fuels and materials irradiation testing has led to many countries developing significant improvements in instrumentation to monitor physical parameters and to control the test conditions in Materials Test Reactors (MTRs) or research reactors. Recent effort to deploy new fuels and materials in existing and advanced reactors has increased the demand for well-instrumented irradiation tests. Specifically, demand has increased for tests with sensors capable of providing real-time measurement of key parameters, such as temperature, geometry changes, thermal conductivity, fission gas release, cracking, coating buildup, thermal and fast flux, etc. This review paper documents the current state of instrumentation technologies in MTRs in the world and summarizes on-going research efforts to deploy new sensors. There is increased interest to irradiate new materials and reactor fuels for advanced PWRs and the Gen-IV reactor systems, such as SFRs (Sodium-cooled Fast Reactors), VHTRs (Very-High-Temperature Reactors), SCWRs (Supercritical-Water-cooled Reactors) and GFRs (Gas-cooled Fast Reactor). This review documents the current state of instrumentation technologies in MTRs in the world, identifies challenges faced by previous testing methods and how these challenges were overcome. A wide range of sensors are available to measure key parameters of interest during fuels and materials irradiations in MTRs. Such sensors must be reliable, small size, highly accurate, and able to withstand harsh conditions. On-going development efforts are focusing on providing MTR users a wider range of parameter measurements with increased accuracy. In addition, development efforts are focusing on reducing the impact of sensor on measurements by reducing sensor size. This report includes not only status of instrumentation using research reactors in the world to irradiate nuclear fuels and materials but also future directions relating to instrumentation technologies for

  15. Workshop on instrumentation and analyses for a nuclear fuel reprocessing hot pilot plant

    International Nuclear Information System (INIS)

    Babcock, S.M.; Feldman, M.J.; Wymer, R.G.; Hoffman, D.

    1980-05-01

    In order to assist in the study of instrumentation and analytical needs for reprocessing plants, a workshop addressing these needs was held at Oak Ridge National Laboratory from May 5 to 7, 1980. The purpose of the workshop was to incorporate the knowledge of chemistry and of advanced measurement techniques held by the nuclear and radiochemical community into ideas for improved and new plant designs for both process control and inventory and safeguards measurements. The workshop was athended by experts in nuclear and radiochemistry, in fuel recycle plant design, and in instrumentation and analysis. ORNL was a particularly appropriate place to hold the workshop since the Consolidated Fuel Reprocessing Program (CFRP) is centered there. Requirements for safeguarding the special nuclear materials involved in reprocessing, and for their timely measurement within the process, within the reprocessing facility, and at the facility boundaries are being studied. Because these requirements are becoming more numerous and stringent, attention is also being paid to the analytical requirements for these special nuclear materials and to methods for measuring the physical parameters of the systems containing them. In order to provide a focus for the consideration of the workshop participants, the Hot Experimental Facility (HEF) being designed conceptually by the CFRP was used as a basis for consideration and discussions

  16. Probabilistic safety assessment for instrumentation and control systems in nuclear power plants: an overview

    International Nuclear Information System (INIS)

    Lu, Lixuan; Jiang, Jin

    2004-01-01

    Deregulation in the electricity market has resulted in a number of challenges in the nuclear power industry. Nuclear power plants must find innovative ways to remain competitive by reducing operating costs without jeopardizing safety. Instrumentation and Control (I and C) systems not only play important roles in plant operation, but also in reducing the cost of power generation while maintaining and/or enhancing safety. Therefore, it is extremely important that I and C systems are managed efficiently and economically. With the increasing use of digital technologies, new methods are needed to solve problems associated with various aspects of digital I and C systems. Probabilistic Safety Assessment (PSA) has proved to be an effective method for safety analysis and risk-based decisions, even though challenges are still present. This paper provides an overview of PSA applications in three areas of digital I and C systems in nuclear power plants. These areas are Graded Quality Assurance, Surveillance Testing, and Instrumentation and Control System Design. In addition, PSA application in the regulation of nuclear power plants that adopt digital I and C systems is also investigated. (author)

  17. Technology Roadmap Instrumentation, Control, and Human-Machine Interface to Support DOE Advanced Nuclear Energy Programs

    Energy Technology Data Exchange (ETDEWEB)

    Donald D Dudenhoeffer; Burce P Hallbert

    2007-03-01

    Instrumentation, Controls, and Human-Machine Interface (ICHMI) technologies are essential to ensuring delivery and effective operation of optimized advanced Generation IV (Gen IV) nuclear energy systems. In 1996, the Watts Bar I nuclear power plant in Tennessee was the last U.S. nuclear power plant to go on line. It was, in fact, built based on pre-1990 technology. Since this last U.S. nuclear power plant was designed, there have been major advances in the field of ICHMI systems. Computer technology employed in other industries has advanced dramatically, and computing systems are now replaced every few years as they become functionally obsolete. Functional obsolescence occurs when newer, more functional technology replaces or supersedes an existing technology, even though an existing technology may well be in working order.Although ICHMI architectures are comprised of much of the same technology, they have not been updated nearly as often in the nuclear power industry. For example, some newer Personal Digital Assistants (PDAs) or handheld computers may, in fact, have more functionality than the 1996 computer control system at the Watts Bar I plant. This illustrates the need to transition and upgrade current nuclear power plant ICHMI technologies.

  18. Development of Induction Brazing System for Sealing Instrumentation Feed through Part of Nuclear Fuel Test Rig

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jintae; Kim, Kahye; Heo, Sungho; Ahn, Sungho; Joung, Changyoung; Son, Kwangjae; Jung, Yangil [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-12-15

    To test the performance of nuclear fuels, coolant needs to be circulated through the test rig installed in the test loop. Because the pressure and temperature of the coolant is 15.5 MPa and 300 .deg. C respectively, coolant sealing is one of the most important processes in fabricating a nuclear fuel test rig. In particular, 15 instrumentation cables installed in a test rig pass through the pressure boundary, and brazing is generally applied as a sealing method. In this study, an induction brazing system has been developed using a high frequency induction heater including a vacuum chamber. For application in the nuclear field, BNi2 should be used as a paste, and optimal process variables for Ni brazing have been found by several case studies. The performance and soundness of the brazed components has been verified by a tensile test, cross section test, and sealing performance test.

  19. Summary of developments and future projects in nuclear power plant control and instrumentation in the Netherlands

    International Nuclear Information System (INIS)

    Plas, Y. van der

    1990-01-01

    A general view is given on the developments and trends due to instrumentation and control of the two nuclear power plants in the Netherlands around the year 1989. Several projects, under which for classification of systems and components and for emergency operating procedures, are executed in both plants. An OSART mission initiated a project to make possible the periodic test of safety commands during operation. An other large project concerned the replacement of the process presentation system in Nuclear Power Plant Borssele. In the article several other developments due to the application of I and C in existing plants are outlined generally. Since 1974, no new nuclear power plants have been constructed in the Netherlands. (author). 2 figs

  20. Human factors survey of advanced instrumentation and controls technologies in nuclear plants

    International Nuclear Information System (INIS)

    Carter, R.J.

    1992-01-01

    A survey of advanced instrumentation and controls (I ampersand C) technologies and associated human factors issues in the US and Canadian nuclear industries was carried out by a team from Oak Ridge national laboratory to provide background for the development of regulatory policy, criteria, and guides for review of advanced I ampersand C systems as well as human engineering guidelines for evaluating these systems. The survey found those components of the US nuclear industry surveyed to be quite interested in advanced I ampersand C, but very cautious in implementing such systems in nuclear facilities and power plants. The trend in the facilities surveyed is to experiment cautiously when there is an intuitive advantage or short-term payoff. In the control room, the usual practice is direct substitution of digital and microprocessor-based instruments or systems that are functionally identical to the analog instruments or systems being replaced. The most advanced I ampersand C systems were found in the Canadian CANDU plants, where the newest plant has digital system in almost 100% of its control systems and in over 70% of its plant protection system. The hypothesis that properly 'introducing digital systems increases safety' is supported by the Canadian experience. The performance of these digital systems was achieved using an appropriate quality assurance program for the software development. The ability of digital systems to detect impending failures and initiate a fail-safe action, is a significant safety issue that should be of special interest to every US utility as well as to the US Nuclear Regulatory Commission. (orig.)

  1. Recent movements and some topics on nuclear power plant control and instrumentation in Japan from 1984 to 1986

    International Nuclear Information System (INIS)

    Wakayama, N.

    1986-01-01

    Extensive works have been carried out in Japan in the field of nuclear power plants control and instrumentation, and many fruitful results have been obtained. This paper aims to introduce such progress and topics obtained since 1984 in this field

  2. Introduction to digital instrumentation and control techniques used in nuclear engineering

    International Nuclear Information System (INIS)

    Kurilla, R.G.; Kenney, E.S.

    1988-01-01

    For the past 8 yr, the nuclear engineering department at Pennsylvania State University has been teaching a digital interfacing class at the undergraduate (senior) level. With the ever-increasing use of computers in the nuclear engineering area (such as in the use of automated data acquisition systems) and the complexity of control instrumentation, more than a cursory introduction into electronics and computer controls is needed. Because of the ever-increasing popularity, and hence importance, of IBM-PC compatible microcomputers in the engineering fields, the program has been adapted to the Intel 8086 microprocessor. Courses such as this one are helpful in ensuring the students have an adequate design and practice base as required by accrediting groups. The course, is composed of three parts: (1) machine code/assembly language, (2) interfacing, and (3) final project. Experience demonstrates that a course of this inherent complexity can successfully be taught within a nuclear engineering curriculum without extensive prerequisites. The important ingredient is to treat nuclear engineering students for exactly what they are, engineers. By having them use their creativity and adaptability, they can successfully integrate the digital interfacing techniques now routinely used in the nuclear industry

  3. Requirements and analysis of electromagnetic compatibility of safety-related instrumentation and control system in nuclear power plants

    International Nuclear Information System (INIS)

    Liu Sujuan

    2002-01-01

    The state-of-the-art instrumentation and control system and the influence of their application to the electromagnetic compatibility is analyzed. Based on the present situation of nuclear safety in China and relevant experiences from other countries, the author tries to probe into the requirements and test methods about how safety-related instrument and control system to accommodate electromagnetic interference, radio-frequency interference and power surges in the environments of nuclear power plant so as to develop Chinese safety standards

  4. Establishment of the Auditing National Service of quality to the instrumentation of Nuclear medicine in Cuba

    International Nuclear Information System (INIS)

    Varela C, C.; Diaz B, M.; Lopez B, G.M.; Torres A, L.A.; Coca P, M.A.

    2006-01-01

    Next to the vertiginous development of the technology in the Nuclear Medicine field, the possibility of early diagnosis of pathological processes without anatomical alterations, as well as its application with therapeutic purposes in the cancer treatment has grown. To assure a diagnosis and adapted therapy, it is vital to establish quality guarantee programs to the instrumentation. The State Medical Equipment Control Center (CCEEM), as regulator organ attributed to the Public Health Ministry of Cuba, it has licensed the Service of Quality Audits to the Nuclear medicine services, fulfilling all the technical and legal requirements to such effect. As base of these, the National Protocol for the Quality Control of the Instrumentation in Nuclear Medicine has been implemented, put out in vigour 2 national regulations, and an inter-institutional and multidisciplinary auditor equipment has been licensed. The different followed steps, as well as the realization of the first quality audits, its show not only a better execution of the tests and bigger professionalism of the involved specialists, but an increment in the taking of conscience to apply adequately the quality concepts for achieving a better service to the patient. On the other hand, the necessity of incorporating the clinical aspects to the audits, fomenting an integral harmonized advance of the quality guarantee programs is evidenced. (Author)

  5. Technical Support Section Instrument Support Program for nuclear and nonnuclear facilities with safety requirements

    International Nuclear Information System (INIS)

    Adkisson, B.P.; Allison, K.L.

    1995-01-01

    This document describes requirements, procedures, and supervisory responsibilities of the Oak Ridge National Laboratory (ORNL) Instrumentation and Controls (I ampersand C) Division's Technical Support Section (TSS) for instrument surveillance and maintenance in nonreactor nuclear facilities having identified Operational Safety Requirements (OSRs) or Limiting Conditions Document (LCDs). Implementation of requirements comply with the requirements of U.S. Department of Energy (DOE) Orders 5480.5, 5480.22, and 5481.1B; Martin Marietta Energy Systems, Inc. (Energy Systems), Policy Procedure ESS-FS-201; and ORNL SPP X-ESH-15. OSRs and LCDs constitute an agreement or contract between DOE and the facility operating management regarding the safe operation of the facility. One basic difference between OSRs and LCDs is that violation of an OSR is considered a Category II occurrence, whereas violation of an LCD requirement is considered a Category III occurrence (see Energy Systems Standard ESS-OP-301 and ORNL SPP X-GP-13). OSRs are required for high- and moderate-hazard nuclear facilities, whereas the less-rigorous LCDs are required for low-hazard nuclear facilities and selected open-quotes generally acceptedclose quotes operations. Hazard classifications are determined through a hazard screening process, which each division conducts for its facilities

  6. In core instrumentation for online nuclear heating measurements of material testing reactor

    International Nuclear Information System (INIS)

    Reynard, C.; Andre, J.; Brun, J.; Carette, M.; Janulyte, A.; Merroun, O.; Zerega, Y.; Lyoussi, A.; Bignan, G.; Chauvin, J-P.; Fourmentel, D.; Glayse, W.; Gonnier, C.; Guimbal, P.; Iracane, D.; Villard, J.-F.

    2010-01-01

    The present work focuses on nuclear heating. This work belongs to a new advanced research program called IN-CORE which means 'Instrumentation for Nuclear radiations and Calorimetry Online in REactor' between the LCP (University of Provence-CNRS) and the CEA (French Atomic Energy Commission) - Jules Horowitz Reactor (JHR) program. This program started in September 2009 and is dedicated to the conception and the design of an innovative mobile experimental device coupling several sensors and ray detectors for on line measurements of relevant physical parameters (photonic heating, neutronic flux ...) and for an accurate parametric mapping of experimental channels in the JHR Core. The work presented below is the first step of this program and concerns a brief state of the art related to measurement methods of nuclear heating phenomena in research reactor in general and MTR in particular. A special care is given to gamma heating measurements. A first part deals with numerical codes and models. The second one presents instrumentation divided into various kinds of sensor such as calorimeter measurements and gamma ionization chamber measurements. Their basic principles, characteristics such as metrological parameters, operating mode, disadvantages/advantages, ... are discussed. (author)

  7. On-Line Monitoring of Instrument Channel Performance in Nuclear Power Plant Using PEANO

    International Nuclear Information System (INIS)

    Fantoni, Paolo F.; Hoffmann, Mario; Shankar, Ramesh; Davis, Eddie L.

    2002-01-01

    On-Line monitoring evaluates instrument channel performance by assessing its consistency with other plant indications. Industry and EPRI experience at several plants has shown this overall approach to be very effective in identifying instrument channels that are exhibiting degrading or inconsistent performance characteristics. On-Line monitoring of instrument channels provides information about the condition of the monitored channels through accurate, more frequent monitoring of each channel's performance over time. This type of performance monitoring is a methodology that offers an alternate approach to traditional time-directed calibration. On-line monitoring of these channels can provide an assessment of instrument performance and provide a basis for determining when adjustments are necessary. Elimination or reduction of unnecessary field calibrations can reduce associated labor costs, reduce personnel radiation exposure and reduce the potential for miss-calibration. PEANO is a system for on-line calibration monitoring developed in the years 1995-2000 at the Institutt for energiteknikk (IFE), Norway, which makes use of Artificial Intelligence techniques for its purpose. The system has been tested successfully in Europe in off-line tests with EDF (France), Tecnatom (Spain) and ENEA (Italy). PEANO is currently installed and used for on-line monitoring at the HBWR reactor in Halden. This paper describes the results of performance tests on PEANO with real data from a US PWR plant, in the framework of a co-operation among IFE, EPRI and Edan Engineering, to evaluate the potentials of PEANO for future installations in US nuclear plants. (authors)

  8. Small-scale instrumentation for nuclear magnetic resonance of porous media

    International Nuclear Information System (INIS)

    Bluemich, Bernhard; Casanova, Federico; Dabrowski, Martin; Danieli, Ernesto; Haber, Agnes; Van Landeghem, Maxime; Haber-Pohlmeier, Sabina; Olaru, Alexandra; Perlo, Juan; Sucre, Oscar; Evertz, Loribeth

    2011-01-01

    The investigation of fluids confined to porous media is the oldest topic of investigation with small-scale nuclear magnetic resonance (NMR) instruments, as such instruments are mobile and can be moved to the site of the object, such as the borehole of an oil well. While the analysis was originally restricted by the inferior homogeneity of the employed magnets to relaxation measurements, today, portable magnets are available for all types of NMR measurements concerning relaxometry, imaging and spectroscopy in two types of geometries. These geometries refer to closed magnets that surround the sample and open magnets, which are brought close to the object for measurement. The current state of the art of portable, small-scale NMR instruments is reviewed and recent applications of such instruments are featured. These include the porosity analysis and description of diesel particulate filters, the determination of the moisture content in walls from gray concrete, new approaches to analyze the pore space and moisture migration in soil, and the constitutional analysis of the mortar base of ancient wall paintings.

  9. Review Paper: Review of Instrumentation for Irradiation Testing of Nuclear Fuels and Materials

    International Nuclear Information System (INIS)

    Kim, Bong Goo; Rempe, Joy L.; Villard, Jean-Francois; Solstadd, Steinar

    2011-01-01

    Over 50 years of nuclear fuels and materials irradiation testing has led to many countries developing significant improvements in instrumentation to monitor physical parameters and to control the test conditions in material test reactors (MTRs). Recently, there is increased interest to irradiate new materials and reactor fuels for advanced pressurized water reactors and Gen-IV reactor systems, such as sodium-cooled fast reactors, very high temperature reactors, supercritical water-cooled reactors, and gas-cooled fast reactors. This review paper documents the current state of instrumentation technologies in MTRs in the world and summarizes ongoing research efforts to deploy new sensors. As described in this paper, a wide range of sensors is available to measure key parameters of interest during fuels and materials irradiations in MTRs. Ongoing development efforts focus on providing MTR users a wider range of parameter measurements with smaller, higher accuracy sensors.

  10. Building of a CAD system for instrumentation and control system of nuclear power plant

    International Nuclear Information System (INIS)

    Ma Zhicai; Hu Chunping; Zhang Dongsheng

    2012-01-01

    Base on the analysis of deign documents and process, a database for instrumentation and control system design can be developed with a popular desktop relational database management system (RDBMS). With the RDBMS, an instrumentation and control system CAD system can be built unitizing database link feature of popular CAD software, with the function of management of design data, output of list and forms. and design of drawings. A CAD system of this kind has been used in the design practice of nuclear power plant. With this system, it is shown that, the consistency of information has been controlled and the load on the engineer has been significantly reduced. The methodology used here can also be used in the CAD system for CAP1000 and CAP1400 plant. (authors) series

  11. Ageing studies on materials, components and process instruments used in nuclear power plants

    International Nuclear Information System (INIS)

    Bora, J.S.

    1997-04-01

    This report is a compilation of test results of thermal and radiation ageing tests carried out in the laboratory over a period of 25 years on diverse engineering materials, components and instruments used in nuclear power plants. Test items covered are different types of electrical cables, elastomers, surface coatings, electrical and electronics components and process instruments. Effects of thermal and radiation ageing on performance parameters are shown in tabular forms. Apart from finding the characteristics, capabilities and limitations of test items, ageing research has helped in pin-pointing sub-standard and critical parts and necessary corrective action has been taken. This report is expected to be quite useful to the manufacturers users and researchers for reference and guidance. (author)

  12. Preparing and Conducting Review Missions of Instrumentation and Control Systems in Nuclear Power Plants

    International Nuclear Information System (INIS)

    2016-07-01

    The IERICS (Independent Engineering Review of Instrumentation and Control Systems) mission is a comprehensive engineering review service directly addressing strategy and the key elements for implementation of modern instrumentation and control (I&C) systems, noting in applicable cases, specific concerns related to the implementation of advanced digital I&C systems and the use of software and/or digital logic in safety applications of a nuclear power plant. The guidelines outlined in this publication provide a basic structure, common reference and checklist across the various areas covered by an IERICS mission. Publications referenced in these guidelines could provide additional useful information for the counterpart while preparing for the IERICS mission. A structure for the mission report is given in the Appendix. In 2016, this publication was revised by international experts who had participated in previous IERICS missions. The revision reflects experiences and lessons learned from the preparation and conduct of those missions

  13. Development of Mechanical Sealing and Laser Welding Technology to Instrument Thermocouple for Nuclear Fuel Test Rod

    International Nuclear Information System (INIS)

    Joung, Chang-Young; Ahn, Sung-Ho; Hong, Jin-Tae; Kim, Ka-Hye; Huh, Sung-Ho

    2015-01-01

    Zircaloy-4 of the nuclear fuel test rod, AISI 316L of the mechanical sealing parts, and the MI (mineral insulated) cable at a thermocouple instrumentation are hetero-metals, and are difficult to weld to dissimilar materials. Therefore, a mechanical sealing method to instrument the thermocouple should be conducted using two kinds of sealing process as follows: One is a mechanical sealing process using Swagelok, which is composed of sealing components that consists of an end-cap, a seal tube, a compression ring and a Swagelok nut. The other is a laser welding process used to join a seal tube, and an MI cable, which are made of the same material. The mechanical sealing process should be sealed up with the mechanical contact compressed by the strength forced between a seal tube and an end-cap, and the laser welding process should be conducted to have no defects on the sealing area between a seal tube and an MI cable. Therefore, the mechanical sealing and laser welding techniques need to be developed to accurately measure the centerline temperature of the nuclear fuel test rod in an experimental reactor. The mechanical sealing and laser welding tests were conducted to develop the thermocouple instrumentation techniques for the nuclear fuel test rod. The optimum torque value of a Swagelok nut to seal the mechanical sealing part between the end-cap and seal tube was established through various torque tests using a torque wrench. The optimum laser welding conditions to seal the welding part between a seal tube and an MI cable were obtained through various welding tests using a laser welding system

  14. Development of Mechanical Sealing and Laser Welding Technology to Instrument Thermocouple for Nuclear Fuel Test Rod

    Energy Technology Data Exchange (ETDEWEB)

    Joung, Chang-Young; Ahn, Sung-Ho; Hong, Jin-Tae; Kim, Ka-Hye; Huh, Sung-Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Zircaloy-4 of the nuclear fuel test rod, AISI 316L of the mechanical sealing parts, and the MI (mineral insulated) cable at a thermocouple instrumentation are hetero-metals, and are difficult to weld to dissimilar materials. Therefore, a mechanical sealing method to instrument the thermocouple should be conducted using two kinds of sealing process as follows: One is a mechanical sealing process using Swagelok, which is composed of sealing components that consists of an end-cap, a seal tube, a compression ring and a Swagelok nut. The other is a laser welding process used to join a seal tube, and an MI cable, which are made of the same material. The mechanical sealing process should be sealed up with the mechanical contact compressed by the strength forced between a seal tube and an end-cap, and the laser welding process should be conducted to have no defects on the sealing area between a seal tube and an MI cable. Therefore, the mechanical sealing and laser welding techniques need to be developed to accurately measure the centerline temperature of the nuclear fuel test rod in an experimental reactor. The mechanical sealing and laser welding tests were conducted to develop the thermocouple instrumentation techniques for the nuclear fuel test rod. The optimum torque value of a Swagelok nut to seal the mechanical sealing part between the end-cap and seal tube was established through various torque tests using a torque wrench. The optimum laser welding conditions to seal the welding part between a seal tube and an MI cable were obtained through various welding tests using a laser welding system.

  15. A desk evaluation review of project RAF/4/004 nuclear instruments maintenance. Project desk evaluation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-04-15

    A Project Desk Evaluation (PDE) is an intensive review process, using agreed guidelines, of the design, implementation, and the outputs of a project. This project was originally intended for six selected countries in Africa, namely, Algeria, Egypt, Ghana, Libya, Zaire and Zambia. Ethiopia and Tanzania joined in 1993 and it has now been extended to two other countries, Madagascar and Sudan. This is a step forward towards developing the infrastructure for nuclear instrumentation and maintenance is as many countries in Africa as require this service. A project summary along with financial data and recommendations for improvements are given. A table where total assistance provided to ten selected african countries is included.

  16. Nuclear Power Plant Control and Instrumentation activities in the United Kingdom

    International Nuclear Information System (INIS)

    Goodings, A.

    1990-01-01

    The paper describes the status of the NPP control and instrumentation in the United Kingdom. The general technology underlying most aspects of power reactor C and I in the UK has not altered since the last progress report although there have been many improvements in detail. In one field, however, that of computer applications, the change has almost been one of kind rather than degree. The following fields are briefly described: The status of nuclear power in the UK, the development of sensors, the development of electronic equipment, signal processing - information technology, quality assurance and the validation and verification of software, expert systems, training simulators. (author). 1 ref

  17. Integrated conception of hardware/software mixed systems used in nuclear instrumentation

    International Nuclear Information System (INIS)

    Dias, Ailton F.; Sorel, Yves; Akil, Mohamed

    2002-01-01

    Hardware/software codesign carries out the design of systems composed by a hardware portion, with specific components, and a software portion, with microprocessor based architecture. This paper describes the Algorithm Architecture Adequation (AAA) design methodology - originally oriented to programmable multicomponent architectures, its extension to reconfigurable circuits and its application to design and development of nuclear instrumentation systems composed by programmable and configurable circuits. AAA methodology uses an unified model to describe algorithm, architecture and implementation, based on graph theory. The great advantage of AAA methodology is the utilization of a same model from the specification to the implementation of hardware/software systems, reducing the complexity and design time. (author)

  18. A desk evaluation review of project RAF/4/004 nuclear instruments maintenance. Project desk evaluation

    International Nuclear Information System (INIS)

    1994-01-01

    A Project Desk Evaluation (PDE) is an intensive review process, using agreed guidelines, of the design, implementation, and the outputs of a project. This project was originally intended for six selected countries in Africa, namely, Algeria, Egypt, Ghana, Libya, Zaire and Zambia. Ethiopia and Tanzania joined in 1993 and it has now been extended to two other countries, Madagascar and Sudan. This is a step forward towards developing the infrastructure for nuclear instrumentation and maintenance is as many countries in Africa as require this service. A project summary along with financial data and recommendations for improvements are given. A table where total assistance provided to ten selected african countries is included

  19. Development of instrumentation in nuclear geophysics and their use in Morro do Ferro

    International Nuclear Information System (INIS)

    Hiodo, F.Y.

    1989-01-01

    The development of nuclear detection and stabilization circuits was described. Furthermore, gamma and alpha spectrometry methodologies were developed for field and laboratory measurements. By the use of techniques from other geophysical instruments as fluxgate and optical pumping magnetometers, it was possible to develop stabilization and linearization circuits for gamma ray spectrometers composed by scintillation crystals and multichannel analyzers. The developed system presents excellent thermal and temporal stability, leading to a high reproducibility of the measurements. Teflon PTFE electrets based ionization chambers were constructed for monitoring the alpha particles from soil emanated radon, from the uranium and thorium radioactive series. (author)

  20. Activities in the field of nuclear reactor instrumentation and control in Poland - 1991 status

    International Nuclear Information System (INIS)

    Mikulski, A.T.

    1992-01-01

    The report gives a condensed overview of activity in the field of nuclear reactor instrumentation and control in Poland over the last few years. The work was performed parallel in two directions related to the construction of the first Nuclear Power Plant at Zarnowlec and to the changes made for two research reactors at Swierk. The first direction, according to government decision, was cancelled at the end of 1990 and the results obtained up to now are briefly summarized. The second one is in progress, some minor changes in I and C for the EWA reactor and significant improvements for the MARIA reactor are under way. The results of this activity are presented. (author). 6 refs

  1. Experiences with 'on-line' diagnostic instrumentation in nuclear power plants

    International Nuclear Information System (INIS)

    Gopal, R.; Ciaramitaro, W.; Smith, J.R.

    1981-01-01

    Over the past several years, Westinghouse has developed a coordinated system of on-line diagnostic instrumentation for the acquisition and analysis of data for diagnostics and incipient failure detection of critical plant equipment and systems. Primary motivation for this work is to improve Nuclear Steam Supply System (NSSS) availability and maintainability through the detection of malfunctions at their inception. These systems include: 1) Acoustic leak monitoring for detection and location of leaks in the primary system pressure boundary and other piping systems in PWR's; 2) Metal impact monitoring for detection of loose debris in the reactor vessel and steam generators; 3) Nuclear noise monitoring for monitoring core barrel vibration. Summarized in this paper are some of the features of the systems and inplant experience. (author)

  2. Implementing digital instrumentation and control systems in the modernization of nuclear power plants

    International Nuclear Information System (INIS)

    2009-01-01

    The IAEA encourages greater use of good engineering and management practices by Member States. In particular, it supports activities such as nuclear power plant (NPP) performance improvement, plant life management, training, power uprating, operational license renewal and the modernization of instrumentation and control (I and C) systems of NPPs in Member States. The subject of implementing digital I and C systems in nuclear power plants was suggested by the Technical Working Group on Nuclear Power Plant Control and Instrumentation (TWG-NPPCI) in 2003. It was then approved by the IAEA and included in the programmes for 2006-2008. As the current worldwide fleet of nuclear power plants continues ageing, the need for improvements to maintain or enhance plant safety and reliability is increasing. Upgrading NPP I and C systems is one of the possible approaches to achieving this improvement, and in many cases upgrades are a necessary activity for obsolescence management. I and C upgrades at operating plants require the use of digital I and C equipment. While modernizing I and C systems is a significant undertaking, it is an effective means to enhance plant safety and system functionality, manage obsolescence, and mitigate the increasing failure liability of ageing analog systems. Many of the planning and implementation tasks of a digital I and C upgrade project described here are also relevant to new plant design and construction since all equipment in new plants will be digital. This publication explains a process for planning and conducting an I and C modernization project. Numerous issues and areas requiring special consideration are identified, and recommendations on how to integrate the licensing authority into the process are made. To complement this report, a second publication is planned which will illustrate many of the aspects described here through experience based descriptions of I and C projects and lessons learned from those activities. It is upon these

  3. Preparing and Conducting Review Missions of Instrumentation and Control Systems in Nuclear Power Plants

    International Nuclear Information System (INIS)

    2011-06-01

    The mission for Independent Engineering Review of Instrumentation and Control (I and C) Systems (IERICS) in Nuclear Power Plants (NPPs) has been established with the aim of conducting peer reviews of I and C design documents, implementation processes, prototype I and C systems, and actual systems already deployed in operating NPPs. Organizations in IAEA Member States, such as nuclear utilities, regulators, and technical support organizations can benefit from I and C technical reviews through requesting IERICS missions that provide a detailed technical assessment on I and C systems, as well as recommendations for improvement. The IERICS mission is conducted by a team of international subject matter experts from various complementing technical areas. The review is based on appropriate IAEA documents, such as Safety Guides and Nuclear Energy Series, and the mission's findings are summarized in a mission report, including a list of recommendations, suggestions, and identified good practices. The review is not intended to be a regulatory inspection or an audit against international codes and standards. Rather, it is a peer review aimed at improving design and implementation procedures through an exchange of technical experiences and practices at the working level. The IERICS mission is applicable at any stages of the life cycle of I and C systems in NPPs and it is initiated based on a formal request through official IAEA channels from an organization of a Member State. The formation of the IERICS mission is based on the recommendation of the IAEA Technical Working Group on Nuclear Power Plant Instrumentation and Control (TWG-NPPIC). The recommendation came from the recognition that the IAEA can play an important role in the independent assessment and review of NPP I and C systems in terms of their compliance with IAEA safety guides and technical documents.

  4. The impact of twenty years of noise research on nuclear power plant design, instrumentation and control

    International Nuclear Information System (INIS)

    Kemeny, L.G.

    1975-01-01

    Early investigations demonstrated that time constants and the dynamic characteristics of low energy nuclear systems could be elegantly determined by correlation of spectral analysis of fluctuating signals from ion chambers and proportional counters. Analyses of the time series information and the multi-filtering operations in the frequency domain were time consuming and tedious projects due to the lack of suitable data processing equipment. During the last decade, the significant advances were the recognition of the advantages of the two-channel cross-correlation technique and the realisation that the dynamic behaviour of nuclear power plant at power could be monitored and studied in depth by the cross-correlation of mechanical, thermal and hydrodynamic signals with neutronic information. The former concept led to the development of theoretical models for spatial and energy-dependent noise fields within a nuclear system. The latter opened a floodgate of potential advances in nuclear power plant design optimization, control and safety instrumentation, and control and safety diagnostic systems. (U.K.)

  5. Qualifying commercial grade instruments for use in nuclear power generating stations

    International Nuclear Information System (INIS)

    Lamothe, R.J.; Scally, C.R.

    1983-01-01

    Nuclear environmental qualification of instrumentation has been successfully accomplished by many commercial grade equipment manufacturers. This paper was prepared as a guide to those manufacturers who want some insight into a qualification program. The areas addressed are the regulations and documents, the qualification program, and a case history of a chart recorder qualifications. The principal standards relating to a nuclear qualification program are IEEE Std. 323-1974 IEEE Standard for Qualifying Class 1E Equipment for Nuclear Power Generating Stations, IEEE Std. 344-1975 IEEE Recommended Practices for Seismic Qualification of Class 1E Equipment for Nuclear Power Generating Stations and 10CFR50.49. Previously NUREG 0588 Interim Staff Position on Environmental Qualification of Safety-Related Equipment. These define the intent and purpose of the qualification. The qualification program itself consists of several distinct parts which require explanation, including the determination of qualified life, choice of test samples, selection of appropriate acceptance criteria, aging program, radiation testing, seismic testing, abnormal environment tests and others. The case history illustrates the qualification program and the thought processes involved

  6. Evaluation of a Kalman filter based power pressurizer instrument failure detection system implemented on a nuclear power plant training simulator

    International Nuclear Information System (INIS)

    Seegmiller, D.S.

    1984-01-01

    The usefulness of a nuclear power plant training simulator for developing and testing modern estimation and control applications for nuclear power plants is demonstrated. A Kalman filter based instrument failure detection technique for a pressurized water reactor pressurizer is implemented on the Department of Energy N Reactor Training Simulator. This real-time failure detection method computes the first two moments (mean and variance) of each element of a normalized filter innovations vector. Failed pressurizer instrumentation can be detected by comparing these moments to the known statistical properties of the steady state, linear Kalman fitler innovations sequence. The capabilities of the detection system are evaluated using simulated plant transients and instrument failures

  7. Development of a nuclear reactor control system simulator using virtual instruments

    International Nuclear Information System (INIS)

    Pinto, Antonio Juscelino; Mesquita, Amir Zacarias; Lameiras, Fernando Soares

    2011-01-01

    The International Atomic Energy Agency recommends the use of safety and friendly interfaces for monitoring and controlling the operational parameters of the nuclear reactors. This article describes a digital system being developed to simulate the behavior of the operating parameters using virtual instruments. The control objective is to bring the reactor power from its source level (mW) to a full power (kW). It is intended for education of basic reactor neutronic and thermohydraulic principles such as the multiplication factor, criticality, reactivity, period, delayed neutron, control by rods, fuel and coolant temperatures, power, etc. The 250 kW IPR-R1 TRIGA research reactor at Nuclear Technology Development Centre - CDTN was used as reference. TRIGA reactors, developed by General Atomics (GA), are the most widely used research reactor in the world. The simulator system is being developed using the LabVIEW (Laboratory Virtual Instruments Engineering Workbench) software, considering the modern concept of virtual instruments (VI's) using electronic processor and visual interface in video monitor. The main purpose of the system is to provide training tools for instructors and students, allowing navigating by user-friendly operator interface and monitoring tendencies of the operational variables. It will be an interactive tool for training and teaching and could be used to predict the reactor behavior. Some scenarios are presented to demonstrate that it is possible to know the behavior of some variables from knowledge of input parameters. The TRIGA simulator system will allow the study of parameters, which affect the reactor operation, without the necessity of using the facility. (author)

  8. Security and Risk Analysis of Nuclear Safeguards Instruments Using Attack Trees

    International Nuclear Information System (INIS)

    Naumann, I.; Wishard, B.

    2015-01-01

    The IAEA's nuclear safeguards instruments must be frequently evaluated against attack vectors, which are extremely varied and, at first approximation, may seem inconsequential, but are not. To accurately analyze the impact of attacks on a multi-component system requires a highly structured and well-documented assessment. Tree structures, such as fault trees, have long been used to assess the consequences of selecting potential solutions and their impact on risk. When applied to security threats by introducing threat agents (adversaries) and vulnerabilities, this approach can be extremely valuable in uncovering previously unidentified risks and identifying mitigation steps. This paper discusses how attack trees can be used for the security analysis of nuclear safeguards instruments. The root node of such a tree represents an objective that negatively impacts security such as disclosing and/or falsifying instrument data or circumventing safeguards methods. Usually, this objective is rather complex and attaining it requires a combination of several security breaches which may vary on how much funding or what capabilities are required in order to execute them. Thus, it is necessary to break the root objective into smaller, less complex units. Once a leaf node describes a reasonably comprehensible action, it is the security experts' task to allocate levels of difficulty and funding to this node. Eventually, the paths from the leaf nodes to the root node describe all possible combinations of actions necessary to carry out a successful attack. The use of a well-structured attack tree facilitates the developer in thinking like the adversary providing more effective security solutions. (author)

  9. Development of a nuclear reactor control system simulator using virtual instruments

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Antonio Juscelino; Mesquita, Amir Zacarias; Lameiras, Fernando Soares, E-mail: ajp@cdtn.b, E-mail: amir@cdtn.b, E-mail: fsl@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The International Atomic Energy Agency recommends the use of safety and friendly interfaces for monitoring and controlling the operational parameters of the nuclear reactors. This article describes a digital system being developed to simulate the behavior of the operating parameters using virtual instruments. The control objective is to bring the reactor power from its source level (mW) to a full power (kW). It is intended for education of basic reactor neutronic and thermohydraulic principles such as the multiplication factor, criticality, reactivity, period, delayed neutron, control by rods, fuel and coolant temperatures, power, etc. The 250 kW IPR-R1 TRIGA research reactor at Nuclear Technology Development Centre - CDTN was used as reference. TRIGA reactors, developed by General Atomics (GA), are the most widely used research reactor in the world. The simulator system is being developed using the LabVIEW (Laboratory Virtual Instruments Engineering Workbench) software, considering the modern concept of virtual instruments (VI's) using electronic processor and visual interface in video monitor. The main purpose of the system is to provide training tools for instructors and students, allowing navigating by user-friendly operator interface and monitoring tendencies of the operational variables. It will be an interactive tool for training and teaching and could be used to predict the reactor behavior. Some scenarios are presented to demonstrate that it is possible to know the behavior of some variables from knowledge of input parameters. The TRIGA simulator system will allow the study of parameters, which affect the reactor operation, without the necessity of using the facility. (author)

  10. LEITTEC '96. Digitization of instrumentation and control in nuclear power plants

    International Nuclear Information System (INIS)

    Bauer, K.G.

    1997-01-01

    The nuclear power plants in operation in Germany have been commissioned in the years from 1968 until 1988. Their control and safety systems likewise correspond to the electronic technology available then, as e.g. discrete semi-conductor technology. The high reliability of those systems contributed a major share to the excellent operating results achieved by German nuclear power plants. However, aging of existing systems as well as spare part availability and integration of older and more recent hardware generations now are posing specific problems. Intensive work has been devoted to the retrofitting of existing systems and integration of computer-assisted control systems as well as conversion to programmable systems in order to achieve a basis permitting economically justifiable operation, acceptable also from the angle of hardware and software inspection requirements, so that the German Atomforum thought that these activities and the underlying problems would make a suitable topic for a conference. There were about 150 experts attending the one-day meeting for intensive discussion and exchange of information. The proceedings volume contains 11 of the conference papers and provides an overview of the current status and expected developments in the field of digitization of instrumentation and control in nuclear power plants.(orig./CB) [de

  11. Nuclear incident monitor criticality alarm instrument for the Savannah River Site: Technical manual

    International Nuclear Information System (INIS)

    Jenkins, J.B.

    1996-01-01

    The Savannah River Site is a Department of Energy facility. The facility stores, processes, and works with fissionable material at a number of locations. Technical standards and US Department of Energy orders, require these locations to be monitored by criticality alarm systems under certain circumstances. The Savannah River Site calls such instruments Nuclear Incident Monitors or NIMs. The Sole purpose of the Nuclear Incident Monitor is to provide an immediate evacuation signal in the case of an accidental criticality in order to minimize personnel exposure to radiation. The new unit is the third generation Nuclear Incident Monitor at the Savannah River Site. The second generation unit was developed in 1979. It was designed to eliminate vacuum-tube circuits, and was the first solid state NIM at SRS. The major design objectives of the second generation NIM were to improve reliability and reduce maintenance costs. Ten prototype units have been built and tested. This report describes the design of the new NIM and the testing that took place to verify its acceptability

  12. Nuclear Power Plant Control and Instrumentation in Italy: Recent developments and future perspectives

    International Nuclear Information System (INIS)

    Santandrea, E.

    1990-01-01

    The result of the ''referendum'' in Italy in November 1987 led to cut-back nuclear activities in Italy, as far as both construction and operation on nuclear plants are concerned. A new PEN (National Energy Plan), calls, however, for a programme of research and industrial development of reactors with inherent and passive safety features. ENEA is now engaged in a critical analysis and comparison of different concepts, particularly aimed on safety and environmental and social impact. A particular attention is devoted to relevant subsystems and components with high innovation degree. For the Control System and Instrumentation there is the aim to define rules and design criteria, by evaluating the impact of inherent safety goals on the C and I design. The effort on man-machine interface is considered essential to increase safety and efficiency of advanced reactors. In the frame of the new National Energy Plan, the ENEA effort in the CI area is part of a more general Industrial Promotion Program oriented to optimize the plant process, reducing the environmental impact of energy systems. In such an effort, some questions can be solved by knowledges originally developed in the nuclear and aero-spatial field. So, the national industrial promotion program, tends to transfer to industrial application the developed competencies on disciplines like: Software engineering and reliability; engineering of diffused systems and local networks; electromagnetical compatibility; industrial diagnostic; expert systems in industrial applications; modelling and simulators; ''intelligent'' detection systems and sensors; process optimization. (author). 3 tabs

  13. The first Swedish nuclear reactor - from technical prototype to scientific instrument; Sveriges foersta kaernreaktor - fraan teknisk prototyp till vetenskapligt instrument

    Energy Technology Data Exchange (ETDEWEB)

    Fjaestad, M. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of History of Science and Technology

    2001-01-01

    The first Swedish reactor R1, constructed at the Royal Inst. of Technology in Stockholm, went critical in July 1954. This report presents historical aspects of the reactor, in particular about the reactor as a research instrument and a centre for physical science. The tensions between its role as a prototype and a step in the development of power reactors and that as a scientific instrument are especially focused.

  14. Assessment of wireless Sensor Networks for Digital Instrument and Control System at Nuclear Facilities

    International Nuclear Information System (INIS)

    Gomma, R.I.M.

    2015-01-01

    Instrumentation and Control (I and C) systems play a crucial role in the operation of Nuclear Power Plants (NPPs). The most important task of I and C systems is to ensure safety, availability, and performance of the plant. The advanced generation of NPP design is expected to have the higher degree of automation; consequently, it requires new solutions in both sensing technologies and digital control. In general, the world’s nuclear power fleet is relying on the progress of digital electronics and information technology, to create incentives for integrated replacement of traditional analog electronics with novel digital I and C systems that rely on wireless technology. Moreover, as the domain of Wireless Sensor Networks (WSN) increases its market share in many industrial, health, and critical applications, it has matured significantly. As a result, the barriers to the nuclear industry entry will surely continue to decrease further. Nowadays, several WSN deployments for on-line monitoring of the nuclear environment have been recently addressed by incremental and experimental networks. Furthermore, upon tightening new regulations, the demand for using smart wireless sensing for safety, and surveillance applications of nuclear installations are growing rapidly. The first part of this thesis describes the design of a practical small-scale WSN that allows smart real-time monitoring of radiation levels at nuclear facilities. A wireless system combined with a radiation sensor and associated peripherals been developed and implemented on ZigBee technology using the TI CC2530 chip. The radiation sensor uses a Geiger Muller Tube (GMT) as a reliable detector for the radioactive particulates in the gaseous effluent vented from nuclear facilities. The WSN allows the operators to record and control the radiation levels emitted into the environment, and it is supported by a warning system, for the early detection of radiation release. We evaluated the performance of the radiation

  15. Instrumentation and control systems important to safety in nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    This Safety Guide was prepared under the IAEA programme for establishing safety standards for nuclear power plants. It supplements Safety Standards Series No. NS-R-1: Safety of Nuclear Power Plants: Design (the Requirements for Design), which establishes the design requirements for ensuring the safety of nuclear power plants. This Safety Guide describes how the requirements should be met for instrumentation and control (I and C) systems important to safety. This publication is a revision and combination of two previous Safety Guides: Safety Series Nos 50-SG-D3 and 50-SG-D8, which are superseded by this new Safety Guide. The revision takes account of developments in I and C systems important to safety since the earlier Safety Guides were published in 1980 and 1984, respectively. The objective of this Safety Guide is to provide guidance on the design of I and C systems important to safety in nuclear power plants, including all I and C components, from the sensors allocated to the mechanical systems to the actuated equipment, operator interfaces and auxiliary equipment. This Safety Guide deals mainly with design requirements for those I and C systems that are important to safety. It expands on paragraphs of Ref in the area of I and C systems important to safety. This publication is intended for use primarily by designers of nuclear power plants and also by owners and/or operators and regulators of nuclear power plants. This Safety Guide provides general guidance on I and C systems important to safety which is broadly applicable to many nuclear power plants. More detailed requirements and limitations for safe operation specific to a particular plant type should be established as part of the design process. The present guidance is focused on the design principles for systems important to safety that warrant particular attention, and should be applied to both the design of new I and C systems and the modernization of existing systems. Guidance is provided on how design

  16. Nuclear electronic instruments in tropical countries. Technical specifications for the ordering by the IAEA of nuclear electronic instruments to be used in tropical countries

    International Nuclear Information System (INIS)

    1963-01-01

    This book comes from work carried out at the International Atomic Energy Agency. It includes suggestions and recommendations of consultants from eleven countries made during a meeting at Agency headquarters in Vienna on 18 - 20 December 1961, and comments received afterwards on a draft recommendation. It is intended to serve as a guide for the Agency in purchasing equipment for use in tropical countries but not as a strict regulation to be followed in all cases. Suitable alternative materials and techniques are not precluded, but they shall be used only with the consent of the Agency. Before making its purchases the Agency will examine nuclear electronic equipment to find what is best and most suitable to meet difficult environmental conditions of tropical countries (Appendix B). Wherever possible it will recommend suitable air-conditioning systems. An attempt is made in this book to base recommendations on the accepted international procedures (technology and terminology) that are published by the International Electrotechnical Commission (IEC). Because rapidly advancing technology and the large amount of work being done in this field will very quickly make this book obsolete, an effort will be made to revise it in the future. Emphasis is made on the need to maintain requirements at limits that are restrictive. The purpose is to avoid abnormally high fabrication costs and to allow the Agency to select commercially manufactured instruments that best meet severe environmental conditions because of sound engineering design and use of first-quality materials and components. The section called 'Climatic conditions' has two purposes. The first is to tell manufacturers of the severity of conditions. The second is to describe conditions in particular locations. So that the manufacturer will be even more precisely informed of exact climatic conditions in which his products must perform, he will be provided with information from a questionnaire sent by the Agency to each

  17. Availability analysis of the nuclear instrumentation of a research reactor; Analise da disponibilidade da instrumentacao nuclear de um reator de pesquisa

    Energy Technology Data Exchange (ETDEWEB)

    Vianna Filho, Alfredo Marques

    2016-07-01

    The maintenance of systems and equipment is a central question related to Production Engineering. Although systems are not fully reliable, it is often necessary to minimize the failure occurrence likelihood. The failures occurrences can have disastrous consequences during a plane flight or operation of a nuclear power plant. The elaboration of a maintenance plan has as objective the prevention and recovery from system failures, increasing reliability and reducing the cost of unplanned shutdowns. It is also important to consider the issues related to organizations safety, especially those dealing with dangerous technologies. The objective of this thesis is to propose a method for maintenance analysis of a nuclear research reactor, using a socio-technical approach, and focused on existing conditions in Brazil. The research reactor studied belongs to the federal government and it is located in the city of Rio de Janeiro. The specific objective of this thesis is to develop the availability analysis of one of the principal systems of the research reactor, the nuclear instrumentation system. In this analysis, were taken into account not only the technical aspects of the modules related to nuclear instrumentation system, but also the human and organizational factors that could affect the availability of the nuclear instrumentation system. The results showed the influence of these factors on the availability of the nuclear instrumentation system. (author)

  18. Modernizing and Maintaining Instrumentation and Control Systems in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Naser, Joseph; Torok, Raymond; Shankar, Ramesh

    2003-01-01

    Deregulation of the electric utilities has made a major impact on nuclear power plants. To be competitive, more emphasis is being put on cost-effective production of electricity with a more critical look at whether a system should be modernized due to obsolescence, reliability, or productivity concerns. Instrumentation and control (I and C) systems play an important role in reducing the cost of producing electricity while maintaining or enhancing safety. Systems that are well designed, reliable, enhance productivity, and are cost-effective to operate and maintain can reduce the overall costs. Modern technology with its ability to better provide and use real-time information offers an effective platform for modernizing systems. At the same time, new technology brings new challenges and issues, especially for safety systems in nuclear power plants. To increase competitiveness, it is important to take advantage of the opportunities offered by modern technology and to address the new challenges and issues in a cost-effective manner. The Electric Power Research Institute (EPRI) and its member utilities have been working together with other members of the nuclear industry since 1990 to address I and C modernization and maintenance issues. The EPRI I and C Program has developed a life-cycle management approach for I and C systems that involves the optimization of maintenance, monitoring, and capital resources to sustain safety and performance throughout the plant life. Strategic planning methodologies and implementation guidelines addressing digital I and C issues in nuclear power plants have been developed. Work is ongoing in diverse areas to support the design, implementation, and operation of new digital systems. Technology transfer is an integral part of this I and C program

  19. Specification of requirements for upgrades using digital instrument and control systems. Report prepared within the framework of the international working group on nuclear power plant control and instrumentation

    International Nuclear Information System (INIS)

    1999-01-01

    The need to develop good specifications of requirements for instrument and control (I and C) systems applies throughout the world and is becoming more and more important as more upgrades are planned. Better guidance on how to develop good requirements specifications would support safer, more effective and more economical refits and upgrades. The need for this was pointed out by the IAEA International Working Group on Nuclear Power Plant Control and Instrumentation (IWG-NPPCI). This report is the result of a series of advisory and consultants meetings held by the IAEA in 1997 and 1998 in Vienna. The scope of the activities described covers a methodology for the determination of requirements and the development of the necessary specifications and plans needed through the life-cycle of digital instrumentation and control systems. It is restricted to technical aspects and indicates subjects which should be included in specifications and plans at different phases

  20. A MGy radiation-hardened sensor instrumentation link for nuclear reactor monitoring and remote handling

    Energy Technology Data Exchange (ETDEWEB)

    Verbeeck, Jens; Cao, Ying [KU Leuven - KUL, Div. LRD-MAGyICS, Kasteelpark Arenberg 10, 3001 Heverlee (Belgium); Van Uffelen, Marco; Mont Casellas, Laura; Damiani, Carlo; Morales, Emilio Ruiz; Santana, Roberto Ranz [Fusion for Energy - F4E, c/Josep,n deg. 2, Torres Diagonal Litoral, Ed. B3, 08019 Barcelona (Spain); Meek, Richard; Haist, Bernhard [Oxford Technologies Ltd. OTL, 7 Nuffield Way, Abingdon OX14 1RL (United Kingdom); De Cock, Wouter; Vermeeren, Ludo [SCK-CEN, Boeretang 200, 2400 Mol (Belgium); Steyaert, Michiel [KU Leuven, ESAT-MICAS, KasteelparkArenberg 10, 3001 Heverlee (Belgium); Leroux, Paul [KU Leuven, ESAT-MICAS, KasteelparkArenberg 10, 3001 Heverlee (Belgium)

    2015-07-01

    Decommissioning, dismantling and remote handling applications in nuclear facilities all require robotic solutions that are able to survive in radiation environments. Recently raised safety, radiation hardness and cost efficiency demands from both the nuclear regulatory and the society impose severe challenges in traditional methods. For example, in case of the dismantling of the Fukushima sites, solutions that survive accumulated doses higher than 1 MGy are mandatory. To allow remote operation of these tools in nuclear environments, electronics were used to be shielded with several centimeters of lead or even completely banned in these solutions. However, shielding electronics always leads to bulky and heavy solutions, which reduces the flexibility of robotic tools. It also requires longer repair time and produces extra waste further in a dismantling or decommissioning cycle. In addition, often in current reactor designs, due to size restrictions and the need to inspect very tight areas there are limitations to the use of shielding. A MGy radiation-hardened sensor instrumentation link developed by MAGyICS provides a solution to build a flexible, easy removable and small I and C module with MGy radiation tolerance without any shielding. Hereby it removes all these pains to implement electronics in robotic tools. The demonstrated solution in this poster is developed for ITER Remote Handling equipments operating in high radiation environments (>1 MGy) in and around the Tokamak. In order to obtain adequately accurate instrumentation and control information, as well as to ease the umbilical management, there is a need of front-end electronics that will have to be located close to those actuators and sensors on the remote handling tool. In particular, for diverter remote handling, it is estimated that these components will face gamma radiation up to 300 Gy/h (in-vessel) and a total dose of 1 MGy. The radiation-hardened sensor instrumentation link presented here, consists

  1. Pilot studies of management of ageing of nuclear power plant instrumentation and control components

    International Nuclear Information System (INIS)

    Burnay, S.G.; Simola, K.; Kossilov, A.; Pachner, J.

    1993-01-01

    This paper describes pilot studies which have been implemented to study the aging behavior of safety related component parts of nuclear power plants. In 1989 the IAEA initiated work on pilot studies related to the aging of such components. Four components were identified for study. They are the primary nozzle of a reactor vessel; a motor operated isolating valve; the concrete containment building; and instrumentation and control cables within the containment facility. The study was begun with phase 1 efforts directed toward understanding the aging process, and methods for monitoring and minimizing the effects of aging. Phase 2 efforts are directed toward aging studies, documentation of the ideas put forward, and research to answer questions identified in phase 1. This paper describes progress made on two of these components, namely the motor operated isolation valves, and in-containment I ampersand C cables

  2. Design of Instrumentation and Control Systems for Nuclear Power Plants. Specific Safety Guide

    International Nuclear Information System (INIS)

    2016-01-01

    This publication is a revision and combination of two Safety Guides, IAEA Safety Standards Series No. NS-G-1.1 and No. NS-G-1.3. The revision takes into account developments in instrumentation and control (I&C) systems since the publication of the earlier Safety Guides. The main changes relate to the continuing development of computer applications and the evolution of the methods necessary for their safe, secure and practical use. In addition, account is taken of developments in human factors engineering and the need for computer security. This Safety Guide references and takes into account other IAEA Safety Standards and Nuclear Security Series publications that provide guidance relating to I&C design

  3. Nuclear instrumentation and measurement: a review based on the ANIMMA conferences

    Science.gov (United States)

    Giot, Michel; Vermeeren, Ludo; Lyoussi, Abdallah; Reynard-Carette, Christelle; Lhuillier, Christian; Mégret, Patrice; Deconinck, Frank; Gonçalves, Bruno Soares

    2017-12-01

    The ANIMMA conferences offer a unique opportunity to discover research carried out in all fields of nuclear measurements and instrumentation with applications extending from fundamental physics to fission and fusion reactors, medical imaging, environmental protection and homeland security. After four successful editions of the Conference, it was decided to prepare a review based to a large extent but not exclusively on the papers presented during the first four editions of the conference. This review is organized according to the measurement methodologies: neutronic, photonic, thermal, acoustic and optical measurements, as well as medical imaging and specific challenges linked to data acquisition and electronic hardening. The paper describes the main challenges justifying research in these different areas, and summarizes the recent progress reported. It offers researchers and engineers a way to quickly and efficiently access knowledge in highly specialized areas.

  4. A risk-based review of Instrument Air systems at nuclear power plants

    International Nuclear Information System (INIS)

    DeMoss, G.; Lofgren, E.; Rothleder, B.; Villeran, M.; Ruger, C.

    1990-01-01

    The broad objective of this analysis was to provide risk-based information to help focus regulatory actions related to Instrument Air (IA) systems at operating nuclear power plants. We first created an extensive data base of summarized and characterized IA-related events that gave a qualitative indication of the nature and severity of these events. Additionally, this data base was used to calculate the frequencies of certain events, which were used in the risk analysis. The risk analysis consisted of reviewing published PRAs and NRC Accident Sequence Precursor reports for IA-initiated accident sequences, IA interactions with frontline systems, and IA-related risk significant events. Sensitivity calculations were performed when possible. Generically, IA was found to contribute less to total risk than many safety systems; however, specific design weaknesses in safety systems, non-safety systems, and the IA system were found to be significant in risk. 22 refs., 13 figs., 24 tabs

  5. Application of Field Programmable Gate Arrays in Instrumentation and Control Systems of Nuclear Power Plants

    International Nuclear Information System (INIS)

    2016-01-01

    Field programmable gate arrays (FPGAs) are gaining increased attention worldwide for application in nuclear power plant (NPP) instrumentation and control (I&C) systems, particularly for safety and safety related applications, but also for non-safety ones. NPP operators and equipment suppliers see potential advantages of FPGA based digital I&C systems as compared to microprocessor based applications. This is because FPGA based systems can be made simpler, more testable and less reliant on complex software (e.g. operating systems), and are easier to qualify for safety and safety related applications. This publication results from IAEA consultancy meetings covering the various aspects, including design, qualification, implementation, licensing, and operation, of FPGA based I&C systems in NPPs

  6. GET: A generic electronics system for TPCs and nuclear physics instrumentation

    Science.gov (United States)

    Pollacco, E. C.; Grinyer, G. F.; Abu-Nimeh, F.; Ahn, T.; Anvar, S.; Arokiaraj, A.; Ayyad, Y.; Baba, H.; Babo, M.; Baron, P.; Bazin, D.; Beceiro-Novo, S.; Belkhiria, C.; Blaizot, M.; Blank, B.; Bradt, J.; Cardella, G.; Carpenter, L.; Ceruti, S.; De Filippo, E.; Delagnes, E.; De Luca, S.; De Witte, H.; Druillole, F.; Duclos, B.; Favela, F.; Fritsch, A.; Giovinazzo, J.; Gueye, C.; Isobe, T.; Hellmuth, P.; Huss, C.; Lachacinski, B.; Laffoley, A. T.; Lebertre, G.; Legeard, L.; Lynch, W. G.; Marchi, T.; Martina, L.; Maugeais, C.; Mittig, W.; Nalpas, L.; Pagano, E. V.; Pancin, J.; Poleshchuk, O.; Pedroza, J. L.; Pibernat, J.; Primault, S.; Raabe, R.; Raine, B.; Rebii, A.; Renaud, M.; Roger, T.; Roussel-Chomaz, P.; Russotto, P.; Saccà, G.; Saillant, F.; Sizun, P.; Suzuki, D.; Swartz, J. A.; Tizon, A.; Usher, N.; Wittwer, G.; Yang, J. C.

    2018-04-01

    General Electronics for TPCs (GET) is a generic, reconfigurable and comprehensive electronics and data-acquisition system for nuclear physics instrumentation of up to 33792 channels. The system consists of a custom-designed ASIC for signal processing, front-end cards that each house 4 ASIC chips and digitize the data in parallel through 12-bit ADCs, concentration boards to read and process the digital data from up to 16 ASICs, a 3-level trigger and master clock module to trigger the system and synchronize the data, as well as all of the associated firmware, communication and data-acquisition software. An overview of the system including its specifications and measured performances are presented.

  7. Online calibration method for condition monitoring of nuclear reactor instrumentations based on electrical signature analysis

    International Nuclear Information System (INIS)

    Syaiful Bakhri

    2013-01-01

    Electrical signature analysis currently becomes an alternative in condition monitoring in nuclear power plants not only for stationary components such as sensors, measurement and instrumentation channels, and other components but also for dynamic components such as electric motors, pumps, generator or actuators. In order to guarantee the accuracy, the calibration of monitoring system is a necessary which practically is performed offline, under limited schedules and certain tight procedures. This research aims to introduce online calibration technique for electrical signature condition monitoring in order that the accuracy can be maintained continuously which in turn increases the reactor safety as a whole. The research was performed step by stepin detail from the conventional technique, online calibration using baseline information and online calibration using differential gain adjustment. Online calibration based on differential gain adjustment provides better results than other techniques even tough under extreme gain insertion as well as external disturbances such as supply voltages. (author)

  8. Use of ABB ADVANT Power for large scale instrumentation and controls replacements in nuclear power plants

    International Nuclear Information System (INIS)

    Pucak, J.L.; Brown, E.M.

    1999-01-01

    One of the major issues facing plants planning for life extension is the viability and feasibility of modernization of a plant's existing I and C systems including the safety systems and the control room. This paper discusses the ABB approach to the implementation of large scale Instrumentation and Controls (I and C) modernization. ABB applies a segmented architecture approach using the ADVANT Power control system to meet the numerous constraints of a major I and C upgrade program. The segmented architecture and how it supports implementation of a complete I and C upgrade either in one outage or in a series of outages is presented. ADVANT Power contains standardized industrial control equipment that is designed to support 1E applications as well as turbine and non-1E process control. This equipment forms the basis for the architecture proposed for future new nuclear plant sales as well as large scale retrofits. (author)

  9. Gadolinium for neutron detection in current nuclear instrumentation research: A review

    Science.gov (United States)

    Dumazert, J.; Coulon, R.; Lecomte, Q.; Bertrand, G. H. V.; Hamel, M.

    2018-02-01

    Natural gadolinium displays a number of remarkable physical properties: it is a rare earth element, composed of seven stable or quasi-stable isotopes, with an exceptionally high magnetization and a Curie point near room temperature. Its use in the field of nuclear instrumentation historically relates to its efficiency as a neutron poison in power reactors. Gadolinium is indeed the naturally occurring element with the highest interaction probability with neutrons at thermal energy, shared between Gd-157 (15.65%, 254000 b cross section) and Gd-155 (14.8%, 60900 b) isotopes. Considering that neutron capture results in an isotopic change, followed by a radiative rearrangement of nuclear and atomic structures, Gd may be embodied not merely as a neutron poison but as a neutron converter into a prompt photon and an electron source term. Depending on the nature and energy of the reaction products (from a few-keV Auger electrons up to 8 MeV gamma rays) that the detector aims at isolating as an indirect neutron signature, a variety of sensor media and counting methods have been introduced during the last decades. This review first draws a theoretical description of the radiative cascade following Gd(n , γ) capture. The cascade may be subdivided into regions of interest, each corresponding to dedicated detection designs and optimizations whose current status is detailed. This inventory has allowed the authors to extract and benchmark key figures of merit for the definition of a detection scheme: neutron attenuation, neutron sensitivity (cps/nv), gamma rejection, neutron detection limit in a mixed field, intrinsic or extrinsic moderation, and transportability. On this basis, the authors have identified promising paths for Gd-based neutron detection in contemporary instrumentation.

  10. Methods and instrumentation for investigating Hall sensors during their irradiation in nuclear research reactors

    International Nuclear Information System (INIS)

    Bolshakova, I.; Holyaka, R.; Makido, E.; Marusenkov, A.; Shurygin, F.; Yerashok, V.; Moreau, P. J.; Vayakis, G.; Duran, I.; Stockel, J.; Chekanov, V.; Konopleva, R.; Nazarkin, I.; Kulikov, S.; Leroy, C.

    2009-01-01

    Present work discusses the issues of creating the instrumentation for testing the semiconductor magnetic field sensors during their irradiation with neutrons in nuclear reactors up to fluences similar to neutron fluences in steady-state sensor locations in ITER. The novelty of the work consists in Hall sensor parameters being investigated: first, directly during the irradiation (in real time), and, second, at high irradiation levels (fast neutron fluence > 10 18 n/cm 2 ). Developed instrumentation has been successfully tested and applied in the research experiments on radiation stability of magnetic sensors in IBR-2 (JINR, Dubna) and VVR-M (PNPI, Saint-Petersburg) reactors. The 'Remote-Rad' bench consists of 2 heads (head 1 and head 2) bearing investigated sensors put in a ceramic setting, of electronic unit, of personal computer and of signal lines. Each head contains 6 Hall sensors and a coil for generating test magnetic field. Moreover head 1 contains thermocouples for temperature measurement while the temperature of head 2 is measured by thermo-resistive method. The heads are placed in the reactor channel

  11. State-of-the-art report for the instrumentation and control technology based on the nuclear-information technology convergence

    International Nuclear Information System (INIS)

    Kwon, Kee Choon; Kim, Chang Hwoi; Lee, Dong Young; Lee, Cheol Kwon; Lee, Hyun Chul

    2011-12-01

    As digitalized the instrumentation and control systems in nuclear power plants, in the past that were implemented in an analog system or circuit for monitoring, control and protection, most of the them is implemented in embedded software based on hardware platform. Digital instrumentation and control system hardware platforms and a digital safety systems have developed in Korea. The fundamental technology of the software part of MMIS (Man-Machine Interface System) has achieved the localization. But in order to secure our global competitiveness, in the -based software, the source of the content areas / It is needed to develop core technologies of the software and contents areas based on the nuclear-IT convergence technology. In this report, the IT technology centered for the characteristics of embedded software applied to nuclear power is described. Also state-of-the-art IT technologies that will converge to nuclear power plants are mentioned

  12. A desk evaluation review of project VIE/4/009 design and production of nuclear instruments. Project desk evaluation

    International Nuclear Information System (INIS)

    1994-01-01

    A Project Desk Evaluation (PDE) is an intensive review process, using agreed guidelines, of the design, implementation, and the output of a project. This project is exclusively dealing with the design and production of nuclear instruments. The aim of this project would be to develop a viable capability for maintenance and repair of the nuclear instruments at the Dalat Research Institute (DNRI), the premier nuclear centre in Viet Nam, and also to meet the steadily increasing needs of DNRI, as well as of other national institutions, hospitals and universities engaged in the application of nuclear technologies, particularly in the southern part of the country. Project Summary with financial data is given along with training programme. 1 tab

  13. A desk evaluation review of project VIE/4/009 design and production of nuclear instruments. Project desk evaluation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-09

    A Project Desk Evaluation (PDE) is an intensive review process, using agreed guidelines, of the design, implementation, and the output of a project. This project is exclusively dealing with the design and production of nuclear instruments. The aim of this project would be to develop a viable capability for maintenance and repair of the nuclear instruments at the Dalat Research Institute (DNRI), the premier nuclear centre in Viet Nam, and also to meet the steadily increasing needs of DNRI, as well as of other national institutions, hospitals and universities engaged in the application of nuclear technologies, particularly in the southern part of the country. Project Summary with financial data is given along with training programme. 1 tab.

  14. Advances in nuclear medicine instrumentation: considerations in the design and selection of an imaging system

    International Nuclear Information System (INIS)

    Links, J.M.

    1998-01-01

    Nuclear medicine remains a vibrant and dynamic medical specialty because it so adeptly marries advances in basic science research, technology, and medical practice in attempting to solve patients' problems. As a physicist, it is my responsibility to identify or design new instrumentation and techniques, and to implement, validate, and help apply these new approaches in the practice of nuclear medicine. At Johns Hopkins, we are currently in the process of purchasing both a single-photon/coincidence tomographic imaging system and a dedicated positron emission tomography (PET) scanner. Given the exciting advances that have been made, but the conflicting opinions of manufacturers and colleagues alike regarding ''best'' choices, it seemed useful to review what is new now, and what is on the horizon, to help identify all of the important considerations in the design and selection of an imaging system. It is important to note that many of the ''advances'' described here are in an early stage of development, and may never make it to routine clinical practice. Further, not all of the advances are of equal importance, or have the same degree of general clinical applicability. Please also note that the references contained herein are for illustrative purposes and are not all-inclusive; no implication that those chosen are ''better'' than others not mentioned is intended. (orig.)

  15. Deep foundation rebound instrumentation at the Grand Gulf Nuclear Power Station

    International Nuclear Information System (INIS)

    Blendy, M.M.; Boisen, B.P.

    1978-01-01

    Removing an extensive amount of overburden can initiate adjustments in the foundation mass. Rebound adjustments induced by this removal include, in addition to elastic response, elements of visco-elastic and plastic response which have to be taken into account when the foundation is loaded by subsequent construction. The accurate measurement of foundation response can be important in the design and construction of deep foundations and can be essential in the construction of very deep foundations. In 1974, a large foundation excavation was undertaken for the two unit Grand Gulf Nuclear Station. Overburden removal ranged in depth from 65 feet in the turbine area to 110 feet in the containment area. Very long, rod-type Multiple Position Borehole Extensometers measured the rebound. The design of the extensometers, and the dimensions of the installed instruments, are discussed. Graphs are included which show the adjustments measured by each extensometer during the deepening of the excavation. The measured rebound for each transducer package of each extensometer is summarized. The data are compared to predicted values based on a mathematical model developed using laboratory test results and empirical methods. The resulting information forms part of the permanent record of construction for the nuclear power station

  16. Probabilistic safety assessment for digital instrumentation and control systems in nuclear power plants - a review

    International Nuclear Information System (INIS)

    Lu, L.; Jiang, J.

    2003-01-01

    Deregulation in electricity market has created a great deal of challenges for nuclear power industries [1]. To stay competitive, Nuclear Power Plants (NPPs) will have to find ways to reduce their operational costs and to improve the plant safety. Instrumentation and Control (I and C) systems play an important role in this regard. Thus, new methodologies need to be developed to manage the operation of I and C systems more economically without jeopardizing the overall plant safety. Probabilistic Safety Assessment (PSA) technique is one of the promising methods to deal with such an issue, because PSA analyzes various system operational issues from a probabilistic sense, rather than a worst-case approach. However, there are several limitations when PSA is applied to I and C systems directly. A possible solution to this problem can be found by incorporating PSA with several other approaches. To better understand the issues involved, an attempt has been made in this paper to carry out a literature survey on this and related subject, particularly the effort will be made on: 1) the development of digital I and C systems in NPP, 2) PSA and its potential benefits and limitations, and 3) applications of PSA in various aspects of I and C systems including the resource allocation, the determination of surveillance testing strategies and the design of I and C systems. Finally, some solutions to overcome the aforementioned obstacles when applying PSA in I and C systems are also examined critically. (author)

  17. Attack tree based cyber security analysis of nuclear digital instrumentation and control systems

    International Nuclear Information System (INIS)

    Khand, P.A.

    2009-01-01

    To maintain the cyber security, nuclear digital Instrumentation and Control (I and C) systems must be analyzed for security risks because a single security breach due to a cyber attack can cause system failure, which can have catastrophic consequences on the environment and staff of a Nuclear Power Plant (NPP). Attack trees have been widely used to analyze the cyber security of digital systems due to their ability to capture system specific as well as attacker specific details. Therefore, a methodology based on attack trees has been proposed to analyze the cyber security of the systems. The methodology has been applied for the Cyber Security Analysis (CSA) of a Bistable Processor (BP) of a Reactor Protection System (RPS). Threats have been described according to their source. Attack scenarios have been generated using the attack tree and possible counter measures according to the Security Risk Level (SRL) of each scenario have been suggested. Moreover, cyber Security Requirements (SRs) have been elicited, and suitability of the requirements has been checked. (author)

  18. Key Regulatory Issues for Digital Instrumentation and Control Systems at Nuclear Power Plants

    International Nuclear Information System (INIS)

    Korsah, Kofi; Wood, Richard Thomas

    2008-01-01

    To help reduce the uncertainty associated with application of digital instrumentation and controls (I and C) technology in nuclear power plants, the Nuclear Regulatory Commission (NRC) has issued six Interim Staff Guidance (ISG) documents that address the current regulatory positions on what are considered the significant digital I and C issues. These six documents address the following topics: Cyber Security, Diversity and Defense-in-Depth, Risk Informed Digital I and C Regulation, Communication issues, Human Factors and the Digital I and C Licensing Process (currently issued as Draft). After allowing for further refinement based on additional technical insight gathered by NRC staff through near-term research and detailed review of relevant experience, it is expected that updated positions ultimately will be incorporated into regulatory guides and staff review procedures. This paper presents an overview of the guidance provided by the NRC-issued ISGs on key technology considerations (i.e., the first five documents above) for safety-related digital I and C systems.

  19. Proceeding of the Scientific Meeting and Presentation on Basic Research of Nuclear Science and Technology: Book I. Physics, Reactor Physics and Nuclear Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    The proceeding contains papers presented on Scientific Meeting and Presentation on on Basic Research of Nuclear Science and Technology, held in Yogyakarta, 25-27 April 1995. This proceeding is part one from two books published for the meeting contains papers on Physics, Reactor Physics and Nuclear Instrumentation as results of research activities in National Atomic Energy Agency. There are 39 papers indexed individually. (ID)

  20. Proceeding of the Scientific Meeting and Presentation on Basic Research in Nuclear Science and Technology. Part I : Physics, Reactor Physics and Nuclear Instrumentation

    International Nuclear Information System (INIS)

    Sudjatmoko; Karmanto, Eko Edy; Supartini, Endang

    1996-04-01

    Scientific Meeting and Presentation on Basic Research in Nuclear Science and Technology is a routine activity was held by PPNY BATAN for monitoring the research Activity which achieved in BATAN. The Proceeding contains a proposal about basic which has physics; reactor physics and nuclear instrumentation. This proceedings is the first part from two part which published in series. There are 33 articles which have separated index

  1. Development of a field measurement instrument for nuclear electromagnetic pulse (NEMP) based on signal transmission through fiber

    International Nuclear Information System (INIS)

    Song Wenwu; Zhang Chuandong; Liu Yi; Chen Jiuchun; Fan Youwen

    2007-01-01

    This paper deals with design principles, development and performance of a field measurement instrument for nuclear electromagnetic pulse (EMP) based on signal transmission through fiber. To determine the minimum band width this instrument needs, we analyze cutoff spectrum of a time domain double exponential signal, employing Fast Fourier Transform (FFT), and get its inverse transform signal. Then we design the circuit of laser device and the circuit of measuring device according to previous analysis. This instrument meets requirements of related regulations. Its specifications meet requirements of NEMP hazard protection research and can be of great significance to it. (authors)

  2. On-line testing of calibration of process instrumentation channels in nuclear power plants. Phase 2, Final report

    International Nuclear Information System (INIS)

    Hashemian, H.M.

    1995-11-01

    The nuclear industry is interested in automating the calibration of process instrumentation channels; this report provides key results of one of the sponsored projects to determine the validity of automated calibrations. Conclusion is that the normal outputs of instrument channels in nuclear plants can be monitored over a fuel cycle while the plant is operating to determine calibration drift in the field sensors and associated signal conversion and signal conditioning equipment. The procedure for on-line calibration tests involving calculating the deviation of each instrument channel from the best estimate of the process parameter that the instrument is measuring. Methods were evaluated for determining the best estimate. Deviation of each signal from the best estimate is updated frequently while the plant is operating and plotted vs time for entire fuel cycle, thereby providing time history plots that can reveal channel drift and other anomalies. Any instrument channel that exceeds allowable drift or channel accuracy band is then scheduled for calibration during a refueling outage or sooner. This provides calibration test results at the process operating point, one of the most critical points of the channel operation. This should suffice for most narrow-range instruments, although the calibration of some instruments can be verified at other points throughout their range. It should be pointed out that the calibration of some process signals such as the high pressure coolant injection flow in BWRs, which are normally off- scale during plant operation, can not be tested on-line

  3. The role of instrumentation and control systems in power uprating projects for nuclear power plants

    International Nuclear Information System (INIS)

    2008-01-01

    The IAEA's activities in nuclear power plant operating performance and life cycle management are aimed at increasing Member State capabilities in utilizing good engineering and management practices developed and transferred by the IAEA. In particular, the IAEA supports activities focusing on the improvement of nuclear power plant (NPP) performance, plant life management, training, power uprating, operational licence renewal, and the modernization of instrumentation and control (I and C) systems of NPPs in Member States. The subject of the I and C systems' role in power uprating projects in NPPs was suggested by the Technical Working Group on Nuclear Power Plant Control and Instrumentation in 2003. The subject was then approved by the IAEA and included in the programmes for 2004-2007. The increasing importance of power uprating projects can be attributed to the general worldwide tendency to the deregulation of the electricity market. The greater demand for electricity and the available capacity and safety margins, as well as the pressure from several operating NPPs resulted in requests for licence modification to enable operation at a higher power level, beyond the original licence provisions. A number of nuclear utilities have already gone through the uprating process for their nuclear reactors, and many more are planning to go through this modification process. In addition to mechanical and process equipment changes, parts of the electrical and I and C systems and components may also need to be altered to accommodate the new operating conditions and safety limits. This report addresses the role of I and C systems in NPP power uprating projects. The objective of the report is to provide guidance to utilities, safety analysts, regulators and others involved in the preparation, implementation and licensing of power uprating projects, with particular emphasis on the I and C aspects of these projects. As the average age of NPPs is increasing, it is becoming common for

  4. Evalution of NDA techniques and instruments for assay of nuclear waste at a waste terminal storage facility

    International Nuclear Information System (INIS)

    Blakeman, E.D.; Allen, E.J.; Jenkins, J.D.

    1978-05-01

    The use of Nondestructive Assay (NDA) instrumentation at a nuclear waste terminal storage facility for purposes of Special Nuclear Material (SNM) accountability is evaluated. Background information is given concerning general NDA techniques and the relative advantages and disadvantages of active and passive NDA methods are discussed. The projected characteristics and amounts of nuclear wastes that will be delivered to a waste terminal storage facility are presented. Wastes are divided into four categories: High Level Waste, Cladding Waste, Intermediate Level Waste, and Low Level Waste. Applications of NDA methods to the assay of these waste types is discussed. Several existing active and passive NDA instruments are described and, where applicable, results of assays performed on wastes in large containers (e.g., 55-gal drums) are given. It is concluded that it will be difficult to routinely achieve accuracies better than approximately 10--30% with ''simple'' NDA devices or 5--20% with more sohpisticated NDA instruments for compacted wastes. It is recommended that NDA instruments not be used for safeguards accountability at a waste storage facility. It is concluded that item accountability methods be implemented. These conclusions and recommendations are detailed in a concurrent report entitled ''Recommendations on the Safeguards Requirements Related to the Accountability of Special Nuclear Material at Waste Terminal Storage Facilities'' by J.D. Jenkins, E.J. Allen and E.D. Blakeman

  5. ANIMMA 2009 - International Conference on Advancements in Nuclear Instrumentation, Measurement Methods and their Applications - Compilation of slides

    International Nuclear Information System (INIS)

    Chabre, A.; Lyoussi, A.; Martin-Deidier, L.; Caverni, J.P.; Deconinck, F.; Cesarsky, C.; Kjems, J.; Spiro, M.; Abdallah, J.; Mandic, I.; Cindro, V.; Gorisek, A.; Kramberger, G.; Mikuz, M.; Hartert, J.; Bronner, J.; Franz, S.; Minano, M.; Fleta, C.; Garcia, C.; Lacasta, C.; Lozano, M.; Marco, R.; Marti, I.; Garcia, S.; Pellegrini, G.; Soldevila, U.; Ullan, M.; Larsen, R.; Downing, R.; Saunders, C.; Pavlicek, V.; Jezynski, T.; Rehlich, K.; An Liu, Z.; Nomachi, M.; Le Du, P.; Benekos, N.; Cortes Gonzales, A.; Coggeshall, J.; Liss, A.M.; Baudot, J.; Barbier, R.; Brogna, A.; Chabanat, E.; Claus, G.; Colledani, C.; Depasse, P.; Degerli, Y.; De Masi, R.; Deveaux, M.; Dorokhov, A.; Doziere, G.; Dritsa, C.; Dulinski, W.; Estre, N.; Fang, X.C.; Fontaine, J.C.; Gelin, M.; Goffe, M.; Himmi, A.; Hu-Guo, C.; Jaaskelainen, K.; Minano, M.; Bruynseraede, Y.; Benekos, N.; Collazuol, G.M.; Baudot, J.; Hoffmann, D.; Alami, R.; Marie, F.; Fontana, A.; Duval, P.Y.; Rosca, A.; Copic, K.; Iracane, D.; Rempe, J.; Shippen, D.; Choo, K.N.; Breitkreutz, H.; Petry, W.; Itagaki, W.; Zaristkiy, S.; Jammes, C.; Imel, G.; Ritter, G.; Casoli, P.; Blaise, P.; Lecouey, J.L.; Rohrmoser, A.; Bignan, G.; Bruynseraede, Y.; March, R.; Janulyte, A.; Morichi, M.; Adams, J.; Popov, V.; Costley, A.; Moreau, P.; Sabot, R.; Leyrat, J.P.; Angelone, M.; Flament, O.; Thfoin, I.; Boullis, B.; Rouquerol, J.; Nonell, A.; Simon, A.C.; Lyoussi, A.; De Bruycker, A.; Ducros, G.; Katsuyama, K.; Barat, E.; Swinhoe, M.; Dogny, S.; Carrel, F.; Granier, G.; Raoux, A.C.; Pluquet, A.; Ahlen, S.; Butchins, L.; Porta, A.; Valkovic, V.; Dazeley, S.; Furuta, H.; Quiter, B.; Piccotti, A.; Swinhoe, M.; Bruggeman, M.; Ruddy, F.; El kanawati, W.; Cabrera-Palmer, B.; Sweet, M.; Parrat, D.; Cavedon, J.M.; Babu, C.; Baskaran, B.; Villard, J.F.; Buimistriuc, G.; Rosenkrantz, E.; Coulon, R.; Schyns, M.; Bronson, F.; Giraud, A.; Vuillemard, C.; Ait Abderrahim, H.; Marie, F.; Beeley, P.; Andre, J.; Turpin, L.; Waker, A.; Pafilis, C.; Townsend, D.; Chatal, J.F.; Gao, W.; Kawachi, N.; Townsend, D.; Le Foulher, F.; Magne, S.; Valkovic, V.; Rottner, B.; Lebrun, A.; Ianakiev, K.; Giot, M.; Flescher, H.

    2009-01-01

    The program of this conference is focused on instrumentation, but emphasizes the latest developments in all measurement stages: nuclear radiation detection and in-pile measurements, modelling, electronics, signal acquisition and analysis, radiotherapy, interpretation and associated training activities. This document is composed of the program of the conference and of the slides of about 102 presentations

  6. Radioisotope instruments

    CERN Document Server

    Cameron, J F; Silverleaf, D J

    1971-01-01

    International Series of Monographs in Nuclear Energy, Volume 107: Radioisotope Instruments, Part 1 focuses on the design and applications of instruments based on the radiation released by radioactive substances. The book first offers information on the physical basis of radioisotope instruments; technical and economic advantages of radioisotope instruments; and radiation hazard. The manuscript then discusses commercial radioisotope instruments, including radiation sources and detectors, computing and control units, and measuring heads. The text describes the applications of radioisotop

  7. Application of Safety Instrumented System (SIS) approach in older nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Nasimi, Elnara; Gabbar, Hossam A., E-mail: hossam.gabbar@uoit.ca

    2016-05-15

    Highlights: • Study Safety Instrumented System (SIS) design for older nuclear power plant. • Apply SIS on Reheater Drains (RD) system. • Apply IEC 61508/61511 to design safety system. • Evaluate risk reduction based on proposed SIS design. - Abstract: In order to remain economically effective and financially profitable, the modern industries have to take their safety culture to a higher level and consider production losses in addition to simple accident prevention techniques. Ideally, compliance with safety requirements start during early design stages, but in some older facilities provisions for Safety Instrumented Systems (SIS) may not have been originally included. In this paper, a case study of a Reheater Drains (RD) system is used to illustrate such an example. Frequent failures of tank level controller lead to transients where the operation of shutting down RD pumps requires operators to manually isolate the quenching water and to close the main steam admission valves. Water in this system is at saturation temperature for the reheater steam side pressure, and any manual operation of the system is highly undesirable due to hazards of working with wet steam at approximately 758 kPa(g) pressure, preheated to 237 °C. Additionally, losses of inventory are highly undesirable as well and challenge other systems in the plant. In this paper, it is suggested that RD system can benefit from installation of an independent SIS system in order to address current challenges. This idea is being explored using IEC 61508 framework for “Functional safety of electrical/electronic/programmable electronic safety-related systems” to provide assurance that the SIS will offer the necessary risk reduction required to achieve required safety for the equipment.

  8. Probabilistic safety assessment for instrumentation and control systems in nuclear power plants. A literature survey

    International Nuclear Information System (INIS)

    Lu, Lixuan; Jiang, Jin

    2003-01-01

    Deregulation in electricity market will create a great deal of challenges for Nuclear Power Plants (NPP). To stay competitive, NPP will need to find new ways to reduce their operation costs. In NPP, Instrumentation and Control (I and C) systems play an important role in reducing the cost of producing electricity while maintaining and/or enhancing safety. Therefore, it is extremely important that one should manage the I and C systems more efficiently and economically. Meanwhile, obsolescence problem associated with I and C systems encouraged the usage of advanced digital techniques in I and C systems. Thus, new methodologies are needed to analyze the reliability and determine the maintenance strategy for the digital I and C systems. Probabilistic Safety Assessment (PSA) has been probed to be a promising method to deal with this issue. This paper provides a literature survey on the development of digital I and C systems in NPP, followed by a detailed review of PSA including its benefits, limitations and the future direction of its development. Most importantly, potential applications of PSA in various aspects of I and C systems are brought into perspective throughout the paper. Furthermore, the applicability of PSA in the regulation of safety-related I and C systems is demonstrated. Detailed information on PSA applications in 1) the resource allocation for I and C systems: 2) the determination of surveillance testing strategies; and 3) I and C system designs, is provided. (author)

  9. Aging management of instrumentation and control sensors in nuclear power plants

    International Nuclear Information System (INIS)

    Hashemian, H.M.

    2010-01-01

    Pressure to improve plant efficiency and maximize safety and the increasing age of existing NPPs are forcing the global nuclear power industry to confront the challenges of aging - caused by stressors such as temperature, humidity, radiation, electricity, and vibration - in key instrument and control (I and C) components like pressure transmitters, temperature sensors, neutron detectors, and cables. Traditional aging management methods, such as equipment replacement, required the process to be shut down. Recent aging management technologies, collectively known as online monitoring (OLM), enable plants to monitor the condition and aging of their installed I and C while the plant is operating. Developed through R and D initiatives worldwide, such OLM techniques include low- and high-frequency methods that use existing sensors, such as noise analysis; methods based on test or diagnostic sensors, such as for vibration-measuring accelerometers; and methods, such as the power interrupt (PI) test, based on active measurements made by injecting a test signal into the component under test. A review of these aging management methods, their effectiveness, and their interrelation provides a foundation for understanding the next stage in the evolution of OLM: truly integrated hybrid OLM systems capable of robust condition monitoring in both novel and familiar operating conditions.

  10. Evaluation of modal properties of cabinet type instrument of nuclear power plant

    International Nuclear Information System (INIS)

    Cho, Y. H.; Park, H. K.; Cho, S. K.

    1999-01-01

    The seismic qualification of safety-related equipment is usually achieved through analysis and testing. Analysis method is preferably adopted for structurally simple equipments which are easy to be mathematically modeled. However, even for relatively complex equipments, analysis method is occasionlly used for computing the input motion or supporting information for the component test followed. Electrical cabinet is a typical example for which analysis method is combinedly used with test to get modal properties of the enclosing cabinet structure. In this paper, with respect to a typical cabinet-type structure(instrumentation cabinet of nuclear power plant) a comparative study has been performed between three different state-of-the-art modeling techniques: lumped mass model, frame model, and FEM modal. From the study results, it has been found that the modal properties of the cabinet-type structure in the elastic behavior range can be reasonably computed through any type of modeling techniques in the practice with slight modification of model properties to get better accuracy. However, it needs additional modeling techniques to get reasonable results up to nonlinear range

  11. Regulatory perspective on digital instrumentation and control systems for future advanced nuclear power plants

    International Nuclear Information System (INIS)

    Chiramal, M.

    1993-01-01

    This paper deals with the question of using digital technology in instrumentation and control systems for modern nuclear power reactors. The general opinion in the industry and among NRC staff is that such technology provides the opportunity for enhanced safety and reliable reactor operations. The major concern is the safe application of this technology so as to avoid common mode or common cause failures in systems. There are great differences between digital and analog system components. SECY-91-292 identifies some general regulatory concerns with regard to digital systems. There is clearly a lack of adequate regulatory direction on the application of digital equipment at this time, but the issue is being addressed by the industry, outside experts, and NRC staff. NRC staff presents a position on the issue of defense-in-depth and diversity with regard to insuring plant safety. Independent manual controls and readouts must be available to allow safe shutdown and monitoring of the plant in the event of safety system failures

  12. Methodology and development of instruments for the safety analysis of a nuclear reprocessing plant

    International Nuclear Information System (INIS)

    Markett, J.

    1987-01-01

    Characteristics and overlapping aspects in the elaboration of safety analyses for the nuclear and conventional units are presented. The current methods are presented and their limits of applicability characterized. The transferability of individual methods or their elements to the analysis of the reference plant of Wackersdorf is examined and the procedure for the systems analysis is determined. It is of great importance to prove that the essential kinds of incidents and possibilities of release with potential effects in the environment are completely identified. The incidents are divided into basic incidents, which are characterized by superior physical/chemical release mechanisms. An essential objective is to systematize the safety analysis and to summarize the presentation of results. Selection criteria are presented, which allow a limitation of the analysis to essential influencing parameters without removing aspects from the overall safety-relevant statement. Besides the selection criteria, instruments and mathematical models are explained with the help of which the representative and possible incidents covering all potential risks for all areas of the plant, systems and components can be selected. These design-basis accidents (criticality, self-heating, fire, explosion, leakages, earth quakes) are decisive for the determination of potential damaging effects in the environment and thus for the overall statement on the licensability. (orig./HP) [de

  13. Generation of on-line test signals for nuclear instrumentation for PFBR

    International Nuclear Information System (INIS)

    Ram, Rajit; Bhatnagar, P.V.; Rajesh, M.G.; Das, Debashis

    2010-01-01

    Neutron flux monitoring system for PFBR employs pulse signal processing in start up and intermediate power range of reactor operation and Campbell signal processing in intermediate and full power range of reactor operation. Pulse signal processing unit as well as Campbell signal processing unit incorporates FPGA that generates pulse/white noise signal for on-line testing and diagnostic of the channels. In pulse channel fixed/linearly/exponentially varying pulse rate signal is generated over three decades of reactor operation. In the Campbell channel, Poisson distributed noise varying linearly/exponentially is generated over four decades of reactor operation. Multiple numbers of Poisson distributed random pulse trains are summed and amplified to get the white noise signal. Exponentially increasing gain pattern, generated by MATLAB is used to increase the RMS value of the generated noise. The paper discuses the successful testing and validation of pulse and Campbell channel by making use of the generated pulse/white noise signal over wide range of operation for nuclear instrumentation. (author)

  14. Irradiation test plan of instrumented capsule(05F-01K) for nuclear fuel irradiation in Hanaro (Revision 1)

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Jae Min; Kim, B. G.; Choi, M. H. (and others)

    2006-09-15

    An instrumented capsule was developed to be able to measure fuel characteristics, such as fuel temperature, internal pressure of fuel rod, fuel pellet elongation, and neutron flux, etc., during the irradiation test of nuclear fuel in HANARO. The instrumented capsule for measuring and monitoring fuel centerline temperature and neutron flux was designed and manufactured. And then, to verify the design of the instrumented capsule in the test hole, it was successfully irradiated in the test hole of HANARO from March 14, 2003 to June 1, 2003 (53.84 full power days at 24 MW). In the year of 2004, 3 test fuel rods and the 03F-05K instrumented fuel capsule were designed and fabricated to measure fuel centerline temperature, internal pressure of fuel rod, and fuel axial deformation during irradiation test. Now, this capsule was successfully irradiated in the test hole OR5 of HANARO reactor from April 27, 2004 to October 1, 2004 (59.5 full power days at 24-30 MW). The capsule and fuel rods have been be dismantled and fuel rods have been examined at the hot cell of IMEF. The instrumented fuel capsule (05F-01K) was designed and manufactured for a design verification test of the dual instrumented fuel rods. The irradiation test of the 05F-01K instrumented fuel capsule will be carried out at the OR5 vertical experimental hole of HANARO.

  15. Cost-effective instrumentation and control upgrades for commercial nuclear power plants surety principles developed at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Rochau, G.E.; Dalton, L.J.

    1998-01-01

    Many nuclear power plants use instrument and control systems based on analog electronics. The state of the art in process control and instrumentation has advanced to use digital electronics and incorporate advanced technology. This technology includes: distributed microprocessors, fiber optics, intelligent systems (neutral networks), and advanced displays. The technology is used to optimize processes and enhance the man-machine interface while maintaining control and safety of the processes. Nuclear power plant operators have been hesitant to install this technology because of the cost and uncertainty in the regulatory process. This technology can be directly applied in an operating nuclear power plant provided a surety principle-based 'administrator' hardware system is included in parallel with the upgrade. Sandia National Laboratories has developed a rigorous approach to High Consequence System Surety (HCSS). This approach addresses the key issues of safety, security, and control while satisfying requirements for reliability and quality. We believe that HCSS principles can be applied to nuclear power plants in a manner that allows the off-the-shelf use of process control instrumentation while maintaining a high level of safety and enhancing the plant performance. We propose that an HCSS Administrator be constructed as a standardized approach to address regulatory issues. Such an administrator would allow a plant control system to be constructed with commercially available, state-to-the-art equipment and be customized to the needs of the individual plant operator. (author)

  16. Cost-effective instrumentation and control upgrades for commercial nuclear power plants using surety principles developed at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Rochau, G.E.; Dalton, L.J.

    1997-01-01

    Many nuclear power plants use instrument and control systems based on analog electronics. The state of the art in process control and instrumentation has advanced to use digital electronics and incorporate advanced technology. This technology includes distributed microprocessors, fiber optics, intelligent systems (neural networks), and advanced displays. The technology is used to optimize processes and enhance the man-machine interface while maintaining control and safety of the processes. Nuclear power plant operators have been hesitant to install this technology because of the cost and uncertainty in the regulatory process. This technology can be directly applied in an operating nuclear power plant provided a surety principle-based open-quotes administratorclose quotes hardware system is included in parallel with the upgrade Sandia National Laboratories has developed a rigorous approach to High Consequence System Surety (HCSS). This approach addresses the key issues of safety, security, and control while satisfying requirements for reliability and quality. HCSS principles can be applied to nuclear power plants in a manner that allows the off-the-shelf use of process control instrumentation while maintaining a high level of safety and enhancing the plant performance. We propose that an HCSS administrator be constructed as a standardized approach to address regulatory issues. Such an administrator would allow a plant control system to be constructed with commercially available, state-of-the-art equipment and be customized to the needs of the individual plant operator

  17. Manual on quality assurance for installation and commissioning of instrumentation, control and electrical equipment in nuclear power plants

    International Nuclear Information System (INIS)

    1989-01-01

    The present Manual on Quality Assurance (QA) for Installation and Commissioning of Instrumentation, Control and Electrical (ICE) Equipment of Nuclear Power Plants contains supporting material and illustrative examples for implementing basic requirements of the quality assurance programme in procurement, receiving, installation and commissioning of this equipment. The Manual on Quality Assurance for Installation and Commissioning of ICE Equipment is designed to supplement and be consistent with the Guidebook as well as with the IAEA Code and Safety Guides on Quality Assurance. It is intended for the use of managerial staff and QA personnel of nuclear power plant owners or the organizations respectively responsible for the legal, technical, administrative and financial aspects of a nuclear power plant. The information provided in the Manual will also be useful to the inspection staff of the regulatory organization in the planning and performance of regulatory inspections at nuclear power plants

  18. Job analysis of the instrument and control technician position for the nuclear power plant maintenance personnel reliability model

    International Nuclear Information System (INIS)

    Siegel, A.I.; Bartter, W.D.; Federman, P.J.

    1983-08-01

    This report is one of a series that is planned to describe the results of a program undertaken by the Oak Ridge National Laboratory (ORNL) for the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, to define, develop, validate, and disseminate a methodology for the quantitative prediction of human reliability in the conduct of maintenance tasks in nuclear power plants (NPPs). ORNL has subcontracted portions of this effort to Applied Psychological Services, Inc. This report on the job analysis of the Instrument and Control technician (NUREG/CR-3274) and a report on the job analysis of the electrician position (NUREG/CR-3275) comprise a part of the initial efforts of the development phase of this program. With the publication of the job analysis of the electrician position, the series of job analyses reports addressing nuclear power plant maintenance personnel will be complete. Subsequent reports addressing model development and validation are planned

  19. ER-E2 regulation. Implementation of the national protocol for quality control of instrumentation in nuclear medicine

    International Nuclear Information System (INIS)

    2015-01-01

    The purpose of this regulation is the adoption and enforcement of the 'Protocol National Quality Control Instrumentation in Nuclear Medicine'; as well as the establishment of an annual program of external audits, which take place on CCEEM, in order to verify compliance with the established considerations into protocols. It is applicable to all entities within the NHS who perform the practice of nuclear medicine in Cuba, both for use 'in vitro' and 'in vivo'.

  20. Instrument evaluation no. 11. ESI nuclear model 271 C contamination monitor

    CERN Document Server

    Burgess, P H

    1978-01-01

    The various radiations encountered in radiological protection cover a wide range of energies and radiation measurements have to he carried out under an equally broad spectrum of environmental conditions. This report is one of a series intended to give information on the performance characteristics of radiological protection instruments, to assist in the selection of appropriate instruments for a given purpose, to interpret the results obtained with such instruments, and, in particular, to know the likely sources and magnitude of errors that might be associated with measurements in the field. The radiation, electrical and environmental characteristics of radiation protection instruments are considered together with those aspects of the construction which make an instrument convenient for routine use. To provide consistent criteria for instrument performance, the range of tests performed on any particular class of instrument, the test methods and the criteria of acceptable performance are based broadly on the a...

  1. Single event upset mitigation techniques for FPGAs utilized in nuclear power plant digital instrumentation and control

    International Nuclear Information System (INIS)

    Wang Xin; Holbert, Keith E.; Clark, Lawrence T.

    2011-01-01

    Highlights: → Triple modular redundancy (TMR) implementation is the best solution for digital I and C. → Maximal probability of two simultaneous errors with TMR maximum partition is 4.44%. → Dual modular redundancy minimum logic partitioning design is an additional option. - Abstract: Field programmable gate arrays (FPGAs) are integrated circuits being increasingly used for digital instrumentation and control (I and C) in nuclear power plants (NPPs) because of low cost, re-configurability and low design turn-around time. However, to ensure reliability, proper design techniques must be employed since the memory and logic in FPGAs are susceptible to single event upsets (SEUs). Triple modular redundancy (TMR) has become a common SEU mitigation design technique because of its straightforward implementation and reliable results. Partitioned TMR approaches are introduced in this paper, and formulae derived indicate that the maximum probability of two simultaneous errors [P E ] max is inversely proportional to the number of logic partitions in a TMR design, when each redundant logic block in every logic partition has the same number of sensitive nodes. However, the maximum logic partitioning design cannot completely eliminate the possibility of two simultaneous upsets. For the example test circuit it is found that [P E ] max is reduced dramatically from 66.67% for minimum logic partitioning to 4.44% for maximum logic partitioning. Because TMR introduces significant overhead due to its full hardware redundancy, a dual modular redundancy approach is also examined for application to less demanding situations. By comparative analysis this study reaches the conclusion that the maximum logic partitioning TMR implementation is the best solution for digital I and C applications in NPPs where obtaining robustness is of the highest importance, despite its higher area overhead.

  2. Aeroflex Single Board Computers and Instrument Circuit Cards for Nuclear Environments Measuring and Monitoring

    International Nuclear Information System (INIS)

    Stratton, Sam; Stevenson, Dave; Magnifico, Mateo

    2013-06-01

    A Single Board Computer (SBC) is an entire computer including all of the required components and I/O interfaces built on a single circuit board. SBC's are used across numerous industrial, military and space flight applications. In the case of military and space implementations, SBC's employ advanced high reliability processors designed for rugged thermal, mechanical and even radiation environments. These processors, in turn, rely on equally advanced support components such as memory, interface, and digital logic. When all of these components are put together on a printed circuit card, the result is a highly reliable Single Board Computer that can perform a wide variety of tasks in very harsh environments. In the area of instrumentation, peripheral circuit cards can be developed that directly interface to the SBC and various radiation measuring devices and systems. Designers use signal conditioning and high reliability Analog to Digital Converters (ADC's) to convert the measuring device signals to digital data suitable for a microprocessor. The data can then be sent to the SBC via high speed communication protocols such as Ethernet or similar type of serial bus. Data received by the SBC can then be manipulated and processed into a form readily available to users. Recent events are causing some in the NPP industry to consider devices and systems with better radiation and temperature performance capability. Systems designed for space application are designed for the harsh environment of space which under certain conditions would be similar to what the electronics will see during a severe nuclear reactor event. The NPP industry should be considering higher reliability electronics for certain critical applications. (authors)

  3. Evaluation of electromagnetic interference environment of the instrumentation and control systems in nuclear power units

    Energy Technology Data Exchange (ETDEWEB)

    Min, Moon-Gi; Lee, Jae-Ki; Ji, Yeong-Haw; Jo, Sung-Han [Korea Hydro & Nuclear Power Co., Ltd., 1312-70 Yuesong-daero, Yuseong-Gu, Daejeon 305-343 (Korea, Republic of); Kim, Hee-Je, E-mail: heeje@pusan.ac.kr [Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 609-735 (Korea, Republic of)

    2015-04-15

    Highlights: • We surveyed the electromagnetic emissions at the location of I&C systems. • We assessed the electromagnetic levels on reactor types from thirteen nuclear plants. • We evaluated the margin between plant emission limits and the highest composite levels. • We presented the formula of radiated susceptibility test levels to non-safety-related I&C systems. - Abstract: The electromagnetic interference (EMI) generated from sources in power units can interfere with digital Instrument and Control (I&C) systems. When EMI is emitted with conducted and radiated noise, it interferes with the signals of the I&C systems. Since the digital I&C systems are efficient and competitively priced, the analogue I&C systems have been upgraded and replaced with digital I&C systems, but these systems have less EMI immunity. When safety-related I&C systems are installed in the units, the verification of equipment EMI should not be done in site-specific tests but in test facilities. There are needs to do the overall site-specific EMI assessment of I&C systems depending on the reactor types from thirteen operating units. This study evaluated the margin between plant emission limits and the highest composite plant emissions of the EMI. When the non-safety-related I&C equipment or systems are placed in the units, there are no individual test levels of the radiated electrical field. If need be, the level should comply with the test levels of the radiated electrical field on the safety-related I&C systems. This paper presents the test levels of radiated electrical fields to non-safety-related I&C equipment or systems.

  4. Modernization of instrumentation and control in nuclear power plants. Report prepared within the framework of the International Working Group on Nuclear Power Plant Control and Instrumentation

    International Nuclear Information System (INIS)

    1998-05-01

    The scope of the modernization activities described in this report includes the modernization of equipment in operating plants and partially built plants. It covers the full range of types of instrumentation and control (I and C) systems including protection, safety, control and information systems. It is applicable for a plant throughout its life. The report includes appropriate consideration of the increasingly international nature of the I and C systems supply industry and takes advantage of the activities and lessons learned in the different national approaches to develop general guidance and recommendations. An Annex includes 10 country reports which were separately indexed

  5. Modernization of instrumentation and control in nuclear power plants. Report prepared within the framework of the International Working Group on Nuclear Power Plant Control and Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    The scope of the modernization activities described in this report includes the modernization of equipment in operating plants and partially built plants. It covers the full range of types of instrumentation and control (I and C) systems including protection, safety, control and information systems. It is applicable for a plant throughout its life. The report includes appropriate consideration of the increasingly international nature of the I and C systems supply industry and takes advantage of the activities and lessons learned in the different national approaches to develop general guidance and recommendations. An Annex includes 10 country reports which were separately indexed Refs, figs, tabs

  6. Experience gained with certification of instruments for the system for nuclear material physical protection, accounting, and control

    International Nuclear Information System (INIS)

    Gus'kov, O.M.; Egorov, V.V.; Morozov, O.S.; Novikov, V.M.

    1999-01-01

    Results of the tests have confirmed the expedience of certification of the equipment, especially imported items. For the use of imported equipment at Russian facilities, it is justified to accommodate the accompanying documents thereto for the Russian standards. Equipment items shipped to Russia should be prepared for the certification tests and/or operation. When taking decision on the certification of imported equipment, it is expedient to preliminarily estimate the instrument's parameters and its operation in Russia. To solve the question whether the imported equipment is usable for Russia and what engineering support and maintenance is needed for its operation, it would be justified to create the Center for engineering support of instruments to be used for nuclear material protection, control and accounting on the basis of one of institutes dealing with the development of instruments for these application [ru

  7. Qualification issues associated with the use of advanced instrumentation and control systems hardware in nuclear power plants

    International Nuclear Information System (INIS)

    Korsah, K.; Antonescu, C.

    1993-01-01

    The instrumentation and control (I ampersand C) systems in advanced reactors will make extensive use of digital controls, microprocessors, multiplexing, and Tiber-optic transmission. Elements of these advances in I ampersand C have been implemented on some current operating plants. However, the widespread use of the above technologies, as well as the use of artificial intelligence with minimum reliance on human operator control of reactors, highlights the need to develop standards for qualifying I ampersand C used in the next generation of nuclear power plants. As a first step in this direction, the protection system I ampersand C for present-day plants was compared to that proposed for advanced light water reactors (ALWRs). An evaluation template was developed by assembling a configuration of a safety channel instrument string for a generic ALWR, then comparing the impact of environmental stressors on that string to their effect on an equivalent instrument string from an existing light water reactor. The template was then used to address reliability issues for microprocessor-based protection systems. Standards (or lack thereof) for the qualification of microprocessor-based safety I ampersand C systems were also identified. This approach addresses in part issues raised in Nuclear Regulatory Commission policy document SECY-91-292. which recognizes that advanced I ampersand C systems for the nuclear industry are ''being developed without consensus standards, as the technology available for design is ahead of the technology that is well understood through experience and supported by application standards.''

  8. Qualification issues associated with the use of advanced instrumentation and control systems hardware in nuclear power plants

    International Nuclear Information System (INIS)

    Korsah, K.; Antonescu, C.

    1993-01-01

    The instrumentation and control (I ampersand C) systems in advanced reactors will make extensive use of digital controls, microprocessors, multiplexing, and fiber-optic transmission. Elements of these advances in I ampersand C have been implemented on some current operating plants. However, the widespread use of the above technologies, as well as the use of artificial intelligence with minimum reliance on human operator control of reactors, highlights the need to develop standards for qualifying I ampersand C used in the next generation of nuclear power plants. As a first step in this direction, the protection system I ampersand C for present-day plants was compared to that proposed for advanced light water reactors (ALWRs). An evaluation template was developed by assembling a configuration of a safety channel instrument string for a generic ALWR, then comparing the impact of environmental stressors on that string to their effect on an equivalent instrument string from an existing light water reactor. The template was then used to address reliability issues for microprocessor-based protection systems. Standards (or lack thereof) for the qualification of microprocessor-based safety I ampersand C systems were also identified. This approach addresses in part issues raised in Nuclear Regulatory Commission policy document SECY-91-292, which recognizes that advanced I ampersand C systems for the nuclear industry are open-quotes being developed without consensus standards, as the technology available for design is ahead of the technology that is well understood through experience and supported by application standards.close quotes

  9. National phantoms bank for the service of nuclear medicine in Cuba. Utility for the quality control of the instrumentation

    International Nuclear Information System (INIS)

    Varela C, C.; Diaz B, M.; Lopez B, G.M.

    2006-01-01

    Although, most of the applications in Nuclear Medicine have diagnostic ends, its going enlarging considerably the therapeutic applications. So that the diagnostic accuracy or the therapy effectiveness have not been affected, it becomes indispensable the quality control of the instrumentation, independently of its technological complexity and/or its exploitation period. Before the real lack of phantoms in the institutions, it was created a bank that puts to disposition of all the institutions, the existent phantoms in the country, and those that are going acquired, centralized by the State Control of Medical Equipment Center (CCEEM) and with Web access in its place www.eqmed.sld.cu. Having like base the elaboration of the National Protocol for the Quality Control of the Instrumentation in Nuclear Medicine that keeps in mind the international normative and the own existent conditions, were dictated and established two national regulations and its are being carried out the first audits to the instrumentation quality. These have evidenced the partial realization of the established quality controls in the services, the necessity to make aware as for the fulfillment of the criteria and quality concepts for the instrumentation, as well as the necessity to increase the phantoms number to the bank to guarantee the fulfillment of the Quality Control Programs. (Author)

  10. The F4E programme on nuclear data validation and nuclear instrumentation techniques for TBM in ITER

    Czech Academy of Sciences Publication Activity Database

    Leichtle, D.; Angelone, M.; Batistoni, P.; Calderoni, P.; Fischer, U.; Izquierdo, J.; Klix, A.; Kodeli, I.; Kuc, T.; Lilley, S.; Majerle, Mitja; Packer, L.; Pillon, M.; Pohorecki, W.; Snoj, L.; Villari, R.

    2014-01-01

    Roč. 89, 9-10 (2014), s. 2169-2173 ISSN 0920-3796 Institutional support: RVO:61389005 Keywords : nuclear data * TBM * neutronic sensors * validation experiments Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.152, year: 2014

  11. Statistical evaluation of recorded knowledge in nuclear and other instrumental analytical techniques

    International Nuclear Information System (INIS)

    Braun, T.

    1987-01-01

    The main points addressed in this study are the following: Statistical distribution patterns of published literature on instrumental analytical techniques 1981-1984; structure of scientific literature and heuristics for identifying active specialities and emerging hot spot research areas in instrumental analytical techniques; growth and growth rates of the literature in some of the identified hot research areas; quality and quantity in instrumental analytical research output. (orig.)

  12. Survey and analysis on environmental and electromagnetic effect on instrumentation and control equipment of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, In Koo; Lee, Dong Young; Cha, Kyung Ho

    2001-03-01

    As the instrumentation and control (I and C) equipment suppliers tend to provide digital components rather than conventional analog type components for instrumentation and control systems of nuclear power plants(NPPs), it is unavoidable to adopt digital equipment for safety I and C systems as well as non-safety systems. However, the full introduction of digital equipment for I and C systems of nuclear power plants raises several concerns which have not been considered in conventional analog I and C equipment. The two major examples of the issues of digital systems are environmental/electromagnetic compatibility (EMC) and software reliability. This report presents the survey and research results on environmental and electromagnetic effect on I and C equipment of nuclear power plants to give a guideline for aging management and design process. Electromagnetic site surveys were conducted to be used as a part of technical basis to demonstrate that I and C systems are compatible with the ambient electromagnetic noise in Korean nuclear power plants.

  13. Technology Roadmap on Instrumentation, Control, and Human-Machine Interface to Support DOE Advanced Nuclear Energy Programs

    International Nuclear Information System (INIS)

    Donald D Dudenhoeffer; Burce P Hallbert

    2007-01-01

    Instrumentation, Controls, and Human-Machine Interface (ICHMI) technologies are essential to ensuring delivery and effective operation of optimized advanced Generation IV (Gen IV) nuclear energy systems. In 1996, the Watts Bar I nuclear power plant in Tennessee was the last U.S. nuclear power plant to go on line. It was, in fact, built based on pre-1990 technology. Since this last U.S. nuclear power plant was designed, there have been major advances in the field of ICHMI systems. Computer technology employed in other industries has advanced dramatically, and computing systems are now replaced every few years as they become functionally obsolete. Functional obsolescence occurs when newer, more functional technology replaces or supersedes an existing technology, even though an existing technology may well be in working order. Although ICHMI architectures are comprised of much of the same technology, they have not been updated nearly as often in the nuclear power industry. For example, some newer Personal Digital Assistants (PDAs) or handheld computers may, in fact, have more functionality than the 1996 computer control system at the Watts Bar I plant. This illustrates the need to transition and upgrade current nuclear power plant ICHMI technologies

  14. Providing nuclear reactor control information in the presence of instrument failures

    International Nuclear Information System (INIS)

    Tylee, J.L.; Purviance, J.E.

    1986-01-01

    A technique for using unfailed instrument outputs to generate optimal estimates of failed sensor outputs is presented and evaluated. The technique uses a bank of discrete, linear Kalman filters, each dedicated to one instrument, and a combinatory logic to perform the output estimation. The technique is tested using measurement data from a university research reactor

  15. Nuclear measurements, techniques and instrumentation. Industrial applications. Plasma physics and nuclear fusion. 1990-2002. International Atomic Energy Agency publications

    International Nuclear Information System (INIS)

    2002-08-01

    This catalogue lists all sales publications of the International Atomic Energy Agency dealing with Nuclear Power and Nuclear Fuel Cycle and Waste Management, and issued during the period 1 January 1990 and 31 July 2002. Some earlier titles which form part of an established series or are still considered of importance have been included. Most publications are in English, though some are also available in other languages than English

  16. Nuclear measurements, techniques and instrumentation, industrial applications, plasma physics and nuclear fusion, 1986-1997. International Atomic Energy Agency publications

    International Nuclear Information System (INIS)

    1998-06-01

    This catalogue lists all sales publications of the International Atomic Energy Agency dealing with nuclear power, nuclear fuel cycle and waste management and issued during the period of 1986-1997. Some earlier titles which form part of an established series or are still considered of importance have been included. Most publications are in English. Proceedings of conferences, symposia and panels of experts may contain papers in languages other than English, but all of these papers have abstracts in English

  17. The Nuclear Installations (Excepted Matter) Regulations 1978 (Statutory Instrument No. 1779, 4 December 1978)

    International Nuclear Information System (INIS)

    1979-01-01

    These Regulations prescribe, for the purposes of the definition of 'excepted matter' in the Nuclear Installations Act 1965, certain specified quantities and forms of nuclear matter, and supersede the Nuclear Installations (excepted Matter) Regulations 1965. They bring the definition of excepted matter in those Regulations into line with the decisions of 27 October 1977 of the OECD Nuclear Energy Agency's Steering Committee excluding certain kinds and quantities of nuclear substances from the scope of the Paris Convention on Third Party Liability in the Field of Nuclear Energy. Compared with the 1965 Regulations, the principal changes in relation to consignments are that activity limits and packing requirements now take account of the most recent IAEA Regulations. (NEA) [fr

  18. Statutory Instrument No. 125, The Nuclear Installations (Falkland Islands and Dependencies) Order 1972

    International Nuclear Information System (INIS)

    1972-01-01

    This Order extends to the Falkland Islands, with the exceptions, adaptations and modifications specified in the Schedule to the Order, certain provisions of the Nuclear Installations Act 1965, as amended. It is the 1965 Act which implements the provisions of the Paris Convention and the Brussels Supplementary Convention in the United Kingdom. The provisions so extended impose a duty on the nuclear operator to secure that no nuclear occurrence taking place within the territorial limits of the Falkland Islands causes nuclear injury or damage, and relate to the right to compensation for breach of that duty, the bringing and satisfaction of claims and other matters. (NEA) [fr

  19. Statutory Instrument No. 126, The Nuclear Installations (Hong Kong) Order 1972

    International Nuclear Information System (INIS)

    1972-01-01

    This Order extends to Hong Kong, with the exceptions, adaptations and modifications specified in the Schedule to the Order, certain provisions of the Nuclear Installations Act 1965, as amended. It is the 1965 Act which implements the provisions of the Paris Convention and the Brussels Supplementary Convention in the United Kingdom. The provisions so extended impose a duty on the nuclear operator to secure that no nuclear occurrence taking place within the territorial limits of Hong Kong causes nuclear injury or damage, and relate to the right to compensation for breach of that duty, the bringing and satisfaction of claims and other matters. (NEA) [fr

  20. Statutory Instrument No. 123, The Nuclear Installations (Cayman Islands) Order 1972

    International Nuclear Information System (INIS)

    1972-01-01

    This Order extends to the Cayman Islands, with the exceptions, adaptations and modifications specified in the Schedule to the Order, certain provisions of the Nuclear Installations Act 1965, as amended. It is the 1965 Act which implements the provisions of the Paris Convention and the Brussels Supplementary Convention in the United Kingdom. The provisions so extended impose a duty on the nuclear operator to secure that no nuclear occurrence taking place within the territorial limits of the Cayman Islands causes nuclear injury or damage, and relate to the right to compensation for breach of that duty, the bringing and satisfaction of claims and other matters. (NEA) [fr

  1. Statutory Instrument No. 125, The Nuclear Installations (Gilbert and Ellice Islands) Order 1972

    International Nuclear Information System (INIS)

    1972-01-01

    This Order extends to the Gilbert and Ellice Islands, with the exceptions, adaptations and modifications specified in the Schedule to the Order, certain provisions of the Nuclear Installations Act 1965, as amended. It is the 1965 Act which implements the provisions of the Paris Convention and the Brussels Supplementary Convention in the United Kingdom. The provisions so extended impose a duty on the nuclear operator to secure that no nuclear occurrence taking place within the territorial limits of the Gilbert and Ellice Islands causes nuclear injury or damage, and relate to the right to compensation for breach of that duty, the bringing and satisfaction of claims and other matters. (NEA) [fr

  2. The Nuclear Installations (Guernsey) Order 1978 (Statutory Instrument 1528, 24 October 1978)

    International Nuclear Information System (INIS)

    1978-01-01

    This Order extends to Guernsey, with the exceptions, adaptations and modifications specified in the Schedule to the Order, certain provisions of the Nuclear Installations Act 1965, as amended. It is the 1965 Act which implements the provisions of the Paris Convention and the Brussels Supplementary Convention in the United Kingdom. The provisions so extended impose a duty on the nuclear operator to secure that no nuclear occurrence taking place within the territorial limits of Guernsey causes nuclear injury or damage, and relate to the right to compensation for breach of that duty, the bringing and satisfaction of claims and other matters. (NEA) [fr

  3. Statutory Instrument No. 122, The Nuclear Installations (British Solomon Islands Protectorate) Order 1972

    International Nuclear Information System (INIS)

    1972-01-01

    This Order extends to the British Solomon Islands Protectorate, with the exceptions, adaptations and modificatons specified in the Schedule to the Order, certain provisions of the Nuclear Installations Act 1965, as amended. It is the 1965 Act which implements the provisions of the Paris Convention and the Brussels Supplementary Convention in the United Kingdom. The provisions so extended impose a duty on the nuclear operator to secure that no nuclear occurrence taking place within the territorial limits of the British Solomon Islands Protectorate causes nuclear injury or damage, and relate to the right to compensation for breach of that duty, the bringing and satisfaction of claims and other matters. (NEA) [fr

  4. Instrument evaluation no. 1. Nuclear Enterprises dose rate meter type NE 2602

    International Nuclear Information System (INIS)

    White, D.F.

    1974-01-01

    The NE2602 is a portable, battery-operated instrument for the measurement of exposure rates from 0.1 mR/h to 200 mR/h. The detector is an internally mounted Geiger-Muller tube provided with a correcting filter to minimise the variation of response with radiation energy. The instrument was specifically designed for the measurement of exposure rates from packages intended for transport. The detector is therefore mounted very close to the front surface of the instrument. The information is given under the following headings: facilities and controls; radiation performance; electrical characteristics; summary of performance; calibration procedure; construction; conclusions. (U.K.)

  5. Microprocessor-based, on-line decision aid for resolving conflicting nuclear reactor instrumentation

    International Nuclear Information System (INIS)

    Alesso, H.P.

    1981-01-01

    We describe one design for a microprocessor-based, on-line decision aid for identifying and resolving false, conflicting, or misleading instrument indications resulting from certain systems interactions for a pressurized water reactor. The system processes sensor signals from groups of instruments that track together under nominal transient and certain accident conditions, and alarms when they do not track together. We examine multiple-casualty systems interaction and formulate a trial grouping of variables that track together under specified conditions. A two-of-three type redundancy check of key variables provides alarm and indication of conflicting information when one signal suddenly tracks in opposition due to multiple casualty, instrument failure, and/or locally abnormal conditions. Since a vote count of two of three variables in conflict as inconclusive evidence, the system is not designed to provide tripping or corrective action, but improves the operator/instrument interface by providing additional and partially digested information

  6. Nuclear power plant control and instrumentation in the Netherlands: Status and developments

    International Nuclear Information System (INIS)

    Plas, Y. van der

    1992-01-01

    This article has been prepared for the regular IAEA/IWG-NPPCI-meeting in May 1991. It provides an outline of the status of and prospects for nuclear energy in the Netherlands and a brief description of topics given specific attention by the authorities. It also gives an overview of recent developments and aims related to I and C in nuclear power stations. (author)

  7. The first Swedish nuclear reactor - from technical prototype to scientific instrument

    International Nuclear Information System (INIS)

    Fjaestad, M.

    2001-01-01

    The first Swedish reactor R1, constructed at the Royal Inst. of Technology in Stockholm, went critical in July 1954. This report presents historical aspects of the reactor, in particular about the reactor as a research instrument and a centre for physical science. The tensions between its role as a prototype and a step in the development of power reactors and that as a scientific instrument are especially focused

  8. Comparison of the Standards applied to Instrumentation and Control Systems for Nuclear Power Stations in Korea and Russia

    International Nuclear Information System (INIS)

    Park, Joo Hyun; Hwang, In Koo; Lee, Dong Young

    2005-04-01

    This report describes a comparison result of technical standards applied to instrumentation and control systems for nuclear power plants between in Korea and in Russia. Russia also has a state-run organization authorized to conduct approval, cancellation, and audit in use of nuclear facility or equipment. The Russian standards for nuclear instrumentation and control equipment are analogous with the Korean ones in the aspect of basic concepts and principles. However, there are some differences in document structure, design requirements, qualification test items, depth of contents between two standard systems. The biggest deviation exists in the standard documents for seismic qualification and electromagnetic interference qualification. Korean seismic qualification standard utilizing US approach, defines testing and qualification methods specifically and clearly. Russian standards however provide only conceptual definitions and requirements in the seismic related aspects. Therefore, it is conceived that any equipment or system qualified seismically in accordance with Korean standards should additionally provide technical evidence that it is satisfactory with Russian standards as well. In electromagnetic interference qualification, because Russian standard requires more testing items than the current Korean standard, the additional qualification tests are necessary to meet the Russian requirements. However, these additional test items are based on IEC(International Electrotechnical Commission), therefore it is not a problem to perform those tests in a Korean testing facility

  9. Comparison of the Standards applied to Instrumentation and Control Systems for Nuclear Power Stations in Korea and Russia

    Energy Technology Data Exchange (ETDEWEB)

    Park, Joo Hyun; Hwang, In Koo; Lee, Dong Young

    2005-04-15

    This report describes a comparison result of technical standards applied to instrumentation and control systems for nuclear power plants between in Korea and in Russia. Russia also has a state-run organization authorized to conduct approval, cancellation, and audit in use of nuclear facility or equipment. The Russian standards for nuclear instrumentation and control equipment are analogous with the Korean ones in the aspect of basic concepts and principles. However, there are some differences in document structure, design requirements, qualification test items, depth of contents between two standard systems. The biggest deviation exists in the standard documents for seismic qualification and electromagnetic interference qualification. Korean seismic qualification standard utilizing US approach, defines testing and qualification methods specifically and clearly. Russian standards however provide only conceptual definitions and requirements in the seismic related aspects. Therefore, it is conceived that any equipment or system qualified seismically in accordance with Korean standards should additionally provide technical evidence that it is satisfactory with Russian standards as well. In electromagnetic interference qualification, because Russian standard requires more testing items than the current Korean standard, the additional qualification tests are necessary to meet the Russian requirements. However, these additional test items are based on IEC(International Electrotechnical Commission), therefore it is not a problem to perform those tests in a Korean testing facility.

  10. Evaluation tests of the Instrumentation and Control equipment to use in nuclear power plants: its contribution to the improvement and quality certification of the Brazilian equipment

    International Nuclear Information System (INIS)

    Menezes, R.H.M. de; Peluso, M.A.V.

    1984-01-01

    This work presents the procedures used to evaluate Instrumentation Control equipment and reports the experience of integration among instrument user, manufacturer and test institution. It covers tests for equipments for conventional user and for specific application in Nuclear Power Stations. (Author) [pt

  11. Determination of total plutonium content in spent nuclear fuel assemblies with the differential die-away self-interrogation instrument

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, Alexis C. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87544 (United States); Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 500 S State St., Ann Arbor, MI 48109 (United States); Henzl, Vladimir; Menlove, Howard O.; Swinhoe, Martyn T.; Belian, Anthony P. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87544 (United States); Flaska, Marek; Pozzi, Sara A. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 500 S State St., Ann Arbor, MI 48109 (United States)

    2014-11-11

    As a part of the Next Generation Safeguards Initiative Spent Fuel project, we simulate the response of the Differential Die-away Self-Interrogation (DDSI) instrument to determine total elemental plutonium content in an assayed spent nuclear fuel assembly (SFA). We apply recently developed concepts that relate total plutonium mass with SFA multiplication and passive neutron count rate. In this work, the multiplication of the SFA is determined from the die-away time in the early time domain of the Rossi-Alpha distributions measured directly by the DDSI instrument. We utilize MCNP to test the method against 44 pressurized water reactor SFAs from a simulated spent fuel library with a wide dynamic range of characteristic parameters such as initial enrichment, burnup, and cooling time. Under ideal conditions, discounting possible errors of a real world measurement, a root mean square agreement between true and determined total Pu mass of 2.1% is achieved.

  12. Determination of spent nuclear fuel assembly multiplication with the differential die-away self-interrogation instrument

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, Alexis C. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Henzl, Vladimir; Menlove, Howard O.; Swinhoe, Martyn T.; Belian, Anthony P. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Flaska, Marek; Pozzi, Sara A. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States)

    2014-09-01

    We present a novel method for determining the multiplication of a spent nuclear fuel assembly with a Differential Die-Away Self-Interrogation (DDSI) instrument. The signal, which is primarily created by thermal neutrons, is measured with four {sup 3}He detector banks surrounding a spent fuel assembly. The Rossi-alpha distribution (RAD) at early times reflects coincident events from single fissions as well as fission chains. Because of this fact, the early time domain contains information about both the fissile material and spontaneous fission material in the assembly being measured. A single exponential function fit to the early time domain of the RAD has a die-away time proportional to the spent fuel assembly (SFA) multiplication. This correlation was tested by simulating assay of 44 different SFAs with the DDSI instrument. The SFA multiplication was determined with a variance of 0.7%.

  13. Nuclear medicine and imaging research. Instrumentation and quantitative methods of evaluation. Progress report, January 15, 1984-January 14, 1985

    International Nuclear Information System (INIS)

    Beck, R.N.; Cooper, M.D.

    1984-09-01

    This program addresses problems involving the basic science and technology of radioactive tracer methods as they relate to nuclear medicine and imaging. The broad goal is to develop new instruments and methods for image formation, processing, quantitation and display, so as to maximize the diagnostic information per unit of absorbed radiation dose to the patient. Project I addresses problems associated with the quantitative imaging of single-photon emitters; Project II addresses similar problems associated with the quantitative imaging of positron emitters; Project III addresses methodological problems associated with the quantitative evaluation of the efficacy of diagnostic imaging procedures

  14. Tenth meeting of the International Working Group on Nuclear Power Plant Control and Instrumentation, Vienna, 3-5 March 1986

    International Nuclear Information System (INIS)

    1986-07-01

    The meeting of the International Working Group on Nuclear Power Plant Control and Instrumentation (IWG-NPPCI) was organized in order to summarize operating experience of NPP control systems, gain a general overview of activities in development of modern control systems and receive recommendations on the further directions and particular measures within the Agency's programme. The papers and discussions mostly dealt with practical experience and described actual problems encountered. Emphasis was placed on the technical, industrial and economic aspects of the introduction of modern, highly automated control systems and on the improvement of plant availability and safety. A separate abstract was prepared for each of the 20 presentations of the meeting

  15. Civil nuclear power as an energy security instrument in the 21. century

    International Nuclear Information System (INIS)

    Bigot, Bernard

    2011-01-01

    More than ever, the public opinions wonder about the means to secure a relative of energy supply. The last geopolitical events in the Arab countries, the Fukushima nuclear accident, the black tide in Mexico Bay, the meteorological and climate perturbations, probably linked to massive greenhouse gas emissions, are many reasons to be uneasy face to an increasing energy demand whatever the efforts for energy savings we will do. It is proposed to consider a policy combining nuclear and renewable energies to produce electricity. Successive generation of nuclear technologies, fission fusion, fruits of a continuous effort of R and D, are possible, provide the safety has the highest priority. The resources in nuclear fuels are sufficient for a sustainable use as they are for renewable energies. Are we ready to follow this strategy?

  16. Extreme Temperature Radiation Tolerant Instrumentation for Nuclear Thermal Propulsion Engines, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this proposal is to develop and commercialize a high reliability, high temperature smart neutron flux sensor for NASA Nuclear Thermal Propulsion...

  17. Contribution to the safety assessment of instrumentation and control software for nuclear power plants. Application to spin N4

    International Nuclear Information System (INIS)

    Soubies, B.; Boulc'h, J.; Elsensohn, O.; Le Meur, M.; Henry, J.Y.

    1994-01-01

    The process of licensing nuclear power plants for operation consists of mandatory steps featuring detailed examination of the instrumentation and control system. Significant changes were introduced by the operator in the process of designing and producing 1400 MWe pressurized water reactor safety systems and, in particular, in the case of the Digital Integrated Protection System, (French abbreviation SPIN). The methodology applied by the Institute of Protection and Nuclear Safety (IPSN) to examine the software of this system is described. It consists of the methods used by the manufacturer to develop SPIN software for the 1400 MWe PWRs, and the approach adopted by the IPSN to evaluate SPIN safety softwares of the protection system for the N4 series of reactors. (R.P.). 2 refs

  18. Research on the evaluation model of the software reliability in nuclear safety class digital instrumentation and control system

    International Nuclear Information System (INIS)

    Liu Ying; Yang Ming; Li Fengjun; Ma Zhanguo; Zeng Hai

    2014-01-01

    In order to analyze the software reliability (SR) in nuclear safety class digital instrumentation and control system (D-I and C), firstly, the international software design standards were analyzed, the standards' framework was built, and we found that the D-I and C software standards should follow the NUREG-0800 BTP7-14, according to the NRC NUREG-0800 review of requirements. Secondly, the quantitative evaluation model of SR using Bayesian Belief Network and thirteen sub-model frameworks were established. Thirdly, each sub-models and the weight of corresponding indexes in the evaluation model were analyzed. Finally, the safety case was introduced. The models lay a foundation for review and quantitative evaluation on the SR in nuclear safety class D-I and C. (authors)

  19. The 3rd questionnaire report of safety control on instrument in nuclear medicine laboratory

    International Nuclear Information System (INIS)

    1994-01-01

    The present 3rd survey was aimed at grasping safety control in nuclear medicine examination and the trend for SPECT usage. Questionnaires were sent to 1238 facilities dealing with nuclear medicine; and 1127 facilities (91.0%) responded. The survey period was three years from April 1, 1989 through March 31, 1992. The following 7 items were surveyed: (1) nuclear medicine personnel, (2) nuclear medicine equipments, (3) accidents occurring in nuclear medicine laboratories, (4) risk factors leading to accidents, (5) countermeasures for improving safety control, (6) major breakdown of the machinery and equipment, and (7) demands for makers. Majority of nuclear medicine personnel were male and were less than 50 years old. The number of SPECT equipments increased from 714 in the previous survey to 968. Accidents (personal injuries) and narrow escape from an accident were seen in 45 and 154 cases. Personal injuries such as falling occurred in 37 patients and 8 nuclear medicine personnel. According to nuclear medicine examinations, SPECT was the most common examination associated with accident and narrow escape cases (86/199). Such cases at the beginning of examination were remarkably decreased, as compared with those in the previous two surveys. Accidents were primarily attributable to careless management by personnel. Breakdown of the machinery and equipment was reported in 207 cases. In Item 5, the following contents were presented: heads for examination, personnel's behavior, education, examination equipments, collimators and others. Finally, contents in Item 7 included: equipment design, heads for examination, maintenance or management, data processing, collimators, examination equipments and others. (N.K.)

  20. Statutory Instrument No. 2056, The Nuclear Installations Act 1965 etc. (Repeals and Modifications) Regulations 1974

    International Nuclear Information System (INIS)

    1975-01-01

    These Regulations contain repeals and modifications of provisions of the Nuclear Installations Act 1965 and a modification of the Nuclear Installations (Dangerous Occurrences) Regulations 1965. They are made in consequence of the establishment on 1st January 1975 of the Health and Safety Executive and the coming into operation on that date of provisions of the Health and Safety at Work etc. Act 1974 which supersede or affect provisions of the 1965 Act and the 1965 Regulations. (NEA) [fr

  1. Fast instrumentation for loss of coolant accident (LOCA) experimental studies pertaining to nuclear reactors

    International Nuclear Information System (INIS)

    Venkat Raj, V.; Sreenivas Rao, G.; Belokar, D.G.; Dolas, P.K.

    1989-01-01

    The loss of coolant accident (LOCA) which involves a breach in the pressure boundary of the primary coolant system (PCS) is one of the postulated accident conditions against which the safety of the reactor system is to be ensured. Mathematical models have been developed to analyse this kind of transients. However, because of the extremely complicated nature of the phenomena involved, it is necessary to validate the analytical models with appropriate experimental data. Many parameters are to be measured during the experiments, out of which temperature, pressure, void fraction and two-phase mass flow rate are the most important parameters. Since the phenomenon is very fast, special fast response instruments are required. This paper deals with the considerations that govern the selection of appropriate instruments and the development of suitable instruments for transient two-phase flow and void fraction measurements. The requirements of the associated fast data acquisition system are also discussed. (author). 4 figs

  2. Instrument evaluation no. 8. Nuclear Enterprises beta/gamma dose rate meter type 0500

    International Nuclear Information System (INIS)

    Iles, W.J.; Burgess, P.H.; Callowhill, K.

    1977-04-01

    This instrument is a portable, battery powered survey meter covering the dose rate range from 0 to 10,000 mrad h -1 and the dose range 0 to 1000 mrad. The instrument was designed to measure X and γ-radiation dose and dose rate over a wide energy range, and also β-radiation dose and dose rate. An unsealed ionisation chamber is used as the detector. The aluminised melinex thin end window of the chamber is provided with a detachable plastic end cap. The calibration plane of the chamber is indicated by a cross on the side of the instrument. The information is given under the following headings: facilities and controls; radiation characteristics; electrical characteristics; environmental characteristics; mechanical characteristics; summary of performance; conclusions. (U.K.)

  3. Seismic qualification of safety-related instrumentation cabinets for nuclear generating stations

    International Nuclear Information System (INIS)

    Sauve, R.G.; Bell, R.P.; Cuttler, J.M.

    1979-06-01

    The problem of seismically qualifying different electrical instruments mounted in cabinets of a standard design is discussed and the following economical approach is described in detail. An analytical model of the cabinet structure is developed and validated by comparison with the results of shake table tests on a prototype cabinet. Modal analysis is then used to calculate the input spectra for shake table tests to qualify the individual instruments that are mounted at the required elevations in the cabinet. The worst input spectrum, appropriate to qualify each instrument, is then specified to the suppliers. This approach avoids the need to test each cabinet configuration in an assembled state in order to qualify it. (auth)

  4. Nuclear power plant control and instrumentation activities in Argentina during 1989-1991

    International Nuclear Information System (INIS)

    Lorenzetti, J.R.

    1992-01-01

    A brief resume of the activities in the different areas of control and instrumentation is included. As there was a delay in the construction of the new power plant most of the effort were dedicated to the plants that they are in operation. It has been added instrumentation to have better information in the control room and to check new variables of the plant according with the experience learned from the operation. It was dedicated special strength in the areas of training simulators and in service inspection. (author)

  5. Ageing management of control and instrumentation systems for Indian Nuclear Power Stations

    International Nuclear Information System (INIS)

    Premchandran, T.; Ghoshal, B.; Shirolkar, K.M.; Ahmad, S.N.

    2006-01-01

    During the time of enmasse coolant channel replacement program, undertaken at Rajasthan Atomic Power Station and Madras Atomic Power Station, upgradation and ageing management activities of these units were also taken up with a view to improve the performance of the station. This paper presents the approach followed for handling the issues, pertaining to the ageing management and obsolesce of various components of Control and Instrumentation systems of these stations. Ageing related issues for field instruments, control room instruments and hardware like cables, terminal blocks and relays will be covered in this paper. It will also cover various aspects of ageing management like assessment of degradation due to ageing, policy followed for identifying the instruments that are to be replaced, selection procedure for items for assessment of residual life, testing method followed for life assessment and problems faced during replacement. From the experience gained, the issues to be addressed during design and construction stages of future plants to minimize the ageing related problems are also discussed in this paper. (author)

  6. Aseismatic design of electrical equipments and instruments for nuclear power stations

    International Nuclear Information System (INIS)

    Suzuki, Yasuharu; Nishizawa, Kazuo; Miyazaki, Yoshio; Miura, Takumi

    1977-01-01

    The aseismatic design of electrical instruments is carried out according to IEEE Standard 344-1971 in the USA. In Japan also, the method of aseismatic design of electrical instruments has been investigated by the representatives of electric power companies and electric machine makers since 1972. In Hitachi Ltd., the statical method of confirming aseismatic property was established on the basis of the rigid design for electrical instruments. It is convenient to examine the aseismatic property of electrical equipments by classifying them into control and switch boards, electrical appliances, equipments and circuits. It is possible to use the static method treating earthquake force as static load by avoiding resonance with the electrical equipments which have the higher natural frequency than that of buildings. The purposes of the vibration test are to prove the validity of the theoretical analysis, to clarify the vibration characteristics, and to confirm the maintenance of functions and the strength of the equipments. The vibration tests of control boards, the switch boards of enclosed type, motor control centers, the racks for instrumentation, storage batteries and electrical appliances are explained. Moreover, the vibration analysis with a computer according to finite element method is described. (Kako, I.)

  7. Developments in instrumentation and methodology related to nuclear medicine, radiology and biology

    International Nuclear Information System (INIS)

    Allemand, R.

    1979-01-01

    New methods have necessitated the designing of new instruments. Numerous research teams have begin to solve the problems encountered. The work conducted by these teams is initiated either by local requirements or is part of a diversification program. An insight is given, here, into the contribution of the LETI to this field of applied research [fr

  8. Modernization of instrumentation and control systems in nuclear power plants. Working materials. Proceedings of a specialists` meeting held in Garching, Germany, 4-7 July 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The Specialists` Meeting on ``Modernization of Instrumentation and Control Systems in Nuclear Power Plants`` was organized by the IAEA (jointly by Division of Nuclear Power and Division of Nuclear Safety) in co-operation with Institute for Safety Technology (ISTec) and held in Garching, Germany from 4 to 7 July 1995 (The Meeting Chairman - Dr. W. Bastl). The meeting brought together experts on power plant operation with experts on application of today`s instrumentation and control technology. In this way, a match was made between those knowing the industry needs and requirements and those knowing the potentials of the technology. Refs, figs and tabs.

  9. Research and engineering application of coordinated instrumentation control and protection technology between reactor and steam turbine generator on nuclear power plant

    International Nuclear Information System (INIS)

    Sun Xingdong

    2014-01-01

    The coordinated instrumentation control and protection technology between reactor and steam turbine generator (TG) usually is very significant and complicated for a new construction of nuclear power plant, because it carries the safety, economy and availability of nuclear power plant. Based on successful practice of a nuclear power plant, the experience on interface design and hardware architecture of coordinated instrumentation control and protection technology between reactor and steam turbine generator was abstracted and researched. In this paper, the key points and engineering experience were introduced to give the helpful instructions for the new project. (author)

  10. Certification of U.S. instrumentation in Russian nuclear processing facilities

    International Nuclear Information System (INIS)

    Powell, D.H.; Sumner, J.N.

    2000-01-01

    Agreements between the United States (U.S.) and the Russian Federation (R.F.) require the down-blending of highly enriched uranium (HEU) from dismantled Russian Federation nuclear weapons. The Blend Down Monitoring System (BDMS) was jointly developed by the Los Alamos National Laboratory (LANL) and the Oak Ridge National Laboratory (ORNL) to continuously monitor the enrichments and flow rates in the HEU blending operations at the R.F. facilities. A significant requirement of the implementation of the BDMS equipment in R.F. facilities concerned the certification of the BDMS equipment for use in a Russian nuclear facility. This paper discusses the certification of the BDMS for installation in R.F. facilities, and summarizes the lessons learned from the process that can be applied to the installation of other U.S. equipment in Russian nuclear facilities

  11. Recent developments of and future prospects for nuclear power plant instrumentation and control in Belgium

    International Nuclear Information System (INIS)

    Naisse, J.C.

    1990-01-01

    The production of electricity in Belgium is covered for almost 70% by seven nuclear power plants all of pressurized water reactor type. Four major topics are representative of the evolution of nuclear power production in Belgium: The suspentions of the studies for the new Belgian PWR unit (DOEL 5), the commissioning of the simulators in DOEL and TIHANGE, the revamping of the oldest nuclear units, the studies of new storage installations for radioactive waste. The delay imposed on the construction of DOEL 5 will allow to go further into the examination of the implications arising from the new technologies in I and C. The use modern I and C systems for modifications in existing plants will allow a better estimation of their advantages and disadvantages. (author)

  12. Latest nuclear monitoring instrumentation and control system and its planned application

    International Nuclear Information System (INIS)

    Kawakami, Seishiro; Sato, Toshifumi; Ikeda, Jun

    2002-01-01

    With the recent rapid progress made in electronic devices used in digital monitoring and control systems, Toshiba has developed special-purpose digital monitoring equipment and human-machine interface equipment that meet the special requirement of high reliability and long-term supply and maintainability for nuclear power plants, and is scheduled to apply these new products to actual nuclear power plants. Moreover, for the in-core sensor, which is a special-purpose product for nuclear power plants, Toshiba has been developing a new local power range monitor (LPRM) detector as the comprehensive result of improvements made up to now, and has developed the first domestic gamma-thermo (GT) detector as a pivot of the next-generation neutron monitoring system. (author)

  13. Material control in nuclear fuel fabrication facilities. Part II. Accountability, instrumentation and measurement techniques in fuel fabrication facilities

    International Nuclear Information System (INIS)

    Borgonovi, G.M.; McCartin, T.J.; McDaniel, T.; Miller, C.L.; Nguyen, T.

    1978-01-01

    This report describes the measurement techniques, the instrumentation, and the procedures used in accountability and control of nuclear materials, as they apply to fuel fabrication facilities. A general discussion is given of instrumentation and measurement techniques which are presently used being considered for fuel fabrication facilities. Those aspects which are most significant from the point of view of satisfying regulatory constraints have been emphasized. Sensors and measurement devices have been discussed, together with their interfacing into a computerized system designed to permit real-time data collection and analysis. Estimates of accuracy and precision of measurement techniques have been given, and, where applicable, estimates of associated costs have been presented. A general description of material control and accounting is also included. In this section, the general principles of nuclear material accounting have been reviewed first (closure of material balance). After a discussion of the most current techniques used to calculate the limit of error on inventory difference, a number of advanced statistical techniques are reviewed. The rest of the section deals with some regulatory aspects of data collection and analysis, for accountability purposes, and with the overall effectiveness of accountability in detecting diversion attempts in fuel fabrication facilities. A specific example of application of the accountability methods to a model fuel fabrication facility is given. The effect of random and systematic errors on the total material uncertainty has been discussed, together with the effect on uncertainty of the length of the accounting period

  14. Material control in nuclear fuel fabrication facilities. Part II. Accountability, instrumentation and measurement techniques in fuel fabrication facilities

    Energy Technology Data Exchange (ETDEWEB)

    Borgonovi, G.M.; McCartin, T.J.; McDaniel, T.; Miller, C.L.; Nguyen, T.

    1978-01-01

    This report describes the measurement techniques, the instrumentation, and the procedures used in accountability and control of nuclear materials, as they apply to fuel fabrication facilities. A general discussion is given of instrumentation and measurement techniques which are presently used being considered for fuel fabrication facilities. Those aspects which are most significant from the point of view of satisfying regulatory constraints have been emphasized. Sensors and measurement devices have been discussed, together with their interfacing into a computerized system designed to permit real-time data collection and analysis. Estimates of accuracy and precision of measurement techniques have been given, and, where applicable, estimates of associated costs have been presented. A general description of material control and accounting is also included. In this section, the general principles of nuclear material accounting have been reviewed first (closure of material balance). After a discussion of the most current techniques used to calculate the limit of error on inventory difference, a number of advanced statistical techniques are reviewed. The rest of the section deals with some regulatory aspects of data collection and analysis, for accountability purposes, and with the overall effectiveness of accountability in detecting diversion attempts in fuel fabrication facilities. A specific example of application of the accountability methods to a model fuel fabrication facility is given. The effect of random and systematic errors on the total material uncertainty has been discussed, together with the effect on uncertainty of the length of the accounting period.

  15. 1997 report of the scientific evaluation committee of DAPNIA (Department of astrophysics, particle physics, nuclear physics and instrumentation)

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    The DAPNIA is a department of CEA, its main characteristic is to manage scientific teams working on astrophysics, nuclear physics, elementary particles and instrumentation. Every 2 years DAPNIA's activities are submitted to an evaluation made by a scientific committee whose members are experts independent from CEA. This committee reviews the work done, gives an opinion about the options chosen for the projects to come and writes out a report. In 1997 the committee had a very positive opinion of the work done by DAPNIA teams. The contributions to various and important national or international programs have been successful, we can quote: Ulysse mission, soho, iso, integral for spatial programs, aleph, delphi, H1 at Hera, atlas, cms, na48, nomad, babar, antares for particle physics and spiral, smc, compass for nuclear physics. The committee advises DAPNIA to favour more contacts between the theoreticians and the experimentalists who work on quantum chromodynamics and hadron physics. The committee shows its concern about improving the balance between the means dedicated to instrumentation designing and those dedicated to the analysis and interpretation of the experimental data collected. (A.C.)

  16. Instrumentation and control in the Canadian nuclear power program - 1991 status

    International Nuclear Information System (INIS)

    Lepp, R.M.

    1992-01-01

    Shortly, Canada will have an installed nuclear capacity of 15,500 MWe. The 4 unit Darlington Nuclear Generating Station, which makes extensive use of computers for control and safety shutdown, is currently being connected to the Ontario Hydro grid. A significant effort is underway on technologies that will enhance the human-machine interface to meet more stringent plant availability and safety goals. This includes work on alarm annunciation, distributed control, plant display, relay logic replacement and software technology. These various initiatives and their benefits are discussed in the paper. (author). 6 refs

  17. The gamma thermometer as a measuring instrument of the nuclear power of a LWR core

    International Nuclear Information System (INIS)

    Hantouche, C.

    1984-07-01

    After a presentation of the gamma thermometer and its environment, this thesis deals with the calibration of a gamma thermometer or determination of the thermal transfer ratio of the signal. Then, the acquisition systems for signals obtained from gamma thermometers installed in PWR nuclear power plants are presented. One deals also with the nuclear transfer function establishment and deconvolution. Then, one deals with the reconstruction of the axial power of an assembly provided with a gamma thermometer. Qualitative and quantitative studies of measurements obtained from this gamma thermometer are finally presented. 64 refs [fr

  18. The Quantometer as an analytical instrument in the control of nuclear materials

    International Nuclear Information System (INIS)

    Alvarez Gonzalez, F.; Roca Adell, M.; Fernandez Cellini, R.

    1961-01-01

    In order to solve different problems of chemical analysis in the fields of nuclear industry and research, a Quantometer is used with a high number of channels. A detailed study to choose the more suitable spectral lines is described. The different channels have been distributed into two programs to allow the analysis of high and low concentrations. The Quantometer is being applied successfully to analyse soils, plant ashes, rocks and ores, uranium and its compounds, zirconium, graphite, alloys and other nuclear materials. (Author) 6 refs

  19. Safeguards agreement and additional protocol - IAEA instruments for control of nuclear materials distribution and their application in Tajikistan

    International Nuclear Information System (INIS)

    Nasrulloev, Kh.; Mirsaidov, U.

    2010-01-01

    with nuclear black market network, operating till liquidation during many decades approximately in 20 countries, clearly gives evidence that in order to control sensitive nuclear technologies and technologies of dual use and prevent operating illegal technology networks, it is necessary to undertake additional steps. One of the new instruments was United Nations Security Council Resolution 1540, which obliges all United Nations member states in juridical way to establish proper effective control over export, transit and trans-border transfer. It is necessary to establish proper effective control over export, transit and transboundary transfer by all states as it is required in United Nations Security Council Resolution 1540; expansion of assistance from IAEA in this regard, including development of standard legislation, broadening international cooperation and etc. The time has come that United Nations Security Council adopts new resolution on nuclear weapon non-proliferation, which could grant juridical ban on leaving from nuclear weapon non-proliferation treaty.

  20. A versatile and modular quasi optics-based 200 GHz dual dynamic nuclear polarization and electron paramagnetic resonance instrument

    Science.gov (United States)

    Siaw, Ting Ann; Leavesley, Alisa; Lund, Alicia; Kaminker, Ilia; Han, Songi

    2016-03-01

    Solid-state dynamic nuclear polarization (DNP) at higher magnetic fields (>3 T) and cryogenic temperatures (∼2-90 K) has gained enormous interest and seen major technological advances as an NMR signal enhancing technique. Still, the current state of the art DNP operation is not at a state at which sample and freezing conditions can be rationally chosen and the DNP performance predicted a priori, but relies on purely empirical approaches. An important step towards rational optimization of DNP conditions is to have access to DNP instrumental capabilities to diagnose DNP performance and elucidate DNP mechanisms. The desired diagnoses include the measurement of the "DNP power curve", i.e. the microwave (MW) power dependence of DNP enhancement, the "DNP spectrum", i.e. the MW frequency dependence of DNP enhancement, the electron paramagnetic resonance (EPR) spectrum, and the saturation and spectral diffusion properties of the EPR spectrum upon prolonged MW irradiation typical of continuous wave (CW) DNP, as well as various electron and nuclear spin relaxation parameters. Even basic measurements of these DNP parameters require versatile instrumentation at high magnetic fields not commercially available to date. In this article, we describe the detailed design of such a DNP instrument, powered by a solid-state MW source that is tunable between 193 and 201 GHz and outputs up to 140 mW of MW power. The quality and pathway of the transmitted and reflected MWs is controlled by a quasi-optics (QO) bridge and a corrugated waveguide, where the latter couples the MW from an open-space QO bridge to the sample located inside the superconducting magnet and vice versa. Crucially, the versatility of the solid-state MW source enables the automated acquisition of frequency swept DNP spectra, DNP power curves, the diagnosis of MW power and transmission, and frequency swept continuous wave (CW) and pulsed EPR experiments. The flexibility of the DNP instrument centered around the QO MW

  1. A versatile and modular quasi optics-based 200GHz dual dynamic nuclear polarization and electron paramagnetic resonance instrument.

    Science.gov (United States)

    Siaw, Ting Ann; Leavesley, Alisa; Lund, Alicia; Kaminker, Ilia; Han, Songi

    2016-03-01

    Solid-state dynamic nuclear polarization (DNP) at higher magnetic fields (>3T) and cryogenic temperatures (∼ 2-90K) has gained enormous interest and seen major technological advances as an NMR signal enhancing technique. Still, the current state of the art DNP operation is not at a state at which sample and freezing conditions can be rationally chosen and the DNP performance predicted a priori, but relies on purely empirical approaches. An important step towards rational optimization of DNP conditions is to have access to DNP instrumental capabilities to diagnose DNP performance and elucidate DNP mechanisms. The desired diagnoses include the measurement of the "DNP power curve", i.e. the microwave (MW) power dependence of DNP enhancement, the "DNP spectrum", i.e. the MW frequency dependence of DNP enhancement, the electron paramagnetic resonance (EPR) spectrum, and the saturation and spectral diffusion properties of the EPR spectrum upon prolonged MW irradiation typical of continuous wave (CW) DNP, as well as various electron and nuclear spin relaxation parameters. Even basic measurements of these DNP parameters require versatile instrumentation at high magnetic fields not commercially available to date. In this article, we describe the detailed design of such a DNP instrument, powered by a solid-state MW source that is tunable between 193 and 201 GHz and outputs up to 140 mW of MW power. The quality and pathway of the transmitted and reflected MWs is controlled by a quasi-optics (QO) bridge and a corrugated waveguide, where the latter couples the MW from an open-space QO bridge to the sample located inside the superconducting magnet and vice versa. Crucially, the versatility of the solid-state MW source enables the automated acquisition of frequency swept DNP spectra, DNP power curves, the diagnosis of MW power and transmission, and frequency swept continuous wave (CW) and pulsed EPR experiments. The flexibility of the DNP instrument centered around the QO MW

  2. Assessment and evaluation of the performance of nuclear medicine and ultrasound imaging instrumentation

    International Nuclear Information System (INIS)

    Bergmann, Helmar; Kollmann, Christian

    1996-01-01

    The purpose of this work has been to assess the quality of instrumentation used for the collection of representative patient images during the coordinated research program entitled ''Evaluation of Imaging Procedures for the Diagnosis of Liver Diseases''. Previous work carried out during earlier phases of the project was concerned with the establishment of methods for comparison of the quality of such instrumentation. In this stage the quality of both gamma cameras and ultrasound scanners were assessed using the previously established methods. The evaluation was partly used to validate acceptable working conditions of the equipment during the collection of patient studies, partly to obtain basic data in order to be able to characterize the imaging quality of the devices. This would permit to both identify equipment unsuitable to be used in the study and to take into account the imaging quality token performing the ROC analysis of the evaluation of the patient images

  3. Geotechnical assessment and instrumentation needs for nuclear waste isolation in crystalline and argillaceous rocks

    International Nuclear Information System (INIS)

    1979-01-01

    To evaluate the state-of-the-art, research needs, and research priorities related to waste disposal in largely impermeable rocks, scientists and engineers working on geologic aspects of nuclear waste disposal were brought together. This report and recommendations are the proceedings from that symposium. Three panels were organized on rock properties, fracture hydrology, and geochemistry. Panel discussions and recommendations are presented

  4. Views on nuclear power plant control and instrumentation activities in Sweden

    International Nuclear Information System (INIS)

    Blomberg, P.E.

    1986-01-01

    The purpose of this presentation is to provide a summary of the activities concerning human errors in test and maintenance in nuclear power plants, implementation of the advanced information technology and expanded use of on-site conceptual plant simulators in Sweden

  5. Reactor materials research as an effective instrument of nuclear reactor perfection

    International Nuclear Information System (INIS)

    Baryshnikov, M.

    2006-01-01

    The work is devoted to reactor materiology, as to the practical tool of nuclear reactor development. The work is illustrated with concrete examples from activity experience of the appropriate division of the Russian Research Centre Kurchatov Institute - Institute of Reactor Materials Research and Radiation Nanotechnologies. Besides the description of some modern potentials of the mentioned institute is given. (author)

  6. Use of instrumental nuclear activation methods in the study of particles from major air pollution sources

    International Nuclear Information System (INIS)

    Gordon, G.E.; Zoller, W.H.; Gladney, E.S.; Greenberg, R.R.

    1974-01-01

    Nuclear methods have been used effectively in the study of particles emitted by a coal-fired power plant and a municipal incinerator. In the coal-fired plant there is appreciable fractionation of only five of the observed elements. By contrast, particles from the incinerator are highly enriched in several trace elements

  7. Verifying the performance of instrumentation under adverse environmental conditions in nuclear power plants

    International Nuclear Information System (INIS)

    Navorro, S.M.; Gonzalez-Granda, C.

    1983-01-01

    The current standards concerning the environmental qualification of electrical equipment and instrumentation, although extensive and consistent, are likely to be modified or improved in the short term, but will certainly not undergo any fundamental changes. At present, there is a requirement that the condition of equipment in plants in operation or approaching operational status should be checked and monitored for compliance with the relevant standards. One method of checking and monitoring electrical equipment and instrumentation basically consists in determining the environmental conditions in the various areas where safety-related equipment is being installed and then carrying out a study, component by component, using a pre-established form which summarizes the qualification requirements. The form consists of three different columns: the first contains information on the component; the second, information on the environmental conditions for which the component is to be certified or has been certified; and the third, information on the reference documents relating to those conditions. This form makes it possible to determine deficiencies, which are then collated in a table. Once the criteria for acceptance or refusal have been established, the necessary justification or proposal for corrective action is drawn up. Tolerances, accessories and subsequent tests are examples of grounds for justifying requalification, a change of an instrument or of its position, protection of the instrument and additional analyses. These are the possible corrective measures, and a careful study has to be made in order to determine which is the most appropriate measure in each case. A study of this type calls for experts in various fields. Co-operation between the organizations dealing with environmental qualification is desirable in order to facilitate the gathering of data and the adoption of uniform approaches. (author)

  8. Status of safeguards instrumentation

    International Nuclear Information System (INIS)

    Higinbotham, W.A.

    The International Atomic Energy Agency is performing safeguards at some nuclear power reactors, 50 bulk processing facilities, and 170 research facilities. Its verification activities require the use of instruments to measure nuclear materials and of surveillance instruments to maintain continuity of knowledge of the locations of nuclear materials. Instruments that are in use and under development to measure weight, volume, concentration, and isotopic composition of nuclear materials, and the major surveillance instruments, are described in connection with their uses at representative nuclear facilities. The current status of safeguards instrumentation and the needs for future development are discussed

  9. Design and manufacturing of instrumented capsule (02F-06K/02F-11K) for nuclear fuel irradiation test in HANARO

    International Nuclear Information System (INIS)

    Kim, Bong Goo; Kang, Y. H.; Cho, M. S.; Sohn, J. M.; Choo, K. N.; Kim, D. S.; Oh, J. M.; Shin, Y.T.; Park, S.J.; Kim, Y. J.; Seo, C.G.; Ryu, J.S.; Cho, Y. G.

    2003-02-01

    To measure the characteristics of nuclear fuel during irradiation test, it is necessary to develop the instrumented capsule for the nuclear fuel irradiation test. Then considering the requirements for the nuclear fuel irradiation test and the compatibility with OR test hole in HANARO as well as the requirements for HANARO operation and related equipments, the instrumented capsule for the nuclear fuel irradiation test was designed and successfully manufactured. The structural integrity of the capsule design was verified by performing nuclear physics, structural and thermal analyses. And, not only out-of-pile tests such as pressure drop test, vibration test, endurance test, were performed in HANARO design verification test facility, but the mechanical and hydraulic safety of the capsule and the compatibility of the capsule with HANARO was verified

  10. Study on deterministic response time design for a class of nuclear Instrumentation and Control systems

    International Nuclear Information System (INIS)

    Chen, Chang-Kuo; Hou, Yi-You; Luo, Cheng-Long

    2012-01-01

    Highlights: ► An efficient design procedure for deterministic response time design of nuclear I and C system. ► We model the concurrent operations based on sequence diagrams and Petri nets. ► The model can achieve the deterministic behavior by using symbolic time representation. ► An illustrative example of the bistable processor logic is given. - Abstract: This study is concerned with a deterministic response time design for computer-based systems in the nuclear industry. In current approach, Petri nets are used to model the requirement of a system specified with sequence diagrams. Also, the linear logic is proposed to characterize the state of changes in the Petri net model accurately by using symbolic time representation for the purpose of acquiring deterministic behavior. An illustrative example of the bistable processor logic is provided to demonstrate the practicability of the proposed approach.

  11. Instrumentation and control in the Canadian nuclear power program -1989 status

    International Nuclear Information System (INIS)

    Lepp, R.M.

    1990-01-01

    Canada currently has 18 CANDU Pressurized Heavy Water Reactors in operation and 4 under construction, for an installed nuclear capacity of 15,500 MWe. Most of the reactors are in the province of Ontario where 50% of the electricity is nuclear generated. Atomic Energy of Canada is developing the CANDU-3, a 450 MWe reactor incorporating the latest available technologies, including distributed control. The three Canadian Utilities with CANDU reactors have made a major commitment to full-scope training simulators. In Canada there is a growing commitment to developing major improvements to the interface between the control systems, the field equipment and the operating staff. The development program underway makes extensive use of information technology, particularly expert systems and interactive media tools. Out of this will come an advanced CANDU control concept that should further improve the reliability and availability of CANDU stations. (author). 3 refs

  12. Advanced digital instrumentation and control system for nuclear power plant protection

    Energy Technology Data Exchange (ETDEWEB)

    Sabino, D [VVER Engineering, Westinghouse Electric Corporation (United States)

    1998-12-31

    The Diverse Protection System is a back-up to the Primary Reactor Protection System developed for use at the Temelin nuclear power plant. The DPS is a digital system which provides a wealth of benefits from today`s advanced technology. These benefits include a compact hardware design with high performance microprocessors and a structured software design using a high level language. An overview of the DPS functions, hardware and software is provided. (author). 1 fig., 1 tab.

  13. EPRI's nuclear power plant instrumentation and control program and its applicability to advanced reactors

    International Nuclear Information System (INIS)

    Naser, J.; Torok, R.; Wilkinson, D.

    1997-01-01

    I ampersand C systems in nuclear power plants need to be upgraded over the lifetime of the plant in a reliable and cost-effective manner to replace obsolete equipment, to reduce O ampersand M costs, to improve plant performance, and to maintain safety. This applies to operating plants now and will apply to advanced reactors in the future. The major drivers for the replacement of the safety, control, and information systems in nuclear power plants are the obsolescence of the existing hardware and the need for more cost-effective power production. Competition between power producers is dictating more cost-effective power production. The increasing O ampersand M costs to maintain systems experiencing obsolescence problems is counter to the needs for more cost-effective power production and improved competitiveness. This need for increased productivity applies to government facilities as well as commercial plants. Increasing competition will continue to be a major factor in the operation of both operating plants and advanced reactors. It will continue to dictate the need for improved productivity and cost-effectiveness. EPRI and its member nuclear utilities are working together on an industry wide I ampersand C Program to address I ampersand C issues and to develop cost-effective solutions. A majority of the I ampersand C products and demonstrations being developed under this program will benefit advanced reactors in both the design and operational phases of their life cycle as well as it will benefit existing plants. 20 refs

  14. Instrumentation, control and data acquisition system with multiple configurations for test in nuclear environment

    Energy Technology Data Exchange (ETDEWEB)

    Monti, Chiara, E-mail: chiara.monti@enea.it; Neri, Carlo; Pollastrone, Fabio

    2015-10-15

    Highlights: • ENEA developed and characterized a first prototype of the In-Vessel Viewing System (IVVS) probe for ITER. • Piezo motor technology to be used in IVVS probe was tested in neutrons, gamma radiations, high temperature, vacuum and high magnetic fields. • A general architecture of the Data Acquisition and Control System (DACS) was defined and then specialized for each test. • The test campaign has validated instrumentation solutions, which can be effectively used in final IVVS implementation or other ITER diagnostics or applications. - Abstract: The In-Vessel Viewing System is a 3D laser scanning system which will be used to inspect the blanket first wall in ITER. To make the IVVS probe design compatible with the harsh environmental conditions present in ITER, a test campaign was performed in 2012–2013 to verify the adequacy of the main components of the IVVS probe. The IVVS components inspected were an optical encoder, passive components and two customized ultrasonic piezoceramic motors that were instrumented with various sensors. A general architecture of the Data Acquisition and Control System (DACS) was defined and then specialized for each test. To be suitable for this test campaign, the DACS had to host various I/O modules and to properly interface the driver of the customized piezo motors, in order to permit the full control of the test and the acquisition of experimental data. This paper presents the instrumentation solutions designed and implemented for different facilities constraints and the related DACS developed in four specialized versions for the described test campaign.

  15. Difference of reactor core nuclear instrument between AP1000 and CPR1000

    International Nuclear Information System (INIS)

    Zhang Shidong; Zhou Can; Deng Tian

    2014-01-01

    As a typical generation Ⅲ reactor technique, the AP1000 applies many advanced design concepts, simplifies the design, reduces equipment quantities, and thus enhances systematic reliability. The comparison of reactor core measurement instrument differences between AP1000 and CPR1000 from several aspects was involved in the paper. Through analysis and comparison of these differences, passive design concepts and characteristics of AP1000 are familiarized, and conveniences for staffs engaged in CPR1000 to learn and grasp AP1000 technique are provided. It is useful in reactor start up, operation and maintenance. (authors)

  16. Semi-custom integrated circuit amplifier and level discriminator for nuclear and space instruments

    International Nuclear Information System (INIS)

    Hahn, S.F.; Cafferty, M.M.

    1991-01-01

    This paper reports on the development an extra fast current feedback amplifier and a level discriminator employing a dielectrically-isolated bipolar, semi-custom Application Specific Integrated Circuit (ASIC) process. These devices are specifically designed for instruments aboard spacecrafts or in portable packages requiring low power and weight. The amplifier adopts current feedback for a unity-gain bandwidth of 90 MHz while consuming 50 mW. The level discriminator uses a complementary output driver for balanced positive and negative response times. The power consumption of these devices can be programmed by external resistors for optimal speed and power trade-off

  17. Semi-custom integrated circuit amplifier and level discriminator for nuclear and space instruments

    International Nuclear Information System (INIS)

    Hahn, S.F.; Cafferty, M.M.

    1990-01-01

    This paper reports an extra fast current feedback amplifier and a level discriminator developed employing a dielectrically isolated bipolar, semi-custom Application Specific Integrated Circuit (ASIC) process. These devices are specifically designed for instruments aboard spacecrafts or in portable packages requiring low power and weight. The amplifier adopts current feedback for a unity- gain bandwidth of 90 MHz while consuming 50 mW. The level discriminator uses a complementary output driver for balanced positive and negative response times. The power consumption of these devices can be programmed by external resistors for optimal speed and power trade-off

  18. Visual interface for the automation of the instrumented pendulum of Charpy tests used in the surveillance program of reactors vessel of nuclear power plants

    International Nuclear Information System (INIS)

    Rojas S, A.S.; Sainz M, E.; Ruiz E, J.A.

    2004-01-01

    Inside the Programs of Surveillance of the nuclear power stations periodic information is required on the state that keep the materials with those that builds the vessel of the reactor. This information is obtained through some samples or test tubes that are introduced inside the core of the reactor and it is observed if its physical characteristics remain after having been subjected to the radiation changes and temperature. The rehearsal with the instrumented Charpy pendulum offers information on the behavior of fracture dynamics of a material. In the National Institute of Nuclear Research (ININ) it has an instrumented Charpy pendulum. The operation of this instrument is manual, having inconveniences to carry out rehearsals with radioactive material, handling of high and low temperatures, to fulfill the normative ones for the realization of the rehearsals, etc. In this work the development of a computational program is presented (virtual instrument), for the automation of the instrumented pendulum. The system has modules like: Card of data acquisition, signal processing, positioning system, tempered system, pneumatic system, compute programs like it is the visual interface for the operation of the instrumented Charpy pendulum and the acquisition of impact signals. This system shows that given the characteristics of the nuclear industry with radioactive environments, the virtual instrumentation and the automation of processes can contribute to diminish the risks to the personnel occupationally exposed. (Author)

  19. National report on nuclear power plant control and instrumentation in the United Kingdom

    International Nuclear Information System (INIS)

    Goodings, A.

    1992-01-01

    This paper notes that, although no fundamental, NPPC and I technical developments have taken place in the UK since 1989, enormous organizational changes have occurred. The influence of these changes on instrumentation capability is discussed and the current situations on the Magnox, AGR and Fast Reactors and on the Sizewell PWR are described. Work on pulse-coded-logic reactor trip systems based on conventional microprocessor components is noted and a new, Dungeness B AGR, single channel trip systems which uses these principles is described. Other developments in sensors, instrumentation, ultrasonics and under-sodium viewing are also described as are studies on software reliability, human factors engineering and related topics. Comments are made on general aspects of computers in reactor safety systems. It is concluded that the last two years have seen considerable progress in the UK despite the interruptions and problems generated by organizational changes. It is felt that these changes may have produced a new sense of urgency and better insights into the needs of the industry. (author). 2 refs

  20. National report on nuclear power plant control and instrumentation in Czechoslovakia

    International Nuclear Information System (INIS)

    Stirsky, P.; Karpeta, C.

    1986-01-01

    Research, development and design efforts in the field of nuclear power plant I and C systems in Czechoslovakia have been recently aimed at solving the following problems: setting the parameters of the WWER 440 units control and protection systems and testing them in the power phase of commissioning; design and simulation of the WWER 440 units control system performance under the conditions of steam bleeding for a centralized heat supply system; development of a simulation model of the unit WWER 1000 dynamics for the purpose of I and C systems investigation and design; design of innovated I and C systems for WWER 440 and WWER 1000 units

  1. P20 - the integrated system approach to nuclear control and instrumentation

    International Nuclear Information System (INIS)

    Jansen Van Rensburg, C.F.

    1990-01-01

    The P20 System is a data acquisition, control and monitoring system which has been jointly developed by Cegelec and Electricite de France. This system has been developed with the stringent requirements of a nuclear power generating facility in mind. The system has a hierarchical structure consisting of local area networks, supporting distributed plant interfaces, processing units and man-machine interfaces. The system offers exceptional availability and reliability through the implementation of extensive self-diagnostic techniques and multiple redundancy. This paper describes the system, the applied design techniques and the resulting benefits from using this design approach. 3 figs

  2. Backfitting possibilities of process instrumentation during planning, construction or operation of nuclear power plants

    International Nuclear Information System (INIS)

    Kaiser, G.E.; Schemmel, R.R.; Warren, H.D.

    1985-01-01

    The necessity for backfitting existing C and I equipment in nuclear power plants arises as a result of new licensing requirements being imposed or through a need for improved performance as experience with operating plants becomes available. These changes arise either because additional process variables need to be monitored; improved sensors need to be installed (to increase safety or operating margin); more directly sense the processes; or to address concerns in signal conditioning, control algorithms, control system strategy, or safety system design. This paper discusses examples of backfitting experiences on existing plants and some being developed for future improvements

  3. Application of advanced nuclear and instrumental analytical techniques for characterisation of environmental materials

    International Nuclear Information System (INIS)

    Sudersanan, M.; Pawaskar, P.B.; Kayasth, S.R.; Kumar, S.C.

    2002-01-01

    Full text: Increasing realisation about the toxic effects of metal ions in environmental materials has given an impetus to research on analytical techniques for their characterization. The large number of analytes present at very low levels has necessitated the use of sensitive, selective and element specific techniques for their characterization. The concern about precision and accuracy on such analysis, which have socio-economic bearing, has emphasized the use of Certified Reference Materials and the use of multi-technique approach for the unambiguous characterization of analytes. The recent work carried out at Analytical Chemistry Division, BARC on these aspects is presented in this paper. Increasing use of fossil fuels has led to the generation of large quantities of fly ash which pose problems of safe disposal. The utilization of these materials for land filling is an attractive option but the presence of trace amounts of toxic metals like mercury, arsenic, lead etc may cause environmental problems. In view of the inhomogeneous nature of the material, efficient sample processing is an important factor, in addition to the validation of the results by the use of proper standards. Analysis was carried out on flyash samples received as reference materials and also as samples from commercial sources using a combination of both nuclear techniques like INAA and RNAA as well as other techniques like AAS, ICPAES, cold vapour AAS for mercury and hydride generation technique for arsenic. Similar analysis using nuclear techniques was employed for the characterization of air particulates. Biological materials often serve as sensitive indicator materials for pollution measurements. They are also employed for studies on the uptake of toxic metals like U, Th, Cd, Pb, Hg etc. The presence of large amounts of organic materials in them necessitate an appropriate sample dissolution procedure. In view of the possibility of loss of certain analytes like Cd, Hg, As, by high

  4. Safety-related instrumentation and control systems for nuclear power plants

    International Nuclear Information System (INIS)

    1984-01-01

    This Safety Guide deals mainly with design requirements for those I and C systems that are important to safety but are not safety systems. The Guide is intended to expand paragraphs 3.1, 3.2 and 3.3 of the Code of Practice on Design for Safety of Nuclear Power Plants (IAEA Safety Series No.50-C-D) in the area of I and C systems important to safety and refers to them as safety-related I and C systems. It also gives guidance and enumerates requirements for multiplexing and the use of the digital computers employed in this area

  5. Advanced digital instrumentation and control system for nuclear power plant protection

    International Nuclear Information System (INIS)

    Sabino, D.

    1997-01-01

    The Diverse Protection System (DPS) is described. The DPS is a state-of-the-art digital protection system developed as a back-up to the primary reactor protection system at the Temelin nuclear power plant, featuring a compact hardware design based on VMEbus technology. This technology allows for ease in adding or modifying the number and type of input modules and processors. The DPS software is written in a high level language suitable for safety critical applications. The software is both modular and configurable allowing for potential future modifications and software reuse

  6. Technical Challenges in the Application and Licensing of Digital Instrumentation and Control Systems in Nuclear Power Plants

    International Nuclear Information System (INIS)

    2015-01-01

    With the modernization of existing analogue instrumentation and control (I&C) systems in nuclear power plants through digital I&C technology, and the implementation of digital I&C systems in new plants, the industry is faced with significant challenges. These challenges appear in the form of difficulties in managing the necessarily incremental transition, highly integrated (and interdependent) architectures, the flexible configurability enabled by digital technology, and uncertainty and inconsistency in licensing digital I&C systems and equipment in the different Member States. This publication discusses 17 major issues that utilities, developers, suppliers and regulatory stakeholders need to consider, so that the industry can capture and benefit from shared experience, recent technological developments, and emerging best practices

  7. Survey of the state-of-the-art in aging of electronics with application to nuclear-power-plant instrumentation

    International Nuclear Information System (INIS)

    Johnson, R.T. Jr.; Thome, F.V.; Craft, C.M.

    1983-04-01

    The purpose of this report is to present results of a study to evaluate the state-of-the-art and outline needed research on aging of electronics in nuclear power plants. The emphasis is on aging of electronics (e.g., semiconductors, capacitors, resistors) used in safety-related Class 1E instrumentation, particularly those used in harsh environments. Some attention is also given to encapsulants, printed circuit boards and bonds (e.g., solder joints) since they are integral parts of circuits. Four major tasks were addressed in this study and are the subject of this report. These include (1) selecting candidate electronic components for study and review; (2) defining the aging environment and initiating an effort to determine the state-of-the-art in aging degradation; (3) recommending follow-on investigations and research; and (4) outlining the first steps in defining a program on accelerated aging

  8. Remote viewing optical instruments for nuclear installations [Paper No.: J8

    International Nuclear Information System (INIS)

    Das, N.C.; Koppikar, R.S.; Modi, R.K.; Radke, M.G.

    1993-01-01

    Inspection of highly radioactive components and materials in the hot cell and the reactor core requires several remote viewing and remote handling equipment, considering the safety of the operator. With this objective two wall periscopes for the hot cells of the Waste Immobilisation Project (WIP) at Tarapur , a remote viewing macrograph for the hot cell facility at Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam and a core viewing periscope for the fast breeder test reactor (FBTR), Kalpakkam has also been developed. Construction principle and the experimental performance of these instruments are discussed. The overall visual magnifications of the WIP and the FBTR periscopes are 2x and the same for the IGCAR macrograph is 20x. (author). 3 figs

  9. Cost benefit analysis of instrumentation, supervision and control systems for nuclear power plants

    International Nuclear Information System (INIS)

    Hagen, P.

    1973-08-01

    A cost benefit analysis is carried out on a BWR type reactor power plant in which an on-line computer performs plant supervision, reporting, logging, calibration and control functions, using display devices and plotters, while an off-line computer is available for bigger jobs such as fuel management calculations. All on-line functions are briefly described and specified. Three types of computer system are considered, a simplex system, a dual computer system and a multi-processor system. These systems are analysed with respect to reliability, back-up instrumentation requirements and costs. While the multiprocessor system gave in all cases the lowest annual failure costs, the margin to the duplex system was so small that hardware, maintenance and software costs would play an important role in making a decision. (JIW)

  10. Take-up device for incore instruments for nuclear power plant

    International Nuclear Information System (INIS)

    Watanabe, Shigeru.

    1978-01-01

    Purpose: To obtain a take-up device being capable of loading through the control rod inlet and operating with ease on a control rod exchange platform by detacheably mounting a reel-containing cask to a truck carrying a spool driving motor. Constitution: A take-up device is located while running a truck along guide rails from control rod inlet. A cask door is opened on a control rod exchange platform and a compression coupling tube is connected to the lower end of an instrument. Thereafter, a spool is rotated by a driving motor and a detection tube is taken up and wound into a spool through a take-up port. (Yoshino, Y.)

  11. Development of floor smear sampler (floor radioactive contamination measuring instrument) for nuclear facilities

    International Nuclear Information System (INIS)

    Miyagawa, Minoru; Ito, Haruo; Nozawa, Katsuro; Shinohara, Yotaro; Hashimoto, Hiroshi.

    1980-01-01

    The control of the floor contamination with radioactive substances in nuclear facilities is strictly carried out by smear method, in which the contaminants on floor surfaces are wiped off with filter papers or cloths, and the contamination density on the floor surfaces is measured through their intensity of radioactivity. This wiping work is laborious since it is carried out in leaning-over posture when many samples must be taken in wide floor area. Therefore, to achieve labor saving in this work, an automatic sampler was developed. In the floor smear sampler developed, samples are taken on long band type wiping cloths only by handle operation, and the sample numbers are printed. When many samples are taken in wide floor area, this is especially effective, and the labor saving by 1/3 to 1/2 can be achieved. At present, this sampler is put in practical use in Hamaoka Nuclear Power Station. At the time of trial manufacture, the method of wiping, the mechanisms of wiping, cloth feeding and running, the contact pressure and the number of times of wiping affecting wiping efficiency and the required torque of a motor were examined. The developed sampler is that of constant contact pressure, vibration wiping type, and the rate of sampling is 10 sec per one sample. 100 samples can be taken on one roll of wiping cloth. The results of performance test are reported. (Kako, I.)

  12. Questionnaire report of safety control on instrument in nuclear medicine laboratory

    International Nuclear Information System (INIS)

    1987-01-01

    A questionaire survey concerning the safety of equipment and facilities used in nuclear medicine laboratories was made in order to clarify the incidence of accidents during nuclear medicine testing. The questionaire consists of two parts. One part contains questions regarding the testing personnel, facilities, equipment and maintenance and management of the equipment. The other part deals with accidents that had occurred within the areas under management, potential risks that may cause accidents, measures to improve safety management, troubles with and failure of equipment, and requests and opinions directed to equipment manufactures. It is concluded from results of the survey that to raise the safety of equipment, so-called man-machine interfaces should be improved by increasing the durability of equipment and performance of the personnel operating the equipment while reducing the physical and mental effects on the persons subjected to testing. Systematic educational measures, including lecture meetings and training courses, are required to raise the consciousness of personnel. Such education and training should cover safety handling techniques, including those for checking of equipment and for instructing and helping the persons under testing. (Nogami, K.)

  13. PC-based analog signal generator for simulated detector signals and arbitrary test waveforms for testing the nuclear instruments

    International Nuclear Information System (INIS)

    Catanescu, V.

    1999-01-01

    This work is performed in cooperation with IAEA-Vienna as a project, proposed as part of Agency's C o-ordinated Research Programme of Development of Computer-based Troubleshooting Tools and Instruments. A convenient way for testing and calibrating modern scientific equipment is to connect the test instruments to a personal computer to get additional feasibilities. This way, all settings for test, measurement and data acquisition functions are done by means of PC and are controlled by software drivers. This multifunctional spectrometric pulse generator is able to characterize different parts of high-resolution nuclear spectroscopy chain (preamplifier, amplifier, analog to digital converter, multichannel analyzer) as well as the whole chain. For this it generates periodic or random pulses with shape, time and amplitude specifications controlled by PC. Characteristics such as integral linearity, differential linearity, dead time, rate channel shifting and others will be easily determined. The block diagram of the multifunctional spectrometric generator is shown. The main sections are: PC-interface, control registers and command generation; PC-controlled periodic and random logic pulse oscillators; PC-controlled delay and width of periodic or random logic pulses; constant and ultra-linear ramp references for spectrometric pulse generation; generation of the tail and flat top pulses with PC-controlled amplitude and decay time; semi-gaussian pulse generation, polarity inverter and output amplifier. The specifications for generated signal correspond to: shape, time specifications and amplitude size. (author)

  14. Nuclear medicine and imaging research. Instrumentation and quantitative methods of evaluation. Progress report, January 15, 1985-January 14, 1986

    International Nuclear Information System (INIS)

    Beck, R.N.; Cooper, M.D.

    1985-09-01

    This program of research addresses problems involving the basic science and technology of radioactive tracer methods as they relate to nuclear medicine and imaging. The broad goal is to develop new instruments and methods for image formation, processing, quantitation, and display, so as to maximize the diagnostic information per unit of absorbed radiation dose to the patient. These developments are designed to meet the needs imposed by new radiopharmaceuticals developed to solve specific biomedical problems, as well as to meet the instrumentation needs associated with radiopharmaceutical production and quantitative clinical feasibility studies of the brain with PET VI. Project I addresses problems associated with the quantitative imaging of single-photon emitters; Project II addresses similar problems associated with the quantitative imaging of positron emitters; Project III addresses methodological problems associated with the quantitative evaluation of the efficacy of diagnostic imaging procedures. The original proposal covered work to be carried out over the three-year contract period. This report covers progress made during Year Three. 36 refs., 1 tab

  15. Knowledge databases as instrument for a fast assessment in nuclear emergency management

    Energy Technology Data Exchange (ETDEWEB)

    Raskob, Wolfgang; Moehrle, Stella [Institute for Nuclear and Energy Technologies, Karlsruhe Institute of Technology (KIT), Hermann-von- Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2014-07-01

    The European project PREPARE (Innovative integrated tools and platforms for radiological emergency preparedness and post-accident response in Europe) aims to close gaps that have been identified in nuclear and radiological preparedness following the first evaluation of the Fukushima disaster. Among others, a work package was established to develop a so called Analytical Platform exploring the scientific and operational means to improve information collection, information exchange and the evaluation of such types of disasters. As methodological approach knowledge databases and case-based reasoning (CBR) will be used. The application of knowledge gained from previous events or the establishment of scenarios in advance to anticipate possible event developments are used in many areas, but so far not in nuclear and radiological emergency management and preparedness. However in PREPARE, knowledge databases and CBR should be combined by establishing a database, which contains historic events and scenarios, their propagation with time, and applied emergency measures and using the CBR methodology to find solutions for events that are not part of the database. The objectives are to provide information about consequences and future developments after a nuclear or radiological event and emergency measures, which include early, intermediate and late phase actions. CBR is a methodology to solve new problems by utilizing knowledge of previously experienced problem situations. In order to solve a current problem, similar problems from a case base are retrieved. Their solutions are taken and, if necessary, adapted to the current situation. The suggested solution is revised and if it is confirmed, it is stored in the case base. Hence, a CBR system learns with time by storing new cases with its solutions. CBR has many advantages, such as solutions can be proposed quickly and do not have to be made from scratch, solutions can be proposed in domains that are not understood completely

  16. Technical evaluation of the electrical, instrumentation, and control design aspects of the low temperature overpressure protection system for the Haddam Neck Nuclear Power Plant

    International Nuclear Information System (INIS)

    Laudenbach, D.H.

    1979-03-01

    The technical evaluation of the electrical, instrumentation, and control design aspects of the low temperature overpressure protection system for the Haddam Neck Nuclear Power Plant is presented. Design basis criteria used to evaluate the acceptability of the system included operator action, system testability, single failure criterion, and seismic Category I and IEEE Std-279-1971 criteria. This report is supplied as part of the Selected Electrical, Instrumentation, and Control Systems Issues Support Program being conducted for the U.S. Nuclear Regulatory Commission by Lawrence Livermore Laboratory

  17. Technical evaluation of the electrical, instrumentation, and control design aspects of the low temperature overpressure protection system for the Point Beach Nuclear Power Plant, Units 1 and 2

    International Nuclear Information System (INIS)

    Laudenbach, D.H.

    1979-03-01

    The technical evaluation is presented for the electrical, instrumentation, and control design aspects of the low temperature overpressure protection system for the Point Beach nuclear power plant, Units 1 and 2. Design basis criteria used to evaluate the acceptability of the system included operator action, system testability, single failure criterion, and seismic Category I and IEEE Std-279-1971 criteria. This report is supplied as part of the Selected Electrical, Instrumentation, and Control Systems Issues Support Program being conducted for the U.S. Nuclear Regulatory Commission by Lawrence Livermore Laboratory

  18. Technical evaluation of the electrical, instrumentation, and control design aspects of the low temperature overpressure protection system for the Point Beach Nuclear Power Plant, Units 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Laudenbach, D.H.

    1979-03-01

    The technical evaluation is presented for the electrical, instrumentation, and control design aspects of the low temperature overpressure protection system for the Point Beach nuclear power plant, Units 1 and 2. Design basis criteria used to evaluate the acceptability of the system included operator action, system testability, single failure criterion, and seismic Category I and IEEE Std-279-1971 criteria. This report is supplied as part of the Selected Electrical, Instrumentation, and Control Systems Issues Support Program being conducted for the U.S. Nuclear Regulatory Commission by Lawrence Livermore Laboratory.

  19. New instrument for the confirmation of declared power histories of central station nuclear power plants

    International Nuclear Information System (INIS)

    Dowdy, E.J.; Robba, A.A.; Hastings, R.D.; France, S.W.

    1979-01-01

    An operationally simple, portable, microprocessor-based, unattended reactor power monitor was developed for International Atomic Energy Agency inspector use in confirming operator records of the power history of nuclear power plants. The monitor is based on the principle that the leakage neutron flux outside the biological shield is proportional to the thermal power level. The leakage flux is detected and compared with the leakage flux from the same reactor for a confirmed calibration period. Several output options are available, and a record of more than three months of hourly measurements of the themal power of the plant can be obtained. The monitor has battery backup power for interruptions of host power of duration up to 18 hours

  20. Operational experience of human-friendly control and instrumentation systems for BWR nuclear power plants

    International Nuclear Information System (INIS)

    Makino, M.; Watanabe, T.; Suto, O.; Asahi, R.

    1987-01-01

    In recent BWR nuclear power plants in Japan, an advanced centralized monitoring and control system PODIA (Plant Operation by Displayed Information and Automation), which incorporates many operator aid functions, has been in operation since 1985. Main functions of the PODIA system as a computerized operator aid system are as follows. CRT displays for plant monitoring. Automatic controls and operation guides for plant operation. Stand-by status monitoring for engineered safety features during normal operation. Surveillance test procedure guides for engineered safety features. Integrated alarm display. The effectiveness of these functions have been proved through test and commercial operation. It has been obtained that operators have preferred PODIA much more than conventional monitoring and control systems

  1. Rotatable Small Permanent Magnet Array for Ultra-Low Field Nuclear Magnetic Resonance Instrumentation: A Concept Study.

    Science.gov (United States)

    Vogel, Michael W; Giorni, Andrea; Vegh, Viktor; Pellicer-Guridi, Ruben; Reutens, David C

    2016-01-01

    We studied the feasibility of generating the variable magnetic fields required for ultra-low field nuclear magnetic resonance relaxometry with dynamically adjustable permanent magnets. Our motivation was to substitute traditional electromagnets by distributed permanent magnets, increasing system portability. The finite element method (COMSOL®) was employed for the numerical study of a small permanent magnet array to calculate achievable magnetic field strength, homogeneity, switching time and magnetic forces. A manually operated prototype was simulated and constructed to validate the numerical approach and to verify the generated magnetic field. A concentric small permanent magnet array can be used to generate strong sample pre-polarisation and variable measurement fields for ultra-low field relaxometry via simple prescribed magnet rotations. Using the array, it is possible to achieve a pre-polarisation field strength above 100 mT and variable measurement fields ranging from 20-50 μT with 200 ppm absolute field homogeneity within a field-of-view of 5 x 5 x 5 cubic centimetres. A dynamic small permanent magnet array can generate multiple highly homogeneous magnetic fields required in ultra-low field nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) instruments. This design can significantly reduce the volume and energy requirements of traditional systems based on electromagnets, improving portability considerably.

  2. Fabrication and Testing of a Modular Micro-Pocket Fission Detector Instrumentation System for Test Nuclear Reactors

    Science.gov (United States)

    Reichenberger, Michael A.; Nichols, Daniel M.; Stevenson, Sarah R.; Swope, Tanner M.; Hilger, Caden W.; Roberts, Jeremy A.; Unruh, Troy C.; McGregor, Douglas S.

    2018-01-01

    Advancements in nuclear reactor core modeling and computational capability have encouraged further development of in-core neutron sensors. Measurement of the neutron-flux distribution within the reactor core provides a more complete understanding of the operating conditions in the reactor than typical ex-core sensors. Micro-Pocket Fission Detectors have been developed and tested previously but have been limited to single-node operation and have utilized highly specialized designs. The development of a widely deployable, multi-node Micro-Pocket Fission Detector assembly will enhance nuclear research capabilities. A modular, four-node Micro-Pocket Fission Detector array was designed, fabricated, and tested at Kansas State University. The array was constructed from materials that do not significantly perturb the neutron flux in the reactor core. All four sensor nodes were equally spaced axially in the array to span the fuel-region of the reactor core. The array was filled with neon gas, serving as an ionization medium in the small cavities of the Micro-Pocket Fission Detectors. The modular design of the instrument facilitates the testing and deployment of numerous sensor arrays. The unified design drastically improved device ruggedness and simplified construction from previous designs. Five 8-mm penetrations in the upper grid plate of the Kansas State University TRIGA Mk. II research nuclear reactor were utilized to deploy the array between fuel elements in the core. The Micro-Pocket Fission Detector array was coupled to an electronic support system which has been specially developed to support pulse-mode operation. The Micro-Pocket Fission Detector array composed of four sensors was used to monitor local neutron flux at a constant reactor power of 100 kWth at different axial locations simultaneously. The array was positioned at five different radial locations within the core to emulate the deployment of multiple arrays and develop a 2-dimensional measurement of

  3. Recent Improvement of Measurement Instrumentation to Supervise Nuclear Operations and to Contribute Input Data to 3D Simulation Code - 13289

    Energy Technology Data Exchange (ETDEWEB)

    Mahe, Charly; Chabal, Caroline [CEA, Nuclear Energy Division, Fuel Technology Development Unit, Simulation and Dismantling Technique Laboratory, Marcoule Center, BP 17171, 30207 Bagnols / Ceze (France)

    2013-07-01

    The CEA has developed many compact characterization tools to follow sensitive operations in a nuclear environment. Usually, these devices are made to carry out radiological inventories, to prepare nuclear interventions or to supervise some special operations. These in situ measurement techniques mainly take place at different stages of clean-up operations and decommissioning projects, but they are also in use to supervise sensitive operations when the nuclear plant is still operating. In addition to this, such tools are often associated with robots to access very highly radioactive areas, and thus can be used in accident situations. Last but not least, the radiological data collected can be entered in 3D calculation codes used to simulate the doses absorbed by workers in real time during operations in a nuclear environment. Faced with these ever-greater needs, nuclear measurement instrumentation always has to involve on-going improvement processes. Firstly, this paper will describe the latest developments and results obtained in both gamma and alpha imaging techniques. The gamma camera has been used by the CEA since the 1990's and several changes have made this device more sensitive, more compact and more competitive for nuclear plant operations. It is used to quickly identify hot spots, locating irradiating sources from 50 keV to 1500 keV. Several examples from a wide field of applications will be presented, together with the very latest developments. The alpha camera is a new camera used to see invisible alpha contamination on several kinds of surfaces. The latest results obtained allow real time supervision of a glove box cleaning operation (for {sup 241}Am contamination). The detection principle as well as the main trials and results obtained will be presented. Secondly, this paper will focus on in situ gamma spectrometry methods developed by the CEA with compact gamma spectrometry probes (CdZnTe, LaBr{sub 3}, NaI, etc.). The radiological data collected is

  4. Theoretical and instrumental aspects of preparation of radioactive sources for precise nuclear spectroscopy

    International Nuclear Information System (INIS)

    Babenkov, M.I.; Kadyrzhanov, K.K.; Zhdanov, V.S.

    2005-01-01

    Full text: Precise investigations of spectra from nuclear radiations are quite sensitive to quality of radiation sources used. In an ideal case a source should introduce no noticeable distortion into registered spectrum. In spectroscopy of low-energy gamma-quanta, electrons and alpha particles sample preparation quite frequently turns to be challenging independent scientific investigation. Source preparation is conventionally performed at two stages - extraction of activity from a target and its uniform distribution over a substrate. A general requirement to such radioactive layer is maximal total and specific activity. Unfortunately, there is no universal source preparation method currently available for precise spectroscopy. In a number of cases excellent results are provided by fractional sublimation method based on ability of some elements to evaporate from target material at heating. The method demonstrates a several advantages. The paper introduces a complex of experimental equipment for preparation of high-quality radioactive sources. This complex is arranged in a well-protected heavy box equipped with master-slave manipulators. Biological protection of the box makes it possible to handle activities up to 10 11 Bq. Main part of the complex is a special vacuum post that assures works with active samples in the vacuum up to 10 -7 mm Hg - the operations include fractional sublimation, thermal evaporation, thermal diffusion, evaporation by electron beam, etc. All units of the vacuum post arranged in the box are designed to work with master-slave manipulators. The post is mainly used for preparation of a high-quality beta sources and extraction of microamounts of radionuclides from reactor and cyclotron targets by the method of fractional sublimation. Another important unit of the complex is an equipment for selective chemisorption in vacuum. Complex comprises all required auxiliary equipment The entire complex operated at high rate of reliability. The paper pays

  5. Modelling of nuclear power plant control and instrumentation elements for automatic disturbance and reliability analysis

    International Nuclear Information System (INIS)

    Hollo, E.

    1985-08-01

    Present Final Report summarizes results of R/D work done within IAEA-VEIKI (Institute for Electrical Power Research, Budapest, Hungary) Research Contract No. 3210 during 3 years' period of 01.08.1982 - 31.08.1985. Chapter 1 lists main research objectives of the project. Main results obtained are summarized in Chapters 2 and 3. Outcomes from development of failure modelling methodologies and their application for C/I components of WWER-440 units are as follows (Chapter 2): improvement of available ''failure mode and effect analysis'' methods and mini-fault tree structures usable for automatic disturbance (DAS) and reliability (RAS) analysis; general classification and determination of functional failure modes of WWER-440 NPP C/I components; set up of logic models for motor operated control valves and rod control/drive mechanism. Results of development of methods and their application for reliability modelling of NPP components and systems cover (Chapter 3): development of an algorithm (computer code COMPREL) for component-related failure and reliability parameter calculation; reliability analysis of PAKS II NPP diesel system; definition of functional requirements for reliability data bank (RDB) in WWER-440 units. Determination of RDB input/output data structure and data manipulation services. Methods used are a-priori failure mode and effect analysis, combined fault tree/event tree modelling technique, structural computer programming, probability theory application to nuclear field

  6. Verification and validation of software related to nuclear power plant control and instrumentation

    International Nuclear Information System (INIS)

    Wall, N.; Kossilov, A.

    1994-01-01

    There has always been significant concern with introduction of software in industry and the nuclear industry is no different from any other sector save its safety demands are some of the most onerous. The problems associated with software have led to the well documented difficulties in the introduction of computer based systems. An important area of concern with software in systems is the processes of Verification and Validation. One of the many activities the IAEA is currently engaged in is the preparation of a document on the process of verification and validation of software. The document follows the safety classification of IEC 1226 but includes software important to plant operation to establish three levels of assurance. The software that might be deployed on a plant was then identified as one of four types: new software, existing software for which full access to the code and documentation is possible, existing software of a proprietary nature and finally configurable software. The document attempts to identify the appropriate methods and tools for conducting the verification and validation processes. (author). 5 refs, 5 figs, 7 tabs

  7. Report on nuclear power plant control and instrumentation activities in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Bastl, W.

    1986-01-01

    The overall situation in I and C of nuclear power plants in the Federal Republic of Germany can be characterized by three aspects. a) The improvement of man-machine communication by introducing integral information concepts for the control room by means of VDUs. b) Along with a) new data acquisition systems based upon process computers which facilitate the integration of operator aids like alarm analyses, disturbance analyses, post-mortem analyses, etc. c) The penetration of programmable processors into limitation systems in order to provide soft setback measures. d) The transition to I and C systems making use of the new generation of electronic components. The most important step towards advanced control rooms was the development of the Process Information System (PRINS) by KWU, which will be used with the German convoi-plants. The main emphasis regarding further R and D work in the field of operator aids is placed upon expert systems. Work will begin with a two years project aiming at the development of a basic module for a laboratory prototype

  8. Technical and regulatory challenges for digital instrumentation and control and control room systems in nuclear plants

    International Nuclear Information System (INIS)

    Torok, R.; Naser, J.; Harris, T.; Keithline, K.

    2006-01-01

    There are several unsettled technical and licensing issues in the areas of instrumentation and control (I and C), human factors, and updated control room designs that need coordinated, proactive industry attention. Some of these issues are already causing protracted regulatory reviews for existing plants, and left untreated, may cause substantial delays and increased costs for new plant combined construction and operating license approvals. Both industry and the NRC will have roles in resolving the key issues and addressing them in future design efforts and regulatory reviews. Where action is needed, the industry will want to minimize costs and risks by defining industry consensus solutions with corresponding technical bases. NEI has formed a working group to coordinate industry efforts and communications with NRC staff. The working group will also help determine priorities and coordinate both new and existing plant resources. EPRI will provide technical input and guidance for the working group. In order to be able to conduct reviews in a timely fashion, the NRC will likely need to enhance and expand staff resources as existing plants are upgraded and new plant reviews become more active. The industry initiative began with a workshop sponsored by EPRI and NEI on March 28-29, 2006, which led to the creation of the NEI working group. The working group has now identified and prioritized important generic issues, established resolution paths and schedules, and identified the roles of various stakeholders including utility companies, EPRI, NEI, vendors and the NRC. Through the course of this initiative I and C issues for both existing and new plants are being addressed. This paper describes the key I and C related technical and regulatory issues and their implications for new and operating plants, and provides a status report on the efforts to resolve them. (authors)

  9. A training module for quality management in calibration, maintenance and repair of nuclear instrumentation

    International Nuclear Information System (INIS)

    2008-01-01

    This learning module aims to provide practical guidelines for the organization of work and quality management practice in electronics laboratories in Member States. Nowadays, increased number of customers requires that the products are supplied with quality characteristics that satisfy their needs and expectations. The accelerated development of electronics and instrumentation during the last decades makes the electronics practice a field where competitiveness is ultimately defined by the confidence of the customers, based on their acceptance of the products and services provided. Quality management constitutes a practice encouraging the organizations to analyse customer requirements, to define the processes that contribute to the achievement of a product which is acceptable to the customer, and to keep these processes under control in order to improve the quality of the provided services and to increase customer satisfaction. The contents of this learning module are presented in three independent courses, designed for different level of interest: - Basic advice and recommendations: Practical advice for the organization of work, safety regulations and resource management. - Advanced quality management: Recommendations for the organization of a quality management system (QMS) compliant with ISO 9001 and ISO/IEC 17025 requirements and establishment of good practices. - Pursuing ISO 9001 and ISO/IEC 17025 accreditation: Recommendations for the organization of the QMS, templates of quality manual, operational procedures, records and forms. Customers' needs and expectations are changing, and due to competitive pressures and technological advances suppliers are forced to continually improve their products and services. Although the terms, definitions and concepts provided in this module are taken from the ISO 9000 standard series, the course does not constitute an ISO document as such. The recommendations and guidelines constitute an effort to help the understanding of

  10. Instrument evaluation no. 16. Nuclear enterprises portable doserate meter type PDR4 and external probes types BP1/1, BP8 and GP9

    International Nuclear Information System (INIS)

    Burgess, P.H.; Iles, W.J.

    1979-08-01

    The various radiations encountered in radiological protection cover a wide range of energies and radiation measurements have to be carried out under an equally broad spectrum of environmental conditions. This report is one of a series intended to give information on the performance characteristics of radiological protection instruments, to assist in the selection of appropriate instruments for a given purpose, to interpret the results obtained with such instruments, and, in particular, to know the likely sources and magnitude of errors that might be associated with measurements in the field. The radiation, electrical and environmental characteristics of radiation protection instruments are considered together with those aspects of the construction which make an instrument convenient for routine use. To provide consistent criteria for instrument performance, the range of tests performed on any particular class of instrument, the test methods and the criteria of acceptable performance are based broadly on the appropriate Recommendations of the International Electrotechnical Commission. The radiations in the tests are, in general, selected from the range of reference radiations for instrument calibration being drawn up by the International Standards Organisation. Normally, each report deals with the capabilities and limitations of one model of instrument and no direct comparison with other instruments intended for similar purposes is made, since the significance of particular performance characteristics largely depends on the radiations and environmental conditions in which the instrument is to be used. The results quoted here have all been obtained from tests on instruments in routine production, with the appropriate measurements being made by the NRPB. This report presents the evaluation of Nuclear Enterprises Portable Doserate Meter Type PDR4 and External Probes Types BP1/1, BP8 and GP9

  11. Technical evaluation of the electrical, instrumentation, and control design aspects of the low temperature overpressure protection system for the Maine Yankee nuclear power plant

    International Nuclear Information System (INIS)

    Latorre, V.R.; Mayn, B.G.

    1979-08-01

    This report documents the technical evaluation of the electrical, instrumentation, and control design aspects for the low temperature overpressure protection system of the Maine Yankee nuclear power plant. Design basis criteria used to evaluate the acceptability of the system included operator action, system testability, single failure criterion, and seismic Category I and IEEE Std-279-1971 criteria

  12. Technical evaluation of the electrical, instrumentation, and control design aspects of the low temperature overpressure protection system for the Yankee Rowe nuclear power plant

    International Nuclear Information System (INIS)

    Latorre, V.R.; Mayn, B.G.

    1979-08-01

    This report documents the technical evaluation of the electrical, instrumentation, and control design aspects for the low temperature overpressure protection system of the Yankee Rowe nuclear power plant. Design basis criteria used to evaluate the acceptability of the system included operator action, system testability, single failure criterion, and seismic Category I and IEEE Std-279-1971 criteria

  13. Technical evaluation of the electrical, instrumentation, and control design aspects of the low temperature overpressure protection system for the Salem nuclear power plant, Unit 1

    International Nuclear Information System (INIS)

    Laudenbach, D.H.

    1979-03-01

    The technical evaluation is presented for the electrical, instrumentation, and control design aspects of the low temperature overpressure protection system for the Salem nuclear power plant, Unit 1. Design basis criteria used to evaluate the acceptability of the system include operator action, system testability, single failure criterion, and seismic Category I and IEEE Std-279-1971 criteria

  14. Proceedings of the 5. International Topical Meeting on Nuclear Plant Instrumentation Controls, and Human Machine Interface Technology

    International Nuclear Information System (INIS)

    2006-01-01

    Instrumentation, Controls, and Human-Machine Interface (ICHMI) technologies are essential to ensuring delivery and effective operation of nuclear power systems. The ICHMI system, together with plant personnel, is the 'central nervous system' for operating plants. It senses basic parameters, monitors performance, integrates information, and makes adjustments to plant operations as necessary. It also responds to failures and off-normal events, thus ensuring goals of efficient power production and safety. The ICHMI system embodies the sensing, communications, monitoring, control, and presentation and command systems between the process (i.e., the reactor, heat transport, and energy conversion systems) and the plant personnel. It enables plant personnel to more effectively monitor the health of the plant and to identify opportunities to improve the performance of equipment and systems as well as to anticipate, understand, and respond to potential problems. Improved controls provide the basis to operate more closely to performance margins, and the improved integration of automatic and human response enables them to work cooperatively to accomplish production and safety goals. The ICHMI system thus directly impacts the performance of the entire plant and thereby the economics, safety, and security of current and future reactor designs. The 5. International Topical Meeting on Nuclear Plant Instrumentation Control and Human-Machine Interface Technology (NPIC and HMIT 2006) is specifically devoted to advances in these important technologies. In these proceedings, more than 200 papers and panel sessions from all over the world have been assembled to share the most recent information and innovations in ICHMI technology and to discuss the important issues that face the future of the industry. The papers fall into two major groupings: instrumentation and control (I and C) and human-machine interface technology (HMIT). The I and C papers are organized into five tracks. 'Systems

  15. Proceedings of the 5. International Topical Meeting on Nuclear Plant Instrumentation Controls, and Human Machine Interface Technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    Instrumentation, Controls, and Human-Machine Interface (ICHMI) technologies are essential to ensuring delivery and effective operation of nuclear power systems. The ICHMI system, together with plant personnel, is the 'central nervous system' for operating plants. It senses basic parameters, monitors performance, integrates information, and makes adjustments to plant operations as necessary. It also responds to failures and off-normal events, thus ensuring goals of efficient power production and safety. The ICHMI system embodies the sensing, communications, monitoring, control, and presentation and command systems between the process (i.e., the reactor, heat transport, and energy conversion systems) and the plant personnel. It enables plant personnel to more effectively monitor the health of the plant and to identify opportunities to improve the performance of equipment and systems as well as to anticipate, understand, and respond to potential problems. Improved controls provide the basis to operate more closely to performance margins, and the improved integration of automatic and human response enables them to work cooperatively to accomplish production and safety goals. The ICHMI system thus directly impacts the performance of the entire plant and thereby the economics, safety, and security of current and future reactor designs. The 5. International Topical Meeting on Nuclear Plant Instrumentation Control and Human-Machine Interface Technology (NPIC and HMIT 2006) is specifically devoted to advances in these important technologies. In these proceedings, more than 200 papers and panel sessions from all over the world have been assembled to share the most recent information and innovations in ICHMI technology and to discuss the important issues that face the future of the industry. The papers fall into two major groupings: instrumentation and control (I and C) and human-machine interface technology (HMIT). The I and C papers are organized into five tracks

  16. The impact of the instrumentation and control systems in the safety of a nuclear plant: a general vision; El impacto de los sistemas de instrumentacion y control en la seguridad de una planta nuclear: una vision general

    Energy Technology Data Exchange (ETDEWEB)

    Celis del Angel, L.; Rivero, T., E-mail: lina.celis@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2011-11-15

    One of the fundamental components so much for the sure operation, like in emergency cases or accident are the equipment s and instrumentation and control systems. The nuclear industry has had some accidents where the instrumentation and control have played and important part: a wrong design, instrumentation lack, faulty systems of safety, etc. At the present time the necessity to modernize the instrumentation and control in a nuclear power plant is before the challenge of finding innovative forms to improve the competitiveness and readiness, reducing operation costs without put ing in risk the safety and reliability of the nuclear power plant. Most of the nuclear power plants require actualizing their instrumentation and control systems, here the digital systems represent a great alternative, improving the performance and the safety, increasing the readiness and reducing the maintenance s. However they require of strict tests that allow assuring their application in critical systems. It is also necessary, the development of modernization programs that allow the programmed substitution of the systems without affecting the readiness of the nuclear power plants. During this whole modernization process will be necessary to put special attention in the cyber-safety because the attacks every time they are more elaborated. Therefore will be necessary to go toward the modernization of the instrumentation and control with the challenge of making without detriment some in the safety of the normal operation and with response reliability in emergency conditions or accident that which represents an effort that should not be postponed in the case of the nuclear power plant of Laguna Verde. (Author)

  17. Research and development in the field of nuclear power plant control and instrumentation in Japan during 1987-1988

    International Nuclear Information System (INIS)

    Wakayama, N.

    1990-01-01

    This paper was provided for the 12th IAEA/IWG-NPPCI Meeting and aims to introduce an outline of recent R and D activities in Japan in the field of Nuclear Power Plant Control and Instrumentation. In the area of sensors, equipment and systems, various kinds of micro-processor based digital instrumentation and control components/systems have been developed for the distributed C and I systems for the Advanced LWR Plants under planning. Remarkable progress has been also obtained in the development of advanced sensors such as a Four Section Ex-core Neutron Chamber for PWR, some kinds of High-Temperature (600 - 800 deg. C) and Wide Range Neutron Counter Chambers for HTGR, and High-Temperature (1200 deg. C)/High-stability In-Core Thermocouples. Method of verification and validation of the micro-processor based protection and safety systems was studied and a proving test of the systems has been undertaken to use the systems for the Advanced LWR plants. Extensive studies have also been made in the field of Human Factors, Man-Machine Interface and Operator Support System. Operators' behaviour, performance and cognitive process were investigated and cognitive model and crew performance model have been provided for the advanced MMI design and evaluation. Development programme of the Advanced Man-Machine System was continued for the further improvement of the MMI of NPPs. The AI technology has been introduced widely into the operator support systems, and the performance and flexibility of the systems have been improved remarkably. As for the training equipment, high-performance on-site compact simulators have been developed and installed in plant sites. Various kinds of maintenance support systems have been also developed by the united efforts of utilities and manufacturers. A list of 131 references is provided in this paper for the convenience of readers. (author). 131 refs, 1 tab

  18. Reliability analysis and computation of computer-based safety instrumentation and control used in German nuclear power plant. Final report

    International Nuclear Information System (INIS)

    Ding, Yongjian; Krause, Ulrich; Gu, Chunlei

    2014-01-01

    The trend of technological advancement in the field of safety instrumentation and control (I and C) leads to increasingly frequent use of computer-based (digital) control systems which consisting of distributed, connected bus communications computers and their functionalities are freely programmable by qualified software. The advantages of the new I and C system over the old I and C system with hard-wired technology are e.g. in the higher flexibility, cost-effective procurement of spare parts, higher hardware reliability (through higher integration density, intelligent self-monitoring mechanisms, etc.). On the other hand, skeptics see the new technology with the computer-based I and C a higher potential by influences of common cause failures (CCF), and the easier manipulation by sabotage (IT Security). In this joint research project funded by the Federal Ministry for Economical Affaires and Energy (BMWi) (2011-2014, FJZ 1501405) the Otto-von-Guericke-University Magdeburg and Magdeburg-Stendal University of Applied Sciences are therefore trying to develop suitable methods for the demonstration of the reliability of the new instrumentation and control systems with the focus on the investigation of CCF. This expertise of both houses shall be extended to this area and a scientific contribution to the sound reliability judgments of the digital safety I and C in domestic and foreign nuclear power plants. First, the state of science and technology will be worked out through the study of national and international standards in the field of functional safety of electrical and I and C systems and accompanying literature. On the basis of the existing nuclear Standards the deterministic requirements on the structure of the new digital I and C system will be determined. The possible methods of reliability modeling will be analyzed and compared. A suitable method called multi class binomial failure rate (MCFBR) which was successfully used in safety valve applications will be

  19. Information technology impact on nuclear power plant documentation. Report prepared within the framework of the International Working Group on Nuclear Power Plant Control and Instrumentation

    International Nuclear Information System (INIS)

    2002-04-01

    As the majority of the nuclear power plants (NPPs) in the world were designed and constructed about twenty to forty years ago, these older power plants may have shortcomings in documentation on construction, commissioning, operations, maintenance, or decommissioning. Therefore, facility documentation does not always reflect actual plant status after years of plant operation, modification, and maintenance. To deal with these shortcomings, computer and information technologies that provide sophisticated and modern design tools as well as information processing and storage facilities can offer dramatic innovation from paper-centric documentation towards data-centric documentation. This report addresses all aspects of documentation associated with various life-cycle phases of NPPs and the information technology (IT) that are relevant to the documentation process. It also provides a guide for planning, designing, and executing an IT documentation project. Examples are given to demonstrate successful implementations at plants. Finally, it discusses the issues related to the application of the IT in NPPs and the trends for applications of the IT at NPPs as well as the technology itself. It is recognized that this can also improve configuration management. reliability of data, quality of personnel work, and ultimately plant performance reliability and safety. The aspects of using the IT for NPP documentation are closely related to configuration management at NPPs. The report consists of nine sections, a reference section, and five additional appendices. The development of this report which was initiated by the IAEA International Working Group on Nuclear Power Plant Control and Instrumentation (IWG-NPPCI). It is the result of a series of consultants meetings held by the IAEA in Vienna (October 1999, November 2000). It was prepared with the participation and contributions of experts from Canada, Germany, Norway, Sweden, and the United States of America. In addition, a

  20. Information technology impact on nuclear power plant documentation. Report prepared within the framework of the International Working Group on Nuclear Power Plant Control and Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-04-01

    As the majority of the nuclear power plants (NPPs) in the world were designed and constructed about twenty to forty years ago, these older power plants may have shortcomings in documentation on construction, commissioning, operations, maintenance, or decommissioning. Therefore, facility documentation does not always reflect actual plant status after years of plant operation, modification, and maintenance. To deal with these shortcomings, computer and information technologies that provide sophisticated and modern design tools as well as information processing and storage facilities can offer dramatic innovation from paper-centric documentation towards data-centric documentation. This report addresses all aspects of documentation associated with various life-cycle phases of NPPs and the information technology (IT) that are relevant to the documentation process. It also provides a guide for planning, designing, and executing an IT documentation project. Examples are given to demonstrate successful implementations at plants. Finally, it discusses the issues related to the application of the IT in NPPs and the trends for applications of the IT at NPPs as well as the technology itself. It is recognized that this can also improve configuration management. reliability of data, quality of personnel work, and ultimately plant performance reliability and safety. The aspects of using the IT for NPP documentation are closely related to configuration management at NPPs. The report consists of nine sections, a reference section, and five additional appendices. The development of this report which was initiated by the IAEA International Working Group on Nuclear Power Plant Control and Instrumentation (IWG-NPPCI). It is the result of a series of consultants meetings held by the IAEA in Vienna (October 1999, November 2000). It was prepared with the participation and contributions of experts from Canada, Germany, Norway, Sweden, and the United States of America. In addition, a

  1. On-line testing of nuclear plant temperature and pressure instrumentation and other critical plant equipment. IAEA regional workshop. Working material

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-12-31

    Under European regional TC project RER/4/011, IAEA and VUJE Training centre organized a workshop on On-line Testing of Nuclear Power Plant Temperature and Pressure Instrumentation and Other Critical Plant Equipment in Trnava, Slovak Republic, from 25 to 29 May 1998. The objective of the workshop was to review the state-of-the-art in NPP instrumentation, cover typical instrumentation problems and solutions, describe technical and regulatory requirements for verifying the performance of nuclear power plant instrumentation, describe new methods developed and applied in NPPs for on-line verification and performance of instrumentation and present new techniques using existing instrumentation to identify the on-set problems in the plant electrical, mechanical and thermal hydraulic systems. Particular emphasis was placed on temperature measurements by Resistance Temperature Detectors (RTDs) and thermocouples and pressure measurements using motion-balanced and forced-balanced pressure transmitters. This proceedings includes papers presented by the invited speakers and the participants each with an abstract as wells as a summary of the Round-Table discussions Refs, figs, tabs

  2. On-line testing of nuclear plant temperature and pressure instrumentation and other critical plant equipment. IAEA regional workshop. Working material

    International Nuclear Information System (INIS)

    1998-01-01

    Under European regional TC project RER/4/011, IAEA and VUJE Training centre organized a workshop on On-line Testing of Nuclear Power Plant Temperature and Pressure Instrumentation and Other Critical Plant Equipment in Trnava, Slovak Republic, from 25 to 29 May 1998. The objective of the workshop was to review the state-of-the-art in NPP instrumentation, cover typical instrumentation problems and solutions, describe technical and regulatory requirements for verifying the performance of nuclear power plant instrumentation, describe new methods developed and applied in NPPs for on-line verification and performance of instrumentation and present new techniques using existing instrumentation to identify the on-set problems in the plant electrical, mechanical and thermal hydraulic systems. Particular emphasis was placed on temperature measurements by Resistance Temperature Detectors (RTDs) and thermocouples and pressure measurements using motion-balanced and forced-balanced pressure transmitters. This proceedings includes papers presented by the invited speakers and the participants each with an abstract as wells as a summary of the Round-Table discussions

  3. The utilization of performance evaluation instruments by technical trainers to evaluate maintenance personnel in the nuclear power industry in the United States

    International Nuclear Information System (INIS)

    Hornberger, C.K.

    1993-01-01

    The purpose of this study was to document the utilization of performance evaluation instruments by technical trainers in the evaluation of maintenance personnel in US nuclear power plants. Performance evaluation of maintenance personnel has been identified by nuclear utilities and the Nuclear Regulatory Commission as the only acceptable method of determining worker competence. The NRC requires performance evaluation to be conducted to performance standards, but it does not specify the standards or the method to be utilized. Each plant is free to establish its own standards and methods of evaluation. This was a descriptive study utilizing descriptive statistics for the analysis of the data. The subjects included 655 maintenance trainers in 72 US nuclear plants. Conclusions of the study include: (1) Technical trainers are in compliance with NRC regulations. (2) Evaluation materials developed by the Institute of Nuclear Power Operations are used by technical trainers in every one of the 62 plants that responded. (3) In-plant or self-developed Performance Evaluation Instruments are utilized by 419 or 95.2% of the technical trainers. (4) Technical trainers incorporate nine common components into their Performance Evaluation Instruments. (5) Technical trainers evaluate maintenance processes and the product produced by workers when following procedures and specifications are critical and when safety hazards are involved. (6) Technical trainers believe that utilizing Performance Evaluation Instruments makes their job easier by providing documentation about the quality and standards of maintenance skills. (7) Technical trainers believe that maintenance workers benefit when their skills are assessed through the use of Performance Evaluation Instruments

  4. Determination of elements in concrete of a nuclear accelerator to dismantle, by instrumental neutron activation analysis, ICPMS and ICPAES

    International Nuclear Information System (INIS)

    Gaudry, A.; Bertho, X.; Piccot, D.; Fougeron, C.

    1998-01-01

    The distribution of radionuclides and their radioactivity in irradiated waste concrete are modelled using the characteristics of nuclear particle fluxes integrated all during the life-time of the installation, chemical composition of the material, and activation parameters of nuclear reactions produced by particles and secondary neutrons on elements. This paper describes the techniques used for determining the chemical composition of trace elements radioactivated by neutrons and particles, but also the major elements which act upon the neutron penetration into the depth of the concrete. Major elements were determined using mainly, Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) for Si, Al, Fe, Mn, Mg, Ca, Na, K, Ti, P and Instrumental Neutron Activation Analysis (INAA) for Al, Mn, Fe, Mg, Ca, Ba, Na, K, and other specific methods for C, O, S, and H. Trace elements were also determined using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and INAA. Forty five elements were determined. When present, solid iron was separated by a magnetic bar after previous breaking of the concrete. The concrete was powdered to a granulometry of less than 0.5 mm for INAA and homogenized. Iron was determined separately by INAA. For the determinations by ICP-AES and ICP-MS, powders were previously fused by means of LiBO 2 , then dissolved in dilute HNO 3 before analysis. A comparison between the results obtained, on the one hand, by ICP-AES and INAA, on the second hand, by ICP-MS and INAA revealed generally a very good agreement, making consistent analytical results

  5. Review report: safety and reliability issues on digital instrumentation and control systems in nuclear power plants and United States Nuclear Regulatory Commission`s dispositions

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Norio; Suzudo, Tomoaki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-09-01

    Recently, digital instrumentation and control (I and C) systems have been applied to nuclear power plants (NPPs) in various countries. Introduction of digital I and C systems, however, raises special issues on design, implementation, safety and licensing. Since FY 1997, the Japan Atomic Energy Research Institute (JAERI) has been carrying out a project, Study on Reliability of Digital I and C Systems, which includes extensive reviews of design approaches, technical standards, regulatory processes, especially, in the United States. This report summarizes the results from the study of National Research Council (NRC) and the U.S. Nuclear Regulatory Commission`s (USNRC`s) responses to the recommendations made by the NRC`s study. That study identified six technical key issues (system aspects of digital I and C technology, software quality assurance, common-mode software failure potential, safety and reliability assessment methods, human factors and man-machine interface, dedication of commercial off-the-shelf hardware and software) and two strategic key issues (case-by-case licensing process, adequacy of technical infrastructure) that arise from the introduction of digital I and C technology and then, made recommendations to the USNRC for coping with digital I and C applications. The USNRC responded to each recommendation and showed their own dispositions in which the USNRC agreed with most of the recommendations. In Japan, it is expected that introduction of digital I and C technology is inevitable in NPPs because the vendors are gradually discontinuing support and stocking of analog components. To cope with such situations, there is a need to develop and update the standards and guidelines applicable to digital I and C technology. The key issues and the USNRC`s dispositions provided in this report is believed to be useful for developing and updating them. (J.P.N.)

  6. Review report: safety and reliability issues on digital instrumentation and control systems in nuclear power plants and United States Nuclear Regulatory Commission's dispositions

    International Nuclear Information System (INIS)

    Watanabe, Norio; Suzudo, Tomoaki

    1998-09-01

    Recently, digital instrumentation and control (I and C) systems have been applied to nuclear power plants (NPPs) in various countries. Introduction of digital I and C systems, however, raises special issues on design, implementation, safety and licensing. Since FY 1997, the Japan Atomic Energy Research Institute (JAERI) has been carrying out a project, Study on Reliability of Digital I and C Systems, which includes extensive reviews of design approaches, technical standards, regulatory processes, especially, in the United States. This report summarizes the results from the study of National Research Council (NRC) and the U.S. Nuclear Regulatory Commission's (USNRC's) responses to the recommendations made by the NRC's study. That study identified six technical key issues (system aspects of digital I and C technology, software quality assurance, common-mode software failure potential, safety and reliability assessment methods, human factors and man-machine interface, dedication of commercial off-the-shelf hardware and software) and two strategic key issues (case-by-case licensing process, adequacy of technical infrastructure) that arise from the introduction of digital I and C technology and then, made recommendations to the USNRC for coping with digital I and C applications. The USNRC responded to each recommendation and showed their own dispositions in which the USNRC agreed with most of the recommendations. In Japan, it is expected that introduction of digital I and C technology is inevitable in NPPs because the vendors are gradually discontinuing support and stocking of analog components. To cope with such situations, there is a need to develop and update the standards and guidelines applicable to digital I and C technology. The key issues and the USNRC's dispositions provided in this report is believed to be useful for developing and updating them. (J.P.N.)

  7. Multi-step Monte Carlo calculations applied to nuclear reactor instrumentation - source definition and renormalization to physical values

    Energy Technology Data Exchange (ETDEWEB)

    Radulovic, Vladimir; Barbot, Loic; Fourmentel, Damien; Villard, Jean-Francois [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St Paul-Lez-Durance, (France); Snoj, Luka; Zerovnik, Gasper [Jozef Stefan Institute, Reactor Physics Department, Jamova cesta 39, SI-1000 Ljubljana, (Slovenia); Trkov, Andrej [IAEA, Vienna International Centre, PO Box 100, A-1400 Vienna, (Austria)

    2015-07-01

    Significant efforts have been made over the last few years in the French Alternative Energies and Atomic Energy Commission (CEA) to adopt multi-step Monte Carlo calculation schemes in the investigation and interpretation of the response of nuclear reactor instrumentation detectors (e.g. miniature ionization chambers - MICs and self-powered neutron or gamma detectors - SPNDs and SPGDs). The first step consists of the calculation of the primary data, i.e. evaluation of the neutron and gamma flux levels and spectra in the environment where the detector is located, using a computational model of the complete nuclear reactor core and its surroundings. These data are subsequently used to define sources for the following calculation steps, in which only a model of the detector under investigation is used. This approach enables calculations with satisfactory statistical uncertainties (of the order of a few %) within regions which are very small in size (the typical volume of which is of the order of 1 mm{sup 3}). The main drawback of a calculation scheme as described above is that perturbation effects on the radiation conditions caused by the detectors themselves are not taken into account. Depending on the detector, the nuclear reactor and the irradiation position, the perturbation in the neutron flux as primary data may reach 10 to 20%. A further issue is whether the model used in the second step calculations yields physically representative results. This is generally not the case, as significant deviations may arise, depending on the source definition. In particular, as presented in the paper, the injudicious use of special options aimed at increasing the computation efficiency (e.g. reflective boundary conditions) may introduce unphysical bias in the calculated flux levels and distortions in the spectral shapes. This paper presents examples of the issues described above related to a case study on the interpretation of the signal from different types of SPNDs, which

  8. Influence of elemental concentration in soil on vegetables applying analytical nuclear techniques: k0-instrumental neutron activation analysis and radiometry

    International Nuclear Information System (INIS)

    Menezes, Maria Angela de B.C.; Mingote, Raquel Maia; Silva, Lucilene Guerra e; Pedrosa, Lorena Gomes

    2005-01-01

    Samples from two vegetable gardens where analysed aiming at determining the elemental concentration. The vegetables selected to be studied are grown by the people for their own use and are present in daily meal. One vegetable garden studied is close to a mining activity in a region inserted in the Iron Quadrangle (Quadrilatero Ferrifero), located in the Brazilian state of Minas Gerais. This region is considered one of the richest mineral bearing regions in the world. Another vegetable garden studied is far from this region and without any mining activity It was also studied as a comparative site. This assessment was carried out to evaluate the elemental concentration in soil and vegetables, matrixes connected with the chain food, applying the k 0 -Instrumental Neutron Activation Analysis (k 0 -INAA) at the Laboratory for Neutron Activation Analysis. However, this work reports only the results of thorium, uranium and rare-earth obtained in samples collected during the dry season, focusing on the influence of these elements on vegetable elemental composition. Results of natural radioactivity determined by Gross Alpha and Gross Beta measurements, are also reported. This study is related to the BRA 11920 project, entitled 'Iron Quadrangle, Brazil: assessment of health impact caused by mining pollutants through chain food applying nuclear and related techniques', one of the researches co-ordinated by the IAEA (Vienna, Austria). (author)

  9. Hybrid instrument applied to human reliability study in event of loss of external electric power in a nuclear power plant

    International Nuclear Information System (INIS)

    Martins, Eduardo Ferraz

    2015-01-01

    The study projects in highly complex installations involves robust modeling, supported by conceptual and mathematical tools, to carry out systematic research and structured the different risk scenarios that can lead to unwanted events from occurring equipment failures or human errors. In the context of classical modeling, the Probabilistic Safety Analysis (PSA) seeks to provide qualitative and quantitative information about the project particularity and their operational facilities, including the identification of factors or scenarios that contribute to the risk and consequent comparison options for increasing safety. In this context, the aim of the thesis is to develop a hybrid instrument (CPP-HI) innovative, from the integrated modeling techniques of Failure Mode and Effect Analysis (FMEA), concepts of Human Reliability Analysis and Probabilistic Composition of Preferences (PCP). In support of modeling and validation of the CPP-HI, a simulation was performed on a triggering event 'Loss of External Electric Power' - PEEE, in a Nuclear Power plant. The results were simulated in a virtual environment (sensitivity analysis) and are robust to the study of Human Reliability Analysis (HRA) in the context of the PSA. (author)

  10. A NIM (Nuclear Instrumentation Module) system conjugated with optional input for pHEMT amplifier for beta and gamma spectroscopy

    International Nuclear Information System (INIS)

    Konrad, Barbara; Lüdke, Everton

    2014-01-01

    This work presents a high speed NIM module (Nuclear Instrumentation Module) to detect radiation, gamma and muons, as part of a system for natural radiation monitoring and of extraterrestrial origin. The subsystem developed consists of a preamplifier and an integrated SCA (Single Channel Analyzer), including power supplies of ± 12 and ± 24V with derivations of +3.6 and ± 5V. The single channel analyzer board, consisting of discrete logic components, operating in window modes, normal and integral. The pulse shaping block is made up of two voltage comparators working at 120 MHz with a response time > 60 ns and a logic anticoincidence system. The preamplifier promotes a noise reduction and introduces the impedance matching between the output of anode / diode photomultiplier tubes (PMTs) and subsequent equipment, providing an input impedance of 1MΩ and output impedance of 40 to 140Ω. The shaper amplifier is non-inverting and has variable input capacitance of 1000 pF. The upper and lower thresholds of the SCA are adjustable from 0 to ± 10V, and the equipment is compatible with various types of detectors, like PMTs coupled to sodium iodide crystals. For use with liquid scintillators and photodiodes with crystals (CsI: Tl) is proposed to include a preamplifier circuit pHEMT (pseudomorphic High Electron Mobility Transistor) integrated. Yet, the system presents the possibility of applications for various purposes of gamma spectroscopy and automatic detection of events producing of beta particles

  11. Nuclear power plants - Instrumentation and control systems important for safety - Classification (International Electrotechnical Commission Standard Publication 1226:1993)

    International Nuclear Information System (INIS)

    Stefanik, J.

    1996-01-01

    This international standard established a method of classification of the information and command functions for nuclear power plants, and the I and C and equipment that provide those functions, into categories that designate the importance for safety of the functions, and the associated systems and equipment. The resulting classification then determines relevant design criteria. The design criteria are the measures of quality by which the adequacy of each functions, and the associated systems and equipment in relation to its importance to plant safety is ensured. In this standard, the criteria are those of functionality, reliability, performance, environmental durability and quality assurance. This standard is applicable to all the information and command functions, and the instrumentation and control systems and equipment that provide those functions. The functions, systems and equipment under consideration provide automated protection, closed or open loop control, and information to the operating staff. They keep the NPP conditions inside the safe operating envelope and provide automatic actions, or enable manual actions, that mitigate accidents or prevent or minimize radioactive releases to the site or wider environment. The functions, and the associated systems and equipment that fulfill these roles safeguard the health and safety of the NPP operators and the public. This standard complements, and does not replace or supersede, the Safety Guides and Codes of Practice published by the International Atomic Energy Agency

  12. Harmonization of the licensing process for digital instrumentation and control systems in nuclear power plants. Report prepared within the framework of the Technical Working Group on Nuclear Power Plant Control and Instrumentation

    International Nuclear Information System (INIS)

    2002-12-01

    This report was prepared in response to the recommendation of the Technical Working Group on Nuclear Power Plant Control and Instrumentation (TWG-NPPCI). This recommendation was based on the recognition of the present diversity in national practices in licensing digital Instrumentation and control (I and C). The goal of this report is to promote harmonization of I and C licensing requirements in the Member States. It applies to I and C modernization, retrofits, upgrades, replacement, new installation, and other aspects of digital I and C in both existing and new nuclear power plants. It should be pointed out that a single publication, like this report, can only take the first step towards initiating a process leading to licensing requirements, which are more harmonized. It is therefore hoped that that this report will get a broad readership among those who can influence requirements that are set on digital I and C. This report provides general and high level recommendations to assist senior officials at utilities, vendor organizations, regulatory bodies, and their support organizations who are involved in the licensing of digital I and C. It is also intended to be read by persons participating in technical committees which are writing standards. The authors of this report believe that harmonization can be achieved through a consideration of the technical and scientific basis of high integrity digital I and C systems. It is also believed that many benefits can be reached in resolving various issues of a technical and engineering nature, which presently are creating controversies in the licensing of digital I and C in NPP safety applications. This publication is based on a consideration of the licensing process of I and C in a top down fashion to discuss generic principles to be applied when assessing digital I and C in NPP safety applications. This report gives an overview of the confidence building process in which evidence is created that digital I and C fulfils

  13. The U.S./IAEA Workshop on Software Sustainability for Safeguards Instrumentation: Report to the NNSA DOE Office of International Nuclear Safeguards (NA-241)

    Energy Technology Data Exchange (ETDEWEB)

    Pepper, Susan E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Pickett, Chris A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Queirolo, Al [Brookhaven National Lab. (BNL), Upton, NY (United States); Bachner, Katherine M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Worrall, Louise G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-04-07

    The U.S Department of Energy (DOE) National Nuclear Security Administration (NNSA) Next Generation Safeguards Initiative (NGSI) and the International Atomic Energy Agency (IAEA) convened a workshop on Software Sustainability for Safeguards Instrumentation in Vienna, Austria, May 6-8, 2014. Safeguards instrumentation software must be sustained in a changing environment to ensure existing instruments can continue to perform as designed, with improved security. The approaches to the development and maintenance of instrument software used in the past may not be the best model for the future and, therefore, the organizers’ goal was to investigate these past approaches and to determine an optimal path forward. The purpose of this report is to provide input for the DOE NNSA Office of International Nuclear Safeguards (NA-241) and other stakeholders that can be utilized when making decisions related to the development and maintenance of software used in the implementation of international nuclear safeguards. For example, this guidance can be used when determining whether to fund the development, upgrade, or replacement of a particular software product. The report identifies the challenges related to sustaining software, and makes recommendations for addressing these challenges, supported by summaries and detailed notes from the workshop discussions. In addition the authors provide a set of recommendations for institutionalizing software sustainability practices in the safeguards community. The term “software sustainability” was defined for this workshop as ensuring that safeguards instrument software and algorithm functionality can be maintained efficiently throughout the instrument lifecycle, without interruption and providing the ability to continue to improve that software as needs arise.

  14. The U.S./IAEA Workshop on Software Sustainability for Safeguards Instrumentation: Report to the NNSA DOE Office of International Nuclear Safeguards (NA-241)

    International Nuclear Information System (INIS)

    Pepper, Susan E.; Pickett, Chris A.; Queirolo, Al; Bachner, Katherine M.; Worrall, Louise G.

    2015-01-01

    The U.S Department of Energy (DOE) National Nuclear Security Administration (NNSA) Next Generation Safeguards Initiative (NGSI) and the International Atomic Energy Agency (IAEA) convened a workshop on Software Sustainability for Safeguards Instrumentation in Vienna, Austria, May 6-8, 2014. Safeguards instrumentation software must be sustained in a changing environment to ensure existing instruments can continue to perform as designed, with improved security. The approaches to the development and maintenance of instrument software used in the past may not be the best model for the future and, therefore, the organizers' goal was to investigate these past approaches and to determine an optimal path forward. The purpose of this report is to provide input for the DOE NNSA Office of International Nuclear Safeguards (NA-241) and other stakeholders that can be utilized when making decisions related to the development and maintenance of software used in the implementation of international nuclear safeguards. For example, this guidance can be used when determining whether to fund the development, upgrade, or replacement of a particular software product. The report identifies the challenges related to sustaining software, and makes recommendations for addressing these challenges, supported by summaries and detailed notes from the workshop discussions. In addition the authors provide a set of recommendations for institutionalizing software sustainability practices in the safeguards community. The term ''software sustainability'' was defined for this workshop as ensuring that safeguards instrument software and algorithm functionality can be maintained efficiently throughout the instrument lifecycle, without interruption and providing the ability to continue to improve that software as needs arise.

  15. Application range affected by software failures in safety relevant instrumentation and control systems of nuclear power plants

    International Nuclear Information System (INIS)

    Jopen, Manuela; Mbonjo, Herve; Sommer, Dagmar; Ulrich, Birte

    2017-03-01

    This report presents results that have been developed within a BMUB-funded research project (Promotion Code 3614R01304). The overall objective of this project was to broaden the knowledge base of GRS regarding software failures and their impact in software-based instrumentation and control (I and C) systems. To this end, relevant definitions and terms in standards and publications (DIN, IEEE standards, IAEA standards, NUREG publications) as well as in the German safety requirements for nuclear power plants were analyzed first. In particular, it was found that the term ''software fault'' is defined differently and partly contradictory in the considered literature sources. For this reason, a definition of software fault was developed on the basis of the software life cycle of software-based I and C systems within the framework of this project, which takes into account the various aspects relevant to software faults and their related effects. It turns out that software failures result from latent faults in a software-based control system, which can lead to a non-compliant behavior of a software-based I and C system. Hereby a distinction should be made between programming faults and specification faults. In a further step, operational experience with software failures in software-based I and C systems in nuclear facilities and in nonnuclear sector was investigated. The identified events were analyzed with regard to their cause and impacts and the analysis results were summarized. Based on the developed definition of software failure and on the COMPSIS-classification scheme for events related to software based I and C systems, the COCS-classification scheme was developed to classify events from operating experience with software failures, in which the events are classified according to the criteria ''cause'', ''affected system'', ''impact'' and ''CCF potential''. This classification scheme was applied to evaluate the events identified in the framework of this project

  16. Suggestions of radiation protection instruments in ships used for transporting spent fuel elements from nuclear power plants to central stores and further to fuel reprocessing plants

    International Nuclear Information System (INIS)

    Warenmo, G.

    1979-01-01

    Some radiation protection measures are necessary in ships which will be used for transporting spent fuel elements from nuclear power plants to central stores and further to fuel reprocessing plants in order to protect the crew from unnecessarily high radiation doses and to ensure that not allowable values occur. Such measures are discussed in this report as well as suitable radiation protection instruments for such ships. (E.R.)

  17. International Atomic Energy Agency specialists meeting on experience in ageing, maintenance, and modernization of instrumentation and control systems for improving nuclear power plant availability

    International Nuclear Information System (INIS)

    1993-10-01

    This report presents the proceedings of the Specialist's Meeting on Experience in Aging, Maintenance and Modernization of Instrumentation and Control Systems for Improving Nuclear Power Plant Availability that was held at the Ramada Inn in Rockville, Maryland on May 5--7, 1993. The Meeting was presented in cooperation with the Electric Power Research Institute, Oak Ridge National Laboratory and the International Atomic Energy Agency. There were approximately 65 participants from 13 countries at the Meeting. Individual reports have been cataloged separately

  18. Master on Nuclear Engineering and Applications (MINA): instrument of knowledge management in the nuclear sector; Master en Ingenieria Nuclear y Aplicaciones (MINA): instrumento de gestion del conocimiento en el sector nuclear espanol

    Energy Technology Data Exchange (ETDEWEB)

    Herranz, L. E.; Garcia Cuesta, J. C.; Falcon, S.; Casas, J. A.

    2013-03-01

    Knowledge Management in nuclear industry is indispensable to ensure excellence in performance and safety of nuclear installations. The Master on Nuclear Engineering and Applications (MINA) is a Spanish education venture which foundations and evolution have meant and adaptation to the European Education system and to the domestic and international changes occurred in the nuclear environment. This paper summarizes the most relevant aspects of such transformation, its motivation and the final outcome. Finally, it discusses the potential benefit of a closer collaboration among the existing national education ventures in the frame of Nuclear Engineering. (Author)

  19. Final Technical Report on Quantifying Dependability Attributes of Software Based Safety Critical Instrumentation and Control Systems in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Smidts, Carol; Huang, Fuqun; Li, Boyuan; Li, Xiang

    2016-01-01

    With the current transition from analog to digital instrumentation and control systems in nuclear power plants, the number and variety of software-based systems have significantly increased. The sophisticated nature and increasing complexity of software raises trust in these systems as a significant challenge. The trust placed in a software system is typically termed software dependability. Software dependability analysis faces uncommon challenges since software systems' characteristics differ from those of hardware systems. The lack of systematic science-based methods for quantifying the dependability attributes in software-based instrumentation as well as control systems in safety critical applications has proved itself to be a significant inhibitor to the expanded use of modern digital technology in the nuclear industry. Dependability refers to the ability of a system to deliver a service that can be trusted. Dependability is commonly considered as a general concept that encompasses different attributes, e.g., reliability, safety, security, availability and maintainability. Dependability research has progressed significantly over the last few decades. For example, various assessment models and/or design approaches have been proposed for software reliability, software availability and software maintainability. Advances have also been made to integrate multiple dependability attributes, e.g., integrating security with other dependability attributes, measuring availability and maintainability, modeling reliability and availability, quantifying reliability and security, exploring the dependencies between security and safety and developing integrated analysis models. However, there is still a lack of understanding of the dependencies between various dependability attributes as a whole and of how such dependencies are formed. To address the need for quantification and give a more objective basis to the review process -- therefore reducing regulatory uncertainty

  20. Final Technical Report on Quantifying Dependability Attributes of Software Based Safety Critical Instrumentation and Control Systems in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Smidts, Carol [The Ohio State Univ., Columbus, OH (United States); Huang, Funqun [The Ohio State Univ., Columbus, OH (United States); Li, Boyuan [The Ohio State Univ., Columbus, OH (United States); Li, Xiang [The Ohio State Univ., Columbus, OH (United States)

    2016-03-25

    With the current transition from analog to digital instrumentation and control systems in nuclear power plants, the number and variety of software-based systems have significantly increased. The sophisticated nature and increasing complexity of software raises trust in these systems as a significant challenge. The trust placed in a software system is typically termed software dependability. Software dependability analysis faces uncommon challenges since software systems’ characteristics differ from those of hardware systems. The lack of systematic science-based methods for quantifying the dependability attributes in software-based instrumentation as well as control systems in safety critical applications has proved itself to be a significant inhibitor to the expanded use of modern digital technology in the nuclear industry. Dependability refers to the ability of a system to deliver a service that can be trusted. Dependability is commonly considered as a general concept that encompasses different attributes, e.g., reliability, safety, security, availability and maintainability. Dependability research has progressed significantly over the last few decades. For example, various assessment models and/or design approaches have been proposed for software reliability, software availability and software maintainability. Advances have also been made to integrate multiple dependability attributes, e.g., integrating security with other dependability attributes, measuring availability and maintainability, modeling reliability and availability, quantifying reliability and security, exploring the dependencies between security and safety and developing integrated analysis models. However, there is still a lack of understanding of the dependencies between various dependability attributes as a whole and of how such dependencies are formed. To address the need for quantification and give a more objective basis to the review process -- therefore reducing regulatory uncertainty