WorldWideScience

Sample records for nuclear installations annual

  1. The Swiss nuclear installations annual report 1992

    International Nuclear Information System (INIS)

    1993-06-01

    This report concerns the safety of the Swiss nuclear installations in the period of 1992. Surveillance of these installations with regard to nuclear safety, including radiation protection, is among the tasks of the Swiss Federal Nuclear Safety Inspectorate (HSK). In Switzerland five nuclear power plants are operational: Beznau I and II, Muehleberg, Goesgen and Leibstadt. Research reactors of thermal capacities below 10 MWth are operational at the Paul Scherrer Institute (PSI), at the Swiss Federal Institute of Technology Lausanne and at the University of Basle. Further subject to HSK's supervision are all activities at PSI involving nuclear fuel or ionizing radiation, the shut down experimental reactor of Lucens, the exploration in Switzerland of final disposal facilities for radwaste and the interim radwaste storage facilities. The present report first deals with the nuclear power plants and covers, in individual sections, the aspects of installation safety, radiation protection as well as personnel and organization, and the resulting overall impression from the point of view of HSK (chapters 1-4). In chapter 5, the corresponding information is given for the research installations. Chapter 6 on radwaste disposal is dedicated to the waste treatment, waste from reprocessing, interim storage and exploration by the NAGRA. In chapter 7, the status of emergency planning in the nuclear power plants' vicinity is reported. Certificates issued for the transport of radioactive materials are dealt with in chapter 8. Finally chapter 9 goes into some general questions relating to the safety of nuclear installations, and in particular covers important events in nuclear installations abroad. In all, the operation of the Swiss nuclear installations in the period of 1992 is rated safe by HSK. (author) 7 figs., 13 tabs

  2. The Swiss nuclear installations. Annual report 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    Surveillance of the Swiss nuclear installations with regard to nuclear safety, including radiation protection, is among the tasks of the Swiss Federal Nuclear Safety Inspectorate (HSK). Five nuclear power plants are operational in Switzerland: the three units Beznau I and II and Muehleberg with electrical capacities in the range of 300 to 400 MWe, and the two units Goesgen and Leibstadt with capacities between 900 and 1200 MWe. These are light water reactors; at Beznau and Goesgen of the PWR type, and at Muehleberg and Leibstadt of the BWR type. Research reactors of thermal capacities below 10 MWth are operational at the Paul Scherrer Institute (PSI), at the Swiss Federal Institute of Technology Lausanne and at the University of Basel. Further subject to HSK`s supervision are all activities at PSI involving nuclear fuel or ionizing radiation, the shut-down experimental reactor of Lucens, the exploration, in Switzerland, of final disposal facilities for radwaste and the interim radwaste storage facilities. The report first deals with the nuclear power and covers, in individual sections, the aspects of installation safety, radiation protection as well as personnel and organization, and the resulting overall impression from the point of view of HSK. In chapter 5, the corresponding information is given for research installations. Chapter 6, on radwaste disposal, is dedicated to the treatment of waste, waste from reprocessing, interim storage and exploration by NAGRA. In chapter 7, the status of emergency planning in the nuclear power plants` proximity is reported. Certificates issued for the transport of radioactive materials are dealt with in chapter 8. Finally chapter 9 goes into general questions relating to the safety of nuclear installations. All in all, the safety of operation of the Swiss nuclear installations, in the period of 1994, is judged as good by HSK. (author) 11 figs., 13 tabs.

  3. The Swiss nuclear installations. Annual report 1993

    International Nuclear Information System (INIS)

    1994-08-01

    Surveillance of the Swiss nuclear installations with regard to nuclear safety, including radiation protection, is among the tasks of the Swiss Federal Nuclear Safety Inspectorate (HSK). Five nuclear power plants are operational in Switzerland: the three units Beznau I and II and Muehleberg with electrical capacities in the range of 300 to 400 MWe, and the two units Goesgen and Leibstadt with capacities between 900 and 1200 MWe. These are light water reactors; at Beznau and Goesgen of the PWR type, and at Muehleberg and Leibstadt of the BWR type. Research reactors of thermal capacities below 10 MWth are operational at the Paul Scherrer Institute (PSI), at the Swiss Federal Institute of Technology Lausanne and at the University of Basel. Further subject to HSK's supervision are all activities at PSI involving nuclear fuel or ionizing radiation, the shut-down experimental reactor of Lucens, the exploration of final disposal facilities for radwaste and the interim radwaste storage facilities in Switzerland. The report first deals with the nuclear power and covers, in individual sections, the aspects of installation safety, radiation protection as well as personnel and organization, and the resulting overall impression from the point of view of HSK. In chapter 5, the corresponding information is given for research installations. Chapter 6, on radwaste disposal, is dedicated to the treatment of waste, waste from reprocessing, interim storage and exploration by NAGRA. In chapter 7, the status of emergency planning in the nuclear power plants' proximity is reported. Certificates issued for the transport of radioactive materials are dealt with in chapter 8. Finally chapter 9 goes into general questions relating to the safety of nuclear installations. All in all, the safety of operation of the Swiss nuclear installations, in the period of 1993, is judged as good by HSK. (author) 10 figs., 11 tabs

  4. Annual report 1996 concerning the nuclear safety and radiological protection in the Swiss nuclear installations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    The report presents detailed information about the nuclear safety and radiological protection in the Swiss nuclear power plants, the central interim storage at Wuerenlingen, the Paul Scherrer Institute (PSI) and other nuclear installations in Switzerland. figs., tabs., refs.

  5. Annual Report 1998 concerning the nuclear safety and radiological protection in the Swiss nuclear installations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    The report presents detailed information about the nuclear safety and radiological protection in the Swiss nuclear power plants, the central interim storage at Wuerenlingen, the Paul Scherrer Institute (PSI) and other nuclear installations in Switzerland.

  6. Annual Report 1998 concerning the nuclear safety and radiological protection in the Swiss nuclear installations

    International Nuclear Information System (INIS)

    1999-05-01

    The report presents detailed information about the nuclear safety and radiological protection in the Swiss nuclear power plants, the central interim storage at Wuerenlingen, the Paul Scherrer Institute (PSI) and other nuclear installations in Switzerland

  7. Annual Report 1999 concerning the nuclear safety and radiological protection in the Swiss nuclear installations

    International Nuclear Information System (INIS)

    2000-08-01

    The report presents detailed information about the nuclear safety and radiological protection in the Swiss nuclear power plants, the central interim storage at Wuerenlingen, the Paul Scherrer Institute (PSI) and other nuclear installations in Switzerland

  8. Annual Report 1999 concerning the nuclear safety and radiological protection in the Swiss nuclear installations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-08-15

    The report presents detailed information about the nuclear safety and radiological protection in the Swiss nuclear power plants, the central interim storage at Wuerenlingen, the Paul Scherrer Institute (PSI) and other nuclear installations in Switzerland.

  9. Annual report 1996 concerning the nuclear safety and radiological protection in the Swiss nuclear installations

    International Nuclear Information System (INIS)

    1997-05-01

    The report presents detailed information about the nuclear safety and radiological protection in the Swiss nuclear power plants, the central interim storage at Wuerenlingen, the Paul Scherrer Institute (PSI) and other nuclear installations in Switzerland. figs., tabs., refs

  10. Nuclear installations

    International Nuclear Information System (INIS)

    2001-01-01

    This document presents the fulfilling of the Brazilian obligations under the Convention on Nuclear Safety. The Chapter 2 of the document contains some details about the existing Brazilian nuclear installations. Also, safety improvements at Angra 1 and aspects of Angra 2 and 3 are reported

  11. Nuclear installations

    International Nuclear Information System (INIS)

    1998-01-01

    This document presents the fulfilling of the Brazilian obligations under the Convention on Nuclear Safety. The Chapter 2 of the document contains some details about the existing Brazilian nuclear installations. Also, safety improvements at Angra 1 and aspects of Angra 2 and 3 are reported

  12. The Community's research and development programme on decommissioning of nuclear installations. Third annual progress report 1987

    International Nuclear Information System (INIS)

    1988-01-01

    This is the third annual progress report of the European Community's programme (1984-88) of research on the decommissioning of nuclear installations. It shows the status of the programme on 31 December 1987. The third progress report describes the objectives, scope and work programme of the 69 research contracts concluded, as well as the progress of work achieved and the results obtained in 1987

  13. The community's research and development programme on decommissioning of nuclear installations. Fourth annual progress report 1988

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    This is the fourth annual progress report on the European Community's programme (1984-88) of research on the decommissioning of nuclear installations. It shows the status of the programme at 31 December 1988. The fourth progress report describes the objectives, scope and work programme of the 72 research contracts concluded, as well as the progress of work achieved and the results obtained in 1988

  14. The Community's research and development programme on decommissioning of nuclear installations (1989-1993). Annual progress report 1991

    International Nuclear Information System (INIS)

    1992-01-01

    This is the second annual progress report of the European Community's programme (1989-93) of research on decommissioning of nuclear installations. It shows the status of the programme on 31 December 1991. This second progress report summarizes the objectives, scope and work programme of the 76 research contracts concluded, as well as the progress of work achieved and the results obtained in 1991

  15. The Community's research and development programme on decommissioning of nuclear installations: First annual progress report (year 1985)

    International Nuclear Information System (INIS)

    1986-01-01

    This is the first Annual Progress Report of the European Community's 1984-88 programme of research on the decommissioning of nuclear installations. It shows the status of implementation reached on 31 December 1985. The 1984-88 programme has the following contents: A. Research and development projects concerning the following subjects: Project No 1: Long-term integrity of building and systems; Project No 2: Decontamination for decommissioning purposes; Project No 3: Dismantling techniques; Project No 4: Treatment of specific waste materials: steel, concrete and graphite; Project No 5: Large containers for radioactive waste produced in the dismantling of nuclear installations; Project No 6: Estimation of the quantities of radioactive wastes arising from the decommissioning of nuclear installations in the Community; Project No 7: Influence of installation design features on decommissioning. B. Identification of guiding principles, namely: - certain guiding principles in the design and operation of nuclear installations with a view to simplifying their subsequent decommissioning, - guiding principles in the decommissioning of nuclear installations which could form the initial elements of a Community policy in this field. C. Testing of new techniques under real conditions, within the framework of large-scale decommissioning operations undertaken in Member States. This first progress report, covering the period of putting the programme into action, describes the work to be carried out under the 27 research contracts concluded, as well as initial work performed and first results obtained

  16. Nuclear Installations Act 1965

    International Nuclear Information System (INIS)

    1965-01-01

    This Act governs all activities related to nuclear installations in the United Kingdom. It provides for the licensing procedure for nuclear installations, the duties of licensees, the competent authorities and carriers of nuclear material in respect of nuclear occurrences, as well as for the system of third party liability and compensation for nuclear damage. The Act repeals the Nuclear Installations (Licensing and Insurance) Act 1959 and the Nuclear Installations (Amendment Act) 1965 except for its Section 17(2). (NEA) [fr

  17. The Community's research and development programme on decommissioning of nuclear installations. Second annual progress report (year 1986)

    International Nuclear Information System (INIS)

    1987-01-01

    This is the second annual progress report of the European Community's programme (1984-88) of research on the decommissioning of nuclear installations. It shows the status of the programme on 31 December 1986. This second progress report describes the objectives, scope and work programme of the 58 research contracts concluded, as well as the progress of work achieved and the results obtained in 1986

  18. Nuclear Installations Act 1969

    International Nuclear Information System (INIS)

    1969-01-01

    The purpose of this Act is to amend the Nuclear Installations Act 1965 to bring it into full compliance with the international conventions on nuclear third party liability to which the United Kingdom is a Signatory, namely, the Paris Convention, the Brussels Supplementary Convention and the Vienna Convention. (NEA) [fr

  19. The insurance of nuclear installations

    International Nuclear Information System (INIS)

    Francis, H.W.

    1977-01-01

    A brief account is given of the development of nuclear insurance. The subject is dealt with under the following headings: the need for nuclear insurance, nuclear insurance pools, international co-operation, nuclear installations which may be insured, international conventions relating to the liability of operators of nuclear installations, classes of nuclear insurance, nuclear reactor hazards and their assessment, future developments. (U.K.)

  20. Safety of nuclear installations

    International Nuclear Information System (INIS)

    1991-01-01

    In accordance with the Nuclear Energy Act, a Licence may only be issued if the precautions required by the state of the art have been taken to prevent damage resulting from the construction and operation of the installation. The maximum admissible body doses in the area around the installation which must be observed in planning constructional and other technical protective measures to counter accidents in or at a nuclear power station (accident planning values, are established). According to the Radiological Protection Ordinance the Licensing Authority can consider these precautions to have been taken if, in designing the installation against accidents, the applicant has assumed the accidents which, according to the Safety Criteria and Guidelines for Nuclear Power Stations published in the Federal Register by the Federal Minister of the Interior after hearing the competent senior state authorities, must determine the design of a nuclear power station. On the basis of previous experience from safety analysis, assessment and operation of nuclear power stations, the accident guidelines published here define which accidents are determinative for the safety-related design of PWR power stations and what verification -particularly with regard to compliance with the accident planning values of the Radiological Protection Ordinance -must be provided by the applicant. (author)

  1. SNRIU nuclear installation modifications

    International Nuclear Information System (INIS)

    Goroshanskyi, Andrii

    2013-01-01

    Design stages of Nuclear Instalations (NI): NI design is performed in three stages: • Feasibility study: - Feasibility study is developed on the basis of the customer task for production facilities and linear facilities engineering and transport infrastructure that require detailed study of relevant decisions and identify options for and feasibility of construction. • Design: - The design is developed on the basis of design task, initial data and approved the previous stage under three-stage design. • Detailed documentation

  2. Report on activities of Nuclear Regulatory Authority of the Slovak Republic and safety of nuclear installations in the Slovak Republic in 2009. Annual report

    International Nuclear Information System (INIS)

    2010-04-01

    A brief account of activities carried out by the Nuclear Regulatory Authority of the Slovak Republic (UJD SR) in 2009 is presented. These activities are reported under the headings: (1) Foreword; (2) Legislation; (3) Issuance of authorizations, assessment, supervisory activities and enforcement; (4) Nuclear safety of nuclear installations in the Slovak Republic; (5) Safety of other nuclear installations; (6) Management of radioactive waste; (7) Nuclear materials and physical protection of nuclear materials; (8) Emergency planning and preparedness; (9) International activities; (10) Public communication; (11) Nuclear Regulatory Authority of the Slovak Republic; (12) UJD SR organization chart; (13) Abbreviations.

  3. Report on activities of Nuclear Regulatory Authority of the Slovak Republic and safety of nuclear installations in the Slovak Republic in 2008. Annual report

    International Nuclear Information System (INIS)

    Zemanova, D.; Pirozekova, M.

    2009-04-01

    A brief account of activities carried out by the Nuclear Regulatory Authority of the Slovak Republic (UJD SR) in 2008 is presented. These activities are reported under the headings: (1) Foreword; (2) Legislation; (3) Issuance of authorizations, assessment, supervisory activities and enforcement; (4) Nuclear safety of nuclear installations in the Slovak Republic; (5) Safety of other nuclear installations; (6) Management of radioactive waste; (7) Nuclear materials and physical protection of nuclear materials; (8) Activity of Building Office; (9) Emergency planning and preparedness; (10) International activities; (11) Public communication; (11) Nuclear Regulatory Authority of the Slovak Republic; (12) UJD SR organization chart; (13) Abbreviations

  4. Report on Activities of the Nuclear Regulatory Authority of the Slovak Republic and on Safety of Nuclear Installations in the Slovak Republic in 2005. Annual report 2005

    International Nuclear Information System (INIS)

    Zemanova, D.; Seliga, M.; Sladek, V.

    2006-04-01

    A brief account of activities carried out by the Nuclear Regulatory Authority of the Slovak Republic in 2005 is presented. These activities are reported under the headings: Foreword; (1) Vision, Mission and Principles of Activities; (2) Legislation; (3) Issuance of Authorisations, Safety Assessment and Enforcement; (4) Nuclear Safety of Nuclear Installations in the Slovak Republic; (4.1) Nuclear installations in operation in the Slovak Republic; (4.2) Nuclear Installations under construction in the Slovak Republic; (4.3) Decommissioning of nuclear installations in the Slovak Republic; (5) Spent Fuel and Radioactive Waste Management and Safety of other Nuclear Installations in the Slovak Republic; (5.1) Generation and minimisation of radioactive waste; (5.2) Management of radioactive waste; (5.3) Pre-disposal management of radioactive waste; (5.4) Disposal of radioactive waste; (5.5) Shipment of radioactive waste; (5.6) Safety of other nuclear installations in the Slovak Republic; (6) Personnel Qualification and Training; (7) Nuclear Materials and Physical Protection of Nuclear installations; (8) Emergency Preparedness; (9) International Co-operation; (10) Public Communication; (11) UJD SR; (11.1) UJD SR organizational chart; (11.2) UJD SR organizational chart; (11.3) Human resources and training; (11.4) Internal system of quality assurance; (11.5) Development of UJD SR regulatory activities; Appendix: Abbreviations; Development of UJD SR regulatory activities

  5. Report on Activities of the Nuclear Regulatory Authority of the Slovak Republic and on Safety of Nuclear Installations in the Slovak Republic in 2006. Annual Report 2006

    International Nuclear Information System (INIS)

    Zemanova, D.; Pirozekova, M.

    2007-04-01

    A brief account of activities carried out by the Nuclear Regulatory Authority of the Slovak Republic in 2006 is presented. These activities are reported under the headings: Foreword; (1) Vision, Mission and Principles of Activities; (2) Legislation; (3) Issuance of Authorisations, Safety Assessment and Enforcement; (3.1) Issuance of Authorizations/Permissions; (3.2) Assessment and Inspections Activities; (3.3) Safety Assessment and Enforcement; (4) Nuclear Safety of Nuclear Installations in the Slovak Republic; (4.1) Nuclear installations in operation in the Slovak Republic; (4.2) Nuclear Installations under construction in the Slovak Republic; (4.3) Decommissioning of nuclear installations in the Slovak Republic; (5) Safety of Other Nuclear Installations; (5.1) Other Nuclear Installations in Operation; (5.2) Other Nuclear Installations under Construction; (5.3) Other Nuclear Installations under Decommissioning; (6) Management of Radioactive Waste; (6.1) Generation and minimisation of radioactive waste; (6.2) Management of radioactive waste; (6.3) Pre-disposal management of radioactive waste; (6.4) Disposal of radioactive waste; (6.5) Shipment of radioactive waste; (7) Nuclear Materials; (7.1) Accounting for and Control of Nuclear Materials; (7.2) Shipment of Nuclear Materials; (7.3) Illicit Trafficking of Nuclear Materials and Other Radioactive Material; (8) Emergency Planning and Preparedness; (9) International Activities; (9.1) European Affairs; (9.2) Membership in International Organisations; (9.3) Fulfilment of Obligations under International Contractual Instruments; (9.4) Bilateral Co-operation; (10) Public Communication; (11) UJD SR; (11.1) Economy Data; (11.2) Human resources and training; (11.3) Internal Management Quality System; (11.4) Development of UJD SR Regulatory Activities; (12) Abbreviations

  6. Nuclear reactor installation

    International Nuclear Information System (INIS)

    Keller, W.

    1976-01-01

    A nuclear reactor installation includes a pressurized-water coolant reactor vessel and a concrete biological shield surrounding this vessel. The shield forms a space between it and the vessel large enough to permit rapid escape of the pressurized-water coolant therefrom in the event the vessel ruptures. Struts extend radially between the vessel and shield for a distance permitting normal radial thermal movement of the vessel, while containing the vessel in the event it ruptures, the struts being interspaced from each other to permit rapid escape of the pressurized-water coolant from the space between the shield and the vessel

  7. Decommissioning nuclear installations

    International Nuclear Information System (INIS)

    Dadoumont, J.

    2010-01-01

    When a nuclear installation is permanently shut down, it is crucial to completely dismantle and decontaminate it on account of radiological safety. The expertise that SCK-CEN has built up in the decommissioning operation of its own BR3 reactor is now available nationally and internationally. Last year SCK-CEN played an important role in the newly started dismantling and decontamination of the MOX plant (Mixed Oxide) of Belgonucleaire in Dessel, and the decommissioning of the university research reactor Thetis in Ghent.

  8. Nuclear installations sites safety

    International Nuclear Information System (INIS)

    Barber, P.; Candes, P.; Duclos, P.; Doumenc, A.; Faure, J.; Hugon, J.; Mohammadioun, B.

    1988-11-01

    This report is divided into ten parts bearing: 1 Safety analysis procedures for Basis Nuclear Installations sites (BNI) in France 2 Site safety for BNI in France 3 Industrial and transport activities risks for BNI in France 4 Demographic characteristics near BNI sites in France 5 Meteorologic characteristics of BNI sites in France 6 Geological aspects near the BNI sites in France 7 Seismic studies for BNI sites in France 8 Hydrogeological aspects near BNI sites in France 9 Hydrological aspects near BNI sites in France 10 Ecological and radioecological studies of BNI sites in France [fr

  9. Report on activities of Nuclear Regulatory Authority of the Slovak Republic and safety of nuclear installations in the Slovak Republic in 2007. Annual report

    International Nuclear Information System (INIS)

    2007-04-01

    A brief account of activities carried out by the Nuclear Regulatory Authority of the Slovak Republic (UJD SR) in 2007 is presented. These activities are reported under the headings: (1) Foreword; (2) Legislation; (3) Issuance of authorizations, assessment, supervisory activities and enforcement; (4) Nuclear safety of nuclear installations in the Slovak Republic; (5) Safety of other nuclear installations; (6) Management of radioactive waste; (7) Nuclear materials; (8) Emergency planning and preparedness; (9) International activities; (10) Public communication; (11) Nuclear Regulatory Authority of the Slovak Republic; (12) Abbreviations

  10. Nuclear reactor installation

    International Nuclear Information System (INIS)

    Jungmann, A.

    1976-01-01

    A nuclear reactor metal pressure vessel is surrounded by a concrete wall forming an annular space around the vessel. Thermal insulation is in this space and surrounds the vessel, and a coolant-conductive layer is also in this space surrounding the thermal insulation, coolant forced through this layer reducing the thermal stress on the concrete wall. The coolant-conductive layer is formed by concrete blocks laid together and having coolant passages, these blocks being small enough individually to permit them to be cast from concrete at the reactor installation, the thermal insulation being formed by much larger sheet-metal clad concrete segments. Mortar is injected between the interfaces of the coolant-conductive layer and concrete wall and the interfaces between the fluid-conductive layer and the insulation, a layer of slippery sheet material being interposed between the insulation and the mortar. When the pressure vessel is thermally expanded by reactor operation, the annular space between it and the concrete wall is completely filled by these components so that zero-excursion rupture safeguard is provided for the vessel. 4 claims, 1 figure

  11. Nuclear installations and their environment

    International Nuclear Information System (INIS)

    Rieu, Ch.; Berge-Thierry, C.; Duval, C.; Bonnet, Ch.; Gaubert, B.; Riffard, Th.; Greffier, G.; Cervantes, J.C.; Le Breton, F.; Clement, C.; Charbonnier, R.; Andreani, A.M.; Maubert, H.; Maisonneuve, A.

    2002-01-01

    This dossier deals with protection of nuclear installations against external risks. The articles come from the presentations of the Conference on 'Nuclear installations and their environment', held by the 'Safety and Environment Protection' Section of the French Nuclear Energy Society on October 15, 2002. Floods, earthquakes, winter cold, snow-falls, wind, fires are the main natural risks taken into account. Risks from industrial environment and communication lines are also considered. (authors)

  12. UK nuclear installations

    International Nuclear Information System (INIS)

    Gronow, W.S.

    Regulations and conditions for the commissioning of nuclear power plants in the UK, their siting, licence conditions, design safety assessment, inspection during construction and conditions for safety in operation are listed. (J.P.)

  13. 48{sup th} Annual meeting on nuclear technology (AMNT 2017). Key topic / Enhanced safety and operation excellence. Technical session: Operation and safety of nuclear installations, fuel

    Energy Technology Data Exchange (ETDEWEB)

    Hollands, Thorsten [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Garching (Germany). Bereich Reaktorsicherheitsforschung

    2017-12-15

    The sessions Fuel and Materials and Containment and SFP, as part of the Technical Sessions Operation and Safety of Nuclear Installations, Fuel implemented in the Key Topic Enhanced Safety and Operation Excellence were chaired by Dr. Thorsten Hollands (Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH) and Dr. Erwin Fischer (PreussenElektra GmbH) who was the keynote coordinator for the Technical Sessions. Both sessions consist of a keynote lecture followed by technical presentations.

  14. The safety of nuclear installations

    International Nuclear Information System (INIS)

    1993-01-01

    This Safety Fundamental publication sets out basic objectives, concepts and principles for ensuring safety that can be used both by the IAEA in its international assistance operations and by Member States in their national nuclear programmes. These Safety Fundamentals apply primarily to those nuclear installations in which the stored energy developed in certain situations could potentially results in the release of radioactive material from its designated location with the consequent risk of radiation exposure of people. These principles are applicable to a broad range of nuclear installations, but their detailed application will depend on the particular technology and the risks posed by it. In addition to nuclear power plants, such installations may include: research reactors and facilities, fuel enrichment, manufacturing and reprocessing plants; and certain facilities for radioactive waste treatment and storage

  15. Offshore nuclear installations

    International Nuclear Information System (INIS)

    Albano, R.

    1976-01-01

    It is possible now to foresee the creation of nuclear power plants on floating or fixed islands although from the safety viewpoint, floating islands are preferable. The definition of the legal nature of artificial islands raises a first problem insofar as artificial islands are neither islands nor ships. Furthermore, their statute would differ according to whether they were sited in territorial seas or in the new 'economic zones'. This leads to consideration of the applicability of Italian maritime legislation to nuclear power plants on floating islands without setting aside that of international regulations on radioactive maritime pollution. (N.E.A.) [fr

  16. Seismic evaluation of nuclear installations

    International Nuclear Information System (INIS)

    Mattar Neto, Miguel

    1997-01-01

    Some considerations regarding extreme external events, natural or man-induce, such as earthquakes, floods, air crashes, etc, shall be done for nuclear facilities to minimizing the potential impact of the installation on the public and the environment. In this paper the main aspects of the seismic evaluation of nuclear facilities (except the nuclear power reactors) will be presented based on different codes and standards. (author). 7 refs., 2 tabs

  17. Leasing of nuclear installations

    International Nuclear Information System (INIS)

    Capaccioli, Enzo.

    1977-01-01

    The high costs to be borne in industrialised countries for expanding nuclear programmes make leasing, in terms of funding, an attractive proposition even in times of recession. This system is advantageous to both parties: the bodies providing funds make substantial profits without untoward risk, given the internationally-recognised regime of channelling liability onto the nuclear operator and because such contracts usually provide that ownership of the property involved will eventually be transferred to the operator. The latter obtains the sums needed by a simple, speedy procedure enabling him to start operations more quickly than if he had to seek funds by a more conventional method. The problem in Italy is that nuclear electricity generating plants are a State monopoly while leasing is a private enterprise. The Italian 1975 Siting Act provides a consultation procedure of regional and State authorities, with the ultimate decision taken by the latter. To maintain the momentum, arrangements could be made for leasing, before starting the licensing procedure proper according to the Act. (NEA) [fr

  18. Leukaemia near british nuclear installations

    International Nuclear Information System (INIS)

    Hubert, D.

    1991-01-01

    An excess of childhood leukaemia has been seen near some British nuclear installations, especially near the Sellafield reprocessing plant. The same result was found in a more general study including a large number of nuclear sites. Similar studies made in USA, Canada and France have been negative. Moreover, epidemiological studies made in England have discovered other childhood leukaemia clusters in areas far from nuclear facilities, and especially near potential sites of nuclear installations. Several explanations are suggested but no definite conclusion is yet possible. Doses from radioactive releases seem to be too low to account for the additional deaths from leukaemia by environmental contamination. A virus activation, which might be associated with population influx into rural isolated areas, has been considered. The hypothesis of genetic mutation induced by ionising radiation in the fathers of children with leukaemia has been made because a higher risk of leukaemia was observed for children of fathers employed at Sellafield. No firm conclusion is possible considering the small number of observed cases and the lack of excess leukaemias in the offspring of Hiroshima and Nagasaki survivors. The possibility of internal contamination, chemicals or even radon is discussed as other causes. Studies in progress might allow to find an answer to the problem of leukaemia in the vicinity of British nuclear installations [fr

  19. Calculation of the annual radiation dose to the population in the vicinity of nuclear installations due to liquid effluents

    International Nuclear Information System (INIS)

    Gans, I.

    1991-01-01

    Since 1974, assessments of radiation exposure due to the emission of radioactive substances with liquid effluents have been done by the Institut fuer Wasser-, Boden- und Lufhygiene of the Federal Health Office and data have bee published in the annual reports in the series 'Umweltradioaktivitaet und Strahlenbelastung'. The paper explaines the radioecological models of ABG and AVV as far as they relate to the wastewater pathway, as well as the required modifications. Individual aspects of computation are explained referring to the dose calculations for 1989. (orig./DG) [de

  20. Statement of nuclear incidents at nuclear installations

    International Nuclear Information System (INIS)

    2002-07-01

    A statement of nuclear incidents at nuclear installations in Britain during the first quarter of 2002 is published today by the Health and Safety Executive. It covers the period 1 January to 31 March 2002. There are two installations mentioned in the statement: Dungeness B and Heysham 1. The statement is published under arrangements that came into effect from the first quarter of 1993, derived from the Health and Safety Commission's powers under section 11 of the Health and Safety at Work, etc. Act 1974

  1. Quality assurance in nuclear installations

    International Nuclear Information System (INIS)

    Torres M, Nelson.

    1985-08-01

    It has been proven that the bad quality of products, equipment, installations, and services is not due to the lack of tests, experiments and verifications. The main causes are associated with insufficient organization of the activities that have influence on the quality. The garantee of quality is conceptualized as an appropriate instrument composed of normalized criteria initially in advanced technologies. Such as nuclear science and aerospace technology. However, with the appropriate modifications it can be applied to conventional technologies

  2. Nuclear installations: decommissioning and dismantling

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    This document is a compilation of seven talks given during the 1995 EUROFORUM conference about decommissioning and dismantling of Nuclear installations in the European Community. The first two papers give a detailed description of the legal, financial and regulatory framework of decommissioning and dismantling of nuclear facilities in the European Union and a review of the currently available decommissioning techniques for inventory, disassembly, decontamination, remote operations and management of wastes. Other papers describe some legal and technical aspects of reactor and plants dismantling in UK, Germany, Spain and France. (J.S.)

  3. Statement of nuclear incidents at nuclear installations

    International Nuclear Information System (INIS)

    2001-07-01

    A statement of nuclear incidents at nuclear installations in Britain during the first quarter of 2001 is published today by the Health and Safety Executive. It covers the period 1 January to 31 March 2001. The statement is published under arrangements that came into effect from the first quarter of 1993, derived from the Health and Safety Commission's powers under section 11 of the Health and Safety at Work, etc. Act 1974

  4. Civilian protection and Britain's commercial nuclear installations

    International Nuclear Information System (INIS)

    1981-01-01

    The subject is treated as follows: initial conclusions (major nuclear attack on military installations; nuclear attack including civil nuclear targets; conventional attack on civil nuclear installations); nature of nuclear weapons explosions and power reactor releases (general; dose effects and biologically significant isotopes; nuclear weapon effects; effect of reactors and other fuel-cycle installations in a thermonuclear area; implications of reactor releases due to conventional attack, sabotage, civil disorder or major accident). (U.K.)

  5. The dismantling of nuclear installations

    International Nuclear Information System (INIS)

    Lacoste, A.C.; Duthe, M.; Mignon, H.; Lambert, F.; Pradel, Ph.; Hillewaere, J.P.; Dupre la Tour, St.; Mandil, C.; Weil, L.; Eickelpasch, N.; Finsterwalder, L.

    1997-01-01

    for nuclear installations, the dismantling is an important part of their exploitation. The technology of dismantling is existing and to get a benefit from the radioactive decay, it seems more easy for operating company such E.D.F. to wait for fifty years before dismantling. But in order to get the knowledge of this operation, the Safety Authority wanted to devote this issue of 'Controle'to the dismantling method. This issue includes: the legal aspects, the risks assessment, the dismantling policy at E.D.F., the site of Brennilis (first French experience of dismantling), the dismantling techniques, the first dismantling of a fuel reprocessing plant, comparison with classical installations, economic aspect, some German experiences, the cleansing of the american site of Handford. (N.C.)

  6. Environmental assessment [of nuclear installations

    International Nuclear Information System (INIS)

    Townsley, M.

    1989-01-01

    The European Community has introduced a directive which instructs that for all projects likely to have a significant effect on the environment consent should only be given after a rigorous assessment of such effects has been carried out and presented as an environmental statement. Projects requiring environmental assessment include nuclear power stations, any thermal power station over 300MW, any radioactive waste storage or disposal facility, any installation which produces electricity, power lines, installations for fuel production, fuel reprocessing, radioactive waste processing and fuel enrichment. The statement must include a description of the likely effects, direct and indirect, on the environment of the development, with reference to human beings, flora, fauna, soil, water, air, climate, landscape, interactions of two or more of these, material assets and cultural heritage. Measures to avoid or remedy the impact must be included. (U.K.)

  7. Public perception of nuclear installations

    International Nuclear Information System (INIS)

    Kiipper, Felipe de Moura

    2011-01-01

    The key for nuclear renaissance is public acceptance. Facing energetic needs that occur around the world and lack of resources, the work of characterizing and proposing new models to represent public opinion is extremely important to all stakeholders. Even though public opinion's study on risks is relatively recent, may approaches of this subject have been suggested and presented, especially for the topic of perceptions on nuclear installations. Actual definitions on risk exist between objective and subjective models, that reflect opinions of lay public and experts. Strategies on communications with the public may be evaluated from many developed models, and its results may be registered. The use of structural models may present an exploratory character as well as confirmatory theories, as an adequate tool for the development of studies on public perception. In this work, a structural model is presented from data obtained in a previous report, and added to data collected before and after the Fukushima nuclear accident, in Japan. The effects developed from this accident offered a unique opportunity to study public opinion through the effects of a serious nuclear accident and its effects on risk communications. Aside, this work attempted to check the structural model according with obtained results, in order to sustain a constant improvement of the working tools. Yet, a comparison between data according to experts' respondents and lay public ones as well as a comparison among different students before and after a visit to nuclear station is considered. Obtained data for the structural models has been applied for on a structural model and analyzed by structural correlation matrix, latent variable structural coefficients and R 2 values. Results indicate that public opinion maintains its rejection on nuclear energy and the perception of benefits, facing perceived risks before the accident, has diminished. A new model that included a latent variable for corresponding

  8. Recommendations for the drafting of annual reports of public information related to nuclear base installations - Guide nr 3, Release of the 20/10/2010

    International Nuclear Information System (INIS)

    2010-01-01

    After a recall of the regulatory context and references, this guide proposes a set of recommendations aiming at a better transparency of information in the nuclear sector. It contains general recommendations (notably making the report accessible to a large public, writing a document per site, limiting the size of reports, adopting a common plan for each report), proposes a typical plan (description of installations, measures related to nuclear security and radiation protection, incidents and accidents, releases, management of radioactive wastes and products, other risks and pollutions, actions regarding transparency and information, recommendations by the CHSCT), and addresses the report diffusion

  9. Safety of nuclear installations in Slovakia

    International Nuclear Information System (INIS)

    1998-01-01

    In this part next aspects are described: (1) Site selection (Legislation related to site selection; Meeting criteria at Bohunice and Mochovce sites; International agreements); (2) Design preparation and construction (Designing and construction-relevant legislation; Nuclear installation project preparation of nuclear installation at Mochovce site); (3) Operation (Operator licensing procedure; Operation limits and conditions; Maintenance testing and control documentation for management and operation; Technical support of operation; Analysis of events at nuclear installations and Radioactive waste production); (4) Planned safety upgrading activities at nuclear installations

  10. Nuclear Medicine Annual, 1989

    International Nuclear Information System (INIS)

    Freeman, L.M.; Weissmann, H.S.

    1989-01-01

    Among the highlights of Nuclear Medicine Annual, 1989 are a status report on the thyroid scan in clinical practice, a review of functional and structural brain imaging in dementia, an update on radionuclide renal imaging in children, and an article outlining a quality assurance program for SPECT instrumentation. Also included are discussions on current concepts in osseous sports and stress injury scintigraphy and on correlative magnetic resonance and radionuclide imaging of bone. Other contributors assess the role of nuclear medicine in clinical decision making and examine medicolegal and regulatory aspects of nuclear medicine

  11. Nuclear Physics Department annual report

    International Nuclear Information System (INIS)

    1997-07-01

    This annual report presents articles and abstracts published in foreign journals, covering the following subjects: nuclear structure, nuclear reactions, applied physics, instrumentation, nonlinear phenomena and high energy physics

  12. The nuclear installations face to their environment

    International Nuclear Information System (INIS)

    Rieu, Ch.; Berge-Thierry, C.; Duval, C.; Bonnet, Ch.; Gaubert, B.; Riffard, Th.; Greffier, G.; Cervantes, J.C.; Le Breton, F.; Clement, C.; Charbonnier, R.; Andreani, A.M.; Maubert, H.; Maisonneuve, A.

    2002-01-01

    This dossier deals with protection of nuclear installations against external risks. The articles come from the presentations of the Conference on 'Nuclear installations and their environment', held by the 'Safety and Environment Protection' Section of the French Nuclear Energy Society on October fifteenth 2002. Floods, earthquakes, winter cold, snow-falls, wind, fires are the main natural risks taken into account. Risks from industrial environment and communication lines are also considered. (author)

  13. Decommissioning and dismantling of nuclear installations

    International Nuclear Information System (INIS)

    Pelzer, N.

    1993-01-01

    The German law governing decommissioning and dismantling of nuclear installations can be called to be embryonic as compared to other areas of the nuclear regulatory system, and this is why the AIDN/INLA regional meeting organised by the German national committee in July 1992 in Schwerin has been intended to elaborate an assessment of the current legal situation and on this basis establish proposals for enhancement and development, taking into account the experience reported by experts from abroad. The proceedings comprise the paper of the opening session, 'Engineering and safety aspects of the decommissioning of nuclear installations', and the papers and discussions of the technical sessions entitled: - Comparative assessment of the regulatory regimes. - Legislation governing the decommissioning of nuclear installations in Germany. - Analysis of the purpose and law making substance of existing regulatory provisions for the decommissioning of nuclear installations. All seventeen papers of the meeting have been prepared for separate retrieval from the database. (orig./HSCH) [de

  14. Demographic characteristics of nuclear installations sites

    International Nuclear Information System (INIS)

    Doumenc, A.; Faure, J.

    1988-01-01

    The selection of a nuclear installations sites can not be conceived without a deep analysis of demographic context. This analysis permits to define the critical populations around the installation and is an essential element of emergency plans. 1 tab., 2 refs. (F.M.)

  15. Managing for safety at nuclear installations

    International Nuclear Information System (INIS)

    1996-01-01

    This publication, by the Health and Safety Executive's (HSE's) Nuclear Safety Division (NSD), provides a statement of the criteria the Nuclear Installations Inspectorate (NII) uses to judge the adequacy of any proposed or existing system for managing a nuclear installation in so far as it affects safety. These criteria have been developed from the basic HSE model, described in the publication Successful health and safety management that applies to industry generally, in order to meet the additional needs for managing nuclear safety. In addition, the publication identifies earlier studies upon which this work was based together with the key management activities and outputs. (Author)

  16. Statement of nuclear incidents at nuclear installations

    International Nuclear Information System (INIS)

    2002-01-01

    The Health and Safety Executive (HSE) presents the statement of nuclear incidents at nuclear installations published under the Health and Safety Commission's powers derived from section 11 of the Health and Safety at Work, etc. Act 1974. INCIDENT 02/4/1. Harwell (United Kingdom Atomic Energy Authority) On 6 November 2002 during operations in a glove box in B220, the over pressure alarm sounded. The operators evacuated and shortly afterwards the airborne activity monitors also sounded. The building emergency arrangements for airborne activity alarms was initiated to ascertain the source and to manage the operations. An investigation by UKAEA confirmed that a release of Americium 241 into the working area had occurred at a quantity in excess of Schedule 8 column 4 of the Ionising Radiations Regulations 1999 (IRRs). A number of personnel have received intakes including the two operators and the health physics personnel who attended the event. The highest dose (up to 6 mSv.) was received by the Health Physics charge hand. UKAEA placed an embargo on the use of similar systems and have completed their own management investigation and produced an internal report. It concludes that the likely cause of the event was over-pressurisation of the vacuum equipment used in the process. The report also highlights improvements required to the ventilation system in the laboratory and adjoining areas. An action plan has been developed for this work and progress is being made. NIl has followed the UKAEA investigation and carried out its own study including a visit by a ventilation specialist. This has confirmed the problems with the ventilation system. It is a complex issue that may have a wider impact across the building. A letter has been sent to UKAEA detailing a series of short-term requirements and the need to review implications and produce a longer-term action plan. UKAEA is cooperating fully with these requirements. INCIDENT 02/4/2. Dounreay (United Kingdom Atomic Energy

  17. Physical protection of nuclear installations

    International Nuclear Information System (INIS)

    Toepfer, K.

    1989-01-01

    This contribution investigates the possible danger and the legal basis of physical protection and explains the current, integrated system provided for, as well as the underlying possible scenarios of an assault: (1) by a violent crowd of aggressors outside the installation, (2) by a small group of aggressors outside the installation, (3) by a person allowed to enter (internal assault). The physical protection system supplements the internal safety measures to enhance protection against hypothetical and possible acts of terrorism or other criminal assault. The system covers external and internal controlled areas, access monitoring, physical protection control room and service, security checks of the personnel, and activities to disclose sabotage. Some reflections on the problem field between security controls and the constitutional state conclude this contribution. (orig./HSCH) [de

  18. Culture safety in the nuclear installation

    International Nuclear Information System (INIS)

    Benar Bukit

    2008-01-01

    Culture safety is aimed to empower all the personnel to contribute and responsible to the installation safety where they work in. Culture safety is important as there were so many accidents happened due to the little attention given to the safety, take as examples of what happened in Three Mille Island installation (1979) and Chernobyl (1986). These remind us that human factor gives a significant contribution to the failure of operational system which influences the safety. Therefore, as one of institutions which has nuclear installation. National Nuclear Energy Agency must apply the culture safety to guarantee the safety operation of nuclear installation to protect the personnel, community and environment from the hazard of radioactive radiation. Culture safety has two main components. The first component under the management responsibility is a framework needed in an organisation. The second component is the personnel attitude in al/ levels to respond and optimize those framework. (author)

  19. Computer systems for nuclear installation data control

    International Nuclear Information System (INIS)

    1987-09-01

    The computer programs developed by Divisao de Instalacoes Nucleares (DIN) from Brazilian CNEN for data control on nuclear installations in Brazil are presented. The following computer programs are described: control of registered companies, control of industrial sources, irradiators and monitors; control of liable person; control of industry irregularities; for elaborating credence tests; for shielding analysis; control of waste refuge [pt

  20. Construction for Nuclear Installations. Specific Safety Guide

    International Nuclear Information System (INIS)

    2015-01-01

    This Safety Guide provides recommendations and guidance based on international good practices in the construction of nuclear installations, which will enable construction to proceed with high quality. It can be applied to support the development, implementation and assessment of construction methods and procedures and the identification of good practices for ensuring the quality of the construction to meet the design intent and ensure safety. It will be a useful tool for regulatory bodies, licensees and new entrant countries for nuclear power plants and other nuclear installations

  1. Meteorological instrumentation for nuclear installations

    International Nuclear Information System (INIS)

    Costa, A.C.L. da.

    1983-01-01

    The main requirements of regulatory agencies, concerning the meteorological instrumentation needed for the licensing of nuclear facilities are discussed. A description is made of the operational principles of sensors for the various meteorological parameters and associated electronic systems. Finally, it is presented an analysis of the problems associated with grounding of a typical meteorological station. (Author) [pt

  2. Site evaluation for nuclear installations. Safety requirements

    International Nuclear Information System (INIS)

    2003-01-01

    This Safety Requirements publication supersedes the Code on the Safety of Nuclear Power Plants: Siting, which was issued in 1988 as Safety Series No. 50-C-S (Rev. 1). It takes account of developments relating to site evaluations for nuclear installations since the Code on Siting was last revised. These developments include the issuing of the Safety Fundamentals publication on The Safety of Nuclear Installations, and the revision of various safety standards and other publications relating to safety. Requirements for site evaluation are intended to ensure adequate protection of site personnel, the public and the environment from the effects of ionizing radiation arising from nuclear installations. It is recognized that there are steady advances in technology and scientific knowledge, in nuclear safety and in what is considered adequate protection. Safety requirements change with these advances and this publication reflects the present consensus among States. This Safety Requirements publication was prepared under the IAEA programme on safety standards for nuclear installations. It establishes requirements and provides criteria for ensuring safety in site evaluation for nuclear installations. The Safety Guides on site evaluation listed in the references provide recommendations on how to meet the requirements established in this Safety Requirements publication. The objective of this publication is to establish the requirements for the elements of a site evaluation for a nuclear installation so as to characterize fully the site specific conditions pertinent to the safety of a nuclear installation. The purpose is to establish requirements for criteria, to be applied as appropriate to site and site-installation interaction in operational states and accident conditions, including those that could lead to emergency measures for: (a) Defining the extent of information on a proposed site to be presented by the applicant; (b) Evaluating a proposed site to ensure that the site

  3. Nuclear Physics Laboratory: Annual report

    International Nuclear Information System (INIS)

    1987-05-01

    Topics covered in this annual report are: astrophysics and cosmology, giant resonances in excited nuclei, heavy ions, fundamental symmetries, nuclear reactions, accelerator mass spectrometry, accelerators and ion sources, nuclear instrumentation, computer systems and the booster linac project

  4. Cancer risks near nuclear installations?

    International Nuclear Information System (INIS)

    Hubert, D.

    1999-01-01

    The descriptive studies actually at disposal bring to the fore some children leukemia aggregates around some nuclear sites. (Sellafield, and Dounreay in the United kingdom, Kruemmel in Germany). Nevertheless, the studies grouping several sites do not find any global excess. The analytical studies have not brought any answer until now, but have allowed to eliminate some hypothesis such the Gardner genetic hypothesis. (N.C.)

  5. Childhood cancer and nuclear installations: a review

    International Nuclear Information System (INIS)

    Muirhead, C.R.

    1998-01-01

    Many epidemiological studies of childhood cancer around nuclear installations have been conducted in recent years. This article reviews results from Great Britain and elsewhere. Geographical studies have indicated raised risks of childhood leukaemia around some British nuclear installations. However, environmental assessments suggest that the findings are unlikely to be due to radioactive releases from the sites. Case-control studies have allowed more detailed investigation of putative risk factors than is possible from geographical studies. In particular, a recent national study in Britain does not support the hypothesis raised by an earlier study in West Cumbria that paternal radiation exposure prior to conception may increase the risk of leukaemia and non-Hodgkin's lymphoma in offspring. Other studies suggest that childhood leukaemia may have an infective basis, although there is still uncertainty about whether this would explain the findings around nuclear installations. The UK Childhood Cancer Study may provide more information on the causes of these diseases. (author)

  6. ALARA in European nuclear installations

    International Nuclear Information System (INIS)

    Lefaure, C.; Croft, J.; Pfeffer, W.; Zeevaert, T.

    1995-01-01

    For over a decade the Commission of the European Community has sponsored research projects on the development and practical implementation of the Optimization principle, or as it is often referred to, ALARA. These projects have given rise to a series of successful international Optimization training courses and have provided a significant input to the periodic European Seminars on Optimization, the last one of which took place in April 1993. This paper reviews the approaches to Optimization that have development within Europe and describes the areas of work in the current project. The on-going CEC research project addresses the problem of ALARA and internal exposures, and tries to define procedures for ALARA implementation, taking account of the perception of the hazard as well as the levels of probability of exposure. The relationships between ALARA and work management, and ALARA and decommissioning of installations appear to be other fruitful research areas. Finally, this paper introduces some software for using ALARA decision aiding techniques and databases containing feed back experience developed in Europe

  7. ALARA in European nuclear installations

    Energy Technology Data Exchange (ETDEWEB)

    Lefaure, C. [CEPN, Fontenay-Aux-Roses (France); Croft, J. [NRPB, Chilton, Didcot (United Kingdom); Pfeffer, W. [GRS, Koeln (Germany); Zeevaert, T. [SCK/CEN, Mol (Belgium)

    1995-03-01

    For over a decade the Commission of the European Community has sponsored research projects on the development and practical implementation of the Optimization principle, or as it is often referred to, ALARA. These projects have given rise to a series of successful international Optimization training courses and have provided a significant input to the periodic European Seminars on Optimization, the last one of which took place in April 1993. This paper reviews the approaches to Optimization that have development within Europe and describes the areas of work in the current project. The on-going CEC research project addresses the problem of ALARA and internal exposures, and tries to define procedures for ALARA implementation, taking account of the perception of the hazard as well as the levels of probability of exposure. The relationships between ALARA and work management, and ALARA and decommissioning of installations appear to be other fruitful research areas. Finally, this paper introduces some software for using ALARA decision aiding techniques and databases containing feed back experience developed in Europe.

  8. Seismic studies for nuclear installations sites

    International Nuclear Information System (INIS)

    Mohammadioun, B.; Faure, J.

    1988-01-01

    The french experience in seismic risks assessment for french nuclear installations permits to set out the objectives, the phases the geographic extensions of workings to be realized for the installation safety. The data to be collected for the safety analysis are specified, they concern the regional seismotectonics, the essential seismic data for determining the seism level to be taken into account and defining the soil movement spectra adapted to the site. It is necessary to follow up the seismic surveillance during the installation construction and life. 7 refs. (F.M.)

  9. Questions for the nuclear installations inspectorate

    International Nuclear Information System (INIS)

    Conroy, C.; Flood, M.; MacRory, R.; Patterson, W.C.

    1976-01-01

    The responsibilities of the Nuclear Installations Inspectorate are considered, and the responsibilities of other bodies for (a) reprocessing and enrichment, and (b) security. Questions for the Nuclear Installations Inspectorate are then set out under the following heads: general (on such topics as vandalism, sabotage, threats, security, reactor incidents); magnox reactors; corrosion; advanced gas-cooled reactor; steam generating heavy water reactor; fast breeder reactor; reproces-sing and waste. Most of the questions are concerned with technical problems that have been reported or might possibly arise during construction or operation, affecting the safety of the reactor or process. (U.K.)

  10. Iodine filters in nuclear installations

    International Nuclear Information System (INIS)

    Wilhelm, J.G.

    1982-01-01

    The present report discusses the significance for environmental exposure of the iodine released with the gaseous effluents of nuclear power stations and reprocessing plants in relation to releases of other airborne radionuclides. Iodine filtration processes are described. The release pathways and the composition of airborne fission product iodine mixtures and their bearing on environmental exposure are discussed on the basis of measured fission product iodine emissions. The sorbents which can be used for iodine filtration, their removal efficiencies and range of applications are dealt with in detail. The particular conditions governing iodine removal, which are determined by the various gaseous iodine species, are illustrated on the basis of experimentally determined retention profiles. Particular attention is given to the limitations imposed by temperature, humidity, radiation and filter poisoning. The types of filter normally used are described, their advantages and drawbacks discussed, the principles underlying their design are outlined and the sources of error indicated. The methods normally applied to test the efficiency of various iodine sorbents are described and assessed. Operating experience with iodine filters, gathered from surveillance periods of many years, is supplemented by a large number of test results and the findings of extensive experiments. Possible ways of prolonging the permissible service lives of iodine filters are discussed and information is given on protective measures. The various iodine removal processes applied in reprocessing plants are described and compared with reference to efficiency and cost. The latest developments in filter technology in reprocessing plants are briefly outlined

  11. Safeguards Strategy in Physical Protection System for Nuclear Installation

    International Nuclear Information System (INIS)

    Ade lndra B; Kasturi; Tatang Eryadi

    2004-01-01

    Safeguards strategy is directed at efforts of eliminating theft of nuclear materials and sabotage of nuclear installation. For achieving the above objective, it is necessary to set up safeguards strategy in physical protection of nuclear materials and installation. The safeguards strategy starts from anticipated security condition, list of thefts, planning referred to as safeguards planning. Safeguards planning are implemented in safeguards implementation, followed up then by evaluation. Results of evaluation are equipped with results of safeguards survey already developed. Safeguards' planning is made from these results and serve as guidelines for next safeguards implementation and is repeated to form a safeguard cycle. One safeguard cycle is made on a periodical basis, at least annually. (author)

  12. Advanced Measuring (Instrumentation Methods for Nuclear Installations: A Review

    Directory of Open Access Journals (Sweden)

    Wang Qiu-kuan

    2012-01-01

    Full Text Available The nuclear technology has been widely used in the world. The research of measurement in nuclear installations involves many aspects, such as nuclear reactors, nuclear fuel cycle, safety and security, nuclear accident, after action, analysis, and environmental applications. In last decades, many advanced measuring devices and techniques have been widely applied in nuclear installations. This paper mainly introduces the development of the measuring (instrumentation methods for nuclear installations and the applications of these instruments and methods.

  13. Annual Report 2007. Nuclear Regulatory Authority

    International Nuclear Information System (INIS)

    2008-01-01

    The present Annual Report of Activities of the Nuclear Regulatory Authority (ARN), prepared regularly from the creation as independent institution, describes across tree parts and seven annexes the activities developed by the organism during 2007. The main topic are: the organization and the activity of the ARN; the regulatory standards; the licensing and inspection of nuclear power plants and critical facilities; the emergency systems; the occupational surveillance; the environmental monitoring; improved organizational. Also, this publication have annexes with the following content: regulatory documents; inspections to medical, industrial and training installations; regulatory guides; measurement and evaluation of the drinking water of Ezeiza.

  14. Annual Report 2009. Nuclear Regulatory Authority

    International Nuclear Information System (INIS)

    2010-01-01

    The present Annual Report of Activities of the Nuclear Regulatory Authority (ARN), prepared regularly from the creation as independent institution, describes across four parts and seven annexes the activities developed by the organism during 2009. The main topic are: the organization and the activity of the ARN; the regulatory standards; the licensing and inspection of nuclear power plants and critical facilities; the emergency systems; the environmental monitoring; the occupational surveillance; the training and the public information; improved organizational and budgetary developments. Also, this publication have annexes with the following content: regulatory documents; inspections to medical, industrial and training installations; regulatory guides; measurement and evaluation of the drinking water of Ezeiza.

  15. Statement of nuclear incidents at nuclear installations

    International Nuclear Information System (INIS)

    1993-10-01

    Three incidents were reported in April-June 1993. The first was on the British Nuclear Fuel plc (BNFL) site at Sellafield and concerned leakage of 0.5 TBq of alpha activity from plutonium contaminated waste stored in a steel drum. This was subsequently double contained and moved so it could be inspected regularly. No contamination of personnel occurred. The second concerned the leakage of thorium liquor from a pipe at the UKAEA's Thorium reprocessing plant at Dounreay. Two temporary repairs were made and no personnel were contaminated. The third was at the Sellafield site where a small quantity (5 mls) of plutonium containing liquor had leaked from a package and released alpha activity. The bags were temporary containment of engineering debris which may have had sharp edges. The bags had been piled up and one of the bags had torn. Recommendations were made following inquiries into each of the incidents to improve procedures and prevent similar incidents occurring. (UK)

  16. Drones and safety of nuclear installations

    International Nuclear Information System (INIS)

    Tourneur, Jean-Claude

    2015-01-01

    Recent flyovers of French nuclear power plants by drones or UAVs (the owners of these drones could not be identified) has made the safety of these nuclear installations a matter of concern. These events also raised the question of balance between secret and information about these installations. The French Parliamentary Office for the Assessment of Scientific and Technological Choices (OPECST) organised two sets of hearings, a confidential one with people in charge of information related to national defence and security, and a public one opened to all stakeholders. This article briefly reports and discusses the results of these hearings. It appeared that these flyovers are not really a threat, are more a communication action than anything else. Suggestions have been made for the development of researches in the field of drone detection, and also for evolutions of French legislation on drones

  17. The dismantling of CEA nuclear installations

    International Nuclear Information System (INIS)

    Piketty, Laurence

    2016-03-01

    After having indicated locations of French nuclear installations which are currently being dismantled (about 30 installations), and recalled the different categories of radioactive wastes with respect to their activity level and the associated storage options, this article gives an overview of various aspects of dismantling, more precisely in the case of installations owned and managed by the CEA. These operations comprise the dismantling itself, the recovery and packaging of wastes, old effluents and spent fuels. The organisation and responsible departments within the CEA are presented, and the author outlines some operational problematic issues met due to the age of installations (traceability of activities, regulation evolutions). The issue of financing is then discussed, and its uncertainties are outlined. The dismantling strategy within the CEA-DEN is described, with reference to legal and regulatory frameworks. The next parts of the article address the organisation and the economic impact of these decontamination and dismantling activities within the CEA-DEN, highlight how R and D and advanced technology are a support to this activities as R and D actions address all scientific and technical fields of nuclear decontamination and dismantling. An overview of three important dismantling works is proposed: Fontenay-aux-Roses, the Marcoule CEA centre (a reference centre in the field of nuclear dismantling and decontamination) and the Grenoble CEA centre (reconversion in R and D activities in the fields of technologies of information, of communication, technologies, for health, and in renewable energies). The last part addresses the participation to the Strategic Committee of the Nuclear Sector (CSFN)

  18. Safety culture in nuclear installations. Proceedings

    International Nuclear Information System (INIS)

    Carnino, A.; Weimann, G.

    1995-04-01

    These proceedings of the International Topical Meeting on Safety Culture in Nuclear Installations held in Vienna, Austria from 24 to 28 April 1995 provide a wide forum of information exchange and discussions on the topic safety culture in nuclear power plants. Safety culture deals with human factors since it deals with attitudes, organization and management. It then means that it has a natural component in it which is linked to the national culture and education. There are about 95 contributions, some of them presented by title and abstract only. All of them are in the subject scope of INIS. (Botek)

  19. Safety culture in nuclear installations. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Carnino, A [ed.; International Atomic Energy Agency, Vienna (Austria); Weimann, G [ed.; Oesterreichisches Forschungszentrum Seibersdorf GmbH (Austria)

    1995-04-01

    These proceedings of the International Topical Meeting on Safety Culture in Nuclear Installations held in Vienna, Austria from 24 to 28 April 1995 provide a wide forum of information exchange and discussions on the topic safety culture in nuclear power plants. Safety culture deals with human factors since it deals with attitudes, organization and management. It then means that it has a natural component in it which is linked to the national culture and education. There are about 95 contributions, some of them presented by title and abstract only. All of them are in the subject scope of INIS. (Botek).

  20. Regulatory Safety Requirements for Operating Nuclear Installations

    International Nuclear Information System (INIS)

    Gubela, W.

    2017-01-01

    The National Nuclear Regulator (NNR) is established in terms of the National Nuclear Regulator Act (Act No 47 of 1999) and its mandate and authority are conferred through sections 5 and 7 of this Act, setting out the NNR's objectives and functions, which include exercising regulatory control over siting, design, construction etc of nuclear installations through the granting of nuclear authorisations. The NNR's responsibilities embrace all those actions aimed at providing the public with confidence and assurance that the risks arising from the production of nuclear energy remain within acceptable safety limits -> Therefore: Set fundamental safety standards, conducting pro-active safety assessments, determining licence conditions and obtaining assurance of compliance. The promotional aspects of nuclear activities in South Africa are legislated by the Nuclear Energy Act (Act No 46 of 1999). The NNR approach to regulations of nuclear safety and security take into consideration, amongst others, the potential hazards associated with the facility or activity, safety related programmes, the importance of the authorisation holder's safety related processes as well as the need to exercise regulatory control over the technical aspects such as of the design and operation of a nuclear facility in ensuring nuclear safety and security. South Africa does not have national nuclear industry codes and standards. The NNR is therefore non-prescriptive as it comes to the use of industry codes and standards. Regulatory framework (current) provide for the protection of persons, property, and environment against nuclear damage, through Licensing Process: Safety standards; Safety assessment; Authorisation and conditions of authorisation; Public participation process; Compliance assurance; Enforcement

  1. Nuclear installations inspectorate a public opinion survey

    International Nuclear Information System (INIS)

    Lennie, S.E.; Davies, A.G.

    2001-01-01

    HM Nuclear Installations Inspectorate (HMNII) is the regulator responsible for the safety of licensed nuclear sites in the UK. Recognizing the need for public approval on future policy with respect to nuclear waste management, the NII commissioned a public opinion research programme amongst the UK general public. Opinion was sought on a number of issues including attitudes towards the industry in general, perception of nuclear waste and its management, tolerability of risk and attitudes towards current decommissioning plans. In response to the primary objectives of the survey the main findings are: current spontaneous level of concern over the industry in general is low (7%), and lower still for nuclear waste (3%). However, on prompting, 47% of respondents were very concerned about nuclear waste. Top of mind issues of concern about the industry are: nuclear waste; risk of accidents; health risks. Personal risk from nuclear waste is not of overt concern and is significantly less worrisome to respondents than risk from diseases like meningitis or cancer, smoking or road accidents. On being presented with a statement describing current UK decommissioning plans, the sample was generally in favour. However, this issue will require further research. (authors)

  2. Seismic evaluation of nuclear installations; Avaliacao sismica de instalacoes nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Mattar Neto, Miguel [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)

    1997-10-01

    Some considerations regarding extreme external events, natural or man-induce, such as earthquakes, floods, air crashes, etc, shall be done for nuclear facilities to minimizing the potential impact of the installation on the public and the environment. In this paper the main aspects of the seismic evaluation of nuclear facilities (except the nuclear power reactors) will be presented based on different codes and standards. (author). 7 refs., 2 tabs.

  3. Statement of nuclear incidents at nuclear installations: first quarter 1994

    International Nuclear Information System (INIS)

    1994-06-01

    As a requirement of the 1974 Health and Safety at Work Act, the United Kingdom Health and Safety Inspectorate is required to publish reports of nuclear incidents at nuclear installations. This report covers the period 1st January to 31st March 1994. Two incidents are reported for Dungeness A Power Station, one at the Amersham International building on site at Harwell Laboratory, one at AEA Technology's Windscale Plant and one at British Nuclear Fuels Limited's Sellafield site. (UK)

  4. Professional operation and management of nuclear island installation

    International Nuclear Information System (INIS)

    Ma Limin

    2011-01-01

    As an important part of nuclear power plant construction, nuclear island installation mainly involves main equipment installation, pipeline installation, associated procedure examination and other important tasks. However, due to the nuclear island installation management changing from single project to multi-projects, the problems such as professional management of nuclear island installation and the lack of technical staff become more and more prominent and become one of the key restricts to the work of nuclear island installation. Based on analysis of the single project, single-base nuclear island installation management and practice, combined with the current situation that multi-project and multi-base construction of nuclear power are carrying out at the same time, this paper proposes a new management model of nuclear island installation. (author)

  5. Regulatory oversight report 2008 concerning nuclear safety in Swiss nuclear installations

    International Nuclear Information System (INIS)

    2009-04-01

    This annual report issued by the Swiss Federal Nuclear Inspectorate (ENSI) reports on the work carried out by the Inspectorate in 2008. This report reviews the regulatory activities in the four Swiss nuclear power stations and in four further nuclear installations in various Swiss research facilities. It deals with topics such as operational details, technologies in use, radiation protection, radioactive wastes, emergency dispositions, personnel and provides an assessment of operations from the safety point of view. Also, the transportation of nuclear materials - both nuclear fuels and nuclear wastes - is reported on. General topics discussed include probabilistic safety analyses and accident management, earthquake damage analysis and agreements on nuclear safety. The underground disposal of highly-radioactive nuclear wastes and work done in the rock laboratories are discussed, as are proposals for additional nuclear power stations

  6. Safety of nuclear installations. An international comparison

    International Nuclear Information System (INIS)

    Renner, Andrea; Diwes, Andreas; Reingardt, Martin

    2010-01-01

    Safeguarding of nuclear power plants against disruptive actions or other external hazards is part of the plant design and presumption of an operation license. The general principle is defense in depth involving different security zones with separate barriers. The safeguards for nuclear installations are organized in three areas of responsibility: governmental measures (police, military), technical (detectors, scanners, illuminations, camera tracking, concrete barriers) and personnel measures (access control, security personnel, alarm) of the operating company. International responsibilities results from the treaty on the non-proliferation of nuclear weapons and several IAEA documents. The authors discuss the national regulations in Germany, Switzerland, United Kingdom and USA. Older NPPs that are not in compliance with actual safety standards will be a topic of increasing importance.

  7. [Nuclear theory: Annual report

    International Nuclear Information System (INIS)

    Iachello, F.; Alhassid, Y.; Kusnezov, D.

    1991-01-01

    This report discusses topics on : nuclear structure models; algebraic models of hadronic structure; nuclear reactions; hot rotating nuclei; chaos in nuclei; signatures of the quark-gluon plasma; hadronic spectroscopy; octupole collectivity in nuclei; finite-temperature methods for the many-body problem; and classical limit of algebraic hamiltonians

  8. Chapter 4. Assessment and inspection of nuclear installations

    International Nuclear Information System (INIS)

    2001-01-01

    Supervisory activity of Nuclear Regulatory Authority of the Slovak Republic (UJD) upon the safety of nuclear installations in compliance with the 'Atomic Act' and other legal regulations includes also inspection and assessment activities of UJD. Assessment activity of UJD in relation to nuclear installations lies in assessment of safety documentation for constructions realised as nuclear installations, or constructions through which changes are realised on nuclear installations. The scope of safety documentation required for the assessment is stipulated in the Atomic Act. In 2000 the assessment activity focused first of all on Unit 1 of NPP Bohunice after completing its Gradual Reconstruction Programme, on National Repository of Radioactive waste in Mochovce and on radioactive waste conditioning and treatment technology in Jaslovske Bohunice. Activities of UJD in assessment focused mainly on control of compliance with requirements for nuclear safety, assessment of commissioning programmes, operating procedures, limits and conditions, etc. The assessment of changes, which influence nuclear safety of nuclear installations in operation, realisation of which is conditioned by the approval from UJD, is a significant part of the assessment activity of UJD. Mainly it is the assessment of design changes, changes in limits and conditions, operating procedures, changes in programmes of periodical testing of equipment important in terms of nuclear safety, changes in physical protection of nuclear equipment, etc. The assessment of nuclear installations operational safety, based on assessment of operational events, on maintaining limits and conditions of safe operation, on operational safety performance indicators and on inspection results is a separate category in the assessment activity of UJD. Inspection activity specified in the 'Atomic Act' is governed by an internal guideline, an important part of which is an annual inspection plan that considers the following types of

  9. The Dismantling of Nuclear Installations in France

    International Nuclear Information System (INIS)

    Bonnaure, P.

    2011-01-01

    As we saw in the previous article by Pierre Bonnaure, though it has long been decried for the dangers inherent in its production structures and the very long-lived waste that it generates, nuclear power may yet recover its credibility, particularly in France. However, on close examination, we see that the nuclear industry is beset by a number of unresolved questions, beginning with the dismantling of installations that have become obsolete or are set to become so. Nuclear power took off after the Second World War, but several generations of technology have been developed since then, and most currently functioning power-stations - mainly second-generation installations - are theoretically nearing the end of their useful lives, at least in terms of what was said when they were being built. The problem therefore arises of their dismantling and the clean-up of the sites on which they were built, a thorny question on which Pierre Bonnaure casts light in this article (prospects, strategies, financing, management of waste etc.). Unfortunately, it emerges that in France nothing has really been resolved, that public debate on the matter is decidedly limited and that investment (both financial investment and research) is not commensurate with the needs of a sector which is, after all, the source of three quarters of national electricity production. (author)

  10. Annual meeting on nuclear technology 2005. Proceedings

    International Nuclear Information System (INIS)

    2005-03-01

    The proceedings of the annual meeting on nuclear technology 2005 covers the following issues: (1) reactor physics and methods of calculation: design and transients; method development and validation; (2): thermodynamics and fluid dynamics: analytical thermohydraulics for existing reactors; experiments and operational behavior; analytical methods for innovative reactors; (3) Safety of nuclear installations - methods, analysis, results: special problems; PSA and in-vessel phenomena; ex-vessel phenomena; (4) front end and back end of the fuel cycle, radioactive waste, storage: intermediate storage of fuel elements, waste treatment, (5) fuel elements and core components: fuel elements, new methods in the interpretation, manufacturing and service; (6) operation of nuclear installations: experience with the operation of NPPs; management systems, digital instrumentation and control of NPPs revision management; (7) decommissioning of nuclear installations: concepts and strategies for decommissioning and dismantling; experiences with decommissioning projects; (8) fusion technology: fusion facilities; materials and test facility; cryo technique and simulations; (9) research reactors: building new and backfitting of existing research reactors; current development; dismantling of research reactors; (10) advanced reactor concepts, energy systems, energy economics; (11) communication with the public; (12) component materials, fabrication and service behavior: degradation effects of component materials; component behavior; (13): radiation protection: PSA and in-vessel phenomena, ex-vessel phenomena.

  11. Licensing systems and inspection of nuclear installations

    International Nuclear Information System (INIS)

    1991-01-01

    The first study analysing the regulations governing the licensing and inspection of nuclear installations in OECD countries was published by OECD/NEA in 1980, and revised in 1986. Since then there have been amendments to national regulations on the subject, which have warranted updating of this publication. This new study provides a description of the licensing regulations and practices applied in the twenty OECD countries with provisions in that field. The national systems have been described according to a standard format to make comparisons and research easier. In most cases, the descriptions are supplemented by flow charts illustrating the procedures and specifying the different authorities involved in the licensing procedures [fr

  12. Statement of nuclear incidents at nuclear installations. Third quarter 2001

    International Nuclear Information System (INIS)

    2002-01-01

    A statement of nuclear incidents at nuclear installations in Britain during the third quarter of 2001 is published today by the Health and Safety Executive (copy attached). It covers the period 1 July to 30 September 2001. The statement is published under arrangements that came into effect from the first quarter of 1993, derived from the Health and Safety Commission's powers under section 11 of the Health and Safety at Work, etc. Act 1974. Normally each incident mentioned in HSE's Quarterly Incident Statements will already have been made public by the licensee or site operator either through a press statement or by inclusion in the newsletter for the site concerned. The locations of the installations mentioned in the statement are as follows: Heysham 1 (British Energy Generation plc), Sellafield (British Nuclear Fuels plc), Chapelcross (British Nuclear Fuels plc)

  13. Statement of nuclear incidents at nuclear installations. Third quarter 2001

    International Nuclear Information System (INIS)

    2002-01-01

    A statement of nuclear incidents at nuclear installations in Britain during the third quarter of 2001 is published today by the Health and Safety Executive. It covers the period 1 July to 30 September 2001. The statement is published under arrangements that came into effect from the first quarter of 1993, derived from the Health and Safety Commission's powers under section 11 of the Health and Safety at Work, etc. Act 1974

  14. Nuclear Plant Analyzer: Installation manual. Volume 1

    International Nuclear Information System (INIS)

    Snider, D.M.; Wagner, K.L.; Grush, W.H.; Jones, K.R.

    1995-01-01

    This report contains the installation instructions for the Nuclear Plant Analyzer (NPA) System. The NPA System consists of the Computer Visual System (CVS) program, the NPA libraries, the associated utility programs. The NPA was developed at the Idaho National Engineering Laboratory under the sponsorship of the US Nuclear Regulatory Commission to provide a highly flexible graphical user interface for displaying the results of these analysis codes. The NPA also provides the user with a convenient means of interactively controlling the host program through user-defined pop-up menus. The NPA was designed to serve primarily as an analysis tool. After a brief introduction to the Computer Visual System and the NPA, an analyst can quickly create a simple picture or set of pictures to aide in the study of a particular phenomenon. These pictures can range from simple collections of square boxes and straight lines to complex representations of emergency response information displays

  15. Nuclear physics annual report 1986

    International Nuclear Information System (INIS)

    1986-01-01

    The paper is the annual report of Manchester University Nuclear Physics Group, 1985/6. The bulk of the work has been carried out at the Nuclear Structure Facility, often in collaboration with other groups. The research programme topics include: high spin states, nuclei far from stability, reactions and fission, spectroscopy and related subjects, and technical developments. The experiments associated with these topics are described, together with the results of the investigations. (UK)

  16. Annual Report 2010. Nuclear Regulatory Authority

    International Nuclear Information System (INIS)

    2010-01-01

    The present Annual Report of Activities of the Nuclear Regulatory Authority (ARN), prepared regularly from the creation as independent institution, describes across six chapters and seven annexes the activities developed by the organism during 2010. The main topic are: institutional issues; regulatory guides and standards; argentinean nuclear regulatory system; quality assurance of the ARN; the institutional communications; the licensing and inspection of nuclear power plants and critical facilities; the emergency systems; the safeguards and the physical protection; the environmental control; the institutional relations; the training and the public information. Also, this publication have annexes with the following content: the regulatory framework; regulatory documents; inspections to medical, industrial and training installations; measurement and evaluation of the drinking water of Ezeiza; international expert's report on the application of the international standards of radiological protection of the public in the zone of the Ezeiza Atomic Center; ethical code

  17. Annual Report 2011. Nuclear Regulatory Authority

    International Nuclear Information System (INIS)

    2011-01-01

    The present Annual Report of Activities of the Nuclear Regulatory Authority (ARN), prepared regularly from the creation as independent institution, describes across six chapters and seven annexes the activities developed by the organism during 2011. The main topic are: institutional issues; regulatory guides and standards; argentinean nuclear regulatory system; quality assurance of the ARN; the institutional communications; the licensing and inspection of nuclear power plants and critical facilities; the emergency systems; the safeguards and the physical protection; the environmental control; the institutional relations; the training and the public information. Also, this publication have annexes with the following content: the regulatory framework; regulatory documents; inspections to medical, industrial and training installations; measurement and evaluation of the drinking water of Ezeiza; international expert's report on the application of the international standards of radiological protection of the public in the zone of the Ezeiza Atomic Center; ethical code

  18. Regulatory oversight report 2007 concerning nuclear safety in Swiss nuclear installations

    International Nuclear Information System (INIS)

    2008-04-01

    This annual report issued by the Swiss Federal Nuclear Inspectorate (HSK) reports on the work carried out by the Inspectorate in 2007. This report reviews the regulatory activities in the four Swiss nuclear power stations and in four further nuclear installations in various Swiss research facilities. It deals with topics such as operational details, technologies in use, radiation protection, radioactive wastes, emergency dispositions and personnel and provides an assessment of operations from the point of view of safety. Also, the transportation of nuclear materials - both nuclear fuels and nuclear wastes - is reported on. General topics discussed include probabilistic safety analyses and accident management. Finally, the disposal of nuclear wastes and work done in the rock laboratories in Switzerland is commented on

  19. Importance of human factors on nuclear installations safety

    International Nuclear Information System (INIS)

    Caruso, G.J.

    1990-01-01

    Actually, installations safety and, in particular the nuclear installations infer a strong incidence in human factors related to the design and operation of such installations. In general, the experience aims to that the most important accidents have happened as result of the components' failures combination and human failures in the operation of safety systems. Human factors in the nuclear installations may be divided into two areas: economy and human reliability. Human factors treatments for the safety evaluation of the nuclear installations allow to diagnose the weak points of man-machine interaction. (Author) [es

  20. Software for simulation of nuclear simulation of nuclear installations

    International Nuclear Information System (INIS)

    Castaneda, J.O.; Ramos, L.M.; Arjona, O.; Rodriguez, L.

    1993-01-01

    The software is an instrument to build conceptual-type simulators of low, medium and full scale for used in nuclear installations. The system is composed by composed by two basic modules: one for the edition and the other for the simulation. The first one allows to prepare the information to simulate: mathematical model, technological design (fundamentally, operation board or mnemotechnical design), parameters to be shown, failures to be simulated

  1. Renewable energy sources and nuclear installations

    International Nuclear Information System (INIS)

    Hirschberg, S.; Bauer, Ch.; Burgherr, P.; Stucki, S.; Vogel, F.; Biollaz, S.; Schulz, T.; Durisch, W.; Hardegger, P.; Foskolos, K.; Meier, A.; Schenler, W.

    2005-02-01

    This comprehensive work report for the Swiss Federal Office of Energy (SFOE) made by the Paul Scherrer Institute PSI takes a look at work done in connection with the updating of the office's Energy Perspectives. In particular, the topic of electricity is reviewed in the light of pending important decisions in the area of nuclear energy and the newer renewable sources of energy. The report makes an attempt to estimate the effect on Swiss power production that the new renewables and new nuclear installations could have in the next 30-40 years and to what costs this could be done and which obstacles would have to overcome. The renewable energy sources include small hydro, wind, photovoltaics, solar thermal power plants, biogas, geothermal energy, wave-power and solar chemistry. The methods used include literature study and contacts with internal PSI experts on the various areas involved. The most important system characteristics were noted and learning curves for the various technologies were taken into account. Ecological and social factors were also considered

  2. Nuclear physics annual report 1987

    International Nuclear Information System (INIS)

    1988-01-01

    The paper presents the annual report of the Schuster Laboratory, Manchester University Nuclear Physics Group, United Kingdom, 1986-7. Much of the work has been carried out at the Daresbury Nuclear Structure Facility, often in collaboration with other U.K. groups and with foreign participation. The report contains the work on: studies of light nuclei, spectroscopy of medium mass nuclei, low and high spin spectroscopy of nuclei with A ≥ 100, and the fission process. Technical developments carried out at the Laboratory are also described. (U.K.)

  3. Legal bases for the installation of nuclear power plants

    International Nuclear Information System (INIS)

    Faria, N.M. de; Barros, E.A.

    1980-01-01

    The role of the National Nuclear Energy Comission, the National Department of Water and Electrical Energy and the 'Centrais Eletricas Brasileiras S.A.' for the installation of Nuclear Power Plants is presented. (A.L.) [pt

  4. Managing and regulating organisational change in nuclear installations

    International Nuclear Information System (INIS)

    Pyy, P.; Reiersen, C.

    2004-01-01

    To the extent that organisational change in nuclear installations can potentially impact nuclear safety, it is imperative to ensure that such change is property managed and regulated. A number of key elements can help achieve successful management of change. (author)

  5. Development regulation regarding with licensing of nuclear installation

    International Nuclear Information System (INIS)

    Bambang Riyono; Yudi Pramono; Dahlia Cakrawati Sinaga

    2011-01-01

    Provisions of Article 17 paragraph (3) of Law Number 10 Year 1997 on Nuclear cleary mandates for the establishment of government regulations (GR) on Nuclear licensing containing the requirements and procedure, both from the standpoint of their utilization and installation. To use has been rising GR No.29 Year 2008 on the Use of Ionizing Radiation Sources and Nuclear Materials, while for the installation has been published PP No.43 Year 2006 on Nuclear Reactor Licensing, and BAPETEN Chairman Decree No.3 Year 2006 on Non-reactor Nuclear Installation Licensing. Based on the background of the preparation of both the aforementioned are just regulate the reactor and utilization, not yet fully meet the mandate of Article 17 paragraph (3) of Law No.10 of 1997 on Nuclear, including other nuclear installations. For these reasons, it initiated the need for a separate regulation containing provisions concerning licensing of non-reactor nuclear installations. On the other side from the understanding the legal aspects and interpretations of the Law No.10 of 2004 on the Establishment Regulation Legislation, should be in single mandate of Article 17 paragraph (3) of Law No.10 of 1997 on Nuclear would only produce one of the requirements and procedure for the use or installation, or a maximum of two (2) GR related licensing the use and installation. This is encourages conducted the assessing or studies related to how possible it is according to the legal aspect is justified to combine in one Nuclear licensing regulations regarding both the use and installation, by looking at the complexity of installation and wide scope of utilization of nuclear energy in Indonesia. The results of this paper is expected to provide input in the preparation of GR on licensing of nuclear installations. (author)

  6. Statement on incidents at nuclear installations - second quarter 1987

    International Nuclear Information System (INIS)

    1988-01-01

    The first incident reported occurred at the Sellafield reprocessing plant when a process worker was contaminated on the right knee of his overalls and received a skin dose in excess of the annual dose limit. Following an inquiry, he was allowed to return to normal working within 3 months. The second incident occurred at the Oldbury nuclear power station when reaction-1 tripped following the failure of one of the three phases of the electricity supply to part of the instrumentation. This caused a loss of forced coolant circulating for a short time following the reactor shutdown. However, following safety checks it was allowed to return to power. Improvements in the instrument supply system protection were subsequently installed on reactor-2 and will be, when possible, on reactor-1. (UK)

  7. Philosophy and safety requirements for land-based nuclear installations

    International Nuclear Information System (INIS)

    Kellermann, Otto

    1978-01-01

    The main ideas of safety philosophy for land-based nuclear installations are presented together with their background of protection goals. Today's requirements for design and quality assurance are deductively shown. Finally a proposition is made for a new balancing of safety philosophy according to the high safety level that nuclear installations have reached

  8. 2005 annual nuclear technology conference

    International Nuclear Information System (INIS)

    Anon.

    2005-01-01

    This year's Annual Nuclear Technology Conference of the Deutsches Atomforum and Kerntechnische Gesellschaft was held in Nuremberg on May 10-12, 2005. More than 1 100 participants from eighteen countries make this specialized event one of the largest international conventions in the field of the peaceful uses of nuclear power, whose attendance has steadily increased over the past few years. The first day of the conference was devoted to plenary lectures traditionally dealing mainly with political and economic problems of the use of nuclear power. The partner country of JK 2005 was Switzerland. Traditionally, the program of the three-day conference was organized in the proven format of plenary sessions on the first day, followed by technical sessions, specialized sessions, poster sessions, and special events on the following days. For the third time, the ''Nuclear Campus'' was organized which successfully made the world of nuclear technology transparent to high school and university students in lectures and an exhibition. The meeting was accompanied by a technical exhibition with meeting points of manufacturers, suppliers, and service industries. (orig.)

  9. State fund of decommissioning of nuclear installations and handling of spent nuclear fuels and nuclear wastes (Slovak Republic)

    International Nuclear Information System (INIS)

    Kozma, Milos

    2006-01-01

    , including post-closure monitoring of such repositories; g) expenditures connected with Fund activities up to a maximum of 0,3% of annual Fund revenues. The Minister appoints Fund Council as his advisory body for generation and utilisation of Fund resources. Council members are appointed and recalled by the Minister, in particular from among experts in the fields of nuclear energy, health, environmental protection, economy and local government. The Minister at Council's suggestion decides upon granting of resources from the Fund. The operator of nuclear installations submits applications until 15 June every year. Grants from the Fund may only be used for purposes for which they were granted. Audits of Fund management are the responsibility of Ministry of Finances of the Slovak Republic. The Prognosis for full financial support of back end of nuclear fuel cycle is compiled every other year for long-term phase (e.g. year 2130). Sources and utilisation of financial means are analysed in the prognosis, which is approved by the Government of the Slovak Republic. Outcome of this analysis defines financial contributions of operators of nuclear installations for the Fund

  10. 2008 annual meeting on nuclear technology. Pt. 1. Section reports

    International Nuclear Information System (INIS)

    Dagan, Ron; Sanchez Espinoza, Victor Hugo; Faber, Wolfgang; Berlepsch, Thilo v.; Spann, Holger; Schaffrath, Andreas; Schubert, Bernd; Rieger, Udo; Christ, Bernhard G.; Gulden, Werner; Bogusch, Edgar

    2008-01-01

    Summary report on these 5 - out of 11 - Sections of the Annual Conference on Nuclear Technology held in Hamburg on May 27-29, 2008: - Reactor Physics and Methods of Calculation - Thermodynamics and Fluid Dynamics - Safety of Nuclear Installations - Methods, Analysis, Results - Front End and Back End of the Fuel Cycle, Radioactive Waste, Storage - Fusion Technology. Other Sections will be covered in reports in further issues of atw. (orig.)

  11. 2010 ANNUAL MEETING ON NUCLEAR TECHNOLOGY. Pt. 3. Section reports

    International Nuclear Information System (INIS)

    Arnold, Uwe; Baumann, Erik; Fischer, Ulrich; Bohnstedt, Angelika; Gehring, Michael; Roedig, Manfred; Willschuetz, Hans-Georg; Goers, Stefan; Schoenfelder, Christian

    2010-01-01

    Summary report on these 6 - out of 12 - Sessions of the Annual Conference on Nuclear Technology held in Berlin on May 3 to 6, 2010: - Decommissioning of Nuclear Installations (Session 7), - Fusion Technology (Session 8), - Energy Industry and Economics (Session 10), - Radiation Protection (Session 11), - New Build and Innovations (Session 12), and - Education, Expert Knowledge, Know-how-Transfer (Session 13). The other Sessions: - Reactor Physics and Methods of Calculation (Session 1), - Thermodynamics and Fluid Dynamics (Session 2), - Safety of Nuclear Installations - Methods, Analysis, Results (Session 3), - Front End and Back End of the Fuel Cycle, Radioactive Waste, Storage (Session 4), - Front End of the Fuel Cycle, Fuel Elements and Core Components (Session 5), - Operation of Nuclear Installations (Session 6) have been covered in atw issues 10 and 11 (2010). (orig.)

  12. 2010 ANNUAL MEETING ON NUCLEAR TECHNOLOGY. Pt. 4. Section reports

    International Nuclear Information System (INIS)

    Berlepsch, Thilo v.; Hering, Wolfgang

    2011-01-01

    Summary report on 2 Sessions of Section: - New Build and Innovations (Section 12) of the ANNUAL MEETING On NUCLEAR TECHNOLOGY held in Berlin on May 4 to 6, 2010. The other Sections 'Reactor Physics and Methods of Calculation (Section 1)', 'Thermodynamics and Fluid Dynamics (Section 2)', 'Safety of Nuclear Installations - Methods, Analysis, Results (Section 3)', 'Front End and Back End of the Fuel Cycle, Radioactive Waste, Storage (Section 4)', 'Front End of the Fuel Cycle, Fuel Elements and Core Components (Section 5)', 'Operation of Nuclear Installations (Section 6)', 'Decommissioning of Nuclear Installations (Section 7)', 'Fusion Technology (Section 8)', 'Energy Industry and Economics (Section 10)', 'Radiation Protection (Section 11)', 'New Build and Innovations (Session New Build and Innovations, Section 12)', and 'Education, Expert Knowledge, Know-how-Transfer (Section 13)' have been covered in atw issues 10, 11 and 12 (2010). (orig.)

  13. 2009 annual meeting on nuclear technology. Pt. 1. Section reports

    International Nuclear Information System (INIS)

    Schaffrath, Andreas; Hartmann, Miks; Hoffmann, Petra Britt; Stieglitz, Robert; Hoehne, Thomas; Weiss, Frank-Peter; Hollands, Thorsten; Sanchez Espinoza, Victor Hugo; Tietsch, Wolfgang; Sonnenburg, H.G.

    2009-01-01

    Summary report on these 3 - out of 13 - Sessions of the Annual Conference on Nuclear Technology held in Dresden on May 12 to 14, 2009: Thermodynamics and Fluid Dynamics (Session 2), Safety of Nuclear Installations - Methods, Analysis, Results (Session 3), and, Front End of the Fuel Cycle, Fuel Elements and Core Components (Session 4). The other Sessions Reactor Physics and Methods of Calculation (Session 1), Front End and Back End of the Fuel Cycle, Radioactive Waste, Storage (Session 5), Operation of Nuclear Installations (Session 6), Decommissioning of Nuclear Installations (Session 7), Fusion Technology (Session 8), Research Reactors, Neutron Sources (Session 9), Energy Industry and Economics (Session 10), Radiation Protection (Session 11), New Build and Innovations (Session 12), and Education, Expert Knowledge, Know How Transfer (Session 13) have be covered in reports in further issues of atw. (orig.)

  14. Decommissioning of nuclear installations - regulations - financing - responsibility - insurance

    International Nuclear Information System (INIS)

    Hubert, E.H.; Andersson, C.; Deprimoz, J.; Mayoux, J.C.; Richard, M.; Sartorelli, C.; Nocera, F.

    1983-01-01

    This paper highlights three aspects of decommissioning of nuclear installations which relate, more or less directly, to legal options already applied or advocated. It reviews the regulatory conditions for decommissioning a nuclear installation and indicates legal provisions for financing decommissioning expenditures. It also describes the legal provisions to determine liabilities in case of nuclear damage and the assistance which insurers may provide to cover the consequences of such liabilities. (NEA) [fr

  15. Code on the safety of civilian nuclear fuel cycle installations

    International Nuclear Information System (INIS)

    1996-01-01

    The 'Code' was promulgated by the National Nuclear Safety Administration (NSSA) on June 17, 1993, which is applicable to civilian nuclear fuel fabrication, processing, storage and reprocessing installations, not including the safety requirements for the use of nuclear fuel in reactors. The contents of the 'Code' involve siting, design, construction, commissioning, operation and decommissioning of fuel cycle installation. The NNSA shall be responsible for the interpretation of this 'Code'

  16. Nuclear installations abroad the accident risks and their potential consequences

    International Nuclear Information System (INIS)

    Turvey, F.J.

    1996-01-01

    This paper endeavors to assess the threat to Ireland from severe accidents at civil nuclear installations. Among the various types of nuclear installations worldwide, reactors and reprocessing plants are considered to be the most threatening and so the paper focuses on these. The threat is assumed to be a function of the risk of severe accidents at the above types of installations and the probability of unfavourable weather conditions carrying the radioactive releases to Ireland. Although nuclear installations designed in eastern Europe and Asia are less safe than others, the greatest threat to Ireland arises from nearby installations in the UK. The difficulty of measuring the probabilities and consequences of severe nuclear accidents at nuclear installations in general is explained. In the case of the UK installations, this difficulty is overcome to some degree by using values of 'tolerable' risk adopted by the national nuclear regulator to define the radiotoxic releases from nuclear accidents. These are used as input to atmospheric dispersion models in which unfavourable weather conditions for Ireland are assumed and radiation doses are calculated to members of the Irish public. No countermeasures, such as sheltering, are assumed. In the worst cast scenario no deaths would be expected in Ireland in the immediate aftermath of the accident however, an increase in cancers over a period of 25 years or so would be expected assuming present-day models for the effect of low level radiation are valid

  17. Nuclear installations abroad the accident risks and their potential consequences

    Energy Technology Data Exchange (ETDEWEB)

    Turvey, F J [Radiological Protection Inst. of Ireland (Ireland)

    1996-10-01

    This paper endeavors to assess the threat to Ireland from severe accidents at civil nuclear installations. Among the various types of nuclear installations worldwide, reactors and reprocessing plants are considered to be the most threatening and so the paper focuses on these. The threat is assumed to be a function of the risk of severe accidents at the above types of installations and the probability of unfavourable weather conditions carrying the radioactive releases to Ireland. Although nuclear installations designed in eastern Europe and Asia are less safe than others, the greatest threat to Ireland arises from nearby installations in the UK. The difficulty of measuring the probabilities and consequences of severe nuclear accidents at nuclear installations in general is explained. In the case of the UK installations, this difficulty is overcome to some degree by using values of `tolerable` risk adopted by the national nuclear regulator to define the radiotoxic releases from nuclear accidents. These are used as input to atmospheric dispersion models in which unfavourable weather conditions for Ireland are assumed and radiation doses are calculated to members of the Irish public. No countermeasures, such as sheltering, are assumed. In the worst cast scenario no deaths would be expected in Ireland in the immediate aftermath of the accident however, an increase in cancers over a period of 25 years or so would be expected assuming present-day models for the effect of low level radiation are valid.

  18. Annual report 1999 - Brazil Nuclear Industry (INB)

    International Nuclear Information System (INIS)

    2000-01-01

    This document presents the 1999 annual report covering the following activities: nuclear fuel, resources and application, ISO 9001, environment social activities, personnel, financial indicators, and countability

  19. Conference summaries. Canadian Nuclear Association 29. annual conference; Canadian Nuclear Society 10. annual conference

    International Nuclear Information System (INIS)

    1989-01-01

    Separate abstracts were prepared for 15 papers from the twenty-ninth Annual Conference of the Canadian Nuclear Association. Abstracts were also prepared for the 102 papers from the tenth Annual Conference of the Canadian Nuclear Society

  20. Conference summaries. Canadian Nuclear Association 29. annual conference; Canadian Nuclear Society 10. annual conference

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-12-31

    Separate abstracts were prepared for 15 papers from the twenty-ninth Annual Conference of the Canadian Nuclear Association. Abstracts were also prepared for the 102 papers from the tenth Annual Conference of the Canadian Nuclear Society.

  1. Technical and legal aspects of the decommissioning of nuclear installations

    International Nuclear Information System (INIS)

    Rowden, M.A.; Fowler, S.E.

    1983-01-01

    Many of the plants licensed at the start of nuclear power programmes will require decommissioning in the 1990's and this issue should now be confronted by the nuclear industry, its regulators and governments. This paper deals with the United States programme and experience in the decommissioning of nuclear installations and describes alternative decommissioning methods including safety and financial aspects. (NEA) [fr

  2. Legal bases for the installation of nuclear power plants

    International Nuclear Information System (INIS)

    Faria, N.M. de

    1980-06-01

    The process of installation of nuclear power plants in the context of the Brazilian legal system is analysed. The structure of the political and administrative system related to the matter and the correspondent legislation are discussed. (A.L.) [pt

  3. Nuclear installations in Belarus: Implications of political and technical issues

    International Nuclear Information System (INIS)

    Zaitsev, S.I.

    2001-01-01

    The report deals with some aspects of past and present supervisory activities at nuclear installations in Belarus. It briefly describes an existing supervisory system for nuclear installations in the Republic of Belarus, its legislative basis and functions of the supervisory body. Consideration is given to further development and improvement of the supervision in such fields as revision and elaboration of normative documents on nuclear safety, training of inspectors, co-operation with other governmental bodies while examining the nuclear option in the Republic of Belarus. (author)

  4. Safety of nuclear installations: Future direction

    International Nuclear Information System (INIS)

    1990-04-01

    The Workshop presentations were divided into sessions devoted to the following topics: Environmental impact of fossil fuel energy technologies (5 papers), Future needs for nuclear power (7 papers), Safety objectives (10 papers), Safety aspects of the next generation of current-type nuclear power plants (8 papers), Safety aspects of new designs and concepts for nuclear power plants (6 papers), Special safety issues: Safety aspects of new designs and concepts for nuclear power plants (5 papers), Safety aspects of new designs and processes for the nuclear fuel cycle (5 papers), Closing panel (3 papers), 12 poster presentations and a Summary of the Workshop. A separate abstract was prepared for each of these papers. Refs, figs and tabs

  5. Meteorological characteristics of nuclear installations sites

    International Nuclear Information System (INIS)

    Doumenc, A.

    1988-01-01

    The atmosphere is the most propitious medium to a rapid transport and diffusion of a pollutant. So, it is important to know its local characteristics which is decisive for every evaluation of radioactive release consequences using transfer models. It is also the siege of intense sudden hazardous phenomena, as tornados and typhoons, that should be taken into account in the installation conception. 1 tab., 6 refs. (F.M.)

  6. Development of a quality management system for Brazilian nuclear installations

    International Nuclear Information System (INIS)

    Kibrit, Eduardo; Zouain, Desiree Moraes

    2005-01-01

    The present work is a proposal for developing a quality management system for Brazilian nuclear installations, based on applicable standards. The standard ISO 9001:2000 [4] establishes general requirements for the implementation of a quality management system in all kinds of organizations. The standard IAEA 50-C/SG-Q [1] establishes general requirements for the implementation of a quality assurance system in nuclear installations. The standard CNEN-NN- 1.16 [5] establishes the regulating requirements for the quality assurance systems and programs of nuclear installations, for licensing and authorization for operation of these installations in Brazil. The revision of standard IAEA 50-C/SG-Q [1], to be replaced by IAEA DS 338 [2] and IAEA DPP 349 [3], introduces the concept of 'Integrated Management System' for the nuclear area, in preference to the concept of 'Quality Assurance'. This approach is incorporated with the current tendency, because it guides the system to manage, in an integrated way, the requirements of quality, safety, health, environment, security and economics of the installation. The results of the characterization of the quality management systems established in the applicable standards are presented, with the determination of the common and conflicting points among them. Referring data to quality assurance program/quality management system in some nuclear installations of IAEA Member States are also presented. (author)

  7. Change of nuclear reactor installation in the first nuclear ship of Japan Nuclear Ship Development Agency

    International Nuclear Information System (INIS)

    1979-01-01

    The written application concerning the change of nuclear reactor installation in the first nuclear ship was presented from the JNSDA to the prime minister on January 10, 1979. The contents of the change are the repair of the primary and secondary shields of the reactor, the additional installation of a storage tank for liquid wastes, and the extension of the period to stop the reactor in cold state. The inquiry from the prime minister to the Nuclear Safety Commission was made on June 9, 1979, through the examination of safety in the Nuclear Safety Bureau, Science and Technology Agency. The Nuclear Safety Commission instructed to the Committee for the Examination of Nuclear Reactor Safety on June 11, 1979, about the application of criteria stipulated in the law. The relevant letters and the drafts of examination papers concerning the technical capability and the safety in case of the change of nuclear reactor installation in the first nuclear ship are cited. The JNSDA and Sasebo Heavy Industries, Ltd. seem to have the sufficient technical capability to carry out this change. As the result of examination, it is recognized that the application presented by the JNSDA is in compliance with the criteria stipulated in the law concerning the regulation of nuclear raw materials, nuclear fuel materials and nuclear reactors. (Kako, I.)

  8. Annual report 1 January - 31 December 1978 computer installation

    International Nuclear Information System (INIS)

    1979-05-01

    The computer installation of Risoe National Laboratory functions as an internal service bureau. The staff is concentrated around operating the computer and providing expertise in the fields of numerical mathematics, statistics, operation research, systems software, and software engineering. Selected parts of the activities at the Computer Installation are described. (B.P.)

  9. Performances of nuclear installations in the world

    International Nuclear Information System (INIS)

    Pate, Z.T.

    1999-01-01

    During the last years the operators of nuclear power plants in the world, have realized numerous improvements. This success is imputable to several factors, especially an important data exchange. The Chernobyl accident, in 1986, provoked the creation of the World Association of Nuclear Operators (W.A.N.O.). It allowed to exchange information and to develop cooperation in order to go beyond cultural barriers, linguistics and policies. Then, operators in the world have brought important improvements in matter of safety, reliability. (N.C.)

  10. Practical design considerations for nuclear cogeneration installations

    International Nuclear Information System (INIS)

    Koupal, J.R.

    1987-01-01

    Dual-purpose nuclear plants, cogeneration electricity and steam, offer significant economic benefits over comparable electricity generating stations. The design of such a nuclear facility requires the resolution of unique technical challenges. This paper reports on experience gained in the detailed design of such a dual-purpose facility with the steam supplied to a chemical plant for process heating. The following topics are discussed: Siting, Radioactivity of Export Steam, Optimization for Load Combinations, Steam Supply Reliability, Steam Transportation, Water Chemistry, Cost Allocation. (author)

  11. Methodology for risk analysis of nuclear installations

    International Nuclear Information System (INIS)

    Vasconcelos, Vanderley de; Senne Junior, Murillo; Jordao, Elizabete

    2002-01-01

    Both the licensing standards for general uses in nuclear facilities and the specific ones require a risk assessment during their licensing processes. The risk assessment is carried out through the estimation of both probability of the occurrence of the accident, and their magnitudes. This is a complex task because the great deal of potential hazardous events that can occur in nuclear facilities difficult the statement of the accident scenarios. There are also many available techniques to identify the potential accidents, estimate their probabilities, and evaluate their magnitudes. In this paper is presented a new methodology that systematizes the risk assessment process, and orders the accomplishment of their several steps. (author)

  12. Annual report of the Nuclear Structure Committee

    International Nuclear Information System (INIS)

    1977-01-01

    The Annual Report for the period 1 August 1975 to 31 July 1976 of the Nuclear Structure Committee of the Nuclear Physics Board, under the (United Kingdom) Science Research Council, is presented. Details are given of nuclear structure grants and laboratory agreements. (U.K.)

  13. Nuclear Physics Laboratory. Annual report no.21

    International Nuclear Information System (INIS)

    1986-11-01

    The annual report of the Nuclear Physics Laboratory covers the following subjects: 1) the accelerators; 2) work in experimental nuclear physics; 3) research in particle physics: experiments at TRIUMF and CERN; 4) work in applied nuclear physics; and 5) work in theoretical physics

  14. Nuclear Physics Laboratory. Annual report no.22

    International Nuclear Information System (INIS)

    1987-11-01

    The annual report of the Nuclear Physics Laboratory covers the following subjects: 1) the accelerators; 2) work in experimental nuclear physics; 3) research in particle physics: experiments at TRIUMF and CERN; 4) work in applied nuclear physics; and 5) work in theoretical physics

  15. Studies of works management and automation of nuclear power installations

    International Nuclear Information System (INIS)

    Besch, P.; Grossmann, J.; Hollasky, R.

    1989-01-01

    Erection and operation of nuclear power installations require investigations on their safety and availability. The works performed on the management of nuclear power plants and nuclear heating stations in the Working Group on Automation Engineering of the Dresden University of Technology are presented. Emphasis of the works is on simulation of dynamical performance of the plants and studies on the utilization of novel techniques concerning plant automation and process management. (author)

  16. Annual report 1993 by the Rossendorf Society of Nuclear Engineering and Analysis

    International Nuclear Information System (INIS)

    Haefele, W.

    1994-03-01

    The second annual report contains, apart from the business report and the organigram, priorities and results achieved in the special fields of nuclear installations (decommissioning and disposal), nuclear waste management (radioactive wastes), nuclear analyses and rehabilitation, radiopharmaceuticals, and safety and radiation protection. (HP) [de

  17. The Management System for Nuclear Installations Safety Guide

    International Nuclear Information System (INIS)

    2009-01-01

    This Safety Guide is applicable throughout the lifetime of a nuclear installation, including any subsequent period of institutional control, until there is no significant residual radiation hazard. For a nuclear installation, the lifetime includes site evaluation, design, construction, commissioning, operation and decommissioning. These stages in the lifetime of a nuclear installation may overlap. This Safety Guide may be applied to nuclear installations in the following ways: (a)To support the development, implementation, assessment and improvement of the management system of those organizations responsible for research, site evaluation, design, construction, commissioning, operation and decommissioning of a nuclear installation; (b)As an aid in the assessment by the regulatory body of the adequacy of the management system of a nuclear installation; (c)To assist an organization in specifying to a supplier, via contractual documentation, any specific element that should be included within the supplier's management system for the supply of products. This Safety Guide follows the structure of the Safety Requirements publication on The Management System for Facilities and Activities, whereby: (a)Section 2 provides recommendations on implementing the management system, including recommendations relating to safety culture, grading and documentation. (b)Section 3 provides recommendations on the responsibilities of senior management for the development and implementation of an effective management system. (c)Section 4 provides recommendations on resource management, including guidance on human resources, infrastructure and the working environment. (d)Section 5 provides recommendations on how the processes of the installation can be specified and developed, including recommendations on some generic processes of the management system. (e)Section 6 provides recommendations on the measurement, assessment and improvement of the management system of a nuclear installation. (f

  18. The Management System for Nuclear Installations (Russian Edition)

    International Nuclear Information System (INIS)

    2014-01-01

    This Safety Guide is applicable throughout the lifetime of a nuclear installation, including any subsequent period of institutional control, until there is no significant residual radiation hazard. For a nuclear installation, the lifetime includes site evaluation, design, construction, commissioning, operation and decommissioning. These stages in the lifetime of a nuclear installation may overlap. This Safety Guide may be applied to nuclear installations in the following ways: (a)To support the development, implementation, assessment and improvement of the management system of those organizations responsible for research, site evaluation, design, construction, commissioning, operation and decommissioning of a nuclear installation; (b)As an aid in the assessment by the regulatory body of the adequacy of the management system of a nuclear installation; (c)To assist an organization in specifying to a supplier, via contractual documentation, any specific element that should be included within the supplier's management system for the supply of products. This Safety Guide follows the structure of the Safety Requirements publication on The Management System for Facilities and Activities, whereby: (a)Section 2 provides recommendations on implementing the management system, including recommendations relating to safety culture, grading and documentation. (b)Section 3 provides recommendations on the responsibilities of senior management for the development and implementation of an effective management system. (c)Section 4 provides recommendations on resource management, including guidance on human resources, infrastructure and the working environment. (d)Section 5 provides recommendations on how the processes of the installation can be specified and developed, including recommendations on some generic processes of the management system. (e)Section 6 provides recommendations on the measurement, assessment and improvement of the management system of a nuclear installation. (f

  19. The Management System for Nuclear Installations. Safety Guide (Spanish Edition)

    International Nuclear Information System (INIS)

    2017-01-01

    This Safety Guide is applicable throughout the lifetime of a nuclear installation, including any subsequent period of institutional control, until there is no significant residual radiation hazard. For a nuclear installation, the lifetime includes site evaluation, design, construction, commissioning, operation and decommissioning. These stages in the lifetime of a nuclear installation may overlap. This Safety Guide may be applied to nuclear installations in the following ways: (a) To support the development, implementation, assessment and improvement of the management system of those organizations responsible for research, site evaluation, design, construction, commissioning, operation and decommissioning of a nuclear installation; (b) As an aid in the assessment by the regulatory body of the adequacy of the management system of a nuclear installation; (c) To assist an organization in specifying to a supplier, via contractual documentation, any specific element that should be included within the supplier's management system for the supply of products. This Safety Guide follows the structure of the Safety Requirements publication on The Management System for Facilities and Activities, whereby: (a) Section 2 provides recommendations on implementing the management system, including recommendations relating to safety culture, grading and documentation. (b) Section 3 provides recommendations on the responsibilities of senior management for the development and implementation of an effective management system. (c) Section 4 provides recommendations on resource management, including guidance on human resources, infrastructure and the working environment. (d) Section 5 provides recommendations on how the processes of the installation can be specified and developed, including recommendations on some generic processes of the management system. (e) Section 6 provides recommendations on the measurement, assessment and improvement of the management system of a nuclear

  20. Nuclear steam supply system and method of installation

    International Nuclear Information System (INIS)

    Tower, S.N.; Christenson, J.A.; Braun, H.E.

    1989-01-01

    This patent describes a method of providing a nuclear reactor power plant at a predetermined use site accessible by predetermined navigable waterways. The method is practiced with apparatus including a nuclear reactor system. The system has a nuclear steam-supply section. The method consists of: constructing a nuclear reactor system at a manufacturing site remote from the predetermined use site but accessible to the predetermined waterways for transportation from the manufacturing site to the predetermined use site, the nuclear reactor system including a barge with the nuclear steam supply section constructed integrally with the barge. Simultaneously with the construction of the nuclear reactor system, constructing facilities at the use site to be integrated with the nuclear reactor system to form the nuclear-reactor power plant; transporting the nuclear reactor system along the waterways to the predetermined use site; at the use site joining the removal parts of the altered nuclear reactor system to the remainder of the altered nuclear reactor system to complete the nuclear reactor system; and installing the nuclear reactor system at the predetermined use site and integrating the nuclear reactor system to interact with the facilities constructed at the predetermined use site to form the nuclear-reactor power plant

  1. 26 CFR 1.6655-2 - Annualized income installment method.

    Science.gov (United States)

    2010-04-01

    ... TAX (CONTINUED) INCOME TAXES Additions to the Tax, Additional Amounts, and Assessable Penalties § 1... equal to 100 percent of the tax computed on the annualized income for the 2-month period, the following... estimated tax were equal to 100 percent of the tax computed on the annualized income for the 4-month period...

  2. Practical methods for radiation survey in nuclear installations

    International Nuclear Information System (INIS)

    Shweikani, R.

    2001-12-01

    This study is placed to those who are responsible to perform radiation survey in the nuclear installations, especially the beginners. Therefore, it gives a comprehensive view to all-important aspects related to their work starting from the structure of atoms to the practical steps for radiation survey works. So, it clarify how to perform personal monitoring, methods for monitoring surface contamination, methods for measuring radioactivity of gases and radioactive aerosols in air, monitoring radiation doses, measuring radiation influences in workplaces and finally measuring internal exposure of radiation workers in nuclear installations. Finally, The study shows some cases of breaches of radiation protection rules in some American nuclear installations and describes the final results of these breaches. The aim of this is to assure that any breach or ignore to radiation protection principles may produce bad results, and there is no leniency in implementing environmental radiation protection principles. (author)

  3. Assessment of safety of the nuclear installations of the world

    International Nuclear Information System (INIS)

    Thomas, B.A.; Pozniakov, N.; Banga, U.

    1992-01-01

    Incidents and accidents periodically remind us that preventive measures at nuclear installations are not fully reliable. Although sound design is widely recognized to be prerequisite for safe operation, it is not sufficient. An active management that compensates for the weak aspects of the installations design by redundant operational provisions, is the key factor to ensure safe operation. Safety of nuclear installations cannot be assessed on an emotional basis. Since 1986, accurate safety assessment techniques based on an integrated approach to operational safety have been made available by the ASSET services and are applicable to any industrial process dealing with nuclear materials. The ASSET methodology enables to eliminate in advance the Root Causes of the future accidents by introducing practical safety culture principles in the current managerial practices

  4. The 1989 annual report: Nuclear Physics Institute

    International Nuclear Information System (INIS)

    1989-01-01

    The 1988 annual report of the Nuclear Physics Institute (Orsay, France) is presented. The results concerning exotic nuclei and structure studies by means of nuclear reactions are summarized. Research works involving the inertial fusion and the actinides are discussed. Theoretical and experimental work on the following fields is also included: high excitation energy nuclear states, heavy ion collision, intermediate energy nuclear physics, transfer reactions, dibaryonic resonances, thermodiffusion, management of radioactive wastes [fr

  5. NUCLEAR CHEMISTRY ANNUAL REPORT 1970

    Energy Technology Data Exchange (ETDEWEB)

    Authors, Various

    1971-05-01

    Papers are presented for the following topics: (1) Nuclear Structure and Nuclear Properties - (a) Nuclear Spectroscopy and Radioactivity; (b) Nuclear Reactions and Scattering; (c) Nuclear Theory; and (d) Fission. (2) Chemical and Atomic Physics - (a) Atomic and Molecular Spectroscopy; and (b) Hyperfine Interactions. (3) Physical, Inorganic, and Analytical Chemistry - (a) X-Ray Crystallography; (b) Physical and Inorganic Chemistry; (c) Radiation Chemistry; and (d) Chemical Engineering. (4) Instrumentation and Systems Development.

  6. Regulatory requirements and administrative practice in safety of nuclear installations

    International Nuclear Information System (INIS)

    Servant, J.

    1977-01-01

    This paper reviews the current situation of the France regulatory rules and procedures dealing with the safety of the main nuclear facilities and, more broadly, the nuclear security. First, the author outlines the policy of the French administration which requires that the licensee responsible for an installation has to demonstrate that all possible measures are taken to ensure a sufficient level of safety, from the early stage of the project to the end of the operation of the plant. Thus, the administration performs the assessment on a case-by-case basis, of the safety of each installation before granting a nuclear license. On the other hand, the administration settles overall safety requirements for specific categories of installations or components, which determine the ultimate safety performances, but avoid, as far as possible, to detail the technical specifications to be applied in order to comply with these goals. This approach, which allows the designers and the licensees to rely upon sound codes and standards, gains the advantage of a great flexibility without imparing the nuclear safety. The author outlines the licensing progress for the main categories of installations: nuclear power plants of the PWR type, fast breeders, uranium isotope separation plants, and irradiated fuel processing plants. Emphasis is placed on the most noteworthy points: standardization of projects, specific risks of each site, problems of advanced type reactors, etc... The development of the technical regulations is presented with emphasis on the importance of an internationally concerned action within the nuclear international community. The second part of this paper describes the France operating experience of nuclear installations from the safety point of view. Especially, the author examines the technical and administrative utilization of data from safety significant incidents in reactors and plants, and the results of the control performed by the nuclear installations

  7. The control of base nuclear installations; Le controle des installations nucleaires de base (INB)

    Energy Technology Data Exchange (ETDEWEB)

    Anon

    2009-04-15

    The Authority of Nuclear Safety ( A.S.N). presents in this column the current events of the control of the nuclear base installations during november, december 2008 and january 2009, classified by nuclear site. This information is also available in real-time on the A.S.N. web site, www.asn.fr, in the column 'news'. We can consult all the notices of significant incident published as well as the following letters of inspection, the notices of information about the reactors shutdown, press releases and the A.S.N. information notes. (N.C.)

  8. Responsible management: the Dutch licensing policy for nuclear installations

    International Nuclear Information System (INIS)

    Slange, R.

    1994-01-01

    The governmental policy, to tolerate operation of existing nuclear installations not backed by the required operating permits, certainly is applied only in exceptional cases, and this all the more when the plant is a nuclear installation. Any decision to tolerate further operation must be justified by compliance with a number of rigid criteria, there may be a debate in Parliament about the case, third parties have the right participate in the decision-finding procedure, and there is the right of appeal. (orig.) [de

  9. Safety culture in nuclear installations - The role of the regulator

    International Nuclear Information System (INIS)

    Karigi, Alice W.

    2002-01-01

    Safety culture is an amalgamation of values, standards, morals and norms of acceptable behavior by the licensees, Radiation workers and the Regulator. The role played by a Regulator in establishing safety culture in a nuclear installation is that related to Authorization, review, assessment, inspection and enforcement. The regulator is to follow the development of a facility or activity from initial selection of the site through design, construction, commissioning, radioactive waste management through to decommissioning and closure. He is to ensure safety measures are followed through out the operation of the facility by laying down in the license conditions of controlling construction of nuclear installations and ensuring competence of the operators. (author)

  10. Annual report ''nuclear safety in France''

    International Nuclear Information System (INIS)

    2001-01-01

    This document is the 2001 annual report of the French authority of nuclear safety (ASN). It summarizes the highlights of the year 2000 and details the following aspects: the nuclear safety in France, the organization of the control of nuclear safety, the regulation relative to basic nuclear facilities, the control of facilities, the information of the public, the international relations, the organisation of emergencies, the radiation protection, the transport of radioactive materials, the radioactive wastes, the PWR reactors, the experimental reactors and other laboratories and facilities, the nuclear fuel cycle facilities, and the shutdown and dismantling of nuclear facilities. (J.S.)

  11. Nuclear installations and childhood cancer in the U.K

    International Nuclear Information System (INIS)

    Goldsmith, J.R.

    1990-01-01

    The report in November 1983 of a cluster of childhood leukemia cases in the vicinity of the Sellafield (Windscale) nuclear facility on the west coast of England has led to a substantial effort to study possible excess cancer in the vicinity of British nuclear installations. Although some additional excesses were found, the causal relationship with radionuclides was thought unlikely because the estimated doses were below those established as causal of increase in human leukemia. Since 1956, we have known that diagnostic x-rays during pregnancy are associated with increased risks from childhood cancer, especially leukemia. Gardner et al. showed that excess cases near Sellafield were in children born there, and no excess occurred among in-migrants. Roman et al. showed that significant elevations in leukemia among children living near three nuclear installations in the Midlands were only at 0-5 y, suggesting that the relevant exposure was prenatal. We identify and discuss a set of epidemiological, dosage estimation, and modeling problems relevant to interpretation of such data. We conclude that: (1) a red bone marrow-based model for brief, high-level exposures of adults associated with myelogenous leukemia is inappropriate for evaluating the impact of internal emitters, relatively continuous exposures in perinatal periods in association with acute lymphatic leukemia; (2) incidence of mortality rates of childhood leukemia should be evaluated in the vicinity of nuclear installations in many countries; and (3) in contrast to nuclear reprocessing and nuclear weapons installations, there is little evidence of excess childhood leukemia among residents in areas adjacent to nuclear power installations in the U.K

  12. Independent Spent Fuel Storage Installations (ISFSI). Annual report, FY 1978

    International Nuclear Information System (INIS)

    Zima, G.E.

    1979-03-01

    The prime objective of the subject program is the identification of technical aspects of the design, operation and maintenance of independent spent fuel storage installations which could contribute to technical bases for Regulations and Regulatory Guides issued by NRC for these facilities. Activities on the various tasks of the program for the FY 1978 period are discussed in this report

  13. Evaluation and surveillance of radioactive releases of nuclear installations

    International Nuclear Information System (INIS)

    Hartmann, Ph.

    2002-01-01

    The two days organised by the section Environment of the SFRP have to objective to connect experts in radiation protection in order to debate around the following questions: the actual evaluations modes of releases impacts from nuclear installations, the organisation of the surveillance, to favour the implication of local actors in the evaluation and surveillance around nuclear facilities, the evolutions to envisage. (N.C.)

  14. US Nuclear Regulatory Commission 1983 annual report

    International Nuclear Information System (INIS)

    1984-01-01

    The thirteen chapters of this annual report are titled: 1983 highlights/1984 planning; reactor regulation; cleanup at TMI-2; operational experience; nuclear materials; safeguards; waste management; inspection, enforcement and emergency preparedness; cooperation with the states; international programs; nuclear regulatory research; proceedings and litigation; and management and communication

  15. Nuclear installations safety in France. Compilation of regulatory guides

    International Nuclear Information System (INIS)

    1988-01-01

    General plan: 1. General organization of public officials. Procedures 1.1. Texts defining the general organization and the procedures 1.2. Interventing organisms; 2. Texts presenting a technical aspect other than basic safety rules and associated organization texts; 2.1. Dispositions relating to safety of nuclear installations 2.2. Dispositions relating to pressure vessels 2.3. Dispositions relating to quality 2.4. Dispositions relating to radioactive wastes release 2.5. Dispositions relating to activities depending of classified installations; 3. Basic Safety Rules (BSR) 3.1. BSR relating to PWR 3.2. BSR relating to nuclear installations other than PWR 3.3. Other BSR [fr

  16. Order of 6 October 1977 defining the characteristics of each type of large nuclear installation

    International Nuclear Information System (INIS)

    1978-01-01

    This Order, made by the French Minister of Industry, Commerce and Crafts and the Minister of Labour, lays down the characteristics of large nuclear installations which should be included in the document provided for under Section 10 of decree No. 75-306 of 28 April 1975 on the protection of workers against the hazards of ionizing radiation in large nuclear installations. These include inter alia the reactor type, its nominal power, the nature and cladding of the fuel, the rate of loading/unloading of the fuel, provisions to prevent criticality risks outside normal operation of the reactor, controlled areas and the measures for protection against ionizing radiation. The Order also lays down the characteristics for plants for the preparation and treatment of irradiated nuclear fuels as well as the characteristics of facilities for the storage, use, manufacture and transformation of radioactive substances, and the maximum permissible annual quantities of radioactive releases. (NEA) [fr

  17. Volcanic Hazards in Site Evaluation for Nuclear Installations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-10-15

    This publication provides comprehensive and updated guidance for site evaluation in relation to volcanic hazards. It includes recommendations on assessing the volcanic hazards at a nuclear installation site, in order to identify and characterize, in a comprehensive manner, all potentially hazardous phenomena that may be associated with future volcanic events. It describes how some of these volcanic phenomena may affect the acceptability of the selected site, resulting in exclusion of a site or determining the corresponding design basis parameters for the installation. This Safety Guide is applicable to both existing and new sites, and a graded approach is recommended to cater for all types of nuclear installations. Contents: 1. Introduction; 2. Overview of volcanic hazard assessment; 3. General recommendations; 4. Necessary information and investigations (database); 5. Screening of volcanic hazards; 6. Site specific volcanic hazard assessment; 7. Nuclear installations other than nuclear power plants; 8. Monitoring and preparation for response; 9. Management system for volcanic hazard assessment; Annex I: Volcanic hazard scenarios; Annex II: Worldwide sources of information.

  18. Radiation protection in Swiss nuclear installations; Strahlenschutz in Schweizer Kernanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Hammer, J.; Brunell, M. [Eidgenoessisches Nuklearsicherheitsinspektorat ENSI, Brugg (Switzerland)

    2015-07-01

    Well developed measures on operational radiation protection within Swiss nuclear installations will be presented. The focus lays on competent authority actions. Results of the last ten years, including events on radiation issues, will be discussed. Finally a view on challenges for radiation protection personnel with respect to a renewed Swiss radiation protection legislation based on recent ICRP recommendations will be given.

  19. Nuclear Physics Laboratory annual report

    International Nuclear Information System (INIS)

    Trainor, T.A.; Weitkamp, W.G.

    1985-04-01

    Progress is reported in these areas: nuclear physics relevant to astrophysics and cosmology; nuclear structure of 14 N; the Cabibbo angle in Fermi matrix elements of high j states; giant resonances; heavy ion reactions; 0 + - 0 - isoscalar parity mixing in 14 N; parity mixing in hydrogen and deuterium; medium energy physics; and accelerator mass spectrometry. Accelerators and ion sources, nuclear instrumentation, and computer systems at the university are discussed, including the booster linac project

  20. Nuclear Regulatory Commission: 1981 annual report

    International Nuclear Information System (INIS)

    1981-01-01

    This seventh annual report of the US Nuclear Regulatory Commission covers major actions, events and planning that occurred during fiscal year 1981, with some coverage of later events, where appropriate. Chapters of the report address the agency's various functions or areas of activity: regulating nuclear power plants; evaluating reactor operating experience; licensing nuclear materials and their transportation; safeguarding nuclear plants and materials; managing nuclear wastes; inspection and enforcement; cooperation with state governments; international activities; research and standards development; hearings; decisions and litigation; and administrative and public communications matters. Each chapter presents a detailed review of program accomplishments during the report period, fiscal year 1981

  1. Fire protection and fire fighting in nuclear installations

    International Nuclear Information System (INIS)

    1989-01-01

    Fires are a threat to all technical installations. While fire protection has long been a well established conventional discipline, its application to nuclear facilities requires special considerations. Nevertheless, for a long time fire engineering has been somewhat neglected in the design and operation of nuclear installations. In the nuclear industry, the Browns Ferry fire in 1975 brought about an essential change in the attention paid to fire problems. Designers and plant operators, as well as insurance companies and regulators, increased their efforts to develop concepts and methods for reducing fire risks, not only to protect the capital investment in nuclear plants but also to consider the potential secondary effects which could lead to nuclear accidents. Although the number of fires in nuclear installations is still relatively large, their overall importance to the safety of nuclear power plants was not considered to be very high. Only more recently have probabilistic analyses changed this picture. The results may well have to be taken into account more carefully. Various aspects of fire fighting and fire protection were discussed during the Symposium, the first of its kind to be organized by the IAEA. It was convened in co-operation with several organizations working in the nuclear or fire protection fields. The intention was to gather experts from nuclear engineering areas and the conventional fire protection field at one meeting with a view to enhancing the exchange of information and experience and to presenting current knowledge on the various disciplines involved. The presentations at the meeting were subdivided into eight sessions: standards and licensing (6 papers); national fire safety practices (7 papers); fire safety by design (11 papers); fire fighting (2 papers); computer fire modeling (7 papers); fire safety in fuel center facilities (7 papers); fire testing of materials (3 papers); fire risk assessment (5 papers). A separate abstract was

  2. On the safety of nuclear installations in the Soviet Union

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    The cooperation agreements between authorities and industries of the Soviet Union and West Germany now are gaining shape in practice. In this context, the framework conditions are of great interest that govern the realisation of the extensive nuclear energy programme of the Soviet Union. The chairman of the State Commission established in 1984 for supervision of nuclear installations and guidance on safety-engineering enhancement of nuclear power plant in the USSR has been interviewed by atw on topics of organisations, measures and regulatory activities in the field of reactor safety and radiation protection. The interview is given in full. (orig.) [de

  3. Public information and licensing procedures for nuclear installations. European experience

    International Nuclear Information System (INIS)

    Mayoux, J.C.; Chevillard, F.; Mutschler, U.; Stubbe, C.

    1981-10-01

    This paper reviews the licensing procedures for nuclear installations in various European countries and examines the form, content and methods selected for information and consultation of the public. The author stresses the importance of this stage in the procedure, both for the nuclear operator and the public authorities, given the population's concern about the environment. He concludes that, irrespective of its complexity, the nuclear field cannot remain the concern of a few initiates competent to take decisions and that, consequently, this implies creation of new information systems to meet the public's desire to participate more directly in the process. (NEA) [fr

  4. Nuclear relevant installations licensing methodology in the Argentine Republic

    International Nuclear Information System (INIS)

    Paganini, C.E.

    1986-01-01

    A review of the requeriments of the Nuclear Installations Advisory Committee on Licensing (CALIN) from the nuclear security point of view, is presented. The methodology applied by the CALIN for the licensing in the Argentine Republic is included as well as codes, standards of applications and the interaction between the licensing Authority and the Responsible Entity during the whole process. Finally, the Atucha II nuclear power plant's licensing, in construction at present, is explained and the standard, of the licensing schedule, is presented graphically. (author) [es

  5. Conflict management in the planning of nuclear installations

    International Nuclear Information System (INIS)

    Pfeifer, M.

    1989-01-01

    Subsequent to the decision of the Bavarian Higher Administrative Court, which after judicial review declared the development plan for the Wackersdorf site and the reprocessing facility there to be void, the author analyses the situation with regard to the tasks to be accomplished by an installation-specific planning management for coping with arising conflicts - and nuclear hazards in particular -, and for coming to a reconciliation of interests. The author agrees with the decision of the Lueneburg Higher Administrative Court which stated that, in view of the subsequent licensing procedure provided by the law, the development plans need not specify any regulations concerning the specific nuclear hazards or radiological consequences of installations of this type, so that development plans within the meaning of sec. 1, sub-sec. (3) BauGB do not necessarily have to consider nuclear risks or dose limits. (orig./HP) [de

  6. Nuclear physics group annual report

    International Nuclear Information System (INIS)

    1984-01-01

    The experimental activities of the nuclear physics group at the University of Oslo have in 1983 as in the previous years mainly been centered around the SCANDITRONIX MC-35 cyclotron. The cyclotron has been in extensive use during the year for low-energy nuclear physics experiments. In addition it has been used for production of radionuclides for nuclear medicine, for experiments in nuclear chemistry and for corrosion and wear studies. After four years of operation, the cyclotron is still the newest nuclear accelerator in Scandinavia. The available beam energies (protons and alpha-particles up to 35 MeV and *sp3*He-particles up to 48 MeV, makes it a good tool for studies of highly excited low-spin states. The well developed on-line computer system has added to its usefulness. Most of the nuclear experiments during the year have been connected with the study of nuclear structure at high temperature. Experimens with the *sp3*He beam have given very interesting results. Theoretical studies have continued in the same field, and there has been a fruitful cooperation between experimental and theoretical physicists. Most of the experiments are performd as joint projects where physicists from two or three Nordic universities take part. (RF)

  7. Remote installation of risers on underground nuclear waste storage tanks

    International Nuclear Information System (INIS)

    Jackson, J.P.; Gessner, R.F.

    1988-03-01

    The West Valley Demonstration Project was established to solidify 2120 m 3 (560,000) gallons of high-level nuclear waste generated during six years of commercial nuclear fuel reprocessing. This liquid will be processed to remove radioactive elements which, with the remaining sludge, will be combined with glass formers and be converted into borosilicate glass. Risers were installed on the high-level tank for installation of pumps which will be used to remove the liquid and sludge. The extensive use of remote technology was required to install the risers and to minimize operator exposure to high levels of radiation and contamination. The riser installation required remotely: drilling through two feet of concrete shielding; installing pump access pipes which are welded to the tank top; and cutting holes in tanks located 3658 mm (12) feet below ground. These operations were successfully completed 13 times without exposing personnel to high-level radiation or contamination. Specially designed remote equipment was developed for each step of this operation. Extensive operator training in the use of this equipment was performed on a tank with low radiation prior to work on the high-level tank. This paper discusses the application of remote technology that assured a quality job was safely accomplished. 3 refs., 18 figs., 2 tabs

  8. Nuclear Physics Laboratory annual report

    International Nuclear Information System (INIS)

    1983-04-01

    Progress is described in the following areas: astrophysics and cosmology, nuclear structure and light ion reactions, giant resonances in radiative capture, heavy ion reations, nuclear tests of fundamental symmetries, parity violation in hydrogen, medium energy physics, accelerator mass spectrometry (C-14 and Be-10 radiochronology programs), accelerators and ion sources, magnetic spectrograph/momentum filter, instrumentation and experimental techniques, computers and computing, and the superconducting booster for the University of Washington tandem accelerator. Publications are listed

  9. Licensing of nuclear and radioactive installations in Peru

    International Nuclear Information System (INIS)

    Medina Gironzini, E.

    1987-01-01

    In Peru, the Regulation for Ionizing Radiation Sources is applied, which establishes the norms and procedures to follow in the nuclear and radioactive installations of the country in order to assure their correct operation as concerns to the nuclear safety and radiological protection, allowing the emission of the respective licenses. As for the nuclear facilities, this authorization includes the Previous License, the Construction License and the Operation License (provisional and definitive) and for radioactive facilities and equipment generating ionizing radiations: the Construction License and the Operation License. The personnel also require a license that can be an operator license (as for nuclear reactors) or a supervisor license (for nuclear and radioactive facilities). In spite of the above mentioned regulation and its long enforcement period, less than 10% of radioactive facilities in this country are licensed, due to different problems which will be solved in the medium term. (Author)

  10. Institutional support to the nuclear power based on transportable installations

    International Nuclear Information System (INIS)

    Kuznetsov, V.P.; Cherepnin, Y.S.

    2010-01-01

    Existing nuclear power uses large-power nuclear plants (more than 1,000 MWe) and enriched uranium fuel ( 2 35 U ). Each plant is treated as an exclusive costly project. As a result, large NPPs are operated predominantly in highly developed big countries. In many countries, construction of large power units is not reasonable because of the economic conditions and national specifics. This calls for the use of small- and medium-power nuclear plants (SMPNP), especially transportable nuclear installations (TNI). TNI feature small power (up to 100 MWe); serial production, and transportability. Small- and medium-power nuclear plants could serve to produce electricity and heat; perform water desalination; provide temporary and emergency energy supply. The authors discuss some findings of the studies carried out on the various aspects of the TNI life, as well as the legal and institutional support to their development, construction and operation. The studies have been performed in the framework of the INPRO Action Plan

  11. Malaysian Nuclear Agency: Annual report 2008

    International Nuclear Information System (INIS)

    2008-01-01

    The establishment of Malaysian Nuclear Agency (Nuclear Malaysia) was mooted from idea of the then Malaysia's Deputy Prime Minister, Tun Dr. Ismail Dato Abdul Rahman, that Malaysia should play a role in the development of nuclear science and technology for peaceful purposes. The Centre for Application of Nuclear Energy (CRANE) was the entity to mark the of Malaysia's nuclear programme, focussing on manpower development for a nuclear power programme to provide an option for energy source, following the worldwide oil crisis of the early 1970s. The Cabinet officially approved the establishment of the Tun Ismail Atomic Research Centre (PUSPATI), under the Ministry of Science, Technology and the environment on 19 September 1972. The era of nuclear research in Malaysia began with the historic event signified by the Reaktor TRIGA PUSPATI reaching its first criticality on 28 June 1982. When PUSPATI was placed under the auspices of the Prime Ministers Department, it assumed the name Nuclear Energy Unit (UTN). The Nuclear Energy Unit was later placed under the Minister of Science, Technology and the Environment. In line with the national development, the institute was name Malaysian Institute for Nuclear Technology Research (MINT) on 10 August 1994. To reflect its vision, mission, objectives and activities in the challenging world, a new identity was established, and was officially named as Malaysian Nuclear Agency (Nuclear Malaysia) on 28 September 2006. Nuclear Malaysia, is strategically located nearby the government administration, centre Putrajaya, and Cyberjaya. These annual report highlights all the activities that have been through by the agency in 2008. All the achievements and triumph were highlights in this annual report. It also contained all the agency planning during 2008 to fulfill the objectives, mission and vision to become main players in nuclear research in Malaysia. Finally, there also highlights some publications contribute by all the researchers from

  12. Malaysian Nuclear Agency: Annual report 2009

    International Nuclear Information System (INIS)

    2009-01-01

    The establishment of Malaysian Nuclear Agency (Nuclear Malaysia) was mooted from idea of the then Malaysia's Deputy Prime Minister, Tun Dr. Ismail Dato Abdul Rahman, that Malaysia should play a role in the development of nuclear science and technology for peaceful purposes. The Centre for Application of Nuclear Energy (CRANE) was the entity to mark the of Malaysia's nuclear programme, focussing on manpower development for a nuclear power programme to provide an option for energy source, following the worldwide oil crisis of the early 1970s. The Cabinet officially approved the establishment of the Tun Ismail Atomic Research Centre (PUSPATI), under the Ministry of Science, Technology and the environment on 19 September 1972. The era of nuclear research in Malaysia began with the historic event signified by the Reaktor TRIGA PUSPATI reaching its first criticality on 28 June 1982. When PUSPATI was placed under the auspices of the Prime Ministers Department, it assumed the name Nuclear Energy Unit (UTN). The Nuclear Energy Unit was later placed under the Minister of Science, Technology and the Environment. In line with the national development, the institute was name Malaysian Institute for Nuclear Technology Research (MINT) on 10 August 1994. To reflect its vision, mission, objectives and activities in the challenging world, a new identity was established, and was officially named as Malaysian Nuclear Agency (Nuclear Malaysia) on 28 September 2006. Nuclear Malaysia, is strategically located nearby the government administration, centre Putrajaya, and Cyberjaya. These annual report highlights all the activities that have been through by the agency in 2009. All the achievements and triumph were highlights in this annual report. It also contained all the agency planning during 2009 to fulfill the objectives, mission and vision to become main players in nuclear research in Malaysia. Finally, there also highlights some publications contribute by all the researchers from

  13. Malaysian Nuclear Agency; Annual report 2013

    International Nuclear Information System (INIS)

    2013-01-01

    The establishment of Malaysian Nuclear Agency (Nuclear Malaysia) was mooted from idea of the then Malaysia's Deputy Prime Minister, Tun Dr. Ismail Dato Abdul Rahman, that Malaysia should play a role in the development of nuclear science and technology for peaceful purposes. The Centre for Application of Nuclear Energy (CRANE) was the entity to mark the of Malaysia's nuclear programme, focussing on manpower development for a nuclear power programme to provide an option for energy source, following the worldwide oil crisis of the early 1970s. The Cabinet officially approved the establishment of the Tun Ismail Atomic Research Centre (PUSPATI), under the Ministry of Science, Technology and the environment on 19 September 1972. The era of nuclear research in Malaysia began with the historic event signified by the Reaktor TRIGA PUSPATI reaching its first criticality on 28 June 1982. When PUSPATI was placed under the auspices of the Prime Ministers Department, it assumed the name Nuclear Energy Unit (UTN). The Nuclear Energy Unit was later placed under the Minister of Science, Technology and the Environment. In line with the national development, the institute was name Malaysian Institute for Nuclear Technology Research (MINT) on 10 August 1994. To reflect its vision, mission, objectives and activities in the challenging world, a new identity was established, and was officially named as Malaysian Nuclear Agency (Nuclear Malaysia) on 28 September 2006. Nuclear Malaysia, is strategically located nearby the government administration, centre Putrajaya, and Cyberjaya. These annual report highlights all the activities that have been through by the agency in 2013. All the achievements and triumph were highlights in this annual report. It also contained all the agency planning during 2013 to fulfill the objectives, mission and vision to become main players in nuclear research in Malaysia. Finally, there also highlights some publications contribute by all the researchers

  14. Malaysian Nuclear Agency: Annual report 2010

    International Nuclear Information System (INIS)

    2010-01-01

    The establishment of Malaysian Nuclear Agency (Nuclear Malaysia) was mooted from idea of the then Malaysia's Deputy Prime Minister, Tun Dr. Ismail Dato Abdul Rahman, that Malaysia should play a role in the development of nuclear science and technology for peaceful purposes. The Centre for Application of Nuclear Energy (CRANE) was the entity to mark the of Malaysia's nuclear programme, focussing on manpower development for a nuclear power programme to provide an option for energy source, following the worldwide oil crisis of the early 1970s. The Cabinet officially approved the establishment of the Tun Ismail Atomic Research Centre (PUSPATI), under the Ministry of Science, Technology and the environment on 19 September 1972. The era of nuclear research in Malaysia began with the historic event signified by the Reaktor TRIGA PUSPATI reaching its first criticality on 28 June 1982. When PUSPATI was placed under the auspices of the Prime Ministers Department, it assumed the name Nuclear Energy Unit (UTN). The Nuclear Energy Unit was later placed under the Minister of Science, Technology and the Environment. In line with the national development, the institute was name Malaysian Institute for Nuclear Technology Research (MINT) on 10 August 1994. To reflect its vision, mission, objectives and activities in the challenging world, a new identity was established, and was officially named as Malaysian Nuclear Agency (Nuclear Malaysia) on 28 September 2006. Nuclear Malaysia, is strategically located nearby the government administration, centre Putrajaya, and Cyberjaya. These annual report highlights all the activities that have been through by the agency in 2010. All the achievements and triumph were highlights in this annual report. It also contained all the agency planning during 2010 to fulfill the objectives, mission and vision to become main players in nuclear research in Malaysia. Finally, there also highlights some publications contribute by all the researchers from

  15. Malaysian Nuclear Agency; Annual report 2014

    International Nuclear Information System (INIS)

    2009-01-01

    The establishment of Malaysian Nuclear Agency (Nuclear Malaysia) was mooted from idea of the then Malaysia's Deputy Prime Minister, Tun Dr. Ismail Dato Abdul Rahman, that Malaysia should play a role in the development of nuclear science and technology for peaceful purposes. The Centre for Application of Nuclear Energy (CRANE) was the entity to mark the of Malaysia's nuclear programme, focussing on manpower development for a nuclear power programme to provide an option for energy source, following the worldwide oil crisis of the early 1970s. The Cabinet officially approved the establishment of the Tun Ismail Atomic Research Centre (PUSPATI), under the Ministry of Science, Technology and the environment on 19 September 1972. The era of nuclear research in Malaysia began with the historic event signified by the Reaktor TRIGA PUSPATI reaching its first criticality on 28 June 1982. When PUSPATI was placed under the auspices of the Prime Ministers Department, it assumed the name Nuclear Energy Unit (UTN). The Nuclear Energy Unit was later placed under the Minister of Science, Technology and the Environment. In line with the national development, the institute was name Malaysian Institute for Nuclear Technology Research (MINT) on 10 August 1994. To reflect its vision, mission, objectives and activities in the challenging world, a new identity was established, and was officially named as Malaysian Nuclear Agency (Nuclear Malaysia) on 28 September 2006. Nuclear Malaysia, is strategically located nearby the government administration, centre Putrajaya, and Cyberjaya. These annual report highlights all the activities that have been through by the agency in 2014. All the achievements and triumph were highlights in this annual report. It also contained all the agency planning during 2014 to fulfill the objectives, mission and vision to become main players in nuclear research in Malaysia. Finally, there also highlights some publications contribute by all the researchers

  16. Malaysian Nuclear Agency; Annual report 2011

    International Nuclear Information System (INIS)

    2008-01-01

    The establishment of Malaysian Nuclear Agency (Nuclear Malaysia) was mooted from idea of the then Malaysia's Deputy Prime Minister, Tun Dr. Ismail Dato Abdul Rahman, that Malaysia should play a role in the development of nuclear science and technology for peaceful purposes. The Centre for Application of Nuclear Energy (CRANE) was the entity to mark the of Malaysia's nuclear programme, focussing on manpower development for a nuclear power programme to provide an option for energy source, following the worldwide oil crisis of the early 1970s. The Cabinet officially approved the establishment of the Tun Ismail Atomic Research Centre (PUSPATI), under the Ministry of Science, Technology and the environment on 19 September 1972. The era of nuclear research in Malaysia began with the historic event signified by the Reaktor TRIGA PUSPATI reaching its first criticality on 28 June 1982. When PUSPATI was placed under the auspices of the Prime Ministers Department, it assumed the name Nuclear Energy Unit (UTN). The Nuclear Energy Unit was later placed under the Minister of Science, Technology and the Environment. In line with the national development, the institute was name Malaysian Institute for Nuclear Technology Research (MINT) on 10 August 1994. To reflect its vision, mission, objectives and activities in the challenging world, a new identity was established, and was officially named as Malaysian Nuclear Agency (Nuclear Malaysia) on 28 September 2006. Nuclear Malaysia, is strategically located nearby the government administration, centre Putrajaya, and Cyberjaya. These annual report highlights all the activities that have been through by the agency in 2011. All the achievements and triumph were highlights in this annual report. It also contained all the agency planning during 2011 to fulfill the objectives, mission and vision to become main players in nuclear research in Malaysia. Finally, there also highlights some publications contribute by all the researchers from

  17. Experience with HEPA filters at United States nuclear installations

    International Nuclear Information System (INIS)

    Bellamy, R.R.

    1977-01-01

    Part 50 of Title 10 of the United States Code of Federal Regulations requires that a number of atmosphere cleanup systems be included in the design of commercial nuclear power plants to be licensed in the United States. These filtering systems are to contain high efficiency particulate air (HEPA) filters for removal of radioactive particulate matter generated during normal and accident conditions. Recommendations for the design, testing and maintenance of the filtering systems and HEPA filter components are contained in a number of United States Nuclear Regulatory Commission documents and industry standards. This paper will discuss this published guidance available to designers of filtering systems and the plant operators of U.S. commercial nuclear power plants. The paper will also present a survey of published reports of experience with HEPA filters, failures and possible causes for the failures, and other abnormal occurrences pertaining to HEPA filters installed in U.S. nuclear power installations. A discussion will be included of U.S. practices for qualification of HEPA filters before installation, and verification of continued performance capability at scheduled intervals during operation

  18. Nuclear physics group annual report

    International Nuclear Information System (INIS)

    1986-06-01

    The experimental activities have in 1985 as in the previous years mainly been centered around the cyclotron laboratory with the SCANDITRONIX MC-35 cyclotron. Most of the nuclear physics experiments have been related to the study of nuclear structure at high temperature. Experiments with the 3 He-beam up to a particle energy of 45 MeV have continued, and valuable information regarding the cooling process in highly excited nuclei has been obtained. Theoretical studies of highly excited nuclei have continued, and there has been a fruitful cooperation between experimental and theoretical physicists

  19. Council for Nuclear Safety annual report 1988/89

    International Nuclear Information System (INIS)

    1989-01-01

    An overview of the structure, duties and activities of the Council for Nuclear Safety during 1988/1989 is presented in this annual report. It is the Council's first duty to ensure that all aspects - siting, design, construction and operation - in all areas of the nuclear industry, from mining of the nuclear ores to the ultimate disposal of nuclear waste, are conducted in such a manner that the potential for harm associated with the radioactive properties of the materials involved is kept under proper control. In order to achieve this the Council is responsible for the establishment and application of safety standards, the issuing of nuclear licenses and the evaluation and inspection of nuclear installations to ensure that the licensees are complying with the conditions laid down in the license and that they are adhering to all the safety criteria established by the Council. Other information contained in this annual report is, inter alia, the financial statements of the Council, the meetings attended by members of the Council and the administrative and management aspects of the Council. 8 figs

  20. Standardization of Nuclear Instrumentation Applied in the NPP and in other nuclear installations

    International Nuclear Information System (INIS)

    Kusnowo, Arlinah; Darmawati, Suzie

    2002-01-01

    Nuclear power plant (NPP) and other nuclear installations have been recognized as applications needing very sophisticated technologies. One of technologies used in this all nuclear facilities is nuclear instrumentation. In order that NPP and other nuclear installations be operated safely, nuclear instrumentation requires standardization from design to its operation. Internationally, standardizations of nuclear instrumentation have been issued by IEC (International Electrotechnical Commission). Formulation of standard in nuclear instrumentation in IEC is carried out by Technical Committee (TC) 45. This paper describes briefly the standardization of nuclear instrumentation applied in Indonesia as Indonesian National Standard (SNI, Standard National Indonesia), standardization of nuclear instrumentation developed by TC 45, SC 45A, and SC 45B, as well as the possibility to adopt and apply those IEC standard in Indonesia

  1. Estimating the whole-body exposure annual dose of radiation workers of petroleum nuclear well logging

    International Nuclear Information System (INIS)

    Tian Yizong; Gao Jianzheng; Liu Wenhong

    2006-01-01

    Objective: By imitating experiment of radioactive sources being installed, to estimate the annual whole-body exposure dose of radiation workers of petroleum nuclear determining wells; Methods: To compre the values of the theory, imitating experiment and γ individual dose monitor calculations. Results: The three values measured above tally with one anather. Conclusion: The annual whole-body exposure doses of radiation workers of petroleum nuclear determining wells are no more than 5 mSv. (authors)

  2. Quality assurance in the structural installations of nuclear power stations

    International Nuclear Information System (INIS)

    Schnellenbach, G.; Wrage, S.

    1985-01-01

    The concept of quality assurance distinguishes between self-monitoring of the design, manufacturing and executing firms and external monitoring by state institutions or by experts commissioned by them. The long-term control of structures is within the area of responsibility of the owner. This quality assurance concept is controlled in detail by statutes, which clearly define responsibilities. This structural engineering quality assurance system also forms the basis for the design, construction and utilization of structural installations of nuclear power stations; requirements emanating from the Atomic Energy Acts for the structural installations demand, however, to some extent a sharpening of self- and external monitoring. Therefore, today a quality concept has been developed for the important engineering safety-related buildings of nuclear power stations. This concept takes account of the strict requirements imposed and fulfils the requirement of KTA 1401. (orig.) [de

  3. Legal questions relating to nuclear installations close to national frontiers

    International Nuclear Information System (INIS)

    Zieger, G.

    1983-01-01

    Main emphasis is placed on the criteria to decide whether the construction and operation of a nulcear power plant close to a national frontier is permissible or not. The author discusses the relevant provisions of the international law and those of the Treaty of Rome pertaining to the settlement of conflicts between neighbour states. According to the opinion of the author, nuclear installations close to borders are incompatible with international law only if they do not comply with accepted safety standards. The international agreements do not prohibit the construction of nuclear installations close to frontiers. It would be desirable, however, the author says, to conclude international treaties providing for mutual consultation and information, thus offering a platform for discussing controversial national interests; this idea already being put into practice in customary international law. (WB) [de

  4. Safety aspects of spent nuclear fuel interim storage installations

    Energy Technology Data Exchange (ETDEWEB)

    Romanato, Luiz Sergio [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), Sao Paulo, SP (Brazil). Dept. da Qualidade. Div. de Sistemas da Qualidade]. E-mail: romanato@ctmsp.mar.mil.br; Rzyski, Barbara Maria [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Div. de Ensino]. E-mail: bmrzyski@ipen.br

    2007-07-01

    Nowadays safety and security of spent nuclear fuel (SNF) interim storage installations are very important, due to a great concentration of fission products, actinides and activation products. In this kind of storage it is necessary to consider the physical security. Nuclear installations have become more vulnerable. New types of accidents must be considered in the design of these installations, which in the early days were not considered like: fissile material stolen, terrorists' acts and war conflicts, and traditional accidents concerning the transport of the spent fuel from the reactor to the storage location, earthquakes occurrence, airplanes crash, etc. Studies related to airplane falling had showed that a collision of big commercials airplanes at velocity of 800 km/h against SNF storage and specially designed concrete casks, do not result in serious structural injury to the casks, and not even radionuclides liberation to the environment. However, it was demonstrated that attacks with modern military ammunitions, against metallic casks, are calamitous. The casks could not support a direct impact of this ammo and the released radioactive materials can expose the workers and public as well the local environment to harmful radiation. This paper deals about the main basic aspects of a dry SNF storage installation, that must be physically well protected, getting barriers that difficult the access of unauthorized persons or vehicles, as well as, must structurally resist to incidents or accidents caused by unauthorized intrusion. (author)

  5. Safety aspects of spent nuclear fuel interim storage installations

    International Nuclear Information System (INIS)

    Romanato, Luiz Sergio

    2007-01-01

    Nowadays safety and security of spent nuclear fuel (SNF) interim storage installations are very important, due to a great concentration of fission products, actinides and activation products. In this kind of storage it is necessary to consider the physical security. Nuclear installations have become more vulnerable. New types of accidents must be considered in the design of these installations, which in the early days were not considered like: fissile material stolen, terrorists' acts and war conflicts, and traditional accidents concerning the transport of the spent fuel from the reactor to the storage location, earthquakes occurrence, airplanes crash, etc. Studies related to airplane falling had showed that a collision of big commercials airplanes at velocity of 800 km/h against SNF storage and specially designed concrete casks, do not result in serious structural injury to the casks, and not even radionuclides liberation to the environment. However, it was demonstrated that attacks with modern military ammunitions, against metallic casks, are calamitous. The casks could not support a direct impact of this ammo and the released radioactive materials can expose the workers and public as well the local environment to harmful radiation. This paper deals about the main basic aspects of a dry SNF storage installation, that must be physically well protected, getting barriers that difficult the access of unauthorized persons or vehicles, as well as, must structurally resist to incidents or accidents caused by unauthorized intrusion. (author)

  6. Nuclear installations and childhood cancer in the UK

    International Nuclear Information System (INIS)

    Goldsmith, J.R.

    1992-01-01

    Data on cancer incidence and mortality near nuclear installations in England and Wales have been published, covering the period 1959-1980. Several age classes and a number of cancer sites have been included. Systematic analysis has so far been limited to cancer mortality. This suggests that childhood leukemia is unusually frequent near some types of installations and the excess is greater for years 0-9 than for later ages. In the earlier decade, 1959-1969, there was questionable consistency of incidence reporting. This report uses the incidence and mortality data only for the period 1971-1980; leukemia and non-leukemia cancer data for those 0-9 years are analyzed, and consistency of incidence reporting is evaluated by comparing incidence and mortality. For comparison with reported data for grouped local authority areas (LAAs) near to 21 different installations, 2 sources of expected incidence are used. The first is based on regional data, and the second is based on a group of LAAs similar in location, urban/rural character and population size. The results of this study confirm Cook-Mozaffari et al.'s findings by mortality analysis for the group of installations involved in non-power producing nuclear technology. This study sheds no light on the possible basis for the association, which remains to be clarified. Initial steps have been taken by Gardner et al. using case-referent methods. (author). 15 refs., 3 figs., 7 tabs

  7. Nuclear Safety Project - annual report 1980

    International Nuclear Information System (INIS)

    1981-08-01

    The Annual Report 1980 is a detailed description (in German language) of work within the Nuclear Safety Project performed in 1980 in the nuclear safety field by KfK institutes and departments and by external institutes on behalf of KfK. It includes for each individual research activity short summaries in English language on work completed, essential results, plans for the near future. (orig./RW) [de

  8. Nuclear Safety Project. Annual report 1983

    International Nuclear Information System (INIS)

    1984-06-01

    The annual report 1983 is a detailed description (in German language) of work within the Nuclear Safety Project performed in 1983 in the nuclear safety field by KfK institutes and departments and by external institutes on behalf of KfK. It includes for each individual research activity short summaries in English language on work performed, results obtained and plans for future work. This report was compiled by the project management. (orig.) [de

  9. Nuclear safety project. Annual report 1985

    International Nuclear Information System (INIS)

    1986-07-01

    The annual report 1985 is a detailed description (in German language) of work within the nuclear safety project performed in 1985 in the nuclear safety field by KfK institutes and departments and by external institutes on behalf of KfK. It includes for each individual research activity short summaries in English language on work performed, results obtained and plans for future work. This report was compiled by the project management. (orig./HP) [de

  10. Approach to long- term regalement of nuclear energy installation decommissioning

    International Nuclear Information System (INIS)

    Dryapachenko, Yi.P.; Rudenko, B. A.; Ozimaj, M.S.

    2001-01-01

    In this report we make an accent on because the rules of nuclear installation decommissioning should provide controllability with compounded operations not one generations of the performers. The strategy should take into account problems of the economic completion, environment and standards of health, script of decommissioning and its execution, and so on. These strategies are bound with the social conditions, with accent on work with the low level wastes

  11. Policy and systems analysis for nuclear installation decommissioning

    International Nuclear Information System (INIS)

    Gu Jiande

    1995-01-01

    On the basis of introducing into principal concept for nuclear installation decommissioning, form policy, sciences point of view, the author analyses present problems in the policy, the administrative and programme for decommissioning work in China. According to the physical process of decommissioning, the author studied engineering economics, derived method and formulas to estimate decommissioning cost. It is pointed out that basing on optimization principle for radiation protection and analysing cost-benefit for decommissioning engineering, the corresponding policy decision can be made

  12. Assessment of the nuclear installation's safety significant events

    International Nuclear Information System (INIS)

    Vidican, D.

    2005-01-01

    This document tries to establish, based on the available documentation, the main steps in development of Assessment of the Events in Nuclear Installations. It takes into account: selection of the safety significant occurrences, establishing the direct cause and contributors as well as the root cause and contributors. Also, the document presents the necessary corrective actions and generic lessons to be learned from the event. The document is based especially on IAEA - ASSET guidelines and DOE root cause analysis Guidance. (author)

  13. Performance study of the paints for use in nuclear installations

    International Nuclear Information System (INIS)

    Yamashita, T.

    1978-01-01

    The performance of some Brazilian commercial paints under physical, chemical and radiation conditions typical of nuclear installations is studied. Resistance to gama rays in the range of 10 4 - 10 9 rad as well as the susceptibility to contamination, ease of decontamination and chemical resistance in 9 different types of paints are studied. Finally, suggestions are provided for the best choice of commercial paints according to their specific uses [pt

  14. Gas turbine installations in nuclear power plants in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Sevestedt, Lars [Electrical Equipment and Gas Turbines, Swedish State Power Board, Ringhals Nuclear Power Plant, S-430 22 Vaeroebacka (Sweden)

    1986-02-15

    At each of the four nuclear power stations in Sweden (Ringhals, Forsmark, Oskarshamn, Barsebaeck) gas turbine generating sets have been installed. These units are normally used for peak load operation dictated of grid and System requirements but they are also connected to supply the electrical auxiliary load of the nuclear plant as reserve power sources. The gas turbines have automatic start capability under certain abnormal conditions (such as reactor trips, low frequency grid etc) but they can also be started manually from several different locations. Starting time is approximately 2- 3 minutes from start up to full load. (author)

  15. Gas turbine installations in nuclear power plants in Sweden

    International Nuclear Information System (INIS)

    Sevestedt, Lars

    1986-01-01

    At each of the four nuclear power stations in Sweden (Ringhals, Forsmark, Oskarshamn, Barsebaeck) gas turbine generating sets have been installed. These units are normally used for peak load operation dictated of grid and System requirements but they are also connected to supply the electrical auxiliary load of the nuclear plant as reserve power sources. The gas turbines have automatic start capability under certain abnormal conditions (such as reactor trips, low frequency grid etc) but they can also be started manually from several different locations. Starting time is approximately 2- 3 minutes from start up to full load. (author)

  16. Nuclear Installations (Jersey) Order 1980 SI No. 1527

    International Nuclear Information System (INIS)

    1980-01-01

    This Order extends to the Bailiwick of Jersey with the exceptions, adaptations and modifications specified in the Schedule to the Order, certain provisions of the Nuclear Installations Act 1965, as amended. It is the 1965 Act which implements the provisions of the Paris Convention and the Brussels Supplementary Convention in the United Kingdom. These provisions relate to the duty in respect of the carriage of nuclear matter, to the right to compensation for breach of that duty and to the bringing and satisfaction of claims and other matters. This Order came into operation on 3 November 1980. (NEA) [fr

  17. Seismic qualification of existing nuclear installations in India - a proposal

    International Nuclear Information System (INIS)

    Basu, P.C.

    2001-01-01

    In India, the work toward seismic qualification of existing nuclear facilities has been started. Preliminary work is being undertaken with respect to identifying the facilities which would be taken up for seismic qualification, approach and methodology for re-evaluation for seismic safety, acceptance criteria, etc. Work has also been started for framing up the criteria and methodology of the seismic qualification of these facilities. Present paper contains the proposal in this respect. This proposal is on similar lines of the present practice of seismic qualification of NPP, as summarized in the Appendix, but has been modified to suit the special requirements of Indian nuclear installations. (author)

  18. Taking into account chemical safety for French basic nuclear installations

    International Nuclear Information System (INIS)

    Tabard, Laurence; Conte, Dorothee

    2013-01-01

    Among nuclear installations, some fuel cycle facilities present a high level of chemical hazards. In France, the TSN law of the 13 June 2006 requires taking into account all the risks generated by a basic nuclear installation (BNI). But, as most of the implementing regulatory texts are under development at this time, part of the previous regulation settled down in the 1990's is still applying: the order of the 31 December 1999 concerning technical regulation in order to prevent and to limit hazards generated by nuclear facilities; the decree of the 4 May 1995 and the order of the 26 November 1999 that deal with BNI discharges. Moreover, some parts of BNI or of nuclear sites can be submitted to the general regulation concerning chemical hazards, which is part of the environment code. As a result, even if the TSN law and its implementing decree Nr 2007-1557 of the 2 November 2007 settle clearly that safety of BNI is not only radiological, but must take into account chemical hazards, the latter aspects are still under development. Moreover the application of the existing regulation, even if complex, has helped to assess chemical risks inside BNI and nuclear sites. (authors)

  19. Nuclear physics group annual report

    International Nuclear Information System (INIS)

    1985-04-01

    The experimental activities have in 1984 as in previous years mainly been centered around the cyclotron laboratory with the SCANDITRONIX MC-35 cyclotron. The available beam energies (protons and alpha-particles to 35 MeV and 3 He-particles up to 48 MeV) make it an excellent tool for studies of highly excited low-spin states, and also for other experiments with light ions in an intermediate energy range. During the year the accelerator has been in extensive use for low-energy nuclear physics experiments. Most of the experiments have been related to the study of nuclear structure at high temperature. Experiments with the 3 He-beam up to a particle energy of 45 MeV, have given some interesting results, which, it is hoped, will contribute to a better understanding of the cooling process in highly excited nuclei

  20. Competent person for radiation protection. Practical radiation protection for base nuclear installations and installations classified for the environment protection

    International Nuclear Information System (INIS)

    Pin, A.; Perez, S.; Videcoq, J.; Ammerich, M.

    2008-01-01

    This book corresponds to the practical module devoted to the base nuclear installations and to the installations classified for the environment protection, that is to say the permanent nuclear installations susceptible to present risks for the public, environment or workers. Complied with the legislation that stipulates this module must allow to apply the acquired theoretical training to practical situations of work, it includes seven chapters as follow: generalities on access conditions in regulated areas of nuclear installation,s or installations classified for environment protection and clothing against contamination; use of control devices and management of damaged situations; methodology of working place studies, completed by the application to a real case of a study on an intervention on a containment wall; a part entitled 'take stock of the situation' ends every chapter and proposes to the reader to check its understanding and acquisition of treated knowledge. (N.C.)

  1. Nuclear liability amounts on the rise for nuclear installations

    International Nuclear Information System (INIS)

    Vasquez-Maignan, Ximena; Schwartz, Julia; Kuzeyli, Kaan

    2015-01-01

    The NEA Table on Nuclear Operator Liability Amounts and Financial Security Limits (NEA 'Liability Table'), which covers 71 countries, aims to provide one of the most comprehensive listings of nuclear liability amounts and financial security limits. The current and revised Paris and Brussels Supplementary Conventions ('Paris-Brussels regime'), the original and revised Vienna Conventions ('Vienna regime') and the Convention on Supplementary Compensation for Nuclear Damage, newly entered into force in April 2015, provide for the minimum amounts to be transposed in the national legislation of states parties to the conventions, and have served as guidelines for non-convention states. This article examine in more detail increases in the liability amounts provided for under these conventions, as well as examples of non-convention states (China, India and Korea)

  2. Statement on nuclear incidents at nuclear installations -third quarter 1987

    International Nuclear Information System (INIS)

    1988-01-01

    Four incidents are reported. Carbon dioxide containing a small amount of radioactive material was released at the Chapelcross works of British Nuclear Fuels. However, air monitoring showed the contamination to be small. Surfaces contaminated were cleaned and the reactor was allowed to restart as scheduled. Refurbishment work at the Berkeley Nuclear Power Station sewage plant revealed five radioactive particles. The sludge has been isolated until a disposal method is found. Contamination on a coverall was found at the Sellafield reprocessing plant. Both the operators who may have worn the coverall may have received excess doses. Improvements in the possible source of contamination have been made. A leak of gas from the Hunterston B nuclear power station was found to be from a failed joint on a bolted flange on the bypass circuit heat exchanger. The joint has been repaired. (U.K.)

  3. The work of the OECD Nuclear Energy Agency on safety and licensing of nuclear installations

    International Nuclear Information System (INIS)

    Strohl, P.

    1975-01-01

    The acceleration of nuclear power programmes in OECD Member countries is reflected in the emphasis given by OECD/NEA to its activities in nuclear safety and regulatory matters. Particular effort is devoted to work on radiation protection and radioactive waste management, safety of nuclear installations and nuclear law development. A Committee on the Safety of Nuclear Installations reviews the state of the art and identifies areas for research and co-ordination of national programmes. A Sub-Committee on Licensing collates information and data on licensing standards and practices of different countries with a view to considering problems of common interest. Comparative studies of various licensing systems and discussions between licensing authorities should help to improve regulatory control of nuclear installations for which there appears to be a need for internationally accepted standards in the long run. (author)

  4. Nuclear medicine installations supervisors interactive course (CD-ROM)

    International Nuclear Information System (INIS)

    Williart, A.; Shaw, M.; Tellez, M.

    2000-01-01

    The professionals who work as Nuclear Medicine Installations Supervisors need a suitable training. This training must be based on the guidelines of the C.S.N. (the Spanish Agency for Nuclear Safety). The traditional training courses must comply with a set of requirements, that not always is possible to get: They are given in a settled place. They are developed during a time, more or less lengthy. This time is pre-established. However, the persons willing to follow these courses have some difficulties with the place and the time. Many of them do not live near the places where the courses are given, in general in big cities, while there are Nuclear Medicine Installations scattered through all Spain. Moreover in some occasions they have not available time to attend the courses. Many times, faced with so many obstacles, the option is not to do the suitable training course. In order to solve this kind of problems we offer an Interactive Training Course (supported by CD-ROM). The course contents are based on Spanish Regulations and on the Safety Guide, established by C.S.N., for approval Radioactive Installations Supervisors Training Courses. This guide includes General Topics for Radioactive Installations and Specific Subjects for Nuclear Medicine. (General topics) Basic knowledge on the fundamental concepts on the action and nature of Ionizing Radiations, their risks and preventions. The ionizing radiations. Biological effects of ionizing radiations. Radiological protection. Legislation on radioactive installations. (Specific Subjects) Knowledge on the radiological risks associated to the proper techniques in the specific field of application. In our case the specific field is Nuclear Medicine Installations, where the radioactive sources are used for diagnostic or for therapy. Specific legal and administrative aspects. Non-encapsulated radioactive sources. Associated radiological risks to the use of non-encapsulated sources. Installations design. Operative procedures

  5. Effective corrective actions to enhance operational safety of nuclear installations

    International Nuclear Information System (INIS)

    2005-07-01

    The safe operation of nuclear power plants around the world and the prevention of incidents in these installations remain key concerns for the nuclear community. In this connection the feedback of operating experience plays a major role: every nuclear plant operator needs to have a system in place to identify and feed back the lessons learned from operating experience and to implement effective corrective actions to prevent safety events from reoccurring. An effective operating experience programme also includes a proactive approach that is aimed at preventing the first-time occurrence of safety events. In April 2003, the IAEA issued the PROSPER guidelines for nuclear installations to strengthen and enhance their own operating experience process and for self-assessment on the effectiveness of the feedback process. Subsequently, in the course of the Operational Safety Review Teams missions conducted by the IAEA that focused on the operational safety practices of nuclear power plants, the IAEA enhanced the review of the operating experience in nuclear power plants by implementing a new module that is derived from these guidelines. In order to highlight the effective implementation of the operating experience programme and to provide practical assistance in this area, the IAEA organized workshops and conferences to discuss recent trends in operating experience. The IAEA also performed assistance and review missions at plants and corporate organizations. The IAEA is further developing advice and assistance on operating experience feedback programmes and is reporting on good practices. The present publication is the outcome of two years of coordinated effort involving the participation of experts of nuclear organizations in several Member States. It provides information and good practices for successfully establishing an effective corrective actions programme. This publication forms part of a series that develops the principles set forth in these guidelines

  6. Management of procurement activities in a nuclear installation

    International Nuclear Information System (INIS)

    1996-12-01

    Discussions held within the framework of IAEA regional technical co-operation projects implemented in the Latin America, Asia-Pacific and eastern Europe regions revealed an area of frequent difficulties related to the proper control, by the management of nuclear utilities, of the effective fulfilment of contractual quality and safety requirements. Evaluation of the results of a number of OSART missions has also pointed to a need for improving the control that some utilities exercise on their suppliers. The IAEA was thus prompted to initiate the development of a technical document providing guidance on these subjects. In October 1995, a consultants meeting was convened to determine the target users of the technical document and to develop the scope, contents, structure and the reference material. A first draft was then prepared. An Advisory Group meeting consisting of experts from 17 Members States was held in Vienna in May 1996 to review and complete the draft. The technical document is intended to provide practical guidance on controlling procurement, with supporting information for senior management, line managers and line supervisors in a nuclear installation. Although the guidance is structured to address the needs during the operating stage of a nuclear power plant, much of the material is also applicable to the construction and decommissioning stages and to other nuclear installations. 1 fig

  7. Reliability of sprinkler systems. Exploration and analysis of data from nuclear and non-nuclear installations

    International Nuclear Information System (INIS)

    Roenty, V.; Keski-Rahkonen, O.; Hassinen, J.P.

    2004-12-01

    Sprinkler systems are an important part of fire safety of nuclear installations. As a part of effort to make fire-PSA of our utilities more quantitative a literature survey from open sources worldwide of available reliability data on sprinkler systems was carried out. Since the result of the survey was rather poor quantitatively, it was decided to mine available original Finnish nuclear and non-nuclear data, since nuclear power plants present a rather small device population. Sprinklers are becoming a key element for the fire safety in modern, open non-nuclear buildings. Therefore, the study included both nuclear power plants and non-nuclear buildings protected by sprinkler installations. Data needed for estimating of reliability of sprinkler systems were collected from available sources in Finnish nuclear and non-nuclear installations. Population sizes on sprinkler system installations and components therein as well as covered floor areas were counted individually from Finnish nuclear power plants. From non-nuclear installations corresponding data were estimated by counting relevant things from drawings of 102 buildings, and plotting from that sample needed probability distributions. The total populations of sprinkler systems and components were compiled based on available direct data and these distributions. From nuclear power plants electronic maintenance reports were obtained, observed failures and other reliability relevant data were selected, classified according to failure severity, and stored on spreadsheets for further analysis. A short summary of failures was made, which was hampered by a small sample size. From non-nuclear buildings inspection statistics from years 1985.1997 were surveyed, and observed failures were classified and stored on spreadsheets. Finally, a reliability model is proposed based on earlier formal work, and failure frequencies obtained by preliminary data analysis of this work. For a model utilising available information in the non-nuclear

  8. Establishment of the nuclear regulatory framework for the process of decommissioning of nuclear installations in Mexico

    International Nuclear Information System (INIS)

    Salmeron V, J. A.; Camargo C, R.; Nunez C, A.

    2015-09-01

    Today has not managed any process of decommissioning of nuclear installations in the country; however because of the importance of the subject and the actions to be taken to long term, the Comision Nacional de Seguridad Nuclear y Salvaguardias (CNSNS) in Mexico, accordance with its objectives is developing a National Nuclear Regulatory Framework and defined requirements to ensure the implementation of appropriate safety standards when such activities are performed. In this regard, the national nuclear regulatory framework for nuclear installations and the particular case of nuclear power reactors is presented, as well as a proposed licensing process for the nuclear power plant of Laguna Verde based on international regulations and origin country regulations of the existing reactors in nuclear facilities in accordance with the license conditions of operation to allow to define and incorporate such regulation. (Author)

  9. Annual Report 2007. Nuclear Regulatory Authority; Informe Anual 2007. Autoridad Regulatoria Nuclear

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    The present Annual Report of Activities of the Nuclear Regulatory Authority (ARN), prepared regularly from the creation as independent institution, describes across tree parts and seven annexes the activities developed by the organism during 2007. The main topic are: the organization and the activity of the ARN; the regulatory standards; the licensing and inspection of nuclear power plants and critical facilities; the emergency systems; the occupational surveillance; the environmental monitoring; improved organizational. Also, this publication have annexes with the following content: regulatory documents; inspections to medical, industrial and training installations; regulatory guides; measurement and evaluation of the drinking water of Ezeiza.

  10. Annual Report 2009. Nuclear Regulatory Authority; Informe Anual 2009. Autoridad Regulatoria Nuclear

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    The present Annual Report of Activities of the Nuclear Regulatory Authority (ARN), prepared regularly from the creation as independent institution, describes across four parts and seven annexes the activities developed by the organism during 2009. The main topic are: the organization and the activity of the ARN; the regulatory standards; the licensing and inspection of nuclear power plants and critical facilities; the emergency systems; the environmental monitoring; the occupational surveillance; the training and the public information; improved organizational and budgetary developments. Also, this publication have annexes with the following content: regulatory documents; inspections to medical, industrial and training installations; regulatory guides; measurement and evaluation of the drinking water of Ezeiza.

  11. Social acceptance for seismic safety of nuclear installations

    International Nuclear Information System (INIS)

    Oiso, Shinichi

    2010-01-01

    The social acceptance of seismic safety of the nuclear installations was considered based on the situation that people's concern and anxieties for it having risen by earthquake suffering of the Kashiwazaki Kariwa facility in 2007, etc. It aimed mainly to extract a social awareness (acknowledgment and evaluation) which is peculiar to the earthquake in the field of nuclear power generation, and to show the attention point concerning the public relations of seismic safety of the nuclear power plant. As a result, it was suggested that we should explain based on the opinion of the third party which has a high trust such as specialist scholars, and emphasize that the severe examinations of outside third parties such as committee of the prefecture are conducted. (author)

  12. The cyber security of French nuclear installations: stakes and opportunities

    International Nuclear Information System (INIS)

    Marquez, Thierry

    2016-01-01

    Notably due to the development of the number of connected objects, nuclear installations, their supply chain and all the actors of the chain value are exposed to cyber risks, even if a recent study noticed that successful cyber attacks involving nuclear plants are rare, but real. Thus, the threat is actual and growing, and the IAEA is already working with Interpol on this issue. The author then describes how French actors (EDF, Areva, CEA) have introduced cyber-resilience to better anticipate and identify actual threats and critical vulnerabilities in order to protect infrastructures. He comments some strengthened regulatory measures introduced for the French nuclear sector, and continuous improvements brought in the field of cyber security. He shows that handling these risks is also an opportunity to develop crisis management tools through the development of a specific know-how which also has an industrial value

  13. Arrangements for dealing with emergencies at civil nuclear installations

    International Nuclear Information System (INIS)

    Turner, M.J.; Robinson, I.F.

    1989-01-01

    This paper covers arrangements for dealing with nuclear emergencies at sites licensed by the Health and Safety Executive/Nuclear Installations Inspectorate. Such arrangements are over and above the contingency plans required for radiation incidents as required by the Ionising Radiations Regulations. The statutory position of the NII is described and, although the NII is limited to regulating the activities of the operator, the functions of the other organisations that could be involved in dealing with an emergency are briefly covered in order to give as complete a picture as possible. The basis for emergency planning is given together with the consequences and countermeasures for mitigation of a nuclear emergency, including the use of ERLs. The requirements for emergency exercises are explained. (author)

  14. Protection of civilian nuclear installations in time of armed conflict

    International Nuclear Information System (INIS)

    Lamm, V.

    2003-01-01

    The inclusion of article 56 in Protocol 1 of the Geneva convention of 12 August 1949 represents a significant achievement in the development of international humanitarian law. Article 56 of protocol 1 reads as follow: firstly, works or installations containing dangerous forces, namely dams, dykes and nuclear electrical generating stations, shall not not be made the object of attack, even where these objects are military objectives, if such attack may cause the release of dangerous forces and consequent severe losses among the civilian population. Other military objectives located at or in the vicinity of these works or installations shall not be made the object of attack if such attack may cause the release of dangerous forces from the works or installations and consequent severe losses among the civilian population. Secondly, the special protection against attack provided by paragraph 1 shall cease: for a dam or a dyke only if it is used for other than its normal function and in regular, significant and direct support of military operations and if such attack is the only feasible way to terminate such support; for a nuclear electrical generating station only if it provides electric power in regular, significant and direct support of military operations and if such attack is the only feasible way to terminate such support;for other military objectives located at or in the vicinity of these works or installations only if they are used in regular, significant and direct support of military operations and if such attack is the only feasible way to terminate such support. Thirdly, in all cases, the civilian population and individual civilians shall remain entitled to all the protection accorded them by international law, including the protection of the precautionary measures provided for in article 57. If the protection ceases and any of the works, installations or military objectives mentioned in paragraph 1 is attacked, all practical precautions shall be taken to

  15. Safeguards by Design - Experiences from New Nuclear Installation

    International Nuclear Information System (INIS)

    Okko, O.; Honkamaa, T.; Kuusi, A.; Rautjaervi, J.

    2010-01-01

    The experiences obtained from the current construction projects at Olkiluoto clearly point out the need to introduce the safeguards requirements into facility design process at an early stage. The early Design Information is completed, in principle, before the construction. However, during the design of containment, surveillance systems, and non-destructive assay equipment and their cabling, the design requirements for safeguards systems were not available either for the new reactor unit or for the disposal plant with a geological repository. Typically, the official Design Information documents are not available early enough for efficient integration of safeguards systems into new facilities. In case of the Olkiluoto projects, this was due to understandable reasons: at the new reactor unit the design acceptance by the ordering company and by the nuclear safety authorities was a long process, ongoing simultaneously with parts of the construction; and at the geological repository the national legislation assigns the repository the status of a nuclear facility only after the initial construction and research phase of the repository when the long-term safety of the disposal concept is demonstrated. As similar factors are likely to delay the completion of the official Design Information documents with any new reactor projects until the construction is well underway and efficient integration of safeguards systems is impossible. Therefore, the proliferation resistance of new nuclear installations should be addressed in the design phase before the official Design Information documents are finished. This approach was demonstrated with the enlargement of the Olkiluoto spent fuel storage building. For this approach to work, strong national contribution is needed to facilitate the early communication and exchange of information between the IAEA and the other stakeholders to enable the design of facilities that can be efficiently safeguarded. With the renaissance of nuclear

  16. Assessment of safety culture in the Iranian nuclear installations

    International Nuclear Information System (INIS)

    Farahani, H.F.; Davilu, H.; Sepanloo, K.

    2005-01-01

    The deficient safety culture (S.C) is the center of safety issues of nuclear industry. To benefit from the advantages of nuclear technology and considering the fact of potential hazards of accidents in nuclear installations it is essential to view safety as the highest priority. S.C is an amalgamation of values, standards, morals and norms of acceptable behavior. Organizations having effective S.C show constant commitment to safety as a top level priority. Furthermore, the personnel of a nuclear facility shall recognize the safety significance of their tasks. Many people even those who work in the field of safety do not have a correct understanding of what S.C looks like in practical sense. In this study, by conducting a survey according to IAEA-TECDOC-1329 in some nuclear facilities, the S.C within the Iranian nuclear facilities is assessed. The human and organizational factors in Tehran Research Reactor are evaluated using a questionnaire method with active participation of the reactor operators. The results sho w that the operators are pretty aware of the subject. Also it has been identified some areas of improvement. (authors)

  17. 2007 annual meeting on nuclear technology. Report

    International Nuclear Information System (INIS)

    Anon.

    2007-01-01

    This year's Annual Nuclear Technology Conference (JK) organized by the Deutsches Atomforum e.V. (DAtF) and the Kerntechnische Gesellschaft e.V. (KTG) was held in Karlsruhe on May 22-24. The attendance of more than 1,200 persons from 21 nations, and the increase in participation over the past few years, underline the role of this specialized congress as one of the leading international events in the field of the peaceful uses of nuclear power. The first day of the conference, with its plenary presentations, traditionally focused mainly on political and economic problems of the use of nuclear power. The situation of nuclear power in the United Kingdom, the key country of this year's meeting, was covered in depth. As usual, the program of the three-day event was organized as follows: plenary sessions on the first day were followed by topical sessions, technical sessions, and special events on the other days. This year, the conference featured a record program of 251 papers presented at these sessions. The 'Nuclear Power Campus' was arranged very successfully for the 5th time as an event comprising lectures and a 'hands-on' exhibition explaining the world of nuclear power in a transparent way to students from schools and universities. The special commitment to young scientists and to the preservation of competence in the nuclear field were emphasized at the JK 2007, among other things, in a workshop on 'Preservation of Competence in Nuclear Technology'. Nearly 20 young scientists presented results of their scientific work. The Annual Meeting on Nuclear Technology was accompanied by a specialized exhibition with meeting points of industry organized by 33 manufacturers, vendors, and service companies. (orig.)

  18. A package for environmental impact assessment of nuclear installations (NGLAR)

    International Nuclear Information System (INIS)

    Yang Yin; Chen Xiaoqiu; Ding Jinhou; Zhao Hui; Xi Xiaojun; Li Hongsheng

    1996-09-01

    The main contents, designing strategies and properties of the microcomputer-based software package NGLAR are described for environmental impact assessment of nuclear installations. The package consists of the following components: NGAS and NACC, the codes for routine and accidental airborne releases respectively; NLIQ, the code for both routine and accidental liquid releases; and NRED, environmental database system of nuclear installations. NGAS and NACC are used for evaluating atmosphere dispersion and doses to public of radioactive materials released from nuclear facilities, giving the concentrations around the facilities of radionuclides in air, on ground surface, and in varieties of animal foods and farm produces, and further estimating collective doses and doses to critical group around the facilities. NLIQ is suitable for liquid effluence released to non-tide rivers, and is modelled to calculate firstly the concentration of radionuclides concerned in the polluted rivers, and then to estimate the resulting doses to public. Under routine releases, the doses obtained from NGAS and NLIQ can be appropriately categorized and summed up together. NRED can be run independently, also used to provide some input data for above programs and save data permanently for them. Having both English and Chinese versions, the package, which was fabricated of multiple functions can be run on IBM 386 or higher and its compatible microcomputers. (3 figs., 1 tabs)

  19. Quality and safety of nuclear installations: the role of administration, and, nuclear safety and regulatory procedures

    International Nuclear Information System (INIS)

    Queniart, D.

    1979-12-01

    In the first paper the author defines the concepts of safety and quality and describes the means of intervention by the Public Authorities in safety matters of nuclear installations. These include individual authorisations, definition and application of technical rules and surveillance of installations. In the second paper he defines the distinction between radiation protection and safety and presents the legislative and regulatory plan for nuclear safety in France. A central safety service for nuclear installations was created in March 1973 within the Ministry of Industrial and Scientific Development, where, amongst other tasks, it draws up regulatory procedures and organizes inspections of the installations. The main American regulations for light water reactors are outlined and the French regulatory system for different types of reactors discussed

  20. Large fire scenarios in relation to sabotage of nuclear installations

    International Nuclear Information System (INIS)

    Contri, P.; Guerpinar, A.; ); Schneider, U.

    2005-01-01

    The analyses of sabotage scenarios carried out in recent years identified two major damaging mechanisms associated with such scenarios, namely: the mechanical interaction of solid bodies or pressure waves with the installations and the fire-related effects from burning substances. While the former effect may be addressed by available analytical tools developed for accidental scenarios, the latter deserves a new, specific engineering effort. In fact, all nuclear facilities are designed in relation to accidental fires; even so, they need to be assessed in relation to sabotage induced fire scenarios due to the special characteristics of such scenarios, not addressed by the current engineering practice for the design of nuclear installations. Conventional fire hazard analysis is based on the hypothesis of the presence of combustible materials in the buildings and limited number of contemporaneous sources of fire. In addition, conventional fire safety assessment relies upon the presence of mitigation measures and fire related operational procedures. In a sabotage event the validity of all these assumptions need to be checked and if the assumptions cannot be supported, then the analysis should be revised and other alternatives of protection should be developed. Also the implementation of emergency planning should be reviewed to take account of this concern. This paper collects state-of-the-art experience from some Countries, which represents the background information for the development of new IAEA documents in this field. The paper reviews how the current design practice for nuclear installations can cope with large fire scenarios caused by malevolent actions and provides recommendations to designers and operators on how to address these issues in a reasonable framework. (authors)

  1. Practical decommissioning experience with nuclear installations in the European Community

    International Nuclear Information System (INIS)

    Skupinski, E.

    1993-01-01

    Initiated by the Commission of the European Communities (CEC), this seminar was jointly organized by Kernkraftwerke RWE Bayernwerk GmbH (KRB) and the CEC at Gundremmingen-Guenzburg (D), where the former KRB-A BWR is presently being dismantled. The meeting aimed at gathering a limited number of European experts for the presentation and discussion of operations, the results and conclusions on techniques and procedures presently applied in the dismantling of large-scale nuclear installations in the European Community. Besides the four pilot dismantling projects of the presently running third R and D programme (1989-93) of the European Community on decommissioning of nuclear installations (WAGR, BR-3 PWR, KRB-A BWR and AT-1 FBR fuel reprocessing), the organizers selected the presentation of topics on the following facilities which have a significant scale and/or representative features and are presently being dismantled: the Magnox reprocessing pilot plant at Sellafield, the HWGCR EL4 at Monts d'Arree, the operation of an on-site melting furnace for G2/G3 GCR dismantling waste at Marcoule, an EdF confinement conception of shut-down LWRs for deferred dismantling, and the technical aspects of the Greifswald WWER type NPPs decommissioning. This was completed by a presentation on the decommissioning of material testing reactors in the United Kingdom and by an overview on the conception and implementation of two EC databases on tools, costs and job doses. The seminar concluded with a guided visit of the KRB-A dismantling site. This meeting was attended by managers concerned by the decommissioning of nuclear installations within the European Community, either by practical dismantling work or by decision-making functions. Thereby, the organizers expect to have contributed to the achievement of decommissioning tasks under optimal conditions - with respect to safety and economics - by making available a complete and updated insight into on-going dismantling projects and by

  2. Practical decommissioning experience with nuclear installations in the European Community

    International Nuclear Information System (INIS)

    Skupinski, E.

    1992-01-01

    Initiated by the Commission of the European Communities (CEC), this seminar was jointly organized by the AEA, BNFL and the CEC at Windermere and the sites of Windscale/Sellafield, where the former Windscale advanced gas-cooled reactor and the Windscale piles are currently being dismantled. The meeting aimed at gathering a limited number of European experts for the presentation and discussion of operations, results and conclusions on techniques and procedures currently applied in the dismantling of large scale nuclear installations in the European Community

  3. Topics on Japanese aseismic design for nuclear installations

    International Nuclear Information System (INIS)

    Nakamura, Masahiko

    2002-01-01

    Major items of of Japanese anti-seismic design for nuclear installations involve three topics: earthquakes and ground motion; seismic design and safety evaluation. The first topic deal with: improvement of geological survey technology, evaluation of ground motion from active faults, and characterisation of earthquake from individual faults. Seismic design involves: evaluation of design ground motion (spectra), classification of structures, systems and components (SSCs) based on the seismic importance, and seismic design criteria and critical loads. Safety evaluation of seismic PSA is dependent on the consistency of the the two previous items. Seismic hazard evaluation methodology, database and examples of analysis are described. Analysis method using fault model is included

  4. Safety aspects of geological studies around nuclear installations sites

    International Nuclear Information System (INIS)

    Faure, J.

    1988-01-01

    The experience of geological studies of about forty french nuclear sites allows to set out the objectives, the phases and the geographic extensions of workings to be realized for confirming a site. The data to be collected for the safety analysis are specified; they concern the local and regional geology, the geotechnical characteristics and the essential elements for evaluating the hazards related to the soil liquefaction, the surface fracturing and in some cases the volcanic risks. It is necessary to follow up the geology during the installation construction and life. 8 refs. (F.M.)

  5. Statement of nuclear incidents: statement of incidents at nuclear installations: third quarter 1990

    International Nuclear Information System (INIS)

    1990-01-01

    A summary of nuclear incidents occuring at nuclear installations in Britain between 1st July 1990 and 30th September 1990 is presented here, as published by the Health and Safety Executive, two occurring at Harwell Laboratory and one at Winfrith. None of the incidents caused danger to the public, and doses to site workers were not significant. (UK)

  6. Y2K bug and nuclear installations; Le passage a l'an 2000 sur les installations nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Anon

    1999-10-01

    Most nuclear installations except power plants, will be shut down on the eve of new year. By september 1999, EDF will have realized all the corrective and preventive actions that are necessary to pass Y2K. CEA has committed to present to safety authorities a complete report concerning preventive actions in its own basic nuclear installations. Safety authorities plan to organize a crisis center in order to face any problem. (A.C.)

  7. Nuclear Safety Project. Annual report 1986

    International Nuclear Information System (INIS)

    1987-09-01

    The annual report 1986 is a detailed description of work within the Nuclear Safety Project performed in 1986 in the nuclear safety field by KfK institutes and departments and by external institutes on behalf of KfK. It includes individual research activities on dynamic loads and strains of reactor components under accident conditions, fuel behaviour under accident conditions, investigation and control of LWR core-meltdown accidents, improvement of fission product retention and reduction of radiation exposure, and on behaviour, impact and removal of released pollutants. (DG)

  8. [Experimental nuclear physics]. Annual report 1989

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-04-01

    This is the April 1989 annual report of the Nuclear Physics Labortaory of the University of Washington. It contains chapters on astrophysics, giant resonances, heavy ion induced reactions, fundamental symmetries, polarization in nuclear reactions, medium energy reactions, accelerator mass spectrometry (AMS), research by outside users, Van de Graaff and ion sources, computer systems, instrumentation, and the Laboratory`s booster linac work. An appendix lists Laboratory personnel, Ph.D. degrees granted in the 1988-1989 academic year, and publications. Refs., 23 figs., 3 tabs.

  9. Annual Report 2008. Nuclear Regulatory Authority

    International Nuclear Information System (INIS)

    2009-01-01

    The present Annual Report of Activities of the Nuclear Regulatory Authority (ARN), prepared regularly from the creation as independent institution, describes across four parts and seven annexes the activities developed by the organism during 2008. The main topic are: the organization and the activity of the ARN; the regulatory standards; the licensing and inspection of nuclear power plants and critical facilities; the emergency systems; the occupational surveillance; the environmental monitoring; improved organizational and budgetary developments. Also, this publication have annexes with the following content: regulatory documents; regulatory guides; measurement and evaluation of the drinking water of Ezeiza.

  10. Nuclear Physics Laboratory annual report 1982

    International Nuclear Information System (INIS)

    1982-06-01

    This Annual Report describes the activities of the Nuclear Physics Laboratory of the University of Washington for the year ending approximately April 30, 1982. As in previous years we report here on a strong nuclear physics research program based upon use of the Laboratory's principal facility, an FN tandem and injector accelerator system. Other major elements of the Laboratory's current program include the hydrogen parity mixing experiment, intermediate-energy experiments conducted at Los Alamos and elsewhere, an accelerator mass spectrometry program emphasizing 10 Be and 14 C measurements on environmental materials, and a number of researches carried out by Laboratory members working collaboratively at other institutions both in this country and abroad

  11. Nuclear safety research project. Annual report 1995

    International Nuclear Information System (INIS)

    Hueper, R.

    1996-08-01

    The reactor safety R and D work of the Karlsruhe Research Centre (FZK) has been part of the Nuclear Safety Research Project (PSF) since 1990. The present annual report 1995 summarizes the R and D results. The research tasks are coordinated in agreement with internal and external working groups. The contributions to this report correspond to the status of early 1996. An abstract in English precedes each of them, whenever the respective article is written in German. (orig.) [de

  12. Regulatory oversight report 2016 concerning nuclear safety in Swiss nuclear installations

    International Nuclear Information System (INIS)

    2017-06-01

    packages as well as one cask with the fuel assemblies from the shut down research reactor DIORIT of PSI and six casks with waste from the decommissioning of the experimental nuclear power plant at Lucens. During 2016 only one campaign to incinerate and melt radioactive waste was carried out. ENSI recorded no reportable events at Zwilag during the reporting year. The nuclear facilities at PSI consist of the hot laboratory, the three former research reactors SAPHIR, DIORIT and PROTEUS now in varying phases of decommissioning, the former experimental incineration plant and the facilities for the disposal of radioactive materials including the Federal Government's interim storage facility. During 2016, no events were reported at the PSI, at EPFL or at UniB. In 2016, the amount of radioactive material released into the environment via waste water and exhaust air from the nuclear power plants, Zwilag and the nuclear facilities at PSI, Basel and Lausanne was significantly less than the limits specified in the operating licenses. Analyses showed that the maximum dose for persons in the immediate vicinity of a plant was less than 1% of the annual exposure to natural radiation. The waste produced during reprocessing at the reprocessing facilities of La Hague (France) and Sellafield (United Kingdom) must be returned to Switzerland. In the reporting year, compacted, metallic, intermediate level waste and intermediate level vitrified residue packets were transported to Zwilag. All nuclear waste from Swiss fuel assemblies sent abroad for reprocessing is now stored at Zwilag. During 2016, all transports of radioactive substances to and from Swiss nuclear installations took place without any incidents. The site selection procedure for the storage of radioactive waste has been running since 2008. ENSI bears overall responsibility for the safety assessment of the geological site areas. The National Cooperative for the Disposal of Radioactive Waste (Nagra) submitted its suggestion for

  13. Regulatory control of nuclear safety in Finland. Annual report 2008

    International Nuclear Information System (INIS)

    Kainulainen, E.

    2009-06-01

    This report covers the regulatory control of nuclear safety in 2008, including the design, construction and operation of nuclear facilities, as well as nuclear waste management and nuclear materials. The control of nuclear facilities and nuclear waste management, as well as nuclear non-proliferation, concern two STUK departments: Nuclear Reactor Regulation and Nuclear Waste and Material Regulation. It constitutes the report on regulatory control in the field of nuclear energy, which the Radiation and Nuclear Safety Authority (STUK) is required to submit to the Ministry of Employment and the Economy pursuant to section 121 of the Finnish Nuclear Energy Decree. The first parts of the report explain the basics of the nuclear safety regulation included as part of STUK's responsibilities, as well as the objectives of the operations, and briefly introduce the objects of regulation. The chapter concerning the development and implementation of legislation and regulations describes changes in nuclear legislation, as well as the progress of STUK's YVL Guide revision. The chapter also includes a summary of the application of the updated YVL Guides to nuclear facilities. The section concerning the regulation of nuclear facilities contains a complete safety assessment of the nuclear facilities currently in operation or under construction. For the nuclear facilities in operation, the section describes plant operation, events during operation, annual maintenance, development of the plants and their safety, and observations made during monitoring. Data and observations gained during regulatory activities are reviewed with a focus on ensuring the safety functions of nuclear facilities and the integrity of structures and components. The report also includes a description of the oversight of the operations and quality management of organisations, oversight of operational experience feedback activities, and the results of these oversight activities. The radiation safety of nuclear

  14. Preparation of site emergency preparedness plans for nuclear installations

    International Nuclear Information System (INIS)

    1999-10-01

    Safety of public, occupational workers and the protection of environment should be assured while activities for economic and social progress are pursued. These activities include the establishment and utilisation of nuclear facilities and use of radioactive sources. This safety guidelines is issued as a lead document to facilitate preparation of specific site manuals by the responsible organisation for emergency response plans at each site to ensure their preparedness to meet any eventuality due to site emergency in order to mitigate its consequences on the health and safety of site personnel. It takes cognizance of an earlier AERB publications on the subject: Safety manual on site emergency plan on nuclear installations. AERB/SM/NISD-1, 1986 and also takes into consideration the urgent need for promoting public awareness and drawing up revised emergency response plans, which has come about in a significant manner after the accidents at Chernobyl and Bhopal

  15. Regulatory procedures for the decommissioning of nuclear installations

    International Nuclear Information System (INIS)

    Woods, P.B.; Basu, P.K.

    1988-01-01

    The basic safety legislation under which operational safety at nuclear installations is regulated does not change when the plant is decommissioned. In the United Kingdom the relevant nuclear safety legislation is embodied in several Acts of Parliament or international conventions. These are listed and described. The potential risk in decommissioning is from radiation exposure of the workers and to a lesser extent of the public and environment. The regulations try to ensure this risk is reduced to acceptable levels. This objective can be achieved if the project is adequately planned, there is reliable information about the plant, the risks are identified and assessed, the quality assurance is good and personnel are trained, and the radioactive wastes produced are managed and disposed of suitably. (U.K.)

  16. Virtual instrumentation on mobile devices for deployment in nuclear installations

    International Nuclear Information System (INIS)

    Farias, Marcos Santana; Santos, Isaac Jose A. Luquetti dos; Jesus, Miller F. de; Sant'Anna, Claudio Reis de; Szabo, Andre Pedro; Carvalho, Paulo Victor R. de

    2013-01-01

    The virtual instrumentation can be defined as a layer of software and hardware, added to a general purpose computer, so that users can interact with the computer in the same way that they interacted with traditional electronic instruments such as oscilloscopes, multi-meters and signal generators, and may add other functions defined by software. The virtual instrumentation gets a new integration environment, little explored yet, with the great growth that occurred in the mobile devices area. Nowadays it is possible to take measurements in more places by combining mobile devices with data acquisition hardware to create extremely portable and interconnected measurement systems. This paper shows the development of software and hardware that make possible the use of instrumentation on mobile devices for monitoring nuclear installations. It's presented the hardware and the application software for data acquisition of radiation monitors, developed to iOS devices. It's also shown the possibilities of hardware and software to develop near real-time data transfer to and from the field in nuclear installations, with benefits in efficiency, safety and productivity. (author)

  17. Environmental assessment of nuclear installations using accumulated litterfall cycling

    International Nuclear Information System (INIS)

    Coelho, Joaquim M.S.; Scapin, Marcos A.; Pires, Maria A.F.

    2011-01-01

    For 25 years the Nuclear and Energy Research Institute - IPEN/SP processed uranium oxide to produce the fuel element. Even with major care in the handling of uranium hexafluoride and uranium compounds, there is the probability of small fractions are dispersed into the atmosphere. Due to this fact, it was proposed a study of these compounds in the environment, aiming at the bio monitoring of toxic substances originating from the fabrications process of fuel element, as well toxic metals. The litterfall it's consisted of fragments of organic vegetable, including leaves, flowers, fruits, branches, twigs and animal waste. The objective of this study was to determine the production and seasonality of litterfall in the gardens of IPEN, establish a correlation between the compartment leaves, wood and reproductive parts and evaluate the chemical composition of leaves originated of litterfall through chemical analysis. Was installed 10 litterfall collectors to determinate the production . The determination of chemical elements was realized by X-ray fluorescence for dispersion of wavelength (WDXRF). The production of dry litterfall during the period was 5.86 Kg m 2 -1. The elements analyzed were Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, Mn, Fe, Ni, Cu, Br, Rb, Sr, Zr, Th and U. The major constituents of the composition of leaf Ca, Si, and K (1.8%, 0.5% and 0.6% respectively). The results allowed to conclude that the installations used in the nuclear fuel cycle earlier, as well as the installations in operation, actually didn't affect the biogeochemical cycle of plants. (author)

  18. Uptake of radionuclides by farm animals close to a major nuclear installation

    International Nuclear Information System (INIS)

    Sumerling, T.J.; Green, N.; Dodd, N.J.

    1984-01-01

    A field investigation of the transfer of artificially produced radionuclides in the pasture-cow-milk pathway has been made at a farm close to the nuclear fuel reprocessing installation at Sellafield. The routine discharges from the plant have resulted in enhanced levels of several artificial radionuclides in the local environment. The annual depositions of 90 Sr and 137 Cs at the farm were a factor of about five higher than the average deposition of these radionuclides in the UK. Even if extremely cautious assumptions concerning local eating habits are made, the consumption of meat and dairy products from this farm would give rise to an annual activity intake of less than one percent of the limit for adult members of the public. (orig./HP)

  19. Decree of the Czechoslovak Atomic Energy Commission concerning the security protection of nuclear installations and nuclear materials

    International Nuclear Information System (INIS)

    1989-01-01

    In compliance with the Czechoslovak State Surveillance over Nuclear Safety of Nuclear Installations Act No. 28/1984, the Decree specifies requirements for assuring security protection of nuclear installations (and their parts) and of nuclear materials with the aim to prevent their abuse for jeopardizing the environment and the health and lives of people. (P.A.)

  20. Social and economic implications of the installation of nuclear plants

    International Nuclear Information System (INIS)

    Olivetti, F.A.

    1981-01-01

    This chapter summarizes the Italian experience with the evaluation, control, and containment of the social and economic impacts of nuclear power plant installations. Social and economic impact is defined as a set of causal relationships, direct and indirect, which are established between a nuclear plant and a surrounding territory. A nuclear plant imposes certain permanent restrictions in the use of the surrounding territory. The utilization of particularly dangerous substances requires that the plants be sited at a due distance from large urban centers and industrial areas. Therefore they are located in rural areas where the social and economic equilibria are less stable and more easily subjected to disturbances from outside factors. Essential services which must be provided for nonresident workers during the construction phase result in massive impacts which are compensated by the inflow of economic resources into the community. Social tension is also a likely consequence of importing workers into a community. There are disruptive effects induced by the high salaries paid to the construction workers such as local inflation. During the operating phase, the impacts will be smaller in proportion to the construction phase. Examples of social and economic impacts of nuclear plants in Italy are cited

  1. Emergency plans for civil nuclear installations in the United Kingdom

    International Nuclear Information System (INIS)

    Gronow, W.S.

    1984-01-01

    The operators of nuclear installations in the United Kingdom have plans to deal with accidents or emergencies at their nuclear sites. These plans provide for any necessary action, both on and off the nuclear site, to protect members of the public and are regularly exercised. The off-site actions involve the emergency services and other authorities which may be called upon to implement measures to protect the public in any civil emergency. In a recent review of these plans by Government Departments and agencies and the nuclear site operators, a number of possible improvements were identified. These improvements are concerned mainly with the provisions made for liaison with local and national authorities and for public information and have been incorporated into existing plans. An outline is given of the most likely consequences of an accidental release of radioactive material and the scope of emergency plans. Details are also provided on the responsibilities and functions of the operator and other organizations with duties under the plans and the arrangements made for public information. (author)

  2. Proposal of a dry storage installation in Angra NPP for spent nuclear fuel

    International Nuclear Information System (INIS)

    Romanato, Luiz S.; Rzyski, Barbara M.

    2009-01-01

    When nuclear fuel is removed from a power reactor core after the depletion of efficiency in generating energy is called Spent Nuclear Fuel (SNF). After its withdrawal from the reactor core, SNF is temporarily stored in pools usually at the same site of the reactor. During this time, short-living radioactive elements and generated heat undergo decay until levels that allow removing the SNF from the pool and sending it for reprocessing or a temporary storage whether any of its final destinations has not yet been defined. It can be loaded in casks and disposed during years in a dry storage installations until be sent to a reprocessing plant or deep repositories. Before any decision, reprocessing or disposal, the SNF needs to be safely and efficiently isolated in one of many types of storages that exist around the world. Worldwide, the amount of SNF increases annually and in the next years this amount will be higher as a consequence of new Nuclear Power Plants (NPP) construction. In Brazil, that is about to construct the Angra 3 nuclear power reactor, a project about the final destination of the SNF is not yet ready. This paper presents a proposal for a dry storage installation in the Angra NPP site since it can be an initial solution for the Brazilian's SNF, until a final decision is taken. (author)

  3. Regulatory oversight report 2008 concerning nuclear safety in Swiss nuclear installations; Aufsichtsbericht 2008 ueber die nukleare Sicherheit in den schweizerischen Kernanlagen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-04-15

    This annual report issued by the Swiss Federal Nuclear Inspectorate (ENSI) reports on the work carried out by the Inspectorate in 2008. This report reviews the regulatory activities in the four Swiss nuclear power stations and in four further nuclear installations in various Swiss research facilities. It deals with topics such as operational details, technologies in use, radiation protection, radioactive wastes, emergency dispositions, personnel and provides an assessment of operations from the safety point of view. Also, the transportation of nuclear materials - both nuclear fuels and nuclear wastes - is reported on. General topics discussed include probabilistic safety analyses and accident management, earthquake damage analysis and agreements on nuclear safety. The underground disposal of highly-radioactive nuclear wastes and work done in the rock laboratories are discussed, as are proposals for additional nuclear power stations.

  4. Brennilis nuclear facilities. 2009 annual report

    International Nuclear Information System (INIS)

    2010-01-01

    This annual report is established on account of article 21 of the 2006-686 French law from June 13, 2006, relative to the transparency and safety in the nuclear domain. It describes, first, the nuclear facilities of Brennilis, and then the measures taken to ensure their safety (personnel radioprotection, actions implemented for nuclear safety improvement, organisation in crisis situation, external and internal controls, technical assessment of the facilities, administrative procedures carried out in 2009), incidents and accidents registered in 2009, radioactive and chemical effluents released by the facilities in the environment, other pollutions, management of radioactive wastes, and, finally, the actions carried out in the domain of transparency and public information. A glossary and the viewpoint of the Committee of Hygiene, safety and working conditions about the content of the document conclude the report. (J.S.)

  5. Civaux nuclear facilities. 2009 annual report

    International Nuclear Information System (INIS)

    2010-01-01

    This annual report is established on account of article 21 of the 2006-686 French law from June 13, 2006, relative to the transparency and safety in the nuclear domain. It describes, first, the nuclear facilities of Civaux, and then the measures taken to ensure their safety (personnel radioprotection, actions implemented for nuclear safety improvement, organisation in crisis situation, external and internal controls, technical assessment of the facilities, administrative procedures carried out in 2009), incidents and accidents registered in 2009, radioactive and chemical effluents released by the facilities in the environment, other pollutions, management of radioactive wastes, and, finally, the actions carried out in the domain of transparency and public information. A glossary and the viewpoint of the Committee of Hygiene, safety and working conditions about the content of the document conclude the report. (J.S.)

  6. Chooz nuclear facilities. 2009 annual report

    International Nuclear Information System (INIS)

    2010-01-01

    This annual report is established on account of article 21 of the 2006-686 French law from June 13, 2006, relative to the transparency and safety in the nuclear domain. It describes, first, the nuclear facilities of Chooz, and then the measures taken to ensure their safety (personnel radioprotection, actions implemented for nuclear safety improvement, organisation in crisis situation, external and internal controls, technical assessment of the facilities, administrative procedures carried out in 2009), incidents and accidents registered in 2009, radioactive and chemical effluents released by the facilities in the environment, other pollutions, management of radioactive wastes, and, finally, the actions carried out in the domain of transparency and public information. A glossary and the viewpoint of the Committee of Hygiene, safety and working conditions about the content of the document conclude the report. (J.S.)

  7. Annual Report 2013. Nuclear Regulatory Authority

    International Nuclear Information System (INIS)

    2010-01-01

    The present Annual Report of Activities of the Nuclear Regulatory Authority (ARN), prepared regularly from the creation as independent institution, describes across seven parts and eight annexes the activities developed by the organism during 2013. The main topic are: the organization and the activity of the ARN; the regulatory standards; the licensing and inspection of nuclear power plants and critical facilities; the emergency systems; the environmental monitoring; the occupational surveillance; the training and the public information; improved organizational and budgetary developments. Also, this publication has annexes with the following content: regulatory documents; inspections to medical; presentations of publications from ARN staff; measurement and evaluation of the drinking water of Ezeiza; international expert report on the implementation of international standards on radiation protection in the Ezeiza Atomic Center; Code of Ethics of the Nuclear Regulatory Authority.

  8. Ardennes nuclear power plant. Annual report 1975

    International Nuclear Information System (INIS)

    1977-05-01

    At the beginning of the year 1975 the nominal power of the nuclear plant of the Ardennes was brought from 950 up to 1040 MWth, after a positive decision of the official safety organizations. Net energy produced: 2016 GWh, number of coupled hours: 6832 h, coefficient of availability: 75%, total number of standstills: 25. The functioning of the installations is, on the whole, very satisfying. Liquid wastes are clearly inferior to admissible maximum limits. The cost per KWh of the plant amounts to 5.57 French centimes. For the last 5 years net production has reached 9375 GWh, which means an average coefficient of availability of 76.7%

  9. 2006 annual nuclear technology conference Aachen

    International Nuclear Information System (INIS)

    Anon.

    2006-01-01

    This year's ANNUAL NUCLEAR TECHNOLOGY CONFERENCE (JK) was organized in Aachen by the Deutsches Atomforum e.V. (DAtF) and the Kerntechnische Gesellschaft e.V. (KTG). The attendance by more than 1,200 participants from 17 nations underlines the role of this specialized congress as one of the leading events in the field of nuclear power use. For several years in a row, the number of participants has been increasing steadily. The first conference day offered plenary presentations traditionally dealing mainly with political and economic issues of the use of nuclear power, including a presentation by the President of the DAtF. The lead countries of JK 2006 were Belgium and Finland with contributions to the plenary day and special meetings on selected topics. The traditional proven scheme of the three-day meeting offered plenary sessions on the first day, and technical sessions, topical sessions, poster sessions, and special events on the following days. The 'Nuclear Power Campus' was run most successfully for the fourth time, presenting to high school students and university freshmen the world of nuclear power in a transparent way. The special commitment to the young generation was stressed at JK 2006 also by the 'Competence Preservation in Nuclear Technology' workshop. Nearly 2 dozen young scientists used the forum to present results of their work. The meeting was accompanied by a technical exhibition with meeting points established by vendors, suppliers, and service providers. (orig.)

  10. Preparation of Act on State Surveillance of Nuclear Safety of Nuclear Installations

    International Nuclear Information System (INIS)

    Kyncl, J.

    1983-01-01

    The Czechoslovak Government Decree no. 179 of June 1982 approved the principles underlying the first Czechoslovak legal norm to complexly resolve the problem of State surveillance of nuclear safety of nuclear installations. In the introduction the law will define the concept of nuclear safety of nuclear installations and will justify the reasons for which it has to be assured. The individual parts of the law will deal with the establishment of State surveillance of nuclear safety, the tasks of the Czechoslovak Atomic Energy Commission in this area, the control activity of Commission personnel, the measures taken against responsible organizations and personnel for failing to observe their duties, the obligations of bodies and organizations, and the cooperation between inspection bodies. (A.K.)

  11. Public information on nuclear safety and incidents at nuclear installations in the UK

    International Nuclear Information System (INIS)

    Gausen, R.; Gronow, W.S.

    1977-01-01

    In recent years public interest in the safety aspects of the use of nuclear energy has been increasing in the UK as in other countries. The Government considers public involvement on this subject to be important and has taken action to promote and encourage public debate. As a result of a Government requirement, the Health and Safety Executive (HSE) now publish a quarterly statement which gives particulars of incidents at nuclear installations reported to the HSE under the Nuclear Installations Act 1965, Dangerous Occurrences Regulations and under conditions attached to nuclear site licences granted that Act. The range of incidents covered in the quarterly statement and the present state and background of the public debate on nuclear energy in the UK are described. (author)

  12. Nuclear law and environmental law in the licensing of nuclear installations

    International Nuclear Information System (INIS)

    Raetzke, Christian

    2013-01-01

    Large nuclear installations can have a considerable impact on the environment, both in actual terms, due to the construction and operation of the plant and in potential terms, related to the risk of an accident. A considerable part of the multiple authorisation processes required to develop a large nuclear project is devoted to addressing the possible impact on the environment. Accordingly, environmental protection is not only warranted by requirements and processes arising out of what is generally considered 'environmental law', but also by laws governing the design, siting, construction and operation of nuclear installations. By ensuring prevention and control of radiation releases to the environment, the aspects of nuclear law governing the design, construction, operation and decommissioning of nuclear facilities pertain to the field of environmental protection just like other fields of environmental law. The perception of the public that nuclear energy is 'anti-environmental' and the generally antinuclear stance of environmental non-governmental organisations (NGOs) should not deflect attention from the fact that protection of the environment is one of the main functions of the body of nuclear law. In this article, the general relationship between the law governing civil nuclear installations and environmental law will be analysed. The subsequent chapters will deal with environmental requirements and procedures as part of the authorisation process for a nuclear installation. The role of public participation and the involvement of neighbouring states in the licensing process will also be investigated, as they are today mainly based on environmental law. Some other aspects which may also have some relation to environmental protection, such as waste management, emergency planning, multinational early notification and assistance in the case of an accident and nuclear liability, have been omitted from discussion as they lie outside the focus of this article

  13. Procedures for permission of installation of nuclear power stations

    International Nuclear Information System (INIS)

    Narita, Yoriaki

    1980-01-01

    The locations of atomic power stations are first selected by electric power enterprises in consultation with the Ministry of International Trade and Industry or under the guidance of authorities concerned. The surveys of the climate, topography, water and plants in the planned sites and the influences of nuclear power generation to the surrounding areas are made by the enterprisers under the administrative guidance of the MITI. Secondly, the basic project shall be submitted to and decided by the Power Resource Development Council headed by the Prime Minister (Article 10, the Power Resource Development Law). The Council shall, if necessary, call for the attendance of the governors of prefectures concerned and hear their opinions (Article 11, the Law). As the third and most complicated phase, various procedures include; (a) permission of the changes of electrical facilities under the Electricity Enterprises Act; (b) authorization of the installation of reactors under the Nuclear Reactor Regulation Law; (c) permission or authorization under other regulations including the Agricultural Land Act, etc.; (d) additional procedures related to the indemnification to fishery and so forth. Finally the reactors are to be operated after receiving the certificates of the Minister of ITI on the inspections of construction works, nuclear fuel materials used for the reactors and welding processes of reactor containment vessels, boilers, turbines, etc. (Okada, K.)

  14. External radiation levels in installations of nuclear technology center

    International Nuclear Information System (INIS)

    Maletta, Paulo Guilherme M.; Filipetto, Joao; Wakabayashi, Tetsuaki; Silva, Teogenes A. da

    2005-01-01

    The radiological protection is a basic activity of nuclear technology center so that can carry through its activities with security, having to be planned and executed with total effectiveness. One of the basic tools of the radiological protection is the adoption of monitoring programs, that have as objective generality to evaluate the radiological conditions of the workstation and to assure that these conditions are acceptable safe for the displayed individuals, either workers or members of the public, as established in the basic norms of radiological protection. The Centro de Desenvolvimento da Tecnologia Nuclear - CDTN, first institution in Brazil, created in 1952 to entirely dedicate the related works to the nuclear area, to own 39 building, of which they are kept the Triga Reactor, Irradiation Gamma Laboratory, Reject Laboratory, Calibration Dosemeters Laboratory and others. In such installations, radioactive materials are produced, handled, processed and stored, being necessary the levels of external radiation ambient monitoring. As part of the radioprotection plan, monitoring 63 points on strategically located in the external areas to the building of CDTN, using characterized and calibrated thermoluminescence dosemeters. This work describes the dose distribution of the points, the doses evaluation procedure and the 4 results carried through between 2001 and 2004. The data demonstrate the attendance to the level of security established in the basic norm, what it contributed for the operation licensing of to the IBAMA. (author)

  15. International guidelines for fire protection at nuclear installations including nuclear fuel plants, nuclear fuel stores, teaching reactors, research establishments

    International Nuclear Information System (INIS)

    The guidelines are recommended to designers, constructors, operators and insurers of nuclear fuel plants and other facilities using significant quantities of radioactive materials including research and teaching reactor installations where the reactors generally operate at less than approximately 10 MW(th). Recommendations for elementary precautions against fire risk at nuclear installations are followed by appendices on more specific topics. These cover: fire protection management and organization; precautions against loss during construction alterations and maintenance; basic fire protection for nuclear fuel plants; storage and nuclear fuel; and basic fire protection for research and training establishments. There are numerous illustrations of facilities referred to in the text. (U.K.)

  16. The Application of Systemic Safety for Smaller Nuclear Installations

    International Nuclear Information System (INIS)

    Ward, J.

    2016-01-01

    This paper will provide an outline of ARPANSA’s approach to systemic safety as applied to smaller hazard nuclear installations. It will describe ARPANSA’s effort to enable licence holders to better understand the principles of systemic safety so that they may make improvements for themselves. In regard to human and organizational factors, inspections are more often used to highlight areas where performance can be improved to meet best practice rather than strictly as a compliance tool. This takes account of a graded, risk informed approach and is undertaken in a collaborative way that places a premium on openness, clarity, reliability and efficiency. The paper will discuss the challenges faced by the approach, and how ARPANSA is currently managing these. It will describe ARPANSA’s regulatory guidance and inspection processes. The significant stages in ARPANSA development of the systemic approach are provided briefly in the following paragraphs.

  17. 1992 Nuclear Regulatory Commission Annual Report

    International Nuclear Information System (INIS)

    1993-01-01

    This is the 18th annual report of the US Nuclear Regulatory Commission (NRC), covering events and activities occurring in fiscal year 1992 (the year ending September 30, 1992), with some treatment of events from the last quarter of calendar year 1992. The NRC was created by enactment in the Congress of the Energy Reorganization Act of 1974. It is an independent agency of the Federal Government. The five NRC Commissioners are nominated by the President and confirmed by the United States Senate. The Chairman of the Commission is appointed by the President from among the Commissioners confirmed

  18. 2008 annual meeting on nuclear technology. Pt. 1. Section reports; JAHRESTAGUNG KERNTECHNIK 2008. T. 1. Sektionsberichte

    Energy Technology Data Exchange (ETDEWEB)

    Dagan, Ron; Sanchez Espinoza, Victor Hugo [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Reaktorsicherheit; Rohde, U.; Kliem, Soeren [Forschungszentrum Rossendorf e.V. (FZR), Dresden (Germany); Faber, Wolfgang; Berlepsch, Thilo v.; Spann, Holger [E.ON Kernkraft GmbH, Hannover (Germany); Schaffrath, Andreas [TUEV Nord SysTec GmbH und Co. KG, Hamburg (Germany); Schubert, Bernd [Vattenfall Europe Nuclear Energy GmbH, Hamburg (Germany); Rieger, Udo [Vattenfall Nuclear Energy GmbH, Hamburg (Germany); Christ,, Bernhard G. [NUKEM Technologies GmbH, Alzenau (Germany); Gulden, Werner [Fusion for Energy, Barcelona (Spain); Bogusch, Edgar [AREVA NP GmbH, Erlangen (Germany)

    2008-08-15

    Summary report on these 5 - out of 11 - Sections of the Annual Conference on Nuclear Technology held in Hamburg on May 27-29, 2008: - Reactor Physics and Methods of Calculation - Thermodynamics and Fluid Dynamics - Safety of Nuclear Installations - Methods, Analysis, Results - Front End and Back End of the Fuel Cycle, Radioactive Waste, Storage - Fusion Technology. Other Sections will be covered in reports in further issues of atw. (orig.)

  19. Rules specific to nuclear incidence occurring in installations or during transport of nuclear substances

    International Nuclear Information System (INIS)

    Rocamora, P.

    1976-01-01

    International nuclear third party liability conventions deal in depth with the liability system governing the transport of nuclear substances. Without appropriate legislation, international transport would be likely to meet very serious legal difficulties. The rule of nuclear conventions apply the same system to transport as to nuclear installations and mainly enable a determination of the operator liable. They also allow the person responsible for transport to assume liability therefor in place of the operator who whould normally have been liable. These nuclear conventions do not affect application of international transport conventions and this provision has been the cause of serious difficulties regarding maritime transport. This resulted in the adoption in 1971 in Brussels of a convention relating to civil liability in the field of maritime carriage of nuclear material. The purpose of this convention is to establish in the field of maritime transport, the priority of the system of absolute, exclusive and limited liability in the nuclear conventions. (NEA) [fr

  20. 2009 annual meeting on nuclear technology. Pt. 1. Section reports; JAHRESTAGUNG KERNTECHNIK 2009. T. 1. Sektionsberichte

    Energy Technology Data Exchange (ETDEWEB)

    Schaffrath, Andreas [TUeV NORD SysTec GmbH und Co. KG, Hamburg (Germany); Hartmann, Miks; Hoffmann, Petra Britt [Areva NP GmbH, Erlangen (Germany); Stieglitz, Robert [Forschungszentrum Karlsruhe, Eggenstein-Leopoldshafen (Germany); Hoehne, Thomas [Forschungszentrum Dresden-Rossendorf, Dresden (Germany); Weiss, Frank-Peter [Forschungszentrum Dresden-Rossendorf, Inst. fuer Sicherheitsforschung, Dresden (Germany); Hollands, Thorsten [Ruhr-Univ. Bochum (RUB), Energy Systems and Energy Economics (LEE), Bochum (Germany); Sanchez Espinoza, Victor Hugo [Forschungszentrum Karlsruhe, Inst. fuer Reaktorsicherheit, Eggenstein-Leopoldshafen (Germany); Tietsch, Wolfgang [Westinghouse Electric Germany GmbH, Mannheim (Germany); Sonnenburg, H.G. [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, Muenchen (Germany)

    2009-08-15

    Summary report on these 3 - out of 13 - Sessions of the Annual Conference on Nuclear Technology held in Dresden on May 12 to 14, 2009: Thermodynamics and Fluid Dynamics (Session 2), Safety of Nuclear Installations - Methods, Analysis, Results (Session 3), and, Front End of the Fuel Cycle, Fuel Elements and Core Components (Session 4). The other Sessions Reactor Physics and Methods of Calculation (Session 1), Front End and Back End of the Fuel Cycle, Radioactive Waste, Storage (Session 5), Operation of Nuclear Installations (Session 6), Decommissioning of Nuclear Installations (Session 7), Fusion Technology (Session 8), Research Reactors, Neutron Sources (Session 9), Energy Industry and Economics (Session 10), Radiation Protection (Session 11), New Build and Innovations (Session 12), and Education, Expert Knowledge, Know How Transfer (Session 13) have be covered in reports in further issues of atw. (orig.)

  1. Nuclear Regulatory Authority of the Slovak Republic. Annual Report 2003

    International Nuclear Information System (INIS)

    Seliga, M.

    2004-04-01

    A brief account of activities carried out by the Nuclear Regulatory Authority of the Slovak Republic in 2003 is presented. These activities are reported under the headings: (1) Foreword; (2) Legislation; (3) Assessment and inspection of nuclear installations; (4) Safety analyses; (5) Nuclear materials and physical protection of nuclear installations; (6) Radioactive waste; (7) Quality assurance; (8) Personnel qualification and training; (9) Emergency preparedness; (10) International co-operation; (11) Public information; (12) Personnel and economy data; Appendix: Abbreviations; Radiation safety

  2. S.I. 1987 No.688, The Nuclear Installations (Isle of Man) (Variation) Order 1987

    International Nuclear Information System (INIS)

    1987-01-01

    This Order, which amends the Nuclear Installations (Isle of Man) Order 1977, came into force on 7 May 1987. The Nuclear Installations (Isle of Man) Order 1977 extends certain provisions of the Nuclear Installations Act 1965 as appropriate, to the Isle of Man. This Order extends amendments made to that Act by the Energy Act 1983 and the Congenital Disabilities (Civil Liability) Act 1976, as appropriate, to the Isle of Man. (NEA) [fr

  3. Chapter No.3. Assessment and inspection of nuclear installations

    International Nuclear Information System (INIS)

    2002-01-01

    The assessment activity of UJD in relation to nuclear installation lies in assessment of safety documentation for constructions realised as nuclear installations, or construction through which changes on nuclear installations are realised. The assessment activity of UJD in 2001 was focused on National Repository of Radwaste in Mochovce, on Radwaste conditioning and treatment technology in Jaslovske Bohunice and on the assessment of documentation for the project of modernisation of Bohunice V-2 NPPs which is under preparation. The assessment of the technical condition of equipment, important in terms of nuclear safety, primarily based on results of in-service inspections and surveillance testing of safety related components and systems, is also a part of the safety assessment of nuclear installation operation. The inspectors take part in training courses and participate in other technical meetings and workshops organised by the IAEA and also take part in special training courses organised by the Nuclear Authorities of European countries, USA and Japan. Bohunice V-1 NPP is equipped with two reactors of WWER 440 type V-230 and was put into operation in 1978-1980 as one of the last nuclear power plants with this type of reactor. Both units of NPP V-1 Bohunice operated in 2001 according to the requirements of energy dispatching at nominal power, or in a regime of tertiary regulation. November 2000, a mission of experts invited by UJD and delegated by IAEA took place at the Bohunice NPPs. The mission members together with experts of the plant operator assessed the safety of the units of WWER-440/V-230 of Bohunice V-1 NPP after the reconstruction. The members of the mission prepared the report on the current status of safety of these units for the IAEA. In 2001, UJD by its decision, issued the approval for further operation of both reactor units of Bohunice V-1 NPP. In sense of the relevant decree on operational events, 20 events have been recorded, at Bohunice V-1 NPP in

  4. Nuclear Chemistry Division annual report FY83

    International Nuclear Information System (INIS)

    Struble, G.

    1983-01-01

    The purpose of the annual reports of the Nuclear Chemistry Division is to provide a timely summary of research activities pursued by members of the Division during the preceding year. Throughout, details are kept to a minimum; readers desiring additional information are encouraged to read the referenced documents or contact the authors. The Introduction presents an overview of the Division's scientific and technical programs. Next is a section of short articles describing recent upgrades of the Division's major facilities, followed by sections highlighting scientific and technical advances. These are grouped under the following sections: nuclear explosives diagnostics; geochemistry and environmental sciences; safeguards technology and radiation effect; and supporting fundamental science. A brief overview introduces each section. Reports on research supported by a particular program are generally grouped together in the same section. The last section lists the scientific, administrative, and technical staff in the Division, along with visitors, consultants, and postdoctoral fellows. It also contains a list of recent publications and presentations. Some contributions to the annual report are classified and only their abstracts are included in this unclassified portion of the report (UCAR-10062-83/1); the full article appears in the classified portion (UCAR-10062-83/2)

  5. Nuclear Chemistry Division annual report FY83

    Energy Technology Data Exchange (ETDEWEB)

    Struble, G. (ed.)

    1983-01-01

    The purpose of the annual reports of the Nuclear Chemistry Division is to provide a timely summary of research activities pursued by members of the Division during the preceding year. Throughout, details are kept to a minimum; readers desiring additional information are encouraged to read the referenced documents or contact the authors. The Introduction presents an overview of the Division's scientific and technical programs. Next is a section of short articles describing recent upgrades of the Division's major facilities, followed by sections highlighting scientific and technical advances. These are grouped under the following sections: nuclear explosives diagnostics; geochemistry and environmental sciences; safeguards technology and radiation effect; and supporting fundamental science. A brief overview introduces each section. Reports on research supported by a particular program are generally grouped together in the same section. The last section lists the scientific, administrative, and technical staff in the Division, along with visitors, consultants, and postdoctoral fellows. It also contains a list of recent publications and presentations. Some contributions to the annual report are classified and only their abstracts are included in this unclassified portion of the report (UCAR-10062-83/1); the full article appears in the classified portion (UCAR-10062-83/2).

  6. The Asteroid Threat and the Safety of Surface Nuclear Installations

    International Nuclear Information System (INIS)

    Shestopalov, V.M.; Shibetskij, Yu.A.; Makarenko, A.N.

    2015-01-01

    Surface nuclear installations are much more vulnerable to impact events than it has traditionally been considered. They can be destroyed by events with energies greater than 100 Mt. According to the most unfavorable (conservative) estimates, the probability of destruction can reach 10 -7 ...10 -6 year -1 for certain areas of the Earth. In fact, any cosmic body that can reach the surface of the Earth, or an atmospheric explosion can cause a serious accident to or even completely destroy a nuclear facility. The burden of the radiological consequences of such an accident will be determined by the total activity of radioactive substances located on site and by meteorological factors. The most dangerous (probable) are low-energy events (10 0 ...10 2 Mt). They can occur during the collision of the Earth with a cosmic body with a diameter of 30...200 m. The risk of death resulting from the direct effects of the impact of the given energy is approximately two orders of magnitude lower than the risk of death due to additional radiological impacts of the destroyed facility. Within the energy range of 10 2 ...10 5 Mt, the radiological consequences of impact events (opposite to non-radiological) will be global. In our opinion, this is a strong argument for the inclusion of impact events into the list of possible external events when assessing the suitability of sites for placement of NPPs and storage facilities for spent nuclear fuel. The safety analysis of the indicated facilities should consider the complexity of the damaging factors (high temperatures, shock, seismic shock, tsunamis) and also the fact that the loads associated with the phenomena induced by the impact will depend on its energy and can greatly exceed the values of loads typical for the region of the facility location

  7. Regulatory oversight report 2007 concerning nuclear safety in Swiss nuclear installations; Aufsichtsbericht 2007 ueber die nukleare Sicherheit in den schweizerischen Kernanlagen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-04-15

    This annual report issued by the Swiss Federal Nuclear Inspectorate (HSK) reports on the work carried out by the Inspectorate in 2007. This report reviews the regulatory activities in the four Swiss nuclear power stations and in four further nuclear installations in various Swiss research facilities. It deals with topics such as operational details, technologies in use, radiation protection, radioactive wastes, emergency dispositions and personnel and provides an assessment of operations from the point of view of safety. Also, the transportation of nuclear materials - both nuclear fuels and nuclear wastes - is reported on. General topics discussed include probabilistic safety analyses and accident management. Finally, the disposal of nuclear wastes and work done in the rock laboratories in Switzerland is commented on.

  8. Regulatory Oversight of Safety Culture in Nuclear Installations

    International Nuclear Information System (INIS)

    2013-03-01

    . Accordingly, this publication provides practical guidance on developing and implementing strategies and processes for regulators to employ to monitor a licensee's safety culture in nuclear installations and in related activities. It is based on a compilation of state of the art international and national efforts.

  9. Nuclear Regulatory Authority of the Slovak Republic. Annual Report 2002

    International Nuclear Information System (INIS)

    Seliga, M.

    2003-04-01

    A brief account of activities carried out by the Nuclear Regulatory Authority of the Slovak Republic in 2002 is presented. These activities are reported under the headings: (1) Foreword; (2) Legislation; (3) Assessment and inspection of nuclear installations; (4) Safety analyses; (5) Nuclear materials and physical protection of nuclear installations; (6) Radioactive waste; (7) Quality assurance; (8) Personnel qualification and training; (9) Emergency preparedness; (10) International co-operation; (11) Public information; (12) Personnel and economy data; Appendix: Abbreviations; Special Enclosure: 10. Years of the Nuclear Regulation Authority of the Slovak Republic. An independent and professional state regulatory authority supervising the nuclear safety is one of prerequisites of the safe operation of nuclear installations in each country. In the Slovak Republic this role has been fulfilled by the Nuclear Regulatory Authority (UJD) since 1993. The main mission of UJD set down by the law is to guarantee for the Slovak citizens as well as for international society that the nuclear power on the territory of the Slovak Republic will be used exclusively for peaceful purposes and that the Slovak nuclear installations are designed, constructed, operated and decommissioned in compliance with relevant legal documents. The mission of UJD is also to tender the operation of nuclear installations so that their operation would not jeopardise the nuclear power plant staff or public and would not cause detrimental effects to the environment or property. UJD prepares laws or comments to the laws and issues decrees in the area of its competencies, issues authorisations for operators of nuclear facilities, reviews and evaluates the safety documentation of nuclear installations, performs the inspections at nuclear installations comparing whether the legal requirements are fulfilled and whether the real status of nuclear installations and their operation is or not in compliance with

  10. Nuclear power plants: recent developments in Brazil relating to the legal aspect of installation - erection - operation

    International Nuclear Information System (INIS)

    Lima Moreira, Y.M. de.

    1981-10-01

    A Federal statutory system governs the setting up and operation of nuclear power plants in Brazil. This paper describes the general regulatory framework for electric utilities and in particular analyses the licensing procedure for nuclear installations. (NEA) [fr

  11. The function of specialized organization in work safety engineering for nuclear installations

    International Nuclear Information System (INIS)

    Salvatore, J.E.L.

    1989-01-01

    The attributions of Brazilian CNEN in the licensing procedures of any nuclear installation are discussed. It is shown that the work safety engineering and industrial safety constitute important functions for nuclear safety. (M.C.K.) [pt

  12. Centre for nuclear engineering University of Toronto annual report 1984

    International Nuclear Information System (INIS)

    1984-12-01

    The annual report of the Centre for Nuclear Engineering, University of Toronto covers the following subjects: message from the Dean; Chairman's message; origins of the centre; formation of the centre; new nuclear appointments; and activities of the centre, 1984

  13. 2006 annual nuclear technology conference - opening address

    International Nuclear Information System (INIS)

    Hohlefelder, W.

    2006-01-01

    The Energy Summit organized by Federal Chancellor Merkel set the right course in energy research. The funds to be made available by the federal government for energy research and innovation are to be raised by more than 30% by 2009. However, the Red-Green ban on research into reactor development still needs to be lifted. For Germany, 2005 was a year of change. As far as energy policy is concerned, it was a year more of disenchantment, as the diametrally opposed positions held by CDU/CSU and SPD in matters nuclear mean that, for the time being, the current regulations about residual plant lifetimes will continue to be valid. The Energy Summit as the first round in a process at the end of which, in 2007, there is to be a complete energy policy concept for the next few decades, does raise hopes. Clear emphasis must be given to worldwide developments, however. The assumption that others would follow Germany's 'good' example in opting out of the use of nuclear power has turned out to be naive. Ultimate clarity about which technology will turn out to be a bridge or an interim technology will be obtained in retrospect only. We should buy time now by extending nuclear power plant life so as to be able later to decide more freely about our options. The repository question, which is still considered a point of dispute, is less a technical than a political problem. The sequence of steps to be taken for solution is outlined in great detail and with high precision in the nuclear agreement. Following the ruling by the Lueneburg higher administrative court, Konrad can be installed and commissioned by 2013. After handling the so-called points of doubt, exploration of Gorleben can be completed. Nuclear power is an important building block in the energy mix in peaceful coexistence of various energy resources in accordance with their respective possible uses. For this reason, the renewables and nuclear power should no longer by played off one against the other. Both of them have a

  14. Evaluation of the nuclear installations safety of the CEA in 1998

    International Nuclear Information System (INIS)

    Laverie, M.

    1999-09-01

    Michel Laverie, Director of the nuclear safety and quality at the Cea, took stoke of the CEA nuclear installations in 1998. After a recall of the nuclear safety policy and organization, the author presents the risks factors bound to the CEA activities as the dismantling, the wastes and the human factors. A last part is devoted to the list of the accidents occurred during 1998 in the nuclear installations. Tables and statistics illustrate this analysis. (A.L.B.)

  15. Proceedings of the Canadian Nuclear Society 12. annual conference

    International Nuclear Information System (INIS)

    1991-01-01

    This volume contains the Proceedings of the seventeen Technical Sessions from the Twelfth Annual Conference of the Canadian Nuclear Society held in Saskatoon, Saskatchewan, June 9 to 12, 1991. As in previous years, the Annual Conference of the Canadian Nuclear Society was held in conjunction with the Annual Conference of the Canadian Nuclear Association. The major topics of discussion included: reactor physics; thermal hydraulics; industrial irradiation; computer applications; fuel channel analysis; small reactors; severe accidents; fuel behaviour under accident conditions; reactor components; safety related computer software; nuclear fuel management; nuclear waste management; and, uranium mining processing

  16. Annual progress report on nuclear data 1992

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, H H [ed.

    1993-06-01

    This is the 1992 annual report on nuclear data from the Central Bureau for Nuclear Measurements, Geel (Belgium). Work on standard neutron cross sections included {sup 235}U(n,f)/H(n,n) with Frisch gridded ionization chambers and using octacosanol samples. Mass, energy, and angular distribution of fission fragments for {sup 237}Np(n,f) from 0.5 to 5.5 MeV neutron energy. Alpha decay probabilities of {sup 239}Pu. In the area of nuclear data for fission technology, a measurement on the normalization of the {sup 239}Pu fission cross sections was performed. Parameters for 384 resonances in {sup 58}Ni and 350 resonances in {sup 60}Ni have been analyzed up to 1 MeV and 800 KeV, respectively. In the field of nuclear data for fusion technology, double differential neutron emission cross sections for {sup 9}Be(n,2n) for incident neutron energies between 0. 6 and 11.1 MeV have been reported. Extensive measurements of the neutron decay cross sections of {sup 207}Pb have been made. In the radionuclide metrology subproject contributions were made by the preparation of low energy x-ray standard sources, measurements of K- shell fluorescence yields, standardization of a {sup 152}Eu solution, evaluation of the second EUROMET intercomparison of {sup 192}Ir brachytherapy sources, and low level measurements on volcanic rock, archeological ceramics, soil and river sediments. Work was also reported in neutron metrology, major facilities upgrades, radiation physics, and support for a number of PhD projects.

  17. Research nuclear reactor RA - Annual Report 1989

    International Nuclear Information System (INIS)

    Sotic, O.

    1989-12-01

    Annual report concerning the project 'RA research nuclear reactor' for 1989, financed by the Serbian ministry of science is divided into two parts. First part is concerned with RA reactor operation and maintenance, which is the task of the Division for reactor engineering of the Institute for multidisciplinary studies and RA reactor engineering. Second part deals with radiation protection activities at the RA reactor which is the responsibility of the Institute for radiation protection. Scientific council of the Institute for multidisciplinary studies and RA reactor engineering has stated that this report describes adequately the activity and tasks fulfilled at the RA reactor in 1989. The scope and the quality of the work done were considered successful both concerning the maintenance and reconstruction, as well as radiation protection activities [sr

  18. RA Research nuclear reactor - Annual report 1987

    International Nuclear Information System (INIS)

    1987-12-01

    Annual report concerning the project 'RA research nuclear reactor' for 1987, financed by the Serbian ministry of science is divided into two parts. First part is concerned with RA reactor operation and maintenance, which is the task of the Division for reactor engineering of the Institute for multidisciplinary studies and RA reactor engineering. Second part deals with radiation protection activities at the RA reactor which is the responsibility of the Institute for radiation protection. Scientific council of the Institute for multidisciplinary studies and RA reactor engineering has stated that this report describes adequately the activity and tasks fulfilled at the RA reactor in 1989. The scope and the quality of the work done were considered successful both concerning the maintenance and reconstruction, as well as radiation protection activities [sr

  19. Seismic methodology in determining basis earthquake for nuclear installation

    International Nuclear Information System (INIS)

    Ameli Zamani, Sh.

    2008-01-01

    Design basis earthquake ground motions for nuclear installations should be determined to assure the design purpose of reactor safety: that reactors should be built and operated to pose no undue risk to public health and safety from earthquake and other hazards. Regarding the influence of seismic hazard to a site, large numbers of earthquake ground motions can be predicted considering possible variability among the source, path, and site parameters. However, seismic safety design using all predicted ground motions is practically impossible. In the determination of design basis earthquake ground motions it is therefore important to represent the influences of the large numbers of earthquake ground motions derived from the seismic ground motion prediction methods for the surrounding seismic sources. Viewing the relations between current design basis earthquake ground motion determination and modem earthquake ground motion estimation, a development of risk-informed design basis earthquake ground motion methodology is discussed for insight into the on going modernization of the Examination Guide for Seismic Design on NPP

  20. Strengthening the culture of safety and performance in nuclear installations

    International Nuclear Information System (INIS)

    Briant, V.S.; Germann, R.P.

    1997-01-01

    In mid-1995, the International Atomic Energy Agency (IAEA) in Vienna brought together a group of safety culture experts from around the world to explore and summarize those practices they viewed as important in establishing sound safety cultures in nuclear installations. This paper will summarize key findings of the Vienna team and also expand those ideas based on related work in which the authors are engaged. The paper includes a definition of safety culture, a description of three stages of safety culture, and five key practices essential to establishing and maintaining a sound safety culture. Additionally, the authors contradicts the conventional view of safety and production as trade-offs, supporting the Vienna team's conclusion that the principles, attitudes, and practices which bring about sustained levels of high performance are the same as those which enhance safety. Based on input from colleagues in several countries, this appears to hold true across geographical and ethnic boundaries. The authors also discuss how this information can be put to practical use to obtain an objective, measurable, and repeated assessment of the current state of the safety culture within a company, plant or work unit. With that information, leaders are then in the position to act on any of the several parameters which affect both safety and performance effectiveness. (author)

  1. Strengthening the culture of safety and performance in nuclear installations

    Energy Technology Data Exchange (ETDEWEB)

    Briant, V S [GPU Nuclear, Parsippany (United States); Germann, R P [Aberdeen Center for Team Learning, Matawan (United States)

    1997-07-01

    In mid-1995, the International Atomic Energy Agency (IAEA) in Vienna brought together a group of safety culture experts from around the world to explore and summarize those practices they viewed as important in establishing sound safety cultures in nuclear installations. This paper will summarize key findings of the Vienna team and also expand those ideas based on related work in which the authors are engaged. The paper includes a definition of safety culture, a description of three stages of safety culture, and five key practices essential to establishing and maintaining a sound safety culture. Additionally, the authors contradicts the conventional view of safety and production as trade-offs, supporting the Vienna team`s conclusion that the principles, attitudes, and practices which bring about sustained levels of high performance are the same as those which enhance safety. Based on input from colleagues in several countries, this appears to hold true across geographical and ethnic boundaries. The authors also discuss how this information can be put to practical use to obtain an objective, measurable, and repeated assessment of the current state of the safety culture within a company, plant or work unit. With that information, leaders are then in the position to act on any of the several parameters which affect both safety and performance effectiveness. (author) 9 refs., 5 tabs.

  2. Design aspects of safety critical instrumentation of nuclear installations

    Energy Technology Data Exchange (ETDEWEB)

    Swaminathan, P. [Electronics Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamil Nadu (India)]. E-mail: swamy@igcar.ernet.in

    2005-07-01

    Safety critical instrumentation systems ensure safe shutdown/configuration of the nuclear installation when process status exceeds the safety threshold limits. Design requirements for safety critical instrumentation such as functional and electrical independence, fail-safe design, and architecture to ensure the specified unsafe failure rate and safe failure rate, human machine interface (HMI), etc., are explained with examples. Different fault tolerant architectures like 1/2, 2/2, 2/3 hot stand-by are compared for safety critical instrumentation. For embedded systems, software quality assurance is detailed both during design phase and O and M phase. Different software development models such as waterfall model and spiral model are explained with examples. The error distribution in embedded system is detailed. The usage of formal method is outlined to reduce the specification error. The guidelines for coding of application software are outlined. The interface problems of safety critical instrumentation with sensors, actuators, other computer systems, etc., are detailed with examples. Testability and maintainability shall be taken into account during design phase. Online diagnostics for safety critical instrumentation is detailed with examples. Salient details of design guides from Atomic Energy Regulatory Board, International Atomic Energy Agency and standards from IEEE, BIS are given towards the design of safety critical instrumentation systems. (author)

  3. Design aspects of safety critical instrumentation of nuclear installations

    International Nuclear Information System (INIS)

    Swaminathan, P.

    2005-01-01

    Safety critical instrumentation systems ensure safe shutdown/configuration of the nuclear installation when process status exceeds the safety threshold limits. Design requirements for safety critical instrumentation such as functional and electrical independence, fail-safe design, and architecture to ensure the specified unsafe failure rate and safe failure rate, human machine interface (HMI), etc., are explained with examples. Different fault tolerant architectures like 1/2, 2/2, 2/3 hot stand-by are compared for safety critical instrumentation. For embedded systems, software quality assurance is detailed both during design phase and O and M phase. Different software development models such as waterfall model and spiral model are explained with examples. The error distribution in embedded system is detailed. The usage of formal method is outlined to reduce the specification error. The guidelines for coding of application software are outlined. The interface problems of safety critical instrumentation with sensors, actuators, other computer systems, etc., are detailed with examples. Testability and maintainability shall be taken into account during design phase. Online diagnostics for safety critical instrumentation is detailed with examples. Salient details of design guides from Atomic Energy Regulatory Board, International Atomic Energy Agency and standards from IEEE, BIS are given towards the design of safety critical instrumentation systems. (author)

  4. Outline of additional installation works in Oi Nuclear Power Station

    International Nuclear Information System (INIS)

    Shibata, Atsuo; Matsuoka, Motokazu

    1987-01-01

    At present in Oi Nuclear Power Station, Kansai Electric Power Co., Inc., No.1 and No.2 plants of 1175 MWe each are in operation. In order to stabilize power supply for a long term, the additional installation of No.3 and No.4 plants of 1180 MWe each is in progress. The No.3 and No.4 plants are PWRs, for which prestressed concrete reactor containment vessels were adopted, and the start of operation is scheduled in October, 1991 in No.3 plant and in August, 1992 in No.4 plant. In the execution of main construction works, the preservation of the existing plants is the most important. For excavating the tunnels for seawater channels, tunnel boring machines were used, to avoid blasting. Pneumatic caisson method was adopted for a part of the circulating pump building. No vibration, no noise piling method was adopted for respective sheathing construction. The blasting vibration control in the excavation for foundations and the analysis of the behavior of retaining walls are to be carried out by information-oriented work execution. The outline of the main construction works and the preservation of the existing facilities are reported. (Kako, I.)

  5. Study of a brazilian cask and its installation for PWR spent nuclear fuel dry storage

    International Nuclear Information System (INIS)

    Romanato, Luiz Sergio

    2009-01-01

    Spent nuclear fuel (SNF) is removed from the nuclear reactor after the depletion on efficiency in generating energy. After the withdrawal from the reactor core, the SNF is temporarily stored in pools at the same site of the reactor. At this time, the generated heat and the short and medium lived radioactive elements decay to levels that allow removing SNF from the pool and sending it to temporary dry storage. In that phase, the fuel needs to be safely and efficiently stored, and then, it can be retrieved in a future, or can be disposed as radioactive waste. The amount of spent fuel increases annually and, in the next years, will still increase more, because of the construction of new nuclear plants. Today, the number of new facilities back up to levels of the 1970's, since it is greater than the amount of decommissioning in old installations. As no final decision on the back-end of the nuclear fuel cycle is foreseen in the near future in Brazil, either to recover the SNF or to consider it as radioactive waste, this material has to be isolated in some type of storage model existing around the world. In the present study it is shown that dry SNF storage is the best option. A national cask model for SNF as well these casks storage installation are proposed. It is a multidisciplinary study in which the engineering conceptual task was developed and may be applied to national SNF removed from the Brazilian power reactors, to be safely stored for a long time until the Brazilian authorities will decide about the site for final disposal. (author)

  6. Memorandum of Understanding on cooperation and consultation on nuclear installations near borders

    International Nuclear Information System (INIS)

    1977-01-01

    This Agreement signed on 27 September 1977 lays down that the Contracting Parties will inform each other about all nuclear installations constructed along the common border. Nuclear installations within the meaning of the Agreement are installations for the production, processing, reprocessing, manufacture or fission of nuclear fuels and radioactive waste storage. The information to be communicated includes plans and decisions on siting, construction and operation of such installations and relevant documents. The Agreement provides for consultation between the Parties on safety aspects and lays down in detail all the conditions for communication of information. (NEA) [fr

  7. Note n. SD3-DEM-01 regulations procedures relative to the based nuclear installations dismantling

    International Nuclear Information System (INIS)

    2003-02-01

    This note aims to define the regulations procedures relative to the safety of based nuclear installations dismantling defined by the decree of the 11 december 1963 modified. The first part describes the two main phases of a based nuclear installation life, the operating and the dismantling phase. The second part is devoted to the procedures. (A.L.B.)

  8. Seismic Hazards in Site Evaluation for Nuclear Installations. Specific Safety Guide

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-08-15

    This Safety Guide was prepared under the IAEA programme for safety standards for nuclear installations. It supplements the Safety Requirements publication on Site Evaluation for Nuclear Installations. The present publication provides guidance and recommends procedures for the evaluation of seismic hazards for nuclear power plants and other nuclear installations. It supersedes Evaluation of Seismic Hazards for Nuclear Power Plants, IAEA Safety Standards Series No. NS-G-3.3 (2002). In this publication, the following was taken into account: the need for seismic hazard curves and ground motion spectra for the probabilistic safety assessment of external events for new and existing nuclear installations; feedback of information from IAEA reviews of seismic safety studies for nuclear installations performed over the previous decade; collective knowledge gained from recent significant earthquakes; and new approaches in methods of analysis, particularly in the areas of probabilistic seismic hazard analysis and strong motion simulation. In the evaluation of a site for a nuclear installation, engineering solutions will generally be available to mitigate, by means of certain design features, the potential vibratory effects of earthquakes. However, such solutions cannot always be demonstrated to be adequate for mitigating the effects of phenomena of significant permanent ground displacement such as surface faulting, subsidence, ground collapse or fault creep. The objective of this Safety Guide is to provide recommendations and guidance on evaluating seismic hazards at a nuclear installation site and, in particular, on how to determine: (a) the vibratory ground motion hazards, in order to establish the design basis ground motions and other relevant parameters for both new and existing nuclear installations; and (b) the potential for fault displacement and the rate of fault displacement that could affect the feasibility of the site or the safe operation of the installation at

  9. Research nuclear reactor RA, Annual Report 2001

    International Nuclear Information System (INIS)

    Sotic, O.

    2002-01-01

    During 2001, activities at the RA research nuclear reactor in were performed according to the Contract about financing of the RA reactor for the period January-December 2001, signed by the Ministry of Science, technology and development of the Republic of Serbia. RA reactor was not operated since shutdown in August 1984. Although, the most of the planned reconstruction activities were finished until 1991, the most important, which was concerned with exchange of the reactor instrumentation, financed by the IAEA, was interrupted due to international sanctions imposed on the country. Since 1992, all the renewal and reconstruction activities were ceased. Continuous aging and degradation of the equipment and facilities demand decision making about the future status of the Ra reactor. Until this decision is made it is an obligation to maintain control and maintenance of ventilation system, power supply, internal transportation system, spent fuel storage, hot cells, electronic fuel surveillance system, and part of the stationary dosimetry system. In 2001, apart from the mentioned activities, actions were undertaken related to maintenance of the reactor building and installations. The most important tasks fulfilled were: protection of the roof of the ventilation system building, purchase and installing the fire protection system and twelve new battery cells in the reactor building. There were no actions concerned with improvement of the conditions for intermediate spent fuel storage. With the support of IAEA, actions were initiated for possible transport of the spent fuel tu Russia. At the end of 2001, preparations were started for possible future decommissioning of the RA reactor. After, renewal of the membership of our country in the IAEA, the Government of Yugoslavia has declared its attitude about the intention of RA reactor decommissioning at the General Conference in September 2001 [sr

  10. The regulation of radioactive effluent release in France (mainly from large nuclear installations)

    International Nuclear Information System (INIS)

    Hebert, Jean.

    1978-01-01

    In parallel with the licensing system for construction and operation of classified or so-called large nuclear installations (INB) there are in France regulations for the release of radioactive effuents from such installations. The regulations applicable to installations other than INBs are not specifically of a nuclear nature, while those covering INBs, which are analysed in this study, in particular, cover effluent release in liquid or gaseous form. The licensing and control procedures for such release are analysed in detail. (NEA) [fr

  11. Nuclear Regulatory Authority of the Slovak Republic. Annual Report 2004

    International Nuclear Information System (INIS)

    Seliga, M.

    2005-04-01

    A brief account of activities carried out by the Nuclear Regulatory Authority of the Slovak Republic in 2004 is presented. These activities are reported under the headings: (1) Foreword; (2) Legislation; (3) Assessment and inspection of nuclear power plants; (3.1) Assessment and inspection of other nuclear installations; (3.2) Safety analyses; (4) Nuclear materials and physical protection of nuclear installations; (5) Radioactive waste; (6) Quality assurance; (7) Personnel qualification and training; (8) Emergency preparedness; (9) International co-operation; (10) Public information; (11) Personnel and economy data; Appendix: Abbreviations; INES

  12. Nuclear Regulatory Authority of the Slovak Republic. Annual Report 2000

    International Nuclear Information System (INIS)

    Seliga, M.

    2001-01-01

    A brief account of activities carried out by the Nuclear Regulatory Authority of the Slovak Republic in 2000 is presented. These activities are reported under the headings: (1) Foreword and organisation structure; (2) Mission of the Nuclear Regulatory Authority; (3) Legislation; (4) Assessment and inspection of nuclear installations; (5) Safety analyses; (6) Nuclear materials and physical protection of nuclear installations; (7) Radioactive waste; (8) Quality assurance; (9) Personnel qualification and training; (10) Emergency preparedness; (11) International co-operation; (12) Public information; (13) Personnel and economic data of the UJD; (14) Conclusion; (15) Attachments: Abbreviations; Radiation safety

  13. Nuclear Regulatory Authority of the Slovak Republic. Annual Report 2016

    International Nuclear Information System (INIS)

    2017-01-01

    A brief account of activities carried out by the Nuclear Regulatory Authority of the Slovak Republic (UJD SR) in 2016 is presented. These activities are reported under the headings: Foreword by the Chairperson; (1) Legislative activities; (2) Regulatory Activities; (3) Nuclear safety of nuclear installations; (4) Nuclear Materials; (5) Competence of the building authority; (6) Emergency planning and preparedness; (7) International activities; (8) Public relations; (9) Nuclear Regulatory Authority of the Slovak Republic; (10) Annexes; (11) Abbreviations.

  14. Plutonium: resuspension of aerosols in nuclear installations: bibliographic survey

    International Nuclear Information System (INIS)

    Guetat, Ph.; Monfort, M.; Armand, P.; Alloul-Marmor, L.

    2006-01-01

    This document presents an analysis and a bibliographical synthesis of the studies on resuspension factors for plutonium. It aims at helping the engineers of safety to specify the scenarios of accidents which relate to their activities and to bring elements justified for the definition of their term-source 'installation' in the safety reports of the installations. (authors)

  15. 1982 annual status report. Nuclear measurements

    International Nuclear Information System (INIS)

    1983-01-01

    The Nuclear Measurement programme is briefly presented in this status report, it is divided in two main projects, Nuclear Data on the one hand (neutron data, non neutron nuclear data) and Nuclear Reference Materials and Techniques on the other (nuclear reference materials, samples and targets for nuclear measurements, development of reference techniques, study for the production of enriched actinide isotopes)

  16. Conference summaries of the Canadian Nuclear Association 30. annual conference, and the Canadian Nuclear Society 11. annual conference

    International Nuclear Information System (INIS)

    1990-01-01

    This volume contains conference summaries for the 30. annual conference of the Canadian Nuclear Association, and the 11. annual conference of the Canadian Nuclear Society. Topics of discussion include: energy needs and challenges facing the Canadian nuclear industry; the environment and nuclear power; the problems of maintaining and developing industrial capacity; the challenges of the 1990's; programmes and issues for the 1990's; thermalhydraulics; reactor physics and fuel management; nuclear safety; small reactors; fuel behaviour; energy production and the environment; computer applications; nuclear systems; fusion; materials handling; and, reactor components

  17. Application of nuclear power station design criteria to non-nuclear installations

    International Nuclear Information System (INIS)

    Regan, J.D.; Hughes, D.J.

    1989-01-01

    The nuclear industry is multi faceted, in that it includes large and complex chemical plants, a large number of different types of nuclear power stations, and on shore ship maintenance facilities, each with its own unique problems. Since the early days the industry has been aware of the additional problem which is superimposed on what may be classed as traditional fire risks, that is, the risk of an uncontrolled release of radioactivity. This has led to the development of sophisticated fire prevention and control techniques which are applied to new plants, and to the backfitting of older plants. The techniques of analysis, design and operation can be applied to both nuclear and non-nuclear installations. Passive protection is preferred backed up by active techniques. Segregation of essential plant to increase the probability of sufficient surviving to ensure safety systems operate and the provision of smoke free, protected escape routes are important aspects of layout and design. Reliability assessments, venting of smoke and hot gases, fire severity analysis, application of mathematical models contribute to the final design to protect against fires. Experiences built up in the fire fighting profession is integrated into the numerical approach by frequent involvement of the local Fire Officers at each stage of the design and layout of installations. (author)

  18. Chapter No.5. Nuclear materials and physical protection of nuclear installations

    International Nuclear Information System (INIS)

    2002-01-01

    The State System of Accounting for and Control of Nuclear Material (SSAC) is based on requirements resulting from the Safeguards Agreement between the Government of the Slovak Republic and the IAEA. UJD performs this activity according to the 'Atomic Act' and relevant decree. The purpose of the SSAC is also to prevent unauthorised use of nuclear materials, to detect loses of nuclear materials and provide information that could lead to the recovery of missing material. The main part of nuclear materials under jurisdiction of the Slovak Republic is located at NPP Jaslovske Bohunice, NPP Mochovce and at interim storage in Jaslovske Bohunice. Even though that there are located more then 99% of nuclear materials in these nuclear facilities, there are not any significant problems with their accountancy and control due to very simply identification of accountancy units - fuel assemblies, and due to stability of legal subjects responsible for operation and for keeping of information continuity, which is necessary for fulfilling requirements of the Agreement. The nuclear material located outside nuclear facilities is a special category. There are 81 such subjects of different types and orientations on the territory of the Slovak Republic. These subjects use mainly depleted uranium as a shielding and small quantity of natural uranium, low enrichment uranium and thorium for experimental purposes and education. Frequent changes of these subjects, their transformations into the other subjects, extinction and very high fluctuation of employees causes loss of information about nuclear materials and creates problems with fulfilling requirements resulting from the Agreement. In 2001, the UJD carried out 51 inspections of nuclear materials, of which 31 inspections were performed at nuclear installations in co-operation with the IAEA inspectors. No discrepancies concerning the management of nuclear materials were found out during inspections and safeguards goals in year 2001 were

  19. Nuclear Regulatory Authority of the Slovak Republic. Annual Report 2001

    International Nuclear Information System (INIS)

    Seliga, M.

    2002-04-01

    A brief account of activities carried out by the Nuclear Regulatory Authority of the Slovak Republic in 2001 is presented. These activities are reported under the headings: (1) Foreword; (2) Legislation; (3) Assessment and inspection of nuclear installations; (4) Safety analyses; (5) Nuclear materials and physical protection of nuclear installations; (6) Radioactive waste (RAW); (7) Quality assurance; (8) Personnel qualification and training; (9) Emergency preparedness; (10) International co-operation; (11) Public information; (12) Personnel and economy data; (13) Conclusion; (14) Appendix: Abbreviations; Radiation safety

  20. Proceedings of the Canadian Nuclear Association 35. annual conference

    International Nuclear Information System (INIS)

    Loewer, R.

    1995-01-01

    The proceedings of the thirty-fifth annual conference of the Canadian Nuclear Association contain 22 papers organized in the following sessions: update on the status of the Canadian nuclear industry, non-proliferation and related political issues, nuclear waste disposal perspectives, regulatory issues, trade development, new markets, economics of nuclear electricity, public acceptance or rejection. In addition one paper from a CNA/CNS special session on nuclear diffraction is included. The individual papers have been abstracted separately

  1. Obrigheim nuclear power station. Annual report 1987

    International Nuclear Information System (INIS)

    Koerner, C.

    1988-01-01

    The Obrigheim nuclear power station was operated at full load during the year 1987; 7.351 operating hours procuded electrical energy of 2.607 GWh. This is the fifth best annual result during Obrigheim's operating period. Since commissioning in October 1968, 139.310 hours of operation have generated 46.681 GWh (gross) and from test operation in March 1969 until the end of 1987, 138.530 hours of operation have generated 46.569 GWh. This is an availability of power of 81.6% in this period and a time availability of 83.9%. In 1987, the plant was shut down for 1.222 hours for the 18th refueling including testing, inspection and repair work. Apart from refueling, the plant had a good time availability and therefore contributed 5% to the safe, economical and environmentally acceptable electricity supply of the Land Baden-Wuerttemberg. The power station is of great significance to the region, both in terms of power supply and the economy. (orig./HP) [de

  2. Nuclear Regulatory Authority of the Slovak Republic. Annual Report 2015

    International Nuclear Information System (INIS)

    2016-01-01

    A brief account of activities carried out by the Nuclear Regulatory Authority of the Slovak Republic (UJD SR) in 2015 is presented. These activities are reported under the headings: Foreword by the Chairperson; (1) Legislative activities; (2) Regulatory Activities; (3) Safety of nuclear installations; (4) Nuclear Materials; (5) Competence of the building authority; (6) Emergency planning and preparedness; (7) International activities; (8) Public relations; (9) Nuclear Regulatory Authority of the Slovak Republic; (10) Annexes; (11) Abbreviations.

  3. Proceedings of the Canadian Nuclear Society sixth annual conference

    International Nuclear Information System (INIS)

    French, P.M.; Phillips, G.J.

    1985-01-01

    The proceedings of the Sixth Annual Conference of the Canadian Nuclear Society comprise 103 papers on the following subjects: fuel technology, nuclear plant safety, instrumentation, public and regulatory matters, fusion, fuel behaviour under normal and accident conditions, nuclear plant design and operations, thermal hydraulics, reactor physics, accelerators, waste management, new reactor concepts

  4. KfA Institute of Nuclear Physics. Annual report 1987

    International Nuclear Information System (INIS)

    Gruemmer, F.; Kilian, K.; Schult, O.; Seyfarth, H.; Speth, J.; Turek, P.

    1988-04-01

    This annual report contains extended abstracts about the work performed at the named institute together with a list of publications and speeches. The work concerns nuclear reactions, nuclear spectroscopy, intermediate-energy physics, nuclear structure, developments of the isochronous cyclotron and the ISIS ion source, construction of spectrometers, detectors, and targets, computer development, counting electronics, and radiation protection. (HSI)

  5. HMI Section of Nuclear and Radiation Physics - annual report 1987

    International Nuclear Information System (INIS)

    1988-01-01

    This annual report contains extended abstracts of the scientific work performed at the named institute together with a list of publications and talks. The scientific work is concerned with the theory of nuclear and atomic processes with heavy ions, the experimental study of heavy ion reactions, nuclear structure studies, nuclear solid-state physics, atomic collisions, and the operation of VICKSI. (HSI)

  6. New experience on construction and installation work in Qinshan PHWR nuclear power plant

    International Nuclear Information System (INIS)

    Lu Huaxiang

    2004-01-01

    The article provides a summary of the new experience on construction management and construction technology in the field of civil construction and installation work in Qinshan PHWR nuclear power plant, with focus on innovation in project management mode, new technology application and computerized management of construction and installation work. Management innovation, technical innovation and information technology are the key contributors to overall success of Qinshan PHWR nuclear power plant in construction and installation work. The new experience derived in these fields will be of great significance to promote independent construction of the new-round nuclear power projects in China. (author)

  7. Nuclear Science Division 1994 annual report

    International Nuclear Information System (INIS)

    Myers, W.D.

    1995-06-01

    This report describes the activities of the Nuclear Science Division for the period of January 1, 1994, to December 31, 1994. This was a time of significant accomplishment for all of the programs in the Division. Assembly of the solar neutrino detector at the Sudbury Neutrino Observatory is well under way. All of the components fabricated by LBL were shipped to Sudbury early in the year and our efforts are now divided between assisting the assembly of the detector and preparing software for data analysis once the detector is operational in 1996. Much of the activity at the 88-Inch Cyclotron centered on Gammasphere. The open-quotes early implementationclose quotes phase of the detector ended in September. This phase was extremely successful, involving over 60 experiments with nearly 200 users from 37 institutions worldwide. The mechanical structure was installed and the final electronic system is expected to operate in March 1995. The Division concurrently hosted a conference on physics for large γ-ray detector arrays at the Clark Kerr Campus at UC Berkeley in August. This was a very successful meeting, reflecting the enthusiasm for this field worldwide. Also at the Cyclotron, the progress toward weak interaction experiments using ultra-thin sources passed a major milestone with the trapping of radioactive 21 Na atoms. We are now engaged in a major upgrade of the experimental area and the outlook is very promising for these novel experiments. Another highlight of research at the Cyclotron was the confirmation of element 106. This development allowed the original LLNL/LBL discovery team to move forward with their proposal to name this element seaborgium

  8. Nuclear Science Division 1994 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Myers, W.D. [ed.

    1995-06-01

    This report describes the activities of the Nuclear Science Division for the period of January 1, 1994, to December 31, 1994. This was a time of significant accomplishment for all of the programs in the Division. Assembly of the solar neutrino detector at the Sudbury Neutrino Observatory is well under way. All of the components fabricated by LBL were shipped to Sudbury early in the year and our efforts are now divided between assisting the assembly of the detector and preparing software for data analysis once the detector is operational in 1996. Much of the activity at the 88-Inch Cyclotron centered on Gammasphere. The {open_quotes}early implementation{close_quotes} phase of the detector ended in September. This phase was extremely successful, involving over 60 experiments with nearly 200 users from 37 institutions worldwide. The mechanical structure was installed and the final electronic system is expected to operate in March 1995. The Division concurrently hosted a conference on physics for large {gamma}-ray detector arrays at the Clark Kerr Campus at UC Berkeley in August. This was a very successful meeting, reflecting the enthusiasm for this field worldwide. Also at the Cyclotron, the progress toward weak interaction experiments using ultra-thin sources passed a major milestone with the trapping of radioactive {sup 21}Na atoms. We are now engaged in a major upgrade of the experimental area and the outlook is very promising for these novel experiments. Another highlight of research at the Cyclotron was the confirmation of element 106. This development allowed the original LLNL/LBL discovery team to move forward with their proposal to name this element seaborgium.

  9. Safety related events at nuclear installations in 1995

    DEFF Research Database (Denmark)

    Korsbech, Uffe C C

    1996-01-01

    Nuclear safety related events of significance at least corresponding to level 2 of the International Nuclear Event Scale are described. In 1995 only two events occured at nuclear power plants, and four events occured at plants using ionizing radiation for processing or research.......Nuclear safety related events of significance at least corresponding to level 2 of the International Nuclear Event Scale are described. In 1995 only two events occured at nuclear power plants, and four events occured at plants using ionizing radiation for processing or research....

  10. Protection of nuclear installations and materials against malevolent actions

    International Nuclear Information System (INIS)

    Aurelle, J.

    2001-01-01

    parts: an estimate of the resources required to destroy or sufficiently damage a system or function (for example, the quantity of explosives necessary); qualification of the paths leading to zones or systems deemed sensitive. 3) If need be, counter-measures are taken to protect zones for which the consequences would be unacceptable compared to the force of the aggression. Counter-measures are intended both to minimise sensitivity and make it more difficult to carry out the aggression envisaged. Several types of threats have been identified for the purposes of these studies: Internal threats involving actions taken by insiders acting alone or not; External threats involving actions by small group of attackers. Two assumptions are made when testing the ability of protection systems to counter aggressions of this type. The first involves a small team of attackers with limited resources, and the second takes into account a larger team with more sophisticated resources. Assumptions are also made as to the types of action which could be taken by malevolent workers in sensitive zones and the aggravating factors to be considered. As an example the loss of the offsite power supply could be taken into account. Acceptable consequences are taken as being those leading to levels of radioactive releases less than, or equal to, those taken into account in the facility safety case. This implies that vital zone vulnerability be reduced to a minimum so that an excellent level of protection can be provided for these areas. In the case of critical zones, the level of protection is considered on a case-by-case basis, depending on the consequences of malevolent actions. Finally, the paper will describe the concrete case of a nuclear installation. Emphasis will be paid on the defence in depth approach organized around prevention, management and mitigation measures. (author)

  11. Utilization of analytical techniques in aid the implantation of nuclear installations

    International Nuclear Information System (INIS)

    Ferreira, M.P.; Sabino, C.V.S.; Avelar, M.M.

    1984-01-01

    Nuclear, physico-chemical and classic techniques developed and utilized by Centro de Desenvolvimento de Tecnicas Nucleares are presented, as back up to the implementation and operation of nuclear installations related with several parts of fuel cycle from uranium prospecting to waste treatment samples of soils, ores, alloys, plastics, paints, biological materials, air and water were analysed. (M.C.K) [pt

  12. Nuclear Science Division annual report for 1991

    International Nuclear Information System (INIS)

    Myers, W.D.

    1992-04-01

    This paper discusses research being conducted under the following programs: Low energy research program; bevalac research program; ultrarelativistic research program; nuclear theory program; nuclear theory program; nuclear data evaluation program; and 88-inch cyclotron operations

  13. International Co-operation in providing insurance cover for nuclear damage to third parties and for damage to nuclear installations

    International Nuclear Information System (INIS)

    Deprimoz, Jacques

    1983-01-01

    This article in three parts analyses cover for damage to third parties by fixed nuclear installations, cover for damage to third parties during transport of nuclear substances and finally, cover for damage to nuclear installations. Part I reviews the principles of nuclear third party liability and describes nuclear insurance pools, the coverage and contracts provided. Part II describes inter alia the role of pools in transport operations as well as the type of contracts available, while Part III discusses material damage, the pools' capacities and the vast sums involved in indemnifying such damage. (NEA) [fr

  14. Nuclear Science Division: 1993 Annual report

    International Nuclear Information System (INIS)

    Myers, W.D.

    1994-06-01

    This report describes the activities of the Nuclear Science Division for the 1993 calendar year. This was another significant year in the history of the Division with many interesting and important accomplishments. Activities for the following programs are covered here: (1) nuclear structure and reactions program; (2) the Institute for Nuclear and Particle Astrophysics; (3) relativistic nuclear collisions program; (4) nuclear theory program; (5) nuclear data evaluation program, isotope project; and (6) 88-inch cyclotron operations

  15. Nuclear Science Division: 1993 Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Myers, W.D. [ed.

    1994-06-01

    This report describes the activities of the Nuclear Science Division for the 1993 calendar year. This was another significant year in the history of the Division with many interesting and important accomplishments. Activities for the following programs are covered here: (1) nuclear structure and reactions program; (2) the Institute for Nuclear and Particle Astrophysics; (3) relativistic nuclear collisions program; (4) nuclear theory program; (5) nuclear data evaluation program, isotope project; and (6) 88-inch cyclotron operations.

  16. Status of safety at Areva group facilities. 2006 annual report; Etat de surete des installations nucleaires. Rapport annuel 2006

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This report presents a snapshot of nuclear safety and radiation protection conditions in the AREVA group's nuclear installations in France and abroad, as well as of radiation protection aspects in service activities, as identified over the course of the annual inspections and analyses program carried out by the General Inspectorate in 2006. This report is presented to the AREVA Supervisory Board, communicated to the labor representation bodies concerned, and made public. In light of the inspections, appraisals and coordination missions it has performed, the General Inspectorate considers that the nuclear safety level of the AREVA group's nuclear installations is satisfactory. It particularly noted positive changes on numerous sites and efforts in the field of continuous improvement that have helped to strengthen nuclear safety. This has been possible through the full involvement of management teams, an improvement effort initiated by upper management, actions to increase personnel awareness of nuclear safety culture, and supervisors' heightened presence around operators. However, the occurrence of certain events in facilities has led us to question the nuclear safety repercussions that the changes to activities or organization on some sites have had. In these times of change, drifts in nuclear safety culture have been identified. The General Inspectorate considers that a preliminary analysis of the human and organizational factors of these changes, sized to match the impact the change has on nuclear safety, should be made to ensure that a guaranteed level of nuclear safety is maintained (allowance for changes to references, availability of the necessary skills, resources of the operating and support structures, etc.). Preparations should also be made to monitor the changes and spot any telltale signs of drift in the application phase. Managers should be extra vigilant and the occurrence of any drift should be systematically dealt with ahead of

  17. Seismic risk and safety of nuclear installations. A look at the Cadarache Centre

    International Nuclear Information System (INIS)

    Verrhiest-Leblanc, G.; Chevallier, A.

    2010-01-01

    After a brief recall of some important seismic events which occurred in the past in the south-eastern part of France, the authors indicate the nuclear installations present in this region. They outline the difference between requirements for a usual building and for basic nuclear installations. They indicate laws and regulations which are to be applied to these installations like to any hazardous industrial installation. They describe the seismic risk as it has been determined for the Cadarache area, and evoke the para-seismic design of new nuclear installations which are to be built in Cadarache and actions for a para-seismic reinforcement of existing constructions. Finally, they evoke organisational aspects (emergency plans) and the approach for a better information and transparency about the seismic risk

  18. Nuclear ventilation installations. Method of control of the scrubbing coefficient of iodine trap

    International Nuclear Information System (INIS)

    1982-12-01

    The present standard aims at defining a method to control the scrubbing coefficient of radioactive iodine trapping systems, used in nuclear ventilation installations. It applies to the installations where the trapping, efficiency of radioactive iodine has to be known, tested and compared to a reference value generally included in the safety reports. It applies to the installations where the absolute pressure of the air in the ventilation systems is above 1,4. 10 5 Pa (1,4 Bar) [fr

  19. Nuclear Science Division 1992 annual report

    International Nuclear Information System (INIS)

    Myers, W.D.

    1993-04-01

    This report contains short papers from research conducted at Lawrence Berkeley Laboratory in Nuclear Physics. The categories of these papers are: Low-Energy Research Program; Bevalac Research Program; Relativistic Nuclear Collisions Program; Nuclear Theory Program; Nuclear Data Evaluation Program; and 88-Inch Cyclotron Operations

  20. Nuclear Science Division 1992 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Myers, W. D. [ed.

    1993-04-01

    This report contains short papers from research conducted at Lawrence Berkeley Laboratory in Nuclear Physics. The categories of these papers are: Low-Energy Research Program; Bevalac Research Program; Relativistic Nuclear Collisions Program; Nuclear Theory Program; Nuclear Data Evaluation Program; and 88-Inch Cyclotron Operations.

  1. Decree 2869/1972 of 21 July approving the Regulations on nuclear and radioactive installations

    International Nuclear Information System (INIS)

    1972-01-01

    This Decree determines nuclear and radioactive installations and establishes their licensing system which is carried out in several stages and differs according to the category concerned. The procedures cover in particular prior authorization, construction licence and operating licence. Provision is also made for inspections. The Annex to the Decree classifies the radionuclides for determining the category of the installation. (NEA) [fr

  2. Ultrasonic data acquisition installation for basis and in-service testing of nuclear pressure vessels

    International Nuclear Information System (INIS)

    Gutmann, G.; Engl, G.

    1976-01-01

    The safety of nuclear installations requires continuous safety inspections during construction and operation. Essential parts of this safety inspection are the basis and in-line inspections. For this purpose installation systems are used which allow an optimal statement to be made regarding the conditions of tested components

  3. Proceedings of the Canadian Nuclear Association 34. annual conference

    International Nuclear Information System (INIS)

    Girard, A.M.

    1994-01-01

    The proceedings of the thirty-fourth annual conference of the Canadian Nuclear Association contain 23 complete papers and three speeches organized in the following sessions: opening, plenary, new environmental regulations and their effect on the energy industry, CANDU update, life cycle management of nuclear power plants, evolution of nuclear technology, technologies for tomorrow, nuclear used fuel and disposal of low-level waste, world economics and energy consumption. The complete papers have been abstracted separately

  4. Proceedings of the Canadian Nuclear Association 34. annual conference

    Energy Technology Data Exchange (ETDEWEB)

    Girard, A M [Atomic Energy of Canada Ltd., Montreal, PQ (Canada). CANDU Operations

    1994-12-31

    The proceedings of the thirty-fourth annual conference of the Canadian Nuclear Association contain 23 complete papers and three speeches organized in the following sessions: opening, plenary, new environmental regulations and their effect on the energy industry, CANDU update, life cycle management of nuclear power plants, evolution of nuclear technology, technologies for tomorrow, nuclear used fuel and disposal of low-level waste, world economics and energy consumption. The complete papers have been abstracted separately.

  5. Shanghai institute of nuclear research, academia sinica annual report 1991

    International Nuclear Information System (INIS)

    1992-01-01

    The Annual Report is a comprehensive review of achievements made by Shanghai Institute of Nuclear Research (SINR), Academia Sinica in 1991, Which concerns nuclear physics (theories, experimentation, and application), nuclear chemistry (radiochemistry, radiopharmaceuticals, labelled compounds, analytical chemistry), radiation chemistry, accelerator physics and technology, nuclear detectors, computer application and maintenance, laboratory engineering, radiation protection and waste treatment. The maintenance, reconstruction and operation of its major facilities are also described

  6. FY08 Annual Report for Nuclear Resonance Fluorescence Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Glen A.; Caggiano, Joseph A.

    2009-01-06

    FY08 annual report for project the "Nuclear Resonance Fluorescence Imaging" project. Reviews accomplishments of last 3 years, including U-235 signature search, comparison of different photon sources, and examination of NRF measurements using monochromatic photon source.

  7. HMI Section of Nuclear and Radiation Physics - annual report 1985

    International Nuclear Information System (INIS)

    1986-01-01

    This annual report contains extended abstracts about the work performed at the named institute concerning theoretical physics, nuclear reactions, hyperfine structure, atomic collisions, and developments of the VICKSI accelerator together with a list of publications and talks. (HSI) [de

  8. Performances of nuclear installations in the world; Performances des installations nucleaires dans le monde

    Energy Technology Data Exchange (ETDEWEB)

    Pate, Z.T. [World Association of Nuclear Operators (WANO), 75 - Paris (France)

    1999-01-01

    During the last years the operators of nuclear power plants in the world, have realized numerous improvements. This success is imputable to several factors, especially an important data exchange. The Chernobyl accident, in 1986, provoked the creation of the World Association of Nuclear Operators (W.A.N.O.). It allowed to exchange information and to develop cooperation in order to go beyond cultural barriers, linguistics and policies. Then, operators in the world have brought important improvements in matter of safety, reliability. (N.C.)

  9. Feasible research on VLLW disposal in control area of nuclear installation

    International Nuclear Information System (INIS)

    Kong Jinsong; Guo Weiqun

    2013-01-01

    Based on the basic requirements on the VLLW landfill disposal specified by the national codes and standards, a on-site disposal of VLLW in the control area of nuclear installation was proposed. A detail analysis of the advantages and disadvantages about the disposal method and the problem to be solved were described. Results showed that the on-site disposal of VLLW in the control area of nuclear installation was feasible in practice. (authors)

  10. Ordinance of 14 March 1983 concerning the Federal Commission for the Safety of Nuclear Installations

    International Nuclear Information System (INIS)

    1983-01-01

    The Frederal Council issued a new Ordinance concerning the Federal Commission for the Safety of Nuclear Installations. This Ordinance replaces an Ordinance of 13 June 1960 and takes into account the distribution of tasks decided several years ago between the Commission, which operates on a part-time basis, and the principal Division for the Safety of Nuclear Installations attached to the Federal Office of Energy. (NEA) [fr

  11. Statutory Instrument No. 2056, The Nuclear Installations Act 1965 etc. (Repeals and Modifications) Regulations 1974

    International Nuclear Information System (INIS)

    1975-01-01

    These Regulations contain repeals and modifications of provisions of the Nuclear Installations Act 1965 and a modification of the Nuclear Installations (Dangerous Occurrences) Regulations 1965. They are made in consequence of the establishment on 1st January 1975 of the Health and Safety Executive and the coming into operation on that date of provisions of the Health and Safety at Work etc. Act 1974 which supersede or affect provisions of the 1965 Act and the 1965 Regulations. (NEA) [fr

  12. Interpretation of the concepts of ALARA and bat for radioactive effluent releases from nuclear installation

    International Nuclear Information System (INIS)

    Chen Xiaoqiu

    2009-01-01

    Based on the understanding of the important concepts of both ALARA and BAT associated with the characteristics of effluent releases from the existing nuclear installations and the abatement techniques for effluents, this paper elaborates the principle of controlling radioactive effluent concentration from nuclear installation, that is based on the BAT focusing on the abatement techniques for effluents, introduces the good practice in the projects, and optimize the effluent releases with account taken of external factors such as the site condition. (authors)

  13. Atomic Energy and Radioactive Substances. The Nuclear Installations (Isle of Man) Order 1977

    International Nuclear Information System (INIS)

    1977-01-01

    This Order extends to the Isle of Man, with the exceptions, adaptations and modifications specified in the Schedule, those provisions of the Nuclear Installations Act 1965, as amended, which relate to the duty in respect of the carriage of nuclear matter, to the right to compensation for breach of that duty and to the bringing and satisfaction of claims. Under the Nuclear Installations Act, the duty of the operator is to secure that no nuclear occurrence taking place within the realm of the Act causes injury to persons or damage to property. (NEA) [fr

  14. Liability for injury to the unborn - Recent amendments to the United Kingdom Nuclear Installations Act

    International Nuclear Information System (INIS)

    Coleman, J.E.

    1977-01-01

    The adoption in the United Kingdom in 1976 of an Act to determine liability for injury to the unborn (foetus) has provided the opportunity to amend the Nuclear Installations Act which governs the liability of nuclear operators, which is now extended to such injury. Any 'injury' attributable to a nuclear operator which so affects a mother that her child is born disabled involves the liability of that operator within the meaning of the Nuclear Installations Act whether or not either parent has suffered an injury on that occasion. (NEA) [fr

  15. A study on the nuclear computer codes installation and management system

    International Nuclear Information System (INIS)

    Kim, Yeon Seung; Huh, Young Hwan; Kim, Hee Kyung; Kang, Byung Heon; Kim, Ko Ryeo; Suh, Soong Hyok; Choi, Young Gil; Lee, Jong Bok

    1990-12-01

    From 1987 a number of technical transfer related to nuclear power plant had been performed from C-E for YGN 3 and 4 construction. Among them, installation and management of the computer codes for YGN 3 and 4 fuel and nuclear steam supply system was one of the most important project. Main objectives of this project are to establish the nuclear computer code management system, to develop QA procedure for nuclear codes, to secure the nuclear code reliability and to extend techanical applicabilities including the user-oriented utility programs for nuclear codes. Contents of performing the project in this year was to produce 215 transmittal packages of nuclear codes installation including making backup magnetic tape and microfiche for software quality assurance. Lastly, for easy reference about the nuclear codes information we presented list of code names and information on the codes which were introduced from C-E. (Author)

  16. Practical problems of third party liability connected with nuclear installations

    International Nuclear Information System (INIS)

    Lacroix, F.

    1975-01-01

    A special regime of liability for nuclear damage was established by the Paris Convention, 1960, and the Vienna Convention, 1963. The same basic principles are embodied in both Conventions. Some discrepancies, however, still exist between them despite the adoption of an additional protocol to the Paris Convention in 1964 for harmonization purposes. Practical problems facing insurers and suggestions for suitable solutions are presented. International transport of nuclear material raises, in particular, complex issues. With regard to civil liability arising out of the carriage of nuclear material by sea, a possible conflict between maritime transport conventions and nuclear liability conventions was resolved by the Brussels' Convention, 1971. Wider ratification of the nuclear conventions appears to be the only way for coping with some remaining difficulties, in particular with respect to nuclear material in transit

  17. Decree No 74-945 of 6 November 1974 concerning gaseous radioactive effluent releases from large nuclear installations and nuclear installations located on the same site

    International Nuclear Information System (INIS)

    1974-01-01

    This Decree prescribes the licensing for the release of gaseous wastes from nuclear installations as well as the technical supervision of such operations. It does not apply to the transport of radioactive effluents which is governed by the regulations on the transport of dangerous goods. (NEA) [fr

  18. 41st Annual Meeting of the Spanish Nuclear Society

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-07-01

    The Spanish Nuclear Society (SNE) is a non-profit association, made up of professionals and institutions, in order to promote awareness and dissemination of nuclear science and technology. The 41 Annual Meeting of the Spanish Nuclear Society was held in A Coruña from 23 to 25 September 2015. This Annual Meeting allows professionals and companies in the sector to analyze the current state of nuclear energy and its future challenges, covering different topics from engineering to R & D, nuclear safety, also impact on health and the environment, climate change, nuclear facilities, experience spanish companies in the management of knowledge in the nuclear sector. This congress has involved some 600 experts who have dealt with current issues and maximum interest.

  19. Nuclear Regulatory Authority of the Slovak Republic. Annual Report 1999

    International Nuclear Information System (INIS)

    Seliga, M.

    2000-01-01

    A brief account of activities carried out by the Nuclear Regulatory Authority of the Slovak Republic in 1999 is presented. These activities are reported under the headings: (1) Foreword; (2) Mission of the Nuclear Regulatory Authority; (3) Legislation; (4) Assessment and inspection of safety at nuclear installations; (4) Safety analyses; (5) Nuclear materials; (6) Radioactive waste; (7) Quality assurance; (8) Personnel qualification and training; (9) Emergency preparedness; (10) International co-operation; (11) Public information; (12) Conclusions; (13) Appendices: Economic and personnel data; Abbreviations; The International nuclear event scales - INES

  20. Licensing and decommissioning of nuclear installations in Japan

    International Nuclear Information System (INIS)

    Shimoyama, Shunji.

    1986-01-01

    The present report discusses the current status of Japan's licensing system and legislation concerning reactor decommissioning operations. Besides Japan is working to promote worldwide nuclear safety research. However, developing nuclear safety regulations that are uniformely applicable is a difficult job due to big differences in geographical, political, economical, and technological conditions. (CW) [de

  1. National Nuclear Research Institute Annual Report 2013

    International Nuclear Information System (INIS)

    2014-01-01

    The report highlights the activities of the National Nuclear Research Institute (NNRI) of the Ghana Atomic Energy Commission for the year 2013, grouped under the following headings: Centres under the institute namely Nuclear Reactors Research Centre (NRRC); Accelerator Research Centre (ARC); Engineering Services Centre (ESC); National Radioactive Waste Management Centre (NRWMC); Nuclear Chemistry and Environmental Research Centre (NCERC); Nuclear Applications Centre (NAC) and National Data Centre (NDC). (A. B.)

  2. Safety management at nuclear installations with research reactors. A comparison of five European installations

    International Nuclear Information System (INIS)

    Troen, H.; Lauridsen, B.

    1997-11-01

    Five European institutions with nuclear research reactors were visited to compare safety management among institutions similar to Risoe. Risoe is a National Laboratory and the main activities are research and development. In 1996 it was decided to look into safety management at Risoe again; the last revision was in 1972. The purpose was to make it more efficient and to emphasise, that the responsibility lies in the operating organisation. Information such as nuclear facilities at the institutions, the safety management organisation, emergency preparedness, and lists of radiation doses to the employees from the years 1995 and 1996 is given in the report. Also international requirements and recommendations are given in short. Furthermore the report contains some reflections on the development in safety management organisations in resent years and the conclusions drawn from the information gathered

  3. Planned reliability in the transport and installation of large nuclear components

    International Nuclear Information System (INIS)

    Bieler, L.

    1988-01-01

    The transport and installation of heavy and bulky large components require detailed planning of all jobs and activities, trained and experienced personnel and corresponding technical equipment for reliable and quality-assured implementation. The correct approach to the planning and implementation of such transports and installations has been confirmed by years of successful performance of these jobs e.g. in reactor pressure vessels and steam generators for nuclear power plants. Large components for nuclear power plants are truly extreme examples but will be all the better suited for demonstrating the problems inherent in transport and installation. (orig.) [de

  4. Investigation And Mitigation Techniques Of Power Quality Problems In Nuclear Installations

    International Nuclear Information System (INIS)

    Ayad, N.; Elsherbiny, E.; Eleissawi, H.; Zaher, M.; AbdelSalam, G.

    2013-01-01

    The electrical power systems are exposed to different types of power quality disturbances problems. Investigation and monitoring of power quality is necessary to maintain accurate operation of sensitive equipment especially for nuclear installations. The present research discusses investigation and monitoring of power quality problems for the electrical sources of nuclear installations. Field power quality data is collected by power analyzer and analyzed with reference to power quality standards. There were several disturbances exceeded the thresholds, they were voltage harmonics and voltage flicker. Mitigation techniques were suggested to install a passive filter at low voltage side and all sensitive and critical loads should be isolated and fed through uninterruptible power supply (UPS)

  5. Annual report on nuclear physics activities

    International Nuclear Information System (INIS)

    Heeringa, W.; Voss, F.

    1988-02-01

    This report surveys the activities in basic research from July 1, 1986 to June 30, 1987 at the Institute for Nuclear Physics (IK) of the Nuclear Research Center Karlsruhe. The research program of this institute comprises laser spectroscopy, nuclear reactions with light ions, neutron physics, neutrino physics and high energy physics, as well as detector technology. (orig.) [de

  6. Peculiarities of physical protection assurance of the nuclear materials at nuclear installation decommissioning stage

    International Nuclear Information System (INIS)

    Pinchuk, M.G.

    2001-01-01

    On December 15, 2000 Unit 3 of Chernobyl NPP, which is the last one in Ukraine having RBMK-type reactor, was permanently shutdown before the end of its lifetime. A number of projects related to establishing infrastructure for the plant decommissioning are being implemented in compliance with the Ukraine's commitments. Decommissioning stage includes activities on fuel unloading from the cores of Unit I and Unit 3, fuel cooling in the ponds followed by the fuel transportation to the spent fuel dry storage facility (currently under construction) for its safe long-term storage. Special facilities are being created for liquid and solid radioactive waste treatment. Besides, it is planned to implement a number of projects to convert Shelter Object in environmentally safe structure. Physical protection work being an essential part of the nuclear material management is organized in line with the recommendations of the IAEA, and the Laws of Ukraine 'On Nuclear Energy Utilization and Radiation Safety', 'On Physical Protection of Nuclear Installations and Materials', 'Regulations on Physical Protection of Nuclear Materials and Installations', other codes and standards. While organizing physical protection on ChNPP decommissioning stage we have to deal with some specific features, namely: Significant amount of fuel assemblies, which are continuously transferred between various storage and operation facilities; Big amount of odd nuclear material at Shelter Object; 'Theft of new fuel fragments from the central hall of the Shelter Object in 1995 with the intention of their further sale. The thieves were detained and sentenced. The stolen material was withdrawn, that prevented its possible proliferation and illicit trafficking. At present physical protection of ChNPP does not fully satisfy the needs of the decommissioning stage and Ukraine's commitments on non-admission of illicit trafficking. Work is carried out, aimed to improve nuclear material physical protection, whose main

  7. 1981 Annual status report. Nuclear measurements

    International Nuclear Information System (INIS)

    1982-01-01

    The Nuclear Measurements programme is divided into two main projects, Nuclear Data on the one hand and Nuclear Reference Materials and Techniques on the other. In the former the JRC actions form part of world-wide sets of actions to establish reliable, and in many cases very precise, figures for important nuclear parameters - e.g. neutron interaction cross-sections, radio-nuclide half lives. In this work the Central Bureau for Nuclear Measurements (CBNM) pays particular attention to the specific needs of the Community and to complement similar actions undertaken in the laboratories belonging to the Member States. Concerning Nuclear Reference Materials and Techniques the actions are to provide materials to which analytical and other measurements carried out in the nuclear industry or by the nuclear community can be referred. The basic aim of the Nuclear measurement programme is therefore to develop nuclear metrology with special orientation towards satisfying the demands for basic nuclear data and for materials and methods or reference

  8. Proceedings of the seventeenth annual Canadian Nuclear Society conference

    International Nuclear Information System (INIS)

    1996-01-01

    The seventeenth annual conference of the Canadian Nuclear Society, presented in Fredericton, New Brunswick. The conference includes papers on general topics of interest on the nuclear community, waste management and the environment, instrumentation and design of Candu reactors, safety analysis, thermal hydraulics, fuel channels, plant operations and in-core instrumentation

  9. Proceedings of the seventeenth annual Canadian Nuclear Society conference

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The seventeenth annual conference of the Canadian Nuclear Society, presented in Fredericton, New Brunswick. The conference includes papers on general topics of interest on the nuclear community, waste management and the environment, instrumentation and design of Candu reactors, safety analysis, thermal hydraulics, fuel channels, plant operations and in-core instrumentation.

  10. Proceedings of the Canadian Nuclear Society 15. annual conference

    International Nuclear Information System (INIS)

    Huynh, H.M.

    1994-01-01

    The proceedings of the 15. annual conference of the Canadian Nuclear Society cover a wide range of nuclear topics, but the emphasis is on CANDU reactors and Canadian experience. The 89 papers are arranged in 17 sessions dealing with the following subjects: thermalhydraulics, fuel channels, operations, reactor physics, fuel, new technology, safety, training, waste management. The individual papers have been abstracted separately

  11. Proceedings of the Canadian Nuclear Society 15. annual conference

    Energy Technology Data Exchange (ETDEWEB)

    Huynh, H M [Hydro-Quebec, Montreal, PQ (Canada)

    1994-12-31

    The proceedings of the 15. annual conference of the Canadian Nuclear Society cover a wide range of nuclear topics, but the emphasis is on CANDU reactors and Canadian experience. The 89 papers are arranged in 17 sessions dealing with the following subjects: thermalhydraulics, fuel channels, operations, reactor physics, fuel, new technology, safety, training, waste management. The individual papers have been abstracted separately.

  12. Annual report - Industrias Nucleares do Brasil S A - 1998

    International Nuclear Information System (INIS)

    1999-01-01

    The annual report of 1998 of Industrias Nucleares do Brasil S A - Brazilian company responsible for the industrial activities of the nuclear fuel cycle - introduces the next main topics: mineral resource directory main actions; industrial directory main actions; finance and administration directory main actions; transparency; environment, safety and quality; the company; and financial statements

  13. Annual colloquium 1976 of the project nuclear safety

    International Nuclear Information System (INIS)

    1976-11-01

    The present report gives the full text of the nine papers read during the annual colloquium 1976 of the Project Nuclear Safety at Karlsruhe Nuclear Research Centre, in which the main activities and findings of the project in 1976 are contained. (RW) [de

  14. Annual Report of Institute of Nuclear Chemistry and Technology 2002

    International Nuclear Information System (INIS)

    2003-06-01

    The INCT 2002 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology, Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics, nucleonic control systems and accelerators

  15. Annual Report of Institute of Nuclear Chemistry and Technology 2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-06-01

    The INCT 2002 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology, Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics, nucleonic control systems and accelerators.

  16. Regulatory Aspects for Site Selection for Radiological and Nuclear Installations

    International Nuclear Information System (INIS)

    Sirag, N.M.

    2016-01-01

    The purpose of this research is to check in one of the considerations necessary for any new nuclear facility. A previous study that was conducted using a questionnaire reported that general admission to the public, aesthetic considerations, and characteristics associated with the site are able to adequately accept the existence of new nuclear facilities. The findings of this research revealed that public involvement in the process of site selection and in the design of nuclear power plants, an understanding of their point of view is an important aspect of a participatory approach. An important factor for any new nuclear program is to improve confidence in the energy choices in the future. A survey was conducted on 1304 adults to, to get the main goal. The study concluded showed that the prevalence of culture of safety reflected on the public acceptance of the site, especially if it takes into account the aesthetic and environmental considerations.

  17. Site release in the decommissioning of nuclear installations

    International Nuclear Information System (INIS)

    Revilla, Jose Luis; Sanz, Maria Teresa; Marugan, Inmaculada; Simon, Inmaculada; Martin, Manuel; Solis, Susana; Sterling, Agustina

    2008-01-01

    Spanish regulatory framework for the decommissioning process of a nuclear facility ends up with a decommission statement, which releases the licence-holder of the facility from its responsibilities as an operator. It also establishes -where a restricted site release applies- the appropriate future use restrictions, and the responsible of both maintaining such restrictions and ensuring their compliance. Releasing a site implies eliminating all radiological monitoring. The Regulations, however, did not specify either the radiological conditions to be met for the site to be released, or the possibility of a partial release -with or without restrictions-. In case of restricted site release, the Regulations did not specify either the required criteria for such a release. This paper presents the main features of the Safety Instruction IS-13 'Radiological criteria for the release of nuclear facilities sites' issued recently by the Spanish Nuclear Safety Council as a new specific regulation. This Safety Instruction establishes the requirements and conditions for the release of nuclear facility sites, that is, radiological criteria on the effective dose to the public, partial release of nuclear facility sites and restricted release of nuclear facility sites. (author).

  18. Fatigue damage of nuclear facilities; Endommagement par fatigue des installations nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The conference on the fatigue damage of nuclear facilities, organized by the SFEN (french society of nuclear energy), took place at Paris the 23. of november 2000. Eleven papers were presented, showing the state of the art and the research programs in the domain of the sizing rules, safety, installations damage, examination and maintenance. (A.L.B.)

  19. The Regulation of Major Risks in Relation to Large Nuclear Installations in France

    International Nuclear Information System (INIS)

    Phan Van, L.

    1991-01-01

    Recently, major risk prevention has generated legislative and regulatory texts in French law, particularly regarding nuclear installations. This article reviews the context and analyses the scope of the new regulations. They require the nuclear operator to take preventive measures, namely more stringent obligations from the safety viewpoint to inform the public. These include risk assessments and preparing emergency plans in case if accidents. (NEA)

  20. 2010 ANNUAL MEETING ON NUCLEAR TECHNOLOGY. Pt. 3. Section reports; JAHRESTAGUNG KERNTECHNIK 2010. T. 3. Sektionsberichte Technische Sitzungen

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, Uwe; Baumann, Erik [AREVA NP GmbH, Erlangen (Germany); Fischer, Ulrich; Bohnstedt, Angelika [Karlsruher Institut fuer Technologie (KIT), Eggenstein-Leopoldshafen (Germany); Gehring, Michael [Babcock Noell GmbH, Wuerzburg (Germany); Roedig, Manfred [Forschungszentrum Juelich GmbH (Germany); Willschuetz, Hans-Georg [E.ON Kernkraft GmbH, Hannover (Germany); Goers, Stefan [TUEV NORD SysTec GMbH und Co. KG, Hamburg (Germany); Schoenfelder, Christian [AREVA NP GmbH, Offenbach (Germany)

    2010-12-15

    Summary report on these 6 - out of 12 - Sessions of the Annual Conference on Nuclear Technology held in Berlin on May 3 to 6, 2010: - Decommissioning of Nuclear Installations (Session 7), - Fusion Technology (Session 8), - Energy Industry and Economics (Session 10), - Radiation Protection (Session 11), - New Build and Innovations (Session 12), and - Education, Expert Knowledge, Know-how-Transfer (Session 13). The other Sessions: - Reactor Physics and Methods of Calculation (Session 1), - Thermodynamics and Fluid Dynamics (Session 2), - Safety of Nuclear Installations - Methods, Analysis, Results (Session 3), - Front End and Back End of the Fuel Cycle, Radioactive Waste, Storage (Session 4), - Front End of the Fuel Cycle, Fuel Elements and Core Components (Session 5), - Operation of Nuclear Installations (Session 6) have been covered in atw issues 10 and 11 (2010). (orig.)

  1. Strategic considerations for the sustainable remediation of nuclear installations.

    Science.gov (United States)

    Mobbs, S; Orr, P; Weber, I

    2017-08-05

    Nuclear sites around the world are being decommissioned and remedial actions are being undertaken to enable the sites or parts of the sites to be reused. Although this is relatively straightforward for most sites, experience has suggested that preventative action is needed to minimise the impact of remediation activities on the environment and the potential burden to future generations. Removing all contamination in order to make a site suitable for any use generates waste and has associated environmental, social and economic detriments and benefits that should be taken into account. Recent experience of OECD Nuclear Energy Agency (NEA) member countries in the remediation of contaminated land, predominantly contaminated soil and groundwater, on nuclear sites during decommissioning has been assessed by an NEA task group. The experience was used to identify strategic considerations for nuclear site remediation, to consider the application of sustainability principles to nuclear site remediation, to describe good practice, and to make recommendations for further research and development. The key aspects that were identified were that 1) site remediation should be sustainable by resulting in an overall net benefit; and 2) an adaptive approach is essential in order to take into account the inherent uncertainty associated with the decommissioning and site remediation timescales. A report describing the findings was published by OECD/NEA in 2016. The conclusions provide insights to decision makers, regulators, implementers and stakeholders involved in nuclear site decommissioning so that they can achieve sustainable remediation of nuclear sites, now and in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Installation Of A Training Center With Nuclear Instruments In The I.N.E.A

    International Nuclear Information System (INIS)

    Camargo B, Ana C.; Periaza C, A.

    1993-01-01

    In the framework of the regional technical cooperation of the countries in development, at present, the IAEA executes some investigation projects such as the program of Regional Arrangements of Technical Cooperation for Latin America and Caribbean (ARCAL), from which the program of nuclear instrumentation ARCAL II is derived and by agreement the INEA should install a reference center in Electronic and Nuclear Instrumentation. To complete this objective it has assigned the development of different sub projects, among which is the installation of a training center for operation, cares and quality control of nuclear instruments of medical applications

  3. Nuclear science. Annual report, July 1, 1980-June 30, 1981

    International Nuclear Information System (INIS)

    Friedlander, E.M.

    1982-06-01

    This annual report describes the scientific research carried out within the Nuclear Science Division between July 1, 1980 and June 30, 1981. The principal activity of the division continues to be the experimental and theoretical investigation of the interaction of heavy ions with target nuclei. Complementary research programs in light-ion nuclear science, in nuclear data evaluations, and in the development of advanced instrumentation are also carried out

  4. Annual Report of Institute of Nuclear Chemistry and Technology 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    The report is the collection of short communications being the review of the scientific activity of Institute of Nuclear Chemistry and Technology - Warsaw in 1997. The papers are gathered in several branches as follows: radiation chemistry and physics; radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general; radiobiology; nuclear technologies and methods. The annual report of INCT-1997 contains also the general information about INCT as well as the full list of scientific papers being published by the staff in 1997

  5. Annual Report of Institute of Nuclear Chemistry and Technology 2001

    International Nuclear Information System (INIS)

    2002-06-01

    The INCT 2001 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology in Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics, nucleonic control systems and accelerators and nuclear analytical methods

  6. Annual Report of Institute of Nuclear Chemistry and Technology 1997

    International Nuclear Information System (INIS)

    1998-06-01

    The report is the collection of short communications being the review of the scientific activity of Institute of Nuclear Chemistry and Technology - Warsaw in 1997. The papers are gathered in several branches as follows: radiation chemistry and physics; radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general; radiobiology; nuclear technologies and methods. The annual report of INCT-1997 contains also the general information about INCT as well as the full list of scientific papers being published by the staff in 1997

  7. Annual report and accounts 1994/95: Scottish Nuclear

    International Nuclear Information System (INIS)

    1995-01-01

    The Annual Report and Accounts for Scottish Nuclear are presented for the year 1994/1995. Scottish Nuclear Limited produces about half of Scotland's electricity requirement in its advanced gas-cooled reactors (AGRs) at Hunterston and Torness. It also has responsibility for decommissioning the Hunterston A Magnox nuclear power station. The role of the company in the international arena and as part of the United Kingdom's electric power industry, following privatisation, are discussed. (UK)

  8. Annual Report 2004 of Institute of Nuclear Chemistry and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Michalik, J; Smulek, W; Godlewska-Para, E [eds.

    2005-06-01

    The INCT 2004 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics, nucleonic control systems and accelerators, radiobiology and nuclear analytical methods.

  9. Annual Report of Institute of Nuclear Chemistry and Technology 2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-06-01

    The INCT 2001 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology in Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics, nucleonic control systems and accelerators and nuclear analytical methods.

  10. Annual Report 2004 of Institute of Nuclear Chemistry and Technology

    International Nuclear Information System (INIS)

    Michalik, J.; Smulek, W.; Godlewska-Para, E.

    2005-06-01

    The INCT 2004 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics, nucleonic control systems and accelerators, radiobiology and nuclear analytical methods

  11. Nuclear science. Annual report, July 1, 1980-June 30, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Friedlander, E.M. (ed.)

    1982-06-01

    This annual report describes the scientific research carried out within the Nuclear Science Division between July 1, 1980 and June 30, 1981. The principal activity of the division continues to be the experimental and theoretical investigation of the interaction of heavy ions with target nuclei. Complementary research programs in light-ion nuclear science, in nuclear data evaluations, and in the development of advanced instrumentation are also carried out.

  12. Max-Planck-Institute for Nuclear Physics. Annual report 1987

    International Nuclear Information System (INIS)

    Klapdor, H.V.; Jessberger, E.K.

    1987-01-01

    This annual report contains short communications and extended abstracts about the work performed at the named institute together with a list of publications and talks. The work concerns technical developments on accelerators and ion sources, developments of detectors and experimental setups, electronics, data processing, target developments, giant resonances, nuclear spectroscopy, nuclear reaction mechanisms, atomic physics, medium- and high-energy physics, statistical models of nuclei and nuclear reactions, nuclear reactions at high energies, many-particle theory, quantum chromodynamics, meteorites, comets, interstellar dust, planetary atmospheres, cosmic radiation, molecular collisions in the earth atmosphere, nuclear geology and geochemistry, as well as archaeology. See hints under the relevant topics. (HSI)

  13. Quality assurance for pipeline installations in nuclear power plants

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    Approximately 25% of the cost of a nuclear power plant are caused by the pipeline system, i.e. pipes and fixtures. This is an enourmous portion, demanding of the supplier and fitter of these components a very high safety standard. Against the background of the sociopolitical discussion on the safety of nuclear power plants it was a very useful idea of Mannesmann AG, one of the most important manufacturers in this sector, to lay open its quality assurance concept. On the occasion of the symposium ''Safe components for nuclear energy'' held for the expert press it was pointed out that the share of 17% electric energy coming at present from 15 nuclear power plants will increase in future for economic and ecologic reasons. So, it was maintained, the question is not about the ''pro and the con'', but exclusively about the safety standard for nuclear power plants. Specialists from the various branches of the undertaking informed on how this safety concept for the components pipelines and control equipment is realized. (orig./RW) [de

  14. Current emergency programs for nuclear installations in Japan

    International Nuclear Information System (INIS)

    Chino, Masamichi

    2007-01-01

    Large effort has been taken for nuclear emergency programs in Japan especially after the JCO accident. A special law for nuclear emergency was established after the accident. The law extended the scope of emergency preparedness to fuel cycle facilities, research reactors, etc. and clarified the roles and responsibilities of the national government, local governments and license holders. For initial responses, the action levels and action procedures are defined based on environmental doses and specific initial events of NPPs. A senior specialist was dispatched to each site for nuclear emergency and a facility 'Off-site center' to be used as the local emergency headquator was designated at each site. This paper describes the structure of emergency program, responsibility of related organizations and the definition of unusual events for notification and emergency. Emergency preparedness, emergency radiation monitoring and computer-based prediction of on- and off-site situation are also addressed. (author)

  15. Standard rules for liability and cover for nuclear installations

    International Nuclear Information System (INIS)

    Pfaffelhuber, J.K.; Kuckuck, B.

    1980-01-01

    To afford full protection for possible victims, the authors of this article are in favour of doing away with the limitation of liability of nuclear operators presently provided under the German Atomic Energy Act, the principle of which is based on the Paris Convention and the Brussels Supplementary Convention. In support of this argument reference is made to the recent accident at Three Mile Island, trends in other national legislation towards unlimited liability as well as high safety standards in German nuclear plants. Finally, possible ways of providing unlimited liability are proposed, in particular increased insurance cover and the constitution of an interest-bearing fund in addition to State intervention in case of a major nuclear incident. (NEA) [fr

  16. Decommissioning Licensing Process of Nuclear Installations in Spain

    International Nuclear Information System (INIS)

    Correa Sainz, Cristina

    2016-01-01

    The Enresa experience related to the decommissioning of nuclear facilities includes the decommissioning of the Vandellos I and Jose Cabrera NPPs. The Vandellos I gas-graphite reactor was decommissioned in about five years (from 1998 to 2003) to what is known as level 2. In February 2010, the decommissioning of Jose Cabrera power plant has been initiated and it is scheduled to be finished by 2018. The decommissioning of a nuclear power plant is a complex administrative process, the procedure for changing from operation to decommissioning is established in the Spanish law. This paper summarizes the legal framework defining the strategies, the main activities and the basic roles of the various agents involved in the decommissioning of nuclear facilities in Spain. It also describes briefly the Licensing documents required to obtain the decommissioning authorization and the Enresa point of view, as licensee, on the licensing decommissioning process. (author)

  17. The Nuclear Installations (Excepted Matter) Regulations 1978 (Statutory Instrument No. 1779, 4 December 1978)

    International Nuclear Information System (INIS)

    1979-01-01

    These Regulations prescribe, for the purposes of the definition of 'excepted matter' in the Nuclear Installations Act 1965, certain specified quantities and forms of nuclear matter, and supersede the Nuclear Installations (excepted Matter) Regulations 1965. They bring the definition of excepted matter in those Regulations into line with the decisions of 27 October 1977 of the OECD Nuclear Energy Agency's Steering Committee excluding certain kinds and quantities of nuclear substances from the scope of the Paris Convention on Third Party Liability in the Field of Nuclear Energy. Compared with the 1965 Regulations, the principal changes in relation to consignments are that activity limits and packing requirements now take account of the most recent IAEA Regulations. (NEA) [fr

  18. Annual report on nuclear physics activities

    International Nuclear Information System (INIS)

    Borie, E.; Doll, P.; Rebel, H.

    1982-11-01

    This report surveys the activities in fundamental research from July 1, 1981 to June 30, 1982 at the three institutes of the KfK which are concerned with nuclear physics. The research program comprises laser spectroscopy, nuclear reactions with light ions, neutron physics, neutrino physics and physics at medium and higher energies. (orig.) [de

  19. Section for nuclear physics annual report

    International Nuclear Information System (INIS)

    1988-04-01

    The experimental activities have in 1987, as in the previous years, mainly been centered around the cyclotron laboratory with the SCANDITRONIX MC-35 cyclotron. Most of the nuclear physics experiments have been related to the study of nuclear structure at high temperature. Theoretical studies of highly excited nuclei have continued, and there has been a fruitful cooperation between experimental and theoretical physicists

  20. Annual report on nuclear physics activities

    International Nuclear Information System (INIS)

    Beck, R.; Bueche, G.; Fluegge, G.

    1982-02-01

    This report surveys the activities in fundamental research from July 1, 1980 to June 30, 1981 at the three institutes of the KfK which are concerned with nuclear physics. The research program comprises laser spectroscopy, nuclear reactions with light ions and physics at medium and higher energies. (orig.) [de

  1. Nuclear Physics Laboratory 1981 annual report

    International Nuclear Information System (INIS)

    1981-06-01

    Research progress is reported in the following areas: astrophysics and cosmology, nuclear tests of fundamental symmetries, parity mixing in the hydrogen atom, nuclear structure and reactions, radiative capture, medium energy physics, heavy ion reactions, research by outside users, accelerators and ion sources, final design and construction of the magnetic momentum filter, instrumentation and experimental techniques, and computers and computing. Publications are listed

  2. Authorization procedure for the construction and operation of nuclear installations within the EEC member states

    International Nuclear Information System (INIS)

    Didier, J.M.

    1974-12-01

    For Belgium and Luxembourg, the authorization procedure varies according to the class in which the installation concerned falls (assigned according to the degree of hazard involved classes I, II or III). Moreover, separate authorizations are needed, one for construction and another for operation of class I and II installations. With respect to Germany also, two such separate authorizations are needed, but there is no specific procedure relating to the potential extent of hazard involved in the installation concerned. In France, the basic nuclear installations are subject to a special procedure. Furthermore, the construction and operation of these installations are also subject to two separate authorizations. While the latter two authorizations are required in Italy for the main nuclear installations, no system of classified installations exists according to extent of hazard involved. Similar legislation is applicable in the Netherlands. Neither does such a system of classified installations exist in the United Kingdom. Moreover, there is only one single authorization (the site licence), which is successively adapted during construction. On the other hand, in Denmark and Ireland, no detailed legislation has been developed on the subject

  3. Licensing procedure for the construction and operation of nuclear installations within the EEC member states

    International Nuclear Information System (INIS)

    Didier, J.M.

    1976-08-01

    For Belgium and Luxembourg, the authorization procedure varies according to the Class in which the installation concerned falls (assigned according to the degree of hazard involved: Classes I, II or III). Moreover, separate authorizations are needed, one for construction and another for operation of Class I and II installations. With respect to Germany also, two such separate authorization are needed, but there is no specific procedure relating to the potential extent of hazard involved in the installation concerned. In France, the 'basic' nuclear installations are subject to a special procedure. Furthermore, the construction and operation of these installations are also subject to two separate authorizations. While the latter two authorizations are required in Italy for the main nuclear installations, no system of 'classified' installations exists according to extent of hazard involved. Similar legislation is applicable in the Netherlands. Neither does such a system of 'classified' installations exist in the United Kingdom. Moreover, there is only one single authorization (the 'site licence'), which is succesively adapted during construction. On the other hand, in Denmark and Ireland, no detailed legislation has been developed on the subject

  4. Papers of the Third Annual Congress of the Mexican Nuclear Society, C.A

    International Nuclear Information System (INIS)

    1992-11-01

    Once again the Sociedad Nuclear Mexicana fulfill its annual Congress being this time the installations of the Instituto de Investigaciones Electricas the place for the event with a collection of forty documents in the following areas: modelling of nuclear systems, expert systems, dosimetry, experimentation and fuel cycle among others. This significant number of papers is a sample of the great interest of the nuclear community in the participation in this forum presenting its more recent works. The participants belongs to the main institutions in the country dedicated to the technological development of the nuclear area in its different branches. Our best wishes are that this event allows not only the exchange of ideas and the knowledge of the type of works that other colleagues are developing, but also to present the opportunity to live together in a pleasant environment where the main ingredient be the surmounting spirit. We welcome all the participants to the Third Congress of our Society. (Author)

  5. Regulatory oversight report 2016 concerning nuclear safety in Swiss nuclear installations; Aufsichtsbericht 2016 zur nuklearen Sicherheit in den schweizerischen Kernanlagen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2017-06-15

    packages as well as one cask with the fuel assemblies from the shut down research reactor DIORIT of PSI and six casks with waste from the decommissioning of the experimental nuclear power plant at Lucens. During 2016 only one campaign to incinerate and melt radioactive waste was carried out. ENSI recorded no reportable events at Zwilag during the reporting year. The nuclear facilities at PSI consist of the hot laboratory, the three former research reactors SAPHIR, DIORIT and PROTEUS now in varying phases of decommissioning, the former experimental incineration plant and the facilities for the disposal of radioactive materials including the Federal Government's interim storage facility. During 2016, no events were reported at the PSI, at EPFL or at UniB. In 2016, the amount of radioactive material released into the environment via waste water and exhaust air from the nuclear power plants, Zwilag and the nuclear facilities at PSI, Basel and Lausanne was significantly less than the limits specified in the operating licenses. Analyses showed that the maximum dose for persons in the immediate vicinity of a plant was less than 1% of the annual exposure to natural radiation. The waste produced during reprocessing at the reprocessing facilities of La Hague (France) and Sellafield (United Kingdom) must be returned to Switzerland. In the reporting year, compacted, metallic, intermediate level waste and intermediate level vitrified residue packets were transported to Zwilag. All nuclear waste from Swiss fuel assemblies sent abroad for reprocessing is now stored at Zwilag. During 2016, all transports of radioactive substances to and from Swiss nuclear installations took place without any incidents. The site selection procedure for the storage of radioactive waste has been running since 2008. ENSI bears overall responsibility for the safety assessment of the geological site areas. The National Cooperative for the Disposal of Radioactive Waste (Nagra) submitted its suggestion for

  6. Strategic Considerations for the Sustainable Remediation of Nuclear Installations

    International Nuclear Information System (INIS)

    Miller, Susan; Wilson, Ian; Decung, Fabien; Ollivier Dehaye, Catherine; Pellenz, Gilles; Palut-Laurent, Odile; Nitzsche, Olaf; Rehs, Bernd; Altavilla, Massimo; Osimani, Celso; Florya, Sergey; Revilla, Jose-Luis; Efraimsson, Henrik; Baines, Kim; Clark, Anna; Cruickshank, Julian; Mitchell, Nick; Mobbs, Shelly; Orr, Peter; Abu-Eid, Rateb Boby; Durham, Lisa; Morse, John; Walker, Stuart; Weber, Inge; ); Monken-Fernandes, Horst; )

    2016-01-01

    Nuclear sites around the world are being decommissioned and remedial actions are being undertaken to enable sites, or parts of sites, to be reused. Although such activities are relatively straightforward for most sites, experience has suggested that preventative action is needed to minimise the impact of remediation activities on the environment and the potential burden to future generations. Removing all contamination in order to make a site suitable for any use generates waste and has associated environmental, social and economic drawbacks and benefits. Site remediation should thus be sustainable and result in an overall net benefit. This report draws on recent experience of NEA member countries in nuclear site remediation during decommissioning in order to identify strategic considerations for the sustainable remediation of subsurface contamination - predominantly contaminated soil and groundwater - to describe good practice, and to make recommendations for further research and development. It provides insights for the decision makers, regulators, implementers and stakeholders involved in nuclear site decommissioning so as to ensure the sustainable remediation of nuclear sites, now and in the future. (authors)

  7. Reliability of fossil-fuel and nuclear power installations

    International Nuclear Information System (INIS)

    1983-01-01

    The conference heard a total of 37 papers of which 24 were inputted in INIS. The subject area was mainly the use of reliability information systems and the production of data banks for these systems, the application of the reliability theory and the reliability analysis of equipment and systems of nuclear power plants. (J.P.)

  8. Radiation and ecological safety of nuclear fuel cycle installations

    International Nuclear Information System (INIS)

    Barbasheva, S.V.

    1995-01-01

    Nuclear power plants (NPP) and radioactive waste facilities safety issues are discussed; Chernobyl NPP personnel radiation doses for 1986 are indicated; radiation contamination of environment by Am-241 is investigated; data on radioactive contamination in southern part of Kiev Poles'e are considered

  9. Volcanic Hazard Assessments for Nuclear Installations: Methods and Examples in Site Evaluation

    International Nuclear Information System (INIS)

    2016-07-01

    To provide guidance on the protection of nuclear installations against the effects of volcanoes, the IAEA published in 2012 IAEA Safety Standards Series No. SSG-21, Volcanic Hazards in Site Evaluation for Nuclear Installations. SSG-21 addresses hazards relating to volcanic phenomena, and provides recommendations and general guidance for evaluation of these hazards. Unlike seismic hazard assessments, models for volcanic hazard assessment have not undergone decades of review, evaluation and testing for suitability in evaluating hazards at proposed nuclear installations. Currently in volcanology, scientific developments and detailed methodologies to model volcanic phenomena are evolving rapidly.This publication provides information on detailed methodologies and examples in the application of volcanic hazard assessment to site evaluation for nuclear installations, thereby addressing the recommendations in SSG-21. Although SSG-21 develops a logical framework for conducting a volcanic hazard assessment, this publication demonstrates the practicability of evaluating the recommendations in SSG-21 through a systematic volcanic hazard assessment and examples from Member States. The results of this hazard assessment can be used to derive the appropriate design bases and operational considerations for specific nuclear installations

  10. The directive establishing a community framework for the nuclear safety of nuclear installations: the European Union approach to nuclear safety

    International Nuclear Information System (INIS)

    Garribba, M.; Chirtes, A.; Nauduzaite, M.

    2009-01-01

    This article aims at explaining the evolution leading to the adoption of the recent Council Directive 2009/71/EURATOM establishing a Community framework for the nuclear safety of nuclear installations adopted with the consent of all 27 members states following the overwhelming support of the European Parliament, that creates for the first time, a binding legal framework that brings legal certainty to European Union citizens and reinforces the role and independence of national regulators. The paper is divided into three sections. The first section addresses the competence of the European Atomic energy Community to legislate in the area of nuclear safety. It focuses on the 2002 landmark ruling of the European Court of justice that confirmed this competence by recognizing the intrinsic link between radiation protection and nuclear safety. The second part describes the history of the Nuclear safety directive from the initial 2003 European Commission proposal to today 's text in force. The third part is dedicated to a description of the content of the Directive and its implications on the further development of nuclear safety in the European Union. (N.C.)

  11. Regulations concerning licensing of nuclear reactor facilities and other nuclear installations, Decree No 7/9141, 6 January 1975

    International Nuclear Information System (INIS)

    1975-01-01

    This Decree lays down the licensing system for nuclear installations in Turkey and also sets up a Nuclear Safety Committee whose duty is to ensure that the requirements of this Decree are met. The Committee is made up of members of the Atomic Energy Commission specialized in reactors, nuclear safety, health physics, reactor physics as well as two experts respectively appointed by the Ministry of Health and Social Welfare and the Ministry of Energy and National Resources. (NEA) [fr

  12. Regulatory oversight report 2010 concerning nuclear safety in Swiss nuclear installations

    International Nuclear Information System (INIS)

    2011-06-01

    Acting as the regulatory body of the Swiss Confederation, the Swiss Federal Nuclear Safety Inspectorate, ENSI, assesses and monitors nuclear facilities in Switzerland. This includes the five nuclear power plants (NPPs), the plant-based interim storage facilities, the Central Interim Storage Facility (ZWILAG) at Wuerenlingen, the nuclear facilities at the Paul Scherrer Institute (PSI), the two universities of Basel and Lausanne, the transport of radioactive materials from and to nuclear facilities and the preparation for a deep geologic repository for radioactive waste. Using inspections, surveillance meetings, reviews and analyses as well as reports from plant licensees, ENSI obtains the required overview of the safety of the nuclear facilities. It maintains its own emergency organisation, which is an integral part of the national emergency structure. The legislative framework at the basis of the activity of ENSI specifies the criteria by which it evaluates the activities and plans of the operators of nuclear facilities. ENSI provides the public with information on particular events and observations relating to nuclear facilities. The five nuclear power plants in Switzerland (Beznau Units 1 und 2, Muehleberg, Goesgen and Leibstadt) were all operated safely in 2010. Last year, there were 39 notifiable events in Switzerland: 4 events affected both Beznau Units, 10 events the Goesgen NPP, 6 the Leibstadt NPP and 13 the Muehleberg NPP and 6 in other facilities. Based on the International Nuclear Event Scale (INES) of 0-7, ENSI rated 38 events as Level 0, and as INES Level 2 the event on 31 August 2010 during maintenance work at the Leibstadt NPP, where a diver was exposed to radiation in excess of the maximum annual exposure rate of 20 mSv. The ZWILAG at Wuerenlingen consists of several interim storage halls, a conditioning plant and the plasma plant (incineration/melting plant). At the end of 2010, the cask storage hall contained 34 transport/storage casks with spent

  13. Annual meeting on nuclear technology. Opening address

    Energy Technology Data Exchange (ETDEWEB)

    Gueldner, Ralf [DAtF, Berlin (Germany)

    2014-07-15

    The operators of Germany's nuclear power plants continue to make their contribution to the security of supply with the safe and reliable operation of their plants, thus ensuring the success of the energy transition. Despite increased load following operation due to a further increase in feed-in especially of volatile renewable energies, three German nuclear power plants were in the Top Ten global producers of electricity from nuclear energy in 2013. In spite of not producing an equivalent of seven full-load days due to load following operation, the Isar 2 nuclear power plant once again bears the proud title of 'world champion producer'. This balance is also an impressive performance record for nuclear power made in Germany. Despite the accelerated nuclear phase-out, German plants with German operators, and suppliers and service providers based mainly in Germany, are in the top category worldwide once more. Since the end of last year Germany has a new Federal Government as a new version of the grand coalition of 2005 to 2009. The government has set new priorities in the energy sector. However, on many questions concerning nuclear energy, particularly the complex topics of decommissioning and waste management, we are still seeing far too little movement at present. Main topics are: - New site selection process for final repository for high active waste, - Alternative interim storage - just not Gorleben, - Decommissioning, dismantling and administrative bottlenecks, - Lack of predictability for low and medium active waste, - Nuclear fuel tax, electricity market and security of supply, - Electricity market, security of supply and regulation. (orig.)

  14. World nuclear fuel market. Eighteenth annual meeting

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    The papers presented at the eighteenth World Nuclear Fuels Market meeting are cataloged separately. This volume includes information on the following areas of interest: world uranium enrichment capacity and enriched uranium inventories; the impact of new enrichment technologies; predictions of future market trends; non-proliferation aspects of nuclear trade; and a debate as to whether uranium can be successfully traded on a commodities exchange

  15. Agreement on exchange of information on nuclear installations

    International Nuclear Information System (INIS)

    1989-01-01

    This Agreement was concluded in furtherance of the IAEA 1986 Convention on early notification of nuclear incidents and reflects its provisions to a large extent. In accordance with this Agreement, the Parties will notify each other immediately through predetermined contact points of all emergency situations which could have radiological consequences and will communicate the type of information required in order to allow the evaluation of associated risks. (NEA) [fr

  16. NUCLEBRAS' installations for tests of nuclear power plants components

    International Nuclear Information System (INIS)

    Vasconcelos Paiva, I.P. de; Horta, J.A.L.; Avelar Esteves, F. de; Pinheiro, R.B.

    1983-05-01

    The reasons for NUCLEBRAS' Nuclear Technology Development Center to implement a laboratory for supporting Brazilian manufacturers, giving to them the means for performing functional tests of industrial products, are presented. A brief description of the facilities under construction: the Components Test Loop and the Facility for Testing N.P.P. Components under Accident Conditions, and of other already in operation, is given, as well as its objectives and main technical characteristics. Some test results already obtained are also presented. (Author) [pt

  17. Nuclear installations in Slovakia accords to the convention definition

    International Nuclear Information System (INIS)

    1998-01-01

    In this part the nuclear power plants Bohunice - Units V-1 and V-2 and NPP Mochovce (description of units, safety reports and safety improvement programs) are described. Description of Bohunice A-1, history and current status of the NPP A-1 and NPP decommissioning program are included. In next parts interim spent fuel storage, technologies of Raw processing and treatment, and treated and solid Raw storage sites are described

  18. Nuclebras' installations for performance tests of nuclear power plants components

    International Nuclear Information System (INIS)

    Vasconcelos Paiva, I.P. de; Avelar Esteves, F. de; Horta, J.A.L.; Resende, M.F.R.; Pinheiro, R.B.

    1984-01-01

    The reasons for Nuclebras' Nuclear Technology Development Center to implement a laboratory for supporting Brazilian manufactures, giving to them the means for performing functional tests of industrial products, are presented. A brief description of facilities under construction: the components Test Loop and Facility for Testing N.P.P. components under Accident conditions, and other already in operation, as well as its objectives and main technical characteristics. Some test results had already obtained are also presented. (Author) [pt

  19. The protection of nuclear installations from outside aggressions

    International Nuclear Information System (INIS)

    Aussourd, P.; Candes, P.; Le Quinio, R.

    1976-01-01

    When selecting a site for a nuclear power station, the possibility of outside natural aggressions from atmospheric, hydrologic or seismic origin should be carefully considered. The site being chosen, outside natural or non-natural aggressions which are linked to it, such as plane crashes, projectiles, fires, bursting of dams, deliberate human aggressions... should be thoroughly appraised to take them into account when designing the future plant [fr

  20. Nuclear researches using unique installations and vacuum stands

    International Nuclear Information System (INIS)

    Oprea, C.; Oprea, A.; Curuia, M.; Mateescu, G.; Kappel, W.

    2007-01-01

    Full text: In this paper the development and application of nuclear methods using critical technologies for the analysis of nuclear and magnetic nanostructure of different systems are presented. The work consists of 3 parts: - 1.The modernization and use of the thermostat TS-3000K aimed for inelastic and quasi-elastic slow neutron scattering and neutron diffraction experiments in vacuum in condensed matter field, over a very large temperature range (up to 3000 K); - 2. The analysis of the nanostructure of Fe-Cu alloy performing measurements in vacuum by RBS and PIXE methods at the EG-5 Van der Graaf electrostatic accelerator of FLNP, JINR; - 3. Environmental researches conducted on different ecological objects by NAA and IGAA methods at the microtron MT-25. The present report presents the researches within the frame of the three international priority directions: - i. Industry of nanomaterials and nanosystems; - ii. Vacuum technology; - iii. Rational use of natural resources. The results proved that various traditional and new properties of materials which pose a structure at nano level have a good perspective to be further investigated by applying the nuclear methods. (authors)

  1. Installation method for the steel container and vessel of the nuclear heating reactor

    International Nuclear Information System (INIS)

    Chen Liying; Guo Jilin; Liu Wei

    2000-01-01

    The Nuclear Heating Reactor (NHR) has the advantages of inherent safety and better economics, integrated arrangement, full power natural circulation and dual vessel structure. However, the large thin container presents a new and difficult problem. The characteristics of the dual vessel installation method are analyzed with system engineering theory. Since there is no foreign or domestic experience, a new method was developed for the dual vessel installation for the 5 MW NHR. The result shows that the installation method is safe and reliable. The research on the dual vessel installation method has important significance for the design, manufacture and installation of the NHR dual vessel, as well as the industrialization and standardization of the NHR

  2. KFA Institute of Nuclear Physics. Annual report 1990

    International Nuclear Information System (INIS)

    1991-03-01

    This annual report contains extended abstracts about the work performed in the named research center together with a list of talks and publications. The work concerns experimental studies on nuclear reactions and scattering processes, nuclear spectroscopy, and intermediate-energy physics, theoretical studies on nuclear structure, nuclear reactions, and intermediate- and high-energy physics, developments of the isochronous cyclotron, the ISIS ion source, the magnetic spectrometer BIG KARL, and the cooler synchrotron COSY, as well as technical developments on spectrometers and detectors, computer systems, and radiation protection. (orig.)

  3. Proceedings of the first annual Nuclear Criticality Safety Technology Project

    International Nuclear Information System (INIS)

    Rutherford, D.A.

    1994-09-01

    This document represents the published proceedings of the first annual Nuclear Criticality Safety Technology Project (NCSTP) Workshop, which took place May 12--14, 1992, in Gaithersburg, Md. The conference consisted of four sessions, each dealing with a specific aspect of nuclear criticality safety issues. The session titles were ''Criticality Code Development, Usage, and Validation,'' ''Experimental Needs, Facilities, and Measurements,'' ''Regulation, Compliance, and Their Effects on Nuclear Criticality Technology and Safety,'' and ''The Nuclear Criticality Community Response to the USDOE Regulations and Compliance Directives.'' The conference also sponsored a Working Group session, a report of the NCSTP Working Group is also presented. Individual papers have been cataloged separately

  4. KFA Institute of Nuclear Physics. Annual report 1989

    International Nuclear Information System (INIS)

    1990-04-01

    This annual report contains extended abstracts about the work performed in the named research center together with a list of talks and publications. The work concerns experimental studies on nuclear reactions and scattering processes, nuclear spectroscopy, and intermediate-energy physics, theoretical studies on nuclear structure, nuclear reactions, and intermediate- and high-energy physics, developments of the isochronous cyclotron, the ISIS ion source, the magnetic spectrometer BIG KARL, and the cooler synchrotron COSY, as well as technical developments on spectrometers and detectors, computer systems, and radiation protection. (HSI)

  5. Inventory of chemical releases of nuclear installations in the North-Cotentin

    International Nuclear Information System (INIS)

    2002-05-01

    The nuclear installations concerned by this study are Cogema La Hague, the Flamanville nuclear power plant, the Manche plant and the National Navy of Cherbourg.The objective followed by the ' source term ' work group has consisted in counting and examining the whole of existing measures relative to the releases of chemical substances in the liquid and gaseous effluents. Then because of the lack of measures for the operation first years of installations, the work group has estimated the order of magnitude of these chemical releases (essentially for Cogema La Hague). This report presents a review of the literature looking at the background levels of chemicals in different environmental compartments: air, soil, plants and animals products. these values have been summarized here to be available for comparisons with concentrations input by the North Cotentin nuclear installations, calculated by the G.R.N.C. (radioecology group of Nord Cotentin)

  6. Regulatory oversight report 2015 concerning nuclear safety in Swiss nuclear installations

    International Nuclear Information System (INIS)

    2016-06-01

    The Swiss Federal Nuclear Safety Inspectorate (ENSI) assesses and monitors nuclear facilities in Switzerland. These include the five nuclear power plants (Beznau Units 1 and 2, Muehleberg, Goesgen and Leibstadt), the interim storage facilities based at each plant, the Central Interim Storage Facility (Zwilag) at Wuerenlingen together with the nuclear facilities at the Paul Scherrer Institute (PSI), the University of Basel and the Federal Institute of Technology in Lausanne (EPFL), as well as the transport of radioactive materials and the preparatory work for a deep geological repository for nuclear waste. Using a combination of inspections, regulatory meetings, examinations and analyses together with reports from the licensees of individual facilities, ENSI obtains the required overview of nuclear safety in these facilities. ENSI maintains its own emergency organization. It provides the public with information on particular events and findings in nuclear facilities. ENSI publishes an annual Radiological Protection Report and a Research and Experience Report. Chapters 1 to 4 of this Surveillance Report deal with operational experience, systems technology, radiological protection and management of the 5 Swiss nuclear power plants. Chapter 5 deals with Zwilag. Chapters 6 and 7 are devoted to the nuclear facilities at PSI and the research reactor at EPFL as well as the decommissioned University of Basel’s research reactor. Chapter 8 covers the transport of radioactive materials. The subject of Chapter 9 is the deep geological storage of radioactive waste including work within the framework of the Sectoral Plan. Finally, Chapter 10 deals with generic issues relevant to all facilities such as probabilistic safety analyses. In 2015, all five nuclear power plants in Switzerland were safely operated and ENSI concluded that each had adhered to its approved operating conditions. There were 34 reportable events at the nuclear power plants; 32 events were rated at Level 0 on

  7. Internationally Standardized Cost Item Definitions for Decommissioning of Nuclear Installations

    International Nuclear Information System (INIS)

    Lucien Teunckens; Kurt Pflugrad; Candace Chan-Sands; Ted Lazo

    2000-01-01

    The European Commission (EC), the International Atomic Energy Agency (IAEA), and the Organization for Economic Cooperation and Development/Nuclear Energy Agency (OECD/NEA) have agreed to jointly prepare and publish a standardized list of cost items and related definitions for decommissioning projects. Such a standardized list would facilitate communication, promote uniformity, and avoid inconsistency or contradiction of results or conclusions of cost evaluations for decommissioning projects carried out for specific purposes by different groups. Additionally, a standardized structure would also be a useful tool for more effective cost management. This paper describes actual work and result thus far

  8. Approaches to 'eternal' accompaniment regalement of nuclear energy installation decommissioning

    International Nuclear Information System (INIS)

    Dryapachenko, Ihor; Trofimova, Nina

    2003-01-01

    The stunning rate of events after striking the push button AZ5 in April 26, 1986 while that only rises. Boundless even for the super-power world states the complex of scientific, technological, organizational, economical and social problems became in 1991 unique property of Ukraine. It has added to the operational power reactors (now 13) at practical absence of an infrastructure of a closed fuel cycle. At the same time Ukrainian economics always' will depend on nuclear power engineering. In it are very much positive aspect concerning high technological and scientifically based contents and future non-alternative of the nuclear power industry on a global scale. The errors in an estimation of separate links of such composite model are not killed mutually, but only add. Uncertainty in estimations of natural or public processes will cause to large uncertainty of general forecast. A laborious transaction of the rules production or the legitimated algorithms of the activity realization reach the foreseen controllability. On our view the following logical thesis of such concept should be comprehension that the rules of decommissioning of a nuclear-power plant should provide the controllability with matched activities not one generation of performers. The impressive achievements of scientific-technological revolution of last decades are accompanied 'non-regalement' from the point of view of life on a planet by disastrous effects. The nuclear technologies overtake in this sense with that feature, that the 'half-life' periods of these consequences often much more large than the whole written history of mankind. The most distant consequences of the long-term processing with radioactive materials bound on our view with the human factor. If for 30-100 years beforehand it is possible to count destiny of radiological contamination or green meadows but to provide behavior of the people or society, as a whole is high-gravity even per annum forward. Objectivity of laws of history

  9. Ecological and radioecological studies of nuclear installation sites

    International Nuclear Information System (INIS)

    Caries, J. C.; Hugon, J.; Grauby, A.

    1988-01-01

    The site study method consists of a dynamic and estimated analysis and of following up the release impact on all natural or non natural media compartments that take a part in the protection of man and his environment. The stages of knowing a nuclear site include the site preliminary radioecological evaluation, diffusion parameters evaluation, the quantification of factors of radioelements transfer to man, the ecological baseline carrying out, the radioactive baseline establishment, the radioecological synthesis of the results, the site radioactive and ecological control. This method applys to selection and detailed study of site. 1 tab., 7 refs. (F.M.)

  10. Section for nuclear physics and energy physics - Annual report

    International Nuclear Information System (INIS)

    1994-08-01

    This annual report summarizes the research and development activities of the Section for Nuclear Physics and Energy Physics at the University of Oslo in 1993. It includes experimental and theoretical nuclear physics, as well as other fields of physics in which members of the section have participated. The report describes completed projects nd work currently in progress. As in previous years, the experimental activities in nuclear physics have mainly been centered around the Cyclotron Laboratory with the SCANDITRONIX MC-35 Cyclotron. Using the CACTUS multidetector system, several experiments have been completed. Some results have been published while more data remains to be analyzed. In experimental nuclear physics the section staff members are engaged within three main fields: nuclei at high temperature, high spin nuclear structure and high and intermediate energy nuclear physics. In theoretical physics the group is concerned with the many-body description of nuclear properties as well as with the foundation of quantum physics

  11. Civil engineering design for decommissioning of nuclear installations

    International Nuclear Information System (INIS)

    Paton, A.A.; Benwell, P.; Irwin, T.F.; Hunter, I.

    1984-01-01

    This report describes the work carried out by Taylor Woodrow Construction Limited (TWC) in a study aimed at identifying features which may be incorporated at the design stage of future nuclear power plants to facilitate their eventual decommissioning and, in so doing, promote economic and radiological benefits at teh decommissioning stage. For the purposes of this study, decommissioning of a nuclear facility means those measures taken at the end of the facility's operating life to remove it from the site and restore the site to green field conditions, and, while so doing, ensure the continued protection of the public from any residual radioactivity or other potential hazards present in or emanating from the facility. The overall decommissioning process involves eventual dismantling and demolition and may also include, where possible and appropriate, the intermediate steps of renewal and refurbishing. The work has been carried out in a number of sequential stages consisting principally of a literature review, identification of problems likely to arise in decommissioning, generation of possible solutions to the problems, first assessment of the feasibility of these solutions, closer investigation of promising solutions and, finally, preparation of conclusions and recommendations. (author)

  12. A fire risk analysis method for nuclear installations

    Energy Technology Data Exchange (ETDEWEB)

    Ormieres, Yannick; Lacoue, Jocelyne [Institut de Radioprotection et de Surete Nucleaire (IRSN), PSN-RES, SA2I, Fontenay-aux-Roses (France)

    2013-07-01

    A fire safety analysis (FSA) is requested to justify the adequacy of fire protection measures set by the operator of a nuclear facility. An IRSN document outlines a global process for such a comprehensive fire safety analysis and focuses on compliance with performance criteria for fire protection measures. These performance criteria are related to the vulnerability of targets to effects of fire, and not only based upon outside radiological consequences caused by a fire. In his FSA, the operator has to define the safety functions to be preserved in the case of a fire in order to be compliant with nuclear safety objectives. Then, the operator has to justify the adequacy of fire protection measures, defined according to defence in depth principles. One of the key points of the fire analysis is the assessment of possible fire scenarios in the facility. Given the large number of possible fire scenarios, it is then necessary to evaluate ''reference fires'' which are envelope of all possible fire scenarios and which are used by the operator for the design of fire protection measures. (orig.)

  13. Section for nuclear physics annual report

    International Nuclear Information System (INIS)

    1989-04-01

    The experimental activities in nuclear physics have in 1988 mainly been centered around the cyclotron laboratory with the SCANDITRONIX MC-35 cyclotron. The CACTUS multidetector system has been realised and will soon be operating. With 8 particle telescopes, 28 NaI detectors and 2 Ge detectors this experimental arrangement represents a major improvement compared to earlier set-ups in the laboratory. Theoretical studies of many-body problems, nuclear structure and reactions have continued. The study of problems related to the foundations of quantum mechanics has also been persued

  14. World nuclear fuel market. Seventeenth annual meeting

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The papers presented at the seventeenth World Nuclear Fuels Market meeting are cataloged individually. This volume includes information on the following areas of interest: historical and current aspects of the uranium and plutonium market with respect to supply and demand, pricing, spot market purchasing, and other market phenomena; impact of reprocessing and recycling uranium, plutonium, and mixed oxide fuels; role of individual countries in the market: Hungary, Germany, the Soviet Union, Czechoslovakia, France, and the US; the impact of public opinion and radioactive waste management on the nuclear industry, and a debate regarding long term versus short term contracting by electric utilities for uranium and enrichment services

  15. Section for nuclear physics annual report

    International Nuclear Information System (INIS)

    1987-04-01

    The experimental activities have in 1986 as in the previous years mainly been centered around the cyclotron laboratory with the SCANDITRONIX MC-35 cyclotron. Most of the nuclear physics experiments have been related to the study of nuclear structure at high temperature. Experiments with the 3 He-beam up to a particle energy of 45 MeV have continued, and valuable information regarding the cooling process in highly excited nuclei has been obtained. Theoretical studies of highly excited nuclei have continued, and there has been a fruitful cooperation between experimental and theoretical physicists

  16. Regulatory oversight report 2012 concerning nuclear safety in Swiss nuclear installations

    International Nuclear Information System (INIS)

    2013-04-01

    with spent fuel assemblies and vitrified residue packages as well as six casks with decommissioned waste from the experimental nuclear power plant at Lucens. Some 20% of the capacity of the HLW store was in use and about 24% of the ILW store. During the year, ZWILAG conducted two campaigns to incinerate and melt radioactive waste. ENSI is also responsible for the surveillance of the nuclear facilities at PSI: the research reactor PROTEUS, the hot laboratory, the collection point for radioactive waste from medicine, industry and research and the Federal Interim Storage Facility. During 2012, there were no further operational activities or radiation experiments at the PROTEUS research reactor. Two reportable events were recorded at the Paul Scherrer Institute (PSI), but no one at the research reactors at EPFL or the University of Basel. Last year, the amount of radioactive material released into the environment via waste water and exhaust air from the facilities under review was considerably less than the limits specified in the operating licenses. Analyses showed that the maximum doses were less than 1 % of the annual exposure to natural radiation. During 2012, spent fuel assemblies from Swiss nuclear power plants were reprocessed. The AREVA recycling facility in La Hague returned a consignment of high level waste. According to the Sectoral Plan for the deep geological repository, NAGRA proposed several different sites for surface facilities. ENSI provided information on the safety criteria for the selection process and on safety and geology, particularly in view of the Opalinus Clay Project. The geological research into the Opalinus clay continued during 2012. Every five years, the licensees of nuclear power plants are required by law to re-calculate the decommissioning and waste management costs. During 2012, ENSI evaluated the technical principles used in the 2011 cost study conducted by the licensees of nuclear power plants. ENSI is involved in its own projects and

  17. Regulatory overview report 2013 concerning nuclear safety in Swiss nuclear installations

    International Nuclear Information System (INIS)

    2014-06-01

    contained 40 transport/storage casks with spent fuel assemblies and vitrified residue packages as well as six casks with decommissioned waste from the experimental nuclear power plant at Lucens. During the year, ZWILAG conducted one campaign to incinerate and melt radioactive waste; no reportable event was recorded; ZWILAG had complied with its approved operating conditions. The nuclear facilities at PSI consist of the hot laboratory, the nuclear facilities being decommissioned (the former research reactors SAPHIR, DIORIT and PROTEUS and the experimental incineration plant that was taken out of service in 2002) and the facilities for the disposal of radioactive materials. During 2013, there were two reportable events at PSI and one reportable event at the research reactor at the University of Basel. ENSI concluded that the nuclear facilities at PSI and the research reactors at Lausanne and Basel had complied with their approved operating conditions in 2013. The amount of radioactive material released into the environment via waste water and exhaust air from all nuclear facilities was significantly less than the limits specified in the operating licenses. The maximum dose for residents in the immediate vicinity of a plant was less than 1% of the annual exposure to natural radiation. Spent fuel assemblies from Swiss nuclear power plants from previous years are being reprocessed at the reprocessing facilities at La Hague (France) and Sellafield (United Kingdom). The waste produced during reprocessing must subsequently be returned to Switzerland. During 2013, there were no return transports. ENSI is responsible for reviewing the safety aspects of the waste management of the nuclear facilities up until the time they are decommissioned. Stage 2 of the procedure for site selection for deep geological repositories started at the end of 2011. The National Cooperative for the Disposal of Radioactive Waste (Nagra) announced additional inquiries and ENSI made 41 demands for further

  18. Regulatory overview report 2014 concerning nuclear safety in Swiss nuclear installations

    International Nuclear Information System (INIS)

    2015-06-01

    transport/storage casks with spent fuel assemblies and vitrified residue packages as well as six casks with decommissioned waste from the experimental nuclear power plant at Lucens. During the year, ZWILAG conducted one campaign to incinerate and melt radioactive waste; no reportable event was recorded. The nuclear facilities at PSI consist in the hot laboratory, the nuclear facilities being decommissioned (the three former research reactors SAPHIR, DIORIT and PROTEUS together with the experimental incineration plant that was taken out of service in 2002) and the facilities for the disposal of radioactive materials. During 2014, there were no reportable events at PSI. There was one reportable event at the research reactor of the UniB and one reportable event at the research reactor of the EPFL. ENSI concluded that the nuclear facilities at PSI and the research reactors at Lausanne and Basel had complied with their approved operating conditions. The amount of radioactive material released into the environment via waste water and exhaust air from all nuclear power facilities was significantly less than the limits specified in the operating licenses. The maximum dose for persons in the immediate vicinity of a plant was less than 1 % of the annual exposure to natural radiation. Spent fuel assemblies from Swiss nuclear power plants from previous years are being reprocessed at the reprocessing facilities at La Hague (France) and Sellafield (United Kingdom). The waste produced during reprocessing must be returned to Switzerland. During 2014, consignments containing high-level and medium-level waste were transported from La Hague to ZWILAG. The three-stage procedure for site selection for deep geological repositories is currently in Stage 2. During 2014, ENSI concluded its review of the geological state of knowledge for which the National Cooperative for the Disposal of Radioactive Waste (Nagra) had been requested to undertake 41 additional investigations. Nagra will now conduct

  19. Nuclear installations operated without the required permits: the policy pursued in the Netherlands

    International Nuclear Information System (INIS)

    Huygen, A.

    1994-01-01

    The authoress presents two topical cases from the Netherlands where two nuclear installations are allowed to continue operation by a joint decision of the government and the courts, although the legal operating permits have been declared void by a government senate. The legal basis constructed for this approach allowing plant operation to continue for a limited number of years is an explicit statement by the government to tolerate such procedure. The installations are the Bodeward nuclear power station with a BWR and the Almelo URENCO uranium enrichment facility. (orig./HSCH) [de

  20. Nuclear Physics Laboratory 1980 annual report

    International Nuclear Information System (INIS)

    Adelberger, E.G.

    1980-09-01

    Research progress is reported in the following areas: astrophysics and cosmology, fundamental symmetries, nuclear structure and reactions, radiative capture, medium energy physics, heavy ion reactions, research by outside users, accelerators and ion sources, instrumentation and experimental techniques, and computers and computing. Publications are listed

  1. Nuclear Physics Laboratory 1979 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Adelberger, E.G. (ed.)

    1979-07-01

    Research progress is reported in the following areas: astrophysics and cosmology, fundamental symmetries, nuclear structure, radiative capture, medium energy physics, heavy ion reactions, research by users and visitors, accelerator and ion source development, instrumentation and experimental techniques, and computers and computing. Publications are listed. (WHK)

  2. Nuclear Physics Laboratory 1980 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Adelberger, E.G. (ed.)

    1980-09-01

    Research progress is reported in the following areas: astrophysics and cosmology, fundamental symmetries, nuclear structure and reactions, radiative capture, medium energy physics, heavy ion reactions, research by outside users, accelerators and ion sources, instrumentation and experimental techniques, and computers and computing. Publications are listed. (WHK)

  3. Nuclear Safety Research Department annual report 2000

    DEFF Research Database (Denmark)

    Majborn, B.; Nielsen, Sven Poul; Damkjær, A.

    2001-01-01

    The report presents a summary of the work of the Nuclear Safety Research Department in 2000. The department's research and development activities were organized in two research programmes: "Radiation Protection and Reactor Safety" and "Radioecology andTracer Studies". In addtion the department...

  4. Nuclear Safety Research Department annual report 2001

    DEFF Research Database (Denmark)

    Majborn, B.; Damkjær, A.; Nielsen, Sven Poul

    2002-01-01

    The report presents a summary of the work of the Nuclear Safety Research Department in 2001. The department's research and development activities were organized in two research programmes: "Radiation Protection and Reactor Safety" and "Radioecology andTracer Studies". In addition the department...

  5. Nuclear Structure Committee annual report 1976-1977, nuclear structure grants and laboratory agreements

    International Nuclear Information System (INIS)

    1977-01-01

    The Annual Report for the period 1 August 1976 to 31 July 1977 of the Nuclear Structure Committee of the Nuclear Physics Board, under the (United Kingdom) Science Research Council, is presented. Details are given of nuclear structure grants and laboratory agreements. (U.K.)

  6. Chavir: Virtual reality simulation for interventions in nuclear installations

    International Nuclear Information System (INIS)

    Thevenon, J. B.; Tirel, O.; Lopez, L.; Chodorge, L.; Desbats, P.

    2006-01-01

    Companies involved in the nuclear industry have to prepare for interventions by precisely analyzing the radiological risks and rapidly evaluating the consequences of their operational choices. They also need to consolidate the experiences gained in the field with greater responsiveness and lower costs. This paper brings out the advantages of using virtual reality technology to meet the demands in the industry. The CHAVIR software allows the operators to prepare (and repeat) all the operations they would have to do in a safe virtual world, before performing the actual work inside the facilities. Since the decommissioning or maintenance work is carried out in an environment where there is radiation, the amount of radiation that the operator would be exposed to is calculated and integrated into the simulator. (authors)

  7. International conference on safety culture in nuclear installations. Contributed papers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    Safety culture is that assembly of characteristics and attitudes in organisation and individuals which establishes that as an overriding priority nuclear plant safety issues receives the attention warranted by their significance. This definition of safety culture brings out two major components in its manifestation. The framework within which individuals within the organisation works.The attitude and response of individual towards the safety issues over productivity and economics in the organisational work practices. The industry literature provides a great deal of insight at the artefact and espoused value levels, although as yet it remains somewhat disorganized. There is, however, an overall lack of understanding of the assumption level of safety culture. The IAEA has organised the conference on safety culture for better understanding of the safety culture issues on the international level.

  8. International conference on safety culture in nuclear installations. Contributed papers

    International Nuclear Information System (INIS)

    2002-01-01

    Safety culture is that assembly of characteristics and attitudes in organisation and individuals which establishes that as an overriding priority nuclear plant safety issues receives the attention warranted by their significance. This definition of safety culture brings out two major components in its manifestation. The framework within which individuals within the organisation works.The attitude and response of individual towards the safety issues over productivity and economics in the organisational work practices. The industry literature provides a great deal of insight at the artefact and espoused value levels, although as yet it remains somewhat disorganized. There is, however, an overall lack of understanding of the assumption level of safety culture. The IAEA has organised the conference on safety culture for better understanding of the safety culture issues on the international level

  9. Research on artificial intelligence systems for nuclear installations

    International Nuclear Information System (INIS)

    Sakuma, Minoru

    1992-01-01

    The development and utilization of atomic energy in Japan has be advanced in conformity with the long term plan of atomic energy development and utilization decided in 1987. As one of the basic targets, the upbringing of creative and innovative science and technology is put up. Artificial intelligence technology has been positioned as one of the important basic technologies for promoting future atomic energy development. The research and development of artificial intelligence technology have been advanced aiming at making nuclear power stations autonomous, by the guidance of Science and Technology Agency and the cooperation of several research institutes. The upbringing of creative science and technology, the preponderant development of basic technology, the concept of developing the basic technology for atomic energy, the concept of autonomous plants, the standard for autonomy, the approach to autonomous plants, the present state of the researches in respective research institutes on autonomous operation and autonomous maintenance are described. (K.I.)

  10. Statement of incidents at nuclear installations: third quarter 1992

    International Nuclear Information System (INIS)

    1993-01-01

    Three incidents are reported for the third quarter of 1992. During a radiological survey of British Nuclear Fuel's site at Sellafield in June, contamination of the ground under a cracked pipebridge was found. Contamination of two workers was removed by washing; the contaminated soil was removed and contained in drums. In September on the same site, a pipe failure occurred and plutonium nitrate leaked into the secondary containment cell leading to a shutdown of the reprocessing plant. However, no discharge of radioactivity to the environment and no additional radiation exposure to workers occurred. This was subsequently classified as a level 3 incident. 25 spots of radioactive contamination of a service road at the United Kingdom Atomic Energy Authority's Winfrith site were removed and disposed of without injury or contamination. Recommendations to improve the site roads and car parks were made. (UK)

  11. Institute of Nuclear Chemistry and Technology annual report 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This annual report is a collection of short communications being a review of scientific activity of the Institute of Nuclear Chemistry and Technology, Warsaw, Poland in 1994. The papers are gathered into several branches as follows: radiation chemistry and physics (16 papers); radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general (17 papers); radiobiology (6 papers); nuclear technologies and methods (30 papers). The annual report of INCT-1994 contains also a general information about the Institute, the full list of papers published in 1994, information about Nukleonika - the International Journal of Nuclear Research being edited in INCT, the list of patent granted and patent applications in 1994, information about conferences organized by the Institute, the list of Ph.D. and D.Sc. finished in 1994 as well as the list of research projects and contracts being realized in INCT during 1994.

  12. Institute of Nuclear Chemistry and Technology annual report 1994

    International Nuclear Information System (INIS)

    1995-01-01

    This annual report is a collection of short communications being a review of scientific activity of the Institute of Nuclear Chemistry and Technology, Warsaw, Poland in 1994. The papers are gathered into several branches as follows: radiation chemistry and physics (16 papers); radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general (17 papers); radiobiology (6 papers); nuclear technologies and methods (30 papers). The annual report of INCT-1994 contains also a general information about the Institute, the full list of papers published in 1994, information about Nukleonika - the International Journal of Nuclear Research being edited in INCT, the list of patent granted and patent applications in 1994, information about conferences organized by the Institute, the list of Ph.D. and D.Sc. finished in 1994 as well as the list of research projects and contracts being realized in INCT during 1994

  13. Institute of Nuclear Chemistry and Technology annual report 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This annual report is a collection of short communications being a review of scientific activity of the Institute of Nuclear Chemistry and Technology, Warsaw, Poland in 1994. The papers are gathered into several branches as follows: radiation chemistry and physics (16 papers); radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general (17 papers); radiobiology (6 papers); nuclear technologies and methods (30 papers). The annual report of INCT-1994 contains also a general information about the Institute, the full list of papers published in 1994, information about Nukleonika - the International Journal of Nuclear Research being edited in INCT, the list of patent granted and patent applications in 1994, information about conferences organized by the Institute, the list of Ph.D. and D.Sc. finished in 1994 as well as the list of research projects and contracts being realized in INCT during 1994.

  14. Legal requirements concerning the technical safety of nuclear installations

    International Nuclear Information System (INIS)

    Nolte, R.

    1984-01-01

    A short survey on nuclear risks and the nuclear safety conception is followed by the attempted clear definition of the semantic import of section 7, sub-section (2), No. 3 of the Atomic Energy Act. There are first beginnings of a concretization of the state-of-the-art in science and technology, i.e. all kinds of sub-legislative regulations such as the regulations of the Radiation Protection Ordinance which show scientific substance, guidelines issued by the Ministers, as well as codes for practice set up by various technical bodies and standardization associations, all of which are designed to compensate for this loop hole in the legislation. This study goes to examine to what extent administration and jurisdiction may take into account such codes of practice for the concretization of the legal requirements, and whether they are even binding on those executing the law. Only the respective regulations of the Radiation Protection Ordinance have a binding effect. All other guidelines and codes of practice are not legally binding per se, nor are they capable of being legally permitted by being referred to in terms of legal norms or by the self-commitment of those executing the law. Any attempt of using them, as the basis of a prime facie evidence or as an anticipating expertise, at least evidentarily for the concretization will have to fail owing to their evaluating character and to the fact that they may interfere in sociological conflict. An exception may be a case where a clear distinction can be made as to what extent the contents of such codes of practice is related to scientific and technological findings or to decisions based on evaluations. In such a case, a prima facil evicdence for the conformity of the regulation in question with the state-of-the-art in science and technology may be considered, which would easy the concretization of Art. 7 II Section 3 of the Atomic Law. (orig./HSCH) [de

  15. Statutory Instrument No. 125, The Nuclear Installations (Falkland Islands and Dependencies) Order 1972

    International Nuclear Information System (INIS)

    1972-01-01

    This Order extends to the Falkland Islands, with the exceptions, adaptations and modifications specified in the Schedule to the Order, certain provisions of the Nuclear Installations Act 1965, as amended. It is the 1965 Act which implements the provisions of the Paris Convention and the Brussels Supplementary Convention in the United Kingdom. The provisions so extended impose a duty on the nuclear operator to secure that no nuclear occurrence taking place within the territorial limits of the Falkland Islands causes nuclear injury or damage, and relate to the right to compensation for breach of that duty, the bringing and satisfaction of claims and other matters. (NEA) [fr

  16. Statutory Instrument No. 126, The Nuclear Installations (Hong Kong) Order 1972

    International Nuclear Information System (INIS)

    1972-01-01

    This Order extends to Hong Kong, with the exceptions, adaptations and modifications specified in the Schedule to the Order, certain provisions of the Nuclear Installations Act 1965, as amended. It is the 1965 Act which implements the provisions of the Paris Convention and the Brussels Supplementary Convention in the United Kingdom. The provisions so extended impose a duty on the nuclear operator to secure that no nuclear occurrence taking place within the territorial limits of Hong Kong causes nuclear injury or damage, and relate to the right to compensation for breach of that duty, the bringing and satisfaction of claims and other matters. (NEA) [fr

  17. Statutory Instrument No. 123, The Nuclear Installations (Cayman Islands) Order 1972

    International Nuclear Information System (INIS)

    1972-01-01

    This Order extends to the Cayman Islands, with the exceptions, adaptations and modifications specified in the Schedule to the Order, certain provisions of the Nuclear Installations Act 1965, as amended. It is the 1965 Act which implements the provisions of the Paris Convention and the Brussels Supplementary Convention in the United Kingdom. The provisions so extended impose a duty on the nuclear operator to secure that no nuclear occurrence taking place within the territorial limits of the Cayman Islands causes nuclear injury or damage, and relate to the right to compensation for breach of that duty, the bringing and satisfaction of claims and other matters. (NEA) [fr

  18. Statutory Instrument No. 125, The Nuclear Installations (Gilbert and Ellice Islands) Order 1972

    International Nuclear Information System (INIS)

    1972-01-01

    This Order extends to the Gilbert and Ellice Islands, with the exceptions, adaptations and modifications specified in the Schedule to the Order, certain provisions of the Nuclear Installations Act 1965, as amended. It is the 1965 Act which implements the provisions of the Paris Convention and the Brussels Supplementary Convention in the United Kingdom. The provisions so extended impose a duty on the nuclear operator to secure that no nuclear occurrence taking place within the territorial limits of the Gilbert and Ellice Islands causes nuclear injury or damage, and relate to the right to compensation for breach of that duty, the bringing and satisfaction of claims and other matters. (NEA) [fr

  19. The Nuclear Installations (Guernsey) Order 1978 (Statutory Instrument 1528, 24 October 1978)

    International Nuclear Information System (INIS)

    1978-01-01

    This Order extends to Guernsey, with the exceptions, adaptations and modifications specified in the Schedule to the Order, certain provisions of the Nuclear Installations Act 1965, as amended. It is the 1965 Act which implements the provisions of the Paris Convention and the Brussels Supplementary Convention in the United Kingdom. The provisions so extended impose a duty on the nuclear operator to secure that no nuclear occurrence taking place within the territorial limits of Guernsey causes nuclear injury or damage, and relate to the right to compensation for breach of that duty, the bringing and satisfaction of claims and other matters. (NEA) [fr

  20. Statutory Instrument No. 122, The Nuclear Installations (British Solomon Islands Protectorate) Order 1972

    International Nuclear Information System (INIS)

    1972-01-01

    This Order extends to the British Solomon Islands Protectorate, with the exceptions, adaptations and modificatons specified in the Schedule to the Order, certain provisions of the Nuclear Installations Act 1965, as amended. It is the 1965 Act which implements the provisions of the Paris Convention and the Brussels Supplementary Convention in the United Kingdom. The provisions so extended impose a duty on the nuclear operator to secure that no nuclear occurrence taking place within the territorial limits of the British Solomon Islands Protectorate causes nuclear injury or damage, and relate to the right to compensation for breach of that duty, the bringing and satisfaction of claims and other matters. (NEA) [fr

  1. Max-Planck-Institute for Nuclear Physics. Annual report 1988

    International Nuclear Information System (INIS)

    Klapdor, H.V.; Jessberger, E.K.

    1989-01-01

    This annual report contains short notes and abstracts about the work performed at the named institute together with a list of publications and talks. The work concerns technical developments of accelerators and ion sources, experimental and theoretical studies on nuclear structure and reactions, high-energy physics, studies on meteorites and lunar rocks, comets, interplanetary and interstellar dust, interstellar dynamics, nuclear geology, and archaeometry. See hints under the relevant topics. (HSI)

  2. Nuclear Waste Treatment Program: Annual report for FY 1986

    International Nuclear Information System (INIS)

    Burkholder, H.C.; Brouns, R.A.; Powell, J.A.

    1987-09-01

    To support DOE's attainment of its goals, Nuclear Waste Treatment Program (NWTP) is to provide technology necessary for the design and operation of nuclear waste treatment facilities by commercial enterprises as part of a licensed waste management system and problem-specific treatment approaches, waste form and treatment process adaptations, equipment designs, and trouble-shooting. This annual report describes progress during FY 1986 toward meeting these two objectives. 29 refs., 59 figs., 25 tabs

  3. Annual Report of Institute of Nuclear Chemistry and Technology 1999

    International Nuclear Information System (INIS)

    2000-06-01

    The INCT 1999 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology, Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics and nucleonic control systems and accelerators

  4. Nuclear Waste Treatment Program: Annual report for FY 1986

    Energy Technology Data Exchange (ETDEWEB)

    Burkholder, H.C.; Brouns, R.A. (comps.); Powell, J.A. (ed.)

    1987-09-01

    To support DOE's attainment of its goals, Nuclear Waste Treatment Program (NWTP) is to provide technology necessary for the design and operation of nuclear waste treatment facilities by commercial enterprises as part of a licensed waste management system and problem-specific treatment approaches, waste form and treatment process adaptations, equipment designs, and trouble-shooting. This annual report describes progress during FY 1986 toward meeting these two objectives. 29 refs., 59 figs., 25 tabs.

  5. Annual Report of Institute of Nuclear Chemistry and Technology 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-06-01

    The INCT 1999 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology, Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics and nucleonic control systems and accelerators.

  6. Regulatory oversight report 2011 concerning nuclear safety in Swiss nuclear installations

    International Nuclear Information System (INIS)

    2012-06-01

    as well as 6 casks with decommissioned waste from the experimental nuclear power plant at Lucens. About 17 % of the capacity of the high-level radioactive waste store had been used and about 23 % of the low- and intermediate-level waste store. During the year, ZWILAG conducted two campaigns to incinerate and melt radioactive waste. ENSI recorded no reportable events at ZWILAG during 2011. ENSI is also responsible for the surveillance of the nuclear facilities at PSI: the research reactor PROTEUS, the hot laboratory, the collection point for radioactive waste from medicine, industry and research, and ZWILAG. From the radiological standpoint, decommissioning work at the two research reactors DIORIT and SAPHIR progressed correctly. There were no further irradiation experiments during 2011 at PROTEUS and operational activities were restricted to routine maintenance and checks. During 2011, there were three reportable events at PSI relevant to nuclear safety. All were rated as INES Level 0. ENSI recorded one reportable event at the research reactor at the Federal Institute of Technology in Lausanne and none at the University of Basel. ENSI concluded that the nuclear facilities at PSI and the research reactors at Lausanne and Basel had complied with their approved operating conditions during 2011. Last year the amount of radioactive material released into the environment via waste water and exhaust air from nuclear power plants, ZWILAG, the PSI and the nuclear facilities at Basel and Lausanne was considerably less than the limits specified in the operating licenses. They resulted in maximum calculated doses, including for those residents in the immediate vicinity of a plant, of less than 1 % of the annual exposure to natural radiation. During 2011, two consignments of compacted reprocessing waste were transported from La Hague in France to ZWILAG. The consignments of fuel assemblies and radioactive waste were transported in accordance with the limits specified in the

  7. Nuclear Physics Division annual report 1992

    International Nuclear Information System (INIS)

    Betigeri, M.G.

    1993-01-01

    The report covers the research and development activities of the Nuclear Physics Division for the period January to December 1992. These research and development activities are reported under the headings: 1) Experiments, 2) Theory, 3) Applications, 4) Instrumentation, and 5) The Pelletron Accelerator. At the end a list of publications by the staff scientists of the Division is given. Colloquia and seminars held during the year are also listed. (author). refs., tabs., figs

  8. Nuclear Safety Research Department annual report 2000

    International Nuclear Information System (INIS)

    Majborn, B.; Damkjaer, A.; Nielsen, S.P.; Nonboel, E.

    2001-08-01

    The report presents a summary of the work of the Nuclear Safety Research Department in 2000. The department's research and development activities were organized in two research programmes: 'Radiation Protection and Reactor Safety' and 'Radioecology and Tracer Studies'. In addition the department was responsible for the tasks 'Applied Health Physics and Emergency Preparedness', 'Dosimetry', 'Environmental Monitoring', and Irradiation and Isotope Services'. Lists of publications, committee memberships and staff members are included. (au)

  9. Proceedings of the 29th annual conference of the Canadian Nuclear Association and 10th annual conference of the Canadian Nuclear Society. V. 1-3

    International Nuclear Information System (INIS)

    Harvey, M.; Fehrenbach, P.J.

    1989-01-01

    The symposium was designed to highlight how the technical information for nuclear energy came to Canada, the effect this information had in Canada in the fields of Physics, Chemistry, Medicine and Nuclear Power. Volume 1 is the combined proceedings of the Canadian Nuclear Association twenty-ninth annual conference and the Canadian Nuclear Society tenth annual conference. Volume 2 is the proceedings of the Canadian Nuclear Association twenty-ninth annual conference, and volume 3 is the proceedings of the Canadian Nuclear Society tenth annual conference

  10. Proceedings of the 29th annual conference of the Canadian Nuclear Association and 10th annual conference of the Canadian Nuclear Society. V. 1-3

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, M; Fehrenbach, P J [eds.

    1990-12-31

    The symposium was designed to highlight how the technical information for nuclear energy came to Canada, the effect this information had in Canada in the fields of Physics, Chemistry, Medicine and Nuclear Power. Volume 1 is the combined proceedings of the Canadian Nuclear Association twenty-ninth annual conference and the Canadian Nuclear Society tenth annual conference. Volume 2 is the proceedings of the Canadian Nuclear Association twenty-ninth annual conference, and volume 3 is the proceedings of the Canadian Nuclear Society tenth annual conference.

  11. Max-Planck-Institute for Nuclear Physics. Annual report 1986

    International Nuclear Information System (INIS)

    Klapdor, H.V.; Jessberger, E.K.

    1987-01-01

    This annual report contains short descriptions of the research performed at the given institute together with an extensive list of publications. The research in nuclear physics is concerned with developments in accelerators and ion sources, radiation detectors, solid-state studies by nuclear methods, counting circuits, data processing, target preparation, fission, fusion, and nuclear friction, giant resonances, nuclear spectroscopy, nuclear reaction mechanisms, atomic physics and interaction of charged particles with matter, medium and high energy physics. The research in cosmophysics works on meteorites and lunar rocks, the gallium-solar-neutrino experiment (project GALLEX), problems of Halley's comet, interplanetary and interstellar dust, planetary atmospheres, interstellar medium and cosmic rays, molecular collision processes in the gas phase, nuclear geology and geochemistry, and archaeometry. (GG)

  12. Research nuclear reactor RA - Annual report 1992

    International Nuclear Information System (INIS)

    Sotic, O.

    1992-12-01

    Research reactor RA Annual report for year 1992 is divided into two main parts to cover: (1) operation and maintenance and (2) activities related to radiation protection. First part includes 8 annexes describing reactor operation, activities of services for maintenance of reactor components and instrumentation, financial report and staffing. Second annex B is a paper by Z. Vukadin 'Recurrence formulas for evaluating expansion series of depletion functions' published in 'Kerntechnik' 56, (1991) No.6 (INIS record no. 23024136. Second part of the report is devoted to radiation protection issues and contains 4 annexes with data about radiation control of the working environment and reactor environment, description of decontamination activities, collection of radioactive wastes, and meteorology data [sr

  13. 1990 No. 1918. The Nuclear Installations Act 1965 (Repeal and Modifications) Regulations 1990

    International Nuclear Information System (INIS)

    1990-01-01

    These Regulations entered into force on 31 October 1990. They repeal part of Section (1) of the Nuclear Installations Act 1965 to remove the exemption of the United Kingdom Atomic Energy Authority (UKAEA) from licensing under the Act. The Regulations also amend the 1965 Act to ensure that the UKAEA's duties in respect of the safety of premises it occupies will continue to apply whether or not a nuclear site licence has been granted. (NEA) [fr

  14. Normative questions connected with the procedure for approval and operation of nuclear installations

    International Nuclear Information System (INIS)

    Nocera, F.

    1980-03-01

    Recent regulatory developments in the licensing procedure for nuclear installations in Italy are discussed in the light of technical and scientific developments and international rules. The author then discusses the questions likely to be further defined and regulated, i.e. requirements for possession of fuels and fuel storage facilities, nuclear plant decommissioning, protection of the population with reference to the directives of the European Communities. (NEA) [fr

  15. Order of 10 october 1977 on the special safety measures applicable to certain large nuclear installations

    International Nuclear Information System (INIS)

    1978-01-01

    This Order by the Minister of Industry, Commerce and Crafts and the Minister of Labour was made in implementation of Section 40 of Decree No. 75-306 of 28 April 1975 on the protection of workers against the hazards of ionizing radiation in large nuclear installations. It lays down the safety measures applicable to nuclear reactors and ancillary facilities, particle accelerators, irradiated fuel reprocessing plants and facilities for the storage of radioactive waste. (NEA) [fr

  16. Handling and carrying head for nuclear fuel assemblies and installation including this head

    International Nuclear Information System (INIS)

    Artaud, R.; Cransac, J.P.; Jogand, P.

    1986-01-01

    The present invention proposes a handling and carrying head ensuring efficiently the cooling of the nuclear fuel asemblies it transports so that any storage in liquid metal in a drum within or adjacent the reactor vessel is suppressed. The invention claims also a nuclear fuel handling installation including the head; it allows a longer time between loading and unloading campaigns and the space surrounding the reactor vessel keeps free without occupying a storage zone within the vessel [fr

  17. Can Nuclear Installations and Research Centres Adopt Cloud Computing Platform-

    International Nuclear Information System (INIS)

    Pichan, A.; Lazarescu, M.; Soh, S.T.

    2015-01-01

    Cloud Computing is arguably one of the recent and highly significant advances in information technology today. It produces transformative changes in the history of computing and presents many promising technological and economic opportunities. The pay-per-use model, the computing power, abundance of storage, skilled resources, fault tolerance and the economy of scale it offers, provides significant advantages to enterprises to adopt cloud platform for their business needs. However, customers especially those dealing with national security, high end scientific research institutions, critical national infrastructure service providers (like power, water) remain very much reluctant to move their business system to the cloud. One of the main concerns is the question of information security in the cloud and the threat of the unknown. Cloud Service Providers (CSP) indirectly encourages this perception by not letting their customers see what is behind their virtual curtain. Jurisdiction (information assets being stored elsewhere), data duplication, multi-tenancy, virtualisation and decentralized nature of data processing are the default characteristics of cloud computing. Therefore traditional approach of enforcing and implementing security controls remains a big challenge and largely depends upon the service provider. The other biggest challenge and open issue is the ability to perform digital forensic investigations in the cloud in case of security breaches. Traditional approaches to evidence collection and recovery are no longer practical as they rely on unrestricted access to the relevant systems and user data, something that is not available in the cloud model. This continues to fuel high insecurity for the cloud customers. In this paper we analyze the cyber security and digital forensics challenges, issues and opportunities for nuclear facilities to adopt cloud computing. We also discuss the due diligence process and applicable industry best practices which shall be

  18. HMI Section of Nuclear and Radiation Physics - annual report 1988

    International Nuclear Information System (INIS)

    1988-01-01

    This annual report contains extended abstracts about the work performed in the named institute together with a list of publications and talks. The work concerns nuclear and atomic theory, heavy ion reactions, hyperfine-structure studies, ion collisions with atoms and solids, and developments on the VICKSI accelerator. (HSI)

  19. Annual report of Japan Nuclear Ship Development Agency, 1980

    International Nuclear Information System (INIS)

    1981-01-01

    Japan Nuclear Ship Development Agency executed the works centering around the repair of shielding and the general inspection on safety of the nuclear-Ship Mutsu in the fiscal year 1980. On the other hand, the law revising the law concerning Japan Nuclear Ship Development Agency was enforced, and the Agency was entitled to carry out the research and investigation required for the development of new nuclear ships. As for the repair of reactor shielding, the alteration of the reactor installation was permitted in November, 1979, and the design and the method of construction were approved in August, 1980. The preparatory works were carried out from April to August, 1980, prior to the main works. The repair works were started in August, and the new shields have been manufactured, while the existing shields and the equipments in the containment vessel were removed. The completed new shields have been installed successively in the containment vessel. It was confirmed that there is no problem in the safety of the nuclear ship Mutsu, as the result of the general inspection on safety completed in June, 1980. Maintenance works were carried out for the Mutsu and the normally berthing port. The periodic measurement of radiation dose rate, the selection of the new normally berthing port, the research and development of nuclear ships and others are also reported. (Kako, I.)

  20. Nuclear Physics Division: annual report 1991

    International Nuclear Information System (INIS)

    Betigeri, M.G.

    1993-01-01

    A brief account of the research and development activities carried out by the Nuclear Physics Division, Bhabha Atomic Research Centre, Bombay during the period January 1991 to December 1991 is presented. These R and D activities are reported under the headings : 1) Accelerator Facilities, 2) Research Activities, and 3) Instrumentation. At the end, a list of publications by the staff scientists of the Division is given. The list includes papers published in journals, papers presented at conferences, symposia etc., and technical reports. (author). figs., tabs

  1. Nuclear Safety Research Department annual report 2000

    Energy Technology Data Exchange (ETDEWEB)

    Majborn, B.; Damkjaer, A.; Nielsen, S.P.; Nonboel, E

    2001-08-01

    The report presents a summary of the work of the Nuclear Safety Research Department in 2000. The department's research and development activities were organized in two research programmes: 'Radiation Protection and Reactor Safety' and 'Radioecology and Tracer Studies'. In addition the department was responsible for the tasks 'Applied Health Physics and Emergency Preparedness', 'Dosimetry', 'Environmental Monitoring', and Irradiation and Isotope Services'. Lists of publications, committee memberships and staff members are included. (au)

  2. Analysis of Leukemia incidence (1997-2007) in vicinity area of a nuclear installation

    International Nuclear Information System (INIS)

    Jin Rong; Sun Quanfu; Liu Fen; Zhang Xu; Xing Ru; Xu Xinmei; Li Xiaoliang; Su Xu

    2012-01-01

    Objective: To investigate the leukemia incidence among residents in the vicinity area of a nuclear installation. Methods: The data were collected by the retrospective survey. Diagnosis is based on the medical records in all the relevant hospitals. The study area was those residential areas within 10 km of radium surrounding the installation. All residents who had lived in the study area for six months and over were recruited into the study group. Results: The survey ascertained 643 newly diagnosed leukemia cases in the study area during 1997 to 2007. The crude rate was 2.51/100000, and its standardized rate to national population structure was 2.53/100000. The incidence rate in the study area was slightly lower than that in the whole city. No increase trend was detected during the period. Conclusions: No significant difference of the leukemia incidence rate was found between the vicinity area of the nuclear installation and the whole city. (authors)

  3. Requirements and criteria for choosing sites suitable for the construction of nuclear installations and power stations

    International Nuclear Information System (INIS)

    1978-05-01

    The present document explains the selection criteria for areas in Italy suitable for the installation of nuclear power stations to be included in the 'National Site Map' provided for in Section 23 of Act No 393 of 2 August 1975. It represents the results of a thorough investigation into the various aspects of the problem of siting nuclear power stations, at the present stage of technology, taking into account the effect of the installations on the environment and the effect of the environment on the installations. The essential aim is to demonstrate that the requirements derived from these analyses, and on which there was full consultation with the other controlling bodies of European countries (in particular, France, Great Britain and West Germany) ensure the optimum choice of areas from the point of view of safety and public health. (author)

  4. IPEN (Instituto de Pesquisas Energeticas e Nucleares) - annual report - 1997

    International Nuclear Information System (INIS)

    1998-01-01

    The annual activities report of 1997 of IPEN (Instituto de Pesquisas Energeticas e Nucleares) - Brazilian organization - introduces the next main topics: mission; permanent goals; year main achievements - health and bioengineering, industry and materials and environmental aspects, nuclear reactor technology and fuel cycle, radiation protection and nuclear assurance, human resources formation, infrastructure and support, administration innovation; more important projects summary developed in 1997; budgetary data summary; products and services commercialization; year evaluation of 1997; perspectives for 1998; projects and researches financed for resources captivated in fomentation agencies; and clients

  5. Institute of Nuclear Chemistry and Technology annual report 1995

    International Nuclear Information System (INIS)

    1996-01-01

    The report is a collection of short communications being a review of scientific activity of the Institute of Nuclear Chemistry and Technology (INCT), Warsaw, in 1995. The papers are gathered in several branches as follows: radiation chemistry and physics (15); radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general (23); radiobiology (7); nuclear technologies and methods (21); nucleonic control systems (5). The Annual Report of INCT - 1995 contains also a general information about the staff and organization of the Institute, the full list of scientific publications and patents, conferences organized by INCT, thesis and list of projects granted by Polish and international organizations

  6. Annual Report of Institute of Nuclear Chemistry and Technology 1998

    International Nuclear Information System (INIS)

    1999-04-01

    Actual edition of Annual Report is a full review of scientific activities of the Institute of Nuclear Chemistry and Technology (INCT), Warsaw, in 1998. The abstracts are presented in the following group of subjects: radiation chemistry and physics, radiation technologies (26); radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general (25); radiobiology (11); nuclear technologies and methods - process engineering (5); material engineering, structural studies and diagnostics (9); nucleonic control systems (7). The edition also included the list of INCT scientific publications and patents as well as information on conferences organized or co-organized by the INCT in 1998

  7. Nuclear science. Annual report, July 1, 1979-June 30, 1980

    International Nuclear Information System (INIS)

    Myers, W.D.; Friedlander, E.M.; Nitschke, J.M.; Stokstad, R.G.

    1981-03-01

    This annual report describes the scientific research carried out within the Nuclear Science Division (NSD) during the period between July 1, 1979 and June 30, 1980. The principal objective of the division continues to be the experimental and theoretical investigation of the interactions of heavy ions with target nuclei, complemented with programs in light ion nuclear science, in nuclear data compilations, and in advanced instrumentation development. The division continues to operate the 88 Inch Cyclotron as a major research facility that also supports a strong outside user program. Both the SuperHILAC and Bevalac accelerators, operated as national facilities by LBL's Accelerator and Fusion Research Division, are also important to NSD experimentalists

  8. Section for nuclear physics and energy physics - Annual report

    International Nuclear Information System (INIS)

    1992-04-01

    This annual report summarizes the research and development activities of the Section for Nuclear Physics and Energy Physics at the University of Oslo in 1992. It includes experimental and theoretical nuclear physics, as well as other fields of physics in which members of the section have participated. The report describes completed projects and work currently in progress. As in previous years, the experimental activities in nuclear physics have mainly been centered around the Cyclotron Laboratory with the SCANDITRONIX MC-35 Cyclotron. Using the CACTUS multidetector system, several experiments have been completed. Some results have been published while more data remains to be analyzed

  9. Section for nuclear physics and energy physics - Annual Report

    International Nuclear Information System (INIS)

    1992-04-01

    This annual report summarizes the research and development activities of the Section for Nuclear Physics and Energy Physics at the University of Oslo in 1991. It includes experimental and theoretical nuclear physics, as well as other fields of physics in which members of the section have participated. The report describes completed projects and work currently in progress. As in previous years, the experimental activities in nuclear physics have mainly been centered around the Cyclotron Laboratory with the SCANDITRONIX MC-35 Cyclotron. Using the CACTUS multidetector system, several experiments have been completed. Some results have been published while more data remains to be analyzed

  10. 2011 annual meeting on nuclear technology. Pt. 4. Topical sessions

    International Nuclear Information System (INIS)

    Schoenfelder, Christian; Dams, Wolfgang

    2011-01-01

    Summary report on the Topical Session of the Annual Conference on Nuclear Technology held in Berlin, 17 to 19 May 2011: - Nuclear Competence in Germany and Europe. The Topical Session: - Sodium Cooled Fast Reactors -- will be covered in a report in a further issue of atw. The reports on the Topical Sessions: - CFD-Simulations for Safety Relevant Tasks; and - Final Disposal: From Scientific Basis to Application; - Characteristics of a High Reliability Organization (HRO) Considering Experience Gained from Events at Nuclear Power Stations -- have been covered in atw 7, 8/9, and 10 (2011). (orig.)

  11. Institute of Nuclear Chemistry and Technology annual report 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The report is a collection of short communications being a review of scientific activity of the Institute of Nuclear Chemistry and Technology (INCT), Warsaw, in 1995. The papers are gathered in several branches as follows: radiation chemistry and physics (15); radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general (23); radiobiology (7); nuclear technologies and methods (21); nucleonic control systems (5). The Annual Report of INCT - 1995 contains also a general information about the staff and organization of the Institute, the full list of scientific publications and patents, conferences organized by INCT, thesis and list of projects granted by Polish and international organizations.

  12. US Nuclear Regulatory Commission, 1984 annual report. Volume 1

    International Nuclear Information System (INIS)

    1985-01-01

    This is the 10th annual report of the US Nuclear Regulatory Commission (NRC). This report covers the major activities, events, decisions and planning that took place during fiscal year 1984 (October 1983 through September 1984) within the NRC or involving the NRC. Information is presented concerning 1984 highlights and planning for 1985; reactor regulation; cleanup at Three Mile Island Unit 2; operational experience; nuclear materials; safeguards; waste management; inspection, enforcement, quality assurance, and emergency preparedness; cooperation with the States; international programs; nuclear regulatory research; proceedings and litigation; and management and communication

  13. Institute of Nuclear Chemistry and Technology annual report 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The report is a collection of short communications being a review of scientific activity of the Institute of Nuclear Chemistry and Technology (INCT), Warsaw, in 1995. The papers are gathered in several branches as follows: radiation chemistry and physics (15); radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general (23); radiobiology (7); nuclear technologies and methods (21); nucleonic control systems (5). The Annual Report of INCT - 1995 contains also a general information about the staff and organization of the Institute, the full list of scientific publications and patents, conferences organized by INCT, thesis and list of projects granted by Polish and international organizations.

  14. Bavarian Constitutional Court, decision of August 14, 1987 (Referendum on sites of nuclear installations)

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    In the dissenting opinion of one of the judges of the Bavarian Constitutional Court concerning the decision of August 14, 1987, the Land Bavaria has a competence according to the constitution to decide about sites of nuclear installations. Hence it follows that a referendum on this problem has to be permitted. (CW) [de

  15. The Role Of Quality Assurance Program For Safety Operation Of Nuclear Installations

    International Nuclear Information System (INIS)

    Harjanto, N.T.; Purwadi, K.P.; Boru, D.S.; Farida; Suharni

    2000-01-01

    Nuclear installations expose potential hazard of radiation, therefore in their construction, operation and maintenance, it is necessary to consider safety aspect, in which the safety requirements which has been determined must be met. One of the requirements that is absolutely needed is quality assurance, which covers arrangement of quality assurance program, organization and administration of the implementation of quality assurance, and supervision. Quality Assurance program is a guideline containing quality policies and basic determination on the realization of activities that effect the quality of equipment's and items used in the operation of nuclear installations in order that the operation of nuclear installation can run safety and in accordance with their design aims and operation limits. Quality Assurance Program includes document control, design control, supply control, control of equipment s and items, operation/process control, inspection and control of equipment test, and control of nonconformance and corrections. General system of nuclear installation operation is equipped with safety and supporting systems. These systems must apply the quality assurance program that cover control of activities in the systems. In the implementation of the quality assurance program, it is necessary to establish procedures, work guidelines/instructions, and quality recording that constitutes documents of quality system 2 nd , 3 th , and 4 th level after the quality assurance program. To ensure the effectivity and to prove whether the realization of the program has been pursuant to the determined requirements, an internal audit must be conducted accordingly

  16. Installation and evaluation of a nuclear power plant operator advisor based on artificial intelligence technology

    International Nuclear Information System (INIS)

    Hajek, B.K.; Miller, D.W.

    1989-01-01

    This report discusses the following topics on a Nuclear Power Plant operator advisor based on artificial Intelligence Technology; Workstation conversion; Software Conversion; V ampersand V Program Development Development; Simulator Interface Development; Knowledge Base Expansion; Dynamic Testing; Database Conversion; Installation at the Perry Simulator; Evaluation of Operator Interaction; Design of Man-Machine Interface; and Design of Maintenance Facility

  17. Adaptation of high pressure water jets with abrasives for nuclear installations dismantling

    International Nuclear Information System (INIS)

    Rouviere, R.; Pinault, M.; Gasc, B.; Guiadeur, R.; Pilot, M.

    1989-01-01

    This report presents the work realized for adjust the cutting technology with high pressure water jet with abrasives for nuclear installation dismantling. It has necessited the conception and the adjustement of a remote tool and the realization of cutting tests with waste produce analysis. This technic can be ameliorated with better viewing systems and better fog suction systems

  18. Legal action initiated by a municipality in order to prevent installation of a nuclear power station

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    A municipality is authorized to appeal against the licensing of a nuclear power plant which is about to be installed in the neighbourhood of the municipality in order to protect its water treatment plant. (Non-official headnotes) OVG Rheinland-Pfalz, interlocutary decree of June 3, 1986 - 7 A II 2/85 - (appealable). (orig./HSCH) [de

  19. Nuclear structure research. Annual progress report

    International Nuclear Information System (INIS)

    Wood, J.L.

    1994-01-01

    The most significant development this year has been the outcome of a survey of EO transition strength, ρ 2 (EO), in heavy nuclei. The systematics of ρ 2 (EO) reveals that the strongest EO's are between pairs of excited states with the same spin and parity. This is observed in the regions Z,N = 38,60; 48,66; 64,88; and 80,106. Unlike other multipoles it is rare that nuclear ground states are strongly connected to excited states by monopole transitions. Another significant finding is in the results of the experimental study of levels in 187 Au. Two bands of states are observed with identical spin sequences, very similar excitation energies, and EO transitions between the favored band members but not between the unfavored band members. This is interpreted in terms of nearly identical diabatic structures. Experimental data sets for the radioactive decays of 183 Pt and 186 Au to 183 Ir and 186 Pt, respectively, have been under analysis. The studies are aimed at elucidating shape coexistence and triaxiality in the A = 185 region. An extensive program of systematics for nuclei at and near N = Z has been continued in preparation for the planned nuclear structure research program using the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge. A considerable effort has been devoted to HRIBF target development

  20. Nuclear structure research. Annual progress report

    International Nuclear Information System (INIS)

    Wood, J.L.

    1996-01-01

    The most significant development this year has been the realization that EO transition strength is a fundamental manifestation of nuclear mean-square charge radius differences. Thus, EO transitions provide a fundamental signature for shape coexistence in nuclei. In this sense, EO transitions are second only to E2 transitions for signaling (quadrupole) shapes in nuclei and do so when shape differences occur. A major effort has been devoted to the review of EO transitions in nuclei. Experiments have been carried out or are scheduled at: ATLAS/FMA (α decay of very neutron-deficient Bi isotopes); MSU/NSCL (β decay of 56 Cu); and HRIBF/RMS (commissioning of tape collector, internal conversion/internal-pair spectrometer; β decay of 58 Cu). A considerable effort has been devoted to planning the nuclear structure physics that will be pursued using HRIBF. Theoretical investigations have continued in collaboration with Prof. K. Heyde, Prof. D.J. Rowe, Prof. J.O. Rasmussen, and Prof. P.B. Semmes. These studies focus on shape coexistence and particle-core coupling

  1. First annual report on nuclear non-proliferation: supplement to annual report to Congress

    International Nuclear Information System (INIS)

    1979-01-01

    Section 602 of the Nuclear Non-Proliferation Act of 1978 (NNPA) requires that DOE's Annual Report include views and recommendations regarding non-proliferation policies and actions for which the Department is responsible. The Act also requires a detailed analysis of the proliferation implications of advanced enrichment and reprocessing techniques, advanced reactors, and alternative fuel cycles, including an unclassified summary and a comprehensive version containing relevant classified information. The goals of United States non-proliferation policy are to minimize the spread of nuclear weapons and to create a stable international environment for the peaceful use of nuclear energy

  2. IAEA Assistance in Helping Member States Develop Effectively Independent and Robust Regulators for Nuclear Installation Safety

    Energy Technology Data Exchange (ETDEWEB)

    Nicic, A., E-mail: A.Nicic@iaea.org [International Atomic Energy Agency (IAEA), Department of Nuclear Safety and Security, Wagramer Strasse 5, P.O. Box 100, 1400 Vienna (Austria)

    2014-10-15

    Full text: The International Conference on Topical Issues in Nuclear Installation Safety will be focused on the exchange of information on the latest thinking and advances in the implementation of the concept of Defence-in-Depth (DID) in nuclear installations, and the associated challenges. The focus will be on operating nuclear installations, including nuclear power plants, research reactors and fuel cycle facilities, and on how lessons learned from operating experience and recent events (e.g. the Fukushima Daiichi accident) are used to enhance safety. The implementation of DID covers a number of elements that are directly related to the different states and phases of a nuclear facility. This presentation will discuss the importance of the regulatory body in its oversight role as a cross-cutting element of DID in helping to assure the safety of nuclear installations. Taking note of the numerous challenges in developing an effectively independent and robust regulatory body, the presentation will describe how the IAEA assists Member States in their development of the appropriate regulatory infrastructure and necessary capacity to carry out their regulatory responsibilities – consistent with the IAEA Safety Standards. The presentation will describe the importance of the self-assessment process which serves as a starting point for helping Member States gain an understanding of what support they need and when the support should be provided as they develop into a competent regulatory authority. The presentation will discuss recent improvements in the self-assessment process and related IAEA services in this regard. Once regulatory bodies are established, it is essential that they seek continuous improvement. In this regard, the presentation will describe the IAEA’s assistance provided through the Integrated Regulatory Review Service (IRRS) and recent activities to improve the IRRS, consistent with the IAEA’s Action Plan on Nuclear Safety. (author)

  3. Strategic Nuclear Research Collaboration - FY99 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    T. J. Leahy

    1999-07-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) has created the Strategic Nuclear Research Collaboration. The SNRC brings together some of America's finest laboratory and university nuclear researchers in a carefully focused research program intended to produce ''breakthrough'' solutions to the difficult issues of nuclear economics, safety, non-proliferation, and nuclear waste. This integrated program aims to address obstacles that stand in the way of nuclear power development in the US These include fuel cycle concerns related to waste and proliferation, the need for more efficient regulatory practices, and the high cost of constructing and operating nuclear power plants. Funded at an FY99 level of $2.58M, the SNRC is focusing the efforts of scientists and engineers from the INEEL and the Massachusetts Institute of Technology to solve complex nuclear energy challenges in a carefully chosen, integrated portfolio of research topics. The result of this collaboration will be research that serves as a catalyst for future direct-funded nuclear research and technology development and which preserves and enhances the INEEL's role as America's leading national laboratory for nuclear power research. In its first year, the SNRC has focused on four research projects each of which address one or more of the four issues facing further nuclear power development (economics, safety, waste disposition and proliferation-resistance). This Annual Report describes technical work and accomplishments during the first year of the SNRC's existence.

  4. Eldorado Nuclear Limited annual report 1979

    International Nuclear Information System (INIS)

    1980-01-01

    In the fiscal year ending Dec. 31, 1979 Eldorado Nuclear had gross revenues totalling $111 498 000. Net earnings were $398 000. Progress was made towards the completion of capital projects leading to the development of the key Lake deposit and the construction of a new UF 6 plant. Studies on a new conversion plant to be located in Saskatchewan are being carried out. Eldorado's mining and processing capacity is to be more than doubled in the early 1980's. The company participated in 28 exploration projects in eight provinces and both territories in 1979. The Beaverlodge mine produced more than 312 000 tons of ore, and 1 006 000 pounds of U 3 O 8 were recovered. Uranium hexafluoride production was 9 890 000 pounds U, and UO 2 production accounted for 2 919 000 pounds U. (LL)

  5. Annual report of the Nuclear Physics Division

    International Nuclear Information System (INIS)

    Ramamurthy, V.S.; Rao, K.R.P.M.

    1974-01-01

    The various activities of the Nuclear Physics Division of the Bhabha Atomic Research Centre, India, during the year 1973 are reported. The main research programme, centred around the 5.5 meV Van-de-Graaff accelerator at Trombay, planning of the proposed experiments with the Variable Energy Cyclotron at Calcutta, expected to go into operation soon, experiments in fission physics involving multiparameter studies of spontaneous and neutron induced fission, etc. are described in detail. Apart from the advanced studies in X-ray and neutron diffraction, neutron scattering in solids and liquids, attempts have been made to use these techniques for the understanding of the geometrical structures of many biologically significant molecules, the magnetic structures of technologically important materials like ferrites and the dynamics of condensed media. Experiments with (1) the Fast Critical Facility, (2) Purnima and (3) the development of X-ray fluorescence spectrometer and the neutron radiography facility are also explained. (K.B.)

  6. Nuclear Installation Safety: General Observations and Trends from IAEA Peer Reviews

    International Nuclear Information System (INIS)

    Rzentkowski, G.

    2016-01-01

    The Safety Review Services (SRSs) for nuclear installations address the needs of Member States at all stages of installations’ lifecycle. SRSs are based on the IAEA Safety Standards and are provided on Member States’ request to peer review national regulatory frameworks and safety provisions for nuclear installations. They result in recommendations and suggestions to improve national regulations and operational safety, and serve to exert peer pressure to ensure that that every Member State with nuclear installations recognizes its safety responsibility and the need to comply with the IAEA Safety Standards. This presentation provides an overview of SRSs for Nuclear Installations, including their structure and main subject areas. The presentation also summarizes general findings and trends which clearly demonstrate that there is continuous improvement in regulation of nuclear installations and in safety of their operation. Nevertheless, there is the need to further enhance the efficiency and effectiveness of SRSs through review of the overall governance model and service delivery to better serve the needs of Member States. The presentation points out some areas of improvements which have already been implemented or are being considered for implementation. Just as important, SRSs are conducted by teams of experts from around the world to strengthening international cooperation, ensure diversity and impartiality, and improve the overall quality of the safety review being conducted. The review team members are also provided with the opportunity for mutual learning and sharing good practices among themselves and with the Member State undergoing the review. As a result, SRAs play an important role in a quest to harmonize regulatory requirements and approaches globally. (author)

  7. Institute of Nuclear Power Operations annual report, 1993

    International Nuclear Information System (INIS)

    1993-01-01

    This annual report highlights the activities of the Institute of Nuclear Power Operations. The topics of the report include the president and chairmen's joint message, overview of programs serving as the foundation for most of its activities, performance indicators for the US nuclear utility industry, and INPO's 1993 financial reports and rosters. INPO has four technical cornerstone programs that serve as the foundation for most of its activities. (1) Evaluations of nuclear power plants operated by member utilities are conducted on a regularly scheduled basis. (2) INPO supports its member utilities in their work to achieve and maintain accreditation of training programs. (3) Events analysis programs identify and communicate lessons learned from plant events so utilities can take action to prevent similar events at their plants. (4) INPO helps members improve in nuclear operations areas through assistance programs and other activities that continually evolve to meet the changing needs of the nuclear industry

  8. Institute of Nuclear Power Operations 1994 annual report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This annual report highlights the activities of the Institute of Nuclear Power Operations. The topics of the report include the president and chairmen`s joint message, overview of programs serving as the foundation for most of its activities, performance indicators for the US nuclear utility industry, and INPO`s 1994 financial reports and rosters. INPO has four technical cornerstone programs that serve as the foundation for most of its activities. (1) Evaluations of nuclear power plants operated by member utilities are conducted on a regularly scheduled basis. (2) INPO supports its member utilities in their work to achieve and maintain accreditation of training programs. (3) Events analysis programs identify and communicate lessons learned from plant events so utilities can take action to prevent similar events at their plants. (4) INPO helps members improve in nuclear operations areas through assistance programs and other activities that continually evolve to meet the changing needs of the nuclear industry

  9. Institute of Nuclear Power Operations 1994 annual report

    International Nuclear Information System (INIS)

    1994-01-01

    This annual report highlights the activities of the Institute of Nuclear Power Operations. The topics of the report include the president and chairmen's joint message, overview of programs serving as the foundation for most of its activities, performance indicators for the US nuclear utility industry, and INPO's 1994 financial reports and rosters. INPO has four technical cornerstone programs that serve as the foundation for most of its activities. (1) Evaluations of nuclear power plants operated by member utilities are conducted on a regularly scheduled basis. (2) INPO supports its member utilities in their work to achieve and maintain accreditation of training programs. (3) Events analysis programs identify and communicate lessons learned from plant events so utilities can take action to prevent similar events at their plants. (4) INPO helps members improve in nuclear operations areas through assistance programs and other activities that continually evolve to meet the changing needs of the nuclear industry

  10. A legislative framework for the safety of nuclear installations in the European Union

    International Nuclear Information System (INIS)

    Kus, S.; Emmerechts, S.

    2009-01-01

    For the first time since the inception of the European Community in 1957 and after two previously unsuccessful attempts, on 25 June 2009 the Council of the European Union adopted European-wide, binding requirements on nuclear safety. The goal of the 'Council Directive establishing a Community framework for the nuclear safety of nuclear installations' ('the Directive') is to maintain and to promote the continuous improvement of nuclear safety and to ensure that a high level of nuclear safety is provided by EU member states to protect workers and the general public against the dangers arising from nuclear installations. The Directive is based on the IAEA Safety Fundamentals and the Convention on Nuclear Safety. The 27 member states of the Community are required to bring into force the laws, regulations and administrative provisions necessary to comply with the Directive by 22 July 2011. The Directive applies to a range of nuclear installations that is wider than the one adopted in the Convention on Nuclear Safety.9 The Directive applies to any civilian nuclear installation, defined as: a) an enrichment plant, nuclear fuel fabrication plant, nuclear power plant, reprocessing plant, research reactor facility, spent fuel storage facility; and b) storage facilities for radioactive waste that are on the same site and are directly related to nuclear installations listed under point a). The Directive is without doubt a milestone in international and regional law making in the field of nuclear law, not so much because of its content but because of the supranational nature of European law and the powers of EU institutions. Member states have long resisted the Directive because of the powers which it delegates to the European Commission, and more importantly, to the European Court of Justice. The Commission, as the guardian of the treaties and the measures taken by the institutions, ensures that EU legislation is applied correctly by the member states. It can start

  11. Research nuclear reactor RA - Annual Report 1991

    International Nuclear Information System (INIS)

    Sotic, O.

    1992-01-01

    Activities related to revitalisation of the RA reactor stared in 1986, were continued in 1991. A number of interventions on the reactor components were finished that are supposed to enable continuous and reliable operation. The last, and at the same time largest action, related to exchange of complete reactor instrumentation is underway, but it is behind the schedule in 1991 because the delivery of components from USSR is late. Production of this instruments is financed by the IAEA according to the contract signed in December 1988 with Russian Atomenergoexport. According to this contract, it has been planned that the RA reactor instrumentation should be delivered to the Vinca Institute by the end of 1990. Only 56% of the instrumentation was delivered until September 1991. Since then any delivery of components to Yugoslavia was stopped because of the temporary embargo imposed by the IAEA. In 1991 most of the existing RA reactor instrumentation was dismantled, only the part needed for basic measurements when reactor is not operated, was maintained. Construction of some support elements is almost finished by the local staff. The Institute has undertaken this activity in order to speed up the ending of the project. If all the planned instrumentation would not arrive until the end of March 1992, it would not be possible to start the RA reactor testing operation in the first part of 1993, as previously planned. In 1991, 53 staff members took part in the activities during 1991, which is considered sufficient for maintenance and repair conditions. Research reactor RA Annual report for year 1991 is divided into two main parts to cover: (1) operation and maintenance and (2) activities related to radiation protection [sr

  12. Research nuclear reactor RA - Annual Report 1994

    International Nuclear Information System (INIS)

    Sotic, O.

    1994-12-01

    Activities related to revitalisation of the RA reactor stared in 1986, were continued in 1991. A number of interventions on the reactor components were finished that are supposed to enable continuous and reliable operation. The last, and at the same time largest action, related to exchange of complete reactor instrumentation is underway, but it is behind the schedule in 1991 because the delivery of components from USSR is late. Production of this instruments is financed by the IAEA according to the contract signed in December 1988 with Russian Atomenergoexport. According to this contract, it has been planned that the RA reactor instrumentation should be delivered to the Vinca Institute by the end of 1990. Only 56% of the instrumentation was delivered until September 1991. Since then any delivery of components to Yugoslavia was stopped because of the temporary embargo imposed by the IAEA. In 1991 most of the existing RA reactor instrumentation was dismantled, only the part needed for basic measurements when reactor is not operated, was maintained. Activities related to improvement of Russian project were continued in 1994. Control and maintenance of the reactor components was done regularly and efficiently. Extensive repair of the secondary coolant loop is almost finished and will be completed in the first part of 1995 according to existing legal procedures and IAEA recommendations. Fuel inspection by the IAEA safeguards inspectors was done on a monthly basis. There have been on the average 47 employees at the RA reactor which is considered sufficient for maintenance and repair conditions. Research reactor RA Annual report for year 1991 is divided into two main parts to cover: (1) operation and maintenance and (2) activities related to radiation protection [sr

  13. NUSIM 2010: 18. Annual Nuclear Seminar and Information Meeting

    International Nuclear Information System (INIS)

    2010-04-01

    The Conference included the following sessions: (A) Opening; (B) Situation in partner countries (3 contributions); (C) New reactor units for Europe (3 verbal presentations); (D) Maintenance, service and engineering strategy (6 verbal presentations); (E) Modernization of NPP and Safety improvements (6 verbal presentations); (F) Decommissioning of Nuclear Installations and Radioactive Waste Management (12 verbal presentations); (G) Young Generation (5 verbal presentations); (H) Closing. The majority of verbal presentations have been inputted into INIS, mostly in the form of the full authors' presentations.

  14. Section for nuclear physics and energy physics - Annual report 1989

    International Nuclear Information System (INIS)

    1990-04-01

    The experimental activities in nuclear physics have in 1989 mainly been centered around the cyclotron laboratory with the Scanditronic MC-35 cyclotron. The installation of the CACTUS multidetector system has been completed. With 8 particle telescopes, 28 NaI detectors and 2 Ge detectors, this experimental arrangement represents a major improvement compared to earlier set-ups in the laboratory. Theoretical studies of manybody problems, and nuclear structure and reactions have continued. The study of problems related to the foundations of quantum mechanics has also been persued

  15. Post-installed concrete anchors in nuclear power plants: Performance and qualification

    International Nuclear Information System (INIS)

    Mahrenholtz, Philipp; Eligehausen, Rolf

    2015-01-01

    Graphical abstract: - Highlights: • Review of qualification and design regulations for anchors in nuclear power plants. • First complete set of nuclear anchor load–displacement data and its evaluation ever. • Demonstration of robust test behavior of a qualified post-installed anchor product. - Abstract: In nuclear power plants (NPPs), post-installed anchors are widely used for structural and non-structural connections to concrete. In many countries, anchor products employed for safety relevant applications have to be approved by the authorities. For the high safety standards in force for NPPs, special requirements have to be met to allow for extreme design situations. This paper presents an experimental test program conducted to evaluate the performance of anchors according to the German Guideline for Anchorages in Nuclear Power Plants and Nuclear Technology Installations (DIBt KKW Leitfaden, 2010). After a brief introduction to anchor behavior and the regulative context, the results of tension and shear tests carried out on undercut anchors are discussed. Robust load capacities and relatively small displacements determined for demanding load and crack cycling tests demonstrated the suitability of anchors qualified according to a state-of-the-art qualification guideline

  16. Environmental Impact Assessment for the Decommissioning of Nuclear Installations. Vol. 1-3

    International Nuclear Information System (INIS)

    Bussell, M.J.; Haigh, C.P.; O'Sullivan, P.J.; Mathieson, J.; Braeckeveldt, M.; Deconinck, J.M.; Vidaechea, S.; Beceiro, A.; Ziegenhagen, J.; Biurrun, E.; Codee, H.; Palerm, J.; Bond, A.J.; Warren, L.; Sheate, B.

    2001-06-01

    This Report presents the results of a study concerned with Environmental Impact Assessment (EIA) for the decommissioning of nuclear installations in European Union Member States and in the Applicant Countries in Central and Eastern Europe. The study, undertaken for the Environment Directorate General of the European Commission, took place between January 2000 and March 2001 under contract number B4-3040/99/136035/MAR/C2 entitled Environmental Impact Assessment for the Decommissioning of nuclear Installations. The study presents an analysis of the current situation in the European Union and in the Applicant Countries, and develops guidance for applying the relevant Directives for EIA to the specific issue of decommissioning nuclear installations although there is also scope for application to other large or controversial projects. The first part of the report (Volume 1) describes the current situation in the EU Member States and Applicant Countries. On the basis of this status, the guidance presented in Volume 2 was developed. Draft versions of these volumes were reviewed by an independent review panel and were then subjected to detailed discussion and debate at a Workshop held in Brussels in January 2001. The Workshop was attended by more than 60 representatives of the nuclear industry, nuclear regulators, public interest groups and EIA experts. Some minor changes were made following the Workshop, a record of which can be found in Volume 3. (author)

  17. Risk of childhood leukaemia in the vicinity of nuclear installations: Findings and recent controversies

    International Nuclear Information System (INIS)

    Dominique Laurier; Bernd Grosche; Hall, Per

    2002-01-01

    The identification of a local excess of cancer cases, possibly associated with ionizing radiation, always receives substantial media coverage and communication about clusters is difficult. We reviewed studies that examined the risk of leukaemia among young people near nuclear installations. An excess of leukaemia exists near some nuclear installations, at least for the reprocessing plants at Sellafield and Dounreay and the nuclear power plant Kruemmel. Nonetheless, the results of multi-site studies invalidate the hypothesis of an increased risk of leukaemia related to nuclear discharge. Up until now, analytic studies have not found an explanation for the leukaemia clusters observed near certain nuclear installations. The hypothesis of an infectious aetiology associated with population mixing has been proposed, but needs to be investigated further. The review illustrates two recent examples in France (La Hague reprocessing plant) and in Germany (Kruemmel power plant), where controversies developed after reports of increased leukaemia risks. These examples show the importance of recalling the current epidemiological knowledge and of using systematic recording of cases to replace the alleged excesses in a more general framework. Some elements should also be suggested from the recent French and German experiences to reinforce credibility in the results

  18. Annual report of Nuclear Engineering Research Laboratory, University of Tokyo in fiscal 1993

    International Nuclear Information System (INIS)

    1994-08-01

    In this annual report, the activities of research and education, the state of operation of research facilities and others in fiscal year 1993 are summarized. Four main research facilities are the fast neutron source reactor 'Yayoi', the electron linear accelerator, the basic experiment facility for nuclear fusion reactor blanket design and the heavy irradiation research facility. The reactor and the accelerator are for the joint utilization by all universities in Japan, the blanket is used by the Faculty of Engineering, and the HIT is for the joint utilization in University of Tokyo. In fiscal year 1993, the installation of the fast neutron science research facility was approved. In this annual report, the management and operation of the above research facilities are described, and the research activities, the theses for doctorate and graduation theses of teachers, are summarized. (K.I.)

  19. KWIKPLAN: a computer program for projecting the annual requirements of nuclear fuel cycle operations

    International Nuclear Information System (INIS)

    Salmon, R.; Kee, C.W.

    1977-06-01

    The computer code KWIKPLAN was written to facilitate the calculation of projected nuclear fuel cycle activities. Using given projections of power generation, the code calculates annual requirements for fuel fabrication, fuel reprocessing, uranium mining, and plutonium use and production. The code uses installed capacity projections and mass flow data for six types of reactors to calculate projected fuel cycle activities and inventories. It calculates fissile uranium and plutonium flows and inventories after allowing for an economy with limited reprocessing capacity and a backlog of unreprocessed fuel. All calculations are made on a quarterly basis; printed and punched output of the projected fuel cycle activities are made on an annual basis. Since the punched information is used in another code to determine waste inventories, the code punches a table from which the effective average burnup can be calculated for the fuel being reprocessed

  20. Nuclear structure research. Annual progress report

    International Nuclear Information System (INIS)

    Wood, J.L.

    1995-01-01

    The most significant development this year has been the realization of a method for estimating EO transition strength in nuclei and the prediction that the de-excitation (draining) of superdeformed bands must take place, at least in some cases, by strong EO transitions. A considerable effort has been devoted to planning the nuclear structure physics that will be pursued using the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge. A significant effort has been devoted to HRIBF target development. This is a critical component of the HRIBF project. Exhaustive literature searches have been made for a variety of target materials with emphasis on thermodynamic properties. Vapor pressure measurements have been carried out. Experimental data sets for radioactive decays in the very neutron-deficient Pr-Eu and Ir-Tl regions have been under analysis. These decay schemes constitute parts of student Ph.D. theses. These studies are aimed at elucidating the onset of deformation in the Pr-Sm region and the characteristics of shape coexistence in the Ir-Bi region. Further experiments on shape coexistence in the neutron-deficient Ir-Bi region are planned using α decay studies at the FMA at ATLAS. The first experiment is scheduled for later this year